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PREFACE

In this world of fierce competition, it is absolutely necessary for technocrats to 
keep updated and upgraded with ever-changing technology. As engineers, it’s our 
duty to adapt to these changing scenarios and pay back to society and the nation. 
This scenario of ever-changing technology has motivated us to write this book 
and help others keep up with the pace. This book is written keeping in mind the 
requirements of engineering students and industry professionals.

Features of the Book

• Concepts are explained with relevant mathematical derivations

•  Unsolved examples and multiple choice questions are included at the end of 
the chapters for practice and self-evaluation 

• C programs based on various algorithms 

• Numerous solved examples in each chapter 

Computer graphics is an interdisciplinary subject which is used by undergraduate 
and postgraduate students of mechanical engineering, aeronautical engineering, 
production engineering, computer science, and information technology. Most of 
the current titles, however, do not cover the mathematical concepts related to these 
topics. As a result, students often have difficulty understanding these mathematical 
concepts and their analytical treatment. This book aims to help readers understand 
all of the major topics of the subject. It focuses on the mathematical concepts 
involved in computer graphics and computer aided design currently taught or 
used in industry. 

—The Authors





Chapter

1

1Chapter

INTRODUCTION 
TO COMPUTER 
GRAPHICS

1.1 DEFINITION OF COMPUTER GRAPHICS

Computer graphics involves the display, manipulation, and storage of picture 
and experiential data for proper visualization using a computer. Typical graphics 
systems comprise a host computer with the support of a fast processor, large 
memory, frame buffer, and display devices; output devices as color monitors, 
liquid crystal display, laser printers, plotters, etc.; and input devices (mouse, 
keyboard, joystick, touch screen, trackball, etc.).
Computer graphics have many applications:

1. Computer graphics are used in developing the components of a Graphic User 
Interface (GUI). These GUI components are used to communicate between 
the software and the user. Examples of GUI components are menus, icons, 
cursors, dialog boxes, scroll bars, etc.

2. Computer graphics are used in the corporate sector for representing the sales 
data and economic data using pi-charts, histogram, graphs, etc.

3. Office automation software use GUI components for a researcher’s report  
or thesis.

4. Computer graphics are used in the publication of books, magazines,  
journals, etc.
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5. Computer graphics are used in the advertising field to provide graphic features 
that make advertisements more impactful.

6. Computer graphics are essential in the entertainment and communication 
industries worldwide, appearing everwhere from TV monitors to mobile phones.

7. Computer graphics are vital to simulation—the imitation of real world 
processes in a model over time, such as aircraft and car racing simulations. 
Aircraft simulations train budding pilots before they get hands-on experience 
in real aircraft.

8. Computer graphics are used in audiovisual teaching aids in education. They 
improve teaching outcomes in school and help employees develop skills in 
profession training.

9. Computer graphics are used in the industry for computer-aided design and 
computer-aided manufacturing (CAD-CAM).

1.1.1 Definition of Computer Aided Design (CAD)

Computer Aided Design is defined as any use of a computer to assist in the 
creation, modification, analysis, or optimization of 2-dimensional (2D) and 
3-dimensional (3D) designs. Examples of 2D CAD include plan or layout 
designs, and 3D CAD includes solid and 3D modeling. Some of the common 
applications of 2D CAD are architectural building plans, layout plans, 
machine part drawing, electrical circuitry drawing, etc. Animated movies and 
video games are applications of 3D CAD. Vector representations/ parametric 
representations of 2D entities (such as lines, circles, conics), 3D entities, and 

Idea

Conceive Design (CAD) Development Manufacturing (CAM)

CAE ValidationAnalysis

DMU

Engineering Drawing

CAMTool Design

Detailed Component
Modeling

Assembly Modeling
Product Layout

Concept Design

Requirement

 
Fig. 1.1 Steps in the engineering process
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surfaces are used to develop computer based CAD software. CAD is extensively 
used throughout the engineering process, as shown in Fig. 1.1. Engineering 
processes begin as early as conceptual design and layout of product to 
component modeling, assembly modeling, strength and dynamic analysis of 
assemblies, to definition of manufacturing methods of components. CAD has 
become especially important within the scope of Computer Aided Technologies. 
Benefits of CAD include a greatly shortened design cycle and lower product 
design and development costs. CAD enables designers to simulate a working 
model on screen, edit or manipulate the model, maintain the record by saving 
the files, and generate reports.

1.2 IMAGE GENERATION ON SCREEN

In computer graphics, an image is generated on a display device. Underlying 
technologies for full-area two-dimensional displays include: cathode ray tube 
display (CRT), light-emitting diode display (LED), electroluminescent display 
(ELD), electronic paper, electronic ink, plasma display panel (PDP), liquid crystal 
display (LCD), organic light-emitting diode display (OLED), laser TV, etc. The 
multiplexed display technique is used to drive most modern display devices. 
Earlier cathode ray tube (CRT) based display devices are used in the following 
display devices:

1. Direct view storage tube (DVST)

2. Calligraphic or random scan display system

3. Raster scan display system

Before moving on to the display device, let us first see the working of the cathode 
ray tube (CRT).

1.2.1 Working of Cathode Ray Tubes (CRT)

A cathode is a (negatively charged) electron gun that contains a filament. When 
the filament is heated, the electrons are emitted in a straight beam. When the 
beam hits a phosphorus-coated CRT screen at a certain velocity, it emits light 
and a bright spot appears on the screen (Fig. 1.2). The different components of a 
CRT are:

Cathode: A cathode is made up of a filament which generates electrons on 
heating. This is also called an electron gun. These negatively charged electrons are 
directed towards the screen.
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Control Grid: The intensity or brightness of any point on the screen depends 
upon the intensity of the electron beam coming out from the electron gun. 
A  control grid is used to control the intensity of the electrons emerging from 
the electron gun according to the intensity of the point required on the screen. 
The control grid is negatively charged with varying intensity. The intensity of the 
negative charge is achieved by providing negative voltage to the control grid. If 
high negative voltage is provided, then a strong negative field is developed, which 
in turn repels the amount of electrons coming out from the electron gun. On 
the other hand, if low voltage is supplied to the control grid, this produces a low 
negative charged field, and that increases the intensity of electrons coming out 
from the electron gun. In other words, by changing the voltage of the control grid, 
the brightness of a point on the screen can be changed.

Focusing Anode: The focusing anode is a positively charged field which 
focuses the electron beam on a particular point on the screen.

Accelerating Anode: The accelerating anode accelerates the velocity of the 
electrons in an electron beam so that they hit the screen at a high velocity. This 
ensures that light is emitted and a bright spot appears on the screen.

1.2.2 Design of Deflection Mechanism of CRT

The deflection mechanism deflects the electron beam so that it strikes the screen 
at the desired location. There are two types of deflection plates: the horizontal 
deflection plate and the vertical deflection plate. Horizontal deflection plates are 
basically vertically placed but deflect the electron beam in a horizontal direction, 
whereas vertical deflection plates are horizontally placed but deflect the electron 
beam in a vertical direction. These deflection plates are provided with an electric 
field which deflects the electron beam from its straight path. The deflection 
mechanism is shown in Fig. 1.3. There are two methods of providing an electric 
field to the two deflector plates:

1. Electromagnetic field

2. Electrostatic field

Phosphor coated screen

Electron beamFocusing unitControl gridCathode

Heating filament Accelerating unit

CRT screen

Fig. 1.2 The cathode ray tube



INTRODUCTION TO COMPUTER GRAPHICS 5

An electromagnetic field is most commonly used in modern display devices 
such as TV monitors, etc. In this method, a magnetic field is generated in the 
deflector plates. An electrostatic field is most commonly used in applications such 
as cathode ray oscilloscopes (CRO). In this method, a static capacitive field is 
generated in the deflector plates.

1.3 IMAGE GENERATING TECHNIQUES

Image generation techniques are classified on the basis of the use of cathode ray 
tubes (CRT) in display devices. Devices that use CRT for image generation on 
screen are called CRT-based display devices. Examples: direct view storage tube 
(DVST), random scan display devices, and raster scan display devices.

Similarly, display devices that do not use CRT for image generation on the screen 
are termed non-CRT-based display devices. All modern display devices come 
under this category. The size of the display device is reduced considerably and it is 
flatter than a CRT based display device. Non-CRT-based display devices are liquid 
crystal displays (LCD), light emitting diodes (LED), plasma monitors, etc.

1.3.1 CRT Based Display Devices

As we have discussed earlier, there are three CRT based display devices: direct 
view storage tubes, calligraphic or random scan display systems and raster scan 
display systems. These CRT based display devices are further classified into two 
categories: a line-based system and point-based system as shown in Fig. 1.4. Direct 
view storage tube and calligraphic or random scan display systems, are examples 
of line-based system, whereas raster scan display systems are examples of point-
based systems. In line-based display devices, any geometric entity on the screen 
is made up of small lines. Even a curve or circle is also made up of small lines, 
whereas in point-based systems, it is made up of points. The phosphor coating 

Horizontal deflection plates Deflected beam

Phosphor coated screen

Electron gun Vertical deflection plates

Fig 1.3 Deflection mechanism of CRT
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in CRT is of two types: long persistent phosphor coating and short persistent 
phosphor coating. In long persistent phosphor coating, the bright spot appears for 
a long period of time whereas in short persistent phosphor coating it appears for a 
few milliseconds and then diminishes. When the screen gets refreshed, the bright 
spot again appears on the screen. This cycle is continued and the phenomenon 
is called the refresh rate. Due to these cycles of screen refresh, flickering appears 
on the screen. Flicker is a visible fading between the cycles, especially when the 
refresh rate or refresh frequency is low. A low refresh rate allows the brightness to 
drop for time intervals sufficiently long to be noticed by the human eye.

Line based system
(Ex. DVST and
calligraphic)

Point based system
(Ex. raster scan display

device)

CRT based display devices

Fig. 1.4 Classification of CRT based display devices

1.3.1.1 Direct View Storage Tube (DVST)

In DVST, the CRT screen is coated with permanent phosphorescence. This 
permanent phosphorescence coating on the screen ensures the entity drawn 
on the screen will remain there for long time, say 1 to 2 hours. Because of this 
permanent phosphorescence, the figure appears on the screen for a long time and 
changing the entity on the screen becomes difficult. For erasing the entity, the 
screen must be flooded with a particular voltage. So, if we have to make changes, 
we have to erase the entire screen by supplying voltage to the screen and then 
redraw the new entity on the screen. A line in DVST can be drawn from any point 
to any point on the screen. This property is not shared by other display devices. 
This is the reason why it is called a line-based system. Any image on the screen of 
DVST is drawn by using small lines. DVST is a flicker free display device.

The disadvantages of DVST:

1. The process of drawing any entity is slow.

2. No animation is possible.

3. Erasing an entity is difficult.

1.3.1.2 Calligraphic or Random Scan Display System

This is also a line-based system like the DVST, which means we can draw a line 
from any point to any point on the screen. The drawback of DVST, is that an 
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image appears for a very long time (1 to 2 hours), is eliminated in random scan 
display systems. Here the picture is refreshed or reappears on the screen about 40 
to 50 times in a second. But due to this high frequency of refresh, the refreshing 
process is not observed by the human eye, but a slight flickering appears on the 
screen. The main components of random scan display systems are screen, buffer 
(memory), and controller.

L

L

L

L

4

3

2

1

Buffer (memory) Controller Screen

L1

L2
L4

L3

Fig. 1.5 Working of a random scan display system

Buffer is memory which stores the information on the entities of the screen. As 
shown in Fig. 1.5, there are four lines on the screen and the information of these 
lines is stored in the buffer. The controller controls the flow of data from the buffer 
to the screen and vice-versa. In every cycle of refresh, it reads the data from the 
buffer and displays it on the screen. This refresh process is repeated for 40 to 50 
times in a second. Erasing the line on the screen means erasing the line from the 
buffer. This makes changes to the image much easier. The disadvantage of this 
system is that complex curves are difficult to draw.

1.3.1.3 Raster Scan Display System

In this display system, the entire screen is divided into an array or matrix of 
points, as shown in Fig. 1.6. These small points are called pixels; hence it is 
called a point-based system. But a line cannot be drawn from any point to any 
point on the screen. For monochrome monitors, each pixel can be either black 
or white. The line on the screen appears by making a particular line of pixels 
glow. This also uses a refresh display system like a random scan display system, 
in which the entity on the screen is redisplayed 40 to 50 times in a second. 
The frame buffer is a memory storage device to store the location of pixels on 
the screen. The controller’s function is to control the display of pixels as per 
information stored in the frame buffer (this whole cycle is repeated 40 to 50 
times in a second).
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Fig. 1.6. Rasterization

In a raster scan display system, the frame buffer is also called a bit plane or a stroke 
system, in which an electron beam moves on the entire screen in a zig-zag and 
gets switched on and switched off during its travel to the entire screen, as shown 
in Fig. 1.7. Fig. 1.8 shows the frame buffer for a monochrome monitor. Fig. 1.9 
shows the frame buffer arrangement with an extended look-up table to increase 
different color combinations. A color monitor uses a number of frame buffers to 
represent the various colors on the screen. If a monitor is capable of showing 256, 
colors, or 28 = 256, there are 8 frame buffers in the display system. Fig. 1.10 shows 
the frame buffer for a color monitor. Different algorithms are used to decide the 
sequence of pixels to glow in order to represent a given entity on the screen.

0

1

2

3

4

5

6

7

8

9

10

Scan
line

Horizontal
retrace

Vertical
retrace

Fig. 1.7 Zigzag strokes of an electron beam



INTRODUCTION TO COMPUTER GRAPHICS 9

CRT
raster

N

Register

0 01

Frame
buffer

2
N

2
N

DAC

levels

Electron
gun

N

Fig. 1.8 N-bit-plane gray level frame buffers

2 intensity levels,
W

2 at a time (W > N)
N

Electron
gun

Frame
buffer

CRT
raster

entries

W = 4

2
N

2
W

DAC

Lookup
table

W

1 1 10

0 01

N = 3

N

Fig. 1.9 N-bit-plane gray level frame buffer with a W-bit-wide lookup table
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The 24-bits associated with each pixel in the frame
buffer are split into three 8-bit groups to specify
the pixel’s red, green, and blue (RGB) component

Pixels on
the screen

Digital-to-analog convertors (DACs) translate
the digital RGB values into their analog
counterparts to be fed to the screen

Pixels in the
frame buffer

DAC

DAC

DAC

R = 8

G
= 8

B = 8

Fig. 1.10 A simple color frame buffer

Advantages

•	 It is possible to add chrominance information to each pixel.

•	 Position on screen is predefined by the scan progress.

•	 Less expensive than vector display.

•	 The DSP (digital signal processor) and graphic processor are cheap and very 
powerful.

•	 Very efficient to represent full images.

Disadvantages

•	 Slow screen update rate, normally 25-120 screen/sec.

•	 At low resolution, pixels are quite big.

•	 Non-real time display.

•	 Improper interpolation of digital samples can produce visual artifacts 
(aliasing).



INTRODUCTION TO COMPUTER GRAPHICS 11

1.3.2 Non-CRT based Display Devices

Non-CRT based display devices are also called flat panel displays. CRT based 
display devices are bulky, heavy, and fragile but flat panel display devices are light 
and easy to handle. As a result, they have greater demand than CRT based DD. 
Examples of flat panel display devices are plasma, LCD, LED, etc.

1.3.2.1 Plasma Display

Plasma display consists of a matrix of pixels. Each pixel contains a mechanism 
which is actuated by voltage. The current emits light and is supplied to the 
pixel by using a switching device transistor, resistor, etc. The basic technique 
in plasma is a display consisting of a matrix of cells in a glass envelope, 
and each cell is filled with gas, like neon. Plasma displays can have an AC 
dielectric layer placed in between the conductance and the gas, which is 
bi-stable or DC, or a combined AC/DC hybrid. Large-size plasma has high 
resolution. Phosphorescent material emits light when excited by either an 
AC or DC electric field. The material is zinc sulphite doped with manganese. 
Electroluminescent display has a yellow color. An AC/DC excited thin film 
electron is mostly used in computer graphics applications. The basic structure 
is shown in Fig. 1.11.

Pioneer Waffle
Rib Structure

Rear glass substrate
Address electrode

Address protective layer

Black stripe
Protective layer (MgO)

Dielectric layer

Front glass substrate
Auxiliary electrode

Transparent
Electrode Rib

Red phosphor

Green phosphor

Blue phosphor

Conventional Straight-type

Cell Structure

Rear glass substrate

Address electrode

Address protective layer

Auxiliary electrode
Protective layer (MgO)

Dielectric layer

Front glass substrate

Cell Structure Comparison

Rib

Red phosphor
Green phosphor

Blue phosphor

Transparent electrode

Fig. 1.11 The basic structure of gas discharge plasma display (AC/DC activated)
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1.3.2.2 Liquid Crystal Display (LCD)

Liquid crystal display is an example of passive technology. It either transmits 
or reflects incident which is modified with polarization. The basic principle of 
polarized light is that transmitted light is passed through the first polarizer and 
polarized in the xyplane, since the polarized axis of the second polarizer aligns 
with first one, and vice versa. The ceramic which exists in the mesophase is stable 
at a temperature between solid and liquid, hence the name liquid crystal. Picture 
clarity is shown in Fig. 1.12.

Fig. 1.12 Liquid crystal display

1.4 GRAPHIC USER INTERFACE (GUI)

The graphic user interface is used to control the system or a specific application 
running on the system. Computer systems may have multiple interactive devices 
to interact with the outside world. Typical examples of interaction with the outside 
world are visual representation of position, valuator, button, and pick functions. 
Elements that are used to construct GUI are cursor, radio button, valuators, scroll 
bars, dialog boxes, menus, icons, etc.

Cursors

Cursors are a very important element of GUI. They are mainly used to indicate 
location on the screen. Another use of the cursor is the indication of an available 
operation by clicking the mouse. Cursors come in various types, as shown in 
Fig. 1.13.
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?

aero_alt aero_arrow aero_busy aero_ew

aero_helpsel aero_link aero_move aero_nesw

aero_ns aero_nwse aero_pen aero_prec

aero_Select aero_unavai aero_up aero_working

Fig. 1.13 Types of cursors

Radio Buttons

Radio buttons are used to visually implement the choice or button function. 
Alternatively, the buttons can be used to indicate an on/off status for a particular 
feature. Fig. 1.14 shows various radio buttons.

Fig. 1.14 Radio buttons
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Valuators

Valuators, shown in Fig. 1.15, are implemented as either fixed length slider bars 
or dial pointers. This feature is also available as a numerical value shown under an 
arrow as additional feedback.

Fig. 1.15 Valuators

Scroll bars

Scroll bars are used to indicate and/or move to a position within a document or 
other entity as shown in Fig. 1.16. The arrow indicates the direction of motion.

Fig. 1.16 Scroll bars
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Dialog boxes

Dialog boxes, shown in Fig. 1.17, are used when multiple inputs are required 
to specify the desired action in a system. They contain a number of different 
interactive tools, i.e., radio buttons, valuators, types of boxes, etc.

Fig. 1.17 Dialog boxes

Menus

Menus are used to perform functions such as selecting from a set of choices as 
seen in Fig. 1.18. The most common menus are:

•	 Pull	up	 	 	 •	 	 Pull	down
•	 Pull	out	 	 	 •	 	 Pop	up
•	 Tear off, etc.

Fig. 1.18 Menus
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Icons

Fig. 1.19 shows icons, which provide a pictorial representation of a concept, 
object, or action.

Fig 1.19 Icons

1.5 REFRESH RATE

A refresh rate depends upon a monitor’s horizontal scanning frequency and the 
number of horizontal lines displayed. The horizontal scanning frequency is the 
number of lines the electron beam sweeps in one second. It is also known as 
frame rate, horizontal scan rate, vertical frequency, or frequency. Refresh rate is 
a CRT monitor measurement in Hz that indicates how many times per second 
a monitor screen image is renewed. For example, a monitor with a refresh rate 
of 75 Hz means the screen is going to redraw 75 times per second. Refresh rates 
below 75 Hz can produce an often-imperceptible flicker that can cause eyestrain 
after long viewing. While some cards can support as high as 120 Hz, sometimes 
even higher, it is recommended you run 85-90 Hz; rates beyond 90 Hz add an 
unnecessary processing burden to the eyes. Finally, LCD does not have a refresh 
rate. Hence, LCD is a flicker free device.
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Problems on refresh rate/monitors

Problem 1

Calculate the different colors obtained with three sets of 8 bit frame buffers. 

Solution Different colors obtained can be calculated as follows:

[2n]m

Where,
m = number of frame buffer sets

n = number of frame buffer (bit plane) in each set
here

m = 3, n = 8

[28]3 = 16777216

Hence, three sets of 8 bit frame buffers can generate 16,777, 216 different colors.

Problem 2

Calculate the refresh rate for a raster screen of 512 × 512 pixels with average 
access time for each pixel of 200 nanoseconds.

Solution Average access time for each pixel = 200 nanoseconds = 200 × 10–9 sec

Raster screen of 512 × 512 pixels

∴ total time to access all pixels = 512 × 512 × 200 × 10–9 sec

= 0.0524 sec

For one frame to get refreshed, it takes 0.0524 sec. So in 1 sec, the refresh rate 
would be

= =
1

19 frames/sec
0.0524

Problem 3

Calculate the time required to access each pixel, when the refresh rate of 30 
frames/second of 4096 × 4096 raster.

Solution Let the time required to access each pixel = X

∴ total time to access all pixels (each frame) = (4096 × 4096 × X) sec
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Refresh rate is 30 frames in one second. Hence, time required to access each pixel 
is calculated as

-

=
× ×

= = ×
× ×

9

1
30

(4096 4096 )

1
1.98 10 sec

(4096 4096 30)

X

X

= 1.98 nanoseconds

Problem 4

Calculate maximum RAM size for 32 bit and 64 bit operating systems and 
1920 × 1080 raster screen.

Solution 32 bit operating system means, for each pixel on the screen, there are 32 
frame buffers in the memory.

No. of pixels on the screen = 1920 × 1080 = 2073600 pixels

No. of bits for 32 bit operating system = 2073600 × 32 bits

=

= =

= =

66355200
bytes = 8294400 bytes

8
8294400

kilobytes 8100 kilobytes
1024

8100
megabytes 7.91 megabytes

1024

(It may be noted that to convert bytes to kilobytes, we have to divide by 1024)

No. of bits for 64 bit operating system = 2073600 × 64 bits

= =

= =

=

132710400
bytes 16588800 bytes

8
16588800

kilobytes 16200 kilobytes
1024

16200
= megabytes 15.82 megabytes

1024

RAM sizes required for a given raster screen using 32 bit and 64 bit operating 
system are 7.91 MB and 15.82 MB respectively.
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Problem 5

For a 21.5 inch monitor having a screen resolution of 1920 × 1080, calculate 
pixels per inch (ppi)

Solution Pixels per inch (ppi) is the number of pixels per square inch

= p

i

d
ppi

d

where,         
= +2 2

p p pd H V

dp  =  diagonal resolution in pixels

Hp  =  horizontal  resolution in pixels

di  =  diagonal size of monitor in inches

Vp   =  vertical resolution in pixels

Here,        Hp  =  1920,

Vp   =  1080

di  =  21.5 inch

= p

i

d
ppi

d

= +2 2
p p pd H V

= +2 2(1920) (1080)pd

dp  =  2202.9

= =
2202.9

102.46
21.5

ppi ppi
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Problem 6

Calculate pixels per inch (ppi) for Nokia N 90 mobile having screen resolution 
352 × 416 and 2.1 inch monitor.

Solution

Here,  Hp   =  352

   Vp   =  416

   di     =  2.1 inch

     
= +2 2

p p pd H V

= +2 2(352) (416)pd

= +123904 173056pd

= 296960pd

dp   = 544.94

= p

i

d
ppi

d

= =
544.94

259.49 ppi
2.1

ppi

1.6 WORKING OF LASER PRINTERS

Laser printing is an electrostatic digital printing process that rapidly produces high 
quality text and graphics by passing a laser beam over a charged drum to define a 
differentially charged image. The drum then selectively collects charged toner and 
transfers the image to paper, which is then heated to permanently fix the image. 
As with digital photocopiers and multifunction printers (MFPs), laser printers 
employ a xerographic printing process, but differ from analog photocopiers 
in that the image is produced by the direct scanning of the medium across the 
printer’s photoreceptor. Hence, it proves to be a much faster process compared 
to the latter. There are typically seven steps involved in the laser printing process.
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Raster image processing

Each horizontal strip of dots across the page is known as a raster line or scan 
line. Creating the image to be printed is done by a raster image processor (RIP), 
typically built into the laser printer. The raster image processor generates a bitmap 
of the final page in the raster memory. For fully graphical output using a page 
description language, a minimum of 1 megabyte of memory is needed to store an 
entire monochrome letter/A4 sized page of dots at 300 dpi. At 300 dpi, there are 
90,000 dots per square inch (300 dots per linear inch). In a color printer, each of 
the four CYMK toner layers is stored as a separate bitmap, and all four layers are 
typically preprocessed before printing begins, so a minimum of 4 megabytes is 
needed for a full-color letter-size page at 300 dpi. Memory requirements increase 
with the square of the dpi, so 600 dpi requires a minimum of 4 megabytes for 
monochrome, and 16 megabytes for color at 600 dpi. Printers capable of tabloid 
and larger size may include memory expansion slots.

Charging

In older printers, a corona wire positioned parallel to the drum, or in more 
recent printers, a primary charge roller, projects an electrostatic charge onto 
the photoreceptor (otherwise called the photo conductor unit), a revolving 
photosensitive drum or belt, which is capable of holding an electrostatic charge 
on its surface while it is in the dark, as shown in Fig. 1.20.

High voltage
power source

Negative ions
on corona wire

Drum rotation

Fig 1.20 Applying a negative charge to the photosensitive drum
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An AC bias is applied to the primary charge roller to remove any residual charges 
left by previous images. The roller will also apply a DC bias on the drum surface 
to ensure a uniform negative potential. Numerous documents describe the 
photosensitive drum coating as a silicon sandwich with a photo charging layer, a 
charge leakage barrier layer, as well as a surface layer. One version uses amorphous 
silicon containing hydrogen as the light receiving layer, boron nitride as a charge 
leakage barrier layer, as well as a surface layer of doped silicon, notably silicon 
with oxygen or nitrogen which at sufficient concentration resembles machining 
silicon nitride.

Exposing

The laser is aimed at a rotating polygonal mirror, which directs the laser beam 
through a system of lenses and mirrors onto the photoreceptor. The cylinder 
continues to rotate during the sweep and the angle of sweep compensates for this 
motion. The stream of rasterized data held in memory turns the laser on and off 
to form the dots on the cylinder. Lasers are used because they generate a narrow 
beam over great distances. The laser beam neutralizes (or reverses) the charge 
on the black parts of the image, leaving a static electric negative image on the 
photoreceptor surface to lift the toner particles, as shown in Fig. 1.21.

11 11

11 11

1111 111

111 111

11 11

1

Scanning
mirror

Laser

RIP
image buffer

Beam
segment lens

Imaging
drum

Beam scanning path

Fig 1.21 The laser neutralizes the negative charge
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Fig 1.22 An actual laser unit from a Dell P1500

Some non-laser printers expose by an array of light emitting diodes spanning 
the width of the page, rather than by a laser (“exposing” is also known as “writing” 
in some documentation). Fig. 1.22 shows the laser unit of a Dell P 1500.

Developing

The surface with the latent image is exposed to toner, fine particles of dry plastic 
powder mixed with carbon black or coloring agents. The toner particles are given 
a negative charge and are electrostatically attracted to the photoreceptor’s latent 
image, the areas touched by the laser. Because like charges repel, the negatively 
charged toner will not touch the drum where the negative charge remains.

Transferring

The photoreceptor is pressed or rolled over paper, transferring the image. Higher-
end machines use a positively charged transfer roller on the back side of the paper 
to pull the toner from the photoreceptor to the paper.

Fusing

The paper passes through rollers in the fuser assembly where heat of up to 200°C 
(392°F) and pressure bond the plastic powder to the paper as shown in Fig. 1.23. 
One roller is usually a hollow tube (heat roller) and the other is a rubber backing 
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roller (pressure roller). A radiant heat lamp is suspended in the center of the 
hollow tube, and its infrared energy uniformly heats the roller from the inside. 
For proper bonding of the toner, the fuser roller must be uniformly hot.

Some printers use a very thin flexible metal fuser roller, so there is less mass 
to be heated and the fuser can more quickly reach operating temperature. If 
paper moves through the fuser more slowly, there is more roller contact time 
for the toner to melt, and the fuser can operate at a lower temperature. Smaller, 
inexpensive laser printers typically print slowly, due to this energy-saving design, 
compared to large high speed printers where paper moves more rapidly through a 
high-temperature fuser with a very short contact time.

Cleaning

When the print is complete, an electrically neutral soft plastic blade cleans any 
excess toner from the photoreceptor and deposits it into a waste reservoir, and 
a discharge lamp removes the remaining charge from the photoreceptor. Toner 
may occasionally be left on the photoreceptor when an unexpected event, such 
as a paper jam, occurs. The toner is on the photoconductor ready to apply, but 
the operation failed before it could be applied. The toner must be wiped off and 
the process restarted. Fig. 1.24 shows a magnified image of color laser printer 
output, showing individual toner particles comprising 4 dots of an image with a 
bluish background.

W

Hollow roller

Radiant heat
lamp

Backing roller

Fig 1.23 Melting toner on paper using heat and pressure
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Fig 1.24 A magnified image printed from a color laser printer

Problems on Printers

Problem 7

Assume a computer with 16 bit per word and a transfer rate of 1 million 
instructions per second. How long would it take to fill the frame buffer for a 

600 dpi (dots per inch) laser printer with a page size of 
″1

8
2

 by 14″ inch.

Solution

1 instruction  =  1 dot = 1 bit

∴ 600 dots  =  600 bits

page area  =  8.5″ × 14″ = 119 inches squared

Dots per inch  =  printable area × dpi area

Dots per inch  =  page area × 600 dpi × 600 dpi

=  119 × 600 × 600 dots or bits

=  42840000 dots or bits

Transfer rate of 1 × 107 bits in 1 sec. So, to transfer 42840000 dots or bits, it takes 
X sec
time require to print one page =

× 7

42840000

1 10

=  42.8 sec

∴ No. of pages print in 1 min = =
60

1.4 page/min
42.8
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Problem 8

Suppose a printer of 300 × 300 dpi resolution producing 
1

7
2

 × 
1

10
2

 inch printed  

area on an 
1

8
2

 × 11 inch page. Calculate no. of pages printed per minute, if a  

sustained data rate to the laser print engine of 1 megabit/sec.

Solution

Printable area on page = 7.5 × 10.5 = 78.75 inch2

∴   = × ×No.of 78.75 300 300
dots

page

=  7087500 dots/page

Data rate of 1 megabit in one sec, so to print 7087500 it takes

=  
× 6

7087500
sec

1 10

=  7.08 sec/page

∴        so in one minute  = 60

7.08
 = 8.47 pages/minute

EXERCISES

1. Explain the various applications of computer graphics.

2. What are the benefits of CAD from manufacturing considerations?

3. What are the various hardware requirements in setting up the CAD system?

4. Write short notes on (i) icons (ii) GUI.

5. Explain the working of random scan display. Why is this not used in modern 
CAD?

6. Explain any two output devices in a CAD system.

7. Explain the difference between time based systems and point based systems, 
with examples.

8. What is flickering in display devices?

9. Explain the components of raster scan display devices.

10. Explain the refresh rate.
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11. What is a pixel and a frame buffer?

12. What is a bit plane? How are bit planes used to get different color and B and 
W gray levels?

13. Explain the working of laser printers.

14. How is an image generated on a screen?

15. What are the different parameters for comparing graphic display devices? 
Compare various display devices on these parameters.

OBJECTIVE QUESTIONS

1.1  In CRT, the control grid is used to control the intensity of electrons coming 
out from an electron gun, and is charged with
(a) negative voltage (b) positive voltage
(c) neutral (d) none of the above

1.2  The phenomenon of having a continuous glow on the screen even after it is 
removed is called
(a) fluorescence (b) persistence
(c) phosphorescence (d) incandescence

1.3 Aspect ratio is generally defined as the ratio of
(a) vertical to horizontal points
(b) horizontal to vertical points
(c) vertical to (horizontal + vertical) points
(d) either (a) or (b) depending on the convention followed

1.4 Which of the following devices have relative origin?
(a) Joystick (b) Track ball
(c) Mouse (d) none of the above

1.5 The focusing unit in a cathode ray tube (CRT) is used to
(a) accelerate the electron beam
(b) control amount of electrons from electron gun
(c) control position of electron beam on the screen 
(d) emit electrons

1.6 Refresh rate below this value results in picture flickering:
(a) 85 Hz (b) 35 Hz
(c) 50 Hz (d) 25 Hz
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1.7 Computer graphics models are now commonly used for making
(a) motion pictures (b) music videos
(c) television shows (d) all of above

1.8 Which of the following are CRT based display devices?
(a) Raster scan display device
(b) Direct View Storage Tube (DVST)
(c) Calligraphic or vector based or random scan display device
(d) all of the above

1.9 Which of the following are non CRT based display devices?
(a) LCD (b) LED
(c) Plasma (d) all of the above

1.10 The brightness of a spot on the screen depends upon
(a) number of electrons striking the phosphor coating (screen)
(b) distance between cathode and screen
(c) speed of electrons striking the screen
(d) type of phosphor coating

1.11 Which of the following is a point based display system?
(a) DVST (b) Random scan display device
(c) Raster scan display device (d) All of the above

1.12 Which of the following is a line based display system?
(a) Random scan display device (b) Raster scan display device
(c) LCD (d) LED

ANSWERS

1.1 (a) 1.2 (b) 1.3 (d) 1.4 (c)

1.5 (c) 1.6 (d) 1.7 (d) 1.8 (d)

1.9 (d) 1.10 (a) 1.11 (c) 1.12 (a)
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2Chapter

VECTOR 
REPRESENTATION 
OF GEOMETRIC 
ENTITIES

2.0 INTRODUCTION

The previous chapter was about the evolution of computer hardware and display 
devices in particular. From this study, one can say that all the modern display 
devices (screens) are divided into small number of discrete cells called pixels and 
the screen is called a raster screen. Now, to draw any entity on this screen, one 
needs to develop the logic which will select the series of pixels on the screen so 
that the desired entity appears on the screen. This process of selection of pixels is 
called rasterization.  For example, a line is to be drawn on the screen from start 
point to end point. So, it is necessary to develop a program which will select the 
intermediate pixels inbetween the start point and the end point so that the desired 
line appears on the screen.

Algorithm

Before writing any computer program, it is empirical to develop a logic to perform 
each task and write it out in logical steps. An algorithm is nothing but writing 
logical steps in a systematic manner. There can be many steps in any algorithm, 
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but the important steps in any graphic algorithm are the declaration of variables, 
initialization, calculation, and plotting pixels. Steps in an algorithm are shown in 
Fig. 2.1.

Step 1 : Declaration of variables

Step 2 : Initialization

Step 3 : Calculation

Step 4 : Plotting pixels

Stop

Algorithm

Start

Fig. 2.1 Steps in an algorithm

(i)   Declaration of variables: All variables which are going to be used in the 
algorithm are declared in this step, along with the types of variables (integer, 
float, etc.).

(ii)    Initialization: Initialize the variables which the compiler will need to ask at 
the time of the program is executed.

(iii) Calculation: What calculations are necessary to perform the algorithm?

(iv) Plotting pixels: Apply the logic to plotting the points on the raster screen.

In this chapter, algorithms for generating simple two dimensional geometrical 
entities (such as line, circle, ellipse, arc) will be studied. There will be a total of 
three algorithms for line generation: equation of line, digital differential analyser 
(DDA), and Bresenham’s line generation algorithm. Circles and ellipses will be 
generated by using Bresenham’s midpoint algorithm. Arcs will be generated by 
using trigonometric function.

2.1 LINE GENERATION ALGORITHM USING 
EQUATION OF LINE

A line is a very basic geometrical entity. Fig. 2.2 shows a line having end points  
A and B.
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Line Generation

The line is one of the basic geometrical entities. Vector displays are particularly 
well suited for the display of lines. An appropriate controlled voltage is supplied to 
x and y deflection circuitry for vector display to generate a line.

The nature of raster-graphics display, however, only allows us to display a 
discrete approximation of a line since the process is restricted to turning on 
only discrete points or pixels. In order to discuss line drawing, first consider the 
mathematically ideal line.

Mathematical Analysis

X

C

Y

A (x , y )

dx = x – x
A A

B A

B (x , y )

dy = y – y
B B

B A

Fig. 2.2 A line

equation of line y    =  mx + c ...(2.1)

where,

   m  =  slope

For line shown in Fig. 2.2,

-
= q = =

-
tan B A

B A

y ydy
m

dx x x

c  =  y axis intercept

put the start point in the equation (2.1)

yA  =  mxA + c

c  =  yA - mxA  ...(2.2)

 -
= -  - 

B A
A A

B A

y y
c y x

x x
 ...(2.3)
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Line Algorithm Using Equation of Line for |M|<1

STEP 1: [DECLARATION OF VARIABLES]

int (xA, yA) & (xB, yB) end point coordinates of line

float m slope of line

float c y intercept

float (x, y) coordinates of current pixel 
representing line

STEP 2: [INITIALIZATION]

Read (xA, yA) & (xB, yB)

STEP 3: [CALCULATION]

-
=

-
B A

B A

y y
m

x x

c   =  yA - mxA

STEP 4: [PLOTTING PIXEL FOR LINE]

x  =  xA

y  =  yA

loop,
put pixel (round “x”, round “y”)

x  =  x + 1
y  =  mx + c

Continue loop until (x ≤ xB)

STEP 5: [STOP]
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Problems on Equation of Line

Problem 2.1

Rasterize a line by using an equation of line having end point coordinates as 
(5,2) & (15,6)

Solution

End points (5,2) & (15,6)

Slope  
- -

= = = =
- -

6 2 4
0.4

15 5 10
B A

B A

y y
m

x x

c  =  yA - mxA = 2 - (0.4) x 5 = 2 - 2 = 0

Calculation 2. x2  =  x1 + 1 = x2 = 5 + 1 = 6 and y2 = mx2 + c = 0.4 x 6 + 0 = 2.4

Calculation 3. x3 =  x2 + 1 = x3 = 6 + 1 = 7 and y3 = mx3 + c = 0.4 x 7 + 0 = 2.8

Fig. 2.3 shows the rasterization of a line after plotting the pixels.

Sr. No. x y round x round y

1 5 2 5 2

2 6 2.4 6 2

3 7 2.8 7 3

4 8 3.2 8 3

5 9 3.6 9 4

6 10 4 10 4

7 11 4.4 12 5

8 12 4.8 12 5

9 13 5.2 13 5

10 14 5.6 14 6

11 15 6.0 15 6

5 6 7 8 9 10 11 12 13 14 15

6

5

4

3

2

Fig. 2.3 The rasterization of a line
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Line Algorithm Using Equation of Line for |M|>1
Y

X

Fig. 2.4 Line having slope > 1

STEP 1: [DECLARATION OF VARIABLES]

int (xA, yA) & (xB, yB) end point coordinates of line

float m slope of line

float c y intercept

float (x, y) coordinates of current pixel 
representing line

STEP 2: [INITIALIZATION]

Read (xA, yA) & (xB, yB)

STEP 3: [CALCULATION]

-
=

-
B A

B A

y y
m

x x

c   =  yA - mxA

STEP 4: [PLOTTING PIXEL FOR LINE]

x  =  xA

y  =  yA

loop,
put pixel (round “x”, round “y”)

y  =  y + 1

-
=

y c
x

m

Continue loop until (y ≤ yB)

STEP 5: [STOP]

Y = incremented by 1
X = calculated
y  = mx + c 

-
=

y c
x

m
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Problem 2.2

Rasterize a line by using an equation of line having end point coordinates as 
(5,2) & (6,7)

Solution

End points (5, 2) & (6, 7)

Slope  
- -

= = = =
- -

7 2 5
5

6 5 1
B A

B A

y y
m

x x

c  =  yA - mxA = 2 - (5)  x 5 = 2 - 25 = - 23

Calculation 2. y2  =  y1 + 1 = 2 + 1 = 3 and 
- +

= = = =2
2 2

3 23
5.2

5

y c
x x

m

Calculation 3. y3  =  y2 + 1 = 3 + 1 = 4 and 
- +

= = = =3
3 2

4 23
5.4

5

y c
x x

m

Fig. 2.5 shows the rasterization of a line after plotting the pixels.

Sr No. x Y round x round y

1 5 2 5 2

2 5.2 3 5 3

3 5.4 4 5 4

4 5.6 5 6 5

5 5.8 6 6 6

6 6.0 7 6 7

7

6

5

4

3

2

5 6

Fig. 2.5 The rasterization of a line



36 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

Algorithm for Line Generation Using an Equation of Line for 
Any Slope

STEP 1: [DECLARATION OF VARIABLES]

int (xA, yA) & (xB, yB) end point coordinates of line

float m slope of line

float c y intercept

float (x, y) coordinates of current pixel 
representing line

STEP 2: [INITIALIZATION]

Read (xA, yA) & (xB, yB)

STEP 3: [CALCULATION]

-
=

-
B A

B A

y y
m

x x

c   =  yA - mxA

STEP 4: [PLOTTING PIXEL FOR LINE]

x  =  xA

y  =  yA

loop,
put pixel (round “x”, round “y”)
if |m| < 1

x  =  x + 1
y  =  mx + c

Continue loop until (x ≤ xB)
else |m| > 1

y  =  y + 1

-
=

y c
x

m

Continue loop until (y ≤ yB)

STEP 5: [STOP]
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2.2 LINE GENERATION USING DDA ALGORITHM

The digital differential analyser is a line generation algorithm based on the 
incremental method. In DDA, the calculations at each step are performed using 
the results from the previous step. In this method, the value of one coordinate is 
incremented by one in each step and determines the corresponding integer value 
of the other coordinate.

Mathematical analysis

X

Y

y(i + 1)

yi

A(x , y )A A

xi x(i + 1)

B( , )x yB B

i pixelth
(i + 1) pixelth

Fig. 2.6 

Let ith pixel coordinates be (xi, yi) as shown in Fig. 2.6

Equation of line becomes

yi  =  mxi + c ...(2.4)

Let (i + 1)th pixel coordinates are (x(i + 1), y(i + 1))

y(i + 1) = mx(i + 1)+ c ...(2.5)

Subtract eq. (2.4) from eq. (2.5)

y(i + 1) - yi = m[x(i + 1) - xi] ...(2.6)

Apply condition

if | m |  <  1

x(i + 1)  =  xi + 1

Put the value of x(i + 1) in Eq. (2.6)

y(i + 1) - yi  =  m[xi + 1 - xi]

y(i + 1)  =  yi + m

else | m |  >  1

y(i + 1)  =  yi + 1
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Put value of y(i + 1) in Eq. (2.6)

yi + 1 - yi  =  m[x(i + 1) - xi]

1

m
  =  [x(i + 1) - xi]

x(i + 1)  =  xi + 
1

m

Common denominator for increment

if (| dy |  <  | dx |)

DENO  =  | dx |

else (| dy |  ≥  | dx |)

DENO  =  | dy |

x(i + 1)  =  xi +
dy

DENO

y(i + 1)  =  yi +
dy

DENO

ALGORITHM

STEP 1: [DECLARATION OF VARIABLES]

int (xA, yA) & (xB, yB) end point coordinates of line

int dx, dy difference of x and y coordinates

int DENO common denominator

float (xincr, yincr) increments in x and y coordinate

float (x, y) coordinates of current pixel 
representing line

int i loop counter

STEP 2: [INITIALIZATION]

Read (xA, yA) & (xB, yB)
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STEP 3: [CALCULATION]

dx = xB - xA

dy  = yB - yA

STEP 4: [PLOTTING PIXEL FOR LINE]

if (| dy |  <  | dx |)

DENO  =  | dx |

if (| dy |  ≥  | dx |)

DENO  =  | dy |

xincr  =  
dx

DENO

yincr  =  
dy

DENO

x = xA

y = yA

i = 0

  loop

  put pixel (round “x”, round “y”)

x = x + xincr

y = y + yincr

i ++

  Continue loop until (i ≤ DENO)

STEP 5: [STOP]
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Problems on DDA Algorithms

Problem 2.3

Rasterize a line by using a DDA algorithm having end point coordinates as 
(5,2) & (10,6)

Solution

End points (5,2) & (10,6)
dx  =  10 - 5 = 5
dy  =  6 - 2 = 4

| dx |  ≥  | dy |
DENO  =  dx

= = = 1incr

dx dx
x

DENO dx

= = = = =
4

0.8
5

incr

dy dy
y m

DENO dx

x = x + xincr  =  x + 1
y = y + yincr  =  y + 0.8

Calculation 2.      y2  =  y1 + 0.8 = 2 + 0.8 = 2.8 and x2 = x1 + 1 = 5 + 1 = 6
Calculation 3.     y3   =  y2 + 0.8 = 2.8 + 0.8 = 3.6 and x3 = x2 + 1 = 6 + 1 = 7

Fig. 2.7 shows the rasterization of a line after plotting the pixels.

i X y round x round y

0 5 2 5 2

1 6 2.8 6 3

2 7 3.6 7 4

3 8 4.4 8 4

4 9 5.2 9 5

5 10 6 10 6

7

6

5

4

3

2

5 6 7 8 9 10 11

Fig. 2.7 The rasterization of a line
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Varieties of Lines Using DDA

   | M | <1           | M | >1

dx = + ve
dy = + ve

< 45°
x = x + 1

y = y + m
(i + 1) i

(i + 1) i

B

A

B

A

dx = + ve
dy = + ve

> 45°
x = x +

y = y + 1
(i + 1) i

(i + 1) i

1
m

dx = + ve
dy = – ve

< 45°
x = x + 1

y = y – m
(i + 1) i

(i + 1) i

dx = + ve
dy = – ve

> 45°
x = x +

y = y – 1
(i + 1) i

(i + 1) i

1
m

dx = – ve
dy = – ve

< 45°
x = x – 1

y = y – m
(i + 1) i

(i + 1) i

dx = – ve
dy = – ve

> 45°
x = x +

y = y – 1
(i + 1) i

(i + 1) i

1
m

B

A A

B

A

A

B

dx = – ve
dy = + ve

< 45°
x = x – 1

y = y – m
(i + 1) i

(i + 1) i

dx = – ve
dy = + ve

> 45°
x = x +

y = y + 1
(i + 1) i

(i + 1) i

1
m

dx = + ve
dy = 0

x = x – 1

y = y
(i + 1) i

(i + 1) i

dx = 0
dy = + ve

x = x

y = y + 1
(i + 1) i

(i + 1) i

A

B
B

A

A B

B

A



42 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

Problem 2.4

Rasterize a line by using a DDA algorithm having the equation “y = 2x + 6 ”

Solution

Equation of Line  y  =  2x + 6

Put x = 0 we get y = 6

Put y = 0 we get x = - 3

(– 3, 0)

(0, 6)Y

X

Fig. 2.8 Intersection points of a line with x- and y-axis

From Fig. 2.8, dx  =  - 3 - 0 = - 3

dy  =  0 - 6 = - 6

| dy |  >  | dx |

dx  =  - ve and dy = - ve

x(i + 1)  =  xi - 
1

m

y(i + 1)  =  yi - 1
Fig. 2.9 shows the rasterization of a line after plotting the pixels.

i x Y Round x Round y

0 0 6 0 6

1 – 0.5 5 – 1 5

2 – 1 4 – 1 4

3 – 1.5 3 – 2 3

4 – 2 2 – 2 2

5 – 2.5 1 – 3 1

6 – 3 0 – 3 0

dx = -3-0 = -3
dy = 0-6 = -6
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6

5

4

3

2

1

0

–3 –2 –1 0

Fig. 2.9 The rasterization of a line

Compare Line Generation Using Equation of Line and DDA

1. The DDA algorithm is faster than the direct method since it involves only 
addition or subtraction and eliminates the use of multiplication or division.

2. In an equation of line, every value of x and y is calculated on its own, i.e. there 
is no use of a previous value to calculate the next value, but in the case of DDA 
the previous value is used to calculate the next value.

2.3 BRESENHAM’S LINE GENERATION ALGORITHM

An accurate and efficient algorithm for generating a line has been developed by 
Bresenham which uses only incremental calculations. Here the procedure is to 
test the sign of an integer parameter whose value is proportional to the difference 
between the separations of the two pixel positions from an actual line.

To understand the working of this method, consider a line with a positive 
slope of less than 1.

Bresenham’s line generation algorithm for | m | <1
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Mathematical Analysis

(x , y + 1)i i (x + 1, y + 1)i i

( )x , yi i ( )x + 1, yi i

Fig. 2.10 Position of the line on a grid

yi

xi xi + 1

yi + 1

y

d2

d1

L

i pixel
th

Y

X

Fig. 2.11 

Let (xi , yi) be any ith pixel coordinate representing a line having integer 
coordinates as shown in Fig. 2.10.

Let (x(i + 1), y(i + 1)) be any (i + 1)th pixel coordinate representing a line as shown 
in Fig. 2.11.

Apply the condition for determining the coordinates of (i + 1)th pixel 

if(d1 - d2)  <  0 or d1 < d2

x(i + 1)  =  xi + 1

y(i + 1)   =  yi

else(d1 - d2)  ≥  0 or d1 ≥ d2

x(i + 1)  =  xi + 1

y(i + 1)   =  yi + 1
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From Fig. 2.11

d1  =  y - yi  ...(2.7)

d2  =  (yi + 1) - y ...(2.8)

Subtract Eq. (2.7) from Eq. (2.8)

d1 - d2  =  y - yi - (yi + 1) + y

d1 - d2  =  2y - 2yi - 1 ...(2.9)

Point L is on the line and satisfies the equation of line.

Coordinates of point L(xi + 1, y)

y  =  mx + c

y  =  m(xi + 1) + c

y  =  mxi + m + c ...(2.10)

Substitute value from Eq. (2.10) in Eq. (2.9)

d1 - d2  =  2(mxi + m + c) - 2yi - 1

=  2mxi + 2m + 2c - 2yi - 1

d1 - d2  =  2mxi - 2yi + 2m + 2c - 1

d1 - d2  =  2mxi - 2yi + k

Where k = 2m + 2c - 1

d1 - d2  = 2
dy

dx
xi - 2yi + k

(d1 - d2)dx  =  2dyxi - 2dxyi + k . dx ...(2.11)

Where (d1 - d2)dx is decision parameter pi

pi  =  2dyxi + 1 - 2dxyi + 1 + k. dx ...(2.12)

Where pi is the decision parameter for ith pixel

Rewrite the condition in terms of pi

if pi  <  0

x(i + 1)  =  xi + 1

y(i + 1)  =  yi

else pi  ≥  0

x(i + 1)  =  xi + 1

y(i + 1)  =  yi + 1
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The decision parameter for (i + 1)th pixel

p(i + 1)  =  2dyx(i + 1) - 2dxy(i + 1) + k. dx ...(2.13)

Therefore, the common difference of the decision parameter between the 
consecutive pixels is given by Eq. (2.13) - Eq. (2.12)

p(i + 1)  =  pi + 2dyx(i + 1) - 2dxy(i + 1) + k. dx - 2dyxi + 2dxyi - k. dx

p(i + 1)  =  pi + 2dy(x(i + 1) - xi) - 2dx(y(i + 1) - yi) ...(2.14)

Apply the condition to Eq. (2.14)

if (pi < 0)

x(i + 1)  =  xi + 1

y(i + 1)  =  yi

Applying these values to Eq. (2.14) we get

p(i + 1)  =  pi + 2dy ...(2.15)

Else (pi ≥ 0)

+

+

= + 
= + 

( 1)

( 1)

1

1

i i

i i

x x

y y
Apply these values to Eq. (2.14)

p(i + 1)  =  pi + 2dy - 2dx ...(2.16)

Calculate the decision parameter of the first point of the line (xA, yA)

p1  =  2dyxA - 2dxyA+ k.dx ...(2.17)

Put the values of the starting point coordinates in the equation of line

yA  =  mxA + c

= +A A

dy
y x c

dx

dx.yA  =  dy.xA + c.dx ...(2.18)

Put the value of Eq. (2.18) in Eq. (2.17)

p1  =  2dyxA - 2(dy.xA + c.dx) + k.dx

Put k = 2m + 2c - 1

p1  =  2dyxA - 2dy.xA - 2c.dx + 2m.dx + 2c.dx - dx

p1  =  2
dy

dx
.dx - dx

p1  =  2dy - dx ...(2.19)
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Algorithm for a Line Using Bresenham’s for | m |< 1

STEP 1: [DECLARATION OF VARIABLES]

int (xA, yA) & (xB, yB) end point coordinates of line

int dx, dy difference of x and y coordinates

int (x, y) coordinates of current pixel 
representing line

int p decision parameter

int i loop counter

STEP 2: [INITIALIZATION]

Read (xA, yA) & (xB, yB)

STEP 3: [CALCULATION]

dx  =  xB - xA

dy   =  yB - yA

p   =  2dy - dx

STEP 4: [PLOTTING PIXEL FOR LINE]

x  =  xA

y  =  yA

p  =  2dy - dx

i  =  0
loop,

put pixel (x, y)

if p < 0

x  =  x + 1

y  =  y 

p  =  p + 2dy

Else p ≥ 0
x  =  x + 1

y  =  y + 1

p  =  p + 2dy - 2dx

i + +

Continue loop until (i ≤ dx)

STEP 5: [STOP]
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Problem 2.5

Rasterize a line by using Bresenhem’s algorithm for slope (m < 1) having end 
point coordinates as (5,2) & (10,6)

Solution

End points (5,2) & (10,6)

dx  =  10 - 5 = 5

dy  =  6 - 2 = 4

Calculate decision parameter of first point of the line (xA, yA) and i = 0

p  =  2dy - dx = 2 × 4 - 5 = + 3

Calculation : for i = 1

As p > 0 then new decision parameter

p  =  p + 2dy - 2dx = 3 + 2 × 4 - 2 × 5 = 1

I X Y p

0 5 2 +3

1 6 3 +1

2 7 4 -1

3 8 4 +7

4 9 5 +5

5 10 6 +3

Fig. 2.12 shows the rasterization of a line after plotting the pixels.

7

6

5

4

3

2

5 6 7 8 9 10 11

Fig. 2.12 The rasterization of a line
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Bresenham’s Line Generation Algorithm for | m | >1

Mathematical Analysis

(x , y + 1)i i (x + 1, y + 1)i i

( )x , yi i ( )x + 1, yi i

Fig. 2.13 Position of  the line on a grid

i pixelth

d1 d2
y + 1i

yi

xi x + 1i

(i + 1) pixelth

x
X

A

Y

Fig. 2.14 

Let (xi, yi) be any ith pixel coordinate representing a line having integer 
coordinates as shown in Fig. 2.13

Let (x(i + 1), y(i + 1)) be any (i + 1)th pixel coordinate representing a line as shown 
in Fig. 2.14
Apply the condition for determining the coordinates of (i + 1)th pixel

if (d1 - d2)  <  0 or d1 < d2

x(i + 1)  =  xi

y(i + 1)  =  yi + 1

else (d1 - d2)  ≥  0 or d1 ≥ d2

x(i + 1)  =  xi + 1

y(i + 1)  =  yi + 1
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From Fig.  2.14
d1  =  x - xi ...(2.20)

d2  =  (xi + 1) - x ...(2.21)

Subtract Eq. (2.21) from Eq. (2.20)

d1 - d2  =  x - xi - (xi + 1) + x

d1 - d2  =  2x - 2xi - 1 ...(2.22)

Where y represents y-coordinate of (i + 1)th pixel when y = yi + 1

y  =  mx + c

yi + 1  =  mx + c

+ -
=

1iy c
x

m

= + -( 1 )i

dx
x y c

dy
 ...(2.23)

Substitute the value from Eq. (2.23) in Eq. (2.22)

d1 - d2  =  + - - -( 1 ) 2 1i i

dx
y c x

dy

(d1 - d2)dy  =  2dx(yi + 1 - c) - 2dyxi - dy

(d1 - d2)dy  =  2dxyi - 2dyxi + 2dx - 2dx.c - dy

(d1 - d2)dy  =  2dxyi - 2dyxi + k ...(2.24)

Where k = 2dx - 2dx.c - dy

Where (d1 - d2)dx is decision parameter pi

pi  =  2dxyi - 2dyxi + k ...(2.25)

Where pi is the decision parameter for (i + 1)th pixel

The decision parameter for (i + 2)th pixel

p(i + 1)  =  2dxy(i + 1) - 2dyx(i + 1) + k ...(2.26)

Therefore the common difference of the decision parameter between the 
consecutive pixels is given by

Eq. (2.26) - Eq. (2.25)
p(i + 1)  =  pi + 2dxy(i + 1) - 2dyx(i + 1) + k - (2dxyi - 2dyxi + k)

p(i + 1)  =  pi + 2dx(y(i + 1) - yi) - 2dy(x(i + 1) - xi) ...(2.27)

Apply the condition to Eq. (2.27)

if (pi  <  0)

+

+

= 
= + 

( 1)

( 1) 1

i i

i i

x x

y y
 Apply these values to Eq. (2.27)
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We get

p(i + 1)  =  pi + 2dx ...(2.28)

else (pi ≥ 0)

+

+

= + 
= + 

( 1)

( 1)

1

1

i i

i i

x x

y y
Apply these values to Eq. (2.27)

p(i + 1)  =  pi + 2dx - 2dy ...(2.29)

Calculate the decision parameter of the first point of the line (xA, yA)

p1  =  2dxyA - 2dyxA + k ...(2.30)

Put the values of starting point coordinates in the equation of the line

yA  =  mxA + c

= +A A

dy
y x c

dx

dx.yA  =  dy.xA + c.dx ...(2.31)

Put the value of Eq. (2.31) in Eq. (2.30)

p1  =  2(dy.xA + c.dx) - 2dyxA + k

Put k = 2m + 2c - 1

p1   =  2dx - dy ...(2.32)

Algorithm for Line Using Bresenham’s for | m | >1

STEP 1: [DECLARATION OF VARIABLES]

int (xA, yA) & (xB, yB) end point coordinates of line

int dx, dy difference of x and y coordinates

int (x, y) coordinates of current pixel representing 
line

int p decision parameter

int i loop counter

STEP 2: [INITIALIZATION]

Read (xA, yA) & (xB, yB)

STEP 3: [CALCULATION]

dx  =  xB - xA

dy   =  yB - yA
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STEP 4: [PLOTTING PIXEL FOR LINE]

x  =  xA

y  =  yA

p  =  2dx - dy

i  =  0
loop,

put pixel (x, y)

if p < 0

x  =  x
y  =  y + 1

p  =  p + 2dx

else (p ≥ 0)

x  =  x + 1

y  =  y + 1

p  =  p + 2dx - 2dy

i + +
Continue loop until (i ≤ dy)

STEP 5: [STOP]

Problem 2.6

Rasterize a line by using Bresenhem’s algorithm for slope (m > 1) having end 
point coordinates as (2, 5) & (6, 10)

Solution

End points (2, 5) & (6, 10)

dx  =  6 - 2 = 4

dy  =  10 - 5 = 5

Calculate the decision parameter of the first point of the line (xA, yA)and i = 0

p  =  2dx - dy = 2 × 4 - 5 = + 3

Calculation: for i = 1 As p > 0 then new decision parameter

p  =  p + 2dx - 2dy = 3 + 2 × 4 - 2 × 5 = + 1
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I X Y p

0 2 5 + 3

1 3 6 + 1

2 4 7 – 1

3 4 8 + 7

4 5 9 + 5

5 6 10 + 3

Fig. 2.15 shows the rasterization of a line after plotting the pixels.

