
C
Programming

LICENSE, DISCLAIMER OF LIABILITY, AND LIMITED WARRANTY

By purchasing or using this book (the “Work”), you agree that this license
grants permission to use the contents contained herein, but does not give you
the right of ownership to any of the textual content in the book or ownership
to any of the information or products contained in it. This license does not
permit uploading of the Work onto the Internet or on a network (of any kind)
without the written consent of the Publisher. Duplication or dissemination
of any text, code, simulations, images, etc. contained herein is limited to and
subject to licensing terms for the respective products, and permission must
be obtained from the Publisher or the owner of the content, etc., in order to
reproduce or network any portion of the textual material (in any media) that is
contained in the Work.

Mercury Learning and inforMation (“MLI” or “the Publisher”) and anyone
involved in the creation, writing, production, accompanying algorithms,
code, or computer programs (“the software”), and any accompanying Web
site or software of the Work, cannot and do not warrant the performance or
results that might be obtained by using the contents of the Work. The author,
developers, and the Publisher have used their best efforts to insure the
accuracy and functionality of the textual material and/or programs contained in
this package; we, however, make no warranty of any kind, express or implied,
regarding the performance of these contents or programs. The Work is sold “as
is” without warranty (except for defective materials used in manufacturing the
book or due to faulty workmanship).

The author, developers, and the publisher of any accompanying content, and
anyone involved in the composition, production, and manufacturing of this
work will not be liable for damages of any kind arising out of the use of (or the
inability to use) the algorithms, source code, computer programs, or textual
material contained in this publication. This includes, but is not limited to, loss
of revenue or profit, or other incidental, physical, or consequential damages
arising out of the use of this Work.

The sole remedy in the event of a claim of any kind is expressly limited to
replacement of the book and only at the discretion of the Publisher. The use
of “implied warranty” and certain “exclusions” vary from state to state, and
might not apply to the purchaser of this product.

C
Programming

A Self-Teaching Introduction

MerCury Learning and inforMation
Dulles, Virginia

Boston, Massachusetts
New Delhi

C
Programming

A Self-Teaching Introduction

By
RAJIV CHOPRA, PhD

MerCury Learning and inforMation
Dulles, Virginia

Boston, Massachusetts
New Delhi

Copyright ©2018 by Mercury Learning and inforMation. All rights reserved .
Reprinted and revised with permission.

Original title and copyright: Introduction to Programming (C)
Copyright © 2017 by New Age International (P) Ltd. Publishers. All rights reserved.
ISBN : 978-93-86070-20-3

This publication, portions of it, or any accompanying software may not be reproduced in
any way, stored in a retrieval system of any type, or transmitted by any means, media,
electronic display or mechanical display, including, but not limited to, photocopy, record-
ing, Internet postings, or scanning, without prior permission in writing from the publisher.

Publisher: David Pallai

Mercury Learning and inforMation

22841 Quicksilver Drive
Dulles, VA 20166
info@merclearning.com
www.merclearning.com
1-800-232-0223

R. Chopra. C Programming: A Self-Teaching Introduction.
ISBN: 978-1-68392-090-8

The publisher recognizes and respects all marks used by companies, manufacturers, and
developers as a means to distinguish their products. All brand names and product names
mentioned in this book are trademarks or service marks of their respective companies. Any
omission or misuse (of any kind) of service marks or trademarks, etc. is not an attempt to
infringe on the property of others.

Library of Congress Control Number: 2017934665

171819321 Printed in the USA on acid-free paper.

Our titles are available for adoption, license, or bulk purchase by institutions, corporations,
etc. For additional information, please contact the Customer Service Dept. at 800-232-
0223(toll free).

All of our titles are available in digital format at authorcloudware.com and other digital
vendors. The sole obligation of Mercury Learning and inforMation to the purchaser is to
replace the book, based on defective materials or faulty workmanship, but not based on the
operation or functionality of the product.

Contents

Preface viii

Acknowledgments x

Chapter 1: C Overview 1
1.0 Introduction 1
1.1 The Concept of Algorithms and Pseudocodes 2
1.2 Flowcharts 8
1.3 Compiler Overview 15
1.4 Assembler, Linker, and Loader 19
1.5 Structure of a Simple “Hello World” Program in C 22
1.6 Overview of the Compilation and Execution

Process in an Integrated Development Environment
(preferably CodeBlock) 30
Summary 32
Exercises 32

Chapter 2: Programming Using C 35
2.0 Introduction 35
2.1 Preprocessor Directives/Compiler Directives/C Preprocessor 35
2.2 C Primitive Input-Output using getchar and putchar 40
2.3 Simple Input/Output 42
2.4 Function Calls from a Library 44
2.5 Data Types in C 44
2.6 Enumeration 47
2.7 Operators 51
2.8 Type Casting (or Coercion) in C 62

vi • Contents

2.9 Conditional Executing Using If-Else 63
2.10 Switch and Break 68
2.11 The Concept of Loops—While Loop, Do-While

Loop, For Loop, Nested Loops, Break Statement,
Continue Statement 73

2.12 Storage Classes: Auto, Static, Extern, and Register 119
Summary 135
Exercises 135

Chapter 3: Arrays And Pointers 141
3.0 Introduction 141
3.1 1D, 2D, and 3D Arrays 142
3.2 The Concept of Subprogramming 212
3.3 Functions 213
3.4 Parameter Transmission Techniques—Call by Value

and Call by Reference 228
3.5 Pointers 234
3.6 Relationship between Array and Pointer 239
3.7 Argument Passing Using Pointers 241
3.8 Array of Pointers 243
3.9 Passing Arrays as Arguments 244

Summary 269
Exercises 269

Chapter 4: Structures And Unions 275
4.0 Introduction 275
4.1 Structures versus Unions 296
4.2 Structures and Pointers 298

Summary 312
Exercise Questions 313

Chapter 5: File Handling In C 317
5.0 Introduction 317
5.1 File Pointers 317
5.2 Character Input / Output with Files 320
5.3 String I/O Functions 321
5.4 Integer I/O Functions 321
5.5 Formatted I/O Functions 322
5.6 Block (or Record) I/O Functions 323

Summary 338
Exercises 338

Contents • vii

Appendices 341

A: C Programming Lab Projects 341

B: Keywords in C 343

C: Escape Sequences in C 344

D: Operator Precedence and Associativity 345

E: Standard Library String Functions 346

References 347

Index 349

PrefaCe

The right temperament required for research originates from the right expo-
sure and environment that a student receives during study. And good books
help in this direction.

Programming is an art. You have to learn this art, as only then will you learn
how to write good programs.

This book is an outcome of lecture notes prepared during my long years of
teaching Introduction to Programming (C), augmented by consulting a large
number of books available on the subject. I thank my students, colleagues, and
teachers, as well as all the authors who have helped in shaping my approach to
this knowledge.

aCknowledgments

A dream is visualized by a pair of eyes; however, many pairs of hands join to-
gether and work hard toward its realization. This book has been a similar en-
terprise.

I next thank my college staff, director, and HOD for their contributions to
this book on the C programming language.

I would also like to thank the entire staff of Mercury Learning for bringing
the book to a new market.

Finally, I would like to thank my wife, Mrs. Shakti, my twin kids, Arjessh
and Arshitha Chopra, as well as my parents who cooperated with me in all terms
in order to write this book.

Dr. Rajiv Chopra

C Overview

1C H A P T E R

1.0 INTRODUCTION

The C programming language was developed by Dennis Ritchie at AT&T
Bell Laboratories in the early 1970s. Soon after, Bell Laboratories devel-
oped a new operating system, called UNIX. About 90% of the code for

the Unix operating system (OS) was exclusively in C. As C gained popularity,
more and more vendors joined the race and developed their own compilers.
This was necessary because until the late 1970s, only Bell Laboratories had a C
compiler.

In the early 1980s, realizing the need to standardize the C language, the
American Standards Institute (ANSI), an organization that handles such mat-
ters, began the task. In 1990, the first official ANSI standard definition of C was
published. Soon C became omnipresent and thus there was a need of further
standardization. The International Standards Organization (ISO) adopted a
standard called ISO/IEC 9899:1990. After 1990, many additional changes were
made in the C language. In 1993, an ANSI C committee (known as X3J11), was
formed to standardize C. The most recent standard was adopted in 1999. It is
known as ANSI C99 or ISO/IEC 9899:1999. Since then, ANSI C has been im-
plemented on a wide variety of computers, including IBM-compatible personal
computers (PCs), mainframes, minicomputers, and workstations.

C is a higher-level language that nevertheless allows the programmer to deal
with hardware at a much lower level. Please note that although C is a general-
purpose programming language, it was designed with systems program-
ming applications in mind. So it provides a lot of power and flexibility.

2 • C Programming

This chapter discusses some basic terminology related to C and also ex-
plains the process of compiling a program written in the C language.

1.1 THE CONCEPT OF ALGORITHMS AND
PSEUDOCODES

A computer is a dead piece of hardware if it is not loaded with software. It may
be application software, system software, embedded software, or other types
of software. The basic operations of a computer system form the com-
puter’s instruction set. Now in order to solve a problem using a computer,
you will have to express the solution to the problem in terms of the instructions
for the particular computer. So we define a computer program as a collection of
instructions necessary to solve a specific problem. The approach or method
that is used to solve the problem is known as an algorithm. For ex-
ample, if you want to find the factorial of a number, then the set of statements
that solves the problem becomes a program. You first express the solution to
the problem in terms of an algorithm and then develop a program that imple-
ments that algorithm. A program may be written in any programming language
of your choice, such as C/C++, JAVA2, Visual Basic 9, and so on.

An algorithm is a formal step-by-step method for solving problems. Let us
now look at some of the characteristics of algorithms:

1. An algorithm consists of an ordered sequence of instructions.

2. Each step of the algorithm should be unambiguous—that is, it should
not have many meanings.

3. It should have a finite number of steps.

4. It should terminate/stop after this finite number of steps.

5. It should have some input and may or may not produce any output.

Algorithms should be concise and compact to facilitate verification of their
correctness. Verification involves observing the performance of an algorithm
with a good quality set of test cases.

For example, we might want to write an algorithm to find the maximum
from a set of n positive numbers. We assume that the numbers are stored in an
array X.

C overview • 3

Algorithm to Find the Maximum from an Array X

INPUT: An array X with n elements.

OUTPUT: Finding the largest element, MAX, from the array X.

Step 1: Set MAX=0/* Initial value of MAX */

Step 2: for j=1 to n do

Step 3: if(X[j] > MAX) then MAX = X[j]

end for

Step 4: Stop

As a problem-solving tool, programmers usually introduce at least one in-
termediate step between the English-like problem definition and C. This inter-
mediate step is known as a pseudocode (pseudo=false). Pseudocode is a
restatement of the problem as a list of steps, in an English-like format,
describing what must be done to solve it. Using the pseudocode, a pro-
grammer then writes the actual program. In a nutshell we can say that pseudo-
code consists of statements which are a combination of English and C,
in which pseudocode is not quite C code but can be easily translated.
It can be refined and gradually made more precise. The practicality of this ap-
proach is that the pseudocode used at one stage of the development process will
often be a comment at the next stage.

For example, for the preceding algorithm, Max, we now write its
pseudocode as follows:

Initialize a variable, MAX, to 0.

Check through the entire set of elements.

If any element from the set is greater than the Max then max is that element.

Print the MAX number.

Before further discussion, let us solve some examples.

Example 1: Write an algorithm to find the greatest of three numbers
and then validate your algorithm by giving it dry runs.

Solution 1: The algorithm to find the greatest of three numbers (a, b, and c) is
as follows:

Step 1: Input three numbers from the user: a, b, c.
Step 2: Check,

4 • C Programming

 if (a > b)
Step 3: do if (a > c)
Step 4: then Print ‘a’ and go to step-12.
Step 5: else
Step 6: Print ‘c’ and go to step-12.
Step 7: else
Step 8: do if (b > c)
Step 9: then Print ‘b’ and go to step-12.
Step 10: else
Step 11: Print ‘c’ and go to step-12.
Step 12: Stop

Now let us validate this algorithm.

Dry Run 1:

Input: a = 10
 b = 20
 c = 30
Expected Output: 30

Process: Is (a > b) ?
 Is (10 > 20) → false
 Is (b > c) ?
 Is (20 > 30) → false
Observed Output: 30

Dry Run 2:

Input: a = 10
 b = 20
 c = 30
Expected Output: 30

Process: Is (a > b) ?
 Is (10 > -20)→ true
 Is (a > c) ?
 Is (10 > 30) → false
Observed Output: 30

Example 2: Write an algorithm to read a, b, and c as the coefficients of
a quadratic equation and to find its roots; then validate your algorithm
by giving it dry runs.

C overview • 5

Solution 2: The algorithm to find the roots of a given quadratic equation is as
follows:

Quad_equation (a, b, c)

Step 1: Input three numbers: a, b, c.
Step 2: if (a= =0)
Step 3: Then Print ‘Not a quadratic equation’ and go to

step-12
Step 4: else
Step 5: put D = b2 – 4 a c
Step 6: check if (D > 0 or D < 0)
Step 7: then ROOTS = (-b + sqrt (b2 – 4ac)) / 2a
Step 8: and Print ‘ROOTS’ and go to step 12.
Step 9: else do ROOTS = -b/2a
Step 10: and Print ‘ROOTS’ and go to step 12.
Step 11: Stop.

Now let us validate this algorithm.

Dry Run 1:

Input: a = 1
 b = 2
 c = 3
Expected output: ROOTS = -1 + sqrt(2) / 1

Process:

 Is a= =0 ?
 Is 1 = = 0 → false
 D = b2 – 4ac
 D = -8
 Is D > 0 or D < 0 ?
 D < 0 → true
 ROOTS = (-b ± sqrt(b2 – 4ac)) /2a
Observed Output:

 -1 ± sqrt(2) / 1
Dry Run 2:

Input: a = 4
 b = 2
 c = 1

6 • C Programming

Expected output: ROOTS = -1 ± sqrt(3) / 4

Process:

 Is a= =0 ?
 Is 4 = = 0 → false
 D = b2 – 4ac
 D = -12
 Is D > 0 or D < 0 ?
 D < 0 → true
 ROOTS = (-b + sqrt(b2 – 4ac)) /2a
Observed Output:

 -1 ± sqrt(3) / 4
Dry Run 3:

Input: a = 0
 b = 2
 c = 1
Expected output: Not a quadratic equation.

Process:

 Is a= =0 ?
 Is 0 = = 0 → true
Observed Output:

 Not a quadratic equation.

In all of the preceding dry runs, the expected output equals the
observed output.

Example 3: Write an algorithm to read x, y, and z as the three sides of
a triangle and to check the type of triangle formed; then validate your
algorithm by giving it dry runs.

Solution 3: The algorithm to check for the triangle type is as follows:

Triangle_type (x, y, z)

Step 1: Input three sides of triangle: x, y, z.

Step 2: check if (x + y > z) && (y + z > x) && (x + z >y)

Step 3: then do if (x= y && y = z)

Step 4: then Print: ‘Equilateral triangle’ and go to step 17.

NOTE

C overview • 7

Step 5: else

Step 6: do if (x = y && y! =z) || (x = z && z!=y) || (y=z &&x!=z)

Step 7: then do if (x = sqrt(z2 /2) || (x = sqrt(y2 /2) || (y = sqrt(x2 /2))

Step 8: Print: ‘Right Angled Isosceles Triangle’ and go to step 17.

Step 9: else

Step 10: Print: ‘Isosceles Triangle’ and go to step 17.

Step 11: else

Step 12: do if (x = sqrt(z2 + y2)) || (y = sqrt(z2 + x2)) || (x = sqrt(x2 + y2))

Step 13: then Print: ‘Right Angled Scalene Triangle’ and go to step 17.

Step 14: else Print: ‘Scalene Triangle’ and go to step 17.

Step 15: else

Step 16: Print: ‘Not a triangle’ and go to step 17.

Step 17: Stop.

Let us validate this algorithm now.

Dry Run 1:

Input: x = 1
 y = 1
 z = 2
Expected output: Not a triangle

Process:

 Is (x + y > z) ?
 Is (1 + 1 > 2) → false
Observed Output: Not a triangle

Dry Run 2:

Input: x = 3
 y = 4
 z = 5
Expected output: Right Angled Scalene Triangle

8 • C Programming

Process:

 Is (x + y > z) && (y + z > x) && (x + z > y)?
 True
 Is x = y && y = z?
 False
 Is (x =y && y!=z) || (x=z && z!=y) ||(y=z && z!=x)?
 True
 Is (32 + 42 = 52) → True
Observed Output: Right Angled Scalene Triangle

Dry Run 3:

Input: x = 6
 y = 6
 z = 6
Expected output: Equilateral Triangle

Process:

 Is (6 + 6 > 6) ? → True
 Is (6 = 6 = 6) → True
Observed Output: Equilateral Triangle

In all of the preceding dry runs, it is seen that the expected output
equals the observed output.

1.2 FLOWCHARTS

A flowchart is defined as a pictorial representation of an algorithm. It
serves as a means of recording, analyzing, and communicating problem infor-
mation. Programmers often use a flowchart before writing a program, although
this is not always mandatory. Practically speaking, sometimes drawing of
the flowchart and writing of the code in a high-level language go side
by side. Flowcharts are of two types.

(a) Program flowchart

(b) System flowchart

A program flowchart (or simply a flowchart) shows the detailed pro-
cessing steps within one computer program and the sequence in which
those steps must be executed. Different notations are used in a flowchart to
denote the different operations that take place in a program.

NOTE

C overview • 9

On the other hand, system flowcharts show the procedures involved
in converting data on input media to data in output form. Here, the focus
is on the data flow into or out of a program, the forms of input, and the forms of
the output. Please understand that a system flowchart makes no attempt
to depict the function-oriented processing steps within a program. A
system flowchart may be constructed by the system analyst as part of problem
definition. Note that algorithms in data structures are always expressed
in the form of flowcharts.

This difference is clear from Figures 1.1a and 1.1b.

Monthly billing program

Amount due

Quantity, Unit price

Figure 1.1a A System Flowchart Example

Contrast this with a program flowchart.

Read
quantity,
price

Multiply quantity
by price

Write
amount bill

Stop

Start

Figure 1.1b A Program Flowchart Example

10 • C Programming

A flowchart is a tool to show the logic flow of a program. Programmers use
flowcharts to design a complete program. The primary purpose of a flowchart
is to show the design of an algorithm. The flowchart frees a programmer from
the syntax and details of a programming language while allowing focus on the
details of the problem to be solved.

A flowchart is a combination of symbols. Symbols enhance the readability
of the flowchart. They do not directly show instructions (or commands). They
show the start and stop points, the order and sequence of actions, and how one
part of a flowchart is connected to another.

Golden Rule

1. Each algorithm should have only one entry point and one exit point.

2. A null statement is shown by a flow line; there is no symbol for null.

Some of the notations used are shown in Figure 1.2.

An oval shows the beginning or ending of an algorithm.

Flow lines show the order or sequence of actions in a program.

A connector is used when we reach the end of a page. It is also used when
we need to show the logic details that do not fit in the flow.

Assignment statements are shown using a rectangle, as in the following:

Variable ← Expression

A parallelogram shows any input read or output produced. A rectangle
with two vertical bars inside represents a module call.

Selection statements (Decisions) may be two-way or multi-way se-
lections. In both cases, the statement ends with a connector where the true
and false flows join. In this case, the connector has nothing in it. This is ap-
plicable to switch statements or even for, while, and do-while loops of C (to be
discussed later).

C overview • 11

C

Start/Stop

Input (Read)/ Output (Write)

Initializations and calculations

Decisions

Connector

Flow of control

Module call

Figure 1.2 Flow Chart Notations

Both flowcharts and algorithms are isomorphic—that is, one can be
converted to another form without the loss of data (although there are
some differences).

12 • C Programming

Let us now distinguish between a flowchart and an algorithm.

Flowchart Algorithm
1. The graphical or pictorial rep-

resentation of the logic of the
problem in hand

1. Step-by-step finite procedure of
solving the problem in hand

2. Use of different shapes that are
joined by flow lines

2. Written step by step

3. Use of flow lines 3. Flow control moves from top
to bottom

4. The task to be performed written
within boxes in English

4. All instructions written in English

5. Easily converted into algorithm or
program in high-level language

5. Easily converted into flowchart or
program in high-level language

6. Drawn after writing algorithm. 6. Normally written before flowchart

We are in a position to solve some examples now.

Example 1: Draw a flowchart to find the greatest of three numbers.

Solution 1: The flowchart is as follows:

start

Input
a,b,c

Is a>b? Is a>c? Print a

Is b>c ? Print c

Print c Print b

Stop

N

N

N

Y

Y

C overview • 13

Example 2: Draw a flowchart that finds the roots of a given quadratic
equation, using a, b, and c as its coefficients.

Solution 2: The flowchart is drawn as follows:

Start

Input
a, b, c

Is a=0?

D = b – 4ac
2

Is D>0
OR

D<0?

ROOTS=-b /2a

Print
ROOTS

STOP

roots=(-b sqrt(D))/2a+

Print 'Not
a
quadratic
equation'

Example 3: What is the difference between a flowchart and a dataflow
diagram?

Example 4: Define flowchart. Write are the advantages of and the
symbols used in a flowchart. Draw a flowchart to find the
smallest of three numbers.

Example 5: (a) What is the difference between a flowchart and an
algorithm?

 (b) Differentiate between a linker and a loader.

14 • C Programming

Example 6: It is desired to add n numbers. Write the following for this
problem:

(a) Plain English

(b) Structured English

(c) Pseudocode

(d) C code

Hint: (a) Plain English: First, read n numbers to be added. Initialize a re-
sultant value to 0. Then add these numbers to this resultant value one by one.
When all the numbers have been added, display the result.

(b) Structured English:

Step 1: Start

Step 2: Initialize sum and number of elements to add to 0.

Step 3: Read the number of elements to add—that is, read n.

Step 4: Read a number to be added and let it be a.

Step 5: s=s+a and i=i+1

Step 6: If i<n, go to step 4, else go to step 7.

Step 7: Display (output) the value of sum.

Step 8: Stop.

(c) Pseudocode:

 Algo_ add(a, n)
 {
 s:= 0.0;
 for i:=1 to n do
 s:= s + a [i]; S + a [i];
 return s;
 }
(d) C Code:

 int add(int a[] , int n)
 {
 int i, s=0;
 for(i=0; i <n ; i++)
 s=s + a[i];
 return s;
 }

C overview • 15

1.3 COMPILER OVERVIEW

A compiler is a software program that analyzes a program developed
in a particular computer language and then translates it into a form
that is suitable for execution on your particular computer system. The
GNU C compiler gcc is the best compiler available for the C language. In
fact, it is a suite of compilers, as the package contains g++ (a compiler for
C++) and facilitates compiling other languages like Objective-C and Objec-
tive-C++, Fortran in both fixed form and free form, ADA, and JAVA2. It can
handle different dialects of C. It is also able to generate executable code for
CPU families like ARC, AVR, ARM, Darwin, DEC Alpha, HPPA, i386 and
x86-64, IA-64, MIPS, PDP-11, POWERPC, SPARC, and so on. When you in-
voke gcc, it normally does preprocessing, compilation, assembly, and linking.
The overall options allow one to stop this process at an intermediate stage.
For example,

-c Compile or assemble the source files but do not link. The linking stage
is not done. The output is in the form of an object file for each source file.

-S Stop after the stage of compilation proper; do not assemble. The out-
put is in the form of an assembler code file for each nonassembler input file
specified.

-E Stop after the preprocessing stage; do not run the compiler proper.
The output is in the form of preprocessed source code, which is then sent to
the standard output.

-o Place output in file file.
- wall A warning option—displays all possible warnings and is very useful

during initial debugging of a code.

Actually, gcc has a large complement of options for warnings, debugging,
optimization, preprocessor, linker, assembler, and the target machine or lan-
guage—for example, a C compiler, a C++ compiler, etc.

The steps involved in entering, compiling, and executing a computer pro-
gram developed in the C programming language are shown in Figure 1.3.

16 • C Programming

Start

Edit

Compile
and

assemble

Errors
?

Link

Execute

Results
OK?

Libraries
and other

object
program

Finish

Executable
object
(a.out)

Object
program
(file.o)

Source
program
(file.c)

yes

no

no

yes

Figure 1.3 Basic Steps for Entering, Compiling, and Executing C Programs

Explanation: The program that is to be compiled is first typed and saved into
a file. C programs are saved with a .c extension. Thus, program1.c might be a
valid filename for a C program. A C program is typed, saved, and edited in a
text editor. For example, vi is a popular text editor used on Unix systems. The
program that is entered into the file is known as the source program
because it represents the original form of the program expressed in the
C language. After the source program is entered into a file, you can then pro-
ceed to have it compiled. The compilation process is initiated by typing a special
command on the system. When this command is entered, the name of the file
that contains the source program must also be specified. For example, on Unix
systems, the command to initiate program compilation is called cc.

But please remember that if you are using the popular GNU C compiler,
the command you use is gcc. So typing the line

gcc program1.c

has the effect of initiating the compilation process with the source program
contained in program1.c.

C overview • 17

In the first step of the compilation process, the compiler examines each
of the program statements contained in the source program and checks to en-
sure that each conforms to the syntax and semantics (meaning) of the language.
Practically speaking, the C compiler normally makes a prepass of the program
looking for special statements. This is also known as a preprocessing phase. If
any mistakes are discovered by the compiler during this phase, they are report-
ed to the user and the compilation process ends right there. Then the errors
have to be corrected in the source program using an editor and the compilation
process must be restarted. Typical errors reported during this phase of compi-
lation might be due to an expression that has unbalanced parentheses (syntax
error) or due to the use of a variable that is not defined (i.e., semantic error).

When all the syntactic and semantic errors have been removed from the
program, the compiler then proceeds to take each statement of the program
and translate it into lower form. This means that each statement is trans-
lated by the compiler into the equivalent statement or statements in
assembly language needed to perform the task.

After the program has been translated into an equivalent assembly language
program, the next step in the compilation process is to translate the assembly
language statements into actual machine instructions. This step might or might
not involve the execution of a separate program known as an assembler. On
most systems, the assembler is executed automatically as part of the compila-
tion process. The assembler takes each assembly language statement and con-
verts it into a binary format known as object code which is then written into
another file on the system. This file typically has the same name as the source
file under Unix, with the last letter as “o” (for object) instead of a “c”. In Win-
dows, the suffix letters “obj” typically replace the “c” in the filename.

After the program has been translated into object code, it is ready to be
linked. This process is once again performed automatically whenever the cc
or gcc command is issued under Unix. Also understand that the purpose
of the linking phase is to get the program into a final form for execu-
tion on the computer. If the program uses other programs that were previ-
ously processed by the compiler, then during this phase the programs are linked
together. Programs that are used from the system’s program library are also
searched and linked together with the object program during this phase. The
process of compiling and linking a program is known as building. The
final linked file, which is in an executable object code format, is stored in
another file on the system, ready to be run or executed.

Under Unix, this file is called a.out (by default).

18 • C Programming

Under Windows, the executable file usually has the same name as the
source file, with the c extension replaced by an exe extension.

The command a.out is used to execute the program. This command will
load the program called a.out into the computer’s memory and initiate its ex-
ecution. When the program is executed, each of the statements of the program
is sequentially executed in turn. If the program requests any data from the
user (called input), the program temporarily suspends its execution so that the
input can be entered. Or the program might simply wait for an event, such
as a mouse being clicked, to occur. Results that are displayed by the program
(called outputs) appear in a window (also called console). Or the output might
be directly written to a file on the system.

If the program works correctly, there is no problem, but this does not of-
ten happen on the first attempt. If the program does not produce the desired
results, it is necessary to go back and reanalyze the program’s logic. This is
known as the debugging phase, during which an attempt is made to remove
all known problems or bugs from the program. Doing this requires making
changes to the original source program. Please note that in such a case, the
entire process of compiling, linking, and executing the program must
be repeated until the desired results are obtained. Also note that in
general, gcc follows the following processing steps:

Step 1: Preprocessing (invokes cpp)

Step 2: Compilation

Step 3: Assembly (invoke as)

Step 4: Linking (invokes ld).

This can also be shown graphically, as in Figures 1.4 and 1.5.

Myprog.c
gcc

8086 m/c code
Myprog.s

Myprog.s
Assembler as

(x86 m/c code)
Myprog.o

Figure 1.4 gcc Converting from C to obj Using Assembler

C overview • 19

Myprog.c
gcc

8086 m/c code
Myprog.o

Myprog.o
Linker ld

(x86 m/c code)
Myprog

Figure 1.5 gcc: The Linker Converts an obj File to an Executable

In gcc, the level of attempted optimization is controlled by -0 and other
switches but one has to be very careful for embedded and device driver codes.

1.4 ASSEMBLER, LINKER, AND LOADER

If we look at the history of programming languages we find the following:

(a) In the 1940s, machine languages were used.

(b) In the 1950s, symbolic languages were used.

(c) In the 1960s, high-level languages were used.

Each computer has its own machine language that is made of streams of
0s and 1s. This is so because computers are made up of switches, transistors,
and other electronic devices that can be either in 1 (logic high) or 0 (logic low)
states. These are also named as 0 (off state) and 1 (on state).

The only language understood by computer hardware is machine
language.

In the 1950s, Admiral Grace Hopper, a mathematician, developed the con-
cept of a special computer program that would convert programs into machine
language. It used symbols (also called mnemonics), which is why the languages
used in these programs were known as symbolic languages. Because a com-
puter cannot understand this symbolic language, it must be translated

NOTE

20 • C Programming

into machine language. The program that translates symbolic code into
machine language is known as an assembler.

Then in the 1960s came the introduction of high-level languages that re-
lieved the programmer of the tedious task of writing programs in assembly
language. Both symbolic and higher-level languages share one thing in com-
mon—both must be converted into machine language. And this process of
converting them is known as compilation.

For example, the first high-level language was FORTRAN (FORmula
TRANslation). It was created by John Backus and an IBM team in 1957. C is
also a high-level language used for developing system software and new appli-
cations.

Often a program is so large that it is convenient to break it down into small-
er units. Each of these units is stored in a separate file. After these separate
program files are compiled, they must somehow be linked together to form a
single program. This linking is usually accomplished by a program called
a linkage editor, which is often run automatically when a program is
compiled. This linker assembles all of the functions (both user-defined
as well as system functions) into a final executable program.

Once a program has been linked, it is ready for execution. To execute a
program, we use an operating system command like the run command. This
command will load the program into primary memory and execute it. And get-
ting the program into memory is the function of an operating system
program known as the loader. It locates the executable program and
reads it into memory. When everything is loaded, the program takes
control and it begins execution.

We are in a position to solve some examples now.

Example 1: Compare a compiler and an interpreter.

Solution 1: The following chart compares a compiler and an interpreter:

Compiler Interpreter
1. Converts the whole program into

machine code and then executes
the entire program.

1. Converts the program into ma-
chine code one step at a time and
then runs only
that step.

2. Lists all errors after compilation. 2. Immediately displays any error in
any line of the program after the
translation of that line.

C overview • 21

3. Requires less execution time. 3. Requires more execution time.

4. Not especially efficient for
debugging.

4. Efficient for debugging.

5.	Creates	only	one	.exe	file	(for
example, C/C++ compilers, TC
compiler, etc.).

5.	Does	not	create	.exe	file	(for
example, V. B. 6.0
interpreter).

Example 2: Compare a linker and linkage editor in a tabular form.

Solution 2: The comparison is shown in the following chart:

Linker Linkage Editor
1. Linking of object modules and

necessary libraries are done and
immediately loaded into main
memory.

1. Linking of object modules and nec-
essary libraries are done and stored
in	 a	 file	 or	 library	 called	 a	 linked
program.

2. Used only once. 2. Can be used many times.

3. A library search and the resolution of
external reference is done each time.

3. Library search and resolution of ex-
ternal reference must be done only
once.

4. Not suitable for a program which is
executed repeatedly.

4. Suitable for a program which is ex-
ecuted repeatedly.

Example 3: Compare machine language, assembly language, and high-
level languages in tabular form.

Solution 3: The comparison is shown in the following chart:

Machine
Language

Assembly
Language

High-Level
Language

1. Programs written in
machine language are
difficult to write, de-
bug, and understand.

1. Programs in assem-
bly language are less
difficult than machine
language.

1. Programs in high-
level language are
easy to write, debug,
and understand.

2. Programs are not
portable.

2. Programs are not
portable.

2. Programs are
portable.

22 • C Programming

3. Programmer has to
keep track of memory
addresses.

3. Programmer has to
keep track of memory
addresses.

3. No need to keep
track of memory ad-
dresses.

4. No translator is re-
quired to convert into
machine code.

4. No translator is re-
quired to convert into
machine code.

4. Compiler or inter-
preter is required.

5. The execution of
programs is very fast.

5. The execution of pro-
grams is slower than
machine language
programs.

5. The execution of pro-
grams is slower than
assembly language
programs.

Example 4: Name some commonly used assemblers.

Solution 4:

(a) Intel 8086 macro assembler (ASM 86)

(b) Borland Turbo Assembler (TASM)

(c) IBM Macro Assembler (MASM)

Example 5: Explain briefly the compilation and execution process of a
C program.

1.5 STRUCTURE OF A SIMPLE “HELLO WORLD”
PROGRAM IN C

In general, any C program comprises one or more preprocessor commands,
a global declaration section, and one or more functions. That is,

Global declarations

Main function

Other functions (if needed)

Preprocessor Directives

C overview • 23

Every C program starts with some preprocessor directives or commands.
These are special instructions to the preprocessor that tell it how to prepare a
program for compilation. In every C program, we use a preprocessor directive
named include. This include command tells the preprocessor that we
need information from selected libraries known as header files. By the
time we type our C program (in some editors), all the preprocessor al-
locations will have taken place automatically. This means that the prepro-
cessor actually analyzes these statements before the analysis of the C program
itself takes place.

Preprocessor statements are identified by the presence of a pound sign, #,
which must be the first nonspace character on the line.

In C, a programmer inserts a directive #include<stdio.h> that tells the pre-
processor to include the header file stdio.h at this point in the program.

Then a programmer can give global declarations (if any). Global declara-
tions are those that are visible to all parts of the program. We shall study these
a bit later.

Then comes the main where the actual execution of the program starts. We
know that the actual work of the program is carried out by its functions, which
are blocks of code that accomplish tasks within a program. Only one function
can be a main function in any program. All functions in a program (also
the main) are subdivided into two sections—the declaration section and the
statement section.

The declaration section is at the beginning of the function. It speci-
fies the data that you will be using in the function. Declarations in a function
are known as local declarations because they are visible only to the function that
contains them.

The statement section follows the declaration section. This section
contains some instructions that cause something to be performed, such as di-
viding two numbers.

Let us consider the simplest C program that explains its structure.

	 /*	My	first	C	program	*/
1. #include<stdio.h>
2. int main (void)
3. {
4. printf(“Hello World! \n”);
5. return 0;
6. }

24 • C Programming

This program has only one preprocessor directive. There are no global
declarations and no local definitions. It simply displays “Hello World!” on the
screen. Then there are two statements, one to print the message and the other
to stop the program.

Let us learn about these parts now.

I. Preprocessor Directive/Command
As discussed earlier, a preprocessor is a part of the C compilation process that
recognizes special statements that might be interspread throughout a C pro-
gram. It actually analyzes these statements before analysis of the C program
starts. The preprocessor is a section of the compiler which looks over the C
program before it is compiled.

Working of Preprocessor
When you issue the command to compile a C program, the program is run au-
tomatically through the preprocessor. The preprocessor is a program that modi-
fies the C source program according to the directives supplied in the program.
An original source program is usually stored in a file. The preprocessor does not
modify this program file but creates a new file that contains the processed ver-
sion of the program. This new file is then submitted to the compiler.

When we compile this program, the compiler shows the number of lines
compiled to be greater than 6. This is because during the preprocessing stage,
the include preprocessor directive (line 1) searches the file stdio.h in the pre-
scribed list of directories and if the header file is found, the include directive
is replaced by the entire content of the header file. If the included header file
contains another include directive, it will also be processed. This processing
is carried out recursively till either no include directive remains or till
the maximum translation limit is achieved (ISO specifies a maximum of
15 nested levels of include files). Thus, one line of source code gets replaced
by multiple lines of the header file. During the compilation stage, these added
lines will also be compiled. Thus, the compiler shows the number of lines to be
greater than 6.

Some compilers enable the programmer to run only the
preprocessor on the source program and to view the results of the
preprocessor stage.

NOTE

C overview • 25

Please remember the following points regarding preprocessor
directives:

1. They are placed at the beginning of the program.

2. They start with a pound/hash (#) sign. This is its syntax (rule).

3. There is no semicolon at the end of these directives.

4. They can start in any column but usually they start in column
number 1.

5. They tell the compiler to include the standard input/output library
file in the program. This library file prints a message on to the screen.
Actually, printing is one of the input/output processes identified in this
library.

6. The syntax of this command as shown in line 1 must be exact.

7. There is no space between the pound/hash sign and the reserved
keyword include.

8. It tells the preprocessor that you want the library file in the
angular brackets (< >) to be included in your program. The
name of this header file is stdio.h. It stands for “Standard input/
output header file”.

9. The angular brackets tell the preprocessor to search for the file in
one or more standard directories. These directories contain header files
that are provided by the system and those commonly used by several
programmers (if the computer is a multiple-user machine).

10. Sometimes the brackets are replaced with double quotation marks as in
the following:

#include “stdio.h”

In this case the preprocessor will first look in the programmer’s own
directory or the same one that contains the program file. If it is NOT
found there, then the standard directories are searched.

11. The preprocessor can also add or delete C program statements.

12. A preprocessor symbol is never replaced if it occurs within single or
double quotation marks.

26 • C Programming

13. Header files also provide consistency among several program files.
Often a program is large and thus it is possible to break it into smaller
units, each of which is stored in a separate file. After these separate
program files are compiled, they must somehow be linked together to
form a single program. This linking is usually done by a program called
the linkage editor (which is run automatically when a program is
compiled).

14. A header file can contain other #include directives. Please note that
it cannot include itself because this would result in an infinite
recursion. Also note that it cannot include another file that
includes the first file as this would also result in an infinite
recursion.

15. Header files can contain any text at all. They may also contain C code
to define structure templates, global variables, or function definitions.
However, header files usually do not contain function definitions, as it is
more efficient to store these in the function libraries set up by the user.
But global variables are sometimes included.

16. If stdio.h is included in the program, the macro versions (to be discussed
later) are used. On the other hand, if the programmer wishes to use the
function versions they can be undefined after the #include<stdio.h>
directive.

17. A preprocessor directive is terminated by the end of the line it oc-
cupies but if necessary it can be continued onto one or more lines by
ending all but the last line with backslashes.

II. Main Function
Here starts the executable portion of your program (i.e., the code for which
object and .exe files are generated). Main is a special C function. The program
execution starts from main and there can be only one main in every program.
The int preceding this keyword main says that the function main (here) will re-
turn an integer value to the operating system. The keyword void shows that the
function main has no parameters (i.e., the parameter list is void). Following the
main are two braces that show that main is a function. Please note here that
there is no punctuation after the function header.

If there are no parentheses following the main, it is not a function
but is instead a variable. For example, sum is a variable but sum()
is a function. This function may or may not return a value. We
shall study this a bit later.

NOTE

C overview • 27

After identifying the main() to the system, we must now specify what this
routine must do. And this is done by enclosing all program statements of the
routine within a pair of curly braces (line 3). Also note that all program
statements included between the braces are taken as part of the main
routine by the system. In the Hello World! program, we have only two such
statements. The first statement tells that a routine named printf is to be
invoked or called. The string of characters “hello world! \n” is the pa-
rameter or argument to be passed to the printf routine.

Just remember that the printf routine is a function in the C library. It simply
prints or displays its arguments on your screen in between double quotation
marks. Also note that a blank space in a string counts as a character.

Also seen in line 4 are two special characters—the backslash (\) and the
letter n—that are together known as the newline character. This newline
character tells the system to do precisely what its name implies—that
is, go to a new line (next line).

Any characters to be printed after the newline character then ap-
pear on the next line of the display. This concept of newline char-
acter is similar to that of the carriage return key on a typewriter.

Another rule in C may be stated as follows: “All program statements in
C must be terminated by a semicolon. That is why a semicolon appears
immediately after the closing braces of the printf() statement. How-
ever, there are some exceptions; for example, after main() there are no
semicolons!”

Line 5 is the last statement (return 0); it tells the compiler to finish the ex-
ecution of main and return to the system a status value of 0. Please note that
you can use any integer here. Also note that zero is used here by con-
vention to show that the program completed successfully (i.e., without
any errors). Different numbers can be used to indicate different types of error
conditions that occur, such as divide by zero, file not found, and so on.

This exit status can be tested by other programs like the UNIX
shell to see whether the program ran successfully.

The end of the program is marked off by a closing brace. Remember the
following programming tips:

1. The number of opening braces and closing braces must be the same.

2. These braces line up with the letter ‘m’ of the main().

NOTE

NOTE

28 • C Programming

3. This is not mandatory but will improve the program’s readability.

4. The body of the function is indented within the braces. This also
improves the program’s readability.

5. The function name like main is given parentheses—that is, (). On
the other hand, the body starts and ends with two delimiters—
that is, { and }. One cannot interchange them. They are design
features of the C compiler.

Now we are left with one more nonexecutable statement (see the “Hello
World!” program again) called a comment. Comments are written within the
code to make it more understandable and readable. These comments are inter-
nal program documentations. C supports two types of comments:

(a) Block comments

(b) Line comments

A block comment is used when the comment spans several lines of
code. It uses an opening token (/*) and a closing token (*/). Anything
that is enclosed within these is simply ignored by the compiler. The tokens can
start in any column and they do not have to be on the same line. For example,

/* a block comment can go to

More than one line also */

On the other hand, a line comment uses two slashes (//) to identify a
comment. There is no need for an end-of-line token here. This type of com-
ment format is very much preferred by programmers as it is easier to write. It
can also start anywhere on the line.

However, note another programming rule: “Comments cannot be nested.”
We cannot have comments inside comments. This results in an error.

This is the complete anatomy of a C program.

Before further discussion, let us solve some questions now.

Q1. What delimiters are used to specify the start and end of a character string
in C?

A1. Double quotation marks.

Q2. What is the character string in a printf statement called?

A2. The control string.

C overview • 29

Q3. C is derived from which of the following languages:

(a) FORTRAN

(b) PASCAL

(c) C++

(d) B language

A3. (d) B language.

Q4. Give the output of the following statement:

 printf(“alpha\n\nbeta\n\ngamma\n”);

A4. It prints three lines that are double spaced as follows:

 alpha

 beta

 gamma

Q5. Give the errors in the following:

 mane{ } /* this is a main …/*

 (

 print(‘ that’s great. /n’)

A5. The following errors are noticed in this program:

(a) The word main is not spelled correctly.

(b) Parentheses should be used instead of braces after the word main.

(c) The wrong slash symbol is used in the first comment symbol.

(d) The characters in the terminating comment symbol are reversed.

(e) The body of the program should commence with a left brace, not a left
parenthesis.

(f) The function should be spelled as printf and not print.

(g) The literal should be delimited by double instead of single quotation
marks.

(h) The newline character has an incorrect type of slash.

(i) The semicolon is missing from the printf statement.

(j) The final right brace is missing.

30 • C Programming

1.6 OVERVIEW OF THE COMPILATION AND
EXECUTION PROCESS IN AN INTEGRATED
DEVELOPMENT ENVIRONMENT (PREFERABLY
CODEBLOCK)

IDE stands for Integrated Development Environment. An IDE is a window-
based program that allows you to easily manage large software programs, edit
files in windows, and compile, link, run, and debug your programs. This pro-
cess of editing, compiling, running, and debugging programs is man-
aged by a single integrated application known as an IDE.

For example,

(a) On the Mac OS, CodeWarrior and Xcode are two IDEs.

(b) Under Windows, MS Visual Studio is an IDE.

(c) Under Linux, Kylix is a popular IDE.

All IDE applications greatly simplify the entire process of program
development. CodeWarrior (by Metrowerks) can run on Linux,
Solaris, and Windows, too. Kylix is sold by Borland.

All of the tools like text editor, preprocessor, compiler, and linker that are
required for developing programs are integrated into one package known as an
IDE.

Codeblocks is an open source, cross-platform IDE. A global variable or a
function defined in one source file can be used in another source file in a mul-
tifile program. Let us see how.

Consider a program that consists of two source files, t1.c and t2.c. The
source file t2.c contains the definition of a variable var1 and a function fun1.
These definitions are used in another source file t1.c of the program. Because
the global variables and the function have external linkage, this usage is al-
lowed. And this can be done with CodeBlock as follows:

Say, file t1.c has the following code:

#include<stdio.h>
 main()
{

NOTE

C overview • 31

extern int var1;
printf(“The	value	of	var1	defined	in	other	source	file	is	
%d\n”, var1);
 fun();
 }
And t2.c has the following code:-
 int var1 = 95;
 fun()
 {
printf(“Function	fun	is	defined	in	other	source	file”);
 }

Then after running these files in CodeBlock we get the following output:

The value of var1 defined in the other source file is 95.

The function fun1 is defined in the other source file.

We are in a position to answer some questions now.

Q1. What are the advantages of writing an algorithm over the C program?

[Hint: a) It is simple, clear, and unambiguous and thus can be debugged
by any programmer having no prior knowledge of any programming lan-
guage.

(b) It is easier to understand the logic in an algorithm.]

Q2. Why don’t we translate directly from the statement of the problem to C?

Q3. Which two lines will be used in all of our C programs?

Q4. “C is often described as a middle level language.” Explain.

[Hint: C permits programs to be written in much the same style as that
of most modern high-level languages like Fortran, Cobol, Basic, and Pas-
cal. Where it differs is that C permits very close interaction with the in-
ner workings of the computer. It is analogous to a car that has a luxury of
automatic gears but at the option of the driver permits the manual shifting
of gears. It is possible in C to deal with the machine at a fairly low level.
Nevertheless, C is a general purpose structured programming language
that has much in common with the best of the high-level languages. C is
concise but at the same time it is a very powerful language, too.]

Q5. What is a preprocessor directive?

or

Q6. Distinguish between function and preprocessor directives.

32 • C Programming

[Hint: Preprocessor directives are the lines to be executed before the ac-
tual compilation of the code starts. And wherever in the program code the
macros are called, the code of that macro is inserted. On the other hand,
in a function call, the body of the function is executed at runtime. And
wherever in a code the functions are called, the execution of the program
jumps to the body of the function. Code is not copied as in the case of
preprocessor directives.]

Q7. Name some popular C language IDEs.

[Hint: There are various IDEs on the market today targeted toward differ-
ent operating systems. For example, Turbo C and Turbo C++ are popular
compilers that work under MS-DOS, Visual Studio and Visual Studio Ex-
press Edition are compilers that work under Windows, whereas the gcc
compiler works under Linux. Please note here that the Turbo C, Turbo
C++, and gcc compilers can also be installed on machines running Win-
dows. Both the Visual Studio Express Edition and gcc compilers are free
of cost and can be downloaded easily.]

Summary
In this chapter, we have studied what an algorithm is. We have defined terms
like flowcharts, pseudocode, and structured English. Also we have seen how a
C program is compiled and run. The roles of assemblers, linkers, and loaders
have also been examined. We have specifically focused on the gcc compiler.
The chapter also shows the basic structure of any C program. It also discusses
the IDEs that are used to compile and run C programs like CodeBlocks.

Exercises
 Q1. What is a C preprocessor? Explain each of them.

 Q2. How do you debug a C program? Discuss the purpose of preprocessor
directive statements and macros as used in the C language?

 Q3. What is an interactive debugger?

 Q4. Distinguish between the following with examples:

(a) Syntactic errors and semantic errors

(b) Runtime errors and logical errors

(c) Debugging and testing

 Q5. What is the scope of a preprocessor directive within a program file?

C overview • 33

 Q6. Draw a flowchart to find the sum of the following series:

 Sum = 1+3+5+7+ … up to 25 terms.

 Q7. Write an algorithm to find the roots of a given quadratic equation ax2 +
bx +c =0, where ‘a’ is nonzero.

 Q8. Draw a flowchart to determine whether a year entered through a key-
board is a leap year or not?

 Q9. Explain the various stages in program development.

Q10. Describe in detail syntax errors, logic errors, and runtime errors.

Q11. Write an algorithm and draw flowcharts for the following:

(a) To generate the first n Fibonacci numbers

(b) To sum the first 80 even numbers

(c) To check whether a given number is prime or not

(d) To check whether a given number is even or odd

Q12. Define a bug and debugging.

Q13. What are the characteristics of a good algorithm?

Q14. What are the advantages of flowcharts?

[Hint: Better communication, effective analysis, proper documentation,
efficient coding, proper debugging, and better program maintenance].

Q15. How will you test your program? What are dry runs?

Q16. What is top-down design? How is it done?

Q17. What is modular design? Should it be used or not?

Q18. Explain Wirth’s equation:

 Program = Algorithm + Data-Structure or Program-Algorithm =
Data Structure

Q19. What is meant by program documentation? Explain.

Q20. Suppose you have a C program whose main function is in main.c and has
other functions in the files input.c and output.c:

(a) What commands would you use on your system to compile and link
this program?

(b) How would you modify the above commands to link a library called
process1 stored in the standard system library directory?

34 • C Programming

(c) How would you modify the above commands to link a library called
process2 stored in the home directory?

(d) Some header files need to be read and have been found in a header
subdirectory of your home directory and also in the current work-
ing directory. How would you modify the compiler commands to ac-
count for this?

Q21. Suppose you have a C program composed of several separate files and
they include one another as shown in the following chart:

File Name Include Files
main.c stdio.h, process1.h

input.c stdio.h, list.h

output.c stdio.h

process1.c stdio.h, process1.h

process2.c stdio.h, list.h

(a) Which files have to recompile after you make changes to process1.c?

