

MATHEMATICS

FOR

COMPUTER GRAPHICS

AND

GAME PROGRAMMING

LICENSE, DISCLAIMER OF LIABILITY, AND LIMITED WARRANTY

By purchasing or using this book (the “Work”), you agree that this license grants
 permission to use the contents contained herein, but does not give you the right of
ownership to any of the textual content in the book or ownership to any of the infor-
mation or products contained in it. This license does not permit uploading of the Work
onto the Internet or on a network (of any kind) without the written consent of the Pub-
lisher. Duplication or dissemination of any text, code, simulations, images, etc. con-
tained herein is limited to and subject to licensing terms for the respective products,
and permission must be obtained from the Publisher or the owner of the content, etc.,
in order to reproduce or network any portion of the textual material (in any media)
that is contained in the Work.

Mercury Learning And Information (“MLI” or “the Publisher”) and anyone in-
volved in the creation, writing, production, accompanying algorithms, code, or com-
puter programs (“the software”), and any accompanying Web site or software of the
Work, cannot and do not warrant the performance or results that might be obtained
by using the contents of the Work. The author, developers, and the Publisher have
used their best efforts to insure the accuracy and functionality of the textual material
and/or programs contained in this package; we, however, make no warranty of any
kind, express or implied, regarding the performance of these contents or programs.
The Work is sold “as is” without warranty (except for defective materials used in man-
ufacturing the book or due to faulty workmanship).

The author, developers, and the publisher of any accompanying content, and anyone
involved in the composition, production, and manufacturing of this work will not be
liable for damages of any kind arising out of the use of (or the inability to use) the algo-
rithms, source code, computer programs, or textual material contained in this publica-
tion. This includes, but is not limited to, loss of revenue or profit, or other incidental,
physical, or consequential damages arising out of the use of this Work.

The sole remedy in the event of a claim of any kind is expressly limited to replacement
of the book, and only at the discretion of the Publisher. The use of “implied warranty”
and certain “exclusions” vary from state to state, and might not apply to the purchaser
of this product.

MATHEMATICS

FOR

COMPUTER GRAPHICS

AND

GAME PROGRAMMING

A Self-Teaching Introduction

D. P. Kothari, PhD

G. K. Awari, PhD

D. D. Shrimankar, PhD

A. R. Bhende, PhD

MERCURY LEARNING AND INFORMATION

Dulles, Virginia

Boston, Massachusetts

New Delhi

Copyright ©2019 by Mercury Learning And Information LLC. All rights reserved.

ISBN: 978-1-68392-356-5. Reprinted and revised with permission.

Original title and copyright: Computer Graphics in Mathematical Approaches.

Copyright ©2017 by New Age International (P) Ltd. Publishers. All rights reserved.

ISBN : 978-93-86286-00-0

This publication, portions of it, or any accompanying software may not be reproduced in any way, stored in a retrieval

system of any type, or transmitted by any means, media, electronic display or mechanical display, including, but not

limited to, photocopy, recording, Internet postings, or scanning, without prior permission in writing from the publisher.

Publisher: David Pallai

Mercury Learning and Information

22841 Quicksilver Drive

Dulles, VA 20166

info@merclearning.com

www.merclearning.com

1-800-232-0223

D. P. Kothari, G. K. Awari, D. D. Shrimankar, A. R. Bhende.

Mathematics for Computer Graphics and Game Programming.

ISBN: 978-1-68392-356-5

The publisher recognizes and respects all marks used by companies, manufacturers, and developers as a means to

distinguish their products. All brand names and product names mentioned in this book are trademarks or service

marks of their respective companies. Any omission or misuse (of any kind) of service marks or trademarks, etc. is not

an attempt to infringe on the property of others.

Library of Congress Control Number: 2018964987

192021321 Printed on acid-free paper in the United States of America.

Our titles are available for adoption, license, or bulk purchase by institutions, corporations, etc. For additional infor-

mation, please contact the Customer Service Dept. at 800-232-0223(toll free).

All of our titles are available in digital format at authorcloudware.com and other digital vendors. The sole obligation of

Mercury Learning and Information to the purchaser is to replace the book, based on defective materials or faulty

workmanship, but not based on the operation or functionality of the product.

CONTENTS

Preface xi

Chapter 1 Introduction to Computer Graphics 1
1.1 Definition of Computer Graphics 1

1.1.1 Definition of Computer Aided Design (CAD) 2
1.2 Image Generation on Screen 3

1.2.1 Working of Cathode Ray Tubes (CRT) 3
1.2.2 Design of Deflection Mechanism of CRT 4

1.3 Image Generating Techniques 5
1.3.1 CRT Based Display Devices 5
1.3.2 Non-CRT Based Display Devices 11

1.4 Graphic User Interface (GUI) 12
1.5 Refresh Rate 16
1.6 Working of Laser Printers 20
Exercises 26
Objective Questions 27
Answers 28

Chapter 2 Vector Representation of Geometric Entities 29
2.0 Introduction 29
2.1 Line Generation Algorithm Using Equation of Line 30
2.2 Line Generation Using DDA Algorithm 37
2.3 Bresenham’s Line Generation Algorithm 43
2.4 Bresenham’s Midpoint Circle Generation Algorithm 55
2.5 Bresenham’s Midpoint Ellipse Generation Algorithm 61
2.6 Arc Generation Algorithm Using Trigonometric Function 70
Exercises 79
Objective Questions 80
Answers 81

Chapter 3 Two-Dimensional Transformation 83
3.1 Introduction 83
3.2 Representation of 2D Geometry 84
3.3 Types of 2D Transformations 84

3.3.1 Scaling Transformation 85
3.3.2 Rotation Transformation 87
3.3.3 Translation Transformation 89

3.4 Need of Homogeneous Coordinates 90

vi CONTENTS

3.5 Special Transformation 101
3.5.1 Reflection Transformation 101
3.5.2 Shear Transformation 112

3.6 Inverse Transformation 127
Exercises 132
Objective Questions 133
Answers 134

Chapter 4 Three-Dimensional Transformation 135
4.1 Introduction 135
4.2 Scaling Transformation 136
4.3 Translation Transformation 136
4.4 Rotation Transformation 137
4.5 Derivation for Rotation About Any Arbitrary Line in 3D Space 143
4.6 Reflection Transformation 156
4.7 Reflection About Any Arbitrary Plane in 3D Space 158
4.8 Shear Transformation 164
Exercises 165
Objective Questions 166
Answers 168

Chapter 5 Parametric Representation of Planar Curves 169
5.1 Introduction 169
5.2 Parametric Representation of a Circle 170
5.3 Parametric Representation of an Ellipse 174
5.4 Parametric Representation of a Parabola 178
5.5 Parametric Representation of a Hyperbola 182
Exercises 188
Objective Questions 188
Answers 190

Chapter 6 Parametric Representation of Space Curves 191
6.1 Introduction to Space Curves 191
6.2 Cubic Spline 191
6.3 B-Spline 202
6.4 Bézier Curves 204
6.5 Non-Uniform Rational B-Splines 207

6.5.1 Control Point 208
Exercises 212
Objective Questions 213
Answers 214

CONTENTS vii

Chapter 7 Parametric Representation of Surfaces 215
7.1 Introduction to Surfaces 215
7.2 Surface of Revolution 215
7.3 Sweep Surfaces 222
7.4 Helical Spring 224
Exercises 226
Objective Questions 226
Answers 227

Chapter 8 Windowing and Clipping 229
8.1 Introduction 229
8.2 Windowing 229
8.3 Clipping 230
8.4 Need for Windowing and Clipping 231
8.5 Viewing Transformation 232
8.6 2D Clipping 233
8.7 Cohen-Sutherland Subdivision Line Clipping Algorithm 234
8.8 Intersection Calculation and Clipping 236
8.9 Midpoint Subdivision Algorithm 237
8.10 Advantage of the Midpoint Subdivision Algorithm 238
8.11 Comparison Between Cohen-Sutherland and Midpoint

Subdivision Line Clipping Algorithms 238
8.12 Polygon Clipping 240
8.13 Sutherland-Hodgman Algorithm 242
8.14 3D Clipping 243
8.15 Multiple Windowing 245
8.16 Character Clipping 245
8.17 Applications of Clipping 246
Exercises 246
Objective Questions 247
Answers 248

Chapter 9 Generation of a 3D Model 249
9.1 Introduction 249
9.2 Wireframe Modeling 250
9.3 Surface Modeling 251
9.4 Solid Modeling 253

9.4.1 Primitive Creation Functions 254
9.4.2 Constructive Solid Geometry 254
9.4.3 Boundary Representation 258
9.4.4 Sweeping 261

viii CONTENTS

9.5 Advantages of Solid Modeling 261
9.6 Applications of Solid Modeling 262
9.7 Rendering 262

9.7.1 Scanline Rendering 263
9.7.2 Ray Trace Rendering 263
9.7.3 Radiocity Rendering 264

Exercises 265
Objective Questions 266
Answers 268

Chapter 10 Projections 269
10.1 Introduction 269
10.2 Projections 269

10.2.1 Perspective Projection 271
10.2.2 Parallel Projection 274
10.2.3 Differentials Between Parallel Projection

and Perspective Projection 280
10.3 Solved Problems 281
Exercises 288
Objective Questions 289
Answers 290

Chapter 11 Graphics Programs in C Language 291
11.1 Program-1 291
11.2 Program-2 292
11.3 Program-3 293
11.4 Program-4 294
11.5 Program-5 296
11.6 Program-6 296
11.7 Program-7 297
11.8 Program-8 300
11.9 Program-9 304
11.10 Program-10 307

Chapter 12 OpenGL with Computer Graphics 311
12.1 Introduction 311

12.1.1 Graphical Functions of OpenGL 312
Exercises 321
Objective Questions 321
Answers 322

CONTENTS ix

Chapter 13 Programming Graphics Using OpenGL 323
13.1 Application of Computer-Generated Images 323

13.1.1 Computer-Aided Design 323
13.1.2 Image Processing 325
13.1.3 Process Monitoring 327
13.1.4 Entertainment and Publishing 328
13.1.5 Simulation 328

13.2 Drawing Figures Using OpenGL 329
13.2.1 Getting Started With Making Pictures 330
13.2.2 Device-Independent Programming and OpenGL 331
13.2.3 Event-Driven Programming 331
13.2.4 Opening a Window for Drawing 333
13.2.5 Drawing Basic Graphics Primitives 334
13.2.6 Data Types and “States” in OpenGL 336
13.2.7 Establishing a Coordinate System 337
13.2.8 Making a Line Drawing 339
13.2.9 Other Graphics Primitives in OpenGL 343
13.2.10 Simple Interaction with Mouse and Keyboard 344

13.3 Drawing Tools 345
13.3.1 World Coordinates, World Windows, and Viewports 346
13.3.2 Mapping Between Window and Viewport 347
13.3.3 Line Clipping 352
13.3.4 Drawing Polygons, Circles, and Arcs Using OpenGL 354
13.3.5 Drawing Circles and Arcs 356

13.4 Transformation of Objects 357
13.4.1 Transformation 357
13.4.2 Affine Transformation 358
13.4.3 Drawing 3D Scenes Using OpenGL 363

13.5 Curve and Surface Design 365
13.5.1 Description of Curves 365
13.5.2 Designing Bezier Curves 369
13.5.3 The B-Spline Basis Function 377
13.5.4 Interpolation Technique 388

Summary 391
Exercises 392
Objective Questions 392
Answers 394

Index 395

PREFACE

In this world of fierce competition, it is absolutely necessary for technocrats to
keep updated and upgraded with ever-changing technology. As engineers, it’s our
duty to adapt to these changing scenarios and pay back to society and the nation.
This scenario of ever-changing technology has motivated us to write this book
and help others keep up with the pace. This book is written keeping in mind the
requirements of engineering students and industry professionals.

Features of the Book

• Concepts are explained with relevant mathematical derivations

• Unsolved examples and multiple choice questions are included at the end of
the chapters for practice and self-evaluation

• C programs based on various algorithms

• Numerous solved examples in each chapter

Computer graphics is an interdisciplinary subject which is used by undergraduate
and postgraduate students of mechanical engineering, aeronautical engineering,
production engineering, computer science, and information technology. Most of
the current titles, however, do not cover the mathematical concepts related to these
topics. As a result, students often have difficulty understanding these mathematical
concepts and their analytical treatment. This book aims to help readers understand
all of the major topics of the subject. It focuses on the mathematical concepts
involved in computer graphics and computer aided design currently taught or
used in industry.

—The Authors

Chapter

1

1Chapter

INTRODUCTION
TO COMPUTER
GRAPHICS

1.1 DEFINITION OF COMPUTER GRAPHICS

Computer graphics involves the display, manipulation, and storage of picture
and experiential data for proper visualization using a computer. Typical graphics
systems comprise a host computer with the support of a fast processor, large
memory, frame buffer, and display devices; output devices as color monitors,
liquid crystal display, laser printers, plotters, etc.; and input devices (mouse,
keyboard, joystick, touch screen, trackball, etc.).
Computer graphics have many applications:

1. Computer graphics are used in developing the components of a Graphic User
Interface (GUI). These GUI components are used to communicate between
the software and the user. Examples of GUI components are menus, icons,
cursors, dialog boxes, scroll bars, etc.

2. Computer graphics are used in the corporate sector for representing the sales
data and economic data using pi-charts, histogram, graphs, etc.

3. Office automation software use GUI components for a researcher’s report
or thesis.

4. Computer graphics are used in the publication of books, magazines,
journals, etc.

2 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

5. Computer graphics are used in the advertising field to provide graphic features
that make advertisements more impactful.

6. Computer graphics are essential in the entertainment and communication
industries worldwide, appearing everwhere from TV monitors to mobile phones.

7. Computer graphics are vital to simulation—the imitation of real world
processes in a model over time, such as aircraft and car racing simulations.
Aircraft simulations train budding pilots before they get hands-on experience
in real aircraft.

8. Computer graphics are used in audiovisual teaching aids in education. They
improve teaching outcomes in school and help employees develop skills in
profession training.

9. Computer graphics are used in the industry for computer-aided design and
computer-aided manufacturing (CAD-CAM).

1.1.1 Definition of Computer Aided Design (CAD)

Computer Aided Design is defined as any use of a computer to assist in the
creation, modification, analysis, or optimization of 2-dimensional (2D) and
3-dimensional (3D) designs. Examples of 2D CAD include plan or layout
designs, and 3D CAD includes solid and 3D modeling. Some of the common
applications of 2D CAD are architectural building plans, layout plans,
machine part drawing, electrical circuitry drawing, etc. Animated movies and
video games are applications of 3D CAD. Vector representations/ parametric
representations of 2D entities (such as lines, circles, conics), 3D entities, and

Idea

Conceive Design (CAD) Development Manufacturing (CAM)

CAE ValidationAnalysis

DMU

Engineering Drawing

CAMTool Design

Detailed Component
Modeling

Assembly Modeling
Product Layout

Concept Design

Requirement

Fig. 1.1 Steps in the engineering process

INTRODUCTION TO COMPUTER GRAPHICS 3

surfaces are used to develop computer based CAD software. CAD is extensively
used throughout the engineering process, as shown in Fig. 1.1. Engineering
processes begin as early as conceptual design and layout of product to
component modeling, assembly modeling, strength and dynamic analysis of
assemblies, to definition of manufacturing methods of components. CAD has
become especially important within the scope of Computer Aided Technologies.
Benefits of CAD include a greatly shortened design cycle and lower product
design and development costs. CAD enables designers to simulate a working
model on screen, edit or manipulate the model, maintain the record by saving
the files, and generate reports.

1.2 IMAGE GENERATION ON SCREEN

In computer graphics, an image is generated on a display device. Underlying
technologies for full-area two-dimensional displays include: cathode ray tube
display (CRT), light-emitting diode display (LED), electroluminescent display
(ELD), electronic paper, electronic ink, plasma display panel (PDP), liquid crystal
display (LCD), organic light-emitting diode display (OLED), laser TV, etc. The
multiplexed display technique is used to drive most modern display devices.
Earlier cathode ray tube (CRT) based display devices are used in the following
display devices:

1. Direct view storage tube (DVST)

2. Calligraphic or random scan display system

3. Raster scan display system

Before moving on to the display device, let us first see the working of the cathode
ray tube (CRT).

1.2.1 Working of Cathode Ray Tubes (CRT)

A cathode is a (negatively charged) electron gun that contains a filament. When
the filament is heated, the electrons are emitted in a straight beam. When the
beam hits a phosphorus-coated CRT screen at a certain velocity, it emits light
and a bright spot appears on the screen (Fig. 1.2). The different components of a
CRT are:

Cathode: A cathode is made up of a filament which generates electrons on
heating. This is also called an electron gun. These negatively charged electrons are
directed towards the screen.

4 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

Control Grid: The intensity or brightness of any point on the screen depends
upon the intensity of the electron beam coming out from the electron gun.
A control grid is used to control the intensity of the electrons emerging from
the electron gun according to the intensity of the point required on the screen.
The control grid is negatively charged with varying intensity. The intensity of the
negative charge is achieved by providing negative voltage to the control grid. If
high negative voltage is provided, then a strong negative field is developed, which
in turn repels the amount of electrons coming out from the electron gun. On
the other hand, if low voltage is supplied to the control grid, this produces a low
negative charged field, and that increases the intensity of electrons coming out
from the electron gun. In other words, by changing the voltage of the control grid,
the brightness of a point on the screen can be changed.

Focusing Anode: The focusing anode is a positively charged field which
focuses the electron beam on a particular point on the screen.

Accelerating Anode: The accelerating anode accelerates the velocity of the
electrons in an electron beam so that they hit the screen at a high velocity. This
ensures that light is emitted and a bright spot appears on the screen.

1.2.2 Design of Deflection Mechanism of CRT

The deflection mechanism deflects the electron beam so that it strikes the screen
at the desired location. There are two types of deflection plates: the horizontal
deflection plate and the vertical deflection plate. Horizontal deflection plates are
basically vertically placed but deflect the electron beam in a horizontal direction,
whereas vertical deflection plates are horizontally placed but deflect the electron
beam in a vertical direction. These deflection plates are provided with an electric
field which deflects the electron beam from its straight path. The deflection
mechanism is shown in Fig. 1.3. There are two methods of providing an electric
field to the two deflector plates:

1. Electromagnetic field

2. Electrostatic field

Phosphor coated screen

Electron beamFocusing unitControl gridCathode

Heating filament Accelerating unit

CRT screen

Fig. 1.2 The cathode ray tube

INTRODUCTION TO COMPUTER GRAPHICS 5

An electromagnetic field is most commonly used in modern display devices
such as TV monitors, etc. In this method, a magnetic field is generated in the
deflector plates. An electrostatic field is most commonly used in applications such
as cathode ray oscilloscopes (CRO). In this method, a static capacitive field is
generated in the deflector plates.

1.3 IMAGE GENERATING TECHNIQUES

Image generation techniques are classified on the basis of the use of cathode ray
tubes (CRT) in display devices. Devices that use CRT for image generation on
screen are called CRT-based display devices. Examples: direct view storage tube
(DVST), random scan display devices, and raster scan display devices.

Similarly, display devices that do not use CRT for image generation on the screen
are termed non-CRT-based display devices. All modern display devices come
under this category. The size of the display device is reduced considerably and it is
flatter than a CRT based display device. Non-CRT-based display devices are liquid
crystal displays (LCD), light emitting diodes (LED), plasma monitors, etc.

1.3.1 CRT Based Display Devices

As we have discussed earlier, there are three CRT based display devices: direct
view storage tubes, calligraphic or random scan display systems and raster scan
display systems. These CRT based display devices are further classified into two
categories: a line-based system and point-based system as shown in Fig. 1.4. Direct
view storage tube and calligraphic or random scan display systems, are examples
of line-based system, whereas raster scan display systems are examples of point-
based systems. In line-based display devices, any geometric entity on the screen
is made up of small lines. Even a curve or circle is also made up of small lines,
whereas in point-based systems, it is made up of points. The phosphor coating

Horizontal deflection plates Deflected beam

Phosphor coated screen

Electron gun Vertical deflection plates

Fig 1.3 Deflection mechanism of CRT

6 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

in CRT is of two types: long persistent phosphor coating and short persistent
phosphor coating. In long persistent phosphor coating, the bright spot appears for
a long period of time whereas in short persistent phosphor coating it appears for a
few milliseconds and then diminishes. When the screen gets refreshed, the bright
spot again appears on the screen. This cycle is continued and the phenomenon
is called the refresh rate. Due to these cycles of screen refresh, flickering appears
on the screen. Flicker is a visible fading between the cycles, especially when the
refresh rate or refresh frequency is low. A low refresh rate allows the brightness to
drop for time intervals sufficiently long to be noticed by the human eye.

Line based system
(Ex. DVST and
calligraphic)

Point based system
(Ex. raster scan display

device)

CRT based display devices

Fig. 1.4 Classification of CRT based display devices

1.3.1.1 Direct View Storage Tube (DVST)

In DVST, the CRT screen is coated with permanent phosphorescence. This
permanent phosphorescence coating on the screen ensures the entity drawn
on the screen will remain there for long time, say 1 to 2 hours. Because of this
permanent phosphorescence, the figure appears on the screen for a long time and
changing the entity on the screen becomes difficult. For erasing the entity, the
screen must be flooded with a particular voltage. So, if we have to make changes,
we have to erase the entire screen by supplying voltage to the screen and then
redraw the new entity on the screen. A line in DVST can be drawn from any point
to any point on the screen. This property is not shared by other display devices.
This is the reason why it is called a line-based system. Any image on the screen of
DVST is drawn by using small lines. DVST is a flicker free display device.

The disadvantages of DVST:

1. The process of drawing any entity is slow.

2. No animation is possible.

3. Erasing an entity is difficult.

1.3.1.2 Calligraphic or Random Scan Display System

This is also a line-based system like the DVST, which means we can draw a line
from any point to any point on the screen. The drawback of DVST, is that an

INTRODUCTION TO COMPUTER GRAPHICS 7

image appears for a very long time (1 to 2 hours), is eliminated in random scan
display systems. Here the picture is refreshed or reappears on the screen about 40
to 50 times in a second. But due to this high frequency of refresh, the refreshing
process is not observed by the human eye, but a slight flickering appears on the
screen. The main components of random scan display systems are screen, buffer
(memory), and controller.

L

L

L

L

4

3

2

1

Buffer (memory) Controller Screen

L1

L2
L4

L3

Fig. 1.5 Working of a random scan display system

Buffer is memory which stores the information on the entities of the screen. As
shown in Fig. 1.5, there are four lines on the screen and the information of these
lines is stored in the buffer. The controller controls the flow of data from the buffer
to the screen and vice-versa. In every cycle of refresh, it reads the data from the
buffer and displays it on the screen. This refresh process is repeated for 40 to 50
times in a second. Erasing the line on the screen means erasing the line from the
buffer. This makes changes to the image much easier. The disadvantage of this
system is that complex curves are difficult to draw.

1.3.1.3 Raster Scan Display System

In this display system, the entire screen is divided into an array or matrix of
points, as shown in Fig. 1.6. These small points are called pixels; hence it is
called a point-based system. But a line cannot be drawn from any point to any
point on the screen. For monochrome monitors, each pixel can be either black
or white. The line on the screen appears by making a particular line of pixels
glow. This also uses a refresh display system like a random scan display system,
in which the entity on the screen is redisplayed 40 to 50 times in a second.
The frame buffer is a memory storage device to store the location of pixels on
the screen. The controller’s function is to control the display of pixels as per
information stored in the frame buffer (this whole cycle is repeated 40 to 50
times in a second).

8 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

Fig. 1.6. Rasterization

In a raster scan display system, the frame buffer is also called a bit plane or a stroke
system, in which an electron beam moves on the entire screen in a zig-zag and
gets switched on and switched off during its travel to the entire screen, as shown
in Fig. 1.7. Fig. 1.8 shows the frame buffer for a monochrome monitor. Fig. 1.9
shows the frame buffer arrangement with an extended look-up table to increase
different color combinations. A color monitor uses a number of frame buffers to
represent the various colors on the screen. If a monitor is capable of showing 256,
colors, or 28 = 256, there are 8 frame buffers in the display system. Fig. 1.10 shows
the frame buffer for a color monitor. Different algorithms are used to decide the
sequence of pixels to glow in order to represent a given entity on the screen.

0

1

2

3

4

5

6

7

8

9

10

Scan
line

Horizontal
retrace

Vertical
retrace

Fig. 1.7 Zigzag strokes of an electron beam

INTRODUCTION TO COMPUTER GRAPHICS 9

CRT
raster

N

Register

0 01

Frame
buffer

2
N

2
N

DAC

levels

Electron
gun

N

Fig. 1.8 N-bit-plane gray level frame buffers

2 intensity levels,
W

2 at a time (W > N)
N

Electron
gun

Frame
buffer

CRT
raster

entries

W = 4

2
N

2
W

DAC

Lookup
table

W

1 1 10

0 01

N = 3

N

Fig. 1.9 N-bit-plane gray level frame buffer with a W-bit-wide lookup table

10 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

The 24-bits associated with each pixel in the frame
buffer are split into three 8-bit groups to specify
the pixel’s red, green, and blue (RGB) component

Pixels on
the screen

Digital-to-analog convertors (DACs) translate
the digital RGB values into their analog
counterparts to be fed to the screen

Pixels in the
frame buffer

DAC

DAC

DAC

R = 8

G
= 8

B = 8

Fig. 1.10 A simple color frame buffer

Advantages

•	 It is possible to add chrominance information to each pixel.

•	 Position on screen is predefined by the scan progress.

•	 Less expensive than vector display.

•	 The DSP (digital signal processor) and graphic processor are cheap and very
powerful.

•	 Very efficient to represent full images.

Disadvantages

•	 Slow screen update rate, normally 25-120 screen/sec.

•	 At low resolution, pixels are quite big.

•	 Non-real time display.

•	 Improper interpolation of digital samples can produce visual artifacts
(aliasing).

INTRODUCTION TO COMPUTER GRAPHICS 11

1.3.2 Non-CRT based Display Devices

Non-CRT based display devices are also called flat panel displays. CRT based
display devices are bulky, heavy, and fragile but flat panel display devices are light
and easy to handle. As a result, they have greater demand than CRT based DD.
Examples of flat panel display devices are plasma, LCD, LED, etc.

1.3.2.1 Plasma Display

Plasma display consists of a matrix of pixels. Each pixel contains a mechanism
which is actuated by voltage. The current emits light and is supplied to the
pixel by using a switching device transistor, resistor, etc. The basic technique
in plasma is a display consisting of a matrix of cells in a glass envelope,
and each cell is filled with gas, like neon. Plasma displays can have an AC
dielectric layer placed in between the conductance and the gas, which is
bi-stable or DC, or a combined AC/DC hybrid. Large-size plasma has high
resolution. Phosphorescent material emits light when excited by either an
AC or DC electric field. The material is zinc sulphite doped with manganese.
Electroluminescent display has a yellow color. An AC/DC excited thin film
electron is mostly used in computer graphics applications. The basic structure
is shown in Fig. 1.11.

Pioneer Waffle
Rib Structure

Rear glass substrate
Address electrode

Address protective layer

Black stripe
Protective layer (MgO)

Dielectric layer

Front glass substrate
Auxiliary electrode

Transparent
Electrode Rib

Red phosphor

Green phosphor

Blue phosphor

Conventional Straight-type

Cell Structure

Rear glass substrate

Address electrode

Address protective layer

Auxiliary electrode
Protective layer (MgO)

Dielectric layer

Front glass substrate

Cell Structure Comparison

Rib

Red phosphor
Green phosphor

Blue phosphor

Transparent electrode

Fig. 1.11 The basic structure of gas discharge plasma display (AC/DC activated)

12 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

1.3.2.2 Liquid Crystal Display (LCD)

Liquid crystal display is an example of passive technology. It either transmits
or reflects incident which is modified with polarization. The basic principle of
polarized light is that transmitted light is passed through the first polarizer and
polarized in the xyplane, since the polarized axis of the second polarizer aligns
with first one, and vice versa. The ceramic which exists in the mesophase is stable
at a temperature between solid and liquid, hence the name liquid crystal. Picture
clarity is shown in Fig. 1.12.

Fig. 1.12 Liquid crystal display

1.4 GRAPHIC USER INTERFACE (GUI)

The graphic user interface is used to control the system or a specific application
running on the system. Computer systems may have multiple interactive devices
to interact with the outside world. Typical examples of interaction with the outside
world are visual representation of position, valuator, button, and pick functions.
Elements that are used to construct GUI are cursor, radio button, valuators, scroll
bars, dialog boxes, menus, icons, etc.

Cursors

Cursors are a very important element of GUI. They are mainly used to indicate
location on the screen. Another use of the cursor is the indication of an available
operation by clicking the mouse. Cursors come in various types, as shown in
Fig. 1.13.

INTRODUCTION TO COMPUTER GRAPHICS 13

?

aero_alt aero_arrow aero_busy aero_ew

aero_helpsel aero_link aero_move aero_nesw

aero_ns aero_nwse aero_pen aero_prec

aero_Select aero_unavai aero_up aero_working

Fig. 1.13 Types of cursors

Radio Buttons

Radio buttons are used to visually implement the choice or button function.
Alternatively, the buttons can be used to indicate an on/off status for a particular
feature. Fig. 1.14 shows various radio buttons.

Fig. 1.14 Radio buttons

14 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

Valuators

Valuators, shown in Fig. 1.15, are implemented as either fixed length slider bars
or dial pointers. This feature is also available as a numerical value shown under an
arrow as additional feedback.

Fig. 1.15 Valuators

Scroll bars

Scroll bars are used to indicate and/or move to a position within a document or
other entity as shown in Fig. 1.16. The arrow indicates the direction of motion.

Fig. 1.16 Scroll bars

INTRODUCTION TO COMPUTER GRAPHICS 15

Dialog boxes

Dialog boxes, shown in Fig. 1.17, are used when multiple inputs are required
to specify the desired action in a system. They contain a number of different
interactive tools, i.e., radio buttons, valuators, types of boxes, etc.

Fig. 1.17 Dialog boxes

Menus

Menus are used to perform functions such as selecting from a set of choices as
seen in Fig. 1.18. The most common menus are:

•	 Pull	up	 	 	 •	 	 Pull	down
•	 Pull	out	 	 	 •	 	 Pop	up
•	 Tear off, etc.

Fig. 1.18 Menus

16 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

Icons

Fig. 1.19 shows icons, which provide a pictorial representation of a concept,
object, or action.

Fig 1.19 Icons

1.5 REFRESH RATE

A refresh rate depends upon a monitor’s horizontal scanning frequency and the
number of horizontal lines displayed. The horizontal scanning frequency is the
number of lines the electron beam sweeps in one second. It is also known as
frame rate, horizontal scan rate, vertical frequency, or frequency. Refresh rate is
a CRT monitor measurement in Hz that indicates how many times per second
a monitor screen image is renewed. For example, a monitor with a refresh rate
of 75 Hz means the screen is going to redraw 75 times per second. Refresh rates
below 75 Hz can produce an often-imperceptible flicker that can cause eyestrain
after long viewing. While some cards can support as high as 120 Hz, sometimes
even higher, it is recommended you run 85-90 Hz; rates beyond 90 Hz add an
unnecessary processing burden to the eyes. Finally, LCD does not have a refresh
rate. Hence, LCD is a flicker free device.

INTRODUCTION TO COMPUTER GRAPHICS 17

Problems on refresh rate/monitors

Problem 1

Calculate the different colors obtained with three sets of 8 bit frame buffers.

Solution Different colors obtained can be calculated as follows:

[2n]m

Where,
m = number of frame buffer sets

n = number of frame buffer (bit plane) in each set
here

m = 3, n = 8

[28]3 = 16777216

Hence, three sets of 8 bit frame buffers can generate 16,777, 216 different colors.

Problem 2

Calculate the refresh rate for a raster screen of 512 × 512 pixels with average
access time for each pixel of 200 nanoseconds.

Solution Average access time for each pixel = 200 nanoseconds = 200 × 10–9 sec

Raster screen of 512 × 512 pixels

∴ total time to access all pixels = 512 × 512 × 200 × 10–9 sec

= 0.0524 sec

For one frame to get refreshed, it takes 0.0524 sec. So in 1 sec, the refresh rate
would be

= =
1

19 frames/sec
0.0524

Problem 3

Calculate the time required to access each pixel, when the refresh rate of 30
frames/second of 4096 × 4096 raster.

Solution Let the time required to access each pixel = X

∴ total time to access all pixels (each frame) = (4096 × 4096 × X) sec

18 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

Refresh rate is 30 frames in one second. Hence, time required to access each pixel
is calculated as

-

=
× ×

= = ×
× ×

9

1
30

(4096 4096)

1
1.98 10 sec

(4096 4096 30)

X

X

= 1.98 nanoseconds

Problem 4

Calculate maximum RAM size for 32 bit and 64 bit operating systems and
1920 × 1080 raster screen.

Solution 32 bit operating system means, for each pixel on the screen, there are 32
frame buffers in the memory.

No. of pixels on the screen = 1920 × 1080 = 2073600 pixels

No. of bits for 32 bit operating system = 2073600 × 32 bits

=

= =

= =

66355200
bytes = 8294400 bytes

8
8294400

kilobytes 8100 kilobytes
1024

8100
megabytes 7.91 megabytes

1024

(It may be noted that to convert bytes to kilobytes, we have to divide by 1024)

No. of bits for 64 bit operating system = 2073600 × 64 bits

= =

= =

=

132710400
bytes 16588800 bytes

8
16588800

kilobytes 16200 kilobytes
1024

16200
= megabytes 15.82 megabytes

1024

RAM sizes required for a given raster screen using 32 bit and 64 bit operating
system are 7.91 MB and 15.82 MB respectively.

INTRODUCTION TO COMPUTER GRAPHICS 19

Problem 5

For a 21.5 inch monitor having a screen resolution of 1920 × 1080, calculate
pixels per inch (ppi)

Solution Pixels per inch (ppi) is the number of pixels per square inch

= p

i

d
ppi

d

where,
= +2 2

p p pd H V

dp = diagonal resolution in pixels

Hp = horizontal resolution in pixels

di = diagonal size of monitor in inches

Vp = vertical resolution in pixels

Here, Hp = 1920,

Vp = 1080

di = 21.5 inch

= p

i

d
ppi

d

= +2 2
p p pd H V

= +2 2(1920) (1080)pd

dp = 2202.9

= =
2202.9

102.46
21.5

ppi ppi

20 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

Problem 6

Calculate pixels per inch (ppi) for Nokia N 90 mobile having screen resolution
352 × 416 and 2.1 inch monitor.

Solution

Here, Hp = 352

 Vp = 416

 di = 2.1 inch

= +2 2

p p pd H V

= +2 2(352) (416)pd

= +123904 173056pd

= 296960pd

dp = 544.94

= p

i

d
ppi

d

= =
544.94

259.49 ppi
2.1

ppi

1.6 WORKING OF LASER PRINTERS

Laser printing is an electrostatic digital printing process that rapidly produces high
quality text and graphics by passing a laser beam over a charged drum to define a
differentially charged image. The drum then selectively collects charged toner and
transfers the image to paper, which is then heated to permanently fix the image.
As with digital photocopiers and multifunction printers (MFPs), laser printers
employ a xerographic printing process, but differ from analog photocopiers
in that the image is produced by the direct scanning of the medium across the
printer’s photoreceptor. Hence, it proves to be a much faster process compared
to the latter. There are typically seven steps involved in the laser printing process.

INTRODUCTION TO COMPUTER GRAPHICS 21

Raster image processing

Each horizontal strip of dots across the page is known as a raster line or scan
line. Creating the image to be printed is done by a raster image processor (RIP),
typically built into the laser printer. The raster image processor generates a bitmap
of the final page in the raster memory. For fully graphical output using a page
description language, a minimum of 1 megabyte of memory is needed to store an
entire monochrome letter/A4 sized page of dots at 300 dpi. At 300 dpi, there are
90,000 dots per square inch (300 dots per linear inch). In a color printer, each of
the four CYMK toner layers is stored as a separate bitmap, and all four layers are
typically preprocessed before printing begins, so a minimum of 4 megabytes is
needed for a full-color letter-size page at 300 dpi. Memory requirements increase
with the square of the dpi, so 600 dpi requires a minimum of 4 megabytes for
monochrome, and 16 megabytes for color at 600 dpi. Printers capable of tabloid
and larger size may include memory expansion slots.

Charging

In older printers, a corona wire positioned parallel to the drum, or in more
recent printers, a primary charge roller, projects an electrostatic charge onto
the photoreceptor (otherwise called the photo conductor unit), a revolving
photosensitive drum or belt, which is capable of holding an electrostatic charge
on its surface while it is in the dark, as shown in Fig. 1.20.

High voltage
power source

Negative ions
on corona wire

Drum rotation

Fig 1.20 Applying a negative charge to the photosensitive drum

22 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

An AC bias is applied to the primary charge roller to remove any residual charges
left by previous images. The roller will also apply a DC bias on the drum surface
to ensure a uniform negative potential. Numerous documents describe the
photosensitive drum coating as a silicon sandwich with a photo charging layer, a
charge leakage barrier layer, as well as a surface layer. One version uses amorphous
silicon containing hydrogen as the light receiving layer, boron nitride as a charge
leakage barrier layer, as well as a surface layer of doped silicon, notably silicon
with oxygen or nitrogen which at sufficient concentration resembles machining
silicon nitride.

Exposing

The laser is aimed at a rotating polygonal mirror, which directs the laser beam
through a system of lenses and mirrors onto the photoreceptor. The cylinder
continues to rotate during the sweep and the angle of sweep compensates for this
motion. The stream of rasterized data held in memory turns the laser on and off
to form the dots on the cylinder. Lasers are used because they generate a narrow
beam over great distances. The laser beam neutralizes (or reverses) the charge
on the black parts of the image, leaving a static electric negative image on the
photoreceptor surface to lift the toner particles, as shown in Fig. 1.21.

11 11

11 11

1111 111

111 111

11 11

1

Scanning
mirror

Laser

RIP
image buffer

Beam
segment lens

Imaging
drum

Beam scanning path

Fig 1.21 The laser neutralizes the negative charge

INTRODUCTION TO COMPUTER GRAPHICS 23

Fig 1.22 An actual laser unit from a Dell P1500

Some non-laser printers expose by an array of light emitting diodes spanning
the width of the page, rather than by a laser (“exposing” is also known as “writing”
in some documentation). Fig. 1.22 shows the laser unit of a Dell P 1500.

Developing

The surface with the latent image is exposed to toner, fine particles of dry plastic
powder mixed with carbon black or coloring agents. The toner particles are given
a negative charge and are electrostatically attracted to the photoreceptor’s latent
image, the areas touched by the laser. Because like charges repel, the negatively
charged toner will not touch the drum where the negative charge remains.

Transferring

The photoreceptor is pressed or rolled over paper, transferring the image. Higher-
end machines use a positively charged transfer roller on the back side of the paper
to pull the toner from the photoreceptor to the paper.

Fusing

The paper passes through rollers in the fuser assembly where heat of up to 200°C
(392°F) and pressure bond the plastic powder to the paper as shown in Fig. 1.23.
One roller is usually a hollow tube (heat roller) and the other is a rubber backing

24 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

roller (pressure roller). A radiant heat lamp is suspended in the center of the
hollow tube, and its infrared energy uniformly heats the roller from the inside.
For proper bonding of the toner, the fuser roller must be uniformly hot.

Some printers use a very thin flexible metal fuser roller, so there is less mass
to be heated and the fuser can more quickly reach operating temperature. If
paper moves through the fuser more slowly, there is more roller contact time
for the toner to melt, and the fuser can operate at a lower temperature. Smaller,
inexpensive laser printers typically print slowly, due to this energy-saving design,
compared to large high speed printers where paper moves more rapidly through a
high-temperature fuser with a very short contact time.

Cleaning

When the print is complete, an electrically neutral soft plastic blade cleans any
excess toner from the photoreceptor and deposits it into a waste reservoir, and
a discharge lamp removes the remaining charge from the photoreceptor. Toner
may occasionally be left on the photoreceptor when an unexpected event, such
as a paper jam, occurs. The toner is on the photoconductor ready to apply, but
the operation failed before it could be applied. The toner must be wiped off and
the process restarted. Fig. 1.24 shows a magnified image of color laser printer
output, showing individual toner particles comprising 4 dots of an image with a
bluish background.

W

Hollow roller

Radiant heat
lamp

Backing roller

Fig 1.23 Melting toner on paper using heat and pressure

INTRODUCTION TO COMPUTER GRAPHICS 25

Fig 1.24 A magnified image printed from a color laser printer

Problems on Printers

Problem 7

Assume a computer with 16 bit per word and a transfer rate of 1 million
instructions per second. How long would it take to fill the frame buffer for a

600 dpi (dots per inch) laser printer with a page size of
″1

8
2

 by 14″ inch.

Solution

1 instruction = 1 dot = 1 bit

∴ 600 dots = 600 bits

page area = 8.5″ × 14″ = 119 inches squared

Dots per inch = printable area × dpi area

Dots per inch = page area × 600 dpi × 600 dpi

= 119 × 600 × 600 dots or bits

= 42840000 dots or bits

Transfer rate of 1 × 107 bits in 1 sec. So, to transfer 42840000 dots or bits, it takes
X sec
time require to print one page =

× 7

42840000

1 10

= 42.8 sec

∴ No. of pages print in 1 min = =
60

1.4 page/min
42.8

26 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

Problem 8

Suppose a printer of 300 × 300 dpi resolution producing
1

7
2

 ×
1

10
2

 inch printed

area on an
1

8
2

 × 11 inch page. Calculate no. of pages printed per minute, if a

sustained data rate to the laser print engine of 1 megabit/sec.

Solution

Printable area on page = 7.5 × 10.5 = 78.75 inch2

∴ = × ×No.of 78.75 300 300
dots

page

= 7087500 dots/page

Data rate of 1 megabit in one sec, so to print 7087500 it takes

=
× 6

7087500
sec

1 10

= 7.08 sec/page

∴ so in one minute = 60

7.08
 = 8.47 pages/minute

EXERCISES

1. Explain the various applications of computer graphics.

2. What are the benefits of CAD from manufacturing considerations?

3. What are the various hardware requirements in setting up the CAD system?

4. Write short notes on (i) icons (ii) GUI.

5. Explain the working of random scan display. Why is this not used in modern
CAD?

6. Explain any two output devices in a CAD system.

7. Explain the difference between time based systems and point based systems,
with examples.

8. What is flickering in display devices?

9. Explain the components of raster scan display devices.

10. Explain the refresh rate.

INTRODUCTION TO COMPUTER GRAPHICS 27

11. What is a pixel and a frame buffer?

12. What is a bit plane? How are bit planes used to get different color and B and
W gray levels?

13. Explain the working of laser printers.

14. How is an image generated on a screen?

15. What are the different parameters for comparing graphic display devices?
Compare various display devices on these parameters.

OBJECTIVE QUESTIONS

1.1 In CRT, the control grid is used to control the intensity of electrons coming
out from an electron gun, and is charged with
(a) negative voltage (b) positive voltage
(c) neutral (d) none of the above

1.2 The phenomenon of having a continuous glow on the screen even after it is
removed is called
(a) fluorescence (b) persistence
(c) phosphorescence (d) incandescence

1.3 Aspect ratio is generally defined as the ratio of
(a) vertical to horizontal points
(b) horizontal to vertical points
(c) vertical to (horizontal + vertical) points
(d) either (a) or (b) depending on the convention followed

1.4 Which of the following devices have relative origin?
(a) Joystick (b) Track ball
(c) Mouse (d) none of the above

1.5 The focusing unit in a cathode ray tube (CRT) is used to
(a) accelerate the electron beam
(b) control amount of electrons from electron gun
(c) control position of electron beam on the screen
(d) emit electrons

1.6 Refresh rate below this value results in picture flickering:
(a) 85 Hz (b) 35 Hz
(c) 50 Hz (d) 25 Hz

28 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

1.7 Computer graphics models are now commonly used for making
(a) motion pictures (b) music videos
(c) television shows (d) all of above

1.8 Which of the following are CRT based display devices?
(a) Raster scan display device
(b) Direct View Storage Tube (DVST)
(c) Calligraphic or vector based or random scan display device
(d) all of the above

1.9 Which of the following are non CRT based display devices?
(a) LCD (b) LED
(c) Plasma (d) all of the above

1.10 The brightness of a spot on the screen depends upon
(a) number of electrons striking the phosphor coating (screen)
(b) distance between cathode and screen
(c) speed of electrons striking the screen
(d) type of phosphor coating

1.11 Which of the following is a point based display system?
(a) DVST (b) Random scan display device
(c) Raster scan display device (d) All of the above

1.12 Which of the following is a line based display system?
(a) Random scan display device (b) Raster scan display device
(c) LCD (d) LED

ANSWERS

1.1 (a) 1.2 (b) 1.3 (d) 1.4 (c)

1.5 (c) 1.6 (d) 1.7 (d) 1.8 (d)

1.9 (d) 1.10 (a) 1.11 (c) 1.12 (a)

Chapter

29

2Chapter

VECTOR
REPRESENTATION
OF GEOMETRIC
ENTITIES

2.0 INTRODUCTION

The previous chapter was about the evolution of computer hardware and display
devices in particular. From this study, one can say that all the modern display
devices (screens) are divided into small number of discrete cells called pixels and
the screen is called a raster screen. Now, to draw any entity on this screen, one
needs to develop the logic which will select the series of pixels on the screen so
that the desired entity appears on the screen. This process of selection of pixels is
called rasterization. For example, a line is to be drawn on the screen from start
point to end point. So, it is necessary to develop a program which will select the
intermediate pixels inbetween the start point and the end point so that the desired
line appears on the screen.

Algorithm

Before writing any computer program, it is empirical to develop a logic to perform
each task and write it out in logical steps. An algorithm is nothing but writing
logical steps in a systematic manner. There can be many steps in any algorithm,

30 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

but the important steps in any graphic algorithm are the declaration of variables,
initialization, calculation, and plotting pixels. Steps in an algorithm are shown in
Fig. 2.1.

Step 1 : Declaration of variables

Step 2 : Initialization

Step 3 : Calculation

Step 4 : Plotting pixels

Stop

Algorithm

Start

Fig. 2.1 Steps in an algorithm

(i) Declaration of variables: All variables which are going to be used in the
algorithm are declared in this step, along with the types of variables (integer,
float, etc.).

(ii) Initialization: Initialize the variables which the compiler will need to ask at
the time of the program is executed.

(iii) Calculation: What calculations are necessary to perform the algorithm?

(iv) Plotting pixels: Apply the logic to plotting the points on the raster screen.

In this chapter, algorithms for generating simple two dimensional geometrical
entities (such as line, circle, ellipse, arc) will be studied. There will be a total of
three algorithms for line generation: equation of line, digital differential analyser
(DDA), and Bresenham’s line generation algorithm. Circles and ellipses will be
generated by using Bresenham’s midpoint algorithm. Arcs will be generated by
using trigonometric function.

2.1 LINE GENERATION ALGORITHM USING
EQUATION OF LINE

A line is a very basic geometrical entity. Fig. 2.2 shows a line having end points
A and B.

VECTOR REPRESENTATION OF GEOMETRIC ENTITIES 31

Line Generation

The line is one of the basic geometrical entities. Vector displays are particularly
well suited for the display of lines. An appropriate controlled voltage is supplied to
x and y deflection circuitry for vector display to generate a line.

The nature of raster-graphics display, however, only allows us to display a
discrete approximation of a line since the process is restricted to turning on
only discrete points or pixels. In order to discuss line drawing, first consider the
mathematically ideal line.

Mathematical Analysis

X

C

Y

A (x , y)

dx = x – x
A A

B A

B (x , y)

dy = y – y
B B

B A

Fig. 2.2 A line

equation of line y = mx + c ...(2.1)

where,

 m = slope

For line shown in Fig. 2.2,

-
= q = =

-
tan B A

B A

y ydy
m

dx x x

c = y axis intercept

put the start point in the equation (2.1)

yA = mxA + c

c = yA - mxA ...(2.2)

 -
= - -

B A
A A

B A

y y
c y x

x x
 ...(2.3)

32 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

Line Algorithm Using Equation of Line for |M|<1

STEP 1: [DECLARATION OF VARIABLES]

int (xA, yA) & (xB, yB) end point coordinates of line

float m slope of line

float c y intercept

float (x, y) coordinates of current pixel
representing line

STEP 2: [INITIALIZATION]

Read (xA, yA) & (xB, yB)

STEP 3: [CALCULATION]

-
=

-
B A

B A

y y
m

x x

c = yA - mxA

STEP 4: [PLOTTING PIXEL FOR LINE]

x = xA

y = yA

loop,
put pixel (round “x”, round “y”)

x = x + 1
y = mx + c

Continue loop until (x ≤ xB)

STEP 5: [STOP]

VECTOR REPRESENTATION OF GEOMETRIC ENTITIES 33

Problems on Equation of Line

Problem 2.1

Rasterize a line by using an equation of line having end point coordinates as
(5,2) & (15,6)

Solution

End points (5,2) & (15,6)

Slope
- -

= = = =
- -

6 2 4
0.4

15 5 10
B A

B A

y y
m

x x

c = yA - mxA = 2 - (0.4) x 5 = 2 - 2 = 0

Calculation 2. x2 = x1 + 1 = x2 = 5 + 1 = 6 and y2 = mx2 + c = 0.4 x 6 + 0 = 2.4

Calculation 3. x3 = x2 + 1 = x3 = 6 + 1 = 7 and y3 = mx3 + c = 0.4 x 7 + 0 = 2.8

Fig. 2.3 shows the rasterization of a line after plotting the pixels.

Sr. No. x y round x round y

1 5 2 5 2

2 6 2.4 6 2

3 7 2.8 7 3

4 8 3.2 8 3

5 9 3.6 9 4

6 10 4 10 4

7 11 4.4 12 5

8 12 4.8 12 5

9 13 5.2 13 5

10 14 5.6 14 6

11 15 6.0 15 6

5 6 7 8 9 10 11 12 13 14 15

6

5

4

3

2

Fig. 2.3 The rasterization of a line

34 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

Line Algorithm Using Equation of Line for |M|>1
Y

X

Fig. 2.4 Line having slope > 1

STEP 1: [DECLARATION OF VARIABLES]

int (xA, yA) & (xB, yB) end point coordinates of line

float m slope of line

float c y intercept

float (x, y) coordinates of current pixel
representing line

STEP 2: [INITIALIZATION]

Read (xA, yA) & (xB, yB)

STEP 3: [CALCULATION]

-
=

-
B A

B A

y y
m

x x

c = yA - mxA

STEP 4: [PLOTTING PIXEL FOR LINE]

x = xA

y = yA

loop,
put pixel (round “x”, round “y”)

y = y + 1

-
=

y c
x

m

Continue loop until (y ≤ yB)

STEP 5: [STOP]

Y = incremented by 1
X = calculated
y = mx + c

-
=

y c
x

m

VECTOR REPRESENTATION OF GEOMETRIC ENTITIES 35

Problem 2.2

Rasterize a line by using an equation of line having end point coordinates as
(5,2) & (6,7)

Solution

End points (5, 2) & (6, 7)

Slope
- -

= = = =
- -

7 2 5
5

6 5 1
B A

B A

y y
m

x x

c = yA - mxA = 2 - (5) x 5 = 2 - 25 = - 23

Calculation 2. y2 = y1 + 1 = 2 + 1 = 3 and
- +

= = = =2
2 2

3 23
5.2

5

y c
x x

m

Calculation 3. y3 = y2 + 1 = 3 + 1 = 4 and
- +

= = = =3
3 2

4 23
5.4

5

y c
x x

m

Fig. 2.5 shows the rasterization of a line after plotting the pixels.

Sr No. x Y round x round y

1 5 2 5 2

2 5.2 3 5 3

3 5.4 4 5 4

4 5.6 5 6 5

5 5.8 6 6 6

6 6.0 7 6 7

7

6

5

4

3

2

5 6

Fig. 2.5 The rasterization of a line

36 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

Algorithm for Line Generation Using an Equation of Line for
Any Slope

STEP 1: [DECLARATION OF VARIABLES]

int (xA, yA) & (xB, yB) end point coordinates of line

float m slope of line

float c y intercept

float (x, y) coordinates of current pixel
representing line

STEP 2: [INITIALIZATION]

Read (xA, yA) & (xB, yB)

STEP 3: [CALCULATION]

-
=

-
B A

B A

y y
m

x x

c = yA - mxA

STEP 4: [PLOTTING PIXEL FOR LINE]

x = xA

y = yA

loop,
put pixel (round “x”, round “y”)
if |m| < 1

x = x + 1
y = mx + c

Continue loop until (x ≤ xB)
else |m| > 1

y = y + 1

-
=

y c
x

m

Continue loop until (y ≤ yB)

STEP 5: [STOP]

VECTOR REPRESENTATION OF GEOMETRIC ENTITIES 37

2.2 LINE GENERATION USING DDA ALGORITHM

The digital differential analyser is a line generation algorithm based on the
incremental method. In DDA, the calculations at each step are performed using
the results from the previous step. In this method, the value of one coordinate is
incremented by one in each step and determines the corresponding integer value
of the other coordinate.

Mathematical analysis

X

Y

y(i + 1)

yi

A(x , y)A A

xi x(i + 1)

B(,)x yB B

i pixelth
(i + 1) pixelth

Fig. 2.6

Let ith pixel coordinates be (xi, yi) as shown in Fig. 2.6

Equation of line becomes

yi = mxi + c ...(2.4)

Let (i + 1)th pixel coordinates are (x(i + 1), y(i + 1))

y(i + 1) = mx(i + 1)+ c ...(2.5)

Subtract eq. (2.4) from eq. (2.5)

y(i + 1) - yi = m[x(i + 1) - xi] ...(2.6)

Apply condition

if | m | < 1

x(i + 1) = xi + 1

Put the value of x(i + 1) in Eq. (2.6)

y(i + 1) - yi = m[xi + 1 - xi]

y(i + 1) = yi + m

else | m | > 1

y(i + 1) = yi + 1

38 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

Put value of y(i + 1) in Eq. (2.6)

yi + 1 - yi = m[x(i + 1) - xi]

1

m
 = [x(i + 1) - xi]

x(i + 1) = xi +
1

m

Common denominator for increment

if (| dy | < | dx |)

DENO = | dx |

else (| dy | ≥ | dx |)

DENO = | dy |

x(i + 1) = xi +
dy

DENO

y(i + 1) = yi +
dy

DENO

ALGORITHM

STEP 1: [DECLARATION OF VARIABLES]

int (xA, yA) & (xB, yB) end point coordinates of line

int dx, dy difference of x and y coordinates

int DENO common denominator

float (xincr, yincr) increments in x and y coordinate

float (x, y) coordinates of current pixel
representing line

int i loop counter

STEP 2: [INITIALIZATION]

Read (xA, yA) & (xB, yB)

VECTOR REPRESENTATION OF GEOMETRIC ENTITIES 39

STEP 3: [CALCULATION]

dx = xB - xA

dy = yB - yA

STEP 4: [PLOTTING PIXEL FOR LINE]

if (| dy | < | dx |)

DENO = | dx |

if (| dy | ≥ | dx |)

DENO = | dy |

xincr =
dx

DENO

yincr =
dy

DENO

x = xA

y = yA

i = 0

 loop

 put pixel (round “x”, round “y”)

x = x + xincr

y = y + yincr

i ++

 Continue loop until (i ≤ DENO)

STEP 5: [STOP]

40 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

Problems on DDA Algorithms

Problem 2.3

Rasterize a line by using a DDA algorithm having end point coordinates as
(5,2) & (10,6)

Solution

End points (5,2) & (10,6)
dx = 10 - 5 = 5
dy = 6 - 2 = 4

| dx | ≥ | dy |
DENO = dx

= = = 1incr

dx dx
x

DENO dx

= = = = =
4

0.8
5

incr

dy dy
y m

DENO dx

x = x + xincr = x + 1
y = y + yincr = y + 0.8

Calculation 2. y2 = y1 + 0.8 = 2 + 0.8 = 2.8 and x2 = x1 + 1 = 5 + 1 = 6
Calculation 3. y3 = y2 + 0.8 = 2.8 + 0.8 = 3.6 and x3 = x2 + 1 = 6 + 1 = 7

Fig. 2.7 shows the rasterization of a line after plotting the pixels.

i X y round x round y

0 5 2 5 2

1 6 2.8 6 3

2 7 3.6 7 4

3 8 4.4 8 4

4 9 5.2 9 5

5 10 6 10 6

7

6

5

4

3

2

5 6 7 8 9 10 11

Fig. 2.7 The rasterization of a line

VECTOR REPRESENTATION OF GEOMETRIC ENTITIES 41

Varieties of Lines Using DDA

 | M | <1 | M | >1

dx = + ve
dy = + ve

< 45°
x = x + 1

y = y + m
(i + 1) i

(i + 1) i

B

A

B

A

dx = + ve
dy = + ve

> 45°
x = x +

y = y + 1
(i + 1) i

(i + 1) i

1
m

dx = + ve
dy = – ve

< 45°
x = x + 1

y = y – m
(i + 1) i

(i + 1) i

dx = + ve
dy = – ve

> 45°
x = x +

y = y – 1
(i + 1) i

(i + 1) i

1
m

dx = – ve
dy = – ve

< 45°
x = x – 1

y = y – m
(i + 1) i

(i + 1) i

dx = – ve
dy = – ve

> 45°
x = x +

y = y – 1
(i + 1) i

(i + 1) i

1
m

B

A A

B

A

A

B

dx = – ve
dy = + ve

< 45°
x = x – 1

y = y – m
(i + 1) i

(i + 1) i

dx = – ve
dy = + ve

> 45°
x = x +

y = y + 1
(i + 1) i

(i + 1) i

1
m

dx = + ve
dy = 0

x = x – 1

y = y
(i + 1) i

(i + 1) i

dx = 0
dy = + ve

x = x

y = y + 1
(i + 1) i

(i + 1) i

A

B
B

A

A B

B

A

42 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

Problem 2.4

Rasterize a line by using a DDA algorithm having the equation “y = 2x + 6 ”

Solution

Equation of Line y = 2x + 6

Put x = 0 we get y = 6

Put y = 0 we get x = - 3

(– 3, 0)

(0, 6)Y

X

Fig. 2.8 Intersection points of a line with x- and y-axis

From Fig. 2.8, dx = - 3 - 0 = - 3

dy = 0 - 6 = - 6

| dy | > | dx |

dx = - ve and dy = - ve

x(i + 1) = xi -
1

m

y(i + 1) = yi - 1
Fig. 2.9 shows the rasterization of a line after plotting the pixels.

i x Y Round x Round y

0 0 6 0 6

1 – 0.5 5 – 1 5

2 – 1 4 – 1 4

3 – 1.5 3 – 2 3

4 – 2 2 – 2 2

5 – 2.5 1 – 3 1

6 – 3 0 – 3 0

dx = -3-0 = -3
dy = 0-6 = -6

VECTOR REPRESENTATION OF GEOMETRIC ENTITIES 43

6

5

4

3

2

1

0

–3 –2 –1 0

Fig. 2.9 The rasterization of a line

Compare Line Generation Using Equation of Line and DDA

1. The DDA algorithm is faster than the direct method since it involves only
addition or subtraction and eliminates the use of multiplication or division.

2. In an equation of line, every value of x and y is calculated on its own, i.e. there
is no use of a previous value to calculate the next value, but in the case of DDA
the previous value is used to calculate the next value.

2.3 BRESENHAM’S LINE GENERATION ALGORITHM

An accurate and efficient algorithm for generating a line has been developed by
Bresenham which uses only incremental calculations. Here the procedure is to
test the sign of an integer parameter whose value is proportional to the difference
between the separations of the two pixel positions from an actual line.

To understand the working of this method, consider a line with a positive
slope of less than 1.

Bresenham’s line generation algorithm for | m | <1

44 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

Mathematical Analysis

(x , y + 1)i i (x + 1, y + 1)i i

()x , yi i ()x + 1, yi i

Fig. 2.10 Position of the line on a grid

yi

xi xi + 1

yi + 1

y

d2

d1

L

i pixel
th

Y

X

Fig. 2.11

Let (xi , yi) be any ith pixel coordinate representing a line having integer
coordinates as shown in Fig. 2.10.

Let (x(i + 1), y(i + 1)) be any (i + 1)th pixel coordinate representing a line as shown
in Fig. 2.11.

Apply the condition for determining the coordinates of (i + 1)th pixel

if(d1 - d2) < 0 or d1 < d2

x(i + 1) = xi + 1

y(i + 1) = yi

else(d1 - d2) ≥ 0 or d1 ≥ d2

x(i + 1) = xi + 1

y(i + 1) = yi + 1

VECTOR REPRESENTATION OF GEOMETRIC ENTITIES 45

From Fig. 2.11

d1 = y - yi ...(2.7)

d2 = (yi + 1) - y ...(2.8)

Subtract Eq. (2.7) from Eq. (2.8)

d1 - d2 = y - yi - (yi + 1) + y

d1 - d2 = 2y - 2yi - 1 ...(2.9)

Point L is on the line and satisfies the equation of line.