2 3 4 5 6 7 8

5

6

7

8

9

10

Fig. 2.15 The rasterization of a line

Algorithm for Line Using Bresenham’s for Any Slope

STEP 1: [DECLARATION OF VARIABLES]

int (xA, yA) & (xB, yB) end point coordinates of line

int dx, dy difference of x and y coordinates

int (x, y) coordinates of current pixel representing line

int p decision parameter

int (signx, signy) sign changing variables

int i loop counter

STEP 2: [INITIALIZATION]

Read (xA, yA) & (xB, yB)

STEP 3: [CALCULATION]

dx  =  xB - xA

dy   =  yB - yA

STEP 4: [PLOTTING PIXEL FOR LINE]

x  =  xA

y  =  yA
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if (dx ≥ 0)
sign x  =  + 1

else (dx < 0)
sign x  =  - 1

if (dy ≥ 0)
sign y  =  + 1

else (dy < 0)
sign y  =  - 1

if (| dy | < | dx |)
p  =  2dy.sign y - dx.sign x
i  =  0

loop,
put pixel (x, y)

if (p < 0)
x  =  x + sign x
y  =  y 

p  =  p + 2dx.sign y
else (p ≥ 0)

x  =  x + sign x
y  =  y + sign y

p  =  p + 2dy.sign y - 2dx.sign x
i + +

Continue loop until (i ≤ dx.sign x)
else (| dy | > | dx |)

p  =  2dx.sign x - dy.sign y
i  =  0

loop,
put pixel (x, y)

if p < 0
x  =  x
y  =  y + sign y

p  =  p + 2dx.sign x
else (p ≥ 0)

x  =  x + sign x
y  =  y + sign y

p  =  p + 2dx.sign x - 2dy.sign y

i + +
Continue loop until (i ≤ dy.sign y)

STEP 5: [STOP]
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2.4 BRESENHAM’S MIDPOINT CIRCLE 
GENERATION ALGORITHM

The circle is one of the important geometric entities. It is a symmetric entity 
composed of diameters. Fig. 2.16 shows an origin-centered circle divided into 8 
parts. This property of a circle (symmetric about diameters) can be used in the 
generation of circle with minimum codes. Out of the eight parts shown in Fig. 
2.16, only the first part is to be generated; the remaining 7/8ths are generated by 
using the symmetry of the circle. Generation starts from point (0, R) where R is 
the radius of the circle.

(–x, –v)

(0, –R)
(x, –v)

(v, –x)

(R, 0)

(v, x)

(x = v)

(x, v)
(0, R)

(–x, v)

(–v, x)

(–R, 0)

(–v, –x)

6

5 4

3

2

45°

8 1

7

–x = –v

Fig. 2.16 Use of symmetry for a circle generation

Fig. 2.17 shows two equal parts of a quarter circle. If a tangent is drawn to part 1 
then the absolute slope of the tangent would be less than one. Similarly if a tangent 
is drawn to part 2, then the absolute slope of the tangent would be greater than 
one. This indicates that the arc of part 1 is more horizontal than part 2 whereas 
the arc of part 2 is more vertical than part 1. But the slope of the tangent will be 
equal to one at the point where part 1 and part 2 meet. That means x coordinate is 
equal to y coordinate at that point. Therefore the generation of a circle starts from 
point (0, R) and ends where x coordinate is equal to y coordinate.
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Y

X

Part 1

Part 2

M > 1

M > 1

45°

Fig. 2.17 Slope of tangents to circle

Mathematical Analysis

Figure 2.18 shows a one-eighth part of a circle. As discussed in the previous topic, 
if a tangent is drawn to part 1, then the absolute slope of the tangent would be less 
than one or the arc of part 1 is more horizontal. So, the value of x coordinate will be 
incremented by one in every step and the y coordinate needs to be calculated. The 
value of y coordinate is calculated depending upon the position of the midpoint of 
two successive vertical points. Two cases are discussed below; Fig. 2.19 shows the 
position of the midpoint outside the circle and Fig. 2.20 shows the position of the 
midpoint inside the circle.

i pixelth

yi

y – 1i

xi xi + 1

Fig. 2.18 Position of the arc of a circle on a grid

i pixelth

yi

y – 1i

xi xi + 1

m

i pixelth

yi

y – 1i

xi xi + 1

m

Fig. 2.19 Midpoint outside the circle      Fig. 2.20 Midpoint inside the circle

x(i + 1) = xi + 1
and

y(i + 1) = yi -1

x(i + 1) = xi + 1
and

y(i + 1) = yi
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The equation of the circle is given by

x2 + y2  =  R2

x2 + y2 - R2  =  0 ...(2.33)

If x2 + y2 - R2 < 0 then point lies inside the circle

And x2 + y2 - R2 > 0 then point lies outside the circle

Let pi be the decision parameter of ith point

pi  =  x2 + y2 - R2 ...(2.33a)

Coordinates of the midpoint 
 + -  

1
1,

2
i im x y

Put the values in Eq. (2.33a)

 = + + - -  

2

2 21
( 1)

2
i i ip x y R  ...(2.34)

The decision parameter of (i + 1)th pixel is given by

+ + +
 = + + - -  

2

2 2
( 1) ( 1) ( 1)

1
( 1)

2
i i ip x y R  ...(2.35)

Find the difference of the decision parameters by Eq. (2.35) - Eq. (2.34)

+ + +

    - = + + - - - + + - -         

2 2

2 2 2 2
( 1) ( 1) ( 1)

1 1
( 1) ( 1)

2 2
i i i i i ip p x y R x y R

+ + +
   = = + - + + - - - - +      

2 2

2 2 2 2
( 1) ( 1) ( 1)

1 1
( 1) ( 1)

2 2
i i i i i ip p x x y y R R

+ + +
   = = + - + + - - -      

2 2

2 2
( 1) ( 1) ( 1)

1 1
( 1) ( 1)

2 2
i i i i i ip p x x y y  ...(2.36)

If midpoint is inside the circle then

+

+

= + 
= 

( 1)

( 1)

1i i

i i

x x

y y
Put these values in Eq. (2.35)

+
   = + + - + + - - -      

2 2

2 2
( 1)

1 1
( 2) ( 1)

2 2
i i i i i ip p x x y y

p(i + 1)  =  pi + [xi
2 + 4xi + 4 - xi

2 - 2xi - 1]

p(i + 1)  =  pi + 2xi + 3 ...(2.37)
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Or if midpoint is outside the circle then

+

+

= + 
= - 

( 1)

( 1)

1

1

i i

i i

x x

y y
 Put these values in Eq. (2.36)

+
   = + + - + + - - -      

2 2

2 2
( 1)

1 1
( 2) ( 1)

2 2
i i i i i ip p x x y y

+
  = + + + - - - + - + - + -    

2 2 2 2
( 1)

9 1
4 4 2 1 3

4 4
i i i i i i i i i ip p x x x x y y y y

p(i + 1)  =  pi + [2xi + 3] + [- 2yi + 2]

p(i + 1)  =  pi + 2xi - 2yi + 5 ...(2.38)

For finding the start point decision parameter

Coordinates of start point x = 0, y = R, put these values in Eq. (2.33)

 = + + - -  

= + - + -

= - +

= -

= -

2

2 2

2 2

1
(0 1)

2

1
1

4
1

1
4

5
(float value)

4
1

s

s

s

s

s

p R R

p R R R

p R

p R

p R
 ...(2.38a)

(converting into integer value)

Midpoint Circle Generation Algorithm

STEP 1: [DECLARATION OF VARIABLES]

int (xC, yC) center point coordinates of circle

int (x, y) coordinates of current pixel representing 
line

int R Radius of circle

int p decision parameter
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STEP 2: [INITIALIZATION]

Read (xC, yC) & R

x  =  0

y  =  R

p  =  1 - R

STEP 3: [PLOTTING PIXEL FOR CIRCLE]

loop,

put pixel (xc, yc, x, y)

if (p ≤ 0)

x  =  x + 1

y  =  y

p  =  p + 2x + 3

else (p > 0)

x  =  x + 1

y  =  y - 1

p  =  p + 2x - 2y + 5

Continue loop until (x ≤ y)

STEP 4: [PLOT CIRCLE FUNCTION]

plot circle (x, y, xc, yc)

put pixel (x + xc, y + yc)

put pixel (- x + xc, y + yc)

put pixel (- x + xc, - y + yc)

put pixel (x + xc, - y + yc)

put pixel (y + xc, x + yc)

put pixel (- y + xc, x + yc)

put pixel (- y + xc, - x + yc)

put pixel (y + xc, - x + yc)

STEP 5: [STOP]
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Problem 2.7

Generate 1/8th circle using Bresenham’s circle generation algorithm with 
center of circle (30, 20) & radius 9.
Solution
xc  =  30, yc = 20, R = 9

P X x + xc Y y + yc (xc, yc)

1 – 9 = – 8 0 0 + 30 = 30 9 20 + 9 = 29 (30, 29)

– 8 + 2(1) + 3 = – 3 1 1 + 30 = 31 9 20 + 9 = 29 (31, 29)

– 3 + 2(2) + 3 = 4 2 2 + 30 = 32 9 20 + 9 = 29 (32, 29)

4 + 2(3) – 2(8) + 5 = – 1 3 3 + 30 = 33 8 20 + 8 = 28 (33, 28)

– 1 + 2(4) + 3 = 10 4 4 + 30 = 34 8 20 + 8 = 28 (34, 28)

10 + 2(5) – 2(7) + 5 = 11 5 5 + 30 = 35 7 20 + 7 = 27 (35, 27)

11 + 2(6) – 2(6) + 5 = 16 6 6 + 30 = 36 6 20 + 6 = 26 (36, 26)

Fig. 2.21 shows the rasterization of a line after plotting the pixels.

31

30

29

28

27

26

30 31 32 33 35 3634

Fig. 2.21 The rasterization of a circle
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2.5 BRESENHAM’S MIDPOINT ELLIPSE GENERATION 
ALGORITHM

Mathematical Analysis

The ellipse is another important geometric entity. It is a symmetric entity about its 
major axis and minor axis. Fig. 2.22 shows an origin-centered ellipse divided into 
4 parts. This property of ellipse (symmetric about its major axis and minor axis) 
can be used in the generation of an ellipse with minimum codes. Out of the four 
parts shown in Fig. 2.22, only the first part is to be generated; the remaining three 
quarter parts are generated by using the symmetry of ellipse. Generation starts 
from point (0, Ry) where Ry is the semi-minor axis of the ellipse.

x, y–x, y

x, –y–x, –y

X

23

14

Y

Fig. 2.22 The use of the symmetry of an ellipse for the ellipse generation

Fig. 2.23 shows two parts of a quarter ellipse. If a tangent is drawn to part 1 then 
the absolute slope of the tangent will be less than one. Similarly, if a tangent is 
drawn to part 2, then the absolute slope of the tangent will be greater than one. 
This indicates that the arc of part 1 is more horizontal than part 2, whereas the arc 
of part 2 is more vertical than part 1.  But the slope of the tangent will be equal to 
one at the point where part 1 and part 2 meet (point m). Therefore the generation 
of the ellipse starts from point (0, Ry) and ends at point m. The condition at point 
m is derived in Eq. (2.39a).

1

Rx

Ry

Y

X

m > – 1

m < – 1
m = 1

2

Fig. 2.23 Slope of the tangents to the two parts of an ellipse
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+ =
22

2 2
1

x y

yx

R R

or
x2R

2
y + y2R

2
x = R

2
xR

2
y

x2R
2
y + y2R

2
x - R

2
xR

2
y  =  0 ...(2.39)

Differentiate Eq. (2.39) w. r. t. x and y, we get

2x.R
2
y dx + 2yR

2
x.dy  =  0

2x.R
2
y dx = - 2yR

2
x.dy

or          

-
=

-
- =

=

=

2

2

2

2

2 2

2 2

2

2

2
1

2

2 2

y

x

y

x

y x

y x

xRdy

dx yR

xR

yR

xR yR

xR yR
 ...(2.39a)

Mathematical Analysis for Generation of Ellipse in Part (1)

Fig. 2.24 shows part 1 of a quarter ellipse. As discussed in the previous topic, if a 
tangent is drawn to part 1 then the absolute slope of the tangent will be less than 
one or the arc of part 1 is more horizontal. So, the value of the x coordinate will 
be incremented by one in every step and the y coordinate needs to be calculated. 
The value of the y coordinate is calculated depending upon the position of the 
midpoint of two successive vertical points. Two cases are discussed below;  
Fig. 2.25 shows the position of the midpoint outside the ellipse and Fig. 2.26 shows 
the position of the midpoint inside the ellipse.

i pixelth

yi

y – 1i

xi xi + 1

i pixelth

yi

y – 1i

xi xi + 1

m

Fig. 2.24 Position of the arc of an ellipse on a grid         Fig. 2.25 Midpoint outside the ellipse

x(i + 1) = xi + 1
and

y(i + 1) = yi - 1
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i pixelth

yi

y – 1i

xi xi + 1

m

Fig. 2.26 Midpoint inside the ellipse

Equation of ellipse

x2R
2
y + y2R

2
x - R

2
xR

2
y  =  0

if (x2R
2
y + y2R

2
x - R

2
xR

2
y  <  0) then point is inside the ellipse

else (x2R
2
y + y2R

2
x - R

2
xR

2
y  >  0) then point is outside the ellipse

Let pi be the decision parameter of ith point

pi  =  x2R
2
y + y2R

2
x - R

2
xR

2
y ...(2.40)

Coordinates of the midpoint 
 + -  

1
1,

2
i im x y

Put the values in Eq. (2.40)

 = + + - -  

2

2 2 2 2 21
( 1)

2
i i y i x x yp x R y R R R  ...(2.41)

Decision parameter of (i + 1)th pixel is given by

+ + +
 = + + - -  

2

2 2 2 2 2
( 1) ( 1) ( 1)

1
( 1)

2
i i y i x x yp x R y R R R  ...(2.42)

Find the difference of the decision parameters by Eq. (2.42) - Eq. (2.31)

+ + +

+ +

+

 - = + + - -  

  - + + - -     
- = + + ⋅ - + ⋅

   + - ⋅ + -      

2

2 2 2 2 2
( 1) ( 1) ( 1)

2

2 2 2 2 2

2 2 2 2
( 1) ( 1)

2 2

2 2
( 1)

1
( 1)

2

1
( 1)

2

( 1) ( 1)

1 1

2 2

i i i y i x x y

i y i x x y

i i i i y i y

i x i x

p p x R y R R R

x R y R R R

p p p x R x R

y R y R
 ...(2.43)

x(i + 1) = xi + 1 and y(i + 1) = yi
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If midpoint is inside the ellipse then

+

+

= + 
= 

( 1)

( 1)

1i i

i i

x x

y y  Put these values in Eq. (2.43)

+

+

 = + + ⋅ - + ⋅ + -  

 ⋅ - - ⋅  

= + +

2

2 2 2 2
( 1)

2

2 2

2
( 1)

1
( 2) ( 1)

2

1

2

[2 3]

i i i y i y i

x i x

i i i y

p p x R x R y

R y R

p p x R
 ...(2.44)

Else midpoint is outside the circle then

+

+

= + 
= - 

( 1)

( 1)

1

1

i i

i i

x x

y y  Put these values in Eq. (2.43)

+

+

   = + + - + + - ⋅ - - ⋅      

 + = + + + - - - + - + - + -  
= + + + - +

2 2

2 2 2 2 2 2
( 1)

2 2 2 2 2 2

2 2
( 1)

1 1
( 2) ( 1)

2 2

9 1
( 1) [ 4 4 2 1] 3

4 4

[2 3] [ 2 2]

i i i y i y i x i x

i i i i i y i i i i x

i i i y i x

p p x R x R y R y R

p i p x x x x R y y y y R

p p x R y R

For finding the start point decision parameter

Coordinates of the start point x = 0, y = Ry, put these values in the equation

 = + + - -  

 = + - +  
 = - -  

>>

= - ⋅

2

2 2 2 2 2

2 2

2 2

2 2

1
(0 1)

2

1

4

1

4

1

4

s y x y x

s y y x

s y y x

y

s y y x

p R R R R R

p R R R

p R R R

R

p R R R

...(2.45)
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Mathematical Analysis for the Generation of an Ellipse in Part (2)

Fig. 2.27 shows part 2 of a quarter ellipse. As discussed in the previous topic, if a 
tangent is drawn to part 2 then the absolute slope of the tangent will be greater 
than one or the arc of part 2 is more vertical. So, the value of the y coordinate will 
be incremented by one in every step and the x coordinate needs to be calculated. 
The value of the x coordinate is calculated depending upon the position of the 
midpoint of two successive horizontal points. Two cases are discussed; Fig. 2.28 
shows the position of the midpoint inside the ellipse and Fig. 2.29 shows the 
position of the midpoint outside the ellipse.

y + 1i

yi

x – 1i
xi

i pixelth

Fig. 2.27 Position of the arc of an ellipse on a grid

y + 1i

yi

x – 1i
xi

i pixelth

m

y + 1i

yi

x – 1i
xi

i pixelth

m

i pixelth

Fig. 2.28 Midpoint inside the ellipse                Fig. 2.29 Midpoint outside the ellipse

Equation of an ellipse

x2R
2
y + y2R

2
x - R

2
xR

2
y  =  0 ...(2.46)

if x2R
2
y + y2R

2
x - R

2
xR

2
y  <  0 then point is inside the ellipse

else x2R
2
y + y2R

2
x - R

2
xR

2
y  >  0 then point is outside the ellipse

Let pi be the decision parameter of ith point

pi  =  x2R
2
y + y2R

2
x - R

2
xR

2
y ...(2.47)

x(i + 1) = xi

and
y(i + 1) = yi + 1

x(i + 1) = xi - 1
and

y(i + 1) = yi + 1
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Coordinates of the midpoint  
 - +  

1
, 1

2
i im x y

Put the values in Eq. (2.47)

 = + + + -  

2

2 2 2 2 21
( 1)

2
i i y i x x yp x R y R R R  ...(2.48)

Decision parameter of (i + 1)th pixel is given by

+ + +
 = - + + -  

2

2 2 2 2 2
( 1) ( 1) ( 1)

1
( 1)

2
i i y i x x yp x R y R R R  ...(2.49)

Find the difference of the decision parameters by Eq. (2.49) - Eq. (2.48)

+ + +

+ + +

 - = - + + -  

  - - + + +     

   = + - ⋅ - - ⋅ + +      

⋅ - +

2

2 2 2 2 2
( 1) ( 1) ( 1)

2

2 2 2 2 2

2 2

2 2 2
( 1) ( 1) ( 1)

2 2

1
( 1)

2

1
( 1)

2

1 1
( 1)

2 2

( 1)

i i i y i x x y

i y i x x y

i i i y i y i

x i x

p p x R y R R R

x R y R R R

p p x R x R y

R y R
 ...(2.50)

If midpoint is inside the ellipse then

+

+

= 
= + 

( 1)

( 1) 1

i i

i i

x x

y y
 Put these values in Eq. (2.50)

+

+

   = + - ⋅ - - ⋅ + + ⋅ - + ⋅      

= + +

2 2

2 2 2 2 2 2
( 1)

2
( 1)

1 1
( 2) ( 1)

2 2

[2 3]

i i i y i y i x i x

i i i x

p p x R x R y R y R

p p y R
 ...(2.51)

Else midpoint is outside the circle then

+

+

= - 
= + 

( 1)

( 1)

1

1

i i

i i

x x

y y
 Put these values in Eq. (2.50)

+

+

   = + - - - - + + + - +      

= + - + + +

2 2

2 2 2 2 2 2
( 1)

2 2
( 1)

1 1
1 ( 1 1) ( 1)

2 2

[ 2 2] [2 3]

i i i y i y i y i x

i i i y i x

p p x R x R y R y R

p p x R y R ...(2.52)
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For finding the start point decision parameter
Coordinates of the start point x = Rx, y = 0, put these values in the equation

 = - + + -  

 = - -  

>>

= - ⋅

2

2 2 2 2 2

2 2

2 2

1
(0 1)

2

1

4

1

4

s x y x y x

s x x y

x

s x x y

p R R R R R

p R R R

R

p R R R
 ...(2.53)

Bresenham’s Midpoint Ellipse Generation Algorithm

STEP 1: [DECLARATION OF VARIABLES]

int (xC, yC) center point coordinates of ellipse

int (x1, y1) & (x2, y2) coordinates of current pixel for part (1) & 
part (2)

int Rx, Ry semi-major and semi-minor axis of ellipse

int p1, p2 decision parameter for part (1) and part (2)

STEP 2: [INITIALIZATION]

Read (xC, yC)

Read Rx, Ry

STEP 3: [PLOTTING PIXEL FOR ELLIPSE]
Plotting part (1) of ellipse (m < 1)

x1  =  0

y1  =  Ry

p1  =  R
2
y - Ry . R

2
x

loop,
put pixel ((xc, yc) x1, y1)
if  (p1 ≤ 0)

x1  =  x1 + 1

y1  =  y1

p1  =  p1 + (2x1 + 3)R
2
y
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else (p1 > 0)

x1  =  x1 + 1

y1  =  y1 - 1

p1  =  p1 + (2x1 + 3) R
2
y + (- 2y2 + 2)R

2
x

Continue loop until (R
2
y . x1 ≤ R2

x . y1)

Plot part (2) of ellipse (m > = 1)

x2  =  Rx

y2  =  0

p2  =  R
2
x - Rx . R

2
y

loop,

put pixel ((xc, yc) x2, y2)

if (p2 ≤ 0)

x2  =  x2

y2  =  y2 + 1

p2  =  p2 + (2y2 + 3)R
2
x

else (p2 > 0)

x2  =  x2 - 1

y2  =  y2 + 1

p2  =  p2 + (2y2 + 3) R
2
x + (- 2x2 + 2)R

2
y

Continue loop until (R
2
x . y2 ≤ R

2
y. x2)

STEP 4: [PLOT CIRCLE FUNCTION]

plot ellipse (x1, y1, xc, yc)

put pixel (x1 + xc, y1 + yc)

put pixel (- x1 + xc, y1 + yc)

put pixel (- x1 + xc, - y1 + yc)

put pixel (x1 + xc, - y1 + yc)

STEP 5: plot ellipse (x2, y2, xc, yc)

put pixel (x2 + xc, y2 + yc)

put pixel (- x2 + xc, y2 + yc)

put pixel (- x2 + xc, - y2 + yc)

put pixel (x2 + xc, - y2 + yc)
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Problem 2.8

Generate an ellipse using Bresenham’s midpoint algorithm with the center of 
the ellipse (15, 17) & Rx = 9 and Ry = 7.

Solution Generation of part (1)
xc  =  15, yc = 17, Rx = 9 and Ry = 7.
ps  =  R

2
y - Ry . R

2
x = 49 - 81 × 7 = - 518

P x Ry
2.x x + xc Y Rx

2.y y + yc (xc, yc)

– 518 0 0 15 7 518 24 (15, 24)

– 371 1 49 16 7 518 24 (16, 24)

– 28 2 98 17 7 518 24 (17, 24)

413 3 147 18 7 518 24 (18, 24)

142 4 196 19 6 486 23 (19, 23)

131 5 245 20 5 405 22 (20, 22)

380 6 294 21 4 324 21 (21, 21)

7 343 22 3 243 20 (22, 20)

Generation of Part (2)

The starting point decision parameter is ps = R
2
x - Rx . R

2
y = 81 - 9 × 49 = - 360

x Ry
2.x x + xc Y Rx

2.y y + yc (xc , yc)

– 360 9 441 24 0 0 17 (24, 17)

– 360 + 81 (2 + 3) = 45 9 441 24 1 81 18 (24, 18)

45 + 81 × 7 + 49 × (– 14) =  – 74 8 392 23 2 162 19 (23, 19)

– 74 + 81 × 9 = 655 8 392 23 3 243 20 (23, 20)

655 + 81 × 11 + 49 × (– 12) = 958 7 343 22 4 324 21 (22, 21)

6 294 21 5 405 22 (21, 22)
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Fig. 2.30 shows the rasterization after plotting the pixels.

24

23

22

21

20

19

18

17

17 16 17 18 19 20 21 22 23 24

Fig. 2.30 The rasterization of part (1) and part (2) of an ellipse

2.6 ARC GENERATION ALGORITHM USING 
TRIGONOMETRIC FUNCTION

An arc is a section of a circle. An arc is specified by a start angle, an end angle, and 
a radius, as shown in Fig. 2.31. An arc can be generated in a clockwise direction 
and an counterclockwise direction. Both these cases are discussed below.

Y

R

(x, y)

y = R sin

x = R cos

incr

X

21

Fig. 2.31 Analysis of an arc in a counterclockwise direction
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incr

1

R

q =

q >>
q = q

q =

incr

incr

incr incr

incr

1
tan( )

1

tan( )

1

R

R

Counterclockwise Direction

Fig. 2.32 shows an origin centered arc having radius R, start angle q1, end angle q2. 
Here the start angle is less than the end angle and the arc is to be generated in an 
counterclockwise direction.
Counterclockwise arc generation when q1 < q2

X

Y

1

2

Fig. 2.32 An arc generation in a counterclockwise direction when q1 < q2

Counterclockwise arc generation when q1 > q2

Fig. 2.33 shows an origin centered arc having radius R, start angle q1, and end 
angle q2. Here, the start angle is greater than the end angle and the arc is to be 
generated in a counterclockwise direction.
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2 1

X

Y

Fig. 2.33 The arc generation in a counterclockwise direction when q1 > q2

q2 < q1

q2 = 2p + q2

Algorithm for the arc generation in a counterclockwise direction
Step 1: [DECLARATION OF VARIABLES]

int (xC, yC) center point coordinates of arc

float (x, y) coordinates of current pixel representing arc

int R radius of arc

float
float

q1 (rads)
q2 (rads)

start angle of arc
end angle of arc

float q(rads) current point inclination

float qincr (rads) increment of q

Step 2: [INITIALIZATION]
  Read (xc, yc) 
  Read q1, q2

  Read R

Step 3: [CALCULATION]

q =
1

incr
R

Step 4: [PLOTTING PIXELS]

If q2 < q1

q2 = 2p + q2

q = q1
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Loop,
Put pixel (round (x + xc), round (y + yc))

x = R cos q

y = R sin q 

q = q + qincr

Loop continue until (q ≤ q2)

Step 5: [STOP]

Algorithm for Arc Generation in a Clockwise Direction

When q1 > q2

Fig. 2.34 shows an origin centered arc having radius R, start angle q1, and end 
angle q2. Here the start angle is greater than the end angle and the arc is to be 
generated in a clockwise direction.

X

Y

2

1

Fig. 2.34 The arc generation in a clockwise direction when q1 > q2

When q1 < q2

Fig. 2.35 shows an origin centered arc having radius R, start angle q1, and end 
angle q2. Here the start angle is less than the end angle and the arc is to be 
generated in a clockwise direction.
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1 2

X

Y

q1 < q2

q2 = q2 - 2p
Fig. 2.35 Analysis of an arc in a clockwise direction when q1 < q2

Step 1: [DECLARATION OF VARIABLES]

int
float

(xC, yC)
(x, y)

center point coordinates of arc
coordinates of current pixel representing arc

int R radius of arc
float
float
float

q1 (rads)
q2 (rads)
q(rads)

start angle of arc
end angle of arc
current point inclination

float qincr (rads) increment of q

Step 2: [INITIALIZATION]
  Read (xc, yc) 
  Read q1, q2

  Read R

Step 3: [CALCULATION]

q =
1

incr
R

Step 4: [PLOTTING PIXELS]

If q1 < q2

q2 = q2 - 2p

q = q1
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Loop,

Put pixel (round (x + xc), round (y + yc))

x = R cos q

y = R sin q

q = q - qincr

Loop continue until (q ≥ q2)

Step 5: [STOP]

Problem 2.9

Generate an arc in a counterclockwise direction using a trigonometric 
function algorithm having center (3, 2), start angle = 30°, end angle = 60°, and 
radius of arc = 10.

Solution

q1 = 30° = 0.523 rad

q2 = 60° = 1.05 rad

xc = 3, yc = 2, R = 10

q = = =
1 1

0.1
10

incr
R

θ x = R cos θ x + xc y = R sin θ y + yc

0.523 8.66 = 9 9 + 3 = 12 4.99 = 5 5 + 2 = 7

0.623 8.12 = 8 8 + 3 = 11 5.83 = 6 6 + 2 = 8

0.723 7.49 = 7 7 + 3 = 10 6.61 =7 7 + 2 = 9

0.823 6.8 = 7 7 + 3 = 10 7.33 = 7 7 + 2 = 9

0.923 6.08 = 6 6 + 3 = 9 7.97 = 8 8 + 2 = 10

1.023 5.2 = 5 5 + 3 = 8 8.53 = 9 9 + 2 = 11

Fig. 2.36 shows the rasterization after plotting pixels.
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Fig. 2.36 The rasterization of an arc

Problem 2.10

Generate an arc in a counterclockwise direction using a trigonometric 
function algorithm having center (4, 3), start angle = 350°, end angle = 10°, and 
radius of arc = 10.

Solution

q1 = 350° = 6.109 rad

q2 = 10° = 0.174 rad

xc = 4, yc = 3, R = 10

As,

q2 < q1

q2 = 2p + q2 = 2q + 0.174 = 6.45 rad

q = = =
1 1

0.1
10

incr
R

θ x = R cos θ x + xc y = R sin θ y + yc

6.109 9.85 = 10 10 + 4 = 14 – 1.73 = – 2 – 2 + 3 = 1

6.209 9.97 = 10 10 + 4 = 14 – 0.74 = – 1 – 1 + 3 = 2

6.309 9.99 = 10 10 + 4 = 14 0.25 = 0 0 + 3 = 3 

6.409 9.99 = 10 10 + 4 = 14 1.25 = 1 1 + 3 = 4

Fig. 2.37 shows the rasterization after plotting pixels.
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Fig. 2.37 The rasterization of an arc

Problem 2.11

Generate an arc in a clockwise direction using a trigonometric function 
algorithm having center (5, 3), start angle = 45°, end angle = 15°, and radius of 
arc = 10.

Solution

q1 = 45° = 0.7853 rad

q2 = 15° = 0.261 rad

xc = 5, yc = 3, R = 10

q = = =
1 1

0.1
10

incr
R

θ x = R cos θ x + xc y = R sin θ y + yc

0.7853 7.07 = 7 7 + 5 = 12 7.07 = 7 7 + 3 = 10

0.6853 7.74 = 8 8 + 5 = 13 6.33 = 6 6 + 3 = 9

0.5853 8.33 = 8 8 + 5 = 13 5.52 = 6 6 + 3 = 9

0.4853 8.84 = 9 9 + 5 = 14 4.66 = 5 5 + 3 = 8

0.3853 9.27 = 9 9 + 5 = 14 3.76 = 4 4 + 3 = 7

0.2853 9.59 = 10 10 + 5 = 15 2.81 = 3 3 + 3 = 6

Fig. 2.38 shows rasterization after plotting pixels.
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Fig. 2.38 The rasterization of an arc

Problem 2.12

Generate an arc in a clockwise direction using a trigonometric function 
algorithm having center (7,4), start angle = 15°, end angle = 345°, and radius of 
arc = 10.

Solution

q1 = 15° = 0.261 rad

q2 = 345° = 6.02 rad

xc = 7, yc = 4, R = 10

As

q1 < q2

q2 = q2 - 2p = 6.02 - 2p = - 0.261 rad

q = q1 = 0.261

q = = =
1 1

0.1
10

incr
R
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θ x = R cos θ x + xc y = R sin θ y + yc

0.261 9.66 = 10 10 + 7 = 17 2.58 = 3 3 + 4 = 7

0.161 9.87 = 10 10 + 7 = 17 1.6 = 2 2 + 4 = 6

0.061 9.98 = 10 10 + 7 = 17 0.6 = 1 1 + 4 = 5

-0.039 9.99 = 10 10 + 7 = 17 – 0.38 = 0 0 + 4 = 4

-0.139 9.99 = 10 10 + 7 = 17 – 1.38 = – 1 – 1 + 4 = 3

-0.239 9.99 = 10 10 + 7 = 17 – 2.36 = – 2 – 2 + 4 = 2

Fig. 2.39 shows the rasterization after plotting pixels.

9
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17

Fig. 2.39 The rasterization of an arc

EXERCISES

1. What is rasterization?

2. Explain the DDA algorithm for rasterizing a line having end points at  
A (x1, y1) and B (x2, y2).

3. Explain Bresenham’s line algorithm to draw a line between any two end points.

4. Compare the two line generation algorithms using DDA and Bresenham’s.

5. Derive decision parameters in Bresenham’s midpoint circle generation 
algorithm.
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6. What is the basic concept of line drawing? Write the names of the algorithm 
used in line drawing.

7. Why is an algorithm required? Explain its steps in any graphics application.

8. What are the advantages and disadvantages of a DDA algorithm?

9. Explain, with a suitable example, why in a DDA for a straight line the value of 
x is incremented by one in case of a slope less than one.

10. Explain and write Bresenham’s midpoint algorithm to draw a circle of radius 
“R” at center (xc, yc).

11. Explain the midpoint subdivision algorithm for the generation of a circle with 
radius = 5 units and center at (5, 3).

12. Explain how the choices of pixel are done in plotting a circle by Bresenham’s 
ellipse algorithm.

13. The midpoint subdivision algorithm is computationally less intensive than 
Bresenham’s algorithm for circle. Explain.

OBJECTIVE QUESTIONS

 2.1 In a DDA algorithm, the common denominator (DENO) is equal to
(a) dx if (dx ≤ dy) (b) dy if (dx ≥ dy)
(c) |dx |if (|dx| ≤ |dy|) (d) |dy |if (|dx| ≥ |dy|)

 2.2  In a DDA algorithm, loop (iterations) continue until the following condition 
satisfies
(a) loop counter ≤ DENO (b) loop counter ≤ dx
(c) loop counter ≤ dy (d) loop counter ≥ DENO

 2.3  If the slope of the line is less than 1, then Bresenham’s line generation 
algorithm works on
(a) difference of distance between two successive horizontal points
(b) difference of distance between two successive vertical points
(c) all of the above
(d) none of the above

 2.4  If the slope of the line is positive and less than 1, then in Bresenham’s line 
generation algorithm
(a) loop continues until loop counter ≤ |dy| 
(b) loop continues until loop counter ≥ |dy| 
(c) loop continues until loop counter ≤ |dx| 
(d) loop continues until loop counter ≥ |dx|
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 2.5 In Bresenham’s midpoint circle generation,
(a) only 1⁄16th of circle is generated and remaining 15⁄16th by symmetry
(b) only 1⁄8th of circle is generated and remaining 7⁄8th by symmetry
(c) only 1⁄4th of circle is generated and remaining 3⁄4th by symmetry
(d) only 1⁄2th of circle is generated and remaining 1⁄2th by symmetry

 2.6 Bresenham’s circle generation algorithm works by checking the position of
(a) midpoint of two successive horizontal points
(b) midpoint of two successive vertical points 
(c) midpoint of two successive diagonal points 
(d) all of the above
(e) none of the above

 2.7 In Bresenham’s midpoint ellipse generation algorithm,
(a) only 1⁄16th of ellipse is generated and remaining 15⁄16th by symmetry
(b) only 1⁄8th of ellipse is generated and remaining 7⁄8th by symmetry 
(c) only 1⁄4th of ellipse is generated and remaining 3⁄4th by symmetry 
(d) only 1⁄2th of ellipse is generated and remaining 1⁄2th by symmetry

 2.8  In Bresenham’s ellipse generation algorithm, 1⁄4th of ellipse is further divided 
into two parts on the basis of
(a) Major axis and minor axis (b) Radius of ellipse
(c) Center of ellipse (d) Slope of tangents

 2.9  In an arc generation algorithm using trigonometric function in a 
counterclockwise generation when q1 > q2, then the value of q2 is adjusted as
(a) q2 = p + q2  (b) q2 = 2p + q2

(c) q2 = 3p + q2  (d) q2 = 4p + q2

2.10  In an arc generation algorithm using trigonometric function in clockwise 
generation when q1 < q2, then the value of q2 is adjusted as
(a) q2 = q2 - p  (b) q2 = q2 - 2p
(c) q2 = q2 - 3p  (d) q2 = q2 - 4p

ANSWERS

2.1 (c)  2.2 (a) 2.3 (b) 2.4 (c)

2.5 (b)  2.6 (a) 2.7 (c) 2.8 (d)

2.9 (b) 2.10 (b)
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3.1 INTRODUCTION

In many practical applications, it is necessary to make an entity look better by 
manipulating its orientation, size, or shape. These mathematical techniques 
to manipulate or make changes in the entity are called transformations, and 
transformations of two-dimensional entities such as circles, triangles, etc. are 
called 2D transformations. 

Many engineering problems such as synthesis of mechanisms or analysis 
of structural elements require a two-dimensional geometric model made up 
of lines, circles, and rectangles. These models are further analyzed by changing 
their position, orientation, or size in an organized and efficient way using 
transformations. Transformations play an integral part in all CAD systems 
to create and view an object. One of the most common and important tasks in 
computer graphics is to transform the coordinates (position, orientation, and 
size) of either an object within the graphical scene or the camera that is viewing 
the scene. It is also frequently necessary to transform coordinates from one 
coordinate system to another (e.g., world coordinates to viewpoint coordinates 
to screen coordinates). All of these transformations can be efficiently handled 
using simple matrix representations. Further, they can be particularly useful for 
combining multiple transformations into a single composite transform matrix.

3Chapter

TWO-
DIMENSIONAL 
TRANSFORMATION
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3.2 REPRESENTATION OF 2D GEOMETRY

In computer graphics, the shape and size of 2D objects are represented by 2D 
numerical descriptions tied to a coordinate system, i.e., in the form of x, y Cartesian 
coordinate. These geometrical representations are shifted, resized, and reoriented 
by the application of transformation. The basic building block of any geometry is a 
point, e.g., a line is made up of two points; planes are made by joining more than two 
coplanar lines to form a closed loop; solids are made out of planes. Hence a point 
is considered the basic element of any 2D model. All 2D models can be defined 
by a set of x, y coordinates or points. For example, a triangle is represented by x, y 
coordinates of its three vertices A(x1, y1), B(x2, y2) and C(x3, y3) as shown in Fig. 3.1.

y-axis

x-axis

B (x , y )2 2 C (x , y )3 3

A (x , y )1 1

O

Fig. 3.1 Triangle representation in a Cartesian coordinate system

The vertices ABC of a triangle are represented in matrix form as follows:

   
   =   
     

1 1

2 2

3 3

x yA

x yB

x yC

where each x, y pair is a position vector relative to the specified coordinate system. 
The matrix representation of a geometric model is useful for manipulation in 
computer graphics applications. Some geometric transformations are obtained by 
matrix multiplication and others by matrix addition. 

3.3 TYPES OF 2D TRANSFORMATIONS

Transformation involves the calculation of new coordinates (transformed 
points) from the coordinates of original points. There are three basic types of 
transformations and two special transformations. 
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Basic transformations are 

1. Scaling

2. Rotation

3. Translation

Special transformations are

1. Reflection

2. Shear

3.3.1 Scaling Transformation

In scaling transformation, the original coordinates of an object are multiplied by 
the given scale factor. There are two types of scaling transformations: uniform 
and non-uniform. In uniform scaling, the coordinate values change uniformly 
along the x, y, and z coordinates, whereas in non-uniform scaling, the change is 
not necessarily the same in all the coordinate directions.

 

D

A

C

B

A B

D C

Transformed
Fig

Original
Fig.

y-axis

x-axiso

Fig. 3.2 Scaling transformation

transformed length
scalingfactor,

original length

2
Scaling factorinthe direction 2

1.5
Scaling factorinthe direction 1.5

x

y

 = s =

A B AB
x s

AB AB
A D AD

y s
AD AD

′ ′
= = = =

′ ′
= = = =

If scaling factor is greater than “1” it is called enlarging scaling and if scaling; 
factor is less than “1” it is called reducing scaling.

A B = 2

A = 1.5

AB

D AD

′ ′
′ ′
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Mathematical Analysis

Let p (x, y) be the coordinate of the original point.

Let p (x′, y′) be the coordinate of the final point.

Then the transformation equation for scaling is given by

x′ = x ⋅ sx ...(3.1)

y′ = y ⋅ sy ...(3.2)

We can write the above equation in matrix form as follows:

0
[ ] [ ]

0

[ ] [ ][ ]

x

y

s
x y x y

s

p p s

 
′ ′ =  

 
′ =

where

 
=  

 

0

0

x

y

s
s

s

s = scaling the transformation matrix

p = coordinates of the original figure

p′ = coordinates of the final figure

Problem 1

D (2, 2) C (3, 2)
A B

D C

Transformed
Fig

Original
Fig.

A (2, 1) B (3, 1)

Fig. 3.3
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Scale the figure with sx = 2 and sy = 1.5.

Solution
′ = ⋅

 
    ′ = ⋅      
  
 
 
 ′ =
 
 
  

[ ] [ ] [ ]

2 1

3 1 2 0
[ ]

3 2 0 1.5

2 2

4 1.5

6 1.5
[ ]

6 3

4 3

p p s

p

p

When scaling transformation is carried out, in addition to scaling the figure, the 
figure also gets shifted. The shift depends on the scaling factors sx and sy.

3.3.2 ROTATION TRANSFORMATION

In rotation, the object is rotated by q angle about the origin. The convention is 
that the direction of rotation is CCW if q is a positive angle and CW if q is a 
negative angle. The transformation for rotation Rq is analyzed as follows.

Mathematical analysis

Ry

p (x , y)

p (x , y )

y

x

x

y-axis

o x-axis

Fig. 3.4 Rotation transformation
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x  =  Rcos f

y  =  Rsin f

x′  =  Rcos (q + f)

y′  =  Rsin (q + f)

x′  =  R[cos q cos f - sin q sin f]

y′  =  R[sin q cos f + cos q sin f]

x′  =  Rcos q cos f - Rsin q sin f ...(3.3)

x′  =  x cos q - ysin ...(3.4)

y′  =  Rsin q cos f + Rcos q sin f ...(3.5)

y′  =  xsin q + ycos q ...(3.6)

We can write the above equation in matrix form as follows:

where  

q q 
′ =  - q q 

′ = ⋅

q q 
=  - q q 

cos sin
[ ] [ ]

sin cos

[ ] [ ] [ ]

cos sin

sin cos

x y x y

p p R

R

R = rotation transformation matrix

p = coordinates of the original figure

p′ = coordinates of the final figure
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Problem 2

Rotate the figure through 90° to CCW about origin. A (2, 1), B (5, 1)  
C (4, 3).

Solution

Note:     

[ ] [ ] [ ]

2 1
cos90 sin90

5 1[ ]
sin90 cos90

4 3

2 1
0 1

5 1
1 0

4 3

1 2

1 5[ ]

3 4

positive for the CCWrotation

negative for the CWrotation

p p R

p

p

′ = ⋅

 
  ′ = ⋅    -   

 
  = ⋅    -   

- 
 -′ =  
 - 

q =
    q =

3.3.3 TRANSLATION TRANSFORMATION

In translation, an object is displaced by a given distance and direction from its 
original position. If displacement is given by vector v = tx I + tyJ, the new object 
point P′(x′, y′) can be found by applying translation transformation to P(x, y). See 
Fig. 3.5.

 

P (x, y)

y

y

ty

P (x , y )

x tx

y-axis

x-axis
o

x

Fig. 3.5 Translation transformation
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x′  =  x + tx

y′  =  y + ty

We can write the above equations in matrix form as follows:

[x′ y′]  =  [x y] + [tx ty]

[p′]  =  [p] . [T]

where

T  =  [tx ty]

[T]  =  translation transformation matrix

p  =  coordinates of the original figure

p′  =  coordinates of the final figure

3.4 NEED OF HOMOGENEOUS COORDINATES

As mentioned previously, the basic transformations are:

1. Scaling                 
′ ′ =  

 

0
[ ] [ ]

0

x

y

s
x y x y

s

2. Rotation              
q q 

′ ′ =  - q q 

cos sin
[ ] [ ]

sin cos
x y x y

3. Translation         ′ ′ = +[ ] [ ] [ ]x yx y x y t t

Of these, scaling and rotation transformations are captured by matrix 
multiplication, whereas translation transformation is captured by matrix addition 
of two matrices.

Matrix multiplication is easier than matrix addition. This is explained by 
combine transformation (scaling and rotation).
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Example 1

Combine transformation (scaling and rotation).

Original figure

Intermediate figure

Final figure

y-axis

x-axis
o

Fig. 3.6 Combine transformation

In this procedure, the figure is scaled and rotated about the origin. The total 
transformation is carried out in two steps:

Scaling [p1]  =  [p] ⋅ [S]

Rotation [p′]  =  [p1] ⋅ [R]

 [p′]  =  [p] ⋅ [S] ⋅ [R]

 [p′]  =  [p] ⋅ [TT]

where

[TT]  =  total transformation or resultant transformation matrix

[TT]2 × 2  =  [S]2 × 2 [R]2 × 2

Example 2

Combine transformation (scaling and translation).

 

Final figure

Intermediate figure

Original figure

x-axis

y-axis

o

Fig. 3.7 Combine transformation
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The total transformation is carried out in two steps:

Scaling  [p1] =  [p] ⋅ [S]

Translation  [p′] = [p] [S]2 × 2 + [T]1 × 2

   [p′] = [p1]1 × 2 + [T]1 × 2

Translation transformation is a 1 × 2 matrix, i.e., a row matrix, and it is to be 
added to the matrix in order to achieve the coordinates of the transformation 
point (Example 2).

Scaling and rotation transformations are both 2 × 2 matrices and are to be 
multiplied to matrix p in order to get the coordinates of the transformation point 
(Example 1).

If a combination of rotation and scaling transformations is carried out, the final 
transformation can be written as a product of the original transformation (p) and 
the resultant transformation matrix (TT) (Example 1). This resultant transformation 
matrix is a product of respective scaling and rotation transformation matrices. This 
permits the calculation of final transformation directly without having to calculate 
the intermediate transformation (Example 1).

When translation is involved in a series of transformations, it is not possible to 
calculate the resultant transformation matrix TT because the order of translation 
transformation matrix 1 × 2 and the operation of addition is involved. Hence 
the final transformation can only be achieved by calculating the coordinates of 
intermediate transformation at each stage. This increases the calculations and 
hence slows down the transformation process (Example 2).

In order to avoid this difficulty, the transformation matrix needs to be written in 
the same dimension, i.e., order of scaling and rotation matrix, and also translation 
is to be carried out by matrix multiplication instead of addition. This is possible by 
writing the coordinates of the points and matrices in a 3 × 3 homogeneous form.
Coordinates of original point are written as

[ ] [ ]

[2 3] [2 31]

[4 6 1] all these represent the samepoint [2 3]

1 1.5 0.5

x y x h y h h= ⋅ ⋅

= 
= 
=   

Advantage of homogeneous coordinates in case of translation

[x′ y′] = [x y] + [tx ty]



TWO-DIMENSIONAL TRANSFORMATION 93

Using homogeneous coordinates

 
 ′ ′ =  
  

′ = +
′ = +

=

1 0 0

0 1 0[ ] [ 1]

1

1

x y

x

y

x y h x y

t t

x x t

y y t

h

Thus translation transformation can be captured in matrix multiplication using 
homogeneous coordinates.

In the other two operations, the basic matrix will remain the same, only 0 and 1 
are added to the third row and third column.

Scaling   

 
 ′ ′ =  
  

0 0

0 0[ ] [ 1]

0 0 1

x

y

s

sx y h x y

Rotation   

q q 
 - q q′ ′ =  
  

cos sin 0

sin cos 0[ ] [ 1]

0 0 1

x y h x y

Thus, using homogeneous coordinates, we can capture translation by matrix 
multiplication similar to rotation and scaling, which are also captured as matrix 
multiplication.

Problem 1

Find the 3 × 3 transformation matrix for the figure shown in Fig. 3.8.

 

C B

D A

B A

C D

x-axis

y-axis

o

Fig. 3.8
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Solution

The total transformation is carried out in the following steps:

Step 1: Translate figure to the origin about point A.

tx  =  - xA and ty= - yA

A

o
x-axis

y-axis

Fig. 3.9 Position of a rectangle after translation

 
 =  
 - - 

1

1 0 0

0 1 0

1A A

T

x y

Step 2: Rotate figure about the origin through 90° in the CCW direction.

A

o
x-axis

y-axis

Fig. 3.10 Position of a rectangle after rotation

   
   - -= =   
      

cos90 sin90 0 0 1 0

sin90 cos90 0 1 0 0

0 0 1 0 0 1

R
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Step 3: Translate point A from the origin to its original position.

tx  =  xA and ty = yA

A

o
x-axis

y-axis

Fig. 3.11 Position of a rectangle after back translation

 
 =  
  

2

1 0 0

0 1 0

1A A

T

x y

The final transformation matrix equation is given by

[p′]  =  [p] . [TT]

where TT  =  total transformation matrix

1 0 0 0 1 0 1 0 0

0 1 0 1 0 0 0 1 0

1 0 0 1 1

0 1 0 1 0 0

1 0 0 0 1 0

1 1

0 1 0

1 0 0

( ) ( ) 1

T

A A A A

T

A A A A

T

A A A A

T

x y x y

T

y x x y

T

x y y x

     
     -=     
     - -    
   
   -=   
   -   
 
 -=  
 + - 
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Problem 2

Find the 3 × 3 transformation matrix for the figures in Fig. 3.12.

A (6, 2) B (10, 2)

D (6, 0) C (10, 0)

y-axis

x-axis
o A D (6, 0)

4

CB
2

y-axis

x-axis
o

Fig. 3.12

Solution

The total transformation is carried out in the following steps:

Step 1: Translate figure to the origin about point D.

tx  =  - 6 and ty = 0

 
 =  
 - 

1

1 0 0

0 1 0

6 0 1

T

o

A

C
x-axis

y-axis

B

Fig. 3.13 Position of a rectangle after translation

Step 2: Rotate figure in the CCW direction by 90° about the origin.

   
   - -= =   
      

cos90 sin90 0 0 1 0

sin90 cos90 0 1 0 0

0 0 1 0 0 1

R
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DA

B C

x-axis

y-axis

o

(6, 0)

Fig. 3.14 Position of a rectangle after rotation

Step 3: Translate point D back to its original position.

tx  =  6 and ty = 0

 
 =  
  

1

1 0 0

0 1 0

6 0 1

T

A D (6, 0)

CB

x-axis
o

y-axis

Fig. 3.15 Position of a rectangle after back translation

The final transformation matrix equation is given by

[p′]  =  [p] ⋅ [TT]

where        TT = total transformation matrix

     
     -=      
     -     
   
   -=    
   -   
 
 -=  
 - 

1 0 0 0 1 0 1 0 0

0 1 0 1 0 0 0 1 0

6 0 1 0 0 1 6 0 1

0 1 0 1 0 0

1 0 0 0 1 0

0 6 1 6 0 1

0 1 0

1 0 0

0 6 1

T

T

T

T

T

T
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Problem 3

Find the 3 × 3 homogeneous transformation matrix to transform square 
ABCD into another square A′B′C′D′ as shown in the figure. Side of the original 
square = 2, coordinates of point A (20, 10). Draw the final transformation on a 
graph paper.

 

BA

CD

C

A

BD

(20, 10)

(21, 11)

M

N

y

x
o

Fig. 3.16

Solution Consider triangle ANA′.

1

1

2

A'

NA

Fig. 3.16(a) 

From Fig. 3.16
AB  =  2

A′D′  =  A′A + D′A  or  A′B′ = A′B + BB′
From Fig. 3.16(a)

1 1 2

2 2

2

final length 2 2
scaling factor 2

original length 2

A A

A D A B

A D A B

A B

AB

′ ′ = + =

′ ′ = ′ ′ = +

′ ′ = ′ ′ = 2

′ ′
= = = =
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The total transformation is carried out in the following steps:

Step 1: Translate center of the original square to the origin.

tx = -21, ty = -11

D C

A B

o

M
x-axis

y-axis

Fig. 3.17 Translate square to the origin about center

Step 2: Scale the figure having = =2, 2x yS S

CD

A B

o

M
x-axis

y-axis

Fig. 3.18 Scale square about the origin

Step 3: Rotate the figure in the CCW direction by 45°.

CD

o

M
x-axis

y-axis

A B

Fig. 3.19 Position of a square after rotation
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Step 4: Translate the center back to its original position.

tx = 21 ty = 11

(21, 11)

x-axis

y-axis

o

M

Fig. 3.20 Position of a square after back translation

The final transformation equation is

1 2[ ] [ ] [ ][ ][ ]

1 0 0 2 0 0 cos45 sin45 0 1 0 0

0 1 0 sin45 cos45 0 0 1 00 2 0

21 11 1 0 0 1 21 11 10 0 1

1 1
0

1 0 0 2 0 0 2 2

0 1 0 1 10 2 0 0
21 11 1 2 20 0 1

21 11 1

T

T

T

T T S R T

T

T

= ⋅

      
      -= ⋅ ⋅ ⋅      
      - -      

 
   
   = ⋅     -   - -   
 

1 0 0 1 1 0

0 1 0 1 1 0

21 11 1 21 11 1

1 1 0

1 1 0

11 21 1

T

T

T

T



   
   -=   
   - -  
 
 -=  
 - 
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Coordinates of the final figure are given by

[ ] [ ][ ]

20 10 1
1 1 0

22 10 1
1 1 0

22 12 1
11 21 1

20 12 1

21 9 1

23 11 1

21 11 1

Tp p T

p

p

′ =

 
  
   -′ = ⋅   
 -   

 
 
 ′ =  
  

3.5 SPECIAL TRANSFORMATION

We have studied the three basic transformations, i.e., translation, scaling, and 
rotation. Special transformation includes reflection transformation and shear 
transformation. These are not unique but they are just special cases of basic 
transformations. First let us see reflection transformation.

3.5.1 Reflection Transformation
Reflection transformation is also called mirror transformation, because it yields 
a mirror image of the original figure. It is a special case of scaling transformation 
or a combination of scaling and translation transformation. For any figure to be 
reflected, it requires an axis of reflection. So, depending upon the position of the 
axis of reflection, different reflection transformations can be obtained. We discuss 
some of the positions of the axis of reflection in the following cases.

Case 1: Reflection about the x-axis

p (x, y)

p (x , y )

x-axis

y-axis

o

Fig. 3.21 Reflection of a point about the x-axis
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x′  =  x ...(3.7)

y′  =  -y ...(3.8)

Representing Eqs. (3.7) and (3.8) in matrix form

 
′ ′ =  - 

1 0
[ ] [ ]

0 1
x y x y  ...(3.9)

An homogenous coordinate system of Eq. (3.9) is given by

 
 ′ ′ = - 
  

1 0 0

[ ] [ ] 0 1 0

0 0 1

x y h x yh

Case 2: Reflection about y-axis
y-axis

p (x, y)p (x , y )

x-axis
o

Fig. 3.22 Reflection of a point about the y-axis

x′  =  - x ...(3.10)

y′  =  y ...(3.11)

Representing Eqs. (3.10) and (3.11) in matrix form

[ ] [ ]x y x y′ ′ =
−









1 0

0 1  ...(3.12)
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An homogeneous coordinate system of Eq. (3.12) is given by

[ ] [ ]x y h x yh′ ′ =

−















1 0 0

0 1 0

0 0 1

Case 3: Reflection about the origin

p (x, y)

p (x , y )

x-axis

y-axis

o

Fig. 3.23 Reflection of a point about the origin

x′  =  -x ...(3.13)

y′  =  -y ...(3.14)

Representing Eqs. (3.13) and (3.14) in matrix form

[ ] [ ]x y x y′ ′ =
−

−











1 0

0 1
 ...(3.15)

An homogeneous coordinate system of Eq. (3.15) is given by

[ ] [ ]x y h x yh′ ′ =

−

−

















1 0 0

0 1 0

0 0 1

Note:

1. Reflection about the x-axis is the same as scaling transformation with Sx = + 1 
and Sy = - 1.

2. Reflection about the y-axis is the same as scaling transformation with Sx = - 1 
and Sy = + 1.

3. Reflection about the origin is the same as scaling transformation with Sx = - 1 
and Sy = - 1.
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Case 4: Reflection of a point about a line y = b (parallel to x-axis)

y = b

x-axis

p (x, y)

(y – b)

(y – b)y

p (x , y )

b

o

y-axis

Fig. 3.24 Reflection of a point about a line parallel to the x-axis

x′  =  -x ...(3.16)

y′  =  y - 2 (y - b)

y′  =  y - 2y + 2b

y′  =  - y + 2b ...(3.17)

Representing Eqs. (3.16) and (3.17) in matrix form (homogeneous coordinate 
system)

[ ] [ ]x y x y

b

′ ′1 1

1 0 0

0 1 0

0 2 1

= −

















The above matrix confirms that reflection of a point about line y = b is the same 
as translation followed by scaling. The total transformation is carried out in the 
following steps:

1. Translate line y = b so as to coincide with x-axis with tx = 0, ty = - b.

2. Now take a reflection of the point about x-axis, which is the same as scaling 
transformation with Sx = 1 and Sy = - 1.