(b) Which files have to recompile after you make changes to process1.h?

(c) Which files have to recompile after you make changes to list.h?

PrOgramming Using C

2C H A P T E R

2.0 INTRODUCTION

C is a general purpose, block-structured, procedural, case-
sensitive, freeflow, portable, powerful high-level programming
language. This language is so powerful that an operating system like

UNIX is itself coded in C. It is said that programming languages are born,
age, and eventually die but the C programming language has only matured
from the time it was born. It has the same relevance today as it had when it
was developed by Dennis Ritchie at Bell Telephone Laboratories in 1972. The
importance of the language can be easily fathomed from the fact that C is a
prerequisite in any software industry today.

2.1 REVIEW OF PREPROCESSOR DIRECTIVES/
COMPILER DIRECTIVES/C PREPROCESSOR

As discussed earlier, a preprocessor is a part of the C compilation process that
recognizes special statements that might be interspread throughout a C pro-
gram. It actually analyzes these statements before analysis of the C program
starts. The preprocessor is a section of the compiler which looks over the C
program before it is compiled.

Working of the Preprocessor
When you issue the command to compile a C program, the program is run
automatically through the preprocessor. The preprocessor is a program that

36 • C Programming

modifies the C source program according to the directives supplied in the pro-
gram. An original source program is usually stored in a file. The preprocessor
does not modify this program file but creates a new file that contains the pro-
cessed version of the program. This new file is then submitted to the compiler.

When we compile this program, the compiler shows the number of lines
compiled to be greater than 6. This is because during the preprocessing stage,
the include preprocessor directive searches the file iostream.h in the pre-
scribed list of directories and if the header file is found, the include directive
is replaced by the entire content of the header file. If the included header file
contains another include directive, it will also be processed. This processing
is carried out recursively till either no include directive remains or till
the maximum translation limit is achieved (ISO specifies a maximum of
15 nested levels of include files). Thus, one line of source code gets replaced
by multiple lines of the header file. During the compilation stage, these added
lines will also be compiled. Thus, the compiler shows the number of lines to be
greater than 6.

Some compilers enable the programmer to run only the preproces-
sor on the source program and to view the results of the preproces-
sor stage.

Please remember the following points regarding preprocessor
directives:

1. They are placed at the beginning of the program.

2. They start with a pound/hash (#) sign. This is its syntax (rule).

3. There is no semicolon at the end of these directives.

4. They can start in any column but usually start in column 1.

5. They tell the compiler to include the standard input/output library
file in the program. This library file prints a message onto the screen.
Printing is one of the input/output processes identified in this library.

6. The syntax of this command must be exact.

7. There is no space between the pound/hash sign and the reserved
keyword include.

NOTE

Programming Using C • 37

8. It tells the preprocessor that you want the library file in angular
brackets (< >) to be included in your program. The name of this
header file is iostream.h. It stands for “Standard input/output header
stream file.”

9. The angular brackets tell the preprocessor to search for the file in
one or more standard directories. These directories contain header files
that are provided by the system and those commonly used by several
programmers (if the computer is a multiple-user machine).

10. Sometimes the brackets are replaced with double quotation marks as in
the following:

#include “iostream.h”

 In this case the preprocessor will first look in the program-
mer’s own directory or the same one that contains the program
file. If it is NOT found there, then the standard directories are
searched.

11. The preprocessor can also add or delete C program statements.

12. A preprocessor symbol is never replaced if it occurs within single or
double quotation marks.

13. Header files also provide consistency among several program files.
Often a program is large and thus it is possible to break it into smaller
units, each of which is stored in a separate file. After these separate
program files are compiled, they must somehow be linked together to
form a single program. This linking is usually done by a program called
the linkage editor (which is run automatically when a program is
compiled).

14. A header file can contain other #include directives. Please note that
it cannot include itself because this would result in an infinite
recursion. Also note that it cannot include another file that
includes the first file as this would also result in an infinite
recursion.

15. Header files can contain any text at all. They may also contain C code
to define structure templates, global variables, or function definitions.
However, header files usually do not contain function definitions as it is
more efficient to store these in the function libraries set up by the user.
But global variables are sometimes included.

38 • C Programming

16. If iostream.h is included in the program, the macro versions (to be
discussed later) are used. On the other hand, if the programmer
wishes to use the function versions they can be undefined after the
#include<iostream.h> directive.

17. A preprocessor directive is terminated by the end of the line it oc-
cupies but if necessary it can be continued onto one or more lines by
ending all but the last line with backslashes.

Definition Section
In this section, we define a variable with some value in it. This is also known as a
special constant section. Here, a define statement is used. The general syntax
of a symbolic preprocessor or symbolic compiler directive can be defined using
the following #define statement:

#define name value

For example,

#define PI 3.1417

This initializes a variable PI with a value of 3.1417. But please remember
the following points regarding a #define preprocessor directive:

1. #define cannot be placed anywhere in a program.

2. The variables defined in these statements are symbolic constants and
therefore must be written in uppercase, preferably.

3. There is no semicolon at the end of a #define statement.

4. No spaces are allowed between # and define.

5. define should be written as define only and not as Define.

6. If PI is a symbolic name, as in our example, then we cannot make it a
variable also.

7. There is no equals (=) sign between PI and 3.1417.

8. Do not use special characters in these symbolic names.

9. You cannot concatenate these symbolic statements together (i.e., each
symbolic name must be declared on a separate line).

Programming Using C • 39

For example,

 #define PI 3.1417 (is valid).

But #define PI = 3.1417 (is invalid).

Similarly, #define NAME “Rajiv” (is valid).

 #define R ‘r’ (is valid).

But #Define PI 3.1417 (is invalid, as ‘D’ must be in lowercase).

 # define PI 3.1417 (is invalid, as no space is allowed between #
and define).

 #define PI, R 3.14, 5 (is invalid, as multiple initializations are
not allowed).

Global Declaration Section
Sometimes we need the same variables in both the functions and in the main
program. In such cases, we use global variables. These variables are declared
normally but are placed before the start of the main program. Please under-
stand here that if you want the data variables to be available in all parts
of the program, then you have to either declare the variables as global
or they must be passed as arguments (to be studied a bit later). Also un-
derstand that by using any of these methods the ultimate objective is
that the data be available in all of the functions.

Whenever there is a conflict between a global and a local variable,
the local variable gets first priority.

The main() Function
The main function is where the compiler starts executing the program first.
If you don’t have a main(), your program will be compiled successfully but it
will not run and the compiler will report an error that you have not defined a
main() function. That is why a main() function is necessary. It is a special func-
tion that acts as a container for the entire C program. This section of our code
contains input and output as well as the processing statements. It may or may
not have a return type as follows:

void main(void) //here everything is void as there is no value being returned
by the main and that no

NOTE

40 • C Programming

//arguments are being passed.

On the other hand, compare the following statement:

 int main ()
 {
 ……
 ……
 return (0); // is must
 }
Here the opening curly bracket “{” shows the starting of the main program

while “}” shows its end. The variables declared after these braces are known
as local variables—that is, they have a scope local to this main function. Then
comes the portion where the user writes his or her program. This is known as
the user-defined section.

A preprocessor directive is used to instruct the preprocessor to perform a specific
action in the source program before its compilation. A preprocessor is a pro-
gram that manipulates the source program before this program is passed
to the compiler. That is why these preprocessor directives are also known as
preprocessor commands. The point to understand is that by the time you
are typing your program, all preprocessor allocations will have taken
place. This software is always included in a C package along with the standard C
library functions. As already explained, the C compiler automatically invokes the
preprocessor in its first pass compilation whether you are using any preprocessor
directives or not. But the programmer can also invoke the preprocessor to ma-
nipulate the source program without its compilation. But it is not mandatory to
know and use preprocessor directives, as programs also run without them. How-
ever, their usefulness lies in the fact that with their help we can easily change our
source code even if we are working in different environments. Please remember
that if we use any preprocessor directives, it means that the preproces-
sor has to perform specific actions like changing a lengthy string into a
shorter one or ignoring some portion of the source program or inserting
the contents of other files into the source file, and so on.

2.2 C PRIMITIVE INPUT-OUTPUT USING GETCHAR
AND PUTCHAR

We will now discuss the getchar() and putchar() functions of C.

Programming Using C • 41

I. The getchar Function: getchar();
The getchar function reads a single character from standard input. It takes no
parameters and it returns the input character. In general, a reference to the
getchar function is written as:

 variable = getchar();

For example,

 char c;

 c = getchar();

Please note here that the second line causes a single character to be
entered from the keyboard and then assigned to c. If an end-of-file condi-
tion is encountered when reading a character with the getchar function,
the value of the symbolic constant EOF will automatically be returned.
Also note that this function can also be used to read multiple-character
strings by reading one character at a time within a multipass loop.

II. The putchar Function: putchar(variable | constant);
The standard C function that prints or displays a single character by sending it
to standard output is called putchar. This function takes one argument, which
is the character to be displayed.

For example,

putchar(‘R’); will display the character ‘R’.

Or

 char var = ‘$’;

 putchar(var); displays the character $.

Let us provide an algorithm for this program:

Step 1: Read a character.

Step 2: If the entered character is nonblank, print it.

Step 3: Else print the first blank character and skip all consecutive blanks.

Step 4: Repeat steps 1 to 3 till the entered character is a newline character.

The following is the program:

#include<stdio.h>
#include<string.h>

42 • C Programming

void main()
 {
 char c;
 printf(“\nEnter the text:”);
 c= getchar();
 printf(“The output text is: “);
 while (c!= ‘\n’)
 {
 if (c = = “ || c= = ‘\t’)
 {
 c = ‘ ‘;
 putchar(c);
 }
 while(c = = ‘ ‘ | | c = = ‘\t’)
 {
 c = getchar();
 }
 putchar(c);
 c = getchar();
 }
 printf(“\n”);
 }
OUTPUTS (after running)

Enter the text: DR. RAJIV CHOPRA

The output text is: DR. RAJIV CHOPRA

2.3 SIMPLE INPUT/OUTPUT

Certain functions are used for data input and data output. These functions are
called standard input-output functions. In C, these functions are put under
two categories:

(a) Formatted I/O functions

(b) Unformatted I/O functions

Let us discuss each of them.

Programming Using C • 43

I. Formatted I/O Functions
Formatted I/O functions are used to input data from a standard input device
as well as to send output to a standard output device. Under this category, the
scanf() function is used to read values from the keyboard while the printf()
function is used to display values on the output terminal. Both of these func-
tions are defined in the <conio.h> header file.

The scanf() function is used to accept input data from a standard device
in a fixed format. Its syntax is as follows:

Syntax

scanf(“format string”, arguments);

where format string contains format specifiers which begin with the ‘%’
character, listed as follows:

Format Specifier Input Types Data Type
%d or %i
%u
%ld
%lu
%x
%o

Short signed integer
INTEGERShort unsigned integer

Long signed integer
Long unsigned integer
Unsigned hexadecimal integer
Unsigned octal integer

%f
%lf

Single precision float FLOAT
Double precision float

%c Signed character CHARACTER
Unsigned character

%s String STRING

Arguments specify where the input data is to be stored while receiving it
from a standard input device. There must be an argument for each input da-
tum. Extra arguments are ignored; if there are too few arguments, the results
become unpredictable. The arguments to the scanf function are point-
ers. This is the reason why arguments are preceded by an ampersand
(&) symbol (i.e., an address operator). The & operator assigns it a
memory location. Also note that the order of these specifiers and
their arguments must be the same or else an error is reported by the
C compiler.

44 • C Programming

Next let us discuss the printf() function. The printf() function is used to
accept output data from a computer to a standard device in a fixed format. It is
a formatted output function. Its syntax is as follows:

Syntax

printf(“format string”, arguments);

For example,

 printf(“My name is Dr. Rajiv”); /* double quotes are
used */
For another example,

printf (“%d”, a);
Also note that here the value of ‘a’ is inserted at the ‘%d’ position

and thus the value of ‘a’ gets printed.

2.4 FUNCTION CALLS FROM A LIBRARY

Functions like getchar(), putchar(), printf(), and scanf() are defined in the
stdio.h file. Functions like strlen(), strcpy(), strcat(), strcmp(), and strrev() are
defined in a string.h header file. A function like exit(0) is defined in a process.h
file. Similarly, functions like sin(), cos(), tan(), and so on are included in a
math.h header file. Please note that all these functions that are included
in one or the other header files are built into the C library. This means
that the C compiler will automatically execute their code and give the
desired result. Also note that we cannot modify these inbuilt functions.
If we want to modify any of these functions, we have to write our own functions,
known as user-defined functions.

With every C compiler a large set of useful string handling library
functions is provided. These functions are predefined in the compiler of the
language and stored in a special library file.

2.5 DATA TYPES IN C

C has a concept of data types that are used to define a variable before its use.
The definition of a variable will assign storage for the variable and define the
type of data that will be held in the location. The value of a variable can be
changed any time. In C, the following data types are given:

Programming Using C • 45

(a) int

(b) float

(c) double

(d) char

Please note that there is not a Boolean data type. C does not have the
traditional view of logical comparison. Actually, data types in C are listed under
three main categories:

(a) Primary data type

(b) Derived data type

(c) User-defined data type

Primary Data Types
All C compilers accept the following fundamental data types:

(a) Integer (i.e., int)

(b) Character (i.e., char)

(c) Floating point (i.e., float)

(d) Double precision floating point (i.e., double)

(e) Void (i.e., void)

The data type int is used to define integers (e.g., int count;). Integers are
whole numbers with a machine-dependent range of values. An integer takes
2 bytes in memory. An int may be short int, int, or long int. All of these data
types have signed and unsigned forms. A short int requires half the space of
normal integer values. Unsigned numbers are always positive and consume all
bits for the magnitude of the number. The long and unsigned integers are used
to declare a longer range of values.

The char data type defines a character. Each character occupies one
byte in memory. The signed or unsigned qualifier can be explicitly ap-
plied to char. While unsigned characters have values between 0 and
255, signed characters have values from –128 to 127.

Float is used to define floating point numbers, which are real numbers
expressed to 6 digits of precision. When the accuracy of the floating point

46 • C Programming

number is insufficient, we can use the double to define the number. The
double is the same as a float but with a greater precision. To extend
precision further we can use a long double, which consumes 80 bits
of memory space.

For example, float a;

Void is used to specify the type of a function.

The size and range of each data type is shown in Table 2.1.

Table 2.1: Data Types, Sizes, and Ranges

Type Size (bits) Range
Char or signed char 8 –128 to 127

Unsigned char 8 0 to 255
Int or signed int 16 –32768 to 32767

Unsigned int 16 0 to 65535
Short int or signed short int 8 –128 to 127

Unsigned short int 8 0 to 255
Long int or signed long int 32 –2147483648 to 2147483647

Unsigned long int 32 0 to 4294967295
Float 32 3.4 e-38 to 3.4 e+38

Double 64 1.7 e-308 to 1.7e+308
Long double 80 3.4 e-4932 to 3.4 e+4932

Note that short, long, signed, and unsigned are modifiers. These
modifiers define the amount of storage allocated to the variable. Also remem-
ber that as per ANSI rules:

 short int <= int <= long int

 float <= double <= long double

This means that a ‘short int’ should assign less than or the same
amount of storage as an ‘int’ and the ‘int’ should require the same or
fewer bytes than a ‘long int’.

It is possible to find out how much storage is allocated to a data type by us-
ing the sizeof operator. These ranges are defined in the limits.h header file.

Variables
A variable is a named area of storage that can hold a single value (nu-
meric or character). Every variable used in the program should be de-

Programming Using C • 47

clared to the compiler. This declaration tells us two things:

 1. Tells the compiler the name of the variable

 2. Tells the type of variable that it holds

Syntax

variable-name1, variable-name1, … variable-name-n;

For example,

int a;

float k;

double j;

Also, we can initialize these variables if needed:

int a= 10;

float k = 80.80;

double j = 90.89765;

When we have many variables to be declared, they are separated by com-
mas and must end with a semicolon.

Rules for Forming Variable Names

1. A variable name must start with a letter.

2. A variable name is a combination of 1 to 8 letters, digits, or underscores.
Some compilers allow it up to 40 characters.

3. A variable name must not have any commas or blank spaces.

4. A variable name must not have any special symbols other than under-
scores.

Invalid variable names: 2hb, we b, #west, $123se

Valid variable names: e_p_f, _wepp, ai

2.6 ENUMERATION

There are two types of user-defined type declarations in C. In the first, a user
can define an identifier that represents an existing data type. The user-defined
data type can later be used to declare variables. Its syntax is:

48 • C Programming

typedef type identifier;

Here, ‘type’ represents existing data type and ‘identifier’ refers to the name
given to the data type.

For example,

 typedef int age;

 typedef float marks;

Here, ‘age’ is an integer type and ‘marks’ is a float type. Now they can be
later used to declare variables as follows:

age a1, a2;

marks m1, m2;

So now a1 and a2 are indirectly declared to be of type age only and age is of
type integer, so a1 and a2 are also of type integers only.

The second type of user-defined data type is enum (or enumeration). It
is defined as follows:

enum identifier {value1, value2, …value n};

Its syntax is:

enum identifier v1, v2, v3, v4, … vn

where identifier is a user-defined enumerated data type, which can be used
to declare variables that have one of the values enclosed within braces. The
enumerated variables v1, v2, … vn can have only one of the values value1,
value2, … value n.

For example,

enum day { Monday, Tuesday, … Sunday};

enum day week_st, week end;

week_st = Monday;

week_end = Friday;

if (wk_st = =Tuesday)

 week_en = Saturday;

Modifiers
Please note that one can alter the data storage of any data type by pre-
ceding it with certain modifiers. These are called data type modifiers.

Programming Using C • 49

They include short, long, unsigned, and signed. Not all combinations of types
and modifiers are allowed in C. Also note that long and short are modifiers
that make it possible for a data type to use either more or less memory.

Type Qualifiers
A type qualifier is used to refine the declaration of a variable, a func-
tion, and parameters by specifying whether the value of a variable can be
changed or the value of a variable must always be read from memory rather
than from a register. In C they are of two types:

1. const

2. volatile

Let us discuss them one by one.

I. const Qualifier
A const qualifier tells the C compiler that the value of a variable cannot
be changed after its initialization. For example,

 const float pi = 3.1417;

That is, now pi cannot be changed throughout the program.

Another way of doing this is using the #define preprocessor directive as
follows:

#define PI 3.1417

But please remember that const and #define are different. #define
constants are declared at the beginning of the program, even before
main(). On the other hand, const variables can be placed anywhere
within the program. So const has finer control than #define. #define cannot
be placed anywhere in the program. This gives an error.

II. Volatile Qualifier
The volatile qualifier declares a data type that can have its value changed
in ways outside the control or detection of the compiler, like a variable
updated by the system clock. This prevents the compiler from optimizing
code referring to the object by storing the object’s value in a register and reread-
ing it from there rather than from memory, where it may have changed. Please
understand that the volatile modifier is a directive to the compiler’s op-
timizer that operations involving this variable should not be optimized
in certain ways. A volatile modifier may be used in two cases:

50 • C Programming

Case 1: A memory-mapped hardware device may use it.

Case 2: Shared memory may use it.

Also understand that a system has a set of registers that can be ac-
cessed faster than its memory. This is because registers are faster than
memory. A good compiler will perform some type of optimization called re-
dundant load and store removal.

Volatile is a special type of modifier which informs the compiler that the
value of the variable may be changed by external entities other than the pro-
gram itself. This is necessary for certain programs compiled with optimiza-
tions—if a variable were not defined as volatile, then the compiler may assume
that certain operations involving the variable are safe to optimize away when in
fact they aren’t. Volatile is particularly relevant when working with embedded
systems (where a program may not have complete control of a variable) and
multithreaded applications.

Concept of Local and Global Variables
In C, two types of variables are used:

(a) Local variables

(b) Global variables

Local variables are the variables whose scope is limited within the
block in which they are defined or the function in which they are de-
fined. They are always defined at the top of the block. When a local variable
is defined, it is not initialized by the system; in fact, you must initialize it as a
programmer. When the execution of a block or a function starts the variable is
available and when the block ends the variable dies.

For example,

int x= 40;
main()
 {
 int x = 20;
 printf(“\n%d”, x);
 }
The output of this program will be 20. Why? As we can see in the first line,

we have initialized x to 40. This is known as a global declaration of x and the
variable is known as a global variable. On the other hand, within main()

Programming Using C • 51

again x is initialized to 20. Now, x is a local variable. And the rule is that
whenever there is a conflict between a local and a global variable, it is
the local variable that gets first priority. Also note that since the global
variable is available to the entire program, it need not be passed as a
parameter.

There are two ways by which data can be made available to other parts
of the program. Either declare them as global variables or pass them
as parameters or arguments.

Global variables are declared at the top of the program file. They are initial-
ized automatically by the system when you define them.

2.7 OPERATORS

An operator is a symbol that causes the compiler to take action. In an
expression like sum = a + b; we say that ‘+’ is an operator while ‘a’ and ‘b’ are
operands. C also supports certain operators that are discussed below.

Arithmetic Operators
C provides two unary and five binary arithmetic operators (see Table 2.2).

Table 2.2: Showing Arithmetic Operators in C

Symbol Meaning
+ Unary plus
– Unary minus
* Multiplication
/ Division
% Modulus (remainder operator)
+ Binary Addition
– Binary Subtraction

In the statement (u*v + w), the multiplication operation is performed first
and then addition is done. This is because * has higher priority than +. In gen-
eral, multiplication, division, and modulus operators have higher precedence
than the binary addition and subtraction operators.

NOTE

52 • C Programming

Increment/Decrement Operators

In C, we have ++ (increment) and decrement (– –) operators that increment or
decrement the variable’s value by 1. This can be done in two ways:

(a) ++ count; and – – count; (called pre-increment)

(b) count + +; and count – –; (called post-increment)

Please note here that if we use these increment/decrement opera-
tors as count++; or count– –; they produce the same effect. However,
also note that if you use these operators in an expression such as

count = count++;

or count =++count;

then these two expressions will not produce the same effect. This is
because in the first expression, the value of count is assigned to count-
variable (on the left-hand side) and the count’s value will be increment-
ed by one. On the other hand, in the second expression, the count value
increments first and then it is assigned to the variable –count on the
left-hand side.

We are in a position to solve an example now.

Example 1: Write a C program to show implement the concept of
post- and pre-increment operators.

Solution 1: The program is as follows:

 #include<stdio.h>
 void main()
 {
 int counter, precount, postcount;
 counter = 10;
 precount = ++counter;
 postcount= counter++;
 printf(“%d %d\n”,precount,postcount);
 counter=50;
 postcount = counter--;
 precount = --counter;
 printf(“%d %d\n”,postcount,precount);
 }

Programming Using C • 53

OUTPUT (after running):

11 11

50 48

Assignment Operators
We have already studied how the assignment operator assigns the value of the
expression which is on its right to the left-side variable. Each assignment state-
ment itself returns a value.

For example,

 counter1=counter2 =1;

In this statement, the effect is to assign the value of 1 to both of the variables—
counter1 and counter2. Please note here that the assignment operator has
right-to-left associativity; that is, here counter2 is assigned a value of 1 first
and then it is assigned to the variable counter1.

Arithmetic Assignment Operatorsºº
C provides arithmetic assignment operators that also shorten expressions.

For example,

counter = counter + 50;

Can also be written as counter += 50;

Table 2.3 shows the arithmetic assignment operators.

Table 2.3: Arithmetic Assignment Operators

Symbol Meaning
+= Addition Assignment
–= Subtraction Assignment
*= Multiplication Assignment
/= Division Assignment
%= Modulus Assignment

Relational Operators
Relational operators are used to compare two expressions. When two expres-
sions are compared they return either a true or false value. C supports the rela-
tional operators shown in Table 2.4.

54 • C Programming

Table 2.4: Relational Operators

Symbol Meaning
> Greater than
< Less than

= = Equal to
!= Not equal to
<= Less than or equal to
>= Greater than or equal to

Please note here that, in general, relational operators are used in
conditional expressions that are responsible for program flow state-
ments. These operators are used within the program control flow statement.

Logical Operators
In C, three types of logical operators are available (see Table 2.5).

Table 2.5: Showing Logical Operators

Symbol Meaning
&& Logical AND
| | Logical OR
!= Logical NOT

Logical operators use true/false of expression to return a true or false value.
The logical && operator returns a true value if both of its expressions are true.
The logical | | operator returns a true value if either of two expressions or both
expressions are true. The logical ! operator works on a single expression. If the
expression results in true then the NOT operator makes it false or vice versa.

Bitwise Operator
Bitwise operators perform operations on the bit level. Please remember that
you can use these operators with integer expressions only but not on
floats or doubles. Also remember that with the help of these operators
you can access and manipulate individual bits also. The bitwise operators
are shown in Table 2.6.

Programming Using C • 55

Table 2.6: Showing Bitwise Operators

Symbol Meaning
& Bitwise AND
| Bitwise OR
^ Bitwise exclusive OR (XOR)

>> Bitwise right shift
<< Bitwise left shift
~ 1s complement

Logical operators work on expressions while bitwise operators
work on bits.

Let us now see how the bitwise AND Operator (&) works.

Bitwise AND Operator (&)
The bitwise AND operator works on two operands. It compares these two op-
erands on a bit-by-bit basis. The truth table shown in Table 2.7 demonstrates
how it works.

Table 2.7: Bitwise AND

A B A & B
0 0 0
0 1 0
1 0 0
1 1 1

For example, say one number is 12 and the other is 24. We know that an
integer takes 2 bytes or 16 bits in memory, but for simplicity’s sake, we will just
take 8 bits and do the bitwise ANDing of these two numbers as follows:

 That is, numb1 = 12 = 00001100

 numb2 = 24 = 00011000

Now the expression numb1 & numb2 is interpreted as

 00001100

 & 00011000

 00001000

NOTE

56 • C Programming

Note here that the result is in binary form only. Its equivalent decimal num-
ber is 8. Thus, the expression, numb1 & numb2 will return a decimal value of
8. Please note here that the operation is being performed on individual
bits and this operator of ANDing bits is completely independent of each
other. Also note that this bitwise AND operator is used in general to
check whether a particular bit of an operand is ON or OFF. For example,
say the bit pattern is 10010100 and you want to check whether a particular bit
of an operand is ON or OFF (i.e., 0 or 1). To do so we will create a mask (i.e.,
we will keep the fourth bit of this mask as 1 and all others 0s) and then bitwise
AND the two as follows:

 10010100 (the given number)

 00010000 (the 8-bit mask)

 00010000 (result)

This means the result is 0001000 after ANDing and that is 16 in decimal.
This further implies that the fourth bit is ON.

Inside your system the bit pattern is numbered from 0 to 7 but from
right to left rather than from left to right.

Bitwise OR Operator (|)
Similarly, the bitwise OR operator works as shown in Table 2.8.

Table 2.8 Bitwise OR Operators

A B A|B
0 0 0
0 1 1
1 0 1
1 1 1

Please note here that the OR operation returns 1 when any of the
two bits or both bits are 1. For example, for the above two numbers (12 and
24) numb1 | numb2 yields:

 10010100 (the given first number)

 00011000 (the second number)

 00011100 (result)

NOTE

Programming Using C • 57

This means the result is 0001110 after ORing, which is 28 in decimal. Thus,
the expression numb1 | numb2 returns a decimal value of 28.

Also note that the bitwise OR operator is generally used to set a
particular bit in a number ON. Thus, if you want to set the fifth bit
of a number ON then you will OR this number with the bit pattern
00100000.

Bitwise exclusive OR (XOR) Operator (^)

The Bitwise XOR operator is used to perform an exclusive OR operation
between two bit patterns. Please note that the XOR operator returns 1
only if one of the two bits is 1. Table 2.9 shows its truth table.

Table 2.9 Bitwise XOR Operator.

A B A ^ B
0 0 0
0 1 1
1 0 1
1 1 0

Also note that the XOR operator is used to toggle a bit ON or OFF.

For example,

 If numb1 = 12

 and numb2 = 24

 then (numb1 ^ numb2) yields

 00001100

 `00011000

 00001000 (result)

This yields 20 (decimal).

One (1s) Complement Operator
The bitwise 1s complement operator complements every bit of the bit pattern
(i.e., 0s replaced by 1s and vice versa). Its truth table is shown in Table 2.10.

58 • C Programming

Table 2.10. One (1s) Complement Operator

A ~A
0 1
1 0

Right Shift Operator (>>)
The bitwise right shift operator shifts integer values right a specified number
of bits. The right-hand side of the operator specifies the number of places the
bits are shifted.

For example,

numb1 >> 4;

shifts all bits four places to the right. If numb1 = 154, numb1>>4 yields 5
in decimal value (00000101).

Please note that when the bits are shifted right, blanks are created
on the left and these blanks are filled with zeros.

Left Shift Operator (<<)
The bitwise left shift operator shifts integer values left a specified number of
bits. The right-hand side of the operator specifies the number of places the bits
are shifted.

For example,

numb1 << 4;

shifts all bits four places to the left. If numb1 = 154, numb1<<4 yields 224
in decimal value (11100000).

Comma Operator
The comma operator (,) allows two different expressions to appear in one state-
ment. Each comma-separated expression is evaluated and the value returned
from the group is the value of the rightmost expression.

For example,

 #include<stdio.h>
 void main()
 {
 int x, y, z;
 x=y=20;

Programming Using C • 59

 z = (x++, y--, x+y);
 printf(“%d”, z);
 }
First, x++ is evaluated, then y– –, and finally x+y. Since x+y is the rightmost

expression, the result of x+y is assigned to z. Thus, the output is 40.

The sizeof Operator
The sizeof operator returns the number of bytes the operand occu-
pies in memory. It is a unary operator. Please remember the following
points regarding the sizeof operator:

1. The sizeof operator has the same precedence as prefix increment/decre-
ment operators.

2. The parentheses used with sizeof are required when the operand is a
data type. With variables or constants, the parentheses are not necessary.

For example,

 #include<stdio.h>
 void main()
 {
 printf(“\n%d”, sizeof(int));
 printf(“\n%d”, sizeof(long));
	 	 printf(“\n%d”,	sizeof(float));
 printf(“\n%d”, sizeof(double));
 printf(“\n%d”, sizeof(long double));
 printf(“\n%d”, sizeof(char));
 }
OUTPUT (after running):

2

4

4

8

10

1

Application: The sizeof operator is used, in general, to find out the length
of secondary data types like arrays, structures, classes, and so on, when their
sizes are unknown to the programmer.

60 • C Programming

Ternary Operator
C also provides a ternary operator that takes three operands (hence its name).
Its syntax is:

expression1 ? expression2 : expression3;

That is, if expression1 is true, then expression2 is evaluated; else, expression3 is
evaluated. The ternary operators are also called conditional operators.

For example,

 #include<stdio.h>
 void main()
 {
 int u, v, w;
 u = 20;
 v= 30;
 w = (u > v ? u : v);
 printf(“\n Greatest out of the two is %d”, w);
 }

OUTPUT (after running):
Greater out of the two is 30

Precedence and Associativity

The priority in which operations are performed in an expression is
called precedence and the order of evaluation, when they have equal pri-
ority, is called associativity. Table 2.11 shows precedence and associativity in C.

Table 2.11: Precedence and Associativity in C

Operators Priority Associativity
() [] . – Highest Left to right

- ~ ! * & ++ -- sizeof Right to left
* / % Left to right
+ – Left to right

<< >> Left to right
= = != Left to right

& Left to right
Left to right

| Left to right
&& Left to right

Programming Using C • 61

| | Left to right
?: Left to right

= *= /= %= += –= <= &=
|= ^=

Right to left

, Lowest Left to right

From the table, it is crystal clear that the comma operator has the lowest
priority and the function expression operator has the highest priority. Please
note that the operations that have equal precedence are evaluated ac-
cording to the associativity given in Table 2.11.

For example, consider the following statement:

total = x * y/z;

The evaluation computes the value of x * y and then divides z into that
value and assigns the resultant value to the variable ‘total’. Also note that
to override this associativity, put parentheses around the expression
as follows:

total = x * (y/z);

This expression now computes (y/z) first, multiplies x by that value, and
assigns the resultant value to ‘total’ (the variable). Sometimes we do not
need the default precedence to produce the desired result. For ex-
ample,

total = x + y * z;

Here, since the multiplication operator has a higher precedence over ad-
dition, the expression calculates y*z first and then adds this value to x. On the
other hand, if you wish to compute x+y first and then multiply that result by z,
use parentheses as follows:

total = (x + y) * z;

The rule can be stated as follows: “Parentheses are required
whenever you want to override associativity as the default prece-
dence. But within a pair of parentheses, the same hierarchy (as in
Table 2.11) is operative. Also, if you have a nested set of parentheses,
the operation within the innermost parentheses will be performed
first, followed by the operation within the next innermost pair of pa-
rentheses, and so on.”

62 • C Programming

2.8 TYPE CASTING (OR COERCION) IN C

C supports different data types like int, float, long, double, and so on. Each
of these has a different range of values because of their size and their signed/
unsigned properties. In practice, an expression can have an operation between
two different data types (one can be an integer and another can be a float or
vice versa). To handle such situations, C provides certain rules of type conver-
sion in these cases. Please understand that when a compiler encounters
different types of operands in the same expression, the smaller type
variable is promoted to a larger type variable. The order of inbuilt data
types is shown in Table 2.12.

Table 2.12: Inbuilt Data Types

Data Type Number of Bytes Order
long double 10 6 (largest)

double 8 5
float 4 4
long 4 3
int 2 2

char 1 1

Thus, if you assign a variable of a smaller type—say, an int—to a larger
type—say, a float—then the (int) smaller value is promoted to a (float) larger
value. On the other hand, if you assign a value of a larger type—say, a float—to
a smaller type—say, an int—then the larger value is demoted and excess data
can even be truncated or, in some cases, the compiler will warn you unless you
implicitly type cast it.

This is done by the compiler automatically. But sometimes a programmer
can also do type casting, which is a technique by which you can convert
one type to another type explicitly. Typecasting/coercion in C is done as
follows:

type(expression);

Here, ‘type’ is any valid data type in C to which conversion is to be per-
formed.

Programming Using C • 63

2.9 CONDITIONAL EXECUTING USING IF-ELSE

The if statement is followed by a logical expression in which data is compared
and a decision is made based on the result of comparison. Its syntax is:

 if (testcondition)
 {
 statement (s);
 }
 else
 {
 statement (s);
 }
Here, when the testcondition is true, the statements enclosed in the if

clause are executed; otherwise, statements enclosed in the else clause are
executed.

The if statement is used to create a decision structure which allows a pro-
gram to have more than one path of execution. It can be represented by the
flowchart in Figure 2.1.

Is
it raining?

Yes

Take your
umbrellaNo

Figure 2.1: If-Else Decision Structure Logic Flowchart

Relational operators like >, <, >=, <=, = =, and != may be used. But please
remember that when you use the <= or >= operators, there is no space
between them.

64 • C Programming

Even though an if statement usually spans more than one line, it is really
one long statement. For example, the following if statements are identical ex-
cept for the style in which they are written:

 if (salary > 100000)

 printf(“\n It is a good salary”);

 if (salary > 1000000) printf(“\n It is a good salary”);

Also note that in both of these examples, the compiler considers the
if statement and the conditionally executed statement as one unit, with
a semicolon properly placed at the end. Indentions and spacing are for hu-
man readers of a program, not the compiler.

Rules for Using if Statements

Rule 1: The conditionally executed statement should appear on the
line after the if statement.

Rule 2: The conditionally executed statement should be indented
one level from the if statement.

Recall that in most editors, when you press the tab key, you are indenting by
one level. By indenting the conditionally executed statement, you are causing it
to stand out visually. This is so you can tell at a glance what part of the program
the if statement executes. This is the standard way of writing if statements.

NOTE

1. Don’t put semicolons after the if(testcondition) portion, because
the if statement is incomplete without its conditional part. But if you
place a semicolon here, the compiler assumes that you have terminat-
ed the statement. No error will be displayed but the compiler will as-
sume that you are placing a null statement there. Also note that the
null statement (an empty statement that does nothing) will become the
conditionally executed statement. The statement that you intended to
be conditionally executed will be disconnected from the if statement
and will always execute. For example,

 int u=5, v=10;

 if (u>v);

 System.out.println(“u is greater than v” + u);

Programming Using C • 65

The if statement in this code snippet is prematurely terminated
with a semicolon. Because the println statement is not connected to the
if statement, it will always execute.

2. Now consider another example,

 if(salary > 200000)
 {
 tax = .30 * basic;
 bonus = 800;
 }
Herein, if the condition is true, then both of the statements in the

braces will be executed in the order they appear. But if, say, the braces
were left out or missed by mistake by the programmer, then the if state-
ment conditionally executes only the very next statement—that is, say
the braces are left out, as follows:

 if(salary > 200000)

 tax = .30 * basic;

 bonus = 800;

In this case, only the statement tax = .30 * basic will be executed
conditionally and the other one (bonus=800;) will always be executed.

Next let us see the working and the syntax of nested if-else.

When an if-else control appears as a statement in another if-else, it
is known as a nested if-else construct. For example,

 if (boolExpr1)
 if (boolExpr2)
 if (boolExpr3) {
 stml1;
 }
 else {
 Stml2;
 }
 else {
 Stml3;
 }
This code is very confusing! Please note that there is no else part for

the first if construct. The compiler associates the else part with the clos-
est inner if construct which does not have an else part. Thus, each else part

66 • C Programming

is associated with the respective if. To avoid this confusion, it is better to use
braces appropriately for the association of each else part with its if. By using
the braces, any else part may be associated with a particular if construct.

Let us now see the if-else-if control construct.

The else-if control construct follows the if control construct to allow
multiple decision making.

Syntax

 if (boolExpr1)
 {
 Stml1;
 }
 else
 if (boolExpr2)
 {
 Stml2;
 }
 else
 if (boolExpr3)
 {
 Stml3;
 }
 ………….
 else if (boolExprN-1)
 {
 StmlN-1;
 }
 else {
 StmlN;
 }
Herein, if any boolExpr returns a true value, the Stmt associated with

that if is executed and then the next statement to the whole else-if construct is
executed. If no expression returns a true value, the last else part is executed. If
there is no instruction needed for the last else part, then it can be omitted or it
can be used for displaying the error messages due to invalid conditions.

We are in a position to write simple programs now.

Example 1: Write a C program to read a number from the keyboard
and to check whether it is a positive number.

Programming Using C • 67

Solution 1: The following is the program:

 #include<stdio.h>
 void main()
 {
 int numb;
 printf(“\n Enter your number: “);
 scanf(“%d”, &numb);
 if (numb > = 0)
 printf(“\n It is a positive number.”);
 }

OUTPUT (after running):
Enter your number: 80

It is a positive number.

Example 2: Write a C program to check whether the given year is a
leap year. A leap year is a year which is divisible by 4 but not divisible
by 100 (unless it is also divisible by 400).

Solution 2:

 /* leap year program */
 #include<stdio.h>
 void main()
 {
 int y;
 printf(“\n Enter the year in four digits:
“);
 scanf(“%d”, &y);
 if ((y % 4 ==0 && y%100 != 0) || (y

%400==0))
 printf(“\n\t It is a leap year”);
 else
 printf(“\n\t It is not a leap year”);
 }
 }

OUTPUT (after running):
Enter the year in four digits: 2000

2000 is a leap year

68 • C Programming

2.10 SWITCH AND BREAK

C provides an extremely handy switch-case construct to facilitate selecting
between multiple alternatives. Within the block of code controlled by a switch
statement, the programmer can place case statements and (optionally) a de-
fault statement. For example,

 switch (x) {
 case 0 : str = “none”; break;
 case 1 :
 str = “single” ; break;
 case 2 :
 str = “pair” ;
 break;
 default : str = “many” ;
}
Each case keyword is followed by an integer constant, followed by a colon.

Please note that the code block belonging to each case can immediately
follow the colon on the same line or on separate lines. If the value of x is
not one of the values provided for in case statements, the default statement
code is executed. Also note that if there is no default statement and no
exact match, execution resumes after the switch block of code.

In the program example above, break statements are used that terminate
the code for each case and cause execution to continue after the switch code
block. Please understand that if a break does not appear, execution
falls-through to execute code in subsequent cases. For example,

 switch(x) {
 case 0 : printf(“A, “);
 case 1: printf(“B, “); break;
 default: printf(“C”);
 }
Herein, a value of 0 for x would cause output of “A, B,”.

Also understand that most of the errors that occur when we work
with switch structures seem to be related to forgetting about fall-
through. Therefore, we must always carefully check for the break state-
ments whenever we write a program using a switch statement. The block
of code associated with each case can be as simple as a single statement or it
can be hundreds of lines of code. Moreover, this code block can have another
switch statement. But for better readability we should convert any com-

Programming Using C • 69

plex code into a separate method and simply call that method from the
case statement.

The following points may be made regarding switch statements:

1. The expression in a switch statement must evaluate to one of the 32-bit
or smaller integer types: byte, char, short, or int. The compiler checks
that the legal range of the integer type covers all of the constants used in
the case statements in the switch code block.

2. The compiler throws an error if the legal range of the integer type in
the switch statement does not cover all of the constants used in the case
statements.

3. Each case statement must have a literal constant or a value the compiler
can evaluate as a constant of a 32-bit or smaller integer type.

4. It cannot have a float constant, a long constant, a variable, an
expression, a string, or any other object.

5. The compiler checks that the constant is in the range of the
integer type in the switch statement.

6. If you are using a byte variable in the switch statement, the
compiler objects to it if it finds case statement constants outside
the –128 through 127 range that a byte primitive can have.

7. The code block associated with a case must be complete within the
case. That is, we can’t have an if-else or loop structure that spreads
across multiple case statements.

8. Constants in case statements can be integer literals or they can be
variables defined as static and final.

9. If a continue label is used instead of a break in a switch statement,
then the next statement following it will not be executed; rather, it will
resume the loop with the next value of the iterator.

10. The switch statement is an alternative to an if-else or if-else-if control
construct.

11. The expressions and case labels are restricted to the following types:
byte, short, char, int, and enum.

70 • C Programming

12. The expression is evaluated first and its value is then matched against
the case labels that must be constant values. When a match is found,
the statement following that case will be executed. If there is no match
with any of the case labels, the statement following the default (if
present) will be executed.

13. Different case statements in a switch-case statement may be arranged
in any order.

14. The CaseExpressions of each case statement must be unique.

Switch versus If-Else (a Comparison)
The if-else statement can handle ranges, for instance as follows:

 if(marks > 80 && marks <=100)
 //statements
 else if(marks > 70 && marks <=90)
 //statements
But, unfortunately, the switch cannot handle these ranges. Each

switch-case label must be a single value and that value must be an integer or
a character. You cannot even use a floating case label. As far as the ranges or
floating point numbers are concerned, you must use an if-else construct. On
the other hand, if the case labels are integer constants or character constants,
then the switch statement is more efficient, easier to write, and more readily
understood.

We are in a position to write some programs using switch state-
ments now.

Example 1: Write a C program to check whether a supposed vowel
read from the keyboard is a vowel. Use switch statements only. Now
rewrite this program with mixed integer and character constants. Will
the program compile?

Solution 1: We write two separate programs—one with integer constants
in case and the other with both integer and character constants.

//vowel program using switch with character constants only (in case)

#include<stdio.h>
void main()
 {
 char ch;
 printf(“\n Enter any vowel:”);

Programming Using C • 71

 scanf(“%c”, ch);
 switch (ch)
 {
 case ‘a’:
 printf(“You entered a.”);
 break;
 case ‘e’:
 printf(“You entered e.”);
 break;
 case ‘i’:
 printf(“You entered i.”);
 break;
 case ‘o’:
 printf(“You entered o.”);
 break;
 case ‘u’:
 printf(“You entered u.”);
 break;
 default:
 printf(“You have not entered any vowel.”);
 }
}

OUTPUT (after running):
Enter any vowel: i

You entered i.

Enter any vowel: u

You entered u.

Enter any vowel: r

You have not entered any vowel.

//vowel program using switch with character constants and integer (in case),
both.

#include<stdio.h>
void main()
 {
 char ch;
 printf(“\n Enter any vowel:”);
 scanf(“%c”, ch);
 switch (ch)

72 • C Programming

 {
 case ‘a’:
 printf(“You entered a.”);
 break;
 case ‘101’:
 printf(“You entered e.”);
 break;
 case ‘i’:
 printf(“You entered i.”);
 break;
 case ‘111’:
 printf(“You entered o.”);
 break;
 case ‘u’:
 printf(“You entered u.”);
 break;
 default:
 printf(“You have not entered any vowel.”);
 }
}

OUTPUT (after running):
Enter any vowel: i

You entered i.

Enter any vowel: u

You entered u.

Enter any vowel: r

You have not entered any vowel.

The output is therefore the same in both cases. Switches allow executing
a set of statements for more than one case label. We have seen that whenever
a switch statement finds a match, it executes all of the subsequent lines in the
switch unless it encounters a break statement. Also note here that if you don’t
use a default case and the switch statement does not find a match, then
nothing gets executed within the switch statement and control is trans-
ferred to the next statement, if any, following the control structure.

The goto Statement
A goto statement is an unconditional control statement. It directly takes the
“control the program” statement wherever you want. Usually we don’t recom-

Programming Using C • 73

mend the use of a goto statement, as it is an unstructured way of programming.
It makes programs nonreadable, unreliable, and difficult to debug.

For example,

 start: if (number < 0) {

 i++;

 goto start;

 }

Here we see that if a number < 0 then i++ is done and then an uncondi-
tional jump is made at the label ‘start’. The label ends with a semicolon, after
which the statements are placed.

It is generally recommended to use other control structures and loop state-
ments whenever possible.

2.11 THE CONCEPT OF LOOPS—WHILE LOOP,
DO-WHILE LOOP, FOR LOOP, NESTED LOOPS,
BREAK STATEMENT, CONTINUE STATEMENT

A loop is a part of a program that repeats. A loop is a control structure that
causes a statement or group of statements to repeat. C has three types of
looping structures:

(a) while loop

(b) do-while loop

(c) for loop

Let us discuss these one by one now.

The while Loop
The while loop construct is used when a single statement or a group of statements
is to be executed repeatedly as long as a given condition is satisfied. It consists of
a Boolean expression (boolExpr) for modeling the condition and one or more
statements (Stmt). First the boolExpr is evaluated. If it returns true, the Stmt
in the while loop is executed. The loop is terminated when the boolExpr yields

74 • C Programming

a false value. The boolExpr is an expression that yields a Boolean literal. The
syntax of a while loop is shown next, followed by its working (in Figure 2.2).

Syntax

 while (boolExpr)
 {
 Stmt;
 }

Working of the while Loop

Entry

boolExpr

Stml

false

true

Exit

Figure 2.2: Syntax and Working of a while Loop

Explanation: The first line shown in the syntax is known as a loop head-
er. The Stmt part is executed when the boolExpr returns a true value. When
it returns a false value, the loop is terminated. It is possible to exit the while loop
without executing the statement part in the loop if the boolExpr yields a false
value the first time. Thus, the minimum number of times the while loop
is executed is zero. Please understand that since the condition is tested
before entering the body of the loop, it is also known as pretested loop
or a top-tested loop. Also understand that when the boolExpr always
returns a true value, the loop becomes an infinite loop. For example,

 while (true) {
 Stmt;
 }

Programming Using C • 75

This is an infinite loop. Here, the Boolean literal true is used in place of a
boolExpr. It may also be written as follows to form an infinite loop:

 while (! false) {
 Stmt;
 }
Thus, if a loop does not have a way of stopping, it is called an infinite loop.

An infinite loop continues to repeat until the program is interrupted.
For example,

 int numb =1;
 while (numb <=5)
 {
 printf(“Hello”);
 }
This is an infinite loop because it does not contain a statement that changes

the value of the numb variable. Each time the Boolean expression is tested,
numb will contain the value 1.

Now, say, by mistake the programmer has put a semicolon at the end of the
while loop as follows:

 while(numb <=5);
Please note here that the semicolon at the end of the first line is as-

sumed to be a null statement and disconnects the while statement from
the block that comes after it. This while loop will forever execute the null
statement, which does nothing.

Now, say, you forget to put the braces after the while header as follows:

 int numb =1;
 while(numb <=5)
 printf(“Hello”);
 numb++;
Here, the numb++ statement is not in the body of the loop. Because the

braces are missing, the while statement only executes the statement that im-
mediately follows it. This loop will also execute infinitely because there is
no code in its body that changes the numb variable.

The rules that you must follow can be stated as follows:

Rule 1: If there is only one statement repeated by the loop, it should
appear on the line after the while statement and be indented one ad-
ditional level.

76 • C Programming

Rule 2: If the loop repeats a block, each line inside the braces should
be indented.

There is no semicolon at the end of the loop header. Also note that this
while loop works just like an if statement that executes over and over again as
long as the expression in the parentheses is true. Each repetition of a loop is
known as an iteration. But the important feature of this loop is that it
will never iterate if the Boolean expression is false to start with.

Applications of a while Loop

1. A while loop can be used to create input routines that repeat until ac-
ceptable data is entered.

2. This loop is useful for input validations also. We define input
validation as the process of inspecting data given to a program by
the user and finding out if it is valid.

3. The read operation that takes place just before the loop starts is known as
a priming read.

Before further discussion, let us solve some examples.

Q1. Give the general logic of performing input validation.

[Hint: The following steps are used for input validation:

1. Read the first input value.

2. Check whether the value is valid or invalid.

3. If it is invalid, then display the error message and read another value.

4. Else continue with the rest of the program.]

Q2. Give the output of the following code snippet:

 int i =40;
 while (i >=0) {
 if (i%2 ==0)
 printf(“d”, i);
 i++;
 }
[Hint: It prints 40. Try to change i++ to i– – and find your result].

Programming Using C • 77

Q3. Write a C program to print the reverse of a number.

