

Data Structures
and

Program Design
Using Python

Data Structures and Program Design Using Python_Ch00_FM.indd 1 9/24/2020 1:00:48 PM

LICENSE, DISCLAIMER OF LIABILITY, AND LIMITED WARRANTY
By purchasing or using this book and disc (the “Work”), you agree that this license
grants permission to use the contents contained herein, including the disc, but does
not give you the right of ownership to any of the textual content in the book / disc or
ownership to any of the information or products contained in it. This license does not
permit uploading of the Work onto the Internet or on a network (of any kind) without
the written consent of the Publisher. Duplication or dissemination of any text, code,
simulations, images, etc. contained herein is limited to and subject to licensing terms
for the respective products, and permission must be obtained from the Publisher or
the owner of the content, etc., in order to reproduce or network any portion of the
textual material (in any media) that is contained in the Work.

Mercury Learning and Information (“MLI” or “the Publisher”) and anyone
involved in the creation, writing, or production of the companion disc, accompanying
algorithms, code, or computer programs (“the software”), and any accompanying Web
site or software of the Work, cannot and do not warrant the performance or results
that might be obtained by using the contents of the Work. The author, developers,
and the Publisher have used their best efforts to insure the accuracy and functionality
of the textual material and/or programs contained in this package; we, however,
make no warranty of any kind, express or implied, regarding the performance of
these contents or programs. The Work is sold “as is” without warranty (except for
defective materials used in manufacturing the book or due to faulty workmanship).

The author, developers, and the publisher of any accompanying content, and anyone
involved in the composition, production, and manufacturing of this work will not be
liable for damages of any kind arising out of the use of (or the inability to use) the
algorithms, source code, computer programs, or textual material contained in this
publication. This includes, but is not limited to, loss of revenue or profit, or other
incidental, physical, or consequential damages arising out of the use of this Work.

The sole remedy in the event of a claim of any kind is expressly limited to replacement
of the book and/or disc, and only at the discretion of the Publisher. The use of
“implied warranty” and certain “exclusions” vary from state to state and might not
apply to the purchaser of this product.

Data Structures and Program Design Using Python_Ch00_FM.indd 2 9/24/2020 1:00:49 PM

MERCURY LEARNING AND INFORMATION
Dulles, Virginia

Boston, Massachusetts
New Delhi

Dheeraj Malhotra, PhD
Neha Malhotra, PhD

Data Structures
and

Program Design
Using Python

A Self-Teaching Introduction

Data Structures and Program Design Using Python_Ch00_FM.indd 3 9/24/2020 1:00:49 PM

Copyright © 2021 by Mercury Learning and Information LLC. All rights reserved.

This publication, portions of it, or any accompanying software may not be reproduced in any way, stored
in a retrieval system of any type, or transmitted by any means, media, electronic display or mechanical
display, including, but not limited to, photocopy, recording, Internet postings, or scanning, without prior
permission in writing from the publisher.

Publisher: David Pallai
Mercury Learning and Information

22841 Quicksilver Drive
Dulles, VA 20166
info@merclearning.com
www.merclearning.com
(800) 232-0223

D. Malhotra and N. Malhotra. Data Structures and Program Design Using Python.
ISBN: 978-1-68392-639-9

The publisher recognizes and respects all marks used by companies, manufacturers, and developers
as a means to distinguish their products. All brand names and product names mentioned in this book
are trademarks or service marks of their respective companies. Any omission or misuse (of any kind) of
service marks or trademarks, etc. is not an attempt to infringe on the property of others.

Library of Congress Control Number: 2020946121

202122321  Printed on acid-free paper in the United States of America.

Our titles are available for adoption, license, or bulk purchase by institutions, corporations, etc. For
additional information, please contact the Customer Service Dept. at (800) 232-0223(toll free). Digital
versions of our titles are available at: www.academiccourseware.com and other electronic vendors.

The sole obligation of Mercury Learning and Information to the purchaser is to replace the book
and/or disc, based on defective materials or faulty workmanship, but not based on the operation or
functionality of the product.

Data Structures and Program Design Using Python_Ch00_FM.indd 4 9/24/2020 1:00:49 PM

Dedicated to our
loving parents and beloved students

Data Structures and Program Design Using Python_Ch00_FM.indd 5 9/24/2020 1:00:49 PM

Data Structures and Program Design Using Python_Ch00_FM.indd 6 9/24/2020 1:00:50 PM

CONTENTS

Preface� xv
Acknowledgments� xvii

Chapter 1:	 Introduction to Data Structures� 1
1.1  Introduction� 1
1.2  Types of Data Structures� 2

1.2.1  Linear and Non-Linear Data Structures� 2
1.2.2  Static and Dynamic Data Structures� 3
1.2.3 � Homogeneous and Non-Homogeneous

Data Structures� 3
1.2.4  Primitive and Non-Primitive Data Structures� 3
1.2.5  Arrays/Lists� 5
1.2.6  Stacks� 5
1.2.7  Queues� 5
1.2.8  Linked Lists� 6
1.2.9  Trees� 7

1.2.10  Graphs� 8
1.3  Operations on Data Structures� 9
1.4  Algorithms� 10

1.4.1  Developing an Algorithm� 10
1.5  Approaches for Designing an Algorithm� 11
1.6  Analyzing an Algorithm� 12

1.6.1  Time-Space Trade-Off� 13
1.7  Abstract Data Types� 14

Data Structures and Program Design Using Python_Ch00_FM.indd 7 9/24/2020 1:00:50 PM

viii • Contents

1.8  Big O Notation� 14
1.9  Summary� 15

1.10  Exercises� 17
1.11  Multiple Choice Questions� 17

Chapter 2:	 Introduction to Python� 21
2.1  Introduction� 21
2.2  Python and Its Characteristics� 22
2.3  Python Overview� 23
2.4  Tools For Python� 24
2.5  easy_install and pip� 24
2.6  Quotations and Comments in Python� 24
2.7  Compiling the Python Program� 25
2.8  Object-Oriented Programming� 26
2.9  Character Set Used in Python� 28

2.10  Python Tokens� 28
2.11  Data Types in Python� 31
2.12  Structure of a Python Program� 32
2.13  Operators in Python� 34
2.14  Decision Control Statements� 38
2.15  Looping Statements� 40
2.16  Loop Control Statements� 43
2.17  Methods� 45
2.18  Summary� 50
2.19  Exercises� 51

2.19.1  Theory Questions� 51
2.19.2  Programming Projects� 52
2.19.3  Multiple Choice Questions� 53

Chapter 3:	 Arrays/Lists� 55
3.1  Introduction� 55
3.2  Definition of an Array� 55
3.3  Array/List Declaration� 56
3.4  Array/List Initialization� 57

Data Structures and Program Design Using Python_Ch00_FM.indd 8 9/24/2020 1:00:50 PM

Contents • ix

3.5  Calculating the Address of Array Elements� 57
3.6  Operations on Arrays/Lists� 58
3.7  2-D Arrays/Two-Dimensional Arrays� 61
3.8  Declaration of Two-Dimensional Arrays/Lists� 62
3.9  Operations on 2-D Arrays/Lists� 64

3.10 � Multidimensional Arrays/N-Dimensional Arrays� 67
3.11  Calculating the Address of 3-D Arrays� 67
3.12  Arrays and Their Applications� 69
3.13  Sparse Matrices� 69
3.14  Types of Sparse Matrices� 70
3.15  Representation of Sparse Matrices� 71
3.16  Summary� 72
3.17  Exercises� 74

3.17.1  Theory Questions� 74
3.17.2  Programming Questions� 74
3.17.3  Multiple Choice Questions� 75

Chapter 4:	 Linked Lists� 77
4.1  Introduction� 77
4.2  Definition of a Linked List� 77
4.3  Memory Allocation in a Linked List� 79
4.4  Types of Linked Lists� 80

4.4.1  Singly Linked List� 80
4.4.2  Operations on a Singly Linked List� 80
4.4.3  Circular Linked Lists� 93
4.4.4  Operations on a Circular Linked List� 93
4.4.5  Doubly Linked List� 101
4.4.6  Operations on a Doubly Linked List� 101

4.5  Header Linked Lists� 113
4.6  Applications of Linked Lists� 114
4.7  Polynomial Representation� 114
4.8  Summary� 115
4.9  Exercises� 115

Data Structures and Program Design Using Python_Ch00_FM.indd 9 9/24/2020 1:00:50 PM

x • Contents

4.9.1  Theory Questions� 115
4.9.2  Programming Questions� 116
4.9.3  Multiple Choice Questions� 116

Chapter 5:	 Queues� 119
5.1  Introduction� 119
5.2  Definition of a Queue� 119
5.3  Implementation of a Queue� 120

5.3.1  Implementation of Queues Using Arrays� 120
5.3.2  Implementation of Queues Using Linked Lists� 120

5.4  Operations on Queues� 125
5.4.1  Insertion� 125
5.4.2  Deletion� 126

5.5  Types of Queues� 129
5.5.1  Circular Queue� 129
5.5.2  Priority Queue� 135
5.5.3  De-queues (Double-Ended Queues) � 142

5.6  Applications of Queues� 146
5.7  Summary� 146
5.8  Exercises� 147

5.8.1  Theory Questions� 147
5.8.2  Programming Questions� 147
5.8.3  Multiple Choice Questions� 148

Chapter 6:	 Searching and Sorting� 151
6.1  Introduction to Searching� 151
6.2  Linear Search or Sequential Search� 151

6.2.1  Drawbacks of a Linear Search� 154
6.3  Binary Search� 155

6.3.1  Binary Search Algorithm� 155
6.3.2  Complexity of a Binary Search Algorithm� 158
6.3.3  Drawbacks of a Binary Search� 158

6.4  Interpolation Search� 159
6.4.1  The Interpolation Search Algorithm� 160

Data Structures and Program Design Using Python_Ch00_FM.indd 10 9/24/2020 1:00:50 PM

Contents • xi

6.4.2 � Complexity of the Interpolation
Search Algorithm� 162

6.5  Introduction to Sorting� 163

6.5.1  Types of Sorting Methods� 164

6.6  External Sorting� 184

6.7  Summary� 184

6.8  Exercises� 185

6.8.1  Theory Questions� 185

6.8.2  Programming Questions � 186

6.8.3  Multiple Choice Questions� 186

Chapter 7:	 Stacks� 189
7.1  Introduction� 189

7.2  Definition of a Stack� 189

7.3  Overflow and Underflow in Stacks� 190

7.4  Operations on Stacks� 191

7.5  Implementation of a Stack� 196

7.5.1  Implementation of Stacks Using Arrays� 196

7.5.2  Implementation of Stacks Using Linked Lists� 196

7.6  Applications of Stacks� 201

7.6.1  Polish and Reverse Polish Notations� 201

7.6.2 � Conversion from the Infix Expression
to the Postfix Expression� 202

7.6.3 � Conversion from an Infix Expression
to a Prefix Expression� 208

7.6.4  Evaluation of a Postfix Expression� 212

7.6.5  Evaluation of a Prefix Expression� 216

7.6.6  Parenthesis Balancing� 220

7.7  Summary� 222

7.8  Exercises� 223

7.8.1  Theory Questions� 223

7.8.2  Programming Questions� 224

7.8.3  Multiple Choice Questions� 225

Data Structures and Program Design Using Python_Ch00_FM.indd 11 9/24/2020 1:00:50 PM

xii • Contents

Chapter 8:	 Trees� 227
8.1  Introduction � 227
8.2  Definitions� 228
8.3  Binary Tree� 230

8.3.1  Types of Binary Trees� 231
8.3.2  Memory Representation of Binary Trees� 232

8.4  Binary Search Tree� 234
8.4.1  Operations on Binary Search Trees� 235
8.4.2  Binary Tree Traversal Methods� 248
8.4.3 � Creating a Binary Tree Using

Traversal Methods� 253
8.5  AVL Trees� 256

8.5.1  Need for Height-Balanced Trees� 257
8.5.2  Operations on an AVL Tree� 258

8.6  Summary� 268
8.7  Exercises� 269

8.7.1  Theory Questions� 269
8.7.2  Programming Questions� 271
8.7.3  Multiple Choice Questions� 272

Chapter 9:	 Multi-Way Search Trees� 275
9.1  Introduction� 275
9.2  B-Trees� 276
9.3  Operations on a B-Tree� 277

9.3.1  Insertion in a B-Tree� 277
9.3.2  Deletion in a B-Tree� 279

9.4  Application of a B-Tree� 285
9.5  B+ Trees� 285
9.6  Summary� 286
9.7  Exercises� 287

9.7.1  Review Questions� 287
9.7.2  Multiple Choice Questions� 287

Data Structures and Program Design Using Python_Ch00_FM.indd 12 9/24/2020 1:00:50 PM

Contents • xiii

Chapter 10:	 Hashing� 289

10.1  Introduction� 289

10.1.1 � Difference between Hashing and
Direct Addressing� 291

10.1.2  Hash Tables� 291

10.1.3  Hash Functions� 292

10.1.4  Collision� 295

10.1.5  Collision Resolution Techniques� 295

10.2  Summary� 317

10.3  Exercises� 318

10.3.1  Review Questions� 318

10.3.2  Multiple Choice Questions� 319

Chapter 11:	 Files� 321

11.1  Introduction� 321

11.2  Terminology� 321

11.3  File Operations� 322

11.4  File Classification� 323

11.5 � C vs. C++ vs. Java vs. Python File Handling� 323

11.6  File Organization� 324

11.7  Sequence File Organization� 325

11.8  Indexed Sequence File Organization� 326

11.9  Relative File Organization� 327

11.10  Inverted File Organization� 328

11.11  Summary� 329

11.12  Exercises� 330

11.12.1  Review Questions� 330

11.12.2  Multiple Choice Questions� 331

Chapter 12:	 Graphs� 333

12.1  Introduction� 333

12.2  Definitions� 335

Data Structures and Program Design Using Python_Ch00_FM.indd 13 9/24/2020 1:00:50 PM

xiv • Contents

12.3  Graph Representation� 339
12.3.1  Adjacency Matrix Representation� 339
12.3.2  Adjacency List Representation� 342

12.4  Graph Traversal Techniques� 344
12.4.1  Breadth-First Search� 344
12.4.2  Depth-First Search� 348

12.5  Topological Sort� 353
12.6  Minimum Spanning Tree� 356

12.6.1  Prim’s Algorithm� 356
12.6.2  Kruskal’s Algorithm� 359

12.7  Summary� 362
12.8  Exercises� 363

12.8.1  Theory Questions� 363
12.8.2  Programming Questions� 364
12.8.3  Multiple Choice Questions� 365

Appendix: Answers to Multiple Choice Questions� 367
Index� 369

Data Structures and Program Design Using Python_Ch00_FM.indd 14 9/24/2020 1:00:50 PM

PREFACE

Data structures are the building blocks of computer science. The objective of
this text is to emphasize the fundamentals of data structures as an introductory
subject. It is designed for beginners who would like to learn the basics of data
structures and their implementation using the Python programming language.
With this focus in mind, we present various fundamentals of the subject, well
supported with real-world analogies to enable a quick understanding of the
technical concepts and to help the reader in quickly identifying appropriate
data structures to solve specific, practical problems. This book will serve the
purpose of a text or reference book and will be of immense help especially
to undergraduate or graduate students of various courses in information
technology, engineering, computer applications, and information sciences.

Key Features:

l	 Practical Applications: Real-world analogies as practical applications are
given throughout the text to quickly understand and connect the fun-
damentals of data structures with day to day, real-world scenarios. This
approach, in turn, will assist the reader in developing the capability to
identify the most appropriate and efficient data structure for solving a
specific, real-world problem.

l	 Frequently Asked Questions: Frequently asked theoretical or practi-
cal questions are integrated throughout the content of the book, within
related topics to assist readers in grasping the subject.

l	 Algorithms and Programs: To better understand the fundamentals of
data structures at a generic level-followed by their implementation in
Python, syntax independent algorithms, as well as implemented pro-
grams in Python, are discussed throughout the book. This presentation
will assist the reader in getting both algorithms and their corresponding
implementation within a single book.

Data Structures and Program Design Using Python_Ch00_FM.indd 15 9/24/2020 1:00:50 PM

xvi • Preface

l	 Numerical and Conceptual Exercises: To assist the reader in develop-
ing a strong foundation of the subject, various numerical and conceptual
problems are included throughout the text.

l	 Multiple Choice Questions: To assist students for placement-oriented
exams in various IT fields, several exercises are suitably chosen and are
given in an MCQ format.

� Dr. Dheeraj Malhotra
	 Dr. Neha Malhotra
	 September 2020

Data Structures and Program Design Using Python_Ch00_FM.indd 16 9/24/2020 1:00:50 PM

ACKNOWLEDGMENTS

We are indeed grateful to Chairman - Dr. S.C. Vats, Vice Chairman -
Mr. Suneet Vats, Chairperson VSIT - Prof. Sidharth Mishra, and Dean
VSIT- Prof. Supriya Madan of our employer institute - Vivekananda Institute
of Professional Studies (GGS IP University). They are always a source of
inspiration for us, and we feel honored because of their faith in us.

We also take this opportunity to extend our gratitude to our mentors
Prof. O.P. Rishi (University of Kota), Dr. Sushil Chandra (DRDO, GOI),
Prof. Udyan Ghose (GGS IP University), and Prof. M.N. Hoda (BVICAM)
for their motivation to execute this project.

We are profoundly thankful to Mr. Sahil Pathak (VIPS, GGSIPU) and
Mr. Deepanshu Gupta (Tech Mahindra Ltd.) for helping us in proofreading
and compiling the codes in this manuscript.

It is not possible to complete a book without the support of a publisher.
We are thankful to David Pallai and Jennifer Blaney of Mercury Learning
and Information for their enthusiastic involvement throughout the tenure of
this project.

Our heartfelt regards to our parents, siblings and family members who
cheered us in good times and encouraged us in bad times.

Lastly, we have always felt inspired by our readers, especially in the USA,
Canada, and India. Their utmost love and positive feedback for our first
three titles of Data Structures using C, …C++, and …Java, all published
with MLI, helped us to improve the current title further.

� Dr. Dheeraj Malhotra
	 Dr. Neha Malhotra
	 September 2020

Data Structures and Program Design Using Python_Ch00_FM.indd 17 9/24/2020 1:00:50 PM

Data Structures and Program Design Using Python_Ch00_FM.indd 18 9/24/2020 1:00:50 PM

C H A P T E R 1
INTRODUCTION TO
DATA STRUCTURES

1.1	 INTRODUCTION

A data structure is an efficient way of storing and organizing the data ele-
ments in a computer’s memory. Data means a value or a collection of values.
Structure refers to a method of organizing the data. The mathematical or
logical representation of data in the memory is referred to as a data structure.
The objective of a data structure is to store, retrieve, and update the data effi-
ciently. A data structure can be considered as all the elements grouped under
one name. The data elements are called members, and they can be of different
types. Data structures are used in almost every program and software system.
There are various kinds of data structures that are suited for different types
of applications. Data structures are the building blocks of a program. For a
program to run efficiently, a programmer must choose the appropriate data
structures. A data structure is a crucial part of data management. As the name
suggests, data management is a task that includes different activities, like the
collection of data and the organization of data into structures. Data structures
are used in stacks, queues, arrays, binary trees, linked lists, and hash tables.

A data structure helps us to understand the relationship of one element
to another element and organize it within the memory. It is a mathematical or
logical representation or organization of data in the memory. Data structures
are extensively applied in the following areas:

●● Compiler Design
●● Database Management Systems (DBMS)

Data Structures and Program Design Using Python_Ch01.indd 1 9/24/2020 12:19:54 PM

2 • Data Structures and Program Design Using Python

●● Artificial Intelligence
●● Network and Numerical Analysis
●● Statistical Analysis Packages
●● Graphics
●● Operating Systems (OS)
●● Simulations

There are many applications in which different data structures are used
for their operations. Some data structures sacrifice speed for the efficient uti-
lization of memory, while others sacrifice memory utilization and result in a
faster speed. In today’s world, programmers aim not just to build a program,
but to build an effective program. As previously discussed, for a program to be
efficient, a programmer must choose the appropriate data structures. Hence,
data structures are classified into various types. Now, let us discuss and learn
about different types of data structures.

Frequently Asked Questions

1. Define the term “data structure.”

Answer:

A data structure is an organization of data in a computer’s memory or disk
storage. In other words, a logical or mathematical model of a particular
organization of data is called a data structure. A data structure in com-
puter science is also a way of storing data in a computer so that it can be
used efficiently. An appropriate data structure allows a variety of impor-
tant operations to be performed using both resources, that is, the memory
space and execution time, efficiently.

1.2	 TYPES OF DATA STRUCTURES

Data structures are classified into various types.

1.2.1	Linear and Non-Linear Data Structures

A linear data structure is one in which the data elements are stored in a linear,
or sequential, order; that is, data is stored in consecutive memory locations.

Data Structures and Program Design Using Python_Ch01.indd 2 9/24/2020 12:19:54 PM

Introduction to Data Structures • 3

A linear data structure can be represented in two ways; either it is repre-
sented by a linear relationship between various elements utilizing consecutive
memory locations as in the case of arrays, or it may be represented by a linear
relationship between the elements utilizing links from one element to another
as in the case of linked lists. Examples of linear data structures include arrays,
linked lists, stacks, and queues.

A non-linear data structure is one in which the data is not stored in any
sequential order or consecutive memory locations. The data elements in this
structure are represented by a hierarchical order. Examples of non-linear data
structures include graphs and trees.

1.2.2	Static and Dynamic Data Structures

A static data structure is a collection of data in memory that is fixed in size
and cannot be changed during runtime. The memory size must be known in
advance, as the memory cannot be reallocated later in a program. One exam-
ple is an array.

A dynamic data structure is a collection of data in which memory can be
reallocated during the execution of a program. The programmer can add or
remove elements according to his/her need. Examples include linked lists,
graphs, and trees.

1.2.3	Homogeneous and Non-Homogeneous Data Structures

A homogeneous data structure is one that contains data elements of the same
type (for example, arrays).

A non-homogeneous data structure contains data elements of different
types (for example, structures).

1.2.4	Primitive and Non-Primitive Data Structures

Primitive data structures are the fundamental data structures or predefined
data structures that are supported by a programming language. Examples of
primitive data structure types are integer, float, and char.

Non-primitive data structures are comparatively more complicated
data structures that are created using primitive data structures. Examples
of non-primitive data structures are arrays, files, linked lists, stacks, and
queues.

The classification of different data structures is shown in Figure 1.1.

Data Structures and Program Design Using Python_Ch01.indd 3 9/24/2020 12:19:54 PM

4 • Data Structures and Program Design Using Python

FIGURE 1.1  Classification of different data structures

Python supports various data structures. We now introduce all these data
structures, and they are discussed in detail in the upcoming chapters.

Frequently Asked Questions

2. �What is the difference between primitive data structures and
non-primitive data structures?

Answer:

The data structures that are typically directly operated upon by machine-
level instructions, that is, the fundamental data types such as int, float, and
char, are known as primitive data structures. The data structures that are
not fundamental are called non-primitive data structures.

Frequently Asked Questions

3. �What is the difference between linear and non-linear data
structures?

Answer:

The main difference between linear and non-linear data structures lies in
the way in which data elements are organized. In the linear data struc-
ture, elements are organized sequentially, and therefore they are easy to
implement in a computer’s memory. In non-linear data structures, a data
element can be attached to several other data elements to represent specific
relationships existing among them.

Data Structures and Program Design Using Python_Ch01.indd 4 9/24/2020 12:19:55 PM

Introduction to Data Structures • 5

1.2.5	Arrays/Lists

The array structure looks very similar to Python’s list structure. That’s because
the two structures are both sequences that are composed of multiple sequen-
tial elements that can be accessed by position. But there are two major differ-
ences between the array and the list. First, an array has a limited number of
operations, which commonly include those for array creation, reading a value
from a specific element, and writing a value to a specific element. The list
provides a large number of operations for working with the content of the list.
Second, the list can grow and shrink during execution as elements are added or
removed while the size of an array cannot be changed after it has been created.

Python’s list structure is a mutable sequence container that can change
size as items are added or removed. It is an abstract data type that is imple-
mented using an array structure to store the items contained in the list.

In Python, a list is declared using the following syntax:
Syntax – pyList = [4, 12, 2, 34, 17]

1.2.6	Stacks

A stack is a collection of objects that are inserted and removed according
to the Last-In, First-Out (LIFO) principle. A user may insert objects into a
stack at any time, but may only access or remove the most recently inserted
object that remains (at the so-called “top” of the stack). The name “stack” is
derived from the metaphor of a stack of plates in a spring-loaded, cafeteria
plate dispenser. In this case, the fundamental operations involve the “push-
ing” and “popping” of plates on the stack. When we need a new plate from the
dispenser, we “pop” the top plate off the stack, and when we add a plate, we
“push” it down on the stack to become the new top plate.

Practical Application:

A real-life example of a stack is a pile of plates arranged on a table.
A person will pick up the first plate from the top of the stack.

The Stack ADT can be implemented in several ways. The two most com-
mon approaches to implement Stack ADT in Python include the use of a Python
list and a linked list. The choice depends on the type of application involved.

1.2.7	Queues

Another fundamental data structure is the queue. It is a close cousin of the
stack, as a queue is a collection of objects that are inserted and removed
according to the First-In, First-Out (FIFO) principle. That is, elements can be

Data Structures and Program Design Using Python_Ch01.indd 5 9/24/2020 12:19:55 PM

6 • Data Structures and Program Design Using Python

inserted at any time, but only the element that has been in the queue the long-
est can be next removed. We usually say that elements enter a queue at the
back and are removed from the front. A metaphor for this terminology is a line
of people waiting to get on an amusement park ride. People waiting for such a
ride enter at the back of the line and get on the ride from the front of the line.

Practical Application:

For a simple illustration of a queue, imagine there is a line of people
standing at the bus stop and waiting for the bus. The first person standing
in the line will get into the bus first.

The Queue ADT can be implemented in several ways. The two most com-
mon approaches in Python include the use of a Python list and a linked list.
The choice depends on the type of application involved.

1.2.8	Linked Lists

The major drawback of the array is that the size or the number of elements
must be known in advance. Thus, this drawback gave rise to the new concept
of a linked list. A linked list is a linear collection of data elements. These data
elements are called nodes, which store the address of the next node. A linked
list is a sequence of nodes in which each node contains one or more than one
data field and an address field that stores the address of the next node. Linked
lists are dynamic; that is, memory is allocated when required.

FIGURE 1.2  Memory representation of a linked list

Figure 1.2 shows a linked list in which each node is divided into two slots:

1.	 The first slot contains information/data.

2.	 The second slot contains the address of the next node.

Practical Application:

A simple real-life example is a train; here, each train car is connected to
the previous one and next one (except the first car (the engine) and the
last car (the coach)).

Data Structures and Program Design Using Python_Ch01.indd 6 9/24/2020 12:19:55 PM

Introduction to Data Structures • 7

The address part of the last node stores a special value called NULL,
which denotes the end of the linked list. The advantage of a linked list over
arrays is that now it is easier to insert and delete data elements, as we don’t
have to do shifting each time. Yet searching for an element is difficult. More
time is required to search for an element, and it requires a large amount of
memory space. Hence, linked lists are used where a collection of data ele-
ments is required but the number of data elements in the collection is not
known to us in advance.

Frequently Asked Questions

4. Define the term “linked list.”

Answer:

A linked list or one-way list is a linear collection of data elements called
nodes, which give a linear order. It is a popular dynamic data structure.
The nodes in the linked list are not stored in consecutive memory locations.
For every data item in a node of the linked list, there is an associated address
field that gives the address location of the next node in the linked list.

1.2.9	Trees

A tree is a popular non-linear data structure in which the data elements or
the nodes are represented in a hierarchical order. Here, one of the nodes is
shown as the root node of the tree, and the remaining nodes are partitioned
into two disjointed sets such that each set is a part of a sub-tree. A tree makes
the search process very easy, and its recursive programming makes a program
optimized and easy to understand.

A binary tree is the simplest form of a tree. A binary tree consists of a
root node and two sub-trees known as the left sub-tree and the right sub-tree,
where both sub-trees are also binary trees. Each node in a tree consists of
three parts, that is, the extreme left part stores the address of the left sub-tree,
the middle part consists of the data element, and the extreme right part stores
the address of the right sub-tree. The root is the topmost element of the tree.
When there are no nodes in a tree, that is, when ROOT = NULL, then it is
called an empty tree.

For example, consider a binary tree where R is the root node of the tree.
LEFT and RIGHT are the left and right sub-trees of R, respectively. Node
A is designated as the root node of the tree. Nodes B and C are the left and
right child of A, respectively. Nodes B, D, E, and G constitute the left sub-
tree of the root. Similarly, nodes C, F, H, and I constitute the right sub-tree
of the root.

Data Structures and Program Design Using Python_Ch01.indd 7 9/24/2020 12:19:55 PM

8 • Data Structures and Program Design Using Python

FIGURE 1.3  A binary tree

Advantages of a tree

1.	 The searching process is very fast in trees.

2.	 The insertion and deletion of the elements is easier compared to other
data structures.

Frequently Asked Questions

5. Define the term “binary tree.”

Answer:

A binary tree is a hierarchal data structure in which each node has at most
two children, that is, the left and right child. In a binary tree, the degree of
each node can be at most two. Binary trees are used to implement binary
search trees, which are used for efficient searching and sorting. A variation
of BST is an AVL tree, where the height of the left and right subtree differs
by one. A binary tree is a popular subtype of a k-ary tree, where k is 2.

1.2.10	Graphs

A graph is a general tree with no parent-child relationship. It is a non-linear
data structure that consists of vertices, also called nodes, and the edges that
connect those vertices. In a graph, any complex relationship can exist. A graph
G may be defined as a finite set of V vertices and E edges. Therefore, G = (V,
E) where V is the set of vertices and E is the set of edges. Graphs are used in
various applications of mathematics and computer science. Unlike a root node
in trees, graphs don’t have root nodes; rather, the nodes can be connected to
any node in the graph. Two nodes are called neighbors when they are con-
nected via an edge.

Data Structures and Program Design Using Python_Ch01.indd 8 9/24/2020 12:19:55 PM

Introduction to Data Structures • 9

Practical Application:

A real-life example of a graph can be seen in workstations where several
computers are joined to one another via network connections.

For example, consider a graph G with six vertices and eight edges. Here,
Q and Z are neighbors of P. Similarly, R and T are neighbors of S.

FIGURE 1.4  A graph

1.3	 OPERATIONS ON DATA STRUCTURES

Here, we discuss various operations that are performed on data structures.

●● Creation – This is the process of creating a data structure. The declara-
tion and initialization of the data structure are done here. It is the first
operation.

●● Insertion – This is the process of adding new data elements in the data
structure, for example, to add the details of an employee who has recently
joined an organization.

●● Deletion – This is the process of removing a particular data element from
the given collection of data elements, for example, to remove the name of
an employee who has left the company.

●● Updating – This is the process of modifying the data elements of a data
structure. For example, if the address of a student is changed, it should
be updated.

●● Searching – This is used to find the location of a particular data element
or all the data elements with the help of a given key, for example, to find
the names of people who live in New York.

●● Sorting – This is the process of arranging the data elements in some
order, that is, either ascending or descending order. An example is arrang-
ing the names of students of a class in alphabetical order.

Data Structures and Program Design Using Python_Ch01.indd 9 9/24/2020 12:19:55 PM

10 • Data Structures and Program Design Using Python

●● Merging – This is the process of combining the data elements of two
different lists to form a single list of data elements.

●● Traversal – This is the process of accessing each data element exactly
once so that it can be processed. An example is to print the names of all
the students of a class.

●● Destruction – This is the process of deleting the entire data structure. It
is the last operation in the data structure.

1.4	 ALGORITHMS

An algorithm is a systematic set of instructions combined to solve a complex
problem. It is a step-by-finite-step sequence of instructions, each of which
has a clear meaning and can be executed in a minimum amount of effort in
finite time. In general, an algorithm is a blueprint for writing a program to
solve the problem. Once we have a blueprint of the solution, we can easily
implement it in any high-level language like C, C++, or Python. It divides the
problem into a finite number of steps. An algorithm written in a programming
language is known as a program. A computer is a machine with no brain or
intelligence. Therefore, the computer must be instructed to perform a given
task in unambiguous steps. Hence, a programmer must define his problem in
the form of an algorithm written in English. Thus, such an algorithm should
have the following features:

1.	 An algorithm should be simple and concise.

2.	 It should be efficient and effective.

3.	 It should be free of ambiguity; that is, the logic must be clear.

Similarly, an algorithm must have the following characteristics:

●● Input – It reads the data of the given problem.
●● Output – The desired result must be produced.
●● Process/Definiteness – Each step or instruction must be unambiguous.
●● Effectiveness – Each step should be accurate and concise. The desired

result should be produced within a finite time.
●● Finiteness – The number of steps should be finite.

1.4.1	Developing an Algorithm

To develop an algorithm, some steps are necessary:

1.	 Defining or understanding the problem.

Data Structures and Program Design Using Python_Ch01.indd 10 9/24/2020 12:19:56 PM

Introduction to Data Structures • 11

2.	 Identifying the result or output of the problem.

3.	 Identifying the inputs required by the problem and choosing the best input.

4.	 Designing the logic from the given inputs to get the desired output.

5.	 Testing the algorithm for different inputs.

6.	 Repeating the previous steps until it produces the desired result for all
the inputs.

1.5	 APPROACHES FOR DESIGNING AN ALGORITHM

A complicated algorithm is divided into smaller units called modules. These
modules are further divided into sub-modules. Thus, in this way, a complex
algorithm can easily be solved. The process of dividing an algorithm into mod-
ules is called modularization. There are two popular approaches for designing
an algorithm:

●● Top-Down Approach
●● Bottom-Up Approach

Now let us understand both approaches.

1.	 Top-Down Approach–A top-down approach states that the complex/
complicated problem/algorithm should be divided into a smaller number
of one or more modules. These smaller modules are further divided into
one or more sub-modules. This process of decomposition is repeated
until we achieve the desired output of module complexity. A top-down
approach starts from the topmost module, and the modules are incre-
mented accordingly until a level is reached where we don’t require any
more sub-modules, that is, the desired level of complexity is achieved.

FIGURE 1.5  Top-down approach

Data Structures and Program Design Using Python_Ch01.indd 11 9/24/2020 12:19:56 PM

12 • Data Structures and Program Design Using Python

2.	 Bottom-Up Approach–A bottom-up algorithm design approach is the
opposite of a top-down approach. In this kind of approach, we first start
with designing the basic modules and proceed further toward designing
the high-level modules. The sub-modules are grouped to form a mod-
ule of a higher level. Similarly, all high-level modules are grouped to
form more high-level modules. Thus, this process of combining the sub-
modules is repeated until we obtain the desired output of the algorithm.

FIGURE 1.6  Bottom-up approach

1.6	 ANALYZING AN ALGORITHM

An algorithm can be analyzed by two factors: space and time. We should develop
an algorithm that makes the best use of both these resources. Analyzing an
algorithm measures the efficiency of the algorithm. The efficiency of the algo-
rithm is measured in terms of the speed and time complexity. The complexity
of an algorithm is a function that measures the space and time used by an
algorithm in terms of input size.

Time Complexity–The time complexity of an algorithm is the amount of
time taken by an algorithm to run the program completely. It is the runtime
of the program. The time complexity of an algorithm depends upon the input
size. The time complexity is commonly represented by using big O notation.
For example, the time complexity of a linear search is O (n).

Space Complexity–The space complexity of an algorithm is the amount
of memory space required to run the program completely. The space com-
plexity of an algorithm depends upon the input size.

Time Complexity is categorized into three types:

1.	 Best Case Running Time–The performance of the algorithm is best
under optimal conditions. For example, the best case for a binary search
occurs when the desired element is the middle element of the list. Another

Data Structures and Program Design Using Python_Ch01.indd 12 9/24/2020 12:19:56 PM

Introduction to Data Structures • 13

example is that of sorting; that is, if the elements are already sorted in a
list, then the algorithm will execute in the best time.

2.	 Average Case Running Time–This denotes the behavior of an
algorithm when the input is randomly drawn from a given collection or
distribution. It is an estimate of the running time for “average” input. It
is usually assumed that all inputs of a given size are likely to occur with
equal probability.

3.	 Worst Case Running Time–The behavior of the algorithm during the
worst possible case of the input instance. The worst case running time of
an algorithm is an upper bound on the running time for any input. For
example, the worst case for a linear search occurs when the desired ele-
ment is the last element in the list or the element does not exist in the list.

Frequently Asked Questions

6. Define time complexity.

Answer:

Time complexity is a measure that evaluates the count of the operations
performed by a given algorithm as a function of the size of the input. It
is the approximation of the number of steps necessary to execute an algo-
rithm. It is commonly represented with asymptotic notation, that is, the
O(g) notation, also known as big O notation, where g is the function of the
size of the input data.

1.6.1	Time-Space Trade-Off

In computer science, the time-space trade-off is a way of solving a particular
problem either in less time and more memory space or in more time and less
memory space. But if we talk in practical terms, designing such an algorithm
in which we can save both space and time is a challenging task. So, we can use
more than one algorithm to solve a problem. One may require less time, and
the other may require less memory space to execute. Therefore, we sacrifice
one thing for the other. Hence, there exists a time-space or time-memory
trade-off between algorithms. The time-space trade-off gives the programmer
a rational choice from an informed point of view. If time is a big concern for
a programmer, then she might choose a program that takes less or the mini-
mum time to execute. If space is a prime concern for a programmer, then, she
might choose a program that takes less memory space to execute at the cost
of more time.

Data Structures and Program Design Using Python_Ch01.indd 13 9/24/2020 12:19:56 PM

14 • Data Structures and Program Design Using Python

1.7	 ABSTRACT DATA TYPES

An Abstract Data Type (ADT) is a popular mathematical model of data objects
that defines a data type along with various functions that operate on these
objects. To understand the meaning of an abstract data type, we can break the
term into two parts, that is, “data type” and “abstract.” The data type of a vari-
able is a collection of values that a variable can take. There are various data
types in Python (such as integer, float, character, long, and double). When we
talk about the term “abstract” in the context of data structures, it means “apart
from detailed specifications.” It can be considered as a description of the data in
a structure with a list of operations to be executed on the data within the struc-
ture. Thus, an abstract data type is the specification of a data type that specifies
the mathematical and logical model of the data type. For example, when we use
stacks and queues, our prime concern is only with the data type and the opera-
tions to be performed on those structures. We are not worried about how the
data will be stored in the memory. Also, we don’t bother about how the push ()
and pop () operations work. We just know that we have two functions available
to us, so we have to use them for insertion and deletion operations.

1.8	 BIG O NOTATION

The performance of an algorithm, that is, time and space requirements, can be
easily compared with other competitive algorithms using asymptotic notations
such as the big O notation, the Omega notation, and the Theta notation. The
algorithmic complexity can be easily approximated using asymptotic notations
by simply ignoring the implementation-dependent factors. For instance, we
can compare various available sorting algorithms using the big O notation or
any other asymptotic notation.

Big O notation is a popular analysis characterization scheme because it
provides an upper bound on the complexity of an algorithm. In big O, O(g) is
representative of the class of all functions that grow no faster than g. There-
fore, if f(n) = O(g(n)), then f(n) <= c(g(n)) for all n> n0, where n0 represents a
threshold and c represents a constant.

An algorithm with O(1) complexity is referred to as a constant computing
time algorithm. Similarly, an algorithm with O(n) complexity is referred to as
a linear algorithm, an algorithm with O(n2) complexity is referred to as a qua-
dratic algorithm, an algorithm with O(2n) complexity is referred to as an expo-
nential time algorithm, an algorithm with O(nk) complexity is referred to as
a polynomial-time algorithm, and an algorithm with O(log n) complexity is
referred to as a logarithmic time algorithm.

Data Structures and Program Design Using Python_Ch01.indd 14 9/24/2020 12:19:56 PM

Introduction to Data Structures • 15

An algorithm with the complexity of the order of O(log2n) is considered
as one of the best algorithms, while an algorithm with the complexity of the
order of O(2n) is considered as the worst algorithm. The complexity of compu-
tations or the number of iterations required in various types of functions may
be compared as follows:

O(log2n) < O(n) < O(n log2n) < O(n2) < O(n3) < O(2n)

1.9	 SUMMARY

●● A data structure determines a way of storing and organizing the data ele-
ments in a computer’s memory. Data means a value or a collection of values.
Structure refers to a way of organizing the data. The mathematical or logi-
cal representation of data in the memory is referred to as a data structure.

●● Data structures are classified into various types, which include linear
and non-linear data structures, primitive and non-primitive data struc-
tures, static and dynamic data structures, and homogeneous and non-
homogeneous data structures.

●● A linear data structure is one in which the data elements are stored in a
linear or sequential order; that is, data is stored in consecutive memory
locations. A non-linear data structure is one in which the data is not stored
in any sequential order or consecutive memory locations.

●● A static data structure is a collection of data in memory that is fixed in size
and cannot be changed during runtime. A dynamic data structure is a col-
lection of data in which memory can be reallocated during the execution
of a program.

●● Primitive data structures are fundamental data structures or predefined
data structures that are supported by a programming language. Non-
primitive data structures are comparatively more complicated data struc-
tures that are created using primitive data structures.

●● A homogeneous data structure is one that contains all data elements of
the same type. A non-homogeneous data structure contains data elements
of different types.

●● Python’s list structure is a mutable sequence container that can change
size as items are added or removed. It is an abstract data type that is
implemented using an array structure to store the items contained in
the list.

●● A queue is a linear collection of data elements in which the element
inserted first will be the element taken out first, that is, it is a FIFO data

Data Structures and Program Design Using Python_Ch01.indd 15 9/24/2020 12:19:56 PM

16 • Data Structures and Program Design Using Python

structure. A queue is a linear data structure in which the first element is
inserted from one end, called the REAR end, and the deletion of the ele-
ment takes place from the other end, called the FRONT end.

●● A linked list is a sequence of nodes in which each node contains one or
more than one data field and an address field that stores the address of
the next node.

●● A stack is a linear collection of data elements in which insertion and dele-
tion take place only at one end, called the TOP of the stack. A stack is a
Last-In-First-Out (LIFO) data structure because the last element added
to the top of the stack will be the first element to be deleted from the top
of the stack.

●● A tree is a non-linear data structure in which the data elements or the
nodes are represented in a hierarchical order. Here, an initial node is des-
ignated as the root node of the tree, and the remaining nodes are parti-
tioned into two disjointed sets such that each set is a part of a sub-tree.

●● A binary tree is the simplest form of a tree. A binary tree consists of a
root node and two sub-trees known as the left sub-tree and right sub-tree,
where both the sub-trees are also binary trees.

●● A graph is a general tree with no parent-child relationship. It is a non-
linear data structure that consists of vertices or nodes and the edges that
connect those vertices.

●● An algorithm is a systematic set of instructions combined to solve a com-
plex problem. It is a step-by-finite-step sequence of instructions, each of
which has a clear meaning and can be executed with a minimum amount
of effort in a finite amount of time.

●● The process of dividing an algorithm into modules is called modularization.
●● The time complexity of an algorithm is described as the amount of time

taken by an algorithm to run the program completely. It is the runtime of
the program.

●● The space complexity of an algorithm is the amount of memory space
required to run the program completely.

●● An ADT (Abstract Data Type) is a mathematical model of the data objects
that defines a data type as well as the functions to operate on these objects.

●● Big O notation is a popular analysis characterization scheme that provides
an upper bound on the complexity of an algorithm.

Data Structures and Program Design Using Python_Ch01.indd 16 9/24/2020 12:19:56 PM

Introduction to Data Structures • 17

1.10	 EXERCISES

Q1.	 What is a “good” program?

Q2.	 Explain the classification of data structures.

Q3.	 What is an algorithm? Discuss the characteristics of an algorithm.

Q4.	 What are the various operations that can be performed on the data
structures? Explain each of them with an example.

Q5.	 Differentiate a list from a linked list.

Q6.	 Explain the terms time complexity and space complexity.

Q7.	 Write a short note on graphs.

Q8.	 What is the process of modularization?

Q9.	 Differentiate between stacks and queues with examples.

Q10.	 What is meant by Abstract Data Type (ADT)? Explain in detail.

Q11.	 Discuss the worst-case, best-case, and average-case time complexity
of an algorithm.

Q12.	 Write a brief note on trees.

Q13.	 Explain how you can develop an algorithm to solve a complex problem.

Q14.	 Explain the time-memory trade-off in detail.

1.11	 MULTIPLE CHOICE QUESTIONS

Q1.	 Which of the following data structures is a FIFO data structure?

a.	 List

b.	 Stacks

c.	 Queues

d.	 Linked List

Q2.	 How many maximum children can a binary tree have?

a.	 0

b.	 2

c.	 1

d.	 3

Data Structures and Program Design Using Python_Ch01.indd 17 9/24/2020 12:19:56 PM

18 • Data Structures and Program Design Using Python

Q3.	 Which of the following data structures uses dynamic memory allocation?

a.	 Graphs

b.	 Linked Lists

c.	 Trees

d.	 All of these

Q4.	 In a queue, deletion is always done from the

a.	 Front end

b.	 Rear end

c.	 Middle

d.	 None of these

Q5.	 Which data structure is used to represent complex relationships
between the nodes?

a.	 Linked Lists

b.	 Trees

c.	 Stacks

d.	 Graphs

Q6.	 Which of the following is an example of a heterogeneous data
structure?

a.	 List

b.	 Structure

c.	 Linked list

d.	 None of these

Q7.	 In a stack, insertion and deletion takes place from the

a.	 Bottom

b.	 Middle

c.	 Top

d.	 All of these

Data Structures and Program Design Using Python_Ch01.indd 18 9/24/2020 12:19:56 PM

Introduction to Data Structures • 19

Q8.	 Which of the following is not part of the Abstract Data Type (ADT)
description?

a.	 Operations

b.	 Data

c.	 Both (a) and (b)

d.	 None of the above

Q9.	 Which of the following data structures allows deletion at both ends of
the list but insertion at one end only?

a.	 Stack

b.	 Input Restricted Dequeue

c.	 Output Restricted Dequeue

d.	 Priority Queue

Q10.	 Which of the following data structures is a linear type?

a.	 Trees

b.	 Graphs

c.	 Queues

d.	 None of the above

Q11.	 Which one of the following is beneficial when the data is stored and
has to be retrieved in reverse order?

a.	 Stack

b.	 Linked List

c.	 Queue

d.	 All of the above

Q12.	 A binary search tree whose left and right sub-tree differ in height by
1 at most is a

a.	 Red Black Tree

b.	 M way search tree

c.	 AVL Tree

d.	 None of the above

Data Structures and Program Design Using Python_Ch01.indd 19 9/24/2020 12:19:56 PM

20 • Data Structures and Program Design Using Python

Q13.	 The operation of processing each element in the list is
called

a.	 Traversal

b.	 Merging

c.	 Inserting

d.	 Sorting

Q14.	 Which of the following are the two primary measures of the
efficiency of an algorithm?

a.	 Data & Time

b.	 Data & Space

c.	 Time & Space

d.	 Time & Complexity

Q15.	 Which one of the following cases does not exist/occur in
complexity theory?

a.	 Average Case

b.	 Worst Case

c.	 Best Case

d.	 Minimal Case

Data Structures and Program Design Using Python_Ch01.indd 20 9/24/2020 12:19:56 PM

C H A P T E R 2
INTRODUCTION TO PYTHON

2.1	 INTRODUCTION

What is Python?

Python is a popular programming language. It was created by Guido van
Rossum and released in 1991.

It is used for:

●● web development (server-side)
●● software development
●● mathematics
●● system scripting

What can Python do?

●● Python can be used on a server to create web applications.
●● Python can be used alongside software to create workflows.
●● Python can connect to database systems. It can also read and modify files.
●● Python can be used to handle big data and perform complex mathematics.
●● Python can be used for rapid prototyping or production-ready software

development.

Why Python?

●● Python works on different platforms (Windows, Mac, Linux, and
Raspberry Pi).

●● Python has a simple syntax similar to the English language.

Data Structures and Program Design Using Python_Ch02.indd 21 9/24/2020 12:20:34 PM

22 • Data Structures and Program Design Using Python

●● Python has a syntax that allows developers to write programs with fewer
lines than some other programming languages.

●● Python runs on an interpreter system, meaning that code can be executed
as soon as it is written. This means that prototyping can be very quick.

●● Python can be treated procedurally, in an object-orientated way, or in a
functional way.

Good to Know

●● The most recent version, Python 3.8 is used for implementation of vari-
ous codes discussed in this Book. However, Python 2, although not being
updated with anything other than security updates, is still quite popular.

●● In this tutorial, Python is written in a text editor. It is possible to write
Python in an Integrated Development Environment, such as Thonny,
Pycharm, Netbeans, or Eclipse, which is particularly useful when manag-
ing larger collections of Python files.

Python Syntax Compared to Other Programming Languages

●● Python was designed for readability and has some similarities to the
English language with influence from mathematics.

●● Python uses new lines to complete a command, as opposed to other
programming languages that often use semicolons or parentheses.

●● Python relies on indentation(using whitespace) to define scope, such as
the scope of loops, functions, and classes. Other programming languages
often use curly brackets for this purpose.

2.2	 PYTHON AND ITS CHARACTERISTICS

Python is a dynamic, high level, free open source, and interpreted pro-
gramming language. It supports object-oriented programming as well as
procedural-oriented programming. In Python, we don’t need to declare the
type of variable because it is a dynamically typed language. For example,
x=10, where x can be anything such as string or int.

Some of its characteristics are as follows:

1.	 Easy to Code: Python is a high-level programming language. Python is
very easy to learn as compared to other languages like C, C#, JavaScript,
and Java. It is very easy to code in Python and anybody can learn Python
in a few hours or days. It is also a developer-friendly language.

Data Structures and Program Design Using Python_Ch02.indd 22 9/24/2020 12:20:34 PM

Introduction to Python • 23

2.	 Free and Open Source: Python is freely available at the official website. It
is open-source, which means that the source code is available to the public.

3.	 Object-Oriented Language: One of the key features of Python is that
it is an object-oriented language and utilizes concepts such as classes and
object encapsulation.

4.	 GUI Programming Support: Graphical user interfaces can be made
using a module such as PyQt5, PyQt4, wxPython, or Tk in Python. PyQt5
is the most popular option for creating graphical apps with Python.

5.	 High-Level Language: Python is a high-level language. When we write
programs in Python, we do not need to remember the system architec-
ture, nor do we need to manage the memory.

6.	 Python is Extensible: We can add some Python code into C or C++
language programs, and we can compile that code in C/C++.

7.	 Python is Portable: Python is also a portable language. For example, if
we have Python code developed for Windows, we can run this code on
other platforms, such as Linux, Unix, and Mac, without changing it.

8.	 Large Standard Library: Python has a large standard library with a rich
set of modules and functions so you do not have to write your code for
every single thing. There are many libraries in Python, such as those for
regular expressions, unit-testing, and Web browsers.

2.3	 PYTHON OVERVIEW

Python is a high-level, interpreted, interactive, and object-oriented scripting
language. Python is designed to be highly readable. It uses English keywords
frequently (other languages use punctuation), and it has fewer syntactical
constructions than other languages.

●● Python is Interpreted − Python is processed at runtime by the inter-
preter. You do not need to compile your program before executing it. This
is similar to PERL and PHP.

●● Python is Interactive − You can sit at a Python prompt and interact with
the interpreter directly to write your programs.

●● Python is Object-Oriented − Python supports the object-oriented style
or technique of programming that encapsulates code within objects.

●● Python is a Beginner’s Language − Python is a great language for the
beginner-level programmers and supports the development of a wide range
of applications, from simple text processing to Web browsers and games.

Data Structures and Program Design Using Python_Ch02.indd 23 9/24/2020 12:20:34 PM

24 • Data Structures and Program Design Using Python

2.4	 TOOLS FOR PYTHON

The Anaconda Python distribution is available for Windows, Linux, and
Mac, and it is downloadable here:

https://www.anaconda.com/products/individual
Anaconda is well suited for modules such as numpy and scipy, and if you are a
Windows user, Anaconda appears to be a better alternative.

2.5	 EASY_INSTALL AND PIP

easy_install and pip are Python package installers that will make your life a
lot easier when developing in Python.

Whenever you need to install a Python module (and there are many in this
book), use either easy_install or pip with the following syntax:

easy_install<module-name>
pip install <module-name>

2.6	 QUOTATIONS AND COMMENTS IN PYTHON

Python allows single ('), double (") and triple ('" or ") quotes for string
literals, provided that they match at the beginning and the end of the string.
You can use triple quotes for strings that span multiple lines. The following
examples are legal Python strings:

word = 'word'
line = "This is a sentence."
para = """This is a paragraph. This paragraph contains
more than one sentence."

A string literal begins with the letter “r” (for “raw”) and treats everything
as a literal character and “escapes” the meaning of meta characters (which are
discussed in more detail in Chapter 4), as shown here:

a1 = r'\n'
a2 = r'\r'
a3 = r'\t'
print'a1:',a1,'a2:',a2,'a3:',a3

The output of the preceding code block is here:

a1: \n a2: \r a3: \t

Data Structures and Program Design Using Python_Ch02.indd 24 9/24/2020 12:20:35 PM

Introduction to Python • 25

You can embed a single quote in a pair of double quotes (and vice versa)
to display a single quote or a double quote. Another way to accomplish the
same result is to precede a single or double quote with a backslash character
and enclose both in a pair of double-quotes. The following code block illus-
trates these techniques:

b1 = "'"
b2 = '"'
b3 = '\''
b4 = "\""
print'b1:',b1,'b2:',b2
print'b3:',b3,'b4:',b4

The output of the preceding code block is here:

b1: ' b2: "
b3: ' b4: "

A hash sign (#) that is not inside a string literal is the character that indi-
cates the beginning of a comment. Moreover, all characters after the hash sign
and up to the physical line ending are part of the comment (and are ignored
by the Python interpreter). Consider the following code block:

#!/usr/bin/python
First comment
print "Hello, Python!"; # second comment

This will produce the following result:
Hello, Python!

A comment may come after a statement or expression on the same line:

name = "Tom Jones" # This is also a comment

You can place comments on multiple lines as follows:

This is comment one
This is comment two
This is comment three

A blank line in Python is a line containing only white space, a comment,
or both.

2.7	 COMPILING THE PYTHON PROGRAM

Compilation: The source code in Python is saved as a .py file, which is then
compiled into a format known as byte code. Byte code is then converted to
machine code. After the compilation, the code is stored in .pyc files and is
regenerated when the source is updated. This process is known as compilation.

Data Structures and Program Design Using Python_Ch02.indd 25 9/24/2020 12:20:35 PM

26 • Data Structures and Program Design Using Python

Linking: Linking is the final phase where all the functions are linked
with their definitions, as the linker knows where all these functions are
implemented.

How to Run a Program in Python 3

1.	 First, type your program in the Python 3 Idle compiler (or you can use
any Python-supported compiler, like Anaconda, Sublime, Python 3 Idle,
or any inline compiler).

2.	 Before running your program, save your file and use the Python extension
(.py) after your file name (for example, abc.py).

3.	 Then press f5 (fn + f5 for Windows) to run your code.

2.8	 OBJECT-ORIENTED PROGRAMMING

Object-Oriented Programming (OOP) refers to a type of computer program-
ming (software design) in which programmers define the data type of a data
structure and the types of operations (functions) that can be applied to the
data structure.

In this way, the data structure becomes an object that includes both data
and functions. Programmers can create relationships between one object and
another. For example, objects can inherit characteristics from other objects.

Data Structures and Program Design Using Python_Ch02.indd 26 9/24/2020 12:20:36 PM

Introduction to Python • 27

The Basic OOP Concepts

If you are new to object-oriented programming languages, you will need
to know a few basics before you can get started with code. The following
Webopedia definitions will help you better understand object-oriented
programming:

●● Abstraction: The process of picking out (abstracting) common features
of objects and procedures

●● Class: A category of objects. The class defines all the common properties
of the different objects that belong to it.

●● Encapsulation: The process of combining elements to create a new
entity. A procedure is a type of encapsulation because it combines a series
of computer instructions.

●● Information hiding: The process of hiding details of an object or func-
tion. Information hiding is a powerful programming technique because it
reduces complexity.

●● Inheritance: A feature that represents the “is a” relationship between
different classes

●● Interface: The languages and codes that the applications use to commu-
nicate with each other and with the hardware

●● Messaging: Message passing is a form of communication used in parallel
programming and object-oriented programming.

●● Object: A self-contained entity that consists of both data and procedures
to manipulate the data

●● Polymorphism: A programming language’s ability to process objects
differently depending on their data type or class.

●● Procedure: A section of a program that performs a specific task

Advantages of Object-Oriented Programming

One of the principal advantages of object-oriented programming techniques
over procedural programming techniques is that they enable programmers to
create modules that do not need to be changed when a new type of object is
added. A programmer can simply create a new object that inherits many of its fea-
tures from existing objects. This makes object-oriented programs easier to modify.

OOPL - Object-Oriented Programming Languages

An object-oriented programming language (OOPL) is a high-level program-
ming language based on the object-oriented model. To perform object-oriented

Data Structures and Program Design Using Python_Ch02.indd 27 9/24/2020 12:20:36 PM

28 • Data Structures and Program Design Using Python

programming, one needs an object-oriented programming language. Many
modern programming languages are object-oriented, however, some older pro-
gramming languages, such as Pascal, do offer object-oriented versions. Examples
of object-oriented programming languages include Java, C++, and Smalltalk.

2.9	 CHARACTER SET USED IN PYTHON

The character set allowed in Python consists of the following characters:

1.	 Alphabet – This includes uppercase as well as lowercase letters of
English, i.e., {A, B, C... ., Z} and {a, b, c... ., z}.

2.	 Digits – This includes decimal digits, i.e., {0, 1, 2 . . ., 9}.

3.	 White Spaces – This includes spaces, enters, and tabs.

4.	 Special Characters – These consist of special symbols, including {, !, ?,
#, <, >, (,), %, “, &, ^, ∗, <<, >>, [,], +, =, /, -, _, :, ;, }.

2.10	PYTHON TOKENS

1.	 Keywords

2.	 Identifiers

3.	 Literals

4.	 String

5.	 Numeric

6.	 Collection literals

7.	 List Literals

8.	 Tuples

FIGURE 2.1  The relationship between tokens and other entities

Data Structures and Program Design Using Python_Ch02.indd 28 9/24/2020 12:20:36 PM

Introduction to Python • 29

Keywords

These are the dedicated words that have special meaning and functions. The
compiler defines these words. It does not allow users to use these words.

Identifiers:
Identifiers represent the programmable entities. The programmable entities
include user-defined names, variables, modules, and other objects. Moreover,
Python has some rules for defining the identifiers. For example, an identifier can
be a sequence of lowercase letters, uppercase letters, integers, or a combination
of any of those. The identifier name should start with a lower case or upper case
letter (it must not start with digits). The identifier name should not be a reserved
word. Only the underscore (_) can be used as a special character in identifier
names. The length of the identifier name should not be more than 79 characters.