3. Translate the line from x-axis back to its original position, with tx = 0 and  
ty = b. 

The final transformation matrix is given by

[p′]  =  [p] ⋅ [TT]
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where               [TT] = total transformation matrix

T T M T

T

b

T

T

  =      

  =

−

















−

1 2

1 0 0

0 1 0

0 1

1 0 0

0 1 0

00 0 1

1 0 0

0 1 0

0 1

1 0 0

0 1 0

0 2 1

































  = −











b

T

b

T

′







Case 5: Reflection of a point about a line x = a

 

x

(x – a) (x – a)

p (x, y)p (x , y )

a

y-axis x = a

x-axiso

Fig. 3.25 Reflection of a point about a line parallel to the y-axis

x′  =  x - 2 (x - a)

x′  =  x - 2x + 2a

x′  =  - x + 2a ...(3.18)

y′  =  y ...(3.19)

Representing Eqs. (3.18) and (3.19) in matrix form (homogeneous coordinate 
system)
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[ ] [ ]x y h x y

a

′ ′ =

−















1

1 0 0

0 1 0

2 0 1

where

[ ]M

a

=

−















1 0 0

0 1 0

2 0 1

The above matrix confirms that reflection of a point about line x = a is the same 
as translation followed by scaling. The total transformation is carried out in the 
following steps:

1. Translate line x = a so as to coincide with y-axis with tx = - a and ty  = 0.

2. Now take a reflection of the point about y-axis, which is the same as scaling 
transformation with Sx = - 1 and Sy = 1.

3. Translate the line from x-axis back to its original position, with tx = a and ty = 0.

The final transformation matrix equation is given by

[p′] = [p] [TT]

where                 [TT] = total transformation matrix

T T M T

T

a

T

T

  =      

=

−

















−

1 2

1 0 0

0 1 0

0 1

1 0 0

0 1 0

0 0 1













−















=

−















1 0 0

0 1 0

0 1

1 0 0

0 1 0

2 0 1

a

T

a

T
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Case 6: Reflection of a point about a line y = x

x = y

p (x , y )

p (x, y)

y

y

x

x

o
x-axis

y-axis

Fig. 3.26 Reflection of a point about a line 45° to the x-axis

x′  =  y ...(3.20)

y′  =  x ...(3.21)

Representing Eqs. (3.20) and (3.21) in matrix form (homogeneous coordinate 
system)

[ ] [ ]x y h x y′ ′ =

















1

0 1 0

1 0 0

0 0 1

where

[ ]M =

















0 1 0

1 0 0

0 0 1

Problem 4
Find the reflection matrix of an image about line y = 2x.
Solution
Putting x = 0 in the equation of line y = 2x we get y = 0.
If y = 0, we get x = 0.
Thus, we infer that the line is passing through the origin.
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Comparing the equation of line y = 2x with y = mx + c,

m = slope = 2 and c = y = intercept = 0

We know that slope = tan q, where q is the inclination of line with x-axis

Therefore, inclination of the line is given by

m = tan q = 2

q = tan-1 (2)

q = 63.43°

63.43°

y = 2x

x-axis

y-axis

o

Fig. 3.27 Inclination of a given line

The transformation can be obtained by the following steps:

Step 1: Rotate the line by 63.43° in CW direction so as to coincide with the x-axis.

R1

63 43 63 43 0

63 43 63 43 0

0 0 1

  =

− −

− − −

 cos( . ) sin( . )

sin( . ) cos( . )















  =

−















R1

0 447 0 8943 0

0 8943 0 447 0

0 0 1

. .

. .

Step 2: Reflection transformation about the x-axis.

Mx  = −

















1 0 0

0 1 0

0 0 1
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Step 3: Back rotation by 63.43° in the CCW direction.

R2

63 43 63 43 0

63 43 63 43 0

0 0 1

  = −









cos( . ) sin( . )

sin( . ) cos( . )









  = −

















R2

0 447 0 8943 0

0 8943 0 447 0

0 0 1

. .

. .

Thus, total transformation [TT] = [R1] ⋅ [Mx] ⋅ [R2]

TT  =

−















−





0 447 0 8943 0

0 8943 0 447 0

0 0 1

1 0 0

0 1 0

0 0 1

. .

. . .












−

















  =

−

.

. .

. .

.

0 447 0 8943 0

0 8943 0 447 0

0 0 1

0

TT

66 0 8 0

0 8 0 6 0

0 0 1

.

. .

















Problem 5
Determine the transformation matrix for reflection of a point about the line  
y = 2x - 6.

Solution
Put x = 0 in equation of line (y = 2x - 6); then we get y = - 6; coordinate (0, -6).  
If y = 0, then we get x = 3; coordinate (0, - 6).

y = 2x – 6

(3, 0)

(0, – 6)

x-axis

y-axis

o

Fig. 3.28 Position of a given line
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The transformation can be obtained by the following steps:
Step 1: Rotate the line by 63.43° in the CW direction so as to coincide with the 
x-axis.

y = 2x

63.43°

x-axis

y-axis

o

Fig. 3.29 Position of the line after translation

If we compare the equation of line y = 2x - 6 with y = m x + c, we have

m = slope = 2 and c = y = intercept = - 6

We know that slope = tan q, where q is inclination of the line.

Therefore

m = tan q = 2

q = tan-1 (2)

q = 63.43°

Step 2: Translate the line to the origin by tx = -3, ty = 0.

T1  =

−

















1 0 0

0 1 0

3 0 1

Step 3: Rotate the line by 63.43° in CW direction so as to coincide with the x-axis.

R1

63 43 63 43 0

63 43 63 43 0

0 0 1

  =

− −

− − −

 cos( . ) sin( . )

sin( . ) cos( . )















  =

−















R1

0 447 0 8943 0

0 8943 0 447 0

0 0 1

. .

. .
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Step 4: Reflection transformation about the x-axis:

Mx  = −

















1 0 0

0 1 0

0 0 1

Step 5: Back rotation by 63.43° in the CCW direction:

R2

63 43 63 43 0

63 43 63 43 0

0 0 1

  = −









cos( . ) sin( . )

sin( . ) cos( . )









  = −

















R2

0 447 0 8943 0

0 8943 0 447 0

0 0 1

. .

. .

Step 6: Back-translate the line to the original position by tx = 3, ty = 0.

T2

1 0 0

0 1 0

3 0 1

  =

















Total transformation [TT] = [T1] ⋅ [R1] ⋅ [Mx] ⋅ [R2] ⋅ [T1]

TT  =

−

















−



1 0 0

0 1 0

3 0 1

0 447 0 8943 0

0 8943 0 447 0

0 0 1

.

. .

. .












−

















−

.

.

. .

. .

1 0 0

0 1 0

0 0 1

0 447 0 8943 0

0 8943 0 447 0

0 0 11

1 0 0

0 1 0

3 0 1

1 0 0

0 1 0

3 0 1

































  =

−
















.

TT



−















−











.

. .

. . .

0 447 0 8943 0

0 8943 0 447 0

0 0 1

1 0 0

0 1 0

0 0 1





−

















.

. .

. .

0 447 0 8943 0

0 8943 0 447 0

3 0 1
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TT  =

−

















−



1 0 0

0 1 0

3 0 1

0 447 0 8943 0

0 8943 0 447 0

0 0 1

.

. .

. .












−

















  =

.

. .

. .

0 447 0 8943 0

0 8943 0 447 0

3 0 1

1 0 0

TT 00 1 0

3 0 1

0 6 0 8 0

0 8 0 6 0

3 0 1

0 6

−

















−















  =

−

.

. .

. .

.

TT

00 8 0

0 8 0 6 0

4 8 2 4 1

.

. .

. .−

















3.5.2 Shear Transformation
A shear is a transformation that, similar to scale and translate, distorts the shape 
of an object along either or both the axes. A shear along one axis (say, x-axis) 
is performed in terms of the point’s coordinate in the other axis (y-axis). Thus 
a shear of 1 in the x-axis will cause the x-coordinate of the point to distort by 1 
(y-coordinate).

Shear transformation

Shear transformation
in x direction

Shear transformation
in y direction

Fig. 3.30 Classification of a shear transformation

1. The transformation matrix for shear in the x direction is

SH SHx x  =

















1 0 0

1 0

0 0 1

where SHx  =  shear factor along the x-axis
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CD
D

A,A B,B
x-axis

y-axis

C

Fig. 3.31 Shear transformation in the x direction

2.  The transformation matrix for shear in the y direction is

SH

SH

y

y





 =

















1 0

0 1 0

0 0 1

where SHy = shear factor along the y-axis

B

A, A B

D, D C

x-axis

y-axis
C

Fig. 3.32 Shear transformation in the y direction

Problem 6
Write the shear transformation of a rectangle ABCD with shear parameter  
a = b = 2. Also draw the final view of the rectangle ABCD in x and y directions. 
The vertices of the rectangle are A (1, 1), B (4, 1), C (4, 2), and D (1, 2).
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Solution

1. Shear transformation in the x direction is

p p SH

p

x′

′

  =    

  =



















.

1

4

4

1

1

1

2

2

1

1

1

1

1 0 0

2 1 0

0 00 1

3

6

6

5

1

1

2

2

1

1

1

1

















  =



















p′

2. Shear transformation in the y direction is

p p SH

p

y′

′

  =   



  =



















.

1

4

4

1

1

1

2

2

1

1

1

1

1 2 0

0 1 0

0 00 1

1

4

4

1

3

9

10

4

1

1

1

1

















  =



















p′
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Problem 7
Fig. 3.33 shows a circle of radius r = 50 mm; center A [10, 10] is to be converted 
into an ellipse with major axis a = 90 mm and minor axis b = 60 mm by keeping 
the center at same position. Find the total transformation matrix.

Solution

A (10, 10)

x-axis

y-axis

o

Fig. 3.33 Position of a given circle

Transformation involves the following steps.

1. Translate the circle about the center to the origin.

(0, 0) A
Coordinate

y-axis

x-axis
o

Fig. 3.34 Translating circle about the center to the origin

T1

1 0 0

0 1 0

10 10 1

  =

− −
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2.  Scaling transformation
The scaling factors are calculated as follows:

s

s

x

y

= = =

=

new semi major axis

radius
new semi major axis

radiu

45

50
0 9.

ss
= =

=

















30

50
0 6

0 9 0 0

0 0 6 0

0 0 1

.

[ ]

.

.s

3.  Translate the center back to the original position.

T

T T S T

T

T

T

2

1 2

1 0 0

0 1 0

10 10 1

1

=

















  =      

  =

. .

00 0

0 1 0

10 10 1

0 9 0 0

0 0 6 0

0 0 1

1 0 0

0 1 0

10 10− −

































.

.

. .

11

1 0 0

0 1 0

10 10 1

0 9 0 0

0 0 6 0

10 10 1

















  =

− −

















TT .

.

.

















  =

















TT

0 9 0 0

0 0 6 0

1 4 1

.

.
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Problem 8
A triangle having vertices (2, 3), (6, 3), and (4, 8) is reflected about the line 
having equation y = 3x + 4. Find the final position of the triangle using 2D 
transformation.

Solution

p  =

















2 3 1

6 3 1

4 8 1

Rotate the line about y  =  3x + 4.

Put x = 0 in equation of a line (y = 3x + 4). Then we get y = 4; coordinate (0, 4).

And if y = 0, we get x = -
4

3
; coordinate (0, -

4

3
).

Comparing the equation of a line (y = 3x + 4) with y = mx + c,

m = slope = 3 and c = y = intercept = 4

We know that, slope = tan q, where q is inclination of a line.

Therefore

m = tan q = 4

q = tan-1 4

q = 71.56°

The transformation can be obtained by the following steps:

Step 1: Translate the line to the origin by tx = 0, ty = - 4.

T1

1 0 0

0 1 0

0 4 1

  =

−
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Step 2: Rotate the line by 71.56° in the CW direction so as to coincide with the 
x-axis.

R1

71 56 71 56 0

71 56 71 56 0

0 0 1

  =

− −

− − −

 cos( . ) sin( . )

sin( . ) cos( . )















  =

−















R1

0 316 0 949 0

0 949 0 316 0

0 0 1

. .

. .

Step 3: Reflection transformation about the x-axis:

Mx  = −

















1 0 0

0 1 0

0 0 1

Step 4: Back rotation by 71.56° in the CCW direction.

R2

71 56 71 56 0

71 56 71 56 0

0 0 1

  = −









cos( . ) sin( . )

sin( . ) cos( . )









  =

















R2

0 316 0 949 0

0 949 0 316 0

0 0 1

. .

. .

Step 5: Back-translate the line to the original position by tx = 0, ty = 4.

T2

1 0 0

0 1 0

0 4 1

  =

















Total transfromation [TT] = [T1][R1][Mx][R2][T2]
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1 0 0 0.316 0.949 0

0 1 0 0.949 0.316 0

0 4 1 0 0 1

1 0 0 0.316 0.949 0 1 0 0

0 1 0 0.949 0.316 0 0 1 0

0 0 1 0 0 1 0 4 1

1 0 0 0.316 0.949 0

0 1 0 0.949 0.316 0

0 4 1 0 0 1

T

T

T

T

   -
   = ⋅ ⋅      
   -   
     
     - ⋅ ⋅     
          
   -
  = ⋅     
  -  

1 0 0 0.316 0.949 0

0 1 0 0.949 0.316 0

0 0 1 0 4 1

1 0 0 0.316 0.949 0 0.316 0.949 0

0 1 0 0.949 0.316 0 0.949 0.316 0

0 4 1 0 0 1 0 4 1

1 0 0 1 0.6 0

0 1 0 0 0.

0 4 1

T

T

T

T

    
    ⋅ - ⋅    
        

     -
     = ⋅ ⋅ - -        
     -     
 
 = ⋅    
 - 

8 0

0 4 1

1 0.6 0

0 0.8 0

0 0.8 1

2 3 1 1 0.6 0

6 3 1 0 0.8 0

4 8 1 0 0.8 1

2 4.4 1

6 5.6 1

4 9.6 1

T

T

T

p p T

p

p

 
 
 
  

 
 =    
  

′ = ⋅          
   
   ′ = ⋅      
      
 
 ′ =    
  

Problem 9
A triangle ABC is to be reflected about its side BC. Explain the steps required 
and determine the resultant transformation matrix. A (2, 3), B (10, 8), and  
C (-1, 10).
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Solution

10.3°

B (10, 8)

C (–1, 10)

A (2, 3)
x-axis

y-axis

o

Fig. 3.35 Position of a given triangle

The triangle is to be reflected about side BC. Therefore calculate the slope of the 
line and its angle of inclination with the horizontal.

slope of BC = =
−
−

=
−
+

=
−

= =
−

m
y y

x x

m

B C

B C

( )

( )

( )

( )

tan
( )

(

8 10

10 1

2

11

2
θ

111

2

11
10 31

)

tan
( )

( )
.θ = =

−
= − °−

The transformation is carried out by the following steps:
Step 1: Translate the triangle to the origin about point C.

B

A

10.3°

x-axis

y-axis

C

o

Fig. 3.36 Position of the triangle after translation
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T1

1 0 0

0 1 0

1 10 1

  =

−

















Step 2: Rotate the triangle by 10.3° in the CCW direction so as to coincide BC 
with the x-axis.

R1

10 3 10 3 0

10 3 10 3 0

0 0 1

  = −
















cos( . ) sin( . )

sin( . ) cos( . )



  = −

















R1 1

0 98 0 18 0

0 98 0 98 0

0 0 1

. .

. .

C B

A

x-axis

y-axis

o

Fig. 3.37 Position of the triangle after rotation

Step 3: Reflection transformation about the x-axis:

Mx  = −

















1 0 0

0 1 0

0 0 1
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B

A

C
x-axis

y-axis

o

Fig. 3.38 Position of the triangle after reflection about the x-axis

Step 4: Back rotation by 10.3° in the CW direction:

R2

10 3 10 3 0

10 3 10 3 0

0 0 1

  =

− −

− − −









cos( . ) sin( . )

sin( . ) cos( . )









  =

−















R2

0 98 0 18 0

0 18 0 98 0

0 0 1

. .

. .

10.3°

A

C

B
x-axis

y-axis

o

Fig. 3.39 Position of the triangle after back rotation

Step 5: Back-translate the triangle to the original position about C.

T2

1 0 0

0 1 0

1 10 1

  =

−



















TWO-DIMENSIONAL TRANSFORMATION 123

B

A

C (–1, 10)

o
x-axis

y-axis

Fig. 3.40 Position of the triangle after back translation

Total transformation [TT] = [T1][R1][Mx][R2][T2]

TT  =

−

















−













1 0 0

0 1 0

1 10 1

0 98 0 18 0

0 18 0 98 0

0 0 1

.

. .

. .




−

















−















. .

. .

. .

1 0 0

0 1 0

1 0 1

0 98 0 18 0

0 18 0 98 0

0 0 1

..

.

. .

1 0 0

0 1 0

1 10 1

1 0 0

0 1 0

1 10 1

0 98 0

−

















  =

−

















TT

118 0

0 18 0 98 0

0 0 1

1 0 0

0 1 0

0 0 1

0 98 0 18

−

















−

















−

. . . .

. . 00

0 18 0 98 0

1 10 1

1 0 0

0 1 0

1 10 1

0 9

. .

.

.

−

















  =

−

















TT

88 0 18 0

0 18 0 98 0

0 0 1

0 98 0 18 0

0 18 0 98 0

1 10 1

.

. . .

. .

. .−

















−

− −

−

















  =

−

















−

−



TT

1 0 0

0 1 0

1 10 1

0 93 0 37 0

0 1 0

1 10 1

.

. .















  =

−

− −

















TT

0 93 0 37 0

0 37 0 93 0

3 43 19 1

. .

. .

.



124 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

.

2 3 1 0.93 0.37 0

10 8 1 . 0.37 0.93 0

1 10 1 3.43 19 1

4.26 15 1

10 8 1

1 10 1

Tp p T

p

p

′ =          
   -
   ′ = - -      
   -   
 
 ′ =    
 - 

Problem 10
Segment PQ is marked by (2,2) and (3,7). Point R divides this segment in the  

ratio of 1:3. If 
A B

C D









  is any general transformation matrix, then prove that R′  

will also divide P′Q′ in the same ratio.

Solution

Q (3, 7)

R (x, y)

P (2, 2)

P

R

Q

2

y

7

2

x

3

x-axis

y-axis

o

Fig. 3.41 Position of the original and final lines

From the figure

x

y

= +
−

= + =

= +
−

= + =

2
3 2

3
2

1

3

7

3

2
7 2

3
2

5

3

11

3

( )

( )



TWO-DIMENSIONAL TRANSFORMATION 125

Therefore, R 
7

3

11

3
,











P

T
A B

C D

P P

T

′

′

  =



















  =










  =  

2

7

3
3

2

11

3
7

. TT

P
A B

C D

P

A C

T 

  =





























  =

+

′

′

2

7

3
3

2

11

3
7

2 2

.

(( )

+









+( )

+( )

+









+( )










7

3

11

3

2 7

2 2

7

3

11

3

3 7

A C

A C

B D

B D

B D










7

3

11

3
2 2

2 7 2 2

7

3

11

3

A C A C
A C A C

a

A C

+







 = +( )+

+ ( − + )

+







 = +( )+

+( )

+ = + + +( )

+( ) = +( )

=

2 2
5

7 11 6 6
3

5

5
3

5

1

A C
A C

a

A C A C
a

A C

A C
a

A C

[ ]

33

a

 a = 3

Similarly,      7

3

11

3
2 2

3 7 2 2

7

3

11

3

B D B D
B D B D

a

B D

+







 = +( )+

+ ( − + )

+







 = +( )+

+ ( )
2 2

5
B D

B D

a
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7 11 6 6
3

5

5
3

5

1
3

3

B D B D
a

A C

B D
a

B D

a
a

+ = + + +( )

+( ) = +( )

=

=

Hence it is proved that R′ will also divide P′Q′ in 1:3 ratio.

Problem 11

x + 2y = 9 and x + 2y = 3 are two parallel lines. After transforming by 
A B

C D









 , 

prove that the lines continue to be parallel.

Solution

The two given lines are x + 2y = 9 and x + 2y = 3. Convert it into a standard 
equation of line, that is, y = mx + c.

Then

y  =  - 0. 5 x + 4.5 ...(3.22)

y  =  - 0.5 x + 1.5 ...(3.23)

These two lines are parallel to each other because the slope of these lines are same, 
that is, - 0.5.

If we put x = 0 in Eq. (3.22), then y = 4.5

Then y = 4.5

And if y = 0, then x = 9.

The line is said to be passing through (0,4.5) and (9,0).

Similarly if we put x = 0 in Eq. (3.23), then y = 1.5

And y = 0 then x = 3

The line is said to be passing through (0,1.5) and (3,0).

To transform the first line:

P
A B

C D

P
C D

A B

1

0 4 5

9 0

4 5 4 5

9 9

′

′

  =



















  =










.
.

. .
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Slope of this line is given by

m
y

x x

B D

A C
1

2 1

2 1

9 4 5

9 4 5
=

−
−

=
− 
− 

y .

.

To transform the second line:

P
A B

C D

P
C D

A B

2

0 1 5

3 0

1 5 1 5

3 3

′

′

  =



















  =










.
.

. .

Slope of this line is given by

m
y y

x x

B B

A C
2

2 1

2 1

3 1 5

3 1 5
=

−
−

=
− 
− 

.

.

Multiplying and dividing by 3

m
B D

A C
2

9 4 5

9 4 5
=

− 
− 

.

.

As the slope of both transformed lines is same, these lines are parallel to each 
other.

3.6 INVERSE TRANSFORMATION

The effect of some transformations can be undone by carrying out transformation 
in the reverse direction. Carrying out reverse or back transformation itself is 
called inverse transformation. If we know the coordinates of the original point 
and the sequence of transformation we can find the coordinates of the final point 
using the following equation:

p p T

x y h x y T

T

T

′

′ ′

  =    

  =    

× × ×

× ×

1 3 1 3 3 3

1 3 1 3
1

.

.
33 3×

where

p′ = coordinates of the final point

p = coordinates of the original point

[TT] = total transformation matrix
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But if we know the coordinates of the final point and we have to find the 
coordinates of the original point, then

p p TT′  =   ⋅  × × ×1 3 1 3 3 3
 (post multiplier) ...(3.24)

In Eq. (3.24) [TT]3 × 3 is post multiplier. Hence after shifting to the left of “=” sign it 
remains post multiplier.

Since

A B B A  ⋅   ≠   ⋅  

  =   ⋅

× ×

−

×
p p T T1 3 1 3

1

3 3
′  (post multiplier)

Similarly, if we know the coordinates of the original point and the final point, we 
can find the transformation matrix as follows:

p p T

T p p

T

T

′

′

  =   ⋅  

  = 

 ⋅  

× × ×

×
−

× ×

1 3 1 3 3 3

3 3

1

3 1 1 3

  (pre multiplier)

 (pre multiplier)

To find the inverse of the matrix:

Let the matrix be p

a b c

d e f

g h i

=

















Then inverse of [p] is

p
a  p

p

p p a ei hf b di gf c dh

− =

= = −( )− −( )+ −

1 Adjoint of

determinant of gge

a p p

 p

ei hf

T

( )
=  

  =

−

Adjoint of cofactor of

cofactor of

(( ) − −( ) −( )
− −( ) −( ) − −( )

−( ) − −( )

di gf dh ge

bi hc ai gc ah gb

bf ec af dc ae −−( )

















  =

−( ) − −( ) −( )
−

db

p

ei hf bi hc bf ec

d
T

cofactor of ii gf ai gc af dc

dh ge ah gb ae db

p

−( ) −( ) − −( )
−( ) − −( ) −( )

















 −1

  =

−( ) − −( ) −( )
− −( ) −( ) − −( )

−(

1

p

ei hf bi hc bf ec

di gf ai gc af dc

dh ge)) − −( ) −( )















ah gb ae db
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Problem 12
Find the transformation that converts a figure defined by the vertices  
A(3, 2), B(2, 1), C(4, 1) into another figure defined by the vertices A′(- 3, - 1), 
B′(- 4, - 2), C′(- 2, - 2).

Solution

Final transformation equation is

[p′]3 × 3 = [p]3 × 3 ⋅ [TT]3 × 3 (pre multiplier)

[TT]3 × 3 = [p-1]3 × 3 ⋅ [p′]3 × 3 (pre multiplier) ...(3.25)

To find the inverse of the matrix:

p  =

















3 2 1

2 1 1

4 1 1

Then inverse of [p] is

p
a p

p

p p

−



 =

= × − ×( )− × − ×(

1

3 1 1 1 1 2 2 1 4 1

Adjointof

determinant of = ))+ × − ×( )
= + − =

=  

1 2 1 4 1

0 4 2 2p

p  p
T

Adjointof cofactor of

cofactorr of

cofactor of Ad

 p

 p a
T

  =

−

− −

− −

















  =

0 2 2

1 1 5

1 1 1

jjointof p

p

=

−

− −

− −

















  =

−

− −

− −

−

0 1 1

2 1 1

2 5 1

1

2

0 1 1

2 1 1

2 5 1

1

















The matrix of the transformed figure is
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[ ]p′ =

− −

− −

− −

















3 1 1

4 2 1

2 2 1

Putting the values in Eq. (3.25)

TT  =

−

− −

− −

















− −

− −

− −
















1

2

0 1 1

2 1 1

2 5 1

3 1 1

4 2 1

2 2 1

.



  =

− −

















  =

− −













T

T

T

T

1

2

2 0 0

0 2 0

12 6 2

1 0 0

0 1 0

6 3 1





Looking at the total transformation matrix, we can say that only one 
transformation is involved and that is a translation transformation with values 
of tx = - 6 and ty = - 3. You can cross-check your answer by doing [p′] = [p] ⋅ [TT].

Problem 13
The coordinates of a final figure are

P′  =  (10, 10); Q′ = (20, 20).

The total transformation matrix is carried out by

1.  scaling the figure two times horizontally and two times vertically with 
respect to the origin

2.  rotating the figure about the origin through 45° CCW.

Determine the coordinates of the original figure P and Q.

Solution

Final transformation equation is

p p TT′  =   ⋅  × × ×2 3 2 3 3 3
 (pre multiplier)

p p TT  =   ⋅ 

× ×

−

×2 3 2 3

1

3 3
′  (post multiplier) ...(3.26)

Coordinates of the transformed figure are

p′  =










10 10 1

20 20 1
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Total transformation is given by

[TT] = [S] ⋅ [R]

Scaling transformation with sx = 2 and sy = 2,

S  =

















2 0 0

0 2 0

0 0 1

Rotation transformation by 45° in the CCW direction:

R

R

  = −

















  =

cos sin

sin cos

. .

45 45 0

45 45 0

0 0 1

0 707 707 0

−−

















  =

















0 707 0 707 0

0 0 1

2 0 0

0 2 0

0 0 1

0 707

. .

.

.

TT

00 707 0

0 707 0 707 0

0 0 1

1 41 1 41 0

1 41 1 41 0

.

. .

. .

. .

−

















  = −TT

00 0 1

















Then inverse of [TT] is

T
a T

T

T T

T
T

T

T T

  =

  = = ×

−1

1 41 1 41 1

Adjointof

determinant of . . −−( )− − × −( )+
= + + =

=

0 1 41 1 41 1 0 0

2 2 0 4

. .

T

a  T

T

TAdjoint of cofactor oof

cofactor of Adjoint of

T

T a T

T

T

T

T

T

 

  = =

−1 41 1 41 0

1 41

. .

. 11 41 0

0 0 4

1

4

1 41 1 41 0

1 41 1 41 0

0 0 4

1

.

. .

. .

















=

−















−TT
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Putting values in Eq. (3.26)

p

p

=








⋅

−















=

10 10 1

20 20 1

1

4

1 41 1 41 0

1 41 1 41 0

0 0 4

7 0 1

. .

. .

114 0 1











The coordinates of the original are P (7, 0) and Q (14, 0).

EXERCISES

1. Determine a 3 × 3 homogeneous matrix to transform an equilateral triangle 
ABC with each side 10 units in length into an isosceles triangle A′B′C′ shown 
in the figure, with an altitude 2.5 times the altitude of the equilateral triangle; 
the coordinate of point A is (10, 5). Depict the final transformation on a graph 
paper.

C

A B

C

A B

x-axis

y-axis

o

Fig. 3.42

2. Find the reflection of a triangle A (1, 1), B (5, 1) and C (1, 5) about a line y = 2x + 10.

3. A rectangle marked by (4, 4), (4, 5), (5, 4) and (5, 5) is to be reflected about the 
mirror line 2x + 3y = 5 through necessary transformation. Find concatenated 
transformation matrix and hence the reflected image.

4. A triangle has vertices as A (1, 1), B (1, 2), C (2, 2). Find the reflection of ABC 
about a line y = 3x + 2. Plot prior and poster images of ABC along with line of 
reflection on a graph paper.

5. Determine the transformation matrix to transfer square ABCD to rectangle 
A′B′C′D′, A′B′ = 2AB and C′B′ = CB as shown in figure.
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D C

BA

AD

C B

o
x-axis

y-axis

Fig. 3.43

6. Obtain an instant transformation matrix for deriving figure B from figure A.  
Figure A is described by the vertices A (2, 1), B (4, 1), C (3, 2) and figure B 
is described by vertices A′ (- 4, -2), B′ (-2, -2), C′ (-3, -1) using inverse 
transformation.

7. Find the reflection of a diamond-shaped polygon whose vertices are A (-1, 0),  
B (0, 2), C (-1, 0) and D (0, 2) about line y = x + 2.

8. Prove that a 3 × 3 homogeneous transformation matrix for reflection about 
the line y = x is equivalent to a reflection about x-axis and rotation by 90° 
CCW direction.

9. Prove that a rotation about an origin is equivalent to two successive reflections 
about two coordinate axes.

OBJECTIVE QUESTIONS

2.1 Reflection matrix resembles which basic transformation matrix?
(a) translation (b) scaling
(c) rotation (d) none of the above

2.2  Reflection of a point about the x-axis, followed by a CCW rotation of 90°, is 
equivalent to reflection about which line?
(a) x = - y (b) y = - x
(c) x = y (d) x + y = 1

2.3 A circle, if scaled only in one direction, becomes
(a) parabola (b) hyperbola
(c) ellipse (d) remains a circle



134 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

 2.4 Which of these are basic transformations?
(a) scaling (b) rotation
(c) translation (d) all of the above

 2.5  Which transformation in non-homogeneous form is captured by matrix 
addition?
(a) scaling  (b) rotation
(c) translation (d) reflection

 2.6  In a homogeneous coordinate system, all transformation is captured by matrix
(a) addition (b) subtraction
(c) multiplication (d) division

 2.7 Transformation effect can be undone by
(a) reverse transformation (b) forward transformation
(c) inverse transformation (d) none of the above

 2.8 Inverse of any matrix [P] can be found by which formula?

(a) 
Adjoint of p

P
 (c) 

cofactor of P

P

(b) 
[ ]cofactor of P

P

T

 (d) 
[ ]cofactor of P

P

T

2.9 The process of combining or multiplying transformation matrices is called
(a) rasterization (b) transformation
(c) concatenation (d) reflection

2.10 Shear transformation is classified as a
(a) basic transformation (b) special transformation
(c) inverse transformation (d) none of the above

ANSWERS

2.1 (a) 2.2 (c) 2.3 (c) 2.4 (d)

2.5 (c) 2.6 (c) 2.7 (d) 2.8 (d)

2.9 (c) 2.10 (b)
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4.1 INTRODUCTION

The real world is composed of three-dimensional images. 3D objects have not 
only height and width but also depth. Displaying a 3D object on a 2D screen 
seems to be an impossible task. If height and width are represented by x and y 
coordinates, then how can the third dimension, depth, be displayed? This problem 
is solved with techniques used by artists and photographers in producing realistic 
pictures on paper or film. The difference is that the computer uses a mathematical 
model instead of a paint brush or lens to create the picture. The complexity of 
the mathematical model increases with an increase in the realism of a computer-
generated picture.

Most engineering problems deal with 3D objects. A variety of patterns, shapes, 
and techniques are used to represent 3D objects. Whatever method one would 
use, the 3D object is usually represented in a 3D coordinate system and then 
mapped onto the 2D system of display. Manipulation, viewing, and creation of 
object images require the use of 3D object and coordinate transformations. A 3D 
transformation method is an extension of 2D transformation methods, including 
the consideration of the z-axis coordinates. In the 3D transformation method, the 

4Chapter

THREE-
DIMENSIONAL 
TRANSFORMATION
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coordinate of a point is represented by (x, y, z) and the homogeneous coordinate 
will be [x y z w]. The value of w for 3D transformation will be 1. The other 
coordinates in 3D transformations are:
Coordinates of an original point

[P] =  [x y z 1]1 × 4

Coordinates of a transformed point

[p′] = [x′ y′ z′ 1]

4.2 SCALING TRANSFORMATION

Scaling transformation matrix: A scaling transformation is obtained by placing 
values along the main diagonal of a general 4 × 4 transformation matrix.

[ ]S

s

s

s

x

y

z

=



















0 0 0

0 0 0

0 0 0

0 0 0 1

The above matrix represents scaling with respect to origin, where Sx, Sy, and Sz are 
scaling factors along the x, y, and z directions, respectively. If the scaling factors 
Sx, Sy, and Sz are different from each other, the image of an object is distorted. 
Otherwise, a change in size occurs.

4.3 TRANSLATION TRANSFORMATION

A translation transformation displaces (or translates) a point p (x, y, z) along 
the direction given by the position vector.

Vector V
��

 = txî  + tyĵ  + tyk̂

where    tx = displacement along the x-axis

    ty = displacement along the y-axis

    tz = displacement along the z-axis

Translation transformation matrix

T

t t tx y z

  =





















1 0 0 0

0 1 0 0

0 0 1 0

1
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4.4 ROTATION TRANSFORMATION

Rotations in 3D are important in understanding the shape of an object or in 
verifying different angles of a design. 3D rotation is a more complex phenomenon 
compared to 2D rotation. 2D rotation is captured about a point and it always 
happens in the xy plane (or about the z-axis). But 3D rotation can be in an xy 
plane (or about z-axis), yz plane (or about the x-axis) or zx plane (or about the 
y-axis). Fig. 4.1 shows three basic rotations in 3D transformation. The coordinate 
system is right-handed and counterclockwise rotations are assumed to be positive 
when looking along the axis toward the origin.

x-axis

Rx

Rz

z-axis

z-axis

Ry

o

Fig. 4.1 3D rotation

1. Rotation transformation matrix about the x-axis (rotation in y-z plane):

x y z

R

x

y

zx

1

1 0 0 0

0 0

0 0

0 0 0 1 1

  = −



















cos sin

sin cos

θ θ

θ θ

2. Rotation transformation matrix about the y-axis (rotation in x-z plane):

x y z

R

x

y

zy

1

0 0

0 1 0 0

0 0

0 0 0 1 1




 = −



















cos sin

sin cos

θ θ

θ θ
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3. Rotation transformation matrix about the z-axis (rotation in x-y plane):

x y z

R

x

y

zz

1

0 0

0 0

0 0 1 0

0 0 0 1 1

  =
−



















cos sin

sin cos

θ θ

θ θ

Problem 1
Consider a region defined by the position vector

x y z

X

A

B

C

D

1

2
[ ]=

1 1 2 1

2 1 2 1

2 2 1

1 2 2 1



















relative to the global xyz axis system. It is rotated by 30° about a line parallel 
to the x-axis and passing through point (1.5, 1.5, 1.5, 1). Find the final 
transformation matrix and final position of the region.

Solution

p 



















=

1 1 2 1

2 1 2 1

2 2 2 1

1 2 2 1

Step 1: Translate the line to origin so that it coincides with the x-axis:

T1

1 0 0 0

0 1 0 0

0 0 1 0

1 5 1 5 1 5 1

  =

− − −



















. . .
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Step 2: Rotation about the x-axis by 30°:

R

R

x

x

  = −



















 

1 0 0 0

0 30 30 0

0 30 30 0

0 0 0 1

cos sin

sin cos

==
−



















1 0 0 0

0 0 866 0 5 0

0 0 5 0 866 0

0 0 0 1

. .

. .

Step 3: Back translation to the original position:

T

T T R T

T

T x

T

2

1 2

1 0 0 0

0 1 0 0

0 0 1 0

1 5 1 5 1 5 1

  =



















  = ⋅ ⋅

. . .

  =

− − −



















⋅

1 0 0 0

0 1 0 0

0 0 1 0

1 5 1 5 1 5 1

1 0 0 0

0 0 866 0 5 0

. . .

. .

00 0 5 0 866 0

0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0

1 5 1 5 1 5 1

−



















⋅












. .

. . . 






  = −

−














TT

1 0 0 0

0 0 866 0 5 0

0 0 5 0 866 0

0 0 95 0 549 1

. .

. .

. .






p p T

p

T′

′

  = ⋅

  =



















⋅

1 1 2 1

2 1 2 1

2 2 2 1

1 2 2 1

1 0 0 0

0 0 866 0. ..

. .

. .

. .

5 0

0 0 5 0 866 0

0 0 95 0 549 1

1 0 817 1 68 1

2

−

−



















  =p′
00 817 1 68 1

2 1 683 2 183 1

1 1 68 2 183 1

. .

. .

. .
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Problem 2
A homogeneous coordinate [3, 2, 1, 1] is translated in the x, y, and z directions 
by −2, −2, −2 respectively followed by successive 45° rotation about the  y-axis 
and 60° rotation about the x-axis. Find the final position of the homogeneous 
coordinates.

Solution

[pv] = [3  2  1  1]

[TT] = [T] ⋅ [Ry] ⋅ [Rx]

Step 1: Translation:

T[ ] =

− − −





















1 0 0 0

0 1 0 0

0 0 1 0

2 2 2 1

Step 2: Rotation about the y-axis by 45°:

R

R

y

y





 = −

























cos sin

sin cos

45 0 45 0

0 1 0 0

45 0 45 0

0 0 0 1

==
−



















0 707 0 0 707 0

0 1 0 0

0 707 0 0 707 0

0 0 0 1

. .

. .

Step 3: Rotation about the x-axis by 60°:

R

R

x

x

  = −



















 

1 0 0 0

0 60 60 0

0 60 60 0

0 0 0 1

cos sin

sin cos

==
−



















1 0 0 0

0 0 5 0 866 0

0 0 866 0 5 0

0 0 0 1

. .

. .
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TT  =

− − −



















⋅
−

1 0 0 0

0 1 0 0

0 0 1 0

2 2 2 1

0 707 0 0 707 0

0 1 0 0

0

. .

.7707 0 0 707 0

0 0 0 1

1 0 0 0

0 0 5 0 866 0

0 0 866 0 5 0

0 0 0 1

.

. .

. .



















⋅
−



















  =

− − −



















⋅

−

TT

1 0 0 0

0 1 0 0

0 0 1 0

2 2 2 1

0 707 0. .. .

. .

. . .

61 0 35 0

0 0 5 0 866 0

0 707 0 61 0 35 0

0 0 0 1

0

−



















  =TT

.. .

. .

. .

707 0 0 707 0

0 1 0 0

0 707 0 0 707 0

0 1 44 3 13 1

−

−



















 p′ ==   ⋅  

  =   ⋅

p T

p

T

′ 3 2 1 1

0 707 0 0 707 0

0 1 0 0

0 707 0 0 707 0

. .

. .

00 1 44 3 13 1

1 41 3 44 1 01 1

. .

. . .

−



















  = − p′

Problem 3

A cube of 10 units length has one of its corners at the origin (0, 0, 0) and three 
edges along three principal axes. If the cube is to be rotated about the z-axis by 
an angle of 45° in CCW direction, calculate the new position of the cube.

Solution

G

H

F

A

E

D

CB

x

z

y

Fig. 4.2 
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Coordinates of the cube corners are:

A (0  0   0)
B (0  0  10)
C (10 0  10)
D (10 0  0)
E (10 10  0)
F (10 10 10)
G (0 10 10)
H (0 10   0)

Pv  =











0 0 0 1

0 0 10 1

10 0 10 1

10 0 0 1

10 10 0 1

10 10 10 1

0 10 10 1

0 10 0 1
























Rotation about the z-axis by 45° in the CCW direction:

R

R

z

z

  =
−



















 

cos sin

sin cos

45 45 0 0

45 45 0 0

0 0 1 0

0 0 0 1

==
−



















  = 

0 707 0 707 0 0

0 707 0 707 0 0

0 0 1 0

0 0 0 1

. .

. .

P Pv v′   ⋅  Rz
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P V′  =










0 0 0 1

0 0 10 1

10 0 10 1

10 0 0 1

10 10 0 1

10 10 10 1

0 10 10 1

0 10 0 1

























⋅
−






0 707 0 707 0 0

0 707 0 707 0 0

0 0 1 0

0 0 0 1

. .

. .












  =P V′

0 0 0 1

0 0 10 1

7 07 7 07 10 1

7 07 7 07 0 1

0 14 14 10 1

0

. .

. .

.

114 14 10 1

7 07 7 07 10 1

7 07 7 07 0 1

.

. .

. .

−

−

































4.5 DERIVATION FOR ROTATION ABOUT ANY 
ARBITRARY LINE IN 3D SPACE

Rotation about an arbitrary axis/line can be captured by transforming the axis/
line so as to make it coincide with any of the principal axes and applying one of 
the three basic 3D rotation matrices. Fig. 4.3 shows an arbitrary line in 3D space 
about which rotation is to be captured.

(x , y , z )1 1 1

(x, y, z)

z

x

y

o

Fig. 4.3 An arbitrary line in 3D space
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For deriving the transformation matrix for rotation by an angle q about any 
arbitrary line in space, the following transformation must be carried out:

1. Translating the line to the origin:

T

x y z

1

1 0 0 0

0 1 0 0

0 0 1 0

1

=

− − −



















y

z

C

B

A

p (A, B, C)

OB

C

p (0, B, C)

x x

Fig. 4.4 Projection of a line on the y-z plane

2. Rotation of the line about the x-axis to bring the line in the xz plane. For 
this, the angle by which the line is to be rotated must be computed. To obtain 
the angle of rotation, project point p(A,B,C) in the yz plane.

Let p′ be the projection in the yz plane. The coordinates of p′ are (0,B,C).

The length of the segment is given by

op B C′ = +2 2

The angle of rotation about the x-axis so that the line comes in the xz plane will be

cos

sin

θ

θ

x

x

C

B C

B

B C

=
+

=
+

2 2

2 2
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Putting        
B C V

C

V
B

V

x

x

2 2
+ =

=

=

then cos

sin

θ

θ

Now the rotation transformation matrix about the x-axis is given by

Rx

x x

x x

  = −



















=

1 0 0 0

0 0

0 0

0 0 0 1

1 0 0 0

0cos sin

sin cos

θ θ

θ θ

CC

V

B

V
B

V

C

V

0

0 0

0 0 0 1

−

























The coordinates of point p are p (A,B,C). The line segment op A B C= + +2 2 2

Suppose                op A B C L= + + =2 2 2

C

A

L

O

B L

V

A

C
y

p (A, B, C)

x

z

y

Fig. 4.5 Rotation of a line about the x-axis

After rotating about the x-axis by angle qx, the x coordinate will remain 
unchanged and equal to A. The y coordinate becomes zero and the z coordinate is 

B C V2 2+ = .

Now perform rotation of the line about the y-axis by an angle of qy to make it 
coincide with the z-axis.

 
cosθ θy y

V

L

A

L
= =and sin
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The rotation transformation matrix representing the rotation of a line about 
y-axis is given by

R

V

L

A

L

y

y y

y y





 = −



















=

cos sin

sin cos

θ θ

θ θ

0 0

0 1 0 0

0 0

0 0 0 1

0 00

0 1 0 0

0 0

0 0 0 1

−

























A

L

V

L

Now after performing rotation about the y-axis, the line will coincide with the 
z-axis. Now perform rotation about the z-axis by given angle q.

Rz  =
−



















cos sin

sin cos

θ θ

θ θ

0 0

0 0

0 0 1 0

0 0 0 1

Now, the resultant 3D rotation transformation matrix is given by

T T R R R R R TT x y z y x=   ⋅   ⋅ 

 ⋅   ⋅ 


 ⋅




 ⋅






− − −1 1 1

Problem 4
Derive the transformation matrix for rotation at 55° CCW about an arbitrary 
axis in 3D space. The arbitrary axis passes through point A (2, 1, 1, 1) and  
B (3, 2, 2, 1).

Solution

Consider an arbitrary axis passing through points A (2, 1, 1, 1) and B (3, 2, 2, 1).

Step 1: Translate point A to the origin:

T  =

− − −



















1 0 0 0

0 1 0 0

0 0 1 0

2 1 1 1
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After translation, the coordinates of point B are given by

[ ] [ ]3 2 2 1

1 0 0 0

0 1 0 0

0 0 1 0

2 1 1 1

1 1 1 1=

− − −



















=

B (1, 1, 1)

A (0, 0, 0) x

y

z

O

Fig. 4.6 

Step 2: Rotate the line about the x-axis to bring it in the yz plane. The coordinates 
of B′ are (A, B, C), that is, (1, 1, 1).

cos

cos

sin

θ

θ

θ

x

x

x

C

B C

B

B C

=
+

=
+

=

= −








 = °

=
+

=

2 2 2 2

2 2 2

1

1 1

1

2

1
1

2
45

1

1 ++
=

1

1

22

Now, the rotation transformation matrix about the x-axis (in the CCW direction) 
is given by

Rx

x x

x x

  = −



















1 0 0 0

0 0

0 0

0 0 0 1

1 0 0 0

0
1

cos sin

sin cos

θ θ

θ θ
22

1

2
0

0
1

2

1

2
0

0 0 0 1

−
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The coordinates of point p are p (A, B, C). The line segment 

op A B C= + +2 2 2

Suppose          op A B C L= + + =2 2 2

C

A

L

O

B L

V

A

C
y

p (A, B, C)

x

y

z  
Fig. 4.7 A line in x-z plane

Now, perform rotation of the line about the y-axis by an angle of qy to make it 
coincide with the z-axis.

cosθ θy y

V

L

B C

A B C

A

L
= =

+

+ +
= = =

2 2

2 2 2

2

3

1

3
and sin

The rotation transformation matrix representing the rotation of a line about the 
y-axis (in the CW direction) is given by

Ry

y y

y y




 =

−

+



















=

−
cos sin

sin cos

θ θ

θ θ

0 0

0 1 0 0

0 0

0 0 0 1

2

3
0

11

3
0

0 1 0 0

1

3
0

2

3
0

0 0 0 1

+

























Now, after performing rotation about the y-axis, the line will coincide with the z-axis. 
Now perform rotation about the z-axis by given angle 55°.

Rz  =
−



















=

cos sin

sin cos

.55 55 0 0

55 55 0 0

0 0 1 0

0 0 0 1

0 573 00 819 0 0

0 819 0 573 0 0

0 0 1 0

0 0 0 1

.

. .−
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Now, the resultant transformation is

T T R R R R R TT x y z y x  =   ⋅   ⋅ 

 ⋅   ⋅ 


 ⋅




 ⋅



− − −1 1 1



  =

− − −



















⋅

−

TT

1 0 0 0

0 1 0 0

0 0 1 0

2 1 1 1

1 0 0 0

0
1

2

1

2
0

0
1

2

1

2
0

00 0 0 1

2

3
0

1

3
0

0 1 0 0

1

3
0

2

3
0

0 0 0 1

























⋅

−























⋅

0 573 0 819 0 0

0 819 0 573 0 0

0 0 1 0

0 0 0 1

2

3
0

1

3
0

0 1 0 0

. .

. .−



















⋅

+

−11

3
0

2

3
0

0 0 0 1

1 0 0 0

0
1

2

1

2
0

0
1

2

1

2
0

0 0 0 1

























⋅

−

























⋅



















1 0 0 0

0 1 0 0

0 0 1 0

2 1 1 1

Describing a line in 3D space

The 3D equation of a line is given by:

x x at

y y bt

z z ct

= +

= +

= +

0

0

0

Now we could rearrange these three equations as follows:

 

x x

a
t

y y

b
t

z z

c
t

−
=

−
=

−
=0 0 0, and

All the three right-hand sides are the same, so the symmetric form of the straight 
line is

x x

a

y y

b

z z

c

−
=

−
=

−0 0 0

As before, the line passes through point (x0, y0, z0) and the constants a, b, and c 
give the relative gradient in three directions.
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Here again the line is passing through the point (1, 2, 1) and here is its equation in 
symmetry form:

x y z−
=

−
=

−1

1

2

1

1

1

1

2

1

(1, 2, 1)

x

y

z

O

Fig. 4.8 A 3D line

Because this line passes through the origin, the constants a, b, and c are the same 
as x0, y0, z0 although this is not generally the case.

Problem 5

A triangle PQR is defined by P (3, 3, 7), Q (3, 5, 7), and R (5, 3, 7). Rotate this 

triangle about axis 
x y z−−

==
−−

==
1

6

4

3 2
. Upgrade it to homogeneous coordinates 

for symmetric handling.

Solution

Equation of the line is given by:

x x

x x

y y

y y

z z

z z

−
−

=
−
−

=
−
−

1

2 1

1

2 1

1

2 1

Rewrite the equation of the line in the form of a standard equation.

x y z

p x y z

p x y z

−
−

=
−
−

=
−
−

≡ ( ) ≡ ( )
≡ ( ) ≡

1

7 1

4

7 4

0

2 0

1 4 0

7 7

1 1 1 1

2 2 2 2

, , , ,

, , , ,,2( )
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Step 1: Translate p1 to origin.

p2 (7, 7, 2)

p1 (1, 4, 0)

x

y

z

O

Fig. 4.9 A 3D line

T

P x x y y z z

  =

− −



















= − − − =

0 1 0 0

0 1 0 0

0 0 1 0

1 4 0 1

2 2 1 2 1 2 1′ , , (( , , )

( , , )

7 1 7 3 2 0

6 3 22

− − −

=P′

(6, 3, 2)

(0, 0, 0) x

y

z

O

Fig. 4.10
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Step 2: Rotate the line about the x-axis in the CCW direction to bring it in the  
yz plane.

R

C

V

B

V
B

V

C

V

V B Cx  =

−

























= + = + =

1 0 0 0

0 0

0 0

0 0 0 1

9 42 2 113

1 0 0 0

0
2

13

3

13
0

0
3

13

2

13
0

0 0 0 1

R x  =

−

























Step 3: Rotation about the y-axis in the CW direction:

Suppose    A B C L

R

V

L

A

L

A

L

V

L

y

2 2 2 36 9 4 49 7

0 0

0 1 0 0

0 0

0 0 0 1

+ + = = + + = =





 =

−























=

−























13

7
0

6

7
0

0 1 0 0

6

7
0

13

7
0

0 0 0 1

Step 4: Rotation about the z-axis by a given angle:

Rz

z z

z z
  =



















cos sin

sin cos

θ θ

− θ θ

0 0

0 0

0 0 1 0

0 0 0 1

Now the resultant transformation:

T T R R R R R TT x y z y x  =   ⋅   ⋅ 

 ⋅   ⋅ 


 ⋅




 ⋅



− − −1 1 1
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TT  =

− −



















⋅

−

1 0 0 0

0 1 0 0

0 0 1 0

1 4 0 1

1 0 0 0

0
2

13

3

13
0

0
3

13

2

13
00

0 0 0 1

13

7
0

6

7
0

0 1 0 0

6

7
0

13

7
0

0 0 0 1

























⋅

−























⋅

−



















cos sin

sin cos

θ θ

θ θ
z z

z z

0 0

0 0

0 0 1 0

0 0 0 1

13

7
00

6

7
0

0 1 0 0

6

7
0

13

7
0

0 0 0 1

1 0 0 0

0
2

13

3

13
0

0
3

13

2

−

























⋅

−

113
0

0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0

1 4 0 1











































Problem 6

A triangular prism has six vertices as (5, 10, 0), (10, 5, 0), (5, 5, 0), (5, 10, 7), 

(10, 5, 7), and (5, 5, 7). Rotate the solid about 
x y z−−

==
−−

==
−−1

2

2

3

5

6
 through 90°.  

List the final position of the six vertices after rotation.

Solution

Equation of the line is given by

x x

x x

y y

y y

z z

z z

−
−

=
−
−

=
−
−

1

2 1

1

2 1

1

2 1

Rewrite the equation of the line in the form of a standard equation.

x y z

p x y z

p x y z

−
−

=
−
−

=
−
−

≡ ≡

≡ ≡

1

3 1

2

5 2

5

11 5
1 2 5

3

1 1 1 1

2 2 2 2

( , , ) ( , , )

( , , ) ( ,, , )5 11
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Step 1: Translate p1 to origin.

p2 (3, 5, 11)

p1 (1, 2, 5)

x

y

z
Fig. 4.11

T

p x x y y z z

  =

− − −



















= − − −

1 0 0 0

0 1 0 0

0 0 1 0

1 2 5 1

2 2 1 2 1 2 1′ , ,

PP′2 2 3 6= ( , , )

(2, 3, 6)

(0, 0, 0) x

y

z

O

Fig. 4.12

Step 2: Rotating the line about the x-axis in the CCW direction to bring it in the 
yz plane:

R

C

V

B

V
B

V

C

V

V B Cx  =

−

























= + = +

1 0 0 0

0 0

0 0

0 0 0 1

9 362 2 == 45
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Rx  =

−

























1 0 0 0

0
6

45

3

45
0

0
3

45

6

45
0

0 0 0 1

Step 3: Rotation about the y-axis in the CW direction:

Suppose A B C L

R

V

L

A

L

A

L

V

L

y

2 2 2 4 9 36 49 7

0 0

0 1 0 0

0 0

0 0 0 1

+ + = = + + = =





 =

−























=

−























45

7
0

2

7
0

0 1 0 0

2

7
0

45

7
0

0 0 0 1

Step 4: Rotation about the z-axis by 90°:

Rz  =
−



















=
−

cos sin

sin cos

90 90 0 0

90 90 0 0

0 0 1 0

0 0 0 1

0 1 0 0

11 0 0 0

0 0 1 0

0 0 0 1



















Now, the resultant transformation is:

T T R R R R R TT x y z y x  =   ⋅   ⋅ 

 ⋅   ⋅ 


 ⋅




 ⋅



− − −1 1 1



  =

− − −



















⋅

−
TT

1 0 0 0

0 1 0 0

0 0 1 0

1 2 5 1

1 0 0 0

0
6

45

3

45
0

0
3

45

66

45
0

0 0 0 1

45

7
0

2

7
0

0 1 0 0

2

7
0

45

7
0

0 0 0 1

























−























−

















 −

0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1

45

7
0

2

7
0

0 1 0 0

2

7
0

45

7
00

0 0 0 1

1 0 0 0

0
6

45

3

45
0

0
3

45

6

45
0

0 0 0 1

























−











































1 0 0 0

0 1 0 0

0 0 1 0

1 2 5 1
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TT  =

−

−

0 084 0 72 0 68 0

0 977 0 185 0 0784 0

0 1836 0 6552 0 725 0

. . .

. . .

. . .

11 95 2 374 1 893 1. . .−



















To find the new position of the prism:

P P TT′  =    

=














5 10 0 1

10 5 0 1

5 5 0 1

5 10 7 1

10 5 7 1

5 5 7 1 










−

−

0 084 0 75 0 68 0

0 977 0 185 0 0784 0

0 1836 0 6552 0 7

. . .

. . .

. . . 225 0

1 95 2 374 1 893 1

7 394 3 1149 0 7109

. . .

. . .

−



















  =

− −

P′

11

2 69 5 821 4 4910 1

2 51 2 18 1 1027 1

6 1 7 7 4 367 1

0 8057 1

− −

− −

−

−

. . .

. . .

. . .

. 00 4084 0 5871 1

1 2262 6 7742 3 97 1

. .

. . .−



























4.6 REFLECTION TRANSFORMATION

Reflection transformation is another important modifying transformation of a 
3D object. Again, 3D reflection is a more complex phenomenon compared to 2D 
reflection. 2D reflection is captured about a line in the xy plane. But 3D reflections 
are captured about three principle planes, that is, the xy plane, yz plane, and zx 
plane.

Suppose a 3D point having coordinate p(x, y, z) is reflected about the xy plane. 
The reflected point obtained is p′(x′, y′, z′ ). Then the coordinates of x and y remain 
unchanged, whereas the z coordinate changes to negative z. Fig. 4.13 shows the 
reflection of a point about the xy plane. 
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p (x , y , z )

p (x, y, z)

x
O

z

y

Fig. 4.13 Reflection about the xy plane

The parametric equation of reflection is

x′ = x ...(4.1)

y′ = y ...(4.2)

z′ = − z ...(4.3)

Writing these parametric equations in matrix form,

x y z h x y z′ ′ ′  =   −



















1

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

Reflection transformation matrix is given by

Mxy




 = −



















1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

This is similar to the scaling transformation matrix where sx = 1, sy = 1, sz = − 1.
Similarly, reflection transformation about the xz plane is given by

Mxz  =
−



















1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1
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Similarly, reflection transformation about the yz plane is given by

M yz




 =

−

















1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

4.7 REFLECTION ABOUT ANY ARBITRARY PLANE 
IN 3D SPACE

Reflection about any arbitrary plane can be captured by transforming the plane 
so as to make it coplanar with any of the principle planes and then applying one 
of the three basic 3D reflection matrices. To make an arbitrary plane coplanar 
with a principle plane, a normal to the arbitrary plane is considered. Then a series 
of transformations is carried out to make the normal to coincide with any of the 
principle axes. When the normal coincides with any of the principle axes (say the 
x-axis), the arbitrary plane gets coplanar with the principle plane (the yz plane). 
Fig. 4.14 shows an arbitrary plane in 3D space and its normal.

Reflection about any arbitrary plane in 3D space is accomplished by the following 
steps:

1. Translate a known point P, which lies in the reflection plane, to the origin of 
the coordinate system.

2. Rotate the normal vector to the reflection plane at the origin until it coincides 
with the positive z-axis; this makes the reflection plane coincide with the 
principal xy plane.