[Hint:

 void main() {
 int n;
 printf(“Enter a number:”);
 scanf(“%d”, &n);
 printf(“The reversed number is:”);
 while (k !=0) {
 /*extract the individual digits by repeat-

ed mod and division*/
 int m = n % 10;
 k=n/10;
 n=k;
 printf(“%d”, m); //print the digit
 }
 }
 }

OUTPUT (after running):
Enter a number: 321

The reversed number is: 123].

Q4. Write a C program to find the GCD (greatest common divisor) of two posi-
tive numbers by different methods:

Method 1:

The GCD of 2 positive numbers is defined as the largest common divisor of
both the integers. For instance, the GCD of 24 and 36 would be:

 Divisors of 24 are 1, 2, 3, 4, 6, 8, 12, 24

 Divisors of 36 are 1, 2, 3, 4, 6, 9, 12, 18, 36

Thus, the largest/greatest common divisor is 12. So the GCD of 24 and 36 is 12.

Method 2:

You can use Euclid’s algorithm as follows to find the GCD of two num-
bers:

 while m is greater than zero

 do

 if n is greater than m, swap m and n.

78 • C Programming

 subtract n from m.

 end

 final n is the GCD.

Method 3:

Yet another algorithm may be followed:

1. Read 2 numbers a, b.

2. Repeat through step 5 while a is not equal to 0.

3. Set gcd =a

4. a = b % a

5. b = gcd

6. Print gcd

7. Exit

[Hint: Method 1:

 void main()
 {
 int n1, n2;
 printf(“\n\t Enter two numbers:”);
 scanf(“%d %d”, n1, n2);
 int greaterNumber = n2;
 int gcd =1;
 /* assign the greater value to the greaterNumber

variable */
 if (n1 > n2)
 greaterNumber = n1;
	 	 /*	start	finding	GCD	from	the	minimum	gcd:	2	*/
 int index =2;
 /* keep checking unless the index is larger than

the greater value and */
 /*greater value is larger than 2 */
 while (index <= greaterNumber && greaterNumber

> 2)
 {
 if ((n1 % index ==0) && (n2 % index ==0)) {
 gcd = index;

Programming Using C • 79

 }
 /* check the next value */
 index++
 }
 /*print the GCD */
 printf(“\nGreatest Common Divisor (GCD) is %d”,

gcd);
 }
 }

OUTPUT (after running):

Enter two numbers

6

9

Greatest common divisor (GCD) = 3

Method 2

 int gcd(int m1, int n1) {
 int m = m1;
 int n = n1;
 int temp;
 while (m >0) {
 if(n > m) {temp =n; n=m; m=temp; }
 m = m – n }
 return n; }
 void main() {
 cout<< gcd(24,18); }
 }

OUTPUT: 6
Method 3

 void main()
 {
 int a ,b, gcd;
 a =b=gcd=0;
 printf(“\n\t Enter two numbers:”);
 scanf(“%d %d, &a, &b);
 while(a!=0)
 {
 gcd =a;
 a= b% a;

80 • C Programming

 b=gcd;
 }
 printf(“GCD = %d”,gcd);
 }
 }].

Q5. Enter a number from the keyboard and find out the Fibonacci series using
a while loop.

[Hint: void main()

 {
 int a=0, b=1, c=0, size;
 printf(“\n\t Enter a range”);
 size = s;
 printf(“\n”);
 printf(“Enter a and b:”);
 while(c <= size)
 {
 c = a +b;
 if(c<=size)
 printf(“%d\n”, c);
 a=b;
 b=c;
 }
 }
 }

OUTPUT (after running):
Enter a range

50

0

1

2

3

5

8

13

21

34].

Programming Using C • 81

Q6. Write a C program to read a number from the keyboard and find its factorial.

[Hint: void main()

 {
 int fact=1, b, c;
 printf(“Enter a number:”);
 scanf(“%d”, &b);
 c = b;
 while(c >0)
 {
 fact = fact * c;
 c--;
 }
 printf(“\n Factorial of b

is:”,fact);
 }
 }

OUTPUT (after running):
Enter a number: 3

The Factorial of 3 is 6.

Q7. Write a C program to check whether a given number is a palindrome.

[Hint: The algorithm is given first:

1. Initialize s=0

2. Read number, num

3. Set b=num

4. Repeat through step 7 until (num > 0)

5. r=num % 10

6. s=(s*10) + r

7. num = num/10

8. If b is equal to s, then print “b is a palindrome” else print “b is not a
palindrome”

9. Exit

/* palindrome program */

82 • C Programming

 void main()
 {
 int num, b, s=0, r;
 printf (“\n\t Enter a number:”);
 scanf (“%d”, &num);
 b=num;
 while (num > 0)
 {
 r = num % 10;
 s= (s * 10) + r;
 num = num/10;
 }
 if (b = =s)
 printf(“b is a palindrome”);
 else
 printf(“b is not a palindrome”);
 }
 }

OUTPUT (after running):
Enter a number

121

121 is a palindrome.

Run2:

Enter a number

123

123 is not a palindrome

Q8. Write an algorithm and the resulting C program to check whether a given
number is an Armstrong number.

[Hint: The algorithm is as follows:

1. Initialize s=0

2. Read number, num

3. Set b = num

4. Repeat through step 7 while num is greater than 0

5. r=num%10

Programming Using C • 83

6. s=s+(r*r*r)

7. num=num/10

8. If b is equal to s, then print “it is an Armstrong number” else print “it is
not an Armstrong number”

9. Exit

The resulting program is as follows:

 void main()
 {
 int num, b, s=0, r;
 printf(“Enter a number:”);
 cin >> num;
 b = num;
 while (num > 0)
 {
 r = num % 10;
 s=s+ (r *r*r);
 num = num/10;
 }
 if (b = =s)
 printf(“b is an Armstrong number”);
 else
 printf(“b is not an Armstrong number”);
 }
 }

OUTPUT (after running):
Enter a number: 153

153 is an Armstrong number

Run2:

Enter a number: 15

15 is not an Armstrong number

Q9. Write a C program to check whether a given number is binary.

[Hint:

 void main()
 {
 int r=0,c=0, num, b;

84 • C Programming

 printf(“Enter a number:”);
 scanf(“%d”, &num);
 b = num;
 while(num > 0)
 {
 if((num % 10 ==0) ||
(num%10==1))
 c++;
 r++;
 num=num/10;
 }
 if(c= =r)
 printf(“b is a binary num-
ber.”;
 else
 cout << b <<”is not a binary
number.”);
 }
 }

OUTPUT (after running):
Enter a number:

12345

12345 is not a binary number.

Enter a number:

11001011

11001011 is a binary number.

The do-while Loop

The general syntax of a do-while loop is as follows:

 do
 {
 statement(s);
 } while (test-condition);
The do-while statement evaluates the test condition at the end of the loop.

This loop guarantees that the loop will be executed at least once. Whereas a
loop is called a pretest loop or entry-controlled loop, a do-while loop is
known as a posttest loop or exit-controlled loop. A loop that uses another
loop is called a nested loop. Any type of loop may be used inside another
loop. The rules for nested loops are as follows:

Programming Using C • 85

Rule 1: An inner loop goes through all of its iterations for each it-
eration of an outer loop.

Rule 2: Inner loops complete their iterations before outer loops do.

Rule 3: To get the total number of iterations of a nested loop, mul-
tiply the number of iterations of all the loops.

Working of the do-while Loop

The do-while loop is similar to the while loop only but here the condition is
evaluated after the statement is executed once. Its flowchart is as follows:

false

Exit

Stml

Entry

boolExpr

true

Please note that it is important to place a semicolon (;) after closing
the Boolean expression in the do-while loop construct. This loop con-
struct executes the statement part in the loop before the boolExpr is evaluated.
Also note that it is because of this reason that the minimum number
of times the do-while loop is executed is one. The loop is terminated
when the boolExpr yields a false value. Because the condition is tested
after execution of the body of the loop, it is also known as a post-tested loop
or bottom-tested loop.

Notes

1. The do-while loop is the same as the repeat-until control con-
struct of PASCAL language except that the loop is terminated
when the test condition returns a false value.

86 • C Programming

2. The do-while loop is a posttest loop which means its Boolean
expression is tested after each iteration.

3. The do-while loop must be terminated with a semicolon.

Questions

Before further discussion about the for-loop, let us solve some ques-
tions now.

Q1. Write an algorithm and hence a C program to develop a multitable program.

[Hint: The algorithm is as follows:

1. Initialize a=1.

2. Initialize b=1.

3. Print a*b.

4. Increment b by 1 (i.e., b = b+1).

5. Repeat steps 3 to 5 until (b <=3).

6. Increment a by 1 (i.e., a=a+1).

7. Repeat steps 2 to 7 until (a<=3).

8. Exit.

The C program is as follows:

 void main ()
 {
 int a, b;
 a=1;
 do
 {
 b=1;
 do
 {
 printf(“\n Value of a and b is %d”,

(a *b));
 b++;
 } (while(b<=3);
 a++;
 }while(a<=3);
 }
 }

Programming Using C • 87

OUTPUT (after running):
Value of a and b is 1

Value of a and b is 2

Value of a and b is 3

Value of a and b is 3

Value of a and b is 4

Value of a and b is 6

Value of a and b is 3

Value of a and b is 6

Value of a and b is 9

Q2. Distinguish between while and do-while loops.

[Hint:

while loop do-while loop
1. The test condition is evaluated first. 1. The loop is entered first and then the test

condition is evaluated.
2. The minimum number of times the loop will

be executed is zero.
2. The loop will be executed at least once.

3. It is also known as a pretest loop or entry-
controlled loop.

3. It is also known as a posttest loop or exit-
controlled loop.

4. Its syntax is:
while(test-condition)
{
Statement(s);
}

4. Its syntax is:
 do{
 statement(s);
 while(test-condition);

5. There is no need for a semicolon. 5. A semicolon is needed after the while state-
ment in this loop.

The for Loop

The most common, frequently used, and versatile loop used in programs is
the for loop. It is used when a loop will be repeated a known number of
times. In C, it can be used to execute for a known number of times or
execute the loop repeatedly based on specific conditions.

Syntax

 for (expression-1; boolExpr; expr3)
 {

88 • C Programming

 statement(s);
 }
Working of the for Loop

The working of the for loop is as follows:

1. First, expr1 is evaluated. It is usually used to initialize a counter.

2. Then boolExpr is evaluated to check for the condition for execution. If it
returns a true value, then

(a) a statement in the loop is executed.

(b) Expr2 is evaluated.

(c) Control is then transferred to step 2.

3. If the boolExpr returns a false value, the loop is terminated.

This means the working of the for loop is as follows:

for (expr1; boolExpr; expr2)

{

statement(s);

}

That is, first, expr1 is evaluated. Then the condition is checked. If it is true,
then the loop enters into the body (after the { brace) and executes the state-
ments within it. After one iteration is over, control goes back to expr2 and then
again the boolExpr condition is checked. This is the process by which a for
loop works. Also note here that any one, two, or all of the three expres-
sions can be omitted in a for loop but the two semicolons (;) must be
placed separating the expressions. Also, expr1 and expr2 can be lists of
expressions separated by a comma. Thus, expr1 or expr2 may become
compound statements also.

Remember the following points regarding for loops:

1. A for loop can also be written equivalently using while or do-while
loops as follows:
For loop implementation using while loop:

Programming Using C • 89

 expr1;
 while (boolExpr) {
 statements;
 expr2
 }
Similarly, a for loop may be implemented by using a do-while loop also:

 expr1;
 do {
 statements;
 expr2
 }
while (boolExpr);

2. Any valid value can be initialized to expr1 that will act as the counter.

3. The minimum number of times a for loop is executed is zero.

4. It is also possible to declare the counter variable in a for loop itself—for
example,

 for (int count=1; count< 10; count++) {…}

5. We can also nest any of the three loops discussed so far into one another.
Such loops are called nested loops. Note that loops should not
overlap each other. Also note that one type of loop construct
can be nested in another type of loop construct. For instance, a
for loop may be nested within a while loop or do-while loop and
vice versa. This depends on the program statement that you are
solving.

6. We can also control the operation of a loop with break and continue
statements, with and without labels. The break statement
immediately terminates the loop code block whereas the
continue statement skips any remaining code in the block and
continues with the next loop iteration.

7. A variable/iterator/counter variable that is declared in a for
statement can be referred to only inside the loop.

8. The following is the bare minimum for a loop (with missing parts):
 for (;;){ }

9. These loops are counter-controlled loops. We can also write user-
controlled loops (i.e., that allow the user to decide the number of
iterations).

90 • C Programming

10. The first line of the for loop is also known as a loop header.

11. Note that there is no semicolon after expr3.

12. A for loop is also a pretest loop as it checks for the condition
before it performs an iteration.

13. It is also possible to execute more than one statement in the initialization
expression and the expr3 (increment/decrement). Just remember
that when you use multiple statements in any of the parts of the
for loop header, simply separate the statements with commas.
For instance,

 for (int i=1, j=2; i<10; i--) {…}

14. The following is the for loop as an infinite loop:
 for (; ;)

15. A new feature of the for loop is that it is also able to iterate through col-
lections without the explicit use of iterators. Iterators are the pro-
gramming patterns used to provide simple sequential access to
a collection of objects without knowing a priori the type and the
size of the specific collection accessed (to be discussed later).

Rules Followed While Writing Triangle-Like Programs:

1. If values are repeated row-wise, then i is printed in printf.

2. If values are repeated column-wise, then j is printed in printf.

3. For any triangle problem, loop j will run either j<=i or j>=i.

4. There are two cases that arise (discussed below).

I. Normal Photo
That is, when the triangle looks like the following:

Programming Using C • 91

Rule: “In these cases, when photo will be normal, then both the loops, i
and j, will run straight/normal, starting from 1 or otherwise both loops,
i and j, will run in reverse. This is the rule.

II. Reverse Photo
Rule: “When photo appears reverse then one of the loops will run nor-
mal and second will run in reverse manner and vice versa.”

Several examples based on these two rules like, PASCAL’s triangle and
FLOYD’s triangle, are discussed later in this chapter.

Questions

Before further discussion, please solve the following questions.

Q1. Write a program to implement a Fibonacci series using a for loop
control structure.

[Hint: A Fibonacci series is a series of numbers in which the first number
is 0 and the second is 1. The next number is obtained by adding the previ-
ous 2 numbers:

 F1=0

 F2=1

 F3= F2 + F1

In general, Fn = f(n-1) + f(n-2) (where n is a positive number). The pro-
gram follows:

 void main()
 {
 int i, n, f1, f2, f3;
	 	 	 	 	n=12;		 	 /*first	 12	 fibonacci	 numbers	

are displayed*/
 if(n <=1)
 printf(“%d”, n);
 else
 {
 f1 =0;
 f2 =1;
 f3 = f1 + f2;
 printf(“%d”, f3);
 for (i=2; i<=n; i++)
 {

92 • C Programming

 f3 = f1 + f2;
 f1 = f2;
 f2 = f3;
 printf(“\t%d”, f3);
 }
 }
 }
 }

OUTPUTS (after running):
0 1 1 2 3 5 8 13 21 3

4 55 89 144

Dry run:

Let us now rewrite this program using a for loop:

 void main()
 {
 int i, f0=0,f1=1,f2;
 printf(“%d %d”,f0 ,f1);
 for(i=3;i<=10;i++)
 {
 f2= f1 + f0;
 printf(“%d”,f2);
 f0 = f1;
 f1 = f2;
 }
 }
 }

Programming Using C • 93

OUTPUT (after running):
0 1 1 2 3 5 8 13 21 34

Q2. Write a C program using for loops to check whether the given number is
Armstrong. An Armstrong number is a 3-digit number which is equal to
the sum of the cubic values of the individual digits in it. For example, 153=
1 **3 + 5 **3 + 3 **3 and thus is an Armstrong number. Also modify your
program to generate these types of numbers from 100 to 999.

[Hint: The program follows:

 void main() {
 string s1;
 int num, n, d;
 int sum =0;
 printf(“Enter any three digit number:”);
 scanf(“%d”, num);
 n = num;
 while(num!=0)
 {
 d= num % 10;
 num = num/10;
 sum = sum + d*d*d;
 }
 if (sum= =n)
 printf(“Number is Armstrong!!!”);
 else
 printf(“Number is not Armstrong!!!”);
 }
 }

OUTPUT (after running):
Enter any three digit number

123

Number is not Armstrong!!!

OR

/*the modified program to find Armstrong numbers between 100 to 999 */

void main() {

 int n, a, b, c;
 for(int i=100; i<1000; i++) {
 a = i % 10;
 b = i % 100 / 10;

94 • C Programming

 c = i / 100;
 n = a * a * a + b * b * b + c*c*c;
 if (i= =n)
 printf(“%d”, i);
 }
 }
 }

OUTPUT (after running):
153 370 371 407

Q3. Write a C++ program to compute the factorial of an integer.

[Hint:

 void main() {
 int n;
 printf(“Enter your number:”);
 scanf(“%d”, &n);
 long f =1;
 for (int i =1; i<=n; i++)
 f *= i;
 cout <<“Factorial is” << f);
 }
 }

OUTPUT (after running):
Enter your number:

4

Factorial is 24

Q4. An important series in mathematics is the sine series. Write a C program
to find the value of sin(x) from the following series:

 Sin(x) = x –x3 / 3! + x5 / 5! –x7 / 7! + …

[Hint:

 void main() {
 int deg, n;
 printf(“Enter the number of terms: “);
 scanf(“%d”, &n);
 printf(“Enter the angle in degrees:”);
 scanf(“%d”, °);
	 	 float	x,	s	=	0.0f,	t;

Programming Using C • 95

	 	 x	=	(float)	Math.PI	*deg/180;
 s = x;
 t = x;
 for (int i=1; i<=n;i++) {
 t = (-t*x*x) / ((2 * i) * (2*i+1));
 s = s+t;
 }
 printf(“Sin = %d deg= %d”, deg, s);
 }
 }

OUTPUTS (after running):
Enter the number of terms:

20

Enter the angle in degrees:

90

Sin (90) = 1.000000].

Q5. Write a C program to generate perfect numbers. We define a perfect num-
ber as a positive integer that equals the sum of its positive integer divisors,
including unity but excluding the number itself. For instance, 6 is a perfect
number as 6 = 1 + 2 + 3.

[Hint:

 void main() {
 int n;
 /* read n-number of prefect numbers you
want */
 printf(“Enter your n:”);
 scanf(“%d”, &n);
 int sum, count =0;
 for (int i=4;; i++) {
 sum =0;
 for (int j=1; j<=i/2; j++) {
 if (i % j ==0)
 sum+=j;
 }
 if (sum = = i) {
 printf(“sum = %d”, sum);
 ++count;

96 • C Programming

 }
 if (count = =n)
 break;
 }
 }
 }

OUTPUTS (after running):
Enter your n:

4

6 28 496 8128

Q6. If a loop has a counter-variable, would it be normally written as a while
statement or a for statement? In a for loop, which of the initialization, test,
and update parts are optional? Which of the initialization, test, and update
parts allow the use of commas? Give examples(s) to explain this.

Q7. Write a C program to draw the following triangle:

 *

 * *

 * * *

 * * * *

 * * * * *

 * * * * * *

[Hint: Rule: For any triangle problem, loop j will run either j <= i
or j >= i.

Let us write its algorithm first:

1. Read the row variable (i.e., the number of rows).

2. Initialize i=0.

3. Repeat through step 9 while i is less than row.

4. Initialize j=0.

5. Repeat through step 7 while j is less than or equal to i.

6. Print “*”.

Programming Using C • 97

7. j=j+1

8. Move to new line.

9. i=i+1

10. Stop and exit.

The program is as follows:

 void main()
 {
 int row, i, j;
 printf(“Enter the number of rows:”);
 scanf(“%d”, &row);
 printf(“\n”);
 for (i=0; i<row; i++)
 {
 for (j=0; j<=i; j++)
 {
 printf(“ * “);
 }
 printf(“\n”);
 }
 }
 }

OUTPUT (after running):
Enter the number of rows:

6

*

* *

* * *

* * * *

* * * * *

* * * * * *

Q8. Write a C program to draw the following triangle:

 1

 01

98 • C Programming

 101

 0101

 10101

 010101

 1010101

[Hint: Let us write its algorithm first:

1. Read number of rows, row.

2. Initialize i=1.

3. Repeat through step 8 while i is less than or equal to row.

4. Initialize j=0.

5. Repeat through step 7 while is j less than i.

6. Print (i–j) % 2.

7. j=j+1

8. Move to the next line.

9. Stop and exit.

The program is as follows:

 void main()
 {
 int row, i, j;
 printf(“Enter the number of rows:”);
 scanf(“%d”, &row);
 printf(“\n”);
 for (i=1; i<row; i++)
 {
 for (j=0; j<i; j++)
 {
 printf(“%d”, (i-j) % 2);
 }
 printf(“\n”);
 }
 }
 }

Programming Using C • 99

Q9. Write a C program to print the following triangle:

* * * * * * *

* * * * * *

* * * * *

* * * *

* * *

* *

*

[Hint: Let us develop its algorithm first:

1. Read the number of rows, row.

2. Initialize i = row.

3. Repeat through step 9 until i is greater than 0.

4. Initialize j=0.

5. Repeat through step 7 until j is less than i.

6. Print “*”.

7. j=j+1

8. Move to new line.

9. i=i–1

10. Stop and exit.

The program is as follows:

 void main()
 {
 int row, i, j;
 printf (“Enter the number of rows:”);
 scanf (“%d”, &row);
 for (i=row; i>0; i- -)
 {
 for (j=0; j<i; j++)
 {
 printf(“ * “);

100 • C Programming

 }
 printf(“\n”);
 }
 }
 }

OUTPUT (after running):
Enter the number of rows

7

* * * * * * *

* * * * * *

* * * * *

* * * *

* * *

* *

*].

Q10. Write a C program to print the following triangle:

1

12

123

1234

12345

123456

1234567

[Hint:

Let us develop its algorithm first:

1. Read the number of rows, row.

2. Initialize i=1.

3. Repeat through step 9 until i is less than or equal to row.

4. Initialize j=1.

Programming Using C • 101

5. Repeat through step 7 until j is less than or equal to i.

6. Print j.

7. j=j+1

8. Move to new line.

9. i=i+1

10. Stop and exit.

The program is as follows:

 void main()
 {
 int row, i, j;
 printf(“Enter the number of rows:”);
 scanf(“%d”, &row);
 for (i=1; i<=row; i++)
 {
 for(j=1; j<=i; j++)
 {
 printf(“%d”, j);
 }
 printf(“\n”);
 }
 }
 }

OUTPUT (after running):
Enter the number of rows

7

1

12

123

1234

12345

123456

1234567

102 • C Programming

Q11. Now write a C program to print the following triangle:

7777777

666666

55555

4444

333

22

1

[Hint: Let us develop its algorithm first:

1. Read the number of rows, row.

2. Initialize i=row.

3. Repeat through step 9 until i is greater than 0.

4. Initialize j=0.

5. Repeat through step 7 until j is less than i.

6. Print i.

7. j=j+1

8. Move to new line.

9. i=i–1

10. Stop and exit.

The program is as follows:

 void main()
 {
 int row, i, j;
 printf(“Enter the number of rows:”);
 scanf (“%d”, &row);
 for (i=row; i>0; i- -)
 {
 for(j=0; j<i; j++)
 {
 printf(”%d”, i);

Programming Using C • 103

 }
 printf(“\n”);
 }
 }
 }

OUTPUT (after running):
Enter the number of rows

7

7777777

666666

55555

4444

333

22

1

Q12. Write an algorithm and a C program to print the following pattern:

 *

[Hint: Let us develop its algorithm first:

1. Read the number of rows, row.

2. Initialize i=0.

3. Repeat through step 17 until i is less than or equal to row.

4. Initialize j=1.

5. Repeat through step 7 until j is less than or equal to row i.

6. Print “ ”.

104 • C Programming

7. j=j+1

8. Initialize j=1.

9. Repeat through step 11 until j is less than or equal to i.

10. Print “*”.

11. j=j+1

12. Initialize j=1.

13. Repeat through step 15 until j is less than i.

14. Print “*”.

15. j=j+1

16. Move to new line.

17. i=i+1

18. Stop and exit.

The program is as follows:

 void main()
 {
 int row, i, j;
 printf(“Enter the number of rows:”);
 scanf(“%d”, &row);
 for(i=0; i<=row; i++)
 {
 for(j=1; j<=row-i; j++)
 printf(“ “);
 for(j=1; j<=i; j++)
 printf(“*”);
 for(j=1; j<=i; j++)
 printf(“*”);
 printf(“\n”);
 }
 }
 }

OUTPUT (after running):
Enter the number of rows

6

Programming Using C • 105

*

Q13. Write a C program to draw a Pascal Triangle as follows:

1

1 1

 1 2 1

 1 3 3 1

 1 4 6 4 1

[Hint: Let us develop its algorithm first:

1. Set a=1, q=0.

2. Read the number of rows, row.

3. Repeat through step 15 until q is less than row.

4. Initialize p=30–3*q.

5. Repeat through step 7 until p is greater than row.

6. Print “ ”.

7. p=p–1

8. Initialize b=0.

9. Repeat through step 13 until b is less than or equal to q.

10. If b equals to 0 or q equals to 0 then set a=1, else set a=(a*(q–b+1)/b).

11. Print (“ ”);

12. Print a.

13. b=b+1

14. Move to the next line.

106 • C Programming

15. q=q+1

16. Stop and exit.

The program is as follows:

 void main()
 {
 int a=1,p,q=0,row, b;
 printf(“Enter the number of rows:”);
 scanf(“%d”, &row);
	 	 	 printf(“\n	Pascal	Triangle\n”);
 while (q<row)
 {
 for (p=30-3*q; p>0;p--)
 printf(“ “);
 for (b=0;b<=q;b++)
 {
 if (b==0 || q==0)
 a=1;
 else
 a=(a*(q-b+1)/b;
 printf (“ “ ,a);
 }
 printf(“\n”);
 q++;
 }
 }
 }

OUTPUT (after running):
Enter the number of rows

5

1

 1 1

 1 2 1

 1 3 3 1

 1 4 6 4 1].

Q14. Write a C program to display the Floyd triangle.

[Hint: Let us write its algorithm first:

Programming Using C • 107

1. Initialize a=1.

2. Read the number of rows, row.

3. Initialize i=0.

4. Repeat through step 12 until i is less than row.

5. Initialize j=0.

6. Repeat through step 10 until j is less than or equal to i.

7. Print a.

8. If a is less than 10, print “ ” else print “ ”.

9. a=a+1

10. j=j+1

11. Move to the next line.

12. i=i+1

13. Stop and exit.

The program is as follows:

 void main()
 {
 int a=1,i, j, row;
 printf(“Enter the number of rows:”);
 scanf(“%d”, & row);
 printf(“\n”);
 for(i=0;i<row;i++)
 {
 for(j=0;j<=i;j++)
 {
 if(a<10)
 printf(“%d\t”, a);
 else
 printf(“%d\t”, a);
 a++;
 }
 printf(“\n”);
 }
 }
 }

108 • C Programming

OUTPUT (after running):
Enter the number of rows

4

1

2 3

4 5 6

7 8 9 10].

Q15. Write a C program to generate a sequence of numbers using a for loop
construct and print them in the following format:

1

2 3

4 5 6

7 8 9 10

11 12 13 14 15 ?

[Hint:

 void main() {
 int k=1;
 printf(“%d”, k);
 for(int i=1;i<5;i++) {
 printf(“%d”, ++k);
 for (int j=0; j<i; j++) {
 k+=1;
 printf(“%d”, k);
 }
 printf(“\n”);
 }
 }
 }

OUTPUT (after running):
1

2 3

4 5 6

7 8 9 10

11 12 13 14 15].

Programming Using C • 109

Other Statements of C

The break Statement
When a break statement is executed inside a loop, it skips the remaining state-
ments of that loop and control is immediately transferred outside the loop.

Syntax

 break;

For example,

 void main()
 {
 int i, j;
 for(i=1; i<=3;i++)
 {
 for(j=1;j<=3;j++)
 {
 if(i= =j)
 break;
 else
 printf(“%d\t %d”, i, j);
 }
 }
 }
 }

OUTPUT (after running):
2 1

3 1

3 2

Please note that when a break statement appears inside a loop or in
a switch statement, it terminates execution at that point and transfers
execution control to the statement immediately following the loop or
switch statement. Thus, it does an early exit from any loop or switch state-
ment. Also note that when multiple statements are nested within each
other, a break transfers control to the immediate outer level.

However, break statements should be avoided in loops (whenever
possible) because they bypass the loop’s logic and make the code dif-
ficult to understand and debug.

110 • C Programming

Another variant of the break statement has the following syntax:

break label_name;

For example,

 .
 .
 .
 {
 Statement;
 break kk;
 }
 .
 kk:
 .
 .
Here, label_name is an identifier and not a number. There is no need for

declaring these labels as they are just user-defined labels. When the compiler
encounters the label (kk in this example), control jumps to the statement la-
beled kk and executes the statements following that label. If these statements
appear before a break statement, the flow is backward. If the state-
ments appear after a break statement, the flow is forward.

The continue Statement
A continue statement is used within loops to end execution of the current itera-
tion and proceed to the next iteration. Thus, it provides a method of skipping
the remaining statements in that iteration after the continue statement. Please
note that a continue statement should be used only in loop constructs
and not in selective control constructs. Also note that using a continue
statement in selective control constructs results in a compilation error.

Continue Statement Syntax

 continue;

In a while loop. The program jumps to the Boolean expression at the top of
the loop. If the expression is still true, the next iteration begins.

 In a do-while loop. The program jumps to the boolean expression at the
bottom of the loop, which determines whether the next iteration will begin.

 In a for loop. Causes the update expression (i.e., increment/decrement part
of the for loop) to be executed and then the test expression is evaluated.

Programming Using C • 111

The continue statement should be used sparingly because, like the
break statement, it also bypasses the loop’s logic and makes the code
difficult to understand and debug.

Most repetitive algorithms can be written with any of the three loops discussed
above. But each loop works best in different situations.

1. The while loop: As we have seen, a while loop is a pretest loop. This
loop is ideal when you do not want the loop to iterate if the con-
dition is false from the beginning. It is also ideal if you want to use
a sentinel value to terminate the loop. A sentinel value is a special
value that cannot be mistaken as a member of the list and signals
that there are no more values to be entered. When the user en-
ters the sentinel value, the loop terminates.

2. The do-while loop: As we have seen, a do-while loop is a sort of posttest
loop. This loop is ideal for situations where you always want the
loop to iterate at least once.

3. The for loop: As we have seen, the for loop is a pretest loop that has inbuilt
expressions for initializing, testing, and updating. These expressions make
it very convenient to use a loop control variable as a counter. The for loop
is ideal in situations where the exact number of iterations is known.

The return Statement
A return statement is used only in methods (functions in C and member-func-
tions in C++ are known as methods in Java). It terminates the method’s execu-
tion by transferring control to the calling method. Thus, if a method has to
return a value, you may write:

return expression;

On the other hand, for a void type of method that does not return any
value, the following syntax is used:

return;

A return statement unconditionally transfers control to the calling
method from the called method. This means that all statements be-
tween the return statement and the end of the method are skipped.
That is why such a statement is normally placed at the end of a method; it is
also possible to use it when specific conditions apply and an early termination is
required. Using a return statement at the end of the method is essential
in the case of methods that return a type different from void.

112 • C Programming

For methods having a void return type, this statement can be omit-
ted and will be implicitly added by the compiler.

Block Statements
A group of statements enclosed within curly braces comprises a block.
Thus, a block contains a statement list—a sequence of statements. A state-
ment in a block is called an embedded statement and it can be a label,
a declaration, or a simple statement. Please note that a block is also
called a compound statement. It is valid to have no statements or an empty
statement in a block. A block is syntactically similar to a single statement. Also
note that no semicolon is placed after the closing brace that ends a
block. When there is no statement in a block, it is called an empty block. A
block having an empty statement is not an empty block since it contains
a valid statement. That is,

 { } //is empty block
 { ; } //non-empty block
Empty statement: A statement that does nothing is known as an

empty statement. It is written as a single semicolon as follows:

 ; //empty statement
Remember that an empty statement is also known as a null state-

ment. This statement helps a programmer introduce some delays in program
execution. Actually, they do nothing and just bypass certain machine cycles,
thereby producing delays. For example,

 for(int i=0; i<100; i++)
 {
 ; // null statement
 }
Similarly, we can use it in while and do-while loops as well.

We are in a position to solve some examples now.

Q1. Define sentinel value and explain why it is used?

Q2. Write a C program to read numbers 1 to 10 through the keyboard and
display their squares in a tabular format.

[Hint: void main() {

 {
 int number, maxValue; // number is loop

control variable

NOTE

Programming Using C • 113

 printf(“Displaying the table of numbers and
their squares:”);

 /* get the maximum value to display */
 printf (“Till what number you want the squares?”);
 scanf(“%d”, &maxValue);
 /*display your table now */
 printf(“Number Number Squares”);
 printf (“--------------------------------“);
 for (number=1; number <=maxValue; number++)
 {
 printf (“%d \t\t %d”, number ,number * number);
 }
 }
 }

Q3. Give the outputs of the following program snippets:

 (a) int x, y;
 for (x=1, y=1; x <=5; x++)
 {
 cout<<x << “plus” << y << “equals” << (x + y);
 }
[Hint: Both x and y are initialized to 1. Thus, we get the following output:

1 plus 1 equals 2

2 plus 1 equals 3

3 plus 1 equals 4

4 plus 1 equals 5

5 plus 1 equals 6].

 (b) int x, y;
 for(x=1, y=1; x<=5; x++, y++)
 {
 cout <<x << “plus” << y << “equals” << (x + y);
 }
[Hint: The loop update expression is x++, y++. Thus, we get the following
output:

1 plus 1 equals 2

2 plus 2 equals 4

3 plus 3 equals 6

114 • C Programming

4 plus 4 equals 8

5 plus 5 equals 10].

Q4. Give an example to show the use of a sentinel value.

[Hint:

 while (result != -1)

 {

 result = result + 20;

 }

Here, the value –1 was chosen for the sentinel because it is not possible to
have a negative result. Thus, this makes it possible for the loop to terminate im-
mediately if the user gets –1 as the result].

Q5. Write a C program that reads the number of students and the number of
test scores per student and then displays the average score for a student.

[Hint:

 void main()
 {
 int n, /* number of students */
 numTests, /* number of tests per
student*/
 score, /* test score */
 total; /* test scores in total
*/
 double average; /*average test score */
	 	 	 	printf(“TEST	AVERAGING	PROGRAM”);
 /* read number of students */
 printf(“Enter number of students:”);
 scanf(“%d”, &n);
 /* get number of test scores per student */
 printf(“How many test scores per stu-

dent?”);
 scanf(“%d”, &numTests);
 /* Calculate for each student */
 int student =1; student <=numStudents;

student++)
 {
 total = 0; /*set total to 0 */

Programming Using C • 115

 /*get the test scores for a student */
 for (int test = 1; test <=numTests; test++)
 {
 printf (“Enter score for student

“,test,student);
 scanf(“%d”, &score);
 total += score; /* add score to total */
 }
 /* calculate and display the average */
 average = total / numTests;
 printf(“The average score for student is”

, average);
 }
 }
 }

OUTPUT (after running):
TEST AVERAGING PROGRAM

Enter number of students: 2

How many test scores per student? 3

Enter score 1 for student 1: 80

Enter score 2 for student 1: 85

Enter score 3 for student 1: 90

The average score for student 1 is 85.0

Enter score 1 for student 2: 60

Enter score 2 for student 2: 80

Enter score 3 for student 2: 80

The average score for student 2 is 73.3].

Q7. Write a nested loop that displays 5 rows of ‘#’ characters. There should be
10 ‘#’ characters in each row.

Q8. Do as directed:

(a) Convert the while loop to a do-while loop in the code below:

 int x=1;
 while (x >0)
 {

116 • C Programming

 printf(“Enter a number:”);
 scanf(“%d”, &x);
 }
(b) Convert for loop to a while loop in the code below:

 for(int i = 10 ; i > 0; i--)
 {
 printf(“%d seconds to go”, i);
 }
(c) Write an input validation loop that asks a user to enter a num-

ber in the range of 1 through 100.

(d) Write a C++ program that displays a table of centigrade tem-
peratures 0 to 50 and their Fahrenheit equivalents. The for-
mula used is:

 C = 5/9 (F–32)

 where C and F have their usual meanings. Try to
use a loop to display your table.

Q9. Develop a program to find the roots of a given quadratic equation. Use
switch statements and loops to display your roots.

[Hint: Refer to page 267].

Q10. The distance a body travels in free fall is given by the formula:

S= –gt2

where s is the distance traveled in feet,

 T is the time in seconds to travel the distance s,

 G is a constant and is equal to 32.2 feet per second2.

Write a C program for this equation.

Q11. Write a C program to read a number from the keyboard and to add each
of its digits.

[Hint:

 void main()
 {
 int r, sum=0, num;
 printf(“Enter a number:”);
 scanf(“%d”, &num);
 while(num > 0)

Programming Using C • 117

 {
 r = num % 10;
 sum = sum + r;
 num = num /10;
 }
 printf(“The sum of digits is= %d”, sum);
 }
 }

OUTPUT (after running):
Enter a number

123

The sum of digits is = 6].

Q12. Give and discuss the output of the following code:

 int price;
 for (int width =11; width <=20; width++) {
 for(int length =5; length <=25; length +=5) {
 price = width * length * 19;
 printf(“ \t%d “, price);
 }
	 	 //finished	one	row;	now	move	on	to	the	next	row
 printf(“ “);
 }
[Hint: The outer for statement is set to range from the first row (width=11)
to the last row (width=20). For each repetition of the outer for, the inner
for statement is executed, which ranges from the first column (length=5)
to the fifth column (length=25). The loop body of the inner for computes
the price of a single item and prints out this price. So, the complete ex-
ecution of the inner for loop, which causes its loop body to be executed 5
times, completes the output of one row. The following shows the sequence
of values for the 2 control variables:

 width length

 11

 5

 10

 15

 20

118 • C Programming

 25 (this completes the printing of the first row)

 12

 5

 10

 15

 20

 25 (this completes the printing of the first row)

 13

 5

 10

 :

 :].

Q13. What will be the value of sum after the following nested for loops are
executed?

 (a) int sum =0;
 for (int i = 0; i < 5; i++) {
 sum = sum + i;
 for (int j = 0; j < 5; j++) {
 sum = sum + j;
 }
 }
 (b) int sum =0;
 for(int i = 0; i < 5; i++) {
 sum = sum + i;
 for(int j = i; j < 5; j++) {
 sum = sum +j;
 }
 }

Q14. What is wrong with the following nested for loop?

 int sum = 0;
 for (int i = 0; i < 5; i++) {
 sum = sum + i;
 for (int i = 5; i > 0; i- -) {
 sum = sum + j;
 }
 }

Programming Using C • 119

2.12 STORAGE CLASSES: AUTO, STATIC, EXTERN,
AND REGISTER

Variables in C have a data type. But they also have a storage class that provides
information about their location and visibility. The storage class divides the por-
tion of the program within which the variables are recognized. The following
are the storage classes:

I. Auto
The auto storage class is a local variable known only to the function in
which it is declared.

Auto is the default storage class. The auto keyword places the specified
variable into the stack area of memory. This is usually implicit in most variable
declarations like int i;

The default storage class for all local variables is auto.

For example,

 int counter;

 auto int i;

Both the variables are here defined with the same storage class; auto can
only be used within functions (i.e., local variables).

II. Static
The static storage class is a local variable which exists and retains its
value even after control is transferred to the calling function.

A static variable is the one that does not get initialized again and again.
The static keyword is useful for extending the lifetime of a particular variable.
Please note that if you declare a static variable inside a function, the
variable remains even after the function call is long gone (the variable is
placed in the alterable area of memory). Also note that the static keyword
is overloaded. It is also used to declare variables to be private to a certain file
only when declared with global variables. Static variables can also be used with
functions, making those functions visible only to the file itself. Static is the
default storage class for global variables.

For example,

static int count;

120 • C Programming

Static variables can be seen within all functions in this source file. At link
time, the static variables defined here will not be seen by the object modules
that are brought in. Note that static can also be defined within a function. If
this is done the variable is initialized at runtime but is not reinitialized when the
function is called. This inside a function static variable retains its value during
various calls.

For example,

 void func(void)
 static count=10; /* global variable- static is the

default */
 main()
 {
 while (count - -)
 {
 func();
 }
 }
 void func(void)
 {
 static i = 5;
 i++;
 printf(“i is %d and count is %d\n”, i, count);
 }

OUTPUT (after running):
i is 6 and count is 9

i is 7 and count is 8

i is 8 and count is 7

i is 9 and count is 6

i is 10 and count is 5

i is 11 and count is 4

i is 12 and count is 3

i is 13 and count is 2

i is 14 and count is 1

i is 15 and count is 0

Programming Using C • 121

Here, the keyword void means function does not return anything and
it does not take any parameter. Static variables are initialized to 0
automatically.

III. Extern
We know that global variables are known to all functions in the file. The extern
keyword makes the specified variable access the variable of the same name
from some other file. This is very useful for sharing variables in modular pro-
grams; extern is used to give a reference of a global variable that is visible to
all program files. When you use extern the variable cannot be initialized as all
it does is point the variable name at a storage location that has been previously
defined. Please note that when you have multiple files and you define a
global variable or function, which will be used in other files also, then
extern will be used in another file to give reference of the defined vari-
able or function. Also note that extern is used to declare a global vari-
able or function in another file.

For example,

File 1: main.c

int count = 10;
main()
 {
 write_extern();
 }

File 2: write.c

void write_extern(void)
extern int count;
void write_extern(void)
 {
 printf(“count is %i\n”, count);
 }
Here, the extern keyword is being used to declare a count in another file.

Now compile these two files as follows:

gcc main.c write.c –o write

This creates a write file that can be used to produce a result by executing it.
The count in main.c will have a value of 15. If main.c changes the value of the
count, write.c will see the new value.

NOTE

122 • C Programming

IV. Register
The keyword register refers to the social variables that are stored in the regis-
ter. It suggests that the compiler place the particular variable in the fast register
memory located directly on the CPU. Most compilers these days (like gcc) are
so smart that suggesting registers could actually make your programs slower.
Please note that register is used to define local variables that should
be stored in a register instead of RAM. Also note that this means that
the variable has a maximum size equal to the register size (usually one
word) and can’t have the unary ‘&’ operator as it does not have a mem-
ory location.

For example,

register int u;

The register keyword should only be used for variables that require quick
access such as counters. Also understand that defining register does not
mean that the variable will be stored in a register; rather, it means that
it might be stored in a register—depending on hardware and imple-
mentation restrictions.

Before we close this chapter, let us write some programs now.

Q1. Write a C program to convert a binary number to a decimal number.

Ans. 1: The program is as follows:

#include<stdio.h>
main()
 {
 int binary, bin, digit, decimal=0, base=0;
 printf(“\n\t Enter any binary number:”);
 scanf(“%d”, &binary);
 bin = binary;
 while (binary !=0)
 {
 digit = binary % 10;
 digit = digit << base;
 decimal = decimal + digit;
 base++;
 binary = binary / 10;
 }
printf(“\n Decimal equivalent of binary number %d = %d”,
bin, decimal);
 }

Programming Using C • 123

OUTPUT (after running):
Enter any binary number: 11111

Decimal equivalent of binary number 11111 = 31

Q2. Write a C program to sum the following series:

 Sin (x) = x – x3 / 3! + x5 / 5! + x7 / 7! + … + xn / n!

Ans. 1: The program is as follows:

#include<stdio.h>
main()
 {
	 float	x,	num,	sum;
 long int n, den, i, sn;
 printf(“\nEnter the value of x and n:”);
 scanf(“%f %ld”, &x, &n);
 x= x * 3.1412 / 180; /* changing x into radians */
 sn = 1;
 sum = x;
 num = x;
 den = 1;
 i = 1;
 while (i < n)
 {
 num = num * x * x;
 den = den * (2 * i) * (2 * i +1);
 sn = -sn;
 sum = sum + (num/den) * sn;
 i++;
 }
 printf(“Sin(%2.2f) = %f”, xx, sum);
 }

OUTPUT (after running):
Enter the value of x and n: 45 6

Sin(45.00) = 0.707037

Enter the value of x and n: 90 8

Sin(90.00) = 1.000000

124 • C Programming

Q3. Give the output of the following C program:

#include<stdio.h>
#include<conio.h>
main()
 {
 int i, j;
 for (i = 1; i<=5; i++)
 {
 printf (“\n i= %d \n”, i);
 for (j=10; j<=20; j = j+3)
 printf(“\t J= “);
 i++;
 }
 }
Ans. 3: The output is as follows:

 I = 1

 J= 10 13 16 19

 I = 2

 J= 10 13 16 19

 I = 3

 J= 10 13 16 19

 I = 4

 J= 10 13 16 19

 I = 5

 J= 10 13 16 19

Q4. Write a C program to display the following pyramid:

 a

 ab

 abc

 abcd

 abcde

Programming Using C • 125

Ans. 4: The program is as follows:

#include<stdio.h>
main()
 {
 int i, blanks = 20;
 char ch1, ch2;
 for (ch1 = ‘a’; ch1 <= ‘e’; ch1++)
 {
 printf(“\n”);
 for (i=1; i<=blanks; i++)
 printf(“ “);
 for (ch2 = ‘a’; ch2 <= ch1; ch2++)
 printf(“%c”, ch2);
 blanks - - ;
 }
 }

Q5. Write a C program to display all prime numbers from 1 to 100.

Ans. 5: The program is as follows:

#include<stdio.h>
main()
 {
	 int	n,	flag,	i
 for (n=1; n <=100; n++)
 {
 i = 2;
	 flag	=	0;
 while (i <= n/2)
 {
 if (n % i = = 0)
 {
	 	 	 flag	=	1;
 break;
 }
 i++;
 }
	 if	(flag	=	=0)
 printf(“%d” \t”, n);
 }
}

126 • C Programming

OUTPUT (after running):
1 2 3 5 7 11 13 17 19

23 29 31 37 41 43 47 53 59

61 67 71 73 79 83 89 97

Q6. What points are to be kept in mind while using switch statements?

Ans. 6: The following points must be kept in mind:

1. You can use case labels in random order.

2. Case values cannot be expressions.

3. Case labels cannot be repeated within a switch statement.

4. You can mix integer and character constants in different cases of a single
switch statement.

Q7. When is a while loop preferred over a for loop?

Ans. 7: A while loop is preferred over a for loop when it is not known in
advance how many times the loop is going to execute.

Q8. What is meant by lifetime and scope regarding variables?

Ans. 8: The lifetime of a variable is the length of time it retains a particular
value. The scope of a variable refers to those parts of a program that will
be able to recognize it.

Q9. Using the ternary operator of C, write a program to find the largest of two
numbers.

Ans. 9: The program is as follows:

#include<stdio.h>
main()
 {
 int num1, num2, large;
 printf(“Enter any two numbers:”);
 scanf(“%d %d”, &num1, &num2);
 printf(“%5d %5d\n”, num1, num2);
 large = num1 > num2 ? num1 : num2;
 printf(“\n Larger of the two is %5d \n”, large);
 }

Programming Using C • 127

OUTPUT (after running):
Enter any two numbers: 11 22

Larger of the two is 22

Q10. With the help of a flowchart, explain the working of a nested if-else state-
ment.

Ans. 10: The following is the flowchart for a nested if-else statement:

False TrueTest
condition-1

Statement(s)
of else block

Statement

TrueTest
condition-3

Test
condition-2

True

False

Statement(s)
of if block

Statement(s)
of else block

Statement(s)
of if block

False

Here, if test condition-1 results in True then the if-else statement, which is
embedded in the if block, is executed and the other if-else statement, which is
embedded in the else block, is skipped. On the other hand, if test condition-1

128 • C Programming

results in False then the if-else statement, which is embedded in the if block, is
skipped and the other if-else statement, which is embedded in the else block,
is executed.

Q12. Write a C program to find the power of x raised to y (xy).

Ans. 12: The program is as follows:

#include<stdio.h>
main()
 {
 int x, y, i, power =1;
 printf(“\n Enter the value of a and y =”);
 scanf(“%d %d”, &x, &y);
 if (y = =0)
	 	 printf(“\n	Power	of	%d	to	%d	is	=	%d”,	x,	y,	power);
 else
 {
 while (y > = 1)
 {
 power = power * x;
 y - - ;
 }
	 	 	printf(“\n	Power	of	%d	to	%d	is	=	%d”,	x,	y,	pow-
er);
 }
 }

OUTPUT (after running):
Enter the value of x and y = 2 3

Power of 2 to 3 is = 8

Q13. Write a C program to generate the Fibonacci series that continues till n.

Ans. 13: The program is as follows:

#include<stdio.h>
main()
 {
 int i, n, f1, f2, f3;
 printf(“\n \t Enter the value of n: “);
 scanf(“%d”, &n);
 if (n <= 1)
 printf(“%d”, n);

Programming Using C • 129

 else
 {
 f1 = 0;
 f2 = 1;
 f3 = f1 + f2;
 printf(“%d\t”, f3);
 for (i=2; i<=n; i++)
 {
 f3 = f1 + f2;
 f1 = f2;
 f2 = f3;
 printf(“%d\t”, f3);
 }
 }
 }
Please note here that in a for statement, you can have more than

one expression in the initialization part of the statement and more than
one expression in the update part. To separate multiple initializations
and updating, we use commas to separate them. Also note that the C
language strictly allows only one test condition and no more than that
in a for statement.

Q14. Write the output of the following C code:

#include<stdio.h>
main()
 {
 int x = 4;
 x *= x + 4;
 printf(“%d”, x);
 }
Ans. 14: The output is as follows: 32

This is so because we have x = x * (x + 4) = 4 * (8) = 32.