Literals

Literals are used to define the data as a variable or constant. Python has 6
literal tokens.

String

The string is a sequence of characters defined between quotes (Both single
and double quotes are applicable to define the string literals.). These strings
perform several operations. Let us discuss some of them.

Numeric

These are immutable (unchangeable) literals. We have 3 different numerical
types: integer, float, and complex.

Boolean

This has only two values: true or false.

Collection literals

A collection literal is a syntactic expression form that evaluates an aggregate type,
such as an array list or map. Python supports 2 types of collection literal tokens.

List Literals

You can consider Python lists as arrays in C. But the difference between the
arrays and lists is that arrays hold the homogeneous data type and lists hold the
heterogeneous data types. The list is the most versatile data type in Python.
Python literals are separated by a comma in [].

Note: If a comma is not provided between the values, the output does not
contain spaces.

Data Structures and Program Design Using Python_Ch02.indd 29 9/24/2020 12:20:36 PM

30 • Data Structures and Program Design Using Python

Example

List = ['a','b','c']
Print(list)
Output :
['a','b','c']

Tuples

Tuples are similar to lists. But like lists, tuples cannot change values. Tuples
are enclosed in parentheses, whereas lists are enclosed in square brackets.
Tuples perform all the same operations as lists do.

Set

A set is a well-defined collection of elements. The elements in the set are
placed in curly braces separated by a comma. In the set, every element is
unique.

Set 1 = {1, 2, 3}
Set 2 = {1, 2, 2, 3}

In the above example, element 2 is taken twice. Now, let us discuss the
various set operations.

Union

This combines all the elements in the string. The
union operation is performed using the pipe (|)
operator tokens.

Example

A = {1, 2, 3, 4, 5, 6}
B = {3, 4, 5, 6, 7, 8}
A|B = {1, 2, 3, 4, 5, 6, 7, 8}

Intersection

The intersection of A and B returns the common
elements in the sets. The operation is performed
using the and operator tokens.

Example

A = {1, 2, 3, 4, 5, 6}
B = {3, 4, 5, 6, 7, 8}
A & B = {3, 4, 5, 6}

Data Structures and Program Design Using Python_Ch02.indd 30 9/24/2020 12:20:36 PM

Introduction to Python • 31

Difference

The difference of (A−B) returns the elements that
are only in A, but not in B. Similarly, B−A returns only
the elements that are only in B but not in A tokens.

Example

A = {1, 2, 3, 4, 5, 6}
B = {3, 4, 5, 6, 7, 8}
A–B = {1, 2}
B–A = {7, 8}

Symmetric difference

This returns the set of elements that are in both
A and B, except for the common element tokens.

Example

A = {1, 2, 3, 4, 5, 6}
B = {3, 4, 5, 6, 7, 8}
A^B = {1, 2, 7, 8}

Dictionaries

Python dictionaries are the key value pairs that are enclosed in curly braces.
Dictionaries are separated by the “:”

Dict = {'name' : 'Onlineitguru', age : 20}

These elements are accessed as Dict['name'].

Output: Onlineitguru

Appending the elements in dictionaries is written as follows:

Dict['address']=ameerpet

Output

‘name’=’onlineitguru’,’age’=20, address’=ameerpet.

2.11	 DATA TYPES IN PYTHON

Data types are the special keywords that define the type of data and the
amount of data a variable is holding. In programming, a data type is an impor-
tant concept. Variables can store data of different types, and different types
can do different things.

Data Structures and Program Design Using Python_Ch02.indd 31 9/24/2020 12:20:37 PM

32 • Data Structures and Program Design Using Python

Python has the following data types built-in by default, in these categories:

Text Type:	 str

Numeric Types:	 int, float, complex

Sequence Types:	 list, tuple, range

Mapping Type:	 dict

Set Types:	 set, frozenset

Boolean Type:	 bool

Binary Types:	 bytes, bytearray, memoryview

Getting the Data Type

You can get the data type of any object by using the type() function.

Python –Data Types

Integer

Float

Complex
Number

Dictionary Boolean Set
Sequence

type
Numeric

Strings

Tuple

List

FIGURE 2.2  The relationship between Python data types

2.12	 STRUCTURE OF A PYTHON PROGRAM

In general, a Python program consists of many text files that contain Python
statements. A program is designed as a single main, high-level file with one or
more supplemental files.

In Python, a high-level file has an important path of control that you must
follow before you can start your application. The library tools are also known
as module files. These tools are implemented for making a collection of top-
level files. High-level files use tools that are defined in module files. Module

Data Structures and Program Design Using Python_Ch02.indd 32 9/24/2020 12:20:37 PM

Introduction to Python • 33

files implement files that are defined in other modules. In Python, a file takes
a module to get access to the tools it defines. The tools are made by a module’s
type. The final thing we take are the modules and access the attributes of their
tools. This shows the programming structure of Python.

Attributes and Imports:

The structure of a Python program consists of three files, such as a.py, b.py,
and c.py. The file model a.py is used for a high-level file. It is known as a sim-
ple text file of statements. It can be executed from bottom to top when it is
launched. Files b.py and c.py are modules. They are considered text files of
statements, but they are generally not started directly. These attributes define
the programming structure of Python.

Functions:

For example, b.py defines a function called spam. For external use, b.py has a
Python def statement to start the function. It is later operated by passing one
or more values, as shown in the following example.

Def spam(text): print text, 'spam'

If a.py wants to use spam, it uses the following Python statement:
Import b b.spam ('gumby')

Statements:

The Python import statement gives the file a.py access to file b.py. It shows
“load fileb.py” and gives access to all its attributes named “b.” The import
statements will execute and implement another file at runtime. The cross-file
module is not updated until the import statements are executed.

The next part is the statements that call the function spam. Module b uses
object attribute notation. B.spam means to get the value of name spam within
object b. We can implement a string in parentheses if these files are run by a.py.

In regular usage, we see Object. Attribute in Python scripts. Many objects
have attributes traced by Python operators.

The process of importing is considered common in Python. Any sort of
file can get tools from any file. Chains can go as deep as you want. You can
get notified module a to import b and b can import c, and c again imports b.

Modules:

One way to view this is to see Python as a big company structure. Modules
have the top end of the code. The coding components in module files are used
in the program files. Let’s take an example function: b.spam is a regular pur-
pose tool. We can again implement that in a different program. This is simply
known as b.py from any other program files.

Data Structures and Program Design Using Python_Ch02.indd 33 9/24/2020 12:20:37 PM

34 • Data Structures and Program Design Using Python

Standard library files:

Python has a large collection of modules known as the standard library. It con-
tains 200 modules (at last count). It includes platform-independent common
programming things, such as GUI design, Internet and network scripting, text
design matching, and operating system interfaces. All of these are used in the
programming structure of Python.

2.13	 OPERATORS IN PYTHON

Operators are used for performing operations on variables and values.
Python divides the operators into the following groups:

●● Arithmetic operators
●● Assignment operators
●● Comparison operators
●● Logical operators
●● Identity operators
●● Membership operators
●● Bitwise operators

Python Arithmetic Operators

Arithmetic operators are used with numeric values to perform common math-
ematical operations.

Table 2.1  Common mathematical operations

Operator Name Example

+ Addition x + y

− Subtraction x − y

∗ Multiplication x ∗ y

/ Division x / y

% Modulus x % y

∗∗ Exponentiation x ∗∗ y

// Floor division x // y

Data Structures and Program Design Using Python_Ch02.indd 34 9/24/2020 12:20:37 PM

Introduction to Python • 35

Python Assignment Operators

Assignment operators are used for assigning values to variables.

Table 2.2  Assignment operators

Operator Example Same As

= x = 5 x = 5

+= x += 3 x = x + 3

−= x −= 3 x = x − 3

∗= x ∗= 3 x = x ∗ 3

/= x /= 3 x = x / 3

%= x %= 3 x = x % 3

//= x //= 3 x = x // 3

∗∗= x ∗∗= 3 x = x ∗∗ 3

&= x &= 3 x = x & 3

|= x |= 3 x = x | 3

^= x ^= 3 x = x ^ 3

>>= x >>= 3 x = x >> 3

<<= x <<= 3 x = x << 3

Python Comparison Operators

Comparison operators are used for comparing two values.

Table 2.3  Comparison operators

Operator Name Example

== Equal x == y

!= Not equal x != y

> Greater than x > y

< Less than x < y

>= Greater than or equal to x >= y

<= Less than or equal to x <= y

Data Structures and Program Design Using Python_Ch02.indd 35 9/24/2020 12:20:37 PM

36 • Data Structures and Program Design Using Python

Python Logical Operators

Logical operators are used for combining conditional statements.

Table 2.4  Logical operators

Operator Description Example Try it

and Returns True if both
statements are true

x < 5 and x < 10 Try it »

or Returns True if one of the
statements is true

x < 5 or x < 4 Try it »

not Reverse the result, returns
False if the result is true

not(x < 5 and x
< 10)

Try it »

Python Identity Operators

Identity operators are used for comparing the objects, not if they are equal,
but if they are actually the same object, with in the same memory location.

Table 2.5  Identity operators

Operator Description Example Try it

is Returns True if both
variables are the same object

x is y Try it »

is not Returns True if both
variables are not the same
object

x is not y Try it »

Python Membership Operators

Membership operators are used for testing if a sequence is presented in an
object.

Table 2.6  Membership operators

Operator Description Example Try it

in Returns True if a sequence
with the specified value is
present in the object

x in y Try it »

not in Returns True if a sequence
with the specified value is
not present in the object

x not in y Try it »

Data Structures and Program Design Using Python_Ch02.indd 36 9/24/2020 12:20:37 PM

Introduction to Python • 37

Python Bitwise Operators

Bitwise operators are used for comparing (binary) numbers.

Table 2.7  Bitwise operators

Operator Name Description

& AND Sets each bit to 1 if both bits are 1

| OR Sets each bit to 1 if one of two bits is 1

^ XOR Sets each bit to 1 if only one of two bits is 1

~ NOT Inverts all the bits

<< Zero fill left
shift

Shift left by pushing zeros in from the right and
let the left-most bits fall off

>> Signed right
shift

Shift right by pushing copies of the left-most bit
in from the left, and let the right-most bits fall off

PROGRAM TO ADD TWO NUMBERS ACCEPTED BY USER

Data Structures and Program Design Using Python_Ch02.indd 37 9/24/2020 12:20:37 PM

38 • Data Structures and Program Design Using Python

2.14	 DECISION CONTROL STATEMENTS

The Decision Control Statement (DCS) is a statement that determines the
control flow of a set of instructions. This means the DCS decides the sequence
in which the instructions in the program are executed.

The three fundamental methods of control flow in a programming
language are

1.	 Sequential Control

2.	 Selection Control

3.	 Iterative Control

Here, we only discuss two methods of control flow.

Sequential Control

Sequential control is when the program is executed line by line, meaning from
the first line to the second line then from the second line to the third line and
so on.

Selection Control Statement

When we execute only a selected set of statements, then we use the Selection
Control Statement. It usually jumps from one part of the code to another
depending on whether a particular condition is satisfied or not.

In the Selection Control Statement, we need

●● If statement
●● If-else statement
●● If-elif-else statement

If Statement

The if statement is the simplest form of decision control statement that is
frequently used in decision making.

Syntax of the If Statement

if (test_expression) :

statement1

…………..

statement n

statement x

Data Structures and Program Design Using Python_Ch02.indd 38 9/24/2020 12:20:37 PM

Introduction to Python • 39

Program to increment a number if it is positive

x = 10 # Initialize the value of x

if (x>0): # test the value of x

x = x+1 # Increment the value of x if it is > 0

print(x) # print the value of

If-else Statement

The use of If-else statement is very simple. When you run your program, the
test expression is evaluated. If the result is True, the statement followed by
the expression is executed, else, if the expression is False, the statement fol-
lowed by the expression is executed.

Syntax of the If-else Statement

if (test expression) :

statement block 1

else :

statement block 2

statement x

PROGRAM TO FIND WHETHER THE NUMBER IS EVEN OR ODD

Data Structures and Program Design Using Python_Ch02.indd 39 9/24/2020 12:20:38 PM

40 • Data Structures and Program Design Using Python

If-elif-else statement

Python supports if-elif-else statements to test additional conditions apart
from the initial test expression. The if-elif-else constructs works in the same
way as usual to if-else statement. One more thing to remember that it is not
necessary that every if statement should have an else block, as Python sup-
ports simple if statements, also.

Syntax of If-elif-else statement

if (test expression 1):

statement block 1

elif (test expression 2):

statement block 2

…………………………

elif (test expression N):

statement block N

else:

statement block X

Statement Y

2.15	 LOOPING STATEMENTS

In general, statements are executed
sequentially: The first statement in a
function is executed first, followed by
the second, and so on. There may be
a situation when you need to execute
a block of code several times.

Programming languages pro-
vide various control structures that
allow for more complicated execution
paths.

A loop statement allows us to
execute a statement or group of
statements multiple times. The fol-
lowing diagram illustrates a loop
statement.

Data Structures and Program Design Using Python_Ch02.indd 40 9/24/2020 12:20:38 PM

Introduction to Python • 41

The Python programming language provides the following types of loops
to handle looping requirements.

Table 2.8  Types of loops

Sr. No. Loop type and description

1 While loop
Repeats a statement or group of statements while a given condition is
TRUE. It tests the condition before executing the loop body.

2 For loop
Executes a sequence of statements multiple times and abbreviates the
code that manages the loop variable.

3 Nested loops
You can use one or more loops inside any another while, for, or do..
while loop.

A sample while loop program is shown in the graphic.

OUTPUT

Data Structures and Program Design Using Python_Ch02.indd 41 9/24/2020 12:20:38 PM

42 • Data Structures and Program Design Using Python

A for loop program is shown in the following graphic.

OUTPUT

A nested loop program is as follows.

Data Structures and Program Design Using Python_Ch02.indd 42 9/24/2020 12:20:38 PM

Introduction to Python • 43

OUTPUT

2.16	 LOOP CONTROL STATEMENTS

Loop control statements change the execution from its normal sequence.
When the execution leaves a scope, all automatic objects that were created in
that scope are destroyed.

Python supports the following control statements. Let us go through the
loop control statements briefly.

Data Structures and Program Design Using Python_Ch02.indd 43 9/24/2020 12:20:39 PM

44 • Data Structures and Program Design Using Python

Table 2.9  Examples of loop control statements

Sr. No. Control Statement & Description

1 Break statement
Terminates the loop statement and transfers execution to the
statement immediately following the loop.

2 continue statement
It causes the loop to skip the remainder of its body and immediately
retest its condition prior to reiterating.

3 pass statement
The pass statement in Python is used when a statement is required
syntactically, but you do not want any command or code to execute.

An example of a break statement program is shown below.

OUTPUT

Data Structures and Program Design Using Python_Ch02.indd 44 9/24/2020 12:20:39 PM

Introduction to Python • 45

2.17	 METHODS

Introduction to Python Methods

You are aware of the fact that Python is an object-oriented language, right?
This means that it can deal with classes and objects to model the real world.
A Python method is a label that you can call on an object; it is a piece of code
to execute on that object.

Python Class Method

A Python class is an Abstract Data Type (ADT). Think of it as a blueprint. A
rocket is made by referring to its blueprint, that is, according to its plan. It has
all the properties mentioned in the plan and behaves accordingly. Likewise, a
class is a blueprint for an object. For example, consider a car. The class “Car”
contains properties like brand, model, color, and fuel. It also holds behavior
like start(), halt(), drift(), speedup(), and turn(). An object Hyundai Verna has
the following properties:

brand: ‘Hyundai’
model: ‘Verna’
color: ‘Black’
fuel: ‘Diesel’

Here, this is an object of the class Car, and we may choose to call it “car1”
or “blackverna.”

1.	 >>> class Car:

2.	 def__init__(self,brand,model,color,fuel):

3.	 self.brand=brand

4.	 self.model=model

5.	 self.color=color

6.	 self.fuel=fuel

7.	 defstart(self):

8.	 pass

9.	 defhalt(self):

10.	pass

11.	defdrift(self):

12.	pass

13.	defspeedup(self):

14.	pass

15.	defturn(self):

16.	pass

Data Structures and Program Design Using Python_Ch02.indd 45 9/24/2020 12:20:39 PM

46 • Data Structures and Program Design Using Python

Python Objects

A Python object is an instance of a class. It can have properties and behavior.
We just created the class Car. Now, let’s create an object blackverna from this
class. Remember that you can use a class to create as many objects as you
want.

1.	 >>>blackverna=Car('Hyundai','Verna','Black','Diesel')

This creates a Car object, called blackverna, with the aforementioned attrib-
utes. We did this by calling the class like a function (the syntax). Now, let’s
access its fuel attribute. To do this, we use the dot operator in Python(.).

2.	 >>>blackverna.fuel

The output is “Diesel.”

Python Method

A Python method is like a Python function, but it must be called on an object.
To create it, you must put it inside a class. Now in this Car class, we have five
methods, namely, start(), halt(), drift(), speedup(), and turn(). In this example,
we put the pass statement in each of these, because we haven’t decided what
to do yet. Let’s call the drift() Python method on blackverna.

1.	 >>>blackverna.drift()

2.	 >>>

Like a function, a method has a name and may take parameters and have
a return statement. Let’s take an example of this.

1.	 >>> class Try:

2.	 def__init__(self):

3.	 pass

4.	 defprinthello(self,name):

5.	 print(f"Hello, {name}")

6.	 return name

7.	 >>>obj=Try()

8.	 >>>obj.printhello('Ayushi')

The output is

Hello, Ayushi
‘Ayushi’

Here, the method printhello() has a name, takes a parameter, and returns
a value.

Data Structures and Program Design Using Python_Ch02.indd 46 9/24/2020 12:20:39 PM

Introduction to Python • 47

An interesting discovery – When we first defined the class Car, we did
not pass the self parameter to the five methods of the class. This worked fine
with the attributes, but when we called the drift() method on blackverna, it
gave us this error:

Traceback (most recent call last):
File “<pyshell#19>”, line 1, in <module>
blackverna.drift()
TypeError: drift() takes 0 positional arguments but 1 was given

From this error, we figured that we were missing the self parameter to
all those methods. Then we added it to all of them and called drift() on black-
verna again. It still didn’t work.

Finally, we declared the blackverna object again, and then called drift()
on it. This time, it worked without an issue. Make out of this information what
you will.

__init__()

If you’re familiar with any other object-oriented language, you know about
constructors. In C++, a constructor is a special function, with the same name
as the class, used to initialize the class’s attributes. Here in Python, __init__() is
the method we use for this purpose. Let’s see the __init__ part of another class.

1.	 >>> class Animal:

2.	 def__init__(self,species,gender):

3.	 self.species=species

4.	 self.gender=gender

5.	 >>> fluffy=Animal('Dog','Female')

6.	 >>>fluffy.gender

The output is “Female.”
Here, we used __init__ to initialize the attributes species and gender.
However, you don’t need to define this function if you don’t need it in

your code.

1.	 >>> class Try2:

2.	 defhello(self):

3.	 print("Hello")

4.	 >>> obj2=Try2()

5.	 >>> obj2.hello()

Init is a magic method, which is why it has double underscores before and
after it. We will learn about magic methods in a later section in this article.

Data Structures and Program Design Using Python_Ch02.indd 47 9/24/2020 12:20:39 PM

48 • Data Structures and Program Design Using Python

Python Self Parameter

You would have noticed until now that we’ve been using the self-parameter
with every method, even the __init__(). This tells the interpreter to deal with
the current object. It is like the “this” keyword in Java. Let’s take another code
to see how this works.

1.	 >>> class Fruit:

2.	 defprintstate(self,state):

3.	 print(f"The orange is {state}")

4.	 >>> orange=Fruit()

5.	 >>>orange.printstate("ripe")

The output is as follows:
The orange is ripe.

As you can see, the self-parameter told the method to operate on the cur-
rent object, that is, orange. Let’s take another example.

1.	 >>> class Result:

2.	 def__init__(self,phy,chem,math):

3.	 self.phy=phy

4.	 self.chem=chem

5.	 self.math=math

6.	 defprintavg(self):

7.	 print(f"Average={(self.phy+self.chem+self.math)/3}")

8.	 >>>rollone=Result(86,95,85)

9.	 >>>rollone.chem

The output is as follows: 95.

1.	 >>>rollone.printavg()

Average=88.66666666666667
You can also assign values directly to the attributes, instead of relying on

arguments.

1.	 >>> class LED:

2.	 def__init__(self):

3.	 self.lit=False

4.	 >>>obj=LED()

5.	 >>>obj.lit

The output is as follows:
False

Data Structures and Program Design Using Python_Ch02.indd 48 9/24/2020 12:20:39 PM

Introduction to Python • 49

Finally, we’d like to say that self isn’t a keyword. You can use any name
instead of it, provided that it isn’t a reserved keyword, and follows the rules
for naming an identifier.

1.	 >>> class Try3:

2.	 def__init__(thisobj,name):

3.	 thisobj.name=name

4.	 >>> obj1=Try3('Leo')

5.	 >>> obj1.name

The output is as follows:
Leo

Python Functions vs. Method

A function differs from a method in the following ways.

1.	 While a method is called on an object, a function is generic.

2.	 Since we call a method on an object, it is associated with it. Consequently,
it is able to access and operate on the data within the class.

3.	 A method may alter the state of the object; a function does not when an object
is passed as an argument to it. We have seen this in our tutorial on tuples.

Python Magic Methods

Another construct that Python provides us with is Python magic methods.
Such a method is identified by double underscores before and after its name.
Another name for a magic method is a dunder.

A magic method is used to implement functionality that can’t be repre-
sented as a normal method. __init__() isn’t the only magic method in Python.
But for now, we’ll just name some of the magic methods:

__add__ for +
__sub__ for –
__mul__ for *
__and__ for &

The list, however, does not end here.

Conclusion: Python Method

A Python method, as we know it, is much like a function, except for the fact
that it is associated with an object. Now you know how to define a method,
and make use of the __init__ method and the self-parameter, or whatever you
choose to call it. Don’t forget to revise the various methods we discussed in
our tutorials on Python lists, tuples, strings, sets, and dictionaries in Python.

Data Structures and Program Design Using Python_Ch02.indd 49 9/24/2020 12:20:39 PM

50 • Data Structures and Program Design Using Python

2.18	SUMMARY

●● Python is a popular programming language. It was created by Guido van
Rossum and released in 1991.

●● Python is a dynamic, high level, free, open source, and interpreted pro-
gramming language. It supports object-oriented programming as well as
procedural oriented programming.

●● Object-oriented programming (OOP) refers to a type of computer pro-
gramming (software design) in which programmers define the data
type of a data structure and the types of operations (functions) that can be
applied to the data structure.

●● Class: A category of objects. The class defines all the common properties
of the different objects that belong to it.

●● Encapsulation: The process of combining elements to create a new
entity. A procedure is a type of encapsulation because it combines a series
of computer instructions.

●● Inheritance: A feature that represents the “is a” relationship between
different classes

●● Object: A self-contained entity that consists of both data and procedures
to manipulate the data

●● Data types are the special keywords that define the type of data and the
amount of data a variable is holding.

●● Operators are used for performing operations on variables and values.
●● Arithmetic operators are used with numeric values to perform common

mathematical operations.
●● Assignment operators are used for assigning values to variables.
●● Comparison operators are used for comparing two values.
●● Logical operators are used for combining conditional statements.
●● Identity operators are used for comparing the objects, not if they are equal,

but if they are actually the same object, with the same memory location.
●● Membership operators are used for testing if a sequence is presented in

an object
●● Bitwise operators are used for comparing (binary) numbers.
●● The Decision Control Statement is a statement that determines the con-

trol flow of a set of instructions. The DCS decides the sequence in which
instructions in the program are to be executed.

●● The if statement is the simplest form of the decision control statement
that is frequently used in decision making.

Data Structures and Program Design Using Python_Ch02.indd 50 9/24/2020 12:20:40 PM

Introduction to Python • 51

●● The use of if -else statement is very simple. When you run your program,
the test expression is evaluated. If the result is True, the statement fol-
lowed by the expression is executed, else if the expression is False, the
statement followed by the expression is executed.

●● Python supports if-elif-else statements to test additional conditions apart
from the initial test expression. The if-elif-else constructs works in the
same way as the if-else statement.

●● While loop-Repeats a statement or group of statements while a given
condition is TRUE. It tests the condition before executing the loop body.

●● For loop-Executes a sequence of statements multiple times and abbrevi-
ates the code that manages the loop variable.

●● Nested loop-You can use one or more loops inside any another while, for,
or do..while loop.

●● Break statement-Terminates the loop statement and transfers execution
to the statement immediately following the loop

●● Continue statement-Causes the loop to skip the remainder of its body
and immediately retest its condition prior to reiterating

●● Pass statement-The pass statement in Python is used when a statement is
required syntactically, but you do not want any command or code to execute.

●● A Python Class is an Abstract Data Type (ADT).
●● A Python object is an instance of a class.
●● A Python method is like a Python function, but it must be called on an

object. To create it, you must put it inside a class.
●● A magic method is used to implement functionality that can’t be repre-

sented as a normal method.

2.19	 EXERCISES

2.19.1	Theory Questions

Q1.	 What is the difference between lists and tuples in Python?

Q2.	 What are the key features of Python?

Q3.	 What type of language is Python?

Q4.	 How is Python an interpreted language?

Q5.	 What is pep 8?

Q6.	 How is memory managed in Python?

Q7.	 What is name space in Python?

Data Structures and Program Design Using Python_Ch02.indd 51 9/24/2020 12:20:40 PM

52 • Data Structures and Program Design Using Python

Q8.	 What is Python path?

Q9.	 What are Python modules?

Q10.	 What are local variables and global variables in Python?

Q11.	 Is Python case sensitive?

Q12.	 What is type conversion in Python?

Q13.	 How can you install Python on Windows and set the path variable?

Q14.	 Is indentation required in Python?

Q15.	 What is the difference between Python arrays and lists?

Q16.	 What are functions in Python?

Q17.	 What is __init__?

Q18.	 What is a lambda function?

Q19.	 What is self in Python?

Q20.	 How do break, continue, and pass work?

Q21.	 What does [::-1} do?

Q22.	 How can you randomize the items of a list in place in Python?

2.19.2	Programming Projects

Write the following programs:

Q1.	 Python program to add two numbers

Q2.	 Python program for the factorial of a number

Q3.	 Python program for simple interest

Q4.	 Python program for compound interest

Q5.	 Python program to check the Armstrong Number

Q6.	 Python program to find the area of a circle

Q7.	 Python program to print all prime numbers in an interval

Q8.	 Python program to check whether a number is prime or not

Q9.	 Python program for nth Fibonacci number

Q10.	 Python program for Fibonacci numbers

Q11.	 Python program to check if a given number is a Fibonacci number

Q12.	 Python program for nth multiple of a number in a Fibonacci Series

Data Structures and Program Design Using Python_Ch02.indd 52 9/24/2020 12:20:40 PM

Introduction to Python • 53

Q13.	 Program to print the ASCII Value of a character

Q14.	 Python program for the sum of squares of the first n natural numbers

Q15.	 Python program for the cube sum of the first n natural numbers

2.19.3	Multiple Choice Questions

Q1.	 What will be the output of the following Python code?

print("Hello {name1} and {name2}".format(name1='foo',
name2='bin'))

a.	 Hello foo and bin

b.	 Hello {name1} and {name2}

c.	 Error

d.	 Hello and

Q2.	 What will be the output of the following Python code?

print("Hello {0!r} and {0!s}".format('foo','bin'))

a.	 Hello foo and foo

b.	 Hello ‘foo’ and foo

c.	 Hello foo and ‘bin’

d.	 Error

Q3.	 What will be the output of the following Python code?

print("Hello {0} and {1}".format(('foo','bin')))

a.	 Hello foo and bin

b.	 Hello (‘foo’, ‘bin’) and (‘foo’, ‘bin’)

c.	 Error

d.	 None of the mentioned

Q4.	 What will be the output of the following Python code?

print("Hello {0[0]} and {0[1]}".format(('foo','bin')))

a.	 Hello foo and bin

b.	 Hello (‘foo’, ‘bin’) and (‘foo’, ‘bin’)

c.	 Error

d.	 None of the mentioned

Data Structures and Program Design Using Python_Ch02.indd 53 9/24/2020 12:20:40 PM

54 • Data Structures and Program Design Using Python

Q5.	 What will be the output of the following Python code snippet?

print('The sum of {0} and {1} is {2}'.format(2,10,12))

a.	 The sum of 2 and 10 is 12

b.	 Error

c.	 The sum of 0 and 1 is 2

d.	 None of the mentioned

Q6.	 What will be the output of the following Python code snippet?

print('The sum of {0:b} and {1:x} is {2:o}'.format(2,10,12))

a.	 The sum of 2 and 10 is 12

b.	 The sum of 10 and a is 14

c.	 The sum of 10 and a is c

d.	 Error

Q7.	 What will be the output of the following Python code snippet?

print('{:,}'.format(1112223334))

a.	 1,112,223,334		 b.   111,222,333,4

c.	 1112223334		 d.   Error

Q8.	 What will be the output of the following Python code snippet?

print('{:,}'.format('1112223334'))

a.	 1,112,223,334		 b.   111,222,333,4

c.	 1112223334		 d.   Error

Q9.	 What will be the output of the following Python code snippet?

print('{:$}'.format(1112223334))

a.	 1,112,223,334		 b.   111,222,333,4

c.	 1112223334		 d.   Error

Q10.	 What will be the output of the following Python code snippet?

print('{:#}'.format(1112223334))

a.	 1,112,223,334		 b.   111,222,333,4

c.	 1112223334		 d.   Error

Data Structures and Program Design Using Python_Ch02.indd 54 9/24/2020 12:20:40 PM

C H A P T E R 3
ARRAYS/LISTS

3.1	 INTRODUCTION

We studied the basics of programming using data structures and Python in the
previous chapter. We discussed how to design good programs that run correctly
and efficiently by occupying less space in the memory and take little time to run
and execute. A program is said to be efficient when it executes with little memory
space and in a minimal amount of time. In this chapter, we discuss the concept
of arrays. An array is a user-defined data type that stores related information
together. In Python, a list is similar to an array. But there are two major differ-
ences between the array and the list. First, an array has a limited number of oper-
ations, which commonly include those for array creation, reading a value from a
specific element, and writing a value to a specific element. The list, on the other
hand, provides a large number of operations for working with the contents of the
list. Second, the list can grow and shrink during execution as elements are added
or removed, while the size of an array cannot be changed after it has been created.

3.2	 DEFINITION OF AN ARRAY

An array is a collection of homogeneous (similar) types of data elements in con-
tiguous memory. An array is a linear data structure where all the elements of the
array are stored in linear order. Let us take an example in which we have ten
students in a class. We have been asked to store the grades of all ten students; we
need to use an array.

FIGURE 3.1  Representation of an array of 10 elements

Data Structures and Program Design Using Python_Ch03.indd 55 9/24/2020 12:21:26 PM

56 • Data Structures and Program Design Using Python

In the previous example, the data elements are stored in the successive
memory locations and are identified by an index number (also known as the
subscript), that is, Ai or A[i]. A subscript is an ordinal number used to identify
an element of the array. The elements of an array have the same data type,
and each element in an array can be accessed using the same name.

Frequently Asked Questions

Q. What is an array? How can we identify an element in the array?

Answer:

An array is a collection of homogeneous (similar) types of data elements in
contiguous memory. An element in an array can be identified by its index
number, which is also known as a subscript.

3.3	 ARRAY/LIST DECLARATION

We know that all variables must be declared before they are used in the
program. But in python, it is not mandatory to declare variables before use.
Declaring an array involves the following specifications:

●● Data Type – The data type means the different kinds of values it can store.
The data type can be an integer(int), float, char, or any other valid data
type.

●● Array Name – The name refers to the name of the array which will be
used to identify the array.

●● Size – The size of an array refers to the maximum number of values an
array can hold.

Syntax –

List=[]

Example:

Salary=[]

The previous example declares the salary to be an array. In Python, the
array index starts from zero. The first element of this array will be stored in
salary [0], the second element will be stored in salary [1], and so on. In mem-
ory, the array is arranged as shown in Figure 3.2.

Data Structures and Program Design Using Python_Ch03.indd 56 9/24/2020 12:21:27 PM

Arrays/Lists • 57

FIGURE 3.2  Memory representation of an array

Here the values 0, 1, 2, . . .9 written in square brackets represent the sub-
scripts we use to identify a particular element in the array.

3.4	 ARRAY/LIST INITIALIZATION

The initialization of arrays can be done with the initialization at the compile
time. The initialization of the elements of the array at compile time refers to
the same way we initialize the normal or ordinary variables at the time of their
declaration. When an array is initialized, there is a need to provide a specific
value for every element in the array.

The general form of initializing arrays is as follows:

array_name = [list of values]

An example of the initialization of arrays at compile time is as follows.
During the initialization of arrays, we may omit the size of the array. For

example,

age = [20, 25, 23, 28, 30]

In the previous example, the compiler will automatically allocate memory for
all the initialized elements of the array. For example,

marks = [56, 69, 40,99, 82, 96, 72]

FIGURE 3.3  Initialization of the array grades

3.5	 CALCULATING THE ADDRESS OF ARRAY ELEMENTS

The address of the elements in the 1-D array can be calculated very easily,
because the array stores all its data elements in contiguous memory locations,
storing the base address (address of the first element of the array). Hence,
the address of the other data elements can easily be calculated using the base
address. The formula to find the address of elements in a 1-D array is as follows:

Address of data element, A[i] = Base Address (BA) + w (i – lower bound)

Data Structures and Program Design Using Python_Ch03.indd 57 9/24/2020 12:21:27 PM

58 • Data Structures and Program Design Using Python

where A is the array, i is the index of the element for which the address is to
be calculated, BA is the base address of the array A, and w is the size of each
element (e.g., the size of int is 2 bytes, the size of char is 1 byte.)

Frequently Asked Questions

Q. An array is given the grades[34, 53, 87, 100, 98, 65]. Calcu-
late the address of grades[3] if the base address is 3000.

Answer:

The base address of the array is 3000 and we know that the size of an
integer is 2 bytes. Hence, we can easily find the address of grades[3] by
putting the information into the formula:

Address of grades[3] = 3000 + 2 (3 – 1)

	 = 3000 + 2 (2)

Address of grades[3] = 3004

3.6	 OPERATIONS ON ARRAYS/LISTS

This section discusses various operations that can be performed on arrays/
lists. These operations include

●● Traversing an array/list
●● Inserting an element into an array/list
●● Deleting an element in an array/list
●● Searching for an element in an array/list
●● Merging two arrays/lists
●● Sorting arrays/lists

1.	 Traversing an Array/List

Traversing an array/list means to access every element in an array/list exactly
once so that it can be processed. Examples are counting all the data elements
or performing any process on these elements. Traversing the elements of the
array/list is a very simple process because of the linear structure of the array/
list (all the elements are stored in the contiguous memory locations).

Data Structures and Program Design Using Python_Ch03.indd 58 9/24/2020 12:21:28 PM

Arrays/Lists • 59

Practical Application

Imagine there is a line of people standing one behind the other. One
boy is distributing advertisement pamphlets one by one to each person
standing in the line.

Code for Traversing an Array/List:
Python 3 code to iterate over a list
list = [1, 3, 5, 7, 9]

Using for loop
for i in list:
 print(i)

2.	 Inserting an Element in an Array/List

append() Adds an element at the end of the list

insert() Adds an element at the specified position

For example:

Numbers=[12,11,23,44]
1. append()

Code:

Numbers.append(55)

Output:

12,11,23,44,55
2. insert()

Code:

Numbers.append(2,47)

Output:

12,11,47,44,55

3.	 Deleting an Element in an Array/List

pop() Removes the element at the specified position

remove() Removes the first item with the specified value

Data Structures and Program Design Using Python_Ch03.indd 59 9/24/2020 12:21:28 PM

60 • Data Structures and Program Design Using Python

For example:

Numbers=[12,11,23,44]
1. pop()

Code:

Numbers.pop(2)

Output:

12,11,44,55
2. remove()

Code:

Numbers.remove()

Output:

11,47,44,55

Code:

Numbers.remove(47)

Output:

12,11,44,55

4.	 Searching for an Element in an Array/List

index() Returns the index of the first element with the
specified value

For example:

Numbers=[12,11,23,44]
index()

Code:

Numbers.index(23)

Output:

2

Data Structures and Program Design Using Python_Ch03.indd 60 9/24/2020 12:21:28 PM

Arrays/Lists • 61

5.	 Merging of Two Array/Lists

We can merge two array/lists in Python by simply adding them.

For example:

Code:

listone = [1,2,3]
listtwo = [4,5,6]
joinedlist = listone + listtwo

Output:

1,2,3,4,5,6

6.	 Sorting an Array/List

sort() Sorts the list

For Example:

List= [12,33,11,77,43,55]

Code:

List.sort()

Output:

[11,12,33,43,55,77]

3.7	 2-D ARRAYS/TWO-DIMENSIONAL ARRAYS

We have already discussed one-dimensional arrays and their various types and
operations. Now, we discuss two-dimensional arrays. Unlike one-dimensional
arrays, 2-D arrays are organized in the form of grids or tables. They are a col-
lection of 1-D arrays. One-dimensional arrays are organized linearly in the
memory. A 2-D array consists of two subscripts:

1.	 First subscript – which denotes the row

2.	 Second subscript – which denotes the column

Data Structures and Program Design Using Python_Ch03.indd 61 9/24/2020 12:21:28 PM

62 • Data Structures and Program Design Using Python

A 2-D array is represented as shown in the following figure:

FIGURE 3.4  Representation of a 2-D array

3.8	 DECLARATION OF TWO-DIMENSIONAL ARRAYS/LISTS

Just as we declared 1-D arrays, we can declare two-dimensional arrays. To
declare two-dimensional arrays, we must know the name of the array, the data
type of each element, and the size of each dimension (size of rows and columns).

Syntax:
array_name=[[x,x,x],
[x,x,x],
[x,x,x],]

A two-dimensional array is also called an m × n array, as it contains m × n
elements where each element in the array can be accessed by i and j, where
i<=m and j<=n, and where i, j, m, n are defined as follows:

i, j = subscripts of array elements
m = number of rows
n = number of columns

For example, let us take an array/list of 3 × 3 elements. Therefore, the
array/list is declared as

Grades=[[x,x,x],
 [x,x,x],
 [x,x,x]]

Data Structures and Program Design Using Python_Ch03.indd 62 9/24/2020 12:21:28 PM

Arrays/Lists • 63

In the previous diagram, the array has 3 rows and 3 columns. The first
element in the array/list is denoted by grades [0] [0]. Similarly, the second
element is denoted by grades [0] [1]. The data elements in an array/list can
be stored in the memory in two ways:

1.	 Row Major Order

In row major order, the elements of the first row are stored before the ele-
ments of the second, third, and n rows. Here, the data elements are stored on
a row-by-row basis.

00 01 02 10 11 12 20 21 22

2.	 Column Major Order

In column major order, the elements of the first column are stored before the
elements of the second, third, and n columns. Here, the data elements are
stored on a column-by-column basis.

00 10 20 01 11 21 02 12 22

Now, we will calculate the base address of the elements in a 2-D array/
list, as the computer does not store the address of each element. It just stores
the address of the first element and calculates the addresses of other ele-
ments from the base address of the first element of the array/list. Hence, the
addresses of other elements can be calculated from the given base address.

1.	 Elements in Row Major Order

Address(A[i][j]) = Base Address(BA) + w(n(i − 1) + (j − 1))

2.	 Elements in Column Major Order

Address(A[i][j]) = Base Address(BA) + w (m(j − 1) + (i − 1))

where w is the size in bytes needed to store one element.

Frequently Asked Questions

Q. Consider a 25 × 5 two-dimensional array/list of students that
has a base address 500 and where the size of each element is 2.
Calculate the address of the element student[15][3] assuming that
the elements are stored in

a.	 Row Major Order

b.	 Column Major Order

Data Structures and Program Design Using Python_Ch03.indd 63 9/24/2020 12:21:28 PM

64 • Data Structures and Program Design Using Python

Answer:

a) Row Major Order

Here, we are given that w = 2, base address = 500, n = 5, i = 15, j = 3.

Address(A[i][j]) = Base Address(BA) + w(n(i − 1) + (j − 1))

Address(student[15][3]) = 500 + 2(5(15−1) + (3 − 1))
	 = 500 + 2(5(14) + 2)
	 = 500 +2(72)
	 = 500 + 144
Address(student[15][3]) = 644

b) Column Major Order

Here, we are given that w = 2, base address = 500, m = 25, i = 15, j = 3

Address(A[i][j]) = Base Address(BA) + w (m(j − 1) + (i − 1))

Address(student[15][3]) = 500 + 2(25(3 − 1) + (15 − 1))
	 = 500 + 2(25(2) + 14)
	 = 500 +2(64)
Address(student[15][3]) = 500 + 128 = 628

3.9	 OPERATIONS ON 2-D ARRAYS/LISTS

Various operations are performed on two-dimensional array/lists, which include

●● Sum – Let Aij and Bij be the two matrices that are to be added together,
storing the result into the third matrix Cij. Two matrices are added when
they are compatible with each other; that is, they should have the same
number of rows and columns.

Cij = Aij + Bij

●● The Difference – Let Aij and Bij be the two matrices that are to be sub-
tracted, storing the result into a third matrix Cij. The two matrices are
subtracted when they are compatible with each other; that is, they should
have the same number of rows and columns.

Cij = Aij − Bij

●● Product – Let Aij and Bij be the two matrices that are to be multiplied
together, storing the result into a third matrix Cij. The two matrices are
multiplied with each other if the number of columns in the first matrix

Data Structures and Program Design Using Python_Ch03.indd 64 9/24/2020 12:21:28 PM

Arrays/Lists • 65

is equal to the number of rows in the second matrix. Therefore, m × n
matrix A can be multiplied with a p × q matrix B if n = p.

Cij = Aik × Bkj for k = 1 to n

●● Transpose – The transpose of an m × n matrix A is equal to an n × m
matrix B, where

Bij = Aij.

// Write a program to read and display a 2 × 3 array/list.

A basic code for matrix input from a user

R = int(input("Enter the number of rows:"))
C = int(input("Enter the number of columns:"))

Initialize matrix
matrix = []
print("Enter the entries rowwise:")

For user input
for i in range(R): # A for loop for row entries
 a =[]
 for j in range(C): # A for loop for column entries
 a.append(int(input()))
 matrix.append(a)

For printing the matrix
for i in range(R):
 for j in range(C):
 print(matrix[i][j], end = " ")
 print()

OUTPUT

Data Structures and Program Design Using Python_Ch03.indd 65 9/24/2020 12:21:28 PM

66 • Data Structures and Program Design Using Python

Explanation: The above program prints a 2 × 3 matrix, i.e., a matrix that
has 2 rows and 3 columns.

// Write a program to find the sum of two matrices.

#Program to add two matrices using a nested loop

X = [[1,2,3],
 [4 ,5,6],
 [7 ,8,9]]

Y = [[9,8,7],
 [6,5,4],
 [3,2,1]]

result = [[0,0,0],
 [0,0,0],
 [0,0,0]]

iterate through rows
for i in range(len(X)):
iterate through columns
 for j in range(len(X[0])):
 result[i][j] = X[i][j] + Y[i][j]

for r in result:
 print(r)

OUTPUT

Explanation: The above program adds two 3 × 3 matrices, i.e., matrices
with 3 rows and 3 columns.

// Write a program to find the transpose of a 3 × 3 matrix.

m = [[1,2],[3,4],[5,6]]
for row in m :
 print(row)
rez = [[m[j][i]

for j in range(len(m))]

Data Structures and Program Design Using Python_Ch03.indd 66 9/24/2020 12:21:29 PM

Arrays/Lists • 67

for i in range(len(m[0]))]
print("\n")
for row in rez:
 print(row)

OUTPUT

Explanation: The above program is transposing a 2 × 3 matrix, i.e., a
matrix that has 2 rows and 3 columns.

The transpose of a matrix is an operator that flips a matrix over its diago-
nal; that is, it switches the row and column indices of matrix A by producing
another matrix.

3.10	� MULTIDIMENSIONAL ARRAYS/N-DIMENSIONAL ARRAYS

A multidimensional array is also known as an n-dimensional array. It is an array
of arrays. It has n indices in it, which justifies its name as an n-dimensional
array. An n-dimensional array is an m1 × m2 × m3 × . . . × mn array, as it contains
m1 × m2 × m3 × . . . × mn elements. Multidimensional arrays are declared and
initialized in the same way as one-dimensional and two-dimensional arrays.

3.11	 CALCULATING THE ADDRESS OF 3-D ARRAYS

Just like 2-D arrays, we can store 3-D arrays in two ways: in row major order
and column major order.

1.	 Elements in Row Major Order

Address ([i] [j] [k]) = Base Address (BA) + w (L3 (L2 (E1) + E2) + E3 )

2.	 Elements in Column Major Order

Address ([i] [j] [k]) = Base Address (BA) + w ((E3 L2 + E2) L1 + E1)

where L is the length of the index, L = Upper bound – Lower bound + 1, E is
effective address, E = i – Lower bound.

Data Structures and Program Design Using Python_Ch03.indd 67 9/24/2020 12:21:29 PM

68 • Data Structures and Program Design Using Python

Frequently Asked Questions

Q. Let us take a 3-D array A (4:12, –2:1, 8:14) and calculate the
address of A (5, 4, 9) using row major order and column major
order where the base address is 500 and w = 4.

Answer:

Length of three dimensions of A –

L1 = 12 − 4 + 1 = 9

L2 = 1 – (−2) + 1 = 4

L3 = 14 − 8 = 6

Therefore, A contains 9 × 4 × 6 = 216 elements

Now, E1 = 5 – 4 = 1

	 E2 = 4 − (−2) = 8

	 E3 = 9 − 8 = 1

a.	 Row Major Order

Address(5, 4, 9 = 500 + 4(6 (4(1) + 8) + 1)

	 = 500 + 4(6 (12) + 1)

	 = 500 + 4(73)

Address(5, 4, 9) = 500 + 292 = 792

b.	 Column Major Order

Address(5, 4, 9) = 500 + 4((1.4 + 8)9 + 1)

	 = 500 + ((12)9 + 1)

Address(5, 4, 9) = 500 + 145 = 645

Data Structures and Program Design Using Python_Ch03.indd 68 9/24/2020 12:21:29 PM

Arrays/Lists • 69

3.12	 ARRAYS AND THEIR APPLICATIONS

Arrays are very frequently used in Python as they have various applications
that are very useful. These applications include the following:

●● Arrays are used for sorting the elements in ascending or descending order.
●● Arrays are also used to implement various other data structures like stacks,

queues, and hash tables.
●● Arrays are widely used to implement matrices, vectors, and various other

kinds of rectangular tables.
●● Various other operations can be performed on the arrays, which include

searching, merging, and sorting.

Frequently Asked Questions

Q. List some of the applications of arrays.

Answer:

1.	 Arrays are very useful in storing the data in contiguous memory
locations.

2.	 Arrays are used for implementing various other data structures, such
as stacks and queues.

3.	 Arrays are very useful as we can perform various operations on them.

3.13	 SPARSE MATRICES

A sparse matrix is a matrix with a relatively high proportion of zero entries in
it. A sparse matrix utilizes the memory space efficiently. The storage of null
elements in the matrix is a waste of memory, so we adopt a technique to store
only not-null elements in the sparse matrices.

FIGURE 3.5  Representation of a sparse matrix

Data Structures and Program Design Using Python_Ch03.indd 69 9/24/2020 12:21:30 PM

70 • Data Structures and Program Design Using Python

3.14	 TYPES OF SPARSE MATRICES

There are three types of sparse matrices, which are

1.	 Lower-Triangular Matrix – In this type of sparse matrix, all the elements
above the main diagonal must have a zero value, or in other words, we can
say that all the elements below the main diagonal should contain non-zero
elements only. This type of matrix is called a lower triangular matrix.

FIGURE 3.6  Lower-triangular matrix

2.	 Upper-Triangular Matrix – In this type of sparse matrix, all the elements
above the main diagonal should contain non-zero elements only, or in other
words, we can say that all the elements below the main diagonal should
have a zero value. This type of matrix is called an upper-triangular matrix.

FIGURE 3.7  Upper-triangular matrix

3.	 Tri-diagonal Matrix – In this type, elements with a non-zero value can
appear only on the diagonal or adjacent to the diagonal. This type of
matrix is a tri-diagonal matrix.

FIGURE 3.8  Tri-diagonal matrix

Data Structures and Program Design Using Python_Ch03.indd 70 9/24/2020 12:21:30 PM

Arrays/Lists • 71

3.15	 REPRESENTATION OF SPARSE MATRICES

There are two ways in which the sparse matrices can be represented, which are

1.	 Array/list Representation/3-Tuple Representation – This represen-
tation contains three rows in which the first row represents the number
of rows, columns, and non-zero entries/values in the sparse matrix. Ele-
ments in the other rows give information about the location and value of
non-zero elements.

For example, let us consider a sparse matrix.

An array representation of the previous sparse matrix is shown in the table.

Row Column Non-Zero Value

0 4 1

2 2 3

3 1 5

2.	 Linked Representation – A sparse matrix can also be represented in a
linked way. In this representation, we store the number of rows, columns,
and non-zero entries in a single node, and there is an address field that
stores the next location. Let us consider the following sparse matrix.

Data Structures and Program Design Using Python_Ch03.indd 71 9/24/2020 12:21:30 PM

72 • Data Structures and Program Design Using Python

The linked representation of the previous sparse matrix is as follows.

FIGURE 3.9  Linked representation of a sparse matrix

Frequently Asked Questions

Q. Explain the sparse matrix.

Answer:

A matrix in which the number of zero entries is much higher than the
number of non-zero entries is called a sparse matrix. The natural method
of representing matrices in memory as two-dimensional arrays may not be
suitable for sparse matrices. One may save space by storing only non-zero
entries. We can represent a sparse matrix by using a three-tuple method
of storage:

1.	 Row Major Method

2.	 Column Major Method

3.16	 SUMMARY

●● An array is a collection of homogeneous (similar) types of data elements
in contiguous memory. An array is a linear data structure because all ele-
ments of an array are stored in linear order.

Data Structures and Program Design Using Python_Ch03.indd 72 9/24/2020 12:21:30 PM

Arrays/Lists • 73

●● A list is a data structure in Python that is a mutable, or changeable,
ordered sequence of elements. Each element or value that is inside of
a list is called an item. Just as strings are defined as characters between
quotes, lists are defined by having values between square brackets [].

●● The initialization of the elements of an array/list at compile time is done
in the same way as when we initialize the normal or ordinary variables at
the time of their declaration.

●● The initialization of the elements of an array/list at runtime refers to the
method of inputting the values from the keyboard.

●● The address of the elements in a 1-D array/list can be calculated very
easily, as an array/list stores all its data elements in contiguous memory
locations, storing the base address.

●● Traversing an array/list means to access each and every element in an
array/list exactly once so that it can be processed.

●● The insertion of an element in an array/list refers to the operation of add-
ing an element to the array/list. It can be done in two ways.

●● Deleting an element from an array/list refers to the operation of the
removal of an element from an array/list. Deletion is also done in two
ways.

●● Searching for an element in an array/list means finding whether a par-
ticular value exists in an array/list or not. If that particular value is found,
then the search is said to be successful and the position/location of that
particular value is returned. If the value is not found, then searching is
said to be unsuccessful.

●● The merging of two array/lists means copying the elements of the first and
second array/lists into a third array/list.

●● Sorting an array/list means arranging the data elements of a data structure
in a specified order in either ascending or descending order.

●● Unlike 1-D arrays, 2-D arrays are organized in the form of grids or tables.
They are collections of 1-D arrays.

●● A multidimensional array is also known as an n-dimensional array. It is
an array of arrays. It has n indices in it, which also justifies its name as an
n-dimensional array.

●● A sparse matrix is a matrix with a relatively high proportion of zero
entries in it. A sparse matrix is used because it utilizes the memory space
efficiently.

Data Structures and Program Design Using Python_Ch03.indd 73 9/24/2020 12:21:30 PM

74 • Data Structures and Program Design Using Python

3.17	 EXERCISES

3.17.1	Theory Questions

Q1.	 What is meant by an array and how is it represented in the memory?

Q2.	 What is a list?

Q3.	 What are the differences between a list and an array?

Q4.	 What are the various operations that can be performed on arrays/
lists? Discuss them in detail.

Q5.	 Explain the concept of two-dimensional arrays.

Q6.	 In how many ways can arrays/lists be initialized? Explain in detail.

Q7.	 What is meant by sorting an array/list? Explain.

Q8.	 Explain the process of merging two arrays/lists along with the
algorithm.

Q9.	 Give some of the applications of arrays.

Q10.	 What is a sparse matrix? Explain its types.

Q11.	 Consider a three-dimensional array A (2:6, -1:7, 9:10) and calculate
the address of A (9, 6, 8) using row major order and column major
order when the base address is 2000 and w = 4.

Q12.	 Explain the linked representation of sparse matrices in detail.

Q13.	 Write the formulae for calculating the addresses of elements in row
major and column major order in 2-D and 3-D arrays.

3.17.2	Programming Questions

Q1.	 Write a Python program to traverse an entire array/list.

Q2.	 Write a Python program to perform an insertion at a specified posi-
tion in a one-dimensional array/list.

Q3.	 Write a Python program to multiply two matrices.

Q4.	 Write a Python program which reads a matrix and displays the

a.	 Sum of its rows’ elements

b.	 Sum of its columns’ elements

c.	 Sum of its diagonal’s elements

Data Structures and Program Design Using Python_Ch03.indd 74 9/24/2020 12:21:30 PM

Arrays/Lists • 75

Q5.	 Write a Python program to perform the deletion of an element.

Q6.	 Write a menu-driven Python program to perform various insertions
and deletions in an array/list using the switch case.

Q7.	 Write an algorithm for reversing an array/list.

Q8.	 Write a program that reads an array/list of 50 integers. Display all the
pairs of elements whose sum is 25.

Q9.	 Write a Python program to read an array/list of 10 integers and then
find the smallest and largest numbers in the array/list.

Q10.	 Write a Python program to add two sparse matrices.

3.17.3	Multiple Choice Questions

Q1.	 The elements of an array/list are always stored in ________ memory
locations.

a.	 Random

b.	 Sequential

c.	 Both

d.	 None of these

Q2.	 Array [5] = 19 initializes the __________ element of the array with
value 19.

a.	 4th

b.	 5th

c.	 6th

d.	 7th

Q3.	 By default, the first subscript of the array/list is _____.

a.	 2

b.	 1

c.	 −1

d.	 0

Data Structures and Program Design Using Python_Ch03.indd 75 9/24/2020 12:21:30 PM

76 • Data Structures and Program Design Using Python

Q4.	 A multidimensional array, in simple terms, is an

a.	 array of arrays

b.	 array of addresses

c.	 Both

d.	 None of the above

Q5.	 What is the output when we execute list("hello")?

a.	 [‘h’, ‘e’, ‘l’, ‘l’, ‘o’]

b.	 [‘hello’]

c.	 [‘llo’]

d.	 [‘olleh’]

Q6.	 A loop is used to access all the elements of an array/list.

a.	 False

b.	 True

c.	 None of the above

Q7.	 Which of the following commands will create a list?

a.	 list1 = list()

b.	 list1 = []

c.	 list1 = list([1, 2, 3])

d.	 all of the above

Q8.	 A sparse matrix has a _________.

a.	 A high proportion of zeroes

b.	 A low proportion of zeroes

c.	 Both (a) and (b)

d.	 None of the above

Data Structures and Program Design Using Python_Ch03.indd 76 9/24/2020 12:21:30 PM

C H A P T E R 4
LINKED LISTS

4.1	 INTRODUCTION

We learned that an array is a collection of data elements stored in contiguous
memory locations. We also studied that arrays were static; that is, the size of
the array must be specified when declaring the array, which limits the num-
ber of elements to be stored in the array. For example, if we have an array
declared as int[]array = new int[15], then the array can contain a maximum
of 15 elements and not more than that. This method of allocating memory
is good when the exact number of elements is known. However, if we are
not sure of the number of elements, there will be a problem, because the
data structures we use to make the program efficient should consume little
memory space and a minimal amount of time. To overcome this problem, we
use linked lists.

4.2	 DEFINITION OF A LINKED LIST

A linked list is a linear collection of data elements. These data elements are
called nodes, and they point to the next node. A linked list is a data structure
that can be used to implement other data structures such as stacks, queues,
and trees. A linked list is a sequence of nodes in which each node contains one
or more data fields that point to the next node. Also, linked lists are dynamic;
that is, memory is allocated when required. There is no need to know the
exact size or the exact number of elements as in the case of arrays. Figure 4.1
contains an example of a simple linked list that contains five nodes.

Data Structures and Program Design Using Python_Ch04.indd 77 9/24/2020 12:22:06 PM

78 • Data Structures and Program Design Using Python

FIGURE 4.1  A linked list

In Figure 4.1, we have a linked list in which each node is divided into two
parts:

1.	 The first part contains information/data.

2.	 The second part contains the address of the next node.

The last node will not have any next node connected to it, so it will store
a special value called NULL. Usually, NULL is defined by −1. Therefore,
the NULL node represents the end of the linked list. There is another spe-
cial node, START, that stores the address of the first node of the linked list.
Therefore, the START node represents the beginning of the linked list. If
START = NULL, then the linked list is empty. A linked list is known as a
self-referential data type or a self-referential structure because each node
points to another node that is of the same type.

The self-referential structure in a linked list is as follows:

class ListNode :
 def __init__(self, data) :
 self.data = data
 self.next = None

Practical Application:

●● A simple real-life example is how each car on a train is connected to its
previous and next car (except the first and last). In terms of program-
ming, consider the car body as a node and the connectors as links to
the previous and next nodes.

●● The brain is also a good example of a linked list. In the initial stages of
learning something by heart, the natural process is to link one item to
another item. It’s a subconscious act. Also, when we forget something
and try to remember it, our brain follows associations and tries to link
one memory with another until we finally recall the lost memory.

Data Structures and Program Design Using Python_Ch04.indd 78 9/24/2020 12:22:06 PM

Linked Lists • 79

Frequently Asked Questions

Q1. Define the linked list.

Answer:

A linked list is a linear collection of data elements, called nodes, where the
linear order is given using nodes. It is a dynamic data structure. For every
data item in a linked list, there is an associated node that gives the memory
location of the next data item in the linked list. The data items in the linked
list are not in consecutive memory locations.

Frequently Asked Questions

Q2. List the advantages and disadvantages of a linked list.

Answer:

Advantages of linked lists

1.	 Linked lists are dynamic data structures; that is, they can grow or
shrink during the execution of the program.

2.	 Linked lists have efficient memory utilization. Memory is allocated
whenever it is required, and it is de-allocated whenever it is no longer
needed.