3. Perform reflection transformation about the xy plane. 

4. Perform inverse transformation to place the plane in its original position.

The general transformation is given by

T T R R M R R TT x y xy y x  =   ⋅   ⋅ 

 ⋅




 ⋅




 ⋅




 ⋅



− − −1 1 1


(x0, y0, z0) = (px, py, pz) are the components of point p in the reflection plane and  
(Cx, Cy, Cz) are the direction cosines of the normal to the reflection plane.
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If the equation of the reflection plane ax + by + cz + d = 0 is known, the unit 
normal to the plane is:

[ ]
[ ]

n C C C
a b c

a b c
x y z=  

 =
+ +2 2 2

P

P
PP

O

 Translation of P to the origin Rotation of normal about the x-axis Rotation of normal about the y-axis

Fig. 4.14 3D reflection

Problem 7

A pyramid has coordinates A (10, 10, 10), B (10, 10, 15), C (10, 15, 10), and D 
(15, 10, 10). Find the reflection of the pyramid about the plane 6x + 2y + 3z = 12.

Solution

To find the equation of normal to the plane:

Equation of the reflection plane is 6x + 2y + 3z = 12

By substitution, we have C C C

D C C C

l
C

D

m
C

D

n
C

x y z

x y z

x

y

= = =

= + + = + + = =

= =

= =

=

6 2 3

36 4 9 49 7

6

7

2

7

2 2 2

, ,

zz

D
=

3

7

l, m, n are direction cosines.

Equation of the line in 3D space is given by:

x x

l

y y

m

z z

n

−
=

−
=

−1 1 1
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Equation of the normal line is:

x x y y z z−
=

−
=

−1 1 1

6

7

2

7

3

7

The points of intersection of the plane and the line will satisfy both the equation 
of line and the equation of plane. Assuming the point of intersection at x = 0 and  
y = 0 in the equation of plane 6x + 2y + 3z = 12, we have

3z = 12 and z = 4

Point (0, 0, 4) lies on the plane. The equation of the normal line is

x y z−
=

−
=

−0

6

7

0

2

7

4

3

7

If we compare it with the standard equation of line in 3D

then x x

x x

y y

y y

z z

z z

x

A B C

−
−

=
−
−

=
−
−

≡

≡ 




1

2 1

1

2 1

1

2 1

1 0 0 4

6

7

2

7

3

7

( , , )

( , , ) , ,





Apply the following transformations:

Step 1: Translate x1 to the origin.

T  =

−



















1 0 0 0

0 1 0 0

0 0 1 0

0 0 4 1

Step 2: Rotating the line about the x-axis in the CCW direction to bring it in the 
yz plane:

R

C

V

B

V
B

V

C

V

V B Cx  =

−

























= + = +

1 0 0 0

0 0

0 0

0 0 0 1

4

49

2 2 99

49

13

7
=
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=
−

























1 0 0 0

0
3

13

2

13
0

0
2

13

3

13
0

0 0 0 1

Step 3: Rotation about the y-axis in the CW direction:

Suppose             A B C L

R

V

L

A

L

A

L

V

L

y

2 2 2 36

49

4

49

9

49
1 1

0 0

0 1 0 0

0 0

0 0 0 1

+ + = = + + = =





 =

−























=

−























13

7
0

6

7
0

0 1 0 0

6

7
0

13

7
0

0 0 0 1

Step 4: Reflection transformation about the xy plane:

Mxy




 = −



















1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

Now the resultant transformation is

T T R R M R R TT x y xy y x  =   ⋅   ⋅ 

 ⋅




 ⋅




 ⋅




 ⋅



− − −1 1 1
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TT  =

−



















⋅

−

1 0 0 0

0 1 0 0

0 0 1 0

0 0 4 1

1 0 0 0

0
3

13

2

13
0

0
2

13

3

13
0

00 0 0 1

13

7
0

6

7
0

0 1 0 0

6

7
0

13

7
0

0 0 0 1

























⋅

−























⋅
−



















⋅

−

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

13

7
0

6

7
0

0 1 0 0

6

7
0

13

7
0

00 0 0 1

1 0 0 0

0
3

13

2

13
0

0
2

13

3

13
0

0 0 0 1

























⋅

−

























⋅



















1 0 0 0

0 1 0 0

0 0 1 0

0 0 4 1

To find the new position of the prism:

P P T

P

T′

′

  =    

  =









10 10 10 1

10 10 15 1

10 15 10 1

15 10 10 1











 TT

Problem 8
The corners of a wedge-shaped block are:

A [0, 0, 2]; B [0, 0, 3]; C [0, 2, 3]; D [0, 2, 2]; E [–1, 2, 2] and F [–1, 2, 3]. The 
reflection plane passes through the y-axis at 45° between (–x)-axis and z-axis. 
Determine the reflection of the wedge.

Solution

45°

–x x

–z

–y

y

z
Normal

O

Fig. 4.15 3D reflection
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Step 1: Rotation about the y-axis in the CCW direction by 45°:

R

R

y

y





 = −

























cos sin

sin cos

45 0 45 0

0 1 0 0

45 0 45 0

0 0 0 1

==
−



















0 7 0 0 7 0

0 1 0 0

0 7 0 0 7 0

0 0 0 1

. .

. .

After rotating about the y-axis the plane coincides with the yz plane. Reflection 
transformation about the yz plane is given by

M yz




 =

−

















1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

Back rotation about the y-axis:

Ry
−



 = −



















1

0 07 0 0 7 0

0 1 0 0

0 07 0 0 07 0

0 0 0 1

. .

. .

Total transformation is given by

 

TT  = −



















⋅

−0 7 0 0 7 0

0 1 0 0

0 7 0 0 7 0

0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0

. .

. .

00 0 0 1

0 7 0 0 07 0

0 1 0 0

0 7 0 0 7 0

0 0 0 1

0



















⋅
−



















=

. .

. .

00 1 0

0 1 0 0

0 0 0 0

0 0 0 1
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To find the final position of a wedge-shaped block:

P′  =

−

−



























0 0 2 1

0 0 3 1

0 2 3 1

0 2 2 1

1 2 2 1

1 2 3 1

0 0 1 0

0 11 0 0

0 0 0 0

0 0 0 1

0 0 0 1

0 0 0 1

0 2 0 1

0 2 0 1

0 2 0 1

0 2 0 1



















  =







P′






















4.8 SHEAR TRANSFORMATION

Shearing transformation causes distortions in objects by altering the values of one 
or more coordinates by an amount proportional to the third, that is, the shear, 
along any pair of axes that is controlled by a third axis. Off-diagonal terms in the 
upper 3 × 3 submatrix of a general transformation matrix produce the effect of 
sharing. Shearing transformation is captured by the following matrix:

T

S S

S S

S SSH

xy xz

yx yz

zx zy

  =



















1 0

1 0

1 0

0 0 0 1

(i) Shear along the x-axis: The following matrix gives shear along the x-axis:

1 0

0 1 0 0

0 0 1 0

0 0 0 1

S Sxy xz
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(ii) Shear along the y-axis: The following matrix gives shear along the y-axis.

1 0 0 0

1 0

0 0 1 0

0 0 0 1

S Syx yz



















(iii) Shear along the z-axis: The following matrix gives shear along the z-axis.

1 0 0 0

0 1 0 0

1 0

0 0 0 1

S Szx zy



















EXERCISES

1. A cube of 6 mm side having one corner point at (0, 0, 0) is translated by 3 mm in 
x direction and scaled twice in all directions. Find the final position of the cube.

2. Calculate the 3D homogeneous transformation matrix to carry out a 
transformation comprising a translation of 20 mm in z direction together 
with a rotation of 35° about a line parallel to the z-axis through [20, 20, 0].

3. A cube’s corner coordinates are (9, 9, 9), (9, 9, 10), (9, 10, 9), (9, 10, 10), (10, 9, 9), 
(10, 9, 10), (10, 10, 9), and (10, 10, 10). Rotate the cube through 120° about 
x y

z
−

=
−

=
3

2

1

2
.

4. A triangle marked by (5, 5), (10, 5), and (10, 10) is to be rotated through 60°  

 CCW about 
x y

z
−

=
−

=
3

2

1

2
. Assume the triangle to be in z = 0 plane before  

 rotation. Find the coordinates after rotation.

5. A line segment PQ is defined as P (1, 2, 1, 1) and Q (2, 1, 2, 1) in a 3D 

homogeneous system. Rotate this line segment about an axis x y z−
=

−
=

2

1

2

2 2
.

6. A triangle ABC is defined as A (0, 0, 0), B (1, 2, 3), and C (3, 2, 1). Find the 
reflection of ABC about mirror surface 4x + 7y + 4z + 1 = 0.
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7. Perform the following transformations on a point P(2, 6, 7) using a 
homogeneous coordinate system.

 (a) Translate by 4, 2, 1

 (b) Translate by vector 2î + 3ĵ  − k̂

8. Find out the transformed coordinates of a position vector 3i + 2j − 4k subjected 
to the following multiple transformations successively:

 (i) Translation by −2, −3, 1

 (ii) 45° CW rotation about the y-axis

9. A prism is marked by six vertices (8, 6, 0), (6, 6, 0), (6, 8,0), (8, 6, 4), (6, 6, 4), 
 and (6, 8, 4). Find the reflection of this triangular prism about a mirror 
surface given by 2x + 6y + 3z = 6.

OBJECTIVE QUESTIONS

4.1 The size of a 3D homogeneous transformation matrix is
(a) 2 × 2 (b) 3 × 3
(c) 4 × 4 (d) 5 × 5

4.2 A 3D rotation matrix about the x-axis is given by
(a) cos sin

sin cos

θ θ

θ θ

0 0

0 1 0 0

0 0

0 0 0 1

−



















 (b) 1 0 0

0 0

0 0

0 0 0 1

0

θ θ

θ θ

cos sin

sin cos−



















(c) cos sin

sin cos

θ θ 0

θ θ

0

0 0

0 0 1 0

0 0 0 1

−



















 (d) none of the above

4.3 In a scaling transformation matrix, scaling factors are placed along
(a) horizontal places
(b) vertical places
(c) random places
(d) diagonal places
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4.4  Rotation about any arbitrary line in 3D space can be captured by performing 
a series of transformations to
(a) align the line with any of the principle axes
(b) bring one end of the line on origin
(c) all of the above
(d) none of the above

4.5  Reflection about any arbitrary plane in 3D space can be captured by 
performing a series of transformations to
(a) align the plane with any of the principle planes
(b) align normal to the plane with any of the principle axes
(c) all of the above
(d) none of the above

4.6 3D rotation matrices are given about
(a) one principle axes (b) two principle axes
(c) three principle axes (d) none of the above

4.7  Distortion in an object by altering the value of one or more coordinates by an 
amount proportional to the third is called
(a) scaling (b) translation
(c) rotation (d) shear

4.8  A series of transformations required for rotation about any arbitrary line in 
3D space is given by

(a) R R R T R R Tx y z x y  

     














− − −1 1 1

(b) T R R R R R Ty z x x y  

     














− − −1 1 1

(c) T R R R R R Ty z x x y  

     














− − −1 1 1

(d) T R R R R R Tx y z y x    

   














− − −1 1 1

4.9  Rotation is considered to be positive when it is in a CCW direction when 
viewed
(a) along the axis towards origin
(b) along the axis away from origin
(c) perpendicular to the axis towards origin
(d) perpendicular to the axis away from origin

4.10 3D reflection matrices are given about
(a) one principle plane (b) two principle planes
(c) three principle planes (d) none of the above
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ANSWERS

4.1 (c)  4.2 (b) 4.3 (d) 4.4 (a)

4.5 (c)  4.6 (c) 4.7 (d) 4.8 (d)

4.9 (b) 4.10 (c)
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5.1 INTRODUCTION

A curve can be represented mathematically by a parametric equation. Parametric 
equations express the coordinates of the points on a curve as functions of a 
variable called a parameter. For example, the parametric representation of an 
origin-centered circle of radius r is given by

x = r cos q

y = r sin q

0 ≤ q ≤ 2p

where q is the varying parameter. Together, these equations are parametric 
representations of a curve. Another common example occurs in kinematics, where 
the trajectory of a point is usually represented by a parametric equation with 
time as the parameter. The notion of a parametric equation has been generalized 
to surfaces, manifolds, and algebraic varieties of higher dimensions, with the 
number of parameters being equal to the dimension of the manifold or variety, 
and the number of equations being equal to the dimension of the space in which 

5Chapter

PARAMETRIC 
REPRESENTATION 
OF PLANAR 
CURVES
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the manifold or variety is considered (for curves the dimension is one and one 
parameter is used; for surfaces the dimension is two and two parameters, etc.). 
The parameter typically is designated as t because parametric equations often 
represent a physical process in time. However, the parameter may represent some 
other physical quantity such as a geometric variable, or may merely be selected 
arbitrarily for convenience. Moreover, more than one set of parametric equations 
may specify the same curve.

5.2 PARAMETRIC REPRESENTATION OF A CIRCLE

A non-parametric representation of a circle is given by

(x - h)2 + (y - k)2 = r2 

For an origin-centered circle, it is

(x)2 + (y)2 = r2

For an origin-centered unit circle with r = 1,

( ) ( )x y

y x

2 2

2

1

1

+ =

= −

But if we plot the points using non-parametric equation and increase the value 
of x by 1 and then calculate the corresponding value of y, then the curve would 
appear to be a poor representation of the circle. Fig. 5.1 shows a curve obtained by 
a non-parametric equation.

x

y

O

Fig. 5.1 Coordinates obtained by a non-parametric equation 

Increasing the value of x from 0 to 1, i.e., 0.1, 0.2, 0.3, 0.4 etc.
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Parametric representation of an origin-centered circle of radius r is given by

x = r cos q

y = r sin q

0 ≤ q ≤ 2p

where q is the varying parameter. Noting that the circle is swept out for a range 
of the parameter q from 0 to 2p, and assuming that a fixed number of uniformly 
spaced points on circumference are calculated, that is, δq, the parameter 
increment between points would be constant. The Cartesian coordinates of any 
point on an origin-centered circle are

 x(i + 1) = r cos (qi cos δq) ...(5.1)

 x(i + 1) = r sin (qi cos δq) ...(5.2)

where qi is the value of the parameter that yields the point at xi + yi

Hence

xi = r cos qi

yi = r sin qi

Applying the sum of angles formula to Eq. (5.1) and Eq. (5.2),

x(i + 1) = r [cos qi cos δq - sin qi sin δq]

y(i + 1) = r [cos qi sin δq + sin qi cos δq]

x(i + 1) = r cos qi cos δq - r sin qi sin δq

y(i + 1) = r cos qi sin δq + r sin qi cos δq

Putting xi = r cos qi, yi = r sin qi

x(i + 1) = xi cos δq - yi sin δq

x(i + 1) = xi sin δq + yi cos δq 

represent the rotation of the point xi yi by ∂q.

Since ∂q is constant and equal to 
2

1

π

( )n−
, where n is the number of uniformly 

spaced points on the circle, the values of sin ∂q and cos ∂q need to be calculated 
only once.
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Problem 1
Generate a circle of radius 2 with center located at (2,2) with eight unique 
points on the circle.

Solution

Two approaches are considered:

(i)  Generate an origin-centered circle of radius 2 and then translate the circle by 
2 in the x and y planes.

(ii)  Generate an origin-centered unit circle, then scale by 2 units and finally 
translate by 2 units in the x and y directions.

We will adopt the second approach.
Since the circle is a closed curve, the first point (q = 0) and the last point  

(q = 2p) coincide. Thus to obtain n equi spaced points on the circle it is necessary to 
calculate n + 1 points. n = (n + 1) = 8

Thus

δθ
π π π π

=
+ −

= = =
2

1 1

2 2

8 4( )n n

Using the parametric equation of the circle and starting with q = 0 yields initial 
values of x and y.

x r r

y r r
1 1

1 1

0 1

0 0

= − =

= + =

cos cos( )

sin sin( )

θ

θ

Now using the parametric equation of the circle, the other seven points are 
obtained.

sin sin

cos cos

δθ
π

δθ
π

= =

= =

4

2

2

4

2

2

and

x x y2 1 1

1
2

2
0

2

2

= −

= × −

=

cos sinδθ δθ

y x y2 1 1

1
2

2
0

2

2

= −

= × + =

sin cosδθ δθ
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Results of the other points are shown in Table 5.1.

Table 5.1 Coordinates of a circle

i xi yi

1 1 0

2
2
2

2
2

3 0 1

4 – 
2
2

2
2

5 – 1 0

6 –
2
2

–
2
2

7 0 – 1

8
2
2

–
2
2

Recalling the results of 2D transformation,

T S TT  =     =

































=

2 0 0

0 2 0

0 0 1

1 0 0

0 1 0

2 2 1

2 00 0

0 2 0

2 2 1

1 0 1

2 0 0

0 2 0

2 2 1

1 1 1

















    =  









x y z T, ,









=  4 2 1
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The final results are shown in Table 5.2.

Table 5.2 Coordinates after transformation

i xi yi

1 4 2

2 3.41 3.41

3 2 4

4 0.586 3.414

5 0 2

6 0.586 0.586

7 2 0

8 3.414 0.586

5.3 PARAMETRIC REPRESENTATION OF AN ELLIPSE

The desired point distribution can be obtained by considering the parametric 
representation of an origin-centered ellipse of semi-major axis a and semi-minor 
axis b given by:

x = a cos q

y = b sin q

0 ≤ q ≤ 2p

where q varies from 0 to 2p and sweeps out the entire ellipse. Again, assuming 
a fixed number of points on the ellipse’s perimeter allows an efficient algorithm to 
be developed using the sum of angles. The Cartesian coordinates of any point on 
an origin-centered ellipse are

xi + 1 = a cos (qi + δq)

yi + 1 = b cos (qi + δq)

where δθ
π

=
−

2

1( )n
 is the fixed increment in q , n is the number of points on the 

perimeter, and qi is the value of the parameter for the point at xi, yi.
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Using the sum of angles yields

x(i + 1) = a [cos qi cos δq - sin qi sin δq] ...(5.3)

y(i + 1) = b [cos qi sin δq + sin qi cos δq] ...(5.4)

But

xi = a cos qi

yi = b sin qi

Putting these values in Eqs (5.3) and (5.4)

x x
a

b
y

y
b

a
x y

i i i

i i i

( )

( )

cos sin

sin cos

+

+

= −

= +

1

1

δθ δθ

δθ δθ

Since δq and a and b are constants, an efficient algorithm, again utilizing only four 
multiples—both addition and subtraction within the inner loop—is obtained.

Problem 2
Generate an ellipse with semi-major axis a = 4 and semi-minor axis b = 1 
inclined 30° to the horizontal with center at 2,2. Illustrate using 32 points.

Solution

First, an origin-centered ellipse is generated. To illustrate the results, 32 unique 
points on the ellipse are generated requiring n = 33 because the first and last 
points coincide. However, to conserve space, only points in the first quadrant are 
illustrated. Thus the parameter range is:

0
2

2

1

2

32 16

≤ ≤

=
−

= =

θ
π

δθ
π π π

( )n

Starting with q = 0, the initial values of x and y are:

x1 = a cos q1 = 4 cos (0) = 4 

y1 = b sin q1 = 1 sin (0) = 0

Then 
a

b

b

a
= =4

1

4
,
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and

sin sin .

cos cos .

δθ
π

δθ
π

= =

= =

16
0 195

16
0 981

Now using the parametric equation of ellipse,

x x
a

b
y

y
a

b
x y

2 1 1

2 1 1

4 0 981 4 0 3 92

= −

= − × =

= +

cos sin

( . ) .

sin cos

δθ δθ

δθ δθ

== × × +

=

1

4
4 0 195 0

0 195

( . )

.

Results of the other points are shown in Table 5.3.

Table 5.3 Coordinates of the ellipse

i xi yi

1 4 0

2 3.92 0.195

3 3.696 0.383

4 3.326 .556

5 2.828 0.707

6 2.222 0.831

7 1.531 0.924

8 0.780 0.981

To perform 2D transformation, first rotate about the origin by a = 30° CCW and 
then translate the center to the point (2,2).
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T R TT  =     = −

















cos sin

sin cos

α α

α α

0

0

0 0 1

1 0 0

0 1 0

2 2 11

0 866 0 5 0

0 5 0 866 0

0 0 1

2 0 0

0 2 0

2 2 1

















= −
























. .

. .











= −

















0 866 0 5 0

0 5 0 866 0

2 2 1

. .

. .

Applying this transformation to (x, y).

x y z TT1 1 1 4 0 1

0 866 0 0

0 5 0 866 0

2 2 1

5 4    =   −

















=

.

. . . 664 4 1 

Table 5.4 Coordinates after transformation

i xi yi

1 5.464 4.0

2 5.3 4.131

3 5.009 4.179

4 4.603 4.144

5 4.096 4.027

6 3.509 3.831

7 2.864 3.565

8 2.185 3.240
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5.4  PARAMETRIC REPRESENTATION OF  
A PARABOLA

Consider an origin-centered parabola opening to the right, that is, with the axis of 
symmetry being the positive x-axis. The upper limb of such a parabola is shown in 
Fig. 5.2. In rectangular coordinates, the parabola is represented in non-parametric 
form by:

y2 = 4 ax

x

y

O

Fig. 5.2 A parabola 

A parametric representation is given by:

x

y a

=

= ± ⋅

tan

tan

2

2

φ

φ

where 0
2

≤ ≤θ
π

. Although this provides an adequate representation of 

a parabola, Smith points out that it does not yield a figure with the maximum 
inscribed area, and this is not the most efficient visual representation.

An alternate parametric representation that does not yield the maximum 
inscribed area is:

x = a, q2

y = 2 aq

where 0 ≤ q ≤ ∞ sweeps out an entire upper limb of parabola. The parabola, 
unlike the ellipse, is not a closed curve. Thus the amount of parabola to be 
displayed must be limited by choosing a minimum and maximum value of q.

This can be done in a variety of ways. If the range of the x coordinate is limited, 
then
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θ θmin
min

max
max,= =

x

a

y

a2
 ...(5.5a)

If the range of the y coordinate is limited, then

θ θmin
min

max
max,= =

y y

2 2a a
 ...(5.5b)

After establishing qmin and/or qmax, the parabola in the first quadrant is 
generated. Parabolas in other quadrants with displaced centers or at other 
orientations are obtained using reflection, rotation, and translation.

This parabola can also be generated incrementally. Assuming a fixed number of 
points on the parabola yields a fixed increment in q.

Consider qi + 1 = qi + δq

The parametric equation of parabola becomes:

x a

y a
i i

i i

= ⋅

=

θ

θ

2

2

and

 

x a

a a

a a a

x

i i

i i

i i

( )

(

( )+ = ⋅ +

= ⋅ + +





= ⋅ + +

1
2

2 2

2 2

2

2

θ δθ

θ θ δθ δθ

θ θ δθ δθ

ii i ix y a+ = + +1
2

) δθ δθ  ...(5.6)

Similarly

 

y a

a a

y y a

i i

i

i i

( )

( )

( )+

+

= ⋅ +

= ⋅ +

= +

1

1

2

2 2

2

θ δθ

θ θδ

δθ  ...(5.7)
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Problem 3
Generate the parabolic segment in the first quadrant for 1 ≤ x ≤ 4 for a parabola 
given by

x = a ⋅ q2 = q2  and  y = 2aq = 2q,  i.e., a = 1
Solution

First, it is necessary to determine the limits of q.

The range of x coordinates is given by 1 ≤ x ≤ 4

x x

x

a

x

a

min max

min
min

max
max

= =

= = =

= = =

1 4

1

1
1

4

1
2

and

θ

θ

For 10 points on the parabolic segment

δθ
θ θ

=
−

−
=

−

−
=

( )max min

n 1

2 1

10 1

1

9

Starting with q1 = qmin = 1, x1 = 1 yelds

y a x x1 12 2 1 1 2= = =θ

From Eqs (5.6) and (5.7)

x x y

x

y y a

2 1 1

2
2

2

2 1

1 2
1

9
1

1

9

1 235

2 2 2

= + ( ) = + ⋅ + ⋅










=

= + = +

δθ+ δθ

δθ

a

.

..

.

1
1

9
2 2222

×

=y

The final results are shown in Table 5.5.
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Table 5.5 Coordinates of the parabola

i xi yi

1 1.0 2.0

2 1.235 2.222

3 1.494 2.444

4 1.778 2.667

5 2.086 2.889

6 2.420 3.111

7 2.778 3.333

8 3.160 3.556

9 3.568 3.778

Problem 4
Map 15 points of a parabola y2 = 4ax for x varying from -1.4 to + 1.4 and  
a = 100. Rotate it through 14.5° and shift origin (-3, -2). Generate the 
numerical solution.

Also write a computer program to generate an image of this parabola. 

Solution

Generate the parabolic segment in the first quadrant for x varying from -1.4 to + 
1.4 and a = 100.

First it is necessary to determine the limits of q.

x x

x

a

x

a

min max

min
min

max
max

. .

.

.

= = +

= =
−

= =

1 4 1 4

1 4

100

1 4

100

and

θ

θ

qmin = ∞. To solve this problem consider the parabolic segment of the first 
quadrant only.
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y

x

(–1.4)
min x

(1.4)
max

x
O

Parabola

Quadrant–II Quadrant–I

If we consider the parabolic segment only in the first quadrant, then xmax = 1.4 and 
xmin = 0

θ

θ

min
min

max
max .

= = =

= =

x

a

x

a

0

100
0

1 4

100

Now calculate the coordinates of the parametric segment in the first quadrant as 
shown in the previous example.

5.5  PARAMETRIC REPRESENTATION OF A 
HYPERBOLA

An origin-centered rectangular hyperbola with the x-axis as the axis of symmetry 
can be generated by the following non-parametric equation:

x

a

y

b

2

2

2

2
1− =

A parametric representation of the hyperbola that yields the polygon with 
maximum inscribed area is:

x = a cos hq

y = a sin hq

Therefore
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The hyperbolic functions are defined as cosh
e e

θ =
θ −θ+( )

2
 and sinh

e e
θ =

θ −θ−( )
2

. 

As q varies from 0 to ∞ the hyperbola is traced out. The sum of angles formula for 
cos h and sin h are:

cosh (q + δq) = coshδq coshδq + sinδq sinhδq

sinh (q + δq) = sinhδq coshδq + coshq sinhδq

Rewriting the above equations,

x a h h h h

y a h h

i

i

+( )

+( )

= + 

= +

1

1

cos cos sin sin

sin cos c

δθ δθ θ δθ

δθ δθ oos sin

cos sin

sin

h h

x x h
a

b
y h

y
b

a
x h

i i i

i i

θ δθ

δθ θδ

δθ

 

= +

=

+( )

+( )

1

1
++ y hi cos δθ

Again the maximum and minimum values of q must be set in order to limit the 
extent of the hyperbola. Considering the branch of the hyperbola in the first and 
fourth quadrants and plotting the portion of the hyperbola for xmin ≤ x ≤ xmax then:

θ

θ

min
min

max
max

cos

cos

=










=










−

−

h
x

a

h
x

a

1

1

where the inverse hyperbolic cosine is obtained from:

cos lnh x x x− = + −( )1 2 1

Other lines are similarly determined. An example of the first quadrant portion of 
a hyperbola generated using this technique is shown.

Problem 5
Use the parametric representation to generate eight points on the hyperbolic 
segment in the first quadrant with a = 2, b = 1 for 4 ≤ x ≤ 8.

Solution

First, the parametric limits are determined.
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θmin
max max maxcos ln

ln

=








 = +









 −















= +

−h
x

a

x

a

x

a
1

2

1

4 116 1

2 063

−( )
= .

Similarly 

qmin = 1.317

Thus

δθ
θ θ

δθ

=
−( )
−

=
−

=

( ) = ( ) =

max min . .
.

cos cos .

n

h h
e

1

2 063 1 317

7
0 107

0 107

00 107 0 107

2
1 006

. .

.
+( )

=

−e

and

sin sin . .

. .

h h
e e

δθ( ) = ( ) =
−( )

=

−

0 107
2

0 107

0 107 0 107

With θ θ

θ

θ

1

1

1

2 1 317 4 00

1

=

= ( ) = ( ) =
= ( ) = ⋅

min

min

min

cos cos . .

sin si

x a h h

y b h nn . .h 1 317 1 732( ) =

Then

x x h
a

b
y h

x

y

2 1 1

2

2

4 1 006 2 1 732 0 107

4 393

= +

= +

=

=

cos sin

( . ) ( . )( . )

.

δθ δθ

bb

a
x h y h

y

1 1

2

1

2
4 0 107 1 732 1 006

1 956

sin cos

( )( . ) ( . )( . )

.

δθ δθ+

= +

=
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The final results are shown in Table 5.6.

Table 5.6 Coordinates of the hyperbola

i xi yi

1 4 1.732

2 4.393 1.956

3 4.836 2.201

4 5.334 2.472

5 5.892 2.771

6 6.512 3.102

7 7.218 3.468

8 8 3.873

Problem 6
A hyperbola is defined as

x y2 2

9 16
1−− ==

Compute at least 10 points to map the hyperbola using parametric relationship 
to support y between -2.5 and +2.5. Rotate this hyperbola through 45° and 
shift the origin to (5, 3).

Solution

a = 3, b = 4 

First, the parametric limits are determined.

y = b sin hq

θ

θ

max
max

min

sin sin
.

.

sin

=








 =

+







 =

=

− −

−

h
y

b
h

h
y

1 1

1

2 5

4
0 590

mmin sin
.

.
b

h








 =

−







 =

−1 2 5

4
0 590
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Thus

δθ =
θ θ

= =max min . .
.

−( )
−

− −( )
−n 1

0 590 0 590

10 1
0 131

cos h(δq) = cos h (0.131) = 0.131 

and sin h (δq) = sin h (0.131) = 1.008

With q1 = qmin

x1 = a cos h (qmin) = 3 cos h (-0.590) = 3.537 

y1 = b sin h (qmin) = 4 cos h (-0.590) = -2.5 

Then

x x h
a

b
y h

x

y
b

a
x h y

2 1 1

2

2 1 1

3 32

= δθ δθ

= −

=

= δθ

cos sin

.

sin c

+

+

3.567 0.246

oos

.

.

h

y

δθ

=

= −

0.619+ −( )2 52

1 92

The final results are shown in Table 5.7.

Table 5.7 Coordinates of the hyperbola

i xi yi

1 3.537 – 2.5

2 3.32 – 1.9

3 3.15 – 1.29

4 3.04 – 0.749

5 3.00 – 0.26

6 2.99 0.26

7 3.04 0.749

8 3.15 1.9

9 3.32 1.9

10 3.537 2.5



PARAMETRIC REPRESENTATION OF PLANAR CURVES 187

Total transformation is given by

T R T

R

T  =    

  = −
















cos sin

sin cos

45 45 0

45 45 0

0 0 1

= −

















  =








0 707 0 707 0

0 707 0 707 0

0 0 1

1 0 0

0 1 0

5 3 1

. .

. .

T











  = −

















TT

0 707 0 707 0

0 707 0 707 0

0 0 1

1 0 0

0 1 0

5 3

. .

. .

11

0 707 0 707 0

0 707 0 707 0

5 3 1

3

















= −

















  =

. .

. .

.P′ 5537 2 5 1

0 707 0 707 0

0 707 0 707 0

5 3 1

9 268 3 7−  −

















=.

. .

. . . . 333 1 

Table 5.8 shows the transformed coordinates.

Table 5.8 Coordinates after transformation

i xi yi

1 9.268 3.733

2 8.691 4.003

3 8.13 4.31

4 7.678 4.61

5 7.30 4.93

6 6.93 5.3

7 6.61 5.788

8 6.31 6.13

9 6.00 6.69

10 5.733 7.268
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EXERCISES

1. Generate an origin-centered circle with radius 2 with eight unique points on 
the circle.

2. Write an algorithm to find the incremental values of x and y using the 
parametric representation of an ellipse.

3. Generate an ellipse with semi-major axis a = 6 and semi-minor axis b = 2 with 
center at (6, 4). Illustrate using eight points.

4. Derive the parametric equations of a parabola.

5. Generate the parabolic segment in the first quadrant for 1.5 ≤ x ≤ 5.5 for a 
parabola given by x = 4q2 and y = 8q.

6. Generate the parabolic segment in first quadrant for x varying as -1.8 to +2.6 
and a = 60.

7. Derive the parametric representation of a hyperbola.

8. A hyperbola is defined as

x y2 2

4 9
1− =

 Compute at least eight points to map the hyperbola using a parametric 
relationship to support y between –1.6 to +1.6.

OBJECTIVE QUESTIONS

5.1 Using a non-parametric equation would result in
(a) poor representation (b) high computational time
(c) non-uniformly spaced points (d) all of the above

5.2  Parametric representation of an origin-centered circle of radius “r” is given by 
x = r cos q, y = sin q where varying parameter q is given by

(a) 0
2

≤ ≤θ
π

 (b) 0 ≤ q ≤ p

(c) 0 ≤ q ≤ 2p (d) 0 ≤ q ≤ 4p

5.3  In kinematics, the trajectory of a point is usually represented by a parametric 
equation with
(a) angle as a parameter (b) distance as a parameter
(c) time as a parameter (d) none of above
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  5.4  A parameter in the parametric representation of some physical quantity 
may be
(a) a geometric variable (b) distance
(c) time (d)  selected arbitrarily for convenience

  5.5  “More than one set of parametric equations may specify the same curve”—
this statement is
(a) true (b) false
(c) can’t say (d) all of the above

  5.6  Parametric representation of an origin-centered ellipse of semi-major axis 
“a” and semi-minor axis “b” given by x = a cos q, y = b sin q, where q is the 
varying parameter, is given by

(a) 0
2

≤ ≤θ
π

 (b) 0 ≤ q ≤ p

(c) 0 ≤ q ≤ 2p (d) 0 ≤ q ≤ 4p

  5.7  Parametric representation of a parabola is given by x = a ⋅ q2, y = 2aq, where 
varying parameter q is given by

(a) 0
2

≤ ≤θ
π

 (b) 0 ≤ q ≤ ∞

(c) 0 ≤ q ≤ 2p (d) 0 ≤ q ≤ 4p

  5.8  Parametric representation of a parabola is given by x = a ⋅ q2, y = 2aq, where 
0 ≤ q ≤ ∞ sweeps out an
(a) entire upper limb of parabola (b) entire lower limb of parabola
(c) entire parabola (d) minimum inscribed area

  5.9 A parabola, unlike a circle and an ellipse, is a
(a) open curve (b) closed curve
(c) can’t say (d) none of these

5.10 A non-origin-centered circle can be generated by
(a)  generating an origin-centered circle of a given radius and translating it 

to its center position
(b)  generating an origin-centered circle of unit radius and then performing 

transformations (scaling and translation)
(c)  True
(d)  False
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5.11  A parametric representation of a hyperbola yields a polygon with maximum 
inscribed area x = acos hq, y = asin hq, where varying parameter q is given by

(a) 0
2

≤ ≤θ
π

 (b) 0 ≤ q ≤ 4p

(c) 0 ≤ q ≤ 2p (d) 0 ≤ q ≤ ∞

ANSWERS

5.1 (d)  5.2 (c)  5.3 (c) 5.4 (d)

5.5 (a)  5.6 (c)  5.7 (c) 5.8 (a)

5.9 (a) 5.10 (c) 5.11 (d)
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6.1 INTRODUCTION TO SPACE CURVES

In the previous chapter we discussed the parametric representation of planar 
curves. Suppose you wish to make a 2D view of a ship, then you draw it in the xy 
plane. But if you need to make a 3D model of a ship, then you have to control the 
path of the space curve meticulously to get the desired profile. Now, to control the 
profile of the space curve, we have to convert the space curve into its parametric 
representation. Some examples of space curves are cubic curves, Bézier curves, 
B-spline curves, non-uniform rational B-splines (NURBS), etc.

6.2 CUBIC SPLINE

P 1

P 2

P t2 2,

P t1 1,

Fig. 6.1 A single-segment cubic curve

6Chapter

PARAMETRIC 
REPRESENTATION 
OF SPACE CURVES
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The equation of a single-segment parametric cubic spline is given by:

P t B t t t tt
i

i( ) = ≤ ≤
=

−∑
1

4
1

1 2

where t1, t2 are the parameter values at the beginning and end of the segment. 
Each Cartesian component has a formulation similar to P(t).

x t B t t t t

y t B t t t t

z t B

ix
i

i

iy
i

i

iz
i

( ) = ≤ ≤

( ) = ≤ ≤

( ) =

=

−

=

−

=

∑

∑

1

4
1

1 2

1

4
1

1 2

11

4
1

1 2∑ − ≤ ≤t t t ti

Parametric representation of a single cubic curve is given by:

P t B B t B t B t( ) = + + +1 2 3
2

4
3  ...(6.1)

Where t varies from t1 ≤ t ≤ t2

Cubic spline is a series of single segment cubic curves

Segment spanning two points where B1, B2, B3, B4 are the four boundary conditions, 
and

t is a varying parameter in which t1 ≤ t ≤ t2.

P(t) is the position vector of any point on the cubic spline segment

P t x t y t z t( ) = ( ) ( ) ( ) (

P1 and P2 are position vectors at the ends of the segment.

P′1 and P′2 are tangent vectors at the ends of the segment, which are derivatives 
w.r.t. t.

To find P′1 and P′2 let us differentiate Eq. (6.1)

P t B B t B t′( ) = + +2 3 4
22 3

Assuming t1 = 0 and applying four boundary conditions, namely

P P t t

P t P t t

P P P

0 0

1

0

1 1

2 2 2

1

( ) = = =( )
( ) = = =( )
( ) =

point at

point at

at′ ′ ′ tt t

P t P P t t

= =( )
( ) = = =( )

1

2 2 2

0

1′ ′ ′at
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four equations for the unknown Bi′s can be obtained as follows:

P t B B t B t B t

P B

P t B B t B t

P B

P t

( ) = + + +

( ) =
( ) = + +

( ) =

1 2 3
2

4
3

1

2 3 4
2

2

2

0

2 3

0

′

′

(( ) = + + +

( ) = + +

B B t B t B t

P t B B t B t

1 2
2

3 2
2

4 2
3

2 2 3
2

4 2
22 3′

 ...(6.2)

P(t2) is nothing but P2, and P′(t2) is nothing but P′2.

P t P P P t B t B t

P t P P B t B t

2 2 1 1 2 3 2
2

4 2
3

2 2 1 3 2 4 2
22 3

( ) = = + + +

( ) = = + +

′

′ ′ ′

 ...(6.3)

 ...(6.4)

Solving Eqs. (6.3) and (6.4) simultaneously, we get

B
P P

t

P

t

P

t3
2 1

2
2

1

2

2

2

3 2
=

−( )
− −

′ ′

Similarly,

B
P P

t

P

t

P

t
4

1 2

2
3

1

2
2

2

2
2

2
=

−( )
− −

′ ′

These values of B1, B2, B3, B4 determine the cubic spline segment.

Substituting the values of B1, B2, B3, B4 in Eq. (6.2), we have

P t P P t
P P

t

P

t

P

t
t

P P

( ) = + +
−( )

− −












+
−( )

1 1
2 1

2
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3 2

2
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P

t
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2
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1

2
2

2

2
2
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′ ′
 ...(6.5)
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Eq. (6.5) is for a single cubic spline segment. However, to represent a complete 
curve, multiple segments are joined together. Two adjacent segments are shown 
in Fig. 6.2.

Fig. 6.2 Multi-segment cubic spline

Supposing the position vectors P1, P2, P3, P4. The tangent vectors P′1, P′2, P′3, P′4 
and parameter values t2, t3 and t4 are known, then applying Eq. (6.5) to each of the 
two segments yields their shapes.

Finding Tangent Vectors at Internal Points
It is unlikely that the tangent vectors P′2 and P′3 at the internal joints between 
two segments are known. Assuming that the end tangent vectors P′1 and P′4 are 
known, the tangent vector at the internal joints (four-point cubic spline) can be 
determined.
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Determining a point on the spline segment at τ

Now the position vector at a series of three single-segment joints is given by:

P F F F F

P

P

P

P

P F

τ τ τ τ τ

τ

( ) = ( ) ( ) ( ) ( ) 



















( ) = 

1 2 3 4

1

2

1

2

′

′

   G

where

F

F

F t

F

1
3 2

2
3 2

3
2 4

4
2

2 3 1

2 3

2 1

τ τ τ

τ τ τ

τ τ τ τ

τ τ τ

( ) = − +

( ) = − +

( ) = − +( ) ⋅

( ) = −ττ( )

= −( ) + −( )

= −( ) + −( )

= −( ) +

t

t x x y y

t x x y y

t x x

4

2 2 1

2

2 1

2

3 3 2

2

3 2

2

4 4 3

2
yy y4 3

2
−( )

Problem 1
A curve is passing through points A (1, 1, 1) and B (2, 5, −3). It is expected 
to be a cubic spline; the parameter t ranges from 0 to 1 and the values of the 
differentials are as follows:

At A:

dx

dt

dy

dt

dz

dt
== == ==0.2, 1, and 0.3

At B:

dx

dt

dy

dt

dz

dt
== −− == −− ==0.2, 1.2, and 0.4
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Find the cubic spline equation by computing the coordinates of the point and 
tangent direction at t = 0.7.

Solution

Let us solve the problem using a parametric equation.

P [–0.2 – 1.2 0.4]2

P [2 5 –3]2

P [0.2 1 0.3]1

P [1 1 1]1

Fig. 6.3 A cubic curve

The parameter t ranges from 0 to 1, which means t2 = 1. Parametric equation of 
the spline is given by:

P t B B t B t B t

B P

B P

B

( ) = + + +

= = ( ) 

= = ( ) 

1 2 3
2

4
3

1 1

2 1

3

1 1 1

0 2 1 0 3′ . .

==
−( )

− −

=
  −

  −
− −

3 2

3 1 4 4

1

2 0 2 1 0 3

1

0 2 1
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2

2

P P

t

P

t

P

t

′ ′

. . . .. .

. . . . .
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1
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Parametric representation of the cubic spline is given by:

P t t t t( ) =  +   + −  + − − 1 1 1 0 2 1 0 3 2 8 11 2 13 2 8 2 8 72 3. . . . . .

PP 0 7 1 1 1 0 2 1 0 3 0 7 2 8 11 2 13 0 7

2 8

2
. . . . . . .( ) =  +  ( )+ − ( )

+ − − .. . .

. . . .

2 8 7 0 7

0 7 1 824 4 37 2 18

3
 ( )

( ) = − P

To find the position vector of the tangent:

P t B B t B t

t

′( ) = + +

=  + −  + − −

2 3 4
22 3

0 2 1 0 3 2 2 8 11 2 13 3 2 8 2 8. . . . . .77

0 7 0 2 1 0 3 2 2 8 11 2 13 0 7 3 2 8 2 8

2 

( )=  + − ( )+ − −

t

P′ . . . . . . . .77 0 7

0 7 1 18 4 626 5 111

2
 ( )

( ) = − 

.

. . . .P′

Problem 2
The direction of the tangent at A (4, 4, 4) is given by (0.25, 3, 0.25). Similarly 
the tangent at B (5, 6, 7) is given by (2, 1, −2). Generate an equation of the 
spline connecting these two points. Use a parametric equation defining the 
parameter “t” and find the position vector and tangent direction at t = 0.6. 
Solve using a parametric equation.

Solution

P [2 1 –2]2

P [5 6 7], t = 12

P [0.25 3 0.25]1

P [4 4 4], t = 01

Fig. 6.4 A cubic curve

The parameter t ranges from 0 to 1, which means t2 = 1. Parametric equation of 
the spline is given by:

P t B B t B t B t( ) = + + +1 2 3
2

4
3
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Parametric equation of the cubic spline in Cartesian form is given by:

x t B B t B t B t

y t B B t B t B t

z t B

x x x x

y y y y

z

( ) = + + +

( ) = + + +

( ) =

1 2 3
2

4
3

1 2 3
2

4
3

1 ++ + +B t B t B tz z z2
2

3
2

4
3

 ...(6.6)

 ...(6.7)

 ...(6.8)

At P1, x = 4 and t = 0. Putting these values in Eq. (6.6), we have

B1x = 4

At P2, x = 5 and t = 1. Putting these values in Eq. (6.6), we have

5 = 4 + B2x(1) + B3x(1)2 + B4x(1)3

B2x + B3x + B4x = 1 ...(6.9)

At P1,  
dx

dt

dy

dt

dz

dt
t, , . , , . ;







= ( ) =0 25 3 0 25 0

Differentiating Eq. (6.6) w.r.t. t, we have

dx

dt
B B t B tx x= + +2 3 4

22 3
 ...(6.10)

At P
dx

dt
t1 0 25 0, . ;







= ( ) =

Putting these values in Eq. (6.10),

B2x = 0.25

So Eq. (6.9) becomes:

0.25 + B3x + B4x = 1

B3x + B4x = 0.75 ...(6.11)

At P
dx

dt

dy

dt

dz

dt
t2 2 1 2 1, , , , , ;







= −( ) =

At P
dx

dt
t2 2 1, ;







= ( ) =



PARAMETRIC REPRESENTATION OF SPACE CURVES 199

Putting these values in Eq. (6.10), we have

2 = 0.25 + 2B3x + 3B4x

2B3x + 3B4x = 1.75 ...(6.12)

Solving Eqs (6.11) and (6.12) simultaneously, we get

B3x = 0.5

B4x = 0.25

Parametric equation in terms of x(t) is given by:

x(t) = 4 + 0.25t + 0.5t2 + 0.25t3 ...(A)

Parametric equation in terms of y(t) is given by:

y(t) = B1y + B2yt + B3yt2 + B4yt3

At P1, y = 4 and t = 0. Putting these values in Eq. (6.7), we have

B1y = 4

At P2, y = 6 and t = 1. Putting these values in Eq. (6.6), we have

6 = 4 + B2y(1) + B3y(1)2 + B4y(1)3

B2y + B3y + B4y = 2 ...(6.13)

At P
dx

dt

dy

dt

dz

dt
t1 0 25 3 0 25 0, , , . . ;







= ( ) =

Differentiating Eq. (6.7) w.r.t. t,

dy

dt
B B t B ty y y= + +2 3 4

22 3  ...(6.14)

At P
dy

dt
t1 3 0, ;







= ( ) =

Putting these values in Eq. (6.14),

B2y = 3
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So Eq. (6.13) becomes:

3 + B3y + B4y = 2

B3y + B4y = −1 ...(6.15)

At P
dx

dt

dy

dt

dz

dt
t2 2 1 2 1, , , , , ;







= −( ) =

At P
dy

dt
t2 1 1, ;







= ( ) =

Putting these values in Eq. (6.14)

1 = 3 + 2B3y + 3B4y

2B3y + 3B4y = −2 ...(6.16)

Solving Eqs (6.15) and (6.16) simultaneously, we get

B3y = −1

B4y = 0

Parametric equation in terms of y(t) is given by:

y(t) = 4 + 3t − t2 ...(B)

Parametric equation in terms of z(t) is given by:

z(t) = B1z + B2zt + B3zt2 + B4zt3

At P1, z = 4 and t = 0. Putting these values in Eq. (6.8), we have

B1z = 4

At P2, z = 7 and t = 1. Putting these values in Eq. (6.8), we have

7 = 4 + B2z(1) + B3z(1)2 + B4z(1)3

B2z + B3z + B4z = 3 ...(6.17)

At P
dz

dt

dy

dt

dz

dt
t1 0 25 3 0 25 0, , , . , , . ;







= ( ) =
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Differentiating Eq. (6.8) w.r.t. t,

dz

dt
B B t B tz z z= + +2 3 4

22 3
 ...(6.18)

At P
dz

dt
t1 0 25 0, . ;







= ( ) =

Putting these values in Eq. (6.18), we have

B2z = 0.25

So Eq. (6.17) becomes:

0.25 + B3z + B4z = 3

B3z + B4z = 2.75 ...(6.19)

At P
dx

dt

dy

dt

dz

dt
t2 2 1 2 1, , , , , ;







= −( ) =

At P
dz

dt
t2 2 1, ;







= −( ) =

Putting these values in Eq. (6.18), we have

−2 = 0.25 + 2B3z + 3B4z

2B3z + 3B4z = −2.25 ...(6.20)

Solving Eqs (6.19) and (6.20) simultaneously, we get

B3z = 10.5

B4z = −7.75

Parametric equation in terms of z(t) is given by:

x(t) = 4 + 0.25t + 10.5t2 − 7.75t3 ...(C)

Parametric equation of spline in Cartesian form is given by:

x(t) = 4 + 0.25t + 0.5t2 + 0.25t3 ...(A)

y(t) = 4 + 3t − t2 ...(B)

x(t) = 4 + 0.25t + 10.5t2 − 7.75t3 ...(C)



202 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

Position vector at t = 0.6 is obtained by putting t = 0.6 in the above equations.

x(0.6) = 4.384 

y(0.6) = 5.44 

z(0.6) = 6.256

To find the position of tangent vectors, put the values of the boundary conditions 
and t = 0.6 in the following equations:

dx

dt
t t

dy

dt
t

dz

dt
t t

= + +

= −

= + −

0 25 0 75

3 2

0 25 21 23 25

2

2

. .

. .

At t = 0.6,

dx

dt

dy

dt

dz

dt
, ,









 ( )== 1.12 1.8 4.48

6.3 B-SPLINE

B-splines automatically take care of continuity, with exactly one control vertex per 
curve segment. There are many types of B-splines: their degree may be different 
(linear, quadratic, cubic, etc.) and they may be uniform or non-uniform. With 
uniform B-splines, continuity is always one degree lower than the degree of each 
curve piece. Uniform B-splines do not interpolate control points, unless you 
repeat a control point three times, but then all derivatives also vanish (= 0) at that 
point. To do interpolation with non-zero derivatives, you must use non-uniform 
B-splines with repeated knots. To go from a B-spline to a Bézier, both B-spline 
and Bézier curves represent cubic curves, so either can be used to go from one to 
the other.

Recall that a point on a curve can be represented by a matrix equation:

•	P is the column vector of control points

•	M depends on the representation: MB-spline and MBézier

•	T is the column vector containing t3, t2, t, 1
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By equating points generated by each representation, we can find a matrix  
MB-spline->Bézier that converts B-spline control points into Bézier control points.

B-spline to Bézier matrix

M

P

B-spline Bezier

Bezier

→ =





















1

6

1 4 1 0

0 4 2 0

0 2 4 0

0 1 4 1

0,

PP

P

P

1

2

3

1

6

1 4 1 0

0 4 2 0

0 2 4 0

0

,

,

,

Bezier

Bezier

Bezier





















=

11 4 1

0

1

2

3





















P

P

P

P

,

,

,

,

B-spline

B-spline

B-spline

B-splline





















Advantages

The perspective is invariant, so it can be evaluated in screen space. It can perfectly 
represent conic sections: circles, ellipses, etc. Piece-wise cubic curves cannot do 
this.

B-spline Surfaces

•	Are	defined	just	like	Bézier	surfaces:

X x t P B s B tj k j d
k

n

j

m

k d, ( ) ( ), , ,( ) =
==

∑∑
00

•	Continuity	is	automatically	obtained	everywhere.

•	But the control points must be in a rectangular grid.

Blending Functions

x t P B t

P t t t P t t P

i
i

i( ) = ( )

= − + − + − + +

=
∑

0

3

4

0
2 3

1
2 3

2

1

6
1 3 3

1

6
4 6 3

1

6

,

( ) ( ) 11 3 3 3
1

6

2 3
3

3+ + −( )+ ( )t t t P t
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6.4 BÉZIER CURVES

A cubic Bézier curve is used in most graphic applications. This curve is generally 
used for designing automobile panels. It needs four control points. The curve 
generally follows the shape of a defining polygon. These four control points 
completely specify the curve, as shown in Fig. 6.5.

 

P (X , Y , Z )1 1 1 1

P (X , Y , Z )4 4 4 4

P (X , Y , Z )3 3 3 3

P (X , Y , Z )2 2 2 2

Fig. 6.5 Control points of a Bézier curve

P1
P2

P3 P4

P4

P3

P2P1

Fig. 6.6 A multi-segment Bézier curve

The curve begins at the first control point and ends at the fourth. Thus, to connect 
two Bézier curves, join the first control point of the second curve with the fourth 
control point of the first curve. At the start of the curve, it is tangent to the line 
connecting the first and second control points. Similarly, at the end of the curve it 
is tangent to the line connecting the third and fourth control points.

Parametric Equation

•	 The	Bézier	curve	can	be	completely	described	by	a	parametric	equation.

Ø	 x = x4u3 + 3x3u2(1 − u) + 3x2u(1 − u)2 + x1(1 − u)3

Ø	 y = y4u3 + 3y3u2(1 − u) + 3y2u(1 − u)2 + y1(1 − u)3

Ø	 z = z4u3 + 3z3u2(1 − u) + 3z2u(1 − u)2 + z1(1 − u)3
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•	 	(x1, y1, z1), (x2, y2, z2), (x3, y3, z3), (x4, y4, z4) are the coordinates of four control 
points.

•	 	u is the factor that increases from 0 to 1 as the curve moves from the first to the 
fourth control point.

•	 (x, y, z ) is the coordinate of the pixel representing the Bézier curve.

Properties of a Bézier Curve

•	 The	curve	must	pass	through	the	first	and	fourth	control	points,	i.e.,	P1 and P4.

•	 The	curve	is	tangent	to	the	line	(P1-P2 and P3-P4).

•	 	The	Bézier	curve	has	a	parametric	formulation	and	equation,	which	allows	it	to	
represent multiple values and shapes.

•	 If	the	first	and	last	control	points	coincide,	then	the	curve	is	closed	(Fig.	6.7).

P1

P4

P3

P2

Fig. 6.7 A closed Bézier curve

The curve does not provide localized control, i.e., when moving any one control 
point, the entire curve changes.

Zero-Order Continuity

•	 In	this	case	the	joint	between	the	two	curves	must	be	smooth.
•	 	To	achieve	zero-order	continuity	at	the	joint,	it	is	necessary	to	control	the	first	

control point of the second curve and the fourth control point of the first curve.

Problem 3

The coordinates of four control points related to the curve are

P1 = (2,2,0)

P4 = (2,3,0)

P3 = (3,3,0)

P4 = (3,2,0)
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Write the equation of the resultant Bézier curve. Also draw the curve by 
finding the coordinates at u = 0, u = 0.25, u = 0.5, u = 0.75 and u = 1.

Solution

Parametric equations of the Bézier curve are:

x x u x u u x u u x u

y y u y u u y

= + −( )+ −( ) + −( )
= + −( )+

4
3

3
2

2

2

1

3

4
3

3
2

2

3 1 3 1 1

3 1 3 uu u y u

z z u z u u z u u z u

1 1

3 1 3 1 1

2

1

3

4
3

3
2

2

2

1

3

−( ) + −( )
= + −( )+ −( ) + −( )

Putting the values of the coordinates, we have:

x u u u u u u

y u u u u u

= + −( )+ −( ) + −( )
= + −( )+ −( ) + −

3 9 1 6 1 2 1

2 9 1 9 1 2 1

3 2 2 3

3 2 2
uu

z

( )
=

3

0

For u = 0

x u u u u u u

y u u u u u

= + −( )+ −( ) + −( ) =

= + −( )+ −( ) +

3 9 1 6 1 2 1 2

2 9 1 9 1 2

3 2 2 3

3 2 2
11 2

0

3
−( ) =

=

u

z

For u = 0.25

x u u u u u u

y u u u u u

= + −( )+ −( ) + −( ) =

= + −( )+ −( )
3 9 1 6 1 2 1 2 15

2 9 1 9 1

3 2 2 3

3 2

.

22 3
2 1 2 56

0

+ −( ) =

=

u

z

.



PARAMETRIC REPRESENTATION OF SPACE CURVES 207

For  = 0.5u

x u u u u u u

y u u u

= + −( )+ −( ) + −( ) =

= + −

3 9 1 6 1 2 1 2 5

2 9 1

3 2 2 3

3 2

.

(( )+ −( ) + −( ) =

=

= + −( )+

9 1 2 1 2 75

0

3 9 1 6 1

2 3

3 2

u u u

z
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x u u u u

.

For  = 0.75

−−( ) + −( ) =

= + −( )+ −( ) + −( ) =

=

u u

y u u u u u u

z

2 3

3 2 2 3

2 1 2 84

2 9 1 9 1 2 1 2 56

0

.

.

FFor  = 1u

x u u u u u u

y u u u

= + −( )+ −( ) + −( ) =

= + −( )+
3 9 1 6 1 2 1 3

2 9 1

3 2 2 3

3 2 99 1 2 1 2

0

2 3
u u u

z

−( ) + −( ) =

=

 

P2 P3

P4P1

u = 0.5

u = 0.25 u = 0.75

Fig. 6.8 Graphical representation

6.5 NON-UNIFORM RATIONAL B-SPLINES

The non-uniform rational B-spline (NURBS) is a mathematical model commonly 
used in computer graphics for generating and representing curves and surfaces 
that offers great flexibility and precision to handle both analytic (surfaces defined 
by common mathematical formulae) and modeled shapes. The NURBS equation 
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is a general form that can represent both B-spline and NURBS curves. A Bézier 
curve is a special case of a B-spline curve, so the NURBS equation can also 
represent Bézier and rational Bézier curves.

•	 Uniform	B-splines	are	a	special	case	of	B-splines.

•	 Each	blending	function	is	the	same.

•	 A	blending	function	starts	at	t = −3, t = −2, t = −1,…

•	 Each	blending	function	is	non-zero	for	4	units	of	the	parameter.

•	 	Non-uniform	 B-splines	 can	 have	 blending	 functions	 starting	 and	 stopping	
anywhere, and the blending functions are not all the same.

•	 	NURBS	are	commonly	used	in	computer-aided	design	(CAD),	manufacturing	
(CAM), and engineering (CAE), and are part of numerous standards used 
industry-wide, such as IGES, STEP, ACIS, and PHIGS. NURBS tools are also 
found in various 3D modeling and animation software packages.