Coordinates of point L(xi + 1, y)

y = mx + c

y = m(xi + 1) + c

y = mxi + m + c ...(2.10)

Substitute value from Eq. (2.10) in Eq. (2.9)

d1 - d2 = 2(mxi + m + c) - 2yi - 1

= 2mxi + 2m + 2c - 2yi - 1

d1 - d2 = 2mxi - 2yi + 2m + 2c - 1

d1 - d2 = 2mxi - 2yi + k

Where k = 2m + 2c - 1

d1 - d2 = 2
dy

dx
xi - 2yi + k

(d1 - d2)dx = 2dyxi - 2dxyi + k . dx ...(2.11)

Where (d1 - d2)dx is decision parameter pi

pi = 2dyxi + 1 - 2dxyi + 1 + k. dx ...(2.12)

Where pi is the decision parameter for ith pixel

Rewrite the condition in terms of pi

if pi < 0

x(i + 1) = xi + 1

y(i + 1) = yi

else pi ≥ 0

x(i + 1) = xi + 1

y(i + 1) = yi + 1

46 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

The decision parameter for (i + 1)th pixel

p(i + 1) = 2dyx(i + 1) - 2dxy(i + 1) + k. dx ...(2.13)

Therefore, the common difference of the decision parameter between the
consecutive pixels is given by Eq. (2.13) - Eq. (2.12)

p(i + 1) = pi + 2dyx(i + 1) - 2dxy(i + 1) + k. dx - 2dyxi + 2dxyi - k. dx

p(i + 1) = pi + 2dy(x(i + 1) - xi) - 2dx(y(i + 1) - yi) ...(2.14)

Apply the condition to Eq. (2.14)

if (pi < 0)

x(i + 1) = xi + 1

y(i + 1) = yi

Applying these values to Eq. (2.14) we get

p(i + 1) = pi + 2dy ...(2.15)

Else (pi ≥ 0)

+

+

= +
= +

(1)

(1)

1

1

i i

i i

x x

y y
Apply these values to Eq. (2.14)

p(i + 1) = pi + 2dy - 2dx ...(2.16)

Calculate the decision parameter of the first point of the line (xA, yA)

p1 = 2dyxA - 2dxyA+ k.dx ...(2.17)

Put the values of the starting point coordinates in the equation of line

yA = mxA + c

= +A A

dy
y x c

dx

dx.yA = dy.xA + c.dx ...(2.18)

Put the value of Eq. (2.18) in Eq. (2.17)

p1 = 2dyxA - 2(dy.xA + c.dx) + k.dx

Put k = 2m + 2c - 1

p1 = 2dyxA - 2dy.xA - 2c.dx + 2m.dx + 2c.dx - dx

p1 = 2
dy

dx
.dx - dx

p1 = 2dy - dx ...(2.19)

VECTOR REPRESENTATION OF GEOMETRIC ENTITIES 47

Algorithm for a Line Using Bresenham’s for | m |< 1

STEP 1: [DECLARATION OF VARIABLES]

int (xA, yA) & (xB, yB) end point coordinates of line

int dx, dy difference of x and y coordinates

int (x, y) coordinates of current pixel
representing line

int p decision parameter

int i loop counter

STEP 2: [INITIALIZATION]

Read (xA, yA) & (xB, yB)

STEP 3: [CALCULATION]

dx = xB - xA

dy = yB - yA

p = 2dy - dx

STEP 4: [PLOTTING PIXEL FOR LINE]

x = xA

y = yA

p = 2dy - dx

i = 0
loop,

put pixel (x, y)

if p < 0

x = x + 1

y = y

p = p + 2dy

Else p ≥ 0
x = x + 1

y = y + 1

p = p + 2dy - 2dx

i + +

Continue loop until (i ≤ dx)

STEP 5: [STOP]

48 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

Problem 2.5

Rasterize a line by using Bresenhem’s algorithm for slope (m < 1) having end
point coordinates as (5,2) & (10,6)

Solution

End points (5,2) & (10,6)

dx = 10 - 5 = 5

dy = 6 - 2 = 4

Calculate decision parameter of first point of the line (xA, yA) and i = 0

p = 2dy - dx = 2 × 4 - 5 = + 3

Calculation : for i = 1

As p > 0 then new decision parameter

p = p + 2dy - 2dx = 3 + 2 × 4 - 2 × 5 = 1

I X Y p

0 5 2 +3

1 6 3 +1

2 7 4 -1

3 8 4 +7

4 9 5 +5

5 10 6 +3

Fig. 2.12 shows the rasterization of a line after plotting the pixels.

7

6

5

4

3

2

5 6 7 8 9 10 11

Fig. 2.12 The rasterization of a line

VECTOR REPRESENTATION OF GEOMETRIC ENTITIES 49

Bresenham’s Line Generation Algorithm for | m | >1

Mathematical Analysis

(x , y + 1)i i (x + 1, y + 1)i i

()x , yi i ()x + 1, yi i

Fig. 2.13 Position of the line on a grid

i pixelth

d1 d2
y + 1i

yi

xi x + 1i

(i + 1) pixelth

x
X

A

Y

Fig. 2.14

Let (xi, yi) be any ith pixel coordinate representing a line having integer
coordinates as shown in Fig. 2.13

Let (x(i + 1), y(i + 1)) be any (i + 1)th pixel coordinate representing a line as shown
in Fig. 2.14
Apply the condition for determining the coordinates of (i + 1)th pixel

if (d1 - d2) < 0 or d1 < d2

x(i + 1) = xi

y(i + 1) = yi + 1

else (d1 - d2) ≥ 0 or d1 ≥ d2

x(i + 1) = xi + 1

y(i + 1) = yi + 1

50 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

From Fig. 2.14
d1 = x - xi ...(2.20)

d2 = (xi + 1) - x ...(2.21)

Subtract Eq. (2.21) from Eq. (2.20)

d1 - d2 = x - xi - (xi + 1) + x

d1 - d2 = 2x - 2xi - 1 ...(2.22)

Where y represents y-coordinate of (i + 1)th pixel when y = yi + 1

y = mx + c

yi + 1 = mx + c

+ -
=

1iy c
x

m

= + -(1)i

dx
x y c

dy
 ...(2.23)

Substitute the value from Eq. (2.23) in Eq. (2.22)

d1 - d2 = + - - -(1) 2 1i i

dx
y c x

dy

(d1 - d2)dy = 2dx(yi + 1 - c) - 2dyxi - dy

(d1 - d2)dy = 2dxyi - 2dyxi + 2dx - 2dx.c - dy

(d1 - d2)dy = 2dxyi - 2dyxi + k ...(2.24)

Where k = 2dx - 2dx.c - dy

Where (d1 - d2)dx is decision parameter pi

pi = 2dxyi - 2dyxi + k ...(2.25)

Where pi is the decision parameter for (i + 1)th pixel

The decision parameter for (i + 2)th pixel

p(i + 1) = 2dxy(i + 1) - 2dyx(i + 1) + k ...(2.26)

Therefore the common difference of the decision parameter between the
consecutive pixels is given by

Eq. (2.26) - Eq. (2.25)
p(i + 1) = pi + 2dxy(i + 1) - 2dyx(i + 1) + k - (2dxyi - 2dyxi + k)

p(i + 1) = pi + 2dx(y(i + 1) - yi) - 2dy(x(i + 1) - xi) ...(2.27)

Apply the condition to Eq. (2.27)

if (pi < 0)

+

+

=
= +

(1)

(1) 1

i i

i i

x x

y y
 Apply these values to Eq. (2.27)

VECTOR REPRESENTATION OF GEOMETRIC ENTITIES 51

We get

p(i + 1) = pi + 2dx ...(2.28)

else (pi ≥ 0)

+

+

= +
= +

(1)

(1)

1

1

i i

i i

x x

y y
Apply these values to Eq. (2.27)

p(i + 1) = pi + 2dx - 2dy ...(2.29)

Calculate the decision parameter of the first point of the line (xA, yA)

p1 = 2dxyA - 2dyxA + k ...(2.30)

Put the values of starting point coordinates in the equation of the line

yA = mxA + c

= +A A

dy
y x c

dx

dx.yA = dy.xA + c.dx ...(2.31)

Put the value of Eq. (2.31) in Eq. (2.30)

p1 = 2(dy.xA + c.dx) - 2dyxA + k

Put k = 2m + 2c - 1

p1 = 2dx - dy ...(2.32)

Algorithm for Line Using Bresenham’s for | m | >1

STEP 1: [DECLARATION OF VARIABLES]

int (xA, yA) & (xB, yB) end point coordinates of line

int dx, dy difference of x and y coordinates

int (x, y) coordinates of current pixel representing
line

int p decision parameter

int i loop counter

STEP 2: [INITIALIZATION]

Read (xA, yA) & (xB, yB)

STEP 3: [CALCULATION]

dx = xB - xA

dy = yB - yA

52 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

STEP 4: [PLOTTING PIXEL FOR LINE]

x = xA

y = yA

p = 2dx - dy

i = 0
loop,

put pixel (x, y)

if p < 0

x = x
y = y + 1

p = p + 2dx

else (p ≥ 0)

x = x + 1

y = y + 1

p = p + 2dx - 2dy

i + +
Continue loop until (i ≤ dy)

STEP 5: [STOP]

Problem 2.6

Rasterize a line by using Bresenhem’s algorithm for slope (m > 1) having end
point coordinates as (2, 5) & (6, 10)

Solution

End points (2, 5) & (6, 10)

dx = 6 - 2 = 4

dy = 10 - 5 = 5

Calculate the decision parameter of the first point of the line (xA, yA)and i = 0

p = 2dx - dy = 2 × 4 - 5 = + 3

Calculation: for i = 1 As p > 0 then new decision parameter

p = p + 2dx - 2dy = 3 + 2 × 4 - 2 × 5 = + 1

VECTOR REPRESENTATION OF GEOMETRIC ENTITIES 53

I X Y p

0 2 5 + 3

1 3 6 + 1

2 4 7 – 1

3 4 8 + 7

4 5 9 + 5

5 6 10 + 3

Fig. 2.15 shows the rasterization of a line after plotting the pixels.

2 3 4 5 6 7 8

5

6

7

8

9

10

Fig. 2.15 The rasterization of a line

Algorithm for Line Using Bresenham’s for Any Slope

STEP 1: [DECLARATION OF VARIABLES]

int (xA, yA) & (xB, yB) end point coordinates of line

int dx, dy difference of x and y coordinates

int (x, y) coordinates of current pixel representing line

int p decision parameter

int (signx, signy) sign changing variables

int i loop counter

STEP 2: [INITIALIZATION]

Read (xA, yA) & (xB, yB)

STEP 3: [CALCULATION]

dx = xB - xA

dy = yB - yA

STEP 4: [PLOTTING PIXEL FOR LINE]

x = xA

y = yA

54 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

if (dx ≥ 0)
sign x = + 1

else (dx < 0)
sign x = - 1

if (dy ≥ 0)
sign y = + 1

else (dy < 0)
sign y = - 1

if (| dy | < | dx |)
p = 2dy.sign y - dx.sign x
i = 0

loop,
put pixel (x, y)

if (p < 0)
x = x + sign x
y = y

p = p + 2dx.sign y
else (p ≥ 0)

x = x + sign x
y = y + sign y

p = p + 2dy.sign y - 2dx.sign x
i + +

Continue loop until (i ≤ dx.sign x)
else (| dy | > | dx |)

p = 2dx.sign x - dy.sign y
i = 0

loop,
put pixel (x, y)

if p < 0
x = x
y = y + sign y

p = p + 2dx.sign x
else (p ≥ 0)

x = x + sign x
y = y + sign y

p = p + 2dx.sign x - 2dy.sign y

i + +
Continue loop until (i ≤ dy.sign y)

STEP 5: [STOP]

VECTOR REPRESENTATION OF GEOMETRIC ENTITIES 55

2.4 BRESENHAM’S MIDPOINT CIRCLE
GENERATION ALGORITHM

The circle is one of the important geometric entities. It is a symmetric entity
composed of diameters. Fig. 2.16 shows an origin-centered circle divided into 8
parts. This property of a circle (symmetric about diameters) can be used in the
generation of circle with minimum codes. Out of the eight parts shown in Fig.
2.16, only the first part is to be generated; the remaining 7/8ths are generated by
using the symmetry of the circle. Generation starts from point (0, R) where R is
the radius of the circle.

(–x, –v)

(0, –R)
(x, –v)

(v, –x)

(R, 0)

(v, x)

(x = v)

(x, v)
(0, R)

(–x, v)

(–v, x)

(–R, 0)

(–v, –x)

6

5 4

3

2

45°

8 1

7

–x = –v

Fig. 2.16 Use of symmetry for a circle generation

Fig. 2.17 shows two equal parts of a quarter circle. If a tangent is drawn to part 1
then the absolute slope of the tangent would be less than one. Similarly if a tangent
is drawn to part 2, then the absolute slope of the tangent would be greater than
one. This indicates that the arc of part 1 is more horizontal than part 2 whereas
the arc of part 2 is more vertical than part 1. But the slope of the tangent will be
equal to one at the point where part 1 and part 2 meet. That means x coordinate is
equal to y coordinate at that point. Therefore the generation of a circle starts from
point (0, R) and ends where x coordinate is equal to y coordinate.

56 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

Y

X

Part 1

Part 2

M > 1

M > 1

45°

Fig. 2.17 Slope of tangents to circle

Mathematical Analysis

Figure 2.18 shows a one-eighth part of a circle. As discussed in the previous topic,
if a tangent is drawn to part 1, then the absolute slope of the tangent would be less
than one or the arc of part 1 is more horizontal. So, the value of x coordinate will be
incremented by one in every step and the y coordinate needs to be calculated. The
value of y coordinate is calculated depending upon the position of the midpoint of
two successive vertical points. Two cases are discussed below; Fig. 2.19 shows the
position of the midpoint outside the circle and Fig. 2.20 shows the position of the
midpoint inside the circle.

i pixelth

yi

y – 1i

xi xi + 1

Fig. 2.18 Position of the arc of a circle on a grid

i pixelth

yi

y – 1i

xi xi + 1

m

i pixelth

yi

y – 1i

xi xi + 1

m

Fig. 2.19 Midpoint outside the circle Fig. 2.20 Midpoint inside the circle

x(i + 1) = xi + 1
and

y(i + 1) = yi -1

x(i + 1) = xi + 1
and

y(i + 1) = yi

VECTOR REPRESENTATION OF GEOMETRIC ENTITIES 57

The equation of the circle is given by

x2 + y2 = R2

x2 + y2 - R2 = 0 ...(2.33)

If x2 + y2 - R2 < 0 then point lies inside the circle

And x2 + y2 - R2 > 0 then point lies outside the circle

Let pi be the decision parameter of ith point

pi = x2 + y2 - R2 ...(2.33a)

Coordinates of the midpoint
 + -

1
1,

2
i im x y

Put the values in Eq. (2.33a)

 = + + - -

2

2 21
(1)

2
i i ip x y R ...(2.34)

The decision parameter of (i + 1)th pixel is given by

+ + +
 = + + - -

2

2 2
(1) (1) (1)

1
(1)

2
i i ip x y R ...(2.35)

Find the difference of the decision parameters by Eq. (2.35) - Eq. (2.34)

+ + +

 - = + + - - - + + - -

2 2

2 2 2 2
(1) (1) (1)

1 1
(1) (1)

2 2
i i i i i ip p x y R x y R

+ + +
 = = + - + + - - - - +

2 2

2 2 2 2
(1) (1) (1)

1 1
(1) (1)

2 2
i i i i i ip p x x y y R R

+ + +
 = = + - + + - - -

2 2

2 2
(1) (1) (1)

1 1
(1) (1)

2 2
i i i i i ip p x x y y ...(2.36)

If midpoint is inside the circle then

+

+

= +
=

(1)

(1)

1i i

i i

x x

y y
Put these values in Eq. (2.35)

+
 = + + - + + - - -

2 2

2 2
(1)

1 1
(2) (1)

2 2
i i i i i ip p x x y y

p(i + 1) = pi + [xi
2 + 4xi + 4 - xi

2 - 2xi - 1]

p(i + 1) = pi + 2xi + 3 ...(2.37)

58 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

Or if midpoint is outside the circle then

+

+

= +
= -

(1)

(1)

1

1

i i

i i

x x

y y
 Put these values in Eq. (2.36)

+
 = + + - + + - - -

2 2

2 2
(1)

1 1
(2) (1)

2 2
i i i i i ip p x x y y

+
 = + + + - - - + - + - + -

2 2 2 2
(1)

9 1
4 4 2 1 3

4 4
i i i i i i i i i ip p x x x x y y y y

p(i + 1) = pi + [2xi + 3] + [- 2yi + 2]

p(i + 1) = pi + 2xi - 2yi + 5 ...(2.38)

For finding the start point decision parameter

Coordinates of start point x = 0, y = R, put these values in Eq. (2.33)

 = + + - -

= + - + -

= - +

= -

= -

2

2 2

2 2

1
(0 1)

2

1
1

4
1

1
4

5
(float value)

4
1

s

s

s

s

s

p R R

p R R R

p R

p R

p R
 ...(2.38a)

(converting into integer value)

Midpoint Circle Generation Algorithm

STEP 1: [DECLARATION OF VARIABLES]

int (xC, yC) center point coordinates of circle

int (x, y) coordinates of current pixel representing
line

int R Radius of circle

int p decision parameter

VECTOR REPRESENTATION OF GEOMETRIC ENTITIES 59

STEP 2: [INITIALIZATION]

Read (xC, yC) & R

x = 0

y = R

p = 1 - R

STEP 3: [PLOTTING PIXEL FOR CIRCLE]

loop,

put pixel (xc, yc, x, y)

if (p ≤ 0)

x = x + 1

y = y

p = p + 2x + 3

else (p > 0)

x = x + 1

y = y - 1

p = p + 2x - 2y + 5

Continue loop until (x ≤ y)

STEP 4: [PLOT CIRCLE FUNCTION]

plot circle (x, y, xc, yc)

put pixel (x + xc, y + yc)

put pixel (- x + xc, y + yc)

put pixel (- x + xc, - y + yc)

put pixel (x + xc, - y + yc)

put pixel (y + xc, x + yc)

put pixel (- y + xc, x + yc)

put pixel (- y + xc, - x + yc)

put pixel (y + xc, - x + yc)

STEP 5: [STOP]

60 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

Problem 2.7

Generate 1/8th circle using Bresenham’s circle generation algorithm with
center of circle (30, 20) & radius 9.
Solution
xc = 30, yc = 20, R = 9

P X x + xc Y y + yc (xc, yc)

1 – 9 = – 8 0 0 + 30 = 30 9 20 + 9 = 29 (30, 29)

– 8 + 2(1) + 3 = – 3 1 1 + 30 = 31 9 20 + 9 = 29 (31, 29)

– 3 + 2(2) + 3 = 4 2 2 + 30 = 32 9 20 + 9 = 29 (32, 29)

4 + 2(3) – 2(8) + 5 = – 1 3 3 + 30 = 33 8 20 + 8 = 28 (33, 28)

– 1 + 2(4) + 3 = 10 4 4 + 30 = 34 8 20 + 8 = 28 (34, 28)

10 + 2(5) – 2(7) + 5 = 11 5 5 + 30 = 35 7 20 + 7 = 27 (35, 27)

11 + 2(6) – 2(6) + 5 = 16 6 6 + 30 = 36 6 20 + 6 = 26 (36, 26)

Fig. 2.21 shows the rasterization of a line after plotting the pixels.

31

30

29

28

27

26

30 31 32 33 35 3634

Fig. 2.21 The rasterization of a circle

VECTOR REPRESENTATION OF GEOMETRIC ENTITIES 61

2.5 BRESENHAM’S MIDPOINT ELLIPSE GENERATION
ALGORITHM

Mathematical Analysis

The ellipse is another important geometric entity. It is a symmetric entity about its
major axis and minor axis. Fig. 2.22 shows an origin-centered ellipse divided into
4 parts. This property of ellipse (symmetric about its major axis and minor axis)
can be used in the generation of an ellipse with minimum codes. Out of the four
parts shown in Fig. 2.22, only the first part is to be generated; the remaining three
quarter parts are generated by using the symmetry of ellipse. Generation starts
from point (0, Ry) where Ry is the semi-minor axis of the ellipse.

x, y–x, y

x, –y–x, –y

X

23

14

Y

Fig. 2.22 The use of the symmetry of an ellipse for the ellipse generation

Fig. 2.23 shows two parts of a quarter ellipse. If a tangent is drawn to part 1 then
the absolute slope of the tangent will be less than one. Similarly, if a tangent is
drawn to part 2, then the absolute slope of the tangent will be greater than one.
This indicates that the arc of part 1 is more horizontal than part 2, whereas the arc
of part 2 is more vertical than part 1. But the slope of the tangent will be equal to
one at the point where part 1 and part 2 meet (point m). Therefore the generation
of the ellipse starts from point (0, Ry) and ends at point m. The condition at point
m is derived in Eq. (2.39a).

1

Rx

Ry

Y

X

m > – 1

m < – 1
m = 1

2

Fig. 2.23 Slope of the tangents to the two parts of an ellipse

62 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

+ =
22

2 2
1

x y

yx

R R

or
x2R

2
y + y2R

2
x = R

2
xR

2
y

x2R
2
y + y2R

2
x - R

2
xR

2
y = 0 ...(2.39)

Differentiate Eq. (2.39) w. r. t. x and y, we get

2x.R
2
y dx + 2yR

2
x.dy = 0

2x.R
2
y dx = - 2yR

2
x.dy

or

-
=

-
- =

=

=

2

2

2

2

2 2

2 2

2

2

2
1

2

2 2

y

x

y

x

y x

y x

xRdy

dx yR

xR

yR

xR yR

xR yR
 ...(2.39a)

Mathematical Analysis for Generation of Ellipse in Part (1)

Fig. 2.24 shows part 1 of a quarter ellipse. As discussed in the previous topic, if a
tangent is drawn to part 1 then the absolute slope of the tangent will be less than
one or the arc of part 1 is more horizontal. So, the value of the x coordinate will
be incremented by one in every step and the y coordinate needs to be calculated.
The value of the y coordinate is calculated depending upon the position of the
midpoint of two successive vertical points. Two cases are discussed below;
Fig. 2.25 shows the position of the midpoint outside the ellipse and Fig. 2.26 shows
the position of the midpoint inside the ellipse.

i pixelth

yi

y – 1i

xi xi + 1

i pixelth

yi

y – 1i

xi xi + 1

m

Fig. 2.24 Position of the arc of an ellipse on a grid Fig. 2.25 Midpoint outside the ellipse

x(i + 1) = xi + 1
and

y(i + 1) = yi - 1

VECTOR REPRESENTATION OF GEOMETRIC ENTITIES 63

i pixelth

yi

y – 1i

xi xi + 1

m

Fig. 2.26 Midpoint inside the ellipse

Equation of ellipse

x2R
2
y + y2R

2
x - R

2
xR

2
y = 0

if (x2R
2
y + y2R

2
x - R

2
xR

2
y < 0) then point is inside the ellipse

else (x2R
2
y + y2R

2
x - R

2
xR

2
y > 0) then point is outside the ellipse

Let pi be the decision parameter of ith point

pi = x2R
2
y + y2R

2
x - R

2
xR

2
y ...(2.40)

Coordinates of the midpoint
 + -

1
1,

2
i im x y

Put the values in Eq. (2.40)

 = + + - -

2

2 2 2 2 21
(1)

2
i i y i x x yp x R y R R R ...(2.41)

Decision parameter of (i + 1)th pixel is given by

+ + +
 = + + - -

2

2 2 2 2 2
(1) (1) (1)

1
(1)

2
i i y i x x yp x R y R R R ...(2.42)

Find the difference of the decision parameters by Eq. (2.42) - Eq. (2.31)

+ + +

+ +

+

 - = + + - -

 - + + - -
- = + + ⋅ - + ⋅

 + - ⋅ + -

2

2 2 2 2 2
(1) (1) (1)

2

2 2 2 2 2

2 2 2 2
(1) (1)

2 2

2 2
(1)

1
(1)

2

1
(1)

2

(1) (1)

1 1

2 2

i i i y i x x y

i y i x x y

i i i i y i y

i x i x

p p x R y R R R

x R y R R R

p p p x R x R

y R y R
 ...(2.43)

x(i + 1) = xi + 1 and y(i + 1) = yi

64 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

If midpoint is inside the ellipse then

+

+

= +
=

(1)

(1)

1i i

i i

x x

y y Put these values in Eq. (2.43)

+

+

 = + + ⋅ - + ⋅ + -

 ⋅ - - ⋅

= + +

2

2 2 2 2
(1)

2

2 2

2
(1)

1
(2) (1)

2

1

2

[2 3]

i i i y i y i

x i x

i i i y

p p x R x R y

R y R

p p x R
 ...(2.44)

Else midpoint is outside the circle then

+

+

= +
= -

(1)

(1)

1

1

i i

i i

x x

y y Put these values in Eq. (2.43)

+

+

 = + + - + + - ⋅ - - ⋅

 + = + + + - - - + - + - + -
= + + + - +

2 2

2 2 2 2 2 2
(1)

2 2 2 2 2 2

2 2
(1)

1 1
(2) (1)

2 2

9 1
(1) [4 4 2 1] 3

4 4

[2 3] [2 2]

i i i y i y i x i x

i i i i i y i i i i x

i i i y i x

p p x R x R y R y R

p i p x x x x R y y y y R

p p x R y R

For finding the start point decision parameter

Coordinates of the start point x = 0, y = Ry, put these values in the equation

 = + + - -

 = + - +
 = - -

>>

= - ⋅

2

2 2 2 2 2

2 2

2 2

2 2

1
(0 1)

2

1

4

1

4

1

4

s y x y x

s y y x

s y y x

y

s y y x

p R R R R R

p R R R

p R R R

R

p R R R

...(2.45)

VECTOR REPRESENTATION OF GEOMETRIC ENTITIES 65

Mathematical Analysis for the Generation of an Ellipse in Part (2)

Fig. 2.27 shows part 2 of a quarter ellipse. As discussed in the previous topic, if a
tangent is drawn to part 2 then the absolute slope of the tangent will be greater
than one or the arc of part 2 is more vertical. So, the value of the y coordinate will
be incremented by one in every step and the x coordinate needs to be calculated.
The value of the x coordinate is calculated depending upon the position of the
midpoint of two successive horizontal points. Two cases are discussed; Fig. 2.28
shows the position of the midpoint inside the ellipse and Fig. 2.29 shows the
position of the midpoint outside the ellipse.

y + 1i

yi

x – 1i
xi

i pixelth

Fig. 2.27 Position of the arc of an ellipse on a grid

y + 1i

yi

x – 1i
xi

i pixelth

m

y + 1i

yi

x – 1i
xi

i pixelth

m

i pixelth

Fig. 2.28 Midpoint inside the ellipse Fig. 2.29 Midpoint outside the ellipse

Equation of an ellipse

x2R
2
y + y2R

2
x - R

2
xR

2
y = 0 ...(2.46)

if x2R
2
y + y2R

2
x - R

2
xR

2
y < 0 then point is inside the ellipse

else x2R
2
y + y2R

2
x - R

2
xR

2
y > 0 then point is outside the ellipse

Let pi be the decision parameter of ith point

pi = x2R
2
y + y2R

2
x - R

2
xR

2
y ...(2.47)

x(i + 1) = xi

and
y(i + 1) = yi + 1

x(i + 1) = xi - 1
and

y(i + 1) = yi + 1

66 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

Coordinates of the midpoint
 - +

1
, 1

2
i im x y

Put the values in Eq. (2.47)

 = + + + -

2

2 2 2 2 21
(1)

2
i i y i x x yp x R y R R R ...(2.48)

Decision parameter of (i + 1)th pixel is given by

+ + +
 = - + + -

2

2 2 2 2 2
(1) (1) (1)

1
(1)

2
i i y i x x yp x R y R R R ...(2.49)

Find the difference of the decision parameters by Eq. (2.49) - Eq. (2.48)

+ + +

+ + +

 - = - + + -

 - - + + +

 = + - ⋅ - - ⋅ + +

⋅ - +

2

2 2 2 2 2
(1) (1) (1)

2

2 2 2 2 2

2 2

2 2 2
(1) (1) (1)

2 2

1
(1)

2

1
(1)

2

1 1
(1)

2 2

(1)

i i i y i x x y

i y i x x y

i i i y i y i

x i x

p p x R y R R R

x R y R R R

p p x R x R y

R y R
 ...(2.50)

If midpoint is inside the ellipse then

+

+

=
= +

(1)

(1) 1

i i

i i

x x

y y
 Put these values in Eq. (2.50)

+

+

 = + - ⋅ - - ⋅ + + ⋅ - + ⋅

= + +

2 2

2 2 2 2 2 2
(1)

2
(1)

1 1
(2) (1)

2 2

[2 3]

i i i y i y i x i x

i i i x

p p x R x R y R y R

p p y R
 ...(2.51)

Else midpoint is outside the circle then

+

+

= -
= +

(1)

(1)

1

1

i i

i i

x x

y y
 Put these values in Eq. (2.50)

+

+

 = + - - - - + + + - +

= + - + + +

2 2

2 2 2 2 2 2
(1)

2 2
(1)

1 1
1 (1 1) (1)

2 2

[2 2] [2 3]

i i i y i y i y i x

i i i y i x

p p x R x R y R y R

p p x R y R ...(2.52)

VECTOR REPRESENTATION OF GEOMETRIC ENTITIES 67

For finding the start point decision parameter
Coordinates of the start point x = Rx, y = 0, put these values in the equation

 = - + + -

 = - -

>>

= - ⋅

2

2 2 2 2 2

2 2

2 2

1
(0 1)

2

1

4

1

4

s x y x y x

s x x y

x

s x x y

p R R R R R

p R R R

R

p R R R
 ...(2.53)

Bresenham’s Midpoint Ellipse Generation Algorithm

STEP 1: [DECLARATION OF VARIABLES]

int (xC, yC) center point coordinates of ellipse

int (x1, y1) & (x2, y2) coordinates of current pixel for part (1) &
part (2)

int Rx, Ry semi-major and semi-minor axis of ellipse

int p1, p2 decision parameter for part (1) and part (2)

STEP 2: [INITIALIZATION]

Read (xC, yC)

Read Rx, Ry

STEP 3: [PLOTTING PIXEL FOR ELLIPSE]
Plotting part (1) of ellipse (m < 1)

x1 = 0

y1 = Ry

p1 = R
2
y - Ry . R

2
x

loop,
put pixel ((xc, yc) x1, y1)
if (p1 ≤ 0)

x1 = x1 + 1

y1 = y1

p1 = p1 + (2x1 + 3)R
2
y

68 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

else (p1 > 0)

x1 = x1 + 1

y1 = y1 - 1

p1 = p1 + (2x1 + 3) R
2
y + (- 2y2 + 2)R

2
x

Continue loop until (R
2
y . x1 ≤ R2

x . y1)

Plot part (2) of ellipse (m > = 1)

x2 = Rx

y2 = 0

p2 = R
2
x - Rx . R

2
y

loop,

put pixel ((xc, yc) x2, y2)

if (p2 ≤ 0)

x2 = x2

y2 = y2 + 1

p2 = p2 + (2y2 + 3)R
2
x

else (p2 > 0)

x2 = x2 - 1

y2 = y2 + 1

p2 = p2 + (2y2 + 3) R
2
x + (- 2x2 + 2)R

2
y

Continue loop until (R
2
x . y2 ≤ R

2
y. x2)

STEP 4: [PLOT CIRCLE FUNCTION]

plot ellipse (x1, y1, xc, yc)

put pixel (x1 + xc, y1 + yc)

put pixel (- x1 + xc, y1 + yc)

put pixel (- x1 + xc, - y1 + yc)

put pixel (x1 + xc, - y1 + yc)

STEP 5: plot ellipse (x2, y2, xc, yc)

put pixel (x2 + xc, y2 + yc)

put pixel (- x2 + xc, y2 + yc)

put pixel (- x2 + xc, - y2 + yc)

put pixel (x2 + xc, - y2 + yc)

VECTOR REPRESENTATION OF GEOMETRIC ENTITIES 69

Problem 2.8

Generate an ellipse using Bresenham’s midpoint algorithm with the center of
the ellipse (15, 17) & Rx = 9 and Ry = 7.

Solution Generation of part (1)
xc = 15, yc = 17, Rx = 9 and Ry = 7.
ps = R

2
y - Ry . R

2
x = 49 - 81 × 7 = - 518

P x Ry
2.x x + xc Y Rx

2.y y + yc (xc, yc)

– 518 0 0 15 7 518 24 (15, 24)

– 371 1 49 16 7 518 24 (16, 24)

– 28 2 98 17 7 518 24 (17, 24)

413 3 147 18 7 518 24 (18, 24)

142 4 196 19 6 486 23 (19, 23)

131 5 245 20 5 405 22 (20, 22)

380 6 294 21 4 324 21 (21, 21)

7 343 22 3 243 20 (22, 20)

Generation of Part (2)

The starting point decision parameter is ps = R
2
x - Rx . R

2
y = 81 - 9 × 49 = - 360

x Ry
2.x x + xc Y Rx

2.y y + yc (xc , yc)

– 360 9 441 24 0 0 17 (24, 17)

– 360 + 81 (2 + 3) = 45 9 441 24 1 81 18 (24, 18)

45 + 81 × 7 + 49 × (– 14) = – 74 8 392 23 2 162 19 (23, 19)

– 74 + 81 × 9 = 655 8 392 23 3 243 20 (23, 20)

655 + 81 × 11 + 49 × (– 12) = 958 7 343 22 4 324 21 (22, 21)

6 294 21 5 405 22 (21, 22)

70 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

Fig. 2.30 shows the rasterization after plotting the pixels.

24

23

22

21

20

19

18

17

17 16 17 18 19 20 21 22 23 24

Fig. 2.30 The rasterization of part (1) and part (2) of an ellipse

2.6 ARC GENERATION ALGORITHM USING
TRIGONOMETRIC FUNCTION

An arc is a section of a circle. An arc is specified by a start angle, an end angle, and
a radius, as shown in Fig. 2.31. An arc can be generated in a clockwise direction
and an counterclockwise direction. Both these cases are discussed below.

Y

R

(x, y)

y = R sin

x = R cos

incr

X

21

Fig. 2.31 Analysis of an arc in a counterclockwise direction

VECTOR REPRESENTATION OF GEOMETRIC ENTITIES 71

incr

1

R

q =

q >>
q = q

q =

incr

incr

incr incr

incr

1
tan()

1

tan()

1

R

R

Counterclockwise Direction

Fig. 2.32 shows an origin centered arc having radius R, start angle q1, end angle q2.
Here the start angle is less than the end angle and the arc is to be generated in an
counterclockwise direction.
Counterclockwise arc generation when q1 < q2

X

Y

1

2

Fig. 2.32 An arc generation in a counterclockwise direction when q1 < q2

Counterclockwise arc generation when q1 > q2

Fig. 2.33 shows an origin centered arc having radius R, start angle q1, and end
angle q2. Here, the start angle is greater than the end angle and the arc is to be
generated in a counterclockwise direction.

72 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

2 1

X

Y

Fig. 2.33 The arc generation in a counterclockwise direction when q1 > q2

q2 < q1

q2 = 2p + q2

Algorithm for the arc generation in a counterclockwise direction
Step 1: [DECLARATION OF VARIABLES]

int (xC, yC) center point coordinates of arc

float (x, y) coordinates of current pixel representing arc

int R radius of arc

float
float

q1 (rads)
q2 (rads)

start angle of arc
end angle of arc

float q(rads) current point inclination

float qincr (rads) increment of q

Step 2: [INITIALIZATION]
 Read (xc, yc)
 Read q1, q2

 Read R

Step 3: [CALCULATION]

q =
1

incr
R

Step 4: [PLOTTING PIXELS]

If q2 < q1

q2 = 2p + q2

q = q1

VECTOR REPRESENTATION OF GEOMETRIC ENTITIES 73

Loop,
Put pixel (round (x + xc), round (y + yc))

x = R cos q

y = R sin q

q = q + qincr

Loop continue until (q ≤ q2)

Step 5: [STOP]

Algorithm for Arc Generation in a Clockwise Direction

When q1 > q2

Fig. 2.34 shows an origin centered arc having radius R, start angle q1, and end
angle q2. Here the start angle is greater than the end angle and the arc is to be
generated in a clockwise direction.

X

Y

2

1

Fig. 2.34 The arc generation in a clockwise direction when q1 > q2

When q1 < q2

Fig. 2.35 shows an origin centered arc having radius R, start angle q1, and end
angle q2. Here the start angle is less than the end angle and the arc is to be
generated in a clockwise direction.

74 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

1 2

X

Y

q1 < q2

q2 = q2 - 2p
Fig. 2.35 Analysis of an arc in a clockwise direction when q1 < q2

Step 1: [DECLARATION OF VARIABLES]

int
float

(xC, yC)
(x, y)

center point coordinates of arc
coordinates of current pixel representing arc

int R radius of arc
float
float
float

q1 (rads)
q2 (rads)
q(rads)

start angle of arc
end angle of arc
current point inclination

float qincr (rads) increment of q

Step 2: [INITIALIZATION]
 Read (xc, yc)
 Read q1, q2

 Read R

Step 3: [CALCULATION]

q =
1

incr
R

Step 4: [PLOTTING PIXELS]

If q1 < q2

q2 = q2 - 2p

q = q1

VECTOR REPRESENTATION OF GEOMETRIC ENTITIES 75

Loop,

Put pixel (round (x + xc), round (y + yc))

x = R cos q

y = R sin q

q = q - qincr

Loop continue until (q ≥ q2)

Step 5: [STOP]

Problem 2.9

Generate an arc in a counterclockwise direction using a trigonometric
function algorithm having center (3, 2), start angle = 30°, end angle = 60°, and
radius of arc = 10.

Solution

q1 = 30° = 0.523 rad

q2 = 60° = 1.05 rad

xc = 3, yc = 2, R = 10

q = = =
1 1

0.1
10

incr
R

θ x = R cos θ x + xc y = R sin θ y + yc

0.523 8.66 = 9 9 + 3 = 12 4.99 = 5 5 + 2 = 7

0.623 8.12 = 8 8 + 3 = 11 5.83 = 6 6 + 2 = 8

0.723 7.49 = 7 7 + 3 = 10 6.61 =7 7 + 2 = 9

0.823 6.8 = 7 7 + 3 = 10 7.33 = 7 7 + 2 = 9

0.923 6.08 = 6 6 + 3 = 9 7.97 = 8 8 + 2 = 10

1.023 5.2 = 5 5 + 3 = 8 8.53 = 9 9 + 2 = 11

Fig. 2.36 shows the rasterization after plotting pixels.

76 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

12

11

10

9

8

7

6

5

5 6 7 8 9 10 11 12 13 14

Fig. 2.36 The rasterization of an arc

Problem 2.10

Generate an arc in a counterclockwise direction using a trigonometric
function algorithm having center (4, 3), start angle = 350°, end angle = 10°, and
radius of arc = 10.

Solution

q1 = 350° = 6.109 rad

q2 = 10° = 0.174 rad

xc = 4, yc = 3, R = 10

As,

q2 < q1

q2 = 2p + q2 = 2q + 0.174 = 6.45 rad

q = = =
1 1

0.1
10

incr
R

θ x = R cos θ x + xc y = R sin θ y + yc

6.109 9.85 = 10 10 + 4 = 14 – 1.73 = – 2 – 2 + 3 = 1

6.209 9.97 = 10 10 + 4 = 14 – 0.74 = – 1 – 1 + 3 = 2

6.309 9.99 = 10 10 + 4 = 14 0.25 = 0 0 + 3 = 3

6.409 9.99 = 10 10 + 4 = 14 1.25 = 1 1 + 3 = 4

Fig. 2.37 shows the rasterization after plotting pixels.

VECTOR REPRESENTATION OF GEOMETRIC ENTITIES 77

8

7

6

5

4

3

2

1

5 6 7 8 9 10 11 12 13 14

Fig. 2.37 The rasterization of an arc

Problem 2.11

Generate an arc in a clockwise direction using a trigonometric function
algorithm having center (5, 3), start angle = 45°, end angle = 15°, and radius of
arc = 10.

Solution

q1 = 45° = 0.7853 rad

q2 = 15° = 0.261 rad

xc = 5, yc = 3, R = 10

q = = =
1 1

0.1
10

incr
R

θ x = R cos θ x + xc y = R sin θ y + yc

0.7853 7.07 = 7 7 + 5 = 12 7.07 = 7 7 + 3 = 10

0.6853 7.74 = 8 8 + 5 = 13 6.33 = 6 6 + 3 = 9

0.5853 8.33 = 8 8 + 5 = 13 5.52 = 6 6 + 3 = 9

0.4853 8.84 = 9 9 + 5 = 14 4.66 = 5 5 + 3 = 8

0.3853 9.27 = 9 9 + 5 = 14 3.76 = 4 4 + 3 = 7

0.2853 9.59 = 10 10 + 5 = 15 2.81 = 3 3 + 3 = 6

Fig. 2.38 shows rasterization after plotting pixels.

78 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

12

11

10

9

8

7

6

5

12 13 14 15 16 17

Fig. 2.38 The rasterization of an arc

Problem 2.12

Generate an arc in a clockwise direction using a trigonometric function
algorithm having center (7,4), start angle = 15°, end angle = 345°, and radius of
arc = 10.

Solution

q1 = 15° = 0.261 rad

q2 = 345° = 6.02 rad

xc = 7, yc = 4, R = 10

As

q1 < q2

q2 = q2 - 2p = 6.02 - 2p = - 0.261 rad

q = q1 = 0.261

q = = =
1 1

0.1
10

incr
R

VECTOR REPRESENTATION OF GEOMETRIC ENTITIES 79

θ x = R cos θ x + xc y = R sin θ y + yc

0.261 9.66 = 10 10 + 7 = 17 2.58 = 3 3 + 4 = 7

0.161 9.87 = 10 10 + 7 = 17 1.6 = 2 2 + 4 = 6

0.061 9.98 = 10 10 + 7 = 17 0.6 = 1 1 + 4 = 5

-0.039 9.99 = 10 10 + 7 = 17 – 0.38 = 0 0 + 4 = 4

-0.139 9.99 = 10 10 + 7 = 17 – 1.38 = – 1 – 1 + 4 = 3

-0.239 9.99 = 10 10 + 7 = 17 – 2.36 = – 2 – 2 + 4 = 2

Fig. 2.39 shows the rasterization after plotting pixels.

9

8

7

6

5

4

3

2

17

Fig. 2.39 The rasterization of an arc

EXERCISES

1. What is rasterization?

2. Explain the DDA algorithm for rasterizing a line having end points at
A (x1, y1) and B (x2, y2).

3. Explain Bresenham’s line algorithm to draw a line between any two end points.

4. Compare the two line generation algorithms using DDA and Bresenham’s.

5. Derive decision parameters in Bresenham’s midpoint circle generation
algorithm.

80 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

6. What is the basic concept of line drawing? Write the names of the algorithm
used in line drawing.

7. Why is an algorithm required? Explain its steps in any graphics application.

8. What are the advantages and disadvantages of a DDA algorithm?

9. Explain, with a suitable example, why in a DDA for a straight line the value of
x is incremented by one in case of a slope less than one.

10. Explain and write Bresenham’s midpoint algorithm to draw a circle of radius
“R” at center (xc, yc).

11. Explain the midpoint subdivision algorithm for the generation of a circle with
radius = 5 units and center at (5, 3).

12. Explain how the choices of pixel are done in plotting a circle by Bresenham’s
ellipse algorithm.

13. The midpoint subdivision algorithm is computationally less intensive than
Bresenham’s algorithm for circle. Explain.

OBJECTIVE QUESTIONS

 2.1 In a DDA algorithm, the common denominator (DENO) is equal to
(a) dx if (dx ≤ dy) (b) dy if (dx ≥ dy)
(c) |dx |if (|dx| ≤ |dy|) (d) |dy |if (|dx| ≥ |dy|)

 2.2 In a DDA algorithm, loop (iterations) continue until the following condition
satisfies
(a) loop counter ≤ DENO (b) loop counter ≤ dx
(c) loop counter ≤ dy (d) loop counter ≥ DENO

 2.3 If the slope of the line is less than 1, then Bresenham’s line generation
algorithm works on
(a) difference of distance between two successive horizontal points
(b) difference of distance between two successive vertical points
(c) all of the above
(d) none of the above

 2.4 If the slope of the line is positive and less than 1, then in Bresenham’s line
generation algorithm
(a) loop continues until loop counter ≤ |dy|
(b) loop continues until loop counter ≥ |dy|
(c) loop continues until loop counter ≤ |dx|
(d) loop continues until loop counter ≥ |dx|

VECTOR REPRESENTATION OF GEOMETRIC ENTITIES 81

 2.5 In Bresenham’s midpoint circle generation,
(a) only 1⁄16th of circle is generated and remaining 15⁄16th by symmetry
(b) only 1⁄8th of circle is generated and remaining 7⁄8th by symmetry
(c) only 1⁄4th of circle is generated and remaining 3⁄4th by symmetry
(d) only 1⁄2th of circle is generated and remaining 1⁄2th by symmetry

 2.6 Bresenham’s circle generation algorithm works by checking the position of
(a) midpoint of two successive horizontal points
(b) midpoint of two successive vertical points
(c) midpoint of two successive diagonal points
(d) all of the above
(e) none of the above

 2.7 In Bresenham’s midpoint ellipse generation algorithm,
(a) only 1⁄16th of ellipse is generated and remaining 15⁄16th by symmetry
(b) only 1⁄8th of ellipse is generated and remaining 7⁄8th by symmetry
(c) only 1⁄4th of ellipse is generated and remaining 3⁄4th by symmetry
(d) only 1⁄2th of ellipse is generated and remaining 1⁄2th by symmetry

 2.8 In Bresenham’s ellipse generation algorithm, 1⁄4th of ellipse is further divided
into two parts on the basis of
(a) Major axis and minor axis (b) Radius of ellipse
(c) Center of ellipse (d) Slope of tangents

 2.9 In an arc generation algorithm using trigonometric function in a
counterclockwise generation when q1 > q2, then the value of q2 is adjusted as
(a) q2 = p + q2 (b) q2 = 2p + q2

(c) q2 = 3p + q2 (d) q2 = 4p + q2

2.10 In an arc generation algorithm using trigonometric function in clockwise
generation when q1 < q2, then the value of q2 is adjusted as
(a) q2 = q2 - p (b) q2 = q2 - 2p
(c) q2 = q2 - 3p (d) q2 = q2 - 4p

ANSWERS

2.1 (c) 2.2 (a) 2.3 (b) 2.4 (c)

2.5 (b) 2.6 (a) 2.7 (c) 2.8 (d)

2.9 (b) 2.10 (b)

83

3.1 INTRODUCTION

In many practical applications, it is necessary to make an entity look better by
manipulating its orientation, size, or shape. These mathematical techniques
to manipulate or make changes in the entity are called transformations, and
transformations of two-dimensional entities such as circles, triangles, etc. are
called 2D transformations.

Many engineering problems such as synthesis of mechanisms or analysis
of structural elements require a two-dimensional geometric model made up
of lines, circles, and rectangles. These models are further analyzed by changing
their position, orientation, or size in an organized and efficient way using
transformations. Transformations play an integral part in all CAD systems
to create and view an object. One of the most common and important tasks in
computer graphics is to transform the coordinates (position, orientation, and
size) of either an object within the graphical scene or the camera that is viewing
the scene. It is also frequently necessary to transform coordinates from one
coordinate system to another (e.g., world coordinates to viewpoint coordinates
to screen coordinates). All of these transformations can be efficiently handled
using simple matrix representations. Further, they can be particularly useful for
combining multiple transformations into a single composite transform matrix.

3Chapter

TWO-
DIMENSIONAL
TRANSFORMATION

84 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

3.2 REPRESENTATION OF 2D GEOMETRY

In computer graphics, the shape and size of 2D objects are represented by 2D
numerical descriptions tied to a coordinate system, i.e., in the form of x, y Cartesian
coordinate. These geometrical representations are shifted, resized, and reoriented
by the application of transformation. The basic building block of any geometry is a
point, e.g., a line is made up of two points; planes are made by joining more than two
coplanar lines to form a closed loop; solids are made out of planes. Hence a point
is considered the basic element of any 2D model. All 2D models can be defined
by a set of x, y coordinates or points. For example, a triangle is represented by x, y
coordinates of its three vertices A(x1, y1), B(x2, y2) and C(x3, y3) as shown in Fig. 3.1.

y-axis

x-axis

B (x , y)2 2 C (x , y)3 3

A (x , y)1 1

O

Fig. 3.1 Triangle representation in a Cartesian coordinate system

The vertices ABC of a triangle are represented in matrix form as follows:

 =

1 1

2 2

3 3

x yA

x yB

x yC

where each x, y pair is a position vector relative to the specified coordinate system.
The matrix representation of a geometric model is useful for manipulation in
computer graphics applications. Some geometric transformations are obtained by
matrix multiplication and others by matrix addition.

3.3 TYPES OF 2D TRANSFORMATIONS

Transformation involves the calculation of new coordinates (transformed
points) from the coordinates of original points. There are three basic types of
transformations and two special transformations.

TWO-DIMENSIONAL TRANSFORMATION 85

Basic transformations are

1. Scaling

2. Rotation

3. Translation

Special transformations are

1. Reflection

2. Shear

3.3.1 Scaling Transformation

In scaling transformation, the original coordinates of an object are multiplied by
the given scale factor. There are two types of scaling transformations: uniform
and non-uniform. In uniform scaling, the coordinate values change uniformly
along the x, y, and z coordinates, whereas in non-uniform scaling, the change is
not necessarily the same in all the coordinate directions.

D

A

C

B

A B

D C

Transformed
Fig

Original
Fig.

y-axis

x-axiso

Fig. 3.2 Scaling transformation

transformed length
scalingfactor,

original length

2
Scaling factorinthe direction 2

1.5
Scaling factorinthe direction 1.5

x

y

 = s =

A B AB
x s

AB AB
A D AD

y s
AD AD

′ ′
= = = =

′ ′
= = = =

If scaling factor is greater than “1” it is called enlarging scaling and if scaling;
factor is less than “1” it is called reducing scaling.

A B = 2

A = 1.5

AB

D AD

′ ′
′ ′

86 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

Mathematical Analysis

Let p (x, y) be the coordinate of the original point.

Let p (x′, y′) be the coordinate of the final point.

Then the transformation equation for scaling is given by

x′ = x ⋅ sx ...(3.1)

y′ = y ⋅ sy ...(3.2)

We can write the above equation in matrix form as follows:

0
[] []

0

[] [][]

x

y

s
x y x y

s

p p s

′ ′ =

′ =

where

=

0

0

x

y

s
s

s

s = scaling the transformation matrix

p = coordinates of the original figure

p′ = coordinates of the final figure

Problem 1

D (2, 2) C (3, 2)
A B

D C

Transformed
Fig

Original
Fig.

A (2, 1) B (3, 1)

Fig. 3.3

TWO-DIMENSIONAL TRANSFORMATION 87

Scale the figure with sx = 2 and sy = 1.5.

Solution
′ = ⋅

 ′ = ⋅

 ′ =

[] [] []

2 1

3 1 2 0
[]

3 2 0 1.5

2 2

4 1.5

6 1.5
[]

6 3

4 3

p p s

p

p

When scaling transformation is carried out, in addition to scaling the figure, the
figure also gets shifted. The shift depends on the scaling factors sx and sy.

3.3.2 ROTATION TRANSFORMATION

In rotation, the object is rotated by q angle about the origin. The convention is
that the direction of rotation is CCW if q is a positive angle and CW if q is a
negative angle. The transformation for rotation Rq is analyzed as follows.

Mathematical analysis

Ry

p (x , y)

p (x , y)

y

x

x

y-axis

o x-axis

Fig. 3.4 Rotation transformation

88 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

x = Rcos f

y = Rsin f

x′ = Rcos (q + f)

y′ = Rsin (q + f)

x′ = R[cos q cos f - sin q sin f]

y′ = R[sin q cos f + cos q sin f]

x′ = Rcos q cos f - Rsin q sin f ...(3.3)

x′ = x cos q - ysin ...(3.4)

y′ = Rsin q cos f + Rcos q sin f ...(3.5)

y′ = xsin q + ycos q ...(3.6)

We can write the above equation in matrix form as follows:

where

q q
′ = - q q

′ = ⋅

q q
= - q q

cos sin
[] []

sin cos

[] [] []

cos sin

sin cos

x y x y

p p R

R

R = rotation transformation matrix

p = coordinates of the original figure

p′ = coordinates of the final figure

TWO-DIMENSIONAL TRANSFORMATION 89

Problem 2

Rotate the figure through 90° to CCW about origin. A (2, 1), B (5, 1)
C (4, 3).

Solution

Note:

[] [] []

2 1
cos90 sin90

5 1[]
sin90 cos90

4 3

2 1
0 1

5 1
1 0

4 3

1 2

1 5[]

3 4

positive for the CCWrotation

negative for the CWrotation

p p R

p

p

′ = ⋅

 ′ = ⋅ -

 = ⋅ -

-
 -′ =
 -

q =
 q =

3.3.3 TRANSLATION TRANSFORMATION

In translation, an object is displaced by a given distance and direction from its
original position. If displacement is given by vector v = tx I + tyJ, the new object
point P′(x′, y′) can be found by applying translation transformation to P(x, y). See
Fig. 3.5.

P (x, y)

y

y

ty

P (x , y)

x tx

y-axis

x-axis
o

x

Fig. 3.5 Translation transformation

90 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

x′ = x + tx

y′ = y + ty

We can write the above equations in matrix form as follows:

[x′ y′] = [x y] + [tx ty]

[p′] = [p] . [T]

where

T = [tx ty]

[T] = translation transformation matrix

p = coordinates of the original figure

p′ = coordinates of the final figure

3.4 NEED OF HOMOGENEOUS COORDINATES

As mentioned previously, the basic transformations are:

1. Scaling
′ ′ =

0
[] []

0

x

y

s
x y x y

s

2. Rotation
q q

′ ′ = - q q

cos sin
[] []

sin cos
x y x y

3. Translation ′ ′ = +[] [] []x yx y x y t t

Of these, scaling and rotation transformations are captured by matrix
multiplication, whereas translation transformation is captured by matrix addition
of two matrices.

Matrix multiplication is easier than matrix addition. This is explained by
combine transformation (scaling and rotation).

TWO-DIMENSIONAL TRANSFORMATION 91

Example 1

Combine transformation (scaling and rotation).

Original figure

Intermediate figure

Final figure

y-axis

x-axis
o

Fig. 3.6 Combine transformation

In this procedure, the figure is scaled and rotated about the origin. The total
transformation is carried out in two steps:

Scaling [p1] = [p] ⋅ [S]

Rotation [p′] = [p1] ⋅ [R]

 [p′] = [p] ⋅ [S] ⋅ [R]

 [p′] = [p] ⋅ [TT]

where

[TT] = total transformation or resultant transformation matrix

[TT]2 × 2 = [S]2 × 2 [R]2 × 2

Example 2

Combine transformation (scaling and translation).

Final figure

Intermediate figure

Original figure

x-axis

y-axis

o

Fig. 3.7 Combine transformation

92 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

The total transformation is carried out in two steps:

Scaling [p1] = [p] ⋅ [S]

Translation [p′] = [p] [S]2 × 2 + [T]1 × 2

 [p′] = [p1]1 × 2 + [T]1 × 2

Translation transformation is a 1 × 2 matrix, i.e., a row matrix, and it is to be
added to the matrix in order to achieve the coordinates of the transformation
point (Example 2).

Scaling and rotation transformations are both 2 × 2 matrices and are to be
multiplied to matrix p in order to get the coordinates of the transformation point
(Example 1).

If a combination of rotation and scaling transformations is carried out, the final
transformation can be written as a product of the original transformation (p) and
the resultant transformation matrix (TT) (Example 1). This resultant transformation
matrix is a product of respective scaling and rotation transformation matrices. This
permits the calculation of final transformation directly without having to calculate
the intermediate transformation (Example 1).

When translation is involved in a series of transformations, it is not possible to
calculate the resultant transformation matrix TT because the order of translation
transformation matrix 1 × 2 and the operation of addition is involved. Hence
the final transformation can only be achieved by calculating the coordinates of
intermediate transformation at each stage. This increases the calculations and
hence slows down the transformation process (Example 2).

In order to avoid this difficulty, the transformation matrix needs to be written in
the same dimension, i.e., order of scaling and rotation matrix, and also translation
is to be carried out by matrix multiplication instead of addition. This is possible by
writing the coordinates of the points and matrices in a 3 × 3 homogeneous form.
Coordinates of original point are written as

[] []

[2 3] [2 31]

[4 6 1] all these represent the samepoint [2 3]

1 1.5 0.5

x y x h y h h= ⋅ ⋅

=
=
=

Advantage of homogeneous coordinates in case of translation

[x′ y′] = [x y] + [tx ty]

TWO-DIMENSIONAL TRANSFORMATION 93

Using homogeneous coordinates

 ′ ′ =

′ = +
′ = +

=

1 0 0

0 1 0[] [1]

1

1

x y

x

y

x y h x y

t t

x x t

y y t

h

Thus translation transformation can be captured in matrix multiplication using
homogeneous coordinates.

In the other two operations, the basic matrix will remain the same, only 0 and 1
are added to the third row and third column.

Scaling

 ′ ′ =

0 0

0 0[] [1]

0 0 1

x

y

s

sx y h x y

Rotation

q q
 - q q′ ′ =

cos sin 0

sin cos 0[] [1]

0 0 1

x y h x y

Thus, using homogeneous coordinates, we can capture translation by matrix
multiplication similar to rotation and scaling, which are also captured as matrix
multiplication.

Problem 1

Find the 3 × 3 transformation matrix for the figure shown in Fig. 3.8.

C B

D A

B A

C D

x-axis

y-axis

o

Fig. 3.8

94 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

Solution

The total transformation is carried out in the following steps:

Step 1: Translate figure to the origin about point A.

tx = - xA and ty= - yA

A

o
x-axis

y-axis

Fig. 3.9 Position of a rectangle after translation

 =
 - -

1

1 0 0

0 1 0

1A A

T

x y

Step 2: Rotate figure about the origin through 90° in the CCW direction.

A

o
x-axis

y-axis

Fig. 3.10 Position of a rectangle after rotation

 - -= =

cos90 sin90 0 0 1 0

sin90 cos90 0 1 0 0

0 0 1 0 0 1

R

TWO-DIMENSIONAL TRANSFORMATION 95

Step 3: Translate point A from the origin to its original position.

tx = xA and ty = yA

A

o
x-axis

y-axis

Fig. 3.11 Position of a rectangle after back translation

 =

2

1 0 0

0 1 0

1A A

T

x y

The final transformation matrix equation is given by

[p′] = [p] . [TT]

where TT = total transformation matrix

1 0 0 0 1 0 1 0 0

0 1 0 1 0 0 0 1 0

1 0 0 1 1

0 1 0 1 0 0

1 0 0 0 1 0

1 1

0 1 0

1 0 0

() () 1

T

A A A A

T

A A A A

T

A A A A

T

x y x y

T

y x x y

T

x y y x

 -=
 - -

 -=
 -

 -=
 + -

96 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

Problem 2

Find the 3 × 3 transformation matrix for the figures in Fig. 3.12.

A (6, 2) B (10, 2)

D (6, 0) C (10, 0)

y-axis

x-axis
o A D (6, 0)

4

CB
2

y-axis

x-axis
o

Fig. 3.12

Solution

The total transformation is carried out in the following steps:

Step 1: Translate figure to the origin about point D.

tx = - 6 and ty = 0

 =
 -

1

1 0 0

0 1 0

6 0 1

T

o

A

C
x-axis

y-axis

B

Fig. 3.13 Position of a rectangle after translation

Step 2: Rotate figure in the CCW direction by 90° about the origin.

 - -= =

cos90 sin90 0 0 1 0

sin90 cos90 0 1 0 0

0 0 1 0 0 1

R

TWO-DIMENSIONAL TRANSFORMATION 97

DA

B C

x-axis

y-axis

o

(6, 0)

Fig. 3.14 Position of a rectangle after rotation

Step 3: Translate point D back to its original position.

tx = 6 and ty = 0

 =

1

1 0 0

0 1 0

6 0 1

T

A D (6, 0)

CB

x-axis
o

y-axis

Fig. 3.15 Position of a rectangle after back translation

The final transformation matrix equation is given by

[p′] = [p] ⋅ [TT]

where TT = total transformation matrix

 -=
 -

 -=
 -

 -=
 -

1 0 0 0 1 0 1 0 0

0 1 0 1 0 0 0 1 0

6 0 1 0 0 1 6 0 1

0 1 0 1 0 0

1 0 0 0 1 0

0 6 1 6 0 1

0 1 0

1 0 0

0 6 1

T

T

T

T

T

T

98 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

Problem 3

Find the 3 × 3 homogeneous transformation matrix to transform square
ABCD into another square A′B′C′D′ as shown in the figure. Side of the original
square = 2, coordinates of point A (20, 10). Draw the final transformation on a
graph paper.

BA

CD

C

A

BD

(20, 10)

(21, 11)

M

N

y

x
o

Fig. 3.16

Solution Consider triangle ANA′.

1

1

2

A'

NA

Fig. 3.16(a)

From Fig. 3.16
AB = 2

A′D′ = A′A + D′A or A′B′ = A′B + BB′
From Fig. 3.16(a)

1 1 2

2 2

2

final length 2 2
scaling factor 2

original length 2

A A

A D A B

A D A B

A B

AB

′ ′ = + =

′ ′ = ′ ′ = +

′ ′ = ′ ′ = 2

′ ′
= = = =

TWO-DIMENSIONAL TRANSFORMATION 99

The total transformation is carried out in the following steps:

Step 1: Translate center of the original square to the origin.

tx = -21, ty = -11

D C

A B

o

M
x-axis

y-axis

Fig. 3.17 Translate square to the origin about center

Step 2: Scale the figure having = =2, 2x yS S

CD

A B

o

M
x-axis

y-axis

Fig. 3.18 Scale square about the origin

Step 3: Rotate the figure in the CCW direction by 45°.

CD

o

M
x-axis

y-axis

A B

Fig. 3.19 Position of a square after rotation

100 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

Step 4: Translate the center back to its original position.

tx = 21 ty = 11

(21, 11)

x-axis

y-axis

o

M

Fig. 3.20 Position of a square after back translation

The final transformation equation is

1 2[] [] [][][]

1 0 0 2 0 0 cos45 sin45 0 1 0 0

0 1 0 sin45 cos45 0 0 1 00 2 0

21 11 1 0 0 1 21 11 10 0 1

1 1
0

1 0 0 2 0 0 2 2

0 1 0 1 10 2 0 0
21 11 1 2 20 0 1

21 11 1

T

T

T

T T S R T

T

T

= ⋅

 -= ⋅ ⋅ ⋅
 - -

 = ⋅ - - -

1 0 0 1 1 0

0 1 0 1 1 0

21 11 1 21 11 1

1 1 0

1 1 0

11 21 1

T

T

T

T

 -=
 - -

 -=
 -

TWO-DIMENSIONAL TRANSFORMATION 101

Coordinates of the final figure are given by

[] [][]

20 10 1
1 1 0

22 10 1
1 1 0

22 12 1
11 21 1

20 12 1

21 9 1

23 11 1

21 11 1

Tp p T

p

p

′ =

 -′ = ⋅
 -

 ′ =

3.5 SPECIAL TRANSFORMATION

We have studied the three basic transformations, i.e., translation, scaling, and
rotation. Special transformation includes reflection transformation and shear
transformation. These are not unique but they are just special cases of basic
transformations. First let us see reflection transformation.

3.5.1 Reflection Transformation
Reflection transformation is also called mirror transformation, because it yields
a mirror image of the original figure. It is a special case of scaling transformation
or a combination of scaling and translation transformation. For any figure to be
reflected, it requires an axis of reflection. So, depending upon the position of the
axis of reflection, different reflection transformations can be obtained. We discuss
some of the positions of the axis of reflection in the following cases.