3.	 Insertion and deletion are easier and efficient.

4.	 Many complex applications can be easily carried out with linked lists.

Disadvantages of linked lists

1.	 They consume more space because every node requires an additional
node to store the address of the next node.

2.	 Searching a particular element in the list is difficult and time-consuming.

4.3	 MEMORY ALLOCATION IN A LINKED LIST

The process or concept of linked lists supports dynamic memory allocation.
Dynamic memory allocation is the process of allocating memory during the
execution of the program or the process of allocating memory to the variables

Data Structures and Program Design Using Python_Ch04.indd 79 9/24/2020 12:22:06 PM

80 • Data Structures and Program Design Using Python

at runtime. Until now, we have studied arrays in which we declared the size
of the array initially, such as array[50]. This statement after execution allocates
the memory for 50 integers. But there can be a problem if we use only 30%
of the memory and the rest of the allocated memory is wasted. Therefore, to
overcome this problem of wasted memory space (or, in other words, to utilize
the memory efficiently), dynamic memory allocation is used, which allows us to
allocate/reserve the memory that is required. Hence, we overcome the prob-
lem of wasted memory space as in the case of arrays. Dynamic memory alloca-
tion is best when we are not aware of the memory requirements in advance.

4.4	 TYPES OF LINKED LISTS

Different types of linked lists are discussed in this section. These include the
following:

1.	 Singly Linked List

2.	 Circular Linked List

3.	 Doubly Linked List

4.	 Header Linked List

4.4.1	Singly Linked List

A singly linked list is the simplest type of linked list in which each node con-
tains some information/data and only one node, which points to the next node
in the linked list. The traversal of data elements in a singly linked list can be
done only in one way.

FIGURE 4.2  Singly-linked list

4.4.2	Operations on a Singly Linked List

Various operations can be performed on a singly linked list, which includes
●● Traversing a linked list
●● Searching for a given value in a linked list
●● Inserting a new node in a linked list

Data Structures and Program Design Using Python_Ch04.indd 80 9/24/2020 12:22:06 PM

Linked Lists • 81

●● Deleting a node from a linked list
●● Concatenation of two linked lists
●● Sorting a linked list
●● Reversing a linked list

a.	 Traversing a linked list

Traversing a linked list means accessing all the nodes of the linked list exactly
once. A linked list will always contain a START node, which stores the address
of the first node of the linked list and which also represents the beginning
of the linked list, and a NULL node which represents the end of the linked
list. For traversing a linked list, we use another node variable, NODE, which
points to the node that is currently being accessed. The algorithm for travers-
ing a linked list is shown as follows.

Algorithm for traversing a linked list

Step 1: Set NODE = START
Step 2: Repeat Steps 3 & 4 while NODE != NULL
Step 3: Print NODE. INFO
Step 4: Set NODE = NODE. NEXT
[End of Loop]

Step 5: Exit

b.	 Searching for a given value in a linked list

Searching for a value in a linked list means to find a particular element/value
in the linked list. As we discussed earlier, a node in a linked list contains two
parts: one part is the information part and the other is the address part. Hence,
searching refers to the process of finding whether the given value exists in the
information part of any node. If the value is present, then the address of that
particular value is returned and the search is said to be successful; otherwise,
the search is unsuccessful. A linked list will always contain a START node
that stores the address of the first node of the linked list and represents the
beginning of the linked list and a NULL node that represents the end of the
linked list. There is another variable, NODE, that points to the current node
being accessed. SEARCH_VAL is the value to be searched in the linked list,
and POS is the position/address of the node at which the value is found. The
algorithm for searching a value in a linked list is given as follows:

Data Structures and Program Design Using Python_Ch04.indd 81 9/24/2020 12:22:07 PM

82 • Data Structures and Program Design Using Python

Algorithm to search a value in a linked list

Step 1: Set NODE = START
Step 2: Repeat Step 3 while NODE != NULL
Step 3: IF SEARCH_VAL = NODE. INFO
 Set POS = NODE
 Print Successful Search!!
 Go to Step 5
[End of If]
ELSE
 Set NODE = NODE. NEXT
[End of Loop]
Step 4: Print Unsuccessful Search!!
Step 5: Exit

For example, if we have a linked list and we are searching for 15 in the list,
then the steps are as shown in Figure 4.3.

FIGURE 4.3  An example of searching a linked list

c.	 Inserting a new node in a linked list

Here, we discuss how a new node is inserted in an existing linked list. The
three cases in the insertion process include the following

1.	 A new node is inserted at the beginning of the linked list.

2.	 A new node is inserted at the end of the linked list.

3.	 A new node is inserted after the given node in a linked list.

Data Structures and Program Design Using Python_Ch04.indd 82 9/24/2020 12:22:08 PM

Linked Lists • 83

1.	 Inserting a new node at the beginning of a linked list

In the case of inserting a new node at the beginning of a linked list, we first
check the overflow condition, which is whether the memory is available for
a new node. If the memory is not available, then an overflow message is dis-
played; otherwise, the memory is allocated for the new node. Now, we initial-
ize the node with its info part, and its address part contains the address of the
first node of the list, which is the START node. Hence, the new node is added
as the first node in the list and the START node will point to the first node of
the list. Now to understand better, let us take an example. Consider the linked
list with five nodes shown in Figure 4.4; a new node will be inserted at the
beginning of the linked list.

FIGURE 4.4  Inserting a new node at the beginning of a linked list

From the previous example, it is clear how a new node is inserted in an
already existing linked list. Let us now examine its algorithm.

Algorithm for inserting a new node at the beginning of a linked list

Step 1: START
Step 2: IF NODE = NULL
 Print OVERFLOW
 Go to Step 8
[End of If]
Step 3: Set NEW NODE = NODE
Step 4: Set NODE = NODE. NEXT
Step 5: Set NEW NODE. INFO = VALUE

Data Structures and Program Design Using Python_Ch04.indd 83 9/24/2020 12:22:08 PM

84 • Data Structures and Program Design Using Python

Step 6: Set NEW NODE. NEXT = START
Step 7: Set START = NEW NODE
Step 8: EXIT

2.	 Inserting a new node at the end of a linked list

To insert the new node at the end of the linked list, we first check the overflow
condition, which is whether the memory is available for a new node. If the
memory is not available, then an overflow message is displayed; otherwise, the
memory is allocated for the new node. Then a NODE variable is made, which
initially points to START and is used to traverse the linked list until it reaches
the last node. When it reaches the last node, the NEXT part of the last node
stores the address of the new node, and the NEXT part of the NEW NODE
contains NULL, which denotes the end of the linked list. Let us understand
this with the help of an algorithm.

Algorithm for inserting a new node at the end of a linked list

Step 1: START
Step 2: IF NODE = NULL
 Print OVERFLOW
 Go to Step 10
[End of If]
Step 3: Set NEW NODE = NODE
Step 4: Set NODE = NODE. NEXT
Step 5: Set NEW NODE. INFO = VALUE
Step 6: Set NEW NODE. NEXT = NULL
Step 7: Set NODE = START
Step 8: Repeat Step 8 while NODE. NEXT != NULL
 Set NODE = NODE. NEXT
[End of Loop]
Step 9: Set NODE. NEXT = NEW NODE
Step 10: EXIT

From the previous algorithm, we understand how to insert a new node
at the end of the already existing linked list. Now let’s consider the following
example. Consider the linked list with four nodes shown in Figure 4.5; a new
node is inserted at the end of the linked list.

Data Structures and Program Design Using Python_Ch04.indd 84 9/24/2020 12:22:08 PM

Linked Lists • 85

FIGURE 4.5  Inserting a new node at the end of a linked list

3.	 Inserting a new node after a node in a linked list

In this case, a new node is inserted after a given node in a linked list. As in
the other cases, we again check the overflow condition. If memory for the
new node is available, it will be allocated; otherwise, an overflow message
is printed. Then a NODE variable is made that initially points to START,
and the NODE variable is used to traverse the linked list until it reaches the
value/node, after which the new node is inserted. When it reaches that node/
value, then the NEXT part of that node stores the address of the new node
and the NEXT part of the NEW NODE stores the address of its next node in
the linked list. Let us understand this with the help of an example. Consider
a linked list with four nodes, and a new node is to be inserted after the given
node, as shown in Figure 4.6.

Data Structures and Program Design Using Python_Ch04.indd 85 9/24/2020 12:22:08 PM

86 • Data Structures and Program Design Using Python

FIGURE 4.6  Inserting a new node after a given node in a linked list

From the previous example, we learned how a node can be inserted after
a given node. Now let’s take a look at the algorithm.

Algorithm for inserting a new node after a given node in a linked list

Step 1: START
Step 2: IF NODE = NULL
 Print OVERFLOW
 Go to Step 10
[End of If]
Step 3: Set NEW NODE = NODE
Step 4: Set NODE = NODE. NEXT
Step 5: Set NEW NODE. INFO = VALUE
Step 6: Set NODE = START
Step 7: Set PREV = NODE
Step 8: Repeat Step 8 while PREV. INFO != GIVEN_VAL
 Set PREV = NODE
 Set NODE = NODE. NEXT
[End of Loop]
Step 9: Set PREV. NEXT = NEW NODE
Step 10: Set NEW NODE. NEXT = NODE
Step 11: EXIT

Data Structures and Program Design Using Python_Ch04.indd 86 9/24/2020 12:22:08 PM

Linked Lists • 87

d.	 Deleting a node from a linked list

�In this section, we learn how a node is deleted from an already existing
linked list. We discuss three cases in the deletion process which include

1.	 A node is deleted from the beginning of the linked list.

2.	 A node is deleted from the end of the linked list.

3.	 A node is deleted after a given node from the linked list.

1.	 Deleting a node from the beginning of the linked list

To delete a node from the beginning of a linked list, we first check the under-
flow condition, which occurs when we try to delete a node from a linked list that
is empty. This situation exists when the START node is equal to NULL. If the
condition is true, then the underflow message is printed on the screen; other-
wise, the node is deleted from the linked list. Consider the linked list with five
nodes in Figure 4.7; the node is deleted from the beginning of the linked list.

From the below example, it is clear how a node is deleted from an already
existing linked list. Let us now take a look at its algorithm.

FIGURE 4.7  Deleting a node from the beginning of a linked list

Algorithm for deleting a node from the beginning of a linked list

Step 1: START
Step 2: IF START = NULL
 Print UNDERFLOW
[End Of If]
Step 3: Set NODE = START
Step 4: Set START = START. NEXT
Step 5: FREE NODE
Step 6: EXIT

Data Structures and Program Design Using Python_Ch04.indd 87 9/24/2020 12:22:08 PM

88 • Data Structures and Program Design Using Python

In the previous algorithm, we check for the underflow condition, that is,
whether there are any nodes present in the linked list. If there are no nodes,
then an underflow message is printed; otherwise, we move to Step 3, where
we are initializing NODE to START, that is, NODE now stores the address
of the first node. In the next step, START is moved to the second node, as
now START stores the address of the second node. Hence, the first node is
deleted and the memory, which was occupied by NODE (initially the first
node of the list), is free.

2.	 Deleting a node from the end of the linked list

To delete a node from the end of the linked list, we first check the under-
flow condition. This situation exists when the START node is equal to NULL.
Hence, if the condition is true, then the underflow message is printed on
the screen; otherwise, the node is deleted from the linked list. Consider the
linked list with five nodes shown in Figure 4.8; the node is deleted from the
end of the linked list.

FIGURE 4.8  Deleting a node from the end of a linked list

Let us now look at the algorithm of deleting a node from the end of a
linked list.

Algorithm for deleting a node from the end of a linked list

Step 1: START
Step 2: IF START = NULL
 Print UNDERFLOW
[End Of If]

Data Structures and Program Design Using Python_Ch04.indd 88 9/24/2020 12:22:09 PM

Linked Lists • 89

Step 3: Set NODE = START
Step 4: Repeat while NODE. NEXT != NULL
 Set PREV = NODE
 Set NODE = NODE. NEXT
[End of Loop]
Step 5: Set PREV. NEXT = NULL
Step 6: FREE NODE
Step 7: EXIT

In the algorithm, we again check for the underflow condition. If the con-
dition is true, then the underflow message is printed; otherwise, NODE is
initialized to the START node, that is, the NODE is pointing to the first node
of the list. In the loop, we have taken another node variable PREV, which
will always point to one node before the NODE node. After reaching the last
node of the list, we set the next part of PREV to NULL. Therefore, the last
node is deleted, and the memory that was occupied by the NODE node is
now free.

3.	 Deleting a node after a given node from the linked list

In the case of deleting a node after a given node from the linked list, we
again check the underflow condition as we checked in both the other cases.
This situation exists when the START node is equal to NULL. Hence, if
the condition is true, then the underflow message is printed; otherwise, the
node is deleted from the linked list. Consider the linked list with five nodes
shown in Figure 4.9; the node will be deleted after a given node from the
linked list.

Now let us examine the previous case with the help of an algorithm.

Algorithm for deleting a node after a given node from the linked list

Step 1: START
Step 2: IF START = NULL
 Print UNDERFLOW
[End Of If]
Step 3: Set NODE = START
Step 4: Set PREV = START
Step 5: Repeat while PREV. INFO != GIVEN_VAL
 Set PREV = NODE
 Set NODE = NODE. NEXT
[End of Loop]
Step 6: Set PREV. NEXT = NODE. NEXT
Step 7: FREE NODE
Step 8: EXIT

Data Structures and Program Design Using Python_Ch04.indd 89 9/24/2020 12:22:09 PM

90 • Data Structures and Program Design Using Python

FIGURE 4.9  Deleting a node after a given node from the linked list

In the previous algorithm, we first check for the underflow condition.
If the condition is true, then the underflow message is printed; otherwise,
NODE is initialized to the START node, that is, the NODE is pointing to the
first node of the list. In the loop, we have taken another node variable PREV,
which always points one node before the NODE node. After reaching the
node containing the given value which is to be deleted, we set the next node of
the node containing the given value to the address contained in the next part
of the succeeding node. Therefore, the node is deleted and the memory that
was being occupied by NODE is now free.

e.	 Concatenation of two linked lists

A concatenated linked list is created by the process of concatenating two dif-
ferent-sized linked lists into one linked list. Let us consider concatenation
with the help of a function.

def list_concat(A, B):
 while A.next != None:
A = A.next
A.next = B
 return A

f.	 Sorting a linked list

Sorting is the process of arranging the data elements in a sequence, either in
ascending order or in descending order. In this, we are arranging the informa-
tion on the linked list in a sequence.

Data Structures and Program Design Using Python_Ch04.indd 90 9/24/2020 12:22:10 PM

Linked Lists • 91

g.	 Reversing a linked list

In the process of reversing a linear linked list, we will take three node varia-
bles, that is, PREV, NODE, and NEW, which hold the addresses of the previ-
ous node, current node, and the next node, respectively, in the linked list. We
begin with the address of the first node, which is held in another node variable
START, which is assigned to NODE, and PREV is assigned to NULL.

def reverse(self):
 prev = None
 current = self.head
 while(current is not None):
 next = current.next
 current.next = prev
 prev = current
 current = next
 self.head = prev

Here is a program to implement a singly linked list.

Node class
class Node:
 # Function to initialize the node object
 def __init__(self, data):
 self.data = data # Assign data
 self.next = None # Initialize next as null
Linked List class contains a Node object
class LinkedList:
 # Function to initialize head
 def __init__(self):
 self.head = None
 # insertion method for the linked list
 def insert(self, data):
 newNode = Node(data)
 if(self.head):
 current = self.head
 while(current.next):
 current = current.next
 current.next = newNode
 else:
 self.head = newNode
 # print method for the linked list
 def printLL(self):
 current = self.head
 while(current):
 print(current.data)
 current = current.next

Data Structures and Program Design Using Python_Ch04.indd 91 9/24/2020 12:22:10 PM

92 • Data Structures and Program Design Using Python

 # delete the first occurence of key in linked list
 def deleteNode(self,key):
 # Store head node
 temp = self.head
 # If head node itself holds the key to be deleted
 if (temp is not None):

 if (temp.data == key):
 self.head = temp.next
 temp = None
 return

 # Search for the key to be deleted, keep track of the

 # previous node as we need to change 'prev.next'
 while(temp is not None):
 if temp.data == key:
 break
 prev = temp
 temp = temp.next

 # if key was not present in linked list
 if(temp == None):
 return
 # Unlink the node from linked list
 prev.next = temp.next
 temp = None

OUTPUT

Data Structures and Program Design Using Python_Ch04.indd 92 9/24/2020 12:22:10 PM

Linked Lists • 93

Explanation: The above program has the insert, deleteNode, and printLL
functions for the singly linked list.
●● The insert function add nodes at the beginning of the list.
●● The deleteNode function removes a given node from the list.
●● The printLL function prints all the nodes of the list.

Let us now consider another type of linked list: the circular linked list.

4.4.3	Circular Linked Lists

Circular linked lists are a type of singly linked list in which the address part of
the last node stores the address of the first node, unlike in singly linked lists in
which the address part of the last node stores a unique value, NULL. While
traversing a circular linked list, we can begin from any node and traverse the
list in any direction because a circular linked list does not have a first or last
node. The memory declarations for representing a circular linked list are the
same as for a linear linked list.

FIGURE 4.10  Circular linked list

4.4.4	Operations on a Circular Linked List

Various operations can be performed on a circular linked list, which include

a.	 Inserting a new node in a circular linked list

b.	 Deleting a node from a circular linked list

Let us now discuss both these cases in detail.

Data Structures and Program Design Using Python_Ch04.indd 93 9/24/2020 12:22:10 PM

94 • Data Structures and Program Design Using Python

a.	 Inserting a new node in a circular linked list

Here, we learn how a new node is inserted in an existing linked list. We discuss
the cases in the insertion process which include when

1.	 A new node is inserted at the beginning of the circular linked list.

2.	 A new node is inserted at the end of the circular linked list.

3.	 A new node is inserted after a given node (the same as that for a singly
linked list).

1.	 Inserting a new node at the beginning of a circular linked list

In the case of inserting a new node at the beginning of a circular linked list, we
first check the overflow condition, that is, whether the memory is available for a
new node. If the memory is not available, then an overflow message is printed;
otherwise, the memory is allocated for the new node. Then we initialize the
node with its info part, and its address part contains the address of the first
node of the list, which is the START node. Hence, the new node is added as
the first node in the list, and the START node points to the first node of the list.
Now let us take an example. Consider a linked list with four nodes as shown in
Figure 4.11; a new node is inserted at the beginning of the circular linked list.

FIGURE 4.11  Inserting a new node at the beginning of a circular linked list

Data Structures and Program Design Using Python_Ch04.indd 94 9/24/2020 12:22:11 PM

Linked Lists • 95

Now let us examine the previous case with the help of an algorithm.

Algorithm for inserting a new node at the beginning of a circular
linked list

Step 1: START
Step 2: IF TEMP = NULL
 Print OVERFLOW
 [End Of If]
Step 3: Set NEW NODE = TEMP
Step 4: Set NEW NODE. INFO = VAL
Step 5: Set NEW NODE. NEXT = START
Step 6: Set END. NEXT = NEW NODE
Step 7: Set START = NEW NODE
Step 8: EXIT

2.	 Inserting a new node at the end of a circular linked list

In this case, we first check the overflow condition, that is, whether the mem-
ory is available for a new node. If the memory is not available, then an over-
flow message is printed; otherwise, the memory is allocated for the new node.
Then a NODE variable is made, which initially points to START, and the
NODE variable is used to traverse the linked list until it reaches the last node.
When it reaches the last node, the NEXT part of the last node stores the
address of the new node and the NEXT part of the NEW NODE contains the
address of the first node of the linked list, which is denoted by START. Let us
understand it with the help of an algorithm.

Algorithm for inserting a new node at the end of a circular linked list

Step 1: START
Step 2: IF TEMP = NULL
 Print OVERFLOW
[End Of If]
Step 3: Set NEW NODE = TEMP
Step 4: Set NEW NODE. INFO = VAL
Step 5: Set NEW NODE. NEXT = START
Step 6: Set END. NEXT = NEW NODE
Step 7: Set END = NEW NODE
Step 8: EXIT

Data Structures and Program Design Using Python_Ch04.indd 95 9/24/2020 12:22:11 PM

96 • Data Structures and Program Design Using Python

Let us take an example. Consider a linked list with four nodes, as shown
in Figure 4.12; a new node is inserted at the end of the circular linked list.

FIGURE 4.12  Inserting a new node at the end of a circular linked list

b.	 Deleting a node from a circular linked list

�In this section, we learn how a node is deleted from an already exist-
ing circular linked list. We discuss several cases in the deletion process,
including when

1.	 A node is deleted from the beginning of the circular linked list.

2.	 A node is deleted from the end of the circular linked list.

3.	 A node is deleted after a given node (same as that for a singly linked list).

1.	 Deleting a node from the beginning of a circular linked list

In the case of deleting a node from the beginning of a linked list, we first
check the underflow condition, which occurs when we try to delete a node
from the linked list that is empty. This situation exists when the START node
is equal to NULL. Hence, if the condition is true, then an underflow message

Data Structures and Program Design Using Python_Ch04.indd 96 9/24/2020 12:22:12 PM

Linked Lists • 97

is displayed; otherwise, the node is deleted from the linked list. Consider a
linked list with four nodes, as shown in Figure 4.13; the first node is deleted
from the linked list.

FIGURE 4.13  Deleting a node from the beginning of a circular linked list

From the previous example, it is clear how a node is deleted from an
already existing linked list. Let us now examine its algorithm.

Algorithm for deleting a node from the beginning of a circular linked list

Step 1: START
Step 2: IF START = NULL
 Print UNDERFLOW
 [End Of If]
Step 3: Set END.NEXT = START.NEXT
Step 4: Set START = START.NEXT
Step 4: EXIT

The previous algorithm shows how a node is deleted from the beginning
of the linked list. First, we check with the underflow condition. Now a node
variable NODE is used which traverses the entire list until it reaches the last
node of the list. We change the next part of the NODE to store the address of
the second node of the list. Hence, the memory that occupied the first node is
freed. Finally, the second node now becomes the first node of the linked list.

Data Structures and Program Design Using Python_Ch04.indd 97 9/24/2020 12:22:13 PM

98 • Data Structures and Program Design Using Python

2.	 Deleting a node from the end of a circular linked list

In this case, we first check the underflow condition, which is when we try to
delete a node from the linked list that is empty. This situation occurs when
the START node is equal to NULL. Hence, if the condition is true, then an
underflow message is printed; otherwise, the node is deleted from the linked
list. Consider a linked list with four nodes as shown in Figure 4.14; the last
node is deleted from the linked list.

FIGURE 4.14  Deleting a node from the end of a circular linked list

Let us now examine its algorithm.

Algorithm for deleting a node from the end of a circular linked list

Step 1: START
Step 2: IF START = NULL
 Print UNDERFLOW
 [End Of If]
Step 3: Set NODE = START
Step 4: Repeat while NODE. NEXT != END
Set NODE = NODE. NEXT
 [End of Loop]
Step 5: Set NODE. NEXT = START
Step 6: Set NODE = END
Step 7: EXIT

Data Structures and Program Design Using Python_Ch04.indd 98 9/24/2020 12:22:13 PM

Linked Lists • 99

The previous algorithm shows how a node is deleted from the end of the
linked list. First, we check with the underflow condition. Now a node variable
NODE is used to traverse the entire list until it reaches the last node of the
list. In the while loop, we use another node variable PREV, which always
points to the node preceding NODE. When we reach the last node and its
preceding node, that is, the second to last node, we now change the next part
of PREV to store the address of START. Hence, the memory occupied by the
last node is freed. Finally, the second to last node now becomes the last node
of the linked list. In this way, the deletion of a node from the end is done in a
circular linked list.

Here is a program to implement a circular linked list.

#Represents the node of list.
class Node:
 def __init__(self,data):
 self.data = data;
 self.next = None;
class CircularList:
 #Declaring head and tail pointer as null.
 def __init__(self):
 self.head = Node(None);
 self.tail = Node(None);
 self.head.next = self.tail;
 self.tail.next = self.head;
 #This function will add the new node at the end of the list.
 def add(self,data):
 newNode = Node(data);
 #Checks if the list is empty.
 if self.head.data is None:
 #If list is empty, both head and tail would point to new node.
 self.head = newNode;
 self.tail = newNode;
 newNode.next = self.head;
 else:
 #tail will point to new node.
 self.tail.next = newNode;
 #New node will become new tail.
 self.tail = newNode;
 #Since, it is circular linked list tail will point to head.
 self.tail.next = self.head;
 #Deletes node from end of the list
 def deleteEnd(self):
 #Checks whether list is empty
 if(self.head == None):
 return;
 else:

Data Structures and Program Design Using Python_Ch04.indd 99 9/24/2020 12:22:13 PM

100 • Data Structures and Program Design Using Python

 #Checks whether contain only one element
 if(self.head != self.tail):
 current = self.head;
 #Loop will iterate till the second last
element as current.next is pointing to tail
 while(current.next != self.tail):
 current = current.next;
 #Second last element will be new tail
 self.tail = current;
 #Tail will point to head as it is a circular linked list
 self.tail.next = self.head;
 #If the list contains only one element
 #Then it will remove it and both head and tail will point to null
 else:
 self.head = self.tail = None;
 #Displays all the nodes in the list
 def display(self):
 current = self.head;
 if self.head is None:
 print("List is empty");
 return;
 else:
 #Prints each node by incrementing pointer.
 print(current.data),
 while(current.next != self.head):
 current = current.next;
 print(current.data),
 print("\n");

OUTPUT

Data Structures and Program Design Using Python_Ch04.indd 100 9/24/2020 12:22:13 PM

Linked Lists • 101

Explanation: The above program has the add, deleteEnd, and display func-
tions for the circular linked list.
●● The add function add nodes at beginning of the list.
●● The deleteEnd function removes node from end of the list.
●● The display function prints all the nodes of the list.

4.4.5	Doubly Linked List

A doubly linked list is also called a two-way linked list; it is a special type of
linked list that can point to the next node as well as the previous node in the
sequence. In a doubly-linked list, each node is divided into three parts:

1.	 The first part is called the previous node, which contains the address of
the previous node in the list.

2.	 The second part is called the information part, which contains informa-
tion about the node.

3.	 The third part is called the next node, which contains the address of the
succeeding node in the list.

FIGURE 4.15  Doubly linked list

The structure of a doubly linked list is given as follows:

class ListNode :
 def __init__(self, data) :
 self.data = data
 self.next = None
 self.prev = None

The first node of the linked list contains a NULL value in the previous
node to indicate that there is no element preceding in the list; similarly, the
last node also contains a NULL value in the next node field to indicate that
there is no element succeeding it in the list. Doubly linked lists can be tra-
versed in both directions.

4.4.6	Operations on a Doubly Linked List

Various operations can be performed on a circular linked list, which include
●● Inserting a new node in a doubly linked list
●● Deleting a node from a doubly linked list

Data Structures and Program Design Using Python_Ch04.indd 101 9/24/2020 12:22:13 PM

102 • Data Structures and Program Design Using Python

a.	 Inserting a New Node in a Doubly Linked List

�In this section, we learn how a new node is inserted into an already exist-
ing doubly linked list. We consider four cases for the insertion process in
a doubly-linked list.

1.	 A new node is inserted at the beginning.

2.	 A new node is inserted at the end.

3.	 A new node is inserted after a given node.

4.	 A new node is inserted before a given node.

1.	 Inserting a new node at the beginning of a doubly-linked list

In this case of inserting a new node at the beginning of a doubly-linked list, we
first check with the overflow condition, that is, whether the memory is avail-
able for a new node. If the memory is not available, then an overflow message
is displayed; otherwise, the memory is allocated for the new node. Then, we
initialize the node with its info part, and its address part contains the address
of the first node of the list, which is the START node. Hence, the new node
is added as the first node in the list, and the START node points to the first
node of the list. Now to understand better, let us take an example. Consider
the linked list with four nodes shown in Figure 4.16; a new node is inserted at
the beginning of the linked list.

FIGURE 4.16  Inserting a new node at the beginning of a doubly linked list

From the previous example, it is clear how a new node is inserted in an
already existing doubly linked list. Let us now examine its algorithm.

Data Structures and Program Design Using Python_Ch04.indd 102 9/24/2020 12:22:13 PM

Linked Lists • 103

Algorithm for inserting a new node at the beginning of a doubly-
linked list

Step 1: START
Step 2: IF NODE = NULL
 Print OVERFLOW
 Go to Step 9
[End of If]
Step 3: Set NEW NODE = NODE
Step 4: Set NEW NODE. INFO = VALUE
Step 5: Set NEW NODE. PREV = NULL
Step 6: Set NEW NODE. NEXT = START
Step 7: Set START. PREV = NEW NODE
Step 8: Set START = NEW NODE
Step 9: EXIT

2.	 Inserting a new node at the end of a doubly linked list

To insert the new node at the end of the linked list, we first check the overflow
condition, which is to see whether the memory is available for a new node. If
the memory is not available, then an overflow message is printed; otherwise,
the memory is allocated for the new node. Then a NODE variable is made
which initially points to START, and a NODE variable is used to traverse the
list until it reaches the last node. When it reaches the last node, the NEXT
part of the last node stores the address of the new node, and the NEXT part
of the NEW NODE contains NULL, which denotes the end of the linked list.
The PREV part of the NEW NODE stores the address of the node pointed to
by NODE. Let’s take a look at the algorithm for this.

Algorithm for inserting a new node at the end of a linked list

Step 1: START
Step 2: IF NODE = NULL
 Print OVERFLOW
[End of If]
Step 3: Set NEW NODE = NODE
Step 4: Set NODE = NODE. NEXT
Step 5: Set NEW NODE. INFO = VALUE
Step 6: Set NEW NODE. NEXT = NULL
Step 7: Set NODE = START
Step 8: Repeat while NODE. NEXT != NULL
 Set NODE = NODE. NEXT
[End of Loop]
Step 9: Set NODE. NEXT = NEW NODE
Step 10: Set NEW NODE. PREV = NODE
Step 11: EXIT

Data Structures and Program Design Using Python_Ch04.indd 103 9/24/2020 12:22:13 PM

104 • Data Structures and Program Design Using Python

From the previous algorithm, we understand how to insert a new node
at the end of a doubly linked list. Now, let’s look at an example. Consider
a linked list with four nodes as shown in Figure 4.17; a new node will be
inserted at the end of the doubly linked list:

FIGURE 4.17  Inserting a new node at the end of a doubly linked list

3.	 Inserting a new node after a given node in a doubly-linked list

In this case, a new node is inserted after a given node in a doubly-linked
list. As in the other cases, we again check the overflow condition in it. If
the memory for the new node is available, then it is allocated; otherwise,
an overflow message is displayed. Then a NODE variable is made which
initially points to START, and the node variable is used to traverse the linked
list until its value becomes equal to the value after which the new node is to
be inserted. When it reaches that node/value, then the NEXT part of that
node will store the address of the new node, and the PREV part of the NEW
NODE stores the address of the preceding node. Let us examine the follow-
ing algorithm.

Algorithm for inserting a new node after a given node in a linked list

Step 1: START
Step 2: IF NODE = NULL
 Print OVERFLOW
 Go to Step 10
 [End of If]
Step 3: Set NEW NODE = NODE
Step 4: Set NEW NODE. INFO = VALUE
Step 5: Set NODE = START

Data Structures and Program Design Using Python_Ch04.indd 104 9/24/2020 12:22:13 PM

Linked Lists • 105

Step 6: Repeat while NODE. INFO != GIVEN_VAL
 Set NODE = NODE. NEXT
[End of Loop]
Step 7: Set NEW NODE. NEXT = NODE. NEXT
Step 8: Set NEW NODE. PREV = NODE
Step 9: Set NODE. NEXT = NEW NODE
Step 10: EXIT

Let’s take an example. Consider a doubly linked list with four nodes as
shown in Figure 4.18; a new node is inserted after a given node in the linked list.

4.	 Inserting a new node before a given node in a doubly-linked list

In this case, a new node is inserted before a given node in a doubly-linked list.
As in the other cases, we again check the overflow condition in it. If the mem-
ory for the new node is available, then it is allocated; otherwise, an overflow
message is displayed. Then a NODE variable is made which initially points
to START, and the NODE variable is used to traverse the linked list until its
value becomes equal to the value before which the new node is to be inserted.
When it reaches that node/value, then the PREV part of that node stores the
address of the NEW NODE, and the NEXT part of the NEW NODE stores
the address of the succeeding node. Now to understand this better, let us take
an example. Consider a linked list with four nodes as shown in Figure 4.19; a
new node is inserted before a given node in the linked list.

FIGURE 4.18  Inserting a new node after a given node in a doubly-linked list

Data Structures and Program Design Using Python_Ch04.indd 105 9/24/2020 12:22:14 PM

106 • Data Structures and Program Design Using Python

FIGURE 4.19  Inserting a new node before a given node in a doubly-linked list

From the previous example, it is clear how a new node is inserted in an
already existing doubly linked list. Let us now examine its algorithm.

Algorithm for inserting a new node before a given node in a doubly-
linked list

Step 1: START
Step 2: IF NODE = NULL
 Print OVERFLOW
 Go to Step 10
[End of If]
Step 3: Set NEW NODE = NODE
Step 4: Set NEW NODE. INFO = VALUE
Step 5: Set NODE = START
Step 6: Repeat while NODE. INFO != GIVEN_VAL
 Set NODE = NODE. NEXT
[End of Loop]
Step 7: Set NEW NODE. NEXT = NODE
Step 8: Set NEW NODE. PREV = NODE. PREV
Step 9: Set NODE. PREV = NEW NODE
Step 10: EXIT

b.	 Deleting a Node from a Doubly Linked List

�In this section, we learn how a node is deleted from an already existing
doubly linked list. We consider four cases for the deletion process in a
doubly-linked list.

Data Structures and Program Design Using Python_Ch04.indd 106 9/24/2020 12:22:14 PM

Linked Lists • 107

1.	 A node is deleted from the beginning of the linked list.

2.	 A node is deleted from the end of the linked list.

3.	 A node is deleted after a given node from the linked list.

4.	 A node is deleted before a given node from the linked list.

1.	 Deleting a node from the beginning of the doubly linked list

In the case of deleting a node from the beginning of the doubly linked list,
we will first check the underflow condition, which occurs when we try to
delete a node from the linked list which is empty. This situation exists when
the START node is equal to NULL. Hence, if the condition is true, then
the underflow message is displayed; otherwise, the node is deleted from the
linked list. Consider a linked list with five nodes as shown in Figure 4.20; the
node is deleted from the beginning of the linked list.

FIGURE 4.20  Deleting a node from the beginning of the doubly linked list

Let us examine an algorithm for this process.

Algorithm for deleting a node from the beginning of a doubly-linked list

Step 1: START
Step 2: IF START = NULL
 Print UNDERFLOW
[End Of If]
Step 3: Set NODE = START
Step 4: Set START = START. NEXT
Step 5: Set START. PREV = NULL
Step 6: FREE NODE
Step 7: EXIT

First, we check for the underflow condition, which is whether there are
any nodes present in the linked list. If there are no nodes, then an underflow
message is printed; otherwise, we move to Step 3, where we initialize NODE
to START, that is, NODE now stores the address of the first node. In the next
step, START is moved to the second node, as now START stores the address

Data Structures and Program Design Using Python_Ch04.indd 107 9/24/2020 12:22:14 PM

108 • Data Structures and Program Design Using Python

of the second node. Also, the PREV part of the second node now contains a
value NULL. Hence, the first node is deleted and the memory that occupied
NODE is freed (initially the first node of the list).

2.	 Deleting a node from the end of a doubly linked list

In the case of deleting a node from the end of a linked list, we first check the
underflow condition. This situation exists when the START node is equal to
NULL. Hence, if the condition is true, then the underflow message is printed
on the screen; otherwise, the node is deleted from the linked list. Consider a
linked list with five nodes as shown in Figure 4.21; the node is deleted from
the end of the linked list.

FIGURE 4.21  Deleting a node from the end of the doubly linked list

From the previous example, it is clear how a node is deleted from an
already existing doubly linked list. Let us now examine its algorithm.

Algorithm for deleting a node from the end in a doubly-linked list

Step 1: START
Step 2: IF START = NULL
 Print UNDERFLOW
[End Of If]
Step 3: Set NODE = START
Step 4: Repeat while NODE. NEXT != NULL
 Set NODE = NODE. NEXT
[End of Loop]
Step 5: Set NODE. PREV. NEXT= NULL
Step 6: FREE NODE
Step 7: EXIT

We are again checking for the underflow condition. If the condition is
true, then the underflow message is printed; otherwise, NODE is initialized

Data Structures and Program Design Using Python_Ch04.indd 108 9/24/2020 12:22:15 PM

Linked Lists • 109

to the START node, that is, the NODE points to the first node of the list. In
the loop, the NODE is traversed until it reaches the last node of the list. After
reaching the last node of the list, we can also access the second to last node
by taking the address from the PREV part of the last node. Therefore, the last
node is deleted, and the memory that occupied NODE is now freed.
3.	 Deleting a node after a given node from the doubly linked list

In the case of deleting a node after a given node from the linked list, we again
check the underflow condition as we checked in both the other cases. This
situation exists when the START node is equal to NULL. Hence, if the condi-
tion is true, then the underflow message is displayed; otherwise, the node is
deleted from the linked list. Consider a linked list with five nodes as shown in
Figure 4.22; the node is deleted after a given node from the linked list.

FIGURE 4.22  Deleting a node after a given node from the doubly linked list

Now let us examine this with the help of an algorithm.

Algorithm for deleting a node after a given node from the linked list

Step 1: START
Step 2: IF START = NULL
 Print UNDERFLOW
[End Of If]
Step 3: Set NODE = START
Step 4: Repeat while NODE. INFO != GIVEN_VAL
 Set NODE = NODE. NEXT
[End of Loop]
Step 5: Set TEMP = NODE. NEXT
Step 6: Set NODE. NEXT = TEMP. NEXT
Step 7: Set LAST. PREV = NODE
Step 8: FREE TEMP
Step 9: EXIT

Data Structures and Program Design Using Python_Ch04.indd 109 9/24/2020 12:22:15 PM

110 • Data Structures and Program Design Using Python

In the algorithm, we check for the underflow condition. If the condition
is true, then the underflow message is printed; otherwise, NODE is initialized
to the START node, that is, the NODE points to the first node of the list.
In the loop, NODE is moved until its info becomes equal to the node, after
which the node is deleted. After reaching that node of the list, we can also
access the succeeding node by taking the address from the NEXT part of that
node. Therefore, the node is deleted and the memory is now free which had
been occupied by TEMP.

4.	 Deleting a node before a given node from the doubly linked list

In the case of deleting a node before a given node from the linked list, we
again check the underflow condition as we checked in both the other cases.
This situation occurs when the START node is equal to NULL. Hence, if the
condition is true, then the underflow message is printed; otherwise, the node
is deleted from the linked list. Consider a linked list with five nodes as shown
in Figure 4.23; the node is deleted before a given node from the linked list.

FIGURE 4.23  Deleting a node before a given node from the doubly linked list

From the previous example, it is clear how a node is deleted from an
already existing doubly linked list. Let us now examine its algorithm.

Algorithm for deleting a node before a given node in a doubly-linked
list

Step 1: START
Step 2: IF START = NULL
 Print UNDERFLOW
[End Of If]

Data Structures and Program Design Using Python_Ch04.indd 110 9/24/2020 12:22:16 PM

Linked Lists • 111

Step 3: Set NODE = START
Step 4: Repeat while NODE. INFO != GIVEN_VAL
 Set NODE = NODE. NEXT
[End of Loop]
Step 5: Set TEMP = NODE. PREV
Step 6: Set TEMP. PREV. NEXT = NODE
Step 7: Set NODE. PREV = TEMP. PREV
Step 8: FREE TEMP
Step 9: EXIT

In the previous algorithm, we check for the underflow condition. If the
condition is true, then the underflow message is printed; otherwise, NODE
is initialized to the START node, that is, the NODE points to the first node
of the list. In the loop, NODE is moved until its info part becomes equal to
the node before which the node is to be deleted. After reaching that node of
the list, we can also access the preceding node by taking the address from the
PREV part of that node. Therefore, the node is deleted and the memory is
now free which was being occupied by TEMP.

Here is a program to implement a doubly linked list.

#Represent a node of doubly linked list
class Node:
 def __init__(self,data):
 self.data = data;
 self.previous = None;
 self.next = None;
class DoublyLinkedList:
 #Represent the head and tail of the doubly linked list
 def __init__(self):
 self.head = None;
 self.tail = None;
 #addNode() will add a node to the list
 def add(self, data):
 #Create a new node
 newNode = Node(data);
 #If list is empty
 if(self.head == None):
 #Both head and tail will point to newNode
 self.head = self.tail = newNode;
 #head's previous will point to None
 self.head.previous = None;

Data Structures and Program Design Using Python_Ch04.indd 111 9/24/2020 12:22:16 PM

112 • Data Structures and Program Design Using Python

 #tail's next will point to None, as it is the last node of the list
 self.tail.next = None;
 else:
 #newNode will be added after tail such that tail's
next will point to newNode
 self.tail.next = newNode;
 #newNode's previous will point to tail
 newNode.previous = self.tail;
 #newNode will become new tail
 self.tail = newNode;
 #As it is last node, tail's next will point to None
 self.tail.next = None;
 #deleteFromStart() will delete a node from the beginning of the list
 def delete(self):
 #Checks whether list is empty
 if(self.head == None):
 return;
 else:
 #Checks whether the list contains only one element
 if(self.head != self.tail):
 #head will point to next node in the list
 self.head = self.head.next;
 #Previous node to current head will be made None
 self.head.previous = None;
 #If the list contains only one element
 #then, it will remove the node, and now both head
and tail will point to None
 else:
 self.head = self.tail = None;
 #display() will print out the nodes of the list
 def display(self):
 #Node current will point to head
 current = self.head;
 if(self.head == None):
 print("List is empty");
 return;
 while(current != None):
 #Prints each node by incrementing pointer.
 print(current.data),
 current = current.next;
 print();

Data Structures and Program Design Using Python_Ch04.indd 112 9/24/2020 12:22:16 PM

Linked Lists • 113

OUTPUT

Explanation: The above program has the add, delete and display func-
tions for a doubly linked list.
●● The add function adds nodes in beginning of the list.
●● The delete function removes nodes from beginning of the list.
●● The display function prints all the nodes of the list.

4.5	 HEADER LINKED LISTS

Header linked lists are a special type of linked list that always contain a spe-
cial node, called the header node, at the beginning. This header node usually
contains vital information about the linked list, like the total number of nodes
in the list, whether the list is sorted or not, and so on. There are two types of
header linked lists, which include

1.	 Grounded Header Linked List – This linked list stores a unique value
NULL in the address field (next part) of the last node of the list.

FIGURE 4.24  Grounded header linked list

Data Structures and Program Design Using Python_Ch04.indd 113 9/24/2020 12:22:16 PM

114 • Data Structures and Program Design Using Python

2.	 Circular Header Linked List – This linked list stores the address of
the header node in the address field (next part) of the last node of the list.

FIGURE 4.25  Circular header linked list

Frequently Asked Questions

Q3. What are the uses of a header node in a linked list?

Answer:

The header node is a node of a linked list which may or may not have the
same data structure as that of a typical node. The only commonality between
a typical node and a header node is that they both refer to a typical node.

4.6	 APPLICATIONS OF LINKED LISTS

Linked lists have various applications, but one of the most important is that
of polynomial representation; linked lists can be used to represent polynomi-
als, and different operations can be performed on them. Now let us see how
polynomials can be represented in the memory using linked lists.

4.7	 POLYNOMIAL REPRESENTATION

Consider a polynomial 10x2 + 6x + 9. In this polynomial, every individual term
consists of two parts: first, a coefficient, and second, a power. Here, the coef-
ficients of the expression are 10, 6, and 9, and 2, 1, and 0 are the respective
powers of the coefficients. Now, every individual term can be represented
using a node of the linked list. The following figure shows how a polynomial
expression can be represented using a linked list:

FIGURE 4.26  Linked representation of a polynomial

Data Structures and Program Design Using Python_Ch04.indd 114 9/24/2020 12:22:16 PM

Linked Lists • 115

4.8	 SUMMARY

●● A linked list is a sequence of nodes in which each node contains one or
more data fields and a node that points to the next node.

●● The process of allocating memory during the execution of the program
or the process of allocating memory to the variables at runtime is called
dynamic memory allocation.

●● A singly linked list is the simplest type of linked list, in which each node
contains some information/data and only one node that points to the next
node in the linked list.

●● Traversing a linked list means accessing all the nodes of the linked list
exactly once.

●● Searching for a value in a linked list means to find a particular element/
value in the linked list.

●● A circular linked list is also a type of singly linked list in which the address
part of the last node stores the address of the first node.

●● A doubly linked list is also called a two-way linked list; it is a special type
of linked list that can point to the next node as well as the previous node
in the sequence.

●● A header linked list is a special type of linked list that always contains a
special node, called the header node, at the beginning. This header node
usually contains vital information about the linked list like the total num-
ber of nodes in the list, whether the list is sorted or not, and so forth.

●● One of the most important applications of linked lists is a polynomial rep-
resentation because linked lists can be used to represent polynomials and
different operations can be performed on them.

4.9	 EXERCISES

4.9.1	Theory Questions

Q1.	 What is a linked list? How it is different from an array?

Q2.	 How many types of linked lists are there? Explain in detail.

Q3.	 What is the difference between singly and doubly linked lists?

Q4.	 List the various advantages of linked lists over arrays.

Q5.	 What is a circular linked list? What are the advantages of a circular
linked list over a linked list?

Data Structures and Program Design Using Python_Ch04.indd 115 9/24/2020 12:22:16 PM

116 • Data Structures and Program Design Using Python

Q6.	 Define a header linked list and explain its utility.

Q7.	 Give the linked representation of the following polynomial:
10x2y – 6x + 7.

Q8.	 Specify the use of a header node in a header linked list.

Q9.	 List the various operations that can be performed in linked lists.

4.9.2	Programming Questions

Q1.	 Write an algorithm/program to insert a node at the desired position
in a circular linked list.

Q2.	 Write a Python program to insert and delete the node at the begin-
ning in a doubly-linked list using classes.

Q3.	 Write an algorithm to reverse a singly linked list.

Q4.	 Write a Python program to delete a node from a header linked list.

Q5.	 Write an algorithm to concatenate two linked lists.

Q6.	 Write a Python program to implement a circular header linked list.

Q7.	 Write a Python program to count the non-zero values in a header
linked list using classes.

Q8.	 Write a Python program that inserts a node in the linked list before a
given node.

Q9.	 Write an algorithm to search for an element from a given linear
linked list.

Q10.	 Write a program that inserts a node in a doubly-linked list after a
given node.

4.9.3	Multiple Choice Questions

Q1.	 Linked lists are best suited for

a.	 Data structure

b.	 Sizes of structure and data that are constantly changing

c.	 Sizes of structure and data that are fixed

d.	 None of these

Data Structures and Program Design Using Python_Ch04.indd 116 9/24/2020 12:22:16 PM

Linked Lists • 117

Q2.	 Each node in a linked list must contain at least
field(s).

a.	 Four

b.	 Three

c.	 One

d.	 Two

Q3.	 Which type of linked list stores the address of the header node in the
address field of the last node?

a.	 Doubly linked list

b.	 Circular header linked list

c.	 Singly-linked list

d.	 Header linked list

Q4.	 The situation in a linked list when START = NULL is

a.	 Overflow

b.	 Underflow

c.	 Both

d.	 None of these

Q5.	 Linked lists can be implemented in what type of data structures?

a.	 Queues

b.	 Trees

c.	 Stacks

d.	 All of these

Q6.	 Which type of linked list contains a node to the next as well as the
previous nodes?

a.	 Doubly linked list

b.	 Singly-linked list

c.	 Circular linked list

d.	 Header linked list

Data Structures and Program Design Using Python_Ch04.indd 117 9/24/2020 12:22:16 PM

118 • Data Structures and Program Design Using Python

Q7.	 The first node in the linked list is called .

a.	 End

b.	 Middle

c.	 Start

d.	 Begin

Q8.	 A linked list cannot grow and shrink during compile time.

a.	 False

b.	 It might grow

c.	 True

d.	 None of the above

Q9.	 What does NULL represent in the linked list?

a.	 Start of list

b.	 End of list

c.	 None of the above

Data Structures and Program Design Using Python_Ch04.indd 118 9/24/2020 12:22:16 PM

C H A P T E R 5
QUEUES

5.1	 INTRODUCTION

A queue is an important data structure that is widely used in many computer
applications. A queue can be visualized with many examples from everyday
life. A very simple illustration of a queue is a line of people standing outside a
movie theater. The first person standing in the line will enter the movie thea-
tre first. We observe that whenever we talk about a queue, we see that that the
element in the first position is served first. Thus, a queue can be described as
a FIFO (First-in, First-out) data structure; that is, the element that is inserted
first will be the first one to be taken out.

5.2	 DEFINITION OF A QUEUE

A queue is a linear collection of data elements in which the element inserted
first is the element taken out first (i.e., a queue is a FIFO data structure). A
queue is an abstract data structure, somewhat similar to stacks. Unlike stacks,
a queue is open on both ends. A queue is a linear data structure in which the
first element is inserted on one end, called the REAR end (also called the tail
end), and the deletion of the element takes place from the other end, called
the FRONT end (also called the head). One end is always used to insert data
and the other end is used to remove data.

Queues can be implemented by using arrays or linked lists. We discuss
the implementation of queues using arrays and linked lists in this section.

Data Structures and Program Design Using Python_Ch05.indd 119 9/24/2020 12:22:43 PM

120 • Data Structures and Program Design Using Python

Practical Application:

●● A real-life example of a queue is people moving on an escalator. The
people who got on the escalator first will be the first ones to step off of it.

●● Another illustration of a queue is a line of people standing at the bus
stop waiting for the bus. Therefore, the first person standing in the
line will get into the bus first.

5.3	 IMPLEMENTATION OF A QUEUE

Queues can be implemented using two data structures:

1.	 arrays/lists

2.	 linked lists

5.3.1	Implementation of Queues Using Arrays

Queues can be easily implemented using arrays. Initially, the front end (head)
and the rear end (tail) of the queue point at the first position or location of the
array. As we insert new elements into the queue, the rear keeps on increment-
ing, always pointing to the position where the next element will be inserted,
while the front remains in the first position.

FIGURE 5.1  Array representation of a queue

5.3.2	Implementation of Queues Using Linked Lists

We have already studied how a queue is implemented using an array. Now
let us discuss the same using linked lists. We already know that in linked lists,
dynamic memory allocation takes place; that is, the memory is allocated at
runtime. But in the case of arrays, memory is allocated at the start of the pro-
gram. (We discussed in the chapter about linked lists.) If we are aware of the
maximum size of the queue in advance, then the implementation of a queue
using arrays is efficient. But if the size is not known in advance, then we use
the concept of a linked list, in which dynamic memory allocation takes place.
A linked list has two parts: the first part contains the information of the node,

Data Structures and Program Design Using Python_Ch05.indd 120 9/24/2020 12:22:43 PM

Queues • 121

and the second part stores the address of the next element in the linked list.
Similarly, we can also implement a linked queue. The START node in the
linked list becomes the FRONT node in a linked queue, and the end of the
queue is denoted by REAR. All insertion operations are done at the rear end
only. Similarly, all deletion operations are done at the front end only.

FIGURE 5.2  A linked queue

5.3.2.1	Insertion in Linked Queues

Insertion is the process of adding new elements in the already existing queue.
The new elements in the queue are always inserted from the rear end. Initially,
we check whether FRONT = NULL. If the condition is true, then the queue
is empty; otherwise, the new memory is allocated for the new node. We can
examine this further with the help of an algorithm.

Algorithm for Inserting a New Element in a Linked Queue

Step 1: START
Step 2: Set NEW NODE . INFO = VAL
IF FRONT = NULL
 Set FRONT = REAR = NEW NODE
 Set FRONT . NEXT = REAR . NEXT = NEW NODE
ELSE
 Set REAR . NEXT = NEW NODE
 Set NEW NODE . NEXT = NULL
 Set REAR = NEW NODE
 [End of If]
Step 3: EXIT

First, we allocate the memory for the new node. Then we initialize it with
the information to be stored in it. Next, we check if the new node is the first
node of the queue or not. If the new node is the first node of the queue, then
we store NULL in the address part of the new node. In this case, the new
node is tagged as FRONT as well as REAR. However, if the new node is not
the first node of the queue, it is inserted at the REAR end of the queue.

For Example – Consider a linked queue with five elements; a new ele-
ment is to be inserted in the queue.

FIGURE 5.3  Linked queue before insertion

Data Structures and Program Design Using Python_Ch05.indd 121 9/24/2020 12:22:44 PM

122 • Data Structures and Program Design Using Python

After inserting the new element in the queue, the updated queue becomes
as shown in Figure 5.4.

FIGURE 5.4  Linked queue after insertion.

5.3.2.2	Deletion in Linked Queues

Deletion is the process of removing elements from the already existing queue.
The elements from the queue will always be deleted from the front end.
Initially, we check with the underflow condition, that is, whether FRONT =
NULL. If the condition is true, then the queue is empty, which means we can-
not delete any elements from it. Therefore, in that case, an underflow error
message is displayed on the screen. We can examine this further with the help
of an algorithm.

Algorithm for Deleting an Element from a Queue

Step 1: START
Step 2: IF FRONT = NULL
 Print UNDERFLOW ERROR
[End of If]
Step 3: Set TEMP = FRONT
Step 4: Set FRONT = FRONT . NEXT
Step 5: FREE TEMP
Step 6: EXIT

We first check with the underflow condition, that is, whether the queue
is empty or not. If the condition is true, then an underflow error message is
displayed; otherwise, we use a node variable TEMP that points to FRONT.
In the next step, FRONT is now pointing to the second node in the queue.
Finally, the first node is deleted from the queue.

For Example – Consider a linked queue with five elements; an element
is to be deleted from the queue.

After deleting an element from the queue, the updated queue becomes
as shown in Figure 5.5.

FIGURE 5.5  Linked queue after deletion

Data Structures and Program Design Using Python_Ch05.indd 122 9/24/2020 12:22:44 PM

Queues • 123

Here is a program for implementing a linked queue performing insertion
and deletion operations.

Python3 program to demonstrate a linked list
based implementation of queue

A linked list (LL) node
to store a queue entry
class Node:

 def __init__(self, data):
 self.data = data
 self.next = None

A class to represent a queue

The queue, front stores the front node
of LL and rear stores the last node of LL
class Queue:

 def __init__(self):
 self.front = self.rear = None

 def isEmpty(self):
 return self.front == None

 # Method to add an item to the queue
 def insert(self, item):
 temp = Node(item)

 if self.rear == None:
 self.front = self.rear = temp
 return
 self.rear.next = temp
 self.rear = temp

 # Method to remove an item from queue
 def Delete(self):

 if self.isEmpty():
 return
 temp = self.front
 self.front = temp.next

 if(self.front == None):
 self.rear = None
 #method to print queue
 def display(self):
 if self.isEmpty():
 return
 temp=self.front
 while(temp):
 print(temp.data)
 temp=temp.next

Data Structures and Program Design Using Python_Ch05.indd 123 9/24/2020 12:22:44 PM

124 • Data Structures and Program Design Using Python

The output of the program is

Explanation: The above program has the insert, delete, and display
functions for a linked queue.

●● The insert function adds an element to the queue.
●● The delete function removes elements from the queue.
●● The display function prints every node of the queue.

Frequently Asked Questions

Q. Define queues; in what ways can a queue be implemented?

Answer:

A queue is a linear data structure in which the first element is inserted
from one end, called the REAR end (also called the tail end), and the dele-
tion of the element takes place from the other end called the FRONT end
(also called the head). Each type of queue can be implemented in two ways:

1.	 Array/List Representation

2.	 Linked List Representation

Data Structures and Program Design Using Python_Ch05.indd 124 9/24/2020 12:22:44 PM

Queues • 125

5.4	 OPERATIONS ON QUEUES

The two basic operations that can be performed on queues are as follows.

5.4.1	Insertion

Insertion is the process of adding new elements in the queue. However, before
inserting any new element in the queue, we must always check for the over-
flow condition, which occurs when we try to insert an element in a queue that
is already full. An overflow condition can be checked as follows: If REAR =
MAX – 1, where MAX is the size of the queue. Hence, if the overflow condi-
tion is true, then an overflow message is displayed on the screen; otherwise,
the element is inserted into the queue. Insertion is always done at the rear
end. Insertion is also known as en-queue.

For Example – Let us take a queue that has five elements in it. Suppose
we want to insert another element, 50, in it; then REAR will be incremented
by 1. Thus, a new element is inserted at the position pointed to by REAR.
Now, let us see how insertion is done in the queue in Figure 5.6.

After inserting 50 in it, the new queue is

FIGURE 5.6  Queue after inserting a new element

Algorithm for Inserting a New Element in a Queue

Step 1: START
Step 2: IF REAR = MAX – 1
 Print OVERFLOW ERROR
[End of If]
Step 3: IF FRONT = -1 && REAR = -1
 Set FRONT = 0
 Set REAR = 0
 ELSE
 REAR = REAR + 1
[End of If]
Step 4: Set QUE[REAR] = ITEM
Step 5: EXIT

Data Structures and Program Design Using Python_Ch05.indd 125 9/24/2020 12:22:45 PM

126 • Data Structures and Program Design Using Python

In the previous algorithm, we first check for the overflow condition. In
Step 2, we check to see whether the queue is empty. If the queue is empty,
then both FRONT and REAR are set to zero; otherwise, REAR is incre-
mented to the next position in the queue. Finally, the new element is stored
in the queue at the position pointed to by REAR.

5.4.2	Deletion

Deletion is the process of removing elements from the queue. However,
before deleting any element from the queue, we must always check for the
underflow condition, which occurs when we try to delete an element from
a queue that is empty. An underflow condition can be checked as follows: If
FRONT > REARorFRONT = −1. Hence, if the underflow condition is true,
then an underflow message is displayed on the screen; otherwise, the element
is deleted from the queue. Deletion is always done at the front end. Deletion
is also known as de-queue.

For Example – Let us take a queue with five elements in it. Suppose
we want to delete an element, 7, from a queue; then FRONT will be incre-
mented by 1. Thus, the new element is deleted from the position pointed to by
FRONT. Now, let us see how the deletion is done in the queue in Figure 5.7.

After deleting 7 from it, the new queue will be

FIGURE 5.7  Queue after deleting an element

Algorithm for Deleting an Element from a Queue

Step 1: START
Step 2: IF FRONT > REAR or FRONT = -1
 Print UNDERFLOW ERROR
[End of If]

Data Structures and Program Design Using Python_Ch05.indd 126 9/24/2020 12:22:45 PM

Queues • 127

Step 3: Set ITEM = QUE[FRONT]
Step 4:Set FRONT = FRONT + 1
Step 5: EXIT

First, we check for the underflow condition, that is, whether the queue is
empty or not. If the queue is empty, then no deletion takes place; otherwise,
the FRONT is incremented to the next position in the queue. Finally, the
element is deleted from the queue.

Here is a menu-driven program for a linear queue performing insertion
and deletion operations.