Fig. 6.9 A non-uniform rational B-spline

6.5.1 Control Point
The control points determine the shape of the curve. Typically, each point of 
the curve is computed by taking a weighted sum of a number of control points. 
The weight of each point varies according to the governing parameter. Adding 
more control points allows better approximation to a given curve, although only 
a certain class of curves can be represented exactly with a finite number of control 
points.
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Control Point

Control Polygon

Fig. 6.10 Control polygon and control points on NURBS

The control points can have any dimensionality. 1D points just define a scalar 
function of the parameter. These are typically used in image processing programs 
to tune the brightness and color curves. 3D control points are used abundantly in 
3D modeling, where they are used in the everyday meaning of the word “point,” 
a location in 3D space. Multidimensional points might be used to control sets of 
time-driven values, e.g., the different positional and rotational settings of a robot 
arm. NURBS surfaces are just an application of this.

The knot vector is a sequence of parameter values that determine where and how 
the control points affect the NURBS curve. Necessary only for internal calculations, 
knots are usually not helpful to the users of modeling software. Therefore, many 
modeling applications do not make the knots editable or even visible.

Knot Values

•	 number	of	knots	=
num_of_control_points + degree + 1 (or −1 for some APIs)

•	 The	values	of	knot	vectors	must	be	in	ascending	order.
− (0, 0, 1, 2, 3) is valid

− (0, 0, 2, 1, 3) is not valid

•	 	The	individual	knot	values	are	not	meaningful	by	themselves;	only	the	ratios	
of the differences between the knot values matter.

−  Hence, the knot vectors (0, 0, 1, 2, 3), and (0, 0, 2, 4, 6) produce the same 
curve.

Duplicate knot values make a NURBS curve less smooth. At the extreme, a 
full multiplicity knot in the middle of the knot list means there is a place on the 
NURBS curve that can be bent into a sharp kink.



210 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

NURBS Surfaces

NURBS surfaces are based on curves. The main advantage of using NURBS 
surfaces over polygons is that NURBS surfaces can create smoother surfaces 
with fewer control points. NURBS surfaces are especially suited for creating 
organic smooth surfaces. Besides using primitives, NURBS models are generally 
constructed by creating curves that will define the profile or shape of an object.

 
Fig. 6.11 A NURBS curve

NURBS Curves

Control vertices (CVs) control the shape of a curve by pulling the curve out from 
a straight line. They are the most basic means of controlling NURBS surfaces. In 
Maya, the first CV or endpoint of a curve is drawn as a box, and the second CV is 
drawn as a “U”. Each additional CV is a dot.

Fig. 6.12 A NURBS curve

Fig. 6.13 CVs − control points that edit the shape of a curve
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Fig. 6.14 Endpoints reside on a curve and are defined by the shape of the curve

Properties of NURBS

•	 NURBS	have	all	the	properties	of	a	B-spline.

•	 	More	 versatile	 modification	 of	 a	 curve	 becomes	 possible	 if	 the	 curve	 is	
represented by a NURBS equation. It is due to a B-spline curve modified by 
changing the x, y, and z coordinates, but NURBS curves use homogenous 
coordinates (x, y, z, h).

•	 	B-splines	 have	 degree,	 control	 points,	 and	 knots,	 but	 NURBS	 have	 degree,	
control points, knots, and weights.

−  NURBS equations can exactly represent conic curves (circle, ellipse, 
parabola, etc.).

−  If projective transformation is applied to a NURBS curve, the result can 
be constructed from the projective images of its control points.

Therefore, we do not have to transform the curve to obtain the correct 
view (without distortion).

•	 	Bézier	curves	and	B-spline	curves	only	satisfy	 the	affine	invariance	property	
rather than this projective invariance property. This is because only NURBS 
curves involve projective transformations.

Rational	is	generalization	of	nonrational;	thus	they	carry	forward	all	the	analytic	
and geometric characteristics of their B-spline counterparts.

Also:

− a rational B-spline curve of order k is continuous everywhere.

−	curve	is	invariant	to	any	projective	transformation	(not	only	to	affine).

− additional control capabilities due to weights.
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Uses of NURBS Curves and Surfaces

•	 	They	 are	 invariant	 under	 affine	 as	 well	 as	 perspective	 transformations:	
operations like rotations and translations can be applied to NURBS curves and 
surfaces by applying them to their control points.

•	 	They	offer	one	common	mathematical	form	for	both	standard	analytical	shapes	
(e.g., conics) and free-form shapes.

•	 They	provide	the	flexibility	to	design	a	large	variety	of	shapes.

•	 	They	reduce	memory	consumption	when	storing	shapes	(compared	to	simpler	
methods).

•	 	They	can	be	evaluated	reasonably	quickly	by	numerically	stable	and	accurate	
algorithms.

•	 	Currently,	NURBS	curves	are	the	standard	of	curve	description	in	computer	
graphics.

•	 They	have	smooth	properties.

•	 Several	ways	to	control	the	resulting	curve	provide	great	flexibility.

How to Choose a Spline

Bézier curves are good for single segments or patches where a user controls the 
points. B-splines are good for large continuous curves and surfaces.

NURBS are good when that generality is useful, or when conic sections must be 
accurately represented (CAD).

EXERCISES

1.  The tangent vector at p1 (1, 3, 1) and p2 (0, 0, 0) are i + j + k and − i + 3j − 2k, 
respectively. Find the parametric equation of a cubic spline passing through  
p1 and p2. A point p3 lies on this spline and is defined as distance (p1 p3) = 
distance (p2p3). Find the position vector and tangent direction at point p3.

2.  Generate an equation to cubic spline P = B0 + B1 ⋅ t + B2 ⋅ t2 + B3 ⋅ t3 for a point A 
(3, 4, 5) and B (1, 1, 0). The derivatives along these directions at A are (1, − 1, 0) 
and at B are (2, − 1, 2). Hence find the coordination at point at t = 0.25 on the 
bridging curve.

3. Explain the Bézier curve. What are its properties?
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4.  The four vertices of a Bézier polygon are: (1, 1), (2, 3), (4, 3), and (3, 1). Find 
the equation of the Bézier curve in the parametric form.

5.  What do you understand by interpolation and approximation splines? 
Determine and plot the blending functions of the hermit spline.

6. What	is	a	requirement	of	synthetic	curves?	Explain	briefly.

OBJECTIVE QUESTIONS

6.1 If the first and last control points of a Bézier curve coincide, then
(a) curve will be closed (b) curve will be open
(c) multiple curves can be joined (d) none of the above

6.2  To join two curves smoothly, it is necessary to control the first control point 
of the second curve and the last control point of the first curve. This property 
of the Bézier curve is called 
(a) zero-order continuity (b) first-order continuity
(c) third-order continuity (d) higher-order continuity

6.3 In a Bézier curve, trajectory of the curve can be adjusted by controlling
(a) control points (b) segments
(c) curve path (d) none of the above

6.4 A Bézier curve passes through
(a) first and second control points (b) first and third control points
(c) first and fourth control points (d) second and third control points

6.5 A Bézier curve is tangent to segments at
(a) first and second segments (b) first and third segments
(c) first and fourth segments (d) second and third segments

6.6  To join two segments of a cubic spline, the tangent vector at the last point of 
the first segment and the first point of the second segment must be
(a) same (b) different
(c) unknown (d) none of the above

6.7  A non-uniform rational B-spline used in generating curves and surfaces is a
(a) parametric representation (b) mathematical expression
(c) mathematical model (d) none of the above
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 6.8  Non-uniform B-splines can have blending functions starting and stopping 
anywhere and are all
(a) same (b) different
(c) some same, some different (d) other

 6.9 NURBS are part of numerous industry-wide standards such as
(a) IGES (b) STEP
(c) ACIS (d) PHIGS
(e) all of the above

6.10 The control point is computed by taking a weighted sum of a
(a) number of control polygons (b) number of knots
(c) number of control points (d) none of the above

6.11  The weight of each point varies according to the governing parameter. 
Adding more control points allows better approximation to a given curve, 
although only certain curves can be represented exactly with finite control 
points;	these	curves	are
(a) control polygon (b) cubic spline
(c) B-spline (d) Bézier curve

6.12  In image processing programs, the brightness and color of the curves can be 
controlled by
(a) control polygon (b) knot
(c) control point (d) none of the above

ANSWERS

6.1 (a)  6.2 (a) 6.3 (a) 6.4 (c)  6.5 (c)

6.6 (a)  6.7 (c) 6.8 (b) 6.9 (e) 6.10 (a)

6.11 (c) 6.12 (a)
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7.1 INTRODUCTION TO SURFACES

From the CAD/CAM point of view, surfaces are as important as curves and 
solids. We need to have an idea of curves for surface creation. In the same way, 
surfaces form the boundaries of solids. There are two types of surfaces: analytical 
surfaces and synthetic surfaces. Examples of analytical surfaces are plane surfaces, 
spheres, and ellipsoids, and examples of synthetic surfaces are bicubic surfaces 
and Bezier surfaces. The applications of surfaces are in the field of solid modeling 
of components using CAD software, and representation of data surfaces such as 
isothermal planes, stress surfaces/contours, etc.

Surface representation is just an extension of representation of curves. We can 
represent a surface as a series of grid points inside its bounding curves. Surfaces 
can be in 2D space (planar) or in 3D space (general surfaces). Surface can be 
described using non-parametric or parametric equations. Surfaces can be 
represented by equations to pass through all the data points (fitting).

7.2 SURFACE OF REVOLUTION

We know that the simplest method for generating a 3D surface is to revolve a 2D 
entity, e.g., a line or a plane curve, about an axis in space. Such a surface is called 

7Chapter
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a surface of revolution. The simplest entity that can be rotated about an axis is a 
point. Provided that it does not lie on the axis, rotating it by 360° (2П) yields a 
circle, and rotating it through an angle yields an arc.

Next in complexity is a line segment parallel to and not coincident with the axis of 
rotation. When rotated through 360° (2П) it yields a circular cylinder. The radius 
of a cylinder is the perpendicular distance from the line of the rotation axis. The 
length of the cylinder is the length of the line segment.

z

y

r
x

θ

z

y

θ

r

Revolving a line

Cylindrical surface

l

l

l

a

Fig. 7.1 Revolution of surfaces in parametric form

If the line segment and the axis of rotation are coplanar and the line segment is not 
parallel to the rotation axis and rotated by 360°, we get a truncated right circular 
cone. The radius of the cone at each end is the perpendicular distance from the 
end points of the line segment on the axis of rotation. If the line is perpendicular 
to the axis of rotation, we get a planar disc. If the line is perpendicular and touches 
the axis, we get a solid disc.
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θ
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z

x
θ

Line perpendicular to the x-axis

Revolving a line
that makes an
angle a to the x-axis

y

z

x
θ

Revolving a closed polygon

Fig. 7.2 Different positions of a line after revolution
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•	 	The	parametric	equation	for	a	point	on	the	surface	of	revolution	is	developed	
by recalling the parametric equation of the entity to be rotated.

•	 As	an	example,	P(t) = [x(t) y(t) z(t)]; 0 ≤ t ≤ 1

•	 It	is	the	function	parameter	t.

•	 Rotation	about	any	axis	causes	the	point	to	be	a	function	of	angle	φ.

•	 Thus,	a	point	of	surface	revolution	has	two	parameters,	t and φ.

 φ

Fig. 7.3 A semi-revolved surface

Fig. 7.3 shows a biparametric function.

For rotation about the x-axis of the entity initially lying in the xy plane, the surface 
equation would be:

Q(t, φ) = [x(t) y(t)cos φ y(t)sin φ] ...(7.1)

Equations of a Line and a Plane in 3D space

Given a point P = (a, b, c), one can draw a vector from the origin to P; 
such a vector is called the position vector of point P and its coordinates are  
(a, b, c). Position vectors are usually denoted by r


.

In this section, we derive the equations of lines and planes in 3D space. We do so 
by finding the conditions for a point that P = (x, y, z) or its corresponding position 
vector r


 = (x, y, z) must satisfy in order to belong to the object being studied.
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y

z

P(x, y, z)

P (x , y , z )o o o o
(a, b, c)
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Fig. 7.4

In 3D, like in 2D, a line is uniquely determined when one point and the direction of the 
line are given. Assume we are given a point P0 = (x0, y0, z0) on the line and a direction 
vector v


 = (a, b, c). Our goal is to determine the equation of line L which goes through 

P0 and is parallel to v

. Here a, b, c are called the direction numbers of line L.

Let P (x, y, z) be an arbitrary point on line L. We wish to find the coordinates of  
P that must be satisfied to be on line L.

Vector Equation

In Fig. 7.4, we see that a necessary and sufficient condition for point P to be on 

line L is that P P0
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 be parallel to v

. This means there exists a scalar t such that
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Problem 1
Consider a line segment with end points P1[1 1 0] and P2[6 2 0] lying in the xy 
plane. Rotating the line about the x-axis yields a conical surface. Determine 
the points on the surface at t = 0.5, φ = 60°.

Solution

Parametric equation of the line segment from P1 to P2 is:

P(t) = [x(t) y(t) z(t)] = P1 + (P2 − P1)t;   0 ≤ t ≤ 1

With Cartesian components,

x(t) = x1 + (x2 − x1)t = 1 + 5t

y(t) = y1 + (y2 − y1)t = 1 + t

z(t) = z1 + (z2 − z1)t = 0

Using Eq. (7.1) point Q (0.5,60°) on the surface of revolution is:

Q(0.5,60°) = [1 + 5t (1 + t)cos φ (1 + t)sin φ]

= [7/3 3/2cos 60° 3/2sin 60°]

= [7/2 3/4 1.3]

= [3.5 0.75 1.3]

x = r cos θ, y = sin θ;  0 ≤ θ ≤ π

Fig. 7.5 A sphere

Parametric equation of the surface

Q(θ, φ) = [x(θ) y(θ)cos φ y(θ)sin φ];  0 ≤ θ ≤ π; 0 ≤ φ ≤ 2π

= [r cos θ r sin θ cos φ r sin θ sin φ]

Here θ is called latitude angle and φ longitude angle

x = a cos θ; y = b sin θ;  0 ≤ θ ≤ π
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Fig. 7.6 An ellipsoid

Parametric equation of the surface

Q(θ, φ) = [a cos θ b sin θ cos φ b sin θ sin φ];  0 ≤ θ ≤ π; 0 ≤ φ ≤ 2π

Or      Q(θ, φ) = [b sin θ sin φ b sin θ cos φ a cos θ];  0 ≤ θ ≤ π; 0 ≤ φ ≤ 2π

When the axis of rotation does not pass through the center of the circle or ellipse, 
we get a torus.

x = h + a cos θ; y = k + b sin θ;  0 ≤ θ ≤ 2π

z

y

x

h,k are the
coordinates
of the center
of torusv

Equation of the surface

Fig. 7.7 A torus

Q(θ, φ) = [h + a cos θ (k + b sin θ) cos θ ( k + b sin θ) sin φ];  
0 ≤ θ ≤ 2π; 0 ≤ φ ≤ 2π

Parametric equation of the surface

Q(θ, φ) = [aθ2 2aθ cos φ 2aθ sin φ]; 0 ≤ θ ≤ θmax; 0 ≤ φ ≤ 2π

x = aθ2; y = 2aθ; 0 ≤ θ ≤ θmax

y

x

Fig. 7.8 A paraboloid

x = a sec θ; y = tan θ;  0 ≤ θ ≤ θmax
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x

y

Fig. 7.9 An hyperboloid

Parametric equation of the surface

Q(θ, φ) = [a sec θ b tan θ cos φ b tan θ sin φ];
0 ≤ θ ≤ θmax; 0 ≤ φ ≤ 2π

In general, any space curve can be used to generate a surface of revolution

P(t) = [T] [N] [G]

[T] = parameter vector

[N] = blending function matrix (normalized)

[G] = geometry information matrix

Now the surface of revolution is defined as:
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7.3 SWEEP SURFACES

Problem 2

A line segment marked by (3.2 4.1 5.5) and (3 4.7 7.8) is rotated about 
the z-axis through 360°. Generate the parametric equation to the surface of 
revolution using t and s parameters; both range from 0 to 1. Hence find the 
equation and position at Q(t, s) at t = 0.45 and s = 0.78.

Solution

y

x

z

O

P (3.2 4.1 5.5)1

P (3 4.7 7.8)2

Fig. 7.10 A line in 3D space

Given a line having endpoints P1 (3.2 4.1 5.5) and P2 (3 4.7 7.8). This line is 
rotated about the z-axis to get the surface of revolution.

Parametric representation of the surface of revolution generated is given by:

Q(t, s) = [P(t)] ⋅ [Ts] ...(7.2)

where [P(t)] is parametric representation of the geometry to be revolved

[Ts] is sweep transformation

Parametric equation of the line having endpoints P1, P2, and t being a varying 
parameter is given by:

P(t) = P1 + (P2 − P1)t  where 0 ≤ t ≤ 1

[P(t)] = [(x(t) y(t) z(t) 1)] ...(7.3)
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Parametric equation of the line in Cartesian form is given by:

x(t) = x1 + (x2 − x1)t

y(t) = y1 + (y2 − y1)t

z(t) = z1 + (z2 − z1)t

x(t) = x1 + (x2 − x1)t

= 3.2 + [3 − 3.2]t

= 3.2 − 0.2t

y(t) = y1 + (y2 − y1)t

= 4.1 + [4.7 − 4.1]t

= 4.1 + 0.6t

z
‒

(t) = z1 + (z2 − z1)t

= 5.5 + [7.8 − 5.5]t

= 5.5 + 2.3t

So parametric equation of the line becomes

[P(t)] = [(3.2 − 0.2t) (4.1 + 0.6t) (5.5 + 2.3t) 1] 

The sweep transformation matrix for rotation by 360° or 2π rad about the z-axis 
is given by

T

s s

s s
s  =

( ) ( )
− ( ) ( )










cos sin

sin cos

2 2 0 0

2 2 0 0

0 0 1 0

0 0 0 1

π π

π π













Parametric equation of the surface of revolution is obtained by putting these 
values in Eq. (7.3).
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Now we have obtained the point on this surface at t = 0.45 and s = 0.78.
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So
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7.4 HELICAL SPRING

Problem 3
An helical spring is defined by x = Rcosq, y = Rsinq and z = Bq. Assume R = 5,  
B = 0.8. Rotate the spring through 60° about the y-axis and hence find its 
orthogonal projection in xy plane.

Solution

Parametric equation of the helical spring in a Cartesian form is given by:

x = Rcosθ

y = Rsinθ

z = Bθ

where R = 5 and B = 0.8

Parametric equation of the helical spring is given by:

[P(t)] = [(Rcosθ) (Rsinθ) Bθ 1]



PARAMETRIC REPRESENTATION OF SURFACES 225

Rotation	transformation	by	60°	about	the	y-axis is given by

R
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Orthogonal projection about the xy plane is given by:
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So orthogonal projection of the helical spring about the xy plane is given by:
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P′ = [(2.5cosθ − 0.688θ) sinθ (4.3cosθ + 0.4θ) 1)]

[(2.5cosθ − 0.688θ) 5sinθ 0 1)]

x′ = 2.5cosθ − 0.688θ

y′ = 5sinθ

z′ = 0

EXERCISES

1.  Why are surface models required? Name some analytical surfaces and synthetic 
surfaces.

2.  Write the mathematical equations of B-spline and Bezier surfaces.

3. What is the application of synthetic surfaces?

4. Derive the equation of a plane in 3D space.

5.  A line has endpoint coordinates as P1 [2, 3, 0] and P2	[7,	5,	0].	Rotating	the	line	
about the z-axis yields a conical surface. Determine the equation of the surface 
and find the point at t = 0.4, φ = 55°.

6. Derive the surfaces generated by revolving conic sections.

7.  Generate the parametric equation of the surface of revolution when a line 
segment having endpoint coordinates (1.1, 4.3, 6.1) and (3.2, 7.7, 2.1) is rotated 
about the y-axis through 360°. The t and s parameters range from 0 to 1. Hence 
find the equation and position at θ(t, s) at t = 0.38, s = 0.81.

OBJECTIVE QUESTIONS

7.1 An example of analytical surface is
(a) bicubic surface (b) Bezier surface
(c) ellipsoid (d) none of the above

7.2 An example of synthetic curve is
(a) plane surface (b) bicubic surface
(c) Bezier surface (d) all of the above
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7.3  If a line segment and axis of rotation are coplanar and the line segment is 
not parallel to the rotation axis, then the solid generated by rotating the line 
about the axis by 360° is
(a) right circular cone (b) right circular cylinder
(c) sphere (d) truncated right circular cone

7.4  When the axis of rotation does not pass through the center of the circle or 
ellipse, we get a
(a) torus (b) cylinder
(c) ellipsoid (d) sphere

7.5 In sweep surfaces, the sweep parameters range from 
(a) 0.1 to 1 (b) 1 to 10
(c) 0 to 1 (d) 1 to 100

7.6 In an equation of surface of revolution, q is called
(a) latitude angle (b) longitude angle
(c) angle of revolution (d) none of the above

7.7 In an equation of surface of revolution, f is called
(a) latitude angle (b) longitude angle
(c) angle of revolution (d) none of the above

ANSWERS

7.1 (c) 7.2 (b) 7.3 (d) 7.4 (a) 7.5 (c)

7.6 (a) 7.7 (b)
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8.1 INTRODUCTION

An architect may have a graphics program to draw an entire building but be 
interested in only the ground floor. A businessman may have a map of sales for 
the entire nation but be interested in only the north-east and south-west. An 
integrated circuit designer may have a program for displaying an entire chip 
but be interested in only a few registers. Often, the computer is used in design 
applications because it can easily and accurately create, store, and modify very 
complex drawings. When drawings are too complex, they may be difficult to read. 
In such situations it is useful to display only those portions of the drawing that 
are of immediate interest. This gives the effect of looking at the image through 
a window. Furthermore, it is desirable to enlarge these portions to take full 
advantage of the available display surface. The method of selecting and enlarging 
portions of a drawing is called windowing. The technique of not showing that part 
of the drawing in which one is not interested is called clipping.

8.2 WINDOWING

Windowing is the process of extracting a portion of a database by clipping it to 
the boundaries of the window. In windowing, we resolve to zoom the larger parts 

8Chapter
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of a picture to lower sizes and still present the whole picture. Fig. 8.1 shows 2D 
windowing.

Fig. 8.1 2D windowing (clipping)

In windowing, we are not cutting off the parts beyond the screen size but are 
trying to prepare them to a size where they become displayable on the screen.  
In 2D, a window is specified by values for the left, right, bottom, and top edges of 
a rectangle.

8.3 CLIPPING

Clipping involves determining which lines or portions of lines in the pictures 
lie outside the window. Those lines or portions of lines are then discarded and 
not displayed; i.e., they are not passed to the display device. Clipping is useful for 
copying, moving, or deleting a portion of a scene or picture, e.g., the classical “cut 
and paste” operation in a windowing system.

In clipping, each line of the display is examined to determine whether or not it 
is completely inside the window, lies outside the window, or crosses a window 
boundary. If it is inside, the line is displayed; if it is outside, nothing is drawn. 
If it crosses the boundary, the point of intersection is determined and only that 
portion which lies inside the window is displayed.

Clipping is the easiest if the edges of the rectangle are parallel to the coordinate 
axes. Such a window is called a regular clipping window. Irregular windows are 
also of interest to many applications. Fig. 8.2 shows the clipping process.
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Before clipping After clipping

Fig. 8.2 The effect of clipping

8.4 NEED FOR WINDOWING AND CLIPPING

The size of a CRT terminal on which pictures are displayed is limited in both 
its physical dimensions and its resolution. The physical dimensions limit the 
maximum size of the picture that can be displayed on the screen, and the resolution 
(number of pixels/inch) limits the quantity of distinct details that can be shown. If 
the size of a picture to be shown is bigger than the size of the screen, then obviously 
only a portion of the picture can be displayed. The context is similar to viewing 
a scene outside the window. While the scene outside is quite large, the portion 
of the scene that will be visible is limited by the size of the window. Similarly, if 
we presume that the screen allows us to see pictures as through a window, then 
any picture whose parts lie outside the limits of the window cannot be shown, 
and for algorithmic purposes, they have to be “clipped.” Note that clipping does 
not become necessary only when a picture is larger than the window size. If a 
smaller picture is lying in one corner of the window, parts of it may lie outside of 
it, or a picture within the limits of the screen may go (partly or fully) outside the 
window limits, because of transformation done on them. And what is normally 
not appreciated is that as a result of transformation, parts that were previously 
outside the window limits may come within limits as well. Hence, in most cases, 
after each operation on pictures, it becomes necessary to check whether the 
picture lies within the limits of the screen and, if not, to decide where exactly it 
reaches the limits of the window and clip it at that point. Further, since it is a 
regular operation in interactive graphics, the algorithms to do this will have to be 
pretty fast and efficient. The other related concept is windowing. We don’t always 
cut down the invisible parts of the picture to fit it into the window. The alternate 
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option is to scale down the entire picture to fit it into the window size, i.e., instead 
of showing only a part of the picture, its dimensions can be zoomed down. In 
fact, the window can be conceptually divided into more than one window and a 
different picture can be displayed in each window, each of them “prepared” to fit 
into the window. In a most general case, one may partly clip a picture and partly 
transform it by a windowing operation. Also, since the clipped-out parts cannot 
be discarded by the algorithm, the system should be able to keep track of every 
window and the status of every picture in each of them and keep making changes 
as required, all in real time.

8.5 VIEWING TRANSFORMATION

It is often useful to think of two models of the item we are displaying. There is the 
object model and there is the image of the object which appears on the display. 
When one speaks of the object, one is actually referring to a model of the object 
stored in the computer. The object model is said to reside in object space. This 
model represents the object using physical units of length. In the object space, 
lengths of an object may be measured in any units from light-years to Angstroms. 
The lengths of the image on the screen, however, must be measured in screen 
coordinates.

One must have some way of converting the object space units of measure to 
those of the image space (screen space). This can be done by scaling transformation. 
By scaling, we can uniformly reduce the size of the object until its dimensions lie 
between 0 and 1. Very small objects can be enlarged until their overall dimension 
is almost 1 unit. The physical dimensions of the object are scaled until they are 
suitable for display. It may be, however, that the object is too complex to show in 
its entirety or that we are particularly interested in just a portion of it. We would 
like to imagine a box about a portion of the object. We would only display what is 
enclosed in the box. Such a box is called a window. It might also happen that we 
do not wish to use the entire screen for display. We would like to imagine a box on 
the screen and have the image confined to that box. Such a box in the screen space 
is called a viewport.

When the window is changed, we see a different part of the object shown at the 
same position on the display. If we change the viewport, we see the same part of 
the object drawn at a different place on the display. In specifying both window and 
viewport, we have enough information to determine the translation and scaling 
transformations necessary to map from the object space to the image space. This 
can be done with the following three steps. First, the object together with its 
window is translated until the lower-left corner of the window is at the origin. 
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Second, the object and window are scaled until the window has the dimensions of 
the viewport. In effect, this converts object and window into image and viewport. 
The final transformation step is another translation to move the viewport to its 
correct position on the screen.

We are really trying to do two things. We are changing the window size to become 
the size of the viewport (scaling) and we are positioning it at the desired location 
on the screen (translating). The positioning is just moving the lower-left corner 
of the window to the viewport’s lower-left corner location, but we do this in two 
steps. We first move the corner to the origin and then move it to the viewport 
corner location. We take two steps because while it is at the origin, we can perform 
the necessary scaling without disturbing the corner ’s position.

The overall transformation which performs these three steps is called viewing 
transformation.

8.6 2D CLIPPING

Fig. 8.3 shows a 2D scene and a regular clipping window. It is defined by left (L), 
right (R), top (T), and bottom (B) 2D edges.

 

ywmax

ywmin

xvmin xvmax
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ywmax
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World coordinates Device coordinates

OO

Fig. 8.3 2D clipping window
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A regular clipping window is rectangular, with its edges aligned with those 
of the object space or display device. The purpose of a clipping algorithm is to 
determine which points, lines, or portions of lines lie within the clipping window. 
These points, lines, or portions of lines are retained for display; all others are 
discarded.

Because large numbers of points or lines must be clipped for a typical scene 
or picture, the efficiency of clipping algorithms is of particular interest. In many 
cases, the large majority of points or lines are either completely interior to or 
completely exterior to the clipping window. Therefore, it is important to be able to 
quickly accept a line like ab or a point like p, or reject a line like ij or a point like q. 
Points are interior to the clipping window provided xL < = x < = xR and yB < = y < 
= yT where xL and xR are the left and right coordinates of the window and yB and 
yT are the bottom and top coordinates of the window, respectively. The equal sign 
indicates that points on the window boundary are included within the window.

Lines are interior to the clipping window and hence visible if both endpoints 
are interior to the window. However, if both endpoints of a line are exterior to 
the window, the line is not necessarily completely exterior to the window. If 
both endpoints of a line are completely to the right of, completely to the left of, 
completely above, or completely below the window, then the line is completely 
exterior to the window and hence invisible.

8.7 COHEN-SUTHERLAND SUBDIVISION LINE 
CLIPPING ALGORITHM

The Cohen-Sutherland subdivision line clipping algorithm is a simple and 
effective procedure for determining the category into which a line segment falls 
with respect to the rectangular window boundaries.

1001 1000 1010

0001 0000 0010

0101 0100 0110

Fig. 8.4 A window boundary



WINDOWING AND CLIPPING 235

This algorithm has two stages:

1.  Assigning a 4-bit code to the endpoints of the line segment being checked, based 
on the nine regions that include and surround the window as shown in Fig. 8.4.

Each bit is either set to 1 (true) or 0 (false), starting with the left-most one, 
according to the following scheme:

Bit 1 = 1, if endpoint of the line segment is above the window. 

Bit 2 = 1, if endpoint of the line segment is below the window.

Bit 3 = 1, if endpoint of the line segment is to the right side of the window. 

Bit 4 = 1, if endpoint of the line segment is to the left side of the window.

2.  Categorization of line segment: The endpoints of the line segment are checked with 
respect to each other. The following rules are used for categorization:

Visible: If both endpoints of the line segment have region codes 0000, then the 
line segment is visible. For example, line segment AB is visible in Fig. 8.5.

Invisible: If the same bit is set to 1 at both endpoints, then the line segment is 
invisible or the bitwise logical “AND” of the region coded of the endpoints is not 
(0000), then the line segment is invisible. For example, line segment EF with the 
endpoint codes (1010) and (0010) is invisible.

Clipping candidate or indeterminate: A line segment is said to be 
indeterminate it the bit is set to 1 in different locations or if the bitwise logical 
AND of the region codes of the endpoints is equal to (0000). For example, line 
segments CD and GH in Fig. 8.5 have endpoints (1000) and (0010). These line 
segments may or may not process the window boundaries as line segment GH is 
invisible but line segment CD is partially visible and must be clipped.
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E
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Y T
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0 XL XR X

Fig. 8.5 Checking visibility
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8.8 INTERSECTION CALCULATION AND CLIPPING

By solving the equations representing both the line and a window boundary, we 
can easily find the points of intersection between a line segment and a window 
boundary. For a rectangular window aligned with the coordinate axis, not all four 
boundaries need to be checked at one time. The window boundary where the 
intersection will occur can be found as follows (see Fig. 8.6):

X0

1001 1000 1010

0001 0000 0010

0101 0100 0110

C

D
A

B

Y

Y T

Y B

XL R X
Intersection with Y = Y B

Intersection with X = XT

Intersection with Y = Y T

Fig. 8.6 Intersection calculation

If bit 1 = 1, then the line segment will intersect with Y = YT = Ymax

If bit 2 = 1, then the line segment will intersect with Y = YB = Ymin

If bit 3 = 1, then the line segment will intersect with X = XR = Xmax

If bit 4 = 1, then the line segment will intersect with X = XL = Xmin

Once we know the location of points of intersection, we can solve the parametric 
equation of a line segment and a selected edge of the window as follows:

Consider a line segment joining the endpoints P(X1, Y1, Z1) and Q(X2, Y2, Z2).  
If the endpoints of intersection lie on the vertical edge (XL or XR) then

Xi = Xmin (XL) or Xmax (XR)

and Yi = Y1 + m (Xi − X1)
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where m = slope of the line

=
−( )
−( )

Y Y

X X
2 1

2 1

If the endpoints of intersection lie on the horizontal edge (YB or YT) then

Yi = Ymin (YB) or Ymax (YT)

and Xi = X1 + m (Yi − Y1)

Now we replace the endpoint (X1, Y1) with the intersecting point, eliminating the 
portion of the original line that is outside the window.

The new endpoint is then assigned an update region code and the resulting line 
is recategorized and handled as above. This iterative process terminates when we 
finally reach a clipped line that is either visible or invisible.

8.9 MIDPOINT SUBDIVISION ALGORITHM

The Cohen-Sutherland algorithm requires the calculation of the intersection of 
a line with a window edge. The direct calculation is avoided by performing a 
binary search for the intersection by always dividing the line at its midpoint. 
Midpoint subdivision is a useful method of numerical analysis. It is an alternative 
method to find the point of intersection between the line segment and the 
window edge. The line segment is separated at its midpoint and the two resulting 
segments are checked for visibility and clipping. If not totally visible or invisible, 
the segment is again bisected and the process continues until the intersection 
with the window boundary is found within the specified tolerance. Fig 8.7 gives 
an example of this process.

Let P (X1, Y1) and Q (X2, Y2) be the endpoints of a line segment PQ. Its midpoint 
M (Xm, Ym) is found by the following formula:

X
X Y

Y
X Y

m

m

=
( )

=
( )

1 1

2 2

2

2

,
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8.10 ADVANTAGE OF THE MIDPOINT  
SUBDIVISION ALGORITHM

Midpoint subdivision is efficiently implemented in hardware because division 
by two is accomplished by a simple bit shift to the right. For example (0100) 
is the 4-bit binary representation of the number 4. A shift to the right yields 

(0010) which represents 2
4

2
= , when implemented in hardware. The midpoint 

subdivision process involves only integer values. When implemented in software, 
it may be slower than the direct calculation method.

Y

X0

P 1

Pm1 P 2

Point of intersection

Fig. 8.7 The midpoint subdivision algorithm

8.11 COMPARISON BETWEEN  
COHEN-SUTHERLAND AND MIDPOINT 
SUBDIVISION LINE CLIPPING ALGORITHMS

The maximum time-consuming step in the clipping process is the intersection 
calculation with window boundaries. The Cohen-Sutherland algorithm reduces 
the calculations by first discarding lines that can be trivially accepted or rejected. 
The intersection with the window boundaries is then found only for those lines 
which are clipping candidates. This point is used to break the original line into 
the new segments which are checked again for trivial acceptance or rejection. The 
process continues until all segments (original and new) are checked.

The midpoint subdivision algorithm is a special case of the Cohen-Sutherland 
algorithm, where the intersection is not calculated by equation solving. It is 
calculated by a midpoint approximation method, which is suitable for hardware 
complementation, very fast and efficient.
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Problem 1
Outcode(A) = 0000

Outcode(D) = 1001

D

C

B

A

ymax

ymin

Xmin Xmax

Fig. 8.8 The limits of a window

Solution
•	 No	trivial	accept/reject

Clip (A, D) with y = ymax, splitting it into (A, B) and (B, D)

•	 Reject	(B, D)

•	 Proceed	with	(A, B)

For a line with endpoint coordinates (x1, y1) and (x2, y2), the y coordinate of the 
intersection point with a vertical boundary can be obtained as

y = y1 + m(x − x1) → (1)

where the x value is set either to x left or x right.

Similarly, if we are looking for the intersection with a horizontal boundary, the x 
coordinate can be calculated as:

x x
m

y y= + −( )1 1

1
 → (2)

where y value is set either to y bottom or y top.

Problem 2
Display the corresponding visible portion of a line leaving the outside 
boundary.

Clip the line with the boundaries (−1, 1) of x and (−1, 1) of y and the points 

are 
1

2
,
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y

x
O

Fig. 8.9 A line

Solution
Given x left = − 1 and x right = 1

ytop = 1 and ybottom = − 1

Let A B=






= 





1

2

1

4

1

2

3

2
, ,and

i.e., A = (0.5, 0.25) and B = (0.5, 1.5)

So the bitwise position of A is 0000 and of B is 1000. So clearly B is not in the region. 

So we have to find the horizontal intercept point, i.e., x
m

y y x y= −( )+









1
1 1top top, .

m = y2 − y1 = 1.5 − 0.25 = ∞
x2 − x1 = 0.5 − 0.5

 x = − + =
1

1 0 25 0 5 0 5
∞

( . ) . .

y = 1

The point is (0.5, 1).

8.12 POLYGON CLIPPING

The previous discussion concentrated on clipping lines. Now we consider the case 
of polygon clipping. A polygon can be considered a collection of lines. Polygons 
are of the following types:

1.  Convex polygon: A polygon is said to be convex if the line joining any two 
interior points of the polygon lies completely inside the polygon (Fig. 8.10, left).
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2.  Concave or non-convex polygon: A polygon is said to be non-convex or 
concave if the line joining any two interior points of the polygon doesn’t lie 
completely inside the polygon (Fig. 8.10, right).

Q

P

P

Q

Convex polygon Concave polygon

Fig. 8.10 Convex and concave polygons

By convention, a polygon with vertices P1, P2 …. PN and edges P1P2, P2P3, ….. Pi -1 
Pi ….. PN or P1 is said to be positively oriented if a tour of the vertices in the given 
order produces a counterclockwise circuit. If a tour of the vertices in the given 
order produces a clockwise circuit, then it is negatively oriented (Fig. 8.11).

P5

P1

P3

P2

P2

P1

P4

P5

P3P4

Positive orientation Negative orientation

Fig. 8.11 Different orientations of a polygon

When a closed polygon is clipped as a collection of lines, the original closed 
polygon becomes one or more open polygons or discrete lines (Fig. 8.12).

Clip rectangle

Fig. 8.12 Before clipping (closed polygon) and after clipping (open polygon)
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8.13 SUTHERLAND-HODGMAN ALGORITHM

The main idea behind the Sutherland-Hodgman algorithm is that it is easy to 
clip a polygon against a single edge or clipping plane. The procedure is to clip the 
original polygon and each resulting intermediate polygon against a single edge of 
the clipping window, each edge in succession. For simplicity we use a rectangular 
window. The original polygon is defined by a list of vertices P1, P2, P2, …….., PN 
which imply a list of edges P1P2, P2P3 …., PN-1 PN1 PN P1. 

The output of the algorithm is a list of polygon vertices. All these vertices are on 
the visible side of a clipping window since each edge of the polygon is individually 
compared with the clipping window so only the relationship between a single 
edge of a polygon and an edge of the window needs to be considered. Consider an 
edge SP of the polygon and E being the edge of the window. There are only four 
possible relationships between SP and E. These relations are shown in Fig. 8.13.

P

Q

E E E E

S
S

I

P
P

P

I

S

Cippling
plane

Cippling
plane

Visible side Visible side Visible side Visible side

Fig. 8.13 The Sutherland-Hodgman algorithm

1. If edge SP is entirely visible, that is, both S and P are on the visible side, then P 
is output (Fig. 8.13).

2. If edge SP is entirely invisible, that is, both S and P are on the invisible side, 
then no output is required (Fig. 8.13).

3. If edge SP is partially visible and is leaving the visible region, then S is in the 
visible region and P is in the invisible region, and then the intersection of 
polygon edge SP and window edge E is calculated (Fig. 8.13).

4. If the edge is entering the visible region, that is, S is in the invisible region and 
P is in the visible region, then the intersection with the window edge must be 
calculated. Since P is also in the visible region so it must also be output. Thus 
intersection point I and endpoint P both are output (Fig. 8.13).
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The above four steps are used to determine the vertices of our intermediate 
polygons. Its algorithm proceeds in stages by passing each intermediate polygon 
to the next stage of the window and clipping is performed. The final edge PnP1 
must be considered separately. This is done by saving the first point of the polygon 
as F. Thus the final edge becomes PnF and is considered exactly as any other edge. 
Fig. 8.14 gives the flowchart of this algorithm, while Fig. 8.14(a) is applied to every 
vertex and Fig. 8.14(b) is used for the last vertex only.

8.14 3D CLIPPING

The two common 3D clipping volumes are a rectangular parallelepiped, i.e., a box 
used for parallel or axonometric projections, and a truncated pyramidal volume, 
frequently called a frustum of vision, used for perspective projections. These 
volumes, shown in Fig. 8.15, are six-sided—left, right, top, bottom, near (hither), 
and far (yon) planes. There is also a requirement to clip to unusual volumes, e.g., 
the cargo bay of the space shuttle.

Enter with input
Vertex P

No
Yes

First Point?

No
Does the line
SP cross the

clipping plane?

Yes

Computer inter-
section, I of SP and
the clipping plane?

Output
I

F = P

S = P

No is S on the
visible side?

Output S

Exit

Exit

Close next stage

Reset first flag

Output I

Computer inter-
secion I, of SP and
the clipping plane

Yes

NoDoes SP
cross plane?

Yes

Output ?
No

Close Polygon entity

(a) (b)

Yes

Fig. 8.14 Flowchart for the Sutherland-Hodgman algorithm polygon clipping
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Fig. 8.15 3D clipping

As in 2D clipping, lines that are totally visible or trivially invisible can be 
identified using an extension of the Cohen-Sutherland endpoint codes. For 3D 
clipping, a 6-bit endpoint code is used. Again, the first bit is the rightmost bit. 
The bits are set to 1 using an extension of the 2D scheme. First-bit set—if the 
endpoint is to the left of the window, second-bit set—if the endpoint is to the right 
of the window, third-bit set—if the endpoint is below the window, fourth-bit set—
if the endpoint is above the window, fifth-bit set—if the endpoint is in front of the 
volume, sixth-bit set—if the endpoint is behind the volume. Otherwise, the bit is 
set to zero. Again, if both endpoint codes are zero, both ends of the line are visible, 
and the line is visible. Also, if the bit-by-bit logical intersection of the two endpoint 
codes is not zero, then the line is totally invisible. If the logical intersection is zero, 
the line may be partially visible or totally invisible. In this case it is necessary to 
determine the intersection of the line and clipping volume.

Determining the endpoint codes for a rectangular parallelepiped clipping 
volume is a straightforward extension of the 2D algorithm. However, the 
perspective clipping volume shown in Fig. 8.16 requires additional consideration. 
One technique is to transform the clipping volume into a canonical volume with 
xright = 1, xleft = −1, ytop = 1, ybottom = −1, at zfar = a, where 0 < a < = 1 and the center 
of projection is at the origin in a left-hand coordinate system, then the endpoint 
code conditions are considerably simplified. A more straightforward technique, 
which requires less distortion of the clipping volume, makes the line connecting 
the center of projection and the center of perspective clipping volume coincident 
with the z-axis in a right-hand coordinate system, as shown in Fig. 8.16.
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Fig. 8.16 A right-hand coordinate system

8.15 MULTIPLE WINDOWING

Some systems allow the use of multiple windowing; that is, at first the image is 
created by one or more window transformations on the object. Then, windows 
are applied to this first image to create a second image. Further windowing 
transformations may be done until the desired picture is created. Every application 
of a window transformation allows the user to slice up a portion of the picture and 
reposition it on the screen. Thus, multiple windowing gives the user freedom to 
rearrange components of the picture. The same effect may be achieved, however, 
by applying a number of single-window transformations to the object.

8.16 CHARACTER CLIPPING

Characters or text are generated in software, firmware, or hardware. Characters 
can be formed from individual lines or strokes or from dot matrix (bitmap) 
representations. Stroke characters generated in software are treated like any other 
line; i.e., they can be rotated, translated, scaled, and clipped to arbitrary windows 
in arbitrary orientations. Dot matrix character representations in software are 
treated in a similar fashion. The process is, however, somewhat more tedious. In 
particular, if the character box surrounding the character is clipped to an arbitrary 
window, then each pixel of the character mask is compared with the clip window 
to determine if it is inside or outside. If inside, it is activated; if outside, no action 
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is taken. Clipping of hardware-generated characters is more limited. Generally, 
any character which is not totally visible is eliminated. This is accomplished 
by clipping the character box against the window. If the entire box is inside the 
window, the character is displayed; otherwise, it is not. When the rectangular 
character box is aligned with a rectangular window, only one diagonal of the 
character box is compared with the window.

When characters are generated in firmware, character clipping facilities may be 
very limited or very extensive. The extent depends on the clipping algorithm also 
implemented in firmware.

8.17 APPLICATIONS OF CLIPPING

•	 Clipping	is	fundamental	to	several	aspects	of	computer	graphics.

•	 	Typical	use	of	clipping	is	in	selecting	only	the	specific	information	required	to	
display a particular scene or view from a larger environment.

•	 Clipping	is	useful	for	anti-aliasing.

•	 Clipping	is	useful	in	visible	line,	visible	surface,	shadow,	and	texture	algorithms.

•	 	Advanced	 clipping	 algorithms	 are	 useful	 for	 clipping	 polygonal	 volumes	
against polygonal volumes. Such algorithms are used to perform the Boolean 
operations required for simple solid modelers, e.g., the intersection and union 
of simple cubical and quadric volumes.

•	 	Clipping	is	also	useful	for	copying,	moving,	or	deleting	a	portion	of	a	scene	or	
picture, e.g., the classical “cut and paste” operation in a windowing system.

EXERCISES

1. Explain the difference between a window and a viewport.

2. Explain the need of windowing and clipping.

3. Explain the Cohen−Sutherland line clipping algorithm.

4. Explain the Cohen-Hodgman polygon clipping algorithm.

5.  What is aspect ratio? How do you solve the problem of aspect ratio while 
performing window-to-viewport transformation?
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6.  For the rectangular window boundaries given as xmin = 2, xmax = 8, ymin = 2 
and ymax = 8, check the visibility of the following segments using the Cohen-
Sutherland algorithm and, if necessary, clip them against the appropriate 
window boundaries.

Line EF: E (3, 10) and F (6, 12)

Line GH: G (4, 1) and H (10, 6)

7.  Compare Cohen-Sutherland and midpoint subdivision line clipping 
algorithms.

8. Write a short note on 3D clipping.

9. Write some of the applications of clipping.

OBJECTIVE QUESTIONS

8.1 The line 2x − y + 4 = 0, if clipped against this window, will connect the point
(a) (0, 1) and (3, 3) (b) (0, 1) and (2, 3)
(c) (1, 2) and (4, 2) (d) none of the above

8.2  In the Cohen-Sutherland clipping algorithm using region codes, a line is 
already clipped if the
(a) codes of the endpoint are same
(b) logical AND of the endpoint code is not 0000
(c) logical OR of the endpoint code is 0000
(d) logical AND of the endpoint code is 0000
(e) (a) and (b)

8.3 The method of selecting and enlarging a portion of a drawing is called
(a) viewing (b) view port
(c) windowing (d) clipping

8.4  The technique of not showing that part of the drawing which one is not 
interested is called
(a) windowing (b) clipping
(c) viewing (d) view port

8.5  If the edges of the rectangular window are parallel to the coordinate axes, 
then such a window is called
(a) rectangular window (b) standard window
(c) parallel window (d) regular window



248 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

 8.6  Conversion from object space units of measure to those of the image space 
is captured by which transformation?
(a) scaling (b) reflection
(c) translation (d) rotation

 8.7  When an entire image is to be confined into a box, then that box in the 
screen space is called a
(a) window (b) view port
(c) both of these (d) none of the above

 8.8 A line clipping algorithm is presented by a
(a) visibility algorithm (b) Cohen-Sutherland algorithm
(c) midpoint subdivision algorithm (d) Cyrus-Beck algorithm
(e) all of above

 8.9 Polygon clipping algorithm is presented by
(a) Cohen-Sutherland algorithm (b) Cyrus-Beck algorithm
(c) Cohen-Hodgeman algorithm (d) none of the above

8.10 Applications of clipping include
(a) selecting a specific information
(b) antialiasing
(c) copying, moving, deleting a portion of picture
(d) all of the above

ANSWERS

8.1 (d)  8.2 (e) 8.3 (c) 8.4 (b)

8.5 (d)  8.6 (a) 8.7 (b) 8.8 (e)

8.9 (c) 8.10 (d)
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9Chapter

GENERATION OF A 
3D MODEL

9.1 INTRODUCTION 

Geometric modeling has created wonders in the fields of aerospace design, 
marine engineering, aesthetics, interior decoration, architectural engineering, 
etc. Design can be better visualized the in the 3D view than a 2D projected view. 
Existing models can be easily and quickly modified. An important step in product 
design development, i.e., prototyping, is completely removed by the introduction 
of geometric modeling. Hence, development cycle time is reduced considerably. 
This is why newer and improved products are coming on the market at a rapid 
speed. Geometric models are generated by the creation of basic geometric objects, 
the transformation of elements, and the creation of geometric entities. The 
geometric modeling approach involves: 

1. Wireframe modeling 

2. Surface modeling 

3. Solid modeling 
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9.2 WIREFRAME MODELING 

A wireframe model is a wired frame structure where wires represent the edges 
of the geometry. Two approaches can be adopted to make a wireframe model, 
i.e., the conventional approach and the procedural approach. In the conventional 
approach, the entire geometry is placed in the data structure. Wireframe models 
are created with relative ease, and they require less memory and less computation 
time. Another advantage of the wireframe model is that it allows one to see the 
interior of the design and check the behavior of its inner components. Testing can 
be done quickly. Figure 9.1 shows a geometric figure and its wireframe model. 
The limitation of wireframe modeling is that all the lines in a wireframe model are 
visible to the observer. Consequently, the lines that indicate the edges of the rear 
part are visible right through the front surface. This makes the image somewhat 
confusing to the observer, and in some cases the model interpretation becomes 
difficult, as shown in Fig. 9.2. 

Fig. 9.1 Wireframe modeling 
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Fig. 9.2 Wireframe models 
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Advantages of wireframe modeling

Ø Easy to construct 

Ø Most economical in use of time and memory 

Ø Models solid objects 

Disadvantages of wireframe modeling

Ø  Unable to determine computationally important information on mass 
properties (e.g., volume, mass, moment, etc.) and lines of intersection between 
two faces of intersecting models 

Ø  Cannot guarantee that the model definition is correct, complete, or 
manufacturable

Ø Complex models are difficult to interpret 

9.3 SURFACE MODELING

Surface models use various surface elements to represent parts of the geometry. 
These surface elements are connected to form surface models. A wireframe 
model can be converted into a surface model by defining the surfaces. Similar 
to wireframe entities, existing CAD/CAM systems provide designers with both 
analytic and synthetic surface entities. Surface models can be constructed using 
a large variety of surface features often provided by CAD systems. A plane is the 
most basic feature used to represent a surface element. More complex shapes 
can be defined by tabulated cylinders, ruled surfaces, surfaces of revolution, 
sculptured surfaces, sweep surfaces, and fillet surfaces. 

Analytic entities include

•	 Plane	surfaces	

•	 Ruled	surfaces	

•	 Surfaces	of	revolution	

•	 Tabulated	cylinders	

Synthetic entities include

•	 Bicubic	Hermite	spline	surfaces	

•	 B-spline	surfaces	

•	 Rectangular	and	triangular	Bezier	patches	
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•	 Rectangular	and	triangular	Coons	patches	

•	 Gordon	surfaces	

Plane surface:	This	is	the	simplest	surface.	It	requires	three	non-coincident	points	
to define an infinite plane, as shown in Fig. 9.3.

Bezier
surface

Surface
of revolution

One plane Multiple planes

Rail boundary curve

Tabulated
surface

B-spline
surface

Curve

Directris

Fig. 9.3 Surface types 

Ruled (lofted) surface: This is a linear surface. It interpolates linearly between 
two	boundary	curves	that	define	the	surface	(rails).	Rails	can	be	any	wireframe	
entity. This entity is ideal to represent surfaces that do not have any twists or kinks. 

Surface of revolution: A surface of revolution is generated by revolving a given 
curve about an axis. 

Tabulated cylinder: This is a surface generated by translating a planar curve a 
certain distance along a specified direction (axis of the cylinder). 
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Bezier surface: This is a surface that approximates given input data. It is different 
from	the	previous	surfaces	in	that	it	is	a	synthetic	surface.	Similar	to	the	Bezier	
curve, it does not pass through all given data points. It is a general surface that 
permits	 twists	 and	 kinks.	The	Bezier	 surface	 allows	 only	 global	 control	 of	 the	
surface. 

B-spline surface: This is a surface that can approximate or interpolate given input 
data	(Fig.	9.3).	It	is	a	synthetic	surface.	It	is	a	general	surface	like	the	Bezier	surface	
but with the advantage of permitting local control of the surface. 

Advantages of surface modeling

Ø Smooth varying surfaces are used 

Ø Analysis becomes easy 

Ø Strength and weakness can be obtained 

Ø Visual inspection can be done 

Disadvantages of surface modeling

Ø More computations are required 

Ø Hidden and internal surfaces cannot be seen 

Ø Complex shapes having side patches cannot be viewed 

9.4 SOLID MODELING

Solid modeling is the most advanced method of geometric modeling in three 
dimensions. It is a representation of the solid parts of an object on a computer. 
The typical geometric model is made up of wireframes that show the object in the 
form	of	wires.	Providing	surface	representation	to	the	wire,	3D	views	of	geometric	
models make the object appear solid on the computer screen; this is called solid 
modeling. A wireframe model and its solid model are shown in Fig. 9.4. In CAD 
systems there are a number of representation schemes for solid modeling, which 
include: 

•	 Primitive	creation	functions	

•	 Constructive	solid	geometry	(CSG)	

•	 Boundary	representation	(BREP)	

•	 Sweeping	
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X

Y

Z

Fig. 9.4 Solid modeling

9.4.1 Primitive Creation Functions 
These functions retrieve a solid of a simple shape from primitive solids stored 
in the program in advance and create a solid of the same shape but of the size 
specified by the user. 

9.4.2 Constructive Solid Geometry 
Objects are represented as a combination of simpler solid objects (primitives). The 
primitives, such as cube, cylinder, cone, torus, sphere, etc., are shown in Fig. 9.5. 
Copies or “instances” of these primitive shapes are created and positioned. 
A complete solid model is constructed by combining these “instances” using a 
set	of	 specific	 logic	operations	 (Boolean	operations).	These	operations	 include	
union, difference, and intersection. 

y

P

W
z

D
H x

H

y

z

x
P

R

Block Cylinder

y

PH

W
D x

z

Wedge Torus

z
y

xP

R1R0

R1

y

x

z

R H

P

Cone Sphere

z

x

y

R

P

Fig. 9.5 Primitives 
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Union:	The	sum	of	all	points	 in	each	of	 the	two	defined	sets	(logical	“OR”).	
It is also referred to as add, combine, join, merge, etc. An example of a union 
operation is shown in Fig. 9.7(a). 

Difference: The points in a source set minus the points common to a second 
set (logical “NOT”). Set must share a common volume. It is also referred to as 
subtraction, remove, cut, etc. An example of a difference operation is shown in 
Fig. 9.7(b). 

Intersection: Those points common to each of the two defined sets are 
represented after an intersection operation (logical “AND”). The set must share 
a common volume. Intersection is also referred to as common, conjoin, etc. An 
example of an intersection operation is shown in Fig. 9.7(c). 

BA

Fig. 9.6 More primitives 

A union B A difference B A intersection B

(a) (b) (c)

Fig. 9.7 Boolean expressions 

Boolean expressions in CSG

Two cylinders of different diameters are used as primitives. The cylinder 
with	 larger	diameter	 is	Block	A,	 the	cylinder	with	smaller	diameter	 is	Block	B.	
Block	A	union	(∪)	Block	B	is	represented	by	Fig.	9.8(a).	The	Boolean	expression	
for this operation is represented as (A ∪	B).	Block	A	 intersection	(∩)	Block	B	
is	 represented	 by	 Fig.	 9.8(b).	 The	 Boolean	 expression	 for	 this	 operation	 is	
represented as (A ∩ B).	Block	A	difference	(−)	Block	B	is	represented	by	Fig. 9.8(c). 
The	Boolean	 expression	 for	 this	 operation	 is	 represented	 as	 (A	−	 B).	 Block	 B	
difference (−)	Block	A	is	represented	by	Fig.	9.8(d).	The	Boolean	expression	for	
this	operation	is	represented	as	(B	− A). 



256 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

(a) (b) (c) (d)

Fig. 9.8 Boolean operations 

CSG expression and tree

Every solid constructed using the CSG technique has a corresponding 
CSG expression, which in turn has an associated CSG tree. The CSG tree is a 
representation	of	the	final	design.	Recall	that	the	same	solid	may	have	different	
CSG	 expressions/trees.	 For	 example,	 three	 blocks	 (Block	 1,	 Block	 2,	 Block	 3)	
are	 shown	 in	Fig.	9.9.	Many	combinations	of	Boolean	expressions	are	possible	
to	 achieve	 the	 final	 result.	 One	 might	 punch	 a	 hole	 from	 Block	 1	 first	 and	
then	compute	the	union	of	this	result	with	Block	2,	or	Block	1	and	Block	2	are	
connected	by	union	and	then	compute	the	difference	of	this	result	with	Block	3.	
As a result, CSG representations are not unique. 

1 2 3

Fig. 9.9 CSG trees

The	Boolean	expression	for	the	solid	model	shown	in	Fig.	9.9(a) can be written as: 

Result 1 = ({Block 1 ∪ Block 2} ∪ Block 3) 

This expression can be converted to an expression tree of the design. The CSG 
expression	tree	for	Result	1	is	shown	in	Fig.	9.10.

Fig. 9.9 A solid model using union (Result 1) 
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T, R, S T, R, S T, R, S

Union

Union

Fig. 9.10 CSG expression tree for Result 1

The	Boolean	expression	for	the	solid	model	shown	in	Fig.	9.11	can	be	written	as:	

Result 2 = ({Block 1 ∪ Block 2} − Block 3) 

The	CSG	expression	tree	for	Result	2	is	shown	in	Fig.	9.12.	

Fig. 9.11 A solid model using union (Result 2)

T, R, S T, R, S T, R, S

Union

Difference

Fig. 9.12 CSG expression tree for Result 2



258 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

Another example of solid modeling using CSG is shown in Fig. 9.12. It has three 
primitives: a cubical block, a cylinder, and a sphere. First, the block and the 
cylinder are united with each other and sphere is subtracted (difference) from the 
result. 