Case 1: Reflection about the x-axis

p (x, y)

p (x , y)

x-axis

y-axis

o

Fig. 3.21 Reflection of a point about the x-axis

102 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

x′ = x ...(3.7)

y′ = -y ...(3.8)

Representing Eqs. (3.7) and (3.8) in matrix form

′ ′ = -

1 0
[] []

0 1
x y x y ...(3.9)

An homogenous coordinate system of Eq. (3.9) is given by

 ′ ′ = -

1 0 0

[] [] 0 1 0

0 0 1

x y h x yh

Case 2: Reflection about y-axis
y-axis

p (x, y)p (x , y)

x-axis
o

Fig. 3.22 Reflection of a point about the y-axis

x′ = - x ...(3.10)

y′ = y ...(3.11)

Representing Eqs. (3.10) and (3.11) in matrix form

[] []x y x y′ ′ =
−

1 0

0 1 ...(3.12)

TWO-DIMENSIONAL TRANSFORMATION 103

An homogeneous coordinate system of Eq. (3.12) is given by

[] []x y h x yh′ ′ =

−

1 0 0

0 1 0

0 0 1

Case 3: Reflection about the origin

p (x, y)

p (x , y)

x-axis

y-axis

o

Fig. 3.23 Reflection of a point about the origin

x′ = -x ...(3.13)

y′ = -y ...(3.14)

Representing Eqs. (3.13) and (3.14) in matrix form

[] []x y x y′ ′ =
−

−

1 0

0 1
 ...(3.15)

An homogeneous coordinate system of Eq. (3.15) is given by

[] []x y h x yh′ ′ =

−

−

1 0 0

0 1 0

0 0 1

Note:

1. Reflection about the x-axis is the same as scaling transformation with Sx = + 1
and Sy = - 1.

2. Reflection about the y-axis is the same as scaling transformation with Sx = - 1
and Sy = + 1.

3. Reflection about the origin is the same as scaling transformation with Sx = - 1
and Sy = - 1.

104 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

Case 4: Reflection of a point about a line y = b (parallel to x-axis)

y = b

x-axis

p (x, y)

(y – b)

(y – b)y

p (x , y)

b

o

y-axis

Fig. 3.24 Reflection of a point about a line parallel to the x-axis

x′ = -x ...(3.16)

y′ = y - 2 (y - b)

y′ = y - 2y + 2b

y′ = - y + 2b ...(3.17)

Representing Eqs. (3.16) and (3.17) in matrix form (homogeneous coordinate
system)

[] []x y x y

b

′ ′1 1

1 0 0

0 1 0

0 2 1

= −

The above matrix confirms that reflection of a point about line y = b is the same
as translation followed by scaling. The total transformation is carried out in the
following steps:

1. Translate line y = b so as to coincide with x-axis with tx = 0, ty = - b.

2. Now take a reflection of the point about x-axis, which is the same as scaling
transformation with Sx = 1 and Sy = - 1.

3. Translate the line from x-axis back to its original position, with tx = 0 and
ty = b.

The final transformation matrix is given by

[p′] = [p] ⋅ [TT]

TWO-DIMENSIONAL TRANSFORMATION 105

where [TT] = total transformation matrix

T T M T

T

b

T

T

 =

 =

−

−

1 2

1 0 0

0 1 0

0 1

1 0 0

0 1 0

00 0 1

1 0 0

0 1 0

0 1

1 0 0

0 1 0

0 2 1

 = −

b

T

b

T

′

Case 5: Reflection of a point about a line x = a

x

(x – a) (x – a)

p (x, y)p (x , y)

a

y-axis x = a

x-axiso

Fig. 3.25 Reflection of a point about a line parallel to the y-axis

x′ = x - 2 (x - a)

x′ = x - 2x + 2a

x′ = - x + 2a ...(3.18)

y′ = y ...(3.19)

Representing Eqs. (3.18) and (3.19) in matrix form (homogeneous coordinate
system)

106 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

[] []x y h x y

a

′ ′ =

−

1

1 0 0

0 1 0

2 0 1

where

[]M

a

=

−

1 0 0

0 1 0

2 0 1

The above matrix confirms that reflection of a point about line x = a is the same
as translation followed by scaling. The total transformation is carried out in the
following steps:

1. Translate line x = a so as to coincide with y-axis with tx = - a and ty = 0.

2. Now take a reflection of the point about y-axis, which is the same as scaling
transformation with Sx = - 1 and Sy = 1.

3. Translate the line from x-axis back to its original position, with tx = a and ty = 0.

The final transformation matrix equation is given by

[p′] = [p] [TT]

where [TT] = total transformation matrix

T T M T

T

a

T

T

 =

=

−

−

1 2

1 0 0

0 1 0

0 1

1 0 0

0 1 0

0 0 1

−

=

−

1 0 0

0 1 0

0 1

1 0 0

0 1 0

2 0 1

a

T

a

T

TWO-DIMENSIONAL TRANSFORMATION 107

Case 6: Reflection of a point about a line y = x

x = y

p (x , y)

p (x, y)

y

y

x

x

o
x-axis

y-axis

Fig. 3.26 Reflection of a point about a line 45° to the x-axis

x′ = y ...(3.20)

y′ = x ...(3.21)

Representing Eqs. (3.20) and (3.21) in matrix form (homogeneous coordinate
system)

[] []x y h x y′ ′ =

1

0 1 0

1 0 0

0 0 1

where

[]M =

0 1 0

1 0 0

0 0 1

Problem 4
Find the reflection matrix of an image about line y = 2x.
Solution
Putting x = 0 in the equation of line y = 2x we get y = 0.
If y = 0, we get x = 0.
Thus, we infer that the line is passing through the origin.

108 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

Comparing the equation of line y = 2x with y = mx + c,

m = slope = 2 and c = y = intercept = 0

We know that slope = tan q, where q is the inclination of line with x-axis

Therefore, inclination of the line is given by

m = tan q = 2

q = tan-1 (2)

q = 63.43°

63.43°

y = 2x

x-axis

y-axis

o

Fig. 3.27 Inclination of a given line

The transformation can be obtained by the following steps:

Step 1: Rotate the line by 63.43° in CW direction so as to coincide with the x-axis.

R1

63 43 63 43 0

63 43 63 43 0

0 0 1

 =

− −

− − −

 cos(.) sin(.)

sin(.) cos(.)

 =

−

R1

0 447 0 8943 0

0 8943 0 447 0

0 0 1

. .

. .

Step 2: Reflection transformation about the x-axis.

Mx = −

1 0 0

0 1 0

0 0 1

TWO-DIMENSIONAL TRANSFORMATION 109

Step 3: Back rotation by 63.43° in the CCW direction.

R2

63 43 63 43 0

63 43 63 43 0

0 0 1

 = −

cos(.) sin(.)

sin(.) cos(.)

 = −

R2

0 447 0 8943 0

0 8943 0 447 0

0 0 1

. .

. .

Thus, total transformation [TT] = [R1] ⋅ [Mx] ⋅ [R2]

TT =

−

−

0 447 0 8943 0

0 8943 0 447 0

0 0 1

1 0 0

0 1 0

0 0 1

. .

. . .

−

 =

−

.

. .

. .

.

0 447 0 8943 0

0 8943 0 447 0

0 0 1

0

TT

66 0 8 0

0 8 0 6 0

0 0 1

.

. .

Problem 5
Determine the transformation matrix for reflection of a point about the line
y = 2x - 6.

Solution
Put x = 0 in equation of line (y = 2x - 6); then we get y = - 6; coordinate (0, -6).
If y = 0, then we get x = 3; coordinate (0, - 6).

y = 2x – 6

(3, 0)

(0, – 6)

x-axis

y-axis

o

Fig. 3.28 Position of a given line

110 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

The transformation can be obtained by the following steps:
Step 1: Rotate the line by 63.43° in the CW direction so as to coincide with the
x-axis.

y = 2x

63.43°

x-axis

y-axis

o

Fig. 3.29 Position of the line after translation

If we compare the equation of line y = 2x - 6 with y = m x + c, we have

m = slope = 2 and c = y = intercept = - 6

We know that slope = tan q, where q is inclination of the line.

Therefore

m = tan q = 2

q = tan-1 (2)

q = 63.43°

Step 2: Translate the line to the origin by tx = -3, ty = 0.

T1 =

−

1 0 0

0 1 0

3 0 1

Step 3: Rotate the line by 63.43° in CW direction so as to coincide with the x-axis.

R1

63 43 63 43 0

63 43 63 43 0

0 0 1

 =

− −

− − −

 cos(.) sin(.)

sin(.) cos(.)

 =

−

R1

0 447 0 8943 0

0 8943 0 447 0

0 0 1

. .

. .

TWO-DIMENSIONAL TRANSFORMATION 111

Step 4: Reflection transformation about the x-axis:

Mx = −

1 0 0

0 1 0

0 0 1

Step 5: Back rotation by 63.43° in the CCW direction:

R2

63 43 63 43 0

63 43 63 43 0

0 0 1

 = −

cos(.) sin(.)

sin(.) cos(.)

 = −

R2

0 447 0 8943 0

0 8943 0 447 0

0 0 1

. .

. .

Step 6: Back-translate the line to the original position by tx = 3, ty = 0.

T2

1 0 0

0 1 0

3 0 1

 =

Total transformation [TT] = [T1] ⋅ [R1] ⋅ [Mx] ⋅ [R2] ⋅ [T1]

TT =

−

−

1 0 0

0 1 0

3 0 1

0 447 0 8943 0

0 8943 0 447 0

0 0 1

.

. .

. .

−

−

.

.

. .

. .

1 0 0

0 1 0

0 0 1

0 447 0 8943 0

0 8943 0 447 0

0 0 11

1 0 0

0 1 0

3 0 1

1 0 0

0 1 0

3 0 1

 =

−

.

TT

−

−

.

. .

. . .

0 447 0 8943 0

0 8943 0 447 0

0 0 1

1 0 0

0 1 0

0 0 1

−

.

. .

. .

0 447 0 8943 0

0 8943 0 447 0

3 0 1

112 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

TT =

−

−

1 0 0

0 1 0

3 0 1

0 447 0 8943 0

0 8943 0 447 0

0 0 1

.

. .

. .

−

 =

.

. .

. .

0 447 0 8943 0

0 8943 0 447 0

3 0 1

1 0 0

TT 00 1 0

3 0 1

0 6 0 8 0

0 8 0 6 0

3 0 1

0 6

−

−

 =

−

.

. .

. .

.

TT

00 8 0

0 8 0 6 0

4 8 2 4 1

.

. .

. .−

3.5.2 Shear Transformation
A shear is a transformation that, similar to scale and translate, distorts the shape
of an object along either or both the axes. A shear along one axis (say, x-axis)
is performed in terms of the point’s coordinate in the other axis (y-axis). Thus
a shear of 1 in the x-axis will cause the x-coordinate of the point to distort by 1
(y-coordinate).

Shear transformation

Shear transformation
in x direction

Shear transformation
in y direction

Fig. 3.30 Classification of a shear transformation

1. The transformation matrix for shear in the x direction is

SH SHx x =

1 0 0

1 0

0 0 1

where SHx = shear factor along the x-axis

TWO-DIMENSIONAL TRANSFORMATION 113

CD
D

A,A B,B
x-axis

y-axis

C

Fig. 3.31 Shear transformation in the x direction

2. The transformation matrix for shear in the y direction is

SH

SH

y

y

 =

1 0

0 1 0

0 0 1

where SHy = shear factor along the y-axis

B

A, A B

D, D C

x-axis

y-axis
C

Fig. 3.32 Shear transformation in the y direction

Problem 6
Write the shear transformation of a rectangle ABCD with shear parameter
a = b = 2. Also draw the final view of the rectangle ABCD in x and y directions.
The vertices of the rectangle are A (1, 1), B (4, 1), C (4, 2), and D (1, 2).

114 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

Solution

1. Shear transformation in the x direction is

p p SH

p

x′

′

 =

 =

.

1

4

4

1

1

1

2

2

1

1

1

1

1 0 0

2 1 0

0 00 1

3

6

6

5

1

1

2

2

1

1

1

1

 =

p′

2. Shear transformation in the y direction is

p p SH

p

y′

′

 =

 =

.

1

4

4

1

1

1

2

2

1

1

1

1

1 2 0

0 1 0

0 00 1

1

4

4

1

3

9

10

4

1

1

1

1

 =

p′

TWO-DIMENSIONAL TRANSFORMATION 115

Problem 7
Fig. 3.33 shows a circle of radius r = 50 mm; center A [10, 10] is to be converted
into an ellipse with major axis a = 90 mm and minor axis b = 60 mm by keeping
the center at same position. Find the total transformation matrix.

Solution

A (10, 10)

x-axis

y-axis

o

Fig. 3.33 Position of a given circle

Transformation involves the following steps.

1. Translate the circle about the center to the origin.

(0, 0) A
Coordinate

y-axis

x-axis
o

Fig. 3.34 Translating circle about the center to the origin

T1

1 0 0

0 1 0

10 10 1

 =

− −

116 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

2. Scaling transformation
The scaling factors are calculated as follows:

s

s

x

y

= = =

=

new semi major axis

radius
new semi major axis

radiu

45

50
0 9.

ss
= =

=

30

50
0 6

0 9 0 0

0 0 6 0

0 0 1

.

[]

.

.s

3. Translate the center back to the original position.

T

T T S T

T

T

T

2

1 2

1 0 0

0 1 0

10 10 1

1

=

 =

 =

. .

00 0

0 1 0

10 10 1

0 9 0 0

0 0 6 0

0 0 1

1 0 0

0 1 0

10 10− −

.

.

. .

11

1 0 0

0 1 0

10 10 1

0 9 0 0

0 0 6 0

10 10 1

 =

− −

TT .

.

.

 =

TT

0 9 0 0

0 0 6 0

1 4 1

.

.

TWO-DIMENSIONAL TRANSFORMATION 117

Problem 8
A triangle having vertices (2, 3), (6, 3), and (4, 8) is reflected about the line
having equation y = 3x + 4. Find the final position of the triangle using 2D
transformation.

Solution

p =

2 3 1

6 3 1

4 8 1

Rotate the line about y = 3x + 4.

Put x = 0 in equation of a line (y = 3x + 4). Then we get y = 4; coordinate (0, 4).

And if y = 0, we get x = -
4

3
; coordinate (0, -

4

3
).

Comparing the equation of a line (y = 3x + 4) with y = mx + c,

m = slope = 3 and c = y = intercept = 4

We know that, slope = tan q, where q is inclination of a line.

Therefore

m = tan q = 4

q = tan-1 4

q = 71.56°

The transformation can be obtained by the following steps:

Step 1: Translate the line to the origin by tx = 0, ty = - 4.

T1

1 0 0

0 1 0

0 4 1

 =

−

118 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

Step 2: Rotate the line by 71.56° in the CW direction so as to coincide with the
x-axis.

R1

71 56 71 56 0

71 56 71 56 0

0 0 1

 =

− −

− − −

 cos(.) sin(.)

sin(.) cos(.)

 =

−

R1

0 316 0 949 0

0 949 0 316 0

0 0 1

. .

. .

Step 3: Reflection transformation about the x-axis:

Mx = −

1 0 0

0 1 0

0 0 1

Step 4: Back rotation by 71.56° in the CCW direction.

R2

71 56 71 56 0

71 56 71 56 0

0 0 1

 = −

cos(.) sin(.)

sin(.) cos(.)

 =

R2

0 316 0 949 0

0 949 0 316 0

0 0 1

. .

. .

Step 5: Back-translate the line to the original position by tx = 0, ty = 4.

T2

1 0 0

0 1 0

0 4 1

 =

Total transfromation [TT] = [T1][R1][Mx][R2][T2]

TWO-DIMENSIONAL TRANSFORMATION 119

1 0 0 0.316 0.949 0

0 1 0 0.949 0.316 0

0 4 1 0 0 1

1 0 0 0.316 0.949 0 1 0 0

0 1 0 0.949 0.316 0 0 1 0

0 0 1 0 0 1 0 4 1

1 0 0 0.316 0.949 0

0 1 0 0.949 0.316 0

0 4 1 0 0 1

T

T

T

T

 -
 = ⋅ ⋅
 -

 - ⋅ ⋅

 -
 = ⋅
 -

1 0 0 0.316 0.949 0

0 1 0 0.949 0.316 0

0 0 1 0 4 1

1 0 0 0.316 0.949 0 0.316 0.949 0

0 1 0 0.949 0.316 0 0.949 0.316 0

0 4 1 0 0 1 0 4 1

1 0 0 1 0.6 0

0 1 0 0 0.

0 4 1

T

T

T

T

 ⋅ - ⋅

 -
 = ⋅ ⋅ - -
 -

 = ⋅
 -

8 0

0 4 1

1 0.6 0

0 0.8 0

0 0.8 1

2 3 1 1 0.6 0

6 3 1 0 0.8 0

4 8 1 0 0.8 1

2 4.4 1

6 5.6 1

4 9.6 1

T

T

T

p p T

p

p

 =

′ = ⋅

 ′ = ⋅

 ′ =

Problem 9
A triangle ABC is to be reflected about its side BC. Explain the steps required
and determine the resultant transformation matrix. A (2, 3), B (10, 8), and
C (-1, 10).

120 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

Solution

10.3°

B (10, 8)

C (–1, 10)

A (2, 3)
x-axis

y-axis

o

Fig. 3.35 Position of a given triangle

The triangle is to be reflected about side BC. Therefore calculate the slope of the
line and its angle of inclination with the horizontal.

slope of BC = =
−
−

=
−
+

=
−

= =
−

m
y y

x x

m

B C

B C

()

()

()

()

tan
()

(

8 10

10 1

2

11

2
θ

111

2

11
10 31

)

tan
()

()
.θ = =

−
= − °−

The transformation is carried out by the following steps:
Step 1: Translate the triangle to the origin about point C.

B

A

10.3°

x-axis

y-axis

C

o

Fig. 3.36 Position of the triangle after translation

TWO-DIMENSIONAL TRANSFORMATION 121

T1

1 0 0

0 1 0

1 10 1

 =

−

Step 2: Rotate the triangle by 10.3° in the CCW direction so as to coincide BC
with the x-axis.

R1

10 3 10 3 0

10 3 10 3 0

0 0 1

 = −

cos(.) sin(.)

sin(.) cos(.)

 = −

R1 1

0 98 0 18 0

0 98 0 98 0

0 0 1

. .

. .

C B

A

x-axis

y-axis

o

Fig. 3.37 Position of the triangle after rotation

Step 3: Reflection transformation about the x-axis:

Mx = −

1 0 0

0 1 0

0 0 1

122 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

B

A

C
x-axis

y-axis

o

Fig. 3.38 Position of the triangle after reflection about the x-axis

Step 4: Back rotation by 10.3° in the CW direction:

R2

10 3 10 3 0

10 3 10 3 0

0 0 1

 =

− −

− − −

cos(.) sin(.)

sin(.) cos(.)

 =

−

R2

0 98 0 18 0

0 18 0 98 0

0 0 1

. .

. .

10.3°

A

C

B
x-axis

y-axis

o

Fig. 3.39 Position of the triangle after back rotation

Step 5: Back-translate the triangle to the original position about C.

T2

1 0 0

0 1 0

1 10 1

 =

−

TWO-DIMENSIONAL TRANSFORMATION 123

B

A

C (–1, 10)

o
x-axis

y-axis

Fig. 3.40 Position of the triangle after back translation

Total transformation [TT] = [T1][R1][Mx][R2][T2]

TT =

−

−

1 0 0

0 1 0

1 10 1

0 98 0 18 0

0 18 0 98 0

0 0 1

.

. .

. .

−

−

. .

. .

. .

1 0 0

0 1 0

1 0 1

0 98 0 18 0

0 18 0 98 0

0 0 1

..

.

. .

1 0 0

0 1 0

1 10 1

1 0 0

0 1 0

1 10 1

0 98 0

−

 =

−

TT

118 0

0 18 0 98 0

0 0 1

1 0 0

0 1 0

0 0 1

0 98 0 18

−

−

−

. . . .

. . 00

0 18 0 98 0

1 10 1

1 0 0

0 1 0

1 10 1

0 9

. .

.

.

−

 =

−

TT

88 0 18 0

0 18 0 98 0

0 0 1

0 98 0 18 0

0 18 0 98 0

1 10 1

.

. . .

. .

. .−

−

− −

−

 =

−

−

−

TT

1 0 0

0 1 0

1 10 1

0 93 0 37 0

0 1 0

1 10 1

.

. .

 =

−

− −

TT

0 93 0 37 0

0 37 0 93 0

3 43 19 1

. .

. .

.

124 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

.

2 3 1 0.93 0.37 0

10 8 1 . 0.37 0.93 0

1 10 1 3.43 19 1

4.26 15 1

10 8 1

1 10 1

Tp p T

p

p

′ =
 -
 ′ = - -
 -

 ′ =
 -

Problem 10
Segment PQ is marked by (2,2) and (3,7). Point R divides this segment in the

ratio of 1:3. If
A B

C D

 is any general transformation matrix, then prove that R′

will also divide P′Q′ in the same ratio.

Solution

Q (3, 7)

R (x, y)

P (2, 2)

P

R

Q

2

y

7

2

x

3

x-axis

y-axis

o

Fig. 3.41 Position of the original and final lines

From the figure

x

y

= +
−

= + =

= +
−

= + =

2
3 2

3
2

1

3

7

3

2
7 2

3
2

5

3

11

3

()

()

TWO-DIMENSIONAL TRANSFORMATION 125

Therefore, R
7

3

11

3
,

P

T
A B

C D

P P

T

′

′

 =

 =

 =

2

7

3
3

2

11

3
7

. TT

P
A B

C D

P

A C

T

 =

 =

+

′

′

2

7

3
3

2

11

3
7

2 2

.

(()

+

+()

+()

+

+()

7

3

11

3

2 7

2 2

7

3

11

3

3 7

A C

A C

B D

B D

B D

7

3

11

3
2 2

2 7 2 2

7

3

11

3

A C A C
A C A C

a

A C

+

 = +()+

+ (− +)

+

 = +()+

+()

+ = + + +()

+() = +()

=

2 2
5

7 11 6 6
3

5

5
3

5

1

A C
A C

a

A C A C
a

A C

A C
a

A C

[]

33

a

 a = 3

Similarly, 7

3

11

3
2 2

3 7 2 2

7

3

11

3

B D B D
B D B D

a

B D

+

 = +()+

+ (− +)

+

 = +()+

+ ()
2 2

5
B D

B D

a

126 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

7 11 6 6
3

5

5
3

5

1
3

3

B D B D
a

A C

B D
a

B D

a
a

+ = + + +()

+() = +()

=

=

Hence it is proved that R′ will also divide P′Q′ in 1:3 ratio.

Problem 11

x + 2y = 9 and x + 2y = 3 are two parallel lines. After transforming by
A B

C D

 ,

prove that the lines continue to be parallel.

Solution

The two given lines are x + 2y = 9 and x + 2y = 3. Convert it into a standard
equation of line, that is, y = mx + c.

Then

y = - 0. 5 x + 4.5 ...(3.22)

y = - 0.5 x + 1.5 ...(3.23)

These two lines are parallel to each other because the slope of these lines are same,
that is, - 0.5.

If we put x = 0 in Eq. (3.22), then y = 4.5

Then y = 4.5

And if y = 0, then x = 9.

The line is said to be passing through (0,4.5) and (9,0).

Similarly if we put x = 0 in Eq. (3.23), then y = 1.5

And y = 0 then x = 3

The line is said to be passing through (0,1.5) and (3,0).

To transform the first line:

P
A B

C D

P
C D

A B

1

0 4 5

9 0

4 5 4 5

9 9

′

′

 =

 =

.
.

. .

TWO-DIMENSIONAL TRANSFORMATION 127

Slope of this line is given by

m
y

x x

B D

A C
1

2 1

2 1

9 4 5

9 4 5
=

−
−

=
−
−

y .

.

To transform the second line:

P
A B

C D

P
C D

A B

2

0 1 5

3 0

1 5 1 5

3 3

′

′

 =

 =

.
.

. .

Slope of this line is given by

m
y y

x x

B B

A C
2

2 1

2 1

3 1 5

3 1 5
=

−
−

=
−
−

.

.

Multiplying and dividing by 3

m
B D

A C
2

9 4 5

9 4 5
=

−
−

.

.

As the slope of both transformed lines is same, these lines are parallel to each
other.

3.6 INVERSE TRANSFORMATION

The effect of some transformations can be undone by carrying out transformation
in the reverse direction. Carrying out reverse or back transformation itself is
called inverse transformation. If we know the coordinates of the original point
and the sequence of transformation we can find the coordinates of the final point
using the following equation:

p p T

x y h x y T

T

T

′

′ ′

 =

 =

× × ×

× ×

1 3 1 3 3 3

1 3 1 3
1

.

.
33 3×

where

p′ = coordinates of the final point

p = coordinates of the original point

[TT] = total transformation matrix

128 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

But if we know the coordinates of the final point and we have to find the
coordinates of the original point, then

p p TT′ = ⋅ × × ×1 3 1 3 3 3
 (post multiplier) ...(3.24)

In Eq. (3.24) [TT]3 × 3 is post multiplier. Hence after shifting to the left of “=” sign it
remains post multiplier.

Since

A B B A ⋅ ≠ ⋅

 = ⋅

× ×

−

×
p p T T1 3 1 3

1

3 3
′ (post multiplier)

Similarly, if we know the coordinates of the original point and the final point, we
can find the transformation matrix as follows:

p p T

T p p

T

T

′

′

 = ⋅

 =

 ⋅

× × ×

×
−

× ×

1 3 1 3 3 3

3 3

1

3 1 1 3

 (pre multiplier)

 (pre multiplier)

To find the inverse of the matrix:

Let the matrix be p

a b c

d e f

g h i

=

Then inverse of [p] is

p
a p

p

p p a ei hf b di gf c dh

− =

= = −()− −()+ −

1 Adjoint of

determinant of gge

a p p

 p

ei hf

T

()
=

 =

−

Adjoint of cofactor of

cofactor of

(() − −() −()
− −() −() − −()

−() − −()

di gf dh ge

bi hc ai gc ah gb

bf ec af dc ae −−()

 =

−() − −() −()
−

db

p

ei hf bi hc bf ec

d
T

cofactor of ii gf ai gc af dc

dh ge ah gb ae db

p

−() −() − −()
−() − −() −()

 −1

 =

−() − −() −()
− −() −() − −()

−(

1

p

ei hf bi hc bf ec

di gf ai gc af dc

dh ge)) − −() −()

ah gb ae db

TWO-DIMENSIONAL TRANSFORMATION 129

Problem 12
Find the transformation that converts a figure defined by the vertices
A(3, 2), B(2, 1), C(4, 1) into another figure defined by the vertices A′(- 3, - 1),
B′(- 4, - 2), C′(- 2, - 2).

Solution

Final transformation equation is

[p′]3 × 3 = [p]3 × 3 ⋅ [TT]3 × 3 (pre multiplier)

[TT]3 × 3 = [p-1]3 × 3 ⋅ [p′]3 × 3 (pre multiplier) ...(3.25)

To find the inverse of the matrix:

p =

3 2 1

2 1 1

4 1 1

Then inverse of [p] is

p
a p

p

p p

−

 =

= × − ×()− × − ×(

1

3 1 1 1 1 2 2 1 4 1

Adjointof

determinant of =))+ × − ×()
= + − =

=

1 2 1 4 1

0 4 2 2p

p p
T

Adjointof cofactor of

cofactorr of

cofactor of Ad

 p

 p a
T

 =

−

− −

− −

 =

0 2 2

1 1 5

1 1 1

jjointof p

p

=

−

− −

− −

 =

−

− −

− −

−

0 1 1

2 1 1

2 5 1

1

2

0 1 1

2 1 1

2 5 1

1

The matrix of the transformed figure is

130 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

[]p′ =

− −

− −

− −

3 1 1

4 2 1

2 2 1

Putting the values in Eq. (3.25)

TT =

−

− −

− −

− −

− −

− −

1

2

0 1 1

2 1 1

2 5 1

3 1 1

4 2 1

2 2 1

.

 =

− −

 =

− −

T

T

T

T

1

2

2 0 0

0 2 0

12 6 2

1 0 0

0 1 0

6 3 1

Looking at the total transformation matrix, we can say that only one
transformation is involved and that is a translation transformation with values
of tx = - 6 and ty = - 3. You can cross-check your answer by doing [p′] = [p] ⋅ [TT].

Problem 13
The coordinates of a final figure are

P′ = (10, 10); Q′ = (20, 20).

The total transformation matrix is carried out by

1. scaling the figure two times horizontally and two times vertically with
respect to the origin

2. rotating the figure about the origin through 45° CCW.

Determine the coordinates of the original figure P and Q.

Solution

Final transformation equation is

p p TT′ = ⋅ × × ×2 3 2 3 3 3
 (pre multiplier)

p p TT = ⋅

× ×

−

×2 3 2 3

1

3 3
′ (post multiplier) ...(3.26)

Coordinates of the transformed figure are

p′ =

10 10 1

20 20 1

TWO-DIMENSIONAL TRANSFORMATION 131

Total transformation is given by

[TT] = [S] ⋅ [R]

Scaling transformation with sx = 2 and sy = 2,

S =

2 0 0

0 2 0

0 0 1

Rotation transformation by 45° in the CCW direction:

R

R

 = −

 =

cos sin

sin cos

. .

45 45 0

45 45 0

0 0 1

0 707 707 0

−−

 =

0 707 0 707 0

0 0 1

2 0 0

0 2 0

0 0 1

0 707

. .

.

.

TT

00 707 0

0 707 0 707 0

0 0 1

1 41 1 41 0

1 41 1 41 0

.

. .

. .

. .

−

 = −TT

00 0 1

Then inverse of [TT] is

T
a T

T

T T

T
T

T

T T

 =

 = = ×

−1

1 41 1 41 1

Adjointof

determinant of . . −−()− − × −()+
= + + =

=

0 1 41 1 41 1 0 0

2 2 0 4

. .

T

a T

T

TAdjoint of cofactor oof

cofactor of Adjoint of

T

T a T

T

T

T

T

T

 = =

−1 41 1 41 0

1 41

. .

. 11 41 0

0 0 4

1

4

1 41 1 41 0

1 41 1 41 0

0 0 4

1

.

. .

. .

=

−

−TT

132 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

Putting values in Eq. (3.26)

p

p

=

⋅

−

=

10 10 1

20 20 1

1

4

1 41 1 41 0

1 41 1 41 0

0 0 4

7 0 1

. .

. .

114 0 1

The coordinates of the original are P (7, 0) and Q (14, 0).

EXERCISES

1. Determine a 3 × 3 homogeneous matrix to transform an equilateral triangle
ABC with each side 10 units in length into an isosceles triangle A′B′C′ shown
in the figure, with an altitude 2.5 times the altitude of the equilateral triangle;
the coordinate of point A is (10, 5). Depict the final transformation on a graph
paper.

C

A B

C

A B

x-axis

y-axis

o

Fig. 3.42

2. Find the reflection of a triangle A (1, 1), B (5, 1) and C (1, 5) about a line y = 2x + 10.

3. A rectangle marked by (4, 4), (4, 5), (5, 4) and (5, 5) is to be reflected about the
mirror line 2x + 3y = 5 through necessary transformation. Find concatenated
transformation matrix and hence the reflected image.

4. A triangle has vertices as A (1, 1), B (1, 2), C (2, 2). Find the reflection of ABC
about a line y = 3x + 2. Plot prior and poster images of ABC along with line of
reflection on a graph paper.

5. Determine the transformation matrix to transfer square ABCD to rectangle
A′B′C′D′, A′B′ = 2AB and C′B′ = CB as shown in figure.

TWO-DIMENSIONAL TRANSFORMATION 133

D C

BA

AD

C B

o
x-axis

y-axis

Fig. 3.43

6. Obtain an instant transformation matrix for deriving figure B from figure A.
Figure A is described by the vertices A (2, 1), B (4, 1), C (3, 2) and figure B
is described by vertices A′ (- 4, -2), B′ (-2, -2), C′ (-3, -1) using inverse
transformation.

7. Find the reflection of a diamond-shaped polygon whose vertices are A (-1, 0),
B (0, 2), C (-1, 0) and D (0, 2) about line y = x + 2.

8. Prove that a 3 × 3 homogeneous transformation matrix for reflection about
the line y = x is equivalent to a reflection about x-axis and rotation by 90°
CCW direction.

9. Prove that a rotation about an origin is equivalent to two successive reflections
about two coordinate axes.

OBJECTIVE QUESTIONS

2.1 Reflection matrix resembles which basic transformation matrix?
(a) translation (b) scaling
(c) rotation (d) none of the above

2.2 Reflection of a point about the x-axis, followed by a CCW rotation of 90°, is
equivalent to reflection about which line?
(a) x = - y (b) y = - x
(c) x = y (d) x + y = 1

2.3 A circle, if scaled only in one direction, becomes
(a) parabola (b) hyperbola
(c) ellipse (d) remains a circle

134 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

 2.4 Which of these are basic transformations?
(a) scaling (b) rotation
(c) translation (d) all of the above

 2.5 Which transformation in non-homogeneous form is captured by matrix
addition?
(a) scaling (b) rotation
(c) translation (d) reflection

 2.6 In a homogeneous coordinate system, all transformation is captured by matrix
(a) addition (b) subtraction
(c) multiplication (d) division

 2.7 Transformation effect can be undone by
(a) reverse transformation (b) forward transformation
(c) inverse transformation (d) none of the above

 2.8 Inverse of any matrix [P] can be found by which formula?

(a)
Adjoint of p

P
 (c)

cofactor of P

P

(b)
[]cofactor of P

P

T

 (d)
[]cofactor of P

P

T

2.9 The process of combining or multiplying transformation matrices is called
(a) rasterization (b) transformation
(c) concatenation (d) reflection

2.10 Shear transformation is classified as a
(a) basic transformation (b) special transformation
(c) inverse transformation (d) none of the above

ANSWERS

2.1 (a) 2.2 (c) 2.3 (c) 2.4 (d)

2.5 (c) 2.6 (c) 2.7 (d) 2.8 (d)

2.9 (c) 2.10 (b)

135

4.1 INTRODUCTION

The real world is composed of three-dimensional images. 3D objects have not
only height and width but also depth. Displaying a 3D object on a 2D screen
seems to be an impossible task. If height and width are represented by x and y
coordinates, then how can the third dimension, depth, be displayed? This problem
is solved with techniques used by artists and photographers in producing realistic
pictures on paper or film. The difference is that the computer uses a mathematical
model instead of a paint brush or lens to create the picture. The complexity of
the mathematical model increases with an increase in the realism of a computer-
generated picture.

Most engineering problems deal with 3D objects. A variety of patterns, shapes,
and techniques are used to represent 3D objects. Whatever method one would
use, the 3D object is usually represented in a 3D coordinate system and then
mapped onto the 2D system of display. Manipulation, viewing, and creation of
object images require the use of 3D object and coordinate transformations. A 3D
transformation method is an extension of 2D transformation methods, including
the consideration of the z-axis coordinates. In the 3D transformation method, the

4Chapter

THREE-
DIMENSIONAL
TRANSFORMATION

136 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

coordinate of a point is represented by (x, y, z) and the homogeneous coordinate
will be [x y z w]. The value of w for 3D transformation will be 1. The other
coordinates in 3D transformations are:
Coordinates of an original point

[P] = [x y z 1]1 × 4

Coordinates of a transformed point

[p′] = [x′ y′ z′ 1]

4.2 SCALING TRANSFORMATION

Scaling transformation matrix: A scaling transformation is obtained by placing
values along the main diagonal of a general 4 × 4 transformation matrix.

[]S

s

s

s

x

y

z

=

0 0 0

0 0 0

0 0 0

0 0 0 1

The above matrix represents scaling with respect to origin, where Sx, Sy, and Sz are
scaling factors along the x, y, and z directions, respectively. If the scaling factors
Sx, Sy, and Sz are different from each other, the image of an object is distorted.
Otherwise, a change in size occurs.

4.3 TRANSLATION TRANSFORMATION

A translation transformation displaces (or translates) a point p (x, y, z) along
the direction given by the position vector.

Vector V
��

 = txî + tyĵ + tyk̂

where tx = displacement along the x-axis

 ty = displacement along the y-axis

 tz = displacement along the z-axis

Translation transformation matrix

T

t t tx y z

 =

1 0 0 0

0 1 0 0

0 0 1 0

1

THREE-DIMENSIONAL TRANSFORMATION 137

4.4 ROTATION TRANSFORMATION

Rotations in 3D are important in understanding the shape of an object or in
verifying different angles of a design. 3D rotation is a more complex phenomenon
compared to 2D rotation. 2D rotation is captured about a point and it always
happens in the xy plane (or about the z-axis). But 3D rotation can be in an xy
plane (or about z-axis), yz plane (or about the x-axis) or zx plane (or about the
y-axis). Fig. 4.1 shows three basic rotations in 3D transformation. The coordinate
system is right-handed and counterclockwise rotations are assumed to be positive
when looking along the axis toward the origin.

x-axis

Rx

Rz

z-axis

z-axis

Ry

o

Fig. 4.1 3D rotation

1. Rotation transformation matrix about the x-axis (rotation in y-z plane):

x y z

R

x

y

zx

1

1 0 0 0

0 0

0 0

0 0 0 1 1

 = −

cos sin

sin cos

θ θ

θ θ

2. Rotation transformation matrix about the y-axis (rotation in x-z plane):

x y z

R

x

y

zy

1

0 0

0 1 0 0

0 0

0 0 0 1 1

 = −

cos sin

sin cos

θ θ

θ θ

138 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

3. Rotation transformation matrix about the z-axis (rotation in x-y plane):

x y z

R

x

y

zz

1

0 0

0 0

0 0 1 0

0 0 0 1 1

 =
−

cos sin

sin cos

θ θ

θ θ

Problem 1
Consider a region defined by the position vector

x y z

X

A

B

C

D

1

2
[]=

1 1 2 1

2 1 2 1

2 2 1

1 2 2 1

relative to the global xyz axis system. It is rotated by 30° about a line parallel
to the x-axis and passing through point (1.5, 1.5, 1.5, 1). Find the final
transformation matrix and final position of the region.

Solution

p

=

1 1 2 1

2 1 2 1

2 2 2 1

1 2 2 1

Step 1: Translate the line to origin so that it coincides with the x-axis:

T1

1 0 0 0

0 1 0 0

0 0 1 0

1 5 1 5 1 5 1

 =

− − −

. . .

THREE-DIMENSIONAL TRANSFORMATION 139

Step 2: Rotation about the x-axis by 30°:

R

R

x

x

 = −

1 0 0 0

0 30 30 0

0 30 30 0

0 0 0 1

cos sin

sin cos

==
−

1 0 0 0

0 0 866 0 5 0

0 0 5 0 866 0

0 0 0 1

. .

. .

Step 3: Back translation to the original position:

T

T T R T

T

T x

T

2

1 2

1 0 0 0

0 1 0 0

0 0 1 0

1 5 1 5 1 5 1

 =

 = ⋅ ⋅

. . .

 =

− − −

⋅

1 0 0 0

0 1 0 0

0 0 1 0

1 5 1 5 1 5 1

1 0 0 0

0 0 866 0 5 0

. . .

. .

00 0 5 0 866 0

0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0

1 5 1 5 1 5 1

−

⋅

. .

. . .

 = −

−

TT

1 0 0 0

0 0 866 0 5 0

0 0 5 0 866 0

0 0 95 0 549 1

. .

. .

. .

p p T

p

T′

′

 = ⋅

 =

⋅

1 1 2 1

2 1 2 1

2 2 2 1

1 2 2 1

1 0 0 0

0 0 866 0. ..

. .

. .

. .

5 0

0 0 5 0 866 0

0 0 95 0 549 1

1 0 817 1 68 1

2

−

−

 =p′
00 817 1 68 1

2 1 683 2 183 1

1 1 68 2 183 1

. .

. .

. .

140 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

Problem 2
A homogeneous coordinate [3, 2, 1, 1] is translated in the x, y, and z directions
by −2, −2, −2 respectively followed by successive 45° rotation about the y-axis
and 60° rotation about the x-axis. Find the final position of the homogeneous
coordinates.

Solution

[pv] = [3 2 1 1]

[TT] = [T] ⋅ [Ry] ⋅ [Rx]

Step 1: Translation:

T[] =

− − −

1 0 0 0

0 1 0 0

0 0 1 0

2 2 2 1

Step 2: Rotation about the y-axis by 45°:

R

R

y

y

 = −

cos sin

sin cos

45 0 45 0

0 1 0 0

45 0 45 0

0 0 0 1

==
−

0 707 0 0 707 0

0 1 0 0

0 707 0 0 707 0

0 0 0 1

. .

. .

Step 3: Rotation about the x-axis by 60°:

R

R

x

x

 = −

1 0 0 0

0 60 60 0

0 60 60 0

0 0 0 1

cos sin

sin cos

==
−

1 0 0 0

0 0 5 0 866 0

0 0 866 0 5 0

0 0 0 1

. .

. .

THREE-DIMENSIONAL TRANSFORMATION 141

TT =

− − −

⋅
−

1 0 0 0

0 1 0 0

0 0 1 0

2 2 2 1

0 707 0 0 707 0

0 1 0 0

0

. .

.7707 0 0 707 0

0 0 0 1

1 0 0 0

0 0 5 0 866 0

0 0 866 0 5 0

0 0 0 1

.

. .

. .

⋅
−

 =

− − −

⋅

−

TT

1 0 0 0

0 1 0 0

0 0 1 0

2 2 2 1

0 707 0. .. .

. .

. . .

61 0 35 0

0 0 5 0 866 0

0 707 0 61 0 35 0

0 0 0 1

0

−

 =TT

.. .

. .

. .

707 0 0 707 0

0 1 0 0

0 707 0 0 707 0

0 1 44 3 13 1

−

−

 p′ == ⋅

 = ⋅

p T

p

T

′ 3 2 1 1

0 707 0 0 707 0

0 1 0 0

0 707 0 0 707 0

. .

. .

00 1 44 3 13 1

1 41 3 44 1 01 1

. .

. . .

−

 = − p′

Problem 3

A cube of 10 units length has one of its corners at the origin (0, 0, 0) and three
edges along three principal axes. If the cube is to be rotated about the z-axis by
an angle of 45° in CCW direction, calculate the new position of the cube.

Solution

G

H

F

A

E

D

CB

x

z

y

Fig. 4.2

142 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

Coordinates of the cube corners are:

A (0 0 0)
B (0 0 10)
C (10 0 10)
D (10 0 0)
E (10 10 0)
F (10 10 10)
G (0 10 10)
H (0 10 0)

Pv =

0 0 0 1

0 0 10 1

10 0 10 1

10 0 0 1

10 10 0 1

10 10 10 1

0 10 10 1

0 10 0 1

Rotation about the z-axis by 45° in the CCW direction:

R

R

z

z

 =
−

cos sin

sin cos

45 45 0 0

45 45 0 0

0 0 1 0

0 0 0 1

==
−

 =

0 707 0 707 0 0

0 707 0 707 0 0

0 0 1 0

0 0 0 1

. .

. .

P Pv v′ ⋅ Rz

THREE-DIMENSIONAL TRANSFORMATION 143

P V′ =

0 0 0 1

0 0 10 1

10 0 10 1

10 0 0 1

10 10 0 1

10 10 10 1

0 10 10 1

0 10 0 1

⋅
−

0 707 0 707 0 0

0 707 0 707 0 0

0 0 1 0

0 0 0 1

. .

. .

 =P V′

0 0 0 1

0 0 10 1

7 07 7 07 10 1

7 07 7 07 0 1

0 14 14 10 1

0

. .

. .

.

114 14 10 1

7 07 7 07 10 1

7 07 7 07 0 1

.

. .

. .

−

−

4.5 DERIVATION FOR ROTATION ABOUT ANY
ARBITRARY LINE IN 3D SPACE

Rotation about an arbitrary axis/line can be captured by transforming the axis/
line so as to make it coincide with any of the principal axes and applying one of
the three basic 3D rotation matrices. Fig. 4.3 shows an arbitrary line in 3D space
about which rotation is to be captured.

(x , y , z)1 1 1

(x, y, z)

z

x

y

o

Fig. 4.3 An arbitrary line in 3D space

144 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

For deriving the transformation matrix for rotation by an angle q about any
arbitrary line in space, the following transformation must be carried out:

1. Translating the line to the origin:

T

x y z

1

1 0 0 0

0 1 0 0

0 0 1 0

1

=

− − −

y

z

C

B

A

p (A, B, C)

OB

C

p (0, B, C)

x x

Fig. 4.4 Projection of a line on the y-z plane

2. Rotation of the line about the x-axis to bring the line in the xz plane. For
this, the angle by which the line is to be rotated must be computed. To obtain
the angle of rotation, project point p(A,B,C) in the yz plane.

Let p′ be the projection in the yz plane. The coordinates of p′ are (0,B,C).

The length of the segment is given by

op B C′ = +2 2

The angle of rotation about the x-axis so that the line comes in the xz plane will be

cos

sin

θ

θ

x

x

C

B C

B

B C

=
+

=
+

2 2

2 2

THREE-DIMENSIONAL TRANSFORMATION 145

Putting
B C V

C

V
B

V

x

x

2 2
+ =

=

=

then cos

sin

θ

θ

Now the rotation transformation matrix about the x-axis is given by

Rx

x x

x x

 = −

=

1 0 0 0

0 0

0 0

0 0 0 1

1 0 0 0

0cos sin

sin cos

θ θ

θ θ

CC

V

B

V
B

V

C

V

0

0 0

0 0 0 1

−

The coordinates of point p are p (A,B,C). The line segment op A B C= + +2 2 2

Suppose op A B C L= + + =2 2 2

C

A

L

O

B L

V

A

C
y

p (A, B, C)

x

z

y

Fig. 4.5 Rotation of a line about the x-axis

After rotating about the x-axis by angle qx, the x coordinate will remain
unchanged and equal to A. The y coordinate becomes zero and the z coordinate is

B C V2 2+ = .

Now perform rotation of the line about the y-axis by an angle of qy to make it
coincide with the z-axis.

cosθ θy y

V

L

A

L
= =and sin

146 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

The rotation transformation matrix representing the rotation of a line about
y-axis is given by

R

V

L

A

L

y

y y

y y

 = −

=

cos sin

sin cos

θ θ

θ θ

0 0

0 1 0 0

0 0

0 0 0 1

0 00

0 1 0 0

0 0

0 0 0 1

−

A

L

V

L

Now after performing rotation about the y-axis, the line will coincide with the
z-axis. Now perform rotation about the z-axis by given angle q.

Rz =
−

cos sin

sin cos

θ θ

θ θ

0 0

0 0

0 0 1 0

0 0 0 1

Now, the resultant 3D rotation transformation matrix is given by

T T R R R R R TT x y z y x= ⋅ ⋅

 ⋅ ⋅

 ⋅

 ⋅

− − −1 1 1

Problem 4
Derive the transformation matrix for rotation at 55° CCW about an arbitrary
axis in 3D space. The arbitrary axis passes through point A (2, 1, 1, 1) and
B (3, 2, 2, 1).

Solution

Consider an arbitrary axis passing through points A (2, 1, 1, 1) and B (3, 2, 2, 1).

Step 1: Translate point A to the origin:

T =

− − −

1 0 0 0

0 1 0 0

0 0 1 0

2 1 1 1

THREE-DIMENSIONAL TRANSFORMATION 147

After translation, the coordinates of point B are given by

[] []3 2 2 1

1 0 0 0

0 1 0 0

0 0 1 0

2 1 1 1

1 1 1 1=

− − −

=

B (1, 1, 1)

A (0, 0, 0) x

y

z

O

Fig. 4.6

Step 2: Rotate the line about the x-axis to bring it in the yz plane. The coordinates
of B′ are (A, B, C), that is, (1, 1, 1).

cos

cos

sin

θ

θ

θ

x

x

x

C

B C

B

B C

=
+

=
+

=

= −

 = °

=
+

=

2 2 2 2

2 2 2

1

1 1

1

2

1
1

2
45

1

1 ++
=

1

1

22

Now, the rotation transformation matrix about the x-axis (in the CCW direction)
is given by

Rx

x x

x x

 = −

1 0 0 0

0 0

0 0

0 0 0 1

1 0 0 0

0
1

cos sin

sin cos

θ θ

θ θ
22

1

2
0

0
1

2

1

2
0

0 0 0 1

−

148 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

The coordinates of point p are p (A, B, C). The line segment

op A B C= + +2 2 2

Suppose op A B C L= + + =2 2 2

C

A

L

O

B L

V

A

C
y

p (A, B, C)

x

y

z
Fig. 4.7 A line in x-z plane

Now, perform rotation of the line about the y-axis by an angle of qy to make it
coincide with the z-axis.

cosθ θy y

V

L

B C

A B C

A

L
= =

+

+ +
= = =

2 2

2 2 2

2

3

1

3
and sin

The rotation transformation matrix representing the rotation of a line about the
y-axis (in the CW direction) is given by

Ry

y y

y y

 =

−

+

=

−
cos sin

sin cos

θ θ

θ θ

0 0

0 1 0 0

0 0

0 0 0 1

2

3
0

11

3
0

0 1 0 0

1

3
0

2

3
0

0 0 0 1

+

Now, after performing rotation about the y-axis, the line will coincide with the z-axis.
Now perform rotation about the z-axis by given angle 55°.

Rz =
−

=

cos sin

sin cos

.55 55 0 0

55 55 0 0

0 0 1 0

0 0 0 1

0 573 00 819 0 0

0 819 0 573 0 0

0 0 1 0

0 0 0 1

.

. .−

THREE-DIMENSIONAL TRANSFORMATION 149

Now, the resultant transformation is

T T R R R R R TT x y z y x = ⋅ ⋅

 ⋅ ⋅

 ⋅

 ⋅

− − −1 1 1

 =

− − −

⋅

−

TT

1 0 0 0

0 1 0 0

0 0 1 0

2 1 1 1

1 0 0 0

0
1

2

1

2
0

0
1

2

1

2
0

00 0 0 1

2

3
0

1

3
0

0 1 0 0

1

3
0

2

3
0

0 0 0 1

⋅

−

⋅

0 573 0 819 0 0

0 819 0 573 0 0

0 0 1 0

0 0 0 1

2

3
0

1

3
0

0 1 0 0

. .

. .−

⋅

+

−11

3
0

2

3
0

0 0 0 1

1 0 0 0

0
1

2

1

2
0

0
1

2

1

2
0

0 0 0 1

⋅

−

⋅

1 0 0 0

0 1 0 0

0 0 1 0

2 1 1 1

Describing a line in 3D space

The 3D equation of a line is given by:

x x at

y y bt

z z ct

= +

= +

= +

0

0

0

Now we could rearrange these three equations as follows:

x x

a
t

y y

b
t

z z

c
t

−
=

−
=

−
=0 0 0, and

All the three right-hand sides are the same, so the symmetric form of the straight
line is

x x

a

y y

b

z z

c

−
=

−
=

−0 0 0

As before, the line passes through point (x0, y0, z0) and the constants a, b, and c
give the relative gradient in three directions.

150 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

Here again the line is passing through the point (1, 2, 1) and here is its equation in
symmetry form:

x y z−
=

−
=

−1

1

2

1

1

1

1

2

1

(1, 2, 1)

x

y

z

O

Fig. 4.8 A 3D line

Because this line passes through the origin, the constants a, b, and c are the same
as x0, y0, z0 although this is not generally the case.

Problem 5

A triangle PQR is defined by P (3, 3, 7), Q (3, 5, 7), and R (5, 3, 7). Rotate this

triangle about axis
x y z−−

==
−−

==
1

6

4

3 2
. Upgrade it to homogeneous coordinates

for symmetric handling.

Solution

Equation of the line is given by:

x x

x x

y y

y y

z z

z z

−
−

=
−
−

=
−
−

1

2 1

1

2 1

1

2 1

Rewrite the equation of the line in the form of a standard equation.

x y z

p x y z

p x y z

−
−

=
−
−

=
−
−

≡ () ≡ ()
≡ () ≡

1

7 1

4

7 4

0

2 0

1 4 0

7 7

1 1 1 1

2 2 2 2

, , , ,

, , , ,,2()

THREE-DIMENSIONAL TRANSFORMATION 151

Step 1: Translate p1 to origin.

p2 (7, 7, 2)

p1 (1, 4, 0)

x

y

z

O

Fig. 4.9 A 3D line

T

P x x y y z z

 =

− −

= − − − =

0 1 0 0

0 1 0 0

0 0 1 0

1 4 0 1

2 2 1 2 1 2 1′ , , ((, ,)

(, ,)

7 1 7 3 2 0

6 3 22

− − −

=P′

(6, 3, 2)

(0, 0, 0) x

y

z

O

Fig. 4.10

152 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

Step 2: Rotate the line about the x-axis in the CCW direction to bring it in the
yz plane.

R

C

V

B

V
B

V

C

V

V B Cx =

−

= + = + =

1 0 0 0

0 0

0 0

0 0 0 1

9 42 2 113

1 0 0 0

0
2

13

3

13
0

0
3

13

2

13
0

0 0 0 1

R x =

−

Step 3: Rotation about the y-axis in the CW direction:

Suppose A B C L

R

V

L

A

L

A

L

V

L

y

2 2 2 36 9 4 49 7

0 0

0 1 0 0

0 0

0 0 0 1

+ + = = + + = =

 =

−

=

−

13

7
0

6

7
0

0 1 0 0

6

7
0

13

7
0

0 0 0 1

Step 4: Rotation about the z-axis by a given angle:

Rz

z z

z z
 =

cos sin

sin cos

θ θ

− θ θ

0 0

0 0

0 0 1 0

0 0 0 1

Now the resultant transformation:

T T R R R R R TT x y z y x = ⋅ ⋅

 ⋅ ⋅

 ⋅

 ⋅

− − −1 1 1

THREE-DIMENSIONAL TRANSFORMATION 153

TT =

− −

⋅

−

1 0 0 0

0 1 0 0

0 0 1 0

1 4 0 1

1 0 0 0

0
2

13

3

13
0

0
3

13

2

13
00

0 0 0 1

13

7
0

6

7
0

0 1 0 0

6

7
0

13

7
0

0 0 0 1

⋅

−

⋅

−

cos sin

sin cos

θ θ

θ θ
z z

z z

0 0

0 0

0 0 1 0

0 0 0 1

13

7
00

6

7
0

0 1 0 0

6

7
0

13

7
0

0 0 0 1

1 0 0 0

0
2

13

3

13
0

0
3

13

2

−

⋅

−

113
0

0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0

1 4 0 1

Problem 6

A triangular prism has six vertices as (5, 10, 0), (10, 5, 0), (5, 5, 0), (5, 10, 7),

(10, 5, 7), and (5, 5, 7). Rotate the solid about
x y z−−

==
−−

==
−−1

2

2

3

5

6
 through 90°.

List the final position of the six vertices after rotation.

Solution

Equation of the line is given by

x x

x x

y y

y y

z z

z z

−
−

=
−
−

=
−
−

1

2 1

1

2 1

1

2 1

Rewrite the equation of the line in the form of a standard equation.

x y z

p x y z

p x y z

−
−

=
−
−

=
−
−

≡ ≡

≡ ≡

1

3 1

2

5 2

5

11 5
1 2 5

3

1 1 1 1

2 2 2 2

(, ,) (, ,)

(, ,) (,, ,)5 11

154 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

Step 1: Translate p1 to origin.

p2 (3, 5, 11)

p1 (1, 2, 5)

x

y

z
Fig. 4.11

T

p x x y y z z

 =

− − −

= − − −

1 0 0 0

0 1 0 0

0 0 1 0

1 2 5 1

2 2 1 2 1 2 1′ , ,

PP′2 2 3 6= (, ,)

(2, 3, 6)

(0, 0, 0) x

y

z

O

Fig. 4.12

Step 2: Rotating the line about the x-axis in the CCW direction to bring it in the
yz plane:

R

C

V

B

V
B

V

C

V

V B Cx =

−

= + = +

1 0 0 0

0 0

0 0

0 0 0 1

9 362 2 == 45

THREE-DIMENSIONAL TRANSFORMATION 155

Rx =

−

1 0 0 0

0
6

45

3

45
0

0
3

45

6

45
0

0 0 0 1

Step 3: Rotation about the y-axis in the CW direction:

Suppose A B C L

R

V

L

A

L

A

L

V

L

y

2 2 2 4 9 36 49 7

0 0

0 1 0 0

0 0

0 0 0 1

+ + = = + + = =

 =

−

=

−

45

7
0

2

7
0

0 1 0 0

2

7
0

45

7
0

0 0 0 1

Step 4: Rotation about the z-axis by 90°:

Rz =
−

=
−

cos sin

sin cos

90 90 0 0

90 90 0 0

0 0 1 0

0 0 0 1

0 1 0 0

11 0 0 0

0 0 1 0

0 0 0 1

Now, the resultant transformation is:

T T R R R R R TT x y z y x = ⋅ ⋅

 ⋅ ⋅

 ⋅

 ⋅

− − −1 1 1

 =

− − −

⋅

−
TT

1 0 0 0

0 1 0 0

0 0 1 0

1 2 5 1

1 0 0 0

0
6

45

3

45
0

0
3

45

66

45
0

0 0 0 1

45

7
0

2

7
0

0 1 0 0

2

7
0

45

7
0

0 0 0 1

−

−

 −

0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1

45

7
0

2

7
0

0 1 0 0

2

7
0

45

7
00

0 0 0 1

1 0 0 0

0
6

45

3

45
0

0
3

45

6

45
0

0 0 0 1

−

1 0 0 0

0 1 0 0

0 0 1 0

1 2 5 1

156 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

TT =

−

−

0 084 0 72 0 68 0

0 977 0 185 0 0784 0

0 1836 0 6552 0 725 0

. . .

. . .

. . .

11 95 2 374 1 893 1. . .−

To find the new position of the prism:

P P TT′ =

=

5 10 0 1

10 5 0 1

5 5 0 1

5 10 7 1

10 5 7 1

5 5 7 1

−

−

0 084 0 75 0 68 0

0 977 0 185 0 0784 0

0 1836 0 6552 0 7

. . .

. . .

. . . 225 0

1 95 2 374 1 893 1

7 394 3 1149 0 7109

. . .

. . .

−

 =

− −

P′

11

2 69 5 821 4 4910 1

2 51 2 18 1 1027 1

6 1 7 7 4 367 1

0 8057 1

− −

− −

−

−

. . .

. . .

. . .

. 00 4084 0 5871 1

1 2262 6 7742 3 97 1

. .

. . .−

4.6 REFLECTION TRANSFORMATION

Reflection transformation is another important modifying transformation of a
3D object. Again, 3D reflection is a more complex phenomenon compared to 2D
reflection. 2D reflection is captured about a line in the xy plane. But 3D reflections
are captured about three principle planes, that is, the xy plane, yz plane, and zx
plane.

Suppose a 3D point having coordinate p(x, y, z) is reflected about the xy plane.
The reflected point obtained is p′(x′, y′, z′). Then the coordinates of x and y remain
unchanged, whereas the z coordinate changes to negative z. Fig. 4.13 shows the
reflection of a point about the xy plane.

THREE-DIMENSIONAL TRANSFORMATION 157

p (x , y , z)

p (x, y, z)

x
O

z

y

Fig. 4.13 Reflection about the xy plane

The parametric equation of reflection is

x′ = x ...(4.1)

y′ = y ...(4.2)

z′ = − z ...(4.3)

Writing these parametric equations in matrix form,

x y z h x y z′ ′ ′ = −

1

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

Reflection transformation matrix is given by

Mxy

 = −

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

This is similar to the scaling transformation matrix where sx = 1, sy = 1, sz = − 1.
Similarly, reflection transformation about the xz plane is given by

Mxz =
−

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

158 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

Similarly, reflection transformation about the yz plane is given by

M yz

 =

−

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

4.7 REFLECTION ABOUT ANY ARBITRARY PLANE
IN 3D SPACE

Reflection about any arbitrary plane can be captured by transforming the plane
so as to make it coplanar with any of the principle planes and then applying one
of the three basic 3D reflection matrices. To make an arbitrary plane coplanar
with a principle plane, a normal to the arbitrary plane is considered. Then a series
of transformations is carried out to make the normal to coincide with any of the
principle axes. When the normal coincides with any of the principle axes (say the
x-axis), the arbitrary plane gets coplanar with the principle plane (the yz plane).
Fig. 4.14 shows an arbitrary plane in 3D space and its normal.

Reflection about any arbitrary plane in 3D space is accomplished by the following
steps:

1. Translate a known point P, which lies in the reflection plane, to the origin of
the coordinate system.

2. Rotate the normal vector to the reflection plane at the origin until it coincides
with the positive z-axis; this makes the reflection plane coincide with the
principal xy plane.

3. Perform reflection transformation about the xy plane.

4. Perform inverse transformation to place the plane in its original position.

The general transformation is given by

T T R R M R R TT x y xy y x = ⋅ ⋅

 ⋅

 ⋅

 ⋅

 ⋅

− − −1 1 1

(x0, y0, z0) = (px, py, pz) are the components of point p in the reflection plane and
(Cx, Cy, Cz) are the direction cosines of the normal to the reflection plane.

THREE-DIMENSIONAL TRANSFORMATION 159

If the equation of the reflection plane ax + by + cz + d = 0 is known, the unit
normal to the plane is:

[]
[]

n C C C
a b c

a b c
x y z=

 =
+ +2 2 2

P

P
PP

O

 Translation of P to the origin Rotation of normal about the x-axis Rotation of normal about the y-axis

Fig. 4.14 3D reflection

Problem 7

A pyramid has coordinates A (10, 10, 10), B (10, 10, 15), C (10, 15, 10), and D
(15, 10, 10). Find the reflection of the pyramid about the plane 6x + 2y + 3z = 12.

Solution

To find the equation of normal to the plane:

Equation of the reflection plane is 6x + 2y + 3z = 12

By substitution, we have C C C

D C C C

l
C

D

m
C

D

n
C

x y z

x y z

x

y

= = =

= + + = + + = =

= =

= =

=

6 2 3

36 4 9 49 7

6

7

2

7

2 2 2

, ,

zz

D
=

3

7

l, m, n are direction cosines.