Python program to
demonstrate queue implementation
using list

Initializing a queue
queue = []

#function to display queue
def display():
 print(queue)
#function to delete element from queue
def delete():
 temp=queue[0]
 queue.pop(0)
 print(temp,"is deleted")
#function to insert element in queue
def insert():
 data=input("enter data to be insert-")
 queue.append(data)
 print("success")
#menu for queue operations
while(1):
 print(" menu ")
 print("1-insert")
 print("2-delete")
 print("3-display")
 print("4-exit")
 choice=input("enter choice-")
 if choice=="1":
 insert()
 elif choice=="2":
 delete()
 elif choice=="3":
 display()
 elif choice=="4":
 exit(0)

Data Structures and Program Design Using Python_Ch05.indd 127 9/24/2020 12:22:45 PM

128 • Data Structures and Program Design Using Python

The output of the program is

Explanation: The above menu-driven program has the insert, delete,
and display functions for a linear queue.

●● The insert function adds an element to the queue.
●● The delete function removes an element from the queue.
●● The display function prints every node of the queue.

Data Structures and Program Design Using Python_Ch05.indd 128 9/24/2020 12:22:45 PM

Queues • 129

5.5	 TYPES OF QUEUES

This section discusses various types of queues which include

1.	 Circular Queue

2.	 Priority Queue

3.	 De-Queue (Double-ended Queue)

5.5.1	Circular Queue

A circular queue is a special type of queue implemented in a circular fashion
rather than in a straight line. A circular queue is a linear data structure in which
the operations are performed based on the FIFO principle and the last position
is connected to the first position to make a circle. It is also called a “ring buffer.”

5.5.1.1	Limitation of Linear Queues

In linear queues, we studied how insertion and deletion take place. We
discussed that inserting a new element in the queue is only done at the rear
end. Similarly, deleting an element from the queue is only done at the front
end. Now let us consider a queue of 10 elements.

The queue is now full, so we cannot insert any more elements in it. If we
delete three elements from the queue, the queue will be as follows:

Thus, we can see that even after the deletion of three elements from the
queue, the queue is still full, as REAR = MAX – 1. We still cannot insert any
new elements in it as there is no space to store new elements. This is a major
drawback of the linear queue.

To overcome this problem, we shift all the elements to the left so that the
new elements can be inserted from the rear end, but shifting all the elements
of the queue can be a very time-consuming procedure, as queues are typically

Data Structures and Program Design Using Python_Ch05.indd 129 9/24/2020 12:22:46 PM

130 • Data Structures and Program Design Using Python

very large. Another solution to this problem is a circular queue. First, let us
see how a circular queue looks (Figure 5.8).

FIGURE 5.8  A circular queue

In a circular queue, the elements are stored in a circular form such that
the first element is next to the last element in the queue. A circular queue will
be full when FRONT = 0 and REAR = MAX – 1 or FRONT = REAR + 1. In
that case, an overflow error message will be displayed on the screen. Similarly,
a circular queue is empty when both FRONT and REAR are equal to zero. In
that case, an underflow error message is displayed on the screen. Now, let us
study both insertion and deletion operations in a circular queue.

Practical Application:

A circular queue is used in operating systems for scheduling different
processes.

Frequently Asked Questions

Q. What is a circular queue? List the advantages of a circular
queue over a simple queue.

Answer:

A circular queue is a particular kind of queue where new items are added
to the rear end of the queue and items are read off from the front end of
the queue, so there is a constant stream of data flowing in and out of the
queue. A circular queue is also known as a “circular buffer.” It is a struc-
ture that allows data to be passed from one process to another, making the
most efficient use of memory. The only difference between a linear queue
and circular queue is that in a linear queue, when the rear points to the last

Data Structures and Program Design Using Python_Ch05.indd 130 9/24/2020 12:22:46 PM

Queues • 131

position in the array, we cannot insert data even if we have deleted some
elements. But in a circular queue, we can insert elements as long as there is
free space available. The main advantage of a circular queue as compared
to a linear queue is that it avoids wasting space.

5.5.1.2	Inserting an Element in a Circular Queue

While inserting a new element in the
already existing queue, we first check
for the overflow condition, which occurs
when we are trying to insert an element
in the queue that is already full. The posi-
tion of the new element to be inserted
can be calculated by using the following
formula:

REAR = (REAR + 1) % MAX, where
MAX is equal to the size of the queue.

For Example – Let us consider a
circular queue with three elements in it.
Suppose we want to insert an element,
56. Let us see how insertion is done in
the circular queue.

Step 1: Initially the queue contains
three elements. FRONT denotes the
beginning of the circular queue, and
REAR denotes the end of the circular
queue.

Step 2: Now, the new element is
to be inserted in the queue. Hence,
REAR = REAR + 1; that is, REAR will
be incremented by 1 so that it points to
the next location in the queue.

Step 3: Finally, in this step, the new
element is inserted at the location pointed
to by REAR. Hence, after insertion the
queue is as shown in Figure 5.11.

FIGURE 5.9  Initial circular queue without
insertion

FIGURE 5.10  REAR is incremented by 1 so
that it points to the next location

FIGURE 5.11  Final queue after inserting a
new element

Data Structures and Program Design Using Python_Ch05.indd 131 9/24/2020 12:22:46 PM

132 • Data Structures and Program Design Using Python

Algorithm for Inserting an Element in a Circular Queue

Here, QUEUE is an array with N elements. FRONT and REAR point to the
front and rear elements of the queue. ITEM is the value to be inserted.

Step 1: START
Step 2:IF (FRONT = 0 && REAR = MAX – 1) OR (FRONT = REAR + 1)
 Print OVERFLOW ERROR
Step 3: ELSE
 IF (FRONT = -1)
 Set FRONT = 0
 Set REAR = 0
Step 4:ELSE
 IF (REAR = MAX - 1)
 Set REAR = 0
 ELSE
 REAR = REAR + 1
[End of If]
[End of If]
Step 5:Set CQUEUE[REAR] = ITEM
Step 6: EXIT

First, we check with the overflow condition. Second, we check if the
queue is empty. If the queue is empty, then the FRONT and REAR are set
to zero. In Step 4, if REAR has reached its maximum capacity, then we set
REAR = 0; otherwise, REAR is incremented by 1 so that it points to the next
position where the new element is to be inserted. Finally, the new element is
inserted in the queue.

5.5.1.3	Deleting an Element from a Circular Queue

While deleting an element from the already existing queue, we first check for
the underflow condition, which occurs when we are trying to delete an ele-
ment from a queue that is empty. After deleting an element from the circular
queue, the position of the FRONT end can be calculated by the following
formula:

FRONT = (FRONT + 1) % MAX, where MAX is equal to the size of the queue.

For Example – Let us consider a circular queue with seven elements
in it. Suppose we want to delete an element, 45, from it. Let us see how the
deletion is done in the circular queue.

Step 1: Initially, the queue contains seven elements. FRONT denotes the
beginning of the circular queue, and REAR denotes the end of the circular
queue.

Data Structures and Program Design Using Python_Ch05.indd 132 9/24/2020 12:22:46 PM

Queues • 133

Step 2: Now, the element is to be deleted from the queue. Hence,
FRONT = FRONT + 1, that is, FRONT will be incremented by 1 so that it
points to the next location in the queue. Also, the value is deleted from the
queue. Thus, the queue after deletion is shown in Figure 5.13.

Algorithm for Deleting an Element from a Circular Queue

Here, CQUEUE is an array with N elements. FRONT and REAR point to
the front and rear elements of the queue. ITEM is the value to be deleted.

Step 1: START
Step 2: IF (FRONT = -1)
 Print UNDERFLOW ERROR
Step 3: ELSE
 Set ITEM = CQUEUE[FRONT]
Step 4:IF (FRONT = REAR)
 Set FRONT = -1
 Set REAR = -1
Step 5:ELSE IF (FRONT = MAX – 1)
 Set FRONT = 0
 ELSE
 FRONT = FRONT + 1
[End of If]
[End of If]
Step 6: EXIT

We first check with the underflow condition. Second, we store the ele-
ment to be deleted in ITEM. Third, we check to see if the queue is empty or
not after deletion. If FRONT has reached its maximum capacity, then we set
FRONT = 0; otherwise, the FRONT is incremented by 1 so that it points to
the next position. Finally, the element is deleted from the queue.

Here is a program for a linear circular queue performing insertion and
deletion operations.

FIGURE 5.12  Initial circular queue without deletion FIGURE 5.13  Final queue after deleting an element

Data Structures and Program Design Using Python_Ch05.indd 133 9/24/2020 12:22:46 PM

134 • Data Structures and Program Design Using Python

class CircularQueue():

 # constructor
 def __init__(self, size): # initializing the class
 self.size = size

 # initializing queue with none
 self.queue = [None for i in range(size)]
 self.front = self.rear = -1

 def insert(self, data):

 # condition if queue is full
 if ((self.rear + 1) % self.size == self.front):
 print(" Queue is Full\n")

 # condition for empty queue
 elif (self.front == -1):
 self.front = 0
 self.rear = 0
 self.queue[self.rear] = data
 else:

 # next position of rear
 self.rear = (self.rear + 1) % self.size
 self.queue[self.rear] = data

 def delete(self):
 if (self.front == -1): # condition for empty queue
 print ("Queue is Empty\n")

 # condition for only one element
 elif (self.front == self.rear):
 temp=self.queue[self.front]
 self.front = -1
 self.rear = -1
 return temp
 else:
 temp = self.queue[self.front]
 self.front = (self.front + 1) % self.size
 return temp

 def display(self):

 # condition for empty queue
 if(self.front == -1):
 print ("Queue is Empty")

 elif (self.rear >= self.front):
 print("Elements in the circular queue are:",
 end = " ")

Data Structures and Program Design Using Python_Ch05.indd 134 9/24/2020 12:22:46 PM

Queues • 135

 for i in range(self.front, self.rear + 1):
 print(self.queue[i], end = " ")
 print ()

 else:
 print ("Elements in Circular Queue are:",
 end = " ")
 for i in range(self.front, self.size):
 print(self.queue[i], end = " ")
 for i in range(0, self.rear + 1):
 print(self.queue[i], end = " ")
 print ()

 if ((self.rear + 1) % self.size == self.front):
 print("Queue is Full")

The output of the program is

Explanation: The above program has the insert, delete, and display func-
tions for a linear circular queue.

●● The insert function adds element to the circular queue.
●● The delete function removes element from the circular queue.
●● The display function prints every node of the circular queue.

5.5.2	Priority Queue

A priority queue is another variant of a queue in which elements are pro-
cessed based on the assigned priority. Each element in a priority queue is

Data Structures and Program Design Using Python_Ch05.indd 135 9/24/2020 12:22:47 PM

136 • Data Structures and Program Design Using Python

assigned a special value called the priority of the element. The elements in
the priority queue are processed based on the following rules:

1.	 An element with a higher priority is processed first, and then the element
with lower priority is processed.

2.	 If the two elements have the same priority, then the elements are pro-
cessed on the First Come, First Served (FCFS) basis. The priority of the
element is selected by its value, called the implicit priority, and the prior-
ity number given with each element is called the explicit priority.

A priority queue is like a modified queue or stack data structure, but
where additionally each element has a priority associated with it. In a priority
queue, the insertion and deletion operations are also done according to the
assigned priority. If we want to delete an element from the priority queue,
then the element with the highest priority is processed first and is deleted.
The case is the same with insertion. The priority given to the elements in
the queue is based on several factors. Priority queues are commonly used in
operating systems for executing higher priority processes first. The priority
assigned to these processes may be based on the time taken by the CPU to
execute these processes completely.

Practical Application:

In an operating system, if there are four processes to be executed where
the first process needs 3 ns to complete, the second process needs 5 ns to
complete, the third process needs 9 ns to complete, and the fourth needs
8 ns to complete, then the first process will be given the highest priority
and will be the first to be executed among all the processes.

Now the priority queues are further divided into two types which are

1.	 Ascending Priority Queue – In this type of priority queue, elements
can be inserted in any order, but at the time of the deletion of elements
from the queue, the smallest element is searched and deleted first.

2.	 Descending Priority Queue – In this type of priority queue, elements
can be inserted in any order. But at the time of the deletion of elements
from the queue, the largest element is searched and deleted first (for
example – Operating systems, Routing).

Data Structures and Program Design Using Python_Ch05.indd 136 9/24/2020 12:22:47 PM

Queues • 137

Frequently Asked Questions

Q. Define Priority Queue.

Answer:

A priority queue is a collection of elements such that each element has been
assigned a priority and such that the order in which elements are deleted
and processed comes from the following rules:

a.	 An element of higher priority is processed before any element of lower
priority.

b.	 Two elements with the same priority are processed according to the
order in which they were added to the queue.

The array elements in a priority queue can have the following structure:

class ListNode :
  def __init__(self, data) :
 self.priority=priority
 self.data = data
 self.next = None

5.5.2.1	Implementation of a Priority Queue

A priority queue can be implemented in two ways:

1.	 Array Representation of a Priority Queue

2.	 Linked Representation of a Priority Queue

Let us now discuss both these implementations in detail.

1.	 Implementation of a priority queue using arrays

While implementing a priority queue using arrays, the following points must
be considered:
●● Maintain a separate queue for each level of priority or priority number.
●● Each queue will appear in its circular array and must have its pairs of

nodes, that is, FRONT AND REAR.
●● If each queue is allocated the same amount of memory, then a 2D array

can be used instead of a linear array.

For Example – FRONT [K] and REAR [K] are the nodes containing the
front and rear values of row “K” of the queue, where K is the priority number.
If we want to insert an element with priority K, then we will add the element
at the REAR end of row K; K is the row as well as the priority number of that

Data Structures and Program Design Using Python_Ch05.indd 137 9/24/2020 12:22:47 PM

138 • Data Structures and Program Design Using Python

element. If we add F with priority number 4, then the queue will be given as
shown in the following table.

FRONT REAR
2 2

1 3

0 0

5 1

4 4

FIGURE 5.14  Priority queue after inserting a new element

2.	 Implementation of a priority queue using linked lists

A priority queue can be implemented using a linked list. When implementing
the priority queue using a linked list, every node has three parts:

a.	 Information part

b.	 Priority number of the element

c.	 Address of the next element

An element with higher priority precedes the element having a lower pri-
ority. Also, the priority number and priority are opposite to each other; that
is, an element having a lower priority number means it has higher priority.
For example, if there are two elements, X and Y, with priority numbers 2 and
7, respectively, then X will be processed first because it has a higher priority.

FIGURE 5.15  A linked priority queue

Data Structures and Program Design Using Python_Ch05.indd 138 9/24/2020 12:22:47 PM

Queues • 139

5.5.2.2	Insertion in a Linked Priority Queue

While inserting a new element in a linked priority queue, we traverse the
entire queue until we find a node that has a lower priority than the new ele-
ment. Thus, the new element is inserted before the element with the lower
priority. If there is an element in the queue that has the same priority as that
of the new element, then the new element is inserted after that element.

For Example – Consider a priority queue with four elements given as
follows:

FIGURE 5.16  Linked priority queue before insertion

Now, a new element with information A and priority number 3 is to be
inserted; hence, the element is inserted before R that has priority number 4,
which is lower than that of the new element. The priority queue after insert-
ing a new element is shown in Figure 5.17.

FIGURE 5.17  Linked priority queue after inserting a new element

5.5.2.3	Deletion in a Linked Priority Queue

Deleting an element from a linked priority queue is a very simple process.
The first node from the priority queue is deleted and the information of that
node is processed first.

For Example – Consider a priority queue with five elements given as
follows:

FIGURE 5.18  Linked priority queue before deletion

Now, the first node from the queue is deleted. So, the priority queue after
deletion is shown as follows:

FIGURE 5.19  Linked priority queue after deleting the first node

Data Structures and Program Design Using Python_Ch05.indd 139 9/24/2020 12:22:47 PM

140 • Data Structures and Program Design Using Python

Here is a program for a priority queue performing insertion and deletion
operations.

class for Node with data and priority
class Node:

 def __init__(self, info, priority):
 self.info = info
 self.priority = priority

class for Priority queue
class PriorityQueue:

 def __init__(self):
 self.queue = list()
 # if you want you can set a maximum size for the queue

 def insert(self, node):
 # if queue is empty
 if self.size() == 0:
 # add the new node
 self.queue.append(node)
 else:
 # traverse the queue to find the right place for new node
 for x in range(0, self.size()):
 # if the priority of new node is greater
 if node.priority >= self.queue[x].priority:
 # if we have traversed the complete queue
 if x == (self.size()-1):
 # add new node at the end
 self.queue.insert(x+1, node)
 else:
 continue
 else:
 self.queue.insert(x, node)
 return True

 def delete(self):
 # remove the first node from the queue
 return self.queue.pop(0)

 def show(self):
 for x in self.queue:
 print (str(x.info)+" - "+str(x.priority))

 def size(self):
 return len(self.queue)

Data Structures and Program Design Using Python_Ch05.indd 140 9/24/2020 12:22:47 PM

Queues • 141

The output of the program is

Explanation: The above program has the insert, delete and show
functions for a priority queue.

●● The insert function adds an element with assigned priority to the priority
queue.

●● The delete function removes the highest priority element from the
priority queue.

●● The show function prints every element with their assigned priority of the
priority queue.

Data Structures and Program Design Using Python_Ch05.indd 141 9/24/2020 12:22:48 PM

142 • Data Structures and Program Design Using Python

5.5.3	De-queues (Double-Ended Queues)

A Double-Ended queue (de-queue, pronounced “deck”) is a special type of
data structure in which the insertion and deletion of elements are done at
either end, that is, either at the front end or at the rear end of the queue.
It is often called a head-tail linked list because the elements are added or
removed from either the head (front) end or tail (end). De-queues are imple-
mented using circular arrays in the computer’s memory. LEFT and RIGHT
are maintained in the de-queue, which point to either end of the queue.

FIGURE 5.20  A double-ended queue

Practical Application:

A real-life example of a de-queue is that of a train station, where the entry
and exit of passengers can take place from both sides.

There are two types of double-ended queues, which include

1.	 Input Restricted De-Queue – In this, the deletion operation can be
performed at both ends (i.e., both the front and rear end) while the inser-
tion operation can be performed only at one end (i.e., rear-end).

FIGURE 5.21  An input restricted a double-ended queue

2.	 Output Restricted De-Queue – In this, the insertion operation can be
performed at both ends, while the deletion operation can be performed
only at one end (i.e., the front end).

FIGURE 5.22  An output restricted a double-ended queue

Data Structures and Program Design Using Python_Ch05.indd 142 9/24/2020 12:22:48 PM

Queues • 143

Here is a menu-driven program for a double-ended queue performing
the insertion and deletion operations.

Python program to
demonstrate dequeue implementation
using list

Initializing a dequeue
dequeue = []

#function to display dequeue
def display():
 print(dequeue)
#function to delete element from beginning of dequeue
def deletebeg():
 temp=dequeue[0]
 dequeue.pop(0)
 print(temp,"is deleted")
#function to insert element at end of dequeue
def insertend():
 data=input("enter data to be insert-")
 dequeue.append(data)
 print("success")
#function to delete element at end of dequeue
def deleteend():
 temp=dequeue[-1]
 dequeue.pop()
 print(temp,"is deleted")
#function to insert element from beginning of dequeue
def insertbeg():
 data=input("enter data to be insert-")
 dequeue.insert(0,data)
 print("success")
#menu for dequeue operations
while(1):
 print(" menu ")
 print("1-insert at end")
 print("2-delete in beginning")
 print("3-delete at end")
 print("4-insert in beginning")
 print("5-display")
 print("6-exit")
 choice=input("enter choice-")

Data Structures and Program Design Using Python_Ch05.indd 143 9/24/2020 12:22:48 PM

144 • Data Structures and Program Design Using Python

 if choice=="1":
 insertend()
 elif choice=="2":
 deletebeg()
 elif choice=="3":
 deleteend()
 elif choice=="4":
 insertbeg()
 elif choice=="5":
 display()
 elif choice=="6":
 exit(0)

The output of the program is

Data Structures and Program Design Using Python_Ch05.indd 144 9/24/2020 12:22:49 PM

Queues • 145

Data Structures and Program Design Using Python_Ch05.indd 145 9/24/2020 12:22:49 PM

146 • Data Structures and Program Design Using Python

Explanation: The above menu-driven program has the insertbeg, insert-
end, deleteend, deletebeg, and display functions for the double-ended queue.

●● The insertbeg function adds an element in beginning to the de-queue.
●● The deleteend function removes an element from the end of the de-queue.
●● The insertend function adds an element to the end of the de-queue.
●● The deletebeg function removes the element from the beginning of the

de-queue.
●● The display function prints every node of the de-queue.

5.6	 APPLICATIONS OF QUEUES

●● In real life, call center phone systems use queues to hold people calling
them in order until a service representative is free.

●● The handling of interruptions in real-time systems uses the concept of
queues. The interrupts are handled in the same order as they arrive, that
is, First Come, First Served.

●● The round-robin technique for processor scheduling is implemented
using queues.

●● Queues are often used as buffers on portable CD players, MP3 players,
and iPod playlists.

5.7	 SUMMARY

●● A queue is a linear collection of data elements in which the element
inserted first will be the element taken out first (i.e., a queue is a FIFO
data structure).

●● A queue is a linear data structure in which the first element is inserted
from one end, called the REAR end, and the deletion of the element
takes place from the other end, called the FRONT end.

●● The implementation of queues can be done in two ways: implementations
through arrays/lists and implementations through linked lists.

●● Insertion and deletion are the two basic operations that are performed on
queues.

●● A circular queue is a linear data structure in which the operations are
performed based on a FIFO (First In, First Out) principle, and the first
index comes after the last index.

Data Structures and Program Design Using Python_Ch05.indd 146 9/24/2020 12:22:49 PM

Queues • 147

●● A priority queue is a queue in which elements are processed based on the
assigned priority. Each element in a priority queue is assigned a special
value called the priority of the element.

●● When a priority queue is implemented using linked lists, then every node
of the list will have three parts, that is, a data part, priority number of the
element, and the address of the next element.

●● A double-ended queue is a special type of data structure in which the
insertion and deletion of elements are done at either end, that is, either at
the front end or at the rear end of the queue.

●● An input restricted de-queue is a queue in which deletion can be done at
both ends, but insertion is done only at the rear end.

●● An output restricted de-queue is a queue in which insertion can be done
at both ends, but deletion is done only at the front end.

5.8	 EXERCISES

5.8.1 Theory Questions

Q1.	 What is a linear queue? Give a real-life example.

Q2.	 What is a circular queue and how it is different from a linear queue?

Q3.	 Define priority queues.

Q4.	 Discuss various operations that can be performed on the queues.

Q5.	 Define queues and in what ways a queue can be implemented. What
do you understand about double-ended queues? Discuss the differ-
ent types of de-queues in detail.

Q6.	 Give some of the applications of queues.

Q7.	 Why are queues known as First-In-First-Out structures?

Q8.	 Explain the concept of a linked queue and how insertion and deletion
take place in it.

5.8.2	Programming Questions

Q1.	 Write a program to create a linear queue containing nine elements.

Q2.	 Write an algorithm to implement a priority queue.

Q3.	 Write code for insertion and deletion in a queue.

Data Structures and Program Design Using Python_Ch05.indd 147 9/24/2020 12:22:49 PM

148 • Data Structures and Program Design Using Python

Q4.	 Give an algorithm for the insertion of an element in a circular queue.
Write a program to implement a queue that allows for insertion and
deletion at both ends.

Q5.	 Write an algorithm that reverses the elements of a queue.

Q6.	 Write an algorithm for insertion and deletion in a queue. Write the
functions for insertion and deletion operations performed in a de-
queue. Consider all possible cases.

Q7.	 Write a code for deleting an element from a circular queue.

Q8.	 Write a program to implement a priority queue using a linked list.

5.8.3	Multiple Choice Questions

Q1.	 New elements in the queue are always inserted from the

a.	 Front end

b.	 Middle

c.	 Rear end

d.	 Both (a) and (c)

Q2.	 A queue is a data structure.

a.	 FIFO

b.	 LIFO

c.	 FILO

d.	 LILO

Q3.	 The overflow condition in the circular queue exists when

a.	 Front = MAX – 1 and Rear = 0

b.	 Front = 0 and Rear = MAX – 1

c.	 Front = 0 and Rear = 0

d.	 Front = MAX – 1 and Rear = MAX – 1

Data Structures and Program Design Using Python_Ch05.indd 148 9/24/2020 12:22:49 PM

Queues • 149

Q4.	 If the elements P, Q, R, and S are placed in a queue and are deleted
one by one, in what order will they be deleted?

a.	 PQRS

b.	 SRQP

c.	 PRQS

d.	 SRQP

Q5.	 A data structure in which elements are inserted or deleted from the
front as well as from the rear end is a

a.	 Linear queue

b.	 De-queue

c.	 Priority Queue

d.	 Circular Queue

Q6.	 A line outside a movie theater represents a .

a.	 Linked List

b.	 Array

c.	 Queue

d.	 Stack

Q7.	 In a queue, deletion is always done at the .

a.	 Top end

b.	 Back end

c.	 Front end

d.	 Rear end

Q8.	 In a priority queue, two elements with the same priority are pro-
cessed on an FCFS basis.

a.	 False

b.	 True

Data Structures and Program Design Using Python_Ch05.indd 149 9/24/2020 12:22:49 PM

150 • Data Structures and Program Design Using Python

Q9.	 The function that inserts the elements in a queue is called
.

a.	 Push

b.	 En-queue

c.	 Pop

d.	 De-queue

Q10.	 Which of the implementations of queues is better when the size of
the queue is not known in advance?

a.	 Linked List Representation

b.	 Array Representation

c.	 Both

d.	 None of the above

Data Structures and Program Design Using Python_Ch05.indd 150 9/24/2020 12:22:49 PM

C H A P T E R 6
SEARCHING AND SORTING

6.1	 INTRODUCTION TO SEARCHING

Computer systems are often used to store large numbers. We require some
search mechanism to retrieve a specific record from the large amounts of data
stored in our computer system. Searching means to find whether a particu-
lar data item exists in an array/list or not. The process of finding a particular
value in a list or an array is called searching. If that particular value is present
in the array, then the search is said to be successful and the location of that
particular value is returned by the searching process. However, if the value
does not exist, then searching is said to be unsuccessful. There are many dif-
ferent search algorithms, but three of the popular searching techniques are
as follows:

●● Linear Search or Sequential Search
●● Binary Search
●● Interpolation Search

Here, we will discuss all these methods in detail.

6.2	 LINEAR SEARCH OR SEQUENTIAL SEARCH

A linear search is also called a sequential search. This is a very simple tech-
nique used to search for a particular value in an array. A linear search works by
comparing the value of the key being searched for with every element of the
array in a linear sequence until a match is found. A search will be unsuccessful

Data Structures and Program Design Using Python_Ch06.indd 151 9/24/2020 12:24:43 PM

152 • Data Structures and Program Design Using Python

if all the data elements are read and the desired element is not found. The
following are some important points:

●● It is the simplest way to search an element in a list.
●● It searches the data element sequentially, no matter whether the array is

sorted or unsorted.

For Example – let us take an array/list of ten elements, which is declared
as follows:

array = [87, 25, 14, 39, 74, 1, 99, 12, 30, 67]

The value to be searched for in the array is VALUE = 74, and then we
search to find whether 74 exists in the array. If the value is present, then its
position is returned. Here, the position of VAL = 74 is POS = 4 (index starting
from zero), which is shown in the following figures.

Pass 1 – 87 is compared with 74. Since 87 is not equal to 74, we move to
the next pass.

Pass 2 – 25 is compared with 74. Since 25 is not equal to 74, we move to
the next pass.

Pass 3 – 14 is compared with 74. Since 14 is not equal to 74, we move to
the next pass.

Pass 4 – 39 is compared with 74. Since 39 is not equal to 74, we move to
the next pass.

Data Structures and Program Design Using Python_Ch06.indd 152 9/24/2020 12:24:44 PM

Searching and Sorting • 153

Pass 5 – 74 is compared with 74. Since 74 is equal to 74, we return the
position on which 74 is present, which in this case is 4.

FIGURE 6.1  Example of a linear search

In this way, a linear search is used to search for a particular value in the
array. Now let us understand it further with the help of an algorithm.

Practical Application:

A simple real-life example of a linear search is a person who is searching for
another person’s contact number in a telephone directory. If the person
does not know the exact name of that person but knows that the name
starts with A, then she will start searching from the beginning of the tele-
phone directory.

Algorithm for a Linear Search

Let ARR be an array of n elements, ARR[1], ARR[2], ARR[3], . . . ARR[n]
such that VAL is the element to be searched. Then the algorithm will find the
position POS of the VAL in the array ARR.

Step 1: START
Step 2: Set I = 0, POS = -1
Step 3: Repeat while I<N
	 IF (ARR[I] = VAL)
	 POS = I
	 PRINT POS
		 Go to Step 5
	 [End of IF]
	 [End of Loop]
Step 4: IF (POS = -1)
	 PRINT “VALUE NOT FOUND, SEARCH UNSUCCESSFUL”
	 [End of IF]
Step 5: EXIT

In Step 2 of the algorithm, we are initializing the values of I and POS. In
Step 3, a while loop is executed in which a check is made to see whether a
match is found between the current array element and VAL. If the match is
found, then the position of that element is printed. In the last step, if all the
elements have been compared and there is no match found, the search will be
unsuccessful; that is, the value is not present in the array.

Data Structures and Program Design Using Python_Ch06.indd 153 9/24/2020 12:24:45 PM

154 • Data Structures and Program Design Using Python

The Complexity of a Linear Search Algorithm

The execution time of a linear search is O(n), where n is the number of ele-
ments in the array. The algorithm is called a linear search because its com-
plexity can be expressed as a linear function, which is that the number of
comparisons to find the target item increases linearly with the size of the data.
The best case of a linear search is when the data element to be searched for
is equal to the first element of the array. The worst case occurs when the data
element to be searched for is equal to the last element in the array. However,
in both the cases and comparisons have to be made.

6.2.1	Drawbacks of a Linear Search

●● It is a very time-consuming process, as it works sequentially.
●● It can be applied only to a small amount of data.
●● It is a very slow process as almost every data element is accessed in this

process, especially when the data element is located near the end.

Here is a program to search an element in an array using a linear search
technique.

#program for a linear search
def linearsearch(arr, x):
 for i in range(len(arr)):
 if arr[i] == x:
 print("element found at index ",i+1)
#creating an array
arr=[]
size=input("enter no of elements-")
print("enter elements in array/list-")
for i in range(int(size)):
 data=input()
 arr.append(data)
x=input("enter element to search-")
linearsearch(arr,x)

The output of the program is

Data Structures and Program Design Using Python_Ch06.indd 154 9/24/2020 12:24:45 PM

Searching and Sorting • 155

Frequently Asked Questions

Q. Explain how a linear search technique is used to search for an
element.

Answer:

Suppose that ARR is an array having N elements. ITEM is the value to be
searched. Then we have the following cases:

Case 1: Unsorted List – The ITEM is compared with every element of
the array. If the element is found, then no further comparison is required.
If all the elements are compared and checked, then the ITEM is not found.

Case 2: Sorted List – The ITEM is greater than the first element and
smaller than the last element of the list, so the search is performed by com-
paring each element in the list with ITEM; otherwise, ITEM is reported as
“Not Found.”

6.3	 BINARY SEARCH

A binary search is an extremely efficient search algorithm when it is compared
to a linear search. A binary search works only when the array/list is already
sorted. In a binary search, we first compare the value VAL with the data ele-
ment in the middle position of the array. If the match is found, then the posi-
tion POS of that element is returned; otherwise, if the value is less than that of
the middle element, then we begin our search in the lower half of the array and
vice versa. So, we repeat this process on the lower and upper half of the array.

6.3.1	Binary Search Algorithm

Let us now understand how this binary search algorithm works in an array.

1.	 Find the middle element of the array, that is, n/2 is the middle element of
the array containing n elements.

2.	 Now, compare the middle element of the array with the data element to
be searched.

a.	 If the middle element is the desired element, then the search is
successful.

b.	 If the data element to be searched for is less than the middle element
of the array, then search only the lower half of the array, that is, those
elements which are on the left side of the middle element.

Data Structures and Program Design Using Python_Ch06.indd 155 9/24/2020 12:24:46 PM

156 • Data Structures and Program Design Using Python

c.	 If the data element to be searched for is greater than the middle ele-
ment of the array, then search only the upper half of the array, that
is, those elements which are on the right side of the middle element.

Repeat these steps until a match is found.

Practical Application:

A real-life application of a binary search is when we search for a particu-
lar word in a dictionary. We first open the dictionary somewhere in the
middle. Now we will compare the desired word with the first word on
that page. If the desired word comes after the first word on an open page,
then we look in the second half of the dictionary; otherwise, we look in the
first half. Now, we again open a page in the second half and compare the
desired word with the first word on that page, and the same process is
repeated until we have found the desired word.

Algorithm for a Binary Search

Binary_Search(ARR, Lower_bound, Upper_bound, VAL)

Step 1: START
Step 2: Set BEG = lower_bound, END = upper_bound, POS = -1
Step 3: Repeat Steps 4 & 5 while BEG <= END
Step 4: Set MID = (BEG+END)/2
Step 5: IF (ARR[MID] = VAL)
 POS = MID
 PRINT POS
 Go to Step 7
 ELSE IF (ARR[MID] > VAL)
 Set END = MID – 1
 ELSE
 Set BEG = MID + 1
 [End of If]
 [End of Loop]
Step 6: IF (POS = -1)
 PRINT "VALUE NOT FOUND, SEARCH UNSUCCESSFUL"
 [End of IF]
Step 7: EXIT

In Step 2 of the algorithm, we initialize the values of BEG, END, and
POS. In Step 3, a while loop is executed. In Step 3, the value of MID is cal-
culated. In Step 4, we check if the value to be searched for is equal to the
array value at MID. If the match is found, then the position of that element is
printed. If the match is not found and the value to be searched for is less than
that of the array value at MID, then the END is modified; otherwise, if the

Data Structures and Program Design Using Python_Ch06.indd 156 9/24/2020 12:24:46 PM

Searching and Sorting • 157

value to be searched for is greater than that of the array value at MID, then
the BEG is modified. In the last step, if all the elements have been compared
and there is no match found, the search has been unsuccessful; that is, the
value is not present in the array.

Example:

Let us now consider an example to search for a particular value in a sorted
array.

Consider an array of ten elements which is declared as follows:

array = [0, 10, 20, 30, 40, 50, 60, 80, 90, 100]

and the value to be searched for is VAL = 20. Then the algorithm proceeds
as follows:

Solution –

Pass 1 –
BEG = 0, END = 10
MID = (BEG + END)/2
	 = (0 + 10)/2 = 5
Now, VAL = 20 and ARR[MID] = ARR[5] = 50

As ARR[5] = 50 > VAL = 30, therefore we now search for the value in
the lower half of the array. The values of END and MID are modified, and
we move to the next pass.

Pass 2 –
Now, END = MID – 1 = 4
MID = (0 + 4)/2 = 2
Now VAL = 20 and ARR[MID] = ARR[2] = 20.

FIGURE 6.2  An example of a binary search

Hence, the search is successful and VAL = 20 is found at POS = 2.

Data Structures and Program Design Using Python_Ch06.indd 157 9/24/2020 12:24:46 PM

158 • Data Structures and Program Design Using Python

6.3.2	Complexity of a Binary Search Algorithm

In a binary search algorithm, we can see that with each comparison, the size
of the search area is reduced by half. So, we can claim that the efficiency of
the binary search in the worst case is O(log10n), where n is the total number of
elements in the array. The best case happens when the value to be searched
for is equal to the value of the array in the middle.

 6.3.3	 Drawbacks of a Binary Search

●● A binary search requires that the data elements in the array be sorted;
otherwise, a binary search will not work.

●● A binary search cannot be used where there are many insertions and
deletions of data elements in the array.

Here is a program to search for an element in an array using the binary
search technique.

program for binary search
def binarysearch(arr, low, high, x):

 # Check base case
 if high >= low:

 mid = (high + low) // 2

 # If element is present at the middle itself
 if arr[mid] == x:
 return mid

 # If element is smaller than mid, then it can only
 # be present in left sub-array
 elif arr[mid] > x:
 return binarysearch(arr, low, mid - 1, x)

 # Else the element can only be present in right sub-array
 else:
 return binarysearch(arr, mid + 1, high, x)

 else:
 # Element is not present in the array
 return -1
arr=[]
size=input("enter no of elements-")
print("enter elements in array/list-")
for i in range(int(size)):
 data=input()
 arr.append(data)
x=input("enter element to search-")
result=binarysearch(arr,0,len(arr)-1,x)

Data Structures and Program Design Using Python_Ch06.indd 158 9/24/2020 12:24:46 PM

Searching and Sorting • 159

if result != -1:
 print("Element is present at index", str(result+1))
else:
 print("Element is not present in array")

The output of the program is as follows:

Frequently Asked Questions

Q. What is a binary search? Explain.

Answer:

A binary search is a search technique that is used to find an element in
an array. It works very efficiently with a sorted list. In a binary search,
the element to be searched for is compared with the middle element of the
array. If the value to be searched for is less than the middle element, we
search in the lower half of the array and vice versa.

6.4	 INTERPOLATION SEARCH

An interpolation search, also known as an extrapolation search, is a technique
for searching for a particular value in an ordered array. This search technique
is more efficient than a binary search if the elements in the array are sorted.
The technique of an interpolation search is similar to when we are search-
ing for “Andersen” in the telephone directory; we don’t start in the middle,
because we know that it will be near the extreme left, so we start from the
front and work from there. That is the main idea of an interpolation search;
that is, instead of dividing the list into fixed halves, we cut it by an amount that
seems most likely to succeed.

Data Structures and Program Design Using Python_Ch06.indd 159 9/24/2020 12:24:46 PM

160 • Data Structures and Program Design Using Python

Practical Application:

If we want to search for “Adams” in the directory, then we always search
in the extreme left of the directory.

6.4.1	The Interpolation Search Algorithm

In each step of this searching technique, the remaining search area for the value
to be searched for is calculated. The calculations are done on the values at the
bounds of the search area and the value which is to be searched. Therefore,
the value found at this position is compared with the value to be searched. If
both values are equal, then the search is said to be successful. If both values
are unequal, then depending upon the comparison done, the remaining search
area is reduced to the part just before or after the initial position.

Consider an array ARR of n elements in which the elements are arranged
in a sorted manner. Initially low is set to 0 and high is set to n-1. Now we are
searching a value VAL in ARR between ARR[LOW] and ARR[HIGH]. Then,
in this case, MID will be calculated by the following formula:

MID = �LOW + (HIGH − LOW) X ((VAL − ARR[LOW] / ARR[HIGH]
− ARR[LOW]))

If the value VAL is found at MID, then the search is complete; otherwise,
if the value is lower than ARR[MID], reset HIGH = MID – 1, and if the value
is greater than ARR[MID], reset LOW = MID + 1. Repeat these steps until
the value is found.

Hence, we can say that the interpolation search is very similar to the
binary search technique. The main difference between the techniques is that
in a binary search the value selected is always the middle value of the list, and
it discards half the values based on the comparison between the value to be
searched for and the value found at the estimated position. Let us understand
the interpolation search with the help of an algorithm.

Algorithm for an Interpolation Search

INTERPOLATION_SEARCH(ARR, Lower_bound, Upper_bound,
VAL)

Step 1: START
Step 2: Set LOW = lower_bound, HIGH = upper_bound, POS = -1
Step 3: Repeat Steps 4 & 5 while LOW<= HIGH

Data Structures and Program Design Using Python_Ch06.indd 160 9/24/2020 12:24:46 PM

Searching and Sorting • 161

Step 4: Set MID = LOW + (HIGH - LOW) X ((VAL – ARR[LOW] /
ARR[HIGH] – ARR[LOW]))
Step 5: IF (ARR[MID] = VAL)
 POS = MID
 PRINT POS
 Go to Step 7
 ELSE IF (ARR[MID] > VAL)
 Set HIGH = MID – 1
 ELSE
 Set LOW = MID + 1
 [End of If]
 [End of Loop]
Step 6: IF (POS = -1)
 PRINT "VALUE NOT FOUND, SEARCH UNSUCCESSFUL"
 [End of IF]
Step 7: EXIT

Example: Consider an array of seven numbers which is declared as

array = [5, 16, 23, 34, 45, 56, 65]

and the value to be searched for is 45.

Solution –

Pass 1 –
LOW = 0, HIGH = 7 − 1= 6, VAL = 45
ARR[LOW] = ARR[0] = 5, ARR[HIGH] = ARR[6] = 65
Now MID = LOW + (HIGH − LOW) × ((VAL − ARR[LOW]) /

(ARR[HIGH] − ARR[LOW]))
	 = 0 + (6 – 0) × ((45 − 5) / (65 − 5)
	 = 0 + 6 × (40 / 60) = 4
If(VAL == ARR[MID]) i.e. 45 == ARR[4] = 45, 45 = 45

FIGURE 6.3  An interpolation search

Hence, a value is found.

Data Structures and Program Design Using Python_Ch06.indd 161 9/24/2020 12:24:46 PM

162 • Data Structures and Program Design Using Python

6.4.2	Complexity of the Interpolation Search Algorithm

The interpolation search makes about log10(log10 n) comparisons when there
are n elements in the list and the elements are uniformly distributed. The
worst case happens when the number of elements increases exponentially; in
that case, the algorithm can take up to O(n) comparisons.

Here is a program to search for an element in an array using the interpo-
lation search technique.

Python program to implement interpolation search

If x is present in arr[0..n-1], then returns
index of it, else returns -1
def interpolationSearch(arr, n, x):
 # Find indexes of two corners
 lo = 0
 hi = (n - 1)

 # Since array is sorted, an element present
 # in array must be in range defined by corner
 while lo <= hi and x >= arr[lo] and x <= arr[hi]:
 if lo == hi:
 if arr[lo] == x:
 return lo;
 return -1;

 # Probing the position with keeping
 # uniform distribution in mind.
 pos = lo + int(((float(hi - lo) /
 (arr[hi] - arr[lo])) * (x - arr[lo])))

 # Condition of target found
 if arr[pos] == x:
 return pos

 # If x is larger, x is in upper part
 if arr[pos] < x:
 lo = pos + 1;

 # If x is smaller, x is in lower part
 else:
 hi = pos - 1;

 return -1
arr=[]
size=input("enter no of elements-")
print("enter elements in array/list-")
for i in range(int(size)):
 data=int(input())
 arr.append(data)

Data Structures and Program Design Using Python_Ch06.indd 162 9/24/2020 12:24:46 PM

Searching and Sorting • 163

x=int(input("enter element to search-"))
n = len(arr)

index = interpolationSearch(arr, n, x)

if index != -1:
 print ("Element found at index",index+1)
else:
 print ("Element not found")

The output of the program is as follows:

6.5	 INTRODUCTION TO SORTING

Sorting refers to the process of arranging the data elements of an array in a
specified order, that is, either in ascending or descending order. For example,
it is practically impossible for us to find a name in the telephone directory if
the names in it are not in alphabetical order. However, the same can be true
for dictionaries, book indexes, and bank accounts. Hence, the convenience of
having sorted data is unquestionable. Retrieval of information becomes much
easier when the data is stored in some specified order. Therefore, sorting is a
very important application in computer science.

Let us take an array that is declared and initialized as

array = [10, 25, 17, 8, 30, 3]

Then, the array after applying the sorting technique is

array = [3, 8, 10, 17, 25, 30]

A sorting algorithm can be defined as an algorithm that puts the data elements
of an array/ list in a certain order, that is, either numerical order or any predefined

Data Structures and Program Design Using Python_Ch06.indd 163 9/24/2020 12:24:47 PM

164 • Data Structures and Program Design Using Python

order. Many sorting algorithms are available and are widely used according to the
different environments required by the different sorting methods.

The two basic categories of sorting methods are

1.	 Internal Sorting – This refers to the sorting of the data elements stored
in the computer’s main memory.

2.	 External Sorting – This refers to the sorting of the data elements stored
in the files. It is applied when the amount of data is large and cannot be
stored in the main memory.

6.5.1	Types of Sorting Methods

The various sorting methods are

1.	 Selection Sort

2.	 Insertion Sort

3.	 Merge Sort

4.	 Bubble Sort

5.	 Quicksort

Let us discuss all of them in detail.

1.	 Selection Sort

Selection sort is a sorting technique that works by finding the smallest value in
the array and placing it in the first position. After that, it then finds the second
smallest value and places it in the second position. This process is repeated
until the whole array is sorted. Thus, the selection sort works by finding the
smallest unsorted element remaining in the entire array and then swapping it
with the element in the next position to be filled. It is a very simple technique,
and it is also easier to implement than other sorting techniques. The selection
sort is used for sorting files with large records.

Selection Sort Technique

Let us take an array ARR with N elements in it. Now, the selection sort tech-
nique works as follows:

First of all, we find the smallest value in the entire array, and we place
that value in the first position of the array. Then, we find the second smallest
value in the array, and we place it in the second position of the array. Now, we
repeat this process until the whole array is sorted.

Data Structures and Program Design Using Python_Ch06.indd 164 9/24/2020 12:24:47 PM

Searching and Sorting • 165

Pass 1 – Find the position POS of the smallest value in the array of N
elements and interchange ARR[POS] with ARR[0]. Hence, ARR[0] is sorted.

Pass 2 – Find the position POS of the smallest value in the array of N-1
elements and interchange ARR[POS] with A[1]. Hence, A[1] is sorted.

.

.

.
Pass N−1– Find the position POS of the smaller of the elements of

ARR[N−2] and ARR[N−1] and interchange ARR[POS] with ARR[N−2].
Hence, ARR[0], ARR[1], . . . ARR[N−1] is sorted.

Let us discuss this concept with the help of a detailed algorithm.

Algorithm for a Selection Sort

Consider an array ARR having N elements from ARR[0] to ARR[N−1]. I and
J are the looping variables, and POS is the swapping variable.

SELECTION SORT(ARR, N)

Step 1: START
Step 2: Repeat Steps 3 & 4 for I = 1 to N - 1
Step 3: Call MIN(ARR, I, N, POS)
Step 4: Swap ARR[I] with ARR[POS]
[End of Loop]
Step 5: EXIT

MIN(ARR, I, N, POS)
Step 1:Set SMALLEST = ARR[I]
Step 2:Set POS = I
Step 3: Repeat Step 4 for J = I + 1 to N – 1
Step 4: IF (ARR[J] < SMALLEST)
 Set SMALLEST = ARR[J]
Set POS = J
[End of IF]
[End of Loop]
Step 5: Return POS

Example – Sort the given array using the selection sort.

Data Structures and Program Design Using Python_Ch06.indd 165 9/24/2020 12:24:47 PM

166 • Data Structures and Program Design Using Python

Solution:

Pass POS Array[0] Array[1] Array[2] Array[3] Array[4]

1 4 4 14 29 11 35

2 3 4 11 29 14 35

3 3 4 11 14 29 35

4 3 4 11 14 29 35

5 4 4 11 14 29 35

Hence, after sorting the new array is

FIGURE 6.4  An example of a selection sort

The Complexity of the Selection Sort Algorithm

The selection sort is the simplest sorting technique. In this method, if there
are n elements in the array, then (n−1) comparisons or iterations are made.
Thus, the selection sort technique has a complexity of O(n2).

Here is a program to sort an array using the selection sort method.

Python program for implementation of Selection
Sort
A = []
size=int(input("enter size of array-"))
print("enter elements of array to be sorted-")
for i in range(size):
 data=int(input())
 A.append(data)

Traverse through all array elements
for i in range(len(A)):

 # Find the minimum element in remaining
 # unsorted array
 min_ = i
 for j in range(i+1, len(A)):
 if A[min_] > A[j]:
 min_ = j

 # Swap the found minimum element with
 # the first element
 A[i], A[min_] = A[min_], A[i]

Data Structures and Program Design Using Python_Ch06.indd 166 9/24/2020 12:24:47 PM

Searching and Sorting • 167

Driver code to test above
print ("Sorted array")
for i in range(len(A)):
 print("%d" %A[i])

The output of the program is as follows:

Frequently Asked Questions

Q. Define the selection sort technique.

Answer:

The selection sort is a sorting technique that works by finding the smallest
element from the array and placing it in the first position. It then finds the
second smallest element and places it in the second position. Hence, this
procedure is repeated until the whole array is sorted.

2.	 Insertion Sort

The insertion sort is another very simple sorting algorithm that works just like
its name suggests; that is, it inserts each element into its proper position in the
concluding list. To limit the waste of memory or, we can say, to save memory,
most implementations of an insertion sort work by moving the current element
past the already sorted elements and repeatedly swapping or interchanging it
with the preceding element until it is placed in its correct position.

Practical Application:

This technique is used when ordering a deck of cards in the card game
bridge.

Data Structures and Program Design Using Python_Ch06.indd 167 9/24/2020 12:24:47 PM

168 • Data Structures and Program Design Using Python

Insertion Sort Technique

Pass 1 – Initially, there is only one element in the list which is already sorted.
Hence, we proceed to the next steps.

Pass 2 – During the first iteration, the first and the second element of the list
are compared. The smaller value occupies the first position of the list.

Pass 3 – During the second iteration, the first three elements of the list are
compared. The smaller value occupies the first position in the list. The second
position is occupied by the second smallest element, and so on.

.

.
This procedure is repeated for all the elements of the array up to (n−1)

iterations.

Algorithm for an Insertion Sort

INSERTION SORT(ARR, N)

Step 1: START
Step 2: Repeat Steps 3 to 6 for I = 1 to N – 1
Step 3: Set POS = ARR[I]
Step 4: Set J = I - 1
Step 5: Repeat while POS <= ARR[J]
	 Set ARR[J + 1] = ARR[J]
	 Set J = J – 1
[End of Inner while loop]
Step 6: Set ARR[J + 1] = POS
[End of Loop]
Step 7: EXIT

In the previous algorithm, in Step 2, a for loop is executed which is
repeated for every element in the array. In Step 3, we store the value of the Ith
element in POS. In Step 5, again a loop is executed in which the new elements
after sorting are placed. At last, the element is stored at the (J+1)th position.

For Example – Consider the following array. Sort the given values in the
array using the insertion sort technique.

FIGURE 6.5  An example of an insertion sort

Data Structures and Program Design Using Python_Ch06.indd 168 9/24/2020 12:24:47 PM

Searching and Sorting • 169

Solution –

Pass 1 – Initially, ARR[0] is sorted. Move to the next pass.

39 54 10 28 95 7

Pass 2 – Now 39 and 54 are compared. 39 < 54, so ARR[0] = 39 and
ARR[1] = 54.

39 54 10 28 95 7

Pass 3 – 39, 54, and 10 are compared. 10 < 39 and 54, so ARR[0] = 10,
now 39 < 54, hence ARR[1] = 39 and ARR[2] = 54.

10 39 54 28 95 7

Pass 4 – As 28 < 39 and 54, so ARR[1] = 28.

10 28 39 54 95 7

Pass 5 – In this case, 95 is greater than all the values, so there is no need
for swapping.

10 28 39 54 95 7

Pass 6 – 7 is the smallest value, so ARR[0] = 7.

Therefore, after sorting the new array is

7 10 28 39 54 95

The Complexity of an Insertion Sort

In an insertion sort, the best case happens when the array is already sorted,
and in that case, the running time of the algorithm is O(n)(i.e., linear running
time). The worst case happens when the array is sorted in the reverse order.
Thus, in that case, the running time of the algorithm is O(n2) (i.e., the quad-
ratic running time).

Here is a program to sort an array using the insertion sort method.

Data Structures and Program Design Using Python_Ch06.indd 169 9/24/2020 12:24:47 PM

170 • Data Structures and Program Design Using Python

Python program for implementation of Insertion Sort

Function to do insertion sort
def insertionSort(arr):

 # Traverse through 1 to len(arr)
 for i in range(1, len(arr)):

 key = arr[i]

 # Move elements of arr[0..i-1], that are
 # greater than key, to one position ahead
 # of their current position
 j = i-1
 while j >=0 and key < arr[j] :
 arr[j+1] = arr[j]
 j -= 1
 arr[j+1] = key

arr = []
size=int(input("enter size of array-"))
print("enter elements of array to be sorted-")
for i in range(size):
 data=int(input())
 arr.append(data)
Driver code to test above
insertionSort(arr)
print ("Sorted array is:")
for i in range(len(arr)):
 print ("%d" %arr[i])

The output of the program is as follows:

3.	 Merge Sort

The merge sort is a sorting method that follows the divide and conquers approach.
The divide and conquer approach is a very good approach in which divide refers
to partitioning the array having n elements into two sub-arrays of n/2 elements

Data Structures and Program Design Using Python_Ch06.indd 170 9/24/2020 12:24:48 PM

Searching and Sorting • 171

each. However, if there are no elements present in the list/array or if an array
contains only one element, then it is already sorted. However, if an array has more
elements, then it is divided into two sub-arrays containing equal elements in
them. Conquer is the process of sorting the two sub-arrays recursively using the
merge sort. Finally, the two sub-arrays are merged into one single sorted array.

Merge Sort Techniques

1.	 If the array has zero or one element in it, then there is no need to sort that
array as it is already sorted.

2.	 Otherwise, if there are more elements in the array, then divide the array
into two sub-arrays containing equal elements.

3.	 Each sub-array is now sorted recursively using the merge sort.

4.	 Finally, the two sub-arrays are merged into a single sorted array.

Algorithm of a Merge Sort

MERGE SORT(ARR, BEG, END)

Step 1: START
Step 2: IF (BEG < END)
Step 3: Set MID = (BEG + END)/2
	 Call MERGE SORT (ARR, BEG, ENDMID)
	 Call MERGE SORT (ARR, MID + 1, END)
	 Call MERGE (ARR, BEG, MID, END)
	 [End ofIf]
Step 4: EXIT

MERGE(ARR, BEG, MID, END)

Step 1: START
Step 2: Set I = BEG, J = MID + 1, K = 0
Step 3: Repeat while (I <= MID) && (J <= END)
IF (ARR[I] > ARR[J])
	 Set TEMP[K] = ARR[J]
	 Set J = J + 1
	 Set K = K + 1
ELSE IF (ARR[J] > ARR[I])
	 Set TEMP[K] = ARR[I]
	 Set I = I + 1
	 Set K = K + 1
ELSE
	 Set TEMP[K] = ARR[J]
	 Set J = J + 1
	 Set K = K + 1
	 Set TEMP[K] = ARR[I]

Data Structures and Program Design Using Python_Ch06.indd 171 9/24/2020 12:24:48 PM

172 • Data Structures and Program Design Using Python

	 Set I = I + 1
	 Set K = K + 1
[End of If]
[End of Loop]

Step 4: (Copying the remaining elements of left sub array if
any)
Repeat while (I <= MID)
	 Set TEMP[K] = ARR[I]
	 Set I = I + 1
	 Set K = K + 1
	 [End of Loop]

Step 5: (Copying the remaining elements of right sub array if
any)
Repeat while (J <= END)
	 Set TEMP[K] = ARR[J]
	 Set I = I + 1
	 Set K = K + 1
[End of Loop]

Step 6: Set IND = 0

Step 7: Repeat while (IND < K)
Set ARR[IND] = ARR[IND]
	 Set IND = IND + 1
[End of Loop]

Step 8: EXIT

For Example – Sort the following array using merge sort.

array = [40, 10, 86, 44, 93, 26, 69, 17]

Solution –

Divide and Conquer Process       � Merging the sub-arrays into
	 one sorted array

FIGURE 6.6  An example of a merge sort

Data Structures and Program Design Using Python_Ch06.indd 172 9/24/2020 12:24:48 PM

Searching and Sorting • 173

From the previous example, we can see how the merge sort algorithm
works. First, the merge sort algorithm recursively divides the array into smaller
sub-arrays. After dividing the array into smaller parts, we call the function
Merge() to merge all the sub-arrays to form a single sorted array.

The Complexity of a Merge Sort

The running time of the merge sort algorithm is O(n log10n). This runtime
remains the same in the average as well as in the worst case of the merge sort
algorithm. Although it has an optimal time complexity, sometimes this runt-
ime can be O(n).

Here is a program to sort an array using the merge sort method.

Python program for implementation of a Merge Sort

Merges two subarrays of arr[].
First subarray is arr[l..m]
Second subarray is arr[m+1..r]
def merge(arr, l, m, r):
	 n1 = m - l + 1
	 n2 = r- m

	 # create temp arrays
	 L = [0] * (n1)
	 R = [0] * (n2)
Copy data to temp arrays L[] and R[]
for i in range(0 , n1):
	 L[i] = arr[l + i]

for j in range(0 , n2):
	 R[j] = arr[m + 1 + j]

Merge the temp arrays back into arr[l..r]
i = 0 # Initial index of first subarray
j = 0 # Initial index of second subarray
k = l # Initial index of merged subarray

while i < n1 and j < n2 :
	 if L[i] <= R[j]:
	 arr[k] = L[i]
	 i += 1

	 else:
	 arr[k] = R[j]
	 j += 1
	 k += 1

Copy the remaining elements of L[], if there
are any
while i < n1:
	 arr[k] = L[i]
	 i += 1
	 k += 1

Data Structures and Program Design Using Python_Ch06.indd 173 9/24/2020 12:24:48 PM

174 • Data Structures and Program Design Using Python

Copy the remaining elements of R[], if there
are any
while j < n2:
	 arr[k] = R[j]
	 j += 1
	 k += 1

l is for left index and r is right index of the
sub-array of arr to be sorted
def mergeSort(arr,l,r):
	 if l < r:

	 # Same as (l+r)//2, but avoids overflow for
	 # large l and h
	 m = (l+(r-1))//2

	 # Sort first and second halves
	 mergeSort(arr, l, m)
	 mergeSort(arr, m+1, r)
	 merge(arr, l, m, r)

Driver code to test above
arr = []
size=int(input("enter size of array-"))
print("enter elements of array to be sorted-")
for i in range(size):
	 data=int(input())
	 arr.append(data)
n = len(arr)

mergeSort(arr,0,n-1)
print ("\n\nSorted array is")
for i in range(n):
	 print ("%d" %arr[i])

The output of the program is as follows:

Data Structures and Program Design Using Python_Ch06.indd 174 9/24/2020 12:24:48 PM

Searching and Sorting • 175

4.	 Bubble Sort

The bubble sort, also known as an exchange sort, is a very simple sorting
method. It works by repeatedly moving the largest element to the highest
position of the array. In the bubble sort, we compare two elements at a time,
and swapping is done if they are wrongly placed. If the element at a lower
index or position is greater than the element at a higher index, then both the
elements are interchanged so that the smaller element is placed before the
bigger one. This process is repeated until the list becomes sorted. The bubble
sort gets its name from the way that the smaller elements “bubble” to the top
of the array. This sorting technique only uses comparisons to operate on the
elements. Hence, we can also call it a comparison sort.

Bubble Sort Technique

The basic idea applied for a bubble sort is to let us assume if an array ARR
contains n elements, then the number of iterations required to sort the array
will be (n – 1).

Pass 1 – During the first iteration, the largest value in the array is placed at
the last position.

Pass 2 – During the second iteration, the second largest value of the array is
placed in the second last position.

Pass 3 – During the third iteration, the third-largest value of the array is
placed in the third last position and so on.