Q15. What is a variable declaration and what is a variable definition?

Ans. 15: extern int a is a declaration whereas int a=100 is a definition.

Q16. What are different types of linkages?

Ans. 16: There are three different types of linkages: external, internal,
and none.

130 • C Programming

External linkage means global, nonstatic variables and functions.

Internal linkage means static variables and functions with file scope.

No linkage means local variables.

Q17. Give the output of the following C code:

main()
 {
 int i = 1;
 while ()
 {
 printf(“%d”, i++);
 if (i > 10)
 break;
 }
 }
Ans. 17: error: the condition in the while loop is necessary.

Q18. Give the output of the following code:

#include<stdio.h>
main()
 {
 int i = 4;
 printf(“%d”, printf(“%d %d”, i, i));
 }
Ans. 18: 4 43

Q19. Why is goto not a preferred method?

Ans. 19: goto cannot take control to a different function.

Q20. Can we use a switch statement to switch on strings?

Ans. 20: No, the cases in a switch must have integer constants or constant
expressions.

Q21. Rewrite the following statement so that 30 is used only once:

 a<= 20 ? b = 30 : c=30;

Ans. 21: *((a<=20) ? &b : &c) = 30;

Q22. Give the output:

main()
 {

Programming Using C • 131

 int sc, sv;
 sc= 012;
 sv = 0x28;
 sc << 1;
 sv << 2;
 printf(“%d %d”, sc, sv);
 }
Ans. 22: 024 0xA0h

Why? We are given that:

 sc = (012)8 = (000 001 010)2

sv = (0x28)16 = (0000 0010 1000)2

So, sc << 1 = 000 001 010 = 0128

 = (000 010 100)2 = 0248 (after left shift)

Similarly, sv << 2 = (0000 0010 1000) = 028h

So, sv << 1 = (0000 0101 0000) = 050h

And sv << 1 = (0000 1010 0000) = 0(10)0h = 0A0h

So, the output is (024 0xA0h) = (20d 160d)

In shifting, bits are lost, whereas in rotation, bits are not lost (i.e.,
LSBs become MSBs and vice versa).

Q23. How many times is the following loop executed?

 for (l=0; ++l <10; l++)

(a) 10 times

(b) 9 times

(c) 5 times

(d) none of the above

Ans. 23: 9 times

l ++l execution

0 1<10 1

1 2<10 2

2 3<10 3

NOTE

132 • C Programming

3 4<10 4

4 5<10 5

5 6<10 6

6 7<10 7

7 8<10 8

8 9<10 9 times.

9 10<10 (is false).

Q24. Give the output of the following program:

main()
 {
 int m, n;
 m = 14;
 n = 15;
 printf(“m & n = %d”, m & n);
 }
Ans. 24: Now, m= 14 d = (1110)2

 n = 15d = (1111)2

So, 1110

 & 1111

 1110

And 1110 = 0 * 20 + 1 * 21 + 1 * 22 + 1 * 23 = 0 + 2 + 4 + 8 = 1410

Q25. Give the output of the following program:

#include<stdio.h>
#include<conio.h>
main()
 {
 int i = 7;
 int res;
 clrscr();
 res = i++ * i++;
 cout << “Result is: “ << res;
 getch();
 }
Ans. 25: 49

Programming Using C • 133

Q26. Give the output of the following program:

main()
 {
 int i =7;
 int res;
 res = ++i * ++i;
 printf(“%d”, res);
}
Ans. 26: 81 (as unary has higher precedence, i is incremented twice first
and then multiplied.

Q27. Give the output of the following program:

void main()
 {
 int i = 7;
 int res;
 res = i++ * ++i;
 printf(“%d”, res);
 }
Ans. 27: 64 (unary has higher precedence, and first i is incremented
once (i.e., 8 and then 8 * 8 gives 64).

Q28. Give the output of the following program:

#include<stdio.h>
#include<conio.h>
#define	value	1+2
void main()
 {
 printf(“Value is %d”, value);
 printf(“Value of expressions are %d %d:”, value/value,
value * 3);
 }
Ans. 28: The value is 3.

 Value of expressions are 5 7

 Why? value/ value = 1+ 2/1 + 2, 1+2*3

 = 1+2+2, 1+6

 = 5, 7

134 • C Programming

Q29. Differentiate between a constant and a variable.

Ans. 29. The following table gives the differences:

Constant Variable
A constant does not change during the execu-
tion of the program.

A variable varies during the execution of the
program.

A constant is a quantity that is fixed. It may be
numbers, characters, or strings.

A variable is the named memory location
where a constant is stored.

A constant does not store in memory. A variable stores in memory.
For example, 7.8, 3.1417 are constants. For example, u, v are variables.

Q30. Distinguish between the getchar() and scanf() functions of C.

Ans. 30. The following table gives the differences:

getchar() scanf()
getchar() is an unformatted input function. scanf is a formatted input function.
It is used to accept only characters from the
keyboard in a fixed format.

It is used to accept any data from the key-
board.

Only a single character is input in this
function.

Any type of data (such as integer, character,
float, etc.) can be entered using this function.

A format string is not placed in this function. Format strings are placed.
No arguments are passed to this function. A number of arguments are passed here.

Syntax:
 getchar();

Syntax:
scanf(“format string”, arguments);

Q31. Distinguish between the getch() and getche() functions of C.

Ans. 31. The following table gives the differences:

getch() getche()
This function reads a character from the key-
board. This character is not echoed on the
screen.

This function also reads a character from the
keyboard but the character is echoed on screen.

It is used where the user does not want to show
the input.

It is used where the user wants to show the in-
put entered.

Q32. Distinguish between the gets() and puts() functions of C.

Ans. 32. The following table gives the differences:

Programming Using C • 135

gets() puts()
This function reads a string from a standard
input device.

This function prints a string on the standard
output device.

This function is used as an input function for
a string.

This function is used as an output function for
a string.

No message can be printed with this function. With this function any message can also be
printed.

Q33. Distinguish between switch and nested-if.

Ans. 33. The following table gives the differences:

Switch Nested-if
The expression used in switch can return an
integer or character constant. Also, 0 and 1 are
included in these values.

The expression used in nested-if returns a true
(1) or false (0) value.

It has more flexibility and a cleaner way of pro-
gramming.

It has poor flexibility and a complex format.

It is easier to handle. It is difficult and complex to handle.
It needs a break statement after every case. It does not need a break statement.
There is no need to put multiple statements of
a case into braces.

Multiple statements of nested-if must be writ-
ten within braces.

The keywords switch, case, and default are
used.

The keywords if and else are used.

Summary
In this chapter, we have examined how a C program reads and writes inputs
and outputs from a standard input device like a keyboard. We have seen that C
provides a facility for decision making by using different types of control state-
ments like the if, if-else, and switch statements. We have explored how if-else
can be nested and the switch statement as a multi-way selection statement. We
have also seen how loops are used and the functioning of different loops like the
while loop, do-while loop, and for loop. We have looked at break and continue
statements and have studied modifiers and qualifiers in C.

Exercises
Q1. What are the major data types available in C? Using a suitable example,

discuss enumerated data types.

Q2. Write short notes on bitwise operators in C.

136 • C Programming

Q3. Can we replace a for loop with a while loop? If yes, explain with an example.

Q4. Write a loop that will generate every third integer beginning with i=2 and
continuing for all integers that are less than 100. Calculate the sum of
those integers that are evenly divisible by 5.

Q5. Explain briefly all storage classes used in C.

Q6. What does the storage class of a variable mean and how would you define
the scope of a variable within a program. Also explain how an automatic
variable is defined and initialized? What happens if an automatic variable
is not explicitly initialized within a function?

Q7. Write a C program to sum the following exponential series:

 ex = 1 + x + x2/2! + x3/ 3! + …..xn/n!

[Hint:

1. Read x and n.

2. Initialize t=1 and sum =1.

3. for i 1 to n do

4. prod = i.

5. t = t * x/prod.

6. sum = sum + t

7. Print sum.].

Q8.	Write	a	C	program	to	find	the	factorial	of	a	number	using	for	loops.
[Hint:

 fact =1.
 for(i=1; i<=n; i++)
 fact = fact * i.
 printf fact.].

Q9. Write a C program to compute the 100th triangular number. A triangular
number is obtained by adding the integers from 1 up to 100.

[Hint:

main()
 {
 int n, triangular_number;
 triangular_number = 0;

Programming Using C • 137

 for(n=1; n <=100; n = n + 1)
 triangular_number = triangular_number + n;
 printf(“The 100th triangular number is %d\n”, trian-

gular_number);
 }].

Q10. Modify the program in Q9 to generate the table of triangular numbers.

Q11. Write a C program to find the GCD of two numbers, u and v.

[Hint:

 /* say two numbers are u and v */
 while (v != 0)
 {
 temp = u % v;
 u = v;
 v = temp;
 }
 printf(“GCD is %d, u);
].

Q12. Write a C program to reverse the digits of a number.

[Hint:

1. read a number.

2. right_digit = number % 10.

3. print right_digit.

4. number = number /10].

Q13. Write a C program to generate and display a table of n and n2 and n3
for integers ranging from 1 to n.

Q14. Write a C program to generate and print the table of the first 10 factorials.

Q15. Write a C program to show what happens when a minus is placed in
front of a field width specification.

[Hint: The field is displayed left-justified].

Q16. Write a C program to calculate the average of a set of grades and to
count the number of failing test grades.

[Hint:

 main()
 {

138 • C Programming

 int number_of_grades, i, grade;
 int grade_total = 0;
 int failure_count = 0;
	 float	average;
 printf(“How many grades will you be entering? “);
 scanf(“%d”, &number_of_grades);
 for (i=1; i<= number_of_grades; ++i)
 {
 printf(“Enter grade %d”, i);
 scanf(“%d”, &grade);
 grade_total = grade_total + grade;
 if (grade < 50)
 ++failure_count;
 }
	 average	=	(float)	grade_total	/	number_of_grades;
 printf(“\n Grade average = %.2f \n”, average);
 printf(“\n Number of failures = %d \n”, failure_count);
 }

Q17. Write a C program to find out whether a given number is even or odd.

Q18. Write a C program to implement the sign function. That is,

 if number < 0 then sign = –1

 else if number = 0 then sign is 0

 else sign = 1

 Print sign value.

Q19. Write a C program to categorize a single character read from the keyboard.

[Hint:

1. Read a character c.

2. If c >= ‘a’ and c <= ‘z’ or c >= ‘A’ and c <= ‘Z’ then print ‘It is a character’.

3. Else if c >= ‘0’ and c <= ‘9’ then print ‘It is a digit’.

4. Else print ‘ It is a special character’.].

Q20. What are the largest positive and negative numbers that can be stored?
How are they determined?

[Hint: The largest positive number that can be stored into n bits is 2n-1 – 1.
So, in 8-bits, we can store up to 27 – 1 or 127. Similarly, the smallest nega-

Programming Using C • 139

tive number that can be stored in n bits is –2n-1, which in an 8-bit comes
to –128. Please note that these two values are not the same. This is
applicable to characters, as they take 1 byte or 8 bits.

On the other hand, integers take 2 bytes or 16 bits in computer memory,
so the largest possible value that can be stored into such an integer is 215–1 or
32,767, whereas the smallest negative number that can be stored is –32,768.].

Q21. Why do unsigned integers take values from 0 to 65,535?

[Hint: We know that an unsigned modifier can be used to increase the
accuracy of a variable. This is because the leftmost bit is no longer needed
to store the sign of the number, since we are only dealing with positive in-
tegers. This extra bit is used to increase the magnitude of the value stored
in that variable by a factor of 2. Please note that n bits can now be used to
store values up to 2n–1. Also note that on a machine that stores integers
in 16 bits, this means that unsigned integers can range in value from 0
through 65,535.].

arrays and POinters

3C H A P T E R

3.0 INTRODUCTION

Say we wish to store the marks of 3000 students at our college; if I use
variables, more than 3000 variables are required. This is very tedious and
cumbersome. So to solve this type of problem, we use an array that has a

common name with a subscript representing the index of each element. Thus,
an array is an ordered sequence of finite data items of the same data
type that share a common name. The common name is the array name
and each individual data item is known as an element of the array.

An array is defined as a set of a similar type of elements that are
stored contiguously in memory. This means that the elements of an ar-
ray are stored in the subsequent memory locations starting from the
first memory location of the block of memory created for the array.
Each element of an array can be referred to by an array name and a subscript
or an index. Please note that all elements of an array should be of simi-
lar type. Arrays can have one of more dimensions—one-dimensional (1D),
two-dimensional (2D), or multidimensional. A one-dimensional array uses a
single index and a two-dimensional array uses two indexes, and so on. A
1D array can be used to represent a list of data items and is also known
as a vector or a list. Similarly, a 2D array can be used to represent a
table of data items consisting of rows and columns. It is also known as a
matrix. A 3D array can be used to represent a collection of tables. The
concept can go beyond three dimensions also.

142 • C Programming

The dimension of the array is known as its rank. For instance, a 1D array
has rank 1, a 2D array has a rank of 2, and so on. The number of subscripts
is determined by the rank of an array. The size or length of each di-
mension is represented by an integral value greater than or equal to
0. The total number of elements in an array is the product of the sizes
of each dimension in an array. If any one or more of the dimensions of
an array have size 0, the array is known as an empty array. An array may
be regular or ragged. A ragged/jagged array is a 1D array which contains
arrays as elements. A regular array is a multidimensional array where each
dimension contains the same number of elements, which is not generally true
for jagged arrays.

2D regular arrays are also known as rectangular arrays.

Note that the size of an array is not part of the array data type.

The overall classification of arrays in C is shown in Figure 3.1.

1D arrays Multidimensional
arrays

Regular arrays Ragged arrays

Arrays

Figure 3.1: Types of Arrays

A regular array results in a regular shape whereas a ragged array results in
an irregular shape.

3.1 1D, 2D, AND 3D ARRAYS

An array must be created before using its elements in a program. There are two
steps:

NOTE

arrays and Pointers • 143

(a) Declare an array

(b) Instantiate an array

The syntax for declaration of an array depends on the shape and
number of dimensions. Only declared arrays can be instantiated. It is
worth mentioning here that it is also possible to combine declaration and in-
stantiation in a single statement.

In C, a one-dimensional array is declared as follows:

 datatype arrayname[];

For example, the following statements declare an array of integers:

int marks[];

Note that this statement just declares that ‘marks’ is an array vari-
able; no array actually exists.

Arrays can also be initialized (for example, the first 6 elements) as follows:

int marks [] = {10, 20, 30, 40, 50, 60};

Please note that in this case the array will automatically be created
large enough to hold the number of elements that you specify in the
array initializer. Also note that there is no need of using new operator
when you initialize an array. You can access an array element by specifying
its index within square brackets. For example, you can access the fourth ele-
ment of an array ‘marks’ as marks[3].

Remember the following points:

1. The square brackets follow the data type and not the array name.

2. It is also possible to have the square brackets follow the array name.

3. The above syntax declares references to the arrays of a specific data type.

4. These references are initialized with default null values.

5. Thus, memory is not allocated for an array by the declaration alone.

6. The data type of elements and the rank of the array are identified from
the declaration.

7. The size of an array representing the length of dimension is not part of
the array’s type. That is why the size of the array is not mentioned it its
declaration.

144 • C Programming

8. The declaration also does not enclose any integer value between the
opening and closing square brackets.

9. Note here that in C array indexing starts from 0 and uses integer
expressions.

10. An array having a size equal to 0 is known as an empty array.

11. Once an array is created, its size cannot be changed.

12. The subscript of the last element in an array is one less than the
total number of elements in the array.

13. In C, array initialization suffers from two drawbacks:

(a) There is no simple way to initialize only the selected elements.

(b) There is no shortcut method to initialize a large number of
elements.

14. To alleviate indexing problems, the sizeof() expression is commonly
used when coding loops that process arrays—that is,

 int i;
 short a[] = {1,2,3,4,5};
 for (i=0; i< (sizeof(a) / sizeof(short)); ++i)
 {
 ………
 }
In the preceding code snippet, the size of the array was not explicitly speci-

fied. The compiler knows to size it as 5 as there are 5 elements in the list ‘a’.
Adding an additional value to the list will cause it to be sized to 6 and because
of the sizeof expression in the for loop, the code automatically adjusts to this
change.

For example,

 void main()
 {
 int a[] = {2,4,6,8,10};
 int i;
 for (i = 0; i < 5; i ++)
 printf (“The array elements are: “, a[i]);
 }
 }

arrays and Pointers • 145

OUTPUT (after running):
2 4 6 8 10

Please note here that C strictly checks to make sure that you do not
try to store or reference values outside of the range of the array. C’s
runtime system does all this work. If you try to go outside the array bound-
ary C reports an error as follows:

Exception in “main” ‘Array Index is Out Of Bounds...’

So we have to be careful while using arrays in C.

As already explained earlier, regular arrays may be 1D or multidimensional.
Those beyond 3D arrays are rarely used. The regular array is the simplest form
of 1D array. It is also created using the two steps mentioned at the beginning
of the chapter.

Say we want to add 100 elements of an array. We can write as follows:

 sum = 0.0;
 for(i=0; i<100; ++i)
 sum = sum + a[i];
Note that in addition to integer constants, integer-valued expres-

sions can also be used inside the brackets to reference a particular ele-
ment of the array. So if low and high were defined as integer variables,
then the statement

next_value = sorted_data[(low + high)/2];

would assign to the variable next_value indexed by evaluating the
expression (low+high)/2.

If low is equal to 1 and high is equal to 9, the value of sorted_data[5] would
be assigned to the next_value; and

If low is equal to 1 and high is equal to 10, the value of sorted_data[5] would
also be referenced.

Also note that, like variables, arrays must be declared before they
are used. The declaration of an array involves the type of the element that will
be contained in the array, such as int, float, or char, as well as the maximum
number of elements that will be stored inside the array.

How to Read an Array from the Keyboard
Consider the following code snippet:

146 • C Programming

 int i; //n = 10 = size of array
 int a[10];
 printf(“ Enter total number of elements in array:”);
 for (i =0; i<n; i++)
 scanf(“%d”, &a[i]);

The Issue of Copying Arrays
An array is an object. There is a difference between an array and the variable
that references it. Thus, that array and the reference variable are two separate
entities. This difference becomes essential when you wish to copy the contents
of one array to another. The following is the wrong way of copying an array:

 int a1[] = {1, 3, 5, 7};
 int a2[] = a1; //error, no copying will be done.
These two statements will not copy the contents of a1 to a2. Instead

a copy of the address stored in a1 is stored in a2. Thus, after this state-
ment executes, both the a1 and a2 variables will reference the same
array. Recall that this is also known as shadow copying.

Correct Method
We observed from the preceding example that we cannot copy an array by
merely assigning one array reference variable to another. Please remember
that to copy an array you need to copy the individual elements of one
array to another as follows:

 int [] firstArray = { 1, 2, 3, 4, 5, 6, 7, 8, 9};

int [] secondArray [9];

for(int i=0; i < n; i++)

 secondArray[i] = firstArray[i];

The loop in this code copies each element of firstArray to the correspond-
ing element of secondArray.

Before we discuss multidimensional arrays, let us summarize arrays
as follows:

1. Do not index into an array with an invalid index.

2. Not initializing all of the values of an array results in errors.

3. Saying a=10; will not assign 10 to each element of the array ‘a’. This is
not syntactically correct because the left-hand side is not an integer
variable whereas the right-hand side is an integer expression.

arrays and Pointers • 147

4. You must differentiate between an array index and the values stored in
an array at a particular index.

5. An array may hold at most the number of elements specified by its size.
It may hold no data if the size is 0.

6. An array name followed by a subscript enclosed within the square
brackets refers to the individual elements in it.

7. The subscript can be byte, short, char, or int. it cannot be long type.

8. The elements are stored in consecutive/successive memory
locations.

9. Subscripted array variables are treated as ordinary variables.

10. Subscripted array variables use the subscript enclosed within
square brackets whereas ordinary variables do not have any
subscript.

11. By incrementing the value of the subscript by 1, the data stored in the
subsequent memory location is obtained. Please note here that this
is not true of ordinary variables.

12. Accessing an array element is similarly easy irrespective of the size
of the array. The value of the subscript gives the position of the
element in the array.

13. Arrays may be one-dimensional or multidimensional.

14. Arrays may be regular or ragged.

15. In 2D regular arrays, all rows have the same number of columns.

16. A 1D ragged array may have rows with equal or different column sizes.

17. An array instance created is always an array type.

18. When an instance of an array is created, the rank and size of each
dimension are specified and remain constant throughout the
lifetime of the instance. It is not possible to change the rank and
size of the dimensions of an existing array.

19. Sizes must be constant values.

20. An array is a reference data type.

148 • C Programming

21. The data type of elements, the shape of an array, and the number of
dimensions are part of the type of array. Thus, an array contains only
these details in its declaration.

22. Array size is not part of the array’s type. Thus, the declaration of an
array does not contain its size.

23. An array declaration does not reserve any memory.

24. An instance of the array is created dynamically using new operator.

25. It is only in array creation using new operator that the values
within square brackets mention the size. In other places, they refer to
the indices or subscripts only. The subscript must be an integral
constant.

26. The size of the array must be an integer greater than or equal
to 0. After creation of arrays, the values of the subscripted variables
assume default values if there are no initializers.

27. The array subscripts must always start at zero.

28. The last array variable’s subscript is always [size -1] (i.e., one less
than the size of the array).

29. You cannot index an array backward (like a[-1], a[-2], etc.). Also note
that it is illegal to refer to elements that are out of array bounds.
For example, for an array of size 8, the array bound is from a [0] to a
[7] only.The C compiler checks on the array bounds and report
errors, if any, at compile time.

30. While executing a program, a value of an array type can be null or a
reference to an instance of that array type.

31. Initialization of an array may be combined with instantiation by using
initializers.

32. Array elements are initialized to their default values, if they are
not explicitly initialized by using initializers, when an instance is cre-
ated.

We are in a position to solve some questions based on 1D arrays now.

Q1. Write a C program that reads 10 integer elements and displays them.

Solution 1: The program is as follows:

arrays and Pointers • 149

#include<stdio.h>
main()
{
 int val[10];
 int i;
 printf(“\n\tEnter the array elements:”);
 for (i =0; i<10; i++)
 scanf(“%d”, &val[i]);
 printf(“\n\tArray elements are: “);
 for (i = 0; i <10; i++)
 printf(“\n%d”, val[i]);
}

OUTPUT (after running):
Enter the array elements: 1 2 3 4 5

Array elements are:

1

2

3

4

5

Q2. Write a C program that finds the sum and average of 10 real numbers and
displays them.

Solution 2: The program is as follows:

#include<stdio.h>
main()
{
 int num [10], i, large;
	 float	average,	sum;
 int i;
 printf(“\n\tEnter the array elements:”);
 for(i=0; i<10; i++)
 scanf(“%f”, &num[i]);
 sum = 0;
 for(i=0;i<10;i++)
 sum = sum + num[i];
 average = sum / 10.0;
printf(“\n\tSum of 10 real number is=%f”, sum);

150 • C Programming

printf(“\n\tAverage of 10 real numbers is=%f”, average);
}

Students should run this program on their own.

Q3. Write a C program to show the passing of an entire array.

Solution 3: The program is as follows:

#include<stdio.h>
main()
{
 int val[10];
 int max, i,n;
 printf(“\n\tPlease enter the array size:”);
 scanf(“%d”, &n);
 printf(“\n\tPlease enter the array elements:”);
 for(i=0; i<n;i++)
 scanf(“%d”, &val[i]);
 max = large(val, 10); /*passing the entire array
‘val’ */
 printf(“\n\tLargest elements is %d”, max);
}
large(int val[] , int n)
{
 int temp, i;
 temp = val[0];
 for(i=1;i<n;i++)
 {
 if (temp < val[i])
 temp = val[i];
 }
 return temp;
}

OUTPUT (after running):
Enter the size of the array: 10

Enter the array elements: 1 2 3 4 5 8 9 10 20 30

Largest element is: 30

Please note here that when an array is passed as an argument then
the base address of the array (i.e., the address of the first element) is
passed. Also note that by default the array is passed by reference only.

NOTE

arrays and Pointers • 151

Q4. Write a C program that reads 10 integer elements, reverses them, and then
displays them.

Solution 4: The program is as follows:

#include<stdio.h>
void main()
{
 int a[10], i;
 clrscr();
 printf(“\n\tEnter your 10 array elements:”);
 for(i=0; i<10; i++)
 scanf(“%d”, &a[i]);
 printf(“\nThe list in reverse order is:”);
 for(i=9; i>=0; i- -)
 printf(“%d”, a[i]);
 getch();
}

OUTPUT (after running):
Enter the 10 array elements: 1 2 3 4 5 6 7 8 9 10

The list in reverse order is: 10 9 8 7 6 5 4 3 2 1

Q5. Write a C program that reads an array, finds the greatest element, and
prints this number and its position in that array.

Solution 5: The program is as follows:

#include<stdio.h>
#include<conio.h>
void main()
{
 int a[90], big, pos, i, n;
 clrscr();
 printf(“\nEnter the size of the array:”);
 scanf(“%d”, &n);
 printf(“\nEnter the array elements:”);
 for (i =0; i<n; i++)
 scanf(“%d”, &a[i]);
 big = a[0]; /*assume 1st element is the largest one */
 pos = 0; /*set the position of big as 0 */
 for (i=1; i<n; i++)
 {
 if (a[i] > big)

152 • C Programming

 {
 big = a[i];
 pos = i;
 }
 }
 pos++; /*increment pos by 1 as array is counted
from 0 */
 printf(“\nLargest number =%d is stored at position
= %d”, big, pos);
 getch();
 }

OUTPUT (after running):
Enter the size of the array: 5

Enter the array elements: 1 2 3 4 5

The largest number = 5 is stored at position = 5

Q6. Write a C program using an array of, say, 10 elements, to interchange its
even-position elements with odd-position elements.

Solution 6: The program is as follows:

#include<stdio.h>
#include<conio.h>
void main()
{
 int a[10], i, t;
 clrscr();
 printf(“\n\tEnter a list of 5 elements:”);
 for(i=0; i<5; i++)
 scanf(“%d”, &a[i]);
 /*Interchange eve elements with odd elements position
wise */
 for(i=0; i< 5; i+=2)
 {
 t = a[i];
 a[i] = a[i+1];
 a[i+1] = t;
 }
	 printf(“\nThe	final	list	is:”);
 for(i=0; i<5; i++)
 printf(“%d\t”, a[i]);
 getch();
}

arrays and Pointers • 153

OUTPUT (after running):
Enter a list of 5 elements: 2 4 6 -8 10

The final list is: 4 2 -8 6 10

Q7. Write a C program to convert a binary number to a decimal number.

Solution 7: The program is as follows:

#include<stdio.h>
#include<conio.h>
#include<math.h>
void main()
{
 int i, r, count=0;
 long b, n =0, b1;
 clrscr();
 printf(“\nEnter a binary number: “);
 scanf(“%ld”, &b);
 b1 = b;
 while(b > 0)
 {
 r = b % 10;
 n = n + r * pow (2, count);
 count = count + 1;
 b = b/10;
 }
 printf(“\nDecimal value of binary %ld = %ld”, b1, n);
 getch();
}

OUTPUT (after running):
Enter a binary number: 0010

Decimal value of binary 0010 = 2

Students should attempt the reverse program (i.e., convert a decimal
number to its binary form).

Q8. Write a C program to search a given number from a list of n numbers and
to print its location also.

Solution 8: The program is as follows:

NOTE

154 • C Programming

#include<stdio.h>
#include<conio.h>
void main()
{
 int a[80], i, s, n, loc;
 clrscr();
 printf(“\nEnter number of elements in the array: “);
 scanf(“%d”, &n);
 printf(“\nEnter the array elements:”);
 for(i=0; i<n; i++)
 scanf(“%d”, & a[i]);
 printf(“\nEnter the element you want to search:”);
 scanf(“%d”, &s);
 for(i =0; i <n; i++)
 {
 if (s = = a[i])
 {
 loc = i + 1;
 printf(“\nElement %d is present at %d location”, s,
loc);
 break;
 }
 }
 if (i = =n)
 printf(“\nElement %d is not present in the list”, s);
 getch();
 }

OUTPUT (after running):
Enter number of elements in the array: 10

Enter the array elements: 10 20 30 40 50 60 70 80 90 100

Enter the element you want to search: 90

Element 90 is present at 9 location

Q9. Write a C program to read n values from the keyboard and compute their
mean standard deviation (SD) and variance (VAR).

[Hint: The formulas to be used are as follows:

 AM = 1/n Σxi where i → 1 to n

 VAR = 1/n [Σ (xi – AM)2]

and SD = sqrt(VAR)].

arrays and Pointers • 155

Multidimensional Arrays
A multidimensional array is an array having more than one dimension (2d, 3d,
etc.)

Two-Dimensional Arrays
A two-dimensional array is basically a collection of similar types of elements
which are organized in two dimensions. They are used to represent a table with
rows and columns. Real-life examples of 2d arrays include chess boards, tic-tac-
toe boards, and so on.

How to Declare 2d Arrays in C
Declaring a 2d array uses the following syntax:

 datatype arrayname [m][n];

Here, arrayname is the name of a two-dimensional array that contains the
elements of the datatype mentioned and has ‘m’ number of rows and ‘n’ num-
ber of columns. For example,

int a[10][20];

It declares that ‘a’ is a two-dimensional array with dimensions of
(10 * 20).

How to Access 2d Arrays in C
An individual data item of a 2D array is accessed by specifying the row and
column of a 2d array as follows:

 a[i] [j];

where ‘i’ refers to the row number and ‘j’ refers to the column number.

For example, a[1][2] refers to the data item in the 2nd row and 3rd col-
umn (noting that indexing in C starts from 0).

How to Read Elements into a 2d Array in C
We read in the values of 2d arrays by using two nested for loops as follows:

 for(i=0; i<m; i++)
 {
 for(j=0;j<n;j++)
 scanf(“%d”, &num[i][j]);
 }

156 • C Programming

How to Display Elements from a 2d Array in C
We use nested loops to display the array elements (i.e., one for the row and one
for the column) as follows:

 for(i=0; i<m; i++)
 {
 for(j=0;j<n;j++)
 printf(“%d\n”, num[i][j]);
 }

How to Initialize a 2d Array in C
Like a 1d array, we can also initialize a 2d array during its declaration as follows:

 int a[3][4] = {
 {10, 20, 30, 40},
 {50, 60, 70, 80},
 {90, 100, 110, 120}
 };
We can also initialize it as follows in a single line:

 int a[3][4] = {10,20,30,40,50,60,70,80,90,100,110,120};

Please note that when we initialize 2d arrays, the declaration of the
first dimension (row) is optional but the second dimension (column)
declaration is compulsory. Also note that the user has to explicitly men-
tion size of column during the initialization of a 2d array.

The following statement is valid in C:

 int a[][4] = {10,20,30,40,50,60,70,80,90,100,110,120};

On the other hand, the following declarations are invalid:

 int a[][] = {10,20,30,40,50,60,70,80,90,100,110,120};

 int a[3][] = {10,20,30,40,50,60,70,80,90,100,110,120};

Matrices are the best example of 2d arrays.

We are in a position to write some programs now.

Example 1: Write a C program to add two matrices, giving keyboard
entries.

Solution 1: Two matrices are added when they have similar dimensions
(i.e., both matrices must have the same number of rows and the same number of
columns). The program is as follows:

arrays and Pointers • 157

#include<stdio.h>
main()
{
 int a[10][10], b[10][10], c[10][10];
 int i, j, row1, row2, col1, col2;
 printf(“\n\tEnter the number of rows and columns of

first	matrix:”);
 scanf(“%d%d”, &row1, &col1);
 printf(“\n\tEnter the number of rows and columns of

second matrix:”);
 scanf(“%d%d”, &row2, &col2);
 if ((row1 = = row2) && (col1 = = col2))
 {
	 	 	printf(“\nEnter	the	elements	of	first	matrix	(*d	*	

%d)”, row1, col1);
 for(i=0; i<row1; i++)
 {
 for(j=0; j<col1; j++)
 scanf(“%d”, &a[i][j]);
 }
printf(“\nEnter the elements of second matrix (*d * %d)”,
row2, col2);
 for(i=0; i<row2; i++)
 {
 for(j=0; j<col2; j++)
 scanf(“%d”, &b[i][j]);
 }
 for(i=0; i<row1; i++)
 {
 for(j=0; j<col1; j++)
 c[i][j] = a[i][j] + b[i][j];
 }
 printf(“\nAddition of two matrices is:”);
 for(i=0; i<row1; i++)
 {
 printf(“\n”);
 for(i=0; i<col1; i++)
 {
 printf(“%d”, c[i][j]);
 }
 }
 }

158 • C Programming

 else
 {
 printf(“\nDimensions of both matrices do not

match”);
 printf(“Please enter same dimensions of both ma-

trices”);
 }
 }

OUTPUT-1 (after running):
Enter the number of rows and columns of first matrix: 3 4

Enter the number of rows and columns of second matrix: 4 4

Dimensions of both matrices do not match.

Please enter same dimensions of both matrices.

OUTPUT-2 (after running):
Enter the number of rows and columns of first matrix: 3 4

Enter the number of rows and columns of second matrix: 3 4

Enter the elements of first matrix (3 * 4):

5 5 5 5

5 5 5 5

5 5 5 5

Enter the elements of second matrix (3 * 4):

5 5 5 5

5 5 5 5

5 5 5 5

Addition of two matrices is:

10 10 10 10

10 10 10 10

10 10 10 10

Example 2: Write a C program to multiply two matrices, giving key-
board entries.

arrays and Pointers • 159

Solution 2: Two matrices are multiplied when the number of columns of
the first matrix matches with the number of rows of the second matrix. The
program is as follows:

#include<stdio.h>
main()
{
 int a[10][10], b[10][10], c[10][10];
 int i, j, k, row1, row2, col1, col2;
 printf(“\n\tEnter the number of rows and columns of

first	matrix:”);
 scanf(“%d%d”, &row1, &col1);
 printf(“\n\tEnter the number of rows and columns of

second matrix:”);
 scanf(“%d%d”, &row2, &col2);
 if (col1 = = row2)
 {
	 	 	printf(“\nEnter	the	elements	of	first	matrix	(%d	*	

%d)\n”, row1, col1);
 for (i=0; i<row1; i++)
 {
 for(j=0; j<col1; j++)
 {
 scanf(“%d”, &a[i][j]);
 }
 }
 printf(“\nEnter the elements of second matrix (%d
* %d)\n”, row2, col2);
 for (i=0; i<row2; i++)
 {
 for(j=0; j<col2; j++)
 {
 scanf(“%d”, &b[i][j]);
 }
 }
 for(i=0; i<row1; i++)
 {
 for(j=0; j<col2; j++)
 {
 c[i][j] = 0;
 for(k=0; k<col1; k++)
 c[i][j] += a[i][k] * b[k][j];
 }

160 • C Programming

 }
 printf(“\nMultiplication of two matrices is: “);
 for(i=0; i<row1; i++)
 {
 printf(\n”);
 for(j=0; j<col2; j++)
 {
 printf(“%d\t”, c[i][j]);
 }
 }
 }
 else
 {
	 		 	printf(“\nColumns	of	first	matrix	and	rows	of	second	

ma trix do not match”);
 printf(\nPlease re-enter correct dimensions of both

the matrices”);
 }
 }

OUTPUT (after running):
Enter the number of rows and columns of first matrix: 2 4

Enter the number of rows and columns of second matrix: 4 3

Enter the elements of first matrix (2 * 4):

2 4 5 6

1 6 3 8

Enter the elements of second matrix (4 * 3):

5 3 8

9 0 1

3 5 7

4 6 1

Multiplication of two matrices is:

85 67 61

100 66 43

arrays and Pointers • 161

Example 3: Write a C program to find the transpose of a given matrix.

Solution 3: The transpose of a matrix is found by changing all rows to col-
umns and vice versa. So in our program we need to set the elements of a[i][j] to
b[j][i]. The program is as follows:

#include<stdio.h>
main()
{
 int a[10][10], b[10][10];
 int i, j, row, col;
 printf(“\n\tEnter the number of rows and columns of the
 matrix:”);
 scanf(“%d%d”, &row, &col);
 printf(“\nReading array elements:”);
 for(i=0; i<row; i++)
 {
 for(j=0; j<col; j++)
 scanf(“%d”, &a[i][j]);
 }
 printf(“\nEchoing…..”);
 for(i=0; i<row; i++)
 {
 for(j=0; j<col; j++)
 printf(“%d”, a[i][j]);
 }
 for(i=0; i<col; i++)
 {
 for(j=0; j<row; j++)
 b[i][j] = a[j][i];
 }
 printf(“\nTranspose of a given matrix:”);
 for(i=0; i<col; i++)
 {
 printf(“\n”);
 for(j=0; j<row; j++)
 printf(“%d”, b[i][j]);
 }
}

162 • C Programming

OUTPUT (after running):
Enter the row and column of a matrix: 3 3

Echoing …

1 2 3

4 5 6

7 8 9

Transpose of a given matrix:

1 4 7

2 5 8

3 6 9

Example 4: Write a C program to find the largest and the smallest
elements of a matrix.

Solution 4: The program is as follows:

#include<stdio.h>
#include<conio.h>
void main()
{
 int a[10][10], r, c, i, j, big, small, locbi, locbj,

locsi, locsj;
 clrscr();
 printf(“\n\tEnter the number of rows and columns of the
 matrix:”);
 scanf(“%d%d”, &row, &col);
 printf(“\nReading array elements:”);
 for(i=0; i<row; i++)
 {
 for(j=0; j<col; j++)
 scanf(“%d”, &a[i][j]);
 }
 big = a[0][0];
 small = a[0][0];
 for(i=0; i<r; i++)
 {
 for(j=0; j<c; j++)
 {
 if (a[i][j] > big)

arrays and Pointers • 163

 {
 big = a[i][j];
 locbi = i +1;
 locbj = j + 1;
 }
 if (a[i][j] < small)
 {
 small = a[i][j];
 locsi = i +1;
 locsj = j + 1;
 }
 }
 }
 printf(“\nLargest element is %d”, big);
 printf(“\nLargest element is stored at %d row %d

column”, locbi, locbj);
 printf(“\nSmallest element is %d”, small);
 printf(“\nSmallest element is stored at %d row %d
 column”, losci, locsj);
 getch();
 }

OUTPUT (after running):
Enter the row and column of a matrix: 3 3

Echoing …

1 2 3

4 5 6

7 8 9

Largest element is 9

Largest element is stored at 3 row and 3 column

Smallest element is 1

Smallest element is stored at 1 row and 1 column

Example 5: Write a C program to print Pascal’s triangle—that is,

1

1 1

1 2 1

164 • C Programming

1 3 3 1

1 4 6 4 1 ?

Solution 5: The program is as follows:

#include<stdio.h>
#include<conio.h>
void main()
{
 int a[10][10], i, j, n;
 clrscr();
 printf(“\nHow many rows you want?”);
 scanf(“%d”, &n);
 for (i =1; i< = n; i++)
 {
 for (j=1; j <=i j++)
 {
 if (j = = 1 | | j = = i)
 a[i][j] = 1;
 else
 a[i][j] = a[i-1][j] + a[i-1][j-1];
 printf(“%d\t”, a[i][j]);
 }
 printf(“\n”);
 }
 getch();
}

OUTPUTS (after running):
How many rows you want? 5

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

What Is an Array of Characters
Like a number array, we can also define and use character arrays, which are
declared as follows:

arrays and Pointers • 165

char array_name[size];

Here, array_name is the name of the array storing character-type data and
size is the total number of characters in array_name.

For example,

char name[80];

Here, name is an array that can hold upto 80 characters. Again, array in-
dexes start from 0. So the fifth element of name[] array is referred to as:

name[4];

Similarly, entire array elements can be accessed using loops.

How to Read Characters into a Character Array
The procedure is the same as that for integer arrays, but you should know that
a character takes 1 byte, so an array of characters storing 10 characters will have
a size of 10 bytes. Here is the loop:

for(i=0; i<size; i++)

 scanf(“%c”, &name[i]);

How to Write Characters from a Character Array
Again the procedure is same as that for integer arrays; the loop to write is as
follows:

 for (i=0; i<size; i++)

 printf(“%c”, name[i]);

Before further discussion, attempt to write the following programs.

Q1. Write a C program to read your name using the concept of array of
characters.

Solution 1: The program is as follows:

#include<stdio.h>
main()
{
 char name[10]’
 int i;
 printf(“\nPlease enter your name:”);
 for(i=0; i< 10; i++)
 scanf(“%c”, &name[i]);

166 • C Programming

 printf(“\nEchoing…..”);
 for(i=0; i<10; i++)
 printf(“%c”, name[i]);
}

OUTPUT (after running):
Please enter your name: Dr. RAJIV

Echoing … Dr. RAJIV

How to Initialize a Character Array

Like an array of ints or floats or doubles, we can also initialize an
array of chars during its declaration as follows:

 char name[10] = {‘D’, ‘r’, ‘.’, ‘R’, ‘A’, ‘J’, ‘I’, ‘V’ };

We can also write the following:

 char name[] = {‘D’, ‘r’, ‘.’, ‘R’, ‘A’, ‘J’, ‘I’, ‘V’ };

Please note that during array declaration, if the subscript (array
size) is omitted, it is assumed to be the size of the data with which the
array is initialized. This means that the size declaration is optional in
array declaration. Also note that it is the duty of the user to remember
the number of characters stored in the array.

What Are Strings in C?
A string is a special character array which is terminated by a NULL
character. This NULL character is represented by ‘\0’ (ASCII value of
NULL is 0). Strings in C are enclosed in double quotes.

For example,

 “Dr. Rajiv Chopra is a Ph.D. in Computer Science”

Each character is stored in 1 byte. The last character is a NULL
character.

How Are Strings Initialized?
A string in C is initialized character by character as follows:

char name[10] = {‘D’, ‘R’, ‘.’, ‘R’, ‘A’, ‘J’, ‘I’, ‘V’, ‘\0’ };

Please note here that it is necessary to insert the NULL character
at the end of the string. But it is also possible to initialize a string as follows:

 char name[10] = “Dr. RAJIV”;

arrays and Pointers • 167

Here the NULL character is appended automatically by the C compiler.
Also note that while declaring char as a string, the size of string should
be declared one character longer. It implies that if an array of characters
can hold 10 characters, then it can store 9 characters as a string because the last
character stored in the string is a NULL character.

How to Read and Write Strings
The format specifier used in scanf is ‘%s’ for strings.

For example,

#include<stdio.h>
main()
{
 char name1[] = “Dr.”;
 char name2[] = “Rajiv”;
 printf(“\nFirst name is %s”, name1);
 printf(“\nSecond name is %s”, name2);
}

This results in:

First name is Dr.

Second name is Rajiv

For another example,

#include<stdio.h>
main()
{
 char name1[15], name2[15];
	 printf(“\nPlease	enter	your	first	name:”);
 scanf(“%s”, name1);
 printf(“\nPlease enter your second name:”);
 scanf(“%s”, name2);
 printf(“\nFirst name is %s”, name1);
 printf(“\nSecond name is %s”, name2);
}

This results in:

Please enter your first name: RAJIV

Please enter your second name: CHOPRA

First name is: RAJIV

Second name is: CHOPRA

168 • C Programming

But please note here that the %s format specifier has some limitations:

1. The first limitation of using the format specifier ‘%s’ is that the program-
mer has to remember the size of the character array.

2. The second limitation is that it cannot receive multiwords strings from
the keyboard.

3. That is, in the above program, if we enter the input name string as DR.
RAJIV then it would only display Dr. When it encounters a space bar, it
will automatically terminate the string.

The gets() and puts() Functions in C
In C, we have the standard function gets() to receive multiword strings from
the keyboard and the function puts() to print multiwords strings on the screen.

For example,

#include<stdio.h>
main()
{
 char name1[50][name2[50];
	 printf(“\nEnter	the	first	name:	“);
 gets(name1);
 printf(“\nEnter the second name: “);
 gets(name2);
 printf(“\nFirst name is:”);
 puts(name1);
 printf(“\nSecond name is:”);
 puts(name2);
 }

OUTPUT (after running):
Enter the first name: Dr. RAJIV

Enter the second name: CHOPRA

First name is: Dr. RAJIV

Second name is: CHOPRA

But there are some limitations. We can receive and display one and only
one string by using the gets() and puts() functions. Thus, the following state-
ments are absolutely invalid:

arrays and Pointers • 169

 gets(name1, name2) /* invalid */

 puts (name1, name2) /* invalid */

Along similar lines, we can display only one string on the screen using the
puts() function.

Let us see how:

#include<stdio.h>
main()
{
 puts(“\nDr. RAJIV”);
 puts(“\nCHOPRA”);
 getch();
}

OUTPUT (after running):
Dr. RAJIV

CHOPRA

Before further discussion, let us write some programs.

Example 1: Write a C program to convert an uppercase string into a
lowercase string.

Solution 1: Remember that the ASCII values of uppercase letters (A, B, C,
etc,) fall between 65 and 90 and the values of lowercase letters (a, b, c, etc.) fall
between 97 and 122. The difference between each uppercase letter and
its corresponding lowercase letter is 32. Keeping this in mind, we write the
following program:

#include<stdio.h>
main()
{
 char name[80];
 int i =0;
 puts(“\nEnter any upper case string:”);
 gets(name);
 puts(“\nEchoing….);
 puts(name);
 while (name[i] != ‘\0’)
{
 if (name[i] >=65) && (name[i] <=90))
 name[i] = name[i] + 32;
 i++;
}

170 • C Programming

puts(“Converted lower case string is”);
puts(name);
}

OUTPUT (after running):
Enter any uppercase string: DR. RAJIV CHOPRA

Echoing …

DR. RAJIV CHOPRA

Converted lowercase string is:

dr. rajiv chopra

Inbuilt String Functions and the “string.h” Header File
C provides an inbuilt library of string manipulating functions. These inbuilt
functions are defined in a header file named <string.h>. Inclusion of this
file is necessary if you use any of the following inbuilt string functions:

 I. The strlen() function

 II. The strcpy() function

 III. The strcmp() function

 IV. The strcat() function

 V. The strrev() function

 VI. The strlwr() and strupr() functions

I. The strlen() Function
The strlen() function returns the total number of characters (excluding the null
character) in a string.

Syntax

 strlen(str);

Here, str is any string constant or a string variable name.

For example,

#include<stdio.h>
#include<string.h>
main()
{
 char name[20];

arrays and Pointers • 171

 int len;
 printf(“\nEnter any string:”);
 gets(name);
 len = strlen(name);
 printf(“The length of a given string is %d”, len);
}

OUTPUT (after running):
Enter any string: Dr. Rajiv Chopra

The length of a given string is 16

Each space is counted as 1 byte (even ‘.’ is counted as 1 byte).

II. The strcpy() Function
The strcpy() function copies the contents of one string into another string.

Syntax

strcpy(dest, source);

Here, the contents of string source are copied into string dest.

For example,

#include<stdio.h>
#include<string.h>
main()
{
 char name[20], dupname[20];
 printf(“\nEnter your string:”);
 gets(name);
 strcpy(dupname, name);
 printf(“Duplicated string is %s”, dupname);
}

OUTPUT (after running):
Enter your string: DR. RAJIV

Duplicated string is: DR. RAJIV

III. The strcmp() Function
The strcmp() function compares the contents of one string to another string. It
returns an integer value.

NOTE

172 • C Programming

Syntax

strcmp(str1, str2);

Here str1 and str2 are the string constants or string variables. The function
returns 0 if they are equal, returns a negative if str1 is less than str2, and re-
turns a positive if str1 is greater than str2. Remember that this comparison
is case sensitive.

For example,

#include<stdio.h>
#include<string.h>
main()
{
 char name1[80], name2[80];
	 printf(“\nEnter	your	first	string:”);
 gets (name1);
 printf(“\nEnter your second string:”);
 gets (name2);
 if (strcmp(name1, name2) = = 0)
 printf(“Both strings are equal”);
 else
 printf(“Both strings are not equal”);
}

OUTPUT (after running):
Enter your first string: DR. RAJIV

Enter your second string: DR. RAJIV

Both strings are equal

OUTPUT-2 (after running):
Enter your first string: DR. RAJIV

Enter your second string: dr. rajiv

Both strings are not equal

IV. The strcat() function
The strcat() function appends the characters of the second argument to the end
of the first argument.

arrays and Pointers • 173

Syntax

strcat (str, str);

Here the contents of string str2 are appended to string str1.

For example,

#include<stdio.h>
#include<string.h>
main()
{
 char str1[20], str2[20], str3[20];
	 printf(“\nEnter	your	first	string:”);
 gets(str1);
 printf(“\nEnter your second string:”);
 gets(str2);
 strcpy(str3, str1);
 strcat(str3, str2);
 printf(“Concatenated string is %s”, str3);
}

OUTPUT (after running):
Enter your string: DR. RAJIV

Enter your second string: CHOPRA

Concatenated string is: DR. RAJIV CHOPRA

V. The strrev() Function
The strrev() function reverses the string.

Syntax

strrev(str);

Here the contents of string str are reversed and stored in str.

Before continuing the discussion, please write the following pro-
grams.

Example 1: Write a C program to find whether a given string is a
palindrome.

Solution 1: Any number or word or string that reads the same from
left-to-right as it does from right-to-left is a palindrome (e.g., 121,
TOOT, MADAM, etc.). The program is as follows:

174 • C Programming

#include<stdio.h>
#include<string.h>
main()
{
 char name1[80], name2[80];
 printf(“\nEnter your string:”);
 gets (name1);
 strcpy(name2, name1);
 strrev(name1);
 if (strcmp(name1, name2) = = 0)
 printf(“Given string is a palindrome”);
 else
 printf(“Given string is not a palindrome”);
}

OUTPUT (after running):
Enter your string: DR. RAJIV

Given string is not a palindrome.