 

Fig. 9.12 Solid modeling using CSG 

9.4.3 Boundary Representation 
Solid models are defined by their enclosing surfaces or boundaries. This technique 
consists of geometric information about the faces, edges, and vertices of an object 
with	the	topological	data	on	how	these	are	connected.	Boundary	representation,	
or	B-rep	for	short,	can	be	considered	an	extension	of	the	wireframe	model.	The	
merit	of	a	B-rep	is	that	a	solid	is	bounded	by	its	surface	and	has	its	interior	and	
exterior.	The	surface	of	a	solid	consists	of	a	set	of	well-organized	faces,	each	of	
which is a piece of some surface, e.g., a surface patch. Faces may share vertices and 
edges that are curve segments. Therefore, this is an extension to the wireframe 
model by adding face information to the latter. There are two types of information: 
topological and geometric. Topological information provides the relationships 
among vertices, edges, and faces, similar to that used in a wireframe model. In 
addition to connectivity, topological information also includes the orientation 
of edges and faces. Geometric information is usually equations of the edges and 
faces. The orientation of each face is important. Normally, a face is surrounded 
by	a	set	of	vertices.	Using	the	right-handed	rule,	the	ordering	of	these	vertices	for	
describing a particular face must guarantee that the normal vector of that face is 
pointing to the exterior of the solid. Normally, the order is counterclockwise. If 
that face is given by an equation, the equation must be rewritten so that the normal 
vector at every point on the part that is being used as a face points to the exterior 
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of the solid. Therefore, by inspecting normal vectors, one can immediately tell the 
inside and outside of a solid. This orientation must be done for all faces. Fig. 9.13 
shows boundary representation in topological and geometric information. 
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Fig. 9.13 Boundary representation 

The B-Rep Scheme

The	basis	of	a	B-rep	scheme	is	that	a	solid	model	is	bounded	by	a	set	of	faces.	
A solid model contains faces, vertices, loops, edges, bodies, etc. Only boundary 
surfaces of the model are stored and the volumetric properties are calculated by 
the Gauss divergence theorem. This theorem relates surface integrals to volume 
integrals. Using this scheme, a variety of solids depending on the primitive 
surfaces (curved, planar, sculptured) can be modeled. There are two types of solid 
models in the scheme: 

1. Polyhedral solids:	Polyhedral	models	consist	of	 straight	edges,	e.g.,	a	non-
cylindrical	surface,	box,	wedge,	combination	of	two,	or	more	non-cylindrical	
bodies.	Polyhedral	solids	can	have	blind	or	through	holes	and	2D	or	3D	faces,	
with no dangling edges. A valid polyhedral abides by Euler’s equation: 

F − E + V − L = 2(B − G) 

where

F = face 

E = edge 

V = vertices 

L = inner loop 

B = bodies 

G = through holes 
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A simple polyhedral has no holes; each face is bounded by a single set of connected 
edges (bounded by one loop of edges). 

Euler’s equation for a simple polyhedral can be reduced to: F − E + V = 2 

 
Fig. 9.14 A simple polyhedral 

For the box shown in Fig. 9.14, F = 6, E = 12, and V =	8.	

Examples of other types of polyhedral are shown in Fig. 9.15. 

(a) (b)

Fig. 9.15 (a) A polyhedral with two loops; (b) a polyhedral with a blind hole 

2. Curved solids: A curved solid is similar to a polyhedral object but it has 
curved faces and edges. Spheres and cylinders are examples of curved solids 
(Fig. 9.16). 

 Sphere: F = 1, V = 1, E = 0              Cylinder: F = 3, E = 3, V= 2 
Fig. 9.16 Curved solids 



GENERATION OF A 3D MODEL 261

Primitives:	In	B-rep,	a	model	is	made	up	of	the	following	primitives:	

•	 Vertex: a point in space 

•	 	Edge:	 a	 finite,	 non-intersecting	 curve	 bounded	 by	 two	 vertices	 that	 are	 not	
necessarily distinct 

•	 	Face:	 a	 finite	 connected,	 non-self-intersecting	 region	 of	 a	 closed	 oriented	
surface, bounded by one or more loops 

•	 	Loop:	an	ordered	alternating	sequence	of	vertices	and	edges.	It	defines	a	non-
self-intersecting	closed	space	curve,	which	may	be	a	boundary	of	a	face	

•	 Body: an entity that has faces, edges, and vertices; a minimum body is a point 

A	B-rep	scheme	is	closely	related	to	the	traditional	drafting	method.	

9.4.4 Sweeping 
Sweeping is a modeling function in which a planar closed domain is translated 
or revolved to form a solid. When the planar domain is translated, the modeling 
activity is called translational sweeping; when the planar region is revolved, it is 
called swinging, or rotational sweeping, as shown in Fig. 9.17. 

Director curve

Swept solid

Generator surface

Swept solid

Axis of revolution

Fig. 9.17 Sweeping

9.5 ADVANTAGES OF SOLID MODELING 

•	 	Solid	modeling	is	one	of	the	most	important	applications	of	CAD	software	and	
it has become increasingly popular of late. Solid modeling helps the designer to 
see the designed object as if it were the real manufactured product. 

•	 	Solid	modeling	can	be	seen	from	various	directions	and	in	various	views.	This	
helps the designer to be sure that the object looks exactly as they want it to be. It 
also allows the designer to see what other changes can be made to the object. 
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9.6 APPLICATIONS OF SOLID MODELING 

Solid modeling is used for creating not only solid models of machine parts, but 
also buildings, electric circuits, and even the human body Solid modeling software 
is used for a large variety of applications, including: 

1. Engineering: Engineering design professionals use solid modeling to see what 
the designed product will actually look like. Architects and civil engineers use 
it to see the layout of a designed building. 

2. Entertainment industry: The animation industry has been using solid 
modeling to create characters and objects. 

3. Medical industry: Modern imaging scanners create solid models of the 
internal body parts design medical devices, etc. 

9.7 RENDERING 

Rendering	is	a	technique	of	creating	realistic	images	on	a	computer	monitor.	The	
image we see on a computer monitor is made up of a large number of illuminated 
dots called pixels. Creating a picture involves a number of stages. In the first 
stage, models of objects are generated, then viewing specifications and lighting 
conditions are selected. The creation of realistic pictures is an important goal in 
fields such as simulation, design, entertainment, research, and education. Examples 
of simulation systems include flight simulators, designs of 3D objects such as 
automobiles	and	buildings,	and	computer-generated	cartoons	 in	entertainment.	
Realistic	images	have	become	an	essential	tool	in	research	and	education.

The color of any specific point in a model is a function of the physical material 
properties of that surface. Two general shading algorithms are used for this 
purpose: 

1. Local illumination: Local illumination algorithms describe only how 
individual surfaces reflect or transmit light. They predict the intensity, spectral 
character, and distribution of the light being reflected from that surface. Only 
the light coming directly from the light source itself is considered in shading. 

2. Global illumination: Global illumination is commonly used to describe 
all forms of indirect light. It is often assumed to encompass all of global 
illumination. 
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Fig. 9.18 Diffuse reflection 

Fig. 9.19 Specular reflection 

9.7.1 Scanline Rendering 
Scanline rendering is used to demonstrate a visible surface. It is widely used for 
movie effects, due to its speed and realism. It has the side effect of only being able 
to “see” one pixel at a time, and therefore cannot create shadows naturally. 

9.7.2 Ray Trace Rendering 
A ray is traced back from the eye position, through the pixel on the monitor, until 
it intersects with a surface. When an imaginary line drawn from the eye, through 
a pixel, into a scene strikes a polygon, three things happen. First, the color and 
brightness values are calculated based on direct illumination from lights directly 
striking that polygon. Next, the angles of reflection and refraction are calculated, 
as	 shown	 in	 Fig.	 9.20.	 The	 ray	 tracing	 process	 repeats	 once	 again,	 and	 so	 on,	
until a maximum number of iterations is reached or until no more surfaces are 
intersected. When all the rays have completed their journeys, the intensity and 
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color	values	are	combined	and	the	pixel	is	painted.	Ray	tracing	is	very	versatile.	
It can accurately account for the global illumination characteristics of direct 
illumination, shadows, specular reflections (e.g. mirrors), and refraction through 
transparent materials. 

Fig. 9.20 Ray trace rendering 

Advantages of ray tracing

•	 Reflections	and	refraction	are	calculated	accurately	

•	 Shadows	can	be	calculated	as	well	

Disadvantages of ray tracing: 

•	 The	process	can	be	computationally	expensive	

•	 Not	all	behaviors	of	light	are	accounted	for	

9.7.3 Radiocity Rendering 
This is the ability of a material’s physical properties to reflect light and to impinge 
upon other materials. Consider the intersections of two walls at a corner (i.e., 
orthogonal to each other), one painted white and the other red. If a red object is in 
front of a white object, some of the red will appear on the white background. The 
rate at which energy leaves a surface is called radiocity. It is the sum of the rates 
at which the surface emits energy and reflects or transmits it from that surface or 
other surfaces. Fig. 9.21 shows rendering using radiocity. 
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Fig. 9.21 Rendering using radiocity 

•	 	All	energy	emitted	or	reflected	by	every	surface	is	accounted	for	by	its	reflection	
from or absorption by other surfaces.

•	 	The	amount	of	light	distributed	from	each	mesh	element	to	every	other	mesh	
element is calculated; the final radiocity values are stored for each element of 
the mesh 

Applications of radiocity

•	 Generating	images	that	are	much	closer	to	reality	

•	 Remote	viewing	of	buildings	

•	 Animation	

•	 Producing	photorealistic	models	and	lifelike	video	games	

EXERCISES

1.  What do you mean by solid modeling? What are the techniques of solid 
modeling used in practice? 

2. Explain wireframe modeling. Explain its advantages. 

3. Write a short note on the approaches of solid modeling. 
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4. What do you mean by surface modeling? 

5. Write the applications of rendering. 

OBJECTIVE QUESTIONS 

9.1  A solid model based on the topological notion that a physical object is 
bounded by a set of faces is called 
(a) wireframe model (b) surface of revolution model 
(c) boundary representation model (d) constructive solid geometry model 

9.2 In boundary representation, the topological database is created by performing 
(a) Euler operation (b) Euclidean calculations 
(c)	 Boolean	operations	 (d) set theory 

9.3  A solid model based on the topological notion that a physical object can be 
divided into a set of primitives is called 
(a) wireframe model (b) surface of revolution model 
(c) boundary representation model (d) constructive solid geometry 

9.4  The process of development of a solid model by combining primitives using 
Boolean	operators	is	called	
(a) transformation (d) Euler operation 
(c) set theory (d) Euclidean operation 

9.5  Common volumes shared by two primitives are obtained by following which 
Boolean	operation?
(a) union (b) intersection 
(c) difference (d) division

9.6	 Difference	Boolean	operation	is	also	referred	as	logical	
(a)	OR	 (b) AND 
(c) NAND (d) NOT 

9.7	 Union	Boolean	operation	is	also	referred	as	logical	
(a)	OR	 (b) AND 
(c) NAND (d) NOT 

9.8	 Intersection	Boolean	operation	is	also	referred	as	logical	
(a)	OR	 (b) AND 
(c) NAND (d) NOT 
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 9.9 CSG expression for union operation is given by 
(a) A ∪	B	 (b) A ∩	B	
(c) A −	B	 (d) A +	B	

9.10 CSG expression for intersection operation is given by 
(a) A ∪	B	 (b) A −	B	
(c) A +	B	 (d) A ∩	B	

9.11  In sweeping, what type of generator surface is translated or revolved to form 
a solid model? 
(a) planar open domain (b) planar closed domain 
(c)	 non-planar	open	domain	 (d)	 non-planar	closed	domain	

9.12 Scan line, ray trace, and radiocity are types of 
(a) solid modeling (b) clipping 
(c) rendering (d) windowing 

9.13 Advantages of wireframe modeling are 
(a) it requires less memory (b) less computational time 
(c) it allows to see the interior of the design (d) all of the above 

9.14  Inability to determine computational information on mass properties is the 
disadvantage of which 3D modeling technique? 
(a) wireframe modeling (b) solid modeling 
(c) constructive solid geometry (d) boundary representation 

9.15	 Plane	surfaces,	ruled	surfaces,	and	surface	of	revolution	are	examples	of	
(a) synthetic entities  (b) analytical entities 
(c) both (a) and (b) (d) neither (a) nor (b)

9.16	 	Hermite	spline	surfaces,	B-spline	surfaces,	Bezier	patches,	and	Coon	patches	
are examples of
(a) synthetic entities (b) analytical entities 
(c) both (a) and (b) (d) neither (a) nor (b)

9.17 In a CAD system, solid modeling schemes include 
(a) primitive creation function (b) constructive solid modeling 
(c) sweeping (d) boundary representation 
(e) all of the above

9.18  In CSG, objects are represented as a combination of simpler solid objects 
called 
(a) derivatives (b)	 Boolean	operators	
(c) models (d) primitives 
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9.19	 B-rep	is	an	extension	by	adding	face	information	to	
(a) wireframe modeling (b) solid modeling 
(c) constructive solid geometry (d) none of the above 

ANSWERS 

 9.1 (c)   9.2 (a)   9.3 (d)   9.4 (c)   9.5 (b) 

 9.6 (d)   9.7 (a)   9.8 (b)   9.9 (a)  9.10 (d) 

9.11 (b)  9.12 (c)  9.13 (d)  9.14 (a)  9.15 (b) 

9.16 (b)  9.17 (e)  9.18 (d)  9.19 (a)
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10Chapter

PROJECTIONS

10.1 INTRODUCTION 

3D viewing operations are more complex than 2D viewing, not only because of the 
additional dimensions, but also because of limited display surface. In 2D, simple 
mapping produces an image; in 3D, there are many options depending on how the 
model is to be viewed—front, side, top, back. There is also a mismatch between 
the 3D model and the 2D image. To overcome all these differences, projection 
must be used to map the 2D projection plane; various types of projection are 
used in order to generate multiple views of a model. Therefore, projection is an 
important concept of the 3D viewing process. 

10.2 PROJECTIONS 

The problem of projecting a n-dimensional object into a 2D surface has been 
studied by engineers, architects, and artists for many years. In general, projections 
transform points in a coordinate system of n-dimensions into points in a 
coordinate system of a dimension less than n. 
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Computer graphics has long been used for studying n-dimensional objects by 
projecting them into 2D for viewing. We shall here limit our discussion to the 
projection from 3D to 2D.

The projection of a 3D object is defined by straight rays, emanating from the 
center of projection (CP), passing through each point of the object and intersecting 
a projection (or view) plane to form the projection. In general, the center of 
projection is at a finite distance from the projection plane. In some cases, the 
center of projection tends to be at infinity. Fig. 10.1 shows two different types of 
projections. 

The class of projections with which we deal here is known as planar geometric 
projection because projection is onto a plane rather than onto a curved surface 
and uses straight rather than curved projection. Planar geometric projections can 
be divided into two classes: perspective and parallel. The distinction lies in the 
relation of the center of projection to the projection plane. 

Projectors

CP

P

QQ

P

Projection plane

(a)

Projectors

CP at infinity

Projection plane

Q

PP

Q

(b)

Fig. 10.1 (a) Perspective projection, (b) parallel projection 
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If the center of projection is at a finite distance from projection plane, then the 
projection is perspective, as shown in Fig. 10.1(a). Now, as the center of projection 
moves towards infinity, the projectors become parallel; hence the projection is 
called parallel, as shown in Fig. 10.1(b). 

10.2.1 Perspective Projection
The center of projection is located at a finite distance from the projection plane. 
When a perspective projection is defined, its center of projection is explicitly 
specified: the center of projection is a point and has homogeneous coordinates 
of the form (x, y, z, 1). The visual effect of a perspective projection is similar to 
that of a photographic system and of the human visual system, called perspective 
foreshortening. The size of perspective projection of an object varies inversely 
with the distance of that object from the center of projection. The perspective 
projection of objects tends to look realistic, but it is not useful for recording 
the exact shape and measurements of the objects. Distance cannot be taken 
from the projection. The perspective projection gives a realistic image but loses 
the true dimensions. A perspective projection is described mathematically by 
prescribing the following: 

1. Center of projection (CP): A point where lines of projection (which are not 
parallel to the projection plane) appear to meet. The eye of the artist generally 
acts as a center of projection when they prepare realistic images of 3D objects. 

2. The view plane or projection plane: The view plane is determined by: 

(a) Reference point R0 (X0, Y0, Z0) 

(b) Unit vector, N
→

 = n1î  + n2 ĵ  + n3k̂  which is normal to the plane

3. The location of an object: A point P(x, y, z) located in the world coordinate 
system. The objective of perspective projection is to determine the image 
point P′ (x′, y, z′) on the view plane—see Fig. 10.2.
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N (Normal vector)

YRo

Projectors
P (X , Y , Z )

P (X, Y, Z)

Object location

QQ
CP

Projection plane

Z

X

Fig. 10.2 Location of the object and the image in the perspective projection 

Perspective projections are characterized by: 

(a)  Perspective foreshortening: This is the illusion that objects and lengths 
appear smaller as their distance from the center of projection increases. The 
size of an object (d) varies inversely with the distance of that object (r) from 

the center of projection, that is, d
r

∞

1
.

(b)  Vanishing points: The perspective projection of any set of parallel lines that 
are not parallel to the projection plane coverage to a point called the vanishing 
point (VP). In 3D, the parallel lines meet only at infinity, so the VP can be 
thought of as the projection of a point at infinity. Therefore, there is an infinity 
of VPs, one for each of the infinity of directions in which a line can be oriented. 

If a set of lines (projectors) is parallel to one of the three principal axes, the 
VP is called an axis vanishing point (or principal vanishing point). There are 
almost three such points, corresponding to the number of principal axes cut by 
the projection plane. 

For example, if the projection plane cuts only the z-axis (i.e. normal to it) then 
the z-axis has a VP, because lines parallel to the x- or y-axis are also parallel to the 
projection planes and then have no VP. Perspective projections are categorized 
by their number of principal VPs, i.e., by the number of axes the projection plane 
cuts. Thus, there are three types of perspective projections. 
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1-point perspective projection: 1-point perspective projection occurs when the 
projection plane is perpendicular to one of the principal axes (let it be z-axis). In 
this case the center of projection is located along one of the three coordinate axes. 
The other two centers are at infinity. So horizontal lines remain horizontal and 
vertical lines remain vertical. Fig. 10.3 shows two different 1-point perspective 
projections of a cube. In this case, lines parallel to the x- and y-axis do not 
converge; only lines parallel to the z-axis do so. 

Y

Z

X

Z-axis VP

Fig. 10.3 1-point perspective projection 

 

O

Z

X

Z-axis VP

Y

Fig. 10.4 2-point perspective projection 
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2-point perspective projection: 2-point perspective projection occurs when the 
projection plane intersects two principal axes. Let these axes be z- and x-axis. 
Therefore, lines parallel to the y-axis do not converge in the projection. 2-point 
perspective projection is used in architectural, engineering, industrial design, and 
advertising drawings. Fig. 10.4 shows the construction of a 2-point perspective 
projection. 

3-point perspective projection: 3-point perspective projection occurs when the 
projection plane intersects all three principal axes. These are used less frequently, 
since they add little realism beyond that afforded by the 2-point perspective. See 
Fig. 10.5. 

 

Y

X

VP3
VP2

Z

VP1

Fig. 10.5 3-point perspective projection 

10.2.2 Parallel Projection
The center of projection is located at infinity in parallel projection, because all 
of the projections (or lines of projections) are parallel to each other. The parallel 
projection is a less realistic view because perspective foreshortening is lacking, 
although there can be different constant foreshortening along each axis. Parallel 
projection can be used to preserve the true dimensions of an object but does not 
produce a realistic picture. Parallel projections have been used by engineers and 
draftsmen in order to create working drawings. 

In parallel projections, the projection (or image) is obtained at a location on 
the projection plane where the parallel lines of projection intersect the projection 
plane. These lines of projections are drawn from the object location along a 
particular direction. The direction of projection is explicitly given (see Fig. 10.6). 
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Y

P

Q

V (direction of projection)

X
O

Z

Parallel projectors

Q

PProjection
plane

Parallel
projection
(image)

Fig. 10.6 Parallel projection 

Depending on the relation between direction of projection and normal to the 
projection plane, the parallel projections are categorized into two types: 

(a) Orthographic parallel projection 

(b) Oblique parallel projection 

10.2.2.1 Orthographic Parallel Projection 

In orthographic parallel projection, directions of projection (lines of projection) 
are perpendicular to the plane of projection as shown in Fig. 10.7. Orthographic 
parallel projections are mainly of two types. 

Projection of
plane

Direction of view

Fig. 10.7 Orthographic projection 
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(і)  Multi-view orthographic parallel projection: The projection plane is 
perpendicular to the principal axis and the direction of projection is parallel 
to the principal axis. These projections are mainly of the following types:

(a) front elevation 

(b) top elevation or plane elevation 

(c) side elevation 

Fig. 10.8 Multi-view orthographic parallel projection 

Fig. 10.8 shows the construction of multi-view orthographic parallel 
projection. These types of projections are generally used in engineering 
drawing to project multiple views (or faces) of machine parts or buildings. 
Since each projection depicts only one face of an object, the 3D nature of the 
projected object can be difficult to deduce. 

(ii)  Axonometric orthographic parallel projections: Projection planes are not 
perpendicular to a principal axis and therefore show multiple faces of an 
object at once. Axonometric orthographic parallel projection is shown in 
Fig. 10.9. It can resemble perspective projection in this way, but differs in 
that the shortening is uniform, rather than being related to the distance 
from the center of projection. 
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Plane of
projection

Direction of view

Fig. 10.9 Axonometric orthographic parallel projections 

Parallelism of lines is preserved but angles are not; distance can be measured 
along each principal axis with different scale factors. Axonometric orthographic 
parallel projections are categorized into three types: 

(a)  Isometric: The isometric projection is commonly used. In this case, the 
projection plane normal (i.e. the direction of projection) makes equal 
angles with each principal axis. The projection plane normal is represented 
in the following vector form: 

nx î  + ny ĵ  + nzk̂ 

n n n

n n n

x y z

x y z

= =

± = ± = ±

z

y

120°120°

120°

x

Fig. 10.10 Isometric projectors 

There are just eight directions that satisfy the above conditions. Therefore, in this 
type of projection, the angles between the principal axes are all equal to 120° as 
shown in Fig. 10.10. In isometric projection all three principal axes are equally 
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foreshortened, due to this measurement along the axes being made to the same 
scale (“iso” means equal and “metric” means measure). 

(b)  Diametric: In this case the direction of projection makes equal angles with 
exactly two of the principal axes. 

(c)  Trimetric: In this case, the direction of projection makes unequal angles 
with all the principal axes. 

10.2.2.2 Oblique Projection 

The projections are inclined with respect to the projection plane; also, one of 
the faces of the object is kept parallel to the projection plane. Fig. 10.11 shows 
oblique projection. Oblique projection combines the properties of multi-view 
orthographic projection with those of axonometric projection. The projection 
plane is normal to the principal axes, so the projection of the face of the object 
must be parallel to the projection plane. This allows the measurement of angles 
and distances. Oblique projection is categorized into two types: 

Fig. 10.11 Oblique projection 

(a)  Cavalier: In this case the direction of projection makes a 45° angle with the 
projection plane. Due to this, the projection of a line perpendicular to the 
projection plane has the same length as the line itself. That is, there is no 
foreshortening along this direction. Fig. 10.12 shows cavalier projection of 
the unit cube into the xy plane and shows all the edges of the cube project 
at unit length. If the direction of projection makes a 45° angle with the 
projection plane, then the direction of projection is given by the vector, 
and if angle is 30° then the direction of projection is given by the vector. 
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X

Z

Y

O 1

1
1/2

45°

Fig. 10.12 Cavalier projection in the xy plane 

(b)  Cabinet projection: In this case the lines of projection make tan-1(2) = 63.4° 
angle with the projection plane; due to this, the lines perpendicular to 
the projection plane project at one half their length. Cabinet projection 
produces more realistic image, due to foreshortening. Fig. 10.13 shows 
cabinet projection of a unit cube into the xy plane. 

X

1

1O

1

1/2

30°

Z

Y

Fig. 10.13 Cabinet projection 

Edges parallel to the x-axis and the y-axis are projected at unit length and the 
edge is parallel to z-axis at half of the original length. If the line of projection 
makes an angle of 45° with the projection plane, then the direction of projection 
of given by the vector:

V
→

=
2

4
 î  + 2

4
 ĵ  - k̂
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If the angle is 30° then the direction of projection is given by the vector:

V
→

=
3

4
 î  + 1

4
 ĵ  - k̂ 

10.2.3 Differentials Between Parallel Projection and 
Perspective Projection 

Perspective Projection Parallel Projection

1. The center of projection is at a finite 
distance from the projection plane. 

 The center of projection is at 
an infinite distance from the 
projection plane. 

2. The lines of projection or projectors 
converge to a point; that is, lines 
of projection appear to meet at a 
point on the view plane called the 
vanishing point. 

Projectors are parallel. 

3. To define perspective projection, 
we explicitly specify the center of 
projection. 

To define parallel projection we 
specify the direction of projection. 

4. The visual effect is similar to that of 
a photographic system and of the 
human visual system; this feature is 
known as perspective shortening. 

This is used by drafters and 
organizers to create a working 
drawing of an object which 
preserves its scale and shape. 

5.  The size of the projection of an 
object varies inversely with the 
distance of that object from the center 
of projection. 

The scale and shape of an object is 
preserved; there can be different 
constant foreshortening along 
each axis. 

6. Perspective projection of an object 
looks realistic, due to perspective 
foreshortening and vanishing points. 

Parallel projection is a less 
realistic view because perspective 
foreshortening is lacking. 

7. Perspective projection is not useful 
for recording the exact shape and 
measurement of the objects. 

Parallel projection is useful for 
exact measurement and shape of 
objects. 

8. Perspective projections are categorized 
by their number of principal vanishing 
points and by the number of axes the 
projection plane cuts. 

Parallel projections are categorized 
by the relation between the 
direction of projection and normal 
to the projection plane. 
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Mathematical description of a parallel projection 

In order to determine parallel projection we have to prescribe: 

1. the direction of projection, which is prescribed by the given vector V
→

.  
If V

→
 is normal to the projection plane then the parallel projection is called 

orthographic, otherwise it is called oblique. 

2. the projection plane or view plane, which is specified by its reference point R0 
(X0, Y0, Z0) and normal vector N

→
 = n1î  + n2 ĵ  + n3k̂ .

3. the location P(x, y, z) of an object in the world coordinate system. Now our 
objective is to determine the location of image P′(x′, y′, z′) by using the above 
three parameters (see Fig. 10.14). 

Image point

P

(x , y , z )

Projection
Plane

Ro N

V

P (x, y, z)
Object
location

(Direction of
projection)

z

x

y

Fig. 10.14 Location of an object and an image in parallel projection

10.3 SOLVED PROBLEMS 

Problem 1 

Obtain standard perspective projection onto the xy plane. 

Solution 

Consider a point P(z, y, z) in space as shown in Fig. 10.15. Let P′(x′, y′, 0) be the 
perspective projection of P(x, y, z) onto the xy plane, with the center of projection 
along the z-axis at a distance d from the projection plane. 
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P

QQ

P
Projectors

CP

Projection plane

Fig. 10.15 Perspective projection 

The perspective projection of point p can be found as follows: 

(i)  Looking along the y-axis towards the origin as CAP and COP´ are similar. See 
Fig. 10.16. 

Therefore, 

x

x

d

d z

′
=

−

or x
dx

d z
′ =

−
  ...(10.1)

Z
OAC (0, 0, d)

P (x, y, z)

X

P (x , y , 0)

Fig. 10.16 Direction of view along the y-axis 

(ii)  Looking along the x-axis towards the origin as CBP and COP´ are similar. See 
Fig. 10.17. 
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Z
OBC (0, 0, d)

P (x, y, z)

P ( x , y , 0 )

Y

Fig. 10.17 Direction of view along the x-axis 

Therefore, 

y

y

d

d z

′
=

−

or y
dx

d z
′ =

−

  ...(10.2) 

On the basis of Eqs (10.1) and (10.2), the projected point becomes

x y z
dx

d z

dy

d z

x y z x y z

d

d

′ ′ ′

′ ′ ′

1 0 1

1 1

0 0 0

0 0 0

  =
− −










  =   00 0 0 1

0 0 0

−



















d

[P′] = [P][MPER k̂ ]

where

[MPER k̂ ] = 

d

d

d

0 0 0

0 0 0

0 0 0 1

0 0 0

−
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If the center of projection is located along the x-axis, then the perspective 
projection matrix MPERi becomes:

[MPER î ] = 

0 0 0 1

0 0 0

0 0 0

0 0 0

−



















d

d

d

If the center of projection is located along the y-axis, the perspective projection 
matrix MPER   j becomes:

[MPER  ĵ ] = 

d

d

d

0 0 0

0 0 0 1

0 0 0

0 0 0

−





















Problem 2
A tetrahedron is defined by the coordinates of its vertices as follows  
P1 (3, 4, 0), P2(1, 0, 4), P3(2, 0, 5), P4(4, 0, 3). Find the perspective projection 
onto the projection plane at z = 0. The center of projection should be located at  
d = −5 (as negative side of z-axis). 

Solution 

Here d = −5 

Therefore, perspective matrix along the z-axis is given by:

[MPER k̂ ] = 

−

−

−





















5 0 0 0

0 5 0 0

0 0 0 1

0 0 0 5

The projected points are obtained as follows: 

P P P P P P P P1 2 3 4 1 2 3 4
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−

−
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Problem 3 

Find the standard perspective projection of a unit cube on the xy plane with  
d = 5 units. Refer to Fig. 10.18. 

Solution 

Here d = 5 

E (0, 1, 1)

B (0, 1, 0)
F (1, 1, 0)

G (1, 1, 1)

O (0, 0, 0) A (1, 0, 0)
X

Z

C (0, 0, 1) D (1, 0, 1)

Y

Fig 10.18 A unit cube 
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The perspective projection along the z-axis is given by:

MPER k̂  = 

5 0 0 0

0 5 0 0

0 0 0 1

1 0 0 5

−





















The unit cube is represented by the following matrix:

P =































0 0 0 1

1 0 0 1

0 1 0 1

0 0 1 1

1 0 1 1

1 1 0 1

0 1 1 1

1 1 1 1



O

A

B

C

D

E

F

G

The projected points are determined as follows:

[P′] = [P][MPER k̂ ]

=
































0 0 0 1

1 0 0 1

0 1 0 1

0 0 1 1

1 0 1 1

1 1 0 1

0 1 1 1

1 1 1 1

−





















5 0 0 0

0 5 0 0

0 0 0 1

1 0 0 5
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Therefore, projected points are O′(0, 0, 0), A′(1, 0, 0), B′(0, 1, 0), C′(0, 0, 0), 

D′
5

4
0 0, ,





 , E'(1, 1, 0), F ′ 0

5

4
0, ,





  G′

5

4

5

4
0, ,







Problem 4 

Obtain standard 2-point and 3-point perspective projections. 

Solution 

In order to obtain 2-point and 3-point perspective projections, it is required to 
create a 4 × 4 homogeneous coordinate transformation matrix with two or three 
of the top three elements on the fourth row having non-zero values. This matrix is 
then multiplied by an orthographic projection matrix. 
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For a 2-point perspective projection, the transformation matrix is written as:

1 0 0

0 1 0

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0

0 0 1

0 0 0 1

p

q q

r




































or 





For a 3-point perspective projection, the transformation matrix is written as:

1 0 0

0 1 0

0 0 1

0 0 0 1

p

q

r





















These matrices can also be obtained by concatenation of the appropriate 1-point 
perspective transformation matrices:

1 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0

0 0 1 0

0 0 0 1

p

q









































=





















1 0 0

0 1 0

0 0 1 0

0 0 0 1

p

q

EXERCISES 

1. Obtain 2-point and 3-point perspective projections of a unit cube. 

2. Obtain 2-point perspective projection of a unit cube obtained by rotating 
the cube 30° about the y-axis and translating it by (0, 3, −3). The center of 
projection is at (0, 0, 2). 

3. Obtain perspective projection of any point in the plane z = d by standard 
perspective projection. 

4. By standard perspective projection, obtain the projection of a line joining the 
points a(2, 2, 2d) and b(−1, 1, 0), when the projection plane is z = d and center 
of projection is at (0, 0, d). 
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OBJECTIVE QUESTIONS 

10.1 Subcategories of orthographic projection are 
(a) isometric, diametric, trimetric (b) cavalier, cabinet, isometric 
(c) cavalier, cabinet (d) isometric, cavalier, trimetric 

10.2  When the center of projection is located at a finite distance from the 
projection plane, this projection method is called 
(a) orthographic projection (b) perspective projection 
(c) parallel projection (d) planar geometric projection 

10.3  Perspective projections are characterized by perspective foreshortening in 
which 
(a)  the object appears bigger as its distance from the center of projection 

increases 
(b)  the object appears smaller as its distance from the center of projection 

increases 
(c)  the object appears unchanged as its distance from the center of 

projection changes 
(d) none of the above 

10.4 In 3D perspective projection, the vanishing point can be thought of as 
(a) finite distance 
(b) infinity 
(c) two times the distance of the object from the projection plane 
(d) three times the distance of the object from the projection plane 

10.5 1-point perspective projection occurs when the projection plane is 
(a) parallel to one of the principle axes 
(b) inclined to one of the principle axes 
(c) perpendicular to one of the principle axes 
(d) none of the above 

10.6 In parallel projection, the center of projection is located at 
(a) finite distance 
(b) infinity 
(c) two times the distance of the object from the projection plane 
(d) four times the distance of the object from the projection plane 
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 10.7 In orthographic parallel projection, the direction of projectors is
(a) parallel to the plane of projection 
(b) inclined to the plane of projection 
(c) obliqued to the plane of projection
(d) perpendicular to the plane of projection 

 10.8 A multi-view projection method is 
(a) isometric (b) diametric 
(c) triametric (d) none of the above 

 10.9  Projection planes are not perpendicular to a principle axis and show 
multiple faces of an object at once; such a type of projection is called 
(a) orthographic projection (b) oblique projection 
(c) parallel projection (d) axonometric projection 

10.10  In oblique projection, projectors are 
(a) parallel to the plane of projection
(b) inclined to the plane of projection 
(c) perpendicular to the plane of projection
(d) none of the above 

10.11  In cavalier projection, the angle between the projector and the plane of 
projection is 
(a) 30° (b) 45° 
(c) 63.4° (d) 120°

ANSWERS

 10.1 (a)  10.2 (b) 10.3 (b) 10.4 (b)  10.5 (c)

 10.6 (b)  10.7 (d) 10.8 (d) 10.9 (d) 10.10 (b)

10.11 (b)
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11Chapter

GRAPHICS 
PROGRAMS IN 
C LANGUAGE 

11.1 PROGRAM-1

/* PROGRAM FOR LINE GENERATION USING DDA 
ALGORITHM */ 

#include<stdio.h> 

#include<conio.h> 

#include<graphics.h> 

#include<math.h> 

void main() 

{ 

  int xA, xB, yA, yB, dx, dy, i; 

  float xincr, yincr, x, y, DENO; 

  int gd = DETECT,gm; 

  initgraph(&gd, &gm,"c:\\tc\\bgi"); 

  printf("Enter the start pt co-ordinates"); 

  scanf("%d%d", &xA, &yA); 

  printf("Enter end point co-ordinates"); 

  scanf("%d%d", &xB, &yB); 

  dx = xB − xA; 
  dy = yB − yA; 
  if (abs (dy) < = abs (dx)) 

       DENO = abs(dx); 

  else 

       DENO = abs(dy); 

  xincr = dx/DENO; 
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  yincr = dy/DENO; 

  x = xA; 

  y = yA; 

  for(i = 0; i< = abs (DENO); i++) 

  { 

      putpixel(floor(x), floor(y), 2); 

      x = x + xincr; 

      y = y + yincr; 

  } 

  getch(); 

} 

11.2 PROGRAM-2 

/* PROGRAM FOR LINE GENERATION USING 
BRESENHAM’S LINE GENERATION ALGORITHM */ 

#include<graphics.h> 

#include<stdio.h> 

#include<math.h> 

#include<conio.h> 

void main() 

{ 

  int xa, ya, xb, yb; 

  int dx, dy; 

  int x, y; 

  int p;  

  int i; 

  int signx, signy; 

  int gd = DETECT,gm; 

  initgraph(&gd, &gm,"c: \\tc\\bgi"); 

  printf("enter start point coordinate"); 

  scanf("%d%d", &xa, &ya); 

  printf("enter end point coordinate"); 

  scanf("%d%d", &xb, &yb); 

  dx = xb − xa; 
  dy = yb − ya; 
  x = xa; 

  y = ya; 

  if (dx > = 0) 

      signx = +1;  

  else 

      signx = −1; 
  if (dy > = 0) 

      signy = +1; 

  else  

      signy = −1; 
  if (abs(dy) < abs(dx)) 

  { 

      p = (2 * dy * signy) − (dx * signx); 
      for (i = 0; i < = dx * signx; i++) 
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      { 

          putpixel(floor(x),floor(y),RED); 

          if (p < 0) 

          { 

               x = x + signx; 

               y = y; 

               p = p + (2 * dy * signy); 

          } 

          else 

          { 

               x = x + signx; 

               y = y + signy; 

               p = p + (2 * dy * signy) − (2 * dx * signx); 
          } 

      } 

  } 

  else 

  { 

      p = (2 * dx * signx − dy * signy); 
      for( i =0; i < = dy * signy; i++) 

      { 

          putpixel(floor(x),floor(y),RED); 

          if (p < 0) 

          { 

               x = x; 

               y = y + signy; 

               p = p + 2 * dx * signx; 

          } 

          else 

          { 

               x=x+signx; 

               y=y+signy; 

               p=p+(2*dx*signx)-(2*dy* signy); 

          } 

      } 

  } 

  getch(); 

 } 

11.3 PROGRAM-3 

/* PROGRAM FOR CIRCLE GENERATION USING 
BRESENHAM’S MIDPOINT CIRCLE GENERATION 
ALGORITHM */ 

#include<conio.h> 

#include<stdio.h> 

#include<math.h> 

#include<graphics.h> 

void main() 
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{ 

  int xc, yc, R, p, i; 

  int x, y; 

  int gd = DETECT, gm; 

  initgraph(&gd, &gm,"c:\\tc\\bgi"); 

  printf("Enter the co-ordinates of Centre of Circle"); 

  scanf("%d%d",&xc,&yc); 

  printf("Enter Radius of Circle"); 

  scanf("%d", &R); 

  x = 0; 

  y = R; 

  p = 1 − R; 
  for (i = 0; x < = y; i++) 

  { 

      putpixel((x + xc), (y + yc), CYAN); 

      if(p < 0) 

      { 

            x = x + 1; 

            y = y; 

            p = p + 2 * x + 3; 

      } 

      else 

      { 

            x = x + 1; 

            y = y − 1; 
            p = p + 2 * x − 2 * y + 5; 
      } 

      putpixel((x + xc), (−y + yc), CYAN); 
      putpixel((−x + xc), (y + yc), CYAN); 
      putpixel((−x + xc), (−y + yc), CYAN); 
      putpixel((y + xc), (x + yc), CYAN); 

      putpixel((y + xc), (−x + yc), CYAN); 
      putpixel((−y + xc), (x + yc), CYAN); 
      putpixel((−y + xc), (−x + yc), CYAN); 
  } 

  getch(); 

} 

11.4 PROGRAM-4 

/* PROGRAM FOR ELLIPSE GENERATION USING 
BRESENHAM’S MIDPOINT ELLIPSE GENERATION 
ALGORITHM */ 

#include<graphics.h> 

#include<math.h> 

#include<stdio.h> 

#include<conio.h> 

void main() 
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{ 

  int rx, ry, xc, yc, x1, y1, x2, y2, p1, p2, i, j; 

  float gd = DETECT,gm; 

  initgraph(&gd, &gm,"c:\\tc\\bgi"); 

  printf("enter the center of the ellipse"); 

  scanf("%d%d", &xc, &yc); 

  printf("enter semi_major and semi_minor axis"); 

  scanf("%d%d", &rx, &ry); 

  x1 = 0; 

  y1 = ry; 

  p1 = (ry^2 − ry*rx^2); 
  for(i = 0; x1 * ry^2 < y1*rx^2; i++) 

  { 

      if(p1 < 0) 

      { 

          x1 = x1+1; 

          y1 = y1; 

          p1 = p1 + (2*x1 + 3) * ry^2; 

      } 

      else 

      { 

          x1 = x1 + 1; 

          y1 = y1 − 1; 
          p1 = p1 + (2 * x1 + 3) * ry^2 + (2 − 2*y1) * rx^2; 
      } 

      putpixel(x1 + xc, y1 + yc, 1); 

      putpixel(−x1 + xc, y1 + yc, 1); 
      putpixel(x1 + xc, −y1 + yc, 1); 
      putpixel(−x1 + xc, −y1 + yc, 1); 
  } 

  x2 = rx; 

  y2 = 0; 

  p2 = rx^2 − rx*ry^2; 
  for(j = 0; x2*ry^2 > y2*rx^2; j++) 

  { 

      if(p2 < 0) 

      { 

          x2 = x2; 

          y2 = y2 + 1; 

          p2 = p2 + (2*y2 + 3)*rx^2; 

      } 

      else 

      { 

          x2 = x2 − 1; 
          y2 = y2 + 1; 

          p2 = p2 + (2 * y2 + 3) * rx^2 − (2 * x2 − 2) * ry^2; 
      } 

      putpixel(x2 + xc, y2 + yc, 1); 

      putpixel(−x2 + xc, y2 + yc, 1); 
      putpixel(x2 + xc, −y2 + yc, 1); 
      putpixel(−x2 + xc, −y2 + yc, 1); 
  } 

  getch(); 

} 
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11.5 PROGRAM-5 

/* PROGRAM FOR 2D TRANSLATION TRANSFORMATION */ 
#include<graphics.h> 

#include<stdio.h> 

#include<conio.h> 

#include<math.h> 

void main() 

{ 

  int n = 5, i, b[10], tx, ty; 
  int a[ ] = {100, 100, 200, 100, 200, 200, 100, 200, 100, 100}; 
  int gd = DETECT, gm; 

  initgraph(&gd, &gm,"c:\\tc\\bgi"); 

  drawpoly(n, a); 

  printf("Enter The Value of tx&ty"); 

  scanf("%d%d", &tx, &ty); 

  for(i = 0; i< =1 0; i = i + 2) 

  { 

      b[i] = a[i] + tx; 
  } 

  for(i = 1; i< = 9;i = i + 2) 

  { 

      b[i] = a[i] + ty; 
  } 

  setcolor(4); 

  drawpoly(n, b); 

  getch(); 

} 

11.6 PROGRAM-6 

/* PROGRAM FOR 2D ROTATION TRANSFORMATION */ 
#include<graphics.h> 

#include<stdio.h> 

#include<conio.h> 

#include<math.h> 

void main() 

{ 

  int n = 5, i, b[10]; 
  float o; 

  int a[] = {100, 100, 200, 100, 200, 200, 100, 200, 100, 100}; 
  int gd = DETECT, gm; 

  initgraph(&gd, &gm,"c:\\tc\\bgi"); 

  drawpoly(n, a); 

  printf("enter the value of angle o"); 

  scanf("%f", &o); 

  o = o*(3.14/180); 

  for (i = 0; i < = 10; i = i + 2) 
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  { 

      b[i] = a[i] * cos(o) − a[i + 1]*sin(o); 
      b[i + 1] = a[i] * sin(o) + a[i + 1] * cos(o); 
  } 

  setcolor(3); 

  drawpoly(n, b); 

  getch(); 

} 

11.7 PROGRAM-7 

/* PROGRAM FOR TRANSLATION FOLLOWED BY 
SCALING TRANSFORMATION */ 

#include<graphics.h> 

#include<stdio.h> 

#include<conio.h> 

#include<math.h> 

void main() 

{ 

  int n = 5, i, b[10], tx, ty, sx, sy; 
  int a[ ] = {100,100,200,100,200,200,100,200,100,100}; 
  int gd = DETECT,gm; 

  initgraph(&gd, &gm," c:\\tc\\bgi"); 

  drawpoly(n, a); 

  printf("Enter The Value Of tx&ty&sx&sy"); 

  scanf("%d%d%d%d", &tx, &ty, &sx, &sy); 

  for(i = 0; i < = 10; i = i + 2) 

  { 

      b[i] = a[i] * sx + (1 − sx) * tx; 
  } 

  for(i = 1; i < = 9; i = i + 2) 

  { 

      b[i] = a[i] * sy + (1 − sy) * ty; 
  } 

  setcolor(5); 
  drawpoly(n, b); 

  getch(); 

} 

/* PROGRAM FOR SCALING ABOUT A POINT */ 
#include<stdio.h> 

#include<conio.h> 

#include<graphics.h> 

#include<math.h> 

void main () 

{ 

  int n = 5, b[10], sx, sy, i; 
  int a[10] = {100, 100, 200, 100, 200, 200, 100, 200, 100, 100}; 
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  int gd = DETECT,gm; 

  initgraph(&gd, &gm," c:\\tc\\bgi"); 

  drawpoly(n, a); 

  printf("Enter the value of sx and sy"); 

  scanf("%d%d", &sx, &sy); 

  for(i = 0; i < = 9; i + = 2) 

  { 

      b[i] = a[i] * sx + 100 * (1 − sx); 
      b[i + 1] = a[i + 1] * sy + 100 * (1 − sy); 
  } 

  setcolor(3); 

  drawpoly(n,b); 

  getch(); 

} 

/* PROGRAM FOR ROTATION ABOUT A POINT */ 
#include<stdio.h> 

#include<conio.h> 

#include<graphics.h> 

#include<math.h> 

void main () 

{ 

  int n = 5, b[10], i; 
  int a[10]={100, 100, 200, 100, 200, 200, 100, 200, 100, 100}; 
  float ang; 

  int gd = DETECT, gm; 

  initgraph(&gd, &gm," c:\\tc\\bgi"); 

  drawpoly(n, a); 

  printf("Enter the value ang"); 

  scanf("%f", &ang); 

  for(i = 0; i < = 9; i + = 2) 

  { 

      b[i] = a[i] * cos(ang) - a[i + 1] * sin(ang) + 100 *  
(1 - cos(ang)) + 100 * sin(ang); 

      b[i + 1] = a[i] * sin(ang) + a[i + 1] * cos(ang) - 100 * 
sin(ang) − 100 * (cos(ang) − 1); 

  } 

  setcolor(3); 

  drawpoly(n,b); 

  getch(); 

} 

/* PROGRAM FOR SHEAR TRANSFORMATION */ 
#include<stdio.h> 

#include<conio.h> 

#include<graphics.h> 

#include<math.h> 

void main() 

{ 

  int n = 5, b[10], shx, i; 
  int a[10] = {100, 100, 200, 100, 200, 200, 100, 200, 100, 100}; 
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  int gd = DETECT,gm; 

  initgraph(&gd, &gm," c:\\tc\\bgi"); 

  drawpoly(n, a); 

  printf("enter the value of shx"); 

  scanf("%d", &shx); 

  for(i = 0; i < = 3; i + = 2) 

  { 

  b[i] = a[i]; 
  b[i + 1] = a[i + 1]; 
  } 

  for(i = 4; i < = 7; i + = 2) 

  { 

  b[i] = a[i] + shx; 
  b[i + 1] = a[i + 1]; 
  } 

   for(i = 8; i < = 9; i + = 2) 

  { 

  b[i] = a[i]; 
  b[i + 1] = a[i + 1]; 
  } 

  setcolor(4); 

  drawpoly(n, b); 

  getch(); 

} 

/* PROGRAM FOR REFLECTION TRANSFORMATION */ 
#include<stdio.h> 

#include<conio.h> 

#include<math.h> 

#include<graphics.h> 

void main() 

{ 

int n = 5, b[10], i, c, x; 
int a[10] = {100, 100, 200, 100, 200, 200, 100, 200, 100, 100}; 
float ang; 

int gd = DETECT, gm; 

initgraph(&gd, &gm," c:\\tc\\bgi"); 

drawpoly(n, a); 

printf("enter the value of x and y intercept"); 

scanf("%d%d", &x, &c); 

printf("enter the angle"); 

scanf("%f", &ang); 

line(0, c, x, 0); 

ang = ang * 3.14159/180; 
for(i = 0; i < = 9; i + = 2) 

{ 

b[i] = a[i] * cos(2 * ang) − a[i + 1] * sin(2 * ang) + c * sin(2 * ang); 
b[i + 1] = − a[i] * sin(2 * ang) − a[i + 1] * cos(2 * ang) + c *  

(1 − cos(2 * ang)); 
} 

drawpoly(n,b); 

getch(); 

} 
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11.8 PROGRAM-8 

/* PROGRAM FOR ALL 3D TRANSFORMATIONS */ 
#include<stdio.h> 

#include<conio.h> 

#include<graphics.h> 

#include<math.h> 

int maxx,maxy,midx,midy; 

void axis() 

{ 

getch(); 

cleardevice(); //clear the graphics screen 

line(midx, 0, midx, maxy); 

line(0, midy, maxx, midy); 

} 

void main() 

{ 

int gd, gm, x, y, z, o, x1, x2, y1, y2; 

detectgraph(&gd, &gm);  //determine graphics driver 

initgraph(&gd, &gm," c:\\tc\\bgi"); //initialize the graphics system 

setfillstyle(0, getmaxcolor());  //set fill pattern & colour 

maxx = getmaxx(); 

maxy = getmaxy(); 

midx = maxx/2; 

midy = maxy/2; 

axis(); 

bar3d(midx + 100, midy − 150, midx + 60, midy − 100,10,1); 
printf("\Enter the translation factor"); 

scanf("%d%d", &x, &y); 

axis(); 

printf("After translation"); 

bar3d(midx + 100, midy − 150, midx + 60, midy − 100,10,1); //draw a bar 
bar3d(midx + x + 100, midy - (y + 150), midx + x + 60, midy −  

(y + 100), 10, 1); //draw a bar 

axis(); 

bar3d(midx + 100, midy − 150, midx + 60, midy − 100,10,1); //draw a bar 
printf("Enter the scaling factor"); 

scanf("%d%d%d", &x, &y, &z); 

axis(); 

printf("After scaling"); 

bar3d(midx + 100, midy − 150, midx + 60, midy − 100,10,1); //draw a bar 
bar3d(midx + (x * 100), midy − (y * 150),midx + (x * 60), midy −  

(y * 100), 10 * z, 1); 

axis(); 

bar3d(midx + 100, midy − 150, midx + 60, midy − 100,10,1); 
printf("Enter the rotation angle"); 

scanf("%d", &o); 

x1 = 50 * cos(o * 3.14/180) − 100*sin(o * 3.14/180); 
y1 = 50 * sin(o * 3.14/180) + 100 * cos(o * 3.14/180); 
x2 = 60 * cos(o * 3.14/180) − 90 * sin(o * 3.14/180); 
y2 = 60 * sin(o * 3.14/180) + 90 * cos(o * 3.14/180); 
axis(); 
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printf("After rotating about Z-axis"); 

bar3d(midx + 100,midy − 150, midx + 60, midy − 100,10,1); 
bar3d(midx + x1, midy − y1, midx + x2, midy − y2, 10,1); 
axis(); 

printf("After rotating about x-axis"); 

bar3d(midx + 100, midy − 150, midx + 60, midy − 100,10,1); //draw a bar 
bar3d(midx + 100, midy − x1, midx + 60, midy − x2, 10,1); 
axis(); 

printf("After rotating about Y-axis"); 

bar3d(midx + 100, midy − 150, midx + 60, midy − 100,10,1); //draw a bar 
bar3d(midx + x1, midy − 150, midx + x2, midy − 100,10,1);  //draw a bar 
getch(); 

closegraph(); //shutdown current graphics  system 

} 

/* PROGRAM FOR ALL 3D TRANSFORMATIONS */
#include<graphics.h> 

#include<stdio.h> 

#include<math.h> 

#include<conio.h> 

#include<stdlib.h> 

int x1, y1, x2, y2; 

void draw_cube(double edge[20][3]) 
{ 

int i; 

cleardevice(); 

for (i = 0; i < 19; i++) 

{ 

x1 = edge[i][0] + edge[i][2]*(cos(2.3562)); 
y1 = edge[i][1] − edge[i][2]*(sin(2.3562)); 
x2 = edge[i + 1][0] + edge[i + 1][2]*(cos(2.3562)); 
y2 = edge[i + 1][1] − edge[i + 1][2]*(sin(2.3562)); 
line(x1 + 320, 240 − y1, x2 + 320, 240 − y2); 
} 

line(320, 240, 320, 25); 
line(320, 240, 550, 240); 
line(320, 240, 150, 410); 
getch(); 

} 

void trans(double edge[20][3]) 
{ 

int a, b, c, i; 

printf("Enter the Translation Factors:"); 

scanf("%d%d%d", &a, &b, &c); 

for(i = 0; i < 20; i++) 

{ 

edge[i][0] + = a; 
edge[i][0] + = b; 
edge[i][0] + = c; 
}  draw_cube(edge); 

} 

void scal(double edge[20][3]) 
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{ 

int a, b, c, i; 

printf("Enter Scaling factor:"); 

scanf("%d%d%d", &a, &b, &c); 

for(i = 0; i < 20; i++) 

{ 

 edge[i][0] = edge[i][0]*a; 
 edge[i][1] = edge[i][1]*b; 
 edge[i][2] = edge[i][2]*c; 
} 

draw_cube(edge); 

} 

void rotate(double edge[20][3]) 
{ 

 int ch, i; 

 float temp, theta, temp1; 

 printf("\nrotation about \n1.x axis\n2.y axis \n3.z axis\nenter your 

choice"); 

 scanf("%d", &ch); 

 switch (ch) 

 { 

  case 1: 

   printf("\n Enter the angle=\t"); 

   scanf("%f",&theta); 

   theta = (theta*3.14)/180; 

   for(i = 0; i < 20; i++) 

   { 

   edge[i][0] = edge[i][0]; 
   temp = edge[i][1]; 
   temp1 = edge[i][2]; 
   edge[i][1] = temp*cos(theta) − temp1*sin(theta); 
   edge[i][2] = temp*sin(theta) + temp1*cos(theta); 
  } 

  draw_cube(edge); 

  break; 

  case 2: 

   printf("\n Enter The Angle : ="); 

   scanf("%f", &theta); 

   theta = (theta*3.14)/180; 

   for(i = 0; i < 20; i++) 

   { 

    edge[i][1] = edge[i][1]; 
    temp = edge[i][0]; 
    temp1 = edge[i][2]; 
    edge[i][0] = temp*cos(theta) + temp1*sin(theta); 
    edge[i][2] = −temp*sin(theta) + temp1*cos(theta); 
   } draw_cube(edge); 

   break; 

  case 3: 

   printf(" Enter The Angle: ="); 

   scanf("%f", &theta); 

   theta = (theta*3.14)/180; 

   for(i = 0; i < 20; i++) 
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   { 

    edge[i][2]=edge[i][2]; 
    temp=edge[i][0]; 
    temp1=edge[i][1]; 
    edge[i][0]=temp*cos(theta)-temp1*sin(theta); 
    edge[i][1]=temp*sin(theta)+temp1*cos(theta); 
   } 

   draw_cube(edge); 

   break; 

  } 

 } 

 void reflection(double edge[20][3]) 
 { 

 int ch,i; 

 double temp,theta,temp1; 

 printf("\nreflection about \n1.x axis\n2.y axis \n3.z axis\n enter 

your choice"); 

 scanf("%d",&ch); 

 switch (ch) 

 { 

  case 1: 

  for(i = 0; i < 20; i++) 

  { 

   edge[i][0] = edge[i][0]; 
   edge[i][1] = −edge[i][1]; 
   edge[i][2] = −edge[i][2]; 
  } 

  draw_cube(edge); 

  break; 

  case 2: 

   for(i = 0; i < 20; i++) 

   { 

    edge[i][1] = edge[i][1]; 
    edge[i][0] = −edge[i][0]; 
    edge[i][2] = −edge[i][2]; 
   } 

   draw_cube(edge); 

   break; 

  case 3: 

   for(i = 0; i < 20; i++) 

   { 

    edge[i][2] = edge[i][2]; 
    edge[i][0] = −edge[i][0]; 
    edge[i][1] = −edge[i][1]; 
   } 

   draw_cube(edge); 

   break; 

  } 

  } 

  void main() 

  { 

  int gd=DETECT,gm,i,ch; 

  char choice; 

  do 
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  { 

  double edge1[20][3]= {  100,0,0,  100,100,0,   0,100,0,   0,100,100,   
0,0,100,  0,0,0,  100,0,0,  100,0,100, 100,75,100,   75,100,100,   
100,100,75,   100,100,0,   100,100,75,   100,75,100,   75,100,100,   
0,100,100, 0,100,0,    0,0,0,    0,0,100,   100,0,100   }; 

  initgraph(&gd,&gm,"t:\\bgi"); 

  cleardevice(); 

  printf("\n1.Translation"); printf("\n2.Scaling"); printf("\

n3.Rotation"); printf("\n4.reflection"); printf("\n Enter your 

choice:"); 

  scanf("%d",&ch); 

  draw_cube(edge1); 

  switch(ch) 

  { 

  case 1: 

  trans(edge1); 

  break; 

  case 2: 

  scal(edge1); 

  break; 

  case 3: 

  rotate(edge1); 

  break; 

  case 4: 

  reflection(edge1); 

  break; 

  } 

  getch(); 

  cleardevice(); 

  printf("Do you want to continue : [y/n] "); 
  choice = getch(); 

  } 

  while(choice = = ‘Y’||choice = = ‘y’); 

} 

11.9 PROGRAM-9 

/* COHEN-SUTHERLAND 2D LINE CLIPPING  */ 
#include<stdio.h> 

#include<graphics.h> 

int  i,, xwmin, xwmax, ywmin, ywmax; 

int x1, y1, x2, y2, code1[4], code2[4], flag, flag1; 
int newx1, newx2, newy1, newy2; 

void inter(); 

int reject(); 

void main() 

{ 

int gd = DETECT, gm; 

initgraph(&gd, &gm,""); 

printf("Enter the window coordinates\n"); 

scanf("%d %d %d %d", &xwmin, &ywmin, &xwmax, &ywmax); 
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printf("enter the line coordinates\n"); 

scanf("%d %d %d %d", &x1, &y1, &x2, &y2); 

printf("Before clipping\n"); 

setcolor(RED); 

rectangle(xwmin, ywmin, xwmax, ywmax); 

line(x1, y1, x2, y2); 

if(x1 < xwmin)code1[0] = 1; 
if(x1 > xwmax)code1[1] = 1; 
if(y1 < ywmin)code1[2] = 1; 
if(y1 > ywmax)code1[3] = 1; 
if(x2 < xwmin)code2[0] = 1; 
if(x2 > xwmax)code2[1] = 1; 
if(y2 < ywmin)code2[2] = 1; 
if(y2 > ywmax)code2[3] = 1; 
getch(); 

clrscr(); 

printf("After clipping\n"); 

setcolor(BLUE); 

rectangle(xwmin, ywmin, xwmax, ywmax); 

flag = accept(); 

if(flag = = 1) 

{ 

setcolor(BLUE); 

line(x1, y1, x2, y2); 

} 

else flag1 = reject(); 

if(flag1 = = 1) 

{ 

return; 

} 

else 

{ 

inter(); 

newx1 = x1; 

newy1 = y1; 

newx2 = x2; 

newy2 = y2; 

printf("%d %d %d %d", newx1, newy1, newx2, newy2); 

line(newx1, newy1, newx2, newy2); 

} 

getch(); 

} 

int accept() 

{ 

for(i = 0; i < 4; i++) 

{ 

if(code1[i] = = 0 && code2[i]==0) 
flag = 1; 

} 

flag = 0; 

return(flag); 

} 

int reject() 
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{ 

for(i = 0; i < 4; i++) 

{ 

if(code1[i] ! = 0 && code2[i] ! = 0) 
flag 1 = 1; 

} 

flag 1 = 0; 

return(flag 1); 

} 

void inter() 

{ 

m = (y2 − y1)/(x2 − x1); 
if(code1[0] = = 1) 
{ 

y1 = y1 + (xwmin − x1)*m; 
x1 = xwmin; 

} 

if(code1[1] = = 1) 
{ 

y1 = y1 + (xwmax − x1)*m; 
x1 = xwmax; 

} 

if(code1[2] = = 1) 
{ 

x1 = x1 + ((ywmin − y1)/m); 
y1 = ywmin; 

} 

if(code1[3] = = 1) 
{ 

x1 = x1 + ((ywmax − y1)/m); 
y1 = ywmax; 

} 

if(code2[0] = = 1) 
{ 

y2 = y2 + (xwmin − x2)*m; 
x2 = xwmin; 

} 

if(code2[1]==1) 
{ 

y2 = y2 + ((xwmax − x2)*m); 
x2 = xwmax; 

} 

if(code2[2] == 1) 
{ 

x2 = x2 + ((ywmin − y2)/m); 
y2 = ywmin; 

} 

if(code2[3] == 1) 
{ 

x2 = x2 + ((ywmax − y2)/m); 
y2 = ywmax; 

} 

return(x1, y1, x2, y2); 

}   
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11.10 PROGRAM-10 

/* COHEN-HOGGMAN POLYGON CLIPPING */ 
#include <stdio.h> 

#include <graphics.h> 

#include <conio.h> 

#include <math.h> 

#include <process.h> 

#define TRUE 1 

#define FALSE 0 

typedef unsigned int outcode; 

outcode compoutcode(float x,float y); 

enum  {  TOP = 0x1, 

BOTTOM = 0x2, 

RIGHT = 0x4, 

LEFT = 0x8 

}; 

float xmin,xmax,ymin,ymax; 

void clip(float x0, float y0, float x1, float y1) 

{ 

outcode outcode0,outcode1,outcodeout; 

int accept = FALSE,done = FALSE; 

outcode0 = CompOutCode(x0, y0); 

outcode1 = CompOutCode(x1, y1); 

do 

{ 

  if(!(outcode0|outcode1)) 
  { 

    accept = TRUE; 

    done = TRUE; 

  } 

  else 

  if(outcode0 & outcode1) 

    done = TRUE; 

  else 

  { 

    float x, y; 

    outcodeOut = outcode0?outcode0:outcode1; 

    if(outcodeOut & TOP) 

    { 

     x = x0 + (x1 − x0) * (ymax − y0)/(y1 − y0); 
     y = ymax; 

    } 

    else if(outcodeOut & BOTTOM) 

    { 

     x = x0 + (x1 − x0)*(ymin − y0)/(y1 − y0); 
     y = ymin; 

    } 

    else if(outcodeOut & RIGHT) 

    { 

     y = y0 + (y1 − y0) * (xmax − x0)/(x1 − x0); 



308 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

     x = xmax; 

    } 

    else 

    { 

     y = y0 + (y1 − y0) * (xmin − x0)/(x1 − x0); 
     x = xmin; 

    } 

    if(outcodeOut = = outcode0) 

    { 

     x0 = x; 

     y0 = y; 

     outcode0 = CompOutCode(x0, y0); 

    } 

    else 

    { 

     x1 = x; 

     y1 = y; 

     outcode1 = CompOutCode(x1, y1); 

    } 

   } 

  }while(done==FALSE); 

  if(accept) 

   line(x0, y0, x1, y1); 

  outtextxy(150, 20, "POLYGON AFTER CLIPPING"); 
  rectangle(xmin, ymin, xmax, ymax); 

  } 

  outcode CompOutCode(float x, float y) 

  { 

   outcode code = 0; 

   if(y > ymax) 

   code| = TOP; 

  else if(y < ymin) 

   code| = BOTTOM; 

  if(x > xmax) 

   code| = RIGHT; 

  else if(x < xmin) 

   code| = LEFT; 

  return code; 

  } 

  void main( ) 

  { 

  float x1, y1, x2, y2; 

  /* request auto detection */ 

  int gdriver = DETECT, gmode, n, poly[14], i; 
  clrscr( ); 

  printf("Enter the no of sides of polygon:"); 

  scanf("%d", &n); 

  printf("\nEnter the coordinates of polygon\n"); 

  for(i = 0; i < 2 * n; i++) 

{ 

    scanf("%d", &poly[i]); 
} 

poly[2*n] = poly[0]; 
poly[2*n + 1] = poly[1]; 
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printf("Enter the rectangular coordinates of clipping window\n"); 

scanf("%f%f%f%f", &xmin, &ymin, &xmax, &ymax); 

/* initialize graphics and local variables */ 

initgraph(&gdriver, &gmode, "c:\\tc\\bgi"); 

outtextxy(150, 20, "POLYGON BEFORE CLIPPING"); 
drawpoly(n + 1, poly); 

rectangle(xmin, ymin, xmax, ymax); 

getch( ); 

cleardevice( ); 

for(i = 0; i < n; i++) 

clip(poly[2*i], poly[(2*i) + 1], poly[(2*i) + 2], poly[(2*i) + 3]); 
getch( ); 

restorecrtmode( ); 

} 
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12Chapter

OPENGL WITH 
COMPUTER 
GRAPHICS 

12.1 INTRODUCTION 

OpenGL (Open Graphics Library) is the computer industry’s standard application 
program interface (API) for defining 2D and 3D graphic images. Prior to 
OpenGL, any company developing a graphical application typically had to rewrite 
the graphics part of it for each operating system and had to be cognizant of the 
graphics hardware as well. With OpenGL, an application can create the same 
effects in any operating system using any OpenGL-adhering graphics adapter. 