This procedure is repeated until all the elements in the array are scanned
and are placed in their correct position, which means that the array is sorted.

Algorithm of a Bubble Sort

BUBBLE SORT(ARR, N)

Step 1: START
Step 2: Repeat Step 3 for I = 0 to N - 1
Step 3: Repeat for J = 0 to N - 1
Step 4: IF (ARR[J] > ARR[J+1])
	 INTERCHANGE ARR[J] & ARR[J + 1]
[End of Inner Loop]
[End of Outer Loop]
Step 5: EXIT

For Example – Consider the following array. Sort the given values in the
array using the bubble sort technique.

Data Structures and Program Design Using Python_Ch06.indd 175 9/24/2020 12:24:48 PM

176 • Data Structures and Program Design Using Python

FIGURE 6.7  An example of the bubble sort

Solution – In the given array, the number of elements in the array is 5, so
the number of iterations will be (n – 1) = 4.

Pass 1 –

40 50 20 90 30

a.	 40 and 50 are compared. Since 40 < 50, no swapping is done.

40 50 20 90 30

b.	 50 and 20 are compared. Since 50 > 20, swapping is done.

40 20 50 90 30

c.	 50 and 90 are compared. Since 50 < 90, no swapping is done.

40 20 50 90 30

d.	 90 and 30 are compared. Since 90 > 30, swapping is done.

40 20 50 30 90

At the end of the first pass, the largest element in the array is placed at the
highest position in the array, but all the other elements are still unsorted. Let
us now proceed to Pass 2.

Pass 2 –

40 20 50 30 90

a.	 40 and 20 are compared. Since 40 > 20, swapping is done.

20 40 50 30 90

b.	 40 and 50 are compared. Since 40 < 50, no swapping is done.

20 40 50 30 90

Data Structures and Program Design Using Python_Ch06.indd 176 9/24/2020 12:24:48 PM

Searching and Sorting • 177

c.	 50 and 30 are compared. Since 50 > 30, swapping is done.

20 40 30 50 90

At the end of the second pass, the second largest element in the array is
placed at the second last position in the array, but all the other elements are
still unsorted. Let us now proceed to Pass 3.

Pass 3 –

20 40 30 50 90

a.	 20 and 40 are compared. Since 20 < 40, no swapping is done.

20 40 30 50 90

b.	 40 and 30 are compared. Since 40 > 30, swapping is done.

20 30 40 50 90

At the end of the third pass, the third largest element in the array is placed
at the third-largest position in the array, but all the other elements are still
unsorted. Let us now proceed to Pass 4.

Pass 4 –

20 40 30 50 90

a.	 20 and 40 are compared. Since 20 < 40, no swapping is done.

At the end of the fourth pass, we can see that all the elements in the list
are sorted. Hence, after sorting, the new array is

20 40 30 50 90

The Complexity of the Bubble Sort

In the best case, the running time of the bubble sort is O(n), that is, when the
array is already sorted. Otherwise, its level of complexity in average and worst
cases is O(n2).

Here is a program to sort an array using the bubble sort method.

Data Structures and Program Design Using Python_Ch06.indd 177 9/24/2020 12:24:48 PM

178 • Data Structures and Program Design Using Python

Python program for implementation of a bubble sort

def bubbleSort(arr):
 n = len(arr)

 # Traverse through all array elements
 for i in range(n-1):
 # range(n) also works but the outer loop will repeat one
time more than needed.

 # Last i elements are already in place
 for j in range(0, n-i-1):
 # traverse the array from 0 to n-i-1
 # Swap if the element found is greater
 # than the next element
 if arr[j] > arr[j+1] :
 arr[j], arr[j+1] = arr[j+1], arr[j]

Driver code to test above
arr = []
size=int(input("enter size of array-"))
print("enter elements of array to be sorted-")
for i in range(size):
 data=int(input())
 arr.append(data)

bubbleSort(arr)

print ("Sorted array is:")
for i in range(len(arr)):
 print ("%d" %arr[i]),

The output of the program is as follows:

5.	 Quicksort

Quicksort, also known as partition exchange sort, was developed by C. A.
R. Hoare. It is a widely used sorting algorithm that also uses the divide and
conquers approach as we have discussed in merge sort. Here also, we divide

Data Structures and Program Design Using Python_Ch06.indd 178 9/24/2020 12:24:49 PM

Searching and Sorting • 179

a single unsorted array into its two smaller sub-arrays. The divide and con-
quer method involves dividing the bigger problem into two smaller prob-
lems, and then those two smaller problems into smaller problems, and so on.
Like a merge sort, if there are no elements in the array or if an array contains
only one element, then it is already sorted. A Quicksort algorithm is faster than
all the other sorting algorithms which have the time complexity O(n log10n).

How Quicksort Works

1.	 An element called pivot is selected from the array elements.

2.	 After choosing the pivot element, all the elements of the array are rear-
ranged such that all the elements less than the pivot element will be on
the left side, and all the elements greater than the pivot element will be
placed on the right side of the pivot element. After rearranging all the
elements, the pivot is now placed in its final position. Thus, this process is
known as partitioning.

3.	 Now, the two sub-arrays obtained will be recursively sorted.

The Quicksort Technique

1.	 Initially set the index of the first element to LEFT and POS. Similarly,
set the index of the last element to RIGHT. Now, LEFT = 0, POS = 0,
RIGHT = N – 1 (assuming n elements in the array).

2.	 We start with the last element, which is pointed to by RIGHT, and we
traverse each element in the array from right to left, comparing each ele-
ment with the first element pointed to by POS. ARR[POS] should always
be less than ARR[RIGHT].

–– If ARR[POS] is less than ARR[RIGHT], then continue comparing
until RIGHT = POS. If RIGHT = POS then it means that pivot is
placed in its correct position.

–– If ARR[RIGHT] < ARR[POS], then swap the two values and go to
the next step.

–– Set POS = RIGHT.

3.	 We start from the first element, which is pointed to by LEFT, and we
traverse every element in the array from left to right, comparing each ele-
ment with the element pointed to by POS. ARR[POS] should always be
greater than ARR[LEFT].

–– If ARR[POS] is greater than ARR[RIGHT], then continue comparing
until LEFT = POS. If LEFT = POS then it means that pivot is placed
in its correct position.

Data Structures and Program Design Using Python_Ch06.indd 179 9/24/2020 12:24:49 PM

180 • Data Structures and Program Design Using Python

–– If ARR[LEFT] > ARR[POS], then swap the two values and go to the
previous step.

–– Set POS = LEFT.

Algorithm for the Quicksort

QUICK SORT(ARR, BEG, END)

Step 1: START
Step 2: IF (BEG < END)
	 Call PARTITION (ARR, BEG, END, POS)
	 Call QUICK SORT (ARR, BEG, POS - 1)
Call QUICK (ARR, POS + 1, END)
	 [End of If]
Step 3: EXIT

PARTITION(ARR, BEG, END, POS)
Step 1: START
Step 2: Set LEFT = BEG, RIGHT = END, POS = BEG, TEMP = 0
Step 3: Repeat Steps 4 to 7 while TEMP = 0
Step 4: Repeat while ARR[RIGHT] >= ARR[POS]&& POS != RIGHT
 Set RIGHT = RIGHT - 1
[End of Loop]
Step 5: IF (POS = RIGHT)
 Set TEMP = 1
ELSE IF (ARR[POS] > ARR[RIGHT])
 INTERCHANGE ARR[POS] with ARR[RIGHT]
 Set POS = RIGHT
[End of If]
Step 6: IF TEMP = 0
 Repeat while ARR[POS] >= ARR[LEFT] && POS != LEFT
 Set LEFT = LEFT + 1
[End of Loop]
Step 7: IF (POS = LEFT)
 Set TEMP = 1
ELSE IF (ARR[LEFT] > ARR[POS])
 INTERCHANGE ARR[POS] with ARR[LEFT]
 Set POS = LEFT
[End of If]
[End of If]
[End of Loop]
Step 8: EXIT

For Example – Sort the values given in the following array using the
Quicksort algorithm.

Data Structures and Program Design Using Python_Ch06.indd 180 9/24/2020 12:24:49 PM

Searching and Sorting • 181

FIGURE 6.8  An example of a Quicksort

Solution

Step 1 – The first element is chosen as the pivot. Now, set POS = 0, LEFT =
0, RIGHT = 5.

25 7 39 17 30 52

POS, LEFT RIGHT

Step 2 – Traverse the list from right to left. Since ARR[POS] < ARR[RIGHT],
that is, 25 < 52, RIGHT = RIGHT – 1 = 4.

25 7 39 17 30 52

POS, LEFT RIGHT

Step 3 – Since ARR[POS] < ARR[RIGHT], that is, 25 < 30, RIGHT =
RIGHT – 1 = 3.

25 7 39 17 30 52

POS, LEFT RIGHT

Step 4 – Since ARR[POS] > ARR[RIGHT], that is, 25 < 17, we swap the two
values and set POS = RIGHT.

17 7 39 25 30 52

LEFTRIGHT, POS

Step 5 – Traverse the list from left to right. Since ARR[POS] > ARR[LEFT],
that is, 25 > 17, LEFT = LEFT + 1.

17 7 39 25 30 52

LEFT RIGHT, POS

Step 6 – Since ARR[POS] > ARR[LEFT], that is, 25 > 7, LEFT = LEFT + 1.

17 7 39 25 30 52

LEFT RIGHT, POS

Data Structures and Program Design Using Python_Ch06.indd 181 9/24/2020 12:24:49 PM

182 • Data Structures and Program Design Using Python

Step 7 – Since ARR[POS] < ARR[LEFT], that is, 25 < 39, we swap the values
and set POS = LEFT.

17 7 25 39 30 52

LEFT, POS RIGHT

Step 8 – Traverse the list from right to left. Since ARR[POS] < ARR[LEFT],
RIGHT = RIGHT - 1.

17 7 25 39 30 52

LEFT, POS, RIGHT

Now, RIGHT = POS, so now the process is over and the pivot element
of the array, that is, 25, is placed in its correct position. Therefore, all the
elements that are smaller than 25 are placed before it and all the elements
greater than 25 are placed after it. Hence, 17 and 7 are the elements in the left
sub-array, and 39, 30, and 52 are the elements in the right sub-array, which
are both sorted.

The Complexity of Quicksort

The running time efficiency of a Quicksort is O(n log10n) in the average and
the best case. However, the worst case happens if the array is already sorted
and the leftmost element is selected as the pivot element. In the worst case,
its efficiency is O(n2).

Here is a program to sort an array using the Quicksort method.

Python program for the implementation of the Quicksort method

This function takes last element as pivot, places
the pivot element at its correct position in a sorted
array, and places all smaller (smaller than pivot)
to the left of pivot and all greater elements to the right
of pivot
def partition(arr,low,high):
 i = (low-1) # index of smaller element
 pivot = arr[high] # pivot

 for j in range(low , high):

 # If current element is smaller than or
 # equal to pivot
 if arr[j] <= pivot:

 # increment index of smaller element
 i = i+1
 arr[i],arr[j] = arr[j],arr[i]

Data Structures and Program Design Using Python_Ch06.indd 182 9/24/2020 12:24:49 PM

Searching and Sorting • 183

 arr[i+1],arr[high] = arr[high],arr[i+1]
 return (i+1)

The main function that implements Quicksort
arr[] --> Array to be sorted,
low --> Starting index,
high --> Ending index

Function to do Quicksort
def quickSort(arr,low,high):
 if low < high:

 # pi is partitioning index, arr[p] is now
 # at right place
 pi = partition(arr,low,high)

 # Separately sort elements before
 # partition and after partition
 quickSort(arr, low, pi-1)
 quickSort(arr, pi+1, high)

Driver code to test above
arr = []
size=int(input("enter size of array-"))
print("enter elements of array to be sorted-")
for i in range(size):
 data=int(input())
 arr.append(data)
n = len(arr)
quickSort(arr,0,n-1)
print ("Sorted array is:")
for i in range(n):
 print ("%d" %arr[i])

The output of the program is as follows:

Data Structures and Program Design Using Python_Ch06.indd 183 9/24/2020 12:24:49 PM

184 • Data Structures and Program Design Using Python

6.6	 EXTERNAL SORTING

External sorting is a sorting technique that is used when the amount of data
is massive. When a large amount of data has to be sorted, it is not possible
to bring it into the main memory (RAM). Therefore, a secondary memory
needs to be used. Also, at the same time, some portion of data is brought
into the main memory from the secondary memory for sorting based on the
availability of the storage space of the main memory. After the data is sorted,
it is sent back to the secondary memory. Now, the next portion of the data is
brought into the main memory, and after sorting it is sent back to the second-
ary memory. This procedure is repeated until all the data is sorted. Here, each
portion is called a segment. The time required for sorting is greater because
time will be spent transferring the data from secondary memory to the main
memory. The merge sort algorithm is widely and commonly used in external
sorting, which has already been discussed.

External sorting is used in database applications for performing different
kinds of operations like join, union, and projection. It is also used to update a
master file from a transaction file (for example, if we are updating a company
file based on the new employees, existing employees, and locations). Dupli-
cate records or data can also be removed from external sorting.

6.7	 SUMMARY

●● The process of finding a particular value in a list or an array is called
searching. If that particular value is present in the array, then the search is
said to be successful, and the location of that particular value is retrieved
by the search process.

●● The linear search, binary search, and interpolation search are the most
commonly used searching techniques.

●● Linear search works by comparing the values to be searched for with
every element of the array in a linear sequence until a match is found.

●● Binary search works efficiently when the list is sorted. In a binary search,
we first compare the value VAL with the data element in the middle posi-
tion of the array.

●● Interpolation search, also known as extrapolation search, is a technique
for searching for a particular value in an ordered array. In each step of
this searching technique, the remaining search area for the value to be
searched for is calculated. The calculations are done on the values at the
bounds of the search area and the value which is to be searched.

Data Structures and Program Design Using Python_Ch06.indd 184 9/24/2020 12:24:49 PM

Searching and Sorting • 185

●● Sorting refers to the technique of arranging the data elements of an array
in a specified order, that is, either in ascending or descending order.

●● Selection sort is a sorting technique that works by finding the smallest
value in the array and placing it in the first position. After that, it then
finds the second smallest value and places it in the second position. This
process is repeated until the whole array is sorted.

●● The insertion sort works by moving the current data element past the
already sorted data elements and repeatedly interchanging it with the
preceding element until it is in the correct place.

●● The merge sort is a sorting method that follows the divide and conquer
approach. Divide means partitioning the array having n elements into two
sub-arrays of n/2 elements each. Conquer is the process of sorting the two
sub-arrays recursively using the merge sort. Finally, the two sub-arrays
are merged into one single sorted array.

●● The bubble sort, also known as exchange sort, is a very simple sorting
method. It works by repeatedly moving the largest element to the highest
position of the array.

●● Quicksort is an algorithm that selects a pivot element and rearranges the
values in such a way that all the elements less than the pivot element
appear before it and the elements greater than the pivot appears after it.

●● External sorting is a sorting technique that is used when the amount of
data is massive.

6.8	 EXERCISES

6.8.1	Theory Questions

Q1.	 Define sorting. Write about the importance of sorting.

Q2.	 What are the different types of sorting techniques? Discuss each of
them in detail.

Q3.	 Discuss the limitations and advantages of the insertion sort.

Q4.	 Explain how a bubble sort works with a suitable example. Why is this
method called a bubble sort?

Q5.	 Define searching. Which search technique should be used to search
for an element in an array?

Q6.	 How is a linear search used to find an element? Explain how an
insertion sort works with a suitable example.

Data Structures and Program Design Using Python_Ch06.indd 185 9/24/2020 12:24:49 PM

186 • Data Structures and Program Design Using Python

Q7.	 Explain different types of searching techniques. Give a suitable
example to illustrate a binary search.

Q8.	 Why is Quicksort known as “quick”?

Q9.	 Explain the concept of external sorting.

Q10.	 Differentiate between the binary search and interpolation search.
Give a suitable example.

6.8.2	Programming Questions

Q1.	 Write a Python program to implement the bubble sort technique.

Q2.	 Write an algorithm to implement the interpolation search technique.

Q3.	 Write an algorithm to perform a merge sort. Show various stages in
merge sorting over the following data: 11, 2, 9, 13, 57, 25, 17, 1, 90, 3.

Q4.	 Write a Python program to implement an insertion sort.

Q5.	 Write a program to search for an element using the binary search
technique.

Q6.	 Write a Python program to perform a comparison sort.

Q7.	 Write an algorithm to perform a partition exchange sort technique.
Show the various stages of the following data: 24, 52, 98, 12, 45, 6,
59, and 90.

Q8.	 Write an algorithm/program to implement a linear search technique.

6.8.3	Multiple Choice Questions

Q1.	 A binary search algorithm can be applied to a .

a.	 Sorted array

b.	 Sorted linked list

c.	 Unsorted linked list

d.	 Binary trees

Q2.	 The time complexity of a bubble sort algorithm is

a.	 O(log n)

b.	 O(n)

c.	 O(n.log n)

d.	 O(n2)

Data Structures and Program Design Using Python_Ch06.indd 186 9/24/2020 12:24:49 PM

Searching and Sorting • 187

Q3.	 Which sorting algorithm is known as a partition exchange sort?

a.	 Selection Sort

b.	 Merge Sort

c.	 Quicksort

d.	 Bubble Sort

Q4.	 Which case would exist when the element to be searched for using a
linear search is equal to the first element of the array?

a.	 Best Case

b.	 Worst Case

c.	 Average Case

d.	 None of these

Q5.	 Quicksort is faster than .

a.	 Bubble Sort

b.	 Selection Sort

c.	 Insertion Sort

d.	 All of the above

Q6.	 When the amount of data is massive, which type of sorting is
preferred?

a.	 Internal Sorting

b.	 External Sorting

c.	 Both of these

d.	 None of these

Q7.	 Which of the searching techniques is best when the value to be
searched for is present in the middle?

a.	 Linear Search

b.	 Interpolation Search

c.	 Binary Search

d.	 All of these

Data Structures and Program Design Using Python_Ch06.indd 187 9/24/2020 12:24:49 PM

188 • Data Structures and Program Design Using Python

Q8.	 The complexity of a binary search algorithm is .

a.	 O(n2)

b.	 O(log n)

c.	 O(n)

d.	 O(n log n)

Q9.	 The selection sort has a linear running time complexity.

a.	 True

b.	 False

c.	 Not possible to comment

Data Structures and Program Design Using Python_Ch06.indd 188 9/24/2020 12:24:50 PM

C H A P T E R 7
STACKS

7.1	 INTRODUCTION

A stack is an important data structure that is widely used in many computer
applications. A stack can be visualized with familiar examples from our eve-
ryday lives. A very simple illustration of a stack is a pile of books, where one
book is placed on top of another as shown in Figure 7.1. When we want to
remove a book, we remove the topmost book first. Hence, we can add or
remove an element (i.e., a book) only at or from one position, that is, the top-
most position. In a stack, the element in the last position is served first. Thus,
a stack can be described as a LIFO (Last In, First Out) data structure; that is,
the element that is inserted last will be the first one to be taken out.

FIGURE 7.1  A stack of books

7.2	 DEFINITION OF A STACK

A stack is a linear collection of data elements in that the element inserted last
will be the element taken out first (i.e., a stack is a LIFO data structure). The
stack is an abstract data structure, somewhat similar to queues. Unlike queues,
a stack is open only on one end. A stack is a linear data structure in that the
insertion and deletion of elements are done only from the end called TOP. One
end is always closed, and the other end is used to insert and remove data.

Data Structures and Program Design Using Python_Ch07.indd 189 9/24/2020 12:25:13 PM

190 • Data Structures and Program Design Using Python

Stacks can be implemented by using arrays or linked lists. We discuss the
implementation of stacks using arrays and linked lists in this section.

FIGURE 7.2  Representation of a stack

Practical Application:

1.	 A real-life example of a stack is a pile of dishes, where one dish is
placed on top of another. Now, when we want to remove a dish, we
remove the topmost dish first.

2.	 Another real-life example of a stack is a pile of disks, where one disk
is placed on top of another. Now, when we want to remove a disk, we
remove the topmost disk first.

7.3	 OVERFLOW AND UNDERFLOW IN STACKS

Let us discuss both overflow and underflow in stacks in detail:

1.	 Overflow in stacks – The overflow condition occurs when we try to insert
elements in a stack, but the stack is already full. If an attempt is made to
insert a value in a stack that is already full, an overflow message is printed.
It can be checked by the following formula:

If TOP = MAX – 1, where MAX is the size of the stack.

2.	 Underflow in stacks – The underflow condition occurs when we try
to remove elements from a stack, but the stack is already empty. If an
attempt is made to delete a value from a stack that is already empty, an
underflow message is printed. It can be checked by the following formula:

If TOP = NULL, where MAX is the size of the stack.

Data Structures and Program Design Using Python_Ch07.indd 190 9/24/2020 12:25:14 PM

Stacks • 191

Frequently Asked Questions

Q. Define a stack and list the operations performed on stacks.

Answer:

A stack is a linear data structure in that the insertion and deletion of an
element are done only from the end called TOP. It is LIFO in nature (i.e.,
Last In, First Out). Different operations that can be performed on stacks
are

a.	 Push operation

b.	 Pop Operation

c.	 Peek Operation

7.4	 OPERATIONS ON STACKS

The three basic operations that can be performed on stacks are

1.	 PUSH

The push operation is the process of adding new elements in the stack.
However, before inserting any new element in the stack, we must always
check for the overflow condition, which occurs when we try to insert an ele-
ment in a stack that is already full. An overflow condition can be checked as
follows: if TOP = MAX – 1, where MAX is the size of the stack. Hence, if
the overflow condition is true, then an overflow message is displayed on the
screen; otherwise, the element is inserted into the stack.

For Example – Let us take a stack that has five elements in it. Suppose we
want to insert another element, 10, in it; then TOP will be incremented by 1.
Thus, the new element is inserted at the position pointed to by TOP. Now, let
us see how a push operation occurs in the stack in Figure 7.3.

After inserting 10 in it, the new stack will be

Data Structures and Program Design Using Python_Ch07.indd 191 9/24/2020 12:25:14 PM

192 • Data Structures and Program Design Using Python

FIGURE 7.3  Stack after inserting a new element

Algorithm for a Push Operation in a Stack

Step 1: START
Step 2: IF TOP = MAX – 1
 Print OVERFLOW ERROR
Go to Step 5
[End of If]
Step 3: Set TOP = TOP + 1
Step 4: Set STACK[TOP] = ITEM
Step 5: EXIT

In the previous algorithm, we check for the overflow condition. In Step 3,
TOP is incremented so that it points to the next location. Finally, the new
element is inserted in the stack at the position pointed to by TOP.

2.	 POP

The pop operation is the process of removing elements from a stack. However,
before deleting an element from a stack, we must always check for the under-
flow condition, that occurs when we try to delete an element from a stack that
is already empty. An underflow condition can be checked as follows: if TOP =
NULL. Hence, if the underflow condition is true, then an underflow message
is displayed on the screen; otherwise, the element is deleted from the stack.

For Example – Let us take a stack that has five elements in it. Suppose we
want to delete an element, 35, from the stack; then TOP will be decremented
by 1. Thus, the element is deleted from the position pointed to by TOP. Now,
let us see how the pop operation occurs in the stack in the following figure:

Data Structures and Program Design Using Python_Ch07.indd 192 9/24/2020 12:25:15 PM

Stacks • 193

After deleting 35 from it, the new stack will be

FIGURE 7.4  A stack after deleting an element

Algorithm for the Pop Operation in a Stack

Step 1: START
Step 2: IF TOP = NULL
 Print UNDERFLOW ERROR
 Go to Step 5
[End of If]
Step 3: Set ITEM = STACK[TOP]
Step 4: Set TOP = TOP - 1
Step 5: EXIT

In the previous algorithm, first, we check for the underflow condition,
that is, whether the stack is empty. If the stack is empty, then no deletion
takes place; otherwise, TOP is decremented to the previous position in the
stack. Finally, the element is deleted from the stack.
3.	 PEEK

Peek is an operation that returns the value of the topmost element of the
stack. It does so without deleting the topmost element of the array. However,
the peek operation first checks for the underflow condition. An underflow
condition can be checked as follows: if TOP = NULL. Hence, if the under-
flow condition is true, then an underflow message is displayed on the screen;
otherwise, the value of the element is returned.

FIGURE 7.5  Stack returning the topmost value

Data Structures and Program Design Using Python_Ch07.indd 193 9/24/2020 12:25:15 PM

194 • Data Structures and Program Design Using Python

Algorithm for the Pop Operation in a Stack

Step 1: START
Step 2: IF TOP = NULL
 Print UNDERFLOW ERROR
 Go to Step 4
[End of If]
Step 3: Return STACK[TOP]
Step 4: EXIT

Here is a menu-driven program for stacks performing all the operations.

Python program to
demonstrate stack implementation
using a list

Initializing a stack
stack = []

#function to display stack
def display():
 print(stack)
#function to delete element from stack
def pop():
 temp=stack[-1]
 stack.pop()
 print(temp,"is deleted")
#function to insert element in stack
def push():
 data=input("enter data to be insert-")
 stack.append(data)
 print("success")
#menu for stack operations
while(1):
 print(" menu ")
 print("1-push")
 print("2-pop")
 print("3-display")
 print("4-exit")
 choice=input("enter choice-")
 if choice=="1":
 push()
 elif choice=="2":
 pop()
 elif choice=="3":
 display()
 elif choice=="4":
 exit(0)

Data Structures and Program Design Using Python_Ch07.indd 194 9/24/2020 12:25:15 PM

Stacks • 195

The output of the program is as follows:

Data Structures and Program Design Using Python_Ch07.indd 195 9/24/2020 12:25:16 PM

196 • Data Structures and Program Design Using Python

Explanation:- The above menu-driven program has the push, pop, and dis-
play functions for a linear stack.
●● The push function adds an element to the stack.
●● The pop function removes an element from the stack.
●● The display function prints every node of the stack.

7.5	 IMPLEMENTATION OF A STACK

Stacks can be represented by two data structures:

1.	 using arrays

2.	 using a linked list

7.5.1	Implementation of Stacks Using Arrays

Stacks can be easily implemented using arrays. Initially, the TOP of the stack
points at the first position or location of the array. As we insert new elements
into the stack, the TOP keeps on incrementing, always pointing to the position
where the next element will be inserted. The representation of a stack using
an array is shown as follows:

FIGURE 7.6  Array representation of a stack

7.5.2	Implementation of Stacks Using Linked Lists

We studied how a stack is implemented using an array. Now let us discuss the
same using linked lists. We already know that in linked lists, dynamic memory
allocation takes place; that is, the memory is allocated at runtime. But in the
case of arrays, memory is allocated at the start of the program. If we are aware
of the maximum size of the stack in advance, then the implementation of
stacks using arrays is efficient. But if the size is not known in advance, then
we use the concept of a linked list in that dynamic memory allocation takes
place. A linked list has two parts: the first part contains the information of the
node and the second part stores the address of the next element in the linked
list. Similarly, we can also implement a linked stack. Now, the START in the
linked list becomes the TOP in a linked stack. All the insertion and deletion
operations are done at the node pointed to by TOP only.

Data Structures and Program Design Using Python_Ch07.indd 196 9/24/2020 12:25:16 PM

Stacks • 197

FIGURE 7.7  Linked representation of a stack

7.5.2.1	Push Operation in Linked Stacks

The push operation is the process of adding new elements in the already exist-
ing stack. The new elements in the stack will always be inserted at the top-
most position of the stack. Initially, we will check whether TOP = NULL. If
the condition is true, then the stack is empty; otherwise, the new memory is
allocated for the new node. We can understand it further with the help of an
algorithm.

Algorithm for Inserting a New Element in a Linked Stack

Step 1: START
Step 2: Set NEW NODE. INFO = VAL
 IF TOP = NULL
Set NEW NODE. NEXT = NULL
 Set TOP = NEW NODE
ELSE
Set NEW NODE. NEXT = TOP
 Set TOP = NEW NODE
[End of If]
Step 3: EXIT

For Example – Consider a linked stack with four elements; a new element is
to be inserted in the stack.

FIGURE 7.8  Linked stack before insertion

After inserting the new element in the stack, the updated stack becomes
as shown in the following figure.

FIGURE 7.9  Linked stack after inserting a new node

Data Structures and Program Design Using Python_Ch07.indd 197 9/24/2020 12:25:16 PM

198 • Data Structures and Program Design Using Python

7.5.2.2	Pop Operation in Linked Stacks

The pop operation is the process of removing elements from an already exist-
ing stack. The elements from the stack are always be deleted from the node
pointed to by TOP. Initially, we check whether TOP = NULL. If the condition
is true, then the stack is empty, which means we cannot delete any elements
from it. Therefore, in that case, an underflow error message is displayed on
the screen. We can understand it further with the help of an algorithm.

Algorithm for Deleting an Element from a Linked Stack

Step 1: START
Step 2: IF TOP = NULL
 Print UNDERFLOW ERROR
[End of If]
Step 3: Set TEMP = TOP
Step 4: Set TOP = TOP. NEXT
Step 5: FREE TEMP
Step 6: EXIT

For Example – Consider a linked stack with five elements; an element is to
be deleted from the stack.

FIGURE 7.10  Linked stack before deletion

After deleting an element from the stack, the updated stack becomes as
shown in Figure 7.11.

FIGURE 7.11  Linked stack after deleting the topmost node/element

Here is a program implementing a linked stack performing push and pop
operations.

Data Structures and Program Design Using Python_Ch07.indd 198 9/24/2020 12:25:17 PM

Stacks • 199

class Node:

 # Class to create nodes of linked list
 # constructor initializes node automatically
 def __init__(self,data):
 self.data = data
 self.next = None

class Stack:

 # head is default NULL
 def __init__(self):
 self.head = None

 # Checks if stack is empty
 def isempty(self):
 if self.head == None:
 return True
 else:
 return False

 # Method to add data to the stack
 # adds to the start of the stack
 def push(self,data):

 if self.head == None:
 self.head=Node(data)

 else:
 newnode = Node(data)
 newnode.next = self.head
 self.head = newnode

 # Remove element that is the current head (start of the stack)
 def pop(self):

 if self.isempty():
 return None

 else:
 # Removes the head node and makes
 #the preceding one the new head
 poppednode = self.head
 self.head = self.head.next
 poppednode.next = None
 return poppednode.data

Data Structures and Program Design Using Python_Ch07.indd 199 9/24/2020 12:25:17 PM

200 • Data Structures and Program Design Using Python

 # Returns the head node data
 def peek(self):

 if self.isempty():
 return None

 else:
 return self.head.data

 # Prints out the stack
 def display(self):

 iternode = self.head
 if self.isempty():
 print("Stack Underflow")

 else:

 while(iternode != None):

 print(iternode.data,"->",end = " ")
 iternode = iternode.next
 return

The output of the program is as follows:

Explanation: The above program has the push, pop, peek, and display func-
tions for a linked stack.
●● The push function adds an element to the queue.
●● The pop function removes elements from the queue.
●● The peek function returns the topmost element of the stack.
●● The display function prints every node of the queue.

Data Structures and Program Design Using Python_Ch07.indd 200 9/24/2020 12:25:17 PM

Stacks • 201

7.6	 APPLICATIONS OF STACKS

In this section, we discuss various applications of stacks. The topics covered in
this section are as follows:
●● Polish and Reverse Polish Notations
●● Conversion from the Infix Expression to the Postfix Expression
●● Conversion from the Infix Expression to the Prefix Expression
●● Evaluation of the Postfix Expression
●● Evaluation of the Prefix Expression
●● Parentheses Balancing

7.6.1	Polish and Reverse Polish Notations

a.	 Polish Notations

Polish notation refers to a notation where the operator is placed before the
operands. Polish notation was named after the Polish mathematician Jan
Lukasiewicz. We can also say that transforming an expression into this form
is called Polish notation. An algebraic expression can be represented in three
forms. All these forms refer to the relative position of the operators in regards
to the operands.

1.	 Prefix Form – In an expression, if the operator is placed before the oper-
ands, that is, +XY, then it is said to be in prefix form.

2.	 Infix Form – In an expression, if the operator is placed in the middle of
the operands, that is, X + Y, then it is said to be in infix form.

3.	 Postfix Form – In an expression, if the operator is placed after the oper-
ands, that is, XY+, and then it is said to be in postfix form.

b.	 Reverse Polish Notation

This notation frequently refers to the postfix notation or suffix notation. It
refers to the notation in that the operator is placed after its two operands, that
is, XY + AF BC∗.

c.	 The Need for Polish and Reverse Polish Notation

It is comparatively easy for a computer system to evaluate an expression in
Polish notation as the system need not check for priority-wise execution of
various operators (like the BODMAS rule), as all the operators in prefix or
postfix expressions will automatically occur in their order of priority.

Data Structures and Program Design Using Python_Ch07.indd 201 9/24/2020 12:25:17 PM

202 • Data Structures and Program Design Using Python

7.6.2	Conversion from the Infix Expression to the Postfix Expression

In any expression, we observe that there are two types of parts/components
put together. They are operands and operators. The operators indicate the
operation to be carried out, and the operands are those things on which the
operators operate. Operators have their priority of execution. For the simplic-
ity of the algorithm, we use only the addition (+), subtraction(−), modulus
(%), multiplication (∗), and division (/) operators. The precedence of these
operators is given as follows:

∗, ^, /, % (Higher priority)		 +, − (Lower priority)

The order of evaluation of these operators can be changed by using paren-
theses. For example, an expression X ∗ Y + Z can be solved, as first X ∗ Y will
be done and then the result is added to Z. But if the same expression is written
with parentheses as X ∗ (Y + Z), now Y + Z will be evaluated first, and then the
result is multiplied by X.

We can convert an infix expression to a postfix expression using a stack.
First, we start to scan the expression from the left side to the right side. In an
expression, there may be some operators, operands, and parentheses. Hence,
we have to keep in mind some of the basic rules, that are as follows:
●● Each time we encounter an operand, it is added directly to the postfix

expression.
●● Each time we get an operator, we should always check the top of the stack

to check the priority of the operators.
●● If the operator at the top of the stack has higher precedence or the

same precedence as that of the current operator, then, in that case, it is
repeatedly popped out from the stack and added to the postfix expression.
Otherwise, it is pushed into the stack.

●● Each time an opening parenthesis is encountered, it is directly pushed
into the stack, and similarly, if a closing parenthesis is encountered, we
repeatedly pop it out from the stack and add the operators in the postfix
expression. The opening parenthesis is deleted from the stack.

Now, let us understand it with the help of an algorithm in that the first
step is to push a left parenthesis in the stack and also add a closing parenthesis
at the end of the infix expression. The algorithm is repeated until the stack
becomes empty.

Data Structures and Program Design Using Python_Ch07.indd 202 9/24/2020 12:25:17 PM

Stacks • 203

Algorithm to Convert an Infix Expression into a Postfix Expression

Step 1: START
Step 2: Add ")" (open parenthesis) to the end of the infix
expression.
Step 3: Push ")" on the stack.
Step 4: Repeat the steps until each character in the infix
expression is scanned.

a)	 IF "('' is found, push it onto the stack.
b)	 If an operand is encountered, add it to the postfix

expression.
c)	 IF ")" (close parenthesis) is found, then follow

these steps –
-	 Continually pop from the stack and add it to the

postfix expression until an "("is encountered.
-	 Eliminate the "(''.

d)	 If an operator is found, then follow these steps –
-	 Continually pop from the stack and add it to the

postfix expression that has the same or high
precedence than the current operator.

-	 Push the current operator to the stack.
Step 5: Continually pop from the stack to the postfix
expression until the stack becomes empty.
Step 6: EXIT

For Example – Convert the following infix expression into a postfix expression.

a.	 (A + B) ∗ C / D		 b.   [((A +B) ∗ (C – D)) + (F – G)]

Solution:

a.	

Character Stack Expression
((

A (A

+ (+ A

B (+ AB

) AB+

∗ ∗ AB+

C ∗ AB+C

/ / AB+C∗
D AB+C∗D/

Answer = AB+C∗D/

Data Structures and Program Design Using Python_Ch07.indd 203 9/24/2020 12:25:17 PM

204 • Data Structures and Program Design Using Python

b.	

Character Stack Expression

[[

([(

([((

A [((A

+ [((+ A

B [((+ AB

) [(AB+

∗ [(∗ AB+

([(∗(AB+

C [(∗(AB+C

− [(∗(− AB+C

D [(∗(− AB+CD

) [(∗ AB+CD∗

) [AB+CD−∗

+ [+ AB+CD−∗

([+(AB+CD−∗

F [+(AB+CD−∗F

− [+(− AB+CD−∗F

G [+(− AB+CD−∗FG

) [+ AB+CD−∗FG−

] AB+CD−∗FG−+

Answer = AB+CD−∗FG−+

Data Structures and Program Design Using Python_Ch07.indd 204 9/24/2020 12:25:17 PM

Stacks • 205

Here is a program to convert an infix expression to a postfix expression.

Python program to convert an infix expression to postfix

Class to convert the expression
class Conversion:

 # Constructor to initialize the class variables
 def __init__(self, capacity):
 self.top = -1
 self.capacity = capacity
 # This array is used for a stack
 self.array = []
 # Precedence setting
 self.output = []
 self.precedence = {'+':1, '-':1, '*':2, '/':2, '^':3}

 # check if the stack is empty
 def isEmpty(self):
 return True if self.top == -1 else False

 # Return the value of the top of the stack
 def peek(self):
 return self.array[-1]

 # Pop the element from the stack
 def pop(self):
 if not self.isEmpty():
 self.top -= 1
 return self.array.pop()
 else:
 return "$"

 # Push the element to the stack
 def push(self, op):
 self.top += 1
 self.array.append(op)

 # A utility function to check is the given character
 # is operand
 def isOperand(self, ch):
 return ch.isalpha()

Data Structures and Program Design Using Python_Ch07.indd 205 9/24/2020 12:25:17 PM

206 • Data Structures and Program Design Using Python

 # Check if the precedence of operator is strictly
 # less than top of stack or not
 def notGreater(self, i):
 try:
 a = self.precedence[i]
 b = self.precedence[self.peek()]
 return True if a <= b else False
 except KeyError:
 return False

 # The main function that converts given infix expression
 # to postfix expression
 def infixtopostfix(self, exp):

 # Iterate over the expression for conversion
 for i in exp:
 # If the character is an operand,
 # add it to output
 if self.isOperand(i):
 self.output.append(i)

 # If the character is an '(', push it to stack
 elif i == '(':
 self.push(i)

 # If the scanned character is an ')', pop and
 # output from the stack until and '(' is found
 elif i == ')':
 while((not self.isEmpty()) and self.peek() != '('):
 a = self.pop()
 self.output.append(a)
 if (not self.isEmpty() and self.peek() != '('):
 return -1
 else:
 self.pop()

 # An operator is encountered
 else:
 while(not self.isEmpty() and self.notGreater(i)):
 self.output.append(self.pop())
 self.push(i)

 # pop all the operator from the stack
 while not self.isEmpty():
 self.output.append(self.pop())

 print ("".join(self.output))

Data Structures and Program Design Using Python_Ch07.indd 206 9/24/2020 12:25:17 PM

Stacks • 207

The output of the program is as follows:

Frequently Asked Questions

Q. Convert the following infix expression into a postfix expression.

(A + B) ^ C – (D ∗ E) / F

Answer:

Character Stack Expression

((

A (A

+ (+ A

B (+ AB

) AB+

^ ^ AB+

C ^ AB+C

− − AB+C^

(−(AB+C^

D −(AB+C^D

∗ −(∗ AB+C^D

E −(∗ AB+C^DE

) − AB+C^DE∗

/ −/ AB+C^DE∗

F −/ AB+C^DE∗

Answer = AB+C^DE∗F/−

Data Structures and Program Design Using Python_Ch07.indd 207 9/24/2020 12:25:17 PM

208 • Data Structures and Program Design Using Python

7.6.3	Conversion from an Infix Expression to a Prefix Expression

We can convert an infix expression to its equivalent prefix expression with the
help of the following algorithm.

Algorithm to Convert an Infix Expression into a Prefix Expression

Step 1: START
Step 2: Reverse the infix expression. Also, interchange the
left and right parenthesis on reversing the infix expression.
Step 3: Obtain the postfix expression of the reversed infix
expression.
Step 4: Reverse the postfix expression so obtained in Step 3.
Finally, the expression is converted into prefix expression.
Step 5: EXIT

For Example – Convert the following infix expression into prefix expression.

a.	 (X − Y) / (A + B)

b.	 (X – Y / Z) ∗ (A / B – C)

Solution:

a.	 After reversing the given infix expression ((B + A) / Y – X)

Find the postfix expression of (B + A) / (Y – X)

Character Stack Expression

((

(((

B ((B

+ ((+ B

A ((+ BA

) (BA+

/ (/ BA+

Y (/ BA+Y

− (− BA+Y/

X (− BA+Y/X

) BA+Y/X−

BA+Y/X−

Data Structures and Program Design Using Python_Ch07.indd 208 9/24/2020 12:25:18 PM

Stacks • 209

Now, reverse the postfix expression so obtained, that is, X/Y+AB.

Hence, the prefix expression is –X/Y+AB.

b.	 After reversing the given infix expression (C – B / A) ∗ (Z / Y – X),

find the postfix expression of (C – B / A) ∗ (Z / Y – X).

Character Stack Expression

((

C (C

− (− C

B (− CB

/ (−/ CB

A (−/ CBA

) CBA/−

∗ ∗ CBA/−

(∗(CBA/−

Z ∗(CBA/−Z

/ ∗(/ CBA/−Z

Y ∗(/ CBA/−ZY

− ∗(− CBA/−ZY/

X ∗(− CBA/−ZY/X

) ∗ CBA/−ZY/X−

CBA/−ZY/X−∗

Now, reverse the postfix expression so obtained, that is, ∗–X/ZY-/ABC.

Hence, the prefix expression is ∗–X/ZY-/ABC.

Here is a program to convert an infix expression to a prefix expression.

Data Structures and Program Design Using Python_Ch07.indd 209 9/24/2020 12:25:18 PM

210 • Data Structures and Program Design Using Python

class infix_to_prefix:
 precedence={'^':5,'*':4,'/':4,'+':3,'-':3,'(':2,')':1}
 def __init__(self):
 self.items=[]
 self.size=-1
 def push(self,value):
 self.items.append(value)
 self.size+=1
 def pop(self):
 if self.isempty():
 return 0
 else:
 self.size-=1
 return self.items.pop()
 def isempty(self):
 if(self.size==-1):
 return True
 else:
 return False
 def seek(self):
 if self.isempty():
 return False
 else:
 return self.items[self.size]
 def is0perand(self,i):
 if i.isalpha() or i in '1234567890':
 return True
 else:
 return False
 def reverse(self,expr):
 rev=""
 for i in expr:
 if i is '(':
 i=')'
 elif i is ')':
 i='('
 rev=i+rev
 return rev
 def infixtoprefix (self,expr):
 prefix=""

 for i in expr:
 if(len(expr)%2==0):
 print("Incorrect infix expr")
 return False
 elif(self.is0perand(i)):
 prefix +=i

Data Structures and Program Design Using Python_Ch07.indd 210 9/24/2020 12:25:18 PM

Stacks • 211

 elif(i in '+-*/^'):
 while(len(self.items)and self.precedence[i] <
self.precedence[self.seek()]):
 prefix+=self.pop()
 self.push(i)
 elif i is '(':
 self.push(i)
 elif i is ')':
 o=self.pop()
 while o!='(':
 prefix +=o
 o=self.pop()

 #end of for
 while len(self.items):
 if(self.seek()=='('):
 self.pop()
 else:
 prefix+=self.pop()

 return prefix
s=infix_to_prefix()
expr=input('enter the expression ')
rev=""
rev=s.reverse(expr)
#print(rev)
result=s.infixtoprefix(rev)
if (result!=False):

 prefix=s.reverse(result)
 print("the prefix expr of :",expr,"is",prefix)

The output of the program is as follows:

Data Structures and Program Design Using Python_Ch07.indd 211 9/24/2020 12:25:18 PM

212 • Data Structures and Program Design Using Python

7.6.4	Evaluation of a Postfix Expression

With the help of stacks, any postfix expression can easily be evaluated. Every
character in the postfix expression is scanned from left to right. The steps
involved in evaluating a postfix expression are given in the algorithm.

Algorithm for Evaluating a Postfix Expression

Step 1: START
Step 2: IF an operand is encountered, push it onto the stack.
Step 3: IF an operator "op1" is encountered, then follow
these steps –

a)	 Pop the two topmost elements from the stack, where X
is the topmost element and Y is the next top element
below X

b)	 Evaluate X op1 Y
c)	 Push the result onto the stack

Step 4: Set the result equal to the topmost element of the
stack
Step 5: EXIT

For Example –Evaluate the following postfix expressions.

a.	 2 3 4 + ∗ 5 6 7 8 + ∗ + +

b.	 T F T F AND F FF XOR OR AND T XOR AND OR

Solution:

a.	

Character Stack Operation

2 2 PUSH 2

3 2, 3 PUSH 3

4 2, 3, 4 PUSH 4

+ 2, 7 POP 4, 3
ADD(4 + 3 = 7)
PUSH 7

∗ 14 POP 7, 2
MUL(7 ∗ 2 = 14)
PUSH 14

(continued)

Data Structures and Program Design Using Python_Ch07.indd 212 9/24/2020 12:25:18 PM

Stacks • 213

Character Stack Operation

5 14, 5 PUSH 5

6 14, 5, 6 PUSH 6

7 14, 5, 6, 7 PUSH 7

8 14, 5, 6, 7, 8 PUSH 8

+ 14, 5, 6, 15 POP 8, 7
ADD(8 + 7 = 15)
PUSH 15

∗ 14, 5, 90 POP 15, 6
MUL(15 ∗ 6 = 90)
PUSH 90

+ 14, 95 POP 90, 5
ADD(90 + 5 = 95)
PUSH 95

+ 109 POP 95, 14
ADD(95 + 14 = 109)
PUSH 109

Answer = 109

b.	

Character Stack Operation

T T PUSH T

F T, F PUSH F

T T, F, T PUSH T

F T, F, T, F PUSH F

AND T, F, F POP F, T
AND(F AND T = F)
PUSH F

(continued)

Data Structures and Program Design Using Python_Ch07.indd 213 9/24/2020 12:25:18 PM

214 • Data Structures and Program Design Using Python

Character Stack Operation

F T, F, F, F PUSH F

F T, F, F, F, F PUSH F

F T, F, F, F, F, F PUSH F

XOR T, F, F, F, T POP F, F
XOR(F XOR F = T)
PUSH T

OR T, F, F, T POP T, F
OR(T OR F = T)
PUSH T

AND T, F, F POP T, F
AND(T AND F = F)
PUSH F

T T, F, F, T PUSH T

XOR T, F, F POP T, F
XOR(T XOR F = F)
PUSH F

AND T, F POP F, F
AND(F AND F = F)
PUSH F

OR T POP F, T
OR(F OR T = T)
PUSH T

Answer = T

Here is a program for evaluation of a postfix expression.

Python program to evaluate the value of a postfix expression

Class to convert the expression
class Evaluate:

(continued)

Data Structures and Program Design Using Python_Ch07.indd 214 9/24/2020 12:25:18 PM

Stacks • 215

 # Constructor to initialize the class variables
 def __init__(self, capacity):
 self.top = -1
 self.capacity = capacity
 # This array is used a stack
 self.array = []

 # check if the stack is empty
 def isEmpty(self):
 return True if self.top == -1 else False

 # Return the value of the top of the stack
 def peek(self):
 return self.array[-1]

 # Pop the element from the stack
 def pop(self):
 if not self.isEmpty():
 self.top -= 1
 return self.array.pop()
 else:
 return "$"

 # Push the element to the stack
 def push(self, op):
 self.top += 1
 self.array.append(op)

 # The main function that converts the given infix expression
 # to a postfix expression
 def evaluatePostfix(self, exp):

 # Iterate over the expression for conversion
 for i in exp:

 # If the scanned character is an operand
 # (number here) push it to the stack
 if i.isdigit():
 self.push(i)

 # If the scanned character is an operator,
 # pop two elements from stack and apply it.
 else:
 val1 = self.pop()
 val2 = self.pop()
 self.push(str(eval(val2 + i + val1)))
 return int(self.pop())

Data Structures and Program Design Using Python_Ch07.indd 215 9/24/2020 12:25:18 PM

216 • Data Structures and Program Design Using Python

The output of the program is as follows:

Frequently Asked Questions

Q. Evaluate the given postfix expression.

2 3 4 ∗ 6 / +

Answer:

Character Stack

2 2

3 2, 3

4 2, 3, 4

∗ 2, 12

6 2, 12, 6

/ 2, 2

+ 4

Answer = 4

7.6.5	Evaluation of a Prefix Expression

There are a variety of techniques for evaluating a prefix expression. But the
simplest of all the techniques are explained in the following algorithm.

Data Structures and Program Design Using Python_Ch07.indd 216 9/24/2020 12:25:18 PM

Stacks • 217

Algorithm for Evaluating a Prefix Expression

Step 1: START
Step 2: Accept the prefix expression.
Step 3: Repeat steps 4 to 6 until all the characters have been
scanned.
Step 4: The prefix expression is scanned from the right.
Step 5: IF an operand is encountered, push it onto the stack.
Step 6: IF an operator is encountered, then follow these steps –

a)	 Pop two elements from the operand stack.
b)	 Apply the operator on the popped operands.
c)	 Push the result onto the stack.

Step 7: EXIT

For Example – Evaluate the given prefix expressions.

a.	 + - 4 6 ∗ 9 /10 50

b.	 + ∗ ∗ + 2 3 4 5 + 6 7

Solution:

a.	

Character Stack Operation

50 50 PUSH 50

10 50, 10 PUSH 10

/ 5 POP 10, 50
DIV(50 / 10 = 5)
PUSH 5

9 5, 9 PUSH 9

∗ 45 POP 9, 5

MUL(5 ∗ 9 = 45)
PUSH 45

6 45, 6 PUSH 6

4 45, 6, 4 PUSH 4

− 45, 2 POP 4, 6
SUB(6 – 4 = 2)
PUSH 2

(continued)

Data Structures and Program Design Using Python_Ch07.indd 217 9/24/2020 12:25:18 PM

218 • Data Structures and Program Design Using Python

Character Stack Operation

+ 47 POP 2, 45
ADD(45 + 2 = 47)
PUSH 47

Answer = 47

b.	

Character Stack Operation

7 7 PUSH 7

6 7, 6 PUSH 6

+ 13 POP 6, 7
ADD(7 + 6 = 13)
PUSH 13

5 13, 5 PUSH 5

4 13, 5, 4 PUSH 4

3 13, 5, 4, 3 PUSH 3

2 13, 5, 4, 3, 2 PUSH 2

+ 13, 5, 4, 5 POP 2, 3
ADD(3 + 2 = 5)
PUSH 5

∗ 13, 5, 20 POP 5, 4
MUL(4 ∗ 5 = 20)
PUSH 20

∗ 13, 100 POP 20, 5
MUL(5 ∗ 20 = 100)
PUSH 100

+ 113 POP 100, 13
ADD(13 + 100 =
113)
PUSH 113

Answer = 113

(continued)

Data Structures and Program Design Using Python_Ch07.indd 218 9/24/2020 12:25:19 PM

Stacks • 219

Here is a program for evaluation of a prefix expression.

class evaluate_prefix:
 def __init__(self):
 self.items=[]
 self.size=-1
 def isEmpty(self):
 if(self.size==-1):
 return True
 else:
 return False
 def push(self,item):
 self.items.append(item)
 self.size+=1
 def pop(self):
 if self.isEmpty():
 return 0
 else:
 self.size-=1
 return self.items.pop()
 def seek(self):
 if self.isEmpty():
 return False
 else:
 return self.items[self.size]
 def evaluate(self,expr):
 for i in reversed(expr):
 if i in '0123456789':
 self.push(i)
 else:
 op1=self.pop()
 op2=self.pop()
 result=self.cal(op1,op2,i)
 self.push(result)
 return self.pop()
 def cal(self,op1,op2,i):
 if i is '*':
 return int(op1)*int(op2)
 elif i is '/':
 return int(op1)/int(op2)
 elif i is '+':
 return int(op1)+int(op2)
 elif i is '-':
 return int(op1)-int(op2)
 elif i is '^':
 return int(op1)^int(op2)

Data Structures and Program Design Using Python_Ch07.indd 219 9/24/2020 12:25:19 PM

220 • Data Structures and Program Design Using Python

s=evaluate_prefix()
expr=input('enter the prefix expression')
value=s.evaluate(expr)
print('the result of prefix expression',expr,'is',value)

The output of the program is as follows:

7.6.6	Parenthesis Balancing

Stacks can be used to check the validity of parentheses in any arithmetic or
algebraic expression. We are already aware that in a valid expression, the
parentheses or the brackets occur in pairs, that is, if a parenthesis is open,
then it must also be closed in an expression. Otherwise, the expression would
be invalid. For example, (X + Y – Z is invalid. But (X + Y – Z) is a valid expres-
sion. Hence, some key points are to be kept in mind:
●● Each time a “(’’ is encountered, it should be pushed onto the stack.
●● Each time a “)” is encountered, the stack is examined.
●● If the stack is already an empty stack, then the “)” does not have a “(”, and

hence the expression is invalid.
●● If the stack is not empty, then we will pop the stack and check whether the

popped element corresponds to the “)”.
●● When we reach the end of the stack, the stack must be empty. Otherwise,

one or more “(” does not have a corresponding “)” and, therefore, the
expression will become invalid.

For Example – Check whether the following given expressions are
valid.

a.	 ((A – B) ∗ Y

b.	 [(A + B) – {X + Y} ∗ [C – D]]

Data Structures and Program Design Using Python_Ch07.indd 220 9/24/2020 12:25:19 PM

Stacks • 221

Solution:

a.	

Symbol Stack
1. ((

2. ((, (

3. A (, (

4. − (, (

5. B (, (

6.) (

7. ∗ (

8. Y (

9. (

Answer – As the stack is not empty, the expression is not a valid expression.

b.	

Symbol Stack
1. [[

2. ([, (

3. A [, (

4. + [, (

5. B [, (

6.) [

7. − [

8. { [, {

9. X [, {

10. + [, {

11. Y [, {

12. } [

13. ∗ [

14. [[, [

15. C [, [

16. − [, [

17. D [, [

18.] [

19.]

Data Structures and Program Design Using Python_Ch07.indd 221 9/24/2020 12:25:19 PM

222 • Data Structures and Program Design Using Python

Answer – As the stack is empty, the given expression is a valid expression.

Here is a program to implement parentheses balancing.

Python3 code to check for
balanced parentheses in an expression
def check(my_string):
 brackets = ['()', '{}', '[]']
 while any(x in my_string for x in brackets):
 for br in brackets:
 my_string = my_string.replace(br, '')
 return not my_string

Driver code
string =input("enter expression-")
print(string, "-", "Balanced"
 if check(string) else "Unbalanced")

The output of the program is as follows:

7.7	 SUMMARY

●● A stack is a linear collection of data elements in that the element inserted
last will be the element taken out first (i.e., a stack is a LIFO data struc-
ture). The stack is a linear data structure, in that the insertion as well as
the deletion of an element, is done only from the end called TOP.

●● In computer memory, stacks can be implemented by using either arrays
or linked lists.

●● The overflow condition occurs when we try to insert the elements in the
stack, but the stack is already full.

●● The underflow condition occurs when we try to remove the elements
from the stack, but the stack is already empty.

Data Structures and Program Design Using Python_Ch07.indd 222 9/24/2020 12:25:19 PM

Stacks • 223

●● The three basic operations that can be performed on the stacks are push,
pop, and peek operations.

●● The push operation is the process of adding new elements in the stack.
●● A pop operation is a process of removing elements from the stack.
●● A peek operation is the process of returning the value of the topmost

element of the stack.
●● Polish notation refers to a notation where the operator is placed before

the operands.
●● Infix, prefix, and postfix notations are three different but equivalent nota-

tions of writing algebraic expressions.

7.8	 EXERCISES

7.8.1	Theory Questions

Q1.	 What is a stack? Give a real-life example.

Q2.	 What do you understand about stack overflow and stack underflow?

Q3.	 What is a linked stack, and how it is different from a linear stack?

Q4.	 Discuss various operations that can be performed on stacks.

Q5.	 Explain the terms Polish notation and reverse Polish notation.

Q6.	 What are the various applications of a stack? Explain in detail.

Q7.	 Why is a stack known as a Last-In-First-Out structure?

Q8.	 What are different notations to represent an algebraic expression?
Which one is mostly used in computers?

Q9.	 Explain the concept of linked stacks and also discuss how insertion
and deletion take place in it.

Q10.	 Draw the stack structure when the following operations are per-
formed one after another on an empty stack.

a.	 Push 1, 2, 6, 17, 100

b.	 Pop three numbers

c.	 Peek

d.	 Push 50, 23, 198, 500

e.	 Display

Data Structures and Program Design Using Python_Ch07.indd 223 9/24/2020 12:25:19 PM

224 • Data Structures and Program Design Using Python

Q11.	 Convert the following infix expressions to their equivalent postfix
expressions.

a.	 A + B + C – D ∗ E / F

b.	 [A – C] + {D ∗ E}

c.	 [X / Y] % (A ∗ B) + (C % D)

d.	 [(A – C + D) % (B – H + G)]

e.	 18 / 9 ∗ 3 – 4 + 10 / 2

Q12.	 Check the validity of the given algebraic expressions.

a.	 (([A – V – D] + B)

b.	 [(X – {Y ∗ Z})]

c.	 [A + C + E)

Q13.	 Convert the following infix expressions to their equivalent prefix
expressions.

a.	 18 / 9 ∗ 3 – 4 + 10 / 2

b.	 X ∗ (Z / Y)

c.	 [(A + B) – (C + D)] ∗ E

Q14.	 Evaluate the given postfix expressions.

a.	 1 2 3 ∗ ∗ 4 5 6 7 + + ∗ ∗

b.	 12 4 / 45 + 2 3 ∗ +

7.8.2	Programming Questions

Q1.	 Write a Python program to implement a stack using arrays.

Q2.	 Write a program to convert an infix expression to a prefix expression.

Q3.	 Write a program to copy the contents from one stack to another using
class.

Q4.	 Write a Python program to convert the expression “x + y” into “xy+”
using classes.

Q5.	 Write a program to evaluate a postfix expression.

Q6.	 Write a program to evaluate a prefix expression.

Q7.	 Write a program to convert “b − c” into “−bc” using classes.

Q8.	 Write a function that performs a push operation in a linked stack.