Enter your string: TOOT

Given string is a palindrome

VI. The strlwr() and strupr() functions
The strlwr() function changes the characters of a string into lowercase and
the strupr() function changes the characters of a string into uppercase.

Syntax

strlwr (str1);

strupr (str);

For example,

/*Program to convert any string into lowercase characters
and uppercase characters.
#include<stdio.h>
#include<string.h>
main()
{
 char name1[80], name2[80];
 printf(“\nEnter your string:”);
 gets (name1);
 strcpy(name2, name1);

arrays and Pointers • 175

 strlwr(name1);
 strupr(name2);
 printf(“Equivalent lowercase string is %s”, name1”);
 printf(“Equivalent uppercase string is %s”, name2”);
}

OUTPUT (after running):
Enter your string: Dr. Rajiv

Equivalent lowercase string is dr. rajiv

Equivalent uppercase string is DR. RAJIV

Arrays of Strings/2d Array of Characters
An array of strings is also known as two-dimensional array of characters.

Syntax

char arrayname[row][col];

Here, ‘arrayname’ is the name of a 2d array of strings, ‘row’ contains the
number of strings, and ‘col’ contains the number of columns reserved for each
string.

For example,

char days[7][10];

Here, ‘days’ is the name of the array having 7 strings (or rows) and 10 is the
number of columns reserved for each string/row. We can also initialize the array
of strings during its declaration as follows:

char days[7][10] = {

 {‘M’, ‘O’, ‘N’, ‘D’, ‘A’, ‘Y’, ‘\0’},
 {‘T’, ‘U’, ‘E’, ‘S’, ‘D’, ‘A’, ‘Y’, ‘\0’},
 {‘W’, ‘E’, ‘D’, ‘N’, ‘E’, ‘S’, ‘D’, ‘A’,

‘Y’,‘\0’},
 {‘T’, ‘H’, ‘U’, ‘R’, ‘S’, ‘D’, ‘A’, ‘Y’,

‘\0’},
 {‘F’, ‘R’, ‘I’, ‘D’, ‘A’, ‘Y’,‘\0’},
 {‘S’, ‘A’, ‘T’, ‘U’, ‘R’, ‘D’, ‘A’,

‘Y’,‘\0’},
 {‘S’, ‘U’, ‘N’, ‘D’, ‘A’, ‘Y’, ‘\0’},
 };

176 • C Programming

Or you can also initialize the array of strings as follows:

char days[7][10] = {
 “MONDAY”,
 “TUESDAY”,
 “WEDNESDAY”,
 “THURSDAY”,
 “FRIDAY”,
 “SATURDAY”,
 “SUNDAY”
 };

This is simpler than the previous one.

Now if we want to display the contents of arrays of strings named as days[]
[], we use the following statements:

 for(i=0; i<6; i++)

 printf(“\n%s”, days[i]);

Yet another way of doing this is:

 for(i=0; i<6; i++)

 printf(“\n%s”, days[i] [0]);

Similarly, if we want to read strings into an array from the keyboard, we use
the following statement:

 for(i=0; i<6; i++)

 scanf(“\n%s”, days[i]);

Let us write a complete program now to display weekday name according
to a given weekday number.

#include<stdio.h>
main()
{
char days[7][10] = {
 “MONDAY”,
 “TUESDAY”,
 “WEDNESDAY”,
 “THURSDAY”,
 “FRIDAY”,
 “SATURDAY”,
 “SUNDAY”
 };

arrays and Pointers • 177

 int choice;
 printf(“\nEnter any week day number:”);
 scanf(“%d”, &choice);
 if ((choice >=1) && (choice <=7))
 printf(“\nYou have entered %s”, days[choice – 1]);
 else
 printf(“\nYou have entered wrong number”);
}

OUTPUT (after running):
Enter any week day number: 4

You have entered THURSDAY.

We are in a position to write some programs now.

Example 1: Write a C program to show the concept of pass by value
in C. Then rewrite that same program using the concept of call by ref-
erence.

Solution 1: Like any other arguments (data), array elements can also be
passed by value and by reference. In the pass by value method, the array ele-
ments are passed while in pass by reference addresses of the array elements are
passed. Let us write these two programs now.

/* using pass by value or call by value in C */
#include<stdio.h>
#include<conio.h>
void main()
{
 int m [] = {10, 20, 30, 40 50}, i;
 clrscr();
 for(i =0; i< 5; i++)
 show(a[i]);
 getch();
}
 show (int marks)
 {
 printf(“\t%d”, marks);
 }

OUTPUTS (after running):
10 20 30 40 50

On the other hand, in call by reference or pass by reference:

178 • C Programming

/* using pass by reference or call by reference in C */
#include<stdio.h>
#include<conio.h>
void main()
{
 int m [] = {10, 20, 30, 40 50}, i;
 clrscr();
 for(i =0; i< 5; i++)
 show(&a[i]);
 getch();
}
 show (int *marks)
 {
 printf(“\t%d”, *marks);
 }

OUTPUTS (after running):
10 20 30 40 50

Example 2: How will you modify the above program to pass an en-
tire array in C?

Solution 2: The program is as follows:

#include<stdio.h>
#include<conio.h>
void main()
{
 int a[] = {10, 20, 30, 40 50}, i;
 clrscr();
 show(a, 5); /* a is the starting address of the array
*/
 getch();
}
show (int *a, int n)
{
 int i;
 for (i=0; i<n i++)
 {
 printf(“\t%d”, *a);
 a ++;
 }
 }

arrays and Pointers • 179

OUTPUTS (after running):
10 20 30 40 50

Example 3: Write a C program to sort an array of integers using the
bubble sort method.

Solution 3: The program is as follows:

#include<stdio.h>
#include<conio.h>
void main()
{
 int a[10], i, j, n, temp;
 clrscr();
 printf(“\n\tEnter the size of your array:”);
 scanf(“%d”, &n);
 printf(“\n\tEnter your array elements:”);
 for(i =0; i<n; i++)
 scanf(“%d”, &a[i]);
 printf(“\n\tEchoing array elements….”);
 for(i =0; i<n; i++)
 printf(“%d”, a[i]);
 /*sorting now */
 for(i =0; i<n; i++)
 for(j= 1; j< n-1; j++)
 if(a[i] > a[j]) 3 cs. right
 {
 temp = a[i];
 a[i] = a[j];
 a[j] = temp;
 }
 printf(“\n\tThe sorted array is:”);
 for(i =0; i<n; i++)
 printf(“%d”, a[i]);
 getch();
}

OUTPUTS (after running):
Enter the size of your array: 10

Enter the array elements: 20 10 40 50 30 60 70 90 80 100

Echoing the array… 20 10 40 50 30 60 70 90 80 100

The sorted array is 10 20 30 40 50 60 70 80 90 100

180 • C Programming

Example 4: Give the output of the following C code:

#include<stdio.h>
main()
{
 int i, j, Num=1;
 for (i =1; i <=100; i++)
 {
 for (j=1; j<1=100; j++)
 Num +=1;
 printf(“%d\n”, Num);
 }
}
Solution 4: Let us see the contents of the Num, i, and j variables by giving

it a dry run:

Num i j

1 1 1

2 2

. 3

. ..

.. ..

.. 99

.. 100

101

OUTPUT:
101

201

301

401

501

601

arrays and Pointers • 181

701

801

901

1001

…

Example 5: Write a C program to evaluate a polynomial using an array.

Solution 5: The program is as follows:

#include<stdio.h>
void main()
{
 int a[40];
 int x, n, i, res;
 printf(“\nEnter the maximum power of x: \n\t”);
 scanf(“%d”, &n); /* maximum size of array is read */
	 printf(“\nEnter	the	coefficients	of	the	polynomial:\n”);
 for(i=0; i<=n; i++)
 {
	 	 printf(“\nEnter	the	coefficient	of	X^	%d	=	\t”,	i);
 scanf(“%d”, &a[i]);
 }
	 printf(“\nEnter	the	value	of	X=	\t”);
 scanf(“%d”, &x);
 /*calculating polynomials value */
 res = a[n];
 for(i = n-1; i >=0; i- -)
 res = res * x + a[i];
 printf(“\nValue of polynomial = %d\n”, res);
}

OUTPUTS (after running):
Enter the maximum power of x: 2

Enter the coefficients of the polynomial:

Enter coefficient of X ^ 0 = 1

Enter coefficient of X ^ 1 = 2

Enter coefficient of X ^ 2 = 3

182 • C Programming

Enter the value of X = 2

Value of polynomial = 17

Example 6: Write a C program to copy its input to its output, replac-
ing each string of one or more blanks by a single blank.

Solution 6: We will be using the getchar() and putchar() functions of C.

I. The getchar Function: getchar();
The getchar function reads a single character from standard input. It takes no
parameters and it returns the input character. In general, a reference to the
getchar function is written as:

variable = getchar();

For example,

char c;

c = getchar();

Please note here that the second line causes a single character to
be entered from the keyboard and then assigned to c. If an end-of-file
condition is encountered when reading a character with the getchar
function, the value of the symbolic constant EOF will automatically be
returned. Also note that this function can also be used to read multi-
character strings by reading one character at a time within a multipass
loop.

II. The putchar Function: putchar(variable | constant);
The standard C function that prints or displays a single character by sending it
to standard output is called putchar. This function takes one argument which
is the character to be displayed.

For example,

putchar(‘R’); will display the character ‘R’.

or

char var = ‘$’;

putchar(var); displays the character $.

Let us first write the algorithm for this program:

arrays and Pointers • 183

Step 1: Read a character.

Step 2: If entered character is non-blank, print it.

Step 3: else print the first blank character and skip all consecutive blanks.

Step 4: Repeat steps 1 to 3 till the entered character is a newline character.

The program is as follows:

#include<stdio.h>
#include<string.h>
void main()
{
 char c;
 printf(“\nEnter the text:”);
 c= getchar();
 printf(“The output text is: “);
 while (c!= ‘\n’)
 {
 if (c = = ‘ ‘ || c= = ‘\t’)
 {
 c = ‘ ‘;
 putchar(c);
 }
 while(c = = ‘ ‘ | | c = = ‘\t’)
 {
 c = getchar();
 }
 putchar(c);
 c = getchar();
 }
 printf(“\n”);
}

OUTPUTS (after running):
Enter the text: DR. RAJIV CHOPRA

The output text is: DR. RAJIV CHOPRA

Example 7: Write a C program to input N integer numbers in as-
cending order in a single-dimensional array and then perform a binary
search for a given key integer number and display proper messages.

Solution 7: Let us write the algorithms first:

184 • C Programming

Step 1: Read the array size n.

Step 2: Read the array elements.

Step 3: Read the key element to be searched.

Step 4: If the key element is equal to the middle element of the array,

 Print ‘search is successful’.

 Else if the element is greater than the middle element,

 Perform binary search in the second half of the array

 Else

 Perform binary search in the first half of the array.

Step 5: Stop.

And the program in C is as follows:

#include<stdio.h>
#include<process.h>
void main()
{
 int i, n, a[10], key, low, high, mid;
 printf(“\nEnter the number of elements:”);
 scanf(“%d”, &n);
 printf(“\nEnter %d elements in ascending order”, n);
 for(i=0;i < n; i++)
 scanf(“%d”, &a[i]);
 printf(“\nEnter the element to search (key): “);
 scanf(“%d”, &key);
 low = 0;
 high = n – 1;
 while(low <= high)
 {
 mid = (low + high) / 2;
 if (key = = a[mid])
 {
 printf(“\n\nSearch successful.”);
 exit(0);
 }
 else if(key > a[mid])
 low = mid + 1;
 else

arrays and Pointers • 185

 high = mid – 1;
 }
 printf(“\nUnsuccessful Search”);
 }

OUTPUTS (after running):
Enter the number of elements: 10

Enter 10 elements in ascending order:

1

2

3

4

5

6

7

8

9

10

Enter the key element to search: 5

Search successful.

Example 8: Write a C program to compare two strings without using
the strcmp() function.

Solution 8: The program is as follows:

#include<stdio.h>
#include<string.h>
void main()
{
 char a[100], b[100];
 int result;
	 printf(“\nEnter	the	first	string:”);
 gets(a);
 printf(“\nEnter the second string:”);
 gets(b);
 result = compare(a, b);

186 • C Programming

 if (result = = 0)
 printf(“\nEntered strings are equal.\n”);
 else
 printf(“\nEntered strings are not equal.\n”);
}
int compare(char a[] , char b[])
{
 int c = 0;
 while (a[c] = = b[c])
 {
 if (a[c] = = ‘\0’ || b[c] = = ‘\0’)
 break;
 c++;
 }
 if (a[c] = = ‘\0’ && b[c] = = ‘\0’)
 return 0;
 else
 return -1;
}

OUTPUTS (after running):
Enter the first string: DR. RAJIV

Entered the second string: DR. RAJIV

Entered strings are equal.

OUTOUTS 2 (after running):
Enter the first string: DR. RAJIV

Entered the second string: CHOPRA

Entered strings are not equal.

Example 9: Write a C program to count the frequency of occurrence
of a character in a given string.

Solution 9: The program is as follows:

#include<stdio.h>
#include<string.h>
void main()
{
char str[100], ch;
int i, count = 0, length;

arrays and Pointers • 187

printf(“\nEnter the string:”);
gets(str);
printf(“\nEnter the character to be searched:”);
scanf(“%c”, &ch);
length = strlen(str);
(i=0; i< length; i++)
{
if (str[i] = = ch)
count++;
}
printf(“\n The frequency of the occurrence of %c is
%d\n\n”, ch, count);
}

OUTPUTS (after running):
Enter the string: DR. RAJIV

Enter the character to be searched: A

The frequency of occurrence of A is 1

OUTPUTS 2 (after running):
Enter the string: C Programming

Enter the character to be searched: m

The frequency of occurrence of m is 2

Example 10: Write a C program to find the norm of a matrix where
norm of a matrix is defined as the square of the sum of squares of the
elements of the matrix.

Solution 10: The program is as follows:

#include<stdio.h>
#include<math.h>
void main()
{
 int i, j, m, n;
	 float	norm,	a[10][10];
	 float	nrm();
 print(“Enter row and column of A matrix: \n”);
 scanf(“%d %d”, &n, &m);
 printf(“%d %d\n”,n ,m);
 printf(“Input A-matrix\n”);

188 • C Programming

 for(i=0; i<n; ++i)
 for(j=0; j<m; ++j)
 scanf(“%f”, &a[i][j]);
 /*print A-matrix in matrix form */
 for(i=0; i<n; ++i)
 {
 for(j=0; j<m; ++j)
 scanf(“%6.2f”, a[i][j]);
 printf(“\n”);
 }
 norm = nrm(a, n, m);
 printf(“Norm=%6.2f\n”, norm);
 }
/* norm of a matrix = square root of the sum of the
squares of the elements of the matrix */
float	nrm(a,	n,	m)
int m, n;
float	a[10][10];
{
 int i, j;
	 float	sum	=	0.0;
 for(i=0;i<n; ++i)
 for(j=0; j<m; ++j)
 sum = sum + a[i][j] * a[i][j];
 printf(“Sum=%6.2f\n”, sum);
 return (sqrt((double) sum));
}

OUTPUTS (after running):
Enter row and column of A-matrix: 3 3

Input A-matrix:

 1.00 2.00 3.00

 4.00 5.00 6.00

 7.00 8.00 9.00

Sum = 285.00

Norm = 16.88

Example 11: Write a C program to delete duplicate elements in a vector.

Solution 11: The program is as follows:

arrays and Pointers • 189

#include<stdio.h>
main()
{
	 int	i,	j,	k,	n,	num,	flag=0;
	 float	a[80];
 printf(“Enter the size of vector: “);
 scanf(“%d”, &n);
 printf(“%d”, n);
 num = n;
 printf(“\nEnter the vector elements:\n”);
 for (i=0; i<n;i++)
 scanf(“%f”, &a[i]);
 for(i=0; i<n;i++)
 printf(“%f”, a[i]);
 printf(“\n);
 /* removing duplicates */
 for (i=0; i<n-1; i++)
 for (j=i+1; j<n; j++)
 {
 if (a[i] = = a[j])
 {
 n= n – 1;
 for (k =j; k<n; k++)
 a[k] = a[k+1];
	 	 	 	 flag	=	1;
 j = j-1;
 }
 }
	 	if	(flag	=	=	0)
 printf (“\n No duplicates found in the vector”);
 else
 {
 printf (“\nVector has %d duplicates \n\n”, num –
n);
 printf (“Vector after deleting duplicates”);
 for (i=0; i<n; i++)
 printf (“%f”, a[i]);
 printf (“\n”);
 }
 }

190 • C Programming

OUTPUT (after running):
Enter the size of vector: 6

Enter the vector elements: 1.00 2.00 1.00 3.00 2.00 4.00

Vector has two duplicates

Vector after deleting duplicates

1.00 2.00 3.00 4.00

Example 12: Write a C program to insert an element into the vector ar-
ray.

Solution 12: The program is as follows:

#include<stdio.h>
main()
{
 int i, j, k, n, pos;
	 float	a[80],	item;
 printf(“\nEnter the size of vector: “);
 scanf(“%d”, &n);
 printf(“%d”, n);
 printf(“\n Enter the vector elements:\n”);
 for (i=0; i<n;i++)
 scanf(“%f”, &a[i]);
 for(i=0; i<n;i++)
 printf(“%f”, a[i]);
 printf(“\n);
 /* inserting element */
 printf(“\n Enter the element to be inserted:”);
 scanf(“%d”, &item);
 printf(“%d”, item);
 printf(“\n Enter the position of insertion:”);
 scanf(“%d”, &pos);
 printf(“%d”, item);
 /* pushing down the elements */
 n++;
 for (k = n; k>=pos; k- -) {
 a[k] = a[k – 1];
 }
 a [- - pos] = item; /* item inserted */
 printf(“\n”);
 printf (“\n Vector after insertion: “);

arrays and Pointers • 191

 for (i = 0; i < n; i++)
 printf (“%f”, a[i]);
 printf (“\n”);
 }

OUTPUT (after running):
Enter the size of vector: 6

Enter the vector elements: 1.00 2.00 1.00 3.00 2.00 4.00 5.00 6.00

Enter the element to be inserted: 10.00

Enter the position to insert: 1

Vector after insertion:

10.00 1.00 2.00 1.00 3.00 2.00 4.00 5.00 6.00

Attempt to write a program now to select an element from the vector.

Example 13: Write a C program to find the row sum and column sum of
a matrix.

Solution 13: The program is as follows:

#include<stdio.h>
main()
{
 int a[10][10], i, j, m, n;
 printf(“\n Enter the number of rows and column:”);
 scanf(“%d%d”, &n, &m);
 printf(“Enter matrix elements:”);
 for (i=1; i< n + 1; ++)
 for(j=1; j < m+1; ++j)
 scanf(“%d”, &a[i][j]);
	 /*	find	row	sum	*/
 for (i =1; i < n+1; ++i)
 {
 a[i][m+1] = 0;
 for (j=1; j < m+1; ++j)
 {
 a[i][m+1] = a[i][m+1] + a[i][j];
 }
 }
	 *	find	col	sum	*/

NOTE

192 • C Programming

 for (j =1; j < m+1; ++j)
 {
 a[n+1][j] = 0;
 for (i=1; j < n+1; ++i)
 {
 a[n+1][j] = a[n+1][j] + a[i][j];
 }
 }
 /* print matrix’s column sum and row sum */
 printf(“col-sum (last row) and row-sum (last col-
umn):”);
 for (i=1; i < n+1; ++i)
 {
 for (j=1; j< m+2; ++j)
 printf(“%d”, a[i][j]);
 printf(“\n”);
 }
 /* last row (col-sum) is printed to suppress element,
a[n+1]
[m+1] */
 i = n + 1;
 for (j=1; j < m+1; ++j)
 printf(“%d”, a[i][j]);
 printf(“\n”);
 }

OUTPUT (after running):
Enter the size of vector: 3 3

Enter the matrix elements:

Matrix elements col-sum and row sum

Example 14: Write a C program to sum the elements above and below
the main diagonal of a matrix.

Solution 14: The program is as follows:

#include<stdio.h>

arrays and Pointers • 193

main()
{
 int a[50][50], i, j, n, csum, dsum;
 printf(“Enter the size of your array:”);
 scanf(“%d”, &n);
 printf(“%d”, n);
 printf(“Enter matrix elements:”);
 for (i=1; i< n + 1; ++)
 for(j=1; j < n+1; ++j)
 scanf(“%d”, &a[i][j]);
 printf(“Echoing given matrix:”);
 for (i=1; i< n + 1; ++)
 {
 for(j=1; j < n+1; ++j)
 {
 printf(“%d”, a[i][j]);
 }
 printf(“\n”);
}
/* add elements above the main diagonal of a matrix */
 csum = 0;
 for (i=1; i< n+1; ++i)
{
for (j=1; j< n+1; ++j)
{
 if (i < j)
 csum = csum + a[i][j];
 }
}
printf (“Sum of elements above the main diagonal: %d\n”,
csum);
/* add elements below the main diagonal of a matrix */
dsum = 0;
for (i=1; i< n+1; ++i)
{
 for (j=1; j< n+1; ++j)
 {
 if (i > j)
 dsum = dsum + a[i][j];
 }
}
printf (“Sum of elements below the main diagonal: %d\n”,

194 • C Programming

dsum);
}

OUTPUT (after running):
Enter the size of your array: 3

Enter the matrix elements:

1 2 3

4 5 6

7 8 9

Sum of elements above the main diagonal: 11

Sum of elements below the main diagonal: 19

Example 15: Illustrate the process (using dry runs) of searching for
an element 6 in a given array A, with elements as 1, 2, 3, 4, 5, 6, 7, 8, 9,
10, using a binary search.

Solution 15: The following is the dry run:

Step 1: Given:

LB

A 1 2 3 4 5 6 7 8 9 10
 0 1 2 3 4 5 6 7 8 9

UB

Thus, mid = LB + UB / 2 = 0 +9 /2 = 4

Therefore, A[mid] is not equal to item as 5!=6

Step 2: As A[mid] < item, so

 LB = mid + 1 = 4 + 1 = 5

Thus, the array part to search now is from A[5]:

LB

A 6 7 8 9 10

 5 6 7 8 9

UB

arrays and Pointers • 195

Thus, now mid = LB + UB /2 = 5 + 9 /2 = 7

Again, A[mid] = A[7] = 8

And item = 6

So, 8!=6

Thus, we go to step 3 now.

Step 3: As A[mid] > item (i.e., 8 > 6),

Thus, UB = mid – 1 = 7 – 1 = 6

Now, mid = LB + UB /2 = 5 + 6/2 = 5

 Therefore, UB= 6 and LB= 5

LB

A 6 7

 5 6 7 8 9

UB

 A[mid] = item

 A[6] = 6

i.e., 6 = 6

The item is found.

Example 16: Write a C program to do the following operations:

(a) Find the length of a string without using the inbuilt string length
function of C.

(b) Copy one string to another without using the inbuilt string copy function
of C.

(c) Concatenate two strings without using the string concat function of C.

(d) Check whether two strings are the same without using the string
comparison function of C.

(e) Reverse a string without using the string reversal function of C.

196 • C Programming

Solution 16: Let us write the programs one by one.

(a) The length of a string without using strlen() can be found as follows:
#include<stdio.h>
#include<conio.h>
#include<string.h>
void main()
{
 char s1[20];
 int i=0, length = 0;
 clrscr();
 printf (“Enter your string:”);
 scanf (“%s”, s1);
 while (s1[i] != ‘\0’)
 {
 length ++;
 i++;
 }
 printf(“The length of the string is %d”, length);
 getch();
}

(b) Copying a string without using strcpy() can be done as follows:
#include<stdio.h>
#include<conio.h>
#include<string.h>
void main()
{
 char s1[20], s2[20];
 int i=0;
 clrscr();
 printf (“Enter your string:”);
 scanf (“%s”, s1);
 while (s1[i] != ‘\0’)
 {
 s2[i] = s1[i];
 i++;
 }
 s2[i] = ‘\0’;
 printf(“The copy of the string is %s”, s2);
 getch();
}

arrays and Pointers • 197

(c) Concatenating two strings without using strcat() can be done as
follows:

#include<stdio.h>
#include<conio.h>
#include<string.h>
void main()
{
 char s1[20], s2[20], s3[40];
 int i=0, j = 0, k=0;
 clrscr();
 printf (“Enter two strings:”);
 scanf (“%s %s”, s1,s2);
 while (s1[i] != ‘\0’)
 {
 s3[k] = s1[i];
 k++;
 i++;
 }
 while (s2[j] != ‘\0’)
 {
 s3[k] = s2[j];
 k++;
 j++;
 }
 s3[k] = ‘\0’;
 printf(“Concatenation of two strings is %s”, s3);
 getch();
}

(d) Comparing two strings without using strcmp() can be done as
follows:

#include<stdio.h>
#include<conio.h>
#include<string.h>
void main()
{
 char s1[20], s2[20];
 int i=0;
 clrscr();
 printf (“Enter two strings:”);
 scanf (“%s %s”, s1, s2);
 while (s1[i] != ‘\0’ && s2[i] != ‘\0’)

198 • C Programming

 {
 if (s1[i] = = s2[i])
 {
	 	 	 flag	=	0;
 i++;
 }
 else
 {
	 	 	 flag	=	1;
 break;
 }
}
	 	if	(flag	=	=	0)
 {
 printf (“ Strings are same.”);
 }
 else
 {
 printf (“Strings are not same”);
 }
getch();
}

(e) Reversing a string without using strrev() can be done as follows:
#include<stdio.h>
#include<conio.h>
#include<string.h>
void main()
{
 char s1[20], s2[20];
 int i=0, j;
 clrscr();
 printf (“Enter your string:”);
 scanf (“%s”, s1);
 j = strlen(s1) – 1;
 while (j >= 0)
 {
 s2[i] = s1[j])
 i++;
 j- -;
 }
 s2[i] = ‘\0’;

arrays and Pointers • 199

 printf (“ The reverse string is: %s”, s2);
getch();
}

Example 17: Write a C program to traverse a matrix helically.

Solution 17: The program is as follows:

#include<stdio.h>
main()
{
 int a[20][20], n, i, j;
 printf(“\n\t Enter the order of a matrix”);
 scanf(“%d”, &n);
 printf(“%d”, n);
printf(“\n\t Enter you array elements:”);
for(i=1; i < n+1; ++i)
{
 for(j=1; j< n+1; ++j)
 scanf(“%d”, &a[i][j]);
}
/*traversing helically */
printf(“The required traversal is: “);
i = 1;
while (n > 0)
{
 for(j = i; j < n+1; j++)
printf(“%d”, a[i][j]);
 for(j = i +1; j < n+1; ++j)
 printf(“%d”, a[j][n]);
 for(j = n-1; j> i – 1; j- -)
 printf(“%d”, a[n][j]);
 for(j = n-1; j>I ; j - -)
 printf(“%d”, a[j][i]);
i = i +1;
n = n – 1;
}
printf(“\n”);
}

OUTPUT (after running):
Enter the size of your array: 3

Enter the matrix elements:

200 • C Programming

1 2 3

4 5 6

7 8 9

The required traversal is: 1 2 3 6 9 8 7 4 5

Practice Programs
Q1. Write a C program to sort a matrix row-wise.

Q2. Write a C program to sort a given matrix column-wise.

Q3. Write a C program to check whether a given matrix is a magic square. A
magic square is one in which

Column sum = row sum = diagonal sum

 and all elements in the matrix are distinct.

 For example, the matrix given below is a magic square matrix:

 4 3 8

 9 5 1

 2 7 6

On the other hand, the following matrix is not a magic square matrix:

 3 3

 3 3.

 Q4. Write a C program to modify a matrix.

Example 18: Write a C program to print the upper and lower triangle
of a matrix.

Solution 18: The program is as follows:

#include<stdio.h>
main()
{
 int a[10][10], i, j, m, n;
 printf (“\n\t Please enter the number of rows and col-
umns of a matrix:”);
 scanf (“%d %d”, &n, &m);
 printf (“%d%d”, n, m);
 printf(“\n\t Enter the matrix elements:”);

arrays and Pointers • 201

 for (i=0; i<n; i++)
 for (j=0; j<m; j++)
 scanf(“%d”, &a[i][j]);
 /* Echoing array…. */
 for (i=0; i<n; i++)
 {
 for (j=0; j<m; j++)
 printf(“%d”, a[i][j]);
 printf(“\n”);
 }
 printf(“\n\t Lower triangular matrix:”);
 for (i =0; i<n ;i++) {
 for (j=0; j<m; j++) {
 if (i< j) printf(“ “);
 if (i >=j) printf(“%d”, a[i][j]);
 }
 printf(“\n”);
 }
 printf(“\n\t Upper triangular matrix:”);
 for (i =0; i<n ;i++) {
 for (j=0; j<m; j++) {
 if (i> j) printf(“ “);
 if (i <=j) printf(“%d”, a[i][j]);
 }
 printf(“\n”);
}
}

OUTPUT (after running):
Please enter the number of rows and columns of a matrix: 3 3

Enter the matrix elements:

1 2 3

4 5 6

7 8 9

Lower triangular matrix:

1

4 5

7 8 9

202 • C Programming

Upper triangular matrix:

1 2 3

5 6

9

Example 19: Write a C program to find the saddle point in a matrix.

Solution 19: The program is as follows:

#include<stdio.h>
main()
{
	 int	a[5][5],	i,	j,	m,	n,	min,	max,	flag=1,	p,	q;
 printf (“\n\t Please enter the number of rows and col-
umns of a matrix:”);
 scanf (“%d %d”, &m, &n);
 printf (“%d %d”, m, n);
 printf(“\n\t Enter the matrix elements:”);
 for (i=0; i<m; i++)
 for (j=0; j<n; j++)
 scanf(“%d”, &a[i][j]);
 /* Echoing array…. */
 for (i=0; i<m; i++)
 {
 for (j=0; j<n; j++)
 printf(“%d”, a[i][j]);
 printf(“\n”);
 }
	 /*find	the	minimum	element	in	a	row	*/
 for (i =0; i <m; i++) {
 min = a[i] [0];
 p = i;
 q= 0;
 /*to check whether ‘min’ is the maximum in column */
 for (j=0; j<n; j++) {
 if (min > a[i][j]) {
 min = a[i][j];
 p = i;
 q = j;
 }
 }
 for (j=0; j <m; j++)

arrays and Pointers • 203

 {
 if (a[j][q] > a[p][q])
	 	 	 flag	=	0;
 }
	 if	(flag)
 {
 printf(“Saddle point a[%d][%d] = %d\n”, p+1, q+1,
a[p][q]);
 else
 printf(“No saddle point in row %d\n”, i+1);
	 	flag	=	1;
 }
}

OUTPUT (after running):
Please enter the number of rows and columns of a matrix: 3 3

Enter the matrix elements:

7 5 5

10 5 8

6 3 3

Saddle point a[1][2] = 5

Saddle point a[2][2] = 5

No saddle point in row 3

Example 20: Write a C program to check whether a given matrix is or-
thogonal.

Solution 20: The program is as follows:

#include<stdio.h>
main()
{
 int a[5][5], b[5][5], c[5][5];
	 int	i,	j,	m,	k,	flag=0;
 printf (“\n\t Enter the order of matrix:”);
 scanf (“%d”, &m);
 printf (“%d * %d”, m, m);
 printf(“\n\t Enter the matrix elements:”);
 for (i=0; i<m; i++)
 for (j=0; j<m; j++)

204 • C Programming

 scanf(“%d”, &a[i][j]);
 /* Echoing array…. */
 for (i=0; i<m; i++)
 {
 for (j=0; j<m; j++)
 printf(“%f”, a[i][j]);
 printf(“\n”);
 }
 /*transpose the given matrix */
 for (i=0; i<m; i++)
 for (j=0; j<m; j++)
 b[i][j] = a[j][i];
 printf(“Transpose is:”);
 for (i=0; i<m; i++) {
 for (j=0; j<m; j++)
 printf(“%f”, b[i][j]);
 printf(“\n”);
 }
/* if matrix A * transpose of A = identity matrix */
for (i=0; i<m; i++) {
for (j=0; j<m; j++) {
 c[i][j] = 0;
 for(k=0; k<=m; k++) {
 c[i][j] + = a[i][k] * b[k][j];
 }
}
}
for (i=0; i<m; i++)
{
for (j=0; j<m; j++)
{
 if ((int) c[i][i] = = 1 && (int) c[i][j] = = 0)
	 	 flag	=	1;
}
printf(“Matrix A * transpose of A”);
for (i=0; i<m; i++) {
for (j=0; j<m; j++)
 printf(“%f”, c[i][j]);
 printf(“\n”);
}
if	(flag	=	=	1)
 printf (“Matrix A * Transpose of A = Identity Ma-

arrays and Pointers • 205

trix”);
 printf (“The given matrix is orthogonal\n”);
else
 printf (“Matrix A * Transpose of A < > Identity Ma-
trix”);
 printf (“The matrix is not orthogonal”);
}

OUTPUT (after running):
Enter the order of the matrix: 3* 3

Enter the matrix elements:

0.0 0.0

1.0 0.0

0.0 1.0

Transpose is

0.0 0.0

1.0 0.0

0.0 1.0

Matrix A * Transpose of A = Identity Matrix

The given matrix is orthogonal

Practice Programs:
Q1. Write a C program to find whether a given matrix is singular. It is said that

if the determinant is 0, the matrix is singular.

Q2. Write a C program to find whether a given matrix is symmetric.

[Hint:

#include<stdio.h>
main()
{
 int a[5][5], b[5][5], c[5][5];
	 int	i,	j,	m,	k,	flag=0;
 printf (“\n\t Enter the order of matrix:”);
 scanf (“%d”, &m);
 printf (“%d * %d”, m, m);
 printf(“\n\t Enter the matrix elements:”);

206 • C Programming

 for (i=0; i<m; i++)
 for (j=0; j<m; j++)
 scanf(“%d”, &a[i][j]);
 /* Echoing array…. */
 for (i=0; i<m; i++)
 {
 for (j=0; j<m; j++)
 printf(“%f”, a[i][j]);
 printf(“\n”);
 }
 /*transpose the given matrix */
 for (i=0; i<m; i++)
 for (j=0; j<m; j++)
 b[i][j] = a[j][i];
 printf(“Transpose is:”);
 for (i=0; i<m; i++) {
 for (j=0; j<m; j++)
 printf(“%f”, b[i][j]);
 printf(“\n”);
 }
/*to check for symmetry of a matrix */
 for (i=0; i<n; i++)
{
 for (j=0; j<n; j++)
 if (a[i][j] != b[i][j])
	 	 	 flag	=	1;
 }
	 if	(flag)
 printf(“Matrix is not symmetric”);
 else
 printf(“Matrix is symmetric”);
 }].

Q3. Write a C program to find the rank of a matrix. Check that the principal
diagonal element is not zero, and then make all elements above and below
the current principal diagonal element zero. Else if principal diagonal ele-
ment is zero, find the nonzero element in the same column. If no nonzero
element exists, check that all elements in this column are zero. Exchange
it with the last column and reduce the number of columns.

arrays and Pointers • 207

Q4. Write a C program to find the inverse of a matrix.

Examples

We are in a position to write some programs on strings now.

Example 21: Write a C program to write a given figure in words. Use the
switch statement.

Solution 21: The program is as follows:

#include<stdio.h>
main()
{
 int digit[10], num, temp, i, j, k;
 printf(“\n\t Enter your number:”);
 printf(“%d\n”, num);
 temp = num;
 i = 0;
 while (num != 0)
 {
 digit[i++] = num – num/10 * 10;
 num = num/10;
 }
 j = - - i;
 printf (“\nThe number in words is:”);
 for (k=j; k>=0; k - -)
 {
 switch (digit[k])
 {
 case 1:
 printf(“one”);
 break;
 case 2:
 printf(“two”);
 break;
 case 3:
 printf(“three”);
 break;
 case 4:
 printf(“four”);
 break;
 case 5:
	 	 	 	 printf(“five”);

208 • C Programming

 break;
 case 6:
 printf(“six”);
 break;
 case 7:
 printf(“seven”);
 break;
 case 8:
 printf(“eight”);
 break;
 case 9:
 printf(“nine”);
 break;
 case 10:
 printf(“ten”);
 break;
 default:
 break;
 }
 }
 printf(“\n”);
 }
OUTPUT (after running):
Enter your number: 567321
The	number	in	words	is:	five	six	seven	three	two	one
Example 22: Write a C program to count the number of vow-
els, consonants, words, white spaces, and other charac-
ters in a line of text.
Solution 22: The program is as follows:
#include<stdio.h>
main()
{
 char line[80], c;
 int i, vow, cons, dig, word, whites, other;
 i =vow = cons = dig = word = whites = other = 0;
 printf (“\n\t Enter a line of text”);
	 scanf(“%[^\n]”,	line);
 printf(“%s”, line);
 while ((c = tolower(line[i++])) != ‘\0’)
 {
 if (c = = ‘a’ || c = = ‘e’ || c = = ‘i’ || c = = ‘o’
|| c = =’u’)
 ++vow;
 else if (c >= ‘a’ && c<= ‘z’)

arrays and Pointers • 209

 ++cons;
 else if (c >= ‘0’ && c <=’9’)
 ++dig;
 else if (c = = ‘ ‘) {
 ++word;
 ++ whites;
 while ((line[i] = = ‘ ‘ || line[i] = = ‘\t’))
 {
 i++;
 whites++;
 }
 }
 else
 ++other;
 }
 ++word;
 printf(“\n\n---------------------“);
 printf(“\n\nTotal number of: “);
 printf(“\n\n---------------------“);
 printf(“Vowels = %d\n”, vow);
 printf(“Consonants = %d\n”, cons);
 printf(“Digits = %d\n”, dig);
 printf(“Other characters = %d\n”, other);
 printf(“Words = %d\n”, word);
 printf(“White spaces = %d\n”, whites);
 }

OUTPUT (after running):
Enter a line of text: Dr. Rajiv Chopra has written 23 books!

Total number of:

Vowels = 9

Consonants = 21

Digits = 2

Other characters = 1

Words = 7

White spaces = 6

210 • C Programming

Observed that in the scanf statement in this program we have used the ^
character also. Its meaning can be clarified with an example. If we write:

 %[A – Z]

in scanf, it will catch all uppercase inputs. On the other hand, if we
write:

 %[^a – c]

in scanf, it will catch all ASCII except ‘a’, ‘b’, and ‘c’.

Example 23: Write a C program to search for a substring within a string
and to display its position.

Solution 23: The program is as follows:

#include<stdio.h>
main()
{
char mainstr[50], patstr[50];
int	i,	j,	k,	len1,	len2,	diff,	flag;
/*strings taken till newline character */
printf(“Enter the main string\n”);
scanf(“%[^\n]”,	mainstr);
printf(“%s”, mainstr);
for(len1=0; mainstr[len1] != ‘\0’; len1++)
printf(“\n Length of main string is %d\n”, len1);
printf(“\n Enter pattern string \n”);
scanf(“%s”,patstr);
printf(“%s”, patstr);
for(len2=0; mainstr[len2] != ‘\0’; len2++)
printf(“\n Length of pattern string is %d\n”, len2);
/*index */
flag	=	0;	/*set	flag	*/
j=0;
for (i=0; i<len1, j <len2; i++)
if (mainstr[i] != patstr[j])
	 flag	=	1;
else {
	 	 flag	=	0;	/*	reset	flag	*/
 j ++;
 }

NOTE

arrays and Pointers • 211

if	(flag	=	=	0)
 printf(“\n Pattern found at position %d\n”, i-len2+1);
else
 printf(“\n Pattern not found”);
}

OUTPUT (after running):
Enter the main string:

Dr. Rajiv Chopra has a Ph.D.

Length of main string is 25

Enter pattern string

Chop

Length of pattern string is 4

Pattern found at position 24

Practice Programs:
Q1. Write a C program to insert a substring into a string.

Q2. Write a C program to replace a portion of a string.

Example 24: Write a C program to sort a string of names.

Solution 24: The program is as follows:

#include<stdio.h>
main()
{
 char names[20][10], temp[10], c;
 int i, j, k, n;
 n=0;
 printf(“\n Enter names one [er line \n”);
 printf(“Terminate with string END\n”);
 scanf(“%s”, names[n]);
 while (strcmp(names[n], “END”) > 0) {
 n++;
 scanf(“%s”, names[n]);
 }
 printf(“\n”);
 for (i=0; i<n; i++)
 printf(“%10s”, names[i]);
 printf(“\n”);

212 • C Programming

 printf(“\n”);
 printf(“Total names = %d\n”, n);
 /*selection sorting is used */
 for (i=0; i<n – 1; i++)
 for (j = i +1; j<n; j++) {
 if (strcmp(names[i], names[j]) > 0) {
 strcpy(temp, names[i]);
 strcpy(names[i], names[j]);
 strcpy(names[j], temp);
 }
 }
 printf(“\n Sorted Names: \n”);
 for(i=0; i<n; i++)
 printf(“%10s”, names[i]);
 printf(“\n”);
 getch();
 }

OUTPUT (after running):
Enter names one per line

Terminate with string END

 Krish Rajiv Ajay Mayur Diksha

Total names = 5

Sorted Names:

 Ajay Diksha Krish Mayur Rajiv

3.2 THE CONCEPT OF SUBPROGRAMMING

When a problem to be solved is very complex, we first need to divide that com-
plex problem into smaller, simpler problems. Then we try to find the subsolu-
tions to these subproblems. Finally, we integrate (combine) all these subso-
lutions to get a complete solution. This approach is called the modular
approach and such programming is called modular programming. An
advantage here is that parallel coding can be done for these modules. A library
of modules may be created and these may be reused when needed by another
program and called by the user. They behave like inbuilt modules. Debugging
and maintenance of modules is simpler than ever, as module sizes are usu-

arrays and Pointers • 213

ally small. Bigger programs, called monolithic programs, should therefore be
avoided.

Characteristics of a Module

1. A module contains a series of program instructions in some program-
ming language.

2. A module is terminated by some special markers required by the syntax
of the language.

3. A module as a whole has a unique name.

4. A module has only one entry point to which control is transferred from
the outside and only one exit point from which control is returned to the
calling module.

5. Structured programming involves modularization of a program structure.

Top-down analysis is a method of problem solving and problem
analysis. It involves two main tasks:

(a) Subdivision of a problem

(b) Hierarchy of tasks

The top-down method carries out a process of division and subdivision,
creating a hierarchy of tasks until these tasks can no longer be decomposed (i.e.,
they become atomic).

3.3 FUNCTIONS

As noted, a module is developed to make a program more approachable. In lan-
guages like PASCAL, we call these modules procedures, FORTRAN calls them
subfunctions and subprocedures, but C calls them functions. A subprogram
or function is a name given to a set of instructions that can be called
by another program or a subprogram. This simplifies the programming
process as functions can be called again and again as desired. Understand that
a function is a complete program in itself, similar to the C main() func-
tion, except that the name main() is replaced by the name of the func-
tion that is given by the programmer.

214 • C Programming

Syntax

 <type> name (arguments)
 {
 ……..
 ……..
 <statements>
 ……
 }
‘type’ is the value returned by the function. If no value is returned back

from the function, then the keyword void is used.

‘name’ is the user-defined name of the function. A function can be called
from anywhere with this name only.

‘arguments’ is a list of parameters. If there are no parameters, then just
two parentheses () are placed.

The program segment enclosed within the opening and closing
brace is called a function body.

For example, in C every program starts with a main(). The program of
every program within C also starts with main() only. All functions that
you define must be called from main(), or else they will not work.

Example

 name()
 {
 printf(“\n My name is Dr. Rajiv Chopra”);
 }
 void main()
 {
 clrscr();
 printf(“\nGood Morning”);
 name(); /* function call */
 getch();
 }
Here, too, program execution starts from main(). It displays the message

“Good Morning” and then calls the function name(). Control goes to the func-
tion name(). It displays “My name is Dr. Rajiv Chopra”. And then control goes
back to the main program.

arrays and Pointers • 215

Working of Functions and main()

void main() f1()
 { {
 ………. ………
 f1 (); function called by main ………
 …….. return;
 } }

That is, when the program control reaches the function call f1() then it
transfers control to the function f1() (on the right-hand side), where on en-
countering a return statement, control returns back to the main() function.

Why We Need Functions

1. It is easier to write and debug functions than with a large monolithic
program.

2. There is no repetition of code, as we can call functions wherever we want.

3. Functions are portable and can be run on any system.

4. A lot of time and memory resources are saved.

5. Modularization is achieved easily.

6. Program length becomes smaller.

Types of Functions
Functions can be of two types:

(a) Library or inbuilt functions.

(b) User-defined functions.

Library functions are the inbuilt functions that are predefined
in the compiler of a language and stored in a special library file.
For example, we include the math.h header file for mathematical functions.

On the other hand, user-defined functions are those defined and created
by the programmer. Each is a self-contained block of statements that carries out
some well-defined task as specified by the user.

216 • C Programming

Please remember the following points regarding functions:

1. A C program is a collection of one or more functions.

2. A function gets called when the function name is followed by parentheses
and a semicolon.

3. Note that in the statement ‘int name’ ‘name’ is an integer variable,
name[10] is an array, whereas name() is a function, in spite of the
similarity in names.

4. Any function can be called from any other function.

5. A function once written can be called any number of times. Even main()
is a function that can be called again and again. This is called recursion.

6. The order of function called and function defined may be different. It
makes no difference.

7. There are two types of functions—library functions like sqrt(), printf(),
scanf(), sin(), and cos(), etc., whereas the name() function defined
above is a user-defined function.

The syntax of the function definition has already been shown. Let us now take
an example,

Defining a Function

1. int gcd(int u, int v)

2. {

3. int temp;

4. temp = u % v;

5. u = v;

6. v = temp;

7. return (v);

8. }

In this function, observe that:

1. Line 1 is a function header and by rule a function header is al-
ways formal and the arguments within it are known as formal ar-
guments or dummy arguments.

arrays and Pointers • 217

2. The arguments that are passed from main() are known as actual
arguments. The actual arguments may be constants, variables, or
more complex expressions.

3. Each actual argument must be of the same type as its
corresponding formal argument.

4. It is the value of each actual argument that is transferred into the
function and assigned to the corresponding formal argument.

5. If the return type of the function is not specified, then by default it is
assumed to be of type int.

6. Formal arguments cannot be constants or expressions.

7. Rules for naming a function are the same as for variable names.

8. The return type in the main or in the function must be of the same type.

9. The function is known as a called function while the main() function
that calls it is known as a calling function.

Just as variables are declared, similarly functions needs to be declared
as follows:

<type> <name> (arguments);

This is essentially a function prototype. If you are working in C on a
UNIX platform, it may not be necessary to write the prototype first, but if you
are running your program with a C++ compiler, it is necessary. Every C pro-
gram can be run on a C++ compiler, too, as C is subset of C++.

For example,

fact(int n);

Here, ‘n’ is an actual argument and there is no return value in this function
call. It ends with a semicolon. On the other hand, consider

result = fact(int n);

This function call will return some value in the ‘result’ variable.

We can even write the following:

fact();

This means that the function has nothing to return now and has no
arguments.

218 • C Programming

The return Statement (in Functions)
The return statement is used to return program control back to the
main program.

Syntax

return (exp);

where ‘exp’ can be a constant, variable, or an expression. Even the paren-
theses around exp are optional.

A return statement has two tasks:

1. It transfers control back to the calling program.

2. It returns a value after return to the calling program.

Please note that the return statement may not always be at the end
of the called function. There is no restriction on the number of return state-
ments that are present in a function. Also note that a function can return
only one value.

User-Called Functions
There are five types of functions that can be created by the user and then

called.

I. Functions with No Arguments and No Return Value
A function without arguments or return value is the simplest way of writing a
user-defined function in C. There is no data communication between a calling
portion of a program and a called function block. The function is invoked by a
calling environment by not feeding any formal arguments and the function does
not return back anything to the caller.

For example,

 main()
 {
 int x, y;
 ……….
 ……….
 message(); //function is invoked
 }
 message()
 {

arrays and Pointers • 219

 //body of the function
 }
These functions receive no argument and return no value. Such functions

may take data from either external or internal sources.

It is also possible to eliminate the function declaration, but only if
the function is defined before its first call. For example,

message()	 	 	 //function	definition
{
 printf(”\nI am in function now”);
}
main()
{
 printf(”\n Now I am in function main”);
 message(); //function is invoked
 printf(”\n Back in main…”);
}

Output:

Now I am in function main()

I am in function now

Back in main …

Understand that this approach is simpler for short programs, be-
cause in larger programs it is difficult to arrange all the functions so
that each appears before it is called by the other.

II. Functions with Arguments and No Return Value
Those functions that receive arguments from the calling function but do not
return any value to the calling programs fall into the next category of functions.

For example,

 main()
 {
 ………….
 void power (int , int); //function declaration
 …………
 …………
 }
 void power (int x, int y)
 {

220 • C Programming

 //body of the function
 //no values will be transferred back to the

caller
 }
Here we are calling one power () function from the main function. In the

power function, we are passing two parameters or two variables as x and y.
These values are collected into the local copies of the called function. This pro-
cess is known as call by value. Note that if you make any changes in the
local copies of the function, that change is not reflected in the values of
the arguments of the calling function. Also note that void indicates that
we are not returning any values.

 III. Functions with No Arguments but with a Return Value
The third category of functions receives no arguments from some calling func-
tion but does return some value.