OpenGL specifies a set of “commands” or immediately executed functions. 
Each command directs a drawing action or causes special effects. A list of these 
commands can be created for repetitive effects. OpenGL is independent of the 
windowing characteristics of each operating system, but provides special “glue” 
routines for each operating system that enable OpenGL to work in that system’s 
windowing environment. OpenGL comes with a large number of built-in 
capabilities requestable through the API. These include hidden surface removal, 
alpha blending (transparency), antialiasing, texture mapping, pixel operations, 
viewing and modeling transformations, and atmospheric effects (fog, smoke, 
and haze). 

Silicon Graphics, makers of advanced graphics workstations, initiated the 
development of OpenGL. Other companies on the industrywide Architecture 
Review Board include DEC, Intel, IBM, Microsoft, and Sun Microsystems. 
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There is no cost to developing an application using the OpenGL API. Although 
OpenGL is not itself a development “toolkit,” such toolkits are available, including 
the Silicon Graphics object-oriented programming 3D graphics toolkit Open 
Inventor. 

12.1.1 Graphical Functions of OpenGL 

1. Alpha blending: It provides a means to create transparent objects. Using alpha 
information an object can be defined as anything from totally transparent to 
totally opaque. 

2. Color−index mode: Color buffers store color indices rather than red, green, 
blue, and alpha color components. 

3. Display list: The contents of a display list may be preprocessed and might 
therefore execute more efficiently than the same set of OpenGL commands 
executed in immediate mode. 

4. Double buffering: It is used to provide smooth animation of objects. Each 
successive scene of an object in motion can be constructed in the back or 
“hidden” buffer and then displayed. This allows only complete images to be 
displayed on the screen. 

5. Feedback: This is a mode where OpenGL will return the processed geometric 
information (colors, pixel positions, etc.) to the application as comported to 
rendering them into the frame buffer. 

6. Immediate mode: Execution of OpenGL commands when they are called 
rather than from a display list. 

7. Materials lighting and shading: It is the ability to accurately compute the 
color of any point given the material properties of the surface. 

8. Pixel operations: Storing, transforming, mapping, and zooming. 

9. Polynomial evaluators: To support non-uniform rational B-splines (NURBS). 

10. Selection and picking: It is a mode in which OpenGL determines whether 
certain user-identified graphics primitives are rendered into a region of 
interest in the frame buffer. 

11. Texture mapping: It is a process of applying an image to a graphics primitive. 
The technique is used to generate realism in images. 

12. Z-buffering: Z-buffering is used to keep track of whether one part of an 
object is closer to the viewer than another; it is important in hidden surface 
removal. 
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Any visual computing application requiring maximum performance—from 
3D animation to CAD to visual simulation—can exploit high-quality, high-
performance OpenGL capabilities. These capabilities allow developers in diverse 
markets such as broadcasting, CAD/CAM/CAE, entertainment, medical imaging, 
and virtual reality to produce and display incredibly compelling 2D and 3D 
graphics. 

Developer-driven Advantages 

•	 Industry standard: An independent consortium, the OpenGL Architecture 
Review Board, guides the OpenGL specification. With broad industry 
support, OpenGL is the only truly open, vendor-neutral, multiplatform 
graphics standard. 

•	 Stable: OpenGL implementations have been available for more than seven 
years on a wide variety of platforms. Additions to the specification are well 
controlled, and proposed updates are announced in time for developers to 
adopt changes. Backward compatibility requirements ensure that existing 
applications do not become obsolete. 

•	 Reliable and portable: All OpenGL applications produce consistent visual 
display results on any OpenGL API-compliant hardware, regardless of 
operating system or windowing system. 

•	 Evolving: Because of its thorough and forward-looking design, OpenGL 
allows new hardware innovations to be accessible through the API via the 
OpenGL extension mechanism. In this way, innovations appear in the API 
in a timely fashion, letting application developers and hardware vendors 
incorporate new features into their normal product release cycles. 

•	 Scalable: OpenGL API-based applications can run on systems ranging from 
consumer electronics to PCs, workstations, and supercomputers. As a result, 
applications can scale to any class of machine that the developer chooses to 
target. 

•	 Easy to use: OpenGL is well structured, with an intuitive design and logical 
commands. Efficient OpenGL routines typically result in applications with 
fewer lines of code than those that make up programs generated using other 
graphics libraries or packages. In addition, OpenGL drivers encapsulate 
information about the underlying hardware, freeing the application developer 
from having to design for specific hardware features. 

•	 Well-documented: Numerous books have been published about OpenGL, 
and a great deal of sample code is readily available, making information about 
OpenGL inexpensive and easy to obtain. 
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How Does OpenGL Work? 

OpenGL is a procedural rather than a descriptive graphics API. Instead of 
describing the scene and how it should appear, the programmer actually prescribes 
the steps required to achieve a certain appearance or effect. These steps involve 
calls to this highly portable API, which includes about 250 distinct commands 
and functions (about 200 in the core OpenGL and another 50 in the OpenGL 
Utility Library). 

Software Implementation 

A software implementation can run just about anywhere as long as the system 
has the ability to display the generated graphics image. Fig 12.1 shows the typical 
place that OpenGL and software implementation occupy when an application is 
running, Windows applications wanting to create output on screen usually call a 
Windows API called GDI (Graphics Device Interface). The GDI contains methods 
that allow a user to write text in a window, draw simple 2D lines, etc. 

OS
Services

I/O
Services

GDI OpenGL

Application Program

Software
Rasterizer

Display/
Windowing

system

Fig. 12.1 OpenGL’s place in a typical application program 

A software implementation of OpenGL takes graphics requests from an 
application and constructs a color image of the 3D graphics. It then supplies this 
image to the GDI for display on the monitor. On the other operating systems, the 
process is pretty equivalent, but the GDI is replaced with that operating system’s 
native display services. 

Hardware Implementations 

A hardware implementation of OpenGL usually takes the form of a graphics card 
driver. Fig. 12.2 shows its relationship to the applications. The OpenGL API calls 
are passed to a hardware driver. This driver does not pass its output to the windows’ 
GDI for display; the driver interfaces directly with the graphics display hardware. 
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OS
Services

I/O
Services

GDI OpenGL

Application Program

Hardware
driver

Display/
Windowing

device

Fig. 12.2 Hardware implementation

A hardware implementation is often referred to as an accelerated implementation 
because hardware-silted 3D graphics usually outperforms software-only 
implementation. 

OpenGL Rendering Pipeline 

Most implementation of OpenGL has a similar order of operations, a series of 
processing stages called an OpenGL rendering pipeline. Geomantic data follow 
the path through the row of boxes that include unpacking of vertices and vertex 
operations, while pixel data (image) are treated differently for part of the process. 
Both types of data undergo the same final steps (rasterization and fragment 
operations) before the final pixel data is written into the frame buffer. 

Image Unpack pixels Pixel operations Image rasterization

Display lists Texture memory
Fragment
operations

Geometry Unpack vertices Vertex operations Geometric rasterization

To frame
buffer

Geometry path

Imaging path

Fig. 12.3 An OpenGL rendering pipeline 
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One problem is that this program does not display completely drawn frames; 
instead we watch the drawing as it happens. 

Most OpenGL implementation provides double-buffering hardware or 
software that supplies two complete color butters. One is displayed while the other 
is being drawn. When the drawing of a frame is complete, the two buffers are 
swapped, so the one that was being viewed is now used for drawing and vice versa. 
With double-buffering, every frame is shown only when the drawing is complete; 
the viewer never sees a partially drawn frame. 

For some OpenGL implementation, in addition to simply swapping the 
viewable and drawable buffers, the routine for buffer swapping waits until the 
current screen refresh period is over so that the previous buffer is completely 
displayed, starting from the beginning. 

Vertex
data

Evaluators

Per-vertex
operations

and primitive
assembly

Display
list

Pixel
data

Pixel
operations

Texture
assembly

Frame buffer

Per-fragment
operations

Rasterization

Fig. 12.4 The order of operations

Display Lists 

All data, whether they describe geometry or pixels, can be saved in a display list for 
current or later use. (The alternative to retaining data in a display list is processing 
the data immediately, also known as immediate mode.) When a display list is 
executed, the retained data is sent from the display list just as if it were sent by the 
application in immediate mode. 

Evaluators 

All geometric primitives are eventually described by vertices. Parametric curves 
and surfaces may be initially described by control points and polynomial functions 
called basis functions. Evaluators provide a method to derive the vertices used 
to represent the surface from the control points. The method is polynomial 
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mapping, which can produce surface normal, texture coordinates, colors, and 
spatial coordinate values from the control points. 

Per-Vertex Operations 

For vertex data, next is the “per-vertex operations” stage, which converts 
the vertices into primitives. Some vertex data (e.g., spatial coordinates) are 
transformed by 4 × 4 floating-point matrices. Spatial coordinates are projected 
from a position in the 3D world to a position on your screen. 

Primitive Assembly 

Clipping, a major part of primitive assembly, is the elimination of portions of 
geometry that fall outside a half-space, defined by a plane. Point clipping simply 
passes or rejects vertices; line or polygon clipping can add additional vertices 
depending upon how the line or polygon is clipped. 

In some cases, this is followed by perspective division, which makes distant 
geometric objects appear smaller than closer objects. Then viewport and depth 
(z coordinate) operations are applied. If culling is enabled and the primitive is a 
polygon, it then may be rejected by a culling test. Depending upon the polygon 
mode, a polygon may be drawn as points or lines. 

Pixel Operations 

While geometric data takes one path through the OpenGL rendering pipeline, 
pixel data takes a different route. Pixels from an array in system memory are 
first unpacked from one of a variety of formats into the proper number of 
components. Next the data are scaled, biased, and processed by a pixel map. The 
results are clamped and then either written into texture memory or sent to the 
rasterization step. 

If pixel data is read from the frame buffer, pixel-transfer operations (scale, bias, 
mapping, and clamping) are performed. Then these results are packed into an 
appropriate format and returned to an array in system memory. 

There are special pixel copy operations to copy data in the frame buffer to other 
parts of the frame buffer or to the texture memory. A single pass is made through 
the pixel transfer operations before the data is written to the texture memory or 
back to the frame buffer. 

Texture Assembly 

An OpenGL application may wish to apply texture images onto geometric objects 
to make them look more realistic. If several texture images are used, it’s wise to put 
them into texture objects so that you can easily switch among them. 
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Some OpenGL implementations may have special resources to accelerate 
texture performance. There may be specialized, high-performance texture 
memory. If this memory is available, the texture objects may be prioritized to 
control the use of this limited and valuable resource. 

Rasterization 

Rasterization is the conversion of both geometric and pixel data into fragments. 
Each fragment square corresponds to a pixel in the frame buffer. Line and 
polygon stipples, line width, point size, shading model, and coverage calculations 
to support antialiasing are taken into consideration as vertices are connected into 
lines or the interior pixels are calculated for a filled polygon. Color and depth 
values are assigned for each fragment square. 

Fragment Operations 

Before values are actually stored into the frame buffer, a series of operations are 
performed that may alter or even throw out fragments. All these operations can 
be enabled or disabled. 

The first operation which may be encountered is texturing, where a texel (texture 
element) is generated from texture memory for each fragment and applied to the 
fragment. Then fog calculations may be applied, followed by the scissor test, the 
alpha test, the stencil test, and the depth-buffer test (the depth buffer is for hidden 

surface removal). Failing an enabled test may end the continued processing of a 
fragment’s square. Then, blending, dithering, logical operation, and masking by a 
bitmask may be performed. 

Simple Animation in OpenGL 

1. Drawing rectangles in OpenGL 

#include <GL/gl.h> 

#include <GL/glu.h> 

#include <GL/glut.h> 

void setup () 

{ 

glClearColor(1.0f, 0.0f, 0.0f, 0.0f); } 

void display(){ 

glClear(GL_COLOR_BUFFER_BIT); 

glColor3f(0.0f, 0.0f, 0.0f);

glRectf(-0.75f, 0.75f, 0.75f, -0.75f);

glFlush(); 

glutSwapBuffers();

} 

int main(int argc, char *argv[]) 

{ 

glutInit(&argc, argv); 

glutInitDisplayMode(GLUT_RGB | GLUT_SINGLE); 

glutInitWindowSize(400, 300);
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glutInitWindowPosition(200, 100 

glutCreateWindow("Hello World"); 

glutDisplayFunc(display); 

glutMainLoop(); 

return 0; 

} 

2. Drawing lines in OpenGL 

#include <GL/gl.h> 

#include <GL/glu.h> 

#include <GL/glut.h> 

void setup() 

{ 

    glClearColor(1.0, 1.0, 1.0, 1.0); 

    gluOrtho2D(-10.0, 10.0, -10.0, 10.0); 

} 

void display() 

{ 

    glClear(GL_COLOR_BUFFER_BIT); 

    glColor3f(1.0, 0.0, 1.1); 

    glPointSize(5.0); 

glBegin(GL_LINES); 

        glVertex2f(-10.0, 0.0);  // left - x negative 

        glVertex2f(10.0, 0.0);   // right - x positive 

        glVertex2f(0.0, 10.0);   // top - y positive 

        glVertex2f(0.0, -10.0);  // bottom - y negative 

    glEnd(); 

    glFlush(); 

} 

int main(int argc, char *argv[]) 

{ 

    glutInit(&argc, argv); 

    glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB); 

    glutInitWindowPosition(200, 100); 

    glutInitWindowSize(400, 300); 

    glutCreateWindow("Hello World"); 

    glutDisplayFunc(display); 

    setup(); 

    glutMainLoop(); 

    return 0; 

} 

3.  Drawing points in OpenGL 

#include <GL/gl.h> 

#include <GL/glu.h> 

#include <GL/glut.h> 

void setup() 

{ 

      glClearColor(0.0, 0.0, 0.0, 1.0); 

      gluOrtho2D(-10.0, 10.0, -10.0, 10.0); 

} 
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void display() 

{ 

    glClear(GL_COLOR_BUFFER_BIT); 

    glColor3f(0.0, 1.0, 0.1); 

    glPointSize(5.0);

    glBegin(GL_POINTS); 

        glVertex2f(1.0, 1.0); 

        glVertex2f(2.0, 2.0); 

        glVertex2f(3.0, 3.0); 

        glVertex2f(4.0, 4.0); 

        glVertex2f(5.0, 5.0); 

    glEnd(); 

    glFlush(); 

} 

    int main(int argc, char *argv[]) 

{ 

    glutInit(&argc, argv); 

    glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB); 

    glutInitWindowPosition(200, 100); 

    glutInitWindowSize(400, 300); 

    glutCreateWindow("Hello World"); 

    glutDisplayFunc(display); 

    setup(); 

    glutMainLoop(); 

    return 0; 

} 

4. Drawing a polygon in OpenGL 

#include <GL/gl.h> 

#include <GL/glu.h> 

#include <GL/glut.h> 

void setup() 

{ 

    glClearColor(1.0, 1.0, 1.0, 1.0); 

    gluOrtho2D(-01.0, 10.0, -01.01, 10.0); 

} 

   void display() 

{ 

        glClear(GL_COLOR_BUFFER_BIT); 

        glColor3f(1.0, 0.0, 0.0); 

        glBegin(GL_POLYGON); 

        glVertex2f(0.5, 0.5); 

        glVertex2f(0.5, 5.0); 

        glVertex2f(5.0, 5.0); 

        glEnd(); 

        glBegin(GL_LINES); 

        glVertex2f(-10.0, 0.0); 

        glVertex2f(10.0, 0.0); 

        glVertex2f(0.0, -10.00); 

        glVertex2f(0.0, 10.0); 

        glEnd(); 

    glFlush(); 
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} 

int main(int argc, char *argv[]) 

{ 

    glutInit(&argc, argv); 

    glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB); 

    glutInitWindowPosition(200, 100); 

    glutInitWindowSize(400, 300); 

    glutCreateWindow("Hello World"); 

    glutDisplayFunc(display); 

    setup(); 

    glutMainLoop(); 

    return 0; 

} 

EXERCISES

1. Explain event-driven programming with different OpenGL utilities. Explain 
how the program makes use of these utilities. 

2. Derive the transformation from window to viewport. 

3. Explain line clipping with the Cohen-Sutherland line clipping algorithm. 

4. How is the deCasteljau algorithm used for Bezier curve? Explain for four 
points. 

5. Consider a knot vector t = {0, 0, 0, 0.3, 0.5, 0.5, 0.6, 1, 1, 1} and solve for knot 
assignment. 

OBJECTIVE QUESTIONS 

12.1 The value of aspect ratio of a golden rectangle is 
(a) 1.6085 (b) 1.618034 
(c) 1.628876 (d) 1.652157 

12.2 Which one is a v-contour generated curve? 
(a) v varies while u is constant (b) u varies while v is constant 
(c) u and v both vary same time (d) none of these 

12.3  Changing the position of control point Pi only affects the curve P(u) on 
interval 
(a) [ui, ui + p + 1) (b) [ui - 1, ui + p + 1) 
(c) [ui, ui + 1) (d) [ui, ui + p) 
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12.4 Clamped B-spline curve P(t) passes through 
(a) two middle control points (b) two end control points 
(c) both (a) and (b) (d) neither (a) nor (b) 

12.5  The technique used to produce a transformation of one object into another 
is known as 
(a) morphing (b) betweening 
(c) blindfolding (d) cutaway 

ANSWERS

12.1 (b) 12.2 (b) 12.3 (a) 12.4 (b) 12.5 (a)
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13Chapter

PROGRAMMING 
GRAPHICS 
USING OPENGL

13.1 APPLICATION OF COMPUTER-GENERATED 
IMAGES

Computer graphics have the ability to picturize real-life objects with dazzling 
realism. But it also gives us the ability to draw things that could never be viewed 
in reality. These imaginary objects are described by an algorithm in a computer 
program.

13.1.1 Computer-Aided Design
Computer-aided design (CAD) is the use of computer systems to aid in the 
creation, modification, analysis, or optimization of a design. Prior to the advent 
of CAD, the development of any type of design or prototype was done manually. 
As such, development was typically tedious and time-consuming, often hampered 
by costly trial and error. Since it digitizes and simplifies the entire design process, 
CAD has all but replaced the traditional drawing board. CAD methods are 
now routinely used in the design of buildings, automobiles, aircraft, watercraft, 
spacecraft, computers, textiles, and many other products.

Computer graphics have been widely used in design processes, particularly for 
engineering and architectural systems. Designers can easily rotate the object or 
zoom in for a clear and closer look to carry out manipulation. For some design 
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applications, the object is first displayed in a wireframe outline form that shows 
its overall shape and internal features. Wireframe displays also allow designers 
to quickly see the effects of interactive adjustments to design shapes by a grid of 
connected lines.

Figs. 13.1 and 13.2 show the pictorial view of CAD in designing a crank 
mechanism.

For example, a building plan might contain separate overlays for its structural, 
electrical, and plumbing components. With CAD, layers are equivalent to 
transparent overlays. As with overlays, you can display, edit, and print layers 
separately or in combination. You can name layers to help track content, and 
lock layers so they can’t be altered. Assigning settings such as color, linetype, or 
lineweight to layers helps you comply with industry standards. You can also use 
layers to organize drawing objects for plotting. Assigning a plot style to a layer 
makes all the objects drawn on that layer plot in a similar manner.

Fig. 13.1 2D drawing
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Fig. 13.2 A 3D model

Computer-Aided Architectural Design
Computer graphics are also helpful to architects who design and model buildings. 
Computer-aided architectural design (CAAD) is used to design 2D floor plans 
and 3D schematics of houses, office buildings, schools, hospitals, and other 
structures. When creating buildings, flawless planning is a must. Aside from 
the actual architecture and layout of a structure, the CAAD program is used to 
determine proper specifications, including measurements, volumes, and weights, 
before construction even begins. Render version shows the 3D view of the 
structure. Computer graphics allow an architect to adjust the position of doors 
and windows and to display different textures of bricks or wall paint. With the 
help of interactive controls provided by computer graphics, the architect can walk 
through the building and the client will be able to experience how the house will 
look when it is built, as shown in Fig. 13.3.

13.1.2 Image Processing
Every year we see improvement in the field of image processing as a result of 
blending with computer graphics. In computer graphics, a computer is used to 
create a picture. Image processing is a type of computation using mathematical 
operations in any form of signal processing for which the input is an image, such 
as a photograph or video frame. The output of image processing may be either an 
image or a set of characteristics or parameters related to the image.

The primary goal of computer graphics is to create pictures and images, 
realizing them based on a model or description. However, the primary goal of 
image processing is to improve the quality of the image. It includes sharpening 
edges, fixing color combinations, removing the noise from the image, and 
enhancing contrast. Two principal applications of image processing are improving 
picture quality and machine perception of visual information.
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To apply image-processing methods, we must first digitize an image. Then digital 
methods can be applied to rearrange picture parts, enhance color separations, 
or improve the quality of shading. An example of image-processing methods 
to enhance the quality of a picture is shown in Fig. 13.4. These techniques 
are extensively used to analyze satellite photos. OpenGL routines can be used 
to identify certain features in an image and make them more noticeable and 
comprehensible. In computer graphics, images are manually made from physical 
models of objects, environments, and lighting instead of being acquired from 
natural scenes, as in most animated movies.

Fig. 13.4 Satellite images

13.1.3 Process Monitoring
Computer graphics are used in highly time-critical systems like air traffic 
control, power plants, and factories that need to be closely monitored. An 
operator carefully monitors the things; he gets up-to-date information that can 
be interpreted instantly. Calculations are made in the system after every interval 
and data are transmitted to a monitoring station to be converted into graphical 
information.

For example, an air traffic control system displays the locations of nearby 
airplanes. The operator can see the schematic representation of the whole situation 
at a glance. Numerous indicators can change color or flash to alert operator, when 
they require attention.
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13.1.4 Entertainment and Publishing
Computer graphics are commonly used in the production of movie, music videos, 
television shows, books, and games. In recent years, the cost of computer graphics 
systems has reduced dramatically, due to the development of new hardware tools 
and powerful software with increased performance.

Music videos use graphics in several ways. Graphic objects can be combined 
with live action, or graphics and image processing techniques can be used to 
produce a transformation of one object into another, called morphing. An 
example of morphing images is shown in Fig. 13.5.

In computer games, when a player moves a joystick or presses a button, the 
computer-generated image responds instantly. Special hardware is installed to 
speed up processing to generate successive images.

Fig. 13.5 Morphing

A paintbrush program allows artists to paint pictures on the screen of a video 
monitor. Actually, the picture is usually painted electronically on a graphics 
tablet (digitizer) using a stylus, which can simulate different brush strokes, brush 
widths, and colors. A paintbrush program such as Adobe Photoshop may be used 
to create characters.

13.1.5 Simulation
Some highly complex systems like air traffic control need to be analyzed in real 
time, while others might never be built in real world at all, but still exist in the 
form of an equation or algorithm in a computer. These algorithms can still be 
tested and considered as if they exist in reality; they run through their paces and 
simulated results are obtained, which is very valuable information for setting 
benchmarks for others.

Simulation of a system is represented by running the system’s model. It can 
be used to explore and gain insights into new technology and to estimate the 
performance of systems too complex for analytical solutions.
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In today’s world, a variety of such systems can be beneficially simulated, like 
the effect of global warming due to an increase in hydrocarbons, analysis of air 
pollutant dispersion using atmospheric dispersion modeling, design of complex 
systems such as aircraft and logistics, design of noise barriers to effect roadway 
noise mitigation, or modeling car crashes to test safety mechanisms in new vehicle 
models.

A simple example is the flight simulator. The system is composed of an airplane, 
with shape and flying parameters, along with air, landing runway, oceans, 
mountains, and, of course, other planes. During simulation, the pilot moves the 
controls, and the computer programs calculate speed and new positions of the 
simulated plane. The pilot can see the simulated result. It is a very difficult and 
demanding application to write, as it must respond so rapidly. Fig. 13.6 shows a 
simulated airplane’s cockpit.

Computer graphics have the ability to display objects as if they physically exist, 
but they are only models inside a computer.

Fig. 13.6 The control panel of a simulated airplane

13.2 DRAWING FIGURES USING OPENGL

Section 13.2.1 covers the basic writing of OpenGL programs and the concept of 
device-independent programming. Section 13.2.2 discusses the basic primitives 
of OpenGL available for graphics design and various data types and states used in 
OpenGL. Section 13.2.3 gives an idea of how to perform line drawing operations 
in OpenGL and also discusses the concept of polylines, polygons, and aligned 
polygons. Lastly, section 13.2.4 discusses the features of OpenGL related to 
keyboard and mouse interactions.
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13.2.1 Getting Started with Making Pictures
When talking about the various disciplines of engineering, computer graphics is 
similar in that it provides a means to write a program and test cases that create a 
variety of pictures. For a beginner it is better to start with the basics of the graphic 
task. Once you are familiar with those, you can shift to writing complicated 
programs that produce complex pictures.

Similar to the other programming constructs, you need a programming 
environment so that you can write and execute your program on it. When we 
talk about the graphics operation, we also need hardware devices like CRT 
display — a screen — and a predefined library of software tools which help us 
draw graphics primitives.

Every graphics program starts with an initialization phase, in which you define 
the desired display mode and area by setting appropriate coordinating points. 
Initialization depends on whether you define the entire screen or some window-
based system for drawing.

In Fig. 13.7 the entire screen is used for drawing and we just initialized display 
mode as “graphics mode.” The values of coordinates x and y are defined in right 
and downward directions respectively. In Fig. 13.8 a window-based system 
is shown whose coordinate value grows in right and downward directions, 
correspondingly. The main feature of this mode is that it can support multiple 
window displays on the screen at the same time. In Fig. 13.9 a slight variation in 
window mode is performed where the coordinate value of Y increases in upward 
direction.

Each system has some initialization tool that helps users to get started. We 
start our discussion with the setpixel command, which defines the values of x and 
y coordinate system value and the color value. The syntax of setpixel is setPixel 
(x, y, color). In some systems we call this command putpixel(), setpixel(), or 
drawpoint(). Similarly, we have a line command which draws a line between (x1, 
y1) and (x2, y2). Sometimes it may be called drawline() or simply Line(). A sample 
command can be given as follows. The result of this command is displayed in 
Fig. 13.7.

line(130, 60, 180, 80);
line(180, 80, 0, 250);

Instead of having a line () command, some systems have a moveto(x, y) and 
lineto(x, y). The arguments of moveto command define the starting point of 
the line and the arguments of the lineto command define the ending point of 
the line. The operation of the command is analogous to the working of a pen 
plotter. Once the line has been drawn, the new position becomes the starting 
position.
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(a) (b) (c)

(12., 60)

(180, 80)

(0, 250)

Fig. 13.7  Different types of display layouts

As already said, each environment uses a different set of commands for drawing 
primitives, so porting from one environment to another is difficult. The 
programmer has to explicitly define the library tool at the start of the program to 
make necessary changes in the overall structure of the program.

13.2.2 Device-Independent Programming and OpenGL
The concept of device-independent programming allows the user to write a single 
program and compile it on many environments which produce nearly the same 
result on each display. OpenGL supports device-independent programming. 
When you port your program from one environment to another, it only requires 
installing library files on the new machine and you can just run the program on 
that machine with the same parameters and callings. OpenGL is sometimes called 
an Application Programming Interface because it is a collection of routines that 
users can call and produce the required graphics result. The programmer is only 
aware of the interface.

OpenGL is very useful for drawing 3D scenes as compared to 2D scenes. 
However, it still works better for 2D objects. We will discuss most of the graphics 
algorithms and their implementation using the concept of OpenGL primitives. 
In most circumstances it may not be possible to implement the algorithm using 
OpenGL. In such scenarios you need to develop an application that doesn’t use 
OpenGL at all.

13.2.3 Event-Driven Programming
One of the important properties of window-based graphics systems is that they 
are event-driven, which means they respond to some event such as clicking the 
mouse or pressing a key on the keyboard. If multiple events take place on the 
window, the system automatically manages a queue regarding the applicability 
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of the event on a first-come-first-served basis. When programmers write any 
program, they simply associate a callback function with it, so that when the event 
gets executed and it is removed from the queue, it simply executes the callback 
function associated with it.

OpenGL provides some utility toolkits to manage various events. One such 
utility is: glutMouseFunc (myMouse);

This utility registers for the function myMouse, which is responsible for events 
related to the mouse. The programmer can manually set the functionalities in 
myMouse to handle various commands.

The following program segment gives an outline of an event-driven program.

void main ()

{

Initialize things

Create a screen window

glutDisplayFunc (myDisplay); 

glutReshapeFunc (myReshape); 

glutMouseFunc (myMouse); 

glutKeyboardFunc (myKeyboard); 

perhaps initialize other things 

glutMainLoop();

}

Now, we will discuss each of the outline’s four functions.

•	 glutDisplayFunc (myDisplay): This command is useful when the screen 
window redraws its issue on a redraw event. It sometimes occurs when the 
user opens a new window and rolls it over an existing window. Here the 
function is regarded as the callback function for a redraw event.

•	 glutReshapeFunc(myReshape): When users want to resize the window, they 
simply drag the corner of the window to the new required position. Here the 
myReshape is an event-driven utility called a “Reshape” event.

•	 glutMouseFunc(myKeyboard): When we press one of the mouse buttons, an 
event related to the mouse is issued. Here the myMouse() function is called 
when the event is executed.

•	 glutKeyboardFunc(myKeyboard): Similar to the mouse-related operation, 
when we press any key on the keyboard, an event-related function 
myKeyboard() is executed. The function automatically takes the argument as 
the key is pressed.
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If the program doesn’t make use of the mouse, then the corresponding mouse-
related events have no effect. This is also the case with other event utilities.

13.2.4 Opening a Window for Drawing
Opening a new window for drawing is completely system-dependent. As OpenGL 
functions are device-independent, they provide no support for window control. 
But the OpenGL utility toolkit provides support for window operation.

The following program segment states the outline of the main program that 
draws graphics on a screen window. You will see that we have defined the five 
functions that call for an OpenGL toolkit utility. You need to just copy your 
program and set the appropriate parameters. A brief description of these 
commands is given below.

void main (intargc, char** argv)

{

glutInit(&argc, argv); 

glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB); 

glutInitWindowSize (1024, 768); 

glutInitWindowPosition (100, 150); 

glutDisplayFunc (myDisplay);

glutReshapeFunc (myReshape); 

glutMouseFunc (myMouse); 

glutKeyboardFunc (myKeyboard); 

myInit ();

glutMainLoop ();

}

•	 glutInit (&argc, argv): This function is responsible for the initialization 
of toolkit. The arguments &argc and &argv are standard command line 
information.

•	 glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB): This function defines 
how the display should be initialized. The argument GLUT_SINGLE indicates 
that a single window should be initialized and the color of that will be defined 
by the amount of red, green, and blue passed in the second argument.

•	 glutInitWindowSize (1024, 768): This function indicates that the screen 
resolution should be 1024 pixels wide and 768 pixels high. It is a static 
allocation, but the user can alter it while running the program.

•	 glutInitWindowPosition(100, 150): This function is similar to the previous 
one, as it defines the position of the window 100 pixels from the left edge and 
150 pixels down from the top.
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•	 glutCreateWindow(“my first attempt”): This function opens a new window 
and puts a title on it — my first attempt — in the title bar.

The remaining callback functions of the program are as discussed earlier. 
Programmers should ensure that they initialize each and every callback function 
and myInit() function.

13.2.5 Drawing Basic Graphics Primitives
If we want to create a graphics window, we should initialize the function with 
proper parameters and callback functions. Our first approach towards graphics 
designing is to create a window of appropriate size defined by the coordinate 
system. 

We show in this example a window 1024 pixels wide and 768 pixels high. The 
value of the first 1024 pixels vary from 0 left edge to 1023 right edge direction. 
Similarly, the corresponding 768 pixels vary from 0 top edge to 767 down edge 
direction. Fig. 13.8 shows the output of window initialization.

My first attempt

y

767

x

1023
Fig. 13.8 A coordinate system initialization

We will first discuss the basic primitives. Most primitives are defined by one 
or more vertices such as points, lines, polylines, polygons, etc. To draw such 
primitives, you have a function body starting with glBegin() and ending with 
glEnd(). The following functions define the initialization of points at various 
locations in the 1024 × 768 graphic window.
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glBegin(GL_POINTS); 

glVertex2i(130, 70); 

glVertex2i(150, 80);

glVertex2i(200, 100);

glEnd();

My first attempt

y

x

Fig. 13.9 Drawing three dots at a specified position

Similar to GL_POINTS, we can also set it to the GL_LINES and GL_POLYGON, 
etc. These commands send the vertex information in a pipeline manner, which is 
then forwarded to several processing steps.

The function glVertex2i() is based on the argument size and argument types.

glV ertex2i (...)

gl
library Basic

command
Number of
arguments

Type of
arguments

Fig. 13.10 Command format for OpenGL

In Fig. 13.10, the prefix gl stands for a function in OpenGL library (differs from 
glut as utility tool). It is followed by the command root, on which the command 
should be applicable. The numeric value indicates the number of arguments 
passed to the command, and finally i indicates the type of argument as integer. 
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We can set the number of arguments of the command as per our requirement, 
similarly the type as integer, float, etc.

13.2.6 Data Types and “States” in OpenGL
When we talk about the data type, OpenGL works on specific data types such as 
32-bit integers. Some applications, like C, C++, support different data type sizes, 
such as 16-bit and 32-bit integer formats. OpenGL doesn’t take the wrong input 
format, or it will produce a wrong result. The same criterion is applicable for float 
and double data types. To deal with these problems, OpenGL supports predefined 
built-in data type names such as GLint and GLdouble. The various data types and 
their corresponding OpenGL type names are given in Fig. 13.11.

Data types C or C++ type name OpenGL type name

8-bit integer Signed char GLbyte b

16-bit integer Short GLshort s

32-bit integer Int GLint i

Float f

Double GLdouble d

32-floating point

64-bit floating point
Fig. 13.11 Data types and their equivalent OpenGL type names and suffix

Now, if you are defining your syntax as glVertex2i() then it will demand 32-bit 
integers while your system supports 16-bit only. So if you want to put a dot on the 
graphics windows you should carefully pass the arguments as Glint or GLfloat. A 
sample program for drawing a dot on screen is as follows:

Void drawDot(GLint x, GLint y)

{

glBegin(GL_POINTS); 

glVertex2i(x, y); 

glEng();

}

An attractive feature of OpenGL is that it maintains the state information 
regarding variables such as color, size of dot, background color, etc. The value 
assigned to a variable remains stable until a new value is assigned to it. Let’s take 
an example of point size. We use the command glPointSize() for it, which takes 
floating point arguments. If the argument portion contains three parameters, then 
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it draws three points on the side of the window where the value of red, green, and 
blue lies between 0.0 and 1.0. Some examples of the commands are:

glcolor3f(1.0, 0.0, 0.0) //set drawing colour to red

glcolor3f(1.0, 1.0, 0.0) //set drawing colour to yellow.

Similarly, if you want to define the background color then you should give 
command as glClearColor(red, green, blue, alpha). Here alpha is the degree of 
transparency.

13.2.7 Establishing a Coordinate System
A sample coordinate system initialization is given in the following program 
segment.

Void myInit (void)

{

glMatrixMode (GL_PROJECTION);

glLoadIdentity ();

gluOrtho2D (0, 1024.0, 0, 768.0);

}

The command myInit() is used for establishment. The transformation takes 
place in OpenGL at regular intervals, so we allow MatrixMode to deal with such 
transformations. Required dimensions are set in Ortho2–D function.

Now at this stage we are ready with one simple, complete program.

#include<windows.h>   // Use as per your system need.

#include<gl/Gl.h>

#include<gl/glut.h>

Void myInit(void)

{

glClearColor (1.0, 1.0, 1.0, 0); // set the background as white

glColor3f (0.0f, 0.0f, 0.0f);  // set the drawing color

glPointSize (5.0);      // a dot of 5 by 5 pixels

glMatrixMode (GL_PROJECTION);

glLoadIdentity ();

gluOrtho2D (0.0, 1024.0, 0.0, 768.0);

}

Void myDisplay (void)

{

glClear (GL_COLOR_BUFFER_BIT);  //clear the screen

glBegin (GL_POINTS);       //draw three points specified by 
coordinate values

glVetrex2i (130, 70); 

glVetrex2i (150, 80); 

glVetrex2i (200, 100); 

glEnd ();

glFlush ();    //send the output values to 

display screen

}
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Void main (intargc, char** argv)

{

glutInit(&argc,argv);  // Initialization of toolkit

glutInitDisplayMode(GLUT_SINGLE|GLUT_RGB); //display mode setting 

glutInitWindowSize(1024,768; //window size setting

glutInitWindowPosition(100,150);  //window position setting on the 

screen

glutCreateWindow(“my first attempt”); //Open the screen window

glutDisplayFunc (myDisplay);  // register for redraw function 

myInit();

glutMainLoop ();   //go into loop

}

The program simply draws three dots on the screen. We can extend the dot 
quantity manually. As previously discussed, myInit() initializes the coordinate 
system, point size, background color, etc. The particular drawing is encapsulated 
in the myDrawing() function. At last we use the glFlush() to ensure that the 
processed data is sent over the screen.

Now we will move toward drawing the dots constellation pattern. We will take 
a simple example of representing the Big Dipper to state our idea.

Example 1

Fig. 13.12 represents a pattern of 7 dots on the screen as the Big Dipper. This scene 
is often seen in the night sky.

Draw big dipper

Fig. 13.12 A simple dot constellation
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We can assign the names and respective positions of the dots in the screen. For 
example, dot (289, 190) is assigned the name of Dubhe. This representation is 
applicable to others also.

13.2.8 Making a Line Drawing
In computer graphics line drawing is a very fundamental concept. Almost every 
graphic makes use of basic line primitives to make complicated graphics. The 
simple line drawing command in OpenGL starts with glBegin() function, where 
the arguments are passed as GL_LINES. The body of the function contains the two 
vertex endpoints between which the line has to be drawn. Each vertex is assigned 
with the type and coordinate systems. A sample program is:

glBegin(GL_LINES);

glVertex2i(60, 135);

glVertex2i(180, 56);

glEnd();

If more than two points are defined between glBegin() and glEnd(), then these 
points are taken as a pair and a separate line is drawn for them. The selection of 
vertex points is based on the corresponding coordinate values of x and y.

glBegin(GL_LINES);

glVertex2i(10, 20);   //First Horizontal line as both 

vertex set have same y coordinates

glVertex2i(40, 20);

glVertex2i(20, 10);   //First Vertical line as both 

vertex set have same x coordinates

glVertex2i(20, 40);

glEnd();

glFlush();

The color of the line is set in the same way as for points. The command is 
glColor3f(). The width is defined by glLineWidth(4.0).

Drawing Polylines and Polygons
A polyline is simply a collection of connected line segments. Each of the segments 
is defined by the coordinate values of points. The basic structure of a polyline can 
be given as:

p0 = (x0, y0), p1 = (x1, y1), p2 = (x3, y3)….. pn = (xn, yn)

The following program segment discusses the drawing of a polyline.
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glBegin(GL_LINE_STRIP); 

glVertex2i(20, 10); 

glVertex2i(50, 10); 

glVertex2i(20, 80);

glVertex2i(50, 80);

glEnd();

glFlush();

The thickness and color of the polyline is assigned in the same way as previously 
discussed.

Line Drawing Using Moveto () and Lineto ()
The moveto and lineto is an alternative approach for polyline drawing. The 
command moveto() takes the argument as points from which the line has to be 
drawn and the command lineto() takes the arguments to which the line has to 
be drawn. We can call the moveto() value current position.

So a line from (x0, y0) to (x1, y1) can be drawn simply by calling moveto  
(x0, y0) and lineto (x1, y1). A polygon can be drawn similarly by using a loop for the 
connecting line segments.

moveto(x[0], y[0]); 

For(int i=1; i<n; i++) 

lineto (x[i], y[i]);

A sample program defining moveto() and lineto() is as follows:

GLintPoint  // global current position

Void moveto (GLint x, GLint y)

{

CP.x = x; 

CP.y = y;

}

Void lineto (GLint x, GLint y)

{

glBegin (GL_LINES);

glVertex2i (CP.x, Cp.y);

glVertex2i (x, y);

glEnd ();

glFlush ();

CP.x = x; CP.y = y;

}
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Drawing Aligned Rectangles
This is a special case of a polyline in which the rectangles are aligned with the 
sides.

glRecti(GLint x1; GLint y1; GLint x2; GLint y2)

This command draws an aligned rectangle based on given endpoints. We can 
also fill the rectangle’s color, for which we need only to embed the following code:

glClearColor(1.0, 1.0, 1.0, 1.0); //set background as white

glClear(GL_COLOR_BUFFER_BIT);  //clear the window

glColor3f(0.6, 0.6, 0.6); // Setting colour as bright gray

glRecti(20, 20, 100, 70);

glColor3f(0.2, 0.2, 0.2); // Setting colour as dark gray

glRecti(70, 50, 150, 130);

glFlush();

Aspect Ratio of Aligned Rectangles
We can calculate the aspect ratio of aligned rectangles as the ratio of its weight and 
height. The shape of aligned rectangles depends on the aspect ratio.

Aspect ratio
width

height
=

Examples of rectangles with different aspect ratios are shown in Fig. 13.13.

a 11 : 8.5

Landscape c

Goldan
rectangle

b
4 : 3

Screen

d

1

Square

e
8.5 : 1 1

Portrait

f
l/

Fig. 13.13 Aspect ratios of aligned rectangles
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If the width is larger than the height, it is called a landscape rectangle. A rectangle 
with an aspect ratio of 1.618034 is called a golden rectangle. Similarly, if the aspect 
ratio equals 1, then it is called a square rectangle. For a portrait rectangle the width 
is less than its height. The last rectangle is tall and skinny with an aspect ratio of 
1
ϕ

 where ϕ = 1.618034.

Filling Polygons
The restriction on a polygon’s color filling is that it should be convex. A polygon 
is said to be convex if the line connecting two points in the polygon lies entirely 
within it. Some convex and non-convex shapes are given in Fig. 13.14.

A
B

C

D
E F

Fig. 13.14 Convex and non-convex polygons

A program syntax to draw convex polygons can be as follows:

glBegin(GL_POLYGON)

glVertex2f(x0, y0);

glVertex2f(x1, y1);

.......

glVertex2f(xn, yn);

glEnd();

Now it can be filled with a simple color or a strip of colors. Various types of 
algorithms are available which assign different color textures to the polygon area.
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13.2.9 Other Graphics Primitives in OpenGL
Beside the objects discussed so far, OpenGL also supports five other objects of 
different shapes. Fig. 13.15 gives an idea of the objects’ shapes. To draw them we 
adopt the same procedure as before but make changes in the glBegin() body area.

GL_triangles

GL_triangle_strip GL_ _fantriangle

GL_quards_strip

GL_quards

Fig. 13.15 Other geometric primitive types

The functionality of each of them is discussed below:

•	 GL_TRIANGLES: It takes the three vertices among the given vertices set and 
prepares a triangle for each.

•	 GL_QUADS: It is similar to the previous one but it takes four vertices at a time 
and prepares a quadrilateral for each of them.

•	 GL_TRIANGLE_STRIP: Among the series of the vertices it takes the three 
vertices and prepares the triangle series to connect with each other. All the 
triangles are traversed in the same direction.

•	 GL_TRIANGLE_FAN: It draws a series of connected triangles but in all of 
them one vertex is common so that they can prepare a fan-like architecture.

•	 GL_QUADS_STRIP: Similar to the triangle strip, it creates a series of 
connected quad literals by taking four vertices at a time. All the quad literals 
have the same direction either clockwise or anticlockwise.



344 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

13.2.10 Simple Interaction with Mouse and Keyboard
A graphics application must be interactive because only an interactive graphics 
application can allow a user to navigate and control the drawing of objects. 
Hardware devices such as a mouse and a keyboard play an important role in this. 
The pointing devices allow the user to go to a specific location and make a clicking 
at that. Whenever the user presses a button on keyboard or clicks on the screen 
with a mouse, an event happens. The OpenGL utility toolkit allows users to write 
the callback function that allows programs to execute when an event happens. We 
will discuss some of these utility commands here:

•	 glutMouseFunc (myMouse) : This utility registers all the event functionalities 
related to mouse clicking actions.

•	 glutMotionFunc (myMovedMouse) : This utility registers functionalities when 
the movements of the mouse take place.

•	 glutKeyboardFunc (myKeyboard): This utility registers the event functionalities 
related to keyboard actions.

The next step is to learn how a program makes use of these utilities. We will discuss
them one by one.

Mouse Interaction
When we click a mouse button, data is sent to the application. But how this data 
transfer takes place? We should use the callback function myMouse() which 
contains four parameters.

void myMouse (int button, int state, int x, int y)

As soon as the mouse events occur, the system calls the register function and 
supplies these four parameter values. The parameter button takes one of the three 
values:

GLUT_LEFT_BUTTON
GLUT_RIGHT_BUTTON
GLUT_MIDDLE_BUTTON

The parameter state takes the value as either GLUT_UP or GLUT_DOWN. The x 
and y take the values from the pixel representation on which clicking takes place. 
Normally the variable x takes its pixel value from the left of the window and y 
takes the value from the bottom end of the window.
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Mouse Motion
In a normal application program, when we press one of the keys, an event occurs. 
In such a scenario the mouse motion utility takes place. myMovedMouse() is an 
OpenGL utility command associated with this event. The syntax is as follows:

glutMotionFunc(myMovedMouse) ;

Here the callback function is myMovedMouse(int x, int y). The parameters x and y 
take the values of position of the mouse.

Keyboard Interaction
When we press a button on the keyboard, an event takes place. The callback 
function mykeyboard() is registered with the functionalities related to these 
events. The syntax can be given as below:

void myKeyboard (unsigned int key, int x, int y)

The parameter key takes the ASCII value of the key pressed by the user. The 
integer variables x and y take the mouse pixel location values.

13.3 DRAWING TOOLS

Sections 13.3.1 and 13.3.2 discuss world coordinates, world window, and its 
transformation to viewports. This transformation simplifies the application of the 
program in the reasonable coordinate systems of display devices. The section also 
discusses how to achieve a desired drawing using proper window and viewport. 
The aspect ratio of window and viewport plays an important role in all types of 
transformation. Section 13.3.3 discusses the classical clipping algorithms and 
their implementation in real-time scenarios.

Section 13.3.4 includes information about initialization and variable handling 
concepts required for graphics programming. Implementation using the OpenGL 
environment is also included for high-performance computing of graphics 
programs. The tools available can be used to make complex graphics. Encapsulated 
variables are used to protect the details from intermediate mishandling.

Section 13.3.5 includes routines that add relatively simple subroutines into 
the programmer’s toolkit. Section 13.3.6 includes how to use regular polygons to 
create interesting drawings, and Section 13.3.7 includes arc and circle drawing 
algorithms using OpenGL. At the end, case studies discuss details about clipping, 
window to viewport transformation, and the development of inherent classes as a 
tool kit.
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Section 13.3.8 covers how to develop curves using parametric forms. Curves in 
both 2D and 3D space are also included.

The basic unit of a screen window’s coordinate system is the pixel. The width 
of the screen is the number of pixels present in the x-axis of the screen, and the 
height of the screen is the same in the y-axis. The positive values of x and y are 
considered for the coordinate system. The easiest way to think about coordinate 
systems is in term of x varying from 1 or -1 and the same for the y-axis.

In this chapter, objects are considered to be present in a world coordinate 
system. It is usually calculated using the Cartesian xy coordinate system used in 
mathematics, based on a convenient units system. The method for conversion 
of the world coordinate system to a world window and then viewport using 
automatically scaled and shifted objects makes it simple for the programmer to 
draw a picture in the screen window. The world window specifies which part 
of the scene should be drawn. Whatever lies inside the window is included and 
whatever remains is clipped away.

The rectangular viewport is the window on the screen. Mapping between the 
world window and the viewport is done in such a way that entire objects in the world 
are considered for the world window and mapped automatically to the viewport 
after substantial clipping operations. This window/viewport approach makes it 
much easier to zoom and pan for a detailed view of the scene. We will first look at 
mapping and then clipping.

13.3.1 World Coordinates, World Windows, and Viewports
Fig. 13.16 illustrates the concept of the world window and viewport. The 
coordinate system of window and viewport is specified by the programmer. It is 
represented by the rectangle shown in the figure. The window is mapped in the 
world coordinate system. The viewport is a portion of the screen window. Proper 
shifting and scaling operations are required to map the world window with the 
viewport.

World
window

Screen

Screen
window

Viewport

Fig. 13.16 World window, screen window, and viewport
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Consider the mathematical representation of cos (x) in pictorial format. As the 
value of x may vary from − ∞ to + ∞, the value of y varies from + 1 to −1. A plot of 
cos (x) is shown in Fig. 13.17.

voidTransformxy(void)

{

glBegin(GL_LINE_STRIP);

for(GLfloat x = −4.0; x < 4.0; x += 0.1)

{

GLfloat y = cos(3.14159 * x) / (3.14159 * x);

glVertex2f(x, y);

}

glEnd();

glFlush();

}

The key concept is how the transform xy () function creates the values using 
scaling and shifting operations, so that the picture appears properly on the screen 
window is.

Y-axis

X-axis

–1

+1

y = cos x

Fig. 13.17 A plot of cos(x) function

13.3.2 Mapping Between Window and Viewport
Figure 13.18 shows a world window and viewport in more detail. The borders of 
the world window are described as w1, w2, w3, and w4. The viewport is described 
by the coordinate system of the screen window by v1, v2, v3 and v4.

y
w3

w1

w2 w4

x

v1

v2

v3 v1
x

y

O

Fig. 13.18 Specifications of window and viewport
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The world window is of any size, shape, and present at any position. The 
viewport lies entirely within the screen window. The aspect ratio of the world 
window and viewport may differ. We will also discuss how to coordinate the 
viewport with the aspect ratio so that it always matches with the entire window 
after resizing by the user.

w1

w2

w3

w4

Window

v1

v2

v3 v4

Viewport

Window

y

O
x

Fig. 13.19 Mapping of a window to viewport with distortion

Mapping is also called transformation. The transformation from window to 
viewport is called window-to-viewport mapping. The mapping creates the 
point for viewport (Vx, Vy) from points (x, y) in a world coordinate system. The 
mapping should always be in proper proportion. Let us consider the following 
linear formulae for proportionate mapping.

Vx = C∗ x + D
Vy = E∗ y + F ...(13.1)

where C, D, E and F are positive constants, in which C, E are scaling factors of x, y 
and D, F are positive or negative shifts in x and y directions. In order to calculate 
the values of C, D, E and F we have to do mapping between the coordinate systems 
of the window and viewport as shown in Fig. 13.20.

Mapping

w1 w3
v3 v4

VxX

Fig. 13.20 Mapping between x and Vx
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Mapping is bidirectional, i.e., mapping can be from window to viewport or 
viewport to window. In order to apply Eq. 13.2 the following properties are 
important:
(a)  if x is at the window’s left edge: x = w1, then Vx is at the viewport’s left edge:  

sx = v1.
(b) if x is at the window’s right edge then sx is at the viewport’s right edge.
(c)  if x is fraction f of the way across the window, then Vx is fraction f of the way 

across the viewport.
(d)  if x is outside the window to the left, (x < w1), then sx is outside the viewport to 

the left (Vx < v1).
Similarly, if x is outside the window then Vx is to the right of viewport.