Data Structures and Program Design Using Python_Ch07.indd 224 9/24/2020 12:25:19 PM

Stacks • 225

7.8.3 Multiple Choice Questions

Q1.	 New elements in the stack are always inserted from the

a.	 Front end

b.	 Top end

c.	 Rear end

d.	 Both (a) and (c)

Q2.	 A stack is a data structure.

a.	 FIFO

b.	 LIFO

c.	 FILO

d.	 LILO

Q3.	 The overflow condition in the stack exists when

a.	 TOP = NULL

b.	 TOP = MAX

c.	 TOP = MAX – 1

d.	 None of the above

Q4.	 The function that inserts the elements in a stack is called
.

a.	 Push()

b.	 Peek()

c.	 Pop()

d.	 None of the above

Q5.	 Disks piled up one above the other represent a .

a.	 Queue

b.	 Stack

c.	 Tree

d.	 Linked List

Data Structures and Program Design Using Python_Ch07.indd 225 9/24/2020 12:25:19 PM

226 • Data Structures and Program Design Using Python

Q6.	 Reverse Polish notation is the other name for a .

a.	 Postfix expression

b.	 Prefix expression

c.	 Infix expression

d.	 All of the above

Q7.	 Stacks can be represented by

a.	 Linked lists only

b.	 Arrays only

c.	 Both a) and b)

d.	 None of the above

Q8.	 If the numbers 10, 45, 13, 50, and 32 are pushed onto a stack, what
does pop return?

a.	 10

b.	 45

c.	 50

d.	 32

Q9.	 The postfix representation of the expression (2 – b) ∗ (a + 10) /
(c ∗ 8) is

a.	 8 a ∗ c 10 + b 2 − ∗ /

b.	 / 2 a c ∗ + b 10 ∗ 9 –

c.	 2 b – a 10 + ∗ c 8 ∗ /

d.	 10 a + ∗ 2 b − / c 8 ∗

Data Structures and Program Design Using Python_Ch07.indd 226 9/24/2020 12:25:19 PM

C H A P T E R 8
TREES

8.1	 INTRODUCTION

In earlier chapters, we learned about various data structures such as arrays,
linked lists, stacks, and queues. All these data structures are linear data struc-
tures. Although linear data structures are flexible, it is quite difficult to use
them to organize data into a hierarchical representation. Hence, to overcome
this problem or limitation, we create a new data structure that is called a
tree. A tree is a data structure that is defined as a set of one or more nodes
that allows us to associate a parent-child relationship. In trees, one node is
designated as the root node or parent node, and all the remaining nodes can
be partitioned into non-empty sets, each of which is a sub-tree of the root.
Unlike natural trees, a tree data structure is upside down, having a root at the
top and leaves at the bottom. Also, there is no parent of the root node. A root
node can only have child nodes. Leaf nodes or leaves are those that have no
children. When there are no nodes in the tree, then the tree is known as a null
tree or empty tree. Trees are widely used in various day-to-day applications.
The recursive programming of trees makes the programs optimized and easily
understandable. Trees are also used to represent the structure of mathemati-
cal formulas. Figure 8.1 represents a tree, where A is the root node of the
tree. X, Y, and Z are the child nodes of the root node A. They also form the
sub-trees of the tree. B, C, Y, D, and E are the leaf nodes of the tree, as they
have no children.

Data Structures and Program Design Using Python_Ch08.indd 227 9/24/2020 12:26:57 PM

228 • Data Structures and Program Design Using Python

FIGURE 8.1  A tree

Practical Application:

1.	 The members of a family can be visualized as a tree in that the root
node can be visualized as a grandfather. His two children can be visu-
alized as the child nodes. Then the grandchildren form the left and
the right sub-trees of the tree.

2.	 Trees are used to organize information in database systems and repre-
sent the syntactic structure of the source programs in compilers.

8.2	 DEFINITIONS

●● Node – A node is the main component of the tree data structure. It stores
the actual data along with the links to the other nodes.

FIGURE 8.2  Structure of a node

●● Root – The root node is the topmost node of the tree. It does not have a
parent node. If the root node is empty, then the tree is empty.

Data Structures and Program Design Using Python_Ch08.indd 228 9/24/2020 12:26:58 PM

Trees • 229

●● Parent – The parent of a node is the
immediate predecessor of that node.
In the following figure, X is the par-
ent of the Y and Z nodes.

●● Child – The child nodes are the
immediate successors of a node.
They must have a parent node. A
child node placed at the left side is
called the left child, and similarly, a
child node placed at the right side is
called a right child. Y is the left child
of X, and Z is the right child of X.

●● Leaf/Terminal nodes – A leaf node is
one that does not have any child nodes.

●● Sub-trees – The nodes B, X, and
Y form the left sub-tree of root A.
Similarly, the nodes C and Z form
the right sub-tree of A.

●● Path – It is a unique sequence of
consecutive edges that is required to
be followed to reach the destination
from a given source. The path from
root node A to Y is given as A-B, B-Y.

●● Level number of a node – Every
node in the tree is assigned a level
number. The root is at level 0, the
children of the root node are at
level 1, and so on.

●● Height – The height of the tree is
the maximum level of the node + 1.
The height of a tree containing a sin-
gle node is 1. Similarly, the height of
an empty tree is 0.

●● Ancestors – The ancestors of a node
are any predecessor nodes on the
path between the root and the des-
tination. There are no ancestors for
the root node. The nodes A and B
are the ancestors of node X.

FIGURE 8.3  Parent node

FIGURE 8.4  Child nodes

FIGURE 8.5  Sub-trees

FIGURE 8.6  Path

FIGURE 8.7  Node level numbers

Data Structures and Program Design Using Python_Ch08.indd 229 9/24/2020 12:26:58 PM

230 • Data Structures and Program Design Using Python

●● Descendants – The descendants of a node
are any successor nodes on the path between
the given source and the leaf node. There
are no descendants of the leaf node. Here,
B, X, and Y are the descendants of node A.

●● Siblings – The child nodes of a given par-
ent node are called siblings. X and Y are the
siblings of B in Figure 8.8.

●● Degree of a node – This is equal to the number of children that a node
has.

●● Out-degree of a node – This is equal to the number of edges leaving
that node.

●● In-degree of a node – This is equal to the number of edges arriving at
that node.

●● Depth – This is given as the length of the path from the root node to the
destination node.

8.3	 BINARY TREE

A binary tree is a collection of nodes where each node contains three parts:
the left child address, right child address, and the data item. The left child
address stores the memory location of the top node of the left sub-tree and
the right child address stores the memory location of the top node of the right
sub-tree. The topmost element of the binary tree is known as a root node. The
root stores the memory location of the root node. As the name suggests, a
binary tree can have at most two children, that is, a parent can have zero, one,
or at most two children. If root = NULL, then it means that the tree is empty.
Figure 8.9 represents a binary tree.

In the following figure, A represents the root node of the tree. B and C
are the children of root node A. Nodes B, D, E, F, and G constitute the left
sub-tree. Similarly, nodes C, H, I, and J constitute the right sub-tree. Now,
nodes G, E, F, I, and J are the terminal/leaf nodes of the binary tree, as they
have no children. Hence, node A has two successors B and C. Node B has
two successors D and G. Similarly, node D also has two successors E and F.
Node G has no successor. Node C has only one successor H. Node H has two
successors I and J. Since nodes E, F, G, I, and J have no successors, they are
said to have empty sub-trees.

FIGURE 8.8  Siblings

Data Structures and Program Design Using Python_Ch08.indd 230 9/24/2020 12:26:58 PM

Trees • 231

FIGURE 8.9  A binary tree

8.3.1	Types of Binary Trees

There are two types of binary trees:

1.	 Complete Binary Trees – A complete binary tree is a type of binary tree
that obeys/satisfies two properties:

a.	 First, every level in a complete binary tree except the last one must
be completely filled.

b.	 Second, all the nodes in the complete binary tree must appear left as
much as possible.

In a complete binary tree, the number of nodes at level n is 2n nodes. The
total number of nodes in a complete binary tree of depth d is equal to the sum
of all nodes present at each level between 0 and d.

FIGURE 8.10  Complete binary trees

2.	 Extended Binary Trees – Extended binary trees are also known as
2T-trees. A binary tree is said to be an extended binary tree if, and only

Data Structures and Program Design Using Python_Ch08.indd 231 9/24/2020 12:26:59 PM

232 • Data Structures and Program Design Using Python

if, every node in the tree has either zero children or two children. In
an extended binary tree, nodes with two children are known as internal
nodes. Nodes with no children are known as external nodes. In the follow-
ing figure, the internal nodes are represented by I and the external nodes
are represented by E.

FIGURE 8.11  Extended binary trees

8.3.2	Memory Representation of Binary Trees

Binary trees can be represented in a computer’s memory in either of the fol-
lowing ways:

1.	 Array/List Representation of Binary Trees

2.	 Linked Representation of Binary Trees

Array Representation of Binary Trees

A binary tree is represented using an array in the computer’s memory. It is
also known as sequential representation. Sequential representation of binary
trees is done using one-dimensional (1D) arrays. This type of representation
is static and hence inefficient, as the size must be known in advance and thus
requires a lot of memory space. The following rules are used to decide the
location of each node in the memory:

a.	 The root node of the tree is stored in the first location.

b.	 If the parent node is present at location k, then the left child is stored at
location 2k, and the right child is stored at location (2k + 1).

c.	 The maximum size of the array is given as (2h – 1), where h is the height
of the tree.

Data Structures and Program Design Using Python_Ch08.indd 232 9/24/2020 12:26:59 PM

Trees • 233

For Example – A binary tree is given as follows. Give its array represen-
tation in the memory.

FIGURE 8.12  A binary tree and its array representation

Linked Representation of Binary Trees

A binary tree can also be represented using a linked list in a computer’s mem-
ory. This type of representation is dynamic, as memory is dynamically allo-
cated, that is, when it is needed, and thus it is efficient and avoids wastage of
memory space. In linked representation, every node has three parts:

1.	 The first part is called the left child, which contains the address of the left
sub-tree.

2.	 The second part is called the data part, which contains the information of
the node.

3.	 The third part is called the right child, which contains the address of the
right sub-tree.

The class of the node is declared as follows:

class Node:
 def __init__(self,data):
 self.data=data
 self.left=None
 self.right=None

The representation of a node is given in Figure 8.2. When there are no
children of a node, the corresponding fields are NULL.

Data Structures and Program Design Using Python_Ch08.indd 233 9/24/2020 12:27:00 PM

234 • Data Structures and Program Design Using Python

For Example – A binary tree is given as follows. Give its linked represen-
tation in the memory.

FIGURE 8.13  A binary tree and its linked representation

8.4	 BINARY SEARCH TREE

A Binary Search Tree (BST) is a variant of a
binary tree. The special property of a binary
search tree is that all the nodes in the left
sub-tree have a value less than that of the
root node. Similarly, all the nodes in the
right sub-tree have a value more than that
of the root node. Hence, the binary search
tree is also known as an ordered binary tree,
because all the nodes in a binary search
tree are ordered. The left and the right sub-
trees are also binary search trees, and thus
the same property is applicable on every sub-tree in the binary search tree.
Figure 8.14 represents a binary search tree in that all the keys are ordered.

In Figure 8.14, the root node is 50. The left sub-tree of the root node
consists of the nodes 19, 7, 32, 25, and 43. We can see that all these nodes

FIGURE 8.14  A binary search tree

Data Structures and Program Design Using Python_Ch08.indd 234 9/24/2020 12:27:00 PM

Trees • 235

have smaller values than the root node, and hence it constitutes the left sub-
tree. Similarly, the right sub-tree of the root node consists of the nodes 75,
87, 80, and 99. Here also, we can see that all these nodes have higher values
than the root node and hence it constitutes the right sub-tree. Each of the
sub-trees is ordered. Thus, it becomes easier to search for an element in the
tree, and as a result, time is also reduced by a great margin. Binary search
trees are very efficient regarding searching for an element. These trees are
already sorted in nature. Thus, these trees have a low time complexity. Vari-
ous operations that can be performed on binary search trees are discussed in
the upcoming section.

8.4.1	Operations on Binary Search Trees

In this section, we discuss different operations that are performed on binary
search trees, which include

●● Searching a node/key in the binary search tree
●● Inserting a node/key in the binary search tree
●● Deleting a node/key from the binary search tree
●● Deleting the entire binary search tree
●● Finding the mirror image of the binary search tree
●● Finding the smallest node in the binary search tree
●● Finding the largest node in the binary search tree
●● Determining the height of the binary search tree

1.	 Searching a node/key in the binary search tree – The search oper-
ation is one of the most common operations performed in the binary
search tree. This operation is performed to find whether a given key
exists in the tree. The search operation starts at the root node. First, it
checks whether the tree is empty. If the tree is empty, then the node/
key we are searching for is not present in the tree, and the algorithm
terminates there by displaying the appropriate message. If the tree is not
empty and the nodes are present in it, then the search function checks
the node/value to be searched and compares it with the key value of the
current node. If the node/key to be searched is less than the key value
of the current node, then in that case, we recursively call the left child
node. On the other hand, if the node/key to be searched is greater than
the key value of the current node, then we recursively call the right child
node. Now, let us look at the algorithm for searching for a key in a binary
search tree.

Data Structures and Program Design Using Python_Ch08.indd 235 9/24/2020 12:27:00 PM

236 • Data Structures and Program Design Using Python

Algorithm for Searching for a Node/Key in a Binary Search Tree

SEARCH(ROOT, VALUE)
Step 1: START
Step 2: IF(ROOT == NULL)
 Return NULL
 Print "Empty Tree"
 ELSE IF(ROOT . INFO == VALUE)
 Return ROOT
 ELSE IF(ROOT . INFO > VALUE)
 SEARCH(ROOT . LCHILD, VALUE)
 ELSE IF(ROOT . INFO < VALUE)
 SEARCH(ROOT . RCHILD, VALUE)
 ELSE
 Print "Value not found"
 [End of IF]
 [End of IF]
 [End of IF]
[End of IF]
Step 3: END

In the previous algorithm, we check whether the tree is empty. If the
tree is empty, then we return NULL. If the tree is not empty, then we check
whether the value stored at the current node (ROOT) is equal to the node/key
we want to search. If the value of the ROOT node is equal to the key value to
be searched, then we return the current node of the tree, that is, the ROOT
node. Otherwise, if the key value to be searched is less than the value stored
at the current node, we recursively call the left sub-tree. If the key value to
be searched is greater than the value stored at the current node, then we
recursively call the right sub-tree. Finally, if the value is not found, then an
appropriate message is printed on the screen.

For Example – We have been given a binary search tree. Now, search
the node with the value 20 in the binary search tree.

Initially the binary search tree is given as

FIGURE 8.15(a)

Data Structures and Program Design Using Python_Ch08.indd 236 9/24/2020 12:27:01 PM

Trees • 237

Step 1: First, the root node, 41, is checked.

FIGURE 8.15(b)

Step 2: Second, as the value stored at the root node is not equal to the value
to be searched, but we know that 20 < 41, thus we traverse the left sub-tree.

FIGURE 8.15(c)

Step 3: We know that 10 is not the value to be searched, but 20 > 10; thus, we
now traverse the right sub-tree with respect to 10.

FIGURE 8.15(d)

Data Structures and Program Design Using Python_Ch08.indd 237 9/24/2020 12:27:01 PM

238 • Data Structures and Program Design Using Python

Step 4: Again, 25 is not the value to be searched, but 20 < 25; thus, we now
traverse the left sub-tree with respect to 25.

FIGURE 8.15  Searching a node with value 20 in the binary search tree

Finally, a node having value 20 is successfully searched for in the binary
search tree.

2.	 Inserting a node/key in the binary search tree – The insertion opera-
tion is performed to insert a new node with the given value in the binary
search tree. The new node is inserted at the correct position following
the binary search tree constraint. It should not violate the property of the
binary search tree. The insertion operation also starts at the root node.
First, it checks whether the tree is empty. If the tree is empty, then we
allocate the memory for the new node. If the tree is not empty, then we
compare the key value to be inserted with the value stored in the current
node. If the node/key to be inserted is less than the key value of the cur-
rent node, then the new node is inserted in the left sub-tree. If the node/
key to be inserted is greater than the key value of the current node, then
the new node is inserted in the right sub-tree. Now, let us discuss the
algorithm for inserting a node in the binary search tree.

Algorithm for Inserting a Node/Key in a Binary Search Tree

INSERT(ROOT, VALUE)
Step 1: START
Step 2: IF(ROOT == NULL)
 Allocate memory for ROOT node
 Set ROOT . INFO = VALUE
 Set ROOT . LCHILD = ROOT . RCHILD = NULL
 [End of IF]

Data Structures and Program Design Using Python_Ch08.indd 238 9/24/2020 12:27:01 PM

Trees • 239

Step 3: IF(ROOT . INFO > VALUE)
 INSERT(ROOT . LCHILD, VALUE)
 ELSE
 INSERT(ROOT . RCHILD, VALUE)
 [End of IF]
Step 4: END

In the previous algorithm, we check whether the tree is empty. If the tree
is empty, then we allocate memory for the ROOT node. In Step 3, we check
whether the key value to be inserted is less than the value stored at the cur-
rent node; if so, we simply insert the new node in the left sub-tree. Otherwise,
the new child node is inserted in the right sub-tree.

For Example – We have been given a binary search tree. Now, insert a
new node with the value 7 in the binary search tree.

Initially, the binary search tree is given as

FIGURE 8.16(a)

Step 1: First, we check whether the tree is empty, so we check the root node.
As the root node is not empty, we begin the insertion process.

FIGURE 8.16(b)

Data Structures and Program Design Using Python_Ch08.indd 239 9/24/2020 12:27:01 PM

240 • Data Structures and Program Design Using Python

Step 2: Second, we know that 7 < 41; thus, we traverse the left sub-tree to
insert the new node.

FIGURE 8.16(C)

Step 3: Third, we know that 7 < 10; thus, we again traverse the left sub-tree
to insert the new node.

FIGURE 8.16(d)

Step 4: Now, we know that 7 > 3, thus the new node with value 7 is inserted
as the right child of the parent node 3.

FIGURE 8.16  Inserting a new node with value 7 in the binary search tree

Finally, the new node with the value 7 is inserted as a right child in the
binary search tree.

Data Structures and Program Design Using Python_Ch08.indd 240 9/24/2020 12:27:01 PM

Trees • 241

3.	 Deleting a node/key from a binary search tree – Deleting a node/key
from a binary search tree is the most crucial process. We should be care-
ful when performing the deletion operation; while deleting the nodes, we
must be sure that the property of the binary search tree is not violated so
that we don’t lose the necessary nodes during this process. The deletion
operation is divided into three cases.

Case 1: Deleting a Node Having No Children

This is the simplest case of deletion, as we can directly remove or delete a
node that has no children. Look at the binary search tree given in Figure 8.17
and see how the deletion is done in this case.

For Example – We have been given a binary search tree. Now, delete a
node with the value 61 from the binary search tree.

Initially the binary search tree is given as shown in Figure 8.17(a).

FIGURE 8.17(a)

Step 1: First, we check whether the tree is empty by checking the root node.

FIGURE 8.17(b)

Step 2: Second, as the root node is present, we compare the value to be
deleted with the value stored at the current node. As 61 > 24, we recursively
traverse the right sub-tree.

FIGURE 8.17(c)

Data Structures and Program Design Using Python_Ch08.indd 241 9/24/2020 12:27:02 PM

242 • Data Structures and Program Design Using Python

Step 3: Again, we compare the value to be deleted with the value stored at
the current node. As 61 > 42, we recursively traverse the right sub-tree.

FIGURE 8.17(d)

Step 4: Finally, a node having value 61 is deleted from the binary search tree.

FIGURE 8.17  Deleting the node with value 61 from the binary search tree

Case 2: Deleting a Node Having One Child

In this case of deletion, the node that is to be deleted, the parent node, is
simply replaced by its child node. Look at the binary search tree given in
Figure 8.18 and see how the deletion is done in this case.

For Example – We have been given a binary search tree. Now, delete a
node with the value 10 from the binary search tree.

Initially the binary search tree is given as

FIGURE 8.18(a)

Data Structures and Program Design Using Python_Ch08.indd 242 9/24/2020 12:27:02 PM

Trees • 243

Step 1: First, we check whether the tree is empty by checking the root node.

FIGURE 8.18(b)

Step 2: Second, as the root node is present, we compare the value to be
deleted with the value stored at the current node. As 10 < 24, we recursively
traverse the left sub-tree.

FIGURE 8.18(c)

Step 3: Now, as the node to be deleted is found and has one child, the node to
be deleted is replaced by its child node, and the actual node is deleted.

FIGURE 8.18  Deleting the node with value 10 from the binary search tree

Case 3: Deleting a Node Having Two Children

In this case, the node that is to be deleted is simply replaced by its in-order
predecessor, that is, the largest value in the left sub-tree, or by its in-order
successor, that is, the smallest value in the right sub-tree. The in-order prede-
cessor or in-order successor can be deleted using any of the two cases. Look
at the binary search tree shown in Figure 8.19 and see how the deletion takes
place in this case.

Data Structures and Program Design Using Python_Ch08.indd 243 9/24/2020 12:27:02 PM

244 • Data Structures and Program Design Using Python

Now, let us discuss the algorithm for deleting a node from a binary
search tree.

For Example – We have been given a binary search tree. Now, delete a
node with the value 42 from the binary search tree.

Initially, the binary search tree is given as

FIGURE 8.19(a)

Step 1: First, we check whether the tree is empty or not by checking the root
node.

FIGURE 8.19(b)

Step 2: Second, as the root node is present, we compare the value to be
deleted with the value stored at the current node. As 42 <>24, we recursively
traverse the right sub-tree.

FIGURE 8.19(c)

Data Structures and Program Design Using Python_Ch08.indd 244 9/24/2020 12:27:02 PM

Trees • 245

Step 3: As the node to be deleted is found
and has two children, now we find the in-
order predecessor of the current node (42)
and replace the current node with its in-
order predecessor so that the actual node 42
is deleted.

Algorithm for Deleting a Node/Key from a Binary Search Tree

DELETE_NODE(ROOT, VALUE)

Step 1: START
Step 2: IF(ROOT == NULL)
 Print "Error"
 [End of IF]
Step 3: IF(ROOT . INFO > VALUE)
 DELETE_NODE(ROOT . LCHILD, VALUE)
 ELSE IF(ROOT . INFO < VALUE)
 DELETE_NODE(ROOT . RCHILD, VALUE)
 ELSE IF(ROOT . LCHILD = NULL & ROOT . RCHILD = NULL)
 FREE(ROOT)
 ELSE
 IF(ROOT . LCHILD & ROOT . RCHILD)
TEMP = FIND_LARGEST(ROOT . LCHILD)
 OR
 TEMP = FIND_SMALLEST(ROOT . RCHILD)
 Set ROOT . INFO = TEMP . INFO
 FREE(TEMP)
 ELSE
 IF(ROOT . LCHILD != NULL)
 Set TEMP = ROOT . LCHILD
 Set ROOT . INFO = TEMP . INFO
 FREE(TEMP)
 ELSE
 Set TEMP = ROOT . RCHILD
 Set ROOT . INFO = TEMP . INFO
 FREE(TEMP)
 [End of IF]
 [End of IF]
[End of IF]
Step 4: END

In the previous algorithm, we check whether the tree is empty. If the tree
is empty, then the node to be deleted is not present. Otherwise, if the tree
is not empty, we check whether the node/value to be deleted is less than the

FIGURE 8.19  Deleting the node with
the value 42 from the binary search tree

Data Structures and Program Design Using Python_Ch08.indd 245 9/24/2020 12:27:02 PM

246 • Data Structures and Program Design Using Python

value stored at the current node. If the value to be deleted is less, then we
recursively call the left sub-tree. If the value to be deleted is greater than the
value stored at the current node, then we recursively call the right sub-tree.
Now, if the node to be deleted has no children, then the node is simply freed.
If the node to be deleted has two children, that is, both a left and right child,
then we find the in-order predecessor by calling (TEMP = FIND_LARGEST(ROOT .
LCHILD) or in-order successor by calling (TEMP = FIND_SMALLEST(ROOT .
RCHILD) and replace the value stored at the current node with that of the
in-order predecessor or in-order successor. Then, we simply delete the initial
node of either the in-order predecessor or in-order successor. Finally, if the
node to be deleted has only one child, the value stored at the current node is
replaced by its child node and the child node is deleted.

4.	 Deleting the entire binary search tree – It is very easy to delete the
entire binary search tree. First, we delete all the nodes present in the left
sub-trees followed by the nodes present in the right sub-tree. Finally, the
root node is deleted, and the entire tree is deleted.

Algorithm for Deleting an Entire Binary Search Tree

DELETE_BST(ROOT)

Step 1: START
Step 2: IF(ROOT != NULL)
 DELETE_BST(ROOT . LCHILD)
 DELETE_BST(ROOT . RCHILD)
 FREE(ROOT)
 [End of IF]
Step 3: END

5.	 Finding the mirror image of a binary search tree – This is an excit-
ing operation to perform in a binary search tree. The mirror image of the
binary search tree means interchanging the right sub-tree with the left
sub-tree at each and every node of the tree.

FIGURE 8.20  A binary search tree and its mirror image

Data Structures and Program Design Using Python_Ch08.indd 246 9/24/2020 12:27:03 PM

Trees • 247

Algorithm for Finding the Mirror Image of a Binary Search Tree

MIRROR_IMAGE(ROOT)

Step 1: START
Step 2: IF(ROOT != NULL)
 MIRROR_IMAGE(ROOT . LCHILD)
 MIRROR_IMAGR(ROOT . RCHILD)
 Set TEMP = ROOT . LEFT
 ROOT . LEFT = ROOT . RIGHT
 Set ROOT . RIGHT = TEMP
 [End of IF]
Step 3: END

6.	 Finding the smallest node in the binary search tree – We know that
it is the basic property of the binary search tree that the smallest value
always occurs in the extreme left of the left sub-tree. If there is no left
sub-tree, then the value of the root node will be the smallest. Hence, to
find the smallest value in the binary search tree, we simply find the value
of the node present at the extreme left of the left sub-tree.

Algorithm for Finding the Smallest Node in a Binary Search Tree

SMALLEST_VALUE(ROOT)

Step 1: START
Step 2: IF(ROOT = NULL OR ROOT . LCHILD = NULL)
 Return NULL
 ELSE
 Return SMALLEST_VALUE(ROOT)
 [End of IF]
Step 3: END

7.	 Finding the largest node in a binary search tree – We know that it is
the basic property of the binary search tree that the largest value always
occurs in the extreme right of the right sub-tree. If there is no right sub-
tree, the value of the root node will be the largest. Hence, to find the
largest value in a binary search tree, we simply find the value of the node
present at the extreme right of the right sub-tree.

Data Structures and Program Design Using Python_Ch08.indd 247 9/24/2020 12:27:03 PM

248 • Data Structures and Program Design Using Python

Algorithm for Finding the Largest Node in a Binary Search Tree

LARGEST_VALUE(ROOT)

Step 1: START
Step 2: IF(ROOT = NULL OR ROOT . RCHILD = NULL)
 Return NULL
 ELSE
 Return LARGEST_VALUE(ROOT)
 [End of IF]
Step 3: END

8.	 Determining the height of a binary search tree – The height of a
binary search tree can easily be determined. We first calculate the heights
of the left sub-tree and the right sub-tree. If that height is greater, 1 is
added to that height; that is, if the height of the left sub-tree is greater,
then 1 is added to the height of the left sub-tree. Similarly, if the height
of the right sub-tree is greater, then 1 is added to the height of the right
sub-tree.

Algorithm for Determining the Height of a Binary Search Tree

CALCULATE_HEIGHT(ROOT)
Step 1: START
Step 2: IF ROOT = NULL
 Print "Can’t find height of the tree."
 ELSE
 Set LHEIGHT = CALCULATE_HEIGHT(ROOT . LCHILD)
 Set RHEIGHT = CALCULATE_HEIGHT(ROOT . RCHILD)
 IF(LHEIGHT < RHEIGHT)
Return (RHEIGHT) + 1
 ELSE
 Return (LHEIGHT) + 1
 [End of IF]
 [End of IF]
Step 3: END

8.4.2	Binary Tree Traversal Methods

Traversing is the process of visiting each node in the tree exactly once in a par-
ticular order. We know that a tree is a non-linear data structure, and therefore
a tree can be traversed in various ways. There are three types of traversals:

●● Pre-Order Traversal
●● In-Order Traversal
●● Post-Order Traversal

Data Structures and Program Design Using Python_Ch08.indd 248 9/24/2020 12:27:03 PM

Trees • 249

Pre-Order Traversal

In pre-order traversal, the following operations are performed recursively at
each node:

1.	 Visit the root node.

2.	 Traverse the left sub-tree.

3.	 Traverse the right sub-tree.

The word “pre” in pre-order determines that
the root node is accessed before accessing any
other node in the tree. Hence, it is also known as a
DLR traversal, that is, Data Left Right. Therefore,
in a DLR traversal, the root node is accessed first,
followed by the left sub-tree and right sub-tree.
Now, let us see an example of pre-order traversal.

For Example – Find the pre-order traversal of
the given binary tree of the word EDUCATION.

The pre-order traversal of the previous binary
tree is

E D C A U T I O N

Now, let us look at the function for pre-order traversal.

Function for Pre-Order Traversal

A function to do preorder tree traversal
def printPreorder(root):

 if root:

 # First print the data of node
 print(root.val),

 # Then recur on left child
 printPreorder(root.left)

 # Finally recur on right child
 printPreorder(root.right)

Data Structures and Program Design Using Python_Ch08.indd 249 9/24/2020 12:27:03 PM

250 • Data Structures and Program Design Using Python

In-Order Traversal

In in-order traversal, the following operations are performed recursively at
each node:

1.	 Traverse the left sub-tree.

2.	 Visit the root node.

3.	 Traverse the right sub-tree.

The word “in” in “in-order” determines that the
root node is accessed in between the left and the
right sub-trees. Hence, it is also known as an LDR
traversal, that is, Left Data Right. Therefore, in an
LDR traversal, the left sub-tree is traversed first fol-
lowed by the root node and the right sub-tree. Now,
let us see an example of an in-order traversal.

For Example – Find the in-order traversal of
the given binary tree of the word EDUCATION.

The in-order traversal of the previous binary tree is as follows:

A C D E I N O T U

Now, let us look at the function for an in-order traversal.

Function for an In-Order Traversal

A function to do inorder tree traversal
def printInorder(root):

 if root:

 # First recur on left child
 printInorder(root.left)

 # then print the data of node
 print(root.val),

 # now recur on right child
 printInorder(root.right)

Data Structures and Program Design Using Python_Ch08.indd 250 9/24/2020 12:27:03 PM

Trees • 251

Post-Order Traversal

In a post-order traversal, the following operations are performed recursively
at each node:

1.	 Traverse the left sub-tree

2.	 Traverse the right sub-tree

3.	 Visit the root node

The word “post” in post-order determines that
the root node will be accessed last after the left and
the right sub-trees. Hence, it is also known as an
LRD traversal, that is, Left Right Data. Therefore,
in an LRD traversal, the left sub-tree is traversed
first followed by the right sub-tree and the root
node. Now, let us see an example for a post-order
traversal.

For Example – Find the post-order traversal
of the given binary tree of the word EDUCATION.

The post-order traversal of the previous binary tree is as follows:

A C D N O I T U E

Now, let us look at the function of the post-order traversal.

Function for Post-Order Traversal

A function to do postorder tree traversal
def printPostorder(root):

 if root:

 # First recur on left child
 printPostorder(root.left)

 # the recur on right child
 printPostorder(root.right)

 # now print the data of node
 print(root.val)

Data Structures and Program Design Using Python_Ch08.indd 251 9/24/2020 12:27:03 PM

252 • Data Structures and Program Design Using Python

Here is a program to create a binary search tree and perform different
operations on it.

The output of the program is as follows:

Data Structures and Program Design Using Python_Ch08.indd 252 9/24/2020 12:27:04 PM

Trees • 253

8.4.3	Creating a Binary Tree Using Traversal Methods

A binary tree can be constructed if we are given at least two of the traversal
results, provided that one traversal is always an in-order traversal and the sec-
ond is either a pre-order traversal or a post-order traversal. An in-order tra-
versal determines the left and right child nodes of the binary tree. A pre-order
or post-order traversal determines the root node of the binary tree. Hence,
there are two different ways of creating a binary tree:

1.	 In-order and pre-order traversal

2.	 In-order and post-order traversal

Now, we have pre-order and in-order traversal sequences. Then, the fol-
lowing steps are followed to construct a binary tree:

Step 1: The pre-order traversing sequence is used to determine the root
node of the binary tree. The first node in the pre-order sequence is the root node.

Step 2: The in-order traversing sequence is used to determine the left and
the right sub-trees of the binary tree. Keys toward the left side of the root node
in the in-order sequence form the left sub-tree. Similarly, keys toward the
right side of the root node in the in-order sequence form the right sub-tree.

Step 3: Each element from the pre-order traversing sequence is recur-
sively selected and the left and the right sub-trees are created from the in-
order traversing sequence.

For Example – Create a binary tree from the given traversing sequences.

In-order – A C D E I N O T U
Pre-order – E DCAU T I O N

Now, we construct the binary tree.

1.	 The first node in the pre-order sequence is the root node of the tree.
Hence, E is the root node of the binary tree.

2.	 Now, we can easily determine the left and right sub-trees from the in-
order sequence. Keys toward the left side of the root node, that is, A, C,
and D, form the left sub-tree. Similarly, elements on the right side of the
root node, that is, I, N, O, T, and U, form the right sub-tree.

Data Structures and Program Design Using Python_Ch08.indd 253 9/24/2020 12:27:04 PM

254 • Data Structures and Program Design Using Python

3.	 Now, the left child of the root node is the first node in the pre-order
traversing sequence after the root node E. Thus, D is the left child of the
root node E.

4.	 Similarly, the right child of the root node is the first node in the pre-order
traversing sequence after the nodes of the left sub-tree. Thus, U is the
right child of the root node E.

5.	 In the in-order sequence, A and C are on the left side of D. So, A and C
form the left sub-tree of D.

Data Structures and Program Design Using Python_Ch08.indd 254 9/24/2020 12:27:04 PM

Trees • 255

6.	 The next elements in the pre-order sequence are T and I. In the in-order
sequence, T and I are on the left side of U. So, T and I form the left sub-
tree of U.

7.	 The next element in the pre-order sequence is O. In the in-order sequence,
O is on the right side of I. So, O forms the right sub-tree of I. The last
element in the pre-order sequence is N. N is on the left side of O in the
in-order sequence. Thus, N forms the left sub-tree of O.

Finally, the binary tree is created from the given traversing sequences.

Data Structures and Program Design Using Python_Ch08.indd 255 9/24/2020 12:27:04 PM

256 • Data Structures and Program Design Using Python

Frequently Asked Questions

Q. Create a binary tree from the given traversing sequences.

In-order – d b e a f c g

Pre-order – a b d e c f g

Answer:

Step 1: a is the root node of the binary tree.

Step 2: d, b, and e are on the left side of the a node in the in-order sequence.
Hence, d, b, and e are the left sub-trees of root a. Node d is the left sub-tree
of b, and e is the right sub-tree of b.

Step 3: f, c, and g are on the right side of root a in the in-order sequence.
Hence, f, c, and g are the right sub-trees of root a. Node f is the left sub-tree
of c and g is the right sub-tree of c.

8.5	 AVL TREES

The AVL tree was invented by Adelson-Velski and Landis in 1962. The AVL
tree is so named in honor of its inventors. The AVL tree was the first balanced

Data Structures and Program Design Using Python_Ch08.indd 256 9/24/2020 12:27:04 PM

Trees • 257

binary search tree. It is a self-balancing binary search tree. The AVL tree is
also known as a height-balanced tree because of its property that the heights
of the two sub-trees of a node can differ at most by one. AVL trees are very
efficient in performing searching, insertion, and deletion operations, as they
take O(log n) time to perform all these operations.

8.5.1	Need for Height-Balanced Trees

AVL trees are very similar to binary search trees but with a small difference.
AVL trees have a special variable known as a balance factor associated with
them. Every node in the AVL tree has a balance factor associated with it. The
balance factor is determined by subtracting the height of the right sub-tree
from the height of the left sub-tree. Thus, a node with a balance factor of −1,
0, or 1 is said to be a height-balanced tree. The primary need for the height-
balanced tree is that the process of searching becomes very fast. This balanc-
ing condition also ensures that the depth of the tree is O(logn). The balance
factor is calculated as follows:

Balance Factor = Height(Left sub-tree) – Height(Right sub-tree)

●● If the balance factor of the tree is −1, it means that the height of the right
sub-tree of that node is one more than the height of the left sub-tree of
that node.

●● If the balance factor of the tree is 0, it means that the height of the left and
the right sub-trees of a node are equal.

●● If the balance factor of the tree is 1, it means that the height of the left
sub-tree of that node is one more than the height of its right sub-tree.

Thus, the overall benefit of the height-balanced tree is to assist in fast
searching.

FIGURE 8.21  A balanced AVL tree

Data Structures and Program Design Using Python_Ch08.indd 257 9/24/2020 12:27:04 PM

258 • Data Structures and Program Design Using Python

8.5.2	Operations on an AVL Tree

In this section, we discuss various operations that are performed on AVL
trees. These are as follows:
●● Searching a node in an AVL Tree
●● Inserting a new node in an AVL Tree

1.	 Searching a node in an AVL Tree

The process of searching a node in an AVL tree is the same as for a
binary search tree.

2.	 Inserting a new node in an AVL Tree

The process of inserting a new node in an AVL tree is quite similar
to that of binary search trees. The new node is always inserted as a
terminal/leaf node in the AVL tree. But the insertion of a new node
can disturb the balance of the AVL tree, as the balance factor may be
disturbed. Thus, for the tree to remain balanced, the insertion pro-
cess is followed by a rotation process. The rotation process is usually
done to restore the balance factor of the tree. If the balance factor of
each node is −1, 0, or 1 after the insertion process, then the rotation
is not required, as the tree is already balanced; otherwise, rotation is
required. Now, let us look at the given example and see how insertion
is done without rotations.
For Example – In the given AVL tree, insert a new node with value
60 in the tree.
Initially, the AVL tree is given as

FIGURE 8.22  The AVL tree before insertion

We insert 60 into the AVL tree.

Data Structures and Program Design Using Python_Ch08.indd 258 9/24/2020 12:27:04 PM

Trees • 259

FIGURE 8.23  The AVL tree after inserting 60

Hence, after insertion, there are no nodes in the tree that are unbal-
anced. Thus, there is no need to apply rotation here. However, now
we discuss how the rotation process is performed in AVL trees.

AVL Rotations

Rotation is done when the balance factor of the node becomes disturbed
after inserting a new node. We know that the new node that is inserted
will always have a balance factor of 0, as it is a leaf node. Hence, the nodes
whose balance factors will be disturbed are the ones that lie in the path
of the root node to the newly inserted node. So, we perform the rotation
process only on those nodes whose balance factors will be disturbed. In the
rotation process, our first work is to find the critical node in the AVL tree.
The critical node is the nearest ancestor node from the newly inserted node
to the root node that does not have a balance factor of −1, 0, or 1. First, let
us understand the concept of the critical node with the help of an example.

For Example – Find the critical node in the given AVL tree.
Initially, the AVL tree is given as follows:

FIGURE 8.24  An AVL tree

Data Structures and Program Design Using Python_Ch08.indd 259 9/24/2020 12:27:05 PM

260 • Data Structures and Program Design Using Python

We insert a new node with value 42 in
the tree.

After inserting 42 in the AVL tree,
we can see that there are three nodes in
the tree that have balance factors equal
to −2, 2, and 2. Now, the critical node is
the one that is the nearest to the newly
inserted node with a disturbed balance
factor. We can see that 50 is the nearest
node to 42, and 50 has a balance factor
of 2. Thus, 50 is the critical node in this
AVL tree. However, to restore the bal-
ance factor of the previous AVL tree,
rotations are performed. There are four
types of rotations:

1.	 Left-Left Rotation (LL Rotation) – A new node is inserted in the left
sub-tree of the left sub-tree of the critical node.

2.	 Right-Right Rotation (RR Rotation) – A new node is inserted in the
right sub-tree of the right sub-tree of the critical node.

3.	 Right-Left Rotation (RL Rotation) – A new node is inserted in the left
sub-tree of the right sub-tree of the critical node.

4.	 Left-Right Rotation (LR Rotation) – A new node is inserted in the
right sub-tree of the left sub-tree of critical node.

LL Rotation

The LL rotation is also known as the Left-Left rotation, as the new node is
inserted in the left sub-tree of the left sub-tree of the critical node. It is a sin-
gle rotation. Let us take an example and perform an LL rotation in it.

For Example –
Initially, the AVL tree is given as

FIGURE 8.26(a)

FIGURE 8.25  The AVL tree

Data Structures and Program Design Using Python_Ch08.indd 260 9/24/2020 12:27:05 PM

Trees • 261

Insert new node 5 in the AVL tree.

FIGURE 8.26(b)

After inserting 5 in the AVL tree, the balance factor of 25 is disturbed.
Thus, 25 is the critical node. Hence, we apply the LL rotation to restore the
balance factor of the tree. After rotation node 12 becomes the root node, node
5 and node 25 become the left and the right child of the tree, respectively.

FIGURE 8.26  Showing an LL rotation in an AVL tree

Therefore, the LL rotation is performed, and the balance factor of each
node is also restored.

RR Rotation

The RR rotation is also known as a Right-Right rotation, as the new node is
inserted in the right sub-tree of the right sub-tree of the critical node. It is
also a single rotation. Let us take an example and perform an RR rotation in it.

For Example –
Initially the AVL tree is given as follows:

FIGURE 8.27(a)

Data Structures and Program Design Using Python_Ch08.indd 261 9/24/2020 12:27:05 PM

262 • Data Structures and Program Design Using Python

Insert new node 25 in the AVL tree.

FIGURE 8.27(b)

After inserting 25 in the AVL tree, the balance factor of 5 is disturbed.
Thus, 5 is the critical node. Hence, here we apply an RR rotation to restore
the balance factor of the tree. After rotation node 12 becomes the root
node, node 5 and node 25 become the left and the right child of the tree,
respectively.

FIGURE 8.27  Showing an RR rotation in an AVL tree

Therefore, the RR rotation is performed, and the balance factor of each
node is also restored.

RL Rotation

The RL rotation is also known as a Right-Left rotation, as the new node is
inserted in the left sub-tree of the right sub-tree of the critical node. It is a
double rotation. Let us take an example and perform an RL rotation in it.

For Example –
Initially, the AVL tree is given as follows:

FIGURE 8.28(a)

Data Structures and Program Design Using Python_Ch08.indd 262 9/24/2020 12:27:05 PM

Trees • 263

Insert new node 15 in the AVL tree.

FIGURE 8.28(b)

After inserting 15 in the AVL tree, the balance factor of 12 is disturbed.
Thus, 12 is the critical node. Hence, here we apply an RL rotation to restore
the balance factor of the tree. After rotation node 15 becomes the root
node, node 12 and node 25 become the left and the right child of the tree,
respectively.

FIGURE 8.28  Showing an RL rotation in an AVL tree

Therefore, the RL rotation is performed, and the balance factor of each
node is also restored.

LR Rotation

The LR rotation is also known as a Left-Right rotation, as the new node is
inserted in the right sub-tree of the left sub-tree of the critical node. It is also
a double rotation. Let us take an example and perform an LR rotation in it.

For Example –
Initially, the AVL tree is given as follows:

FIGURE 8.29(a)

Data Structures and Program Design Using Python_Ch08.indd 263 9/24/2020 12:27:05 PM

264 • Data Structures and Program Design Using Python

Insert new node 15 in the AVL tree.

FIGURE 8.29(b)

After inserting 15 in the AVL tree, the balance factor of 25 is disturbed.
Thus, 25 is the critical node. Hence, here we apply an LR rotation to restore the
balance factor of the tree. After rotation node 15 becomes the root node, and
node 12 and node 25 become the left and the right child of the tree, respectively.

FIGURE 8.29  Showing an LR rotation in an AVL tree

Therefore, an LR rotation is performed, and the balance factor of each
node is also restored.

Frequently Asked Questions

Q. Create an AVL tree by inserting the following elements.

60, 10, 20, 30, 19, 120, 100, 80, 19

Answer:

Step 1: Insert 60.

Step 2: Insert 10. No rebalancing is required.

Data Structures and Program Design Using Python_Ch08.indd 264 9/24/2020 12:27:05 PM

Trees • 265

Step 3: Insert 20. Now, rebalancing is required. We perform the LR rotation.

Step 4: After performing the LR rotation, the AVL tree is given as

Step 5: Insert 30. No rebalancing is required.

Step 6: Insert 19. No rebalancing is required.

Data Structures and Program Design Using Python_Ch08.indd 265 9/24/2020 12:27:05 PM

266 • Data Structures and Program Design Using Python

Step 7: Insert 120. No rebalancing is required.

Step 8: Insert 100. No rebalancing is required.

Step 9: Insert 80. Now, rebalancing is required. We perform the LL rotation.

Data Structures and Program Design Using Python_Ch08.indd 266 9/24/2020 12:27:05 PM

Trees • 267

Step 10: After performing the LL rotation, the AVL tree is given as

Step 11: Insert 19. Now, rebalancing is required. We perform the RR rotation.

Step 12: After performing RR rotation, the AVL tree becomes

Data Structures and Program Design Using Python_Ch08.indd 267 9/24/2020 12:27:06 PM

268 • Data Structures and Program Design Using Python

8.6	 SUMMARY

●● A tree is defined as a collection of one or more nodes where one node is
designated as a root node, and the remaining nodes can be partitioned
into the left and the right sub-trees. It is used to store hierarchical data.

●● The root node is the topmost node of the tree. It does not have a parent
node. If the root node is empty, then the tree is empty. A leaf node is one
that does not have any child nodes.

●● A path is a unique sequence of consecutive edges that is required to be
followed to reach the destination from a given source.

●● The degree of a node is equal to the number of children that a node has.
●● A binary tree is a collection of nodes where each node contains three

parts, that is, a left child, a right child, and the data item. A binary tree can
have at most 2 children; that is, a parent can have either 0, 1, or 2 children.

●● There are two types of binary trees, that is, complete binary trees and
extended binary trees.

●● In a complete binary tree, every level except the last one must be com-
pletely filled. All the nodes in the complete binary tree must appear left
as much as possible.

●● Extended binary trees are also known as 2T-trees. A binary tree is said to
be an extended binary tree if and only if every node in the binary tree has
either 0 children or 2 children.

●● Binary trees can be represented in the memory in two ways, as an array
representation of binary trees and a linked representation of binary trees.
Array representation, also known as sequential representation, of binary
trees is done using one-dimensional (1D) arrays. The linked representa-
tion of binary trees is done using linked lists.

●● A Binary Search Tree (BST) is a variant of a binary tree in that all the nodes
in the left sub-tree have a value less than that of a root node. Similarly, all
the nodes in the right sub-tree have a value more than that of a root node.
It is also known as an ordered binary tree.

●● The search operation is one of the most common operations performed
in a binary search tree. This operation is performed to find whether a
particular key exists in the tree.

●● An insertion operation is performed to insert a new node with the given
value in a binary search tree.

●● The mirror image of a binary search tree means interchanging the right
sub-tree with the left sub-tree at every node of the tree.

●● Traversing is the process of visiting each node in the tree exactly once in
a particular order. A tree can be traversed in various ways, via pre-order
traversal, in-order traversal, and post-order traversal.

Data Structures and Program Design Using Python_Ch08.indd 268 9/24/2020 12:27:06 PM

Trees • 269

●● The word “pre” in “pre-order” determines that the root node is accessed
before accessing any other node in the tree. Hence, it is also known as a
DLR traversal, that is, Data Left Right.

●● The word “in” in “in-order” determines that the root node is accessed in
between the left and the right sub-trees. Hence, it is also known as an
LDR traversal, that is, Left Data Right.

●● The word “post” in “post-order” determines that the root node will be
accessed last after the left and the right sub-trees. Hence, it is also known
as an LRD traversal, that is, Left Right Data.

●● A binary tree can be constructed if we are given at least two of the traversal
results, provided that one traversal should always be an in-order traversal
and the second can be either a pre-order traversal or post-order traversal.

●● An AVL is a self-balancing binary search tree. Every node in the AVL tree has
a balance factor associated with it. The balance factor is calculated by subtract-
ing the height of the right sub-tree from the height of the left sub-tree. Thus,
a node with a balance factor of −1, 0, or 1 is said to be a height-balanced tree.

8.7	 EXERCISES

8.7.1 Theory Questions

Q1.	 What is a tree? Discuss its various applications.

Q2.	 Differentiate between height and level in a tree.

Q3.	 Explain the concept of binary trees.

Q4.	 In what ways can a binary tree be represented in the computer’s memory?

Q5.	 What is meant by a binary search tree?

Q6.	 List the various operations performed on binary search trees.

Q7.	 How can a node be deleted from a binary search tree? Discuss all the
cases in detail with examples.

Q8.	 Create a binary search tree by inserting the following keys – 76, 12, 56,
31, 199, 17, 40, 76, 75. Also, find the height of the binary search tree.

Q9.	 Create a binary search tree by performing following operations:

(i.)	 Insert 50, 34, 23, 87, 100, 67, 43, 51, 18, and 95.
(ii.)	 Delete 100, 34 and 95, 50 from the binary search tree.
(iii.)	 Find the smallest value in the binary search tree.

Q10.	 How can we find the mirror image of a binary search tree?

Q11.	 List the various traversal methods of a binary tree.

Q12.	 What do you understand about an AVL tree?

Data Structures and Program Design Using Python_Ch08.indd 269 9/24/2020 12:27:06 PM

270 • Data Structures and Program Design Using Python

Q13.	 Explain the concept of the balance factor in AVL trees.

Q14.	 List the advantages of an AVL tree.

Q15.	 Consider the following binary search tree and perform the following
operations:

(i.)	 Find the pre-order and post-order traversals of the tree.
(ii.)	 Insert 25, 32, 50, 75, and 87 in the tree.
(iii.)	 Find the largest value in the tree.
(iv.)	 Delete the root node.

Q16.	 Give the linked representation of the given binary search tree.

Q17.	 Construct a binary search tree of the word VIVEKANANDA. Find
its pre-order, in-order, and post-order traversal.

Q18.	 Create an AVL tree by inserting the following keys, 50, 19, 59, 90,
100, 12, 10, and 150, into the tree.

Q19.	 Consider the following AVL search tree and perform various
operations in it:

(i.)	 Insert 100, 58, 93, 40, and 7 into the tree.
(ii.)	 Search for 93 in the AVL tree.

Data Structures and Program Design Using Python_Ch08.indd 270 9/24/2020 12:27:06 PM

Trees • 271

Q20.	 Discuss the various types of rotations performed in AVL trees.

Q21.	 Which of the following is better and why?

(i.)	 AVL trees

(ii.)	 Binary search trees

Q22.	 Consider the following tree and identify the following aspects of it:

(i.)	 Determine the height of the tree.
(ii.)	 Name the leaf nodes.
(iii.)	 Siblings of C.
(iv.)	 Level number of the node J.
(v.)	 Root node of the tree.
(vi.)	 Left and right sub-trees.
(vii.)	 Depth of the tree.
(viii.)	Ancestors of E.
(ix.)	 Descendants of H.
(x.)	 Path from node A to F.

8.7.2	Programming Questions

Q1.	 Write a function to find the height of a binary search tree.

Q2.	 Write a Python program to insert and delete nodes from a binary
search tree.

Q3.	 Write a Python program to show insertion in AVL trees using classes.

Q4.	 Write a function to calculate the total number of nodes in a tree.

Q5.	 Write a Python program to traverse a binary search tree showing all
the traversal methods using classes.

Data Structures and Program Design Using Python_Ch08.indd 271 9/24/2020 12:27:06 PM

272 • Data Structures and Program Design Using Python

Q6.	 Write a function to find the largest value in a binary search tree.

Q7.	 Write an algorithm showing the post-order traversal of a binary
search tree.

Q8.	 Write an algorithm to find the total number of internal nodes in a
binary search tree.

Q9.	 Write a function to search for a node in a binary search tree.

8.7.3	Multiple Choice Questions

Q1.	 The maximum height of a binary tree with n number of nodes is ______.

a.	 0

b.	 n

c.	 n+1

d.	 n−1

Q2.	 The degree of a terminal node is always ______.

a.	 1

b.	 2

c.	 0

d.	 3

Q3.	 A binary tree is a tree in that ______.

a.	 Every node must have two children

b.	 Every node must have at least two children

c.	 No node can have more than two children

d.	 All of these

Q4.	 What is the post-order traversal of the binary search tree having
pre-order traversal as DBAEFGCH and in-order traversal as
BEAFDCHG?

a.	 EFBAHGCD

b.	 EFBAHCGD

c.	 EFABHGCD

d.	 EFABHCGD

Data Structures and Program Design Using Python_Ch08.indd 272 9/24/2020 12:27:06 PM

Trees • 273

Q5.	 How many rotations are required during the construction of an AVL
tree if the following keys are to be added in the order given?
36, 51, 39, 24, 29, 60, 79, 20, 28

a.	 3 Left rotations, 3 Right rotations

b.	 2 Left rotations, 2 Right rotations

c.	 2 Left rotations, 3 Right rotations

d.	 3 Left rotations, 2 Right rotations

Q6.	 A binary tree of height h has at least h nodes and at most ______ nodes.

a.	 2

b.	 2h

c.	 2h – 1

d.	 2h + 1

Q7.	 How many distinct binary search trees can be created out of four
distinct keys?

a.	 5

b.	 12

c.	 14

d.	 23

Q8.	 Nodes at the same level that also share same parent are called ________.

a.	 Cousins

b.	 Siblings

c.	 Ancestors

d.	 Descendants

Q9.	 The balance factor of a node is calculated by _______.

a.	 HeightLeft sub-tree – HeightRight sub-tree

b.	 HeightRight sub-tree – HeightLeft sub-tree

c.	 HeightLeft sub-tree + HeightRight sub-tree

d.	 HeightRight sub-tree + HeightLeft sub-tree

Data Structures and Program Design Using Python_Ch08.indd 273 9/24/2020 12:27:06 PM

274 • Data Structures and Program Design Using Python

Q10.	 The following sequence is inserted into an empty binary search tree:
6 11 26 12 5 7 16 8 35
What is the type of traversal given by the following numbers?
6 5 11 7 26 8 12 35 16

a.	 Pre-order traversal		 b.   In-order traversal

c.	 Post-order traversal		 d.   None of these

Q11.	 In tree creation, which one will be the most suitable and effective
data structure?

a.	 Stack				 b.   Linked list

c.	 Queue				 d.   Array

Q12.	 A binary tree can be represented as

a.	 Linked List			 b.   Arrays

c.	 Both of the above		 d.   None of the above

Q13.	 A binary tree of n nodes has exactly n+1 edges.

a.	 True

b.	 False

c.	 Not possible to comment

Q14.	 The in-order traversal of a tree will yield a sorted listing of the
elements of trees in

a.	 Binary heaps			 b.   Binary trees

c.	 Binary search trees		 d.   All of these

Q15.	 What is the nearest ancestor node on the path from the root node to
the newly inserted node of the AVL tree having balance factor −1, 0,
or 1?

a.	 Parent node			 b.   Child node

c.	 Root node			 d.   Critical node

Data Structures and Program Design Using Python_Ch08.indd 274 9/24/2020 12:27:06 PM

C H A P T E R 9
MULTI-WAY SEARCH TREES

9.1	 INTRODUCTION

We studied binary search trees and discussed that every node in a binary search
tree contains three parts: an information part, LEFT child, and RIGHT child
that stores the address to the left and right sub-trees. The same concept is
used for multi-way search trees. An M-way search tree is a tree that contains
(M – 1) values per node. It also has M sub-trees. In an M-way search tree,
M is called the degree of the node. For example, if the value of M = 3 in an
M-way search tree, then the tree contains two values per node and it has
three sub-trees. When an M-way search tree is not empty, it has the following
properties:

1.	 Each node in an M-way search tree is of the following structure:

n P0 K0 P1 K1 P2 K2 _ _ _ _ _ _ Pn−1 Kn−1 Pn

�where P0, P1, P2, . . . Pn are the node’s sub-trees, and K0, K1, K2, . . . Kn are
the key values stored in the node.

2.	 The key values in a node are stored in ascending order, that is, Ki < Ki+1,
where i = 0, 1, 2, . . . n−2.

3.	 All the key values stored in the left subtree are always less than the root node.

4.	 All the key values stored in the right subtree are always greater than the
root node.

5.	 The sub-trees pointed to by Pi for i = 0, 1, 2, . . .n are also M-way search
trees.

Data Structures and Program Design Using Python_Ch09.indd 275 9/24/2020 12:27:31 PM

276 • Data Structures and Program Design Using Python

FIGURE 9.1  An M-way search tree of order 4

9.2	 B-TREES

A B-tree is a specialized multi-way tree that is widely used for disk access.
The B-tree was developed in 1970 by Rudolf Bayer and Ed McCreight. In a
B-tree, each node may contain a large number of keys. A B-tree is designed to
store a large number of keys in a single node so that the height remains rela-
tively small. A B-tree of order m has all the properties of a multi-way search
tree. In addition, it has the following properties:

1.	 All leaf nodes are at the bottom level or at the same level.

2.	 Every node in a B-tree can have at most m children.

3.	 The root node can have at least two children if it is not a leaf node, and it
can obviously have no children if it is a leaf node.

4.	 Each node in a B-tree can have at least (m/2) children except the root
node and the leaf node.

5.	 Each leaf node must contain at least ceil [(m/2) – 1] keys.

For example – A B-tree of order 5 can have at least ceil [5/2] = 3 children
and ceil [(5/2) – 1] = 2 keys. Obviously, the maximum number of children a
node can have is 5. Each leaf node must contain at least 2 keys.

Data Structures and Program Design Using Python_Ch09.indd 276 9/24/2020 12:27:31 PM

Multi-Way Search Trees • 277

FIGURE 9.2  A B-tree of order 4

Practical Application:

In database programs, the data is too large to fit in memory; therefore, it
is stored in the secondary storage, that is, tapes or disks.

9.3	 OPERATIONS ON A B-TREE

B-tree stores sorted data, and we can perform on it the following operations:

●● Inserting a new element in a B-tree
●● Deleting an element from a B-tree

9.3.1	Insertion in a B-Tree

Insertions in a B-tree are done at the leaf-node level. The following are the
steps for inserting an element in a B-tree:

Step 1 – In Step 1, we will search the B-tree to find the leaf node where
the new key is to be inserted.

Step 2 – Now, if the leaf node is full, that is, if it already contains (m – 1)
keys, then follow these steps:

i.	 Insert the new key into the existing set of keys in order.

ii.	 Now, the node is split into two halves.

iii.	 Finally, push the middle (median) element upward to its parent node. Also,
if the parent node is full, then split the parent node by following these steps.

Data Structures and Program Design Using Python_Ch09.indd 277 9/24/2020 12:27:32 PM

278 • Data Structures and Program Design Using Python

Step 3 – If the leaf node is not full, that is, if it contains (m – 1) keys, then
insert the new key into the node, keeping the elements of the node in order.

Frequently Asked Questions

Q. Construct a B-tree of order 5 and insert the following values
into it:

Values to be inserted – B, N, G, A, H, E, J, Q, M, D, V, L, T, Z

Answer:

1.	 Since order = 5, we can store at least 3 values and at most 4 values in
a single node. Hence, we insert B, N, G, and A into the B-tree in sorted
order.