For example,

 #include<iostream.h>
 void main()
 {
 int add (void);
 int sub (void);
 int mul (void);
 int x;
 x = add();
 printf(”The addition of two numbers:”);
 x = sub();
	 	 printf(”The	difference	of	two	numbers:”);
 x = mul();
 printf(”The product of two numbers:”);
 }
 int add()
 {
 int a, b, c;
 printf(“\n Enter two numbers for addition:”);
 scanf(“%d %d”, &a, &b);
 c = a + b;
 return (c) ;
 }
 int sub()
 {

arrays and Pointers • 221

 int a, b, c;
	 	 printf(“\nEnter	two	numbers	for	difference:”);
 scanf(“%d %d”, &a, &b);
 c = a - b;
 return (c) ;
 }
 int mul()
 {
 int a, b, c;
 printf(“\nEnter two numbers for multiplication:”);
 scanf(%d %d”, &a, &b);
 c = a * b;
 return (c) ;
 }

OUTPUT (after running):
Enter two numbers for addition: 20 40

The addition of two numbers: 60

Enter two numbers for difference: 80 40

The difference of two numbers: 40

Enter two numbers for multiplication: 50 90

The product of two numbers: 4500

Explanation: In this program, we have called three functions—add(),
sub(), and mul()—from the main() function. Note that since we are not
passing any values to these three functions and just receiving value, in
their prototypes declaration it is therefore necessary to include void in
parenthesis and int as their return types. If a function prototype specifies
its return type as void then it is terminated by the closing brace of its defini-
tion. If you want to return some value from a function, you must use the return
statement with a value within its body. The return statement returns only one
value at a time. A void returning function can use the return statement with no
value as:

 void example()
 {
 printf(”\n Thanks to God”);
 return;
 }

222 • C Programming

Also note that the return statement can appear anywhere in the
function body. It means that the programmer is free to use it before the
closing brace of the function body.

For example,

#include<iostream.h>
void main()
{
 void test();
 test();
}
void test()
{
 int u;
 printf(“Enter your number: “);
 scanf(%d”, &u);
 if (u < 0)
 {
 printf(“\n It is a negative number”);
 return;
 }
 else
 {
 printf(”\n It is a positive number”);
 return;
 }
}

OUTPUT (after running):
Enter your number: -80

It is a negative number

If you call a value-returning function and use it in a context in which
no value is expected, say, you are not assigning the return value to any-
thing, actually nothing unusual happens. There is no warning message
by the compiler. The function executes correctly and it returns its value.
The caller function can use it or ignore it.

IV. Functions with Arguments and a Return Value
Those functions that receive some arguments from the calling function
and return some value are put under the next category. Here we use the
call-by-value method, which is discussed in Section 3.4.

NOTE

arrays and Pointers • 223

V. Recursions
Recursion is defined as a process in which a function calls itself again
and again. It is a technique of defining a problem in terms of one or more
smaller versions of the same problem. The solution to the problem is built on
the results from the smaller versions. A recursive function is one which calls
itself directly or indirectly to solve a smaller version of its task until a final call
which does not require a self-call.

For example,

 Add()
 {
 Add ();
 }

This means that the function add() calls itself.

Advantages of Recursion

1. Recursion makes the program compact.

2. For complex problems, recursions can lead to solutions that are much
clearer and easier to write.

3. It is very simple and quite apt for data structures like stacks, queues,
trees, and so on.

4. During recursion, the system takes care of the internal stack.

5. It is useful for problems in which there is some repetition.

Disadvantages of Recursion

1. It is slower as far as speed and execution time.

2. It takes more memory space as variables are created again and again
during every function call.

3. It needs extra runtime overhead.

4. For most problems recursion is difficult to implement.

5. Too many recursive calls will result in stack overflow.

There are two conditions for recursion:

1. The function must call itself again and again.

2. The function must have an exit condition.

224 • C Programming

Iteration is different from recursion. Table 3.1 lists the differences.

Table 3.1: Differences between Recursion and Iteration

Recursion Iteration
(1) It is slower as compared to iteration. (1) Iteration is faster than recursion.

(2) It takes more memory, as variables
are created again and again during
every function call.

(2) It takes less memory, as variables are
declared only once.

(3) These algorithms may require extra
overhead for multiple function calling.

(3) No overhead is involved in these
algorithms.

(4) In some scenarios, recursion is
simple to use (like tree traversal);
otherwise, it is difficult.

(4) For some scenarios, iteration is dif-
ficult to implement; sometimes it is
easy to implement.

(5) The system takes care of the internal
stack.

(5) The user must take care of the inter-
nal stack.

Let us now write a program to find the factorial of a number using each of
these methods (i.e., recursion and iteration).

Iterative Method:
An iterative loop to find the factorial of a number is as follows:

 :

 :

 :

 fact = 1;

 for (i =1; i <=n; i++)

 fact = fact * i;

 printf(“\n The factorial of %d = %d”, n, fact);

Recursive Method:
As we know

n! = n * (n – 1) !

 = n * (n – 1) * (n – 2)!

We continue this process till the end (i.e., 0! = 1). We can generalize now:

arrays and Pointers • 225

fact (n) = 1 if n = 0

 n * fact (n – 1) if n > 0

Thus, we write:

 fact (int n)
 {
 if (n = = 0)
 return (1);
 else
 return (n * fact (n – 1));
 }
The function fact is being called by itself but with parameter n replaced by

n-1. This ability of a function to call itself again and again is known as
recursion.

Working of a factorial function:
Say we want to compute the factorial of 4, the recursive calls would be:

fact(4) returns (4. Fact (3)

 which returns (3. Fact (2)

 which returns (2. Fact (1)

 which returns (1. Fact 0)

 which returns (1)))))

or we can also say that:

4! = 4.3!

 3! = 3.2!

 2! = 2.1!

 1! = 1.0!

 0! = 1

 1! = 1.1 = 1

 2! = 2.1 = 2

 3! = 3.2 = 6

4! = 4.6 = 24

Thus, we get the answer 4! = 24.

226 • C Programming

This process is repeated for any factorial that you want to find. But please
remember that this program will work up until, say, 8! or 9! or 10!
Higher numbers may result in stack overflows. Therefore, we need to
modify the preceding program by changing integer-type variables to
either long int or even doubles. This is because the register sizes now
needed are larger than for the smaller values of n (whose factorial you
want).

Also keep the following points in mind while using recursions:

1. Determine the specific variable which will be responsible for the termi-
nation of the algorithm (i.e., key variable).

2. Determine the value of the key variable that will terminate the algorithm
(i.e., base value).

3. Ensure that the key variable always approaches the base value.

4. When the key variable equals the base value, the algorithm must terminate.

We are in a position to write some programs on recursions now.

Example 1: Write a C program to generate a Fibonacci series to n using
recursion.

Solution 1: The program is as follows:

 #include<stdio.h>
 #include<conio.h>
 void main()
 {
 int n, i, t;
 clrscr();
 printf(“\n Enter the number of terms to be generated”);
 scanf(“%d”, &n);
 printf(“\n\t The Fibonacci series is:”);
 for (i =1; i <=n; i++)
 {
	 	 	 t	=	fib	(i);
 printf(“\t %d”, t);
 }
 getch();
 }
	 fib	(int	n)
 {

arrays and Pointers • 227

 if (n = = 1)
 return 0;
 else
 if (n = = 2)
 return (1);
 else
	 	 	 	 return	(fib	(n	–	1)	+	fib	(n	-2));
 }

OUTPUT (after running):
Enter the number of terms to be generated: 5

The Fibonacci series is:

0 1 1 2 3

Example 2: Write a C program to find the GCD of two numbers using
recursion.

Solution 2: The program is as follows:

 #include<stdio.h>
 #include<conio.h>
 void main()
 {
 int a, b, res;
 clrscr();
	 	 	printf(“\n	 Enter	 the	 two	 numbers	 to	 find	 their	

gcd:”);
 scanf(“%d %d”, &a, &b);
 if (a > b)
 res = gcd(a, b);
 else
 res = gcd (b, a);
 printf(“\n The GCD of %d and %d = %d”, a, b, res);
 getch();
 }
 gcd(int x, int y)
 {
 int r;
 r = x % y;
 if (r = = 0)
 return (y);
 else
 return (y, r);
 }

228 • C Programming

OUTPUT (after running):
Enter the two numbers to find their gcd: 22 11

The GCD of 22 and 11 = 11

3.4 PARAMETER TRANSMISSION TECHNIQUES—
CALL BY VALUE AND CALL BY REFERENCE

There are two ways in which data can be made available to a program. One way
is to declare global data. This type of data will be available throughout the pro-
gram. The other method is by passing data through and across functions. This
method is better than the first one as in the first method (global variables) the
privacy of the data is lost.

The ultimate aim of the program is that data should be available to other
functions. This can be done two ways—one is to declare data (variables) as
global variables and the other way is to pass the data to the functions.

Arguments can generally be passed to functions in one of two ways:

(a) Sending the values of the arguments

(b) Sending the addresses of the arguments

Three methods are used: pass by value, pass by address, and pass by refer-
ence.

I. Pass by Value
We know that the function header is always formal and thus its argu-
ments are called formal arguments. Whenever a portion of the program
is calling a function with a formal argument, control will be transferred from
the main to the calling function and the value of the actual argument is copied
into the function. Within the function, the actual value copied from the calling
portion of the program may be altered or changed. Please note that when
control is transferred back from the function to the calling portion of
the program, the altered values are not transferred back. This way of
passing formal arguments to a function is called call by value. The only
limitation of call by value is that the value of the actual argument remains un-
changed. This situation is useful where we do not want to change the values of
the arguments. In other situations call by value is not as appropriate.

arrays and Pointers • 229

For example,

#include<iostream.h>
#include<conio.h>
void main()
{
 clrscr();
 int a = 10;
 int b = 20;
 swapv (a, b);
 printf(”\na is:”, a);
 printf(“\nb is:”,b);
 getch();
}
swapv (int x, int y)
{
 int t;
 t = x;
 x = y;
 y = t;
 printf(”x is:”,x); //values are exchanged here but no
impact on the main() above.
 printf(”y is:”, y);
}

OUTPUT (after running):
x = 20

y = 10

a = 10

b = 20

Explanation: In this first method, the ‘value’ of each actual argument in
the calling function is copied into the corresponding formal arguments of the
called function. With this method, changes made to the formal arguments in
the called function have no effect on the values of the actual arguments in the
calling function. Also note that the values of ‘a’ and ‘b’ remain unchanged
even after exchanging the values of ‘x’ and ‘y’. We are passing 10 and 20
from the main () into the swapv function. In the swapv function, the values are
exchanged (i.e., x and y become 20 and 10 after exchange but this change is
NOT reflected back in the main program).

230 • C Programming

II. Pass by Address
In pass by address, the addresses of actual arguments in the calling
function are copied into formal arguments of the called function. This
means that using the formal arguments in the called function we can
make changes in the actual arguments of the calling function.

For example,

#include<iostream.h>
#include<conio.h>
void main()
{
 clrscr();
 int a = 10;
 int b = 20;
 swapr (&a, &b);
 printf(”\n a is:”, a);
 printf(”\n b is:”, b);
 getch();
}
swapv (int *x, int *y)
{
 int t;
 t = *x;
 *x = *y;
 *y = t;
 printf(”x is:”,x); //values are exchanged here
but now impact is on the main()
 //above.
 printf(”y is:”, y);
}

OUTPUT (after running):
x = 20

y = 10

a = 20

b = 10

Explanation: Here we must understand the concept of pointers. A point-
er is a variable that holds the memory address of another variable. For
example,

arrays and Pointers • 231

int a =10;

int *ptr = &a;

That is, ‘ptr’ is an integer pointer that holds the memory address of another
integer variable, ‘a’. We must declare a pointer variable also. Many pointer vari-
ables can be declared on a single line, such as

int *ptr1, *ptr2, *ptr3;

We can even have an array of pointers and so on but we shall study this a bit
later. Remember the following rule: “Always store the address of a data
type into a pointer of the same data type. We cannot store the address
of a variable of one type into a pointer variable of another type. This
means that the integer pointer can hold the address of an integer vari-
able, the float pointer can hold the address of a float variable, and so
on.” In the call by address technique, we pass addresses of actual arguments to
the called function. These addresses are stored in formal arguments, which are
nothing but pointer variables. Now whatever changes are made in the formal
arguments are reflected directly to the actual arguments.

III. Pass by Reference
In call (or pass) by reference, a function passes a reference as an argument to
another function. In this method, the called function works on the caller’s copy
of parameters and not on a local copy. A reference is defined as an alias (or
copy) that is an alternate name for another variable. Like pointers, the
reference enables us to pass a large amount of data without the overhead of
copying them. References are much like pointers. You can do anything with a
reference that you can do with a pointer. C reference variables can give various
similar problems until you understand them, but they also have advantages over
pointers. A reference is indicated when following the type specifier with the
address-of (&) operator, such that it can be said that the ‘&’ operator identifies
a reference variable. A reference must be initialized when it is declared.

For example,

int u = 89;

int &v = u;

Here we have declared ‘u’ as an integer variable that has another name, ‘v’.
Please note that a reference can’t be made to refer to another variable
and this is the reason why it must be initialized. If you make any change

232 • C Programming

to a reference, then that change is actually applied to the variable to which the
reference refers. As a result, all references to either name have the same effect.

For example,

v+ = 1;

will add 1 to ‘u’, the variable referred to by ‘b’. Also note that each defini-
tion of a reference must be preceded by the address-of operator—that
is, & (ampersand).

For example,

 #include<iostream.h>
 void main()
 {
 int a = 100;
 int &b = a;
 printf(”\n a= %d b= %d“ , a, b);
 b = 200;
 printf(”\n a= %d b= %d“ , a, b);
 a = 300
 printf(”\n a= %d b= %d“ , a, b);
 }

OUTPUT (after running):
a= 100 b = 100

a= 200 b = 200

a= 300 b = 300

Please note here that ‘b’ is called as a reference to ‘a’ and note that
the ‘a’ variable and its reference are so closely interlinked that if one
changes, the other will automatically change. Also remember that even
the address of ‘a’ and ‘b’ are the same. From the output it is also observed
that a reference is neither a copy nor a pointer to the object to which it refers.
Instead it is just another name.

However, there is a difference between a normal reference and a const ref-
erence. A const reference can be initialized to a variable of a different
data type. There is a conversion from one type to another, as well as to
some constants.

arrays and Pointers • 233

For example,

float u = 99.90;

const int &a = u;

Note that these initializations are completely invalid for non-const
references and thus they result in compile-time errors. When it is initial-
ized to a variable type then the compiler must generate a temporary object that
the reference actually addresses. But, unfortunately, the user has no access to it.
So the previous two statements are internally transformed as follows:

float u = 99.90;

int temp = u;

const int &a = temp;

We have already written swap functions for the call by value and call by ad-
dress methods. Now let us write one for the call by reference method.

 #include<iostream.h>
 void main()
 {
 int u, v;
 printf(”\n Enter your two numbers:”);
 scanf(“%d %d”, &u, &v);
 printf(”Before calling swapref() function.”);
 printf(”\n u=%d \t v= %d”, u, v);
 swapref(u, v);
 printf(”After calling swapref() function.”);
 printf(”\n u=%d \t v= %d”, u, v);
 }
 void swapref (int &aa, int &bb)
 {
 int temp;
 temp = aa;
 aa = bb;
 bb = temp;
 }

OUTPUT (after running):
Enter your two numbers: 11 55

Before calling swapref() function.

234 • C Programming

u = 11 v = 55

After calling swapref() function.

u = 55 v = 11

3.5 POINTERS

Programming languages like C and C++ make use of pointers whereas the
JAVA2 language is free of pointers. A pointer is a variable that holds the memo-
ry address of another variable. It allows us to do an indirect manipulation of that
variable because it holds the address of that variable where it has been stored
in memory. Pointers have many applications and if used with care they can im-
prove the efficiency of our programs. Let us explore this and other concepts in
this section.

Pointers and Addresses
As we have already seen, when we initialize a variable, it is stored in a contigu-
ous memory location, at some address. For example,

int u = 80;

This declaration tells the compiler to do three things:

(a) Declare an integer variable u

(b) Initialize it with a value of 80

(c) Assign 2 bytes to this integer (an integer takes 2 bytes)

The compiler does the following:

u 80 20A0

Here the address of 20A0 is assigned to the variable ‘u’ with a value of 80 in
it. Note here that the address itself is an integer (in HEX form).

Now when we say ‘u’, the reference is to the value at ‘u’ whereas if we say
‘&u’, the reference is to its address, which is 20A0 in memory. This is done
by the operating system itself. And if now I say ‘*(&u);’ it means the value or
contents of the location referred to by ‘u’ (i.e., 80). It means that first the
parentheses are evaluated—that is, the address (&) of ‘u’ and then its

arrays and Pointers • 235

contents (by *). So if we write the following three print statements:

printf(“\n Address of u:”, &u);

printf(“\n Value of u: %d”, u);

printf(“\n Value of u: %d”, *(&u));

we will get the following output:

Address of u: 20A0

Value of u: 80

Value of u: 80

Also note here that printing the value of *(&u); is the same as printing
the value of ‘u’.

Memory addresses may vary, particularly in a multiuser system.

Pointer Variables
We can store the addresses of variables in a special type of variable known as
a pointer variable. We can define a pointer variable as a variable that
holds the address of a variable or a function.

Syntax

 data-type *pointer-name;

Here, ‘pointer-name’ is the name of the pointer variable and ‘data-type’
is any valid C++ data type. The asterisk operator or star operator (*) means
“pointer to”. In C, we can write:

int *ptr;

But in C++ we can also write:

int* ptr;

Note here that both will work, as spaces are optional. Also note here that
the result of the pointer operator (*) does the reverse of the operator
&. The pointer operator (*) returns the value of the variable stored at
the address following it. So to access the value stored at an address, we will
use the pointer operator. Also note that, like integer pointers, we can also
have char pointers or float pointers.

NOTE

236 • C Programming

For example,

 char *ptr1;

 float *ptr2;

This means that *ptr1 and *ptr2 are pointing to float value and char value,
respectively. It does not mean that *ptr1 contains a char value or *ptr2 contains
a float value. Actually, pointer variables are of uniform size regardless of what
they point to.

Just like ordinary variables, we can also write multiple pointer declarations
in one line as follows:

int *ptr1, *ptr2, *ptr3;

But please remember that we store the address of a data type into
a pointer of the same data type. This means that an integer pointer can
hold the address of an integer variable, a float pointer can hold the ad-
dress of a float variable, and so on.

For example,

#include<iosteam.h>
void main()
{
 int i = 100;
	 float	*ptr;
 ptr = &i;
 printf(“value of ptr is %d”, *ptr);
}
After compilation, we get the following error:

‘cannot convert “int” to “float”’

Why? This is so because ‘ptr’ is a float pointer and we have stored the ad-
dress of an integer variable to a float pointer. Therefore, the pointer variable
must always point to the correct data type. But there is an exception to this rule
in C++ as C++ provides a void pointer to overrule this limitation.

void Pointers
A void pointer is a pointer that can point to any type of variable. It is
declared as follows:

void *vptr;

arrays and Pointers • 237

Here ‘vptr’ is called a pointer to void type that can point to any type of vari-
able, say, an int, a float, and so on. Thus, we can also define a void pointer
as a general-purpose pointer that can point to any data type.

Applications of Void Pointers

Void pointers are used as parameters to functions that can operate on any
type of memory. It is also possible to return void pointers to assign to any of
several different types of pointers. Remember that you cannot use a void
pointer to dereference a variable unless you provide a type cast. It
means that if ‘vptr’ contains an address of an integer variable, then you
cannot display its value as:

printf(“void pointer is”, *vptr);

A void pointer can point to any data type but the reverse is not
true—that is, the following program statement would result in an error:

ptr1 = vptr; //error

To remove this error, you would have to type cast it explicitly as follows:

ptr = (int *) vptr;

Also remember that if you have to perform arithmetic on a void
pointer, it is not possible without a type cast.

Arithmetic View of Pointers
A pointer is an unsigned integer variable. Thus, a pointer contains a nu-
meric unsigned value, using which it is possible to add integer values and even
subtract them from a pointer. Please note that you cannot multiply or di-
vide two pointers. The main difference between a normal integer and an
integer pointer is that pointer arithmetic adds and subtracts the size of the data
type to which the pointer points.

For example, when we say add 1 to any integer pointer, it is incremented by
the size of an integer variable. Also note that each integer datum occupies
2 bytes in memory, so if we add 1 to an integer pointer, then actually
we are adding 2 to it.

For example,

int *ptr;

ptr = ptr + 2;

238 • C Programming

If ‘ptr’ holds 2000 (address), then after the execution of the second state-
ment, ‘ptr’ gets 2002. Subtraction works similarly.

A character pointer also works like this, except its size is different now.
When we increment or decrement a character pointer variable, its value is in-
cremented/decremented by 1. This is because a character occupies 1 byte in
memory. Along similar lines, a float pointer variable’s value, when incremented/
decremented, increases/decreases by 4. In other words, in pointer arith-
metic, all pointers increase and decrease by the length of the data type
they point to. And remember that regardless of the pointer type, the
pointer holds the address of the very first byte of the memory location.
And this address of the very first byte is known as the base address.
Every time a pointer is incremented, it points to the immediate next
location of its type.

So we can use them as follows:

int i = 75;

int *ptr;

ptr = &i;

Also we can say that:

int *ptr = 0;

int *ptr1 = &i;

And we can even write:

ptr = ptr1; // is OK

But the following is invalid:

ptr = i;

This implies that one should always set a pointer to a definite and appropri-
ate address before applying the dereference operator (*) to it.

In a nutshell, we can say:

1. Addition of a number to a pointer is allowed.

2. Subtraction of a number from a pointer is allowed.

3. Addition of two pointers is not allowed.

4. Multiplying a pointer with a number is not allowed.

arrays and Pointers • 239

5. Dividing a pointer with a number is not allowed.

6. Accessing array elements by pointers is always faster than accessing
them by subscripts, because internally subscripts are converted into
pointers.

7. Please note that the following two statements mean the same
thing:

 display(&num[0], 10);

 display(num, 10);

8. When we say a[i], the C++ compiler internally converts it to *(a +i).
The same thing happens with 2D arrays.

9. In memory, whether it is a 1D array or a 2D array, the elements are
stored in one continuous chain.

10. Just as num[i] is the same as *(num + i), similarly, *(num[2] +1) is the
same as *(*(num +2) +1).

11. So a[i], *(a +i), *(i + a), and i[a] all refer to the same element—the ith
element from the base address.

12. The expression *(a + i) = a[i] + i[a] is nothing but a[i] = a[i] + a[i];

3.6 RELATIONSHIP BETWEEN ARRAY
AND POINTER

Internally all arrays (of any dimension) make use of pointers for their implemen-
tation. In C/C++, the array name is treated as the address of its first element.

For example,

int a[20];

Here, ‘a’ is the name of the array that holds 80 integer numbers and the
value of ‘a’ is the address of num[0] (i.e., the address of the first element of the
array); then, (a + 1) contains the address of the 2nd element, (a +2) contains an
address of the 3rd element, and so on. This is because the C++ compiler inter-
nally reserves 40 words for a 20-array element. However, you can also access the
address of array elements as &a[0], &a[1], &a[2], and so on. Just remember

240 • C Programming

that data items/elements of an array are stored in consecutive memory
locations (i.e., a[0] contains an element and (a + 0) contains an address
of this element). So, if we apply pointer operator (*) on it, it will give the
value stored at this address—that is,

 *(a + 0) = the value stored at the 0th location

So,

*(a + 0) is equivalent to a[0]

*(a + 1) is equivalent to a[1]

Please note that internally C converts a[i] as *(a + i). Therefore, the
following notations refer to the same element:

a[i];

*(a + i);

*(i + a);

i[num];

These are all the same.

Note that we cannot write the following statement:

*(a++); //is invalid

This is because you cannot increment an address. But you can incre-
ment a pointer that holds an address. Here, ‘a’ holds the address of the first
element of the array. So if we increment the base address, the compiler cannot
determine the first location of this array. Therefore, we cannot change a
pointer constant. If you want to increment the address, it is necessary to store
the base address into a pointer variable first and then increment this pointer.

Note: There is a difference between *ptr++ and *(ptr++); this differ-
ence lies in the precedence of the operators. The ++ operator has a low-
er precedence than the * pointer operator. So, in the first expression,
the value at the address ptr is retrieved first and increments its value.
In the second expression, the pointer is incremented first and then the
value is retrieved from this new address. The parentheses override the
default precedence. The precedence rules apply equally to auto decre-
ment operators too.

arrays and Pointers • 241

For example, consider the following program:

 #include<stdio.h>
 void main()
 {
 int a[] = {10, 20, 30, 40, 50};
 int i, j;
 int *ptr = a;
 i = *ptr + 1;
 j = *(ptr + 1);
 printf(“ \n Value of i is %d and j is %d”);
 }
Here we might think that the output should be the same. But it isn’t. This

is because the expression considers the precedence of the pointer operator and
the arithmetic operators. In the first assignment statement, ‘i’ gets the integer
value to which ptr points and adds 1 to its value and thus the value of ‘i’ is
displayed as 11. In the second assignment statement, the address ptr is incre-
mented by an int value of 1. So it is incremented by 2. Thus, the value of ‘j’ is
displayed as 20. Thus, the output of the above program after running is:

Value of i is11 and j is 20

Remember the following points regarding arrays:

1. The bracket [] tells the compiler that we are dealing with an array.

2. An array is a collection of similar elements.

3. The first element in an array is numbered 0 and hence the last element is
1 less than the size of the array.

4. However big an array may be, its elements are always stored in contiguous
memory locations.

5. If array elements are not initialized, then they are said to contain garbage
values.

3.7 ARGUMENT PASSING USING POINTERS

In the method of pass by address, the addresses of actual arguments in
the calling function are copied into formal arguments of the called func-
tion. This means that using the formal arguments in the called function,
we can make changes in the actual arguments of the calling function.

242 • C Programming

For example,

#include<iostream.h>
#include<conio.h>
void main()
{
 clrscr();
 int a = 10;
 int b = 20;
 swapr (&a, &b);
 printf(”\n a is:”, a);
 printf(”\n b is:”, b);
 getch();
}
swapv (int *x, int *y)
{
 int t;
 t = *x;
 *x = *y;
 *y = t;
 printf(”x is:”,x); //values are exchanged here but
now impact is on the
main()
 //above.
 printf(”y is:”, y);
}

OUTPUT (after running):
x = 20

y = 10

a = 20

b = 10

Explanation: Let us review the concept of pointers. A pointer is a vari-
able that holds the memory address of another variable. For example,

int a =10;

int *ptr = &a;

That is, ptr is an integer pointer that holds the memory address of another
integer variable, ‘a’. We must declare a pointer variable also, many of which can
be declared on a single line, as in the following:

int *ptr1, *ptr2, *ptr3;</dsp>

arrays and Pointers • 243

Remember the following rule regarding pointers: “Always store the
address of a data type into a pointer of the same data type. We cannot
store the address of a variable of one type in a different type of pointer
variable. This means that the integer pointer can hold the address of an
integer variable, the float pointer can hold the address of a float vari-
able, and so on.” In the call by address technique, we pass addresses of actual
arguments to the called function. These addresses are stored into formal argu-
ments, which are nothing other than pointer variables. Now whatever changes
are made in the formal arguments are reflected directly to the actual arguments.

3.8 ARRAY OF POINTERS

Like a normal data-type array, we can also create an array of pointers. If we
want to store the addresses of 5-integer variables, we write:

int *ptr[5];

This declaration reserves 10 bytes of contiguous memory for 5 pointers.

For example, consider the following program:

 #include<stdio.h>
 void main()
 {
 int a = 10, b= 20, c=30,d= 40,e= 50};
 int ptr[5];
 ptr[0] = &a;
 ptr[1] = &b;
 ptr[2] = &c;
 ptr[3] = &d;
 ptr[4] = &e;
 for(int i=0; i<5;i++)
 printf(”\nValue stored at address=”, *ptr[i]);
 }

OUTPUT (after running):
Value stored at address = 10

Value stored at address = 20

Value stored at address = 30

Value stored at address = 40

Value stored at address = 50

244 • C Programming

3.9 PASSING ARRAYS AS ARGUMENTS

Just like ordinary variables, we can also pass a complete array by using its base
address.

For example,

 #include<stdio.h>
 void main()
 {
 int a[5];
 void aread(int *, int);
 void adisplay(int*, int);
 printf(“\nEnter any 5 integers:”);
 aread(a, 5);
 printf(“Array elements are :”);
 adisplay(a, 10);
 }
 void aread(int *aptr, int n)
 {
 for (int i=0; i<n; i++)
 scanf(“%d”, &aptr[i];
 }
 void adisplay(int *ptr, int n)
 {
 for (int i=0; i<n; i++)
 printf(“\n Array Elements:”, aptr[i]);
 }

OUTPUT (after running):
Enter any 5 integers: 1 2 3 4 5

Array elements are:

1

2

3

4

5

Explanation: Here we have used two functions—aread() and adisplay()—
to read an integer array and to display its elements, respectively. Their proto-
types are as follows:

arrays and Pointers • 245

 void aread(int *, int);
 void adisplay(int *, int);

It is said to be the pointer variable notation. You can also
use the following notations while declaring an array pointer
parameter:-

 void aread(int aptr[] , int n)
 {
 for(int i=0; i<n; i++)
 scanf(“%d”, &aptr[i];
 }
 void adisplay(int aptr[] , int n)
 {
 for(int i=0; i<n; i++)
 scanf(“%d \n”,& aptr[i]);
 }

There is no difference between the earlier notations and the later nota-
tions. They both work in the same way. The only difference between the
former and latter notation is that in the former:

 void aread(int *, int);

 void adisplay(int *, int);

The pointer is an integer pointer. On the other hand, in the latter
example:

 void aread(int [] , int);

 void adisplay(int [], int);

This parameter is a pointer to an int array. However, if you declare
a pointer parameter with an array dimension, such as:

 void aread(int [5], int);

 void adisplay(int [5], int);

the compiler ignores the dimension. In this program, aptr contains
an address of the first element and sees that there is no & operator in
their call statement.

It is also possible to pass 2D arrays just as we can pass 1D arrays to func-
tions. But please remember that the only mandatory condition is that when we
pass 2D arrays, it is necessary to mention the column size in the function pro-
totype as well as in the function definition. On the other hand, the size of the
row is optional. This is because a 2D array is an array of arrays. Therefore, the

NOTE

246 • C Programming

function does not need to know how many rows there are in such a 2D array,
but the length of each row (i.e., column) is mandatory.

We are in a position to solve an example now.

Example 1: Write a C program to find the trace of a 2D matrix.

Solution 1: Trace of a matrix is defined as the sum of its diagonal
elements. The program is as follows:

#include<stdio.h>
void main()
{
 void readarray(int a[] [4], int n);
 void trace(int a[] [4], int n);
 void display(int a[] [4], int n);
 int a[4][4];
 readarray(a, 4);
 display(a, 4);
 trace(a, 4);
}
void readarray(int a[] [4], int n)
{
 int i, j;
 printf(”\nEnter the elements of 2D matrix:\n)”;
 for (i =0; i<4; i++)
 {
 for(j=0; j<4;j++)
 scanf(“%d”, &a[i][j]);
 }
}
void display(int a[] [4], int n)
{
 int i, j;
 printf(”\nMatrix is:”);
 for (i =0; i<n; i++)
 {
 printf(”\n”);
 for(j=0; j<n; j++)
 printf(“ Array is:\t”, a[i] [j]);
 }

arrays and Pointers • 247

}
void trace(int a[] [4], int n)
{
 int diagonal_sum = 0;
 // trace calculated now
 for (int i =0; i<n; i++)
 diagonal_sum += a[i][j];
 printf(“\n Trace=”, diagonal_sum);
}

OUTPUT (after running):
Enter the elements of 2D matrix:

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Matrix is:

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Trace = 34

We are in a position to write some programs now.

Example 1: Give the output of the following C program:

 #include<stdio.h>
 main()
 {
 static int a[] = {1, 2, 3, 4 };
 int *ptr;
 ptr = a;
 *(a + 3) = (*ptr++) + *(ptr++);
 printf(“\n\t\t Elements are:”, *(a + 3);
 printf(“\n\t\t”, a[0], a[1], a[2], a[3]);
 getch();
 }

248 • C Programming

Solution 1: Elements are: 1 2 3 2

Example 2: Give the output of the following C program:

 #include<stdio.h>
 main()
 {
 int a, b;
 a = 10,11;
 b = (10, 11);
 clrscr();
 printf(“\n a and b are:”, a, b);
 getch();
 }

Solution 2: 10 11

Example 3: Whenever we give the array name we refer to its base
address. It is also said that the array has decayed into a pointer. Will
this happen in all situations?

Solution 3: Decaying of an array into a pointer does not take place in two
situations:

(a) When the array name is used with the sizeof operator

(b) When the array name is an operand of the & operator

If we pass the name of a 1d int array to a function, it decays into a pointer
to an int. But if we pass the name of a 2d array of integers to a function, then it
decays into a pointer to an array and not a pointer to a pointer.

Example 4: Give the output:

 void main()
 {
 printf(“%c”, “abcdefgh”[5]);
 }

Solution 4: f is the output.

Example 5: How will you display \n as an output?

Solution 5: Simply write:

printf(“\\n”);

arrays and Pointers • 249

Example 6: Give the output:

 void main()
 {
 char ch = ‘R’;
 printf (“%d %d”, sizeof (ch), sizeof (‘R’));
 }

Solution 6: The output is: 1 2

Example 7: Give the output:

 void main()
 {
 printf(5 + “RajivChopra”);
 }

Solution 7: The following is the output:

hopra

Example 8: Say an array c is defined as follows:

 char c[] = “Rajiv”;

What would sizeof(c) and strlen(c) return?

Solution 8: sizeof(c) will return 5 and strlen (c) will return 4. This implies that
sizeof uses ‘\0’ (i.e., null terminator) whereas the strlen() function does not.

Example 9: Write a C program to calculate the factorial of a given inte-
ger number using the call-by-value method.

Solution 9: The program is as follows:

#include<stdio.h>
#include<conio.h>
void main()
{
 long fact (int); /* function prototype */
 int num;
 long f;
 clrscr();
 printf(\n Enter your number:”);
 scanf(“%d”, &num);
 f= fact (num);
 printf(“\nFactorial of %d = %ld”, num, f);
 getch();
}

250 • C Programming

long fact (int n)
{
 int i;
 long f1 = 1;
 for (i=1; i<=n;i++)
 f1 = f1 * i;
 return (f1);
}

OUTPUT (after running):
Enter your number: 3

Factorial of 3 = 6

Example 10: Write a C program to sum the following series:

 Sum = 1 + 2 + 3 + 4 + 5 + … n

Solution 10: The program is as follows:

#include<stdio.h>
#include<conio.h>
void main()
{
 int n, sum;
 clrscr();
 printf(“\nEnter the last term of the series”);
 scanf(“%d”, &n);
 sum = series (n);
 printf(“\nSum of series = %d”, sum);
 getch();
}
series (int last)
{
 int i, s=0;
 for (i=1; i<=last; i++)
 s+ = I;
 return (s);
}

Please run this program yourself.

Example 11: Write a C program to find the sum of the digits of an inte-
ger number. Use functions only.

NOTE

arrays and Pointers • 251

Solution 11: The program is as follows:

#include<stdio.h>
#include<conio.h>
void main()
{
 int s;
 long n;
 clrscr();
 printf(“\nEnter your number”);
 scanf(“%ld”, &n);
 s = sumdig (n);
 printf(“\n Sum of digits of %ld = %d”, n, s);
 getch();
}
sumdig (long num)
{
 int d, sum = 0;
 while (num > 0)
 {
 d= num % 10;
 num = num /10;
 sum += d;
 }
 return (sum);
}

OUTPUT (after running):
Enter your number: 246

Sum of digits of 246 = 12

Example 12: Write a C program to compute the bionomial coefficient
nCr using functions:

nCr = n! / r! (n – r)!

Solution 12: The program is as follows:

#include<stdio.h>
#include<conio.h>
void main()
{
 int ncr;
 long n, r;

252 • C Programming

 clrscr();
 printf(“\n Enter value of n and r”);
 scanf(“%ld%ld”, &n, &r);
 ncr = fact(n) / (fact (r) * fact(n – r));
 printf(“\n Value of ncr = %d”, ncr);
 getch();
}
fact (int num)
{
 int i;
 long f = 1;
 for (i =1; i <= num; i++)
 f = f * i;
 return (f);
}

Please run the program yourself.

Example 13: Write a C function to reverse a number.

Solution 13: The program is as follows:

 reverse (int n)
 {
 int r, rev = 0;
 while (n > 0)
 {
 r = n % 10;
 n = n/10;
 rev = revr * 10 + r;
 }
 return (rev);
}

Example 14: Write a C program to sum the following series:

 Sum = x3 / 3! + x5 / 5! + x7 / 7! + …

Solution 14: The program is as follows:

#include<stdio.h>
#include<conio.h>
void main()
{
	 float	sum	=	0.0;
 int t1, t2, x, i, n;

NOTE

arrays and Pointers • 253

 clrscr();
 printf(\n Enter the number of terms:”);
 scanf(“%d”, &n);
 printf(“\n Enter the value of x:”);
 scanf(“%d”, &x);
 for (i = 3; i <= n; i += 2)
 {
 t1 = power (x, i);
 t2 = fact (i);
	 	 sum	=	sum	+	(float)	t1/t2;
 }
 printf(“\n The sum of the series = %f”, sum);
 getch();
}
power (int x, int y)
{
 int i, pow = 1;
 for (i=1; i <=y; i++)
 pow = pow * x;
 return (pow);
}
fact (int n)
{
 int j, fact = 1;
 for (j=1; j<=n; j++)
 fact = fact * j;
 return (fact);
}

Please run this program yourself.

Example 15: Write a C program to compute ab using recursion:

 power (a, b) = 1 if b = 0

 a * power (a, b-1) if b > 0

Solution 15: We use the fact that ab is simply the product of a and ab-1.
The program is as follows:

#include<stdio.h>
#include<conio.h>
void main()
{

254 • C Programming

	 float	power	(float,	int);
 int b;
	 float	a,	p;
 clrscr();
 printf(“\n Enter two numbers:”);
 scanf(“%f %d”, &a, &b);
 p = power (a, b);
 printf(“\n%f raise to %d = %f”, a, b, p);
 getch();
}
float	power	(float	x,	int	y)
{
 if (y = =0)
 return 1;
 else
 return (x * power (x, y-1));
}

OUTPUT (after running):
Enter two numbers: 2 3

2 raised to 3 = 8.000000

Example 16: Consider the very popular Tower of Hanoi problem. It in-
volves moving a specified number of disks from one tower to another
using a third, auxiliary tower. Suppose that there are three towers A,
B, and C. The game starts with the disks stacked on tower A in order
of decreasing size (i.e., the largest on the bottom and the smallest on
top). The aim is to transfer the disks from tower A to tower C with the
following constraints:

(a) Only one disk can be moved at a time and that is the top disk.

(b) A Larger disk cannot be placed on top of a smaller disk.

Write a C program to simulate this Tower of Hanoi problem.

Solution 16: Let us write its algorithm first:

if (n = = 1) then

 move disk 1 from tower A to C

else

arrays and Pointers • 255

 move (n-1) smaller disks from tower A to B.

 move the largest disk from tower A to C.

 move the (n-1) smaller disks from tower B to C.

end if

The program is as follows:

#include<stdio.h>
#include<conio.h>
#include<process.h>
void main()
{
 int n;
 void tower(char from, char to, char using, int n);
 clrscr();
 printf(“\n Enter the number of disks:”);
 scanf(“%d”, &n);
 if (n < 1)
 {
 printf(“\n It is not possible”);
 exit (1);
 }
 else
 tower(‘A, ‘C’, ‘B’, n);
}
void tower (char from, char to, char using, int n)
{
 if (n = = 1)
 printf (“\n Move disk from %c to %c”, from, to);
 else
 {
 tower (from, using, to, n-1);
 tower (from, to, using, 1);
 tower (using, to, from, n-1);
 }
}

Example 17: It is desired to add a user-defined function to a C library.
How can this be done. Explain giving an example.

Solution 17: The function that is to be added to the library is first compiled.
Then it is added to the library using a TLIB utility named tlib.exe (a facility in

256 • C Programming

turbo c). After adding the function, the linker will automatically link it with your
program code as it does with inbuilt functions of C. Consider an example of a
factorial function as follows:

 int fact(int n)
 {
 int i, f = 1;
 for (i=1; i<=n; i++)
 f = f *i;
 return (f);
 }

Save this program in some file—say, facto.c

Now compile this file using the ctrl+F9 key. This creates a “facto.obj” file
having object code.

From the DOS prompt, add the function to the library by using the
command:

C:\>TLIB\TC\LIB\math.lib + \TC\facto.obj

Please note here that math.lib is the library name, + is used to add
a new function to the library, and facto.obj is the file to be added. Also
note that minus (-) is used to delete existing functions.

Now declare the prototype of the fact() in the header file—say, fact.h. This
file should be included while calling the function. To use the function create a
program as follows:

 #include “c:\\fact.h”
 main()
 {
 int f;
 f = fact (5);
 printf(“%d”, f);
 }

Now compile and execute the program using ctrl+F9.

Example 18: Distinguish between formal and actual parameters.

Solution 18: The following are the differences:

arrays and Pointers • 257

Formal Parameter Actual Parameter
(1) Formal parameters are the variables

which are defined within the func-
tion. They are used in expressions
within the body of the function.

(1) Actual parameters are the variables
specified in a call to the function.
When the function is accessed,
actual parameters replace the formal
parameters.

(2) A function header is always formal. (2) A function call has actual param-
eters.

(3) They are written in the first line of
the function definition.

(3) They are written in the function
declaration.

For example,

 int facto (int n)

{

…….

}

Here ‘n’ is a formal parameter that is
declared in the function header.

For example,

int facto (5);

Here, 5 is the actual parameter being
passed.

Example 19: Distinguish between call by value and call by reference.

Solution 19: The following are the points of difference between the two:

Call by Value Call by Reference
(1) In this method, the value of the vari-

ables is passed to the called function.
(1) In this method, the address of the

variables is passed to the called
function.

(2) In the called function, the values are
received in a similar type of variable.

(2) As the address of the variable is
received in the called function, it is
also received in a pointer variable.

(3) Only one value can be returned by
these functions.

(3) More than one value can be re-
turned to the function.

(4) The syntax is:

t = gcd(u, v);

(4) The syntax is:

gcd (&u, &v);

258 • C Programming

Example 20: Name two different styles of writing prototypes.

Solution 20: There are two styles of writing prototypes:

 float sum (float x, float y);

Or float sum (float, float);

Example 21: Distinguish between library functions and user-defined
functions in C.

Solution 21: The following chart shows the points of difference:

Library Functions User-Defined Functions
(1) Predefined in the compiler itself (1) Not predefined in the compiler itself

(2) No user-created library functions (2) User-defined functions created by
the programmers

(3) Stored in special library files (3) User-defined functions not stored in
library files

(4) Inclusion of corresponding header
file for each inbuilt function used
in any program (else you will get an
error)

(4) No header file for user-defined
functions

(5) No execution of program beginning
from library function

(5) Execution of program always begin-
ning with user-defined function—
that is, main()

For example, log(), cos(), sqrt(),
printf(), scanf()

For example, main(), sum(), sort()

Example 22: Write an example program to show functions with no argu-
ments and no return values.

Solution 22: The program is as follows:

/*Functions with no arguments and no return values*/

#include<stdio.h>
main ()
{
 void hello (); /* function declaration */
 hello(); /* invoking function */
}
/*function	definition	*/

arrays and Pointers • 259

void hello()
{
 char name[20];
 printf(“Enter your name”);
 scanf(“%s”, name);
 printf(“%s\n\n”, name);
 printf(“Hello %s, good morning”, name);
}

OUTPUT (after running):
Enter your name: Dr. Rajiv

Hello Dr. Rajiv good morning

Example 23: Write a C program to implement a simple calculator that
can add, subtract, multiply, and divide two numbers read from the key-
board.

Solution 23: The program is as follows:

#include<stdio.h>
main()
{
	 float	num1,	num2,	result;
 char opn;
 void arithop();
 printf(“Enter any two numbers and the \n”);
 printf(“operation symbol (+, -, * or /) \n”);
 scanf(“%f %f %c”, &num1, &num2, &opn);
 printf(“\n %8.2f %c %8.2f = “, num1, opn, num2);
 arithop(num1, num2, opn);
}
void arithop (a, b, op) /*arithop function */
float	a,	b;
char op;
{
 switch (op) {
 case ‘+’ :
 printf(“%10.2f\n”, a+b);
 break;
 case ‘-’ :
 printf(“%8.2f\n”, a-b);
 break;
 case ‘*’ :

260 • C Programming

 printf(“%8.2f\n”, a*b);
 break;
 case ‘/’ :
 printf(“%8.2f\n”, a/b);
 break;
 default:
 printf(“Invalid operation”);
 break;
 }
}

OUTPUT (after running):
Enter any two numbers and the

Operation symbol (+, -, *, or /)

44.00 / 11.00 = 4.00

Example 24: Write a C program to compute the mean and standard de-
viation of n numbers that are read from the keyboard.

Solution 24: The program is as follows:

#include<stdio.h>
#include<math.h>
main()
{
 int i, n;
	 float	deviation,	list[20];
	 float	sd();		 /*	function	declaration	*/
 printf(“Calculating standard deviation of a…… “);
 printf(“list of numbers:”);
 printf(“\n Enter the size of the list:”);
 scanf (“%d”, &n);
 printf(“%d\n”, n);
 printf(“\n Enter the %d elements\n”, n);
 for(i=0; i<n; i++)
 scanf(“%f”, &list[i]);
 for(i=0; i<n; i++)
 printf(“%8.2f”, list[i]);
 deviation = sd(list, n);
 printf(“\n Standard Deviation is: %10.5f\n”, devia-
tion);
}
/* function to compute standard deviation */

arrays and Pointers • 261

float	sd(x,	m)
float	x[20];
int m;
{
 int i;
	 float	mean,	dev,	sum	=	0.0;
	 float	avg	();	 /*	function	declaration	*/
 mean = avg(x, m);
 printf(“\n\n Mean of %3d elements is:%10.2f\n”, m,
mean);
 for(i=0; i<m; i++)
 sum = sum + (mean – x[i]) * (mean – x[i]);
	 dev	=	sqrt(sum/(float)	m);
 return (dev);
}
/* function to compute mean */
float	avg(a,	n)
float	a[20];
int n;
{
 int i;
	 float	sum	=	0.0;
 for (i=0; i<n ; i++)
 sum += a[i];
	 return	(sum	/	(float)	n);
}

OUTPUT (after running):
Calculating standard deviation of a … list of numbers.

Enter size of the list: 5

Enter 5 elements: 12.34 56.00 78.90 34.00 78.45

Mean of 5 elements is: 51.94

Standard deviation is: 25.83064

Example 25: Write a C program to reverse n characters using recursion.

Solution 25: The program is as follows:

#include<stdio.h>
#include<math.h>
main()
{

262 • C Programming

 int n;
 void rev();
 printf(“Enter the number of characters to be re-
versed:”);
 scanf(“%d”, &n);
 printf(“%d”, n);
 printf(“\n”);
 rev (n);
 printf(“\n”);
}
void rev(n)
int n;
{
 char c;
 if (n = = 1)
 {
 c= getchar();
 c= getchar();
 putchar (c);
 }
 else
 {
 c= getchar();
 c = getchar();
 rev (- - n);
 putchar (c);
 }
 return;
}

OUTPUT (after running):
Enter the number of characters to be reversed: 5

rajiv

vijar

Example 26: Write a C program to implement a binary search using
recursion.

Solution 26: The program is as follows:

#include<stdio.h>
int key; /* global variable */
main()

arrays and Pointers • 263

{
 int a[50], I, n, loc;
 int bin();
 printf(“\n\t Enter the array size:”);
 scanf(“%d”, &n);
 printf(“%d\n”, n);
 printf(“\n\t Please enter the array elements in ascending
 order:”);
 for (i=0; i<n; i++)
 scanf(“%d”, &a[i]);
 for (i=0; i<n; i++)
 printf(“%d”, a[i]);
 printf(“\n”);
 printf(“Enter the element to be searched:”);
 scanf(“%d”, &key);
 printf(“%d”, key);
 loc = bin (a, 0, n);
 printf(“\n\n”);
 if (loc = = 0)
 printf(“Unsuccessful search. %d not found \n”,
key);
 else
 {
 printf(“Successful search\n”);
 printf(“%d found at position %d. \n”, key, loc);
 }
}
/* recursive binary search method */
int bin (b, low, high)
int b[5], low, high;
{
 static int mid;
 int i;
 if (low <= high)
 {
 mid = (low + high)/2;
 if (key < b[mid]) {
 /* element in the lower half */
 high = mid – 1;
 bin (b, low, high);
 }
 else if (key > b[mid]) {

264 • C Programming

 /* element in the upper half */
 low = mid + 1;
 bin (b, low, high);
 }
 else if (key = = b[mid])
 /* element found */
 return (mid + 1);
}
else
 return (0); /* element not found */
}

OUTPUT (after running):
Enter the array size: 10

Please enter the array elements in ascending order: 2 4 6 8 10 12 14 16 18 20

Enter the element to be searched: 16

Successful search

16 found at position 8

Example 27: Write a C program to find the smallest element in an array
of size n, using pointers only.

Solution 27: The following is the code:

#include<stdio.h>
main()
{
 int i, n, small, *ptr, a[50];
 printf(“\n\t Enter the array size:”);
 scanf(“%d”, &n);
 printf(“%d”, n);
 printf(“\n\t Enter the array elements:”);
 for (i=0; i< n; i++)
 scanf(“%d”, &a[i]);
 printf(“\n\t Echoing the array elements:”);
 for (i=0; i< n; i++)
 printf(“%d”, a[i]);
 printf(“\n”);
 ptr = a; /* assign address of a[0] to pointer ‘ptr’
and it can be done in two ways-
either ptr = &a[0] or ptr = a */
 small = *ptr; /* contents of a[0] assigned to
small */

arrays and Pointers • 265

 ptr ++; /* increment pointer to next element */
 /* iterate n-1 times to search for smallest element in the
 ar ray */
 for (i=1; i<n; i++)
 {
 if (small > *ptr)
 small = *ptr;
 ptr++; /* increment pointer to a[i+1] */
 }
 printf(“\n Smallest element is %d”, small);
 }

OUTPUT (after running):
Enter the array size: 5

Enter the array elements: -5 4 3 2 7

Smallest element is -5

Example 28: Write a C program to bubble-sort an array of size n, using
pointers only.