Equation of the line in 3D space is given by:

x x

l

y y

m

z z

n

−
=

−
=

−1 1 1

160 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

Equation of the normal line is:

x x y y z z−
=

−
=

−1 1 1

6

7

2

7

3

7

The points of intersection of the plane and the line will satisfy both the equation
of line and the equation of plane. Assuming the point of intersection at x = 0 and
y = 0 in the equation of plane 6x + 2y + 3z = 12, we have

3z = 12 and z = 4

Point (0, 0, 4) lies on the plane. The equation of the normal line is

x y z−
=

−
=

−0

6

7

0

2

7

4

3

7

If we compare it with the standard equation of line in 3D

then x x

x x

y y

y y

z z

z z

x

A B C

−
−

=
−
−

=
−
−

≡

≡

1

2 1

1

2 1

1

2 1

1 0 0 4

6

7

2

7

3

7

(, ,)

(, ,) , ,

Apply the following transformations:

Step 1: Translate x1 to the origin.

T =

−

1 0 0 0

0 1 0 0

0 0 1 0

0 0 4 1

Step 2: Rotating the line about the x-axis in the CCW direction to bring it in the
yz plane:

R

C

V

B

V
B

V

C

V

V B Cx =

−

= + = +

1 0 0 0

0 0

0 0

0 0 0 1

4

49

2 2 99

49

13

7
=

THREE-DIMENSIONAL TRANSFORMATION 161

=
−

1 0 0 0

0
3

13

2

13
0

0
2

13

3

13
0

0 0 0 1

Step 3: Rotation about the y-axis in the CW direction:

Suppose A B C L

R

V

L

A

L

A

L

V

L

y

2 2 2 36

49

4

49

9

49
1 1

0 0

0 1 0 0

0 0

0 0 0 1

+ + = = + + = =

 =

−

=

−

13

7
0

6

7
0

0 1 0 0

6

7
0

13

7
0

0 0 0 1

Step 4: Reflection transformation about the xy plane:

Mxy

 = −

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

Now the resultant transformation is

T T R R M R R TT x y xy y x = ⋅ ⋅

 ⋅

 ⋅

 ⋅

 ⋅

− − −1 1 1

162 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

TT =

−

⋅

−

1 0 0 0

0 1 0 0

0 0 1 0

0 0 4 1

1 0 0 0

0
3

13

2

13
0

0
2

13

3

13
0

00 0 0 1

13

7
0

6

7
0

0 1 0 0

6

7
0

13

7
0

0 0 0 1

⋅

−

⋅
−

⋅

−

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

13

7
0

6

7
0

0 1 0 0

6

7
0

13

7
0

00 0 0 1

1 0 0 0

0
3

13

2

13
0

0
2

13

3

13
0

0 0 0 1

⋅

−

⋅

1 0 0 0

0 1 0 0

0 0 1 0

0 0 4 1

To find the new position of the prism:

P P T

P

T′

′

 =

 =

10 10 10 1

10 10 15 1

10 15 10 1

15 10 10 1

 TT

Problem 8
The corners of a wedge-shaped block are:

A [0, 0, 2]; B [0, 0, 3]; C [0, 2, 3]; D [0, 2, 2]; E [–1, 2, 2] and F [–1, 2, 3]. The
reflection plane passes through the y-axis at 45° between (–x)-axis and z-axis.
Determine the reflection of the wedge.

Solution

45°

–x x

–z

–y

y

z
Normal

O

Fig. 4.15 3D reflection

THREE-DIMENSIONAL TRANSFORMATION 163

Step 1: Rotation about the y-axis in the CCW direction by 45°:

R

R

y

y

 = −

cos sin

sin cos

45 0 45 0

0 1 0 0

45 0 45 0

0 0 0 1

==
−

0 7 0 0 7 0

0 1 0 0

0 7 0 0 7 0

0 0 0 1

. .

. .

After rotating about the y-axis the plane coincides with the yz plane. Reflection
transformation about the yz plane is given by

M yz

 =

−

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

Back rotation about the y-axis:

Ry
−

 = −

1

0 07 0 0 7 0

0 1 0 0

0 07 0 0 07 0

0 0 0 1

. .

. .

Total transformation is given by

TT = −

⋅

−0 7 0 0 7 0

0 1 0 0

0 7 0 0 7 0

0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0

. .

. .

00 0 0 1

0 7 0 0 07 0

0 1 0 0

0 7 0 0 7 0

0 0 0 1

0

⋅
−

=

. .

. .

00 1 0

0 1 0 0

0 0 0 0

0 0 0 1

164 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

To find the final position of a wedge-shaped block:

P′ =

−

−

0 0 2 1

0 0 3 1

0 2 3 1

0 2 2 1

1 2 2 1

1 2 3 1

0 0 1 0

0 11 0 0

0 0 0 0

0 0 0 1

0 0 0 1

0 0 0 1

0 2 0 1

0 2 0 1

0 2 0 1

0 2 0 1

 =

P′

4.8 SHEAR TRANSFORMATION

Shearing transformation causes distortions in objects by altering the values of one
or more coordinates by an amount proportional to the third, that is, the shear,
along any pair of axes that is controlled by a third axis. Off-diagonal terms in the
upper 3 × 3 submatrix of a general transformation matrix produce the effect of
sharing. Shearing transformation is captured by the following matrix:

T

S S

S S

S SSH

xy xz

yx yz

zx zy

 =

1 0

1 0

1 0

0 0 0 1

(i) Shear along the x-axis: The following matrix gives shear along the x-axis:

1 0

0 1 0 0

0 0 1 0

0 0 0 1

S Sxy xz

THREE-DIMENSIONAL TRANSFORMATION 165

(ii) Shear along the y-axis: The following matrix gives shear along the y-axis.

1 0 0 0

1 0

0 0 1 0

0 0 0 1

S Syx yz

(iii) Shear along the z-axis: The following matrix gives shear along the z-axis.

1 0 0 0

0 1 0 0

1 0

0 0 0 1

S Szx zy

EXERCISES

1. A cube of 6 mm side having one corner point at (0, 0, 0) is translated by 3 mm in
x direction and scaled twice in all directions. Find the final position of the cube.

2. Calculate the 3D homogeneous transformation matrix to carry out a
transformation comprising a translation of 20 mm in z direction together
with a rotation of 35° about a line parallel to the z-axis through [20, 20, 0].

3. A cube’s corner coordinates are (9, 9, 9), (9, 9, 10), (9, 10, 9), (9, 10, 10), (10, 9, 9),
(10, 9, 10), (10, 10, 9), and (10, 10, 10). Rotate the cube through 120° about
x y

z
−

=
−

=
3

2

1

2
.

4. A triangle marked by (5, 5), (10, 5), and (10, 10) is to be rotated through 60°

 CCW about
x y

z
−

=
−

=
3

2

1

2
. Assume the triangle to be in z = 0 plane before

 rotation. Find the coordinates after rotation.

5. A line segment PQ is defined as P (1, 2, 1, 1) and Q (2, 1, 2, 1) in a 3D

homogeneous system. Rotate this line segment about an axis x y z−
=

−
=

2

1

2

2 2
.

6. A triangle ABC is defined as A (0, 0, 0), B (1, 2, 3), and C (3, 2, 1). Find the
reflection of ABC about mirror surface 4x + 7y + 4z + 1 = 0.

166 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

7. Perform the following transformations on a point P(2, 6, 7) using a
homogeneous coordinate system.

 (a) Translate by 4, 2, 1

 (b) Translate by vector 2î + 3ĵ − k̂

8. Find out the transformed coordinates of a position vector 3i + 2j − 4k subjected
to the following multiple transformations successively:

 (i) Translation by −2, −3, 1

 (ii) 45° CW rotation about the y-axis

9. A prism is marked by six vertices (8, 6, 0), (6, 6, 0), (6, 8,0), (8, 6, 4), (6, 6, 4),
 and (6, 8, 4). Find the reflection of this triangular prism about a mirror
surface given by 2x + 6y + 3z = 6.

OBJECTIVE QUESTIONS

4.1 The size of a 3D homogeneous transformation matrix is
(a) 2 × 2 (b) 3 × 3
(c) 4 × 4 (d) 5 × 5

4.2 A 3D rotation matrix about the x-axis is given by
(a) cos sin

sin cos

θ θ

θ θ

0 0

0 1 0 0

0 0

0 0 0 1

−

 (b) 1 0 0

0 0

0 0

0 0 0 1

0

θ θ

θ θ

cos sin

sin cos−

(c) cos sin

sin cos

θ θ 0

θ θ

0

0 0

0 0 1 0

0 0 0 1

−

 (d) none of the above

4.3 In a scaling transformation matrix, scaling factors are placed along
(a) horizontal places
(b) vertical places
(c) random places
(d) diagonal places

THREE-DIMENSIONAL TRANSFORMATION 167

4.4 Rotation about any arbitrary line in 3D space can be captured by performing
a series of transformations to
(a) align the line with any of the principle axes
(b) bring one end of the line on origin
(c) all of the above
(d) none of the above

4.5 Reflection about any arbitrary plane in 3D space can be captured by
performing a series of transformations to
(a) align the plane with any of the principle planes
(b) align normal to the plane with any of the principle axes
(c) all of the above
(d) none of the above

4.6 3D rotation matrices are given about
(a) one principle axes (b) two principle axes
(c) three principle axes (d) none of the above

4.7 Distortion in an object by altering the value of one or more coordinates by an
amount proportional to the third is called
(a) scaling (b) translation
(c) rotation (d) shear

4.8 A series of transformations required for rotation about any arbitrary line in
3D space is given by

(a) R R R T R R Tx y z x y

− − −1 1 1

(b) T R R R R R Ty z x x y

− − −1 1 1

(c) T R R R R R Ty z x x y

− − −1 1 1

(d) T R R R R R Tx y z y x

− − −1 1 1

4.9 Rotation is considered to be positive when it is in a CCW direction when
viewed
(a) along the axis towards origin
(b) along the axis away from origin
(c) perpendicular to the axis towards origin
(d) perpendicular to the axis away from origin

4.10 3D reflection matrices are given about
(a) one principle plane (b) two principle planes
(c) three principle planes (d) none of the above

168 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

ANSWERS

4.1 (c) 4.2 (b) 4.3 (d) 4.4 (a)

4.5 (c) 4.6 (c) 4.7 (d) 4.8 (d)

4.9 (b) 4.10 (c)

169

5.1 INTRODUCTION

A curve can be represented mathematically by a parametric equation. Parametric
equations express the coordinates of the points on a curve as functions of a
variable called a parameter. For example, the parametric representation of an
origin-centered circle of radius r is given by

x = r cos q

y = r sin q

0 ≤ q ≤ 2p

where q is the varying parameter. Together, these equations are parametric
representations of a curve. Another common example occurs in kinematics, where
the trajectory of a point is usually represented by a parametric equation with
time as the parameter. The notion of a parametric equation has been generalized
to surfaces, manifolds, and algebraic varieties of higher dimensions, with the
number of parameters being equal to the dimension of the manifold or variety,
and the number of equations being equal to the dimension of the space in which

5Chapter

PARAMETRIC
REPRESENTATION
OF PLANAR
CURVES

170 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

the manifold or variety is considered (for curves the dimension is one and one
parameter is used; for surfaces the dimension is two and two parameters, etc.).
The parameter typically is designated as t because parametric equations often
represent a physical process in time. However, the parameter may represent some
other physical quantity such as a geometric variable, or may merely be selected
arbitrarily for convenience. Moreover, more than one set of parametric equations
may specify the same curve.

5.2 PARAMETRIC REPRESENTATION OF A CIRCLE

A non-parametric representation of a circle is given by

(x - h)2 + (y - k)2 = r2

For an origin-centered circle, it is

(x)2 + (y)2 = r2

For an origin-centered unit circle with r = 1,

() ()x y

y x

2 2

2

1

1

+ =

= −

But if we plot the points using non-parametric equation and increase the value
of x by 1 and then calculate the corresponding value of y, then the curve would
appear to be a poor representation of the circle. Fig. 5.1 shows a curve obtained by
a non-parametric equation.

x

y

O

Fig. 5.1 Coordinates obtained by a non-parametric equation

Increasing the value of x from 0 to 1, i.e., 0.1, 0.2, 0.3, 0.4 etc.

PARAMETRIC REPRESENTATION OF PLANAR CURVES 171

Parametric representation of an origin-centered circle of radius r is given by

x = r cos q

y = r sin q

0 ≤ q ≤ 2p

where q is the varying parameter. Noting that the circle is swept out for a range
of the parameter q from 0 to 2p, and assuming that a fixed number of uniformly
spaced points on circumference are calculated, that is, δq, the parameter
increment between points would be constant. The Cartesian coordinates of any
point on an origin-centered circle are

 x(i + 1) = r cos (qi cos δq) ...(5.1)

 x(i + 1) = r sin (qi cos δq) ...(5.2)

where qi is the value of the parameter that yields the point at xi + yi

Hence

xi = r cos qi

yi = r sin qi

Applying the sum of angles formula to Eq. (5.1) and Eq. (5.2),

x(i + 1) = r [cos qi cos δq - sin qi sin δq]

y(i + 1) = r [cos qi sin δq + sin qi cos δq]

x(i + 1) = r cos qi cos δq - r sin qi sin δq

y(i + 1) = r cos qi sin δq + r sin qi cos δq

Putting xi = r cos qi, yi = r sin qi

x(i + 1) = xi cos δq - yi sin δq

x(i + 1) = xi sin δq + yi cos δq

represent the rotation of the point xi yi by ∂q.

Since ∂q is constant and equal to
2

1

π

()n−
, where n is the number of uniformly

spaced points on the circle, the values of sin ∂q and cos ∂q need to be calculated
only once.

172 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

Problem 1
Generate a circle of radius 2 with center located at (2,2) with eight unique
points on the circle.

Solution

Two approaches are considered:

(i) Generate an origin-centered circle of radius 2 and then translate the circle by
2 in the x and y planes.

(ii) Generate an origin-centered unit circle, then scale by 2 units and finally
translate by 2 units in the x and y directions.

We will adopt the second approach.
Since the circle is a closed curve, the first point (q = 0) and the last point

(q = 2p) coincide. Thus to obtain n equi spaced points on the circle it is necessary to
calculate n + 1 points. n = (n + 1) = 8

Thus

δθ
π π π π

=
+ −

= = =
2

1 1

2 2

8 4()n n

Using the parametric equation of the circle and starting with q = 0 yields initial
values of x and y.

x r r

y r r
1 1

1 1

0 1

0 0

= − =

= + =

cos cos()

sin sin()

θ

θ

Now using the parametric equation of the circle, the other seven points are
obtained.

sin sin

cos cos

δθ
π

δθ
π

= =

= =

4

2

2

4

2

2

and

x x y2 1 1

1
2

2
0

2

2

= −

= × −

=

cos sinδθ δθ

y x y2 1 1

1
2

2
0

2

2

= −

= × + =

sin cosδθ δθ

PARAMETRIC REPRESENTATION OF PLANAR CURVES 173

Results of the other points are shown in Table 5.1.

Table 5.1 Coordinates of a circle

i xi yi

1 1 0

2
2
2

2
2

3 0 1

4 –
2
2

2
2

5 – 1 0

6 –
2
2

–
2
2

7 0 – 1

8
2
2

–
2
2

Recalling the results of 2D transformation,

T S TT = =

=

2 0 0

0 2 0

0 0 1

1 0 0

0 1 0

2 2 1

2 00 0

0 2 0

2 2 1

1 0 1

2 0 0

0 2 0

2 2 1

1 1 1

 =

x y z T, ,

= 4 2 1

174 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

The final results are shown in Table 5.2.

Table 5.2 Coordinates after transformation

i xi yi

1 4 2

2 3.41 3.41

3 2 4

4 0.586 3.414

5 0 2

6 0.586 0.586

7 2 0

8 3.414 0.586

5.3 PARAMETRIC REPRESENTATION OF AN ELLIPSE

The desired point distribution can be obtained by considering the parametric
representation of an origin-centered ellipse of semi-major axis a and semi-minor
axis b given by:

x = a cos q

y = b sin q

0 ≤ q ≤ 2p

where q varies from 0 to 2p and sweeps out the entire ellipse. Again, assuming
a fixed number of points on the ellipse’s perimeter allows an efficient algorithm to
be developed using the sum of angles. The Cartesian coordinates of any point on
an origin-centered ellipse are

xi + 1 = a cos (qi + δq)

yi + 1 = b cos (qi + δq)

where δθ
π

=
−

2

1()n
 is the fixed increment in q , n is the number of points on the

perimeter, and qi is the value of the parameter for the point at xi, yi.

PARAMETRIC REPRESENTATION OF PLANAR CURVES 175

Using the sum of angles yields

x(i + 1) = a [cos qi cos δq - sin qi sin δq] ...(5.3)

y(i + 1) = b [cos qi sin δq + sin qi cos δq] ...(5.4)

But

xi = a cos qi

yi = b sin qi

Putting these values in Eqs (5.3) and (5.4)

x x
a

b
y

y
b

a
x y

i i i

i i i

()

()

cos sin

sin cos

+

+

= −

= +

1

1

δθ δθ

δθ δθ

Since δq and a and b are constants, an efficient algorithm, again utilizing only four
multiples—both addition and subtraction within the inner loop—is obtained.

Problem 2
Generate an ellipse with semi-major axis a = 4 and semi-minor axis b = 1
inclined 30° to the horizontal with center at 2,2. Illustrate using 32 points.

Solution

First, an origin-centered ellipse is generated. To illustrate the results, 32 unique
points on the ellipse are generated requiring n = 33 because the first and last
points coincide. However, to conserve space, only points in the first quadrant are
illustrated. Thus the parameter range is:

0
2

2

1

2

32 16

≤ ≤

=
−

= =

θ
π

δθ
π π π

()n

Starting with q = 0, the initial values of x and y are:

x1 = a cos q1 = 4 cos (0) = 4

y1 = b sin q1 = 1 sin (0) = 0

Then
a

b

b

a
= =4

1

4
,

176 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

and

sin sin .

cos cos .

δθ
π

δθ
π

= =

= =

16
0 195

16
0 981

Now using the parametric equation of ellipse,

x x
a

b
y

y
a

b
x y

2 1 1

2 1 1

4 0 981 4 0 3 92

= −

= − × =

= +

cos sin

(.) .

sin cos

δθ δθ

δθ δθ

== × × +

=

1

4
4 0 195 0

0 195

(.)

.

Results of the other points are shown in Table 5.3.

Table 5.3 Coordinates of the ellipse

i xi yi

1 4 0

2 3.92 0.195

3 3.696 0.383

4 3.326 .556

5 2.828 0.707

6 2.222 0.831

7 1.531 0.924

8 0.780 0.981

To perform 2D transformation, first rotate about the origin by a = 30° CCW and
then translate the center to the point (2,2).

PARAMETRIC REPRESENTATION OF PLANAR CURVES 177

T R TT = = −

cos sin

sin cos

α α

α α

0

0

0 0 1

1 0 0

0 1 0

2 2 11

0 866 0 5 0

0 5 0 866 0

0 0 1

2 0 0

0 2 0

2 2 1

= −

. .

. .

= −

0 866 0 5 0

0 5 0 866 0

2 2 1

. .

. .

Applying this transformation to (x, y).

x y z TT1 1 1 4 0 1

0 866 0 0

0 5 0 866 0

2 2 1

5 4 = −

=

.

. . . 664 4 1

Table 5.4 Coordinates after transformation

i xi yi

1 5.464 4.0

2 5.3 4.131

3 5.009 4.179

4 4.603 4.144

5 4.096 4.027

6 3.509 3.831

7 2.864 3.565

8 2.185 3.240

178 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

5.4 PARAMETRIC REPRESENTATION OF
A PARABOLA

Consider an origin-centered parabola opening to the right, that is, with the axis of
symmetry being the positive x-axis. The upper limb of such a parabola is shown in
Fig. 5.2. In rectangular coordinates, the parabola is represented in non-parametric
form by:

y2 = 4 ax

x

y

O

Fig. 5.2 A parabola

A parametric representation is given by:

x

y a

=

= ± ⋅

tan

tan

2

2

φ

φ

where 0
2

≤ ≤θ
π

. Although this provides an adequate representation of

a parabola, Smith points out that it does not yield a figure with the maximum
inscribed area, and this is not the most efficient visual representation.

An alternate parametric representation that does not yield the maximum
inscribed area is:

x = a, q2

y = 2 aq

where 0 ≤ q ≤ ∞ sweeps out an entire upper limb of parabola. The parabola,
unlike the ellipse, is not a closed curve. Thus the amount of parabola to be
displayed must be limited by choosing a minimum and maximum value of q.

This can be done in a variety of ways. If the range of the x coordinate is limited,
then

PARAMETRIC REPRESENTATION OF PLANAR CURVES 179

θ θmin
min

max
max,= =

x

a

y

a2
 ...(5.5a)

If the range of the y coordinate is limited, then

θ θmin
min

max
max,= =

y y

2 2a a
 ...(5.5b)

After establishing qmin and/or qmax, the parabola in the first quadrant is
generated. Parabolas in other quadrants with displaced centers or at other
orientations are obtained using reflection, rotation, and translation.

This parabola can also be generated incrementally. Assuming a fixed number of
points on the parabola yields a fixed increment in q.

Consider qi + 1 = qi + δq

The parametric equation of parabola becomes:

x a

y a
i i

i i

= ⋅

=

θ

θ

2

2

and

x a

a a

a a a

x

i i

i i

i i

()

(

()+ = ⋅ +

= ⋅ + +

= ⋅ + +

1
2

2 2

2 2

2

2

θ δθ

θ θ δθ δθ

θ θ δθ δθ

ii i ix y a+ = + +1
2

) δθ δθ ...(5.6)

Similarly

y a

a a

y y a

i i

i

i i

()

()

()+

+

= ⋅ +

= ⋅ +

= +

1

1

2

2 2

2

θ δθ

θ θδ

δθ ...(5.7)

180 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

Problem 3
Generate the parabolic segment in the first quadrant for 1 ≤ x ≤ 4 for a parabola
given by

x = a ⋅ q2 = q2 and y = 2aq = 2q, i.e., a = 1
Solution

First, it is necessary to determine the limits of q.

The range of x coordinates is given by 1 ≤ x ≤ 4

x x

x

a

x

a

min max

min
min

max
max

= =

= = =

= = =

1 4

1

1
1

4

1
2

and

θ

θ

For 10 points on the parabolic segment

δθ
θ θ

=
−

−
=

−

−
=

()max min

n 1

2 1

10 1

1

9

Starting with q1 = qmin = 1, x1 = 1 yelds

y a x x1 12 2 1 1 2= = =θ

From Eqs (5.6) and (5.7)

x x y

x

y y a

2 1 1

2
2

2

2 1

1 2
1

9
1

1

9

1 235

2 2 2

= + () = + ⋅ + ⋅

=

= + = +

δθ+ δθ

δθ

a

.

..

.

1
1

9
2 2222

×

=y

The final results are shown in Table 5.5.

PARAMETRIC REPRESENTATION OF PLANAR CURVES 181

Table 5.5 Coordinates of the parabola

i xi yi

1 1.0 2.0

2 1.235 2.222

3 1.494 2.444

4 1.778 2.667

5 2.086 2.889

6 2.420 3.111

7 2.778 3.333

8 3.160 3.556

9 3.568 3.778

Problem 4
Map 15 points of a parabola y2 = 4ax for x varying from -1.4 to + 1.4 and
a = 100. Rotate it through 14.5° and shift origin (-3, -2). Generate the
numerical solution.

Also write a computer program to generate an image of this parabola.

Solution

Generate the parabolic segment in the first quadrant for x varying from -1.4 to +
1.4 and a = 100.

First it is necessary to determine the limits of q.

x x

x

a

x

a

min max

min
min

max
max

. .

.

.

= = +

= =
−

= =

1 4 1 4

1 4

100

1 4

100

and

θ

θ

qmin = ∞. To solve this problem consider the parabolic segment of the first
quadrant only.

182 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

y

x

(–1.4)
min x

(1.4)
max

x
O

Parabola

Quadrant–II Quadrant–I

If we consider the parabolic segment only in the first quadrant, then xmax = 1.4 and
xmin = 0

θ

θ

min
min

max
max .

= = =

= =

x

a

x

a

0

100
0

1 4

100

Now calculate the coordinates of the parametric segment in the first quadrant as
shown in the previous example.

5.5 PARAMETRIC REPRESENTATION OF A
HYPERBOLA

An origin-centered rectangular hyperbola with the x-axis as the axis of symmetry
can be generated by the following non-parametric equation:

x

a

y

b

2

2

2

2
1− =

A parametric representation of the hyperbola that yields the polygon with
maximum inscribed area is:

x = a cos hq

y = a sin hq

Therefore

PARAMETRIC REPRESENTATION OF PLANAR CURVES 183

The hyperbolic functions are defined as cosh
e e

θ =
θ −θ+()

2
 and sinh

e e
θ =

θ −θ−()
2

.

As q varies from 0 to ∞ the hyperbola is traced out. The sum of angles formula for
cos h and sin h are:

cosh (q + δq) = coshδq coshδq + sinδq sinhδq

sinh (q + δq) = sinhδq coshδq + coshq sinhδq

Rewriting the above equations,

x a h h h h

y a h h

i

i

+()

+()

= +

= +

1

1

cos cos sin sin

sin cos c

δθ δθ θ δθ

δθ δθ oos sin

cos sin

sin

h h

x x h
a

b
y h

y
b

a
x h

i i i

i i

θ δθ

δθ θδ

δθ

= +

=

+()

+()

1

1
++ y hi cos δθ

Again the maximum and minimum values of q must be set in order to limit the
extent of the hyperbola. Considering the branch of the hyperbola in the first and
fourth quadrants and plotting the portion of the hyperbola for xmin ≤ x ≤ xmax then:

θ

θ

min
min

max
max

cos

cos

=

=

−

−

h
x

a

h
x

a

1

1

where the inverse hyperbolic cosine is obtained from:

cos lnh x x x− = + −()1 2 1

Other lines are similarly determined. An example of the first quadrant portion of
a hyperbola generated using this technique is shown.

Problem 5
Use the parametric representation to generate eight points on the hyperbolic
segment in the first quadrant with a = 2, b = 1 for 4 ≤ x ≤ 8.

Solution

First, the parametric limits are determined.

184 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

θmin
max max maxcos ln

ln

=

 = +

 −

= +

−h
x

a

x

a

x

a
1

2

1

4 116 1

2 063

−()
= .

Similarly

qmin = 1.317

Thus

δθ
θ θ

δθ

=
−()
−

=
−

=

() = () =

max min . .
.

cos cos .

n

h h
e

1

2 063 1 317

7
0 107

0 107

00 107 0 107

2
1 006

. .

.
+()

=

−e

and

sin sin . .

. .

h h
e e

δθ() = () =
−()

=

−

0 107
2

0 107

0 107 0 107

With θ θ

θ

θ

1

1

1

2 1 317 4 00

1

=

= () = () =
= () = ⋅

min

min

min

cos cos . .

sin si

x a h h

y b h nn . .h 1 317 1 732() =

Then

x x h
a

b
y h

x

y

2 1 1

2

2

4 1 006 2 1 732 0 107

4 393

= +

= +

=

=

cos sin

(.) (.)(.)

.

δθ δθ

bb

a
x h y h

y

1 1

2

1

2
4 0 107 1 732 1 006

1 956

sin cos

()(.) (.)(.)

.

δθ δθ+

= +

=

PARAMETRIC REPRESENTATION OF PLANAR CURVES 185

The final results are shown in Table 5.6.

Table 5.6 Coordinates of the hyperbola

i xi yi

1 4 1.732

2 4.393 1.956

3 4.836 2.201

4 5.334 2.472

5 5.892 2.771

6 6.512 3.102

7 7.218 3.468

8 8 3.873

Problem 6
A hyperbola is defined as

x y2 2

9 16
1−− ==

Compute at least 10 points to map the hyperbola using parametric relationship
to support y between -2.5 and +2.5. Rotate this hyperbola through 45° and
shift the origin to (5, 3).

Solution

a = 3, b = 4

First, the parametric limits are determined.

y = b sin hq

θ

θ

max
max

min

sin sin
.

.

sin

=

 =

+

 =

=

− −

−

h
y

b
h

h
y

1 1

1

2 5

4
0 590

mmin sin
.

.
b

h

 =

−

 =

−1 2 5

4
0 590

186 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

Thus

δθ =
θ θ

= =max min . .
.

−()
−

− −()
−n 1

0 590 0 590

10 1
0 131

cos h(δq) = cos h (0.131) = 0.131

and sin h (δq) = sin h (0.131) = 1.008

With q1 = qmin

x1 = a cos h (qmin) = 3 cos h (-0.590) = 3.537

y1 = b sin h (qmin) = 4 cos h (-0.590) = -2.5

Then

x x h
a

b
y h

x

y
b

a
x h y

2 1 1

2

2 1 1

3 32

= δθ δθ

= −

=

= δθ

cos sin

.

sin c

+

+

3.567 0.246

oos

.

.

h

y

δθ

=

= −

0.619+ −()2 52

1 92

The final results are shown in Table 5.7.

Table 5.7 Coordinates of the hyperbola

i xi yi

1 3.537 – 2.5

2 3.32 – 1.9

3 3.15 – 1.29

4 3.04 – 0.749

5 3.00 – 0.26

6 2.99 0.26

7 3.04 0.749

8 3.15 1.9

9 3.32 1.9

10 3.537 2.5

PARAMETRIC REPRESENTATION OF PLANAR CURVES 187

Total transformation is given by

T R T

R

T =

 = −

cos sin

sin cos

45 45 0

45 45 0

0 0 1

= −

 =

0 707 0 707 0

0 707 0 707 0

0 0 1

1 0 0

0 1 0

5 3 1

. .

. .

T

 = −

TT

0 707 0 707 0

0 707 0 707 0

0 0 1

1 0 0

0 1 0

5 3

. .

. .

11

0 707 0 707 0

0 707 0 707 0

5 3 1

3

= −

 =

. .

. .

.P′ 5537 2 5 1

0 707 0 707 0

0 707 0 707 0

5 3 1

9 268 3 7− −

=.

. .

. . . . 333 1

Table 5.8 shows the transformed coordinates.

Table 5.8 Coordinates after transformation

i xi yi

1 9.268 3.733

2 8.691 4.003

3 8.13 4.31

4 7.678 4.61

5 7.30 4.93

6 6.93 5.3

7 6.61 5.788

8 6.31 6.13

9 6.00 6.69

10 5.733 7.268

188 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

EXERCISES

1. Generate an origin-centered circle with radius 2 with eight unique points on
the circle.

2. Write an algorithm to find the incremental values of x and y using the
parametric representation of an ellipse.

3. Generate an ellipse with semi-major axis a = 6 and semi-minor axis b = 2 with
center at (6, 4). Illustrate using eight points.

4. Derive the parametric equations of a parabola.

5. Generate the parabolic segment in the first quadrant for 1.5 ≤ x ≤ 5.5 for a
parabola given by x = 4q2 and y = 8q.

6. Generate the parabolic segment in first quadrant for x varying as -1.8 to +2.6
and a = 60.

7. Derive the parametric representation of a hyperbola.

8. A hyperbola is defined as

x y2 2

4 9
1− =

 Compute at least eight points to map the hyperbola using a parametric
relationship to support y between –1.6 to +1.6.

OBJECTIVE QUESTIONS

5.1 Using a non-parametric equation would result in
(a) poor representation (b) high computational time
(c) non-uniformly spaced points (d) all of the above

5.2 Parametric representation of an origin-centered circle of radius “r” is given by
x = r cos q, y = sin q where varying parameter q is given by

(a) 0
2

≤ ≤θ
π

 (b) 0 ≤ q ≤ p

(c) 0 ≤ q ≤ 2p (d) 0 ≤ q ≤ 4p

5.3 In kinematics, the trajectory of a point is usually represented by a parametric
equation with
(a) angle as a parameter (b) distance as a parameter
(c) time as a parameter (d) none of above

PARAMETRIC REPRESENTATION OF PLANAR CURVES 189

 5.4 A parameter in the parametric representation of some physical quantity
may be
(a) a geometric variable (b) distance
(c) time (d) selected arbitrarily for convenience

 5.5 “More than one set of parametric equations may specify the same curve”—
this statement is
(a) true (b) false
(c) can’t say (d) all of the above

 5.6 Parametric representation of an origin-centered ellipse of semi-major axis
“a” and semi-minor axis “b” given by x = a cos q, y = b sin q, where q is the
varying parameter, is given by

(a) 0
2

≤ ≤θ
π

 (b) 0 ≤ q ≤ p

(c) 0 ≤ q ≤ 2p (d) 0 ≤ q ≤ 4p

 5.7 Parametric representation of a parabola is given by x = a ⋅ q2, y = 2aq, where
varying parameter q is given by

(a) 0
2

≤ ≤θ
π

 (b) 0 ≤ q ≤ ∞

(c) 0 ≤ q ≤ 2p (d) 0 ≤ q ≤ 4p

 5.8 Parametric representation of a parabola is given by x = a ⋅ q2, y = 2aq, where
0 ≤ q ≤ ∞ sweeps out an
(a) entire upper limb of parabola (b) entire lower limb of parabola
(c) entire parabola (d) minimum inscribed area

 5.9 A parabola, unlike a circle and an ellipse, is a
(a) open curve (b) closed curve
(c) can’t say (d) none of these

5.10 A non-origin-centered circle can be generated by
(a) generating an origin-centered circle of a given radius and translating it

to its center position
(b) generating an origin-centered circle of unit radius and then performing

transformations (scaling and translation)
(c) True
(d) False

190 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

5.11 A parametric representation of a hyperbola yields a polygon with maximum
inscribed area x = acos hq, y = asin hq, where varying parameter q is given by

(a) 0
2

≤ ≤θ
π

 (b) 0 ≤ q ≤ 4p

(c) 0 ≤ q ≤ 2p (d) 0 ≤ q ≤ ∞

ANSWERS

5.1 (d) 5.2 (c) 5.3 (c) 5.4 (d)

5.5 (a) 5.6 (c) 5.7 (c) 5.8 (a)

5.9 (a) 5.10 (c) 5.11 (d)

191

6.1 INTRODUCTION TO SPACE CURVES

In the previous chapter we discussed the parametric representation of planar
curves. Suppose you wish to make a 2D view of a ship, then you draw it in the xy
plane. But if you need to make a 3D model of a ship, then you have to control the
path of the space curve meticulously to get the desired profile. Now, to control the
profile of the space curve, we have to convert the space curve into its parametric
representation. Some examples of space curves are cubic curves, Bézier curves,
B-spline curves, non-uniform rational B-splines (NURBS), etc.

6.2 CUBIC SPLINE

P 1

P 2

P t2 2,

P t1 1,

Fig. 6.1 A single-segment cubic curve

6Chapter

PARAMETRIC
REPRESENTATION
OF SPACE CURVES

192 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

The equation of a single-segment parametric cubic spline is given by:

P t B t t t tt
i

i() = ≤ ≤
=

−∑
1

4
1

1 2

where t1, t2 are the parameter values at the beginning and end of the segment.
Each Cartesian component has a formulation similar to P(t).

x t B t t t t

y t B t t t t

z t B

ix
i

i

iy
i

i

iz
i

() = ≤ ≤

() = ≤ ≤

() =

=

−

=

−

=

∑

∑

1

4
1

1 2

1

4
1

1 2

11

4
1

1 2∑ − ≤ ≤t t t ti

Parametric representation of a single cubic curve is given by:

P t B B t B t B t() = + + +1 2 3
2

4
3 ...(6.1)

Where t varies from t1 ≤ t ≤ t2

Cubic spline is a series of single segment cubic curves

Segment spanning two points where B1, B2, B3, B4 are the four boundary conditions,
and

t is a varying parameter in which t1 ≤ t ≤ t2.

P(t) is the position vector of any point on the cubic spline segment

P t x t y t z t() = () () () (

P1 and P2 are position vectors at the ends of the segment.

P′1 and P′2 are tangent vectors at the ends of the segment, which are derivatives
w.r.t. t.

To find P′1 and P′2 let us differentiate Eq. (6.1)

P t B B t B t′() = + +2 3 4
22 3

Assuming t1 = 0 and applying four boundary conditions, namely

P P t t

P t P t t

P P P

0 0

1

0

1 1

2 2 2

1

() = = =()
() = = =()
() =

point at

point at

at′ ′ ′ tt t

P t P P t t

= =()
() = = =()

1

2 2 2

0

1′ ′ ′at

PARAMETRIC REPRESENTATION OF SPACE CURVES 193

four equations for the unknown Bi′s can be obtained as follows:

P t B B t B t B t

P B

P t B B t B t

P B

P t

() = + + +

() =
() = + +

() =

1 2 3
2

4
3

1

2 3 4
2

2

2

0

2 3

0

′

′

(() = + + +

() = + +

B B t B t B t

P t B B t B t

1 2
2

3 2
2

4 2
3

2 2 3
2

4 2
22 3′

 ...(6.2)

P(t2) is nothing but P2, and P′(t2) is nothing but P′2.

P t P P P t B t B t

P t P P B t B t

2 2 1 1 2 3 2
2

4 2
3

2 2 1 3 2 4 2
22 3

() = = + + +

() = = + +

′

′ ′ ′

 ...(6.3)

 ...(6.4)

Solving Eqs. (6.3) and (6.4) simultaneously, we get

B
P P

t

P

t

P

t3
2 1

2
2

1

2

2

2

3 2
=

−()
− −

′ ′

Similarly,

B
P P

t

P

t

P

t
4

1 2

2
3

1

2
2

2

2
2

2
=

−()
− −

′ ′

These values of B1, B2, B3, B4 determine the cubic spline segment.

Substituting the values of B1, B2, B3, B4 in Eq. (6.2), we have

P t P P t
P P

t

P

t

P

t
t

P P

() = + +
−()

− −

+
−()

1 1
2 1

2
2

1

2

2

2

2

1 2

3 2

2

′
′ ′

tt

P

t

P

t
t

2
3

1

2
2

2

2
2

3− −

′ ′
 ...(6.5)

194 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

Eq. (6.5) is for a single cubic spline segment. However, to represent a complete
curve, multiple segments are joined together. Two adjacent segments are shown
in Fig. 6.2.

Fig. 6.2 Multi-segment cubic spline

Supposing the position vectors P1, P2, P3, P4. The tangent vectors P′1, P′2, P′3, P′4
and parameter values t2, t3 and t4 are known, then applying Eq. (6.5) to each of the
two segments yields their shapes.

Finding Tangent Vectors at Internal Points
It is unlikely that the tangent vectors P′2 and P′3 at the internal joints between
two segments are known. Assuming that the end tangent vectors P′1 and P′4 are
known, the tangent vector at the internal joints (four-point cubic spline) can be
determined.

1 0 0 0

2 0

0 2

0 0 0 1

3 2 3 2

4 4 3 3

1

2

3

4

t t t t

t t t t

P

P

P

P

+()
+()

′

′

′

′

=
⋅

−()+ −(){ }

⋅
−

P

t t
t P P t P P

t t
t P

′
1

2 3

2
2

3 2 3
2

2 1

3 4

3
2

4

3

3
PP t P P

P

3 4
2

3 2

4

()+ −(){ }

′

PARAMETRIC REPRESENTATION OF SPACE CURVES 195

Determining a point on the spline segment at τ

Now the position vector at a series of three single-segment joints is given by:

P F F F F

P

P

P

P

P F

τ τ τ τ τ

τ

() = () () () ()

() =

1 2 3 4

1

2

1

2

′

′

 G

where

F

F

F t

F

1
3 2

2
3 2

3
2 4

4
2

2 3 1

2 3

2 1

τ τ τ

τ τ τ

τ τ τ τ

τ τ τ

() = − +

() = − +

() = − +() ⋅

() = −ττ()

= −() + −()

= −() + −()

= −() +

t

t x x y y

t x x y y

t x x

4

2 2 1

2

2 1

2

3 3 2

2

3 2

2

4 4 3

2
yy y4 3

2
−()

Problem 1
A curve is passing through points A (1, 1, 1) and B (2, 5, −3). It is expected
to be a cubic spline; the parameter t ranges from 0 to 1 and the values of the
differentials are as follows:

At A:

dx

dt

dy

dt

dz

dt
== == ==0.2, 1, and 0.3

At B:

dx

dt

dy

dt

dz

dt
== −− == −− ==0.2, 1.2, and 0.4

196 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

Find the cubic spline equation by computing the coordinates of the point and
tangent direction at t = 0.7.

Solution

Let us solve the problem using a parametric equation.

P [–0.2 – 1.2 0.4]2

P [2 5 –3]2

P [0.2 1 0.3]1

P [1 1 1]1

Fig. 6.3 A cubic curve

The parameter t ranges from 0 to 1, which means t2 = 1. Parametric equation of
the spline is given by:

P t B B t B t B t

B P

B P

B

() = + + +

= = ()

= = ()

1 2 3
2

4
3

1 1

2 1

3

1 1 1

0 2 1 0 3′ . .

==
−()

− −

=
 −

 −
− −

3 2

3 1 4 4

1

2 0 2 1 0 3

1

0 2 1

2 1

2
2

1

2
2

2

2

P P

t

P

t

P

t

′ ′

.

.

. .

2 0 4

1

3 12 12 0 4 2 0 6 0 2 1 2 0 4

2 8 11 2

= − − − − −
= −−

=
−()

− −

=
− +

13

2

2 1 4 4

1

0 2 1 0 3

4
1 2

2
3

1

2
2

2

2
2

B
P P

t

P

t

P

t

′ ′

. . +
− −

= − −

1

0 2 1 2 0 4

1

2 8 2 8 7

. . .

. .

PARAMETRIC REPRESENTATION OF SPACE CURVES 197

Parametric representation of the cubic spline is given by:

P t t t t() = + + − + − − 1 1 1 0 2 1 0 3 2 8 11 2 13 2 8 2 8 72 3.

PP 0 7 1 1 1 0 2 1 0 3 0 7 2 8 11 2 13 0 7

2 8

2
.() = + ()+ − ()

+ − −

. . . .

2 8 7 0 7

0 7 1 824 4 37 2 18

3
 ()

() = − P

To find the position vector of the tangent:

P t B B t B t

t

′() = + +

= + − + − −

2 3 4
22 3

0 2 1 0 3 2 2 8 11 2 13 3 2 8 2 8.77

0 7 0 2 1 0 3 2 2 8 11 2 13 0 7 3 2 8 2 8

2

()= + − ()+ − −

t

P′77 0 7

0 7 1 18 4 626 5 111

2
 ()

() = −

.

. . . .P′

Problem 2
The direction of the tangent at A (4, 4, 4) is given by (0.25, 3, 0.25). Similarly
the tangent at B (5, 6, 7) is given by (2, 1, −2). Generate an equation of the
spline connecting these two points. Use a parametric equation defining the
parameter “t” and find the position vector and tangent direction at t = 0.6.
Solve using a parametric equation.

Solution

P [2 1 –2]2

P [5 6 7], t = 12

P [0.25 3 0.25]1

P [4 4 4], t = 01

Fig. 6.4 A cubic curve

The parameter t ranges from 0 to 1, which means t2 = 1. Parametric equation of
the spline is given by:

P t B B t B t B t() = + + +1 2 3
2

4
3

198 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

Parametric equation of the cubic spline in Cartesian form is given by:

x t B B t B t B t

y t B B t B t B t

z t B

x x x x

y y y y

z

() = + + +

() = + + +

() =

1 2 3
2

4
3

1 2 3
2

4
3

1 ++ + +B t B t B tz z z2
2

3
2

4
3

 ...(6.6)

 ...(6.7)

 ...(6.8)

At P1, x = 4 and t = 0. Putting these values in Eq. (6.6), we have

B1x = 4

At P2, x = 5 and t = 1. Putting these values in Eq. (6.6), we have

5 = 4 + B2x(1) + B3x(1)2 + B4x(1)3

B2x + B3x + B4x = 1 ...(6.9)

At P1,
dx

dt

dy

dt

dz

dt
t, , . , , . ;

= () =0 25 3 0 25 0

Differentiating Eq. (6.6) w.r.t. t, we have

dx

dt
B B t B tx x= + +2 3 4

22 3
 ...(6.10)

At P
dx

dt
t1 0 25 0, . ;

= () =

Putting these values in Eq. (6.10),

B2x = 0.25

So Eq. (6.9) becomes:

0.25 + B3x + B4x = 1

B3x + B4x = 0.75 ...(6.11)

At P
dx

dt

dy

dt

dz

dt
t2 2 1 2 1, , , , , ;

= −() =

At P
dx

dt
t2 2 1, ;

= () =

PARAMETRIC REPRESENTATION OF SPACE CURVES 199

Putting these values in Eq. (6.10), we have

2 = 0.25 + 2B3x + 3B4x

2B3x + 3B4x = 1.75 ...(6.12)

Solving Eqs (6.11) and (6.12) simultaneously, we get

B3x = 0.5

B4x = 0.25

Parametric equation in terms of x(t) is given by:

x(t) = 4 + 0.25t + 0.5t2 + 0.25t3 ...(A)

Parametric equation in terms of y(t) is given by:

y(t) = B1y + B2yt + B3yt2 + B4yt3

At P1, y = 4 and t = 0. Putting these values in Eq. (6.7), we have

B1y = 4

At P2, y = 6 and t = 1. Putting these values in Eq. (6.6), we have

6 = 4 + B2y(1) + B3y(1)2 + B4y(1)3

B2y + B3y + B4y = 2 ...(6.13)

At P
dx

dt

dy

dt

dz

dt
t1 0 25 3 0 25 0, , , . . ;

= () =

Differentiating Eq. (6.7) w.r.t. t,

dy

dt
B B t B ty y y= + +2 3 4

22 3 ...(6.14)

At P
dy

dt
t1 3 0, ;

= () =

Putting these values in Eq. (6.14),

B2y = 3

200 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

So Eq. (6.13) becomes:

3 + B3y + B4y = 2

B3y + B4y = −1 ...(6.15)

At P
dx

dt

dy

dt

dz

dt
t2 2 1 2 1, , , , , ;

= −() =

At P
dy

dt
t2 1 1, ;

= () =

Putting these values in Eq. (6.14)

1 = 3 + 2B3y + 3B4y

2B3y + 3B4y = −2 ...(6.16)

Solving Eqs (6.15) and (6.16) simultaneously, we get

B3y = −1

B4y = 0

Parametric equation in terms of y(t) is given by:

y(t) = 4 + 3t − t2 ...(B)

Parametric equation in terms of z(t) is given by:

z(t) = B1z + B2zt + B3zt2 + B4zt3

At P1, z = 4 and t = 0. Putting these values in Eq. (6.8), we have

B1z = 4

At P2, z = 7 and t = 1. Putting these values in Eq. (6.8), we have

7 = 4 + B2z(1) + B3z(1)2 + B4z(1)3

B2z + B3z + B4z = 3 ...(6.17)

At P
dz

dt

dy

dt

dz

dt
t1 0 25 3 0 25 0, , , . , , . ;

= () =

PARAMETRIC REPRESENTATION OF SPACE CURVES 201

Differentiating Eq. (6.8) w.r.t. t,

dz

dt
B B t B tz z z= + +2 3 4

22 3
 ...(6.18)

At P
dz

dt
t1 0 25 0, . ;

= () =

Putting these values in Eq. (6.18), we have

B2z = 0.25

So Eq. (6.17) becomes:

0.25 + B3z + B4z = 3

B3z + B4z = 2.75 ...(6.19)

At P
dx

dt

dy

dt

dz

dt
t2 2 1 2 1, , , , , ;

= −() =

At P
dz

dt
t2 2 1, ;

= −() =

Putting these values in Eq. (6.18), we have

−2 = 0.25 + 2B3z + 3B4z

2B3z + 3B4z = −2.25 ...(6.20)

Solving Eqs (6.19) and (6.20) simultaneously, we get

B3z = 10.5

B4z = −7.75

Parametric equation in terms of z(t) is given by:

x(t) = 4 + 0.25t + 10.5t2 − 7.75t3 ...(C)

Parametric equation of spline in Cartesian form is given by:

x(t) = 4 + 0.25t + 0.5t2 + 0.25t3 ...(A)

y(t) = 4 + 3t − t2 ...(B)

x(t) = 4 + 0.25t + 10.5t2 − 7.75t3 ...(C)

202 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

Position vector at t = 0.6 is obtained by putting t = 0.6 in the above equations.

x(0.6) = 4.384

y(0.6) = 5.44

z(0.6) = 6.256

To find the position of tangent vectors, put the values of the boundary conditions
and t = 0.6 in the following equations:

dx

dt
t t

dy

dt
t

dz

dt
t t

= + +

= −

= + −

0 25 0 75

3 2

0 25 21 23 25

2

2

. .

. .

At t = 0.6,

dx

dt

dy

dt

dz

dt
, ,

 ()== 1.12 1.8 4.48

6.3 B-SPLINE

B-splines automatically take care of continuity, with exactly one control vertex per
curve segment. There are many types of B-splines: their degree may be different
(linear, quadratic, cubic, etc.) and they may be uniform or non-uniform. With
uniform B-splines, continuity is always one degree lower than the degree of each
curve piece. Uniform B-splines do not interpolate control points, unless you
repeat a control point three times, but then all derivatives also vanish (= 0) at that
point. To do interpolation with non-zero derivatives, you must use non-uniform
B-splines with repeated knots. To go from a B-spline to a Bézier, both B-spline
and Bézier curves represent cubic curves, so either can be used to go from one to
the other.

Recall that a point on a curve can be represented by a matrix equation:

•	P is the column vector of control points

•	M depends on the representation: MB-spline and MBézier

•	T is the column vector containing t3, t2, t, 1

PARAMETRIC REPRESENTATION OF SPACE CURVES 203

By equating points generated by each representation, we can find a matrix
MB-spline->Bézier that converts B-spline control points into Bézier control points.

B-spline to Bézier matrix

M

P

B-spline Bezier

Bezier

→ =

1

6

1 4 1 0

0 4 2 0

0 2 4 0

0 1 4 1

0,

PP

P

P

1

2

3

1

6

1 4 1 0

0 4 2 0

0 2 4 0

0

,

,

,

Bezier

Bezier

Bezier

=

11 4 1

0

1

2

3

P

P

P

P

,

,

,

,

B-spline

B-spline

B-spline

B-splline

Advantages

The perspective is invariant, so it can be evaluated in screen space. It can perfectly
represent conic sections: circles, ellipses, etc. Piece-wise cubic curves cannot do
this.

B-spline Surfaces

•	Are	defined	just	like	Bézier	surfaces:

X x t P B s B tj k j d
k

n

j

m

k d, () (), , ,() =
==

∑∑
00

•	Continuity	is	automatically	obtained	everywhere.

•	But the control points must be in a rectangular grid.

Blending Functions

x t P B t

P t t t P t t P

i
i

i() = ()

= − + − + − + +

=
∑

0

3

4

0
2 3

1
2 3

2

1

6
1 3 3

1

6
4 6 3

1

6

,

() () 11 3 3 3
1

6

2 3
3

3+ + −()+ ()t t t P t

204 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

6.4 BÉZIER CURVES

A cubic Bézier curve is used in most graphic applications. This curve is generally
used for designing automobile panels. It needs four control points. The curve
generally follows the shape of a defining polygon. These four control points
completely specify the curve, as shown in Fig. 6.5.

P (X , Y , Z)1 1 1 1

P (X , Y , Z)4 4 4 4

P (X , Y , Z)3 3 3 3

P (X , Y , Z)2 2 2 2

Fig. 6.5 Control points of a Bézier curve

P1
P2

P3 P4

P4

P3

P2P1

Fig. 6.6 A multi-segment Bézier curve

The curve begins at the first control point and ends at the fourth. Thus, to connect
two Bézier curves, join the first control point of the second curve with the fourth
control point of the first curve. At the start of the curve, it is tangent to the line
connecting the first and second control points. Similarly, at the end of the curve it
is tangent to the line connecting the third and fourth control points.

Parametric Equation

•	 The	Bézier	curve	can	be	completely	described	by	a	parametric	equation.

Ø	 x = x4u3 + 3x3u2(1 − u) + 3x2u(1 − u)2 + x1(1 − u)3

Ø	 y = y4u3 + 3y3u2(1 − u) + 3y2u(1 − u)2 + y1(1 − u)3

Ø	 z = z4u3 + 3z3u2(1 − u) + 3z2u(1 − u)2 + z1(1 − u)3

PARAMETRIC REPRESENTATION OF SPACE CURVES 205

•	 	(x1, y1, z1), (x2, y2, z2), (x3, y3, z3), (x4, y4, z4) are the coordinates of four control
points.

•	 	u is the factor that increases from 0 to 1 as the curve moves from the first to the
fourth control point.

•	 (x, y, z) is the coordinate of the pixel representing the Bézier curve.

Properties of a Bézier Curve

•	 The	curve	must	pass	through	the	first	and	fourth	control	points,	i.e.,	P1 and P4.

•	 The	curve	is	tangent	to	the	line	(P1-P2 and P3-P4).

•	 	The	Bézier	curve	has	a	parametric	formulation	and	equation,	which	allows	it	to	
represent multiple values and shapes.

•	 If	the	first	and	last	control	points	coincide,	then	the	curve	is	closed	(Fig.	6.7).

P1

P4

P3

P2

Fig. 6.7 A closed Bézier curve

The curve does not provide localized control, i.e., when moving any one control
point, the entire curve changes.

Zero-Order Continuity

•	 In	this	case	the	joint	between	the	two	curves	must	be	smooth.
•	 	To	achieve	zero-order	continuity	at	the	joint,	it	is	necessary	to	control	the	first	

control point of the second curve and the fourth control point of the first curve.

Problem 3

The coordinates of four control points related to the curve are

P1 = (2,2,0)

P4 = (2,3,0)

P3 = (3,3,0)

P4 = (3,2,0)

206 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

Write the equation of the resultant Bézier curve. Also draw the curve by
finding the coordinates at u = 0, u = 0.25, u = 0.5, u = 0.75 and u = 1.

Solution

Parametric equations of the Bézier curve are:

x x u x u u x u u x u

y y u y u u y

= + −()+ −() + −()
= + −()+

4
3

3
2

2

2

1

3

4
3

3
2

2

3 1 3 1 1

3 1 3 uu u y u

z z u z u u z u u z u

1 1

3 1 3 1 1

2

1

3

4
3

3
2

2

2

1

3

−() + −()
= + −()+ −() + −()

Putting the values of the coordinates, we have:

x u u u u u u

y u u u u u

= + −()+ −() + −()
= + −()+ −() + −

3 9 1 6 1 2 1

2 9 1 9 1 2 1

3 2 2 3

3 2 2
uu

z

()
=

3

0

For u = 0

x u u u u u u

y u u u u u

= + −()+ −() + −() =

= + −()+ −() +

3 9 1 6 1 2 1 2

2 9 1 9 1 2

3 2 2 3

3 2 2
11 2

0

3
−() =

=

u

z

For u = 0.25

x u u u u u u

y u u u u u

= + −()+ −() + −() =

= + −()+ −()
3 9 1 6 1 2 1 2 15

2 9 1 9 1

3 2 2 3

3 2

.

22 3
2 1 2 56

0

+ −() =

=

u

z

.

PARAMETRIC REPRESENTATION OF SPACE CURVES 207

For = 0.5u

x u u u u u u

y u u u

= + −()+ −() + −() =

= + −

3 9 1 6 1 2 1 2 5

2 9 1

3 2 2 3

3 2

.

(()+ −() + −() =

=

= + −()+

9 1 2 1 2 75

0

3 9 1 6 1

2 3

3 2

u u u

z

u

x u u u u

.

For = 0.75

−−() + −() =

= + −()+ −() + −() =

=

u u

y u u u u u u

z

2 3

3 2 2 3

2 1 2 84

2 9 1 9 1 2 1 2 56

0

.

.

FFor = 1u

x u u u u u u

y u u u

= + −()+ −() + −() =

= + −()+
3 9 1 6 1 2 1 3

2 9 1

3 2 2 3

3 2 99 1 2 1 2

0

2 3
u u u

z

−() + −() =

=

P2 P3

P4P1

u = 0.5

u = 0.25 u = 0.75

Fig. 6.8 Graphical representation

6.5 NON-UNIFORM RATIONAL B-SPLINES

The non-uniform rational B-spline (NURBS) is a mathematical model commonly
used in computer graphics for generating and representing curves and surfaces
that offers great flexibility and precision to handle both analytic (surfaces defined
by common mathematical formulae) and modeled shapes. The NURBS equation

208 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

is a general form that can represent both B-spline and NURBS curves. A Bézier
curve is a special case of a B-spline curve, so the NURBS equation can also
represent Bézier and rational Bézier curves.

•	 Uniform	B-splines	are	a	special	case	of	B-splines.

•	 Each	blending	function	is	the	same.

•	 A	blending	function	starts	at	t = −3, t = −2, t = −1,…

•	 Each	blending	function	is	non-zero	for	4	units	of	the	parameter.

•	 	Non-uniform	 B-splines	 can	 have	 blending	 functions	 starting	 and	 stopping	
anywhere, and the blending functions are not all the same.

•	 	NURBS	are	commonly	used	in	computer-aided	design	(CAD),	manufacturing	
(CAM), and engineering (CAE), and are part of numerous standards used
industry-wide, such as IGES, STEP, ACIS, and PHIGS. NURBS tools are also
found in various 3D modeling and animation software packages.

Fig. 6.9 A non-uniform rational B-spline

6.5.1 Control Point
The control points determine the shape of the curve. Typically, each point of
the curve is computed by taking a weighted sum of a number of control points.
The weight of each point varies according to the governing parameter. Adding
more control points allows better approximation to a given curve, although only
a certain class of curves can be represented exactly with a finite number of control
points.

PARAMETRIC REPRESENTATION OF SPACE CURVES 209

Control Point

Control Polygon

Fig. 6.10 Control polygon and control points on NURBS

The control points can have any dimensionality. 1D points just define a scalar
function of the parameter. These are typically used in image processing programs
to tune the brightness and color curves. 3D control points are used abundantly in
3D modeling, where they are used in the everyday meaning of the word “point,”
a location in 3D space. Multidimensional points might be used to control sets of
time-driven values, e.g., the different positional and rotational settings of a robot
arm. NURBS surfaces are just an application of this.

The knot vector is a sequence of parameter values that determine where and how
the control points affect the NURBS curve. Necessary only for internal calculations,
knots are usually not helpful to the users of modeling software. Therefore, many
modeling applications do not make the knots editable or even visible.

Knot Values

•	 number	of	knots	=
num_of_control_points + degree + 1 (or −1 for some APIs)

•	 The	values	of	knot	vectors	must	be	in	ascending	order.
− (0, 0, 1, 2, 3) is valid

− (0, 0, 2, 1, 3) is not valid

•	 	The	individual	knot	values	are	not	meaningful	by	themselves;	only	the	ratios	
of the differences between the knot values matter.

− Hence, the knot vectors (0, 0, 1, 2, 3), and (0, 0, 2, 4, 6) produce the same
curve.

Duplicate knot values make a NURBS curve less smooth. At the extreme, a
full multiplicity knot in the middle of the knot list means there is a place on the
NURBS curve that can be bent into a sharp kink.

210 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

NURBS Surfaces

NURBS surfaces are based on curves. The main advantage of using NURBS
surfaces over polygons is that NURBS surfaces can create smoother surfaces
with fewer control points. NURBS surfaces are especially suited for creating
organic smooth surfaces. Besides using primitives, NURBS models are generally
constructed by creating curves that will define the profile or shape of an object.

Fig. 6.11 A NURBS curve

NURBS Curves

Control vertices (CVs) control the shape of a curve by pulling the curve out from
a straight line. They are the most basic means of controlling NURBS surfaces. In
Maya, the first CV or endpoint of a curve is drawn as a box, and the second CV is
drawn as a “U”. Each additional CV is a dot.

Fig. 6.12 A NURBS curve

Fig. 6.13 CVs − control points that edit the shape of a curve

PARAMETRIC REPRESENTATION OF SPACE CURVES 211

Fig. 6.14 Endpoints reside on a curve and are defined by the shape of the curve

Properties of NURBS

•	 NURBS	have	all	the	properties	of	a	B-spline.

•	 	More	 versatile	 modification	 of	 a	 curve	 becomes	 possible	 if	 the	 curve	 is	
represented by a NURBS equation. It is due to a B-spline curve modified by
changing the x, y, and z coordinates, but NURBS curves use homogenous
coordinates (x, y, z, h).

•	 	B-splines	 have	 degree,	 control	 points,	 and	 knots,	 but	 NURBS	 have	 degree,	
control points, knots, and weights.

− NURBS equations can exactly represent conic curves (circle, ellipse,
parabola, etc.).

− If projective transformation is applied to a NURBS curve, the result can
be constructed from the projective images of its control points.

Therefore, we do not have to transform the curve to obtain the correct
view (without distortion).

•	 	Bézier	curves	and	B-spline	curves	only	satisfy	 the	affine	invariance	property	
rather than this projective invariance property. This is because only NURBS
curves involve projective transformations.

Rational	is	generalization	of	nonrational;	thus	they	carry	forward	all	the	analytic	
and geometric characteristics of their B-spline counterparts.

Also:

− a rational B-spline curve of order k is continuous everywhere.

−	curve	is	invariant	to	any	projective	transformation	(not	only	to	affine).

− additional control capabilities due to weights.

212 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

Uses of NURBS Curves and Surfaces

•	 	They	 are	 invariant	 under	 affine	 as	 well	 as	 perspective	 transformations:	
operations like rotations and translations can be applied to NURBS curves and
surfaces by applying them to their control points.

•	 	They	offer	one	common	mathematical	form	for	both	standard	analytical	shapes	
(e.g., conics) and free-form shapes.

•	 They	provide	the	flexibility	to	design	a	large	variety	of	shapes.

•	 	They	reduce	memory	consumption	when	storing	shapes	(compared	to	simpler	
methods).

•	 	They	can	be	evaluated	reasonably	quickly	by	numerically	stable	and	accurate	
algorithms.

•	 	Currently,	NURBS	curves	are	the	standard	of	curve	description	in	computer	
graphics.

•	 They	have	smooth	properties.

•	 Several	ways	to	control	the	resulting	curve	provide	great	flexibility.

How to Choose a Spline

Bézier curves are good for single segments or patches where a user controls the
points. B-splines are good for large continuous curves and surfaces.

NURBS are good when that generality is useful, or when conic sections must be
accurately represented (CAD).

EXERCISES

1. The tangent vector at p1 (1, 3, 1) and p2 (0, 0, 0) are i + j + k and − i + 3j − 2k,
respectively. Find the parametric equation of a cubic spline passing through
p1 and p2. A point p3 lies on this spline and is defined as distance (p1 p3) =
distance (p2p3). Find the position vector and tangent direction at point p3.