FIGURE 9.3(a)

2.	 H is inserted between G and N, so the order is A B G H N. That is not pos-
sible, as at most 4 values can be accommodated in a single node. So now
we will split the node, and the middle element G becomes the root node.

FIGURE 9.3(b)

3.	 Now we insert E J and Q into the B-tree.

FIGURE 9.3(c)

Data Structures and Program Design Using Python_Ch09.indd 278 9/24/2020 12:27:32 PM

Multi-Way Search Trees • 279

4.	 M is to be inserted in the right subtree. But at most 4 values can be
stored in the node, so now we push the middle element, that is, M, into
the root node. Thus, the node is split into two halves.

FIGURE 9.3(d)

5.	 We insert D V L and T into the tree.

FIGURE 9.3(e)

6.	 Finally, Z is inserted. It is inserted in the right subtree. Hence, the last
node is split into two halves, and the middle element, that is, T, pushes
up to the root node.

FIGURE 9.3(f)

9.3.2	Deletion in a B-Tree

The deletion of keys in a B-tree requires traversal in the B-tree; that is, after
reaching a particular node, we can come across two cases:

Data Structures and Program Design Using Python_Ch09.indd 279 9/24/2020 12:27:32 PM

280 • Data Structures and Program Design Using Python

1.	 The node is a leaf node.

2.	 The node is not a leaf node.

1. The node is a leaf node.

If the node has more than a minimum number of keys, then deletion can be
done very easily. But if the node has a minimum number of keys, then first we
check the number of keys in the adjacent leaf node. If the number of keys in
the adjacent node is greater than the minimum number of keys, then the first
key of the adjacent leaf node goes to the parent node and the key present in
the parent node is combined in a single leaf node. If the parent node also has
less than the minimum number of keys, then the same steps are repeated until
we get a node that has more than the minimum number of keys present in it.

2. The node is not a leaf node.

In this case, the key from the node is deleted, and its place is occupied by
either its successor or predecessor key. If both predecessor and successor
nodes have keys less than the minimum number, then the keys of the succes-
sor and predecessor are combined.

For Example – Consider a B-tree of order 5.

FIGURE 9.4(a)

1.	 Delete J from the tree. J is in the leaf node, so it is simply deleted from
the B-tree.

Data Structures and Program Design Using Python_Ch09.indd 280 9/24/2020 12:27:33 PM

Multi-Way Search Trees • 281

FIGURE 9.4(b)

2.	 Now T is to be deleted, but it is not in the leaf node, so we replace T with
its successor, that is, W. Hence, T is deleted.

FIGURE 9.4(c)

3.	 Now delete R; in this case, we borrow keys from the adjacent leaf node.

FIGURE 9.4(d)

Data Structures and Program Design Using Python_Ch09.indd 281 9/24/2020 12:27:33 PM

282 • Data Structures and Program Design Using Python

4.	 Now we want to delete E. In this case, we also borrow keys from an adja-
cent node. But we can see that there are no free keys in an adjacent node,
so the leaf node has to be combined with one of its two siblings. This
includes moving down the parent’s key that was between those two leaves.

FIGURE 9.4(e)

�But we can see that H is still unstable according to the definition. There-
fore, the final tree after all deletions is as follows:

FIGURE 9.4(f)

Frequently Asked Questions

Q. Consider the following B-tree of order 5 and insert 81, 7, 49,
61, and 30 into it.

Data Structures and Program Design Using Python_Ch09.indd 282 9/24/2020 12:27:34 PM

Multi-Way Search Trees • 283

Answer:

1.	 Insert 81.

2.	 Insert 7 and 49.

3.	 Insert 61 and 30.

FIGURE 9.5  Insertion in a B-tree

Data Structures and Program Design Using Python_Ch09.indd 283 9/24/2020 12:27:34 PM

284 • Data Structures and Program Design Using Python

Frequently Asked Questions

Q. Consider the following B-tree of order 5 and delete the values
95, 200, 176, and 70 from it.

Answer:

1.	 Delete 95.

2.	 Delete 200.

Data Structures and Program Design Using Python_Ch09.indd 284 9/24/2020 12:27:34 PM

Multi-Way Search Trees • 285

3.	 Delete 176.

4.	 Delete 70.

FIGURE 9.6  Deletion in a B-tree

9.4	 APPLICATION OF A B-TREE

The main application of a B-tree is the organization of a large amount of data
or a huge collection of records into a file structure. A B-tree should search
the records very efficiently, and all the operations, such as insertion, deletion,
and searching, should be done very efficiently; therefore, the organization of
records should be very good.

9.5	 B+ TREES

A B+ tree is a variant of a B-tree that also stores sorted data like a B-tree.
The structure of a B-tree is the standard organization for indexes in database
systems. Multilevel indexing is done in a B+ tree; that is, leaf nodes consti-
tute a dense index, while non-leaf nodes constitute a sparse index. A B+ tree
is a slightly different data structure that allows sequential processing of data
and stores all the data in the lowest level of the tree. A B-tree can store both
records and keys in its interior nodes, while a B+ tree stores all the records in
its leaf nodes and the keys in its interior nodes. In a B+ tree, the leaf nodes are

Data Structures and Program Design Using Python_Ch09.indd 285 9/24/2020 12:27:34 PM

286 • Data Structures and Program Design Using Python

linked to one another like a linked list. A B+ tree is usually used to store large
amounts of data that cannot be stored in the primary memory. Hence, in a
B+ tree, the leaf nodes are stored in the secondary storage, while the internal
nodes are stored in the main memory.

In a B+ tree, all the internal nodes are called index nodes because they
store the index values. Similarly, all the external nodes are called data nodes
because they store the keys. A B+ tree is always balanced and is very efficient
for searching data, as all the data is stored in the leaf nodes. The advantages
of a B+ tree are as follows:

a.	 A B+ tree is always balanced, and the height of the tree always remains low.

b.	 All the leaf nodes are linked to one another, which makes it very efficient.

c.	 The leaf nodes are also linked to the nodes at an upper level; thus, it can
be easily used for a wide range of search queries.

d.	 The records can be fetched in an equal number of disk access.

e.	 The records can be accessed either sequentially or randomly.

f.	 Searching data is very simple, as all the information is stored only in the
leaf nodes.

g.	 Similarly, deletion is also very simple, as it only takes place in the leaf nodes.

FIGURE 9.7  B+ tree of order 3

9.6	 SUMMARY

●● An M-way search tree has M – 1 values per node and M sub-trees. M is
called the degree of the node.

●● A B-tree is a specialized multi-way tree that is widely used for disk access.
The B-tree was developed in 1970 by Rudolf Bayer and Ed McCreight.

Data Structures and Program Design Using Python_Ch09.indd 286 9/24/2020 12:27:35 PM

Multi-Way Search Trees • 287

●● A B-tree of order m has all the properties of a multi-way search tree.
●● The main application of a B-tree is the organization of a large amount of

data or a huge collection of records into a file structure.
●● A B+ tree is a variant of a B-tree that also stores sorted data like a B-tree.

The structure of a B-tree is the standard organization for indexes in database
systems. A B+ tree is a slightly different data structure that allows sequential
processing of data and stores all the data in the lowest level of the tree.

9.7	 EXERCISES

9.7.1	Review Questions

Q1.	 Define:

a.	 M-way search tree

b.	 B-tree

c.	 B+ tree

Q2.	 Write a difference between B-trees and B+ trees.

Q3.	 Construct a B-tree of order 3, inserting the keys 10, 20, 50, 60 40, 80,
100, 70, 130, 90, 30, 120, 140, 25, 35, 160, and 180 in a left-to-right
sequence. Show the trees after deleting 190 and 60.

Q4.	 Explain the insertion and deletion of a node in a B-tree.

Q5.	 Explain B+ tree indexing with the help of an example.

Q6.	 What do you know about B-trees? Write the steps to create a B-tree.
Construct an M-way search tree of order 4 and insert the values 34,
45, 98, 1, 23, 41, 78, 100, 234, 122, 199, 10, and 40.

Q7.	 Why do we always prefer a higher value of m in a B-tree? Explain.

Q8.	 Are B-trees of order 2 (i.e., full binary trees)? Explain.

9.7.2	Multiple Choice Questions

Q1.	 B+ trees are preferred to binary trees in databases because

a.	 Disk capacities are greater than memory capacities.

b.	 Disk access is slower than memory access.

c.	 Disk data transfer rates are less than the memory data transfer rates.

d.	 Disks are more reliable than memory.

Data Structures and Program Design Using Python_Ch09.indd 287 9/24/2020 12:27:35 PM

288 • Data Structures and Program Design Using Python

Q2.	 In an M-way search tree, M stands for the ________.

a.	 Degree of the node		 b.   External nodes

c.	 Internal nodes			 d.   None of these

Q3.	 A B-tree of order 4 is built. What is the maximum number of keys
that a node may accommodate before splitting operations take place?

a.	 5				 b.   2

c.	 4				 d.   3

Q4.	 In a B-tree of order m, every node has at the most __________
children.

a.	 M + 1				 b.   M – 1

c.	 M/2				 d.   M

Q5.	 What is the best data structure to search the keys in the least amount
of time?

a.	 B-tree				 b.   M-way search tree

c.	 B+ tree			 d.   Binary search tree

Q6.	 The best case for searching for a value in a binary search tree is

a.	 O(n2)				 b.   O(log n)

c.	 O(n)				 d.   O(n log n)

Q7.	 External nodes are also called ________.

a.	 Index nodes			 b.   Data nodes

c.	 Value nodes			 d.   None of the above

Q8.	 A B+ tree stores redundant keys.

a.	 False

b.	 True

c.	 Not possible to comment

Q9.	 A B-tree of order 5 can store at least how many keys?

a.	 0				 b.   1

c.	 2				 d.   3

Data Structures and Program Design Using Python_Ch09.indd 288 9/24/2020 12:27:35 PM

C H A P T E R 10
HASHING

10.1	 INTRODUCTION

In Chapter 6, we discussed three types of search techniques: linear search,
binary search, and interpolation search. A linear search has a running time
complexity of O(n), whereas a binary search has a running time proportional to
O(log n), where n is equal to the number of elements in the array. The search
algorithms discussed in Chapter 6 are efficient. However, their search time
is dependent on the number of elements in the array, and none of them can
search for an element within the constant time equal to O(1). However, this
is very difficult to achieve in search algorithms like the linear search or binary
search, as all these algorithms are dependent on the number of elements pre-
sent in the array. There are many comparisons involved while searching for
an element using these types of search algorithms. Therefore, our primary
need is to search for the element in a constant time along with few key com-
parisons. Now, let us take an example. Suppose there is an array of size N and
all the keys to be stored in the array are unique and also are in the range 0 to
N−1. We store all the records in the array based on the key where the array
index and keys are the same. Thus, we can access the records in a constant
time with no key comparisons involved. This can be further explained by the
following figure:

FIGURE 10.1  An array

Data Structures and Program Design Using Python_Ch10.indd 289 9/24/2020 12:27:58 PM

290 • Data Structures and Program Design Using Python

In Figure 10.1, there is an array containing five elements. Note that the
keys and the array index numbers are the same; that is, the record with the
key-value 3 can be directly accessed by array index arr[3]. Similarly, all the
records can be accessed through key values and the array index. Thus, this can
be done by hashing, where we convert the key into an array index and store
the records in the array. This can be done as follows:

FIGURE 10.2  Array index generation using hashing

The process of array index generation uses a hash function that is used
to convert the keys into an array index. The array in which such records are
stored is known as a hash table.

Practical Application:

1.	 A simple real-life example is when we search for a word in the diction-
ary and then find the definition or meaning with the help of a key and
its index.

2.	 Driver’s license numbers and insurance card numbers are created
using hashing from data items that never change, such as date of birth
and name.

Frequently Asked Questions

Q. Explain the term hashing.

Answer:

Hashing is the process of mapping keys to their appropriate locations in
the hash table. It is the most effective technique of searching the values in
an array or a hash table.

Data Structures and Program Design Using Python_Ch10.indd 290 9/24/2020 12:27:58 PM

Hashing • 291

10.1.1	Difference between Hashing and Direct Addressing

In direct addressing, we store the key at the same address as the value of the
key, as shown in Figure 10.3. However, in hashing, the address of the key is
determined by using a mathematical function known as a hash function, as
shown in Figure 10.4. The hash function operates on the key to determine
the address of the key. Direct addressing may result in a more random dis-
tribution of the key throughout the memory, and hence sometimes leads to a
greater waste of space when compared with hashing.

FIGURE 10.3  Mapping of keys using a direct addressing method

10.1.2	Hash Tables

A hash table is a data structure that supports one of the efficient searching
techniques, that is, hashing. A hash table is an array in that the data is accessed
through a special index called a key. In a hash table, keys are mapped to the
array positions by a hash function. A hash function is a function or mathemati-
cal formula that, when applied to a key, produces an integer that is used as
an index to find a key in the hash table. Thus, a value stored in a hash table
can be searched in O(1) time with the help of a hash function. The main idea
behind a hash table is to establish the direct mapping between the keys and
the indices of the array.

Data Structures and Program Design Using Python_Ch10.indd 291 9/24/2020 12:27:58 PM

292 • Data Structures and Program Design Using Python

FIGURE 10.4  Mapping of keys to the hash table using hashing

10.1.3 Hash Functions

A hash function is a mathematical formula that, when applied to a key, pro-
duces an integer that is used as an index to find a key in the hash table.

Characteristics of the Hash Function

There are four main characteristics of hash functions:

1.	 The hash function uses all the input data.

2.	 The hash function must generate different hash values.

3.	 The hash value is fully determined by the data being hashed.

4.	 The hash function must distribute the keys uniformly across the entire
hash table.

Different Types of Hash Functions

In this section, we discuss some of the common hash functions:

1.	 Division Method – In the division method, a key k is mapped into one
of the m slots by taking the remainder of k divided by m. In simple terms,
we can say that this method divides an integer, say x, by m, and then uses
the remainder so obtained. It is the simplest method of hashing. The hash
function is given by

Data Structures and Program Design Using Python_Ch10.indd 292 9/24/2020 12:27:59 PM

Hashing • 293

�For example, if m = 5 and the key k = 10, then h(k) = 2. Thus, the division
method works very fast, as it requires only a single division operation.
Although this method is good for any value of m, consider that if m is an
even number then h(k) is even when the value of k is even, and similarly
h(k) is odd when the value of k is odd. Therefore, if the even and odd keys
are almost equal, then there will be no problem. But if there is a larger
number of even keys, then the division method is not good, as it will not
distribute the keys uniformly in the hash table. We also avoid certain val-
ues of m; that is, m should not be a power of 2, because if h(k) = k mod
2x, then h(k) will extract the lowest x bits of k. The main drawback of the
division method is that many consecutive keys map to consecutive hash
values, which means that consecutive array locations are occupied, and
hence there is an effect on the performance.

Frequently Asked Questions

Q. Given a hash table of 50 memory locations, calculate the
hash values of keys 20 and 75 using the division method.

Answer:

m = 50, k1 = 10, k2 = 75 hash values are calculated as

h(10) = 10 % 50 = 10

h(75) = 75 % 50 = 25

2.	 Mid Square Method – In the mid square method, we calculate the
square of the given key. After getting the number, we extract some digits
from the middle of that number as an address.

�For example, if key k = 5025, then k2 = 25250625. Thus, h(5025) = 50.

�This method works very well, as all the digits of the key contribute to the
output; that is, all the digits contribute to producing the middle digits.
The same r digits must be chosen from all the keys in this method.

Data Structures and Program Design Using Python_Ch10.indd 293 9/24/2020 12:27:59 PM

294 • Data Structures and Program Design Using Python

Frequently Asked Questions

Q. Given a hash table of 100 memory locations, calculate the
hash values of keys 2045 and 1357 using the mid square method.

Answer:

There are 100 memory locations where indices are from 0 to 99.
Hence, only two digits are taken to map the keys. So, the value of r is
equal to 2.

k1 = 2045, k2 = 4182025, h(2045) = 20

k2 = 1357, k2= 1841449, h(1357) = 14

Note: The third and fourth digits are chosen to start from the right.

3.	 Folding Method – In the folding method, we break the key into pieces
such that each piece has the same number of digits except the last one,
which may have fewer digits as compared to the other pieces. Now, these
individual pieces are added. We ignore the carry if it exists. Hence, the
hash value is formed.

�For example, if m = 100 and the key k = 12345678, then the indices will
vary from 0 to 99, and thus each piece of the key must have two digits.
Therefore, the given key is broken into four pieces, that is, 12, 34, 56, and
78. We add all these, that is, 12 + 34 + 56 + 78 = 180. Thus, the hash value
will be 80 (ignore the last carry).

Frequently Asked Questions

Q. Given a hash table of 100 memory locations, calculate the
hash values of keys 2486 and 179 using the folding method.

Answer:

There are 100 memory locations where indices are from 0 to 99. Hence,
each piece of the key must have two digits.

h(2486) = 24 + 86 = 110

h(2486) = 10 (ignore the last carry)

h(179) = 17 + 9 = 26

h(179) = 26

Data Structures and Program Design Using Python_Ch10.indd 294 9/24/2020 12:27:59 PM

Hashing • 295

10.1.4	Collision

A collision is a situation that occurs when a hash function maps two different
keys to a single/same location in the hash table. Suppose we want to store a
record at one location. Another record cannot be stored at the same location
as it is obvious that two records cannot be stored at the same location. Thus,
there are methods to solve this problem, which are called collision resolution
techniques.

10.1.5	Collision Resolution Techniques

Collision resolution techniques are used to overcome the problem of collision
in hashing. Two popular methods are used for resolving collisions:

1.	 Collision Resolution by Chaining Method

2.	 Collision Resolution by Open Addressing Method

10.1.5.1 Chaining Method

In the chaining method, a chain of elements is maintained where all the ele-
ments have the same hash address. The hash table here behaves like an array
of references. Each location in the hash table stores a reference to the linked
list, which contains all the key elements that were hashed to that location.
For example, location 5 in the hash table points to the key values that hashed
to location 5. If no key-value hashes to location 5, then location 5 contains
NULL. Figure 10.5 shows how the key values are mapped to the hash table
and how they are stored in the linked list.

FIGURE 10.5  Keys hashed by the chaining method

Data Structures and Program Design Using Python_Ch10.indd 295 9/24/2020 12:27:59 PM

296 • Data Structures and Program Design Using Python

Operations on a Chained Hash Table

1.	 Insertion in a Chained Hash Table – The process of inserting an ele-
ment is quite simple. First, we get the hash value from the hash function
that maps to the hash table. After mapping, the element is inserted in
the linked list. The running time complexity of inserting an element in a
chained hash table is O(1).

2.	 Deletion from a Chained Hash Table – The process of deleting an ele-
ment from the chained hash table is the same as we used in the singly linked
list. First, we perform a search operation, and then the delete operation as
in the case of the singly linked list is performed. The running time complex-
ity of deleting an element from a chained hash table is O(m), where m is
the number of elements present in the linked list at that location.

3.	 Searching in a Chained Hash Table – The process of searching for an
element in a chained hash table is also very simple. First, we get the hash
value of the key by the hash function in the hash table. Then we search for
the element in the linked list. The running time complexity of searching
for an element in a chained hash table is O(m), where m is the number of
elements present in the linked list at that location.

Frequently Asked Questions

Q. Insert the keys 4, 9, 20, 35, and 49 in a chained hash table of 10
memory locations. Use hash function h(k) = k mod m.

Answer:

Initially, the hash table is given as

Data Structures and Program Design Using Python_Ch10.indd 296 9/24/2020 12:28:00 PM

Hashing • 297

Now, we insert 4 in the hash table.

Step 1:

Key to be inserted = 4

h(4) = 4 mod 10

h(4) = 4

We create a linked list for location 4, and the key element 4 is stored in it.

Step 2:

Key to be inserted = 9

h(9) = 9 mod 10

h(9) = 9

We create a linked list for location 9, and the key element 9 is stored in it.

Data Structures and Program Design Using Python_Ch10.indd 297 9/24/2020 12:28:00 PM

298 • Data Structures and Program Design Using Python

Step 3:

Key to be inserted = 20

h(20) = 20 mod 10

h(20) = 2

We create a linked list for location 2, and the key element 20 is stored in it.

Step 4:

Key to be inserted = 35

h(35) = 35 mod 10

h(35) = 5

We create a linked list for location 5, and the key element 35 is stored in it.

Data Structures and Program Design Using Python_Ch10.indd 298 9/24/2020 12:28:00 PM

Hashing • 299

Step 5:

Key to be inserted = 49

h(49) = 49 mod 10

h(49) = 9

We insert 49 at the end of the linked list of location 9.

Advantages and Disadvantages of the Chained Method

The main advantage of this method is that it completely resolves the problem
of collision. It remains effective even when the key elements to be stored
in the hash table are higher than the number of locations in the hash table.
However, it is quite obvious that with the increase in the number of key ele-
ments, the performance of this method decreases.

The disadvantage of this method is the waste of storage space, as the key
elements are stored in the linked list; also, the references are required for
each element to get accessed, which in turn consumes more space.

10.1.5.2 Open Addressing Method

In the open addressing method, all the elements are stored in the hash table
itself. Once a collision takes place, open addressing computes new locations
using the probe sequence, and the next element or next record is stored on
that location. Probing is the process of examining the memory locations in the
hash table. When we perform the insertion operation in the open addressing
method, we first successively probe/examine the hash table until we find an

Data Structures and Program Design Using Python_Ch10.indd 299 9/24/2020 12:28:00 PM

300 • Data Structures and Program Design Using Python

empty slot in that the new key can be inserted. The open addressing method
can be implemented using
●● Linear Probing
●● Quadratic Probing
●● Double Hashing

Linear Probing

Linear probing is the simplest approach to resolving the problem of collision
in hashing. In this method, if a key is already stored at a location generated
by the hash function h(k), then the situation can be resolved by the following
hash function:

Now, let us examine how this technique works. For a given key k, first, the
location generated by (h(k) + 0) mod m is probed, because for the first time
i = 0. If the location generated is free, then the key is stored in it. Otherwise,
the second probe is generated for i = 1 given by the hash function (h(k) + 1)
mod m. Similarly, if the location generated is free, then the key is stored in it;
otherwise, subsequent probes are generated such as (h(k) + 2) mod m, (h(k)
+ 3) mod m, and so on, until we find a free location.

Frequently Asked Questions

Q. Given keys k = 13, 25, 14, and 35 maps these keys into a hash
table of size m = 5 using linear probing.

Answer:

Initially, the hash table is given as

Data Structures and Program Design Using Python_Ch10.indd 300 9/24/2020 12:28:00 PM

Hashing • 301

Step 1:

i = 0

Key to be inserted = 13

h'(k) = (k mod m + i) mod m

h'(13) = (13 % 5 + 0) % 5

h'(13) = (3 + 0) % 5

h'(13) = 3 % 5 = 3

Since location T[3] is free, 13 is inserted at location T[3].

Step 2:

i = 0

Key to be inserted = 25

h'(25) = (25 % 5 + 0) % 5

h'(25) = (0 + 0) % 5

h'(13) = 0 % 5 = 0

Since location T[0] is free, 25 is inserted at location T[0].

Step 3:

i = 0

Key to be inserted = 14

h'(14) = (14 % 5 + 0) % 5

h'(14) = (4 + 0) % 5

Data Structures and Program Design Using Python_Ch10.indd 301 9/24/2020 12:28:00 PM

302 • Data Structures and Program Design Using Python

h'(14) = 4 % 5 = 4

Since location T[4] is free, 14 is inserted at location T[4].

Step 4:

i = 0

Key to be inserted = 35

h'(35) = (35 % 5 + 0) % 5

h'(35) = (0 + 0) % 5

h'(35) = 0 % 5 = 0

Since location T[0] is not free, the next probe sequence, that is, i = 1, is
computed as

i = 1

h'(35) = (35 % 5 + 1) % 5

h'(35) = (0 + 1) % 5

h'(35) = 1 % 5 = 1

Since location T[1] is free, 35 is inserted at location T[1].

Thus, the final hash table is

Here is a program to show the linear probing technique of the collision
resolution method.

Data Structures and Program Design Using Python_Ch10.indd 302 9/24/2020 12:28:00 PM

Hashing • 303

Program to implement hashing with linear probing

class hashTable:
 # initialize hash Table
 def __init__(self):
 self.size = int(input("Enter the size of the hash table : "))
 # initialize table with all elements 0
 self.table = list(0 for i in range(self.size))
 self.elementCount = 0
 self.comparisons = 0

 # method that checks if the hash table is full or not
 def isFull(self):
 if self.elementCount == self.size:
 return True
 else:
 return False

 # method that returns position for a given element
 def hashFunction(self, element):
 return element % self.size

 # method that inserts element inside the hash table
 def insert(self, element):
 # checking if the table is full
 if self.isFull():
 print("Hash Table Full")
 return False

 isStored = False

 position = self.hashFunction(element)

 # checking if the position is empty
 if self.table[position] == 0:
 self.table[position] = element

 print("Element " + str(element) + " at position " + str(position))
 isStored = True
 self.elementCount += 1

 # collision occurred hence we do linear probing
 else:
 print("Collision has occurred for element " +
str(element) + " at position " + str(position) + " finding
new position.”)
 while self.table[position] != 0:
 position += 1
 if position >= self.size:
 position = 0

Data Structures and Program Design Using Python_Ch10.indd 303 9/24/2020 12:28:01 PM

304 • Data Structures and Program Design Using Python

 self.table[position] = element
 isStored = True
 self.elementCount += 1
 return isStored

 # method that searches for an element in the table
 # returns position of element if found
 # else returns False
 def search(self, element):
 found = False

 position = self.hashFunction(element)
 self.comparisons += 1

 if(self.table[position] == element):
 return position
 isFound = True

 # if element is not found at position returned hash function
 # then first we search element from position+1 to end
         # if not found then we search element from position-1 to 0
 else:
 temp = position - 1
 # check if the element is stored between position+1 to size
 while position < self.size:
 if self.table[position] != element:
 position += 1
 self.comparisons += 1
 else:
 return position

 # now checking if the element is stored between position-1 to 0
 position = temp
 while position >= 0:
 if self.table[position] != element:
 position -= 1
 self.comparisons += 1
 else:
 return position

 if not found:
 print("Element not found")
 return False

 # method to remove an element from the table
 def remove(self, element):
 position = self.search(element)
 if position is not False:
 self.table[position] = 0

Data Structures and Program Design Using Python_Ch10.indd 304 9/24/2020 12:28:01 PM

Hashing • 305

 print("Element " + str(element) + " is deleted")
 self.elementCount -= 1
 else:
 print("Element is not present in the hash table")
 return

 # method to display the hash table
 def display(self):
 print("\n")
 for i in range(self.size):
 print(str(i) + " = " + str(self.table[i]))
 print("The number of elements in the table are : " +
str(self.elementCount))

The output of the program is as follows:

Data Structures and Program Design Using Python_Ch10.indd 305 9/24/2020 12:28:01 PM

306 • Data Structures and Program Design Using Python

Advantages and Disadvantages of Linear Probing

Linear probing is a very useful technique, as the algorithm provides reliable
memory caching through a good locality of the address. However, the main
disadvantage of this method is that it results in clustering. Due to clustering,
there is a higher risk of collisions taking place. The time required for search-
ing also increases with the size of the clusters. We can say that the higher
the number of collisions requires a higher number of probes to find a vacant
location, and the performance is decreased. This is known as primary cluster-
ing. We can avoid this clustering by using other techniques, such as quadratic
probing and double hashing.

Quadratic Probing

Quadratic probing is another approach to resolving the problem of collision
in hashing. In this method, if a key is already stored at a location generated
by the hash function h(k), then the situation can be resolved by the following
hash function:

The quadratic probing method is better than linear probing, as it termi-
nates the phenomenon of primary clustering because of its searching speed;
that is, it is doing a quadratic search. For a given key k, first the location gen-
erated by (h(k) + 0 + 0) mod m is probed, because for the first time i = 0. If the
location generated is free, then the key is stored in it. Otherwise, subsequent

Data Structures and Program Design Using Python_Ch10.indd 306 9/24/2020 12:28:02 PM

Hashing • 307

positions probed are offset by the amounts/factors that depend in a quadratic
manner on the probe number i. The quadratic probing method works better
than linear probing, but to maximize the use of the hash table, the values of
m, c1, and c2 are constrained.

Frequently Asked Questions

Q. Given keys k = 25, 13, 14, and 35, map these keys into a hash
table of size m = 5 using quadratic probing with c1 = 1 and c2 = 3.

Answer:

Initially, the hash table is given as follows:

Step 1:

i = 0

c1 = 1, c2 = 3

Key to be inserted = 25

h'(k) = (k mod m + c1i + c2i
2) mod m

h'(25) = (25 % 5 + 1 X 0 + 3 X (0)2) % 5

h'(25) = (0 + 0) % 5

h'(13) = 0 % 5 = 0

Since location T[0] is free, 25 is inserted at location T[0].

Step 2:

i = 0

c1 = 1, c2 = 3

Key to be inserted = 13

h'(13) = (13 % 5 + 1 X 0 + 3 X (0)2) % 5

Data Structures and Program Design Using Python_Ch10.indd 307 9/24/2020 12:28:02 PM

308 • Data Structures and Program Design Using Python

h'(13) = (3 + 0) % 5

h'(13) = 3 % 5 = 3

Since location T[3] is free, 13 is inserted at location T[3].

Step 3:

i = 0

c1 = 1, c2 = 3

Key to be inserted = 14

h'(14) = (14 % 5 + 1 X 0 + 3 X (0)2) % 5

h'(14) = (4 + 0) % 5

h'(14) = 4 % 5 = 4

Since location T[4] is free, 14 is inserted at location T[4].

Step 4:

i = 0

c1 = 1, c2 = 3

Key to be inserted = 35

h'(35) = (35 % 5 + 1 X 0 + 3 X (0)2) % 5

h'(35) = (0 + 0) % 5

h'(35) = 0 % 5 = 0

Since location T[0] is not free, the next probe sequence, that is, i = 1, is
computed as

i = 1

h'(35) = (35 % 5 + 1 X 1 + 3 X (1)2) % 5

Data Structures and Program Design Using Python_Ch10.indd 308 9/24/2020 12:28:02 PM

Hashing • 309

h'(35) = (0 + 1 + 3) % 5

h'(35) = 4 % 5 = 4

Again, since location T[4] is not free, the next probe sequence, that is, i =
2, is computed as

i = 2

h'(35) = (35 % 5 + 1 X 2 + 3 X (2)2) % 5

h'(35) = (0 + 2 + 12) % 5

h'(35) = 14 % 5 = 4

Again, since location T[4] is not free, the next probe sequence, that is, i =
3, is computed as

i = 3

h'(35) = (35 % 5 + 1 X 3 + 3 X (3)2) % 5

h'(35) = (0 + 3 + 27) % 5

h'(35) = 30 % 5 = 0

Again, since location T[0] is not free, the next probe sequence, that is, i =
4, is computed as

i = 4

h'(35) = (35 % 5 + 1 X 4 + 3 X (4)2) % 5

h'(35) = (0 + 4 + 48) % 5

h'(35) = 52 % 5 = 2

Since location T[2] is free, 35 is inserted at location T[2].

Thus, the final hash table is as follows:

Here is a program to show the quadratic probing technique of the collision
resolution method.

Data Structures and Program Design Using Python_Ch10.indd 309 9/24/2020 12:28:02 PM

310 • Data Structures and Program Design Using Python

Program to implement hashing with quadratic probing

class hashTable:
 # initialize hash Table
 def __init__(self):
 self.size = int(input("Enter the size of the hash table : "))
 # initialize table with all elements 0
 self.table = list(0 for i in range(self.size))
 self.elementCount = 0
 self.comparisons = 0

 # method that checks if the hash table is full or not
 def isFull(self):
 if self.elementCount == self.size:
 return True
 else:
 return False

 # method that returns position for a given element
 # replace with your own hash function
 def hashFunction(self, element):
 return element % self.size

 # method to resolve collision by quadratic probing method
 def quadraticProbing(self, element, position):
 posFound = False
 # limit variable is used to restrict the function
from going into infinite loop
 # limit is useful when the table is 80% full
 limit = 50
 i = 1
 # start a loop to find the position
 while i <= limit:
 # calculate new position by quadratic probing
 newPosition = position + (i**2)
 newPosition = newPosition % self.size
 # if newPosition is empty then break out of loop
and return new Position
 if self.table[newPosition] == 0:
 posFound = True
 break
 else:
 # as the position is not empty increase i
 i += 1
 return posFound, newPosition

 # method that inserts element inside the hash table
 def insert(self, element):
 # checking if the table is full
 if self.isFull():
 print("Hash Table Full")

Data Structures and Program Design Using Python_Ch10.indd 310 9/24/2020 12:28:02 PM

Hashing • 311

 return False

 isStored = False

 position = self.hashFunction(element)

 # checking if the position is empty
 if self.table[position] == 0:
 # empty position found , store the element and
print the message
 self.table[position] = element

 print("Element " + str(element) + " at position "
+ str(position))

 isStored = True
 self.elementCount += 1

 # collision occurred hence we do linear probing
 else:
 print("Collision has occurred for element " + str(element)
+ " at position " + str(position) + " finding new Position.")
 isStored, position = self.quadraticProbing(element, position)
 if isStored:
 self.table[position] = element
 self.elementCount += 1

 return isStored

 # method that searches for an element in the table
 # returns position of element if found
 # else returns False
 def search(self, element):
 found = False

 position = self.hashFunction(element)
 self.comparisons += 1
 if(self.table[position] == element):
 return position

 # if element is not found at position returned hash function
 # then we search element using quadratic probing
 else:
 limit = 50
 i = 1
 newPosition = position
 # start a loop to find the position
 while i <= limit:
 # calculate new position by quadratic probing
 newPosition = position + (i**2)
 newPosition = newPosition % self.size
 self.comparisons += 1

 # if element at newPosition is equal to the
required element

Data Structures and Program Design Using Python_Ch10.indd 311 9/24/2020 12:28:02 PM

312 • Data Structures and Program Design Using Python

 if self.table[newPosition] == element:
 found = True
 break

 elif self.table[newPosition] == 0:
 found = False
 break

 else:
 # as the position is not empty increase i
 i += 1
 if found:
 return newPosition
 else:
 print(“Element not found”)
 return found

 # method to remove an element from the table
 def remove(self, element):
 position = self.search(element)
 if position is not False:
 self.table[position] = 0
 print("Element " + str(element) + " is deleted")
 self.elementCount -= 1
 else:
 print("Element is not present in the hash table")
 return

 # method to display the hash table
 def display(self):
print("\n")
 for i in range(self.size):
 print(str(i) + " = " + str(self.table[i]))
 print("The number of elements in the table are : " +
str(self.elementCount))

The output of the program is as follows:

Data Structures and Program Design Using Python_Ch10.indd 312 9/24/2020 12:28:02 PM

Hashing • 313

Advantages and Disadvantages of Quadratic Probing

As previously discussed, one of the biggest advantages of quadratic probing is
that it eliminates the phenomenon of primary clustering. Yet one of the major
disadvantages of this method is that a sequence of successive probes may only
cover some portion of the hash table, and this portion may be quite small.
Therefore, if such a situation occurs, then it will be difficult for us to find an
empty location in the hash table, even though the table is not full. Hence,
quadratic probing encounters a problem that is known as secondary cluster-
ing. In this method, the chance of multiple collisions increases as the hash
table becomes full. This type of situation can be overcome by double hashing.

Double Hashing

Double hashing is one of the best methods available for open addressing. As
the name suggests, this method uses two hash functions to operate rather than
a single hash function. The hash function is given as follows:

h’(k) = (h1(k) + ih2(k)) mod m,

Data Structures and Program Design Using Python_Ch10.indd 313 9/24/2020 12:28:02 PM

314 • Data Structures and Program Design Using Python

where h1(k) = k mod m and h2(k) = k mod m' are the two hash functions, m is
the size of the hash table, m' is less than m (can be (m – 1) or (m – 2)), and i
is the probe number that varies from 0 to (m – 1).

Now, let’s consider how this technique works. For a given key k, first,
the location generated by (h1(k) mod m) is probed, because for the first time
i = 0. If the location generated is free, then the key is stored in it. Otherwise,
subsequent probes generate locations that are at an offset of (h2(k) mod m)
from the previous location. The offset may vary with every probe depending
on the value generated by the second hash function, that is, (h2(k) mod m). As
a result, the performance of double hashing is very near to the performance
of the “ideal” scheme of uniform hashing.

Frequently Asked Questions

Q. Given keys k = 71, 29, 38, 61, and 100, map these keys into a
hash table of size m = 5 using double hashing. Use h1 = (k mod 5)
and h2 = (k mod 4).

Answer:

Initially, the hash table is given as

Step 1:

i = 0

Key to be inserted = 71

h'(k) = (h1(k) + ih2(k)) mod m

h'(k) = (k mod m + (i k mod m')) mod m

h'(71) = (71 % 5 + (0 X 71 % 4)) % 5

h'(71) = (1 + (0 X 3)) % 5

h'(71) = 1 % 5 = 1

Since location T[1] is free, 71 is inserted at location T[1].

Data Structures and Program Design Using Python_Ch10.indd 314 9/24/2020 12:28:02 PM

Hashing • 315

Step 2:

i = 0

Key to be inserted = 29

h'(k) = (k mod m + (i k mod m')) mod m

h'(29) = (29 % 5 + (0 X 29 % 4)) % 5

h'(29) = (4 + (0 X 1)) % 5

h'(29) = 4 % 5 = 4

Since location T[4] is free, 29 is inserted at location T[4].

Step 3:

i = 0

Key to be inserted = 38

h'(k) = (k mod m + (i k mod m')) mod m

h'(38) = (38 % 5 + (0 X 38 % 4)) % 5

h'(38) = (3 + (0 X 2)) % 5

h'(38) = 3 % 5 = 3

Since location T[3] is free, 38 is inserted at location T[3].

Step 4:

i = 0

Key to be inserted = 61

h'(k) = (k mod m + (i k mod m')) mod m

h'(61) = (61 % 5 + (0 X 61 % 4)) % 5

h'(61) = (1 + (0 X 1)) % 5

h'(61) = 1 % 5 = 1

Data Structures and Program Design Using Python_Ch10.indd 315 9/24/2020 12:28:03 PM

316 • Data Structures and Program Design Using Python

Since location T[1] is not free, the next probe sequence, that is, i = 1, is
computed as

i = 1

h'(61) = (61 % 5 + (1 X 61 % 4)) % 5

h'(61) = (1 + (1 X 1)) % 5

h'(61) = (1 + 1) % 5

h'(61) = 2% 5 = 2

Since location T[2] is free, 61 is inserted at location T[2].

Step 5:

i = 0

Key to be inserted = 100

h'(k) = (k mod m + (i k mod m')) mod m

h'(100) = (100 % 5 + (0 X 100 % 4)) % 5

h'(100) = (0 + (0 X 0)) % 5

h'(100) = 0 % 5 = 0

Since location T[0] is free, 100 is inserted at location T[0].

Thus, the final hash table is as follows:

Advantages and Disadvantages of Double Hashing

The double hashing method is free from all the problems of primary cluster-
ing and secondary clustering. It also minimizes repeated collisions.

Data Structures and Program Design Using Python_Ch10.indd 316 9/24/2020 12:28:03 PM

Hashing • 317

10.2	SUMMARY

●● A hash table is an array in that the data is accessed through a special index
called a key. In a hash table, keys are mapped to the array positions by a
hash function.

●● A hash function is a mathematical formula that, when applied to a key,
produces an integer that is used as an index to find a key in the hash table.

●● There are different types of hash functions that use numeric keys. Popular
methods are the division method, the mid square method, and the folding
method.

●● In the division method, a key k is mapped into one of the m slots by tak-
ing the remainder of k divided by m. The main drawback of the division
method is that many consecutive keys map to consecutive hash values
respectively, that means that consecutive array locations will be occupied,
and hence there will be an effect on the performance.

●● In the mid square method, we calculate the square of the given key. After
getting the number, we extract some digits from the middle of that num-
ber as an address.

●● In the folding method, we break the key into pieces such that each piece
has the same number of digits except the last one, which may have lower
digits as compared to other pieces. Now, these individual pieces are
added. Hence, the hash value is formed.

●● A collision is a situation that occurs when a hash function maps two differ-
ent keys to a single/same location in the hash table.

●● Collision resolution techniques are used to overcome the problem of col-
lision in hashing. Two popular methods are used for resolving collisions,
which are collision resolution by the chaining method and collision reso-
lution by the open addressing method.

●● In the chaining method, a chain of elements is maintained where the ele-
ments have the same hash address. Each location in the hash table stores
an address to the linked list that contains all the key elements that were
hashed to that location. The disadvantage of this method is the waste of
storage space, as the key elements are stored in the linked list; addresses
are required for each element to get accessed, which in turn consumes
more space.

●● In an open addressing method, all the elements are stored in the hash
table itself. There is no need to provide the address in this method, that is

Data Structures and Program Design Using Python_Ch10.indd 317 9/24/2020 12:28:03 PM

318 • Data Structures and Program Design Using Python

the biggest advantage of this method. Once a collision takes place, open
addressing computes new locations using the probe sequence, and the
next element or next record is stored in that location.

●● Probing is the process of examining the memory locations in the hash
table.

●● Linear probing is the simplest approach to resolving the problem of col-
lision in hashing. In this method, if a key is already stored at a location
generated by the hash function h(k), then the situation can be resolved by
the following hash function:

h'(k) = (h(k) + i) mod m
●● Quadratic probing is another approach to resolving the problem of col-

lision in hashing. In this method, if a key is already stored at a location
generated by the hash function h(k), then the situation can be resolved by
the following hash function:

h'(k) = (h(k) + c1i + c2i
2) mod m

●● Double hashing is one of the best methods available for open addressing.
As the name suggests, this method uses two hash functions to operate
rather than a single hash function. The hash function is

h'(k) = (h1(k) + ih2(k)) mod m

10.3	EXERCISES

10.3.1 Review Questions

Q1.	 What are hash tables?

Q2.	 What is hashing? Give some of its practical applications.

Q3.	 Define the hash function and also explain the various characteristics
of a hash function.

Q4.	 What is a collision in hashing and how it can be resolved?

Q5.	 Explain the different types of hash functions along with examples.

Q6.	 Discuss the collision resolution techniques in hashing.

Q7.	 What is clustering in hashing? What are the two types of clustering?

Data Structures and Program Design Using Python_Ch10.indd 318 9/24/2020 12:28:03 PM

Hashing • 319

Q8.	 What do you understand about double hashing?

Q9.	 Define the following terms:

a.	 Quadratic Probing

b.	 Linear Probing

Q10.	 What is the chaining method in hashing and how it can help in
resolving collisions?

Q11.	 Consider a hash table of size 10. Using linear probing, insert the keys
12, 45, 67, 122, 78, and 34 into it.

Q12.	 Consider a hash table of size 9. Using double hashing, insert the keys
4, 17, 30, 55, 90, 11, 54, and 77 into it. Take h1 = k mod 9 and h2 =
k mod 6.

Q13.	 Consider a hash table of size 11. Using quadratic probing, insert the
keys 10, 45, 56, 97, 123, and 1 into it.

Q14.	 How can the open addressing method be used in resolving collisions?

Q15.	 Write a Python function to retrieve an item from the hash table using
linear probing and quadratic probing.

10.3.2	Multiple Choice Questions

Q1.	 Which of the following collision resolution techniques is free from
the clustering phenomenon?

a.	 Linear Probing

b.	 Quadratic Probing

c.	 Double Hashing

d.	 None of these

Q2.	 The process of examining a memory location is called ________.

a.	 Probing

b.	 Hashing

c.	 Chaining

d.	 Addressing

Data Structures and Program Design Using Python_Ch10.indd 319 9/24/2020 12:28:03 PM

320 • Data Structures and Program Design Using Python

Q3.	 A hash table with chaining as a collision resolution technique degen-
erates to a

a.	 Tree				 b.   Graph

c.	 Array				 d.   Linked List

Q4.	 Which of the probing techniques suffers from the problem of pri-
mary clustering?

a.	 Quadratic Probing		 b.   Linear Probing

c.	 Double Hashing		 d.   All of these

Q5.	 Given the hash function h(k) = k mod 6, what is the number of col-
lisions to store the following sequence of keys, 16, 20, 45, 68 using
open addressing?

a.	 1				 b.   3

c.	 2				 d.   5

Q6.	 In a hash table, an element with the key k is stored at ________.

a.	 k				 b.   h(k2)

c.	 h(k)				 d.   log h(k)

Q7.	 A good hash function eliminates the problem of collision.

a.	 True

b.	 False

c.	 Not possible to comment

Q8.	 Given the hash function of size 7 and hash function h(k) = k mod 7,
what is the number of collisions with linear probing for the insertion
of the following keys: 29, 36, 16, and 30?

a.	 1				 b.   2

c.	 3				 d.   4

Q9.	 ________ is the process of mapping keys to appropriate locations in
the hash table.

a.	 Probing			 b.   Hashing

c.	 Collision			 d.   Addressing

Data Structures and Program Design Using Python_Ch10.indd 320 9/24/2020 12:28:03 PM

C H A P T E R 11
FILES

11.1	 INTRODUCTION

In most organizations, a large amount of data is collected in one form or another.
Some organizations use various types of data collection applications for collect-
ing the data. When we talk about an organization, it is not only the large ones
like schools, colleges, and companies, but also small companies, like the bakery
on the corner. The collection and exchange of data takes place everywhere. For
example, when we get admitted into a school, a lot of data is collected by the
school, such as name, age, address, parent’s name, and blood type. We know
that in the past, data was collected in the form of paper documents, which
were very difficult to handle and store. Therefore, to efficiently and effectively
analyze the collected data, computers are used to store the data in the form of
files. A file, in computer terminology, is defined as a block of useful data in a
persistent storage medium; that is, the file is available for future use. Data is
organized in a hierarchical order in files. The hierarchical order includes items
such as records, fields, and so forth, which all are defined as follows.

11.2	 TERMINOLOGY

●● Data field – A data field is a unit which stores a unary fact. It is usually
characterized by its type and size. For example, “employee’s name” is a
data field that stores the names of employees.

●● Record – The collection of related data fields is called a record. For
example, an employee’s record may contain various data fields such as
name, ID, address, and contact number.

Data Structures and Program Design Using Python_Ch11.indd 321 9/24/2020 12:46:47 PM

322 • Data Structures and Program Design Using Python

●● File – The collection of related records is called a file. An example is a file
of the employees working in an organization.

●● Directory – The collection of related files is called a directory. Every file
in a computer system is stored in a directory.

●● File Name – The name of a file is a string of characters.
●● Read-only – A file named read-only cannot be modified or deleted. If we

try to delete the file, then a particular message is displayed.
●● Hidden – A file marked as hidden is not displayed in the directory.

11.3	 FILE OPERATIONS

There are various operations that can be performed on files.

1.	 File Creation – This is the first operation to be performed on the files if
the file has not been created. A file is started by specifying its name and
mode. The records are inserted into the file by opening the file in writing
mode. Once all the records are inserted into the file, the file can be used
for future read and write operations. For example, we create a new file
named EMPLOYEE.

2.	 Updating a File – This means changing the contents of a file. It is usually
done in the following ways:

a.	 Inserting into a File – The new record is placed into the file. For
example, if a new employee joins an organization, his/her record is
inserted in the EMPLOYEE file.

b.	 Modifying a File – The existing records are altered in the file. For
example, if the address of an employee is changed, then the new
address must be modified in the EMPLOYEE file.

c.	 Deleting from a File – The existing record is removed from the file.
For example, if an employee quits a job, then his/her record is deleted
from the EMPLOYEE file.

3.	 Retrieving from a File – This refers to the process of extracting some
useful data from a file. It is usually done in the following ways:

a.	 Enquiring – This retrieves a small amount of data from a file.

b.	 Generating a Report – This retrieves a huge amount of data from
a file.

Data Structures and Program Design Using Python_Ch11.indd 322 9/24/2020 12:46:48 PM

Files • 323

FIGURE 11.1  Operations on files

11.4	 FILE CLASSIFICATION

A file is classified into two types:

1.	 Text Files – A text file, often called a flat-file, is a file that stores all the
numeric or non-numeric data using its corresponding ASCII values. The
data can be a string of letters, numbers, or special symbols. Therefore, it is
also known as an ASCII file. Usually, a text file has a special marker known
as the end of file marker which denotes the end of the file.

2.	 Binary Files – A binary file is a file that contains all the data in the binary
form of 1s and 0s. It stores the data in the same form as that of primary
memory. Thus, a binary file is not readable by human beings. Binary files
are read by computer programs, and they decode the binary files into
something meaningful. Data is efficiently stored in binary files.

11.5	 C vs. C++ vs. JAVA vs. PYTHON FILE HANDLING

File handling is an important process, and one must be aware of the file
handling process irrespective of any language. This is especially true when
it comes to C vs. C++vs. Java vs. Python File Handling, because it becomes

Data Structures and Program Design Using Python_Ch11.indd 323 9/24/2020 5:35:07 PM

324 • Data Structures and Program Design Using Python

difficult to understand the operations and processes on files as these languages
possess similar kinds of functions/operators. Hence, there are some points to
remember while working with files, which are shown in the table.

Table 11.1  Comparison of how four programming languages
approach files

C C++ Java Python

In C, fopen,
fclose, fwrite,
fread, fseek,
fprint, fscanf,
and various other
functions are
called directly
without any help
of an object.

In C++, open,
close, and other
functions are
called with
the help of an
object that is,
for example,
fstream f. Here,
f is the object
of the stream
class, and all the
functions are
called with the
help of objects
like f.open,
f.close, f.read,
and f.write.

In Java, the
package java.io is
imported and the
objects of class
File, FileReader
or FileWriter,
are created. The
objects of the
classes access
the inbuilt
constructors and/
or methods of the
classes through
objects.

Python has
several functions
for creating,
reading, updating,
and deleting
files. The key
function for
working with files
in Python is the
open() function.
The open()
function takes
two parameters:
filename and
mode.

In C, the modes
are r(read),
w(write), and
a(append), and
these can be used
directly.

In C++, the
modes are in,
out, and bin, and
these are used
with the help of
scope resolution
operators like
ios::in and
ios::out.

Java uses the
concepts of
streams, which
are sequences of
data.

In Python,
the modes are
r(read), w(write),
a(append), and
x(create). In
addition, we can
specify the file to
be in b(binary) or
t(text) mode.

11.6	 FILE ORGANIZATION

File organization refers to the way in which records are physically arranged
on a storage device. Further, there may be a single key or multiple keys asso-
ciated with it. Therefore, based on its physical storage and the keys used to

Data Structures and Program Design Using Python_Ch11.indd 324 9/24/2020 12:46:48 PM

Files • 325

access the records, files are classified as sequential files, relative files, indexed
sequential files, and inverted files. There are various factors which should be
taken into consideration while choosing a particular type of file organization:

1.	 Ease of retrieval of the records

2.	 Economy of storage

3.	 Reliability, that is, whether a file organization is reliable

4.	 Security, that is, whether a file organization is secured

11.7	 SEQUENCE FILE ORGANIZATION

Sequence file organization is the most basic way to organize a collection of
records in a file. Sequence file organization is when the file is created when
the records are written, one after the other in order, and can be accessed only
in that order in which they are written when the file is used for input. All the
records are numbered from zero onward. Thus, if there are N records in a file,
then the first record is numbered 0, and the last record is numbered N−1. In
some cases, records of sequential files are sorted by the value of some field
in each record. The field whose value is used to sort the records is known as
a sort key. If a file is sorted by the value of a field named “key field,” then the
record i proceeds record j, if, and only if, the value of “key field” in record i
is less than or equal to the value of “key field” in record j. A file can be sorted
in either ascending or descending order by a sort key comprising one or more
fields. As the records in a sequential file can only be accessed sequentially,
these files are used more commonly in batch processing than in interactive
processing. For example, the records of a sequential file are used to generate
the white pages of a telephone directory that are sorted by the subscriber’s
last name.

Advantages of a Sequence File Organization

1.	 It is easy to handle.

2.	 It does not involve extra overhead/problems.

3.	 Records can be of varying lengths in this organization.

4.	 It can be stored on magnetic disks as well as tapes.

Data Structures and Program Design Using Python_Ch11.indd 325 9/24/2020 12:46:48 PM

326 • Data Structures and Program Design Using Python

FIGURE 11.2  Structure of a sequence file organization

Disadvantages of Sequence File Organization

1.	 Records can be accessed only in sequence.

2.	 It does not support the update operation between files.

3.	 It does not support interactive applications.

11.8	 INDEXED SEQUENCE FILE ORGANIZATION

An indexed sequential file organization is an efficient way of organizing the
records when there is a need to access both sequentially by some key values
and to access the records individually by the same key value. It provides the
combination of access types that are supported by a sequential file or a rela-
tive file. The index is structured as a binary search tree. This index is used to
serve as a request for access to a particular record, and the sequential data file

Data Structures and Program Design Using Python_Ch11.indd 326 9/24/2020 12:46:49 PM

Files • 327

alone is used to support sequential access to the entire collection of records.
Because of its capability to support both sequential and direct access, indexed
sequence file organization is used to support applications that require both
batch and interactive processing.

Advantages of Indexed Sequence File Organization

1.	 Records can be accessed sequentially and randomly.

2.	 It supports batch and interactive oriented applications.

3.	 It supports the update operation between records in a file.

Disadvantages of Indexed Sequence File Organization

1.	 In this organization, files can only be stored on magnetic disks.

2.	 It involves extra overhead in the form of maintenance.

3.	 Records can only be of a fixed length, as we maintain the structure of each
node like a linked list.

FIGURE 11.3  Use of BST and sequential files to provide indexed sequential access

11.9	 RELATIVE FILE ORGANIZATION

Relative file organization provides an effective way of accessing individual
records directly. In relative file organization, there is a predictable relation-
ship between the key and the record’s location in the file. The records do not

Data Structures and Program Design Using Python_Ch11.indd 327 9/24/2020 12:46:49 PM

328 • Data Structures and Program Design Using Python

necessarily appear physically in sorted order by their keys. Then how is a given
record found? The relationship that is used to translate between the key value
and the physical address is designated, for example, R(Key value → address).
When a record is to be written into a relative file, the mapping function R is
used to translate the record’s key to an address, which indicates where the
record is to be stored. The fundamental techniques that are used for mapping
function R are the directory lookup and address calculation (hashing).

●● Directory Lookup Technique – This is the simplest technique for
implementing a mapping function R. The basic idea of this technique is
to keep a directory of key values: address pairs. To find a record in a rela-
tive file, one locates its key value in the directory, and then the indicated
address is used to find the record on the storage device. The directory can
be organized as a binary search tree.

●● Address Calculation Technique – Another common technique for
implementing a mapping function R is to perform a calculation on the
key value (hashing) such that the result is a relative address.

Advantages of Relative File Organization

1.	 Records can be accessed out of sequence.

2.	 It is well suited for interactive applications.

3.	 It supports an update operation in between the files.

Disadvantages of Relative File Organization

1.	 It can be stored only on magnetic disks.

2.	 It also involves extra overhead in the form of the maintenance of the
indexes.

11.10  INVERTED FILE ORGANIZATION

One fundamental approach for providing a linkage between an index and a
file is called inversion. A key’s inversion index contains all the values that the
key presently has in the records of the file. Each key-value entry in the inver-
sion index points to all the data records that have the corresponding value.
Then, the file is said to be inverted on that key. The inversion approach for

Data Structures and Program Design Using Python_Ch11.indd 328 9/24/2020 12:46:49 PM

Files • 329

providing multi-key access has been used as the basis for a physical data struc-
ture in commercially available relational DBMSs such as Oracle and DB2.
These systems were designed to provide rapid access to the records via as
many inversion keys as the designer cared to identify. They have user-friendly,
natural-language-like query languages to assist the user in formulating inquir-
ies. A complete inverted file has an inversion index for every data field. If a file
is not completely inverted but has at least one inversion index, then it is said
to be a partially inverted file.

Advantages of Inverted File Organization

1.	 The Boolean query requires only one access per record, satisfying the
query, along with some access to process the indexes.

2.	 Records can be stored in any way, for example, sequentially ordered by
primary key, randomly linked ordered by primary key, and so forth.

3.	 It also saves space as compared to other file structures.

Disadvantages of Inverted File Organization

Since the index entries are of variable lengths, index maintenance is rather
complex.

11.11	 SUMMARY

●● A file is a collection of records. It is usually stored on a secondary storage
device.

●● The data is organized in a hierarchical order in the files. The hierarchical
order includes items such as records and fields.

●● File creation is the first operation to be performed on the files if the file is
not created. A file is created by specifying its name and mode.

●● A file is classified into two types, which are text files and binary files.
●● A text file, often called a flat file, is a file that stores all the numeric or

non-numeric data using its corresponding ASCII values. The data can be
a string of letters, numbers, or special symbols.

●● A binary file is a file that contains all the data in the binary form of 1s and
0s. It stores the data in the same form as that of primary memory.

Data Structures and Program Design Using Python_Ch11.indd 329 9/24/2020 12:46:49 PM

330 • Data Structures and Program Design Using Python

●● A file organization refers to the way in which records are physically
arranged on a storage device.

●● Sequence file organization is the most basic way to organize a collection
of records in a file. In sequence file organization, the file is created when
the records are written, one after the other in order, and can be accessed
only in that order in which they are written when the file is used for input.
All the records are numbered from zero onward.

●● An indexed sequential file organization is an effective way of organizing
the records when there is a need to access both sequentially by some key
values and individually by the same key value. It provides the combination
of access types that are supported by a sequential file or a relative file.

●● Relative file organization provides an effective way of accessing individual
records directly. In a relative file organization, there is a predictable rela-
tionship between the key and the record’s location in the file.

●● One fundamental approach for providing a link between an index and a
file is called inversion. The inversion approach for providing multi-key
access has been used as the basis for the physical data structure.

11.12	 EXERCISES

11.12.1 Review Questions

Q1.	 What is a file?

Q2.	 Why is there a need to store data in files? Explain.

Q3.	 What do you understand about the terms record and field?

Q4.	 Discuss various operations that can be performed on files.

Q5.	 Differentiate between a text file and a binary file.

Q6.	 Write a short note on file attributes.

Q7.	 What do you understand about file organization?

Q8.	 Explain sequential file organization.

Q9.	 What are inverted files?

Q10.	 Explain indexed sequential file organization.

Data Structures and Program Design Using Python_Ch11.indd 330 9/24/2020 12:46:49 PM

Files • 331

Q11.	 Give the merits and drawbacks of indexed sequential file
organization.

Q12.	 What is relative file organization? Discuss the advantages and disad-
vantages of relative file organization.