Solution 28: The program is as follows:

#include<stdio.h>
#include<malloc.h>
main()
{
 int i, n, *vector;
 void bubble();
 printf(“ Enter the array size:”);
 scanf(“%d”, &n);
 printf(“%d”, n);
 /* dynamic memory allocation is done using malloc ()
of C */
 vector = (int *) malloc (n * sizeof(int)); /* sizeof
gives size of data type in bytes */
 printf(“\nEnter the array elements :”);
 for (i=0; i<n ; i++)
 scanf(“%d”, vector + i);
 for (i=0; i<n ; i++)
 printf(“%d”, *(vector + i)); /* echoing */
 printf(“\n”);
bubble(vector, n); /* invoke function */
printf(“\n Sorted array is:”);
for (i =0; i <n; i++)

266 • C Programming

 printf(“%d”, *(vector + i));
printf (“\n”);
}
 void bubble (x, m)
 int *x, m;
 {
 int pass, i, temp;
 for (pass = 0; pass < m-1; pass++)
 {
 for (i=0; i < m-pass; i++)
 {
 if (*(x + i) > *(x+i+1))
 {
 temp = *(x+i);
 *(x+i) = *(x + i +1);
 *(x+i+1) = temp;
 }
 }
 }
 }

OUTPUT (after running):
Enter the array size: 5

Enter the array elements: -5 4 3 2 7

Sorted array is: -5 2 3 4 7

Example 29: Write a C program to find the length of given string.

Solution 29: The program is as follows:

#include<stdio.h>
main()
{
 char string[80], *ptr;
 ptr = string;
 printf(“\n\tEnter the string whose length you want:”);
 while ((*ptr++ = getchar()) != ‘\n’) /* read the
string */
 *- - ptr = ‘\0’;
 printf(“\nString is %s”, string);
 printf(\n Its length is %d”, (ptr – string));
}

arrays and Pointers • 267

OUTPUT (after running):
Enter the string whose length you want: Dr. RAJIV

String is Dr. RAJIV

Its length is 9

Example 30: Are the following expressions the same: *ptr++ and ++*ptr?

Solution 30: No, they are not the same. *ptr++ increments the pointer and not
the value pointed by it, whereas ++*ptr increments the value being pointed to
by ptr.

Example 31: We know that a[i] = *(a+i). What will a[i][j] be?

Solution 31: a[i][j] will be internally converted to *(*(a+i) + j) by the C com-
piler.

Example 32: Give some applications of pointers.

Solution 32: Applications:

1. To access array elements

2. For dynamic memory allocations

3. Use of pointer concept in call by reference

4. To implement linked lists, trees, graphs, etc.

Example 33: Define a null pointer.

Solution 33: For any type of pointer, C defines a null pointer as a special type
of pointer that is guaranteed not to point to any object or function of that type.
Note that the null pointer constant used for representing a null pointer
is the integer 0.

Example 34: Define a null pointer, a NULL macro, the ASCII NULL
character, and a null string.

Solution 34: A null pointer is a pointer that doesn’t point anywhere.

A NULL macro is used to represent the null pointer in the source code. It
has a value 0 associated with it.

The ASCII NULL character has all its bits as 0 but doesn’t have any rela-
tionship with the null pointer.

The null string is just another name for an empty string—“”.

268 • C Programming

Example 35: What causes the null pointer assignment error?

Solution 35: This error occurs when we declare a pointer and then use
it before allocating memory for it. This error may also occur when we
use a wild pointer. The wild pointer references the base area of the
data segment. Memory or stack corruption may cause this error.

Example 36: Can main() be called recursively?

Solution 36: Yes, main() can be called recursively.

Example 37: A stack is a data structure in which only the topmost ele-
ment can be accessed. You can push an element and delete an element
from a stack, named push and pop, respectively. Stacks work on the
LIFO principle (Last-In-First-Out). Implement a stack in C. Write two
functions push() and pop().

Solution 37: The following are the two functions:

/*push operation on stack */
/* stack [] is a stack array, item is the data being
pushed onto the stack, *top is pointer */
/* to top of stack and max_size is the maximum size of
stack */
void push (char stack [], char item, int *top, int max_
size)
{
 if (*top < max_size – 1)
 {
 ++(*top);
 stack[*top] = item;
 }
}
/*pop operation on stack */
/* stack [] is a stack array, *top is pointer to top of
stack	and	item	is	the	value	popped	off	the	stack	*/
char pop(char stack, int *top)
{
 char item;
 if (*top >= 0) {
 item = stack[*top];
 - (*top);
 }
else {

arrays and Pointers • 269

 item = STACK_EMPTY;
 }
return (item);
}

Summary
Arrays and pointers are related to each other. In this chapter, we have studied
1D, 2D, and 3D arrays. We have also seen the purpose of writing functions for
modular programming. Different techniques of parameter passing have been
dealt with. Pointers have been examined in depth using a simpler approach.

Exercises
Q1. Write a C program to find the roots of a given quadratic equation.

Q2. Write a C function to find the GCD and LCM of two numbers.

Q3. Write a function prime that returns 1 if its argument is a prime and returns
0 otherwise.

Q4. Write a C program to check whether the given year is a leap year.

[Hint:

/* testing for leap years using a ‘boolean’ function */
main()
{
 int year;
 printf(“Please enter a year:”);
 scanf(“%d”, &year);
 if (is_leap(year))
 printf(“%d is a leap year.\n”, year);
 else
 printf(“%d is not a leap year. \n”, year);
}
/* ‘Boolean’ function is_leap returns true if year is a
leap year */
is_leap(year)
int year;
{
 return (year % 4 = = 0 && year % 100 !=0 || year % 400
= = 0);
}

270 • C Programming

Q5. Write a C function to read the three sides of a triangle and to determine
whether they form a triangle. Also determine the type of triangle they
form. You should return true if the triangle is formed and false otherwise.

Q6. The area of a triangle can be computed using Heron’s formula, which de-
fines the semi-perimeter ‘s’ as half of the sum of the sides of the triangle.
The area of the triangle is given by the formula:

 Area = the square root of (s(s-a)(s-b)(s-c))

 where a, b, and c are the sides of the triangle. Write a function which,
when passed the sides of a triangle, returns the area using Heron’s formula.
The function should first make sure that the triangle is valid; if it is not, the
function can return zero or a negative value as an error indicator. Use the
sqrt() function that is inbuilt in the math library.

Q7. Write a C program to reverse an array using a single array ‘a’ only.

[Hint:

 for(I = ARRAY_SIZE – 1; i>=0; i- -)
 printf(“%d”, array[i]);
 printf(“\n”);
]

Q8. Write a simple bubble sort function.

[Hint:

 void sort (int a[] , int n)
 {
 int i, j, temp;
 for (i =0; i < n -1; ++i)
 for (j = i +1; j <n; ++j)
 if (a[i] > a[j])
 {
 temp = a[i];
 a[i] = a[j];
 a[j] = temp;
 }
 }

In the main() function, you can just call sort(array, 10);].

Q9. Write a simple function to find the GCD of two numbers, u and v.

[Hint:

 int gcd (int , int v)
 {

arrays and Pointers • 271

 int temp;
 while (v!= 0) {
 temp = u % v;
 u = v;
 v = temp;
 }
 return u;
 }].

Q10. Now modify the module in Q9 above to find the LCM of these two
numbers, u and v.

[Hint:

 Use formula: lcm (u, v) = uv / gcd (u, v) where u, v >= 0.]

Q11. Write a function called substring() to extract a portion of a character
string. The function should be called as follows:

substring (source, start, count, result);

 where source is the character string from which you are extracting the
substring, start is an index number into source indicating the first char-
acter of the substring, count is the number of characters to be extracted
from the source string, and result is an array of characters that is to
contain the extracted substring. For example,

substring(“character”, 4, 3, result);

 extracts the substring “act” (3 characters starting with character num-
ber 4) from the string “character” and places the result in result.

Q12. Write a C program to insert an element into an existing array.

[Hint:

 #include<stdio.h>
 #include<conio.h>
 void main()
 {
 int i, element, loc, n, a[10];
 clrscr();
 printf(“\n Enter number of elements:”);
 scanf(“%d”, &n);
 printf(“\t Enter elements:”);
 for (i=0; i<n; i++)
 scanf(“%d”, &a[i]);
 printf(“\n Enter element to insert:”);
 scanf(“%d”, &element);

272 • C Programming

 printf(“\n Enter location to insert:”);
 scanf(“%d”, &loc);
 for (i = n-1; i >= loc; i - -)
 a[i+1] = a[i];
 a[loc] = element;
 for (i=0; i <= n; i++)
 printf(“\n %d”, a[i]);
 getch();
 }]

Q13. Distinguish between static and dynamic memory allocation.

Q14. Write a suitable array definition to define a 1D 4-element character ar-
ray called letters. Assign the characters ‘N’, ‘S’, ‘E’ and ‘W’ to the array
elements.

Q15. Write a suitable declaration to declare a pointer to a function that ac-
cepts 3 pointers to integer quantities as arguments and returns a point-
er to a floating point quantity.

Q16. Give the output of the following program:

 main()
 {
 int a[] = {0, 1, 2, 3, 4};
 int *P[] = {a, a+1, a+2, a+3, a+4 };
 printf(“%u %u %d”, P, *P, *(*P));
 }

Q17. Explain the following declarations in C:

(a) int *P[10];

(b) int (*P) [10];

(c) int *P (void);

(d) int *P(char* a);

(e) int (*P) (char* a).

Q18. Write a C program to compute simple interest given by the following
formula:

SI = (p * t * r) / 100. Use pointers.

Q19. Write a C program to compute temperature in centigrade by the fol-
lowing formula:

C= 5/9 (F – 32). Use pointers and functions.

arrays and Pointers • 273

Q20. Write a function that receives 5 integers and returns their sum, average,
and standard deviation. Call this function from the main() and print the
results in main.

Q21. Write a program to generate prime numbers from 1 to 1000 using ar-
rays.

Q22. Demonstrate call by value and call by reference with suitable example
programs.

Q23. Discuss all string functions and explain with example programs.

Q24. Demonstrate the relationship between arrays and pointers with suit-
able programs.

Q25. Which is generally more efficient—recursion or iteration? Why?

Q26. Write a C program to find if a square matrix is symmetric. Note that a
square matrix is symmetric if it is equal to its transpose.

Q27. Under what conditions can one pointer to a variable be subtracted from
another? How will this difference be interpreted?

Q28. Give the output:

 int a=10, b=8, c;

 c = a++ + b + a++;

 printf(“%d”, c);

 c = ++a + b + ++c;

 printf(“%d”, c);

[Hint: 30 50].

Q29. Write a C program to input an array of 10 characters and find the num-
ber of duplicate characters, if any.

[Hint:

 #include<stdio.h>
 int x, c=0;
 printf(“\n\n Enter characters…”);
 for (x=0; x<10; x++)
 {
 scanf(“%c”, &ch[x]);
 }

274 • C Programming

 for (x=0; x < 10; x++)
 {
 if (ch[x] = = ch[x – 1])
 {
 c = c+ 1;
 }
 }
 printf(“\n\n No. of duplicate characters %d”, c);
 return 0;
}].

Q30. Explain how pointers are used to access array elements with an example
of adding two single-dimensional arrays of order 10.

Q31. Explain with an example how pointers are passed to a function.

Q32. Write a C function that calculates the cross-product of 2 vectors, (x1, x2,
… xn) and (y1, y2, … yn) as Σ (xi* yi), t = 1 to n. Use it in the main program
to input 3 vectors x, y, z and calculate the vector equation: (xy + yz).

Q33. Write down a C program that inputs 20 integers and calculates the sum
of the factorials of all numbers that are possible.

Q34. Write a C program to access a string of 100 characters using pointers
and output it by replacing two or blank by a single blank.

Q35. (a) Mention the return types in functions. By default, a function returns
which type of a value? Give an example.

 (b) Describe formal argument, actual argument, function declaration,
and function definition.

 (c) Differentiate between a pointer to a constant and a constant pointer.

 (d) Write a C program to sort a list of strings in alphabetical order.

Q36. (a) Write a C program to print the individual digits of a 6-digit number
in words.

 (b) Write a C program to find the second largest and second smallest
element in a vector.

 (c) Write a C program to sort a given list of numbers in ascending order,
using pointers.

 (d) Write a C program using recursion to reverse n characters.

strUCtUres and UniOns

4C H A P T E R

4.0 INTRODUCTION

We have seen that an array is a collection of similar (homogeneous)
data items. But C also provides two more user-defined data types—
structures and unions. They are called user-defined data types as

users define them as per their needs. We define structure as a collection
of heterogeneous (dissimilar) elements that are stored contiguously in
memory. Understand that a structure is a collection of a fixed num-
ber of elements that are accessed by name, not by index (as arrays are
done). The elements of a structure may be of different data types.

Say we want to store a current date—let’s call it March 24, 2016—in a pro-
gram. We take three different variables to store 24 (day), 03 (month), and 2016
(year). Now say again we want to store a date of purchase; again we need three
variables—say, date_of_purchase, month_of_purchase, and year_of_purchase.
This means we now need another set of three variables. This consumes a lot of
memory. Structures are helpful here. Thus, we can declare a structure of date
as follows:

 struct date
 {
 int month;
 int day;
 int year;
 };

276 • C Programming

Here, date is a structure (user-defined) that has three members, called
month, day, and year. The definition of date here defines a new data type in
the language in the sense that the variables may subsequently be declared to be
of type struct date as follows:

struct date today;

However, unlike variables of type int, float, or char, a special syntax is need-
ed when dealing with structure variables. A member function is accessed by
specifying the variable name, followed by a period (.) or dot operator,
and then the member name.

For example,

today.day = 24;

Note that there are no spaces allowed between the variable name,
the period, and the member name. So to set the year of the date, the ex-
pression is:

today.year = 2016;

And to test the value of month to see if it equals to 3, a statement is written
as follows:

if(today.month = = 03)

 next_month = 01;

The syntax of declaration of a structure is:

struct stname
 {
 datatype1 list_of_variables;
 datatype1 list_of_variables;
 …….
 …….
 datatype-n list_of_variables;
 };
where struct is a keyword in C, followed by a structure name, stname,

or a tag. The structure ends with a closing brace and a semicolon. The data
items in the structure are defined by a type, followed by one or more identifiers,
separated by commas.

strUCtUres and Unions • 277

For example,

 struct Emp
 {
 char fname[40], lname[40];
 int age;
	 	 float	basic_salary;
	 	 char	address[80];
 };

Here, Emp is a new user-defined structure data type.

Please note that a structure declaration does not reserve any space
for memory because a structure declaration is just a data type, like an
int, a float, or a char. Memory is allocated only when a variable of the
corresponding structure type is declared. A structure variable is declared
as follows:

Syntax

struct stname stvar;

Here, stvar is a structure variable of the type struct stname.

For example,

struct date today;

We now write a complete program for the date problem:

#include<conio.h>
main()
 {
	 struct	date
 {
	 	 int	month;
	 	 int	day;
	 	 int	year;	
 };
	 struct	date	today;
	 today.month	=	03;
	 today.day	=	24;
	 today.year	=	2016;
	 printf(“Todays	date	is	%d/%d/%d.	\n”,	today.month,	to-
day.day,	today.year	%	100);
 }

278 • C Programming

OUTPUT (after running):
Today’s date is 03/24/2016

The date initializations that are done in this program are stored as shown in
Figure 4.1.

today

.month

.day

.year

03

24

2016

Figure 4.1: Assigning Values to a Structure Variable

When it comes to the evaluation of expressions, structure members follow
the same rules as do ordinary variables in C. So division of an integer structure
member by another integer would be performed as an integer division.

Let us again consider the Emp structure (defined earlier):

 struct Emp
 {
 char fname[40], lname[40];
 int age;
	 	 float	basic_salary;
	 	 char	address[80];
 };
Here, 40 bytes are reserved for fname, 40 bytes for lname, 2 bytes for age, 4

bytes for basic_salary, and 80 bytes for the character array. Thus, the size of the
structure is given by the sum of the sizes of its individual elements/data items.

It is also to be noted that the structure name may be omitted if a structure
variable of a particular structure type has been declared when the structure is
defined. For example,

struct
 {
 char fname[40];
 int age;
	 float	bas_salary;
 } emp;

strUCtUres and Unions • 279

But the problem here is that in such a declaration you cannot subsequently
declare another variable whose type is the same as that of emp, in this case.

So we will access these members as:

 emp.fname;

 emp.age;

 emp.bas_salary;

And once we know this, we can initialize the values of these member vari-
ables as follows:

 strcpy(emp.fname, “DR. RAJIV”);

 strcpy(emp.lname, “CHOPRA”);

 emp.age = 41;

 emp.salary = 82000.00;

 strcpy(emp.address, “GTB NAGAR”);

Before we discuss structures further, let us write some programs now.

Example 1: Write a simple program that reads the employee’s name, his
age, and his salary from the keyboard and displays the information.

Solution 1: The following is the program:

#include<stdio.h>
main()
 {
	 struct	Employee
 {
	 	 char	name[20];
 int age;
	 	 float	salary;
 };
	 struct	Employee	emp1,	emp2;
	 	printf(“\n	Enter	name,	age	and	salary	of	the	1st em-

ployee:”);
	 	scanf(“%s	 %d	 %f”,	 &emp1.name,	 &emp1.age,	 &emp1.sal-

ary);
	 	printf(“\n	Enter	name,	age	and	salary	of	the	2nd em-

ployee:”);

280 • C Programming

	 scanf(“%s	%d	%f”,	&emp2.name,	&emp2.age,	&emp2.salary);
	 printf(“\n	First	Employee	details…”);
	 printf(“\n	Name:	%s”,	emp1.name);
	 printf(“\n	Age:	%d”,	emp1.age);
	 printf(“\n	Salary:	%f”,	emp1.salary);
	 printf(“\n	Second	Employee	details…”);
	 printf(“\n	Name:	%s”,	emp2.name);
	 printf(“\n	Age:	%d”,	emp2.age);
	 printf(“\n	Salary:	%f”,	emp2.salary);
 }

OUTPUT (after running):
Enter name, age and salary of the 1st employee: Dr. Rajiv 40 82000.00

Enter name, age and salary of the 2nd employee: Mr. Sushant 30
50000.00

First Employee details …

Name: Dr. Rajiv

Age: 40

Salary: 82000.00

Second Employee details …

Name: Mr. Sushant

Age: 30

Salary: 50000.00

Initializations of Structures

Just as you initialize ints, floats, chars, and arrays, you can also initialize struc-
ture variables.

For example, in the previous structure Emp:

struct	Emp
 {
 char fname[40], lname[40];
 int age;
	 float	salary;
	 char	address[30],	dept[30];
 };

strUCtUres and Unions • 281

Then a variable of this structure—say, emp1—can be initialized during its dec-
laration as follows:

struct Emp emp1 = {“Rajiv”, Chopra”, 40, 82000.00, “GTB Nagar”, “Com-
puter Science”};

Or you can also write as follows:

struct	Emp
 {
 char fname[40], lname[40];
 int age;
	 float	salary;
	 char	address[30],	dept[30];
		}emp1	 =	 {“Rajiv”,	 Chopra”,	 40,	 82000.00,	 “GTB	 Nagar”,	
“Computer	Science”};

Here,

 emp1.fname = “Rajiv”

 emp1.lname = “Chopra”

 emp1.age =40

 emp1.salary = 82000.00

 emp1.address = “GTB Nagar”

 emp.dept = “Computer Science”

As we can assign one basic data type to another basic data type variable,
similarly we can assign a structure variable to another structure variable of the
same type.

For example,

struct	Emp
 {
 char fname[40], lname[40];
 int age;
	 float	salary;
	 char	address[30],	dept[30];
 };

struct Emp emp1 = {“Rajiv”, Chopra”, 40, 82000.00, “GTB Nagar”, “Computer
Science”};

struct Emp emp2;

282 • C Programming

emp2 = emp1; /* is valid */

So now emp2 will have the same data as emp1 had.

But please note that the following initializations are invalid:

struct Emp
 {
 char fname[10] = “Rajiv”; /* invalid */
 int lname[10] = “Chopra”; /* invalid */
 int age= 40; /* is invalid */
 ……
 };

This means that individual members cannot be initialized inside the
structure declaration. If you do this, you will get a compilation error.

Array of Structures
When we want to store a large number of similar records—say, of 100 employ-
ees—then an array of structures is defined as follows:

struct	Emp
 {
 char fname[40], lname[40];
 int age;
	 float	salary;
	 char	address[30],	dept[30];
 };

struct Emp emp1[100]; /* declaring array of structures */

This means that emp1 is an array having 100 elements of type struct Em-
ployee. It is after this statement only that the C compiler reserves memory space
for 100 structures; the same rule applies for array of structures as for array of
primary data types like ints, floats, or chars.

strUCtUres and Unions • 283

Figure 4.2 shows the array graphically.

First record of type employee

Second record of type employee

emp[2].fname

emp[2].lname
emp[2].age

emp[2].salary
emp[2].address

emp[2].dept

Figure 4.2: Array of Structure Being Stored

Please note here that an employee of struct Emp is selected by an
index only.

For example, emp1[0] is the first element in the array of structures
emp1. Each element of an array emp1 is a structure of type struct Emp.

Also note that in order to access the fname of the 1st employee, we
use the following expression:

emp1[0].fname;

Thus, the 1 employee record is referred to as:

emp1[0].fname;

emp1[0].lname;

emp1[0].age;

284 • C Programming

emp1[0].salary;

emp1[0].address;

emp1[0].dept;

Similarly, the 2nd employee record is referred to as:

emp1[1].fname;

emp1[1].lname;

emp1[1].age;

emp1[1].salary;

emp1[1].address;

emp1[1].dept;

And the 100th employee record is referred to as:

emp1[99].fname;

emp1[99].lname;

emp1[99].age;

emp1[99].salary;

emp1[99].address;

emp1[99].dept;

There is another way of showing this structure:

struct	Emp
 {
 char fname[40], lname[40];
 int age;
	 float	salary;
	 char	address[30],	dept[30];
 };
struct	Emp	emp1[100];	 /*	 declaring	 array	 of	 struc-
tures	*/

strUCtUres and Unions • 285

Rajiv

Chopra

40

82000.00

GTB Nagar

Computer Science

.fname

.lname

.age

.salary

.address

.dept

emp1[0]

Thus, the 1st employee record is referred to as:

emp1[0].fname;

emp1[0].lname;

emp1[0].age;

emp1[0].salary;

emp1[0].address;

emp1[0].dept;

The same procedure is followed for emp1[1] … till emp1[99] for a record
of 100 employees.

How to Initialize an Array of Structures
We can initialize an array of structures in the same way as a single structure.

For example,

 struct Emp
 {
 char name[30];
 int age;
 float salary;
 };
 struct Emp emp1[5] = {

286 • C Programming

 {“Rajiv”, 41, 83000.00},
 {“Ajay”, 31, 73000.00},
 {“Sushant”, 32, 17000.00},
 {“Yash”, 29, 33000.00},
 {“Ankur”, 38, 55000.00},
 };
This declaration creates an array of 5 Employee structures. The 1st set of

values is assigned to emp1[0], the 2nd set to emp1[1], and so on. The initial
values are separated by commas and enclosed within braces. The ending brace
is followed by a semicolon.

We are in a position to write a program now.

/* to show the concept of array of structures */

#include<stdio.h>
void	main()
 {
	 struct	Employee
 {
	 	 char	name[20];
 int age;
	 	 float	salary;
 };
	 struct	Employee	emp[5];
 int i;

 float x, *y = &x, x= *y; /* why? */
 printf(“\n\t	Enter	your	5	employees	name,	age	and	sal-
ary:			 	 \n\n’);
	 for(i=0;	i<5;	i++)
	 	 scanf(“%s	%d	%f”,	emp[i].name,	&emp[i].age,	&emp[i].
salary);
	 printf(“\n	You	have	entered	these	records\n”);
	 for(i=0;	i<5;	i++)
	 	 printf(“\n	%s\t\t:	%d\t\t:	%f”,	emp[i].name,	emp[i].
age,			 	 	 emp[i].salary);
 }

OUTPUT (after running):
Enter your 5 employees name, age and salary:

Rajiv 40 82000.00

strUCtUres and Unions • 287

Ajay 30 67000.00

Amit 30 70000.00

Mayur 20 6700.00

Adi 30 50000.00

You have entered these records

Rajiv: 40: 82000.00

Ajay: 30: 67000.00

Amit: 30: 70000.00

Mayur: 20: 6700.00

Adi: 30: 50000.00

Note the following statement in this program:

float x, *y = &x, x= *y;

If this statement is not present, you will get an error message:

 scanf: floating point formats not linked.

 Abnormal program termination.

Explanation: This error is due to the floating point emulator. A floating
point emulator is used to manipulate floating point numbers in runtime
library functions like scanf() and atof(). There are some cases, such as ar-
rays of structures, where float is a structure member and the reference to the
float is a bit obscure; that’s why the compiler does not detect the need for the
emulator. To overcome this limitation, a reference to the address of a float is
made. When the compiler encounters an address of a float, it automatically sets
a flag to have linker link in the floating point emulator. That is why these state-
ments force the linking of the floating point emulator into a program. Thus, to
prevent this error, include the statement in the beginning of your programs.

Nesting Structures
It is possible to nest one structure within another. Such structures are known as
nested structures.

For example,

struct date
 {

288 • C Programming

 int day;
 int month;
 int year;
};

struct Emp

 {
 char fname[40], lname[40];
 int age;
 float salary;
 struct date dob;
 struct date dobj;
 char address[30], dept[30];
 };

Note the restriction in a nested structure shown by the next example:

struct Emp

 {
 char name[40];
 int age;
 float salary;
 struct Emp e; /* is illegal */
};
Thus, a member of a structure can also be another structure. That is, you

can say that the individual structure members of a structure can be other struc-
tures as well. Structures whose members are themselves structures are
called nested or hierarchical structures.

For example, say we want to nest a structure named address inside an-
other structure Employee; there are two ways of declaring such a nested struc-
ture:

I. First method:
 struct date
 {
 int day;
 int month;
 int year;
 };
 struct Emp

strUCtUres and Unions • 289

 {
 char fname[40], lname[40];
 int age;
 float salary;
 struct date dob;
 struct date dobj;
 char address[30], dept[30];
 };
While using this notation, remember that the embedded structure type

(date) should be declared before its use within the containing structure; other-
wise, the compiler will not recognize it.

II. Second method:
struct Emp

 {
 char fname[30], lname[30];
 int age;
 float salary;

 struct date
 {
 int day;
 int month;
 int year;
 } dob, doj;
 char address[30], dept[30];
 };
In this method, you cannot use the structure date directly in other places as

an ordinary structure. On the other hand, if you use the former one where the
address structure is declared outside the structure Emp, then you can directly
use the address structure in other places also.

A nested structure can also be initialized as follows:

struct Emp emp1 = {“Rajiv”, “Chopra”, 40, 82000.00, 24, 03, 2016, “GTB
NAGAR”,

“Computer Science” };

Now let us see how to access members of a nested structure.

290 • C Programming

In this example, the structure date is used in the structure Emp. A par-
ticular member inside the structure can be accessed by repeatedly ap-
plying the dot (.) operator.

For example, in this statement,

emp.dob.day = 5;

we set the day variable in the dob structure within emp to 5. Similarly,
other members of a nested structure are accessed as follows:

 emp.dob.month = 3;

 emp.dob.year = 2016;

Also we can display the members of a nested structure as follows:

printf(“%d”, emp.dob.day);

printf(“%d”, emp.dob.month);

printf(“%d”, emp.dob.year);

Note that this level of nesting can go up to any level. There is no
limit. Also note that a structure cannot be nested within itself.

For example,

struct Emp

 {
 char name[40];
 int age;
 float salary;
 struct Emp e; /* is illegal */
};

But it is possible to have a structure pointer of its own type as its structure
member.

For example,

struct Emp

 {
 char name[40];
 int age;
 float salary;
 struct Emp*e; /* is illegal */
};

strUCtUres and Unions • 291

Such structures are known as self-referential structures.

Structures and Functions
Just as we can pass basic data types, it is also possible to pass structure vari-
ables to functions and receive structure data types from functions. Two
techniques are used: structures as function arguments and returning structures
from functions.

I. Structures as Function Arguments

C provides a means of passing an entire structure to functions as arguments
in the function call. A structure variable is passed like any basic data type.

For example,

	 #include<stdio.h>
	 display(struct	Employee);
	 struct	Employee
 {
	 char	name[10];
 int age;
	 float	salary;
 };
 main()
 {
	 	 struct	Employee	emp	=	{“Rajiv”,	40,	82000.00};
	 	 display(emp);	 /*passing	 entire	 structure	 to	 dis-
play()			 	 	 function	*/
 }
	 display(struct	Employee	e)
 {
	 	 printf(“\n	Employee	Record:”);
	 	 printf(“\n	Name:	%s”,	e.name);
	 	 printf(“\n	Age:	%d”,	e.age);
	 	 printf(“\n	Salary:	%f”,	e.salary);
 }

OUTPUT (after running):
Employee Record:

Name: Rajiv

Age: 40

Salary: 82000.00

292 • C Programming

Explanation: Here, the struct Employee is declared outside the main()
because we have passed an entire structure variable emp to the function dis-
play(). If you declare the struct Employee inside the function main() then
the function display() does not know the identity of the data type, structure
variable emp, because in main() it is treated as a local declaration. To make it
global, it is compulsory to declare the structure struct Employee outside the
main() function. As you pass an array of basic data types, you can pass an array
of structures to functions. In this you will use the same notation as you have
used in passing an array of basic data types. Please note that when a struc-
ture variable is passed as an argument to the functions, it is passed as
call by value like any other data type. Thus, if you make any change in
the calling function, it is not visible in the caller.

II. Returning Structures from Functions
Like basic data types, you can also return structures from functions using a
return statement.

For example,

#include<stdio.h>
struct	Employee	readRecord();
display	(struct	Employee);
struct	Employee
 {
	 char	name[10];
 int age;
	 float	salary;
 };
main()
 {
	 struct	Employee	emp1,	emp2;
	 emp1	=	readRecord();
	 emp2	=	readRecord();
	 printf(“\n	Displaying	first	record…”);
	 display(emp1);
	 printf(“\n\n	Displaying	second	record..”);
	 display(emp2);
 }
	 struct	Employee	readRecord()
 {
	 	 struct	Employee	e;
	 	 	printf(“\n	Enter	name,	age	and	salary	of	an	employee.	

\n”);

strUCtUres and Unions • 293

	 	 scanf(“%s	%d	%f”,	e.name,	&e.age,	&e.salary);
	 	 return	e;	/*	returning	a	structure	*/
}

OUTPUT (after running):
Enter name, age and salary of an employee.

Rajiv 40 82000.00

Enter name, age and salary of an employee.

Mayur 30 40000.00

Displaying first record.

Name: Rajiv Age: 40 Salary: 80000.00

Displaying second record.

Name: Mayur Age: 30 Salary: 40000.00

Structures and Arrays
It is also possible to define structures that contain arrays as members. One of
the most common applications of this type is in setting up an array of characters
inside a structure.

For example, say we want to define a structure called month that contained as
its members the number of days in the month as well as a 3-character abbrevia-
tion for the name of the month. This is done as follows:

struct	month
 {
	 int	number_of_days;
	 char	name[3];
 };
This creates a month structure that contains an integer member

called number_of_days and a character member called name. The
member name is actually an array of 3 characters. We can now define a
variable to be of type struct month in normal fashion:

struct month a_month;

We can set the proper fields inside a_month for January with the following
sequence of statements:

a_month.number_of_days = 31;

a_month.name[0] = ‘J’;

294 • C Programming

a_month.name[1] = ‘a’;

a_month.name[2] = ‘n’;

Or we can initialize this variable to the same values with the following state-
ment:

static struct month a_month = {31, { ‘J’, ‘a’, ‘n’ } };

And we can set up 12-month structures inside an array to represent each
month of the year:

struct month months[12];

Let us now write a program to show the concept of structures and arrays:

/* Program to set up initial values inside the array and display them */

/* It illustrates the structures and arrays concept */

struct	month
 {
	 int	number_of_days;
	 char	name[3];
 };
main()
 {
 int i;
	 static	struct	month	months[12]	=
	 	 {	{	31,	{‘J’,	‘A’,	‘N’	}	},	{28,	{‘F’,	‘E’,	‘B’	}	},
	 	 {	{	31,	{‘M’,	‘A’,	‘R’	}	},	{30,	{‘A’,	‘P’,	‘R’	}	},
	 	 {	{	31,	{‘M’,	‘A’,	‘Y’	}	},	{30,	{‘J’,	‘U’,	‘N’	}	},
	 	 {	{	31,	{‘J’,	‘U’,	‘L’	}	},	{31,	{‘A’,	‘U’,	‘G’	}	},
	 	 {	{	30,	{‘S’,	‘E’,	‘P’	}	},	{31,	{‘O’,	‘C’,	‘T’	}	},
	 	 	{	{	30,	{‘N’,	‘O’,	‘V’	}	},	{31,	{‘D’,	‘E’,	‘C’	}	}	

};
	 printf(“Month	 	 Number	of	Days\n”);
	 printf(“--------	 	 ---------------------\n”);
	 for(i=0;	i<12;	++i)
	 	 printf(“	%c%c%c	 	 %d\n”,
	 	 	 months[i].name[0],	months[i].name[1],
	 	 	 months[i].name[2],	months[i].number_of_days);
 }

strUCtUres and Unions • 295

OUTPUT (after running):
Month Number of Days

--------- ----------------------

JAN 31

FEB 28

MAR 31

APR 30

MAY 31

JUN 30

JUL 31

AUG 31

SEP 30

OCT 31

NOV 30

DEC 31

The following graphic shows how storage in memory is done.

31

‘J’

‘A’

‘N’

28

‘F’

months[0]

.number_of_days

.name

[0]

[1]

[2]

296 • C Programming

It is crystal clear from the figure that months[0] refers to the entire
month structure contained in the first location of the months array. This
expression is of type struct month. So, when passing months[0] to a function
as an argument, the corresponding formal parameter inside the function must
be declared to be of type struct month. Then the expression:

months[0].number_of_days

refers to the number_of_days member of the month structure contained
in months[0]. The type of this expression is int. The expression:

months[0].name

references the 3-character array called name inside the month structure
of months[0]. If passing this expression as an argument to a function, then the
corresponding formal parameter would be declared to be an array of type char.

Finally, the expression

months[0].name[0]

references the first character of the name array contained in months[0]
(the character ‘J’).

4.1 STRUCTURES VERSUS UNIONS

Like structures, unions are user-defined data types. A union is a data type
that allows different types of variables to share the same space in mem-
ory. Unlike structures where each member has its own memory space, unions
allow sharing of space among its members in memory.

Syntax

 union unname
 {
 datatype-1 ListOfVariables;
 datatype-2 ListOfVariables;
 ………………
 datatype-n ListOfVariables;
 };
Here, union is a keyword and uname is the name of the union data type.

A union variable is declared as a structure variable is declared. When a union

strUCtUres and Unions • 297

variable is created, the C compiler automatically allocates sufficient space to
hold the largest data member of the union. Since all data members of the union
use the same space, whenever a data member changes, all other data members
will be changed automatically.

For example,

 union Sample
 {
 float x;
 int a;
 char ch;
 };

Now you can create a union variable of type union Sample as follows:

Union Sample one;

Here, one is a union variable. Yet another way of achieving this is the fol-
lowing:

 union Sample
 {
 float x;
 int a;
 char ch;
 }one;
Like structures, union members are accessed exactly the same way that

structure members are accessed, using a dot (.) operator. The individual union
members are accessed as follows:

 one.x = 3.1417;

 one.a = 80;

 one.ch = ‘R’;

Please note that a union variable may contain only one meaningful
value at a time and it is incorrect to store something as one type and
then extract it as another. It means that union permits a part of memory
to be treated as a variable of one type on one occasion and as a differ-
ent variable of a different type on another occasion.

298 • C Programming

Also note that structures and unions have some differences:

 1. The size of a structure is given by the sum of the sizes of its individual
elements whereas the size of the union is the maximum of the sizes of its
elements.

 2. All structure members can be accessed at any point in time whereas in
unions only one of the union members can be accessed at any given time,
because only one of the union members will have a meaningful value.

Unions may occur within arrays and structures just as structures do. C also
allows using a union in a structure or a structure in a union. And the method of
accessing a member of a structure in a union or a union in a structure is similar
to the method of accessing a member of a structure in a structure.

4.2 STRUCTURES AND POINTERS

In general, the syntax for declaring a structure pointer is:

struct stname *eptr;

where struct is the keyword, stname is the name of a structure data type,
and eptr is the name of a structure pointer to a structure of type stname. A
structure pointer holds the address of a structure variable of the same
data type.

For example,

 struct	Emp
 {
	 	 char	name[30];
 int age;
	 	 float	salary;
 };

We can declare a structure variable and structure pointer as follows:

 struct Emp emp; /* declaring a structure variable */

 struct Emp *eptr; /* declaring a structure pointer */

 eptr = &emp;

Here, eptr is a structure pointer variable that points to emp. How-
ever, you can also declare eptr with the declaration of the structure variable as
follows:

strUCtUres and Unions • 299

 struct Emp emp1, *eptr;

 eptr = &emp1;

Please note that you can even initialize the structure pointer eptr to
the address of emp as follows:

 struct Emp emp1, *eptr = &emp1;

Also note that C provides a special arrow operator (->) for accessing
structure members through a structure pointer. Its syntax is:

 eptr -> member;

Now if eptr is a structure pointer of type struct Emp then you can access
the structure member’s name, age, and salary as follows:

 eptr-> name;

 eptr-> age;

 eptr->salary;

Alternatively, you can also access the structure members through a struc-
ture pointer variable using the dot operator. For this you have to first derefer-
ence the structure pointer using the ‘*’ pointer and then use the dot operator.

For example, if eptr is a structure pointer of type structure Emp, you
can access the structure member’s name, age, and salary as follows:

 (*eptr).name;

 (*eptr).age;

 (*eptr).salary;

It is mandatory to use parentheses here because the dot operator (.)
has a higher precedence than that of the dereferencing operator (*). If
you omit the parentheses, these expressions are interpreted as follows:

 *(eptr.name);

 *(eptr.age);

 *(eptr.salary);

Since eptr is a structure pointer, the C compiler will certainly flag an
error message.

300 • C Programming

Before we continue the discussion, let us write a program to show
the use of structure pointers and then show our understanding of the
difference between structures and enumerators.

Example 1: Create a structure Employee and store his or her name, age,
and salary. Read and display the employee’s details.

Solution 1: The program is as follows:

#include<stdio.h>
main()
 {
	 struct	Employee
 {
	 	 char	name[30];
 int age;
	 	 float	salary;
 };
	 struct	Employee	emp1,	emp2;	 	 /*	 structure	
variables	*/
	 struct	Employee	*eptr1,	*eptr2;	 /*	 structure	
pointers	*/
	 eptr1	=	&emp1;
	 eptr2	=	&emp2;
/*	Use	dot	(.)	operator	with	structure	vars.	But	pointer	
with	structure	pointers	*/
	 printf(“\n\tEnter	 name,	 age	 and	 salary	 of	 first	
employee:\n”);
	 scanf(“%s	%d	%f”,	emp1.name,	&emp1.age,	&emp1.salary);
	 printf(“\n\tEnter	 name,	 age	 and	 salary	 of	 second	
employee:\n”);
	 scanf(“%s	 %d	 %f”,	 eptr2->name,	 &eptr2->age,	 &eptr2-
>salary);
	 printf(“\n	First	Employee:”);
	 printf(“\nName:	%s”,	eptr1->name);
	 printf(“\nAge:	%d”,	eptr1->age);
	 printf(“\nSalary:	%f”,	eptr1->salary);
	 printf(“\n	Second	Employee:”);
	 printf(“\nName:	%s”,	emp2.name);
	 printf(“\nAge:	%d”,	emp2.age);
	 printf(“\nSalary:	%f”,	emp2.salary);
 }

strUCtUres and Unions • 301

OUTPUT (after running):
Enter name, age and salary of first employee:

Rajiv 40 82000.00

Enter name, age and salary of second employee:

Amit 30 55000.00

First Employee:

Name: Rajiv

Age: 40

Salary: 82000.00

Second Employee:

Name: Amit

Age: 30

Salary: 55000.00

A structure can also contain pointers as its member variables. For example,

 struct Emp
 {
 char *name;
 int age;
 float salary;
 };
Here the structure Emp has a pointer name associated with it. The struc-

ture members can now be defined and used as follows:

 struct Emp emp1 ={“Rajiv”, 40, 82000.00};

 struct Emp emp2;

 emp2.name = “Rajiv”;

 emp2.age = 40;

 emp2.salary = 82000.00

Example 2: Distinguish between structures and enumerators.

Solution 2: Structures are a powerful and flexible way of grouping several dis-
tinct data items together under one name. On the other hand, an enumerated

302 • C Programming

data type can be defined for a finite set of values in the type specifier. Also
remember that C does not provide facilities for reading and displaying values of
enumeration types. They may only be read or displayed as integer values.

We are in a position to write some programs now.

Example 1: Write a C program to read a student’s record and find his
grade percentage. It should also assign the grade according to the rules
given below:

 Percentage marks Grade

 >=80 A

 >=60 < 80 B

 >=50 < 60 C

 < 50 D

Solution 1: The program is as follows:

#include<stdio.h>
#include<conio.h>
void	main()
 {
	 struct	student
 {
	 	 char	name[30];
	 	 int	roll;
	 	 int	sub1,	sub2,	sub3,	sub4;
	 	 float	per;
	 	}s1;
	 clrscr();
	 printf(“\n	\t	Enter	the	record	of	the	student”);
	 printf(“\n\t	Name:”);
	 gets(s1.name);
	 printf(“\n\t	Roll	No.	:”);
	 scanf(“%d”,	&s1.roll);
	 printf(“\n\t	Subject	1:”);
	 scanf(“%d”,	&s1.sub1);
	 printf(“\n\t	Subject	2:”);
	 scanf(“%d”,	&s1.sub2);
	 printf(“\n\t	Subject	3:”);
	 scanf(“%d”,	&s1.sub3);
	 printf(“\n\t	Subject	4:”);

strUCtUres and Unions • 303

	 scanf(“%d”,	&s1.sub4);
	 s1.per	=	(s1.sub1	+	s1.sub2	+	s1.sub3	+	s1.sub4)	/	4.0;
	 if	(s1.per	>=	80)
	 	 printf(“\n	A	grade	with	%f	per”,	s1.per);
	 else
	 	 if(s1.per	>=	60)
	 	 	 printf(“\n	B	Grade	with	%f	per”,	s1.per);
	 	 else
	 	 	 if(s1.per	>=50)
	 	 	 	 printf(“\nC	Grade	with	%f	per”,	s1.per);
	 	 	 else
	 	 	 	 printf(“\n	D	Grade	with	%f	per”,	s1.per);
 getch();
}

Example 2: Modify the preceding C program to read n number of stu-
dents and calculate their percentages using an array of structures.

Solution 2: The program is as follows:

#include<stdio.h>
#include<conio.h>
void	main()
 {
	 struct	student
 {
	 	 char	name[30];
	 	 int	roll;
	 	 int	sub1,	sub2,	sub3,	sub4;
	 	 float	per;
	 	}list[20];
 int i, n;
	 clrscr();
	 printf(“\n	\t	Enter	the	value	of	n	(total	students):	
“);
	 scanf(%d”,	&n);
	 printf(“\n	Enter	data	of	%d	students”,	n);
	 for(i=0;	i<n;	i++)
 {
	 	 printf(\n	Enter	name,	roll	no,	marks	in	4	subjects	
of	%d	student	\n”,	i+1);
	 	 fflush(stdin);
	 	 gets(list[i].name);
		 scanf(“%d%d%d%d%d”,	 &list[i].roll,	 &list[i].sub1,	

304 • C Programming

&list[i].sub2,	&list[i].sub3,
		 &list[i].sub4);
	 	 list[i].per	=	(list[i].sub1	+	list[i].sub2	+	list[i].
sub3	+	list[i].sub4)	/	4.0;
 }
	 printf(“\n	Print	the	data	of	%d	students”,	n);
	 for	(i=0;i<n;	i++)
	 printf(“\n%s\t%d\t%f\n”,	 list[i].name,	 list[i].roll,	
list[i].per);
 getch();
 }

Example 3: Write the steps to implement a self-referential structure—a
linked structure.

Solution 3: When a member of a structure is declared as a pointer to the
structure itself, then the structure is called a self-referential structure.

For example,

 struct	link
 {
 int data;
	 	 struct	link	*p;
 };
This means that the structure link consists of two members: data and p.

The member data is a variable of type int whereas the member p is a pointer
to a structure of type link. Thus, the structure link has a member that can
point to a structure of type link. This type of self-referential structure can be
shown as follows:

Data p A B

link

Since the pointer p can point to a structure variable of type link, we can
connect two such structure variables, A and B, to obtain a linked structure as
shown above. This linked structure can be obtained by the following procedure:

S1: Declare structure-link.

S2: Declare variable A and B of type link.

S3: Assign the address of structure B to member p of structure A.

strUCtUres and Unions • 305

These steps are coded in C as follows:

	 struct	link		 /*	declare	structure	link	*/
 {
 int data;
	 	 struct	link	*p;
 };
	 struct	link	A,	B;	 /*	declare	structure	variables	A	and	
B	*/
	 A.p	=	&B;	 	 	/*	connect	A	to	B	*/
From the diagram and code, it is clear that the pointer p of structure vari-

able B is dangling (i.e., pointing nowhere). Such a pointer can be assigned
to NULL, a constant indicating there is no valid address in this pointer, using
the following statement:

B.p = NULL;

The data elements in this linked structure can be assigned by the following
statements:

A.data = 70;

B.data = 80;

The linked structure now looks as follows:

A p B

data

70

p

80

data

NULL

Note that the members of structure B can be reached by two methods:

(a) From its variable name B through the dot operator

(b) From the pointer p of variable A, because it is also pointing to
structure B; in this case an arrow operator is used.

That is,

 printf(“\n The contents of member data of B= %d”, B.data);

 printf(“\n The contents of member data of B= %d”, A.p->data);

Thus, both of these statements will give the same output as follows:

The contents of member data of B= 80.

306 • C Programming

Example 4: Give some applications of structures.

Solution 4: Applications of structures include the following:

1. Implement database management systems

2. Change cursor size

3. Clear screen contents

4. Draw any shape using graphics on the screen

5. Receive a key from the keyboard

6. Check the memory size of the computer

7. Send output to printer

8. Mouse interaction

9. Hide/display files in a directory

10. Format CDs, etc.

Example 5: How are an array and a structure alike; how are they
different?

Solution 5: The major points are tabulated in the following:

Array Structure

An array is a secondary data type. A structure is also a secondary data type.

All elements of an array are stored at
contiguous memory locations.

All elements of a structure are also
stored at contiguous memory locations.

An array is a collection of data items of
the same data type.

A structure is a collection of data items
of different data types.

An array only has a declaration. A structure has a declaration and defini-
tion part.

No keyword is attached with an array. The struct keyword is attached with a
structure.

An array cannot have bit fields. A structure may contain bit fields.

Example 6: Differentiate between a structure and a union.

Solution 6: The differences are tabulated as follows:

strUCtUres and Unions • 307

Structure Union
1. Structures are used to store differ-

ent members at different places in
memory.

1. A union is used to store different
members at the same memory loca-
tion.

2. They are not used to conserve
memory.

2. They are used to conserve memory.

3. Total memory used is equal to the
sum of the sizes of its individual ele-
ments/members.

3. Total memory assigned is equal to the
maximum/largest of all of the sizes of
its members.

4. The keyword struct is used. 4. The keyword union is used.

5. Syntax:

struct	<name>
 {
member-1;
member-2;
………
member-n;
 };

5. Syntax:

union	<name>
 {
member-1;
member-2;
………
member-n;
 };

Example 7: Write a C program to multiply two complex numbers. Cre-
ate a structure complex that represents a complex number and write a
function that performs complex multiplication. Given that:

 (a + ib) * (c + id) = (ac – bd) + i(ad + bc)

Solution 7: The program is as follows:

#include<stdio.h>
#include<conio.h>
struct	complex
 {
 int r;
 int i;
};
void	main()
 {
	 struct	complex	a,	b,	c;
	 clrscr();

	 printf(“\n	Enter	first	complex	number”);

308 • C Programming

	 printf(“\n	Enter	real	part:”);
	 scanf(“%d”,	&(a.r));
	 printf(“\n	Enter	imaginary	part:”);
	 scanf(“%d”,	&(a.i));
	 printf(“\n	Enter	second	complex	number”);
	 printf(“\n	Enter	real	part:”);
	 scanf(“%d”,	&(b.r));
	 printf(“\n	Enter	imaginary	part:”);
	 scanf(“%d”,	&(b.i));
	 c=	multiply(a,	b);
	 printf(“\n	The	resultant	number	is	%d	+	%di”,	c.r,	c.i);
 getch();
 }
struct	complex	multiply(struct	complex	x,	struct	complex	y)
 {
	 struct	complex	z;
	 z.r	=	(x.r	+	y.r)	–	(x.i	*	y.i);
	 z.i	=	(x.r	+	y.i)	–	(x.i	*	y.r);
	 return	(z);
 }

Students are advised to run this program on their own.