2. Generate an equation to cubic spline P = B0 + B1 ⋅ t + B2 ⋅ t2 + B3 ⋅ t3 for a point A
(3, 4, 5) and B (1, 1, 0). The derivatives along these directions at A are (1, − 1, 0)
and at B are (2, − 1, 2). Hence find the coordination at point at t = 0.25 on the
bridging curve.

3. Explain the Bézier curve. What are its properties?

PARAMETRIC REPRESENTATION OF SPACE CURVES 213

4. The four vertices of a Bézier polygon are: (1, 1), (2, 3), (4, 3), and (3, 1). Find
the equation of the Bézier curve in the parametric form.

5. What do you understand by interpolation and approximation splines?
Determine and plot the blending functions of the hermit spline.

6. What	is	a	requirement	of	synthetic	curves?	Explain	briefly.

OBJECTIVE QUESTIONS

6.1 If the first and last control points of a Bézier curve coincide, then
(a) curve will be closed (b) curve will be open
(c) multiple curves can be joined (d) none of the above

6.2 To join two curves smoothly, it is necessary to control the first control point
of the second curve and the last control point of the first curve. This property
of the Bézier curve is called
(a) zero-order continuity (b) first-order continuity
(c) third-order continuity (d) higher-order continuity

6.3 In a Bézier curve, trajectory of the curve can be adjusted by controlling
(a) control points (b) segments
(c) curve path (d) none of the above

6.4 A Bézier curve passes through
(a) first and second control points (b) first and third control points
(c) first and fourth control points (d) second and third control points

6.5 A Bézier curve is tangent to segments at
(a) first and second segments (b) first and third segments
(c) first and fourth segments (d) second and third segments

6.6 To join two segments of a cubic spline, the tangent vector at the last point of
the first segment and the first point of the second segment must be
(a) same (b) different
(c) unknown (d) none of the above

6.7 A non-uniform rational B-spline used in generating curves and surfaces is a
(a) parametric representation (b) mathematical expression
(c) mathematical model (d) none of the above

214 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

 6.8 Non-uniform B-splines can have blending functions starting and stopping
anywhere and are all
(a) same (b) different
(c) some same, some different (d) other

 6.9 NURBS are part of numerous industry-wide standards such as
(a) IGES (b) STEP
(c) ACIS (d) PHIGS
(e) all of the above

6.10 The control point is computed by taking a weighted sum of a
(a) number of control polygons (b) number of knots
(c) number of control points (d) none of the above

6.11 The weight of each point varies according to the governing parameter.
Adding more control points allows better approximation to a given curve,
although only certain curves can be represented exactly with finite control
points;	these	curves	are
(a) control polygon (b) cubic spline
(c) B-spline (d) Bézier curve

6.12 In image processing programs, the brightness and color of the curves can be
controlled by
(a) control polygon (b) knot
(c) control point (d) none of the above

ANSWERS

6.1 (a) 6.2 (a) 6.3 (a) 6.4 (c) 6.5 (c)

6.6 (a) 6.7 (c) 6.8 (b) 6.9 (e) 6.10 (a)

6.11 (c) 6.12 (a)

215

7.1 INTRODUCTION TO SURFACES

From the CAD/CAM point of view, surfaces are as important as curves and
solids. We need to have an idea of curves for surface creation. In the same way,
surfaces form the boundaries of solids. There are two types of surfaces: analytical
surfaces and synthetic surfaces. Examples of analytical surfaces are plane surfaces,
spheres, and ellipsoids, and examples of synthetic surfaces are bicubic surfaces
and Bezier surfaces. The applications of surfaces are in the field of solid modeling
of components using CAD software, and representation of data surfaces such as
isothermal planes, stress surfaces/contours, etc.

Surface representation is just an extension of representation of curves. We can
represent a surface as a series of grid points inside its bounding curves. Surfaces
can be in 2D space (planar) or in 3D space (general surfaces). Surface can be
described using non-parametric or parametric equations. Surfaces can be
represented by equations to pass through all the data points (fitting).

7.2 SURFACE OF REVOLUTION

We know that the simplest method for generating a 3D surface is to revolve a 2D
entity, e.g., a line or a plane curve, about an axis in space. Such a surface is called

7Chapter

PARAMETRIC
REPRESENTATION
OF SURFACES

216 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

a surface of revolution. The simplest entity that can be rotated about an axis is a
point. Provided that it does not lie on the axis, rotating it by 360° (2П) yields a
circle, and rotating it through an angle yields an arc.

Next in complexity is a line segment parallel to and not coincident with the axis of
rotation. When rotated through 360° (2П) it yields a circular cylinder. The radius
of a cylinder is the perpendicular distance from the line of the rotation axis. The
length of the cylinder is the length of the line segment.

z

y

r
x

θ

z

y

θ

r

Revolving a line

Cylindrical surface

l

l

l

a

Fig. 7.1 Revolution of surfaces in parametric form

If the line segment and the axis of rotation are coplanar and the line segment is not
parallel to the rotation axis and rotated by 360°, we get a truncated right circular
cone. The radius of the cone at each end is the perpendicular distance from the
end points of the line segment on the axis of rotation. If the line is perpendicular
to the axis of rotation, we get a planar disc. If the line is perpendicular and touches
the axis, we get a solid disc.

y

x

z

a

l

θ

y

z

x
θ

Line perpendicular to the x-axis

Revolving a line
that makes an
angle a to the x-axis

y

z

x
θ

Revolving a closed polygon

Fig. 7.2 Different positions of a line after revolution

PARAMETRIC REPRESENTATION OF SURFACES 217

•	 	The	parametric	equation	for	a	point	on	the	surface	of	revolution	is	developed	
by recalling the parametric equation of the entity to be rotated.

•	 As	an	example,	P(t) = [x(t) y(t) z(t)]; 0 ≤ t ≤ 1

•	 It	is	the	function	parameter	t.

•	 Rotation	about	any	axis	causes	the	point	to	be	a	function	of	angle	φ.

•	 Thus,	a	point	of	surface	revolution	has	two	parameters,	t and φ.

 φ

Fig. 7.3 A semi-revolved surface

Fig. 7.3 shows a biparametric function.

For rotation about the x-axis of the entity initially lying in the xy plane, the surface
equation would be:

Q(t, φ) = [x(t) y(t)cos φ y(t)sin φ] ...(7.1)

Equations of a Line and a Plane in 3D space

Given a point P = (a, b, c), one can draw a vector from the origin to P;
such a vector is called the position vector of point P and its coordinates are
(a, b, c). Position vectors are usually denoted by r

.

In this section, we derive the equations of lines and planes in 3D space. We do so
by finding the conditions for a point that P = (x, y, z) or its corresponding position
vector r

 = (x, y, z) must satisfy in order to belong to the object being studied.

218 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

y

z

P(x, y, z)

P (x , y , z)o o o o
(a, b, c)

r

rro

x

line L

O

Fig. 7.4

In 3D, like in 2D, a line is uniquely determined when one point and the direction of the
line are given. Assume we are given a point P0 = (x0, y0, z0) on the line and a direction
vector v

 = (a, b, c). Our goal is to determine the equation of line L which goes through

P0 and is parallel to v

. Here a, b, c are called the direction numbers of line L.

Let P (x, y, z) be an arbitrary point on line L. We wish to find the coordinates of
P that must be satisfied to be on line L.

Vector Equation

In Fig. 7.4, we see that a necessary and sufficient condition for point P to be on

line L is that P P0

� ���

 be parallel to v

. This means there exists a scalar t such that

P P t v

P P r r

r r t v

r r t v

t

0

0 0

0

0

� ���
�

� ��� � ��

� �� �

� �� �

() = ⋅

() = −

− = ⋅

= + ⋅

= sccalar parameter

x y z x y z t a b c

x y z x at y

, , , , , ,

, , ,

() = ()+ ⋅()

() = +

0 0 0

0 00 0

0

0

0

+()+
= +

= +

= +

bt z ct

x x at

y y bt

z z ct

,

v

 = direction vector

r0

��
 = poisition vector of P0

r

 = position vector of P

PARAMETRIC REPRESENTATION OF SURFACES 219

Problem 1
Consider a line segment with end points P1[1 1 0] and P2[6 2 0] lying in the xy
plane. Rotating the line about the x-axis yields a conical surface. Determine
the points on the surface at t = 0.5, φ = 60°.

Solution

Parametric equation of the line segment from P1 to P2 is:

P(t) = [x(t) y(t) z(t)] = P1 + (P2 − P1)t; 0 ≤ t ≤ 1

With Cartesian components,

x(t) = x1 + (x2 − x1)t = 1 + 5t

y(t) = y1 + (y2 − y1)t = 1 + t

z(t) = z1 + (z2 − z1)t = 0

Using Eq. (7.1) point Q (0.5,60°) on the surface of revolution is:

Q(0.5,60°) = [1 + 5t (1 + t)cos φ (1 + t)sin φ]

= [7/3 3/2cos 60° 3/2sin 60°]

= [7/2 3/4 1.3]

= [3.5 0.75 1.3]

x = r cos θ, y = sin θ; 0 ≤ θ ≤ π

Fig. 7.5 A sphere

Parametric equation of the surface

Q(θ, φ) = [x(θ) y(θ)cos φ y(θ)sin φ]; 0 ≤ θ ≤ π; 0 ≤ φ ≤ 2π

= [r cos θ r sin θ cos φ r sin θ sin φ]

Here θ is called latitude angle and φ longitude angle

x = a cos θ; y = b sin θ; 0 ≤ θ ≤ π

220 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

Fig. 7.6 An ellipsoid

Parametric equation of the surface

Q(θ, φ) = [a cos θ b sin θ cos φ b sin θ sin φ]; 0 ≤ θ ≤ π; 0 ≤ φ ≤ 2π

Or Q(θ, φ) = [b sin θ sin φ b sin θ cos φ a cos θ]; 0 ≤ θ ≤ π; 0 ≤ φ ≤ 2π

When the axis of rotation does not pass through the center of the circle or ellipse,
we get a torus.

x = h + a cos θ; y = k + b sin θ; 0 ≤ θ ≤ 2π

z

y

x

h,k are the
coordinates
of the center
of torusv

Equation of the surface

Fig. 7.7 A torus

Q(θ, φ) = [h + a cos θ (k + b sin θ) cos θ (k + b sin θ) sin φ];
0 ≤ θ ≤ 2π; 0 ≤ φ ≤ 2π

Parametric equation of the surface

Q(θ, φ) = [aθ2 2aθ cos φ 2aθ sin φ]; 0 ≤ θ ≤ θmax; 0 ≤ φ ≤ 2π

x = aθ2; y = 2aθ; 0 ≤ θ ≤ θmax

y

x

Fig. 7.8 A paraboloid

x = a sec θ; y = tan θ; 0 ≤ θ ≤ θmax

PARAMETRIC REPRESENTATION OF SURFACES 221

x

y

Fig. 7.9 An hyperboloid

Parametric equation of the surface

Q(θ, φ) = [a sec θ b tan θ cos φ b tan θ sin φ];
0 ≤ θ ≤ θmax; 0 ≤ φ ≤ 2π

In general, any space curve can be used to generate a surface of revolution

P(t) = [T] [N] [G]

[T] = parameter vector

[N] = blending function matrix (normalized)

[G] = geometry information matrix

Now the surface of revolution is defined as:

Q t T N G S

Ss

,

cos sin

φ

φ φ

() =

 =

1 0 0 0

0 0

0 0 0 0

0 0 0 1

≤ ≤ ≤ ≤; ;min maxt t t 0 2φ π

where

T t t t

A

 =

 =

− −

− −

−

3 2 1

1

2

1 3 3 1

2 5 4 1

1 0 1 0

0 2 0 0

 =

G

P

P

P

P

1

2

3

4

222 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

7.3 SWEEP SURFACES

Problem 2

A line segment marked by (3.2 4.1 5.5) and (3 4.7 7.8) is rotated about
the z-axis through 360°. Generate the parametric equation to the surface of
revolution using t and s parameters; both range from 0 to 1. Hence find the
equation and position at Q(t, s) at t = 0.45 and s = 0.78.

Solution

y

x

z

O

P (3.2 4.1 5.5)1

P (3 4.7 7.8)2

Fig. 7.10 A line in 3D space

Given a line having endpoints P1 (3.2 4.1 5.5) and P2 (3 4.7 7.8). This line is
rotated about the z-axis to get the surface of revolution.

Parametric representation of the surface of revolution generated is given by:

Q(t, s) = [P(t)] ⋅ [Ts] ...(7.2)

where [P(t)] is parametric representation of the geometry to be revolved

[Ts] is sweep transformation

Parametric equation of the line having endpoints P1, P2, and t being a varying
parameter is given by:

P(t) = P1 + (P2 − P1)t where 0 ≤ t ≤ 1

[P(t)] = [(x(t) y(t) z(t) 1)] ...(7.3)

PARAMETRIC REPRESENTATION OF SURFACES 223

Parametric equation of the line in Cartesian form is given by:

x(t) = x1 + (x2 − x1)t

y(t) = y1 + (y2 − y1)t

z(t) = z1 + (z2 − z1)t

x(t) = x1 + (x2 − x1)t

= 3.2 + [3 − 3.2]t

= 3.2 − 0.2t

y(t) = y1 + (y2 − y1)t

= 4.1 + [4.7 − 4.1]t

= 4.1 + 0.6t

z
‒

(t) = z1 + (z2 − z1)t

= 5.5 + [7.8 − 5.5]t

= 5.5 + 2.3t

So parametric equation of the line becomes

[P(t)] = [(3.2 − 0.2t) (4.1 + 0.6t) (5.5 + 2.3t) 1]

The sweep transformation matrix for rotation by 360° or 2π rad about the z-axis
is given by

T

s s

s s
s =

() ()
− () ()

cos sin

sin cos

2 2 0 0

2 2 0 0

0 0 1 0

0 0 0 1

π π

π π

Parametric equation of the surface of revolution is obtained by putting these
values in Eq. (7.3).

Q t s t t t

s s

,

cos sin

() = −() +() +()

() ()
3 2 0 2 4 1 0 6 5 5 2 3 1

2 2π π 00 0

2 2 0 0

0 0 1 0

0 0 0 1

− () ()

sin cosπ πs s

Now we have obtained the point on this surface at t = 0.45 and s = 0.78.

224 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

So

Q 0 45 0 78 3 2 0 2 0 45 4 1 0 6 0 45 5 5 2 3 0 45 1. ,() = − () + ()() + ()()())

 ×

()() ()()
− ()()
cos . sin .

sin . cos .

2 0 78 2 0 78 0 0

2 0 78 2 0 78

π π

π π(()()

() = ()

0 0

0 0 1 0

0 0 0 1

0 45 0 78 3 41 4 37 6 54 1Q . ,

−

0 187 0 982 0 0

0 982 0 187 0 0

0 0 1 0

0 0 0 1

0 45 0

. .

. .

. ,Q78 4 93 2 53 6 54 1() = −

7.4 HELICAL SPRING

Problem 3
An helical spring is defined by x = Rcosq, y = Rsinq and z = Bq. Assume R = 5,
B = 0.8. Rotate the spring through 60° about the y-axis and hence find its
orthogonal projection in xy plane.

Solution

Parametric equation of the helical spring in a Cartesian form is given by:

x = Rcosθ

y = Rsinθ

z = Bθ

where R = 5 and B = 0.8

Parametric equation of the helical spring is given by:

[P(t)] = [(Rcosθ) (Rsinθ) Bθ 1]

PARAMETRIC REPRESENTATION OF SURFACES 225

Rotation	transformation	by	60°	about	the	y-axis is given by

R

P P t

=
−

[] = ()

cos sin

sin cos

60 0 60 0

0 1 0 0

60 0 60 0

0 0 0 1

′ []

= () () −

R

R R Bcos sin

cos sin

sin cos
θ θ θ 1

60 0 60 0

0 1 0 0

60 0 60 0

0 00 0 1

5 5 0 8 1

0 5 0 0 86 0

0 1 0 0

0 86

= () () −
cos sin .

. .

.
θ θ θ

00 0 5 0

0 0 0 1

2 5 0 688 5 4 3 0 4 1

.

. cos . sin . cos .

−() +()= θ θ θ θ
=

=

= +

x

y

z

′ θ

′ θ

′ θ θ

2 5

5

4 3 0 4

. cos

sin

. cos .

Orthogonal projection about the xy plane is given by:

1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 1

So orthogonal projection of the helical spring about the xy plane is given by:

1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 1

226 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

P′ = [(2.5cosθ − 0.688θ) sinθ (4.3cosθ + 0.4θ) 1)]

[(2.5cosθ − 0.688θ) 5sinθ 0 1)]

x′ = 2.5cosθ − 0.688θ

y′ = 5sinθ

z′ = 0

EXERCISES

1. Why are surface models required? Name some analytical surfaces and synthetic
surfaces.

2. Write the mathematical equations of B-spline and Bezier surfaces.

3. What is the application of synthetic surfaces?

4. Derive the equation of a plane in 3D space.

5. A line has endpoint coordinates as P1 [2, 3, 0] and P2	[7,	5,	0].	Rotating	the	line	
about the z-axis yields a conical surface. Determine the equation of the surface
and find the point at t = 0.4, φ = 55°.

6. Derive the surfaces generated by revolving conic sections.

7. Generate the parametric equation of the surface of revolution when a line
segment having endpoint coordinates (1.1, 4.3, 6.1) and (3.2, 7.7, 2.1) is rotated
about the y-axis through 360°. The t and s parameters range from 0 to 1. Hence
find the equation and position at θ(t, s) at t = 0.38, s = 0.81.

OBJECTIVE QUESTIONS

7.1 An example of analytical surface is
(a) bicubic surface (b) Bezier surface
(c) ellipsoid (d) none of the above

7.2 An example of synthetic curve is
(a) plane surface (b) bicubic surface
(c) Bezier surface (d) all of the above

PARAMETRIC REPRESENTATION OF SURFACES 227

7.3 If a line segment and axis of rotation are coplanar and the line segment is
not parallel to the rotation axis, then the solid generated by rotating the line
about the axis by 360° is
(a) right circular cone (b) right circular cylinder
(c) sphere (d) truncated right circular cone

7.4 When the axis of rotation does not pass through the center of the circle or
ellipse, we get a
(a) torus (b) cylinder
(c) ellipsoid (d) sphere

7.5 In sweep surfaces, the sweep parameters range from
(a) 0.1 to 1 (b) 1 to 10
(c) 0 to 1 (d) 1 to 100

7.6 In an equation of surface of revolution, q is called
(a) latitude angle (b) longitude angle
(c) angle of revolution (d) none of the above

7.7 In an equation of surface of revolution, f is called
(a) latitude angle (b) longitude angle
(c) angle of revolution (d) none of the above

ANSWERS

7.1 (c) 7.2 (b) 7.3 (d) 7.4 (a) 7.5 (c)

7.6 (a) 7.7 (b)

229

8.1 INTRODUCTION

An architect may have a graphics program to draw an entire building but be
interested in only the ground floor. A businessman may have a map of sales for
the entire nation but be interested in only the north-east and south-west. An
integrated circuit designer may have a program for displaying an entire chip
but be interested in only a few registers. Often, the computer is used in design
applications because it can easily and accurately create, store, and modify very
complex drawings. When drawings are too complex, they may be difficult to read.
In such situations it is useful to display only those portions of the drawing that
are of immediate interest. This gives the effect of looking at the image through
a window. Furthermore, it is desirable to enlarge these portions to take full
advantage of the available display surface. The method of selecting and enlarging
portions of a drawing is called windowing. The technique of not showing that part
of the drawing in which one is not interested is called clipping.

8.2 WINDOWING

Windowing is the process of extracting a portion of a database by clipping it to
the boundaries of the window. In windowing, we resolve to zoom the larger parts

8Chapter

WINDOWING AND
CLIPPING

230 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

of a picture to lower sizes and still present the whole picture. Fig. 8.1 shows 2D
windowing.

Fig. 8.1 2D windowing (clipping)

In windowing, we are not cutting off the parts beyond the screen size but are
trying to prepare them to a size where they become displayable on the screen.
In 2D, a window is specified by values for the left, right, bottom, and top edges of
a rectangle.

8.3 CLIPPING

Clipping involves determining which lines or portions of lines in the pictures
lie outside the window. Those lines or portions of lines are then discarded and
not displayed; i.e., they are not passed to the display device. Clipping is useful for
copying, moving, or deleting a portion of a scene or picture, e.g., the classical “cut
and paste” operation in a windowing system.

In clipping, each line of the display is examined to determine whether or not it
is completely inside the window, lies outside the window, or crosses a window
boundary. If it is inside, the line is displayed; if it is outside, nothing is drawn.
If it crosses the boundary, the point of intersection is determined and only that
portion which lies inside the window is displayed.

Clipping is the easiest if the edges of the rectangle are parallel to the coordinate
axes. Such a window is called a regular clipping window. Irregular windows are
also of interest to many applications. Fig. 8.2 shows the clipping process.

WINDOWING AND CLIPPING 231

Before clipping After clipping

Fig. 8.2 The effect of clipping

8.4 NEED FOR WINDOWING AND CLIPPING

The size of a CRT terminal on which pictures are displayed is limited in both
its physical dimensions and its resolution. The physical dimensions limit the
maximum size of the picture that can be displayed on the screen, and the resolution
(number of pixels/inch) limits the quantity of distinct details that can be shown. If
the size of a picture to be shown is bigger than the size of the screen, then obviously
only a portion of the picture can be displayed. The context is similar to viewing
a scene outside the window. While the scene outside is quite large, the portion
of the scene that will be visible is limited by the size of the window. Similarly, if
we presume that the screen allows us to see pictures as through a window, then
any picture whose parts lie outside the limits of the window cannot be shown,
and for algorithmic purposes, they have to be “clipped.” Note that clipping does
not become necessary only when a picture is larger than the window size. If a
smaller picture is lying in one corner of the window, parts of it may lie outside of
it, or a picture within the limits of the screen may go (partly or fully) outside the
window limits, because of transformation done on them. And what is normally
not appreciated is that as a result of transformation, parts that were previously
outside the window limits may come within limits as well. Hence, in most cases,
after each operation on pictures, it becomes necessary to check whether the
picture lies within the limits of the screen and, if not, to decide where exactly it
reaches the limits of the window and clip it at that point. Further, since it is a
regular operation in interactive graphics, the algorithms to do this will have to be
pretty fast and efficient. The other related concept is windowing. We don’t always
cut down the invisible parts of the picture to fit it into the window. The alternate

232 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

option is to scale down the entire picture to fit it into the window size, i.e., instead
of showing only a part of the picture, its dimensions can be zoomed down. In
fact, the window can be conceptually divided into more than one window and a
different picture can be displayed in each window, each of them “prepared” to fit
into the window. In a most general case, one may partly clip a picture and partly
transform it by a windowing operation. Also, since the clipped-out parts cannot
be discarded by the algorithm, the system should be able to keep track of every
window and the status of every picture in each of them and keep making changes
as required, all in real time.

8.5 VIEWING TRANSFORMATION

It is often useful to think of two models of the item we are displaying. There is the
object model and there is the image of the object which appears on the display.
When one speaks of the object, one is actually referring to a model of the object
stored in the computer. The object model is said to reside in object space. This
model represents the object using physical units of length. In the object space,
lengths of an object may be measured in any units from light-years to Angstroms.
The lengths of the image on the screen, however, must be measured in screen
coordinates.

One must have some way of converting the object space units of measure to
those of the image space (screen space). This can be done by scaling transformation.
By scaling, we can uniformly reduce the size of the object until its dimensions lie
between 0 and 1. Very small objects can be enlarged until their overall dimension
is almost 1 unit. The physical dimensions of the object are scaled until they are
suitable for display. It may be, however, that the object is too complex to show in
its entirety or that we are particularly interested in just a portion of it. We would
like to imagine a box about a portion of the object. We would only display what is
enclosed in the box. Such a box is called a window. It might also happen that we
do not wish to use the entire screen for display. We would like to imagine a box on
the screen and have the image confined to that box. Such a box in the screen space
is called a viewport.

When the window is changed, we see a different part of the object shown at the
same position on the display. If we change the viewport, we see the same part of
the object drawn at a different place on the display. In specifying both window and
viewport, we have enough information to determine the translation and scaling
transformations necessary to map from the object space to the image space. This
can be done with the following three steps. First, the object together with its
window is translated until the lower-left corner of the window is at the origin.

WINDOWING AND CLIPPING 233

Second, the object and window are scaled until the window has the dimensions of
the viewport. In effect, this converts object and window into image and viewport.
The final transformation step is another translation to move the viewport to its
correct position on the screen.

We are really trying to do two things. We are changing the window size to become
the size of the viewport (scaling) and we are positioning it at the desired location
on the screen (translating). The positioning is just moving the lower-left corner
of the window to the viewport’s lower-left corner location, but we do this in two
steps. We first move the corner to the origin and then move it to the viewport
corner location. We take two steps because while it is at the origin, we can perform
the necessary scaling without disturbing the corner ’s position.

The overall transformation which performs these three steps is called viewing
transformation.

8.6 2D CLIPPING

Fig. 8.3 shows a 2D scene and a regular clipping window. It is defined by left (L),
right (R), top (T), and bottom (B) 2D edges.

ywmax

ywmin

xvmin xvmax

ywmin

ywmax

xvmin xvmax

World coordinates Device coordinates

OO

Fig. 8.3 2D clipping window

234 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

A regular clipping window is rectangular, with its edges aligned with those
of the object space or display device. The purpose of a clipping algorithm is to
determine which points, lines, or portions of lines lie within the clipping window.
These points, lines, or portions of lines are retained for display; all others are
discarded.

Because large numbers of points or lines must be clipped for a typical scene
or picture, the efficiency of clipping algorithms is of particular interest. In many
cases, the large majority of points or lines are either completely interior to or
completely exterior to the clipping window. Therefore, it is important to be able to
quickly accept a line like ab or a point like p, or reject a line like ij or a point like q.
Points are interior to the clipping window provided xL < = x < = xR and yB < = y <
= yT where xL and xR are the left and right coordinates of the window and yB and
yT are the bottom and top coordinates of the window, respectively. The equal sign
indicates that points on the window boundary are included within the window.

Lines are interior to the clipping window and hence visible if both endpoints
are interior to the window. However, if both endpoints of a line are exterior to
the window, the line is not necessarily completely exterior to the window. If
both endpoints of a line are completely to the right of, completely to the left of,
completely above, or completely below the window, then the line is completely
exterior to the window and hence invisible.

8.7 COHEN-SUTHERLAND SUBDIVISION LINE
CLIPPING ALGORITHM

The Cohen-Sutherland subdivision line clipping algorithm is a simple and
effective procedure for determining the category into which a line segment falls
with respect to the rectangular window boundaries.

1001 1000 1010

0001 0000 0010

0101 0100 0110

Fig. 8.4 A window boundary

WINDOWING AND CLIPPING 235

This algorithm has two stages:

1. Assigning a 4-bit code to the endpoints of the line segment being checked, based
on the nine regions that include and surround the window as shown in Fig. 8.4.

Each bit is either set to 1 (true) or 0 (false), starting with the left-most one,
according to the following scheme:

Bit 1 = 1, if endpoint of the line segment is above the window.

Bit 2 = 1, if endpoint of the line segment is below the window.

Bit 3 = 1, if endpoint of the line segment is to the right side of the window.

Bit 4 = 1, if endpoint of the line segment is to the left side of the window.

2. Categorization of line segment: The endpoints of the line segment are checked with
respect to each other. The following rules are used for categorization:

Visible: If both endpoints of the line segment have region codes 0000, then the
line segment is visible. For example, line segment AB is visible in Fig. 8.5.

Invisible: If the same bit is set to 1 at both endpoints, then the line segment is
invisible or the bitwise logical “AND” of the region coded of the endpoints is not
(0000), then the line segment is invisible. For example, line segment EF with the
endpoint codes (1010) and (0010) is invisible.

Clipping candidate or indeterminate: A line segment is said to be
indeterminate it the bit is set to 1 in different locations or if the bitwise logical
AND of the region codes of the endpoints is equal to (0000). For example, line
segments CD and GH in Fig. 8.5 have endpoints (1000) and (0010). These line
segments may or may not process the window boundaries as line segment GH is
invisible but line segment CD is partially visible and must be clipped.

A

B

G
F

C

D

H
E

1000

0000

0100 01100101

0001

1001

Y

Y T

Y B

0 XL XR X

Fig. 8.5 Checking visibility

236 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

8.8 INTERSECTION CALCULATION AND CLIPPING

By solving the equations representing both the line and a window boundary, we
can easily find the points of intersection between a line segment and a window
boundary. For a rectangular window aligned with the coordinate axis, not all four
boundaries need to be checked at one time. The window boundary where the
intersection will occur can be found as follows (see Fig. 8.6):

X0

1001 1000 1010

0001 0000 0010

0101 0100 0110

C

D
A

B

Y

Y T

Y B

XL R X
Intersection with Y = Y B

Intersection with X = XT

Intersection with Y = Y T

Fig. 8.6 Intersection calculation

If bit 1 = 1, then the line segment will intersect with Y = YT = Ymax

If bit 2 = 1, then the line segment will intersect with Y = YB = Ymin

If bit 3 = 1, then the line segment will intersect with X = XR = Xmax

If bit 4 = 1, then the line segment will intersect with X = XL = Xmin

Once we know the location of points of intersection, we can solve the parametric
equation of a line segment and a selected edge of the window as follows:

Consider a line segment joining the endpoints P(X1, Y1, Z1) and Q(X2, Y2, Z2).
If the endpoints of intersection lie on the vertical edge (XL or XR) then

Xi = Xmin (XL) or Xmax (XR)

and Yi = Y1 + m (Xi − X1)

WINDOWING AND CLIPPING 237

where m = slope of the line

=
−()
−()

Y Y

X X
2 1

2 1

If the endpoints of intersection lie on the horizontal edge (YB or YT) then

Yi = Ymin (YB) or Ymax (YT)

and Xi = X1 + m (Yi − Y1)

Now we replace the endpoint (X1, Y1) with the intersecting point, eliminating the
portion of the original line that is outside the window.

The new endpoint is then assigned an update region code and the resulting line
is recategorized and handled as above. This iterative process terminates when we
finally reach a clipped line that is either visible or invisible.

8.9 MIDPOINT SUBDIVISION ALGORITHM

The Cohen-Sutherland algorithm requires the calculation of the intersection of
a line with a window edge. The direct calculation is avoided by performing a
binary search for the intersection by always dividing the line at its midpoint.
Midpoint subdivision is a useful method of numerical analysis. It is an alternative
method to find the point of intersection between the line segment and the
window edge. The line segment is separated at its midpoint and the two resulting
segments are checked for visibility and clipping. If not totally visible or invisible,
the segment is again bisected and the process continues until the intersection
with the window boundary is found within the specified tolerance. Fig 8.7 gives
an example of this process.

Let P (X1, Y1) and Q (X2, Y2) be the endpoints of a line segment PQ. Its midpoint
M (Xm, Ym) is found by the following formula:

X
X Y

Y
X Y

m

m

=
()

=
()

1 1

2 2

2

2

,

,

238 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

8.10 ADVANTAGE OF THE MIDPOINT
SUBDIVISION ALGORITHM

Midpoint subdivision is efficiently implemented in hardware because division
by two is accomplished by a simple bit shift to the right. For example (0100)
is the 4-bit binary representation of the number 4. A shift to the right yields

(0010) which represents 2
4

2
= , when implemented in hardware. The midpoint

subdivision process involves only integer values. When implemented in software,
it may be slower than the direct calculation method.

Y

X0

P 1

Pm1 P 2

Point of intersection

Fig. 8.7 The midpoint subdivision algorithm

8.11 COMPARISON BETWEEN
COHEN-SUTHERLAND AND MIDPOINT
SUBDIVISION LINE CLIPPING ALGORITHMS

The maximum time-consuming step in the clipping process is the intersection
calculation with window boundaries. The Cohen-Sutherland algorithm reduces
the calculations by first discarding lines that can be trivially accepted or rejected.
The intersection with the window boundaries is then found only for those lines
which are clipping candidates. This point is used to break the original line into
the new segments which are checked again for trivial acceptance or rejection. The
process continues until all segments (original and new) are checked.

The midpoint subdivision algorithm is a special case of the Cohen-Sutherland
algorithm, where the intersection is not calculated by equation solving. It is
calculated by a midpoint approximation method, which is suitable for hardware
complementation, very fast and efficient.

WINDOWING AND CLIPPING 239

Problem 1
Outcode(A) = 0000

Outcode(D) = 1001

D

C

B

A

ymax

ymin

Xmin Xmax

Fig. 8.8 The limits of a window

Solution
•	 No	trivial	accept/reject

Clip (A, D) with y = ymax, splitting it into (A, B) and (B, D)

•	 Reject	(B, D)

•	 Proceed	with	(A, B)

For a line with endpoint coordinates (x1, y1) and (x2, y2), the y coordinate of the
intersection point with a vertical boundary can be obtained as

y = y1 + m(x − x1) → (1)

where the x value is set either to x left or x right.

Similarly, if we are looking for the intersection with a horizontal boundary, the x
coordinate can be calculated as:

x x
m

y y= + −()1 1

1
 → (2)

where y value is set either to y bottom or y top.

Problem 2
Display the corresponding visible portion of a line leaving the outside
boundary.

Clip the line with the boundaries (−1, 1) of x and (−1, 1) of y and the points

are
1

2
,

1

4

 and 1

2
,

3

2

.

240 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

y

x
O

Fig. 8.9 A line

Solution
Given x left = − 1 and x right = 1

ytop = 1 and ybottom = − 1

Let A B=

=

1

2

1

4

1

2

3

2
, ,and

i.e., A = (0.5, 0.25) and B = (0.5, 1.5)

So the bitwise position of A is 0000 and of B is 1000. So clearly B is not in the region.

So we have to find the horizontal intercept point, i.e., x
m

y y x y= −()+

1
1 1top top, .

m = y2 − y1 = 1.5 − 0.25 = ∞
x2 − x1 = 0.5 − 0.5

 x = − + =
1

1 0 25 0 5 0 5
∞

(.) . .

y = 1

The point is (0.5, 1).

8.12 POLYGON CLIPPING

The previous discussion concentrated on clipping lines. Now we consider the case
of polygon clipping. A polygon can be considered a collection of lines. Polygons
are of the following types:

1. Convex polygon: A polygon is said to be convex if the line joining any two
interior points of the polygon lies completely inside the polygon (Fig. 8.10, left).

WINDOWING AND CLIPPING 241

2. Concave or non-convex polygon: A polygon is said to be non-convex or
concave if the line joining any two interior points of the polygon doesn’t lie
completely inside the polygon (Fig. 8.10, right).

Q

P

P

Q

Convex polygon Concave polygon

Fig. 8.10 Convex and concave polygons

By convention, a polygon with vertices P1, P2 …. PN and edges P1P2, P2P3, ….. Pi -1
Pi ….. PN or P1 is said to be positively oriented if a tour of the vertices in the given
order produces a counterclockwise circuit. If a tour of the vertices in the given
order produces a clockwise circuit, then it is negatively oriented (Fig. 8.11).

P5

P1

P3

P2

P2

P1

P4

P5

P3P4

Positive orientation Negative orientation

Fig. 8.11 Different orientations of a polygon

When a closed polygon is clipped as a collection of lines, the original closed
polygon becomes one or more open polygons or discrete lines (Fig. 8.12).

Clip rectangle

Fig. 8.12 Before clipping (closed polygon) and after clipping (open polygon)

242 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

8.13 SUTHERLAND-HODGMAN ALGORITHM

The main idea behind the Sutherland-Hodgman algorithm is that it is easy to
clip a polygon against a single edge or clipping plane. The procedure is to clip the
original polygon and each resulting intermediate polygon against a single edge of
the clipping window, each edge in succession. For simplicity we use a rectangular
window. The original polygon is defined by a list of vertices P1, P2, P2, …….., PN
which imply a list of edges P1P2, P2P3 …., PN-1 PN1 PN P1.

The output of the algorithm is a list of polygon vertices. All these vertices are on
the visible side of a clipping window since each edge of the polygon is individually
compared with the clipping window so only the relationship between a single
edge of a polygon and an edge of the window needs to be considered. Consider an
edge SP of the polygon and E being the edge of the window. There are only four
possible relationships between SP and E. These relations are shown in Fig. 8.13.

P

Q

E E E E

S
S

I

P
P

P

I

S

Cippling
plane

Cippling
plane

Visible side Visible side Visible side Visible side

Fig. 8.13 The Sutherland-Hodgman algorithm

1. If edge SP is entirely visible, that is, both S and P are on the visible side, then P
is output (Fig. 8.13).

2. If edge SP is entirely invisible, that is, both S and P are on the invisible side,
then no output is required (Fig. 8.13).

3. If edge SP is partially visible and is leaving the visible region, then S is in the
visible region and P is in the invisible region, and then the intersection of
polygon edge SP and window edge E is calculated (Fig. 8.13).

4. If the edge is entering the visible region, that is, S is in the invisible region and
P is in the visible region, then the intersection with the window edge must be
calculated. Since P is also in the visible region so it must also be output. Thus
intersection point I and endpoint P both are output (Fig. 8.13).

WINDOWING AND CLIPPING 243

The above four steps are used to determine the vertices of our intermediate
polygons. Its algorithm proceeds in stages by passing each intermediate polygon
to the next stage of the window and clipping is performed. The final edge PnP1
must be considered separately. This is done by saving the first point of the polygon
as F. Thus the final edge becomes PnF and is considered exactly as any other edge.
Fig. 8.14 gives the flowchart of this algorithm, while Fig. 8.14(a) is applied to every
vertex and Fig. 8.14(b) is used for the last vertex only.

8.14 3D CLIPPING

The two common 3D clipping volumes are a rectangular parallelepiped, i.e., a box
used for parallel or axonometric projections, and a truncated pyramidal volume,
frequently called a frustum of vision, used for perspective projections. These
volumes, shown in Fig. 8.15, are six-sided—left, right, top, bottom, near (hither),
and far (yon) planes. There is also a requirement to clip to unusual volumes, e.g.,
the cargo bay of the space shuttle.

Enter with input
Vertex P

No
Yes

First Point?

No
Does the line
SP cross the

clipping plane?

Yes

Computer inter-
section, I of SP and
the clipping plane?

Output
I

F = P

S = P

No is S on the
visible side?

Output S

Exit

Exit

Close next stage

Reset first flag

Output I

Computer inter-
secion I, of SP and
the clipping plane

Yes

NoDoes SP
cross plane?

Yes

Output ?
No

Close Polygon entity

(a) (b)

Yes

Fig. 8.14 Flowchart for the Sutherland-Hodgman algorithm polygon clipping

244 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

Far

Top

X

Right

Bottom
Near

Z

Left

Y

Right

Far

Left

Bottom

Near

Z
Y

X

(a) Parallel projection (b) Perspective projection
Fig. 8.15 3D clipping

As in 2D clipping, lines that are totally visible or trivially invisible can be
identified using an extension of the Cohen-Sutherland endpoint codes. For 3D
clipping, a 6-bit endpoint code is used. Again, the first bit is the rightmost bit.
The bits are set to 1 using an extension of the 2D scheme. First-bit set—if the
endpoint is to the left of the window, second-bit set—if the endpoint is to the right
of the window, third-bit set—if the endpoint is below the window, fourth-bit set—
if the endpoint is above the window, fifth-bit set—if the endpoint is in front of the
volume, sixth-bit set—if the endpoint is behind the volume. Otherwise, the bit is
set to zero. Again, if both endpoint codes are zero, both ends of the line are visible,
and the line is visible. Also, if the bit-by-bit logical intersection of the two endpoint
codes is not zero, then the line is totally invisible. If the logical intersection is zero,
the line may be partially visible or totally invisible. In this case it is necessary to
determine the intersection of the line and clipping volume.

Determining the endpoint codes for a rectangular parallelepiped clipping
volume is a straightforward extension of the 2D algorithm. However, the
perspective clipping volume shown in Fig. 8.16 requires additional consideration.
One technique is to transform the clipping volume into a canonical volume with
xright = 1, xleft = −1, ytop = 1, ybottom = −1, at zfar = a, where 0 < a < = 1 and the center
of projection is at the origin in a left-hand coordinate system, then the endpoint
code conditions are considerably simplified. A more straightforward technique,
which requires less distortion of the clipping volume, makes the line connecting
the center of projection and the center of perspective clipping volume coincident
with the z-axis in a right-hand coordinate system, as shown in Fig. 8.16.

WINDOWING AND CLIPPING 245

Z

X

Y
Far clipping

plane

Center of
projection

Near clipping
plane

Viewport

Geometric
field of view
(Horizontal)

Fig. 8.16 A right-hand coordinate system

8.15 MULTIPLE WINDOWING

Some systems allow the use of multiple windowing; that is, at first the image is
created by one or more window transformations on the object. Then, windows
are applied to this first image to create a second image. Further windowing
transformations may be done until the desired picture is created. Every application
of a window transformation allows the user to slice up a portion of the picture and
reposition it on the screen. Thus, multiple windowing gives the user freedom to
rearrange components of the picture. The same effect may be achieved, however,
by applying a number of single-window transformations to the object.

8.16 CHARACTER CLIPPING

Characters or text are generated in software, firmware, or hardware. Characters
can be formed from individual lines or strokes or from dot matrix (bitmap)
representations. Stroke characters generated in software are treated like any other
line; i.e., they can be rotated, translated, scaled, and clipped to arbitrary windows
in arbitrary orientations. Dot matrix character representations in software are
treated in a similar fashion. The process is, however, somewhat more tedious. In
particular, if the character box surrounding the character is clipped to an arbitrary
window, then each pixel of the character mask is compared with the clip window
to determine if it is inside or outside. If inside, it is activated; if outside, no action

246 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

is taken. Clipping of hardware-generated characters is more limited. Generally,
any character which is not totally visible is eliminated. This is accomplished
by clipping the character box against the window. If the entire box is inside the
window, the character is displayed; otherwise, it is not. When the rectangular
character box is aligned with a rectangular window, only one diagonal of the
character box is compared with the window.

When characters are generated in firmware, character clipping facilities may be
very limited or very extensive. The extent depends on the clipping algorithm also
implemented in firmware.

8.17 APPLICATIONS OF CLIPPING

•	 Clipping	is	fundamental	to	several	aspects	of	computer	graphics.

•	 	Typical	use	of	clipping	is	in	selecting	only	the	specific	information	required	to	
display a particular scene or view from a larger environment.

•	 Clipping	is	useful	for	anti-aliasing.

•	 Clipping	is	useful	in	visible	line,	visible	surface,	shadow,	and	texture	algorithms.

•	 	Advanced	 clipping	 algorithms	 are	 useful	 for	 clipping	 polygonal	 volumes	
against polygonal volumes. Such algorithms are used to perform the Boolean
operations required for simple solid modelers, e.g., the intersection and union
of simple cubical and quadric volumes.

•	 	Clipping	is	also	useful	for	copying,	moving,	or	deleting	a	portion	of	a	scene	or	
picture, e.g., the classical “cut and paste” operation in a windowing system.

EXERCISES

1. Explain the difference between a window and a viewport.

2. Explain the need of windowing and clipping.

3. Explain the Cohen−Sutherland line clipping algorithm.

4. Explain the Cohen-Hodgman polygon clipping algorithm.

5. What is aspect ratio? How do you solve the problem of aspect ratio while
performing window-to-viewport transformation?

WINDOWING AND CLIPPING 247

6. For the rectangular window boundaries given as xmin = 2, xmax = 8, ymin = 2
and ymax = 8, check the visibility of the following segments using the Cohen-
Sutherland algorithm and, if necessary, clip them against the appropriate
window boundaries.

Line EF: E (3, 10) and F (6, 12)

Line GH: G (4, 1) and H (10, 6)

7. Compare Cohen-Sutherland and midpoint subdivision line clipping
algorithms.

8. Write a short note on 3D clipping.

9. Write some of the applications of clipping.

OBJECTIVE QUESTIONS

8.1 The line 2x − y + 4 = 0, if clipped against this window, will connect the point
(a) (0, 1) and (3, 3) (b) (0, 1) and (2, 3)
(c) (1, 2) and (4, 2) (d) none of the above

8.2 In the Cohen-Sutherland clipping algorithm using region codes, a line is
already clipped if the
(a) codes of the endpoint are same
(b) logical AND of the endpoint code is not 0000
(c) logical OR of the endpoint code is 0000
(d) logical AND of the endpoint code is 0000
(e) (a) and (b)

8.3 The method of selecting and enlarging a portion of a drawing is called
(a) viewing (b) view port
(c) windowing (d) clipping

8.4 The technique of not showing that part of the drawing which one is not
interested is called
(a) windowing (b) clipping
(c) viewing (d) view port

8.5 If the edges of the rectangular window are parallel to the coordinate axes,
then such a window is called
(a) rectangular window (b) standard window
(c) parallel window (d) regular window

248 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

 8.6 Conversion from object space units of measure to those of the image space
is captured by which transformation?
(a) scaling (b) reflection
(c) translation (d) rotation

 8.7 When an entire image is to be confined into a box, then that box in the
screen space is called a
(a) window (b) view port
(c) both of these (d) none of the above

 8.8 A line clipping algorithm is presented by a
(a) visibility algorithm (b) Cohen-Sutherland algorithm
(c) midpoint subdivision algorithm (d) Cyrus-Beck algorithm
(e) all of above

 8.9 Polygon clipping algorithm is presented by
(a) Cohen-Sutherland algorithm (b) Cyrus-Beck algorithm
(c) Cohen-Hodgeman algorithm (d) none of the above

8.10 Applications of clipping include
(a) selecting a specific information
(b) antialiasing
(c) copying, moving, deleting a portion of picture
(d) all of the above

ANSWERS

8.1 (d) 8.2 (e) 8.3 (c) 8.4 (b)

8.5 (d) 8.6 (a) 8.7 (b) 8.8 (e)

8.9 (c) 8.10 (d)

249

9Chapter

GENERATION OF A
3D MODEL

9.1 INTRODUCTION

Geometric modeling has created wonders in the fields of aerospace design,
marine engineering, aesthetics, interior decoration, architectural engineering,
etc. Design can be better visualized the in the 3D view than a 2D projected view.
Existing models can be easily and quickly modified. An important step in product
design development, i.e., prototyping, is completely removed by the introduction
of geometric modeling. Hence, development cycle time is reduced considerably.
This is why newer and improved products are coming on the market at a rapid
speed. Geometric models are generated by the creation of basic geometric objects,
the transformation of elements, and the creation of geometric entities. The
geometric modeling approach involves:

1. Wireframe modeling

2. Surface modeling

3. Solid modeling

250 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

9.2 WIREFRAME MODELING

A wireframe model is a wired frame structure where wires represent the edges
of the geometry. Two approaches can be adopted to make a wireframe model,
i.e., the conventional approach and the procedural approach. In the conventional
approach, the entire geometry is placed in the data structure. Wireframe models
are created with relative ease, and they require less memory and less computation
time. Another advantage of the wireframe model is that it allows one to see the
interior of the design and check the behavior of its inner components. Testing can
be done quickly. Figure 9.1 shows a geometric figure and its wireframe model.
The limitation of wireframe modeling is that all the lines in a wireframe model are
visible to the observer. Consequently, the lines that indicate the edges of the rear
part are visible right through the front surface. This makes the image somewhat
confusing to the observer, and in some cases the model interpretation becomes
difficult, as shown in Fig. 9.2.

Fig. 9.1 Wireframe modeling

+Z

+X

+Y

E2

E1

E3

E5

V3

V4

V1

E6

E4

V2

Fig. 9.2 Wireframe models

GENERATION OF A 3D MODEL 251

Advantages of wireframe modeling

Ø Easy to construct

Ø Most economical in use of time and memory

Ø Models solid objects

Disadvantages of wireframe modeling

Ø Unable to determine computationally important information on mass
properties (e.g., volume, mass, moment, etc.) and lines of intersection between
two faces of intersecting models

Ø Cannot guarantee that the model definition is correct, complete, or
manufacturable

Ø Complex models are difficult to interpret

9.3 SURFACE MODELING

Surface models use various surface elements to represent parts of the geometry.
These surface elements are connected to form surface models. A wireframe
model can be converted into a surface model by defining the surfaces. Similar
to wireframe entities, existing CAD/CAM systems provide designers with both
analytic and synthetic surface entities. Surface models can be constructed using
a large variety of surface features often provided by CAD systems. A plane is the
most basic feature used to represent a surface element. More complex shapes
can be defined by tabulated cylinders, ruled surfaces, surfaces of revolution,
sculptured surfaces, sweep surfaces, and fillet surfaces.

Analytic entities include

•	 Plane	surfaces	

•	 Ruled	surfaces	

•	 Surfaces	of	revolution	

•	 Tabulated	cylinders	

Synthetic entities include

•	 Bicubic	Hermite	spline	surfaces	

•	 B-spline	surfaces	

•	 Rectangular	and	triangular	Bezier	patches	

252 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

•	 Rectangular	and	triangular	Coons	patches	

•	 Gordon	surfaces	

Plane surface:	This	is	the	simplest	surface.	It	requires	three	non-coincident	points	
to define an infinite plane, as shown in Fig. 9.3.

Bezier
surface

Surface
of revolution

One plane Multiple planes

Rail boundary curve

Tabulated
surface

B-spline
surface

Curve

Directris

Fig. 9.3 Surface types

Ruled (lofted) surface: This is a linear surface. It interpolates linearly between
two	boundary	curves	that	define	the	surface	(rails).	Rails	can	be	any	wireframe	
entity. This entity is ideal to represent surfaces that do not have any twists or kinks.

Surface of revolution: A surface of revolution is generated by revolving a given
curve about an axis.

Tabulated cylinder: This is a surface generated by translating a planar curve a
certain distance along a specified direction (axis of the cylinder).

GENERATION OF A 3D MODEL 253

Bezier surface: This is a surface that approximates given input data. It is different
from	the	previous	surfaces	in	that	it	is	a	synthetic	surface.	Similar	to	the	Bezier	
curve, it does not pass through all given data points. It is a general surface that
permits	 twists	 and	 kinks.	The	Bezier	 surface	 allows	 only	 global	 control	 of	 the	
surface.

B-spline surface: This is a surface that can approximate or interpolate given input
data	(Fig.	9.3).	It	is	a	synthetic	surface.	It	is	a	general	surface	like	the	Bezier	surface	
but with the advantage of permitting local control of the surface.

Advantages of surface modeling

Ø Smooth varying surfaces are used

Ø Analysis becomes easy

Ø Strength and weakness can be obtained

Ø Visual inspection can be done

Disadvantages of surface modeling

Ø More computations are required

Ø Hidden and internal surfaces cannot be seen

Ø Complex shapes having side patches cannot be viewed

9.4 SOLID MODELING

Solid modeling is the most advanced method of geometric modeling in three
dimensions. It is a representation of the solid parts of an object on a computer.
The typical geometric model is made up of wireframes that show the object in the
form	of	wires.	Providing	surface	representation	to	the	wire,	3D	views	of	geometric	
models make the object appear solid on the computer screen; this is called solid
modeling. A wireframe model and its solid model are shown in Fig. 9.4. In CAD
systems there are a number of representation schemes for solid modeling, which
include:

•	 Primitive	creation	functions	

•	 Constructive	solid	geometry	(CSG)	

•	 Boundary	representation	(BREP)	

•	 Sweeping	

254 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

X

Y

Z

Fig. 9.4 Solid modeling

9.4.1 Primitive Creation Functions
These functions retrieve a solid of a simple shape from primitive solids stored
in the program in advance and create a solid of the same shape but of the size
specified by the user.

9.4.2 Constructive Solid Geometry
Objects are represented as a combination of simpler solid objects (primitives). The
primitives, such as cube, cylinder, cone, torus, sphere, etc., are shown in Fig. 9.5.
Copies or “instances” of these primitive shapes are created and positioned.
A complete solid model is constructed by combining these “instances” using a
set	of	 specific	 logic	operations	 (Boolean	operations).	These	operations	 include	
union, difference, and intersection.

y

P

W
z

D
H x

H

y

z

x
P

R

Block Cylinder

y

PH

W
D x

z

Wedge Torus

z
y

xP

R1R0

R1

y

x

z

R H

P

Cone Sphere

z

x

y

R

P

Fig. 9.5 Primitives

GENERATION OF A 3D MODEL 255

Union:	The	sum	of	all	points	 in	each	of	 the	two	defined	sets	(logical	“OR”).	
It is also referred to as add, combine, join, merge, etc. An example of a union
operation is shown in Fig. 9.7(a).

Difference: The points in a source set minus the points common to a second
set (logical “NOT”). Set must share a common volume. It is also referred to as
subtraction, remove, cut, etc. An example of a difference operation is shown in
Fig. 9.7(b).

Intersection: Those points common to each of the two defined sets are
represented after an intersection operation (logical “AND”). The set must share
a common volume. Intersection is also referred to as common, conjoin, etc. An
example of an intersection operation is shown in Fig. 9.7(c).

BA

Fig. 9.6 More primitives

A union B A difference B A intersection B

(a) (b) (c)

Fig. 9.7 Boolean expressions

Boolean expressions in CSG

Two cylinders of different diameters are used as primitives. The cylinder
with	 larger	diameter	 is	Block	A,	 the	cylinder	with	smaller	diameter	 is	Block	B.	
Block	A	union	(∪)	Block	B	is	represented	by	Fig.	9.8(a).	The	Boolean	expression	
for this operation is represented as (A ∪	B).	Block	A	 intersection	(∩)	Block	B	
is	 represented	 by	 Fig.	 9.8(b).	 The	 Boolean	 expression	 for	 this	 operation	 is	
represented as (A ∩ B).	Block	A	difference	(−)	Block	B	is	represented	by	Fig. 9.8(c).
The	Boolean	 expression	 for	 this	 operation	 is	 represented	 as	 (A	−	 B).	 Block	 B	
difference (−)	Block	A	is	represented	by	Fig.	9.8(d).	The	Boolean	expression	for	
this	operation	is	represented	as	(B	− A).

256 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

(a) (b) (c) (d)

Fig. 9.8 Boolean operations

CSG expression and tree

Every solid constructed using the CSG technique has a corresponding
CSG expression, which in turn has an associated CSG tree. The CSG tree is a
representation	of	the	final	design.	Recall	that	the	same	solid	may	have	different	
CSG	 expressions/trees.	 For	 example,	 three	 blocks	 (Block	 1,	 Block	 2,	 Block	 3)	
are	 shown	 in	Fig.	9.9.	Many	combinations	of	Boolean	expressions	are	possible	
to	 achieve	 the	 final	 result.	 One	 might	 punch	 a	 hole	 from	 Block	 1	 first	 and	
then	compute	the	union	of	this	result	with	Block	2,	or	Block	1	and	Block	2	are	
connected	by	union	and	then	compute	the	difference	of	this	result	with	Block	3.	
As a result, CSG representations are not unique.

1 2 3

Fig. 9.9 CSG trees

The	Boolean	expression	for	the	solid	model	shown	in	Fig.	9.9(a) can be written as:

Result 1 = ({Block 1 ∪ Block 2} ∪ Block 3)

This expression can be converted to an expression tree of the design. The CSG
expression	tree	for	Result	1	is	shown	in	Fig.	9.10.

Fig. 9.9 A solid model using union (Result 1)

GENERATION OF A 3D MODEL 257

T, R, S T, R, S T, R, S

Union

Union

Fig. 9.10 CSG expression tree for Result 1

The	Boolean	expression	for	the	solid	model	shown	in	Fig.	9.11	can	be	written	as:	

Result 2 = ({Block 1 ∪ Block 2} − Block 3)

The	CSG	expression	tree	for	Result	2	is	shown	in	Fig.	9.12.	

Fig. 9.11 A solid model using union (Result 2)

T, R, S T, R, S T, R, S

Union

Difference

Fig. 9.12 CSG expression tree for Result 2

258 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

Another example of solid modeling using CSG is shown in Fig. 9.12. It has three
primitives: a cubical block, a cylinder, and a sphere. First, the block and the
cylinder are united with each other and sphere is subtracted (difference) from the
result.

Fig. 9.12 Solid modeling using CSG

9.4.3 Boundary Representation
Solid models are defined by their enclosing surfaces or boundaries. This technique
consists of geometric information about the faces, edges, and vertices of an object
with	the	topological	data	on	how	these	are	connected.	Boundary	representation,	
or	B-rep	for	short,	can	be	considered	an	extension	of	the	wireframe	model.	The	
merit	of	a	B-rep	is	that	a	solid	is	bounded	by	its	surface	and	has	its	interior	and	
exterior.	The	surface	of	a	solid	consists	of	a	set	of	well-organized	faces,	each	of	
which is a piece of some surface, e.g., a surface patch. Faces may share vertices and
edges that are curve segments. Therefore, this is an extension to the wireframe
model by adding face information to the latter. There are two types of information:
topological and geometric. Topological information provides the relationships
among vertices, edges, and faces, similar to that used in a wireframe model. In
addition to connectivity, topological information also includes the orientation
of edges and faces. Geometric information is usually equations of the edges and
faces. The orientation of each face is important. Normally, a face is surrounded
by	a	set	of	vertices.	Using	the	right-handed	rule,	the	ordering	of	these	vertices	for	
describing a particular face must guarantee that the normal vector of that face is
pointing to the exterior of the solid. Normally, the order is counterclockwise. If
that face is given by an equation, the equation must be rewritten so that the normal
vector at every point on the part that is being used as a face points to the exterior

GENERATION OF A 3D MODEL 259

of the solid. Therefore, by inspecting normal vectors, one can immediately tell the
inside and outside of a solid. This orientation must be done for all faces. Fig. 9.13
shows boundary representation in topological and geometric information.

The part

F1

E2

E1

E6E3

E7

E4

E8F3

V3

F2 F5

V2

V1

F4

E5

V5

V4

Fig. 9.13 Boundary representation

The B-Rep Scheme

The	basis	of	a	B-rep	scheme	is	that	a	solid	model	is	bounded	by	a	set	of	faces.	
A solid model contains faces, vertices, loops, edges, bodies, etc. Only boundary
surfaces of the model are stored and the volumetric properties are calculated by
the Gauss divergence theorem. This theorem relates surface integrals to volume
integrals. Using this scheme, a variety of solids depending on the primitive
surfaces (curved, planar, sculptured) can be modeled. There are two types of solid
models in the scheme:

1. Polyhedral solids:	Polyhedral	models	consist	of	 straight	edges,	e.g.,	a	non-
cylindrical	surface,	box,	wedge,	combination	of	two,	or	more	non-cylindrical	
bodies.	Polyhedral	solids	can	have	blind	or	through	holes	and	2D	or	3D	faces,	
with no dangling edges. A valid polyhedral abides by Euler’s equation:

F − E + V − L = 2(B − G)

where

F = face

E = edge

V = vertices

L = inner loop

B = bodies

G = through holes

260 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

A simple polyhedral has no holes; each face is bounded by a single set of connected
edges (bounded by one loop of edges).

Euler’s equation for a simple polyhedral can be reduced to: F − E + V = 2

Fig. 9.14 A simple polyhedral

For the box shown in Fig. 9.14, F = 6, E = 12, and V =	8.	

Examples of other types of polyhedral are shown in Fig. 9.15.

(a) (b)

Fig. 9.15 (a) A polyhedral with two loops; (b) a polyhedral with a blind hole

2. Curved solids: A curved solid is similar to a polyhedral object but it has
curved faces and edges. Spheres and cylinders are examples of curved solids
(Fig. 9.16).

 Sphere: F = 1, V = 1, E = 0 Cylinder: F = 3, E = 3, V= 2
Fig. 9.16 Curved solids

GENERATION OF A 3D MODEL 261

Primitives:	In	B-rep,	a	model	is	made	up	of	the	following	primitives:	

•	 Vertex: a point in space

•	 	Edge:	 a	 finite,	 non-intersecting	 curve	 bounded	 by	 two	 vertices	 that	 are	 not	
necessarily distinct

•	 	Face:	 a	 finite	 connected,	 non-self-intersecting	 region	 of	 a	 closed	 oriented	
surface, bounded by one or more loops

•	 	Loop:	an	ordered	alternating	sequence	of	vertices	and	edges.	It	defines	a	non-
self-intersecting	closed	space	curve,	which	may	be	a	boundary	of	a	face	

•	 Body: an entity that has faces, edges, and vertices; a minimum body is a point

A	B-rep	scheme	is	closely	related	to	the	traditional	drafting	method.	

9.4.4 Sweeping
Sweeping is a modeling function in which a planar closed domain is translated
or revolved to form a solid. When the planar domain is translated, the modeling
activity is called translational sweeping; when the planar region is revolved, it is
called swinging, or rotational sweeping, as shown in Fig. 9.17.

Director curve

Swept solid

Generator surface

Swept solid

Axis of revolution

Fig. 9.17 Sweeping

9.5 ADVANTAGES OF SOLID MODELING

•	 	Solid	modeling	is	one	of	the	most	important	applications	of	CAD	software	and	
it has become increasingly popular of late. Solid modeling helps the designer to
see the designed object as if it were the real manufactured product.

•	 	Solid	modeling	can	be	seen	from	various	directions	and	in	various	views.	This	
helps the designer to be sure that the object looks exactly as they want it to be. It
also allows the designer to see what other changes can be made to the object.

262 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

9.6 APPLICATIONS OF SOLID MODELING

Solid modeling is used for creating not only solid models of machine parts, but
also buildings, electric circuits, and even the human body Solid modeling software
is used for a large variety of applications, including:

1. Engineering: Engineering design professionals use solid modeling to see what
the designed product will actually look like. Architects and civil engineers use
it to see the layout of a designed building.

2. Entertainment industry: The animation industry has been using solid
modeling to create characters and objects.

3. Medical industry: Modern imaging scanners create solid models of the
internal body parts design medical devices, etc.

9.7 RENDERING

Rendering	is	a	technique	of	creating	realistic	images	on	a	computer	monitor.	The	
image we see on a computer monitor is made up of a large number of illuminated
dots called pixels. Creating a picture involves a number of stages. In the first
stage, models of objects are generated, then viewing specifications and lighting
conditions are selected. The creation of realistic pictures is an important goal in
fields such as simulation, design, entertainment, research, and education. Examples
of simulation systems include flight simulators, designs of 3D objects such as
automobiles	and	buildings,	and	computer-generated	cartoons	 in	entertainment.	
Realistic	images	have	become	an	essential	tool	in	research	and	education.

The color of any specific point in a model is a function of the physical material
properties of that surface. Two general shading algorithms are used for this
purpose:

1. Local illumination: Local illumination algorithms describe only how
individual surfaces reflect or transmit light. They predict the intensity, spectral
character, and distribution of the light being reflected from that surface. Only
the light coming directly from the light source itself is considered in shading.