11.12.2 Multiple Choice Questions

Q1.	 A collection of related fields is called

a.	 Data

b.	 Record

c.	 Field

d.	 File

Q2.	 A file marked as _______ can’t be modified or deleted.

a.	 Hidden

b.	 Read-only

c.	 Archive

d.	 None of these

Q3.	 Which of the following is often known as a flat file?

a.	 Binary File

b.	 Text File

c.	 String File

d.	 None of these

Q4.	 ________ is a collection of data organized in a fashion that facilitates
various operations such as updating and retrieving.

a.	 Record

b.	 Data word

c.	 Field

d.	 File

Data Structures and Program Design Using Python_Ch11.indd 331 9/24/2020 12:46:49 PM

332 • Data Structures and Program Design Using Python

Q5.	 Relative files be used both for random and sequential access.

a.	 True

b.	 False

c.	 Not possible to comment

Q6.	 A file marked as _______ is not displayed in the directory.

a.	 Read-only

b.	 Archive

c.	 Hidden

d.	 None of these

Q7.	 A data field is characterized by

a.	 Type

b.	 Size

c.	 Mode

d.	 Both (a) and (b)

Q8.	 _______ is used to store a collection of files.

a.	 Record

b.	 Dictionary

c.	 Directory

d.	 System

Data Structures and Program Design Using Python_Ch11.indd 332 9/24/2020 12:46:49 PM

C H A P T E R 12
GRAPHS

12.1	 INTRODUCTION

We have studied the types of linear data structures that are widely used in
various applications. However, the only non-linear data structure we have
studied thus far is trees. In trees, we discussed the parent-child relationship
in which one parent can have many children. But in graphs, this parent-child
relationship is less restricted, that is, any complex relationship can exist. Thus,
a tree can be generalized as a special type of graph. Therefore, a graph is
a non-linear data structure that has a wide range of real-life applications.
A graph is a collection of some vertices (nodes) and edges that connect these
vertices. Figure 12.1 represents a graph.

FIGURE 12.1  A graph

Thus, a graph G can be defined as an ordered set of vertices and edges (V, E),
where V(G) represents the set of vertices, and E(G) represents the set of edges
that connect these vertices. In the previous figure, V(G) = {A, B, C, D, P, Q}

Data Structures and Program Design Using Python_Ch12.indd 333 9/24/2020 12:29:23 PM

334 • Data Structures and Program Design Using Python

represents the set of vertices, and E(G) = {(A, B), (B, D), (D, C), (C, A), (C, Q),
(Q, D), (A, P), (P, C)} represents the set of edges.

Practical Application:

A simple illustration of a graph is that when we connect with our friends on
social media, where each user is a vertex and two users connect, forming
an edge.

There are two types of graphs:

1.	 Undirected Graph – In an undirected graph, the edges do not have any
direction associated with them. As we can see in the following figure, the
two nodes A and B can be traversed in both the directions, that is, from A
to B or from B to A. Thus, an undirected graph does not give any informa-
tion about the direction.

FIGURE 12.2  An undirected graph

2.	 Directed Graph – In a directed graph, the edges have directions associ-
ated with them. As we can see in the following figure, the two nodes A
and B can be traversed in only one direction, that is, only from A to B and
not from B to A. Therefore, in the edge (A, B), the node A is known as the
initial node and node B is known as the final node.

FIGURE 12.3  A directed graph

Data Structures and Program Design Using Python_Ch12.indd 334 9/24/2020 12:29:23 PM

Graphs • 335

12.2	DEFINITIONS

●● Degree of a vertex/node – The degree of a node is the total number
of edges incident to that particular node. Here, the degree of node B is
three, as three edges are incident to the node B.

FIGURE 12.4  Graph showing the degree of node B

●● In-degree of a node – The in-degree of a node is equal to the number
of edges arriving at that particular node.

●● Out-degree of a node – The out-degree is equal to the number of edges
leaving that particular node.

FIGURE 12.5  Graph showing in-degree and out-degree of node C

●● Isolated Node/Vertex – A node having zero edges is known as the
isolated node. The degree of such a node is zero.

FIGURE 12.6  Two isolated nodes, X and Y

Data Structures and Program Design Using Python_Ch12.indd 335 9/24/2020 12:29:23 PM

336 • Data Structures and Program Design Using Python

●● Pendant Node/Vertex – A node having one edge is known as a pendant
node. The degree of such a node is one.

FIGURE 12.7  Two pendant nodes, X and Y

●● Adjacent Nodes – For every edge e = (A, B) that connect nodes A and
B, the nodes A and B are said to be the adjacent nodes.

●● Parallel Edges – If there is more than one edge between the same pair
of nodes, then they are known as parallel edges.

FIGURE 12.8  Parallel edges between A and B

●● Loop – If an edge has a starting and ending point at the same node, that
is, e = (A, A), then it is known as a loop.

FIGURE 12.9  A loop

●● Simple Graph – A graph G(V, E) is known as a simple graph if it does not
contain any loops or parallel edges.

Data Structures and Program Design Using Python_Ch12.indd 336 9/24/2020 12:29:24 PM

Graphs • 337

●● Complete Graph – A graph G(V, E) is known as a complete graph if, and
only if, every node in the graph is connected to another node and there is
no loop on any of the nodes.

FIGURE 12.10  Complete graph

●● Regular Graph – A regular graph is a graph in which every node has
the same degree. If every node has a degree r, then the graph is called a
regular graph of degree r. In the given figure, all the nodes have the same
degree, that is, 2; hence, it is known as a 2-regular graph.

FIGURE 12.11  A 2-regular graph

●● Multi-graph – A graph G(V, E) is known as a multi-graph if it contains
either a loop, parallel edges, or both.

FIGURE 12.12  Multi-graph

●● Cycle – This is a path containing one or more edges that start from a par-
ticular node and also terminate at the same node.

●● Cyclic Graph – A graph that has cycles in it is known as a cyclic graph.

Data Structures and Program Design Using Python_Ch12.indd 337 9/24/2020 12:29:24 PM

338 • Data Structures and Program Design Using Python

●● Acyclic Graph – A graph without any cycles is known as an acyclic graph.
●● Connected Graph – A graph G(V, E) is known as a connected graph if

there is a path from any node in the graph to another node in the graph
such that for every pair of distinct nodes, there must be a path.

FIGURE 12.13  Connected graph

●● Strongly Connected Graph – A directed graph is said to be a strongly
connected graph if there exists a dedicated path between every pair of nodes
in the graph. For example, if there are two nodes, say P and Q, and there is a
dedicated path from P to Q, then there must be a path from Q to P.

FIGURE 12.14  Strongly connected graph

●● Size of a Graph – The size of a graph is equal to the total number of
edges present in the graph.

●● Weighted Graph – A graph G(V, E) is said to be a weighted graph if all
the edges in the graph are assigned some data. This data indicates the cost
of traversing the edge.

FIGURE 12.15  Weighted graph

Data Structures and Program Design Using Python_Ch12.indd 338 9/24/2020 12:29:24 PM

Graphs • 339

12.3	GRAPH REPRESENTATION

Graphs can be represented in a computer’s memory in either of the following
ways:

1.	 Sequential Representation of Graphs using Adjacency Matrix

2.	 Linked Representation of Graphs using Adjacency List

12.3.1	Adjacency Matrix Representation

An adjacency matrix is used to represent the information of the nodes that
are adjacent to one another. The two nodes are only adjacent when there is an
edge connecting those nodes. For any graph G having n nodes, the dimension
of the adjacency matrix is (n × n). Let G(V, E) be a graph having vertices V =
{V1, V2, V3………Vn}, and then the adjacency matrix representation (n × n) is
given by

The adjacency matrix is also known as a bit matrix or Boolean matrix since
it contains only 0s and 1s. Now, let us take a few examples to discuss and
understand it more clearly.

Example 1 – Consider the given directed graph and find its adjacency
matrix.

FIGURE 12.16  A directed graph

Data Structures and Program Design Using Python_Ch12.indd 339 9/24/2020 12:29:25 PM

340 • Data Structures and Program Design Using Python

The adjacency matrix for the graph is

Example 2 – Now, consider the given undirected graph and find its adja-
cency matrix.

FIGURE 12.17  An undirected graph

The adjacency matrix for the graph is

Example 3 – Now, consider the given weighted graph and find its adja-
cency matrix.

FIGURE 12.18  A directed weighted graph

Data Structures and Program Design Using Python_Ch12.indd 340 9/24/2020 12:29:25 PM

Graphs • 341

The adjacency matrix for the graph is

Example 4 – Consider the given undirected multi-graph and find its
adjacency matrix.

FIGURE 12.19  An undirected multi-graph

The adjacency matrix for the graph is

From the previous examples, we conclude that
●● The memory space needed to represent a graph using its adjacency matrix

is n2 bits.
●● The adjacency matrix for an undirected graph is always symmetric.
●● The adjacency matrix for a directed graph needs not to be symmetric.

Data Structures and Program Design Using Python_Ch12.indd 341 9/24/2020 12:29:25 PM

342 • Data Structures and Program Design Using Python

●● The adjacency matrix for a simple graph having no loops or parallel edges
always contains 0s on the diagonal.

●● The adjacency matrix for a weighted graph always contains the weights of
the edges connecting the nodes instead of 0 and 1.

●● The adjacency matrix for an undirected multi-graph contains the number
of edges connecting the vertices instead of 1.

12.3.2	Adjacency List Representation

The adjacency matrix representation has some major drawbacks. First, it is
very difficult to insert and delete the nodes in/from the graph as the size of the
matrix needs to be changed accordingly, which is a very time-consuming pro-
cess. Sometimes the matrix may contain many zeroes (sparse matrix). Hence,
it is not a healthy representation. Therefore, adjacency list representation is
preferred for representing sparse graphs in the memory. In this representa-
tion, every node is linked to its list of all the other nodes that are adjacent to it.
Adjacency list representation makes it easier to add or delete nodes. It shows
the adjacent nodes of a particular node. Now, let us consider a few examples.

Example 1 – Consider the given undirected graph and find its adjacency
list representation.

FIGURE 12.20  An undirected graph

The adjacency list representation of the graph is

Data Structures and Program Design Using Python_Ch12.indd 342 9/24/2020 12:29:25 PM

Graphs • 343

Example 2 – Consider the given directed graph and find its adjacency
list representation.

FIGURE 12.21  A directed graph

The adjacency list representation of the graph is

Example 3 – Now, consider the given weighted graph and find its adja-
cency list representation.

FIGURE 12.22  A directed weighted graph

The adjacency list representation of the graph is

Data Structures and Program Design Using Python_Ch12.indd 343 9/24/2020 12:29:26 PM

344 • Data Structures and Program Design Using Python

12.4	GRAPH TRAVERSAL TECHNIQUES

In this section, we discuss various types of techniques to traverse a graph. A
graph is a collection of nodes and edges. Thus, traversing in a graph is the pro-
cess of visiting each node and edge in some systematic approach. Therefore,
there are two types of standard graph traversal techniques:

1.	 Breadth-First Search (BFS)

2.	 Depth-First Search (DFS)

12.4.1	Breadth-First Search

Breadth-First Search is a traversal technique that uses the queue as an auxiliary
data structure for traversing all member nodes of a graph. In this technique,
we select any node in the graph as a starting node, and then we take all the
nodes adjacent to the starting node. We maintain the same approach for all
the other nodes. We maintain the status of all the traversed/visited nodes in a
queue so that no nodes are traversed again. Now, let us take a graph and apply
BFS to traverse the graph.

FIGURE 12.23  A sample graph

We start the traversal of the graph by taking node A as a starting node of
the previous sample graph. Then, we traverse all the nodes adjacent to the
starting node A. As we can see, B, C, and E are the adjacent nodes of A. So,
we traverse these nodes in any order, say E, C, B. The traversal is

Now, we traverse all the nodes adjacent to E. Node C is adjacent to node
E. But node C has already been traversed, so we ignore it and we move to the
next step. We traverse all the nodes adjacent to node C. As we can see, D is
the adjacent node of C. So we traverse node D and the traversal is

Data Structures and Program Design Using Python_Ch12.indd 344 9/24/2020 12:29:26 PM

Graphs • 345

We can see that all the nodes have been traversed, and hence this was the
Breadth-First Search traversal by taking node A as a starting node.

We implement the Breadth-First Search traversal technique with the
help of a queue. In this, we maintain an array that stores all the adjacent
unvisited neighbor nodes of a given node under consideration. Initially, the
front and rear are set to −1. We also maintain the status of the visited nodes
in a Boolean array, which has the value 1 if the node is visited and 0 if it is
not visited.

●● First, we en-queue/insert the starting node into the queue.
●● Second, the first node/element in the queue is deleted from the queue,

and all the adjacent unvisited nodes are inserted into the queue. This is
repeated until the queue becomes empty.

For Example – Consider the following sample graph and traverse the
graph using the breadth-first search technique.

FIGURE 12.24  A sample graph

The appropriate adjacency list representation of the graph is given as
follows:

Node Adjacency List

A B, C

B C

C D

D B

Data Structures and Program Design Using Python_Ch12.indd 345 9/24/2020 12:29:26 PM

346 • Data Structures and Program Design Using Python

In this example, we are taking A as a starting node.

Step 1: First, node A is inserted into the queue.

Step 2: Node A is deleted from the queue and FRONT is incremented
by 1. Now, insert all the nodes adjacent to A, which are nodes B and C, by
incrementing REAR. Node A has also been traversed.

Step 3: Similarly, node B is deleted from the queue, and the FRONT is
incremented by 1. Now, insert all the nodes adjacent to B, which is node C, by
incrementing REAR. But C has already been inserted in the queue. So now,
in this case, node C is also deleted by incrementing FRONT by 1, and the
node adjacent to C, that is, D, is inserted into the queue. Therefore, nodes A,
B, and C are traversed.

Step 4: Now, we again delete the front element from the queue which
is D. We insert the adjacent node of D, that is, B. But it is already traversed.

Data Structures and Program Design Using Python_Ch12.indd 346 9/24/2020 12:29:26 PM

Graphs • 347

Finally, as we delete the front element D, we notice that FRONT > REAR,
which is not possible. Hence, we have traversed all the nodes in the graph.

Therefore, the Breadth-First Search traversal of the graph is given as

Now, let us look at the function for a breadth-first search traversal.
Here is a program for Breadth-First Search traversal

Python3 program to print a BFS traversal
from a given source vertex. BFS(int s)
traverses vertices reachable from s.
from collections import defaultdict

This class represents a directed graph
using adjacency list representation
class Graph:

 # Constructor
 def __init__(self):

 # default dictionary to store graph
 self.graph = defaultdict(list)

 # function to add an edge to graph
 def addEdge(self,u,v):
 self.graph[u].append(v)

 # Function to print a BFS of graph
 def BFS(self, s):

 # Mark all the vertices as not visited
 visited = [False] * (len(self.graph))

 # Create a queue for BFS
 queue = []

Data Structures and Program Design Using Python_Ch12.indd 347 9/24/2020 12:29:27 PM

348 • Data Structures and Program Design Using Python

 # Mark the source node as
 # visited and enqueue it
 queue.append(s)
 visited[s] = True

 while queue:

 # Dequeue a vertex from
 # queue and print it
 s = queue.pop(0)
 print (s, end = " ")

 # Get all adjacent vertices of the
 # dequeued vertex s. If a adjacent
 # has not been visited, then mark it
 # visited and enqueue it
 for i in self.graph[s]:
 if visited[i] == False:
 queue.append(i)
 visited[i] = True

The output of the program is as follows:

12.4.2	Depth-First Search

The Depth-First Search is another traversal technique that uses the stack as
an auxiliary data structure for traversing all the member nodes of a graph. In
this technique, we first select any node in the graph as a starting node, and

Data Structures and Program Design Using Python_Ch12.indd 348 9/24/2020 12:29:27 PM

Graphs • 349

then we travel along a path that begins from the starting node. We visit the
adjacent node of the starting node, and again the adjacent node of the previ-
ous node, and so on. We maintain the same approach for all the other nodes.
Now, let us take a graph and apply DFS to traverse the graph.

FIGURE 12.25  A sample graph

We start the traversal of the graph by taking node A as a starting node.
Then, we traverse any of the nodes adjacent to the starting node A. As we can
see, B, C, and E are the adjacent nodes of A. If we traverse node E, then we
traverse the node adjacent to E, that is, C. After traversing C, we traverse the
node adjacent to C, which is D. Now, there is no adjacent node to D; hence,
we have reached the dead end. Thus, the traversal until now is

Because of the dead-end, we move backward. Now, we reach node C.
We check if there is any other node adjacent to C. There is no such node, and
thus we again move backward. Now, we reach E. We again check if there is
any other node adjacent to E. There is no such node, and thus we again move
backward. Now, we reach A. We check if there is any other node adjacent
to A. There are two nodes, B and C, adjacent to node A. As C is already tra-
versed, it will be ignored. Now, we traverse node B. After traversing B, we
traverse the node adjacent to B, which is D, but D is already traversed. We
can’t move backward or forward. Thus, we have completed the traversal. The
final traversal is given as

Now, we implement the Depth-First Search traversal technique with the
help of a stack. In this, we maintain an array that stores all the adjacent unvis-
ited neighbor nodes of a given node. Initially, the top is set to −1. We also
maintain the status of the visited nodes in a Boolean array, which has the value
of 1 if the node is visited and 0 if it is not visited.

Data Structures and Program Design Using Python_Ch12.indd 349 9/24/2020 12:29:27 PM

350 • Data Structures and Program Design Using Python

●● First, we push the starting node onto the stack.
●● Second, the topmost node/element is popped out from the stack and is

traversed. If it is already traversed, then we ignore it.
●● Third, all the adjacent unvisited nodes of the popped node/element are

pushed onto the stack. This process is repeated until the queue becomes
empty. The steps are repeated until the stack becomes empty.

For Example – Consider the following sample graph and traverse the
graph using the Breadth-First Search technique.

FIGURE 12.26  A sample graph

In this example, we take A as a starting node.

Step 1: Push A onto the stack.

Step 2: Now, pop the topmost element from the stack, that is, A. Thus,
A is traversed. Now, push all the nodes adjacent to A, that is, push B and C.

Step 3: Again, pop the topmost element from the stack, that is, C. Thus,
C is also traversed. Now, push all the nodes adjacent to C, that is, push D.

Step 4: Now, again pop the topmost element from the stack, that is, D.
Thus, D is also traversed. Now, push all the nodes adjacent to D, that is, push
B. But B is already in the stack. Therefore, no push is performed. Thus, the
stack becomes

Data Structures and Program Design Using Python_Ch12.indd 350 9/24/2020 12:29:27 PM

Graphs • 351

Step 5: Again, pop the topmost element from the stack, that is, B. Thus,
B is also traversed. Now, push all the nodes adjacent to B, that is, push C. But
C is already traversed; hence, the stack becomes empty.

Therefore, the depth-first search traversal of the graph is given as follows:

Now, let us look at the function for the depth-first search traversal.
Here is a program for Depth-First Search traversal.

Python3 program to print DFS traversal
from a given graph
from collections import defaultdict

This class represents a directed graph using
adjacency list representation
class Graph:

 # Constructor
 def __init__(self):

 # default dictionary to store graph
 self.graph = defaultdict(list)

 # function to add an edge to graph
 def addEdge(self, u, v):
 self.graph[u].append(v)

 # A function used by DFS
 def DFSUtil(self, v, visited):

 # Mark the current node as visited
 # and print it
 visited[v] = True
 print(v, end = ' ')

 # Recur for all the vertices
 # adjacent to this vertex
 for i in self.graph[v]:
 if visited[i] == False:
 self.DFSUtil(i, visited)
 # The function to do DFS traversal. It uses
 # recursive DFSUtil()
 def DFS(self, v):

Data Structures and Program Design Using Python_Ch12.indd 351 9/24/2020 12:29:27 PM

352 • Data Structures and Program Design Using Python

 # Mark all the vertices as not visited
 visited = [False] * (max(self.graph)+1)

 # Call the recursive helper function
 # to print DFS traversal
 self.DFSUtil(v, visited)

The output of the program is as follows:

Memory Aid:

To remember which of the data structures are used in implementing a
Breadth-First Search and Depth-First Search, we can use this memory
aid. Breadth-First Search is implemented using a queue data structure,
and a Depth-First Search is implemented using a stack data structure,
as it can be remembered by alphabetical order. B (Breadth-First Search)
and Q (Queue) come before than D (Depth-First Search) and S (Stack)
in alphabetical order.

Data Structures and Program Design Using Python_Ch12.indd 352 9/24/2020 12:29:28 PM

Graphs • 353

12.5	TOPOLOGICAL SORT

Topological sort is a procedure to determine the linear ordering of the nodes
of an acyclic directed graph also known as (DAG) in which each node comes
before all those nodes that have zero predecessors. A topological sort of a DAG
is a linear ordering of the vertices of a graph G(V, E) such that if(a, b) is an
edge, then a must appear before b in the topological ordering. The main idea
behind this is that in a graph, if a vertex has in-degree 0, then that vertex should
be selected as the first element in the topological order. A topological sort is
possible only in acyclic directed graphs. An acyclic graph is one that does not
have any cycles in it. Topological sorting is widely used in scheduling tasks,
applications, and so on. Now, let us look at the algorithm for topological sorting.

Algorithm for Topological Sort

Step 1: START

Step 2: Find the in-degree of every node.

Step 3: Insert all the nodes/elements having in-degree zero
in the queue.

Step 4: Repeat Steps 5 and 6 until the queue becomes empty.

Step 5: Delete the first node from the queue by incrementing
FRONT by 1.

Step 6: Repeat for each neighbor P of node N –

a) �Delete the edge from P to M by decreasing the in-
degree by 1.

b) �If the in-degree of P is zero, then add P to the
rear of the queue.

Step 7: END

For Example – Consider a given acyclic directed graph and find its topo-
logical sort.

FIGURE 12.27  A cyclic directed graph

Data Structures and Program Design Using Python_Ch12.indd 353 9/24/2020 12:29:28 PM

354 • Data Structures and Program Design Using Python

The appropriate adjacency list representation of the previous graph is
given as follows:

Node Adjacency List

A B, C

B E

C B, D

D -

E -

Step 1: The in-degree of all the nodes is as follows:

In-degree (A) – 0
In-degree (B) – 2
In-degree (C) – 1
In-degree (D) – 1
In-degree (E) – 1

Now, we have node A with in-degree = 0; thus, A is added to the queue.

Step 2: Insert node A into the queue.

FRONT = 1, REAR = 1, QUEUE = A

Step 3: Delete node A from the queue. Delete all the edges going from A.

FRONT = 0, REAR = 0, TOPOLOGICAL SORT = A
Thus, the graph becomes

The in-degree of all the nodes is as follows:

In-degree (B) – 1
In-degree (C) – 0
In-degree (D) – 1
In-degree (E) – 1

Now, we have node C with in-degree = 0; thus, C is added to the queue.

Data Structures and Program Design Using Python_Ch12.indd 354 9/24/2020 12:29:28 PM

Graphs • 355

Step 4: Insert node C into the queue.

FRONT = 1, REAR = 1, QUEUE = C

Step 5: Delete node C from the queue. Delete all the edges going from C.

FRONT = 0, REAR = 0, TOPOLOGICAL SORT = A, C
Thus, the graph becomes

The in-degree of all the nodes is as follows:

In-degree (B) – 0
In-degree (D) – 0
In-degree (E) – 1

Now, we have two nodes B and D with in-degree = 0; thus, B and D are
added to the queue.

Step 6: Insert nodes B and D into the queue.

FRONT = 1, REAR = 2, QUEUE = B, D

Step 7: Delete node B from the queue. Delete all the edges going from B.
There will be no change in the in-degree of the nodes.

FRONT = 1, REAR = 1, TOPOLOGICAL SORT = A, C, B, QUEUE = D

Step 8: Delete node D from the queue. Delete all the edges going from D.

FRONT = 0, REAR = 0, TOPOLOGICAL SORT = A, C, B, D
Thus, the graph becomes

Data Structures and Program Design Using Python_Ch12.indd 355 9/24/2020 12:29:28 PM

356 • Data Structures and Program Design Using Python

The in-degree of all the nodes is as follows:

In-degree (E) – 0

Now, we have node E with in-degree = 0. Thus, E is added to the queue.

Step 9: Insert node E into the queue.

FRONT = 1, REAR = 1, QUEUE = E

Step 10: Delete node E from the queue. Delete all the edges going from E.

FRONT = 0, REAR = 0, TOPOLOGICAL SORT = A, C, B, D, E

Now, we have no nodes left in the graph. Thus, the topological sort of the
graph is

12.6	MINIMUM SPANNING TREE

A spanning tree of an undirected and connected graph G is a subgraph that
contains all the vertices and edges that connect these vertices and is a tree.
The weights/costs can be assigned to the edges, and these weights/costs can
be used to calculate the weight/cost of the spanning tree by calculating the
sum of the weights/costs of each edge. A graph can have many spanning trees.
Thus, a Minimum Spanning Tree (MST) is defined as a spanning tree that
has weights/costs associated with the edges such that the total weight/cost of
the spanning tree is at a minimum. Although there are various approaches
for determining an MST, the two most popular approaches for determining a
minimum cost spanning tree of a graph are as follows:

1.	 Prim’s Algorithm

2.	 Kruskal’s Algorithm

12.6.1	Prim’s Algorithm

Prim’s algorithm is the algorithm that is used to build a minimum cost span-
ning tree. This algorithm works in such a way that it builds a tree edge by
edge. The next edge to be included is chosen according to some criteria. The
steps involved in Prim’s algorithm are as follows:

Data Structures and Program Design Using Python_Ch12.indd 356 9/24/2020 12:29:28 PM

Graphs • 357

Step 1: Select a starting vertex/node and add it to the spanning tree.
Step 2: During each iteration, select a vertex/node in such a way that the

edge connecting vertex Vi to another vertex Vj has the minimum cost/weight
assigned to it. Remember, the edge forming a cycle must not be added.

Step 3: End the process when (n−1) number of edges have been inserted
into the tree.

Frequently Asked Questions

Q. Consider the given graph and construct a minimum spanning
tree using Prim’s algorithm.

Answer:

Step 1: The starting node is F.

Step 2: The lowest weighted/cost edge is (F, A), that is, 1. Hence, it is
added to the tree.

Data Structures and Program Design Using Python_Ch12.indd 357 9/24/2020 12:29:29 PM

358 • Data Structures and Program Design Using Python

Step 3: Now, the lowest weighted/cost edge is (F, D), that is, 4. Hence, it
is added to the tree.

Step 4:

Step 5:

Data Structures and Program Design Using Python_Ch12.indd 358 9/24/2020 12:29:29 PM

Graphs • 359

Step 6: Finally, the minimum spanning tree is constructed.

12.6.2	Kruskal’s Algorithm

Kruskal’s algorithm is another approach for determining the minimum cost
spanning tree of a graph. In this approach also, the tree is built edge by edge.
The next edge to be included is chosen according to some criteria. The steps
involved in Kruskal’s algorithm are as follows:

Step 1: The weights/costs assigned to the edges are sorted in ascending
order.

Step 2: In this step, the lowest weighted/cost edge is added to the tree.
Remember, the edge forming a cycle must not be added.

Step 3: End the process when (n−1) number of edges have been inserted
into the tree.

Frequently Asked Questions

Q. Consider the given graph and construct a minimum spanning
tree using Kruskal’s algorithm.

Data Structures and Program Design Using Python_Ch12.indd 359 9/24/2020 12:29:29 PM

360 • Data Structures and Program Design Using Python

Answer:

Step 1: Initially the tree is given as

Step 2: Choose edge (F, A).

Step 3: Choose edge (D, E).

Data Structures and Program Design Using Python_Ch12.indd 360 9/24/2020 12:29:30 PM

Graphs • 361

Step 4: Choose edge (B, C).

Step 5: Choose edge (F, D).

Step 6: Choose edge (F, B).

Data Structures and Program Design Using Python_Ch12.indd 361 9/24/2020 12:29:30 PM

362 • Data Structures and Program Design Using Python

Practical Application:

Graphs are used to find the shortest route for GPS, Google maps, and
Yahoo maps.

12.7	SUMMARY

●● A graph is a collection of vertices (nodes) and edges that connect these
vertices.

●● The degree of a node is the total number of edges incident to that par-
ticular node.

●● A graph G (V, E) is known as a complete graph if, and only if, every node
in the graph is connected to another node and there is no loop on any of
the nodes.

●● An adjacency matrix is usually used to represent the information of the
nodes which are adjacent to one another. The adjacency matrix is also
known as a bit matrix or Boolean matrix because it contains only 0s and 1s.

●● In adjacency list representation, every node is linked to its list of all the
other nodes which are adjacent to it.

●● Traversing in a graph is the process of visiting each node and edge in some
systematic approach.

●● Breadth-First Search is a traversal technique that uses the queue as an
auxiliary data structure for traversing all the member nodes of the graph.
In this technique, we select any node in the graph as a starting node, and
then we take all the nodes adjacent to the starting node. We maintain the
same approach for all the other nodes.

●● The Depth-First Search is another traversal technique that uses the stack
as an auxiliary data structure for traversing all the member nodes of the
graph. In this also, we select any node in the graph as a starting node, and
then we travel along a path that begins from the starting node. We visit
the adjacent node of the starting node, and again the adjacent node of the
previous node, and so on.

●● Topological sort is a procedure to determine the linear ordering of the
nodes of an acyclic directed graph also known as (DAG) in which each
node comes before all those nodes which have zero predecessors.

●● A Minimum Spanning Tree (MST) is defined as a spanning tree that has
weights/costs associated with the edges such that the total weight/cost of
the spanning tree is at a minimum.

Data Structures and Program Design Using Python_Ch12.indd 362 9/24/2020 12:29:30 PM

Graphs • 363

12.8	EXERCISES

12.8.1	Theory Questions

Q1.	 What is a graph? Explain its features.

Q2.	 What do you understand about a complete graph?

Q3.	 What is a multi-graph?

Q4.	 How can a graph be represented in the computer’s memory?

Q5.	 Differentiate between a directed and undirected graph with an
example of each.

Q6.	 Consider the following graph and find the following:

a.	 Adjacency Matrix Representation

b.	 Degree of each node

c.	 Is the graph complete?

d.	 Pendant nodes

Q7.	 Explain why adjacency list representation is
preferred for storing sparse matrices over
adjacency matrix representation.

Q8.	 What are the different types of graph
traversal techniques? Explain each of them
in detail with the help of an example.

Q9.	 What do you understand about topological sort?

Q10.	 In what kind of graphs can topological sorting be used?

Q11.	 Differentiate between the Breadth-First Search and Depth-First Search.

Q12.	 Consider the following graph and find out its BFS and DFS traversal.

Data Structures and Program Design Using Python_Ch12.indd 363 9/24/2020 12:29:30 PM

364 • Data Structures and Program Design Using Python

Q13.	 What is a spanning tree?

Q14.	 Why is a minimum spanning tree called a spanning tree? Discuss.

Q15.	 Consider the given adjacency matrix and draw the directed graph.

Q16.	 Write a short note on Prim’s algorithm.

Q17.	 Explain Kruskal’s algorithm.

Q18.	 List some of the real-life applications of graphs.

Q19.	 Consider the following graph and find the minimum spanning tree
using

a.	 Prim’s algorithm

b.	 Kruskal’s algorithm

12.8.2	Programming Questions

Q1.	 Write a Python program to create and display a graph.

Q2.	 Write an algorithm to perform a topological sort on a graph.

Q3.	 Write an algorithm to find the degree of a node N in a graph.

Data Structures and Program Design Using Python_Ch12.indd 364 9/24/2020 12:29:30 PM

Graphs • 365

Q4.	 Write a Python program to traverse a graph using a Depth-First Search.

Q5.	 Write an algorithm to traverse a graph using the Breadth-First Search.

Q6.	 Write a Python program to find the shortest path using Prim’s
algorithm.

Q7.	 Write a Python program to find the shortest path using Kruskal’s
algorithm.

12.8.3	Multiple Choice Questions

Q1.	 To implement the breadth-first search, the data structure used is

a.	 Stack

b.	 Queue

c.	 Trees

d.	 Linked List

Q2.	 A graph having multiple edges is known as a ______.

a.	 Connected Graph

b.	 Complete Graph

c.	 Simple Graph

d.	 Multi-graph

Q3.	 An edge having initial and endpoints at the same node is called

a.	 Degree

b.	 Cycle

c.	 Loop

d.	 Parallel Edge

Q4.	 An adjacency matrix is also known as a

a.	 Bit Matrix

b.	 Boolean Matrix

c.	 Both of the above

d.	 None of the above

Data Structures and Program Design Using Python_Ch12.indd 365 9/24/2020 12:29:30 PM

366 • Data Structures and Program Design Using Python

Q5.	 To implement the depth-first search, the data structure used is

a.	 Stack

b.	 Queue

c.	 Trees

d.	 Linked List

Q6.	 Topological Sort is performed only on

a.	 Cyclic Directed Graphs

b.	 Acyclic Directed Graphs

c.	 Both of the above

d.	 None of the above

Q7.	 Which one of the following nodes has a zero degree?

a.	 Simple node

b.	 Isolated node

c.	 Pendant node

d.	 None of the above

Q8.	 ________ is the total number of nodes in a graph.

a.	 Degree

b.	 In-degree

c.	 Out-degree

d.	 Size

Q9.	 Graph G can have many spanning trees.

a.	 True

b.	 False

c.	 Not possible to comment

Data Structures and Program Design Using Python_Ch12.indd 366 9/24/2020 12:29:30 PM

A P P E N D I X

ANSWERS TO MULTIPLE
CHOICE QUESTIONS

Chapter 1

1.	 c
2.	 b
3.	 d
4.	 a
5.	 d
6.	 d
7.	 c
8.	 d
9.	 b

10.	 d
11.	 a
12.	 c
13.	 a
14.	 c
15.	 d

Chapter 2

1.	 a

2.	 b
3.	 c
4.	 a
5.	 a
6.	 b
7.	 a
8.	 d
9.	 d

10.	 c

Chapter 3

1.	 b

2.	 c
3.	 d

4.	 a
5.	 a
6.	 b
7.	 d
8.	 a

Chapter 4

1.	 b

2.	 d
3.	 b
4.	 b
5.	 d
6.	 a
7.	 c
8.	 c
9.	 b

Data Structures and Program Design Using Python_Ch13_Appendix.indd 367 9/24/2020 12:29:57 PM

368 • Data Structures and Program Design Using Python

Chapter 5

1.	 c

2.	 a
3.	 b
4.	 a
5.	 b
6.	 c
7.	 c
8.	 b
9.	 b

10.	 a

Chapter 6

1.	 a

2.	 d
3.	 c
4.	 a
5.	 d
6.	 b
7.	 c
8.	 b
9.	 c

Chapter 7

1.	 b

2.	 b
3.	 c
4.	 a
5.	 b
6.	 a
7.	 c

8.	 d

9.	 c

Chapter 8

1.	 d

2.	 c

3.	 c

4.	 d

5.	 c

6.	 c

7.	 c

8.	 b

9.	 a

10.	 a

11.	 b

12.	 c

13.	 b

14.	 c

15.	 d

Chapter 9

1.	 b

2.	 a

3.	 d

4.	 d

5.	 c

6.	 c

7.	 d

8.	 b

9.	 d

Chapter 10

1.	 c

2.	 d
3.	 d
4.	 b
5.	 a
6.	 a
7.	 a
8.	 b
9.	 b

Chapter 11

1.	 b

2.	 b
3.	 a
4.	 d
5.	 a
6.	 c
7.	 d
8.	 c

Chapter 12

1.	 b

2.	 d
3.	 c
4.	 c
5.	 a
6.	 b
7.	 b
8.	 d
9.	 b

Data Structures and Program Design Using Python_Ch13_Appendix.indd 368 9/24/2020 12:29:58 PM

INDEX

A

Abstract Data Type (ADT), 14, 16
Abstraction, 27
Acyclic directed graph (DAG), 353
Acyclic graph, 338, 353
Address calculation technique, 328
Address of array elements, calculating,

57–58, 73
Adelson-Velski and Landis (AVL) tree

creating, 264–267
need for, 257
operations on, 258–259
rotations, 259–260

Left-Left, 260–261
Left-Right, 263–264
Right-Left, 262–263
Right-Right, 261–262

Adjacency list representation, 342–343,
362

Adjacency matrix representation, 339–342,
362

Adjacent nodes, 336
ADT. See Abstract Data Type
Algorithms, 10, 16

analyzing, 12–13
approaches for designing, 11–12
with complexities, 14–15
developing, 10–11

Anaconda, 24
Ancestors, defined, 229

a.py file, 33
Arithmetic operators, 34, 50
Array elements, calculating the address of,

57–58
Arrays, 5, 55, 72

definition of, 55–56
and their applications, 69

Arrays/lists
declaration, 56–57
initialization, 57
operations on, 58–61
representation, 71
traversing an, 58–59

Ascending priority queue, 136
ASCII file, 323
Assignment operators, 35
Attributes, 33
Average case running time, 13
AVL tree. See Adelson-Velski and

Landis tree

B

Balance factor, 257
Best case running time, 13–14
Big O notation, 14–16
Binary files, 323, 329
Binary search, 155–159

algorithm for, 156–157
defined, 159

Binary search algorithm, 155–156

Data Structures and Program Design Using Python_Ch14_Index.indd 369 9/24/2020 12:15:32 PM

370 • Index

complexity, 158
drawbacks, 158–159

Binary Search Tree (BST)
mirror image, 268
operations on, 235–248, 268

Binary tree, 7, 16, 230–231, 268
array representation of, 232–233
creating using traversal methods,

253–256
defined, 8
linked representation of, 233–234
memory representation of, 232–234, 268
types, 231–232

Binary tree traversal methods, 248–252
Bitwise operators, 37, 50
Boolean, 29
Bottom-up approach, 12
b.py file, 33
Breadth-First Search (BFS), 344–348, 352,

362
Break statement, 44, 51
B+ tree, 285–286, 287
B-tree, 275, 286

application of, 285, 287
operations on

deletion, 279–282
insertion, 277–279

Bubble sort, 175–178
algorithm of, 175–177
complexity, 177–178

Bubble sort technique, 175

C

Chained hash table, operations on, 296
Chaining method, 295–299, 317

advantages and disadvantages of, 299
Character set, 28
Child, defined, 229
Circular header linked list, 114
Circular linked list, 93–101, 115
Circular queue, 129–135, 146

advantages of, 130–131

Class, 27, 50
Collection literals, 29
Collision, 295, 317
Collision resolution techniques, 295–299,

317
Column major order, 63, 64

elements in, 67
Comments in Python, 25
Comparison operators, 35, 50
Compilation, 25
Compiling Python program, 25–26
Complete binary tree, 231, 268
Complete graph, 337
Concatenation of two linked lists, 90
Connected graph, 338
Continue statement, 44, 51
c.py file, 33
C vs. C++ vs. Java vs. Python File Handling,

323–324
Cycle, 337
Cyclic graph, 337

D

DAG. See Acyclic directed graph
Data, 1, 15, 321, 329
Data field, 321
Data Left Right (DLR) traversal, 249, 269
Data management, defined, 1
Data nodes, 286
Data structure, 15

area of application, 1–2
defined, 1, 2
operations on, 9–10
types, 2–8, 15

Data types, 31–32, 50
Decision Control Statement (DCS),

38–40, 50
Degree of a node, 268, 362

defined, 230
Degrees of a vertex/node, 335
Deleting an element in an array/list, 59, 73

Data Structures and Program Design Using Python_Ch14_Index.indd 370 9/24/2020 12:15:32 PM

Index • 371

Deletion, 122, 126–128, 146. See also
Insertion

in B-tree, 279–282
from a chained hash table, 296
from a circular queue, 132–135
in a linked priority queue, 139–141
in linked queues, 122–124

Depth, defined, 230
Depth-First Search (DFS), 348–352, 362
De-queues, 142–146
Descendants, defined, 230
Descending priority queue, 136
DFS. See Depth-First Search
Dictionaries, 31
Difference, 31, 64
Direct addressing, hashing vs., 291
Directed graph, 334
Directory, 322
Directory lookup technique, 328
Division method, 292–293, 317
DLR traversal. See Data Left Right

traversal
Double-ended queues. See De-queues
Double hashing, 313–316, 317

advantages and disadvantages, 316
Double (“) quote, 24, 25
Doubly linked list, 101–113, 115
drift(), 47
Dynamic data structure, 3, 15
Dynamic memory allocation, 79–80, 115
Dynamic representation, 233

E

easy_install and pip, 24
Empty tree, 227
Encapsulation, 27, 50
Extended binary tree, 231–232, 268
External sorting, 164, 184
Extrapolation search. See Interpolation

search

F

File, 329
classification, 323
defined, 321, 322
operations on, 322–323

File handling, 323–324
File name, 322
File organization, 324–325, 330
Final node, 334
Folding method, 294, 317
For loop, 41, 51

program, 42
Functions, 33

G

Graphs, 362
Breadth-First Search, 344–348
Depth-First Search, 348–352
Minimum Spanning Tree, 356–361
representation, 339–343
techniques to traverse a, 344–352

Grounded header linked list, 113

H

Hash function, 292, 313–314, 317
characteristics of, 292
types, 292–294

Hashing, 290
vs. direct addressing, 291

Hash sign (#), 25
Hash table, 290–292, 317
Header linked list, 113–115
Header node, 114, 115
Head-tail linked list, 142
Height-balanced tree. See Adelson-Velski

and Landis (AVL) tree
Height, defined, 229
Hidden, 322
Homogeneous data structure, 3, 15

Data Structures and Program Design Using Python_Ch14_Index.indd 371 9/24/2020 12:15:33 PM

372 • Index

I

Identifiers, 29
Identity operators, 36, 50
If-elif-else statements, 40, 50
If-else statement, 39, 50
If statement, 38–39, 50
Imports, 33
Import statement, 33
In-degree of a node, 335

defined, 230
Indexed sequence file organization,

326–327, 330
advantages of, 327
disadvantages of, 327

Index nodes, 286
Infix expression, 223

conversion to postfix expression, 202–207
conversion to prefix expression, 208–211

Information hiding, 27
Inheritance, 27, 50
__init__(), 47, 48, 49
Initialization of the elements of an array/list,

57, 73
Initial node, 334
In-order traversal, 250
In-order traversing sequence, 253
Input restricted de-queue, 142, 147
Insertion, 121–122, 125–126, 146

in B-tree, 277–279
in a chained hash table, 296
in circular queue, 131–132
in linked priority queue, 139

Insertion operation, 268
Insertion sort, 167–170

algorithm for, 168–169
complexity, 169–170

Insertion sort technique, 168
Interface, 27
Internal sorting, 164
Interpolation search, 159–163

algorithm for, 160–161
complexity, 162–163

Interpolation search algorithm, 160
Intersection, 30
Inversion, 330
Inverted file organization, 328–329

advantages and disadvantages, 329
Isolated node/vertex, 335

K

Keywords, 29
Kruskal’s algorithm, 359–361

L

Last In, First Out (LIFO) data structure,
189, 222

Last-In, First-Out (LIFO) principle, 5
LDR traversal. See Left Data Right traversal
Leaf node, 268, 280, 285–286

defined, 229
Left Data Right (LDR) traversal, 250, 269
Left-Left rotation (LL rotation), 260–261
Left Right Data (LRD) traversal, 251, 269
Left-Right rotation (LR rotation), 263–264
Level number of a node, defined, 229
LIFO data structure. See Last In, First Out

data structure
LIFO principle. See Last-In, First-Out

principle
Linear data structure, 2–3, 15

vs. non-linear data structure, 4
Linear probing, 300–306, 317

advantages and disadvantages, 306
Linear queues limitation, 129–130
Linear search, 151–155

algorithm for, 153
drawbacks, 154

Linear search algorithm, complexity, 154
Linked lists, 6–7, 16, 115

advantages of, 79
applications, 114
circular linked list, 93–101, 115
defined, 7, 77–79

Data Structures and Program Design Using Python_Ch14_Index.indd 372 9/24/2020 12:15:33 PM

Index • 373

disadvantages of, 79
doubly linked list, 101–113, 115
header linked list, 113–114
memory allocation in, 79–80
polynomial representation, 114, 115
singly linked list, 80–93, 115

Linked representation, 71–72
Linking, 26
List literals, 29–30
Lists, 5, 15, 55, 73
Literals, 29
Logical operators, 36, 50
Loop, 336
Loop control statements, 43–44
Looping statements, 40–43
Lower-triangular matrix, 70

M

Magic methods, 49, 51
Membership operators, 36, 50
Merge sort, 170–174

algorithm of, 171–173
complexity of, 173–174

Merge sort techniques, 171
Merging of two array/lists, 61, 73
Messaging, 27
method printhello(), 46
Mid square method, 293, 317
Minimum Spanning Tree (MST), 362

Kruskal’s algorithm, 359–361
Prim’s Algorithm, 356–359

Modularization, 11, 16
Module files, 32–33
Modules, 33
MST. See Minimum Spanning Tree
Multidimensional array, 67, 73
Multi-graph, 337
Multi-way search tree, 275, 286

N

N-dimensional array. See Multidimensional
array

Nested loop, 41, 51
program, 42–43

Nodes, 6, 77
defined, 228

Non-homogeneous data structure, 3, 15
Non-linear data structure, 3, 15
Non-primitive data structure, 3, 15
NULL node, 7, 78, 98
Null tree, 227

O

Object, 27, 50
Object-Oriented Programming (OOP),

26, 50
advantages, 27
basic concepts, 27

Object-oriented programming languages
(OOPL), 27–28

One-dimensional (1-D) arrays, 61, 73
OOP. See Object-Oriented Programming
OOPL. See Object-oriented programming

languages
Open addressing method, 299, 317–318

double hashing, 313–316
linear probing, 300–306
quadratic probing, 306–313

Operators in Python, 34–37
Ordered binary tree. See Binary Search

Tree (BST)
Out-degree of a node, 335

defined, 230
Output, 31
Output restricted de-queue, 142, 147
Overflow in stacks, 190, 222

P

Parallel edges, 336
Parent, defined, 229

Data Structures and Program Design Using Python_Ch14_Index.indd 373 9/24/2020 12:15:33 PM

374 • Index

Parenthesis balancing, 220–222
Pass statement, 44, 51
Path, defined, 229, 268
Peek operation, 193, 223
Pendant node/vertex, 336
Polish notations, 201, 223
Polymorphism, 27
Polynomial representation, 114, 115
Pop operation, 192–193, 223

in linked stacks, 198–200
Postfix expression, 223

conversion from infix expression to,
202–207

evaluation of, 212–216
Post-order traversal, 251–252
Prefix expression

conversion from infix expression to,
208–211

evaluation of, 216–220
Pre-order traversal, 249
Pre-order traversing sequence, 253
Prefix expression, 223
Primary clustering, 306
Primitive data structure, 3, 15

vs. non-primitive data structure, 4
Prim’s Algorithm, 356–359
Priority queue, 135–141, 137

defined, 137
implementation of, 138

Probing, 299, 317
Product, 64–65
Push operation, 191–192, 223

in linked stacks, 197
Python, 21–22, 50

character set used in, 28
data types in, 31–32
and its characteristics, 22–23
operators in, 34–37
overview, 23
package installers, 24
quotations and comments in, 24–25
tools for, 24

vs. other programming languages, 22
Python class method, 45, 51
Python functions vs. method, 49
Python magic methods, 49, 51
Python method, 45–47, 49, 51
Python object, 46, 51
Python program

compiling, 25–26
structure of, 32–34

Python 3, run a program in, 26
Python self parameter, 48–49
Python tokens, 28–31

Q

Quadratic probing, 306–313, 317
advantages and disadvantages, 313

Queue, 119, 146
applications of, 146
circular, 129–135, 146
definition of, 119
de-queues (double-ended queues),

142–146
implementation

using arrays, 120
using linked lists, 120–124

operations on, 125–128
priority, 135–141, 137

Queues, 5–6, 15–16
Quicksort, 178–183

algorithm for, 180–182
complexity of, 182–183

Quicksort technique, 179
Quotations in Python, 24–25

R

Read-only, 322
Record, 321
Regular graph, 337
Relative file organization, 327–328,

330
advantages and disadvantages, 328

Data Structures and Program Design Using Python_Ch14_Index.indd 374 9/24/2020 12:15:33 PM

Index • 375

Reverse polish notation, 201
Reversing a linked list, 91–92
Right-Left rotation (RL rotation), 262–263
Right-Right rotation (RR rotation),

261–262
Root, defined, 228
Root node, 227, 268
Rotations, 259–260
Row major order, 63, 64

elements in, 67

S

Searching, 151
in a chained hash table, 296
interpolation, 159–163
linear, 151–155

Searching for an element in an array/list,
60, 73

Secondary clustering, 313
Segment, 184
Selection control statement, 38
Selection sort, 164–167

algorithm for, 165–166
technique, 164–165

Selection sort algorithm, complexity,
166–167

Selection sort technique, 164–165
defined, 167

Self-referential structure, 78
Sequence file organization, 325, 330

advantages of, 325–326
disadvantages of, 326

Sequential control, 38
Sequential representation, 232
Sequential search. See Linear search
Set, 30
Siblings, defined, 230
Simple graph, 336
Single (‘) quote, 24, 25
Singly linked list, 80–93, 115
Size of a graph, 338
Sorting, 163

bubble, 175–178
external, 184
insertion, 167–170
merge, 170–174
quick, 178–183
selection, 164–167

Sorting a linked list, 90
Sorting an array/list, 61, 73
Sort key, 325
Space complexity, 12, 16
Sparse matrices, 69, 73

explaining, 72
representation of, 71–72
types of, 70

Stacks, 5, 16, 189, 222
applications of, 201–222
definition of, 189–190
implementation of stacks

using arrays, 196
using linked lists, 196–197

operations on, 191–196
overflow and underflow in, 190

Standard library files, 34
START node, 78, 94, 95, 96, 98, 99, 110,

111
Statements, 33
Static data structure, 3, 15
String, 29
Strongly connected graph, 333, 338

types, 334
Structure, 1, 15
Subscript, 56
Sub-trees, defined, 229
Sum, 64
Symmetric difference, 31

T

Terminal node, defined, 229
Text files, 323, 329
3-D arrays, calculating the address of,

67–68
3-Tuple representation, 71

Data Structures and Program Design Using Python_Ch14_Index.indd 375 9/24/2020 12:15:33 PM

376 • Index

Time complexity, 12, 16
defined, 13
types, 12–13

Time-space trade-off, 13
Top-down approach, 11
Topological sort, 353–356, 362
Transpose, 65, 67
Traversing, 268, 362

array/list, 58–59, 73
linked list, 81, 115

Trees, 7, 16, 227–228, 268
advantages of, 8

Triple (‘” or “) quote, 24
Tri-triangular matrix, 70
Tuples, 30
Two-dimensional (2-D) arrays, 61, 73

Two-dimensional (2-D) arrays/lists
declaration of, 62–63
operations on, 64–67

U

Underflow in stacks, 190, 222
Undirected graph, 334
Union, 30
Upper-triangular matrix, 70

W

Weighted Graph, 338
While loop, 41, 51

program, 41
Worst case running time, 13

Data Structures and Program Design Using Python_Ch14_Index.indd 376 9/24/2020 12:15:33 PM

	Cover
	Half-Title
	Title
	Copyright
	Dedication
	Contents
	Preface
	Acknowledgments
	Chapter 1: Introduction to Data Structures
	1.1 Introduction
	1.2 Types of Data Structures
	1.2.1 Linear and Non-Linear Data Structures
	1.2.2 Static and Dynamic Data Structures
	1.2.3 Homogeneous and Non-Homogeneous Data Structures
	1.2.4 Primitive and Non-Primitive Data Structures
	1.2.5 Arrays/Lists
	1.2.6 Stacks
	1.2.7 Queues
	1.2.8 Linked Lists
	1.2.9 Trees
	1.2.10 Graphs

	1.3 Operations on Data Structures
	1.4 Algorithms
	1.4.1 Developing an Algorithm

	1.5 Approaches for Designing an Algorithm
	1.6 Analyzing an Algorithm
	1.6.1 Time-Space Trade-Off

	1.7 Abstract Data Types
	1.8 Big O Notation
	1.9 Summary
	1.10 Exercises
	1.11 Multiple Choice Questions

	Chapter 2: Introduction to Python
	2.1 Introduction
	2.2 Python and Its Characteristics
	2.3 Python Overview
	2.4 Tools For Python
	2.5 easy_install and pip
	2.6 Quotations and Comments in Python
	2.7 Compiling the Python Program
	2.8 Object-Oriented Programming
	2.9 Character Set Used in Python
	2.10 Python Tokens
	2.11 Data Types in Python
	2.12 Structure of a Python Program
	2.13 Operators in Python
	2.14 Decision Control Statements
	2.15 Looping Statements
	2.16 Loop Control Statements
	2.17 Methods
	2.18 Summary
	2.19 Exercises
	2.19.1 Theory Questions
	2.19.2 Programming Projects
	2.19.3 Multiple Choice Questions

	Chapter 3: Arrays/Lists
	3.1 Introduction
	3.2 Definition of an Array
	3.3 Array/List Declaration
	3.4 Array/List Initialization
	3.5 Calculating the Address of Array Elements
	3.6 Operations on Arrays/Lists
	3.7 2-D Arrays/Two-Dimensional Arrays
	3.8 Declaration of Two-Dimensional Arrays/Lists
	3.9 Operations on 2-D Arrays/Lists
	3.10 Multidimensional Arrays/N-Dimensional Arrays
	3.11 Calculating the Address of 3-D Arrays
	3.12 Arrays and Their Applications
	3.13 Sparse Matrices
	3.14 Types of Sparse Matrices
	3.15 Representation of Sparse Matrices
	3.16 Summary
	3.17 Exercises
	3.17.1 Theory Questions
	3.17.2 Programming Questions
	3.17.3 Multiple Choice Questions

	Chapter 4: Linked Lists
	4.1 Introduction
	4.2 Definition of a Linked List
	4.3 Memory Allocation in a Linked List
	4.4 Types of Linked Lists
	4.4.1 Singly Linked List
	4.4.2 Operations on a Singly Linked List
	4.4.3 Circular Linked Lists
	4.4.4 Operations on a Circular Linked List
	4.4.5 Doubly Linked List
	4.4.6 Operations on a Doubly Linked List

	4.5 Header Linked Lists
	4.6 Applications of Linked Lists
	4.7 Polynomial Representation
	4.8 Summary
	4.9 Exercises
	4.9.1 Theory Questions
	4.9.2 Programming Questions
	4.9.3 Multiple Choice Questions

	Chapter 5: Queues
	5.1 Introduction
	5.2 Definition of a Queue
	5.3 Implementation of a Queue
	5.3.1 Implementation of Queues Using Arrays
	5.3.2 Implementation of Queues Using Linked Lists

	5.4 Operations on Queues
	5.4.1 Insertion
	5.4.2 Deletion

	5.5 Types of Queues
	5.5.1 Circular Queue
	5.5.2 Priority Queue
	5.5.3 De-queues (Double-Ended Queues)

	5.6 Applications of Queues
	5.7 Summary
	5.8 Exercises
	5.8.1 Theory Questions
	5.8.2 Programming Questions
	5.8.3 Multiple Choice Questions

	Chapter 6: Searching and Sorting
	6.1 Introduction to Searching
	6.2 Linear Search or Sequential Search
	6.2.1 Drawbacks of a Linear Search

	6.3 Binary Search
	6.3.1 Binary Search Algorithm
	6.3.2 Complexity of a Binary Search Algorithm
	6.3.3 Drawbacks of a Binary Search

	6.4 Interpolation Search
	6.4.1 The Interpolation Search Algorithm
	6.4.2 Complexity of the Interpolation Search Algorithm

	6.5 Introduction to Sorting
	6.5.1 Types of Sorting Methods

	6.6 External Sorting
	6.7 Summary
	6.8 Exercises
	6.8.1 Theory Questions
	6.8.2 Programming Questions
	6.8.3 Multiple Choice Questions

	Chapter 7: Stacks
	7.1 Introduction
	7.2 Definition of a Stack
	7.3 Overflow and Underflow in Stacks
	7.4 Operations on Stacks
	7.5 Implementation of a Stack
	7.5.1 Implementation of Stacks Using Arrays
	7.5.2 Implementation of Stacks Using Linked Lists

	7.6 Applications of Stacks
	7.6.1 Polish and Reverse Polish Notations
	7.6.2 Conversion from the Infix Expression to the Postfix Expression
	7.6.3 Conversion from an Infix Expression to a Prefix Expression
	7.6.4 Evaluation of a Postfix Expression
	7.6.5 Evaluation of a Prefix Expression
	7.6.6 Parenthesis Balancing

	7.7 Summary
	7.8 Exercises
	7.8.1 Theory Questions
	7.8.2 Programming Questions
	7.8.3 Multiple Choice Questions

	Chapter 8: Trees
	8.1 Introduction
	8.2 Definitions
	8.3 Binary Tree
	8.3.1 Types of Binary Trees
	8.3.2 Memory Representation of Binary Trees

	8.4 Binary Search Tree
	8.4.1 Operations on Binary Search Trees
	8.4.2 Binary Tree Traversal Methods
	8.4.3 Creating a Binary Tree Using Traversal Methods

	8.5 AVL Trees
	8.5.1 Need for Height-Balanced Trees
	8.5.2 Operations on an AVL Tree

	8.6 Summary
	8.7 Exercises
	8.7.1 Theory Questions
	8.7.2 Programming Questions
	8.7.3 Multiple Choice Questions

	Chapter 9: Multi-Way Search Trees
	9.1 Introduction
	9.2 B-Trees
	9.3 Operations on a B-Tree
	9.3.1 Insertion in a B-Tree
	9.3.2 Deletion in a B-Tree

	9.4 Application of a B-Tree
	9.5 B+ Trees
	9.6 Summary
	9.7 Exercises
	9.7.1 Review Questions
	9.7.2 Multiple Choice Questions

	Chapter 10: Hashing
	10.1 Introduction
	10.1.1 Difference between Hashing and Direct Addressing
	10.1.2 Hash Tables
	10.1.3 Hash Functions
	10.1.4 Collision
	10.1.5 Collision Resolution Techniques

	10.2 Summary
	10.3 Exercises
	10.3.1 Review Questions
	10.3.2 Multiple Choice Questions

	Chapter 11: Files
	11.1 Introduction
	11.2 Terminology
	11.3 File Operations
	11.4 File Classification
	11.5 C vs. C++ vs. Java vs. Python File Handling
	11.6 File Organization
	11.7 Sequence File Organization
	11.8 Indexed Sequence File Organization
	11.9 Relative File Organization
	11.10 Inverted File Organization
	11.11 Summary
	11.12 Exercises
	11.12.1 Review Questions
	11.12.2 Multiple Choice Questions

	Chapter 12: Graphs
	12.1 Introduction
	12.2 Definitions
	12.3 Graph Representation
	12.3.1 Adjacency Matrix Representation
	12.3.2 Adjacency List Representation

	12.4 Graph Traversal Techniques
	12.4.1 Breadth-First Search
	12.4.2 Depth-First Search

	12.5 Topological Sort
	12.6 Minimum Spanning Tree
	12.6.1 Prim’s Algorithm
	12.6.2 Kruskal’s Algorithm

	12.7 Summary
	12.8 Exercises
	12.8.1 Theory Questions
	12.8.2 Programming Questions
	12.8.3 Multiple Choice Questions

	Appendix: Answers to Multiple Choice Questions
	Index