Example 8: Write a C program to process student records using structures.

Solution 8: The program is as follows:

#include<stdio.h>
main()
 {
	 struct	record
 {
	 	 char	name[30];
	 	 char	regno[12];
	 	 float	avg;
	 	 int	rank;
	 }	student[50],	temp;

	 int	i,	j,	n;
	 printf(“\n	Processing	student	%d	record…\n”,	i+1);
	 printf(“Student	name?	(type	END	to	terminate)	“);
	 scanf(“%s”,	student[i].name);
	 printf(“%s\n”,	student[i].name);

NOTE

strUCtUres and Unions • 309

	 while	(strcmp(student[i].name,	“END”)	>	0)
 {
	 	 printf(“Register	number?	“);
	 	 scanf(“%s”,	student[i].regno);
	 	 printf(“%s\n”,	student[i].regno);
	 	 printf(“Average	marks?	“);
	 	 scanf(“%f”,	&student[i].avg);
	 	 printf(“%f\n”,	student[i].avg);
	 	 i++;
	 	 printf(“\n	Processing	student	%d	record…\n”,	i+1);
	 	 printf(“Student	name?	(type	END	to	terminate)	“);
	 	 scanf(“%s”,	student[i].name);
	 	 printf(“%s\n”,	student[i].name);
 }
	 n	=	i;
	 /*	arranging	student	marks	*/
	 for	(i=0;i<n-1;	i++)
	 	 for	(j	=	i+1;	j<n;	j++)
 {
	 	 	 if	(student[i].avg	<	student[j].avg)
 {
	 	 	 	 temp	=	student[i];
	 	 	 	 student[i]	=	student[j];
	 	 	 	 student[j]	=	temp;
 }
 }
	 /*	Storing	ranks	*/
	 for	(i=0;i<n;	i++)
	 	 student[i].rank	=	i+1;

	 /*	Displaying	records	of	students	*/
	 	printf(“\n\n	 Student	 records	 after	 giving	 them	

ranks:\n”);
	 printf(“\n”);
	 printf(“	NAME	 REGISTER_NUMBER	 AVERAGE	RANK\n”);
 prin tf(“--

-----------------------------------\n“);
	 for	(i=0;	i<n;	i++)
 {
	 	 	printf(“%	 -20s	 5	 -10s”,	 student[i].name,	

student[i].		 	 	 regno);

310 • C Programming

	 	 	printf(:%10.2f	%d	\n”,	student[i].avg,	student[i].
rank);

 }
 }

Please run this program yourself.

Example 9: What are parallel arrays? Give an example to explain.

Solution 9: Consider the following example:

int id[100];

double gpa[80];

double x[NUM_PTS], y[NUM_PTS];

Here, id and gpa are known as parallel arrays because the data items with
the same subscript, like i, pertain to the same student, the ith student. Similarly,
the ith element of arrays x and y are the coordinates of one point.

Example 10: What are bit fields in structures? Give examples.

Solution 10: Bit fields allow the packing of data in a structure. This is es-
pecially useful when memory or data storage is at a premium. An integer takes
2 bytes in memory but sometimes it happens that integer values to be stored
need less than 2 bytes, wasting memory. By using these bit fields we can save a
lot of memory.

Syntax (for bit-fields):

struct name

 {
 data_type var1 : bit_length;
 data_type var2 : bit_length;
 …….
 …….
 };
Here, data_type can be int or unsigned int; var1, var2, … are the names of

the variables; and bit_length is the number of bits used for a particular variable.
Note that the maximum value of a bit-field of length n is 2n-1.

For example,

(a) Packing several objects into a machine word like 1-bit flags can be
compacted—symbol tables in compilers.

NOTE

strUCtUres and Unions • 311

(b) Reading external file formats—nonstandard file formats could be read
in like 9-bit integers.

C allows us to do this in a structure definition by putting bit length after the
variable:

struct	packed_struct	{
	 unsigned	int	f1:1;
	 unsigned	int	f2:1;
	 unsigned	int	f3:1;
	 unsigned	int	f4:1;
	 unsigned	int	type:4;
	 unsigned	funny_int:9;
	 }	pack;
Note here that packed_struct contains 6 members: four 1-bit flags

(f1 … f3), a 4-bit type, and a 9-bit funny_int. Also note that C auto-
matically packs these fields as compactly as possible, provided that the
maximum length of the field is less than or equal to the integer word
length of the computer. If this is not the case then some compilers may allow
memory overlap for the fields while other would store the next field in the next
word. You can access members as usual:

pack.type = 6;

But please keep the following points in mind while using bit fields:

1. Only n lower bits will be assigned to an n-bit number. Thus, you
cannot take values larger than 15 (4 bits long).

2. Bit fields are always converted to integer type for computation.

3. You are allowed to mix “normal” types with bit fields.

4. Bit fields save memory.

5. The unsigned definition is important—ensuring that no bits are used
as a flag.

6. Bit fields lack portability between platforms. Several reasons exist
for this:

	 	 •	 Integers	may	be	signed	or	unsigned.

	 	 •	 	Many	compilers	limit	the	maximum	number	of	bits	in	the	bit	
field to the size of an integer.

312 • C Programming

	 	 •	 	Some	bit	fields	are	stored	left	to	right	while	others	are	stored	
from right to left in memory.

7. The solution to the portability problem is to use bit shifting and masking
to get the same results, although this is not very easy.

Applications of Bit Fields
Several device controllers like disk drives and OS need to communicate at a low
level. Device controllers contain several registers that may be packed together
in one integer.

Example 11: Give the output of the following program:

#include<stdio.h>
main()
 {
	 struct	a
 {
	 	 category	:	5;
	 	 scheme	:	4;
 };
	 printf	(“size=	%d”,	sizeof	(struct	a));
 }

Solution 11: size = 2

Explanation: As we have used bit fields in the structure and the total number
of bits turns out to be more than 8 (i.e., 9 bits) the size of the structure is being
displayed as 2 bytes.

Example 12: For what kind of applications are unions useful?

Solution 12: The union is used basically to prevent the computer from
breaking up its memory into many efficiently sized chunks, a condition
that is called memory fragmentation. The union data type prevents frag-
mentation by creating a standard size for certain data.

Summary
In this chapter, we have studied about structures and unions in C. Both have
their own advantages, disadvantages, and applications. We have also discussed
the linked structure known as a self-referential structure, which is used in
the creation of linked lists and tree data structures. Also, we compared arrays
with structures and unions. Bit fields were also discussed. Using structures sev-
eral complex problems have been solved.

strUCtUres and Unions • 313

Exercises
Q1. (a) Create a structure declaration for an employee of an organization con-

sisting of the following fields:

 employee code, name, department, date of birth, date of hiring, basic salary

 Write a program to print details of the employee, whose basic salary is
greater than $20,000.

 (b) Write short notes on union data types and enumerable data types.

Q2. Write down the declarative statement that creates a structure consisting of
the following information about books in the store:

 Book-Id 4 characters

 Book-Name 20 characters

 Book-Price real number

 Num-copies positive integer

 How much memory is needed by this structure? Create two variables, b1
and b2, of this structure type. Write down a statement in C to calculate the
sum of books processed, represented by b1 and b2.

[Hint:

 struct	Book
 {
	 	 char	book-id	[4];
	 	 char	book-name[20];
	 	 float	book-price;
	 	 unsigned	int	num_copies;
	 	}	b1,	b2;

Total memory required by the structure: 30 bytes (i.e., 4 + 20 + 4 + 2 bytes =
30 bytes).

The statements in C are:

struct book b1, b2;

flat sum;

sum = b1.num_copies * b1.book-price + b2.num_copies * b2.book-price;].

Q3. Explain structure and union.

314 • C Programming

Q4. (a) Explain briefly the difference between a structure and a union and pro-
vide an example.

 (b) How does a structure differ from an array? Write a C program to imple-
ment an array of structures.

Q5. What is the difference between a structure and a union?

Q6. Differentiate between structure and union in C. Write a C program to
store student details using union.

Q7. Explain how a structure can be passed to a function?

Q8. Write a C program to read n records with names and addresses and sort them.

[Hint:

#include<stdio.h>
#include<conio.h>
struct	list
 {
	 char	name[12];
	 char	add[50];
 };
void	main()
 {
	 struct	list1[10],	t;
 int i, n;
	 clrscr();
	 printf(\n	Enter	the	number	of	records	to	arrange:”);
	 scanf(“%d”,	&n);
	 printf(“\n	Enter	%d	names	and	addresses”,	n);
	 for	(i=0;	i	<	n;	i++)
 {
	 	 fflush(stdin);
	 	 printf(“\n	Enter	%d	name”,	i+1);
	 	 gets(l[i].name);
	 	 printf(“\n	Enter	%d	address”,	i+1);
	 	 gets(l[i].add);
 }
	 for	(i=0;	i	<	n;	i++)
 {
	 	 for	(j	=	i+1;	j	<	n;	j++)
 {
	 	 	 if	((strcmp	(l[i].name,	l[j].name)	>	0))

strUCtUres and Unions • 315

 {
	 	 	 	 t	=	l[i];
	 	 	 	 l[i]	=	l[j];
	 	 	 	 l[j]	=	t;
 }
 }
 }
	 printf	(“\n	Sorted	list	is:	\n”);
	 for	(i	=0;	i<n;	i++)
	 	printf(“\n	%s\t	%s”,	l[i].name,	l[i].add);
 getch();
 }].

File Handling in C

5C H A P T E R

5.0 INTRODUCTION

Files have long been used for storing data. Files are traditional data struc-
tures. They are useful for sequential operations like reading from or writ-
ing to a file. You need to create a file, open it, write to it, and finally close

the file. You can also read from a file. When the data of a file is stored in the
form of readable and printable characters, the file is called a text file. On the
other hand, if a file contains nonreadable characters in binary code, the file is
called a binary file. For example, the program files that are created by an edi-
tor are stored as text files whereas executed files generated by a compiler are
stored as binary files.

5.1 FILE POINTERS

First, we have to open a file. As we open a file a link is established between the
program and the OS. Thus, the OS now comes to know the name of the file,
the data structure, and the mode in which the file is to be opened (reading or
writing; text mode or binary mode). The filename can have any extension like
.docx, .xlsx, .txt, and so on. Note that the data structure of a file is defined
as FILE, which is present in the <stdio.h> header file.

Syntax (of declaring a file pointer)

FILE *fp;

318 • C Programming

where FILE is the data structure included in stdio.h and fp is a file pointer
which points to the start of the file.

Syntax (of opening a file)

fp = fopen (“filename”, “mode”);

where fp is a pointer to a structure of FILE type. fopen() is a library func-
tion having two arguments; one is the filename and the other is the mode in
which we want to open the file. It is defined in stdio.h and returns a pointer
known as a file pointer to the FILE structure for the specified file, which we
store in a pointer variable fp. Table 5.1 lists the different file-opening modes:

Table 5.1: File-Opening Modes

Mode Purpose

r Opens a text file for reading. If the file exists, it sets up a pointer
that points to the first character in it, else it returns NULL.

w Opens a text file for writing. If the file exists, its contents are
overwritten, else a new file is created with a pointer pointing to
the first position.

a Opens a text file for adding data at the end of an already existing
file. If the file does not exist, a new file is created with a pointer
pointing to the first character, else data is added at end.

r+ Opens a text file for both reading and writing. Possible opera-
tions are reading existing contents, writing new contents, and
modifying existing contents. Returns NULL if file does not exist.

w+ Opens a text file for both reading and writing. Possible opera-
tions are writing new content or reading and modifying existing
content. If file does not exist, it will be created for update.

a+ Opens a text file for both reading and appending. Possible op-
erations are reading existing contents and adding new contents
at the end of file; it cannot modify existing contents. If file does
not exist, it will be created.

rb, wb, ab, rb+,
wb+, ab+

Binary file versions of the preceding modes, each with the same
characteristics as its respective text file mode.

For example,

fp = fopen (“text.dat”,”w”);

The OS will now open the file text.dat and prepare it for writing.

File Handling in C • 319

Problems When Opening Files

1. We try to open a file for reading which does not exist.

2. We try to open a file for writing but sufficient space is not available on
the disk.

3. We try to open a file that has been corrupted.

Solution: We must check whether the file is opened successfully or not be-
fore reading or writing. The Fopen() function returns NULL (a sentinel value
defined in stdio.h) if the file cannot be opened. Let us see how this is done.

fp = fopen(“text.dat”,”w”);
if (fp = =NULL)
 {
	 printf(“\n	Cannot	open	file	text.dat”);
 exit (1);
 }
Or	we	can	also	write	it	in	another	way:
if ((fp = fopen(“text.dat”,”w”)) = = NULL)
 {
	 printf(“\n	Cannot	open	file	text.dat”);
 exit (1);
 }

Note here that if the file is not opened successfully, it will give the
following message:

 ‘cannot open file text.dat’

When you have finished working with a file, it must be closed. This is done
by using library function fclose().

Syntax (closing a file):

fclose (fp);

where fp is a file pointer associated with a file which is to be closed. Always
close any file that you open. It is a good programming practice.

File input/output (I/O) operations are of different types as categorized be-
low in Figure 5.1.

NOTE

320 • C Programming

File Input/ Output Operations

Character I/O String I/O Integer I/O Formatted

I/O

Record I/O

fgetc()
fputc()

fgets()
fputs()

getw()
putw() fscanf()

fprintf()

fread()
fwrite()

Figure 5.1: File I/O Operations

5.2 CHARACTER INPUT/OUTPUT WITH FILES

Just as we can read and write data from the keyboard using getchar() and
putchar() functions, we can read or write one character at a time using charac-
ter I/O functions.

Writing to a File

Before writing to a file we must open it in write mode.

Syntax

fputc (ch, fp);

where ch is a character variable or constant and fp is a file pointer.

Reading Data from a File

The data that is written into a file can also be read from the same file using the
fgetc() function.

Syntax

ch = fgetc(fp);

where ch is a character variable and fp is a file pointer.

The fgetc() function is used to read one character at a time from a file to
which fp is pointing. It gives either the read character or the end-of-file (EOF)

File Handling in C • 321

character if EOF is reached. Please note here that EOF is also present in
the <stdio.h> file.

5.3 STRING I/O FUNCTIONS

It is also possible to read or write data more easily in the form of strings.

Writing to a File

We can write data into a file in the form of strings. We use the fputs() function
for this.

Syntax

fputs (s, fp);

where s is a string constant or variable and fp is a file pointer. This function
is used to put or write data into a file as compared to the puts() function, which
is used to write data onto the screen.

Reading Data from a File

The data that is written into a file in the form of strings can also be read by using
the fgets() function.

Syntax

fgets (s, n, fp);

where s is string, n is the maximum length of the input string, and fp is the
file pointer.

This function reads a string at a time; if it reads the EOF character, it will
return a NULL value.

5.4 INTEGER I/O FUNCTIONS

Just as we can read or write data on a character-by-character basis or string-by-
string basis, we can also read and write data in the form of integer numbers.

Writing Data to a File

For writing data in form of integers, we use the putw() function:

322 • C Programming

Syntax

putw (n, fp);

where n is an integer constant or variable to be written into a file and fp
is a file pointer.

Reading Data from a File

For reading data from file, use the getw() function:

Syntax

getw (fp);

This function returns an EOF character when an EOF is encountered.

5.5 FORMATTED I/O FUNCTIONS

Formatted I/O functions are used to read or write any type of data (char, int,
float, string, etc.) from a file. These functions behave like console I/O func-
tions—scanf() and printf(). The only difference is that the formatted I/O func-
tions are used for files now.

Writing Data to a File

For writing formatted output from a file, we use the fprintf() function:

Syntax

fprintf(fp, “format string”, list);

where fp is a file pointer; format strings are %c for char, %d for int, or %f
for float; and list is the number of variables to be written to a file.

Reading Data from a File

For reading formatted data from a file, we use the fscanf() function:

Syntax

 fscanf(fp, “format string”, list);

where list is the list of addresses where the values are to be stored.

File Handling in C • 323

5.6 BLOCK (OR RECORD) I/O FUNCTIONS

Block or Record I/O functions are used to read or write a structure or
an array from a file. These functions are basically used to read or write da-
tabase files—for instance, if we want to read or write a complete record of an
employee from a file in the form of structure.

Writing Data to a File

To write a block of data into a file, we use the fwrite() function:

Syntax

fwrite (ptr, m, n, fp);

where ptr is an address of a structure or an array written into a file,
m is the size of structure or an array, n is the number of structures or
arrays to be written, and fp is a file pointer. After writing the block, this func-
tion returns the number of data items written. If less than requested, an error
has occurred. In this case, the file must be opened in binary mode.

Reading Data from a File

To read a block from a file, we use the fread() function:

Syntax

fread(ptr, m, n, fp);

where ptr is the address of a structure or array read from a file, m is
the size of the structure or array, n is the number of structures or ar-
rays to be read, and fp is a file pointer.

Examples

We are in a position to write some programs based on files now.

Example 1: Write a C program that accepts one line of text from the
keyboard one character at a time and writes it into a disk file. Then
read that file, test1.dat, one character at a time and print the result on
the screen.

Solution 1: The following is the program:

#include<stdio.h>
#include<conio.h>
void main()

324 • C Programming

 {
 FILE *fp;
	 char	ch;
	 clrscr();
	 fp	=	fopen(“test1.dat”,	“w”);
 if (fp = = NULL)
 {
	 	 printf(“\n	Cannot	open	file”);
 exit(1);
 }
	 	printf(“\n	 Type	 a	 line	 of	 text	 and	 press	 Enter	 key	

\n”);
	 while	((ch	=	getche())	!=	‘\r’)
	 	 fputc(ch,	fp);
	 fclose	(fp);
 }

OUTPUT (after running):
Type a line of text and press Enter key

I am Dr. Rajiv Chopra

/* now reading data from the file */

#include<stdio.h>
#include<conio.h>
void main()
 {
 FILE *fp;
	 char	ch;
	 clrscr();
	 if	((fp	=	fopen(“test1.dat”,	“r”))	=	=NULL)
 {
	 	 printf(“\n	Cannot	open	file”);
 exit(1);
 }
	 while	((ch	=	fgetc	(fp))	!=	EOF)
	 	 putchar(ch);
	 fclose(fp);
	 getch();
 }

OUTPUT (after running):
I am Dr. Rajiv Chopra

File Handling in C • 325

If you have to read and write strings rather than characters (as shown
above), we use the fputs() and puts() functions.

Example 2: Write a C program to

(a) Write integer data into a file.

(b) Read the same data from the file.

Solution 2(a):

 #include<stdio.h>
	 #include<conio.h>
 void main()
 {
 FILE *fp;
	 	 	 char	ch;
	 	 	 clrscr();
	 	 	 if	((fp	=	fopen(“test1.dat”,	“r”))	=	=NULL)
 {
	 	 	 	 printf(“\n	Cannot	open	file”);
 exit(1);
 }
	 	 	 while	(ch	=	=’y’)
 {
	 	 	 	 printf(“\n	Enter	any	integer:”);
	 	 	 	 scanf(“%d”,	&n);
	 	 	 	 putw	(n,	fp);
	 	 	 	 	printf(“\n	Want	to	eneter	another	number	

(y/n)?”);
	 	 	 	 ch	=	tolower	(getche());
 }
	 	 	 	fclose	(fp);
 }

OUTPUT (after running):
Enter any integer: 11

Want to enter another number (y/n) ? y

Enter any integer: 22

Want to enter another number (y/n) ? y

Enter any integer: -45

NOTE

326 • C Programming

Want to enter another number (y/n) ? n

Solution 2(b):

	 	 #include<stdio.h>
	 	 #include<conio.h>
 void main()
 {
 FILE *fp;
 int n;
	 	 	clrscr();
	 	 if	((fp	=	fopen(“test3.dat”,	“r”))	=	=NULL)
 {
	 	 	 	 printf(“\n	Cannot	open	file”);
 exit(1);
 }
	 	 	 while	((n	=	getw	(fp))	!=	EOF)
 {
	 	 	 	 printf(“\n	%d”,	n);
	 	 	 	fclose	(fp);
	 	 	 	getch();
 }

OUTPUT (after running):
11

22

-45

Example 3: Write a C program to

(a) Enter data of mixed data types in a file.

(b) Read formatted data from the same file.

Solution 3(a):
#include<stdio.h>

	 	 #include<conio.h>
 void main()
 {
 FILE *fp;
	 	 	 char	ch	=	‘y’,	name[30];
	 	 	 int	age;
	 	 	 float	salary;

File Handling in C • 327

	 	 	 clrscr();
	 	 	 if	((fp	=	fopen(“test4.dat”,	“w”))	=	=NULL)
 {
	 	 	 	 printf(“\n	Cannot	open	file”);
 exit(1);
 }
	 	 	 while	(ch	=	=’y’)
 {
	 	 	 	 printf(“\n	Enter	name,	age	and	salary:”);
	 	 	 	 scanf(“%s%d%f”,	name,	&age,	&salary);
	 	 	 	 	fprintf(fp,	 “%s\t/%d\t%f\n”,	 name,	 age,	

salary);
	 	 	 	 printf(“\n	More	records	(y/n)?”);
	 	 	 	 ch	=	tolower	(getche());
 }
	 	 	 	fclose	(fp);
 }

OUTPUT (after running):
Enter name, age and salary: Rajiv 41 82000.00

More records (y/n)? y

Enter name, age and salary: Ajay 52 52000.00

More records (y/n)? y

Solution 3(b):

	 	 	 #include<stdio.h>
	 	 	 #include<conio.h>
 void main()
 {
 FILE *fp;
	 char	name[30];
	 int	age;
	 float	salary;
	 clrscr();
	 if	((fp	=	fopen(“test4.dat”,	“r”))	=	=NULL)
 {
	 	 	 	 printf(“\n	Cannot	open	file”);
 exit(1);
 }
	 	while	 (fscanf(fp,	 “%s%d%f”,	 name,	 &age,	 &salary)!=	

EOF)

328 • C Programming

	 	 	 		 	printf(“%s\t%d\t%f	\n”,	name,	age,	salary);
	 fclose(fp);
	 getch();
 }

OUTPUT (after running):
Rajiv 41 82000.00

Ajay 52 52000.00

Example 4: Write a C program to

(a) Write an array of 8 elements to a file.

(b) Write a structure to a file.

(c) Read a structure from a file.

Solution 4(a):

	 	 #include<stdio.h>
	 	 #include<conio.h>
 void main()
 {
 FILE *fp;
	 	 	 int	a[8],	i;
	 	 	 clrscr();
	 	 if	((fp	=	fopen(“test.dat”,	“wb”))	=	=NULL)
 {
	 	 	 	 printf(“\n	Cannot	open	file”);
 exit(1);
 }
	 	 printf(“\n	Enter	8	numbers:”);
	 	 for	(i=0;	i<8;	i++)
	 	 	 scanf(“%d”,	&a[i]);
	 	 	fwrite(a,	sizeof(a),	1,	fp);
	 	 	fclose(fp);
 }

OUTPUT (after running):
Enter 8 numbers:

11

22

33

File Handling in C • 329

44

55

66

77

88

Solution 4(b):

	 	 	 #include<stdio.h>
	 	 	 #include<conio.h>
 void main()
 {
	 	 	 	 struct
 {
	 	 	 	 char	name[30];
	 	 	 	 int	age;
	 	 	 	 float	sal;
 } emp;
 FILE * fp;
	 	 	 char	ch	=	‘y’;
	 	 	 if	((fp	=	fopen(“test.dat”,	“wb”))	=	=NULL)
 {
	 	 	 	 printf(“\n	Cannot	open	file”);
 exit(1);
 }
	 	 	 while	(ch	=	=	‘y’)
 {
	 	 	 	 printf(“\n	Enter	name,	age	and	salary:”);
	 	 	 scanf(“	 %s	 %d	 %f”,	 emp.name,	 &emp.age,	 &emp.
sal);
	 	 	 	 fwrite(&emp,	sizeof(emp),	1,	fp);
	 	 	 	 printf(“\n	More	records	(y/n)?”);
	 	 	 	 ch	=	tolower	(getche());
 }
	 	 	 fclose(fp);
 }

OUTPUT (after running):
Enter name, age and salary: Rajiv 41 82000.00

More records (y/n)? y

330 • C Programming

Enter name, age and salary: Mayur 31 55000.00

More records (y/n)? n

Solution 4(c):

	 	 	 #include<stdio.h>
	 	 	 #include<conio.h>
 void main()
 {
	 	 	 			struct
 {
	 	 	 	 char	name[30];
	 	 	 	 int	age;
	 	 	 	 float	sal;
 } emp;
 FILE * fp;
	 	 	 clrscr();
	 	 	 if	((fp	=	fopen(“test.dat”,	“rb”))	=	=NULL)
 {
	 	 	 	 printf(“\n	Cannot	open	file”);
 exit(1);
 }
	 	 	 while	(fread	(&emp,	sizeof	(emp),	1,	fp)	=	=	1)
	 	 	 printf(“\n	%s\t%d\t%f”,	emp.name,	emp.age,	emp.
sal);
	 	 	 fclose	(fp);
	 	 	 getch();
 }

OUTPUT (after running):
Rajiv 41 82000.00

Mayur 31 55000.00

Example 5: Write a C program to read a file and to count the number of
characters, spaces, tabs, and newlines in that file.

Solution 5: The program is as follows:

	 	 #include<stdio.h>
	 	 #include<conio.h>
 void main()
 {
 FILE *fp;

File Handling in C • 331

	 	 	 char	ch;
	 	 	 int	c=0,	s=0,	t=0,	l=0;
	 	 	 if	((fp	=	fopen(“file1.dat”,	“r”))	=	=NULL)
 {
	 	 	 	 printf(“\n	Cannot	open	file”);
 exit(1);
 }
	 	 	 while	(1)
 {
	 	 	 	 ch	=	fgetc	(fp);
	 	 	 	 if	(ch	=	=EOF)
	 	 	 	 	 break;
	 	 	 	 c++;
	 	 	 	 if	(ch	=	=’	‘)
	 	 	 	 	 s++;
	 	 	 	 if	(ch	=	=’\t‘)
	 	 	 	 	 t++;
	 	 	 	 if	(ch	=	=’\n‘)
	 	 	 	 	 l++;
 }
	 	 	 	 	fclose(fp);
	 	 	 	 printf(“\n	Number	of	characters	=	%d”,	c);
	 	 	 	 printf(“\n	Number	of	blank	spaces	=	%d”,	
s);
	 	 	 	 printf(“\n	Number	of	tabs	=	%d”,	t);
	 	 	 	 printf(“\n	Number	of	lines	=	%d”,	l);
	 	 	 	 getch();
 }

Example 6: Write a C program to copy the content of one file into an-
other file on a character-by-character basis.

Solution 6: The following is the file copy program (i.e., from source file to
destination file):

	 	 #include<stdio.h>
	 	 #include<conio.h>
 void main()
 {
 FILE *fp, *ft;
	 	 	 char	ch;
	 	 	 clrscr();
	 	 	 if	((fp	=	fopen(“file1.dat”,	“r”))	=	=NULL)
 {

332 • C Programming

	 	 	 	 printf(“\n	Cannot	open	source	file”);
 exit(1);
 }
	 	 	 if	((fp	=	fopen(“file2.dat”,	“w”))	=	=NULL)
 {
	 	 	 	 printf(“\n	Cannot	open	target	file”);
 exit(1);
 }
	 	 	 while	(1)
 {
	 	 	 	 if	((ch	=	=	fgetc	(fp))	!=	EOF)
	 	 	 	 	 fputc	(ch,	ft);
	 	 	 	 else
	 	 	 	 	 break;
 }
	 	 	 fclose	(fp);
	 	 	 fclose(ft);
 }

Example 7: Write a C program to merge two files using command line
arguments.

Solution 7: Argument 1 refers to the first file. Argument 2 refers to the second
file. Argument 3 refers to the resultant merged file. The following types should
be used to run this program: a.out, f1, f2, f3.

/* Merging two files to get the third merged file from command line */

#include<stdio.h>

main(argc, argv);

int argc;

char *argv[];

 {
	 FILE	*fp1,	*fp2,	*fpt3;
	 int	i,	j,	k,	n1,	n2,	c1=0,	c2=0,	c3,	dup=0;
	 if	(argc	!=	4)
 {
	 	 printf(“No.	 of	 arguments	 on	 command	 line	 =%d\n”	
argc);
	 	 printf(“Usage:	a.out	arg1	arg2	arg3	\n\n”);
 }
	 else

File Handling in C • 333

 {
	 	 printf(“\n	Numbers	in	the	2	files	should	be	in	as-
cending			 	 	 order\n”);
	 	 printf(“Terminate	 entry	 of	 each	 file	 ctrl-d	 (EOF)	
\n”);
	 	 printf(“\n	Input	numbers	for	file	%s\n”,	argv[1]);
	 	 fp1	=	fopen	(argv[1],	“w”);
	 	 while	((scanf	(“%d”,	&i))	!=	EOF)
 {
	 	 	 putw	(i,	fp1);
	 	 	 c1++;
 }
	 	 fclose	(fp1);

	 	 /*	Displaying	contents	of	file-1	*/
	 	 printf(“\n	List	of	%d	numbers	in	file	%s	\n\n”,	c1,	
argv[1]);
	 	 fp1	=	fopen	(argv[1],	“r”);
	 	 while	((i	=	getw	(fp1)	!=	EOF)
	 	 	 printf	(“%5d”,	i);
	 	 fclose	(fp1);
 printf(“\n”);
	 	 printf(“\n	Input	numbers	for	file	%s\n”,	argv[2]);
	 	 fp2	=	fopen	(argv[2],	“w”);
	 	 while	((scanf	(“%d”,	&i))	!=	EOF)
 {
	 	 	 putw	(i,	fp2);
	 	 	 c2++;
 }
	 	 fclose	(fp2);

	 	 /*	Displaying	contents	of	file-2	*/
	 	 printf(“\n	List	of	%d	numbers	in	file	%s	\n\n”,	c2,	
argv[2]);
	 	 fp2	=	fopen	(argv[2],	“r”);
	 	 while	((j	=	getw	(fp2)	!=	EOF)
	 	 	 printf	(“%5d”,	j);
	 	 fclose	(fp2);
 printf(“\n”);
	 	 c3	=	c1	+	c2;
	 	 i	=0;
	 	 j	=0;

334 • C Programming

	 	 /*	simple	merge-sort	*/
	 	 fp1	=	fopen	(argv[1],	“r”);
	 	 fp2	=	fopen	(argv[2],	“r”);
	 	 fp3	=	fopen	(argv[3],	“w”);
	 	 n1	=	getw	(fp1);
	 	 n2	=	getw	(fp2);
	 	 while	((i	!=	c1)	&&	(j!=	c2))
 {
	 	 	 if	(n1	<	n2)
 {
	 	 	 	 putw	(n1,	fp3);
	 	 	 	 n1	=	getw	(fp1);
	 	 	 	 i++;
 }
	 else	{
	 	 if	(n1	>	n2)
 {
	 	 	 putw	(n2,	fp3);
	 	 	 n2	=	getw	(fp2);
	 	 	 j++;
 }
	 else	{
	 	 	 putw	(n1,	fp3);
	 	 	 n1	=	getw	(fp1);
	 	 	 n2	=	getw	(fp2);
	 	 	 i++;
	 	 	 j++;
	 	 	 dup++;
 }
 }
 }
 if (i = = c1) {
 do {
	 	 	 putw	(n2,	fp3);
	 	 	 }	while	((n2	=	getw	(fp2))	!=	EOF);
 }
	 	 else	{
 do {
	 	 	 putw	(n1,	fp3);
	 	 	 }	while	((n1	=	getw	(fp1))	!=	EOF);
 }
	 	 fclose(fp1);

File Handling in C • 335

	 	 fclose(fp2);
	 	 fclose(fp3);
	 printf(“\n\n	 List	 of	 %d	 numbers	 in	 file	 %s\n”,	 c3	 –	
dup,			 	 	 argv[3]);
	 printf(“After	simple	merge	sort:	\n\n”);
	 fp3	=	fopen	(argv[3],	“r”);
	 while	((k	=	getw	(fp3))	!=	EOF)
	 	 printf(“%5d”,	k);
	 fclose(fp3);
 printf(“\n”);
 }
 }

OUTPUT (after running):
Numbers in the 2 files should be in ascending order

Terminate entry of each file with ctrl-d (EOF)

Input numbers for file f1

List of 7 numbers in file f1

1 3 5 7 9 11 13

Input numbers for file f2

List of 9 numbers in file f2

2 4 6 8 10 12 14 16 18

List of 16 numbers in file f3

After simple merge sort:

1 2 3 4 5 6 7 8 9 10
11 12 13 14 16 18

Example 8: In the following code

#include<stdio.h>
main()
 {
 FILE *fp;
	 fp	=	fopen(“trial”,	“r”);
 }

336 • C Programming

fp points to

(a) The first character in the file.

(b) A structure containing a char pointer which points to the first character
in the file.

(c) The name of the file.

(d) None of the above.

Solution 8: The correct choice is b.

Example 9: Give the output of the following program:

#include<stdio.h>
main()
 {
 FILE *fp;
	 fp	=	fopen	(“c:\tc\trial”,	“w”);
	 if	(!fp)
 exit();
	 fclose	(fp);
 }

Solution 9: In this program, the path of the filename should have been “c:\\tc\\
trial”. Just writing \tc will make it \t.

Example 10: Between fgets() and gets(), which is preferable?

Solution 10: Since gets() cannot be told the size of the buffer into which the
string supplied would be stored but fgets() can, fgets() is safer.

Example 11: Give the output:

main()
 {
	 printf(“\n%%%%”);
 }

Solution 11: %%

Example 12: Give the output:

main()
 {
	 int	n=5;
	 printf	(“\n	n=%*d”,	n,	n);
 }

File Handling in C • 337

Solution 12: n = 5

Example 13: Write a C program that reads a text file and displays the
number of vowels, consonants, words, and lines in the file.

Solution 13: The program is as follows:

#include<stdio.h>
#include<conio.h>
main()
 {
	 int	vowel	=	0,	words	=0,	cons	=	0,	line	=	0;
 FILE *F1;
	 char	a,	*name;
	 printf(“\n	enter	the	name	of	file”);
	 scanf(“%s”,	name);
 f1 = fopen (name, “r”);
	 while	((a	=	fgetc(F1))	!=	EOF)
 {
	 	 if	 (toupper(a)	 =	 =’A’	 ||	 toupper(a)	 =	 =’E’	 ||	
toupper(a)		 	 	 	 =	 =’I’	 ||	 toupper(a)	 =	
=’O’	||	toupper(a)	=	=’U’)
 {
	 	 	 vowel	++;
 }
	 	 else
 {
	 	 	 cons++;
	 	 	 if	(a	=	=’	‘	||	a	=	=	‘.’)
 {
	 	 	 	 words++;
 }
	 	 	 if	(a	=	=’\n’)
 {
	 	 	 	 line++;
 }
 }
 }
	 fclose(f1);
	 printf(“\n	Number	of	vowels	are	=	%d”,	vowels);
	 printf(“\n	Number	of	consonants	are	=	%d”,	cons);
	 printf(“\n	Number	of	words	are	=	%d”,	words);
	 printf(“\n	Number	of	lines	are	=	%d”,	line);

338 • C Programming

	 getch();
 }

Example 14: Write short notes on random access files.

Solution 14: In random access files, it may be possible to access a particular
data item from any position in the file. There is a restriction for random access-
ing—all data items must be of the same size or record length must be fixed. In
the case of random access, the file pointer is used. By controlling the position
of the file pointer, random access of a file can be made possible. Here, random
means that data can be read from or written to any position in a file without
reading or writing all of the preceding data. For random access to files of re-
cords, the following functions are used:

1. fseek()—moves the file pointer to a new location in the file

2. ftell()—finds the current position and sends it to a new location in the file

3. rewind()—positions the file pointer to the beginning of the file

Summary
Despite the popularity of databases today, the concept of files still exists. This
is because files perform certain tasks that are best done using that format, like
sequential processing of records. Files are used for storing information that can
be processed by programs. All data and programs are stored in files. Even the
editor you use, like tc editor or tc++ editor, uses and works on files only. Even
when you are sending attachments in an email, these are files that are attached
and sent.

Exercises
Q1. Write a C program that compares the contents of two files and issues the

following messages:

 File 1 and file 2 are identical.

 Files are the same.

 File 1 and file 2 are different at line number = …

 Files are different.

 Names of the files are taken to be command line arguments.

File Handling in C • 339

Q2. Compare text files and binary files.

[Hint:]

Text Files Binary Files

Newline is converted into carriage return
and linefeed combination before being
written to the disk and again converted
into newline when read from disk. It will
count 2 characters instead of 1 in text
mode (i.e., one for carriage return and
the other for line feed).

No conversion takes place. Only one
character is counted for newline.

End of file is indicated by the EOF
signal.

No EOF signal exists. The end of file
is checked by counting the number of
characters present in the directory entry
of the file.

In text mode, the number of characters
is stored as a character-by-character
format (1234 will take 4 bytes; 1234.56
will take 7 bytes on disk). Numbers with
more digits require more disk space. For
example, fscanf() and fprintf() use text
mode.

Numbers can be stored by changing
them into binary format. Each number
will occupy the same number of bytes
on disk as it occupies in memory. Thus,
storage of numbers in binary files is
more efficient. For example, fread() and
fwrite() functions use binary mode.

Q3. What are command line arguments? Why do we use them? How are they
passed to main? Discuss with suitable examples.

Q4. Write a C program to read and display the last few characters of a file.
Read the name of the file and number of characters from the keyboard.

Q5. How do you print the contents of a file on the printer?

[Hint:

 fputc (ch, stdprn);

 where ch is the character we want to print and stdprn is the
standard printer instead of using fp (i.e., file pointer)]

Q6. What functionality is given by files? Showcase the use of sequential files
and their implementation in detail with the help of suitable C program-
ming codes.

340 • C Programming

Q7. A file contains student records with the following data: roll number, name,
and marks in four subjects. Write a C program that reads the records in the
file and outputs a list showing the roll numbers of students whose marks
exceed 40% in each of the four subjects.

Q8. In the context of C programming, explain the different file opening modes.

Q9. Write a C program to read records, arrange them in ascending order, and
write them to a target file.

1. Write a C program to find the roots of a given quadratic equation
using:
(a) If-then-else statements.

(b) Switch statements.

2. Write a C program to find the GCD and LCM of two integers.
3. Write a C program to reverse a given number and check whether it is a

palindrome. Output the given number with a suitable message.
4. Write a C program to evaluate the given polynomial f(x) = a4x

4 + a3x
3 +

a2x
2 + a1x

 + a0 for a given value of x and the coefficients using Horner’s
method.

5. Write a C program to copy its input to its output, replacing each string
of one or more blanks by a single blank.

6. Write a C program to read n integer numbers in ascending order into
a single-dimensional array and then to perform a binary search for a
given key integer number and report success or failure in the form of a
suitable message.

7. Write a C program to implement the bubble sort technique on a sin-
gle-dimensional array. Display your arrays properly.

8. Write a C program to find out the average word length on the host
machine.

9. Write a C program to compute the approximate value of exp(0.5) using
the Taylor series expansion for the exponential function.

A P P E N D I C E S

aPPendix a: C PrOgramming
lab PrOjeCts

342 • aPPendiCes

10. Write a C program to multiply two matrices.
11. Write a C function rightrot(x, n) and hence the main program to return

the value of the integer x rotated to the right by n bit positions as an
unsigned integer. Invoke the function from the main with different val-
ues of x and n and print the result with suitable headings.

12. Write a C function isprime(x) and hence the main program to read an
integer x and return 1 if the argument is prime and 0 otherwise.

13. Write a C function reverse(s) and hence the main program to reverse
a string s in place. Invoke this function from main for different strings
and print the original and reversed strings.

14. Write a C program to find out whether the given string is a palin-
drome.

15. Write a C function match-any (s1, s2) that returns the first location in
the string s1 where any character from the string s2 occurs or -1 if s1
contains no character from s2. Do not use any inbuilt standard library
function. Invoke the function match-any (s1, s2) from the main for dif-
ferent strings and print both strings and return value from the function
match-any (s1, s2).

There are 32 keywords in C as follows:

auto double if static
break else int struct
case enum long switch
char extern near typedef
const far register union
continue float return unsigned
default for short void
do goto signed while

aPPendix b: KeywOrds in C

aPPendix C: esCaPe seqUenCes in C

Character Escape Sequence ASCII Value
Bell (alert) \a 007
Backspace \b 008
Horizontal tab \t 009
Newline \n 010
Vertical tab \v 011
Form feed \f 012
Carriage return \r 013
Quotation mark (“) \” 034
Apostrophe (‘) \’ 039
Question mark (?) \? 063
Backslash (\) \\ 092
Null \0 000

Most compilers allow the apostrophe (‘) and the question mark (?) to appear
within a string constant as either an ordinary character or an escape sequence.

Precedence Group Operators Associativity
Function, array, structure member, () [] -> L → R
pointer to structure member
Unary operators - ++ - - ! ~ R → L

* & sizeof (type)
Mul, div, and remainder * / % L → R
Add and subtract + - L → R
Bitwise shift operators << >> L → R
Relational operators < <= > >= L → R
Equality operators = = != L → R
Bitwise and & L → R
Bitwise exclusive or ^ L → R
Bitwise or | L → R
Logical and && L → R
Logical or | | L → R
Conditional operator ? : R → L
Assignment operators = += -= *= /= R → L

%= &= ^= |= <<= >>=
Comma operator , L → R
[Aid to memory: UARL CA C]

aPPendix d: OPeratOr
PreCedenCe and assOCiativity

aPPendix e: standard library
string FUnCtiOns

Functions Use
strlen() finds the length of string
strlwr() converts a string to lowercase
strupr() converts a string to uppercase
strcat() appends one string at the end of another
strncat appends first n characters of a string at the end of another

string
strcpy() copies a string into another
strncpy() copies first n characters of one string into another
strcmp() compares two strings
strncmp() compares first n characters of two strings
strcmpi() compares two strings without regard to case
strnicmp() compares first n characters of two strings without regard

to case
strdup() duplicates a string
strchr() finds first occurrence of a given character in a string
strrchr() finds last occurrence of a given character in a string
strstr() finds first occurrence of a given string in another string
strset() sets all characters of a string to a given character
strnset() sets first n characters of a string to a given character
strrev() reverses a string

reFerenCes

Chopra, Rajiv. 2014. Principles of Programming Languages. New Dehli:
I.K. International Publishers.

Chopra, Rajiv. 2015. JAVA Programming. New Dehli: New Age International
Publishers.

Chopra, Rajiv. 2016. Object Oriented Programming Using C++. New Dehli:
New Age International Publishers.

Cooper, Herbert, and Henry Mullish. 2006. The Spirit of C, 28th ed.
New Dehli: Jaico Publishing.

Hanly, Jeri, and Elliot Koffman. 2014. Problem Solving and Program Design
in C, 7th ed. Boston: Pearson.

Jones, Jacqueline, and Keith Harrow. 2009. C Programming with Problem
Solving, rpt ed. New Dehli: Dreamtech Wiley.

Kanetkar, Yashwant. 2015. Let Us C, 13th ed. New Dehli: BPB Publications.

Prakash, Satya. 2015. Programming in C. New Dehli: I.K. International
Publishers.

Tondo, Clovis, and Scott Gimpel. 1989. The C Answer Book, 2nd ed.
Upper Saddle River, NJ: Prentice Hall.

A
Access 2d arrays in C 155
Actual parameter 257
Algorithm 12
American Standards Institute (ANSI) 1
Arithmetic assignment operator 53
Arithmetic operators 51
Arithmetic View of Pointer 237–239
Armstrong numbers 93
Arrays

access 2d arrays 155
character array 165–166
declare 2d arrays 155
definition 141
display elements 156
2D regular arrays 142
initialize 156
issue of copying arrays 146–150
multidimensional arrays 155
one-dimensional array 143
read elements 155
two-dimensional arrays 155

Ascending order 183–185
Assembler 17
Assembly language 21–22
Assignment operators 53
Associativity 53, 60–61
Auto storage class 119

B
Binary files 339
Bit fields 310–312
Bitwise operator

bitwise AND operator 55–56
bitwise OR operator 56

bitwise XOR operator 57
left shift operator shifts 58
one (1s) complement operator 57–58
right shift operator 58

Block comment 28
Block/record I/O functions 323–338
Block Statements 112–118
Boolean data type 45
Break Statement 109–110
Bubble sort method 179

C
Call by reference 257
Call by value 257
Called function 217
Calling function 119, 220, 230
Case statement 69
C/C++ 2
cc. 16
Character array 165–166

read characters 165
write characters 165–166

Character input/output 320–321
Codeblocks 30
Comma operator 58–59
Comments 28
Compilation 16
Compiler 20–21

assembler 17
command a.out 18
debugging phase 18
definition 15
preprocessing phase 17

Compound statement 112
<conio.h> header file 43

INDEX

350 • index

Const 49
Const variables 49
Continue Statement 110–111
C programming language

algorithms and pseudocodes 2–8
assembler, linker, and loader 19–22
auto storage class 119
block statement 112–118
break Statement 109–110
compiler 15–19
continue statement 110–111
data input and data output 42–44
data types 44–47
definition 1
do-while Loop 84–87
enumeration 47–51
extern 121
file handling (see Files)
flowchart 8–14
for loop 87–108
getchar() function 41
global declaration section 39
if statement 63–67
ISO/IEC 9899:1990 1
library functions 44
main() Function 39–40
operators 51–61
preprocessor 35–38
preprocessor directive/command 22–27
putchar() function 41–42
register 122–135
return statement 111–112
special constant section 38–39
static storage class 119–121
switch and break 68–73
type casting (or coercion) 62
while Loop 73–84

D
Debugging phase 18
Data types

character 45
double precision floating point 45–46
floating point 45
integer 45
void 46

Declaration section 23
Declare 2d-arrays in C 155
#define constants 49

Delimiters 28
do-while Loop 84–87

E
Empty statement 112
Enumeration 47–51
End-of-file (EOF) 41
Extern 121
Extra bit 139

F
Fclose (fp) 319
Fgets (s, n, fp) 321
Fibonacci series 80, 91, 227
File pointers 317–320
Files

and binary files 339
block/record I/O functions 323–338
character input/output 320–321
formatted I/O function 322
integer I/O functions 321–322
pointers 317–320
string I/O functions 321

Floyd triangle 106–107
Flowchart

and algorithm 12
definition 8
notations 11
parallelogram 10
symbols 10

Fopen() function 319
For Loop 87–90
Formal parameters 257
Formatted I/O function 42–44, 322
fprintf() function 322
Fputs (s, fp) 321
Functions

definition 215–216
library/inbuilt functions 215
return Statement 218
user-called functions 218–228
user-defined functions 215

fwrite() function 323

G
gcc. 16
getchar Function 41, 182
Global declaration 39
Global variables 50–51

index • 351

GNU C compiler gcc 15
Golden Rule 10
Goto Statement 72–73
Greatest element 151

H
Header file 13, 23, 26
Heron’s formula 270
High-level language 21–22

I
Include command 23
Integer I/O functions 321–322
Integrated Development Environment

(IDE) 30
International Standards Organization

(ISO) 1
Iterative method 224

J
JAVA2 2

L
Left shift operator shifts 58
Library functions 44, 258
Library/inbuilt functions 215
Linkage Editor 21
Linked program 21
Linker 21
Local variables 50
Loop

do-while Loop 85–87
for Loop 87–90
while Loop 73–85

M
main() Function 39–40
Module

characteristics 213
top-down analysis 213

Multidimensional arrays 155
Multi-way selections 10

N
Nested if-else construct 65
Nested loops 84–85
Newline character 27
NULL character 166
Null statement 112

O
One (1s) complement operator 57–58
One-dimensional array 143
Operators

arithmetic assignment operator 53
arithmetic operators 51
assignment operators 53
bitwise operator 54–58
comma operator 58–59
increment/decrement operators 52–53
logical operators 54
relational operators 53–54
size of operator 59
ternary operator 60

P
Parallel array 310
Parameter transmission techniques 228–234
Pointers

and addresses 234–235
arguments 241–243
arithmetic view of pointers 237–239
array of pointers 243
and arrays 239–241
files 317–320
passing arrays 244–245
and structure 298–312
variables 235–236
void pointers 236–237

Preprocessor 35–38
printf() function 44
putchar function 41–42, 183–184

R
Recursions 223–224
Recursive method 224–225
Rectangular arrays 142
Register 122–135
Return Statement 111–112, 218
Reverse photo 91
Right shift operator 58
Ritchie, Dennis 1, 35
Run command 20

S
scanf() function 43
Semantic error 17
Sentinel value 111
Standard input-output functions 42–44

352 • index

Statement section 23
Static storage class 119–121
String

array of strings 175–182
gets() and puts() Functions 168
inbuilt string functions and “string.h”

Header File 170
I/O functions 321
strcmp() Function 172–173
strcpy() Function 171–172
strlen() Function 170–171
strlwr() and strupr() Functions 174–175
strrev() Function 173–174

Structure
applications 306
array of structures 282–291, 306
definition 275
and enumerators 301–303
function arguments 291–292
initializations 280–282
and pointers 298–312
return structures from functions 292–296
vs. unions 296–297, 307
variable 277

Subprogramming 212–213
Syntax error 17

System flowcharts 9
Switch statement 68–69

T
Text files 317
Top-down analysis 213
Two-dimensional arrays 155
Type casting (or coercion) 62
Type qualifier 49

U
Unary operator 59
Unformatted I/O functions 43
Unions vs. structure 296–297, 307
Unsigned integer 45
User-called functions 218–228
User-defined functions 215

V
Variables 46–47
Visual Basic 9 2
Void pointers 236–237
Volatile modifier 49

W
While Loop 73–84