2. Global illumination: Global illumination is commonly used to describe
all forms of indirect light. It is often assumed to encompass all of global
illumination.

GENERATION OF A 3D MODEL 263

Fig. 9.18 Diffuse reflection

Fig. 9.19 Specular reflection

9.7.1 Scanline Rendering
Scanline rendering is used to demonstrate a visible surface. It is widely used for
movie effects, due to its speed and realism. It has the side effect of only being able
to “see” one pixel at a time, and therefore cannot create shadows naturally.

9.7.2 Ray Trace Rendering
A ray is traced back from the eye position, through the pixel on the monitor, until
it intersects with a surface. When an imaginary line drawn from the eye, through
a pixel, into a scene strikes a polygon, three things happen. First, the color and
brightness values are calculated based on direct illumination from lights directly
striking that polygon. Next, the angles of reflection and refraction are calculated,
as	 shown	 in	 Fig.	 9.20.	 The	 ray	 tracing	 process	 repeats	 once	 again,	 and	 so	 on,	
until a maximum number of iterations is reached or until no more surfaces are
intersected. When all the rays have completed their journeys, the intensity and

264 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

color	values	are	combined	and	the	pixel	is	painted.	Ray	tracing	is	very	versatile.	
It can accurately account for the global illumination characteristics of direct
illumination, shadows, specular reflections (e.g. mirrors), and refraction through
transparent materials.

Fig. 9.20 Ray trace rendering

Advantages of ray tracing

•	 Reflections	and	refraction	are	calculated	accurately	

•	 Shadows	can	be	calculated	as	well	

Disadvantages of ray tracing:

•	 The	process	can	be	computationally	expensive	

•	 Not	all	behaviors	of	light	are	accounted	for	

9.7.3 Radiocity Rendering
This is the ability of a material’s physical properties to reflect light and to impinge
upon other materials. Consider the intersections of two walls at a corner (i.e.,
orthogonal to each other), one painted white and the other red. If a red object is in
front of a white object, some of the red will appear on the white background. The
rate at which energy leaves a surface is called radiocity. It is the sum of the rates
at which the surface emits energy and reflects or transmits it from that surface or
other surfaces. Fig. 9.21 shows rendering using radiocity.

GENERATION OF A 3D MODEL 265

Fig. 9.21 Rendering using radiocity

•	 	All	energy	emitted	or	reflected	by	every	surface	is	accounted	for	by	its	reflection	
from or absorption by other surfaces.

•	 	The	amount	of	light	distributed	from	each	mesh	element	to	every	other	mesh	
element is calculated; the final radiocity values are stored for each element of
the mesh

Applications of radiocity

•	 Generating	images	that	are	much	closer	to	reality	

•	 Remote	viewing	of	buildings	

•	 Animation	

•	 Producing	photorealistic	models	and	lifelike	video	games	

EXERCISES

1. What do you mean by solid modeling? What are the techniques of solid
modeling used in practice?

2. Explain wireframe modeling. Explain its advantages.

3. Write a short note on the approaches of solid modeling.

266 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

4. What do you mean by surface modeling?

5. Write the applications of rendering.

OBJECTIVE QUESTIONS

9.1 A solid model based on the topological notion that a physical object is
bounded by a set of faces is called
(a) wireframe model (b) surface of revolution model
(c) boundary representation model (d) constructive solid geometry model

9.2 In boundary representation, the topological database is created by performing
(a) Euler operation (b) Euclidean calculations
(c)	 Boolean	operations	 (d) set theory

9.3 A solid model based on the topological notion that a physical object can be
divided into a set of primitives is called
(a) wireframe model (b) surface of revolution model
(c) boundary representation model (d) constructive solid geometry

9.4 The process of development of a solid model by combining primitives using
Boolean	operators	is	called	
(a) transformation (d) Euler operation
(c) set theory (d) Euclidean operation

9.5 Common volumes shared by two primitives are obtained by following which
Boolean	operation?
(a) union (b) intersection
(c) difference (d) division

9.6	 Difference	Boolean	operation	is	also	referred	as	logical	
(a)	OR	 (b) AND
(c) NAND (d) NOT

9.7	 Union	Boolean	operation	is	also	referred	as	logical	
(a)	OR	 (b) AND
(c) NAND (d) NOT

9.8	 Intersection	Boolean	operation	is	also	referred	as	logical	
(a)	OR	 (b) AND
(c) NAND (d) NOT

GENERATION OF A 3D MODEL 267

 9.9 CSG expression for union operation is given by
(a) A ∪	B	 (b) A ∩	B	
(c) A −	B	 (d) A +	B	

9.10 CSG expression for intersection operation is given by
(a) A ∪	B	 (b) A −	B	
(c) A +	B	 (d) A ∩	B	

9.11 In sweeping, what type of generator surface is translated or revolved to form
a solid model?
(a) planar open domain (b) planar closed domain
(c)	 non-planar	open	domain	 (d)	 non-planar	closed	domain	

9.12 Scan line, ray trace, and radiocity are types of
(a) solid modeling (b) clipping
(c) rendering (d) windowing

9.13 Advantages of wireframe modeling are
(a) it requires less memory (b) less computational time
(c) it allows to see the interior of the design (d) all of the above

9.14 Inability to determine computational information on mass properties is the
disadvantage of which 3D modeling technique?
(a) wireframe modeling (b) solid modeling
(c) constructive solid geometry (d) boundary representation

9.15	 Plane	surfaces,	ruled	surfaces,	and	surface	of	revolution	are	examples	of	
(a) synthetic entities (b) analytical entities
(c) both (a) and (b) (d) neither (a) nor (b)

9.16	 	Hermite	spline	surfaces,	B-spline	surfaces,	Bezier	patches,	and	Coon	patches	
are examples of
(a) synthetic entities (b) analytical entities
(c) both (a) and (b) (d) neither (a) nor (b)

9.17 In a CAD system, solid modeling schemes include
(a) primitive creation function (b) constructive solid modeling
(c) sweeping (d) boundary representation
(e) all of the above

9.18 In CSG, objects are represented as a combination of simpler solid objects
called
(a) derivatives (b)	 Boolean	operators	
(c) models (d) primitives

268 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

9.19	 B-rep	is	an	extension	by	adding	face	information	to	
(a) wireframe modeling (b) solid modeling
(c) constructive solid geometry (d) none of the above

ANSWERS

 9.1 (c) 9.2 (a) 9.3 (d) 9.4 (c) 9.5 (b)

 9.6 (d) 9.7 (a) 9.8 (b) 9.9 (a) 9.10 (d)

9.11 (b) 9.12 (c) 9.13 (d) 9.14 (a) 9.15 (b)

9.16 (b) 9.17 (e) 9.18 (d) 9.19 (a)

269

10Chapter

PROJECTIONS

10.1 INTRODUCTION

3D viewing operations are more complex than 2D viewing, not only because of the
additional dimensions, but also because of limited display surface. In 2D, simple
mapping produces an image; in 3D, there are many options depending on how the
model is to be viewed—front, side, top, back. There is also a mismatch between
the 3D model and the 2D image. To overcome all these differences, projection
must be used to map the 2D projection plane; various types of projection are
used in order to generate multiple views of a model. Therefore, projection is an
important concept of the 3D viewing process.

10.2 PROJECTIONS

The problem of projecting a n-dimensional object into a 2D surface has been
studied by engineers, architects, and artists for many years. In general, projections
transform points in a coordinate system of n-dimensions into points in a
coordinate system of a dimension less than n.

270 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

Computer graphics has long been used for studying n-dimensional objects by
projecting them into 2D for viewing. We shall here limit our discussion to the
projection from 3D to 2D.

The projection of a 3D object is defined by straight rays, emanating from the
center of projection (CP), passing through each point of the object and intersecting
a projection (or view) plane to form the projection. In general, the center of
projection is at a finite distance from the projection plane. In some cases, the
center of projection tends to be at infinity. Fig. 10.1 shows two different types of
projections.

The class of projections with which we deal here is known as planar geometric
projection because projection is onto a plane rather than onto a curved surface
and uses straight rather than curved projection. Planar geometric projections can
be divided into two classes: perspective and parallel. The distinction lies in the
relation of the center of projection to the projection plane.

Projectors

CP

P

QQ

P

Projection plane

(a)

Projectors

CP at infinity

Projection plane

Q

PP

Q

(b)

Fig. 10.1 (a) Perspective projection, (b) parallel projection

PROJECTIONS 271

If the center of projection is at a finite distance from projection plane, then the
projection is perspective, as shown in Fig. 10.1(a). Now, as the center of projection
moves towards infinity, the projectors become parallel; hence the projection is
called parallel, as shown in Fig. 10.1(b).

10.2.1 Perspective Projection
The center of projection is located at a finite distance from the projection plane.
When a perspective projection is defined, its center of projection is explicitly
specified: the center of projection is a point and has homogeneous coordinates
of the form (x, y, z, 1). The visual effect of a perspective projection is similar to
that of a photographic system and of the human visual system, called perspective
foreshortening. The size of perspective projection of an object varies inversely
with the distance of that object from the center of projection. The perspective
projection of objects tends to look realistic, but it is not useful for recording
the exact shape and measurements of the objects. Distance cannot be taken
from the projection. The perspective projection gives a realistic image but loses
the true dimensions. A perspective projection is described mathematically by
prescribing the following:

1. Center of projection (CP): A point where lines of projection (which are not
parallel to the projection plane) appear to meet. The eye of the artist generally
acts as a center of projection when they prepare realistic images of 3D objects.

2. The view plane or projection plane: The view plane is determined by:

(a) Reference point R0 (X0, Y0, Z0)

(b) Unit vector, N
→

 = n1î + n2 ĵ + n3k̂ which is normal to the plane

3. The location of an object: A point P(x, y, z) located in the world coordinate
system. The objective of perspective projection is to determine the image
point P′ (x′, y, z′) on the view plane—see Fig. 10.2.

272 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

N (Normal vector)

YRo

Projectors
P (X , Y , Z)

P (X, Y, Z)

Object location

QQ
CP

Projection plane

Z

X

Fig. 10.2 Location of the object and the image in the perspective projection

Perspective projections are characterized by:

(a) Perspective foreshortening: This is the illusion that objects and lengths
appear smaller as their distance from the center of projection increases. The
size of an object (d) varies inversely with the distance of that object (r) from

the center of projection, that is, d
r

∞

1
.

(b) Vanishing points: The perspective projection of any set of parallel lines that
are not parallel to the projection plane coverage to a point called the vanishing
point (VP). In 3D, the parallel lines meet only at infinity, so the VP can be
thought of as the projection of a point at infinity. Therefore, there is an infinity
of VPs, one for each of the infinity of directions in which a line can be oriented.

If a set of lines (projectors) is parallel to one of the three principal axes, the
VP is called an axis vanishing point (or principal vanishing point). There are
almost three such points, corresponding to the number of principal axes cut by
the projection plane.

For example, if the projection plane cuts only the z-axis (i.e. normal to it) then
the z-axis has a VP, because lines parallel to the x- or y-axis are also parallel to the
projection planes and then have no VP. Perspective projections are categorized
by their number of principal VPs, i.e., by the number of axes the projection plane
cuts. Thus, there are three types of perspective projections.

PROJECTIONS 273

1-point perspective projection: 1-point perspective projection occurs when the
projection plane is perpendicular to one of the principal axes (let it be z-axis). In
this case the center of projection is located along one of the three coordinate axes.
The other two centers are at infinity. So horizontal lines remain horizontal and
vertical lines remain vertical. Fig. 10.3 shows two different 1-point perspective
projections of a cube. In this case, lines parallel to the x- and y-axis do not
converge; only lines parallel to the z-axis do so.

Y

Z

X

Z-axis VP

Fig. 10.3 1-point perspective projection

O

Z

X

Z-axis VP

Y

Fig. 10.4 2-point perspective projection

274 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

2-point perspective projection: 2-point perspective projection occurs when the
projection plane intersects two principal axes. Let these axes be z- and x-axis.
Therefore, lines parallel to the y-axis do not converge in the projection. 2-point
perspective projection is used in architectural, engineering, industrial design, and
advertising drawings. Fig. 10.4 shows the construction of a 2-point perspective
projection.

3-point perspective projection: 3-point perspective projection occurs when the
projection plane intersects all three principal axes. These are used less frequently,
since they add little realism beyond that afforded by the 2-point perspective. See
Fig. 10.5.

Y

X

VP3
VP2

Z

VP1

Fig. 10.5 3-point perspective projection

10.2.2 Parallel Projection
The center of projection is located at infinity in parallel projection, because all
of the projections (or lines of projections) are parallel to each other. The parallel
projection is a less realistic view because perspective foreshortening is lacking,
although there can be different constant foreshortening along each axis. Parallel
projection can be used to preserve the true dimensions of an object but does not
produce a realistic picture. Parallel projections have been used by engineers and
draftsmen in order to create working drawings.

In parallel projections, the projection (or image) is obtained at a location on
the projection plane where the parallel lines of projection intersect the projection
plane. These lines of projections are drawn from the object location along a
particular direction. The direction of projection is explicitly given (see Fig. 10.6).

PROJECTIONS 275

Y

P

Q

V (direction of projection)

X
O

Z

Parallel projectors

Q

PProjection
plane

Parallel
projection
(image)

Fig. 10.6 Parallel projection

Depending on the relation between direction of projection and normal to the
projection plane, the parallel projections are categorized into two types:

(a) Orthographic parallel projection

(b) Oblique parallel projection

10.2.2.1 Orthographic Parallel Projection

In orthographic parallel projection, directions of projection (lines of projection)
are perpendicular to the plane of projection as shown in Fig. 10.7. Orthographic
parallel projections are mainly of two types.

Projection of
plane

Direction of view

Fig. 10.7 Orthographic projection

276 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

(і) Multi-view orthographic parallel projection: The projection plane is
perpendicular to the principal axis and the direction of projection is parallel
to the principal axis. These projections are mainly of the following types:

(a) front elevation

(b) top elevation or plane elevation

(c) side elevation

Fig. 10.8 Multi-view orthographic parallel projection

Fig. 10.8 shows the construction of multi-view orthographic parallel
projection. These types of projections are generally used in engineering
drawing to project multiple views (or faces) of machine parts or buildings.
Since each projection depicts only one face of an object, the 3D nature of the
projected object can be difficult to deduce.

(ii) Axonometric orthographic parallel projections: Projection planes are not
perpendicular to a principal axis and therefore show multiple faces of an
object at once. Axonometric orthographic parallel projection is shown in
Fig. 10.9. It can resemble perspective projection in this way, but differs in
that the shortening is uniform, rather than being related to the distance
from the center of projection.

PROJECTIONS 277

Plane of
projection

Direction of view

Fig. 10.9 Axonometric orthographic parallel projections

Parallelism of lines is preserved but angles are not; distance can be measured
along each principal axis with different scale factors. Axonometric orthographic
parallel projections are categorized into three types:

(a) Isometric: The isometric projection is commonly used. In this case, the
projection plane normal (i.e. the direction of projection) makes equal
angles with each principal axis. The projection plane normal is represented
in the following vector form:

nx î + ny ĵ + nzk̂

n n n

n n n

x y z

x y z

= =

± = ± = ±

z

y

120°120°

120°

x

Fig. 10.10 Isometric projectors

There are just eight directions that satisfy the above conditions. Therefore, in this
type of projection, the angles between the principal axes are all equal to 120° as
shown in Fig. 10.10. In isometric projection all three principal axes are equally

278 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

foreshortened, due to this measurement along the axes being made to the same
scale (“iso” means equal and “metric” means measure).

(b) Diametric: In this case the direction of projection makes equal angles with
exactly two of the principal axes.

(c) Trimetric: In this case, the direction of projection makes unequal angles
with all the principal axes.

10.2.2.2 Oblique Projection

The projections are inclined with respect to the projection plane; also, one of
the faces of the object is kept parallel to the projection plane. Fig. 10.11 shows
oblique projection. Oblique projection combines the properties of multi-view
orthographic projection with those of axonometric projection. The projection
plane is normal to the principal axes, so the projection of the face of the object
must be parallel to the projection plane. This allows the measurement of angles
and distances. Oblique projection is categorized into two types:

Fig. 10.11 Oblique projection

(a) Cavalier: In this case the direction of projection makes a 45° angle with the
projection plane. Due to this, the projection of a line perpendicular to the
projection plane has the same length as the line itself. That is, there is no
foreshortening along this direction. Fig. 10.12 shows cavalier projection of
the unit cube into the xy plane and shows all the edges of the cube project
at unit length. If the direction of projection makes a 45° angle with the
projection plane, then the direction of projection is given by the vector,
and if angle is 30° then the direction of projection is given by the vector.

PROJECTIONS 279

X

Z

Y

O 1

1
1/2

45°

Fig. 10.12 Cavalier projection in the xy plane

(b) Cabinet projection: In this case the lines of projection make tan-1(2) = 63.4°
angle with the projection plane; due to this, the lines perpendicular to
the projection plane project at one half their length. Cabinet projection
produces more realistic image, due to foreshortening. Fig. 10.13 shows
cabinet projection of a unit cube into the xy plane.

X

1

1O

1

1/2

30°

Z

Y

Fig. 10.13 Cabinet projection

Edges parallel to the x-axis and the y-axis are projected at unit length and the
edge is parallel to z-axis at half of the original length. If the line of projection
makes an angle of 45° with the projection plane, then the direction of projection
of given by the vector:

V
→

=
2

4
 î + 2

4
 ĵ - k̂

280 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

If the angle is 30° then the direction of projection is given by the vector:

V
→

=
3

4
 î + 1

4
 ĵ - k̂

10.2.3 Differentials Between Parallel Projection and
Perspective Projection

Perspective Projection Parallel Projection

1. The center of projection is at a finite
distance from the projection plane.

 The center of projection is at
an infinite distance from the
projection plane.

2. The lines of projection or projectors
converge to a point; that is, lines
of projection appear to meet at a
point on the view plane called the
vanishing point.

Projectors are parallel.

3. To define perspective projection,
we explicitly specify the center of
projection.

To define parallel projection we
specify the direction of projection.

4. The visual effect is similar to that of
a photographic system and of the
human visual system; this feature is
known as perspective shortening.

This is used by drafters and
organizers to create a working
drawing of an object which
preserves its scale and shape.

5. The size of the projection of an
object varies inversely with the
distance of that object from the center
of projection.

The scale and shape of an object is
preserved; there can be different
constant foreshortening along
each axis.

6. Perspective projection of an object
looks realistic, due to perspective
foreshortening and vanishing points.

Parallel projection is a less
realistic view because perspective
foreshortening is lacking.

7. Perspective projection is not useful
for recording the exact shape and
measurement of the objects.

Parallel projection is useful for
exact measurement and shape of
objects.

8. Perspective projections are categorized
by their number of principal vanishing
points and by the number of axes the
projection plane cuts.

Parallel projections are categorized
by the relation between the
direction of projection and normal
to the projection plane.

PROJECTIONS 281

Mathematical description of a parallel projection

In order to determine parallel projection we have to prescribe:

1. the direction of projection, which is prescribed by the given vector V
→

.
If V

→
 is normal to the projection plane then the parallel projection is called

orthographic, otherwise it is called oblique.

2. the projection plane or view plane, which is specified by its reference point R0
(X0, Y0, Z0) and normal vector N

→
 = n1î + n2 ĵ + n3k̂ .

3. the location P(x, y, z) of an object in the world coordinate system. Now our
objective is to determine the location of image P′(x′, y′, z′) by using the above
three parameters (see Fig. 10.14).

Image point

P

(x , y , z)

Projection
Plane

Ro N

V

P (x, y, z)
Object
location

(Direction of
projection)

z

x

y

Fig. 10.14 Location of an object and an image in parallel projection

10.3 SOLVED PROBLEMS

Problem 1

Obtain standard perspective projection onto the xy plane.

Solution

Consider a point P(z, y, z) in space as shown in Fig. 10.15. Let P′(x′, y′, 0) be the
perspective projection of P(x, y, z) onto the xy plane, with the center of projection
along the z-axis at a distance d from the projection plane.

282 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

P

QQ

P
Projectors

CP

Projection plane

Fig. 10.15 Perspective projection

The perspective projection of point p can be found as follows:

(i) Looking along the y-axis towards the origin as CAP and COP´ are similar. See
Fig. 10.16.

Therefore,

x

x

d

d z

′
=

−

or x
dx

d z
′ =

−
 ...(10.1)

Z
OAC (0, 0, d)

P (x, y, z)

X

P (x , y , 0)

Fig. 10.16 Direction of view along the y-axis

(ii) Looking along the x-axis towards the origin as CBP and COP´ are similar. See
Fig. 10.17.

PROJECTIONS 283

Z
OBC (0, 0, d)

P (x, y, z)

P (x , y , 0)

Y

Fig. 10.17 Direction of view along the x-axis

Therefore,

y

y

d

d z

′
=

−

or y
dx

d z
′ =

−

 ...(10.2)

On the basis of Eqs (10.1) and (10.2), the projected point becomes

x y z
dx

d z

dy

d z

x y z x y z

d

d

′ ′ ′

′ ′ ′

1 0 1

1 1

0 0 0

0 0 0

 =
− −

 = 00 0 0 1

0 0 0

−

d

[P′] = [P][MPER k̂]

where

[MPER k̂] =

d

d

d

0 0 0

0 0 0

0 0 0 1

0 0 0

−

284 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

If the center of projection is located along the x-axis, then the perspective
projection matrix MPERi becomes:

[MPER î] =

0 0 0 1

0 0 0

0 0 0

0 0 0

−

d

d

d

If the center of projection is located along the y-axis, the perspective projection
matrix MPER j becomes:

[MPER ĵ] =

d

d

d

0 0 0

0 0 0 1

0 0 0

0 0 0

−

Problem 2
A tetrahedron is defined by the coordinates of its vertices as follows
P1 (3, 4, 0), P2(1, 0, 4), P3(2, 0, 5), P4(4, 0, 3). Find the perspective projection
onto the projection plane at z = 0. The center of projection should be located at
d = −5 (as negative side of z-axis).

Solution

Here d = −5

Therefore, perspective matrix along the z-axis is given by:

[MPER k̂] =

−

−

−

5 0 0 0

0 5 0 0

0 0 0 1

0 0 0 5

The projected points are obtained as follows:

P P P P P P P P1 2 3 4 1 2 3 4
′ ′ ′ ′

 =) [MPER k̂]

=

−

−

−

3 4 0 1

1 0 4 1

2 0 5 1

4 0 3 1

5 0 0 0

0 5 0 0

0 0 0 0

0 0 0 5

PROJECTIONS 285

=

− − −

− −

− −

− −

=

15 20 0 5

5 0 0 9

10 0 0 10

20 0 0 8

3 4 0 1

5

9
0 0 1

1 0 0 11

10

4
0 0 1

P P P P1 2 3 43 4 0
5

9
0 0 1 0 0

10

4
0 0

′ ′ ′ ′(, ,), , , , (, ,), , ,

Problem 3

Find the standard perspective projection of a unit cube on the xy plane with
d = 5 units. Refer to Fig. 10.18.

Solution

Here d = 5

E (0, 1, 1)

B (0, 1, 0)
F (1, 1, 0)

G (1, 1, 1)

O (0, 0, 0) A (1, 0, 0)
X

Z

C (0, 0, 1) D (1, 0, 1)

Y

Fig 10.18 A unit cube

286 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

The perspective projection along the z-axis is given by:

MPER k̂ =

5 0 0 0

0 5 0 0

0 0 0 1

1 0 0 5

−

The unit cube is represented by the following matrix:

P =

0 0 0 1

1 0 0 1

0 1 0 1

0 0 1 1

1 0 1 1

1 1 0 1

0 1 1 1

1 1 1 1

O

A

B

C

D

E

F

G

The projected points are determined as follows:

[P′] = [P][MPER k̂]

=

0 0 0 1

1 0 0 1

0 1 0 1

0 0 1 1

1 0 1 1

1 1 0 1

0 1 1 1

1 1 1 1

−

5 0 0 0

0 5 0 0

0 0 0 1

1 0 0 5

PROJECTIONS 287

=

0 0 0 5

5 0 0 5

0 5 0 5

0 0 0 4

5 0 0 4

5 5 0 5

0 5 0 4

5 5 0 4

P′ =

0 0 0 1

1 0 0 1

0 1 0 1

0 0 0 1

5

4
0 0 1

1 1 0 1

0
5

4
0 1

5

4

5

4
0 1

O

A

B

C

D

E

F

G

′

′

′

′

′

′

′

′

Therefore, projected points are O′(0, 0, 0), A′(1, 0, 0), B′(0, 1, 0), C′(0, 0, 0),

D′
5

4
0 0, ,

 , E'(1, 1, 0), F ′ 0

5

4
0, ,

 G′

5

4

5

4
0, ,

Problem 4

Obtain standard 2-point and 3-point perspective projections.

Solution

In order to obtain 2-point and 3-point perspective projections, it is required to
create a 4 × 4 homogeneous coordinate transformation matrix with two or three
of the top three elements on the fourth row having non-zero values. This matrix is
then multiplied by an orthographic projection matrix.

288 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

For a 2-point perspective projection, the transformation matrix is written as:

1 0 0

0 1 0

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0

0 0 1

0 0 0 1

p

q q

r

or

For a 3-point perspective projection, the transformation matrix is written as:

1 0 0

0 1 0

0 0 1

0 0 0 1

p

q

r

These matrices can also be obtained by concatenation of the appropriate 1-point
perspective transformation matrices:

1 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0

0 0 1 0

0 0 0 1

p

q

=

1 0 0

0 1 0

0 0 1 0

0 0 0 1

p

q

EXERCISES

1. Obtain 2-point and 3-point perspective projections of a unit cube.

2. Obtain 2-point perspective projection of a unit cube obtained by rotating
the cube 30° about the y-axis and translating it by (0, 3, −3). The center of
projection is at (0, 0, 2).

3. Obtain perspective projection of any point in the plane z = d by standard
perspective projection.

4. By standard perspective projection, obtain the projection of a line joining the
points a(2, 2, 2d) and b(−1, 1, 0), when the projection plane is z = d and center
of projection is at (0, 0, d).

PROJECTIONS 289

OBJECTIVE QUESTIONS

10.1 Subcategories of orthographic projection are
(a) isometric, diametric, trimetric (b) cavalier, cabinet, isometric
(c) cavalier, cabinet (d) isometric, cavalier, trimetric

10.2 When the center of projection is located at a finite distance from the
projection plane, this projection method is called
(a) orthographic projection (b) perspective projection
(c) parallel projection (d) planar geometric projection

10.3 Perspective projections are characterized by perspective foreshortening in
which
(a) the object appears bigger as its distance from the center of projection

increases
(b) the object appears smaller as its distance from the center of projection

increases
(c) the object appears unchanged as its distance from the center of

projection changes
(d) none of the above

10.4 In 3D perspective projection, the vanishing point can be thought of as
(a) finite distance
(b) infinity
(c) two times the distance of the object from the projection plane
(d) three times the distance of the object from the projection plane

10.5 1-point perspective projection occurs when the projection plane is
(a) parallel to one of the principle axes
(b) inclined to one of the principle axes
(c) perpendicular to one of the principle axes
(d) none of the above

10.6 In parallel projection, the center of projection is located at
(a) finite distance
(b) infinity
(c) two times the distance of the object from the projection plane
(d) four times the distance of the object from the projection plane

290 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

 10.7 In orthographic parallel projection, the direction of projectors is
(a) parallel to the plane of projection
(b) inclined to the plane of projection
(c) obliqued to the plane of projection
(d) perpendicular to the plane of projection

 10.8 A multi-view projection method is
(a) isometric (b) diametric
(c) triametric (d) none of the above

 10.9 Projection planes are not perpendicular to a principle axis and show
multiple faces of an object at once; such a type of projection is called
(a) orthographic projection (b) oblique projection
(c) parallel projection (d) axonometric projection

10.10 In oblique projection, projectors are
(a) parallel to the plane of projection
(b) inclined to the plane of projection
(c) perpendicular to the plane of projection
(d) none of the above

10.11 In cavalier projection, the angle between the projector and the plane of
projection is
(a) 30° (b) 45°
(c) 63.4° (d) 120°

ANSWERS

 10.1 (a) 10.2 (b) 10.3 (b) 10.4 (b) 10.5 (c)

 10.6 (b) 10.7 (d) 10.8 (d) 10.9 (d) 10.10 (b)

10.11 (b)

291

11Chapter

GRAPHICS
PROGRAMS IN
C LANGUAGE

11.1 PROGRAM-1

/* PROGRAM FOR LINE GENERATION USING DDA
ALGORITHM */

#include<stdio.h>

#include<conio.h>

#include<graphics.h>

#include<math.h>

void main()

{

 int xA, xB, yA, yB, dx, dy, i;

 float xincr, yincr, x, y, DENO;

 int gd = DETECT,gm;

 initgraph(&gd, &gm,"c:\\tc\\bgi");

 printf("Enter the start pt co-ordinates");

 scanf("%d%d", &xA, &yA);

 printf("Enter end point co-ordinates");

 scanf("%d%d", &xB, &yB);

 dx = xB − xA;
 dy = yB − yA;
 if (abs (dy) < = abs (dx))

 DENO = abs(dx);

 else

 DENO = abs(dy);

 xincr = dx/DENO;

292 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

 yincr = dy/DENO;

 x = xA;

 y = yA;

 for(i = 0; i< = abs (DENO); i++)

 {

 putpixel(floor(x), floor(y), 2);

 x = x + xincr;

 y = y + yincr;

 }

 getch();

}

11.2 PROGRAM-2

/* PROGRAM FOR LINE GENERATION USING
BRESENHAM’S LINE GENERATION ALGORITHM */

#include<graphics.h>

#include<stdio.h>

#include<math.h>

#include<conio.h>

void main()

{

 int xa, ya, xb, yb;

 int dx, dy;

 int x, y;

 int p;

 int i;

 int signx, signy;

 int gd = DETECT,gm;

 initgraph(&gd, &gm,"c: \\tc\\bgi");

 printf("enter start point coordinate");

 scanf("%d%d", &xa, &ya);

 printf("enter end point coordinate");

 scanf("%d%d", &xb, &yb);

 dx = xb − xa;
 dy = yb − ya;
 x = xa;

 y = ya;

 if (dx > = 0)

 signx = +1;

 else

 signx = −1;
 if (dy > = 0)

 signy = +1;

 else

 signy = −1;
 if (abs(dy) < abs(dx))

 {

 p = (2 * dy * signy) − (dx * signx);
 for (i = 0; i < = dx * signx; i++)

GRAPHICS PROGRAMS IN C LANGUAGE 293

 {

 putpixel(floor(x),floor(y),RED);

 if (p < 0)

 {

 x = x + signx;

 y = y;

 p = p + (2 * dy * signy);

 }

 else

 {

 x = x + signx;

 y = y + signy;

 p = p + (2 * dy * signy) − (2 * dx * signx);
 }

 }

 }

 else

 {

 p = (2 * dx * signx − dy * signy);
 for(i =0; i < = dy * signy; i++)

 {

 putpixel(floor(x),floor(y),RED);

 if (p < 0)

 {

 x = x;

 y = y + signy;

 p = p + 2 * dx * signx;

 }

 else

 {

 x=x+signx;

 y=y+signy;

 p=p+(2*dx*signx)-(2*dy* signy);

 }

 }

 }

 getch();

 }

11.3 PROGRAM-3

/* PROGRAM FOR CIRCLE GENERATION USING
BRESENHAM’S MIDPOINT CIRCLE GENERATION
ALGORITHM */

#include<conio.h>

#include<stdio.h>

#include<math.h>

#include<graphics.h>

void main()

294 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

{

 int xc, yc, R, p, i;

 int x, y;

 int gd = DETECT, gm;

 initgraph(&gd, &gm,"c:\\tc\\bgi");

 printf("Enter the co-ordinates of Centre of Circle");

 scanf("%d%d",&xc,&yc);

 printf("Enter Radius of Circle");

 scanf("%d", &R);

 x = 0;

 y = R;

 p = 1 − R;
 for (i = 0; x < = y; i++)

 {

 putpixel((x + xc), (y + yc), CYAN);

 if(p < 0)

 {

 x = x + 1;

 y = y;

 p = p + 2 * x + 3;

 }

 else

 {

 x = x + 1;

 y = y − 1;
 p = p + 2 * x − 2 * y + 5;
 }

 putpixel((x + xc), (−y + yc), CYAN);
 putpixel((−x + xc), (y + yc), CYAN);
 putpixel((−x + xc), (−y + yc), CYAN);
 putpixel((y + xc), (x + yc), CYAN);

 putpixel((y + xc), (−x + yc), CYAN);
 putpixel((−y + xc), (x + yc), CYAN);
 putpixel((−y + xc), (−x + yc), CYAN);
 }

 getch();

}

11.4 PROGRAM-4

/* PROGRAM FOR ELLIPSE GENERATION USING
BRESENHAM’S MIDPOINT ELLIPSE GENERATION
ALGORITHM */

#include<graphics.h>

#include<math.h>

#include<stdio.h>

#include<conio.h>

void main()

GRAPHICS PROGRAMS IN C LANGUAGE 295

{

 int rx, ry, xc, yc, x1, y1, x2, y2, p1, p2, i, j;

 float gd = DETECT,gm;

 initgraph(&gd, &gm,"c:\\tc\\bgi");

 printf("enter the center of the ellipse");

 scanf("%d%d", &xc, &yc);

 printf("enter semi_major and semi_minor axis");

 scanf("%d%d", &rx, &ry);

 x1 = 0;

 y1 = ry;

 p1 = (ry^2 − ry*rx^2);
 for(i = 0; x1 * ry^2 < y1*rx^2; i++)

 {

 if(p1 < 0)

 {

 x1 = x1+1;

 y1 = y1;

 p1 = p1 + (2*x1 + 3) * ry^2;

 }

 else

 {

 x1 = x1 + 1;

 y1 = y1 − 1;
 p1 = p1 + (2 * x1 + 3) * ry^2 + (2 − 2*y1) * rx^2;
 }

 putpixel(x1 + xc, y1 + yc, 1);

 putpixel(−x1 + xc, y1 + yc, 1);
 putpixel(x1 + xc, −y1 + yc, 1);
 putpixel(−x1 + xc, −y1 + yc, 1);
 }

 x2 = rx;

 y2 = 0;

 p2 = rx^2 − rx*ry^2;
 for(j = 0; x2*ry^2 > y2*rx^2; j++)

 {

 if(p2 < 0)

 {

 x2 = x2;

 y2 = y2 + 1;

 p2 = p2 + (2*y2 + 3)*rx^2;

 }

 else

 {

 x2 = x2 − 1;
 y2 = y2 + 1;

 p2 = p2 + (2 * y2 + 3) * rx^2 − (2 * x2 − 2) * ry^2;
 }

 putpixel(x2 + xc, y2 + yc, 1);

 putpixel(−x2 + xc, y2 + yc, 1);
 putpixel(x2 + xc, −y2 + yc, 1);
 putpixel(−x2 + xc, −y2 + yc, 1);
 }

 getch();

}

296 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

11.5 PROGRAM-5

/* PROGRAM FOR 2D TRANSLATION TRANSFORMATION */
#include<graphics.h>

#include<stdio.h>

#include<conio.h>

#include<math.h>

void main()

{

 int n = 5, i, b[10], tx, ty;
 int a[] = {100, 100, 200, 100, 200, 200, 100, 200, 100, 100};
 int gd = DETECT, gm;

 initgraph(&gd, &gm,"c:\\tc\\bgi");

 drawpoly(n, a);

 printf("Enter The Value of tx&ty");

 scanf("%d%d", &tx, &ty);

 for(i = 0; i< =1 0; i = i + 2)

 {

 b[i] = a[i] + tx;
 }

 for(i = 1; i< = 9;i = i + 2)

 {

 b[i] = a[i] + ty;
 }

 setcolor(4);

 drawpoly(n, b);

 getch();

}

11.6 PROGRAM-6

/* PROGRAM FOR 2D ROTATION TRANSFORMATION */
#include<graphics.h>

#include<stdio.h>

#include<conio.h>

#include<math.h>

void main()

{

 int n = 5, i, b[10];
 float o;

 int a[] = {100, 100, 200, 100, 200, 200, 100, 200, 100, 100};
 int gd = DETECT, gm;

 initgraph(&gd, &gm,"c:\\tc\\bgi");

 drawpoly(n, a);

 printf("enter the value of angle o");

 scanf("%f", &o);

 o = o*(3.14/180);

 for (i = 0; i < = 10; i = i + 2)

GRAPHICS PROGRAMS IN C LANGUAGE 297

 {

 b[i] = a[i] * cos(o) − a[i + 1]*sin(o);
 b[i + 1] = a[i] * sin(o) + a[i + 1] * cos(o);
 }

 setcolor(3);

 drawpoly(n, b);

 getch();

}

11.7 PROGRAM-7

/* PROGRAM FOR TRANSLATION FOLLOWED BY
SCALING TRANSFORMATION */

#include<graphics.h>

#include<stdio.h>

#include<conio.h>

#include<math.h>

void main()

{

 int n = 5, i, b[10], tx, ty, sx, sy;
 int a[] = {100,100,200,100,200,200,100,200,100,100};
 int gd = DETECT,gm;

 initgraph(&gd, &gm," c:\\tc\\bgi");

 drawpoly(n, a);

 printf("Enter The Value Of tx&ty&sx&sy");

 scanf("%d%d%d%d", &tx, &ty, &sx, &sy);

 for(i = 0; i < = 10; i = i + 2)

 {

 b[i] = a[i] * sx + (1 − sx) * tx;
 }

 for(i = 1; i < = 9; i = i + 2)

 {

 b[i] = a[i] * sy + (1 − sy) * ty;
 }

 setcolor(5);
 drawpoly(n, b);

 getch();

}

/* PROGRAM FOR SCALING ABOUT A POINT */
#include<stdio.h>

#include<conio.h>

#include<graphics.h>

#include<math.h>

void main ()

{

 int n = 5, b[10], sx, sy, i;
 int a[10] = {100, 100, 200, 100, 200, 200, 100, 200, 100, 100};

298 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

 int gd = DETECT,gm;

 initgraph(&gd, &gm," c:\\tc\\bgi");

 drawpoly(n, a);

 printf("Enter the value of sx and sy");

 scanf("%d%d", &sx, &sy);

 for(i = 0; i < = 9; i + = 2)

 {

 b[i] = a[i] * sx + 100 * (1 − sx);
 b[i + 1] = a[i + 1] * sy + 100 * (1 − sy);
 }

 setcolor(3);

 drawpoly(n,b);

 getch();

}

/* PROGRAM FOR ROTATION ABOUT A POINT */
#include<stdio.h>

#include<conio.h>

#include<graphics.h>

#include<math.h>

void main ()

{

 int n = 5, b[10], i;
 int a[10]={100, 100, 200, 100, 200, 200, 100, 200, 100, 100};
 float ang;

 int gd = DETECT, gm;

 initgraph(&gd, &gm," c:\\tc\\bgi");

 drawpoly(n, a);

 printf("Enter the value ang");

 scanf("%f", &ang);

 for(i = 0; i < = 9; i + = 2)

 {

 b[i] = a[i] * cos(ang) - a[i + 1] * sin(ang) + 100 *
(1 - cos(ang)) + 100 * sin(ang);

 b[i + 1] = a[i] * sin(ang) + a[i + 1] * cos(ang) - 100 *
sin(ang) − 100 * (cos(ang) − 1);

 }

 setcolor(3);

 drawpoly(n,b);

 getch();

}

/* PROGRAM FOR SHEAR TRANSFORMATION */
#include<stdio.h>

#include<conio.h>

#include<graphics.h>

#include<math.h>

void main()

{

 int n = 5, b[10], shx, i;
 int a[10] = {100, 100, 200, 100, 200, 200, 100, 200, 100, 100};

GRAPHICS PROGRAMS IN C LANGUAGE 299

 int gd = DETECT,gm;

 initgraph(&gd, &gm," c:\\tc\\bgi");

 drawpoly(n, a);

 printf("enter the value of shx");

 scanf("%d", &shx);

 for(i = 0; i < = 3; i + = 2)

 {

 b[i] = a[i];
 b[i + 1] = a[i + 1];
 }

 for(i = 4; i < = 7; i + = 2)

 {

 b[i] = a[i] + shx;
 b[i + 1] = a[i + 1];
 }

 for(i = 8; i < = 9; i + = 2)

 {

 b[i] = a[i];
 b[i + 1] = a[i + 1];
 }

 setcolor(4);

 drawpoly(n, b);

 getch();

}

/* PROGRAM FOR REFLECTION TRANSFORMATION */
#include<stdio.h>

#include<conio.h>

#include<math.h>

#include<graphics.h>

void main()

{

int n = 5, b[10], i, c, x;
int a[10] = {100, 100, 200, 100, 200, 200, 100, 200, 100, 100};
float ang;

int gd = DETECT, gm;

initgraph(&gd, &gm," c:\\tc\\bgi");

drawpoly(n, a);

printf("enter the value of x and y intercept");

scanf("%d%d", &x, &c);

printf("enter the angle");

scanf("%f", &ang);

line(0, c, x, 0);

ang = ang * 3.14159/180;
for(i = 0; i < = 9; i + = 2)

{

b[i] = a[i] * cos(2 * ang) − a[i + 1] * sin(2 * ang) + c * sin(2 * ang);
b[i + 1] = − a[i] * sin(2 * ang) − a[i + 1] * cos(2 * ang) + c *

(1 − cos(2 * ang));
}

drawpoly(n,b);

getch();

}

300 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

11.8 PROGRAM-8

/* PROGRAM FOR ALL 3D TRANSFORMATIONS */
#include<stdio.h>

#include<conio.h>

#include<graphics.h>

#include<math.h>

int maxx,maxy,midx,midy;

void axis()

{

getch();

cleardevice(); //clear the graphics screen

line(midx, 0, midx, maxy);

line(0, midy, maxx, midy);

}

void main()

{

int gd, gm, x, y, z, o, x1, x2, y1, y2;

detectgraph(&gd, &gm); //determine graphics driver

initgraph(&gd, &gm," c:\\tc\\bgi"); //initialize the graphics system

setfillstyle(0, getmaxcolor()); //set fill pattern & colour

maxx = getmaxx();

maxy = getmaxy();

midx = maxx/2;

midy = maxy/2;

axis();

bar3d(midx + 100, midy − 150, midx + 60, midy − 100,10,1);
printf("\Enter the translation factor");

scanf("%d%d", &x, &y);

axis();

printf("After translation");

bar3d(midx + 100, midy − 150, midx + 60, midy − 100,10,1); //draw a bar
bar3d(midx + x + 100, midy - (y + 150), midx + x + 60, midy −

(y + 100), 10, 1); //draw a bar

axis();

bar3d(midx + 100, midy − 150, midx + 60, midy − 100,10,1); //draw a bar
printf("Enter the scaling factor");

scanf("%d%d%d", &x, &y, &z);

axis();

printf("After scaling");

bar3d(midx + 100, midy − 150, midx + 60, midy − 100,10,1); //draw a bar
bar3d(midx + (x * 100), midy − (y * 150),midx + (x * 60), midy −

(y * 100), 10 * z, 1);

axis();

bar3d(midx + 100, midy − 150, midx + 60, midy − 100,10,1);
printf("Enter the rotation angle");

scanf("%d", &o);

x1 = 50 * cos(o * 3.14/180) − 100*sin(o * 3.14/180);
y1 = 50 * sin(o * 3.14/180) + 100 * cos(o * 3.14/180);
x2 = 60 * cos(o * 3.14/180) − 90 * sin(o * 3.14/180);
y2 = 60 * sin(o * 3.14/180) + 90 * cos(o * 3.14/180);
axis();

GRAPHICS PROGRAMS IN C LANGUAGE 301

printf("After rotating about Z-axis");

bar3d(midx + 100,midy − 150, midx + 60, midy − 100,10,1);
bar3d(midx + x1, midy − y1, midx + x2, midy − y2, 10,1);
axis();

printf("After rotating about x-axis");

bar3d(midx + 100, midy − 150, midx + 60, midy − 100,10,1); //draw a bar
bar3d(midx + 100, midy − x1, midx + 60, midy − x2, 10,1);
axis();

printf("After rotating about Y-axis");

bar3d(midx + 100, midy − 150, midx + 60, midy − 100,10,1); //draw a bar
bar3d(midx + x1, midy − 150, midx + x2, midy − 100,10,1); //draw a bar
getch();

closegraph(); //shutdown current graphics system

}

/* PROGRAM FOR ALL 3D TRANSFORMATIONS */
#include<graphics.h>

#include<stdio.h>

#include<math.h>

#include<conio.h>

#include<stdlib.h>

int x1, y1, x2, y2;

void draw_cube(double edge[20][3])
{

int i;

cleardevice();

for (i = 0; i < 19; i++)

{

x1 = edge[i][0] + edge[i][2]*(cos(2.3562));
y1 = edge[i][1] − edge[i][2]*(sin(2.3562));
x2 = edge[i + 1][0] + edge[i + 1][2]*(cos(2.3562));
y2 = edge[i + 1][1] − edge[i + 1][2]*(sin(2.3562));
line(x1 + 320, 240 − y1, x2 + 320, 240 − y2);
}

line(320, 240, 320, 25);
line(320, 240, 550, 240);
line(320, 240, 150, 410);
getch();

}

void trans(double edge[20][3])
{

int a, b, c, i;

printf("Enter the Translation Factors:");

scanf("%d%d%d", &a, &b, &c);

for(i = 0; i < 20; i++)

{

edge[i][0] + = a;
edge[i][0] + = b;
edge[i][0] + = c;
} draw_cube(edge);

}

void scal(double edge[20][3])

302 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

{

int a, b, c, i;

printf("Enter Scaling factor:");

scanf("%d%d%d", &a, &b, &c);

for(i = 0; i < 20; i++)

{

 edge[i][0] = edge[i][0]*a;
 edge[i][1] = edge[i][1]*b;
 edge[i][2] = edge[i][2]*c;
}

draw_cube(edge);

}

void rotate(double edge[20][3])
{

 int ch, i;

 float temp, theta, temp1;

 printf("\nrotation about \n1.x axis\n2.y axis \n3.z axis\nenter your

choice");

 scanf("%d", &ch);

 switch (ch)

 {

 case 1:

 printf("\n Enter the angle=\t");

 scanf("%f",&theta);

 theta = (theta*3.14)/180;

 for(i = 0; i < 20; i++)

 {

 edge[i][0] = edge[i][0];
 temp = edge[i][1];
 temp1 = edge[i][2];
 edge[i][1] = temp*cos(theta) − temp1*sin(theta);
 edge[i][2] = temp*sin(theta) + temp1*cos(theta);
 }

 draw_cube(edge);

 break;

 case 2:

 printf("\n Enter The Angle : =");

 scanf("%f", &theta);

 theta = (theta*3.14)/180;

 for(i = 0; i < 20; i++)

 {

 edge[i][1] = edge[i][1];
 temp = edge[i][0];
 temp1 = edge[i][2];
 edge[i][0] = temp*cos(theta) + temp1*sin(theta);
 edge[i][2] = −temp*sin(theta) + temp1*cos(theta);
 } draw_cube(edge);

 break;

 case 3:

 printf(" Enter The Angle: =");

 scanf("%f", &theta);

 theta = (theta*3.14)/180;

 for(i = 0; i < 20; i++)

GRAPHICS PROGRAMS IN C LANGUAGE 303

 {

 edge[i][2]=edge[i][2];
 temp=edge[i][0];
 temp1=edge[i][1];
 edge[i][0]=temp*cos(theta)-temp1*sin(theta);
 edge[i][1]=temp*sin(theta)+temp1*cos(theta);
 }

 draw_cube(edge);

 break;

 }

 }

 void reflection(double edge[20][3])
 {

 int ch,i;

 double temp,theta,temp1;

 printf("\nreflection about \n1.x axis\n2.y axis \n3.z axis\n enter

your choice");

 scanf("%d",&ch);

 switch (ch)

 {

 case 1:

 for(i = 0; i < 20; i++)

 {

 edge[i][0] = edge[i][0];
 edge[i][1] = −edge[i][1];
 edge[i][2] = −edge[i][2];
 }

 draw_cube(edge);

 break;

 case 2:

 for(i = 0; i < 20; i++)

 {

 edge[i][1] = edge[i][1];
 edge[i][0] = −edge[i][0];
 edge[i][2] = −edge[i][2];
 }

 draw_cube(edge);

 break;

 case 3:

 for(i = 0; i < 20; i++)

 {

 edge[i][2] = edge[i][2];
 edge[i][0] = −edge[i][0];
 edge[i][1] = −edge[i][1];
 }

 draw_cube(edge);

 break;

 }

 }

 void main()

 {

 int gd=DETECT,gm,i,ch;

 char choice;

 do

304 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

 {

 double edge1[20][3]= { 100,0,0, 100,100,0, 0,100,0, 0,100,100,
0,0,100, 0,0,0, 100,0,0, 100,0,100, 100,75,100, 75,100,100,
100,100,75, 100,100,0, 100,100,75, 100,75,100, 75,100,100,
0,100,100, 0,100,0, 0,0,0, 0,0,100, 100,0,100 };

 initgraph(&gd,&gm,"t:\\bgi");

 cleardevice();

 printf("\n1.Translation"); printf("\n2.Scaling"); printf("\

n3.Rotation"); printf("\n4.reflection"); printf("\n Enter your

choice:");

 scanf("%d",&ch);

 draw_cube(edge1);

 switch(ch)

 {

 case 1:

 trans(edge1);

 break;

 case 2:

 scal(edge1);

 break;

 case 3:

 rotate(edge1);

 break;

 case 4:

 reflection(edge1);

 break;

 }

 getch();

 cleardevice();

 printf("Do you want to continue : [y/n] ");
 choice = getch();

 }

 while(choice = = ‘Y’||choice = = ‘y’);

}

11.9 PROGRAM-9

/* COHEN-SUTHERLAND 2D LINE CLIPPING */
#include<stdio.h>

#include<graphics.h>

int i,, xwmin, xwmax, ywmin, ywmax;

int x1, y1, x2, y2, code1[4], code2[4], flag, flag1;
int newx1, newx2, newy1, newy2;

void inter();

int reject();

void main()

{

int gd = DETECT, gm;

initgraph(&gd, &gm,"");

printf("Enter the window coordinates\n");

scanf("%d %d %d %d", &xwmin, &ywmin, &xwmax, &ywmax);

GRAPHICS PROGRAMS IN C LANGUAGE 305

printf("enter the line coordinates\n");

scanf("%d %d %d %d", &x1, &y1, &x2, &y2);

printf("Before clipping\n");

setcolor(RED);

rectangle(xwmin, ywmin, xwmax, ywmax);

line(x1, y1, x2, y2);

if(x1 < xwmin)code1[0] = 1;
if(x1 > xwmax)code1[1] = 1;
if(y1 < ywmin)code1[2] = 1;
if(y1 > ywmax)code1[3] = 1;
if(x2 < xwmin)code2[0] = 1;
if(x2 > xwmax)code2[1] = 1;
if(y2 < ywmin)code2[2] = 1;
if(y2 > ywmax)code2[3] = 1;
getch();

clrscr();

printf("After clipping\n");

setcolor(BLUE);

rectangle(xwmin, ywmin, xwmax, ywmax);

flag = accept();

if(flag = = 1)

{

setcolor(BLUE);

line(x1, y1, x2, y2);

}

else flag1 = reject();

if(flag1 = = 1)

{

return;

}

else

{

inter();

newx1 = x1;

newy1 = y1;

newx2 = x2;

newy2 = y2;

printf("%d %d %d %d", newx1, newy1, newx2, newy2);

line(newx1, newy1, newx2, newy2);

}

getch();

}

int accept()

{

for(i = 0; i < 4; i++)

{

if(code1[i] = = 0 && code2[i]==0)
flag = 1;

}

flag = 0;

return(flag);

}

int reject()

306 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

{

for(i = 0; i < 4; i++)

{

if(code1[i] ! = 0 && code2[i] ! = 0)
flag 1 = 1;

}

flag 1 = 0;

return(flag 1);

}

void inter()

{

m = (y2 − y1)/(x2 − x1);
if(code1[0] = = 1)
{

y1 = y1 + (xwmin − x1)*m;
x1 = xwmin;

}

if(code1[1] = = 1)
{

y1 = y1 + (xwmax − x1)*m;
x1 = xwmax;

}

if(code1[2] = = 1)
{

x1 = x1 + ((ywmin − y1)/m);
y1 = ywmin;

}

if(code1[3] = = 1)
{

x1 = x1 + ((ywmax − y1)/m);
y1 = ywmax;

}

if(code2[0] = = 1)
{

y2 = y2 + (xwmin − x2)*m;
x2 = xwmin;

}

if(code2[1]==1)
{

y2 = y2 + ((xwmax − x2)*m);
x2 = xwmax;

}

if(code2[2] == 1)
{

x2 = x2 + ((ywmin − y2)/m);
y2 = ywmin;

}

if(code2[3] == 1)
{

x2 = x2 + ((ywmax − y2)/m);
y2 = ywmax;

}

return(x1, y1, x2, y2);

}

GRAPHICS PROGRAMS IN C LANGUAGE 307

11.10 PROGRAM-10

/* COHEN-HOGGMAN POLYGON CLIPPING */
#include <stdio.h>

#include <graphics.h>

#include <conio.h>

#include <math.h>

#include <process.h>

#define TRUE 1

#define FALSE 0

typedef unsigned int outcode;

outcode compoutcode(float x,float y);

enum { TOP = 0x1,

BOTTOM = 0x2,

RIGHT = 0x4,

LEFT = 0x8

};

float xmin,xmax,ymin,ymax;

void clip(float x0, float y0, float x1, float y1)

{

outcode outcode0,outcode1,outcodeout;

int accept = FALSE,done = FALSE;

outcode0 = CompOutCode(x0, y0);

outcode1 = CompOutCode(x1, y1);

do

{

 if(!(outcode0|outcode1))
 {

 accept = TRUE;

 done = TRUE;

 }

 else

 if(outcode0 & outcode1)

 done = TRUE;

 else

 {

 float x, y;

 outcodeOut = outcode0?outcode0:outcode1;

 if(outcodeOut & TOP)

 {

 x = x0 + (x1 − x0) * (ymax − y0)/(y1 − y0);
 y = ymax;

 }

 else if(outcodeOut & BOTTOM)

 {

 x = x0 + (x1 − x0)*(ymin − y0)/(y1 − y0);
 y = ymin;

 }

 else if(outcodeOut & RIGHT)

 {

 y = y0 + (y1 − y0) * (xmax − x0)/(x1 − x0);

308 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

 x = xmax;

 }

 else

 {

 y = y0 + (y1 − y0) * (xmin − x0)/(x1 − x0);
 x = xmin;

 }

 if(outcodeOut = = outcode0)

 {

 x0 = x;

 y0 = y;

 outcode0 = CompOutCode(x0, y0);

 }

 else

 {

 x1 = x;

 y1 = y;

 outcode1 = CompOutCode(x1, y1);

 }

 }

 }while(done==FALSE);

 if(accept)

 line(x0, y0, x1, y1);

 outtextxy(150, 20, "POLYGON AFTER CLIPPING");
 rectangle(xmin, ymin, xmax, ymax);

 }

 outcode CompOutCode(float x, float y)

 {

 outcode code = 0;

 if(y > ymax)

 code| = TOP;

 else if(y < ymin)

 code| = BOTTOM;

 if(x > xmax)

 code| = RIGHT;

 else if(x < xmin)

 code| = LEFT;

 return code;

 }

 void main()

 {

 float x1, y1, x2, y2;

 /* request auto detection */

 int gdriver = DETECT, gmode, n, poly[14], i;
 clrscr();

 printf("Enter the no of sides of polygon:");

 scanf("%d", &n);

 printf("\nEnter the coordinates of polygon\n");

 for(i = 0; i < 2 * n; i++)

{

 scanf("%d", &poly[i]);
}

poly[2*n] = poly[0];
poly[2*n + 1] = poly[1];

GRAPHICS PROGRAMS IN C LANGUAGE 309

printf("Enter the rectangular coordinates of clipping window\n");

scanf("%f%f%f%f", &xmin, &ymin, &xmax, &ymax);

/* initialize graphics and local variables */

initgraph(&gdriver, &gmode, "c:\\tc\\bgi");

outtextxy(150, 20, "POLYGON BEFORE CLIPPING");
drawpoly(n + 1, poly);

rectangle(xmin, ymin, xmax, ymax);

getch();

cleardevice();

for(i = 0; i < n; i++)

clip(poly[2*i], poly[(2*i) + 1], poly[(2*i) + 2], poly[(2*i) + 3]);
getch();

restorecrtmode();

}

311

12Chapter

OPENGL WITH
COMPUTER
GRAPHICS

12.1 INTRODUCTION

OpenGL (Open Graphics Library) is the computer industry’s standard application
program interface (API) for defining 2D and 3D graphic images. Prior to
OpenGL, any company developing a graphical application typically had to rewrite
the graphics part of it for each operating system and had to be cognizant of the
graphics hardware as well. With OpenGL, an application can create the same
effects in any operating system using any OpenGL-adhering graphics adapter.

OpenGL specifies a set of “commands” or immediately executed functions.
Each command directs a drawing action or causes special effects. A list of these
commands can be created for repetitive effects. OpenGL is independent of the
windowing characteristics of each operating system, but provides special “glue”
routines for each operating system that enable OpenGL to work in that system’s
windowing environment. OpenGL comes with a large number of built-in
capabilities requestable through the API. These include hidden surface removal,
alpha blending (transparency), antialiasing, texture mapping, pixel operations,
viewing and modeling transformations, and atmospheric effects (fog, smoke,
and haze).

Silicon Graphics, makers of advanced graphics workstations, initiated the
development of OpenGL. Other companies on the industrywide Architecture
Review Board include DEC, Intel, IBM, Microsoft, and Sun Microsystems.

312 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

There is no cost to developing an application using the OpenGL API. Although
OpenGL is not itself a development “toolkit,” such toolkits are available, including
the Silicon Graphics object-oriented programming 3D graphics toolkit Open
Inventor.

12.1.1 Graphical Functions of OpenGL

1. Alpha blending: It provides a means to create transparent objects. Using alpha
information an object can be defined as anything from totally transparent to
totally opaque.

2. Color−index mode: Color buffers store color indices rather than red, green,
blue, and alpha color components.

3. Display list: The contents of a display list may be preprocessed and might
therefore execute more efficiently than the same set of OpenGL commands
executed in immediate mode.

4. Double buffering: It is used to provide smooth animation of objects. Each
successive scene of an object in motion can be constructed in the back or
“hidden” buffer and then displayed. This allows only complete images to be
displayed on the screen.

5. Feedback: This is a mode where OpenGL will return the processed geometric
information (colors, pixel positions, etc.) to the application as comported to
rendering them into the frame buffer.

6. Immediate mode: Execution of OpenGL commands when they are called
rather than from a display list.

7. Materials lighting and shading: It is the ability to accurately compute the
color of any point given the material properties of the surface.

8. Pixel operations: Storing, transforming, mapping, and zooming.

9. Polynomial evaluators: To support non-uniform rational B-splines (NURBS).

10. Selection and picking: It is a mode in which OpenGL determines whether
certain user-identified graphics primitives are rendered into a region of
interest in the frame buffer.

11. Texture mapping: It is a process of applying an image to a graphics primitive.
The technique is used to generate realism in images.

12. Z-buffering: Z-buffering is used to keep track of whether one part of an
object is closer to the viewer than another; it is important in hidden surface
removal.

OPENGL WITH COMPUTER GRAPHICS 313

Any visual computing application requiring maximum performance—from
3D animation to CAD to visual simulation—can exploit high-quality, high-
performance OpenGL capabilities. These capabilities allow developers in diverse
markets such as broadcasting, CAD/CAM/CAE, entertainment, medical imaging,
and virtual reality to produce and display incredibly compelling 2D and 3D
graphics.

Developer-driven Advantages

•	 Industry standard: An independent consortium, the OpenGL Architecture
Review Board, guides the OpenGL specification. With broad industry
support, OpenGL is the only truly open, vendor-neutral, multiplatform
graphics standard.

•	 Stable: OpenGL implementations have been available for more than seven
years on a wide variety of platforms. Additions to the specification are well
controlled, and proposed updates are announced in time for developers to
adopt changes. Backward compatibility requirements ensure that existing
applications do not become obsolete.

•	 Reliable and portable: All OpenGL applications produce consistent visual
display results on any OpenGL API-compliant hardware, regardless of
operating system or windowing system.

•	 Evolving: Because of its thorough and forward-looking design, OpenGL
allows new hardware innovations to be accessible through the API via the
OpenGL extension mechanism. In this way, innovations appear in the API
in a timely fashion, letting application developers and hardware vendors
incorporate new features into their normal product release cycles.

•	 Scalable: OpenGL API-based applications can run on systems ranging from
consumer electronics to PCs, workstations, and supercomputers. As a result,
applications can scale to any class of machine that the developer chooses to
target.

•	 Easy to use: OpenGL is well structured, with an intuitive design and logical
commands. Efficient OpenGL routines typically result in applications with
fewer lines of code than those that make up programs generated using other
graphics libraries or packages. In addition, OpenGL drivers encapsulate
information about the underlying hardware, freeing the application developer
from having to design for specific hardware features.

•	 Well-documented: Numerous books have been published about OpenGL,
and a great deal of sample code is readily available, making information about
OpenGL inexpensive and easy to obtain.

314 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

How Does OpenGL Work?

OpenGL is a procedural rather than a descriptive graphics API. Instead of
describing the scene and how it should appear, the programmer actually prescribes
the steps required to achieve a certain appearance or effect. These steps involve
calls to this highly portable API, which includes about 250 distinct commands
and functions (about 200 in the core OpenGL and another 50 in the OpenGL
Utility Library).

Software Implementation

A software implementation can run just about anywhere as long as the system
has the ability to display the generated graphics image. Fig 12.1 shows the typical
place that OpenGL and software implementation occupy when an application is
running, Windows applications wanting to create output on screen usually call a
Windows API called GDI (Graphics Device Interface). The GDI contains methods
that allow a user to write text in a window, draw simple 2D lines, etc.

OS
Services

I/O
Services

GDI OpenGL

Application Program

Software
Rasterizer

Display/
Windowing

system

Fig. 12.1 OpenGL’s place in a typical application program

A software implementation of OpenGL takes graphics requests from an
application and constructs a color image of the 3D graphics. It then supplies this
image to the GDI for display on the monitor. On the other operating systems, the
process is pretty equivalent, but the GDI is replaced with that operating system’s
native display services.

Hardware Implementations

A hardware implementation of OpenGL usually takes the form of a graphics card
driver. Fig. 12.2 shows its relationship to the applications. The OpenGL API calls
are passed to a hardware driver. This driver does not pass its output to the windows’
GDI for display; the driver interfaces directly with the graphics display hardware.

OPENGL WITH COMPUTER GRAPHICS 315

OS
Services

I/O
Services

GDI OpenGL

Application Program

Hardware
driver

Display/
Windowing

device

Fig. 12.2 Hardware implementation

A hardware implementation is often referred to as an accelerated implementation
because hardware-silted 3D graphics usually outperforms software-only
implementation.

OpenGL Rendering Pipeline

Most implementation of OpenGL has a similar order of operations, a series of
processing stages called an OpenGL rendering pipeline. Geomantic data follow
the path through the row of boxes that include unpacking of vertices and vertex
operations, while pixel data (image) are treated differently for part of the process.
Both types of data undergo the same final steps (rasterization and fragment
operations) before the final pixel data is written into the frame buffer.

Image Unpack pixels Pixel operations Image rasterization

Display lists Texture memory
Fragment
operations

Geometry Unpack vertices Vertex operations Geometric rasterization

To frame
buffer

Geometry path

Imaging path

Fig. 12.3 An OpenGL rendering pipeline

316 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

One problem is that this program does not display completely drawn frames;
instead we watch the drawing as it happens.

Most OpenGL implementation provides double-buffering hardware or
software that supplies two complete color butters. One is displayed while the other
is being drawn. When the drawing of a frame is complete, the two buffers are
swapped, so the one that was being viewed is now used for drawing and vice versa.
With double-buffering, every frame is shown only when the drawing is complete;
the viewer never sees a partially drawn frame.

For some OpenGL implementation, in addition to simply swapping the
viewable and drawable buffers, the routine for buffer swapping waits until the
current screen refresh period is over so that the previous buffer is completely
displayed, starting from the beginning.

Vertex
data

Evaluators

Per-vertex
operations

and primitive
assembly

Display
list

Pixel
data

Pixel
operations

Texture
assembly

Frame buffer

Per-fragment
operations

Rasterization

Fig. 12.4 The order of operations

Display Lists

All data, whether they describe geometry or pixels, can be saved in a display list for
current or later use. (The alternative to retaining data in a display list is processing
the data immediately, also known as immediate mode.) When a display list is
executed, the retained data is sent from the display list just as if it were sent by the
application in immediate mode.

Evaluators

All geometric primitives are eventually described by vertices. Parametric curves
and surfaces may be initially described by control points and polynomial functions
called basis functions. Evaluators provide a method to derive the vertices used
to represent the surface from the control points. The method is polynomial

OPENGL WITH COMPUTER GRAPHICS 317

mapping, which can produce surface normal, texture coordinates, colors, and
spatial coordinate values from the control points.

Per-Vertex Operations

For vertex data, next is the “per-vertex operations” stage, which converts
the vertices into primitives. Some vertex data (e.g., spatial coordinates) are
transformed by 4 × 4 floating-point matrices. Spatial coordinates are projected
from a position in the 3D world to a position on your screen.

Primitive Assembly

Clipping, a major part of primitive assembly, is the elimination of portions of
geometry that fall outside a half-space, defined by a plane. Point clipping simply
passes or rejects vertices; line or polygon clipping can add additional vertices
depending upon how the line or polygon is clipped.

In some cases, this is followed by perspective division, which makes distant
geometric objects appear smaller than closer objects. Then viewport and depth
(z coordinate) operations are applied. If culling is enabled and the primitive is a
polygon, it then may be rejected by a culling test. Depending upon the polygon
mode, a polygon may be drawn as points or lines.

Pixel Operations

While geometric data takes one path through the OpenGL rendering pipeline,
pixel data takes a different route. Pixels from an array in system memory are
first unpacked from one of a variety of formats into the proper number of
components. Next the data are scaled, biased, and processed by a pixel map. The
results are clamped and then either written into texture memory or sent to the
rasterization step.

If pixel data is read from the frame buffer, pixel-transfer operations (scale, bias,
mapping, and clamping) are performed. Then these results are packed into an
appropriate format and returned to an array in system memory.

There are special pixel copy operations to copy data in the frame buffer to other
parts of the frame buffer or to the texture memory. A single pass is made through
the pixel transfer operations before the data is written to the texture memory or
back to the frame buffer.

Texture Assembly

An OpenGL application may wish to apply texture images onto geometric objects
to make them look more realistic. If several texture images are used, it’s wise to put
them into texture objects so that you can easily switch among them.

318 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

Some OpenGL implementations may have special resources to accelerate
texture performance. There may be specialized, high-performance texture
memory. If this memory is available, the texture objects may be prioritized to
control the use of this limited and valuable resource.

Rasterization

Rasterization is the conversion of both geometric and pixel data into fragments.
Each fragment square corresponds to a pixel in the frame buffer. Line and
polygon stipples, line width, point size, shading model, and coverage calculations
to support antialiasing are taken into consideration as vertices are connected into
lines or the interior pixels are calculated for a filled polygon. Color and depth
values are assigned for each fragment square.

Fragment Operations

Before values are actually stored into the frame buffer, a series of operations are
performed that may alter or even throw out fragments. All these operations can
be enabled or disabled.

The first operation which may be encountered is texturing, where a texel (texture
element) is generated from texture memory for each fragment and applied to the
fragment. Then fog calculations may be applied, followed by the scissor test, the
alpha test, the stencil test, and the depth-buffer test (the depth buffer is for hidden

surface removal). Failing an enabled test may end the continued processing of a
fragment’s square. Then, blending, dithering, logical operation, and masking by a
bitmask may be performed.

Simple Animation in OpenGL

1. Drawing rectangles in OpenGL

#include <GL/gl.h>

#include <GL/glu.h>

#include <GL/glut.h>

void setup ()

{

glClearColor(1.0f, 0.0f, 0.0f, 0.0f); }

void display(){

glClear(GL_COLOR_BUFFER_BIT);

glColor3f(0.0f, 0.0f, 0.0f);

glRectf(-0.75f, 0.75f, 0.75f, -0.75f);

glFlush();

glutSwapBuffers();

}

int main(int argc, char *argv[])

{

glutInit(&argc, argv);

glutInitDisplayMode(GLUT_RGB | GLUT_SINGLE);

glutInitWindowSize(400, 300);

OPENGL WITH COMPUTER GRAPHICS 319

glutInitWindowPosition(200, 100

glutCreateWindow("Hello World");

glutDisplayFunc(display);

glutMainLoop();

return 0;

}

2. Drawing lines in OpenGL

#include <GL/gl.h>

#include <GL/glu.h>

#include <GL/glut.h>

void setup()

{

 glClearColor(1.0, 1.0, 1.0, 1.0);

 gluOrtho2D(-10.0, 10.0, -10.0, 10.0);

}

void display()

{

 glClear(GL_COLOR_BUFFER_BIT);

 glColor3f(1.0, 0.0, 1.1);

 glPointSize(5.0);

glBegin(GL_LINES);

 glVertex2f(-10.0, 0.0); // left - x negative

 glVertex2f(10.0, 0.0); // right - x positive

 glVertex2f(0.0, 10.0); // top - y positive

 glVertex2f(0.0, -10.0); // bottom - y negative

 glEnd();

 glFlush();

}

int main(int argc, char *argv[])

{

 glutInit(&argc, argv);

 glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB);

 glutInitWindowPosition(200, 100);

 glutInitWindowSize(400, 300);

 glutCreateWindow("Hello World");

 glutDisplayFunc(display);

 setup();

 glutMainLoop();

 return 0;

}

3. Drawing points in OpenGL

#include <GL/gl.h>

#include <GL/glu.h>

#include <GL/glut.h>

void setup()

{

 glClearColor(0.0, 0.0, 0.0, 1.0);

 gluOrtho2D(-10.0, 10.0, -10.0, 10.0);

}

320 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

void display()

{

 glClear(GL_COLOR_BUFFER_BIT);

 glColor3f(0.0, 1.0, 0.1);

 glPointSize(5.0);

 glBegin(GL_POINTS);

 glVertex2f(1.0, 1.0);

 glVertex2f(2.0, 2.0);

 glVertex2f(3.0, 3.0);

 glVertex2f(4.0, 4.0);

 glVertex2f(5.0, 5.0);

 glEnd();

 glFlush();

}

 int main(int argc, char *argv[])

{

 glutInit(&argc, argv);

 glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB);

 glutInitWindowPosition(200, 100);

 glutInitWindowSize(400, 300);

 glutCreateWindow("Hello World");

 glutDisplayFunc(display);

 setup();

 glutMainLoop();

 return 0;

}

4. Drawing a polygon in OpenGL

#include <GL/gl.h>

#include <GL/glu.h>

#include <GL/glut.h>

void setup()

{

 glClearColor(1.0, 1.0, 1.0, 1.0);

 gluOrtho2D(-01.0, 10.0, -01.01, 10.0);

}

 void display()

{

 glClear(GL_COLOR_BUFFER_BIT);

 glColor3f(1.0, 0.0, 0.0);

 glBegin(GL_POLYGON);

 glVertex2f(0.5, 0.5);

 glVertex2f(0.5, 5.0);

 glVertex2f(5.0, 5.0);

 glEnd();

 glBegin(GL_LINES);

 glVertex2f(-10.0, 0.0);

 glVertex2f(10.0, 0.0);

 glVertex2f(0.0, -10.00);

 glVertex2f(0.0, 10.0);

 glEnd();

 glFlush();

OPENGL WITH COMPUTER GRAPHICS 321

}

int main(int argc, char *argv[])

{

 glutInit(&argc, argv);

 glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB);

 glutInitWindowPosition(200, 100);

 glutInitWindowSize(400, 300);

 glutCreateWindow("Hello World");

 glutDisplayFunc(display);

 setup();

 glutMainLoop();

 return 0;

}

EXERCISES

1. Explain event-driven programming with different OpenGL utilities. Explain
how the program makes use of these utilities.

2. Derive the transformation from window to viewport.

3. Explain line clipping with the Cohen-Sutherland line clipping algorithm.

4. How is the deCasteljau algorithm used for Bezier curve? Explain for four
points.

5. Consider a knot vector t = {0, 0, 0, 0.3, 0.5, 0.5, 0.6, 1, 1, 1} and solve for knot
assignment.

OBJECTIVE QUESTIONS

12.1 The value of aspect ratio of a golden rectangle is
(a) 1.6085 (b) 1.618034
(c) 1.628876 (d) 1.652157

12.2 Which one is a v-contour generated curve?
(a) v varies while u is constant (b) u varies while v is constant
(c) u and v both vary same time (d) none of these

12.3 Changing the position of control point Pi only affects the curve P(u) on
interval
(a) [ui, ui + p + 1) (b) [ui - 1, ui + p + 1)
(c) [ui, ui + 1) (d) [ui, ui + p)

322 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

12.4 Clamped B-spline curve P(t) passes through
(a) two middle control points (b) two end control points
(c) both (a) and (b) (d) neither (a) nor (b)

12.5 The technique used to produce a transformation of one object into another
is known as
(a) morphing (b) betweening
(c) blindfolding (d) cutaway

ANSWERS

12.1 (b) 12.2 (b) 12.3 (a) 12.4 (b) 12.5 (a)

323

13Chapter

PROGRAMMING
GRAPHICS
USING OPENGL

13.1 APPLICATION OF COMPUTER-GENERATED
IMAGES

Computer graphics have the ability to picturize real-life objects with dazzling
realism. But it also gives us the ability to draw things that could never be viewed
in reality. These imaginary objects are described by an algorithm in a computer
program.

13.1.1 Computer-Aided Design
Computer-aided design (CAD) is the use of computer systems to aid in the
creation, modification, analysis, or optimization of a design. Prior to the advent
of CAD, the development of any type of design or prototype was done manually.
As such, development was typically tedious and time-consuming, often hampered
by costly trial and error. Since it digitizes and simplifies the entire design process,
CAD has all but replaced the traditional drawing board. CAD methods are
now routinely used in the design of buildings, automobiles, aircraft, watercraft,
spacecraft, computers, textiles, and many other products.

Computer graphics have been widely used in design processes, particularly for
engineering and architectural systems. Designers can easily rotate the object or
zoom in for a clear and closer look to carry out manipulation. For some design

324 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

applications, the object is first displayed in a wireframe outline form that shows
its overall shape and internal features. Wireframe displays also allow designers
to quickly see the effects of interactive adjustments to design shapes by a grid of
connected lines.

Figs. 13.1 and 13.2 show the pictorial view of CAD in designing a crank
mechanism.

For example, a building plan might contain separate overlays for its structural,
electrical, and plumbing components. With CAD, layers are equivalent to
transparent overlays. As with overlays, you can display, edit, and print layers
separately or in combination. You can name layers to help track content, and
lock layers so they can’t be altered. Assigning settings such as color, linetype, or
lineweight to layers helps you comply with industry standards. You can also use
layers to organize drawing objects for plotting. Assigning a plot style to a layer
makes all the objects drawn on that layer plot in a similar manner.

Fig. 13.1 2D drawing

PROGRAMMING GRAPHICS USING OPENGL 325

Fig. 13.2 A 3D model

Computer-Aided Architectural Design
Computer graphics are also helpful to architects who design and model buildings.
Computer-aided architectural design (CAAD) is used to design 2D floor plans
and 3D schematics of houses, office buildings, schools, hospitals, and other
structures. When creating buildings, flawless planning is a must. Aside from
the actual architecture and layout of a structure, the CAAD program is used to
determine proper specifications, including measurements, volumes, and weights,
before construction even begins. Render version shows the 3D view of the
structure. Computer graphics allow an architect to adjust the position of doors
and windows and to display different textures of bricks or wall paint. With the
help of interactive controls provided by computer graphics, the architect can walk
through the building and the client will be able to experience how the house will
look when it is built, as shown in Fig. 13.3.

13.1.2 Image Processing
Every year we see improvement in the field of image processing as a result of
blending with computer graphics. In computer graphics, a computer is used to
create a picture. Image processing is a type of computation using mathematical
operations in any form of signal processing for which the input is an image, such
as a photograph or video frame. The output of image processing may be either an
image or a set of characteristics or parameters related to the image.

The primary goal of computer graphics is to create pictures and images,
realizing them based on a model or description. However, the primary goal of
image processing is to improve the quality of the image. It includes sharpening
edges, fixing color combinations, removing the noise from the image, and
enhancing contrast. Two principal applications of image processing are improving
picture quality and machine perception of visual information.

3
2

6

M
A

T
H

E
M

A
T

IC
S

F
O

R
 C

O
M

P
U

T
E

R
 G

R
A

P
H

IC
S

A
N

D
 G

A
M

E
 P

R
O

G
R

A
M

M
IN

G

Living
Room

Family
Room

TV

1
3
'–

0
'

1 2 3
14' – 0 1/2" 12' – 0" 13'–6"4' – 0" 4' – 0"

4 4.1 5 6

1
4
'–

4
"

2
'
–

4
"

5'–2 1/2" 8'–2 1/2"

1
2
'–

4
1
/2

"

TV

UP

W/D 4
'–

2
"

Bedroom1
0
'–

1
0
"

Bath

Dining
CE BEV

Over/
Stove

Kintchen

Dish

FridgeWine
Pantry

C

D

E

Office

3'–11" 5'–7"

5
–
6
"

M
in

Entry

1
4
'–

5
"

4
'–

4
"

1 Floor Plan

Designer setRiver unit#801
Reuter Nissen Residence, Salem, or

date 10,30,00 sheet b/w Floor Plan

3/16' – 1' – 0" A1.1

drawing no.

Jeff Lamb 503,758.9128

A

B

n

F
ig. 1

3
.3

Flo

o
r p

la
n

 o
f a

 h
o

u
se

PROGRAMMING GRAPHICS USING OPENGL 327

To apply image-processing methods, we must first digitize an image. Then digital
methods can be applied to rearrange picture parts, enhance color separations,
or improve the quality of shading. An example of image-processing methods
to enhance the quality of a picture is shown in Fig. 13.4. These techniques
are extensively used to analyze satellite photos. OpenGL routines can be used
to identify certain features in an image and make them more noticeable and
comprehensible. In computer graphics, images are manually made from physical
models of objects, environments, and lighting instead of being acquired from
natural scenes, as in most animated movies.

Fig. 13.4 Satellite images

13.1.3 Process Monitoring
Computer graphics are used in highly time-critical systems like air traffic
control, power plants, and factories that need to be closely monitored. An
operator carefully monitors the things; he gets up-to-date information that can
be interpreted instantly. Calculations are made in the system after every interval
and data are transmitted to a monitoring station to be converted into graphical
information.

For example, an air traffic control system displays the locations of nearby
airplanes. The operator can see the schematic representation of the whole situation
at a glance. Numerous indicators can change color or flash to alert operator, when
they require attention.

328 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

13.1.4 Entertainment and Publishing
Computer graphics are commonly used in the production of movie, music videos,
television shows, books, and games. In recent years, the cost of computer graphics
systems has reduced dramatically, due to the development of new hardware tools
and powerful software with increased performance.

Music videos use graphics in several ways. Graphic objects can be combined
with live action, or graphics and image processing techniques can be used to
produce a transformation of one object into another, called morphing. An
example of morphing images is shown in Fig. 13.5.

In computer games, when a player moves a joystick or presses a button, the
computer-generated image responds instantly. Special hardware is installed to
speed up processing to generate successive images.

Fig. 13.5 Morphing

A paintbrush program allows artists to paint pictures on the screen of a video
monitor. Actually, the picture is usually painted electronically on a graphics
tablet (digitizer) using a stylus, which can simulate different brush strokes, brush
widths, and colors. A paintbrush program such as Adobe Photoshop may be used
to create characters.

13.1.5 Simulation
Some highly complex systems like air traffic control need to be analyzed in real
time, while others might never be built in real world at all, but still exist in the
form of an equation or algorithm in a computer. These algorithms can still be
tested and considered as if they exist in reality; they run through their paces and
simulated results are obtained, which is very valuable information for setting
benchmarks for others.

Simulation of a system is represented by running the system’s model. It can
be used to explore and gain insights into new technology and to estimate the
performance of systems too complex for analytical solutions.

PROGRAMMING GRAPHICS USING OPENGL 329

In today’s world, a variety of such systems can be beneficially simulated, like
the effect of global warming due to an increase in hydrocarbons, analysis of air
pollutant dispersion using atmospheric dispersion modeling, design of complex
systems such as aircraft and logistics, design of noise barriers to effect roadway
noise mitigation, or modeling car crashes to test safety mechanisms in new vehicle
models.

A simple example is the flight simulator. The system is composed of an airplane,
with shape and flying parameters, along with air, landing runway, oceans,
mountains, and, of course, other planes. During simulation, the pilot moves the
controls, and the computer programs calculate speed and new positions of the
simulated plane. The pilot can see the simulated result. It is a very difficult and
demanding application to write, as it must respond so rapidly. Fig. 13.6 shows a
simulated airplane’s cockpit.

Computer graphics have the ability to display objects as if they physically exist,
but they are only models inside a computer.

Fig. 13.6 The control panel of a simulated airplane

13.2 DRAWING FIGURES USING OPENGL

Section 13.2.1 covers the basic writing of OpenGL programs and the concept of
device-independent programming. Section 13.2.2 discusses the basic primitives
of OpenGL available for graphics design and various data types and states used in
OpenGL. Section 13.2.3 gives an idea of how to perform line drawing operations
in OpenGL and also discusses the concept of polylines, polygons, and aligned
polygons. Lastly, section 13.2.4 discusses the features of OpenGL related to
keyboard and mouse interactions.

330 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

13.2.1 Getting Started with Making Pictures
When talking about the various disciplines of engineering, computer graphics is
similar in that it provides a means to write a program and test cases that create a
variety of pictures. For a beginner it is better to start with the basics of the graphic
task. Once you are familiar with those, you can shift to writing complicated
programs that produce complex pictures.

Similar to the other programming constructs, you need a programming
environment so that you can write and execute your program on it. When we
talk about the graphics operation, we also need hardware devices like CRT
display — a screen — and a predefined library of software tools which help us
draw graphics primitives.

Every graphics program starts with an initialization phase, in which you define
the desired display mode and area by setting appropriate coordinating points.
Initialization depends on whether you define the entire screen or some window-
based system for drawing.

In Fig. 13.7 the entire screen is used for drawing and we just initialized display
mode as “graphics mode.” The values of coordinates x and y are defined in right
and downward directions respectively. In Fig. 13.8 a window-based system
is shown whose coordinate value grows in right and downward directions,
correspondingly. The main feature of this mode is that it can support multiple
window displays on the screen at the same time. In Fig. 13.9 a slight variation in
window mode is performed where the coordinate value of Y increases in upward
direction.

Each system has some initialization tool that helps users to get started. We
start our discussion with the setpixel command, which defines the values of x and
y coordinate system value and the color value. The syntax of setpixel is setPixel
(x, y, color). In some systems we call this command putpixel(), setpixel(), or
drawpoint(). Similarly, we have a line command which draws a line between (x1,
y1) and (x2, y2). Sometimes it may be called drawline() or simply Line(). A sample
command can be given as follows. The result of this command is displayed in
Fig. 13.7.

line(130, 60, 180, 80);
line(180, 80, 0, 250);

Instead of having a line () command, some systems have a moveto(x, y) and
lineto(x, y). The arguments of moveto command define the starting point of
the line and the arguments of the lineto command define the ending point of
the line. The operation of the command is analogous to the working of a pen
plotter. Once the line has been drawn, the new position becomes the starting
position.

PROGRAMMING GRAPHICS USING OPENGL 331

(a) (b) (c)

(12., 60)

(180, 80)

(0, 250)

Fig. 13.7 Different types of display layouts

As already said, each environment uses a different set of commands for drawing
primitives, so porting from one environment to another is difficult. The
programmer has to explicitly define the library tool at the start of the program to
make necessary changes in the overall structure of the program.

13.2.2 Device-Independent Programming and OpenGL
The concept of device-independent programming allows the user to write a single
program and compile it on many environments which produce nearly the same
result on each display. OpenGL supports device-independent programming.
When you port your program from one environment to another, it only requires
installing library files on the new machine and you can just run the program on
that machine with the same parameters and callings. OpenGL is sometimes called
an Application Programming Interface because it is a collection of routines that
users can call and produce the required graphics result. The programmer is only
aware of the interface.

OpenGL is very useful for drawing 3D scenes as compared to 2D scenes.
However, it still works better for 2D objects. We will discuss most of the graphics
algorithms and their implementation using the concept of OpenGL primitives.
In most circumstances it may not be possible to implement the algorithm using
OpenGL. In such scenarios you need to develop an application that doesn’t use
OpenGL at all.

13.2.3 Event-Driven Programming
One of the important properties of window-based graphics systems is that they
are event-driven, which means they respond to some event such as clicking the
mouse or pressing a key on the keyboard. If multiple events take place on the
window, the system automatically manages a queue regarding the applicability

332 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

of the event on a first-come-first-served basis. When programmers write any
program, they simply associate a callback function with it, so that when the event
gets executed and it is removed from the queue, it simply executes the callback
function associated with it.

OpenGL provides some utility toolkits to manage various events. One such
utility is: glutMouseFunc (myMouse);

This utility registers for the function myMouse, which is responsible for events
related to the mouse. The programmer can manually set the functionalities in
myMouse to handle various commands.

The following program segment gives an outline of an event-driven program.

void main ()

{

Initialize things

Create a screen window

glutDisplayFunc (myDisplay);

glutReshapeFunc (myReshape);

glutMouseFunc (myMouse);

glutKeyboardFunc (myKeyboard);

perhaps initialize other things

glutMainLoop();

}

Now, we will discuss each of the outline’s four functions.

•	 glutDisplayFunc (myDisplay): This command is useful when the screen
window redraws its issue on a redraw event. It sometimes occurs when the
user opens a new window and rolls it over an existing window. Here the
function is regarded as the callback function for a redraw event.

•	 glutReshapeFunc(myReshape): When users want to resize the window, they
simply drag the corner of the window to the new required position. Here the
myReshape is an event-driven utility called a “Reshape” event.

•	 glutMouseFunc(myKeyboard): When we press one of the mouse buttons, an
event related to the mouse is issued. Here the myMouse() function is called
when the event is executed.

•	 glutKeyboardFunc(myKeyboard): Similar to the mouse-related operation,
when we press any key on the keyboard, an event-related function
myKeyboard() is executed. The function automatically takes the argument as
the key is pressed.

PROGRAMMING GRAPHICS USING OPENGL 333

If the program doesn’t make use of the mouse, then the corresponding mouse-
related events have no effect. This is also the case with other event utilities.

13.2.4 Opening a Window for Drawing
Opening a new window for drawing is completely system-dependent. As OpenGL
functions are device-independent, they provide no support for window control.
But the OpenGL utility toolkit provides support for window operation.

The following program segment states the outline of the main program that
draws graphics on a screen window. You will see that we have defined the five
functions that call for an OpenGL toolkit utility. You need to just copy your
program and set the appropriate parameters. A brief description of these
commands is given below.

void main (intargc, char** argv)

{

glutInit(&argc, argv);

glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB);

glutInitWindowSize (1024, 768);

glutInitWindowPosition (100, 150);

glutDisplayFunc (myDisplay);

glutReshapeFunc (myReshape);

glutMouseFunc (myMouse);

glutKeyboardFunc (myKeyboard);

myInit ();

glutMainLoop ();

}

•	 glutInit (&argc, argv): This function is responsible for the initialization
of toolkit. The arguments &argc and &argv are standard command line
information.

•	 glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB): This function defines
how the display should be initialized. The argument GLUT_SINGLE indicates
that a single window should be initialized and the color of that will be defined
by the amount of red, green, and blue passed in the second argument.

•	 glutInitWindowSize (1024, 768): This function indicates that the screen
resolution should be 1024 pixels wide and 768 pixels high. It is a static
allocation, but the user can alter it while running the program.

•	 glutInitWindowPosition(100, 150): This function is similar to the previous
one, as it defines the position of the window 100 pixels from the left edge and
150 pixels down from the top.

334 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

•	 glutCreateWindow(“my first attempt”): This function opens a new window
and puts a title on it — my first attempt — in the title bar.

The remaining callback functions of the program are as discussed earlier.
Programmers should ensure that they initialize each and every callback function
and myInit() function.

13.2.5 Drawing Basic Graphics Primitives
If we want to create a graphics window, we should initialize the function with
proper parameters and callback functions. Our first approach towards graphics
designing is to create a window of appropriate size defined by the coordinate
system.

We show in this example a window 1024 pixels wide and 768 pixels high. The
value of the first 1024 pixels vary from 0 left edge to 1023 right edge direction.
Similarly, the corresponding 768 pixels vary from 0 top edge to 767 down edge
direction. Fig. 13.8 shows the output of window initialization.

My first attempt

y

767

x

1023
Fig. 13.8 A coordinate system initialization

We will first discuss the basic primitives. Most primitives are defined by one
or more vertices such as points, lines, polylines, polygons, etc. To draw such
primitives, you have a function body starting with glBegin() and ending with
glEnd(). The following functions define the initialization of points at various
locations in the 1024 × 768 graphic window.

PROGRAMMING GRAPHICS USING OPENGL 335

glBegin(GL_POINTS);

glVertex2i(130, 70);

glVertex2i(150, 80);

glVertex2i(200, 100);

glEnd();

My first attempt

y

x

Fig. 13.9 Drawing three dots at a specified position

Similar to GL_POINTS, we can also set it to the GL_LINES and GL_POLYGON,
etc. These commands send the vertex information in a pipeline manner, which is
then forwarded to several processing steps.

The function glVertex2i() is based on the argument size and argument types.

glV ertex2i (...)

gl
library Basic

command
Number of
arguments

Type of
arguments

Fig. 13.10 Command format for OpenGL

In Fig. 13.10, the prefix gl stands for a function in OpenGL library (differs from
glut as utility tool). It is followed by the command root, on which the command
should be applicable. The numeric value indicates the number of arguments
passed to the command, and finally i indicates the type of argument as integer.

336 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

We can set the number of arguments of the command as per our requirement,
similarly the type as integer, float, etc.

13.2.6 Data Types and “States” in OpenGL
When we talk about the data type, OpenGL works on specific data types such as
32-bit integers. Some applications, like C, C++, support different data type sizes,
such as 16-bit and 32-bit integer formats. OpenGL doesn’t take the wrong input
format, or it will produce a wrong result. The same criterion is applicable for float
and double data types. To deal with these problems, OpenGL supports predefined
built-in data type names such as GLint and GLdouble. The various data types and
their corresponding OpenGL type names are given in Fig. 13.11.

Data types C or C++ type name OpenGL type name

8-bit integer Signed char GLbyte b

16-bit integer Short GLshort s

32-bit integer Int GLint i

Float f

Double GLdouble d

32-floating point

64-bit floating point
Fig. 13.11 Data types and their equivalent OpenGL type names and suffix

Now, if you are defining your syntax as glVertex2i() then it will demand 32-bit
integers while your system supports 16-bit only. So if you want to put a dot on the
graphics windows you should carefully pass the arguments as Glint or GLfloat. A
sample program for drawing a dot on screen is as follows:

Void drawDot(GLint x, GLint y)

{

glBegin(GL_POINTS);

glVertex2i(x, y);

glEng();

}

An attractive feature of OpenGL is that it maintains the state information
regarding variables such as color, size of dot, background color, etc. The value
assigned to a variable remains stable until a new value is assigned to it. Let’s take
an example of point size. We use the command glPointSize() for it, which takes
floating point arguments. If the argument portion contains three parameters, then

PROGRAMMING GRAPHICS USING OPENGL 337

it draws three points on the side of the window where the value of red, green, and
blue lies between 0.0 and 1.0. Some examples of the commands are:

glcolor3f(1.0, 0.0, 0.0) //set drawing colour to red

glcolor3f(1.0, 1.0, 0.0) //set drawing colour to yellow.

Similarly, if you want to define the background color then you should give
command as glClearColor(red, green, blue, alpha). Here alpha is the degree of
transparency.

13.2.7 Establishing a Coordinate System
A sample coordinate system initialization is given in the following program
segment.

Void myInit (void)

{

glMatrixMode (GL_PROJECTION);

glLoadIdentity ();

gluOrtho2D (0, 1024.0, 0, 768.0);

}

The command myInit() is used for establishment. The transformation takes
place in OpenGL at regular intervals, so we allow MatrixMode to deal with such
transformations. Required dimensions are set in Ortho2–D function.

Now at this stage we are ready with one simple, complete program.

#include<windows.h> // Use as per your system need.

#include<gl/Gl.h>

#include<gl/glut.h>

Void myInit(void)

{

glClearColor (1.0, 1.0, 1.0, 0); // set the background as white

glColor3f (0.0f, 0.0f, 0.0f); // set the drawing color

glPointSize (5.0); // a dot of 5 by 5 pixels

glMatrixMode (GL_PROJECTION);

glLoadIdentity ();

gluOrtho2D (0.0, 1024.0, 0.0, 768.0);

}

Void myDisplay (void)

{

glClear (GL_COLOR_BUFFER_BIT); //clear the screen

glBegin (GL_POINTS); //draw three points specified by
coordinate values

glVetrex2i (130, 70);

glVetrex2i (150, 80);

glVetrex2i (200, 100);

glEnd ();

glFlush (); //send the output values to

display screen

}

338 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

Void main (intargc, char** argv)

{

glutInit(&argc,argv); // Initialization of toolkit

glutInitDisplayMode(GLUT_SINGLE|GLUT_RGB); //display mode setting

glutInitWindowSize(1024,768; //window size setting

glutInitWindowPosition(100,150); //window position setting on the

screen

glutCreateWindow(“my first attempt”); //Open the screen window

glutDisplayFunc (myDisplay); // register for redraw function

myInit();

glutMainLoop (); //go into loop

}

The program simply draws three dots on the screen. We can extend the dot
quantity manually. As previously discussed, myInit() initializes the coordinate
system, point size, background color, etc. The particular drawing is encapsulated
in the myDrawing() function. At last we use the glFlush() to ensure that the
processed data is sent over the screen.

Now we will move toward drawing the dots constellation pattern. We will take
a simple example of representing the Big Dipper to state our idea.

Example 1

Fig. 13.12 represents a pattern of 7 dots on the screen as the Big Dipper. This scene
is often seen in the night sky.

Draw big dipper

Fig. 13.12 A simple dot constellation

PROGRAMMING GRAPHICS USING OPENGL 339

We can assign the names and respective positions of the dots in the screen. For
example, dot (289, 190) is assigned the name of Dubhe. This representation is
applicable to others also.

13.2.8 Making a Line Drawing
In computer graphics line drawing is a very fundamental concept. Almost every
graphic makes use of basic line primitives to make complicated graphics. The
simple line drawing command in OpenGL starts with glBegin() function, where
the arguments are passed as GL_LINES. The body of the function contains the two
vertex endpoints between which the line has to be drawn. Each vertex is assigned
with the type and coordinate systems. A sample program is:

glBegin(GL_LINES);

glVertex2i(60, 135);

glVertex2i(180, 56);

glEnd();

If more than two points are defined between glBegin() and glEnd(), then these
points are taken as a pair and a separate line is drawn for them. The selection of
vertex points is based on the corresponding coordinate values of x and y.

glBegin(GL_LINES);

glVertex2i(10, 20); //First Horizontal line as both

vertex set have same y coordinates

glVertex2i(40, 20);

glVertex2i(20, 10); //First Vertical line as both

vertex set have same x coordinates

glVertex2i(20, 40);

glEnd();

glFlush();

The color of the line is set in the same way as for points. The command is
glColor3f(). The width is defined by glLineWidth(4.0).

Drawing Polylines and Polygons
A polyline is simply a collection of connected line segments. Each of the segments
is defined by the coordinate values of points. The basic structure of a polyline can
be given as:

p0 = (x0, y0), p1 = (x1, y1), p2 = (x3, y3)….. pn = (xn, yn)

The following program segment discusses the drawing of a polyline.

340 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

glBegin(GL_LINE_STRIP);

glVertex2i(20, 10);

glVertex2i(50, 10);

glVertex2i(20, 80);

glVertex2i(50, 80);

glEnd();

glFlush();

The thickness and color of the polyline is assigned in the same way as previously
discussed.

Line Drawing Using Moveto () and Lineto ()
The moveto and lineto is an alternative approach for polyline drawing. The
command moveto() takes the argument as points from which the line has to be
drawn and the command lineto() takes the arguments to which the line has to
be drawn. We can call the moveto() value current position.

So a line from (x0, y0) to (x1, y1) can be drawn simply by calling moveto
(x0, y0) and lineto (x1, y1). A polygon can be drawn similarly by using a loop for the
connecting line segments.

moveto(x[0], y[0]);

For(int i=1; i<n; i++)

lineto (x[i], y[i]);

A sample program defining moveto() and lineto() is as follows:

GLintPoint // global current position

Void moveto (GLint x, GLint y)

{

CP.x = x;

CP.y = y;

}

Void lineto (GLint x, GLint y)

{

glBegin (GL_LINES);

glVertex2i (CP.x, Cp.y);

glVertex2i (x, y);

glEnd ();

glFlush ();

CP.x = x; CP.y = y;

}

PROGRAMMING GRAPHICS USING OPENGL 341

Drawing Aligned Rectangles
This is a special case of a polyline in which the rectangles are aligned with the
sides.

glRecti(GLint x1; GLint y1; GLint x2; GLint y2)

This command draws an aligned rectangle based on given endpoints. We can
also fill the rectangle’s color, for which we need only to embed the following code:

glClearColor(1.0, 1.0, 1.0, 1.0); //set background as white

glClear(GL_COLOR_BUFFER_BIT); //clear the window

glColor3f(0.6, 0.6, 0.6); // Setting colour as bright gray

glRecti(20, 20, 100, 70);

glColor3f(0.2, 0.2, 0.2); // Setting colour as dark gray

glRecti(70, 50, 150, 130);

glFlush();

Aspect Ratio of Aligned Rectangles
We can calculate the aspect ratio of aligned rectangles as the ratio of its weight and
height. The shape of aligned rectangles depends on the aspect ratio.

Aspect ratio
width

height
=

Examples of rectangles with different aspect ratios are shown in Fig. 13.13.

a 11 : 8.5

Landscape c

Goldan
rectangle

b
4 : 3

Screen

d

1

Square

e
8.5 : 1 1

Portrait

f
l/

Fig. 13.13 Aspect ratios of aligned rectangles

342 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

If the width is larger than the height, it is called a landscape rectangle. A rectangle
with an aspect ratio of 1.618034 is called a golden rectangle. Similarly, if the aspect
ratio equals 1, then it is called a square rectangle. For a portrait rectangle the width
is less than its height. The last rectangle is tall and skinny with an aspect ratio of
1
ϕ

 where ϕ = 1.618034.

Filling Polygons
The restriction on a polygon’s color filling is that it should be convex. A polygon
is said to be convex if the line connecting two points in the polygon lies entirely
within it. Some convex and non-convex shapes are given in Fig. 13.14.

A
B

C

D
E F

Fig. 13.14 Convex and non-convex polygons

A program syntax to draw convex polygons can be as follows:

glBegin(GL_POLYGON)

glVertex2f(x0, y0);

glVertex2f(x1, y1);

.......

glVertex2f(xn, yn);

glEnd();

Now it can be filled with a simple color or a strip of colors. Various types of
algorithms are available which assign different color textures to the polygon area.

PROGRAMMING GRAPHICS USING OPENGL 343

13.2.9 Other Graphics Primitives in OpenGL
Beside the objects discussed so far, OpenGL also supports five other objects of
different shapes. Fig. 13.15 gives an idea of the objects’ shapes. To draw them we
adopt the same procedure as before but make changes in the glBegin() body area.

GL_triangles

GL_triangle_strip GL_ _fantriangle

GL_quards_strip

GL_quards

Fig. 13.15 Other geometric primitive types

The functionality of each of them is discussed below:

•	 GL_TRIANGLES: It takes the three vertices among the given vertices set and
prepares a triangle for each.

•	 GL_QUADS: It is similar to the previous one but it takes four vertices at a time
and prepares a quadrilateral for each of them.

•	 GL_TRIANGLE_STRIP: Among the series of the vertices it takes the three
vertices and prepares the triangle series to connect with each other. All the
triangles are traversed in the same direction.

•	 GL_TRIANGLE_FAN: It draws a series of connected triangles but in all of
them one vertex is common so that they can prepare a fan-like architecture.

•	 GL_QUADS_STRIP: Similar to the triangle strip, it creates a series of
connected quad literals by taking four vertices at a time. All the quad literals
have the same direction either clockwise or anticlockwise.

344 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

13.2.10 Simple Interaction with Mouse and Keyboard
A graphics application must be interactive because only an interactive graphics
application can allow a user to navigate and control the drawing of objects.
Hardware devices such as a mouse and a keyboard play an important role in this.
The pointing devices allow the user to go to a specific location and make a clicking
at that. Whenever the user presses a button on keyboard or clicks on the screen
with a mouse, an event happens. The OpenGL utility toolkit allows users to write
the callback function that allows programs to execute when an event happens. We
will discuss some of these utility commands here:

•	 glutMouseFunc (myMouse) : This utility registers all the event functionalities
related to mouse clicking actions.

•	 glutMotionFunc (myMovedMouse) : This utility registers functionalities when
the movements of the mouse take place.

•	 glutKeyboardFunc (myKeyboard): This utility registers the event functionalities
related to keyboard actions.

The next step is to learn how a program makes use of these utilities. We will discuss
them one by one.

Mouse Interaction
When we click a mouse button, data is sent to the application. But how this data
transfer takes place? We should use the callback function myMouse() which
contains four parameters.

void myMouse (int button, int state, int x, int y)

As soon as the mouse events occur, the system calls the register function and
supplies these four parameter values. The parameter button takes one of the three
values:

GLUT_LEFT_BUTTON
GLUT_RIGHT_BUTTON
GLUT_MIDDLE_BUTTON

The parameter state takes the value as either GLUT_UP or GLUT_DOWN. The x
and y take the values from the pixel representation on which clicking takes place.
Normally the variable x takes its pixel value from the left of the window and y
takes the value from the bottom end of the window.

PROGRAMMING GRAPHICS USING OPENGL 345

Mouse Motion
In a normal application program, when we press one of the keys, an event occurs.
In such a scenario the mouse motion utility takes place. myMovedMouse() is an
OpenGL utility command associated with this event. The syntax is as follows:

glutMotionFunc(myMovedMouse) ;

Here the callback function is myMovedMouse(int x, int y). The parameters x and y
take the values of position of the mouse.

Keyboard Interaction
When we press a button on the keyboard, an event takes place. The callback
function mykeyboard() is registered with the functionalities related to these
events. The syntax can be given as below:

void myKeyboard (unsigned int key, int x, int y)

The parameter key takes the ASCII value of the key pressed by the user. The
integer variables x and y take the mouse pixel location values.

13.3 DRAWING TOOLS

Sections 13.3.1 and 13.3.2 discuss world coordinates, world window, and its
transformation to viewports. This transformation simplifies the application of the
program in the reasonable coordinate systems of display devices. The section also
discusses how to achieve a desired drawing using proper window and viewport.
The aspect ratio of window and viewport plays an important role in all types of
transformation. Section 13.3.3 discusses the classical clipping algorithms and
their implementation in real-time scenarios.

Section 13.3.4 includes information about initialization and variable handling
concepts required for graphics programming. Implementation using the OpenGL
environment is also included for high-performance computing of graphics
programs. The tools available can be used to make complex graphics. Encapsulated
variables are used to protect the details from intermediate mishandling.

Section 13.3.5 includes routines that add relatively simple subroutines into
the programmer’s toolkit. Section 13.3.6 includes how to use regular polygons to
create interesting drawings, and Section 13.3.7 includes arc and circle drawing
algorithms using OpenGL. At the end, case studies discuss details about clipping,
window to viewport transformation, and the development of inherent classes as a
tool kit.

346 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

Section 13.3.8 covers how to develop curves using parametric forms. Curves in
both 2D and 3D space are also included.

The basic unit of a screen window’s coordinate system is the pixel. The width
of the screen is the number of pixels present in the x-axis of the screen, and the
height of the screen is the same in the y-axis. The positive values of x and y are
considered for the coordinate system. The easiest way to think about coordinate
systems is in term of x varying from 1 or -1 and the same for the y-axis.

In this chapter, objects are considered to be present in a world coordinate
system. It is usually calculated using the Cartesian xy coordinate system used in
mathematics, based on a convenient units system. The method for conversion
of the world coordinate system to a world window and then viewport using
automatically scaled and shifted objects makes it simple for the programmer to
draw a picture in the screen window. The world window specifies which part
of the scene should be drawn. Whatever lies inside the window is included and
whatever remains is clipped away.

The rectangular viewport is the window on the screen. Mapping between the
world window and the viewport is done in such a way that entire objects in the world
are considered for the world window and mapped automatically to the viewport
after substantial clipping operations. This window/viewport approach makes it
much easier to zoom and pan for a detailed view of the scene. We will first look at
mapping and then clipping.

13.3.1 World Coordinates, World Windows, and Viewports
Fig. 13.16 illustrates the concept of the world window and viewport. The
coordinate system of window and viewport is specified by the programmer. It is
represented by the rectangle shown in the figure. The window is mapped in the
world coordinate system. The viewport is a portion of the screen window. Proper
shifting and scaling operations are required to map the world window with the
viewport.

World
window

Screen

Screen
window

Viewport

Fig. 13.16 World window, screen window, and viewport

PROGRAMMING GRAPHICS USING OPENGL 347

Consider the mathematical representation of cos (x) in pictorial format. As the
value of x may vary from − ∞ to + ∞, the value of y varies from + 1 to −1. A plot of
cos (x) is shown in Fig. 13.17.

voidTransformxy(void)

{

glBegin(GL_LINE_STRIP);

for(GLfloat x = −4.0; x < 4.0; x += 0.1)

{

GLfloat y = cos(3.14159 * x) / (3.14159 * x);

glVertex2f(x, y);

}

glEnd();

glFlush();

}

The key concept is how the transform xy () function creates the values using
scaling and shifting operations, so that the picture appears properly on the screen
window is.

Y-axis

X-axis

–1

+1

y = cos x

Fig. 13.17 A plot of cos(x) function

13.3.2 Mapping Between Window and Viewport
Figure 13.18 shows a world window and viewport in more detail. The borders of
the world window are described as w1, w2, w3, and w4. The viewport is described
by the coordinate system of the screen window by v1, v2, v3 and v4.

y
w3

w1

w2 w4

x

v1

v2

v3 v1
x

y

O

Fig. 13.18 Specifications of window and viewport

348 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

The world window is of any size, shape, and present at any position. The
viewport lies entirely within the screen window. The aspect ratio of the world
window and viewport may differ. We will also discuss how to coordinate the
viewport with the aspect ratio so that it always matches with the entire window
after resizing by the user.

w1

w2

w3

w4

Window

v1

v2

v3 v4

Viewport

Window

y

O
x

Fig. 13.19 Mapping of a window to viewport with distortion

Mapping is also called transformation. The transformation from window to
viewport is called window-to-viewport mapping. The mapping creates the
point for viewport (Vx, Vy) from points (x, y) in a world coordinate system. The
mapping should always be in proper proportion. Let us consider the following
linear formulae for proportionate mapping.

Vx = C∗ x + D
Vy = E∗ y + F ...(13.1)

where C, D, E and F are positive constants, in which C, E are scaling factors of x, y
and D, F are positive or negative shifts in x and y directions. In order to calculate
the values of C, D, E and F we have to do mapping between the coordinate systems
of the window and viewport as shown in Fig. 13.20.

Mapping

w1 w3
v3 v4

VxX

Fig. 13.20 Mapping between x and Vx

V v

v v

x w

w w
x −()

−
=

−

−

4

4 3

1

3 1

PROGRAMMING GRAPHICS USING OPENGL 349

Or

V
v v

w w
x v

v v

w w
wx =

−

−
+ −

−
−

4 3

3 1
3

4 3

3 1
1 ...(13.2)

Thus C
v v

w w
D v

v v

w w
w=

−
−

= −
−
−

4 3

3 1
3

4 3

3 1
1and

Similarly,

V v

v v

x w

w w

y −()
−

=
−

−

1

1 2

4

4 2

Thus C
v v

w w
D v

v v

w w
w=

−
−

= −
−
−

1 2

4 2
2

1 2

4 2
4and

Mapping is bidirectional, i.e., mapping can be from window to viewport or
viewport to window. In order to apply Eq. 13.2 the following properties are
important:
(a) if x is at the window’s left edge: x = w1, then Vx is at the viewport’s left edge:

sx = v1.
(b) if x is at the window’s right edge then sx is at the viewport’s right edge.
(c) if x is fraction f of the way across the window, then Vx is fraction f of the way

across the viewport.
(d) if x is outside the window to the left, (x < w1), then sx is outside the viewport to

the left (Vx < v1).
Similarly, if x is outside the window then Vx is to the right of viewport.

OpenGL implementation
OpenGL is a command-oriented language. Window-to-viewport transformation
is a very simple task in OpenGL. The glVertex2*() command automatically passes
each vertex through a sequence of transformation according to the desired
mapping. The automatic clipping of objects outside the window is done by the
same function. We need to just set the transformation property.

gluOrtho2D() is used for setting the world window and glViewport() is used for
setting the viewport in 2D graphics.

void gluOrtho2D(GLdouble left, GLdouble right, GLdouble bottom, GLdouble top);

350 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

where lower left corner (left, bottom) and upper right corner (right, top) are used
to represent window coordinates.

voidglViewport(GLint x, GLint y, GLint width, GLint height);

where lower left corner (x, y) and upper right corner (x + width, y + height) are
used to represent viewport coordinates.

The default size of viewport is the entire screen window. By default, the data
structure of OpenGL is a marix. Therefore the gluOrtho2D() function is presided
by glMatrixMode(GL_PROJECTION) and glLoadIdentity() functions.

glMatrixMode(GL_PROJECTION);

glLoadIdentity();

gluOrtho2D(0.0, 4.0, 0.0, 2.0); // sets the window

glViewport(50,70, 380, 260); // sets the viewport

glVertex 2*(x, y) is used to do mapping of Eq. 2.

Example 2
Plotting the co-function

The OpenGL program requires just defining the window and viewport. We want
to plot the function from closely spaced x-values between −5.0 and 5.0 into a
viewport with width 640 and height 480 using the following OpenGL program:

voidTransformxy(void) // plot the cos function, using world coordinates

{

glMatrixMode(GL_PROJECTION);

glLoadIdentity();

gluOrtho2D(−5.0, 5.0, −0.3, 1.0);
glViewport(0, 640, 0, 640 − 480);
glBegin(GL_LINE_STRIP);

for(GLfloat x = −4.0; x < 4.0; x += 0.1) // draw the plot
glVertex2f(x, cos(3.14159 * x) / (3.14159 * x));

glEnd();

glFlush();

}

Setting the window and viewport automatically

There are two ways to set the size of window and viewport: one is to set the size of
both as per dimensions entered by the user in the program and other way is to set
everything automatically as per default settings in OpenGL. For this instance, let
us consider automatic sizing of window and viewport.

Setting the window

Generally the programmer doesn’t have any idea about the size of the object in
world coordinates. The object may be any picture of known size or data generated

PROGRAMMING GRAPHICS USING OPENGL 351

by some unknown procedure. In such conditions, the most convenient way is to
rely on the automatic size determination function of the application.

The general approach is to set the boundary of the object in terms of a rectangle
such that it contains the entire object in the scene. This rectangular boundary
is also called the extent of the object. Fig. 13.21 contains the representation of
extents in a proper way.

Extents

(50, – 10)

(20, 50)

y

x
O

Fig. 13.21 Figures with extents

If P[] contains all the points of lines present in the figure, then the extremes of
x and y coordinates in array P are considered the extremes of the object to be
displayed in the window.

Automatic setting of the viewport to preserve aspect ratio

An undistorted version of a figure is possible if the aspect ratio of the viewport
and the actual window is the same. A simple idea is to find the largest possible
viewport that can be visible on the window screen of the display. Suppose the
screen window is of width W and height H and aspect ratio of the world window is

A, then either A
W

H
<

 or A

W

H
>

 . In the first case the viewport extends fully

along the width of the window but leaves unused space along the y direction of the
screen window. In the second case the viewport extends fully along the height of
the window but leaves unused space along the x direction of the screen window.

Resizing the screen window

In a Microsoft Windows-based system, a simple drag-and-drop operation of a
mouse from one of the corners of an image can change the size of the window
in run time. The OpenGL utility tool kit contains glutReshape() to reshape the
window whenever required.

glutReshape(myReshape); specifies the function called on a resize event.

352 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

Making a matched viewport

The common approach to prevent distortion is that the aspect ratio of the viewport
matches with the aspect ratio of the world window. The following OpenGL
program creates a matching viewport that is visible in the new screen window of a
display device with its extreme size.

if(A> W/H) // use (global) window aspect ratio

setViewport(0, W, 0, W/R);

else

setViewport(0, H * R, 0, H);

The routine obtains the new size of the viewport according to the default size of
the screen window.

13.3.3 Line Clipping
Clipping is an important task for a graphics application. It is generally used to
remove or add portions of the world window to the screen window of display
devices. In OpenGL the object is automatically clipped using specified inbuilt
algorithms in the world window. Since clipping is automatic in an OpenGL
environment, we are concentrating on tools that incorporate clipping for the
programmer. Instead of skipping the concept, it is included by considering the
absence of an OpenGL environment for graphics programming in a general sense.

We include a general clipping algorithm to understand the clipping process.
These algorithms can be used in general routines in the absence of an OpenGL
environment.

In this section we concentrate on the Cohen-Sutherland line clipping algorithm.
The input to the algorithm is a line segment with endpoint p1, p2 and returns the
line segment with an endpoint that fits inside the viewport or screen window.

E

C

D

B

A

Window

Fig. 13.22 Line clipping at the window’s boundary

Fig. 13.22 illustrates the action required to be performed by the clipper.

PROGRAMMING GRAPHICS USING OPENGL 353

•	 If the entire line lies within the window, it returns 1.

•	 If the entire line lies outside the window, it returns 0.

•	 If one endpoint is inside the window and one is outside, the function clips the
portion of the segment that lies outside the window and returns 1.

•	 If both endpoints are outside the window, but a portion of the segment passes
through it, it clips both ends and returns 1.

The Cohen-Sutherland line clipping algorithm

This algorithm has two common cases that can be quickly detected. They are
called “trivially accept” and “trivially reject.” If the line lies completely within the
boundary of window, then this line is trivially accepted, and if it is completed
outside the window then it is trivially rejected.

The Cohen-Southerland algorithm uses an inside-outside codeword for
detection of a line inside, outside, or on the boundary of the window. The
codeword contains four bits as represented below.

T/F T/F T/F T/F

First bit: True if P is to the left of the window
Second bit: True if P is above the window
Third bit: True if P is to the right of the window
Fourth bit: True if P is below the window
If P is inside the window then codeword values are FFFF; otherwise nine values

are possible:

TTFF FTFF FTFF

TFFF FFFF FFTF

TFFT FFFT FFTT

•	 Trivial accept: If both points have codeword FFFF

•	 Trivial reject: If the codeword has an F in the same position, i.e., both points
are either left, above, below, or on the right of the window.

354 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

Condition for chopping the line

The Cohen-Sutherland algorithm is based on a divide-and-conquer strategy. It
discards the portion of the line which is outside the window and uses the same
strategy for the remaining portion. The loop discards after four iterations since it
requires at most four iterations for trivial acceptance and rejection to be assured.

do{

form the code words for p1 and p2

if (trivial accept) return 1;

if (trivial reject) return 0;

chop the line at the “next” window border; discard the “outside”

part;

} while(1);

Fig. 13.23 contains the clip segment routine for line clipping algorithm. The
inputs p1 and p2 are called in with its (x, y) values by reference. Array W is a matrix
for storing values of the rectangle representing the screen’s window.

intclipSegment(Point2& p1, Point2& p2, RealRect W)

{

do{

if(trivial accept) return 1; // some portion survives

if(trivial reject) return 0; // no portion survives

if(p1 is outside)

{

if(p1 is to the left) chop against the left edge

else if(p1 is to the right) chop against the right edge

else if(p1 is below) chop against the bottom edge

else if(p1 is above) chop against the top edge

}

else // p2 is outside

{

if(p2 is to the left)chop against the left edge

else if(p2 is to the right)chop against the right edge

else if(p2 is below) chop against the bottom edge

else if(p2 is above)chop against the top edge

}

}while(1);

}

Fig. 13.23 Pseudo-code for Cohen-Sutherland line clipper

13.3.4 Drawing Polygons, Circles, and Arcs Using OpenGL
OpenGL provides various tools to draw regular shapes like polygons, circles, and
arcs. These shapes play vital roles in the development of graphics applications.

PROGRAMMING GRAPHICS USING OPENGL 355

Drawing polygons

Polygons are an important family of shapes commonly used in computer graphics.
The regular polygon is one category of polygons. Polygons are called regular if all
their sides are of the same length and the adjacent sides meet each other forming
equal interior angles.

The different shapes of regular polygons with n sides are shown in Fig. 13.24.

n = 3 4 5 6 N

Fig. 13.24 Shapes of regular polygons

If the number of lines are very large then the shapes of polygons appear like
circles. The general equation of polygons with n vertices is

P R
i

n
R

i

n
i ni =

= −cos , sin , , ,
2 2

0 1
π π

for ...(13.3)

where Pi is vertices of polygons with (x, y) coordinates. Fig. 13.25 is a polygon
with six vertices and the interior angle between two adjacent lines is 60 degrees.

y-axis

x-axis

P2 (R cos (2*(/6), R sin (2* /6))

P1 (R cos (2 /6),. R sin (2 /6))

O

Fig. 13.25 Vertices of an hexagon from Eq. 13.3

The OpenGL implementation of a polygon with n vertices centered at (Cx, Cy),
with radius R, and rotated through RA degrees is shown in Fig. 13.26:

356 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

void polygon(int n, float cx, float cy, float R, float RA)

{ // assumes global Canvas object, cvs

if(n < 3) return; // bad number of sides

double angle = RA * 3.14159265 / 180; // initial angle

double angleInc = 2 * 3.14159265 /n; //angle increment

cvs. moveTo(R + cx, cy);
for(int k = 0; k < n; k++) // repeat n times
{

angle += angleInc;
cvs.lineTo(R * cos(angle) + cx, R * sin(angle) + cy);

}

}

Fig. 13.26 OpenGL implementation of a regular polygon with n vertices in memory

13.3.5 Drawing Circles and Arcs
Drawing a circle is same as drawing polygons. The difference is only in the number
of vertices we have to select. The function DCircle() shown in Fig. 13.27 creates a
70-sided polygon by simply passing parameter to function polygon(int n, float cx,
float cy, float R, float RA).

void DCircle(Point2 center, float radius)

{

constintnumVerts = 70; // use larger for a better circle

polygon(numVerts, center.getX(), center.getY(), radius, 0)

}

Fig. 13.27 Drawing a circle based on 70-sided polygons

Drawing arcs

An arc is significantly described by the position of center C and its radius R. The
circle is a special case of an arc with a sweep of 360 degrees. The diagrammatic
representation of an arc is shown in Fig. 13.28:

Y-axis

X-axis

b
aR

C (x,y)

Fig. 13.28 Arc representation in a 2D coordinate system

The angles a and b are sweeps of an arc in an anticlockwise direction along
the x-axis. The OpenGL implementation of the arc formulated from the concept

PROGRAMMING GRAPHICS USING OPENGL 357

of the polygon is shown in Fig. 13.29. R is the radius of the arc, SA is the starting
angle, S is the sweep, and center is the position of the midpoint of the arc along the
(x, y) coordinate system.

void drawArc(Point2 center, float R, float SA, float S)

{ // startAngle and sweep are in degrees

constint n = 30; // number of intermediate segments in arc

float angle = SA * 3.14159265 / 180; // initial angle in
radians

float angleInc = S * 3.14159265 /(180 * n); // angle
increment

float cx = center.getX(), cy = center.getY(); cvs.moveTo
(cx + R * cos(angle), cy + R * sin(angle)); for(int
k = 1; k < n; k++, angle += angleInc)

cvs.lineTo(cx + R * cos(angle), cy + R * sin(angle));
}

Fig. 13.29 Function for creating an arc

13.4 TRANSFORMATION OF OBJECTS

13.4.1 Transformation
Transformations are a fundamental feature of computer graphics and are central
to OpenGL as well as to most other graphics systems. Transformation is used to
translate and scale the objects of the real world to their final size and position
in the viewport. The fundamentals of computer graphics are transformation
and representation of points and lines in space. With the help of an appropriate
drawing algorithm, points and lines can be joined to draw an object. Computer
graphics have the ability to transform these points and lines. They are required to
scale, translate, rotate, distort, or develop a perspective view of an object in order
to visualize it.

After

After

Before

Before

z x

y

y

x
O

Fig. 13.30 Objects before and after they are transformed

358 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

Figure 13.30 shows a view of a simple house; (a) is a 2D view while (b) is a
3D view, drawn before and after; each of its points has been transformed. Firstly,
the house has been scaled down in size, rotated, and then moved up. The overall
transformation here is a combination of three more elementary ones: scaling,
rotation, and translation.

Transformation with OpenGL

The main goal is to produce graphical drawings of objects that have been
transformed to proper size, position, and orientation so that it can present the
desired view. Today a lot of platforms are available, such as OpenGL, which
provide a sequence of operations or graphics pipeline to all the points under
consideration. The object is produced after analyzing each point.

The transformation given in figure is called Current Transformation (CT).
CT provides a crucial tool for the manipulation of a graphical object, and an
application programmer needs to know what adjustment to make in CT so as to
produce a desired transformation.

Transformation can be viewed in two ways: object transformation and
coordinate transformation. An object transformation alters the coordinate of
each point of the object, keeping the coordinate system fixed. A coordinate
transformation defines a new coordinate system in terms of the old one, and then
represents all the object points in this new system. These two views are closely
connected and each has its own advantage, but implementation is somewhat
different.

13.4.2 Affine Transformation

Affine transformation is the most common transformation used in computer
graphics. It possesses very useful properties which make it so easy to handle. The
properties are to scale, rotate, and reposition figures.

In affine transformations, the coordinates of Q are linear combinations of six
constants m11, m13, m13, m21, m22, m23.

Q

Q

m P m P m

m P m P m
x

y

x y

x y

1 1

11 12 13

21 22 23

=

+ +

+ +

Qx consists of portions of both Px and Py, and similarly Qy. This cross between
the x and y components gives rise to rotations and shears.

PROGRAMMING GRAPHICS USING OPENGL 359

Geometric Effects of 2D Affine Transformations

Geometric effects produced due to affine transformations are a combination of
four elementary transformations, i.e., translation, scaling, rotation, and shear.
These are called elementary because they can only be applied one at a time.

Translation

To translate a picture into a different position on a graphics display, the
translation part of affine transformation arises from the third column of the
translation matrix; so in ordinary coordinates Q = P + d, where offset vector d has
components (m13, m23).

Q

Q

m

m

P

P
x

y

x

y

1

1 0

0 1

0 0 1 1

13

23

=

Scaling

A scaling changes the size of a picture and involves two scale factors, Sx and Sy,
for the x- and y-coordinates, respectively:

(Qx, Qy) = (SxPx, SyPy)

Thus the matrix for a scaling by itself is simple.

Transforming Points and Objects:

P

T
Q

P

T

y

Q

i

O

y

x

z x
O

Fig. 13.31 Mapping points into a new position

Fig. 13.31 shows transformation of point P to Q in 2D and 3D views using an
algorithm or formula. The point P is mapped to point Q; we can say that Q is the
image of P under transformation T.

In the case of 2D, points P and Q are represented by P
~

 and Q
~

360 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

 P

P

P Q

Q

Q
x

y

x

y=

=

1 1

,

The transformation operates on the representation P
~

 and produces the
representation Q

~
 according to a function T().

Q

Q T

P

P
x

y

x

y

1 1

=

Or simply

Q
~

 = T (P
~

)

The function T() could be complicated.

Q

Q

(P)e

(P)

P

S

S

x

y

x

P

y

x

x

y

1
1

1

0 0

0

2

=
+

−
cos

In

yy 0

0 0 1

Scaling also includes refection around an axis. Fig. 13.32 shows scaling and
reflection around the x-axis.

X

Y

O

Fig. 13.32 A scaling and a reflection

PROGRAMMING GRAPHICS USING OPENGL 361

Rotation

Rotation is a fundamental graphics operation in which a figure about a given
point is rotated through an angle.

y

x

T
60O

Fig. 13.33 Rotation of points through 60°

Fig. 13.33 shows a set of points rotated about the origin through an angle of
q = 60°. T () is a rotation about the origin; the offset vector d is zero and Q = T(P)
has the form

Qx = Px cos (q) − Py sin (q)

Qy = Px sin (q) + Py cos (q)
In matrix form,

cos() sin()

sin() cos()

θ θ
θ θ

−

0

01

0 0 1

The Inverse of an Affine Transformation
When you apply transformation T to a point, you may want the original point

back to its previous position. To remove the effect of transformation we apply
another transformation called inverse transformation and it is denoted by T-1.

If point P is mapped into point Q according to Q = MP, simply pre-multiply
both sides by the inverse of M, denoted M-1, and write

P = M-1 Q

The inverse of M is given by

M
M

m m

m m
− =

−

−

1 22 12

21 11

1

det

362 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

The elementary inverse transformations are as follows:

Scaling:

M

S

S

x

y

− =

1

1
0 0

0
1

0

0 0 1

Rotation:

M − = −

1

0

0

0 0 1

cos() sin()

sin() cos()

θ θ
θ θ

Shearing:

M h− = −

1

1 0 0

1 0

0 0 1

Translation:

M

m

m− =

−

−

1

13

23

1 0

0 1

0 0 1

Affine transformation: 3D approach

3D affine transformation is the same as 2D but has more complex expression
and difficulty in visualizing. We use coordinate frames; in OpenGL, a vertex V at
(x, y, z) is represented as

V

x

y

z

=

PROGRAMMING GRAPHICS USING OPENGL 363

Scaling:

3D scaling can be represented as

S x y z

x

y

z

()α α α

α

α

α
′ ′ =

0 0

0 0

0 0

where ax, ay and az represent the scaling factors in x, y, and z directions,
respectively. We can obtain the transformed V′ of vertex V as follows:

V SV

x

y

z

x

y

z

x

y

z

x

y

z

′

α

α

α

α

α

α

= =

=

0 0

0 0

0 0

Rotation
3D rotation operates about an axis of rotation (2D rotation operates about a

center of rotation). 3D rotations about the x, y, and z axes for an angle q (measured
in counterclockwise manner) can be represented as

R , Rz x()

cos sin

sin cos () cos sinθ

θ θ

θ θ θ θ θ=

−

= −

0

0

0 0 1

1 0 0

0

00

0

0 1 0

0sin cos

()

cos sin

sin cosθ θ

θ

θ θ

θ θ

=

−

, Ry

The rotational angles about x, y, and z axes, denoted as qx, qy, and qz, are known
as Euler angles, which can be used to specify any arbitrary orientation of an object.

Translation
Translation does not belong to linear transformation, but can be modeled via a

vector addition as follows:

x

y

z

d

d

d

x d

y d

z d

x

y

z

x

y

z

+

=

+

+

+

, where

d

d

d

x

y

z

 is the translational vector

13.4.3 Drawing 3D Scenes Using OpenGL
OpenGL contains functions that establish a window and viewport, and that do line
drawing through moveTo() and lineTo(). The main emphases are on transforming
objects in order to orient and position them as desired in a 3D scene.

364 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

2D drawing so far has actually used a special case of 3D viewing, based on a
simple parallel projection. Viewing the scene looks along the one axis at the
window, a rectangle lying in the remaining two planes. OpenGL provides the three
functions glScaled(..), glRotated(..), and glTranslated(..) for applying modeling
transformations to a shape.

The graphics pipeline implemented by OpenGL does its major work through
matrix transformations, so we will first look into what each of the matrices in the
pipeline does. At this point it is important only to grasp the basic idea of how each
matrix operates: Each vertex of an object is passed through this pipeline with a
call such as glVertex3d(x, y, z). The vertex is multiplied by the various matrices
shown; it is clipped if necessary, and if it survives clipping it is ultimately mapped
onto the viewport. Each vertex encounters three matrices:

1. The model view matrix

2. The projection matrix

3. The viewport matrix

The model view matrix basically provides what we have been calling the CT.
It combines two effects: the sequence of modeling transformations applied to
objects and the transformation that orients and positions the camera in space
(hence its peculiar name “model views”). Although it is a single matrix in the
actual pipeline, it is easier to think of it as the product of two matrices, a modeling
matrix M, and a viewing matrix V.

The projection matrix scales and shifts each vertex in a particular way, so
that all those that lie inside the view volume will lie inside a standard cube that
extends from -1 to 1 in each dimension. This matrix effectively squashes the view
volume into the cube centered at the origin. This cube is a particularly efficient
boundary against which to clip objects. Scaling the block in this fashion might
badly distort it, of course, but this distortion will be compensated for in viewport
transformation. The projection matrix also reverses the sense of the z-axis, so
that increasing values of z now represent increasing values of depth of a point
from the eye.

Finally, the viewport matrix maps the surviving portion of the block into
a “3D viewport.” This matrix maps the standard cube into a block shape whose
x and y values extend across the viewport (in screen coordinates), and whose
z-component extends from 0 to 1 and retains a measure of the depth of point.

Three functions are used to set modeling transformations:

•	 glScaled(sx, sy, sz); Post-multiply the current matrix by a matrix that performs
a scaling by sx in x, by sy in y, and by sz in z. Put the result back in the current
matrix.

PROGRAMMING GRAPHICS USING OPENGL 365

•	 glTranslated(dx, dy, dz); Post-multiply the current matrix by a matrix that
performs a translation by dx in x, by dy in y, and by dz in z. Put the result back
in the current matrix.

•	 glRotated(angle, ux, uy, uz); Post-multiply the current matrix by a matrix that
performs a rotation about the axis that passes through the origin and the point
(ux, uy, uz). Put the result back in the current matrix.

13.5 CURVE AND SURFACE DESIGN

Graphic scenes contain many different kinds of objects such as trees, flowers,
clouds, rocks, water, bricks, glass, etc. We want an organized way to describe and
represent a much richer set of shapes that occur in computer graphics and in CAD
programs.

Polygon and quadric surfaces provide precise descriptions for simple Euclidean
objects such as polyhedrons and ellipsoids. Other shapes are designed by some
analysis program as the best possibility for a particular job, such as aircraft wings,
gears, and other engineering structures with curved shapes and procedural methods.

Some shapes such as logarithmic spirals and the path of a planet as it sweeps
about sun have a concise mathematical formulation that makes them easy to
analyze, but it is of little help when we want to write a routine to draw them. Thus
we need ways to convert it from one kind of representation to another that is more
suited to certain tasks. Other shapes are more freeform and are based on data
rather than mathematical expression. These we could handle in a program also,
perhaps in order to find where one such curve intersects another.

13.5.1 Description of Curves
Polynomials are fundamental mathematical objects and are frequently used in
computer graphics because they are well behaved and efficient to compute.

We can represent a polynomial in two ways:

1. Nonparametric form: When we write object descriptions directly in
terms of the coordinates of the reference frame in use, the representation is
nonparametric. For example, we can represent a surface with either of the
following Cartesian functions:

f(x, y, z) = 0 or z = f(x, y)

The first form is an implicit expression for the surface, and the second form
gives an explicit representation, with x and y as the independent variables, and z
as the dependent variable.

366 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

2. Parametric form: Euclidean curves are one-dimensional objects, and
positions along the path of a 3D curve can be described with a single
parameter u. That is, we can express each of the three Cartesian coordinates
in terms of parameter u, and any point on the curve can then be represented
with the following vector point function:

P(u) = (x(u), y(u), z(u))

Often, the coordinate equations can be set up so that parameter u is defined
over the unit interval from 0 to 1. For example, a circle in the xy plane with center
at the coordinate origin could be defined in the parametric form as:

x(u) = r cos(2pu), y(u) = r sin(2pu), z(u) = 0, 0 ≤ u ≤ 1

Curved or plane Euclidean surfaces are 2D objects, and a position on a surface
can be described with two parameters, u and v. A coordinate position on the
surface is then represented with the parametric vector function

P(u, v) = (x(u, v), y(u, v), z(u, v))

where the Cartesian coordinate values for x, y and z are expressed as functions
of parameters u and v. As with curves, it is often possible to arrange the parametric
description so that parameters u and v are defined over the range from 0 to 1.
A spherical surface with center at the coordinate origin can be described as
follows:

x(u, v) = r sin(pu) cos(2pv)

y(u, v) = r sin(pu)sin(2pv)

z(u, v) = r cos(pu)

where r is the radius of the sphere. Parameter u describes lines of constant
latitude over the surface, and parameter v describes lines of constant longitude. By
keeping one of these parameters fixed while varying the other over a subinterval
of the range from 0 to 1, we are able to plot latitude and longitude lines for any
spherical section.

NOTE: In general, it is more convenient to represent an object in computer
graphics algorithms in terms of parametric equation.

Things to remember: An Lth-degree polynomial in t is a function given by:

a0 + a1t + a2 t2+ … … … … + aLtL

where the constants a0, a1,…….aL are its coefficients, each associated with one
of the powers of t.

PROGRAMMING GRAPHICS USING OPENGL 367

Polynomial Curves of Degree 1

Polynomial curves of degree 1 yield a straight line. The curve whose parametric
equation is P(t) = a0 + a1

t is a straight line which passes through a0 at time 0, and
through a0 + a1 at time 1. Here we can see that P(t) is actually two equations, one
for x(t) and one for y(t). In the 3D world, there is a third equation for z(t).

Polynomial Curves of Degree 2

x(t) = at2 + 2bt + c

y(t) = dt2 + 2et + f

where a, b, and so on are constants. This curve is always a parabola.

Implicit Form of Degree 2

F(x, y) = Ax2 y + Cy2 + Dx + Ey + F

where A, C, and so on are constants. It is assumed that A and C are not both
0, which produce a degenerative curve. The above equation represents a conic
section by examining the signs of coefficients A and C:

If AC > 0, it is an ellipse

If AC = 0, it is a parabola

If AC < 0 it is an hyperbola

The conic that is described depends on the value of eccentricity e. Eccentricity
measures how far off the curve is from a perfect circle (eccentricity = 0). Fig. 13.34
shows curves with different eccentricity.

368 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

y

x
p

Circle

= 0

= 0.8
Ellipse

= 1.0
Parabola

Hyperbola

= 1.5

Fig. 13.34 Conic sections with different eccentricities

Polynomial curves of degree 3 or higher

Curves with first and second degree polynomials are easily understood. But
things get more complicated when the polynomials are of a higher degree. It is
always possible to find an implicit form of a given polynomial functions for x(t)
and y(t), but if an implicit form is given we can’t easily convert it into parametric
form when the degree of the polynomial is greater than or equal to 3.

Cubic polynomials prove very useful in curve and surface design. Bezier and
B-Spline curves are cubic polynomials, and they provide a powerful approach
to curve design. But this method won’t start with an implicit form and try to
parameterize it. Rather it will start with a collection of control points carefully
set down by the designer and allow a specific algorithm to generate points along
the curve, so the designer, if necessary, can edit the position of the control points
and view the curve again. This approach is visual, allowing the designer to see the
progress of the curve design as the process continues.

Rational Parametric Forms

x and y are each defined as a ratio of two polynomials.

P t
P t w t P t

t wt t t
()

() ()

() ()
=

− + − +

− + − +
0

2
2

2

2 2

1 2 1

1 1

where P0, P1, and P2 are three points in the plane. They are called control points
as they control the shape of the curve; w is called a weighted parameter.

PROGRAMMING GRAPHICS USING OPENGL 369

The equation for P(t) is actually two equations: one each for x(t) and y(t).

x t
x t x wt t x t

t wt t t
()

() ()

() ()
=

− + − +

− + − +
0

2
1 2

2

2 2

1 2 1

1 2 1

y t
y t y wt t t

t wt t t
()

() ()

() ()
=

− + − +

− + − +
0

2
1

2

2 2

1 2 1

1 2 1

where x0 and y0 are the components for P0.
At t = 0, the right-hand side collapses simply to (x0, y0); this curve passes

through, or interpolates, the point P0. At t =1, it passes through P2. For t in between
0 and 1, P(t) depends on all three points in a complicated way.

P1
Hyperbola

Parabola

Ellipse

P2
P0

P2
P0

P1

(a) (b)

Fig. 13.35 Generating conics with rational quadratics

Fig. 13.35(a) has three control points and shows how the curve emerges
from P0 as t increases from 0 and ends up at P2 as t approaches 1. The curve in
Fig. 13.35(b) is one of the conic sections, and the type of curve depends on the
value of w.

If w < 1, it is an ellipse
If w = 1, it is a parabola
If w > 1, it is an hyperbola
Rational parametric forms provide a way to generate conic sections

parametrically.

13.5.2 Designing Bezier Curves
There are two main classes of curve generation algorithms.

370 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

1. Interpolation: This algorithm generates a curve P(t) that passes exactly
through the control points and forms a smooth curve.

2. Approximation: This algorithm generates a curve r(t) that approximates
the control points. R(t) is attracted towards each control point in turn, but
doesn’t actually pass through all of them.

Bezier curves (approximating curves) were developed to assist in car design.
The de Casteljau algorithm is used to draw them.

The de Casteljau algorithm

The de Casteljau algorithm uses a sequence of points P0, P1, and P2,... to
construct a well-defined value for point P(t) at each value of t from 0 to 1. Thus
it provides a way to generate a curve from a set of points. Changing the points
changes the curves. The de Casteljau algorithm is based on a sequence of familiar
tweening steps that are easy to implement.

Because tweening is such a well-behaved procedure, it is possible to deduce
many valuable properties of the curves that it generates.

Let us first talk about tweening:
Tweening is the process of generating intermediate frames between two images

to give the appearance that the first image evolves smoothly into the second image.
Tweening is used mainly for art and animation. It’s simplest if the two figures are
polylines based on the same number of points.

The concept of tweening is simply moving a point (or a series of points) from
its initial position to a final position. The equation for tweening along a straight
line is a linear interpolation:

P = A(1 - t) + Bt ...(13.4)
where A is the initial position of the object and B is its final position and t is the

time varying from 0 to 1.

Tweening Three Points to Obtain a Parabola

Start with three points P0, P1, and P2 as shown in the Fig. 13.36. Choose some
value of t between 0 and 1, suppose t = 0.3, and locate point A that is fraction t of
the way along the line from P0 to P1. Similarly, locate B at fraction t along the line
between endpoints P0 and P1 using the same t.

From Eq. (4) the new points can be expressed as

A(t) = (1 - t) P0 + tP1

B(t) = (1 - t) P1 + tP2 ...(13.5)
Now repeat linear interpolation on these points (t is same).
Find the point P(t) that lies fraction t of the way between A and B:

P = A(1 - t) + Bt ...(13.6)

PROGRAMMING GRAPHICS USING OPENGL 371

P 1

P 0

P 2

B

P
A

at t = 0.3

P 0

P 2
P(t)

P(0.3)

(a) (b)

P 1

Fig. 13.36 The de Casteljau algorithm for three points

If we take t = 0.5, P(0.5) is simply the “midpoint between midpoints” for the
three given points. If this process is carried out for every t between 0 and 1,
the curve P(t) will be generated. Substitute Eq. (13.5) into Eq. (13.6) to get the
parametric equation of curve.

P(t) = (1 - t)2 P0 + 2t(1 - t)P1 + t2 P2

The above parametric form of equation P(t) is quadratic in t, so the equation is
a parabola. It will still be a parabola even if t is allowed to vary from -∞ to ∞.

Thus we have a well-defined process that can generate a smooth parabolic
curve based on the three given points.

What if more than three control points are used?
The most commonly used family of Bezier curves is based on four control

points.

P2

P1
C

P3
P

DA

E

B

P0
(a) (b)

Fig. 13.37 de Casteljau algorithm applied to points P0, P1, P2, and P3

For a given value of t, point A is placed fraction t of the way from P0 to P1, and
similarly for points B and C. Then D is placed fraction t of the way from A to B,
and similarly for point E. Finally, the desired point P is located fraction t of the
way from D to E. If this is done for every t between 0 and 1, the curve P(t) starts at
P0, is attracted toward P1 and P2, and ends at P3. It is the Bezier curve determined
by the four points.

The Bezier curve based on four points has the parametric form

372 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

P(t) = P0(1 - t)3 + P1 3(1 - t)2 t + P2 3(1 - t)t2 + P3 t3 ...(13.7)
Each control point Pi is weighted by a cubic polynomial, and the weighted

terms are added.
The terms involved here are known as Bernstein polynomials.

Bernstein polynomials

Bernstein polynomials, restricted to the interval [0, 1], became important in
the form of Bezier curves. A numerically stable way to evaluate polynomials in
Bernstein form is de Casteljau’s algorithm.

A linear combination of Bernstein basis polynomials is called a Bernstein
polynomial of degree n.

The Bernstein polynomials are

B t

B t t

B t t

B t

0
3 3

1
3 2

2
3 2 2

3
3 3

1

3 1

3 1

= −

= −

= −

=

()

()

()

These cubic Bernstein polynomials are easily remembered as the terms one
gets by the raised expression a(t) = (1 - t - t), which is simply 1 for all values of t
to the third power.

Consequently, P(t) is an affine combination of points, and thus a legitimate
point.

1

1

B (t)
0

3

B (t)
3

1
B (t)

3

2

B (t)
3

3

t
O

Fig. 13.38 The Bernstein polynomial of degree 3

PROGRAMMING GRAPHICS USING OPENGL 373

Fig. 13.38 is the shape of the four Bernstein polynomials of degree 3 as t varies
between 0 and 1.

p2

p3

P.0

p (.3) p1

.441 p2

x

.343 p0

.189 p2

.027 p3

y

Fig. 13.39 Blending four vectors with Bernstein polynomials

Fig. 13.39 illustrates geometrically how the four points p0,…….p3 in Eq. (13.7)
are blended together to form P(t). View the points as vectors bound to the origin
(so we write P0 as p0, and so on) and let t = 0.3. Then equation becomes

p(0.3) = 0.343 p0 + 0.441 p1 + 0.189 p2+ 0.027 p3

In Fig. 13.39 the four vectors are weighted and the results are added using the
parallelogram rule to form the vector p(0.3).

Extending the de Casteljau algorithm to any number of points

In the previous section we saw how the de Casteljau algorithm uses tweening
to produce quadratic parametric representations when three points are used and
cubic representations when four points are used.

For each value of t, a succession of generations are built up, each by tweening
adjacent points produced in the previous generation (superscript for P is the
generation number):

P i t t P i t t P i t4 3 31 1() () () ()= − + +

………

374 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

P i t t P i t tP i tL L L() () () ()= − + +− −1 11 1

for i = 0,1,…………L
The superscript k in Pki(t) denotes the generation. The process starts with

P t Pi i
0() = and ends with the final Bezier curve P t P ti

L() ()= .

The resulting Bezier is

P t P B tK
L

k k
L() ()= =∑ 0 ...(13.8)

where kth Bernstein polynomial of degree L is defined as

B t
L

K
t tk

L L k k() ()=

− −

1

where
L

K

 is the binomial coefficient function given by

L

K

L

K L K

=

−

!

!()1
 for L <= k

The value of this term is 0 if L < k . Each of the Bernstein polynomials is seen
to be degree L. As before, the Bernstein polynomials are the terms one gets when
expanding [(1 - t) + t] L, so we are assured that

k
L

k
LB t=∑ =0 1() for all t

and P(t) is a legitimate affine combination of points.

Bezier curves in openGL

1. OpenGL supports Beziers through mechanisms called evaluators, used to
compute the blending functions of any degree.

2. Evaluators are general mechanisms for working with Bernstein polynomials.

3. Smooth curves and surfaces are drawn by approximating them with a
large number of small line segments or polygons. They are described
mathematically by a small number of parameters such as control points.

4. An evaluator is a way to compute points on a curve or surface using only
control points. They do not require uniform spacing of u. Bezier curves can
then be rendered at any precision.

5. 1D Bezier curves can also be used to define paths in time for animation.

PROGRAMMING GRAPHICS USING OPENGL 375

1D Evaluators

GLfloat ctrlpoints[4][3] = {...};
void init(void) {

glMap1f(GL_MAP1_VERTEX_3, 0.0, 1.0,

3, 4, &ctrlpoints[0][0]);

}

void display(void) {

glBegin(GL_LINE_STRIP);

for(i=0;i<=30;i++)
glEvalCoord1f((GLfloat)i/30.0);

glEnd();

}

Fig. 13.40

Defining a 1D Evaluator

glMap1(target(type), u1, u2, stride, order, points_to_array);

•	 	target: tells what the control points represent

•	 	u1,u2: the range of variable u

•	 	stride: the number of floating-point values to advance in the data between
one control point and the next

•	 	order: the degree plus one, which it should agree with the number of control
points

•	 	points: pointer to the first coordinate of the first control point

376 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

Evaluating a 1D Evaluator

glEvalCoord1(u);

glEvalCoord1v(*u);

•	 	Causes	evaluation	of	the	enabled	maps
•	 	u:	the	value	of	the	domain	coordinate	(need	not	be	equally	spaced)
•	 	More	than	one	evaluator	can	be	defined	and	evaluated	at	a	time

– (ex) GL_MAP1_VERTEX_3 and GL_MAP1_COLOR_4
– In this case, calls to glEvalCoord1() generates both a position and

a color

Example: /* define and enable 1D evaluator for Bezier cubic curve */

point ctrlpts[] = { ……. } ;

glMap1f (GL_MAP1_VERTEX_3, 0.0, 1.0, 3, 4, ctrlpts);
glEnable (GL_MAP1_VERTEX_3);

 /* GL_MAP1_VERTEX_3 specifies data type for ctrlpts,
range of u = [0.0, 1.0], 3 is the number of values between control
points, (order = degree +1) = 4 */

/* With evaluator enabled, draw line segments for Bezier curve */

glBegin (GL_LINE_STRIP);
for (i = 0; i <= 30; i ++)

glEvalCoord1f ((Glfloat) i/30.0);
glEnd ();

Equally Spaced Points
Rather than using a loop, we can set up an equally spaced mesh (grid) and then

evaluate it with one function call:
glMapGrid(100, 0.0, 1.0);
sets up 100 equally-spaced points on (0,1)
glEvalMesh1(GL_LINE, 0, 99);
renders lines between adjacent evaluated points from point 0 to point 99

2D Evaluators

Everything is similar to the 1D case, except that all the commands must take
two parameters, u and v, into account.

1. Define evaluators with glMap2*()

2. Enable them with glEnable()

3. Invoke them by calling glEvalCoord2() between a glBegin() and glEnd() or
by specifying and applying a mesh with glMapGrid2() and glEvalMesh2()

PROGRAMMING GRAPHICS USING OPENGL 377

To define and evaluate:
glMap2f(target, u1, u2, ustride, uorder, v1, v2, vstride, vorder, points);
glEvalCoord2f(u, v);

Example 4
point data[4][4] = {………};
glMap2f(GL_MAP_VERTEX_3, 0.0, 1.0, 3, 4, 0.0, 1.0, 13, 4, data);
Note that in the v direction data points are separated by 13 floats since array data
is stored by rows.

13.5.3 THE B-SPLINE BASIS FUNCTION

In numerical analysis, a B-spline, or basis spline, is a spline function that has
minimal support with respect to a given degree, smoothness, and domain
partition. Any spline function of a given degree can be expressed as a linear
combination of the B-spline of that degree. Cardinal B-splines have knots that
are equidistant from each other. B-splines can be used for curve fitting and
numerical differentiation of experimental data. CAD and computer graphics,
spline functions are constructed as linear combinations of B-splines with a set of
control points.

The term “B-spline” is short for basis spline. A spline function is a piecewise
polynomial function of degree <k in a variable x. The places where the pieces meet
are known as knots. The number of internal knots must be equal to or greater
than k-1. Thus the spline function has limited support. The key property of spline
functions is that they are continuous at the knots. Some derivatives of the spline
function may also be continuous, depending on whether the knots are distinct or
not. A fundamental theorem states that every spline function of a given degree,
smoothness, and domain partition can be uniquely represented as a linear
combination of B-splines of that same degree and smoothness, and over that same
partition.

Although the literature offers many different approaches to formulating
B-splines, there is a single formula that defines all B-spline functions of any order.
It is recursive relation that is easy to implement in a program and is numerically
well behaved.

Each B-spline function is based on polynomials of a certain order, m. These are
the two most important cases, although the formulation allows us to construct
B-spline of any order.

Before going ahead let us first discuss knot vectors.

378 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

The Knot Vector

The knot vector can, by its definition, be any sequence of numbers, provided
that each one is greater than or equal to the preceding one. Some types of knot
vectors are more useful than others. Knot vectors are generally placed into one of
three categories:

1. Uniform

2. Open uniform

3. Non-uniform

Uniform

These are knot vectors for which

ti + 1 − ti = constant, for all i

For example:
[1, 2, 3, 4, 5, 6, 7, 8, 9]
[0, 1, 2, 3, 4, 5]
[0, 0.25, 0.5, 0.75, 1.0]
[−2.5, −1.4, −0.3, 0.8, 1.9, 3.0]

Open Uniform

These are uniform knot vectors which have k equal knot values at each end:

ti = t1, i < = k
ti + 1 − ti = constant, k < = i < n + 2

ti = tk + (n + 1) i > = n + 2

For example:
[0,0,0, 0, 1, 2, 3, 4, 4, 4, 4] (k = 4)
[1,1,1,2,3,4,5,6,6,6] (k = 3)
[0.1,0.1, 0.1, 0.1, 0.1, 0.3, 0.5, 0.7, 0.7, 0.7, 0.7, 0.7] (k = 5)

Non-uniform

This is the general case, the only constraint being the standard

ti < = ti + 1, for all i

For example:
[1, 3, 4, 22, 23, 23, 49, 50, 50]
[1, 1, 1, 2, 2, 3, 4, 5, 6, 6, 6, 7, 7, 7]
[0.2, 0.7, 0.7, 0.7, 1.2, 1.2, 2.9, 3.6]

PROGRAMMING GRAPHICS USING OPENGL 379

NOTE: The shapes of the B-spline functions are determined entirely by the
relative spacing between the knots.

Definition of B-Spline Functions

A B-spline is a piecewise polynomial function of degree <n in a variable x. It is
defined over a domain t0 ≤ x ≤ tm, m = n. The points where x = tj are known as
knots or break-points. The number of internal knots is equal to the degree of the
polynomial if there are no knot multiplicities. The knots must be in ascending
order. The number of knots is the minimum for the degree of B-spline, which has
a non-zero value only in the range between the first and last knots. Each piece
of the function is a polynomial of degree <n between and including adjacent
knots. A B-spline is a continuous function at the knots. When all internal knots
are distinct, its derivatives are also continuous up to the derivative of degree n−1.
If internal knots are coincident at a given value of x, the continuity of derivative
order is reduced by 1 for each additional knot.

It is useful to make the order of a B-spline function explicit in the notation, and
so instead of saying simply Rk(t) (B-spline blending function), we denote the kth
B-spline blending function of order m by Nk,m(t). Consider:

P t P Nk k,m

k

L

() =
=
∑

0

We have

•	 	a	knot	vector	T = (t0, t1, t2, ….....)

•	 	(L + 1) control points Pk

•	 	order	m of the B-spline functions

N t
t t

t t
N t

t t

t tk m
k

k m k
k m

k m

k m k
, ,() ()=

−
−

 +

−

−

+ −

−

+

+ +1
1

1

NN tk m+ −1 1, ()

For k = 0,1,…….,L.

This is recursive definition, specifying how to construct the mth-order function
from two B-spline functions of order (m − 1). To get things started, the first-order
function must be defined. It is simply the constant function 1 within its span:

N t
if t t t

otherwisek

k k

, ()1

11

0
=

< ≤

+

380 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

Note that this set of functions automatically sums to one at every t, so it is
legitimate to use them in forming combinations of points.

))[))[

N 0,1 (t) N 1,1 (t)

1

t
1 2 21

t

2 – tt

1

N 0,2 (t)

Fig. 13.41 Construction of linear B-splines

Computing B-spline blending functions

float bSpline (int k, int m, float t, float knot[])

{

float denom1, denom2, sum = 0.0;
if(m==1)

return (t >= knot[k] && t < knot[k+1]); //Basic condition
denom1 = knot[k+m-1] − knot[k];

if(denom != 0.0)

sum = (t − knot[k]) * bSpline(k, m-1, t, knot);
denom2 = knot[k+m] − knot[k+1];

if(denom != 0.0)

sum += (knot[k+m] - t) * bSpline(k+1, m-1, t, knot);
}

How to use multiple knots in the knot vector

We have used only B-splines based on equi-spaced knots. By varying the
spacing between knots, the curve acquires much greater control of the shape of
the final curve.

Now, consider an example when two knots are set very close to each other.
T = (0, 1, 2, 3, 3 + e, 4 + e ……….) , where e is a small positive number. Fig. 13.42
shows the situation of knot vector:

N , 1(t)0 N , 1(t)2 N , 1(t)4N , 1(t)3

0 1 2 3 3 + ε 4 + ε 5 + ε
t

Fig. 13.42 Moving knots close together

PROGRAMMING GRAPHICS USING OPENGL 381

The piece of each polynomial lying in the interval [3, 3 + e] becomes squeezed
into a very narrow span. The blending functions will clearly no longer be
translations of one another. If e is set to zero, this span will vanish altogether, and a
multiple knot will occur at t = 3.This knot is said to have a “multiplicity of 2.”

Fig. 13.43 shows the resulting blending functions. In Fig. 13.43(b) two of the
linear B-spline shapes are discontinuous. Figure 13.43(c) has quadratic shapes
with discontinuous derivative at t = 3. In general, an i-smooth curve is reduced
to an (i − 1) smooth curve at multiple knots. Fig. 13.43(d) is a cubic B-splines
curve that has 1-smooth everywhere, but not 2-smooth at t = 3. We can notice
in Fig. 13.43(c) that if quadratic B-splines are used, the curve will interpolate
control point P2, because the blending function N2,3(t) reaches 1 at t = 3, and all
other blending functions are zero there. In general, when t approaches a knot of
multiplicity greater than 1, there is a stronger attraction to the governing control
point.

N2,1 N4,1

order = 1

t
1 2 3 4

order = 2

t
1 2 3 4

1

1 N (t)0,3 N (t)1,3 N (t)2,3 order = 3

1 2 3 4 5

order = 41

1 2 3 4 5

(a) (b)

(c) (d)

1

Fig. 13.43 B-spline shapes near a knot of multiplicity 2

Quadratic splines become discontinuous near a knot of multiplicity 3. Cubic
splines exhibit a discontinuous derivative near a knot of multiplicity 3, but they also
interpolate one of the control points. By adjusting the multiplicity of each knot, the
designer can therefore change the shape of the curve in a predictable fashion.

Knots with positive multiplicity

If a knot vector contains knots with positive multiplicity, we will encounter

the case of 0

0
. It is necessary to define 0

0
 before calculation. Therefore we shall

382 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

define 0

0
 to be 0. Fortunately, this is only for manual calculation. For computer

implementation, there is an efficient algorithm.
If ti is a knot of multiplicity k (i.e., ti = ti +1 == ti + k - 1), then knot

spans [ti, ti + 1), [ti + 1, ti + 2), ..., [ti + k − 2, ti + k - 1) do not exist, and as a result,
Ni,0(u), Ni+1,0(u),..., Ni+k−1,0(u)) are all zero functions.

Consider a knot vector T = { 0, 0, 0, 0.3, 0.5, 0.5, 0.6, 1, 1, 1 }. Thus, 0 and 1 are of
multiplicity 3 (i.e., 0(3) and 1(3)) and 0.5 is of multiplicity 2 (i.e., 0.5(2)).

As a result, m = 9 and the knot assignments are

u0 u1 u2 u3 u4 u5 u6 u7 u8 u9

0 0 0 0.3 0.5 0.5 0.6 1 1 1

Let us compute Ni,0(u)’s. Since m = 9 and p = 0 (degree of basis functions), we
have n = m - p - 1 = 8. As the following table shows, there are only four non-zero
basis functions of degree 0: N2,0(u), N3,0(u), N5,0(u), and N6,0(u).

Basis function Range Equation Comment

N0,0(u) All u 0 since [u0, u1) = [0,0) does not exist

N1,0(u) All u 0 since [u1, u2) = [0,0) does not exist

N2,0(u) [0, 0.3) 1

N3,0(u) [0.3, 0.5) 1

N4,0(u) All u 0 since [u4, u5) = [0.5,0.5) does not exist

N5,0(u) [0.5, 0.6) 1

N6,0(u) [0.6, 1) 1

N7,0(u) All u 0 since [u7, u8) = [1,1) does not exist

N8,0(u) All u 0 since [u8, u9) = [1,1) does not exist

Now, we proceed to basis functions of degree 1. Since p is 1, n = m - p - 1 = 7.
The following table shows the results:

PROGRAMMING GRAPHICS USING OPENGL 383

Basis function Range Equation

N0,1(u) all u 0

N1,1(u) [0, 0.3) 1
10

3
−

u

N2,1(u) [0, 0.3)
10

3

u

[0.3, 0.5) 2.5(1 - 2u)

N3,1(u) [0.3, 0.5) 5u - 1.5

N4,1(u) [0.5, 0.6) 6 - 10u

N5,1(u) [0.5, 0.6) 10u - 5

[0.6, 1) [0.6, 1)

N6,1(u) [0.6, 1) 2.5u - 1.5

N7,1(u) all u 0

Fig. 13.44 shows the graphs of these basis functions.

N 1,1 N 3,1 N 5,1

N 6,1

N 4,1

N 2,1

1

0(3) 0.3 0.5(3) 0.6 1(3)
t

Fig. 13.44 Graphs of basis functions

Let us take a look at a particular computation, say N1,1(u).

N t
t t

t t
N t

t t

t t
N t1 1

1

2 1
1 0

3

3 2
2 0, , ,() () ()=

−
−

+

−
−

Put t1 = t2 = 0 and t3 = 0.3 into the above equation:

N t
t

N t t N t1 1 1 0 2 0
0

1
10

3
, , ,() () ()=

+ −

384 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

Since N1,0(t) is zero everywhere, the first term becomes 0

0
 and is defined to be

zero. Therefore, only the second term has an impact on the result. Since N2,0(t) is 1

on [0,0.3), N1,0(t) is 1
10

3
−

u on [0,0.3).

Next, let us compute all Ni,2(t)’s. Since p = 2, we have n = m - p - 1 = 6. The
following table contains all Ni,2(t)’s:

Basis function Range Equation

N0,2(u) [0, 0.3) 1
10

3

2

−

u

N1,2(u) [0, 0.3)
20

3

8

3

2

 −

u u

[0.3, 0.5) 2.5(1 - 2u)2

N2,2(u) [0, 0.3)
20

3

2

u

[0.3, 0.5) - 3.75 + 25u - 35u2

N3,2(u) [0.3, 0.5) (5u - 1.5)2

[0.5, 0.6) (6 - 10u)2

N4,2(u) [0.5, 0.6) 20(-2 + 7u - 6u2)

[0.6, 1) 5(1 - u)2

N5,2(u) [0.5, 0.6) 13.5(2u - 1)2

[0.6, 1) 2.5(- 4 + 11.5u - 7.5u2)

N6,2(u) [0.6, 1) 2.5(9 - 30u + 25u2)

Fig. 13.45 shows all basis functions of degree 2.

PROGRAMMING GRAPHICS USING OPENGL 385

N 1,1 N 3,1 N 5,1

N 6,1

N 4,1

N 2,1

0 (3) 0.3 0.5(3) 0.6 1 (3)
t

1

Fig. 13.45 All basis functions of degree 2.

Let us pick a typical computation as an example, say N3,2(u).

N t
t t

t t
N t

t t

t t
N t3 2

3

5 3
3 1

6

6 4
4 1, , ,() () ()=

−
−

+

−
−

Put t3 = 0.3, t4 = t5 = 0.5 and t6 = 0.6 into the above equation, and we get

N3,2(t) = (5t - 1.5)N3,1(t) + (6 - 10t)N4,1(t)

Since N3,1(t) is non-zero on [0.3, 0.5) and is equal to 5t - 1.5, (5t - 1.5)2 is the
non-zero part of N3,2(t) on [0.3, 0.5). Since N4,1(t) is non-zero on [0.5, 0.6) and is
equal to 6 - 10t, (6 - 10t)2 is the non-zero part of N3,2(t) on [0.5, 0.6).

Let us investigate the continuity issues at knot 0.5(2). Since its multiplicity is 2
and the degree of these basis functions is 2, N3,2(t) is C

0 continuous at 0.5(2). This
is why N3,2(t) has a sharp angle at 0.5(2). For knots not at the two ends, say 0.3, C1
continuity is maintained since all of them are simple knots.

Standard knot vectors

If the knot vector does not have any particular structure, the generated
curve will not touch the first and last legs of the control polyline. This type of
B-spline curve is called an open B-spline curve. If the first and last knots are
not a multiple of m, the curve will not be tangent to the first and last legs at
the first and last control points, respectively. One special choice of knot vector
has become a standard for curve design. With this arrangement, the designer
interpolates the first and last control points, thus better able to predict where the
computed curve lies.

The standard knot vector for a B-spline of order m begins and ends with a knot
of multiplicity m and uses unit spacing for the remaining knots. Let us start with
an example and then see how it arises. Suppose there are eight control points and
we want to use cubic (m = 4) B-splines. The standard knot vector turns out to be

T = (0, 0, 0, 0, 1, 2, 3, 4, 5, 5, 5, 5)
The eight blending functions, N0,4(t),……...,N7,4(t), defined on those knots are

shown in Fig. 13.46(a). N0,4(t) and N7,4(t) are discontinuous and have a support

386 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

of only one unit span. Only N3,4(t) and N4,4(t) have the usual span of four points.
The remaining blending functions have two or three unit spans, and their shapes
become more distorted as they approach the first and last knots.

N (t)0, 4

N (t)1, 4 N2, 4

N3, 4 N4, 4

N5, 4 N6, 4

t , t , t , t0 1 2 3 t4 t5 t6 t7 t , t , t , t8 9 10 11

t

P1

P0

P2

P7

(a)

(b)

Fig. 13.46 (a) Eight cubic B-spline blending functions defined on the standard knot vector.
(b) The resulting curve based on 8 control points

PROGRAMMING GRAPHICS USING OPENGL 387

When we take all the blending functions together, this set of functions always
ensures interpolation of the first and last control points. At t = 0, all blending
functions are zero except for N0,4(t), which equals 1.

Fig. 13.46(b) shows an example of a curve based on eight control points. Clearly
the first and last points are interpolated and the curve directions at these points
are as promised.

The standard knot vector for (L + 1) control points and order-m B-splines is
described as follows:

1. There are L + m + 1 knots all together, denoted by t0,………,tL+ m.

2. The first m knots, t0,………..,tm-1, all shares\ the value 0. (The first m
blending functions start at t = 0.)

3. Knots tm,………….tm increase in increments of 1, from value 1 through
value L - m + 1. (The final blending function, NL,m(t), begins at tL = L - m + 1
and has a support of width 1.)

4. The final m knots, tL + 1,…………..,tL + m, all equal L - m + 2.

See the implementation of above points in programming language. It generates
the standard knot vector for the given values of m and L.

Void buildKnots(int m, int L, double knot[])

{

//build the standard knot vector for L+1 control points
and B-spline of //order m

int i;

if(L < (m-1))
return;

for(i = 0; i <= L+m; i++)
{

if(i < m)
knot[i] = 0.0;
else if(i <= L)
knot[i] = i – m + 1;//i is at least m here

else

knot[i] = L-m+2;
}

}

Constraint: The order m can’t exceed the number of control points (L+1).

Bezier Curves Are B-Spline Curves

We may want to clamp the curve so that it is tangent to the first and last legs
at the first and last control points, respectively, as a Bezier curve does. To do so,
the first knot and the last knot must be of multiplicity m. This is called a clamped
B-spline curve. Bezier curves are a special case of B-spline curve. This is so

388 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

because the B-spline blending functions defined on the standard knot vector are
in fact Bernstein polynomials when m = L + 1!

That is, N t B tk L k
L

, () ()
+

=1 for k = 0,………..,L.

Spline in OpenGL

•	 	OpenGL	 provides	 functions	 for	 both	 Bezier	 (GL)	 and	 B-spline	 (GLU)	
curves and surfaces.

•	 	These	 functions	can	be	used	 to	 interpolate	vertices,	normals,	 colors,	 and	
textures.

GLU B-spline curves

•	 	These	functions	are	actually	NURBS	(non-uniform	rational	B-splines)	but	
they can be used to generate uniform splines that are not rational.

•	 	You	have	to	create	a	NURBS	object:	

 GLUnurbsObj * curveName;

 curveName = gluNewNurbsRenderer();

•	 	Then	you	can	assign	the	curve	properties:

 gluBeginCurve(curveName);

 gluNurbsCurve(curveName, nKnots, *knotVector, stride, *ctrlPoints
degParam, GL_ MAP1_VERTEX_3);

 gluEndCurve(curveName);

•	 	When	done	with	the	curve	you	can	delete	it:

 gluDeleteNurbsRenderer(curveName);

•	 	You	can	also	assign	properties	to	the	curves	with

 gluNurbsProperty(splineName, property, value);

 B-spline surfaces work similarly except you use gluNurbs surface which has
parameters for both dimensions.

13.5.4 Interpolation Technique
When polynomial sections are fitted so that the curve passes through each
control point, the resulting curve is said to interpolate the set of control points.
Interpolating curves are commonly used to digitize drawings or to specify
animation paths. Cubic polylines are often a reasonable compromise between

PROGRAMMING GRAPHICS USING OPENGL 389

flexibility and speed of computation. Compared to higher-order polynomials,
cubic splines require less calculation and memory and they are more stable.
Compared to lower-order polynomials, cubic splines are more flexible for
modeling arbitrary curve shapes.

Linear interpolation is the simplest interpolation method. Applying linear
interpolation to a sequence of points results in a polygonal line where each
straight line segment connects two consecutive points of the sequence. Therefore,
every segment (P,Q) is interpolated independently as follows:

P(t) = (1 - t) ⋅ P + t ⋅ Q

where t belongs to [0,1]. By varying t from 0 to 1 we get all the intermediate
points between P and Q.

Interpolation using piecewise cubic polynomial

Cubic interpolation splines are obtained by fitting the input points with a
piecewise cubic polynomial curve that passes through every control point.
Suppose we have n + 1 control points specified with coordinates:

pk = (xk, yk, zk), k = 0, 1, 2, ………., n

A cubic interpolation fit of these points is illustrated in Fig. 13.47.

P1

P0
P2

Pk Pk + 1

Pn

Fig. 13.47 A piecewise continuous cubic-spline interpolation of n+1 control points

We can describe the parametric cubic polynomial that is to be fitted between
each pair of control points with the following set of equations:

x(t) = axt3 + bxt2 + cxt + dx

y(t) = ayt3 + byt2 + cyt + dy

z(t) = azt3 + bzt2 + czt + dz

where (0 ≤ u ≤ 1). We need to determine the values of four coefficients a, b, c,
and d in the polynomial representation for each of the n curve sections between
n + 1 control points. We do this by setting enough boundary conditions at the
“joints” between the curve sections so that we can obtain numerical values for
all the coefficients. The next section discusses common methods for setting the
boundary conditions for cubic interpolation spline.

390 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

Hermite interpolation

The kth cubic segment of the curve is given by

yk(t) = akt3 + bkt2 + ckt + dkk = 0, 1, …….., L, for t in [0, 1]

We denote the value of its derivatives by sk (i,e. yk′ (0) = sk). In some cases the
values sk are given by the user as input, and in others they are computed from
other required properties of the curve.

We develop conditions on the coefficients ak, bk, ck, and dk so that each segment
interpolates the given values yk at t = 0 and the value yk+1 at t = 1:

At t = 0: dk = yk

At t = 1: ak + bk + ck + dk = y(k + 1) for k = 0, …… , L - 1

This provides 2L conditions. We will force the derivatives of yk(t) to equal
the given values sk and sk+1 at t = 0 and t = 1, respectively. Since the derivative is
yk′ (t) = 3 akt2 + 2bkt + ck, this gives the condition:

At t = 0 : ck = sk

At t = 1: 3ak + 2bk + ck = sk+1 for k = 0, …… , L - 1. This provides another 2L
condition, so we have a total of 4L conditions on the 4L unknown coefficients.
Notice that setting the derivatives to the given slope values in this fashion
automatically forces the slope to be continuous at the joints, so the curve is
1-smooth.

The Natural Cubic Spline

This interpolation curve is a mathematical representation of the original
drafting spline. We formulate a natural cubic spline by requiring that two adjacent
curve sections have the same first and second parametric derivatives at their
common boundary.

If we have n + 1 control points, then we have n curve sections with a total of
4n polynomial coefficients to be determined. At each of the n-1 interior control
points, we have four boundary conditions. The two curve sections on either side
of the control point must have the same first and second parametric derivatives
at that control point, and each curve must pass through that control point. This
gives 4n-4 equations to be satisfied by the 4n polynomial coefficient. We get an
additional equation from the first control points p0, the position of the beginning
of the curve, and another condition from control point pn, which must be the last
point on the curve. We will still need two more conditions to be able to determine
values of all coefficients. One method for obtaining the two additional conditions
is to set the second derivatives at p0 and pn to zero. Another approach is to add
two extra “dummy” control points, one at each end of the original control point

PROGRAMMING GRAPHICS USING OPENGL 391

sequence. That is, we add a control point p-1 and a control point pn + 1. Then all
of the original control points are interior points, and we have the necessary 4n
boundary conditions.

The natural cubic spline has a major disadvantage: if the position of any control
point is altered, the entire curve is affected. Thus, natural cubic splines allow for no
“local control” so that we cannot restructure part of the curve without specifying
an entirely new set of control points.

SUMMARY

In this section, first we described the way to represent curve, either in parametric
or nonparametric form: parametric cubic curves, a major type of curve, are hermit
curves defined by two endpoints and tangent vectors, Bezier curves defined by two
endpoints and two other points that control the endpoints tangent vectors, and
spline curves. All the Bezier curves, hermite curves, and B-splines are translation
and rotation invariant. The distinction between curves that interpolate the points
and those that only approximate the points was emphasized. In either case the
small set of control points, along with an algorithm, produce an infinite set of
points along the curve, one for each value of the parameter t.

The Bezier curve is the simplest one. In a Bezier curve the de Casteljau algorithm
can compute any point on the curve in a few iterations. The complication of the
Bezier curve is that the degree of the Bezier curve depends on the number of
control points. The Bezier curve lacks local control. Changing the position of one
control point affects the entire curve.

We therefore examine a richer class of blending functions based on spline,
which are piecewise polynomials that piece together in such a way that various
order of derivatives are everywhere continuous. The B-spline can generate any
spline and is the most concentrated of such shapes. It allows local control of
shapes. It is more complex than a Bezier curve. The degree of curve is independent
of the number of control points.

Then we discussed interpolation where, instead of being attracted towards the
control point, the algorithm is forced to interpolate the given control points. We
focused on piecewise polynomial curves, and developed conditions on various
coefficients so that the curve not only interpolates the points but also has a
prescribed velocity at each point.

Finally we discussed the curve design technique to design of different families
of surfaces, including ruled surfaces and surface of revolution.

392 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

EXERCISES

1. Define OpenGL. Explain it with some examples.

2. Explain briefly at least six graphical functions of OpenGL.

3. List the open GL operations. Explain any four in detail.

4. What are the advantages of OpenGL?

5. How does OpenGL work? Explain the OpenGL rendering pipeline.

OBJECTIVE QUESTIONS

13.1. The technique used to produce a transformation of one object into another
is known as
(a) morphing (b) betweening
(c) blindfolding (d) cutaway

13.2. A phosphor with low persistence is useful for
(a) animation (b) image processing
(c) CAD method (d) presentation

13.3. A system designed for some training applications is a
(a) GUI (b) simulator
(c) CAD (d) process monitor

13.4. A transformation used for dragging in computer graphics is
(a) translation (b) rotation
(c) scaling (d) reflection

13.5. At which part of the OpenGL graphics pipeline is illumination performed?
(a) before the MODELVIEW transformation
(b) between the MODELVIEW transformation and PROJECTION

transformation
(c) between the PROJECTION transformation and viewport

transformation
(d) between the viewport transformation and rasterization

13.6. What is the purpose of the reshape callback in OpenGL?
(a) to change the shape of the model
(b) to change the shape of the viewport
(c) to re-calculate the camera properties when the window is resized or

reshaped
(d) to re-calculate the modeling transformation when the window is

reshaped

PROGRAMMING GRAPHICS USING OPENGL 393

 13.7. When the sides of rectangles are aligned with the coordinate axes then the
rectangles are called
(a) overlapping rectangles (b) aligned rectangles
(c) symmetric rectangles (d) equivalent rectangles

 13.8. What does glut stands for?
(a) OpenGL Utility Toolkit (b) Graphic Language Utility
(c) Graphic Language Utility Toolkit (d) General Language Utility

 13.9. What is the meaning of Vertex2i in command glVertex2i()?
(a) Command takes 2 arguments of integer types representing pixel

information of vertices
(b) Command takes 2 vertices in argument and represent them in integer

format
(c) Command initializes the vertices as value equals to 2 in integer
(d) Command allows the vertices value differ by integer 2

13.10. The data type supported by the GLint() OpenGL is
(a) 16-bit integer (b) 32-bit integer
(c) 8-bit integer (d) 64-bit integer

13.11. The value for the aspect ratio of a golden rectangle is
(a) 1.6085 (b) 1.618034
(c) 1.628876 (d) 1.652151

13.12. What is the trivial acceptance condition in the Cohen-Sutherland line
clipping algorithm?
(a) FFFF (b) FTTT
(c) TTTT (d) FFFT

13.13. What is the aspect ratio?
(a) width/height (b) height/width
(c) width/width (d) height/height

13.14. Which syntax of OpenGL is used for setting the world window in 2D
graphics?
(a) gluOrtho2D() (b) glViewport()
(c) glLoadIdentity() (d) glMatrixMode()

13.15. What is the format of the data type used to save in OpenGL?
(a) stack (b) queue
(c) matrix (d) file

13.16. Which function of OpenGL is used to plot a point in 2D space?
(a) glVertex2f(x,y) (b) glBegin(GL_LINES)
(c) gluOrtho2D() (d) glViewport()

394 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

13.17. Which one is a v–contour generated curve?
(a) v varies while holding u is constant.
(b) u varies while holding v is constant.
(c) u and v both vary same time.
(d) none of the above

13.18. A Bezier curve is a polynomial of degree _____ the number of control
points used
(a) one more than (b) one less than
(c) two less than (d) none of these

13.19. Clamped B-spline curve P(t) passes through
(a) two middle control points (b) two end control points
(c) both (a) and (b) (d) neither (a) nor (b)

13.20. Changing the position of control point Pi only affects the curve P(u) on
interval
(a) [ui, ui+p+1) (b) [ui-1, ui+p+1)
(c) [ui, ui+1) (d) [ui, ui+p)

13.21. Which of the following is a type of parametric curves and surfaces?
(a) Bezier and rational Bezier (b) B-spline
(c) NURBS (d) all of the above

ANSWERS

 13.1 (a) 13.2 (a) 13.3 (b) 13.4 (a)

 13.5 (b) 13.6 (d) 13.7 (b) 13.8 (a)

 13.9 (a) 13.10 (b) 13.11 (b) 13.12 (a)

13.13 (a) 13.14 (b) 13.15 (c) 13.16 (a)

13.17 (b) 13.18 (b) 13.19 (b) 13.20 (a)

13.21 (d)

395

A
Accelerating anode 4
Affine transformation 358–363

3D approach 362–363
geometric effects of 359
inverse of 361–362

Algorithm 29–30
for line generation 36

Aligned rectangles
aspect ratio of 341–342
drawing 341

Alpha blending 312
ARC generation algorithm

in clockwise direction 73–75
counterclockwise direction 71–73
problems 75–79
using trigonometric function 70–79

Axonometric orthographic parallel
projections 276

B
Bernstein polynomials 372–373
Bézier curves 204–207

are B-spline curves 387–388

designing 369–377
in openGL 374

Bézier surfaces 203
Blending functions 203
Boundary representation 258–261

B-rep scheme 259–261
curved solids 260
polyhedral solids 259–260
primitives 261

Bresenham’s line generation algorithm 43–54
algorithm for line 47, 51–54
mathematical analysis 44–46, 49–51
program for line generation 292–293

Bresenham’s midpoint circle generation
algorithm 55–60

mathematical analysis 56–58
program for circle generation 293–294

Bresenham’s midpoint ellipse generation
algorithm 61–70

mathematical analysis 61–67
problems 69–70
program for ellipse generation 294–295

B-spline basis function 377–388
B-spline blending functions 380

INDEX

396 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

B-spline functions, definition 379–380
B-splines 202–203

C
Cabinet projection 279–280
Callback function 332
Calligraphic or random scan display

system 6–7
Cathode 3
Cathode ray tubes (CRT)

deflection mechanism design 4–5
working of 3–4

Cavalier 278
Character clipping 245–246
Circle 170–174
C Language, graphics programs 291–309
Clipping 230–231

applications of 246
intersection calculation and 236–237
need for 231–232

Clipping candidate or indeterminate 235
Cohen-Hoggman polygon clipping

program 307–309
Cohen-sutherland 2D line clipping 353

program 304–306
Cohen-Sutherland subdivision line clipping

algorithm 234–235, 237
vs. midpoint subdivision algorithm 238

Color-index mode 312
Computer-aided architectural design

(CAAD) 325
Computer-aided design (CAD) 323–325

defined 2–3
Computer-generated images, application

323–329
Computer graphics, definition 1–3
Constructive solid geometry 254–258

Boolean expressions in 255–256
expression and tree 256–258

Control grid 4
CRT based display devices 5–10

advantages 10
disadvantages 10

Cubic spline 191–202

Curve and surface design 365–391
Bezier curves, designing 369–377
B-spline basis function 377–388
curves, description 365–369
interpolation technique 388–391

Curves, description 365–369
nonparametric form 365
parametric form 366
polynomial curves 367–368
rational parametric forms 368–369

D
2D clipping 233–234, 244
3D clipping 243–245
DDA algorithm 37–43

problems 40–43
program for line generation 291–292
varieties of lines 41

De Casteljau algorithm 370, 371, 373–374
1D evaluators 375–376
2D evaluators 376–377
2D geometry representation 84
Diametric projection 278
2-dimensional (2D) designs 2
3-dimensional (3D) designs 2
Direct view storage tube (DVST) 6
Display list 312
3D model generation 249–268
Double buffering 312
Drawing figures, OpenGL 329–345

aligned rectangles, drawing 341
basic graphics primitives, drawing

334–336
coordinate system, establishing 337–338
data types and “states” 336–337
device-independent programming and 331
event-driven programming 331–333
filling polygons 342
getting started, making pictures 330–331
graphics primitives 343
keyboard interaction 345
line drawing, making 339
mouse interaction 344
mouse motion 345

INDEX 397

opening a window, drawing 333–334
polylines and polygons, drawing 339–340

Drawing tools 345–357
circles and arcs, drawing 356–357
implementation, OpenGL 349–350
line clipping 352–354
matched viewport, making 352
polygons, drawing 355–356
screen window, resizing 351
setting window and viewport 350–351
viewports 346–347
window and viewport, mapping 347–349
world coordinates 346–347
world windows 346–347

2D rotation transformation, program for
296–297

3D space, equations of line 217–218
3D space, equations of plane 217–218
3D transformations, program for 300–304

E
Ellipse 174–177
Engineering process, steps 2
Entertainment 328
Equation of line 30–36

problems 33

F
Feedback 312
Focusing anode 4

G
Geometric entities 29–81
glutCreateWindow function 334
glutDisplayFunc (myDisplay) command 332
glutInitDisplayMode function 333
glutInit function 333
glutInitWindowPosition function 333
glutinitWindowSize function 333
glutkeyboardFunc(myKeyboard) command

332
glutMouseFunc(myKeyboard) command 332
glutreshapeFunc(myReshape) command 332
Graphics programs, C Language 291–309

Graphic user interface (GUI) 12–16
cursors 12–13
dialog boxes 15
icons 16
menus 15
radio buttons 13
scroll bars 14
valuators 14

Graphic User Interface (GUI) 1

H
Helical spring 224–226
Homogeneous coordinates 90–101
Hyperbola 182–187

I
Image generating techniques 5–12

CRT based display devices 5–10
non-CRT based display devices 11–12

Image generation, screen 3–5
Image processing 325–327
Immediate mode 312
Interpolation technique 388–391

Hermite interpolation 390
natural cubic spline 390–391
piecewise cubic polynomial 389

Inverse transformation 127–132
problems 129–132

Isometric projection 277–278

K
Knot vectors 378, 380

L
Laser printers working 20–26

charging 21–22
cleaning 24
developing 23
exposing 22–23
fusing 23–24
problems 25–26
raster image processing 21
transferring 23

Line algorithm 32, 34

398 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

Line generation 31
comparing, equation of line and DDA 43
using DDA algorithm 37–43

Line generation algorithm 30–36
mathematical analysis 31

Line segment categorization 235
Lineto () approach 340
Liquid crystal display (LCD) 12

M
Materials lighting and shading 312
Midpoint circle generation algorithm 58–60
Midpoint subdivision algorithm 237

advantage of 238
vs. Cohen-Sutherland algorithm 238

Moveto () approach 340
Multiple windowing 245
Multi-segment cubic spline 194
Multi-view orthographic parallel

projection 276

N
Non-uniform rational B-spline (NURBS)

207–212
control points 208–209
curves 210
knot values 209
properties of 211
surfaces 210
uses of 212

O
Objects transformation 357–365

affine transformation 358–363
transformation with OpenGL 358

Oblique projection 278–280
OpenGL (Open Graphics Library)

with computer graphics 311–322
developer-driven advantages 313
display lists 316
drawing a polygon in 320–321
drawing figures using 329–345
drawing lines in 319
drawing points in 319–320

3D scenes, drawing 363–365
evaluators 316–317
fragment operations 318
graphical functions of 312–313
hardware implementation 314–315
per-vertex operations 317
pixel operations 317
primitive assembly 317
programming graphics using 323–394
rasterization 318
rendering pipeline 315–316
simple animation in 318–319
software implementation 314
texture assembly 317–318
working of 314

Orthographic parallel projection 275–278

P
Parabola 178–182
Parallel projection 274–281

mathematical description of 281
orthographic parallel projection 275–278
vs. perspective projection 280

Parametric representation, planar curves
169–190

of circle 170–174
of ellipse 174–177
of hyperbola 182–187
of parabola 178–182
problems 172–177, 180–187

Parametric representation, space curves
191–214

Bézier curves 204–207
B-splines 202–203
cubic spline 191–202
non-uniform rational B-spline (NURBS)

207–212
problems 195–202

Parametric representation, surfaces 215–227
helical spring 224–226
problems 219–226
surface of revolution 215–221
sweep surfaces 222–224

INDEX 399

Perspective projection 271–274
center of projection (CP) 271
location of object 271
vs. parallel projection 280
perspective foreshortening 272
1-point perspective projection 273
2-point perspective projection 274
3-point perspective projection 274
vanishing points 272
view plane or projection plane 271

Pixel operations 312
Planar curves 169–190
Plasma displays 11
Polygon clipping 240–241

concave or non-convex polygon 241
convex polygon 240

Polynomial evaluators 312
Primitive creation functions 254
Process monitoring 327
Projections 269–281

parallel projection 274–281
perspective projection 271–274
problems 281–288

Publishing 328

R
Radiocity rendering 264–265

applications of 265
Rasterization 79
Raster scan display system 7–8
Ray trace rendering 263–264

advantages of 264
disadvantages of 264

Reflection, arbitrary plane in 3D space 158–164
Reflection transformation 101–112, 156–158

problems 107–112
program for 299

Refresh rate 16–20
problems 17–20

Regular clipping window 230
Rendering technique 262–265

global illumination 262
local illumination algorithms 262

radiocity rendering 264–265
ray trace rendering 263–264
scanline rendering 263

Rotation, arbitrary axis/line in 3D space
143–156

Rotation about a point, program for 298
Rotation transformation 87–89

mathematical analysis 87–88
three-dimensional (3D) transformation

137–143
two-dimensional (2D) transformation

87–89

S
Scaling about a point, program 297–298
Scaling transformation 85–87

mathematical analysis 86–87
program for 297
three-dimensional (3D) transformation

136
two-dimensional (2D) transformation

85–87
Scanline rendering 263
Selection and picking 312
Shear transformation 112–127, 164–165

problems 113–127
program for 298–299

Simulation 328–329
Single-segment cubic curve 191
Solid modeling 253–261

advantages of 261
applications of 262
boundary representation 258–261
constructive solid geometry 254–258
Engineering design 262
entertainment industry 262
medical industry 262
primitive creation functions 254
sweeping 261

Space curves 191–214
Special transformation 101–127

reflection transformation 101–112
shear transformation 112–127

400 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

Standard knot vectors 385–387
Surface modeling 251–253

advantages of 253
analytic entities 251
Bezier surface 253
B-spline surface 253
disadvantages of 253
plane surface 252
ruled (lofted) surface 252
surface of revolution 252
synthetic entities 251–252
tabulated cylinder 252

Surface of revolution 215–221
Sutherland-Hodgman algorithm 242–243
Sweep surfaces 222–224

T
Tangent vectors, internal points 194–195
Texture mapping 312
Three-dimensional (3D) transformation

135–168
problems 138–143, 146–156, 159–164
reflection, arbitrary plane in 3D space

158–164
reflection transformation 156–158
rotation, arbitrary axis/line in 3D space

143–156
rotation transformation 137–143
scaling transformation 136
shear transformation 164–165
translation transformation 136

Transformation, viewing 232–233
Translation, program for 297

Translation transformation 89–90
three-dimensional (3D) transformation

136
two-dimensional (2D) transformation

89–90
Trigonometric function 70–79
Trimetric projection 278
Two-dimensional (2D) transformation 83–134

homogeneous coordinates, need of 90–101
inverse transformation 127–132
rotation transformation 87–89
scaling transformation 85–87
special transformation 101–127
translation transformation 89–90
types of 84–90

V
Variables declaration 30
Vector equation 218
Vector representation 29–81
Viewing transformation 232–233
Viewport 232

W
Window 232
Windowing process 229–230

need for 231–232
problems 239–240

Wireframe modeling 250–251
advantages of 251
disadvantages of 251

Z
Z-buffering 312

	FM
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12
	Chapter 13
	Index