OpenGL implementation
OpenGL is a command-oriented language. Window-to-viewport transformation 
is a very simple task in OpenGL. The glVertex2*() command automatically passes 
each vertex through a sequence of transformation according to the desired 
mapping. The automatic clipping of objects outside the window is done by the 
same function. We need to just set the transformation property.

gluOrtho2D() is used for setting the world window and glViewport() is used for 
setting the viewport in 2D graphics.

void gluOrtho2D(GLdouble left, GLdouble right, GLdouble bottom, GLdouble top);
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where lower left corner (left, bottom) and upper right corner (right, top) are used 
to represent window coordinates.

voidglViewport(GLint x, GLint y, GLint width, GLint height);

where lower left corner (x, y) and upper right corner (x + width, y + height) are 
used to represent viewport coordinates.

The default size of viewport is the entire screen window. By default, the data 
structure of OpenGL is a marix. Therefore the gluOrtho2D() function is presided 
by glMatrixMode(GL_PROJECTION) and glLoadIdentity() functions.

glMatrixMode(GL_PROJECTION);

glLoadIdentity();

gluOrtho2D(0.0, 4.0, 0.0, 2.0); // sets the window

glViewport(50,70, 380, 260); // sets the viewport

glVertex 2*(x, y) is used to do mapping of Eq. 2.

Example 2
Plotting the co-function

The OpenGL program requires just defining the window and viewport. We want 
to plot the function from closely spaced x-values between −5.0 and 5.0 into a 
viewport with width 640 and height 480 using the following OpenGL program:

voidTransformxy(void) // plot the cos function, using world coordinates

{

glMatrixMode(GL_PROJECTION);

glLoadIdentity();

gluOrtho2D(−5.0, 5.0, −0.3, 1.0);
glViewport(0, 640, 0, 640 − 480);
glBegin(GL_LINE_STRIP);

for(GLfloat x = −4.0; x < 4.0; x += 0.1) // draw the plot
glVertex2f(x, cos(3.14159 * x) / (3.14159 * x));

glEnd();

glFlush();

}

Setting the window and viewport automatically

There are two ways to set the size of window and viewport: one is to set the size of 
both as per dimensions entered by the user in the program and other way is to set 
everything automatically as per default settings in OpenGL. For this instance, let 
us consider automatic sizing of window and viewport.

Setting the window

Generally the programmer doesn’t have any idea about the size of the object in 
world coordinates. The object may be any picture of known size or data generated 
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by some unknown procedure. In such conditions, the most convenient way is to 
rely on the automatic size determination function of the application.

The general approach is to set the boundary of the object in terms of a rectangle 
such that it contains the entire object in the scene. This rectangular boundary 
is also called the extent of the object. Fig. 13.21 contains the representation of 
extents in a proper way.

Extents

(50, – 10)

(20, 50)

y

x
O

Fig. 13.21 Figures with extents

If P[] contains all the points of lines present in the figure, then the extremes of 
x and y coordinates in array P are considered the extremes of the object to be 
displayed in the window.

Automatic setting of the viewport to preserve aspect ratio

An undistorted version of a figure is possible if the aspect ratio of the viewport 
and the actual window is the same. A simple idea is to find the largest possible 
viewport that can be visible on the window screen of the display. Suppose the 
screen window is of width W and height H and aspect ratio of the world window is 

A, then either A
W

H
<








  or A

W

H
>








 . In the first case the viewport extends fully 

along the width of the window but leaves unused space along the y direction of the 
screen window. In the second case the viewport extends fully along the height of 
the window but leaves unused space along the x direction of the screen window.

Resizing the screen window

In a Microsoft Windows-based system, a simple drag-and-drop operation of a 
mouse from one of the corners of an image can change the size of the window 
in run time. The OpenGL utility tool kit contains glutReshape() to reshape the 
window whenever required.

glutReshape(myReshape); specifies the function called on a resize event.
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Making a matched viewport

The common approach to prevent distortion is that the aspect ratio of the viewport 
matches with the aspect ratio of the world window. The following OpenGL 
program creates a matching viewport that is visible in the new screen window of a 
display device with its extreme size.

if(A> W/H) // use (global) window aspect ratio

setViewport(0, W, 0, W/R);

else

setViewport(0, H * R, 0, H);

The routine obtains the new size of the viewport according to the default size of 
the screen window.

13.3.3 Line Clipping
Clipping is an important task for a graphics application. It is generally used to 
remove or add portions of the world window to the screen window of display 
devices. In OpenGL the object is automatically clipped using specified inbuilt 
algorithms in the world window. Since clipping is automatic in an OpenGL 
environment, we are concentrating on tools that incorporate clipping for the 
programmer. Instead of skipping the concept, it is included by considering the 
absence of an OpenGL environment for graphics programming in a general sense.

We include a general clipping algorithm to understand the clipping process. 
These algorithms can be used in general routines in the absence of an OpenGL 
environment.

In this section we concentrate on the Cohen-Sutherland line clipping algorithm. 
The input to the algorithm is a line segment with endpoint p1, p2 and returns the 
line segment with an endpoint that fits inside the viewport or screen window.

E

C

D

B

A

Window

Fig. 13.22 Line clipping at the window’s boundary

Fig. 13.22 illustrates the action required to be performed by the clipper.
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•	 If the entire line lies within the window, it returns 1.

•	 If the entire line lies outside the window, it returns 0.

•	 If one endpoint is inside the window and one is outside, the function clips the 
portion of the segment that lies outside the window and returns 1.

•	 If both endpoints are outside the window, but a portion of the segment passes 
through it, it clips both ends and returns 1.

The Cohen-Sutherland line clipping algorithm

This algorithm has two common cases that can be quickly detected. They are 
called “trivially accept” and “trivially reject.” If the line lies completely within the 
boundary of window, then this line is trivially accepted, and if it is completed 
outside the window then it is trivially rejected.

The Cohen-Southerland algorithm uses an inside-outside codeword for 
detection of a line inside, outside, or on the boundary of the window. The 
codeword contains four bits as represented below.

T/F T/F T/F T/F

First bit: True if P is to the left of the window
Second bit: True if P is above the window
Third bit: True if P is to the right of the window
Fourth bit: True if P is below the window
If P is inside the window then codeword values are FFFF; otherwise nine values 

are possible:

TTFF FTFF FTFF

TFFF FFFF FFTF

TFFT FFFT FFTT

•	 Trivial accept: If both points have codeword FFFF

•	 Trivial reject: If the codeword has an F in the same position, i.e., both points 
are either left, above, below, or on the right of the window.
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Condition for chopping the line

The Cohen-Sutherland algorithm is based on a divide-and-conquer strategy. It 
discards the portion of the line which is outside the window and uses the same 
strategy for the remaining portion. The loop discards after four iterations since it 
requires at most four iterations for trivial acceptance and rejection to be assured.

do{

form the code words for p1 and p2

if (trivial accept) return 1;

if (trivial reject) return 0;

chop the line at the “next” window border; discard the “outside” 

part;

} while(1);

Fig. 13.23 contains the clip segment routine for line clipping algorithm. The 
inputs p1 and p2 are called in with its (x, y) values by reference. Array W is a matrix 
for storing values of the rectangle representing the screen’s window.

intclipSegment(Point2& p1, Point2& p2, RealRect W)

{

do{

if(trivial accept) return 1; // some portion survives 

if(trivial reject) return 0; // no portion survives  

if(p1 is outside)

{

if(p1 is to the left) chop against the left edge  

else if(p1 is to the right) chop against the right edge 

else if(p1 is below) chop against the bottom edge  

else if(p1 is above) chop against the top edge

}

else // p2 is outside

{

if(p2 is to the left)chop against the left edge  

else if(p2 is to the right)chop against the right edge 

else if(p2 is below) chop against the bottom edge  

else if(p2 is above)chop against the top edge

}

}while(1);

}

Fig. 13.23 Pseudo-code for Cohen-Sutherland line clipper

13.3.4 Drawing Polygons, Circles, and Arcs Using OpenGL
OpenGL provides various tools to draw regular shapes like polygons, circles, and 
arcs. These shapes play vital roles in the development of graphics applications.
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Drawing polygons

Polygons are an important family of shapes commonly used in computer graphics. 
The regular polygon is one category of polygons. Polygons are called regular if all 
their sides are of the same length and the adjacent sides meet each other forming 
equal interior angles.

The different shapes of regular polygons with n sides are shown in Fig. 13.24.

n = 3 4 5 6 N

Fig. 13.24 Shapes of regular polygons

If the number of lines are very large then the shapes of polygons appear like 
circles. The general equation of polygons with n vertices is

P R
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n
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n
i ni = 

















= −cos , sin , , ,
2 2

0 1
π π

for   ...(13.3)

where Pi is vertices of polygons with (x, y) coordinates. Fig. 13.25 is a polygon 
with six vertices and the interior angle between two adjacent lines is 60 degrees.

y-axis

x-axis

P2 (R cos (2*( /6), R sin (2* /6))

P1 (R cos (2 /6),. R sin (2 /6))

O

Fig. 13.25 Vertices of an hexagon from Eq. 13.3

The OpenGL implementation of a polygon with n vertices centered at (Cx, Cy), 
with radius R, and rotated through RA degrees is shown in Fig. 13.26:
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void polygon(int n, float cx, float cy, float R, float RA)

{ // assumes global Canvas object, cvs

if(n < 3) return; // bad number of sides

double angle = RA * 3.14159265 / 180; // initial angle

double angleInc = 2 * 3.14159265 /n; //angle increment

cvs. moveTo(R + cx, cy);
for(int k = 0; k < n; k++) // repeat n times
{

angle += angleInc;
cvs.lineTo(R * cos(angle) + cx, R * sin(angle) + cy);

}

}

Fig. 13.26 OpenGL implementation of a regular polygon with n vertices in memory

13.3.5 Drawing Circles and Arcs
Drawing a circle is same as drawing polygons. The difference is only in the number 
of vertices we have to select. The function DCircle() shown in Fig. 13.27 creates a 
70-sided polygon by simply passing parameter to function polygon(int n, float cx, 
float cy, float R, float RA).

void DCircle(Point2 center, float radius)

{

constintnumVerts = 70; // use larger for a better circle 

polygon(numVerts, center.getX(), center.getY(), radius, 0)

}

Fig. 13.27 Drawing a circle based on 70-sided polygons

Drawing arcs

An arc is significantly described by the position of center C and its radius R. The 
circle is a special case of an arc with a sweep of 360 degrees. The diagrammatic 
representation of an arc is shown in Fig. 13.28:

Y-axis

X-axis

b
aR

C (x,y)

Fig. 13.28 Arc representation in a 2D coordinate system

The angles a and b are sweeps of an arc in an anticlockwise direction along 
the x-axis. The OpenGL implementation of the arc formulated from the concept 
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of the polygon is shown in Fig. 13.29. R is the radius of the arc, SA is the starting 
angle, S is the sweep, and center is the position of the midpoint of the arc along the 
(x, y) coordinate system.

void drawArc(Point2 center, float R, float SA, float S)

{ // startAngle and sweep are in degrees

constint n = 30; // number of intermediate segments in arc

float angle = SA * 3.14159265 / 180; // initial angle in 
radians

float angleInc = S * 3.14159265 /(180 * n); // angle 
increment

float cx = center.getX(), cy = center.getY(); cvs.moveTo 
(cx + R * cos(angle), cy + R * sin(angle)); for(int  
k = 1; k < n; k++, angle += angleInc)

cvs.lineTo(cx + R * cos(angle), cy + R * sin(angle));
}

Fig. 13.29 Function for creating an arc

13.4 TRANSFORMATION OF OBJECTS

13.4.1 Transformation
Transformations are a fundamental feature of computer graphics and are central 
to OpenGL as well as to most other graphics systems. Transformation is used to 
translate and scale the objects of the real world to their final size and position 
in the viewport. The fundamentals of computer graphics are transformation 
and representation of points and lines in space. With the help of an appropriate 
drawing algorithm, points and lines can be joined to draw an object. Computer 
graphics have the ability to transform these points and lines. They are required to 
scale, translate, rotate, distort, or develop a perspective view of an object in order 
to visualize it.

After

After

Before

Before

z x

y

y

x
O

Fig. 13.30 Objects before and after they are transformed
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Figure 13.30 shows a view of a simple house; (a) is a 2D view while (b) is a 
3D view, drawn before and after; each of its points has been transformed. Firstly, 
the house has been scaled down in size, rotated, and then moved up. The overall 
transformation here is a combination of three more elementary ones: scaling, 
rotation, and translation.

Transformation with OpenGL

The main goal is to produce graphical drawings of objects that have been 
transformed to proper size, position, and orientation so that it can present the 
desired view. Today a lot of platforms are available, such as OpenGL, which 
provide a sequence of operations or graphics pipeline to all the points under 
consideration. The object is produced after analyzing each point.

The transformation given in figure is called Current Transformation (CT). 
CT provides a crucial tool for the manipulation of a graphical object, and an 
application programmer needs to know what adjustment to make in CT so as to 
produce a desired transformation.

Transformation can be viewed in two ways: object transformation and 
coordinate transformation. An object transformation alters the coordinate of 
each point of the object, keeping the coordinate system fixed. A coordinate 
transformation defines a new coordinate system in terms of the old one, and then 
represents all the object points in this new system. These two views are closely 
connected and each has its own advantage, but implementation is somewhat 
different.

13.4.2 Affine Transformation

Affine transformation is the most common transformation used in computer 
graphics. It possesses very useful properties which make it so easy to handle. The 
properties are to scale, rotate, and reposition figures.

In affine transformations, the coordinates of Q are linear combinations of six 
constants m11, m13, m13, m21, m22, m23.
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Qx consists of portions of both Px and Py, and similarly Qy. This cross between 
the x and y components gives rise to rotations and shears.
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Geometric Effects of 2D Affine Transformations

Geometric effects produced due to affine transformations are a combination of 
four elementary transformations, i.e., translation, scaling, rotation, and shear. 
These are called elementary because they can only be applied one at a time.

Translation

To translate a picture into a different position on a graphics display, the 
translation part of affine transformation arises from the third column of the 
translation matrix; so in ordinary coordinates Q = P + d, where offset vector d has 
components (m13, m23).
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Scaling

A scaling changes the size of a picture and involves two scale factors, Sx and Sy, 
for the x- and y-coordinates, respectively:

(Qx, Qy) = (SxPx, SyPy)

Thus the matrix for a scaling by itself is simple.

Transforming Points and Objects:
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Fig. 13.31 Mapping points into a new position

Fig. 13.31 shows transformation of point P to Q in 2D and 3D views using an 
algorithm or formula. The point P is mapped to point Q; we can say that Q is the 
image of P under transformation T.

In the case of 2D, points P and Q are represented by P
~

 and Q
~
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The transformation operates on the representation P
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The function T() could be complicated.
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Scaling also includes refection around an axis. Fig. 13.32 shows scaling and 
reflection around the x-axis.
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Fig. 13.32 A scaling and a reflection
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Rotation

Rotation is a fundamental graphics operation in which a figure about a given 
point is rotated through an angle.

y

x

T
60O

Fig. 13.33 Rotation of points through 60°

Fig. 13.33 shows a set of points rotated about the origin through an angle of  
q = 60°. T ( ) is a rotation about the origin; the offset vector d is zero and Q = T(P) 
has the form

Qx = Px cos (q) − Py sin (q)

Qy = Px sin (q) + Py cos (q)
In matrix form,
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sin( ) cos( )

θ θ
θ θ
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The Inverse of an Affine Transformation
When you apply transformation T to a point, you may want the original point 

back to its previous position. To remove the effect of transformation we apply 
another transformation called inverse transformation and it is denoted by T-1.

If point P is mapped into point Q according to Q = MP, simply pre-multiply 
both sides by the inverse of M, denoted M-1, and write

P = M-1 Q

The inverse of M is given by

M
M

m m

m m
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−

−
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The elementary inverse transformations are as follows:

Scaling:
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0
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Rotation:
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Shearing:
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Translation:
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Affine transformation: 3D approach

3D affine transformation is the same as 2D but has more complex expression 
and difficulty in visualizing. We use coordinate frames; in OpenGL, a vertex V at 
(x, y, z) is represented as

V

x

y

z

=



















PROGRAMMING GRAPHICS USING OPENGL 363

Scaling:

3D scaling can be represented as
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where ax, ay and az represent the scaling factors in x, y, and z directions, 
respectively. We can obtain the transformed V′ of vertex V as follows:
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Rotation
3D rotation operates about an axis of rotation (2D rotation operates about a 

center of rotation). 3D rotations about the x, y, and z axes for an angle q (measured 
in counterclockwise manner) can be represented as
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The rotational angles about x, y, and z axes, denoted as qx, qy, and qz, are known 
as Euler angles, which can be used to specify any arbitrary orientation of an object.

Translation
Translation does not belong to linear transformation, but can be modeled via a 

vector addition as follows:
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 is the translational vector

13.4.3 Drawing 3D Scenes Using OpenGL
OpenGL contains functions that establish a window and viewport, and that do line 
drawing through moveTo() and lineTo(). The main emphases are on transforming 
objects in order to orient and position them as desired in a 3D scene.
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2D drawing so far has actually used a special case of 3D viewing, based on a 
simple parallel projection. Viewing the scene looks along the one axis at the 
window, a rectangle lying in the remaining two planes. OpenGL provides the three 
functions glScaled(..), glRotated(..), and glTranslated(..) for applying modeling 
transformations to a shape.

The graphics pipeline implemented by OpenGL does its major work through 
matrix transformations, so we will first look into what each of the matrices in the 
pipeline does. At this point it is important only to grasp the basic idea of how each 
matrix operates: Each vertex of an object is passed through this pipeline with a 
call such as glVertex3d(x, y, z). The vertex is multiplied by the various matrices 
shown; it is clipped if necessary, and if it survives clipping it is ultimately mapped 
onto the viewport. Each vertex encounters three matrices:

1. The model view matrix

2. The projection matrix

3. The viewport matrix

The model view matrix basically provides what we have been calling the CT. 
It combines two effects: the sequence of modeling transformations applied to 
objects and the transformation that orients and positions the camera in space 
(hence its peculiar name “model views”). Although it is a single matrix in the 
actual pipeline, it is easier to think of it as the product of two matrices, a modeling 
matrix M, and a viewing matrix V.

The projection matrix scales and shifts each vertex in a particular way, so 
that all those that lie inside the view volume will lie inside a standard cube that 
extends from -1 to 1 in each dimension. This matrix effectively squashes the view 
volume into the cube centered at the origin. This cube is a particularly efficient 
boundary against which to clip objects. Scaling the block in this fashion might 
badly distort it, of course, but this distortion will be compensated for in viewport 
transformation. The projection matrix also reverses the sense of the z-axis, so 
that increasing values of z now represent increasing values of depth of a point 
from the eye.

Finally, the viewport matrix maps the surviving portion of the block into 
a “3D viewport.” This matrix maps the standard cube into a block shape whose 
x and y values extend across the viewport (in screen coordinates), and whose 
z-component extends from 0 to 1 and retains a measure of the depth of point.

Three functions are used to set modeling transformations:

•	 glScaled(sx, sy, sz); Post-multiply the current matrix by a matrix that performs 
a scaling by sx in x, by sy in y, and by sz in z. Put the result back in the current 
matrix.
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•	 glTranslated(dx, dy, dz); Post-multiply the current matrix by a matrix that 
performs a translation by dx in x, by dy in y, and by dz in z. Put the result back 
in the current matrix.

•	 glRotated(angle, ux, uy, uz); Post-multiply the current matrix by a matrix that 
performs a rotation about the axis that passes through the origin and the point 
(ux, uy, uz). Put the result back in the current matrix.

13.5 CURVE AND SURFACE DESIGN

Graphic scenes contain many different kinds of objects such as trees, flowers, 
clouds, rocks, water, bricks, glass, etc. We want an organized way to describe and 
represent a much richer set of shapes that occur in computer graphics and in CAD 
programs.

Polygon and quadric surfaces provide precise descriptions for simple Euclidean 
objects such as polyhedrons and ellipsoids. Other shapes are designed by some 
analysis program as the best possibility for a particular job, such as aircraft wings, 
gears, and other engineering structures with curved shapes and procedural methods.

Some shapes such as logarithmic spirals and the path of a planet as it sweeps 
about sun have a concise mathematical formulation that makes them easy to 
analyze, but it is of little help when we want to write a routine to draw them. Thus 
we need ways to convert it from one kind of representation to another that is more 
suited to certain tasks. Other shapes are more freeform and are based on data 
rather than mathematical expression. These we could handle in a program also, 
perhaps in order to find where one such curve intersects another.

13.5.1 Description of Curves
Polynomials are fundamental mathematical objects and are frequently used in 
computer graphics because they are well behaved and efficient to compute.

We can represent a polynomial in two ways:

1. Nonparametric form: When we write object descriptions directly in 
terms of the coordinates of the reference frame in use, the representation is 
nonparametric. For example, we can represent a surface with either of the 
following Cartesian functions:

f(x, y, z) = 0 or z = f(x, y)

The first form is an implicit expression for the surface, and the second form 
gives an explicit representation, with x and y as the independent variables, and z 
as the dependent variable.
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2. Parametric form: Euclidean curves are one-dimensional objects, and 
positions along the path of a 3D curve can be described with a single 
parameter u. That is, we can express each of the three Cartesian coordinates 
in terms of parameter u, and any point on the curve can then be represented 
with the following vector point function:

P(u) = (x(u), y(u), z(u))

Often, the coordinate equations can be set up so that parameter u is defined 
over the unit interval from 0 to 1. For example, a circle in the xy plane with center 
at the coordinate origin could be defined in the parametric form as:

x(u) = r cos(2pu), y(u) = r sin(2pu), z(u) = 0, 0 ≤ u ≤ 1

Curved or plane Euclidean surfaces are 2D objects, and a position on a surface 
can be described with two parameters, u and v. A coordinate position on the 
surface is then represented with the parametric vector function

P(u, v) = (x(u, v), y(u, v), z(u, v))

where the Cartesian coordinate values for x, y and z are expressed as functions 
of parameters u and v. As with curves, it is often possible to arrange the parametric 
description so that parameters u and v are defined over the range from 0 to 1. 
A  spherical surface with center at the coordinate origin can be described as 
follows:

x(u, v) = r sin(pu) cos(2pv) 

y(u, v) = r sin(pu)sin(2pv) 

z(u, v) = r cos(pu)

where r is the radius of the sphere. Parameter u describes lines of constant 
latitude over the surface, and parameter v describes lines of constant longitude. By 
keeping one of these parameters fixed while varying the other over a subinterval 
of the range from 0 to 1, we are able to plot latitude and longitude lines for any 
spherical section.

NOTE: In general, it is more convenient to represent an object in computer 
graphics algorithms in terms of parametric equation.

Things to remember: An Lth-degree polynomial in t is a function given by:

a0 + a1t + a2 t2+ … … … … + aLtL

where the constants a0, a1,…….aL are its coefficients, each associated with one 
of the powers of t.
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Polynomial Curves of Degree 1

Polynomial curves of degree 1 yield a straight line. The curve whose parametric 
equation is P(t) = a0 + a1

t is a straight line which passes through a0 at time 0, and 
through a0 + a1 at time 1. Here we can see that P(t) is actually two equations, one 
for x(t) and one for y(t). In the 3D world, there is a third equation for z(t).

Polynomial Curves of Degree 2

x(t) = at2 + 2bt + c 

y(t) = dt2 + 2et + f

where a, b, and so on are constants. This curve is always a parabola.

Implicit Form of Degree 2

F(x, y) = Ax2 y + Cy2 + Dx + Ey + F

where A, C, and so on are constants. It is assumed that A and C are not both 
0, which produce a degenerative curve. The above equation represents a conic 
section by examining the signs of coefficients A and C:

If AC > 0, it is an ellipse

If AC = 0, it is a parabola

If AC < 0 it is an hyperbola

The conic that is described depends on the value of eccentricity e. Eccentricity 
measures how far off the curve is from a perfect circle (eccentricity = 0). Fig. 13.34 
shows curves with different eccentricity.
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Fig. 13.34 Conic sections with different eccentricities

Polynomial curves of degree 3 or higher

Curves with first and second degree polynomials are easily understood. But 
things get more complicated when the polynomials are of a higher degree. It is 
always possible to find an implicit form of a given polynomial functions for x(t) 
and y(t), but if an implicit form is given we can’t easily convert it into parametric 
form when the degree of the polynomial is greater than or equal to 3.

Cubic polynomials prove very useful in curve and surface design. Bezier and 
B-Spline curves are cubic polynomials, and they provide a powerful approach 
to curve design. But this method won’t start with an implicit form and try to 
parameterize it. Rather it will start with a collection of control points carefully 
set down by the designer and allow a specific algorithm to generate points along 
the curve, so the designer, if necessary, can edit the position of the control points 
and view the curve again. This approach is visual, allowing the designer to see the 
progress of the curve design as the process continues.

Rational Parametric Forms

x and y are each defined as a ratio of two polynomials.

P t
P t w t P t

t wt t t
( )

( ) ( )

( ) ( )
=

− + − +

− + − +
0

2
2

2

2 2

1 2 1

1 1

where P0, P1, and P2 are three points in the plane. They are called control points 
as they control the shape of the curve; w is called a weighted parameter.
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The equation for P(t) is actually two equations: one each for x(t) and y(t).

x t
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− + − +
0

2
1

2

2 2
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where x0 and y0 are the components for P0. 
At t = 0, the right-hand side collapses simply to (x0, y0); this curve passes 

through, or interpolates, the point P0. At t =1, it passes through P2. For t in between 
0 and 1, P(t) depends on all three points in a complicated way.

P1
Hyperbola

Parabola

Ellipse

P2
P0

P2
P0

P1

(a) (b)

Fig. 13.35 Generating conics with rational quadratics

Fig. 13.35(a) has three control points and shows how the curve emerges 
from P0 as t increases from 0 and ends up at P2 as t approaches 1. The curve in  
Fig. 13.35(b) is one of the conic sections, and the type of curve depends on the 
value of w.

If w < 1, it is an ellipse
If w = 1, it is a parabola
If w > 1, it is an hyperbola
Rational parametric forms provide a way to generate conic sections 

parametrically.

13.5.2 Designing Bezier Curves
There are two main classes of curve generation algorithms.
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1. Interpolation: This algorithm generates a curve P(t) that passes exactly 
through the control points and forms a smooth curve.

2. Approximation: This algorithm generates a curve r(t) that approximates 
the control points. R(t) is attracted towards each control point in turn, but 
doesn’t actually pass through all of them.

Bezier curves (approximating curves) were developed to assist in car design. 
The de Casteljau algorithm is used to draw them.

The de Casteljau algorithm

The de Casteljau algorithm uses a sequence of points P0, P1, and P2,... to 
construct a well-defined value for point P(t) at each value of t from 0 to 1. Thus 
it provides a way to generate a curve from a set of points. Changing the points 
changes the curves. The de Casteljau algorithm is based on a sequence of familiar 
tweening steps that are easy to implement.

Because tweening is such a well-behaved procedure, it is possible to deduce 
many valuable properties of the curves that it generates.

Let us first talk about tweening:
Tweening is the process of generating intermediate frames between two images 

to give the appearance that the first image evolves smoothly into the second image. 
Tweening is used mainly for art and animation. It’s simplest if the two figures are 
polylines based on the same number of points.

The concept of tweening is simply moving a point (or a series of points) from 
its initial position to a final position. The equation for tweening along a straight 
line is a linear interpolation:

P = A(1 - t) + Bt ...(13.4) 
where A is the initial position of the object and B is its final position and t is the 

time varying from 0 to 1.

Tweening Three Points to Obtain a Parabola

Start with three points P0, P1, and P2 as shown in the Fig. 13.36. Choose some 
value of t between 0 and 1, suppose t = 0.3, and locate point A that is fraction t of 
the way along the line from P0 to P1. Similarly, locate B at fraction t along the line 
between endpoints P0 and P1 using the same t.

From Eq. (4) the new points can be expressed as

A(t) = (1 - t) P0 + tP1

B(t) = (1 - t) P1 + tP2  ...(13.5) 
Now repeat linear interpolation on these points (t is same).
Find the point P(t) that lies fraction t of the way between A and B:

P = A(1 - t) + Bt ...(13.6)
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P 1

P 0

P 2

B

P
A

at t = 0.3

P 0

P 2
P(t)

P(0.3)

(a) (b)

P 1

Fig. 13.36 The de Casteljau algorithm for three points

If we take t = 0.5, P(0.5) is simply the “midpoint between midpoints” for the 
three given points. If this process is carried out for every t between 0 and 1, 
the curve P(t) will be generated. Substitute Eq. (13.5) into Eq. (13.6) to get the 
parametric equation of curve.

P(t) = (1 - t)2 P0 + 2t(1 - t)P1 + t2 P2

The above parametric form of equation P(t) is quadratic in t, so the equation is 
a parabola. It will still be a parabola even if t is allowed to vary from -∞ to ∞.

Thus we have a well-defined process that can generate a smooth parabolic 
curve based on the three given points.

What if more than three control points are used?
The most commonly used family of Bezier curves is based on four control 

points.

P2

P1
C

P3
P

DA

E

B

P0
(a) (b)

Fig. 13.37 de Casteljau algorithm applied to points P0, P1, P2, and P3

For a given value of t, point A is placed fraction t of the way from P0 to P1, and 
similarly for points B and C. Then D is placed fraction t of the way from A to B, 
and similarly for point E. Finally, the desired point P is located fraction t of the 
way from D to E. If this is done for every t between 0 and 1, the curve P(t) starts at 
P0, is attracted toward P1 and P2, and ends at P3. It is the Bezier curve determined 
by the four points.

The Bezier curve based on four points has the parametric form
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P(t) = P0(1 - t)3 + P1 3(1 - t)2 t + P2 3(1 - t)t2 + P3 t3 ...(13.7)
Each control point Pi is weighted by a cubic polynomial, and the weighted 

terms are added.
The terms involved here are known as Bernstein polynomials.

Bernstein polynomials

Bernstein polynomials, restricted to the interval [0, 1], became important in 
the form of Bezier curves. A numerically stable way to evaluate polynomials in 
Bernstein form is de Casteljau’s algorithm.

A linear combination of Bernstein basis polynomials is called a Bernstein 
polynomial of degree n.

The Bernstein polynomials are

B t

B t t

B t t
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These cubic Bernstein polynomials are easily remembered as the terms one 
gets by the raised expression a(t) = (1 - t - t), which is simply 1 for all values of t 
to the third power.

Consequently, P(t) is an affine combination of points, and thus a legitimate 
point.
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Fig. 13.38 The Bernstein polynomial of degree 3
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Fig. 13.38 is the shape of the four Bernstein polynomials of degree 3 as t varies 
between 0 and 1.

p2

p3

P.0

p (.3) p1

.441 p2

x

.343 p0

.189 p2

.027 p3

y

Fig. 13.39 Blending four vectors with Bernstein polynomials

Fig. 13.39 illustrates geometrically how the four points p0,…….p3 in Eq. (13.7) 
are blended together to form P(t). View the points as vectors bound to the origin 
(so we write P0 as p0, and so on) and let t = 0.3. Then equation becomes

p(0.3) = 0.343 p0 + 0.441 p1 + 0.189 p2+ 0.027 p3

In Fig. 13.39 the four vectors are weighted and the results are added using the 
parallelogram rule to form the vector p(0.3).

Extending the de Casteljau algorithm to any number of points

In the previous section we saw how the de Casteljau algorithm uses tweening 
to produce quadratic parametric representations when three points are used and 
cubic representations when four points are used.

For each value of t, a succession of generations are built up, each by tweening 
adjacent points produced in the previous generation (superscript for P is the 
generation number):

P i t t P i t t P i t4 3 31 1( ) ( ) ( ) ( )= − + +

………
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P i t t P i t tP i tL L L( ) ( ) ( ) ( )= − + +− −1 11 1

for i = 0,1,…………L
The superscript k in Pki(t) denotes the generation. The process starts with  

P t Pi i
0( ) =  and ends with the final Bezier curve P t P ti

L( ) ( )= .

The resulting Bezier is

P t P B tK
L

k k
L( ) ( )= =∑ 0  ...(13.8)

where kth Bernstein polynomial of degree L is defined as
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The value of this term is 0 if L < k . Each of the Bernstein polynomials is seen 
to be degree L. As before, the Bernstein polynomials are the terms one gets when 
expanding [(1 - t) + t] L, so we are assured that

k
L

k
LB t=∑ =0 1( )  for all t

and P(t) is a legitimate affine combination of points.

Bezier curves in openGL

1. OpenGL supports Beziers through mechanisms called evaluators, used to 
compute the blending functions of any degree.

2. Evaluators are general mechanisms for working with Bernstein polynomials.

3. Smooth curves and surfaces are drawn by approximating them with a 
large number of small line segments or polygons. They are described 
mathematically by a small number of parameters such as control points.

4. An evaluator is a way to compute points on a curve or surface using only 
control points. They do not require uniform spacing of u. Bezier curves can 
then be rendered at any precision.

5. 1D Bezier curves can also be used to define paths in time for animation.
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1D Evaluators

GLfloat ctrlpoints[4][3] = {...};
void init(void) {

glMap1f(GL_MAP1_VERTEX_3, 0.0, 1.0,

3, 4, &ctrlpoints[0][0]);

}

void display(void) {

glBegin(GL_LINE_STRIP);

for(i=0;i<=30;i++)
glEvalCoord1f((GLfloat)i/30.0);

glEnd();

}

Fig. 13.40 

Defining a 1D Evaluator

glMap1(target(type), u1, u2, stride, order, points_to_array);

•	 	target: tells what the control points represent

•	 	u1,u2: the range of variable u

•	 	stride: the number of floating-point values to advance in the data between 
one control point and the next

•	 	order: the degree plus one, which it should agree with the number of control 
points

•	 	points: pointer to the first coordinate of the first control point
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Evaluating a 1D Evaluator

glEvalCoord1(u);

glEvalCoord1v(*u);

•	 	Causes	evaluation	of	the	enabled	maps
•	 	u:	the	value	of	the	domain	coordinate	(need	not	be	equally	spaced)
•	 	More	than	one	evaluator	can	be	defined	and	evaluated	at	a	time

– (ex) GL_MAP1_VERTEX_3 and GL_MAP1_COLOR_4
–  In this case, calls to glEvalCoord1() generates both a position and 

a color

Example: /* define and enable 1D evaluator for Bezier cubic curve */

point ctrlpts[ ] = { ……. } ;

glMap1f ( GL_MAP1_VERTEX_3, 0.0, 1.0, 3, 4, ctrlpts);
glEnable (GL_MAP1_VERTEX_3);

  /* GL_MAP1_VERTEX_3 specifies data type for ctrlpts, 
range of u = [ 0.0, 1.0], 3 is the number of values between control 
points, (order = degree +1) = 4  */

/* With evaluator enabled, draw line segments for Bezier curve */

glBegin (GL_LINE_STRIP);
for ( i = 0; i <= 30; i ++)

glEvalCoord1f ((Glfloat) i/30.0);
glEnd ( );

Equally Spaced Points
Rather than using a loop, we can set up an equally spaced mesh (grid) and then 

evaluate it with one function call:
glMapGrid(100, 0.0, 1.0);
sets up 100 equally-spaced points on (0,1)
glEvalMesh1(GL_LINE, 0, 99);
renders lines between adjacent evaluated points from point 0 to point 99

2D Evaluators

Everything is similar to the 1D case, except that all the commands must take 
two parameters, u and v, into account.

1. Define evaluators with glMap2*()

2. Enable them with glEnable()

3. Invoke them by calling glEvalCoord2() between a glBegin() and glEnd() or 
by specifying and applying a mesh with glMapGrid2() and glEvalMesh2()
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To define and evaluate:
glMap2f(target, u1, u2, ustride, uorder, v1, v2, vstride, vorder, points);
glEvalCoord2f(u, v);

Example 4
point data[4][4] = {………};
glMap2f(GL_MAP_VERTEX_3, 0.0, 1.0, 3, 4, 0.0, 1.0, 13, 4, data);
Note that in the v direction data points are separated by 13 floats since array data 
is stored by rows.

13.5.3 THE B-SPLINE BASIS FUNCTION

In numerical analysis, a B-spline, or basis spline, is a spline function that has 
minimal support with respect to a given degree, smoothness, and domain 
partition. Any spline function of a given degree can be expressed as a linear 
combination of the B-spline of that degree. Cardinal B-splines have knots that 
are equidistant from each other. B-splines can be used for curve fitting and 
numerical differentiation of experimental data. CAD and computer graphics, 
spline functions are constructed as linear combinations of B-splines with a set of 
control points.

The term “B-spline” is short for basis spline. A spline function is a piecewise 
polynomial function of degree <k in a variable x. The places where the pieces meet 
are known as knots. The number of internal knots must be equal to or greater 
than k-1. Thus the spline function has limited support. The key property of spline 
functions is that they are continuous at the knots. Some derivatives of the spline 
function may also be continuous, depending on whether the knots are distinct or 
not. A fundamental theorem states that every spline function of a given degree, 
smoothness, and domain partition can be uniquely represented as a linear 
combination of B-splines of that same degree and smoothness, and over that same 
partition.

Although the literature offers many different approaches to formulating 
B-splines, there is a single formula that defines all B-spline functions of any order. 
It is recursive relation that is easy to implement in a program and is numerically 
well behaved.

Each B-spline function is based on polynomials of a certain order, m. These are 
the two most important cases, although the formulation allows us to construct 
B-spline of any order.

Before going ahead let us first discuss knot vectors.
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The Knot Vector

The knot vector can, by its definition, be any sequence of numbers, provided 
that each one is greater than or equal to the preceding one. Some types of knot 
vectors are more useful than others. Knot vectors are generally placed into one of 
three categories:

1. Uniform

2. Open uniform

3. Non-uniform

Uniform

These are knot vectors for which

ti + 1 − ti = constant, for all i

For example:
[1, 2, 3, 4, 5, 6, 7, 8, 9]
[0, 1, 2, 3, 4, 5]
[0, 0.25, 0.5, 0.75, 1.0]
[−2.5, −1.4, −0.3, 0.8, 1.9, 3.0]

Open Uniform

These are uniform knot vectors which have k equal knot values at each end:

ti = t1,      i < = k
ti + 1 − ti = constant,    k < = i < n + 2

ti = tk + (n + 1)  i > = n + 2

For example:
[0,0,0, 0, 1, 2, 3, 4, 4, 4, 4] (k = 4)
[1,1,1,2,3,4,5,6,6,6] (k = 3)
[0.1,0.1, 0.1, 0.1, 0.1, 0.3, 0.5, 0.7, 0.7, 0.7, 0.7, 0.7] (k = 5)

Non-uniform

This is the general case, the only constraint being the standard

ti < = ti + 1, for all i

For example:
[1, 3, 4, 22, 23, 23, 49, 50, 50]
[1, 1, 1, 2, 2, 3, 4, 5, 6, 6, 6, 7, 7, 7]
[0.2, 0.7, 0.7, 0.7, 1.2, 1.2, 2.9, 3.6]
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NOTE: The shapes of the B-spline functions are determined entirely by the 
relative spacing between the knots.

Definition of B-Spline Functions

A B-spline is a piecewise polynomial function of degree <n in a variable x. It is 
defined over a domain t0 ≤ x ≤ tm, m = n. The points where x = tj are known as 
knots or break-points. The number of internal knots is equal to the degree of the 
polynomial if there are no knot multiplicities. The knots must be in ascending 
order. The number of knots is the minimum for the degree of B-spline, which has 
a non-zero value only in the range between the first and last knots. Each piece 
of the function is a polynomial of degree <n between and including adjacent 
knots. A B-spline is a continuous function at the knots. When all internal knots 
are distinct, its derivatives are also continuous up to the derivative of degree n−1. 
If internal knots are coincident at a given value of x, the continuity of derivative 
order is reduced by 1 for each additional knot.

It is useful to make the order of a B-spline function explicit in the notation, and 
so instead of saying simply Rk(t) (B-spline blending function), we denote the kth 
B-spline blending function of order m by Nk,m(t). Consider:

P t P Nk k,m

k

L

( ) =
=
∑

0

We have

•	 	a	knot	vector	T = (t0, t1, t2, ….....)

•	 	(L + 1) control points Pk

•	 	order	m of the B-spline functions
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For k = 0,1,…….,L.

This is recursive definition, specifying how to construct the mth-order function 
from two B-spline functions of order (m − 1). To get things started, the first-order 
function must be defined. It is simply the constant function 1 within its span:
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Note that this set of functions automatically sums to one at every t, so it is 
legitimate to use them in forming combinations of points.

))[))[

N 0,1 (t) N 1,1 (t)

1

t
1 2 21

t

2 – tt

1

N 0,2 (t)

Fig. 13.41 Construction of linear B-splines

Computing B-spline blending functions

float bSpline (int k, int m, float t, float knot[])

{

float denom1, denom2, sum = 0.0;
if(m==1)

return (t >= knot[k] && t < knot[k+1]); //Basic condition
denom1 = knot[k+m-1] − knot[k];

if(denom != 0.0)

sum = (t − knot[k]) * bSpline(k, m-1, t, knot);
denom2 = knot[k+m] − knot[k+1];

if(denom != 0.0)

sum += ( knot[k+m] - t) * bSpline(k+1, m-1, t, knot);
}

How to use multiple knots in the knot vector

We have used only B-splines based on equi-spaced knots. By varying the 
spacing between knots, the curve acquires much greater control of the shape of 
the final curve.

Now, consider an example when two knots are set very close to each other.  
T = (0, 1, 2, 3, 3 + e, 4 + e ……….) , where e is a small positive number. Fig. 13.42 
shows the situation of  knot vector:

N , 1(t)0 N , 1(t)2 N , 1(t)4N , 1(t)3

0 1 2 3 3 + ε 4 + ε 5 + ε
t

Fig. 13.42 Moving knots close together



PROGRAMMING GRAPHICS USING OPENGL 381

The piece of each polynomial lying in the interval [3, 3 + e] becomes squeezed 
into a very narrow span. The blending functions will clearly no longer be 
translations of one another. If e is set to zero, this span will vanish altogether, and a 
multiple knot will occur at t = 3.This knot is said to have a “multiplicity of 2.”

Fig. 13.43 shows the resulting blending functions. In Fig. 13.43(b) two of the 
linear B-spline shapes are discontinuous. Figure 13.43(c) has quadratic shapes 
with discontinuous derivative at t = 3. In general, an i-smooth curve is reduced 
to an (i − 1) smooth curve at multiple knots. Fig. 13.43(d) is a cubic B-splines 
curve that has 1-smooth everywhere, but not 2-smooth at t = 3. We can notice 
in Fig. 13.43(c) that if quadratic B-splines are used, the curve will interpolate 
control point P2, because the blending function N2,3(t) reaches 1 at t = 3, and all 
other blending functions are zero there. In general, when t approaches a knot of 
multiplicity greater than 1, there is a stronger attraction to the governing control 
point.

N2,1 N4,1

order = 1

t
1 2 3 4

order = 2

t
1 2 3 4

1

1 N (t)0,3 N (t)1,3 N (t)2,3 order = 3

1 2 3 4 5

order = 41

1 2 3 4 5

(a) (b)

(c) (d)

1

Fig. 13.43 B-spline shapes near a knot of multiplicity 2

Quadratic splines become discontinuous near a knot of multiplicity 3. Cubic 
splines exhibit a discontinuous derivative near a knot of multiplicity 3, but they also 
interpolate one of the control points. By adjusting the multiplicity of each knot, the 
designer can therefore change the shape of the curve in a predictable fashion.

Knots with positive multiplicity

If a knot vector contains knots with positive multiplicity, we will encounter 

the case of 0

0
. It is necessary to define 0

0
 before calculation. Therefore we shall 
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define 0

0
 to be 0. Fortunately, this is only for manual calculation. For computer 

implementation, there is an efficient algorithm.
If ti is a knot of multiplicity k (i.e., ti = ti +1 = .............= ti + k - 1), then knot 

spans [ti, ti + 1), [ti + 1, ti + 2), ..., [ti + k − 2, ti + k - 1) do not exist, and as a result, 
Ni,0(u), Ni+1,0(u),..., Ni+k−1,0(u)) are all zero functions.

Consider a knot vector T = { 0, 0, 0, 0.3, 0.5, 0.5, 0.6, 1, 1, 1 }. Thus, 0 and 1 are of 
multiplicity 3 (i.e., 0(3) and 1(3)) and 0.5 is of multiplicity 2 (i.e., 0.5(2)).

As a result, m = 9 and the knot assignments are

u0 u1 u2 u3 u4 u5 u6 u7 u8 u9

0 0 0 0.3 0.5 0.5 0.6 1 1 1

Let us compute Ni,0(u)’s. Since m = 9 and p = 0 (degree of basis functions), we 
have n = m - p - 1 = 8. As the following table shows, there are only four non-zero 
basis functions of degree 0: N2,0(u), N3,0(u), N5,0(u), and N6,0(u).

Basis function Range Equation Comment

N0,0(u) All u 0 since [u0, u1) = [0,0) does not exist

N1,0(u) All u 0 since [u1, u2) = [0,0) does not exist

N2,0(u) [0, 0.3) 1

N3,0(u) [0.3, 0.5) 1

N4,0(u) All u 0 since [u4, u5) = [0.5,0.5) does not exist

N5,0(u) [0.5, 0.6) 1

N6,0(u) [0.6, 1) 1

N7,0(u) All u 0 since [u7, u8) = [1,1) does not exist

N8,0(u) All u 0 since [u8, u9) = [1,1) does not exist

Now, we proceed to basis functions of degree 1. Since p is 1, n = m - p - 1 = 7. 
The following table shows the results:
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Basis function Range Equation

N0,1(u) all u 0

N1,1(u) [0, 0.3) 1
10

3
− 







u

N2,1(u) [0, 0.3)
10

3









u

[0.3, 0.5) 2.5(1 - 2u)

N3,1(u) [0.3, 0.5) 5u - 1.5

N4,1(u) [0.5, 0.6) 6 - 10u

N5,1(u) [0.5, 0.6) 10u - 5

[0.6, 1) [0.6, 1)

N6,1(u) [0.6, 1) 2.5u - 1.5

N7,1(u) all u 0

Fig. 13.44 shows the graphs of these basis functions.

N 1,1 N 3,1 N 5,1

N 6,1

N 4,1

N 2,1

1

0(3) 0.3 0.5(3) 0.6 1(3)
t

Fig. 13.44 Graphs of basis functions

Let us take a look at a particular computation, say N1,1(u). 

N t
t t

t t
N t

t t

t t
N t1 1

1

2 1
1 0

3

3 2
2 0, , ,( ) ( ) ( )=

−
−







+

−
−








Put t1 = t2 = 0 and t3 = 0.3 into the above equation:
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Since N1,0(t) is zero everywhere, the first term becomes 0

0
 and is defined to be 

zero. Therefore, only the second term has an impact on the result. Since N2,0(t) is 1 

on [0,0.3), N1,0(t) is 1
10

3
− 







u  on [0,0.3).

Next, let us compute all Ni,2(t)’s. Since p = 2, we have n = m - p - 1 = 6. The 
following table contains all Ni,2(t)’s:

Basis function Range Equation

N0,2(u) [0, 0.3) 1
10

3

2

− 

















u

N1,2(u) [0, 0.3)
20

3

8

3

2







 − 

















u u

[0.3, 0.5) 2.5(1 - 2u)2

N2,2(u) [0, 0.3)
20

3

2







u

[0.3, 0.5) - 3.75 + 25u - 35u2

N3,2(u) [0.3, 0.5) (5u - 1.5)2

[0.5, 0.6) (6 - 10u)2

N4,2(u) [0.5, 0.6) 20(-2 + 7u - 6u2)

[0.6, 1) 5(1 - u)2

N5,2(u) [0.5, 0.6) 13.5(2u - 1)2

[0.6, 1) 2.5(- 4 + 11.5u - 7.5u2)

N6,2(u) [0.6, 1) 2.5(9 - 30u + 25u2)

Fig. 13.45 shows all basis functions of degree 2.
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N 1,1 N 3,1 N 5,1

N 6,1

N 4,1

N 2,1

0 (3) 0.3 0.5(3) 0.6 1 (3)
t

1

Fig. 13.45 All basis functions of degree 2.

Let us pick a typical computation as an example, say N3,2(u). 
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Put t3 = 0.3, t4 = t5 = 0.5 and t6 = 0.6 into the above equation, and we get

N3,2(t) = (5t - 1.5)N3,1(t) + (6 - 10t)N4,1(t)

Since N3,1(t) is non-zero on [0.3, 0.5) and is equal to 5t - 1.5, (5t - 1.5)2 is the 
non-zero part of N3,2(t) on [0.3, 0.5). Since N4,1(t) is non-zero on [0.5, 0.6) and is 
equal to 6 - 10t, (6 - 10t)2 is the non-zero part of N3,2(t) on [0.5, 0.6).

Let us investigate the continuity issues at knot 0.5(2). Since its multiplicity is 2 
and the degree of these basis functions is 2, N3,2(t) is C 

0 continuous at 0.5(2). This 
is why N3,2(t) has a sharp angle at 0.5(2). For knots not at the two ends, say 0.3, C1 
continuity is maintained since all of them are simple knots.

Standard knot vectors

If the knot vector does not have any particular structure, the generated 
curve will not touch the first and last legs of the control polyline. This type of 
B-spline curve is called an open B-spline curve. If the first and last knots are 
not a multiple of m, the curve will not be tangent to the first and last legs at 
the first and last control points, respectively. One special choice of knot vector 
has become a standard for curve design. With this arrangement, the designer 
interpolates the first and last control points, thus better able to predict where the 
computed curve lies.

The standard knot vector for a B-spline of order m begins and ends with a knot 
of multiplicity m and uses unit spacing for the remaining knots. Let us start with 
an example and then see how it arises. Suppose there are eight control points and 
we want to use cubic (m = 4) B-splines. The standard knot vector turns out to be

T = (0, 0, 0, 0, 1, 2, 3, 4, 5, 5, 5, 5)
The eight blending functions, N0,4(t),……...,N7,4(t), defined on those knots are 

shown in Fig. 13.46(a). N0,4(t) and N7,4(t) are discontinuous and have a support 
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of only one unit span. Only N3,4(t) and N4,4(t) have the usual span of four points. 
The remaining blending functions have two or three unit spans, and their shapes 
become more distorted as they approach the first and last knots.

N (t)0, 4

N (t)1, 4 N2, 4

N3, 4 N4, 4

N5, 4 N6, 4

t , t , t , t0 1 2 3 t4 t5 t6 t7 t , t , t , t8 9 10 11

t

P1

P0

P2

P7

(a)

(b)

Fig. 13.46 (a) Eight cubic B-spline blending functions defined on the standard knot vector.
(b) The resulting curve based on 8 control points
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When we take all the blending functions together, this set of functions always 
ensures interpolation of the first and last control points. At t = 0, all blending 
functions are zero except for N0,4(t), which equals 1.

Fig. 13.46(b) shows an example of a curve based on eight control points. Clearly 
the first and last points are interpolated and the curve directions at these points 
are as promised.

The standard knot vector for (L + 1) control points and order-m B-splines is 
described as follows:

1. There are L + m + 1 knots all together, denoted by t0,………,tL+ m.

2. The first m knots, t0,………..,tm-1, all shares\ the value 0. (The first m 
blending functions start at t = 0.)

3. Knots tm,………….tm increase in increments of 1, from value 1 through 
value L - m + 1. (The final blending function, NL,m(t), begins at tL = L - m + 1 
and has a support of width 1.)

4. The final m knots, tL + 1,…………..,tL + m, all equal L - m + 2.

See the implementation of above points in programming language. It generates 
the standard knot vector for the given values of m and L.

Void buildKnots(int m, int L, double knot[])

{

//build the standard knot vector for L+1 control points 
and B-spline of //order m

int i;

if(L < (m-1))
return;

for(i = 0; i <= L+m; i++)
{

if(i < m)
knot[i] = 0.0;
else if(i <= L)
knot[i] = i – m + 1;//i is at least m here

else

knot[i] = L-m+2;
}

}

Constraint: The order m can’t exceed the number of control points (L+1).

Bezier Curves Are B-Spline Curves

We may want to clamp the curve so that it is tangent to the first and last legs 
at the first and last control points, respectively, as a Bezier curve does. To do so, 
the first knot and the last knot must be of multiplicity m. This is called a clamped 
B-spline curve. Bezier curves are a special case of B-spline curve. This is so 
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because the B-spline blending functions defined on the standard knot vector are 
in fact Bernstein polynomials when m = L + 1!

That is, N t B tk L k
L

, ( ) ( )
+

=1  for k = 0,………..,L.

Spline in OpenGL

•	 	OpenGL	 provides	 functions	 for	 both	 Bezier	 (GL)	 and	 B-spline	 (GLU)	
curves and surfaces.

•	 	These	 functions	can	be	used	 to	 interpolate	vertices,	normals,	 colors,	 and	
textures.

GLU B-spline curves

•	 	These	functions	are	actually	NURBS	(non-uniform	rational	B-splines)	but	
they can be used to generate uniform splines that are not rational.

•	 	You	have	to	create	a	NURBS	object:	

 GLUnurbsObj * curveName; 

 curveName = gluNewNurbsRenderer();

•	 	Then	you	can	assign	the	curve	properties:

 gluBeginCurve(curveName);

  gluNurbsCurve(curveName, nKnots, *knotVector, stride, *ctrlPoints 
degParam, GL_ MAP1_VERTEX_3);

 gluEndCurve(curveName);

•	 	When	done	with	the	curve	you	can	delete	it:

 gluDeleteNurbsRenderer(curveName);

•	 	You	can	also	assign	properties	to	the	curves	with

 gluNurbsProperty(splineName, property, value);

 B-spline surfaces work similarly except you use gluNurbs surface which has 
parameters for both dimensions.

13.5.4 Interpolation Technique
When polynomial sections are fitted so that the curve passes through each 
control point, the resulting curve is said to interpolate the set of control points. 
Interpolating curves are commonly used to digitize drawings or to specify 
animation paths. Cubic polylines are often a reasonable compromise between 



PROGRAMMING GRAPHICS USING OPENGL 389

flexibility and speed of computation. Compared to higher-order polynomials, 
cubic splines require less calculation and memory and they are more stable. 
Compared to lower-order polynomials, cubic splines are more flexible for 
modeling arbitrary curve shapes.

Linear interpolation is the simplest interpolation method. Applying linear 
interpolation to a sequence of points results in a polygonal line where each 
straight line segment connects two consecutive points of the sequence. Therefore, 
every segment (P,Q) is interpolated independently as follows:

P(t) = (1 - t) ⋅ P + t ⋅ Q

where t belongs to [0,1]. By varying t from 0 to 1 we get all the intermediate 
points between P and Q.

Interpolation using piecewise cubic polynomial

Cubic interpolation splines are obtained by fitting the input points with a 
piecewise cubic polynomial curve that passes through every control point. 
Suppose we have n + 1 control points specified with coordinates:

pk = (xk, yk, zk), k = 0, 1, 2, ………., n

A cubic interpolation fit of these points is illustrated in Fig. 13.47.

P1

P0
P2 .......

Pk Pk + 1

Pn

Fig. 13.47 A piecewise continuous cubic-spline interpolation of n+1 control points

We can describe the parametric cubic polynomial that is to be fitted between 
each pair of control points with the following set of equations:

x(t) = axt3 + bxt2 + cxt + dx

y(t) = ayt3 + byt2 + cyt + dy

z(t) = azt3 + bzt2 + czt + dz

where ( 0 ≤ u ≤ 1). We need to determine the values of four coefficients a, b, c, 
and d in the polynomial representation for each of the n curve sections between 
n + 1 control points. We do this by setting enough boundary conditions at the 
“joints” between the curve sections so that we can obtain numerical values for 
all the coefficients. The next section discusses common methods for setting the 
boundary conditions for cubic interpolation spline.



390 MATHEMATICS FOR COMPUTER GRAPHICS AND GAME PROGRAMMING

Hermite interpolation

The kth cubic segment of the curve is given by

yk(t) = akt3 + bkt2 + ckt + dkk = 0, 1, …….., L, for t in [0, 1]

We denote the value of its derivatives by sk (i,e. yk′ (0) = sk). In some cases the 
values sk are given by the user as input, and in others they are computed from 
other required properties of the curve.

We develop conditions on the coefficients ak, bk, ck, and dk so that each segment 
interpolates the given values yk at t = 0 and the value yk+1 at t = 1:

At t = 0: dk = yk

At t = 1: ak + bk + ck + dk = y(k + 1) for k = 0, …… , L - 1

This provides 2L conditions. We will force the derivatives of yk(t) to equal 
the given values sk and sk+1 at t = 0 and t = 1, respectively. Since the derivative is  
yk′ (t) = 3 akt2 + 2bkt + ck, this gives the condition:

At t = 0 : ck = sk

At t = 1: 3ak + 2bk + ck = sk+1 for k = 0, …… , L - 1. This provides another 2L 
condition, so we have a total of 4L conditions on the 4L unknown coefficients. 
Notice that setting the derivatives to the given slope values in this fashion 
automatically forces the slope to be continuous at the joints, so the curve is 
1-smooth.

The Natural Cubic Spline

This interpolation curve is a mathematical representation of the original 
drafting spline. We formulate a natural cubic spline by requiring that two adjacent 
curve sections have the same first and second parametric derivatives at their 
common boundary.

If we have n + 1 control points, then we have n curve sections with a total of 
4n polynomial coefficients to be determined. At each of the n-1 interior control 
points, we have four boundary conditions. The two curve sections on either side 
of the control point must have the same first and second parametric derivatives 
at that control point, and each curve must pass through that control point. This 
gives 4n-4 equations to be satisfied by the 4n polynomial coefficient. We get an 
additional equation from the first control points p0, the position of the beginning 
of the curve, and another condition from control point pn, which must be the last 
point on the curve. We will still need two more conditions to be able to determine 
values of all coefficients. One method for obtaining the two additional conditions 
is to set the second derivatives at p0 and pn to zero. Another approach is to add 
two extra “dummy” control points, one at each end of the original control point 



PROGRAMMING GRAPHICS USING OPENGL 391

sequence. That is, we add a control point p-1 and a control point pn + 1. Then all 
of the original control points are interior points, and we have the necessary 4n 
boundary conditions.

The natural cubic spline has a major disadvantage: if the position of any control 
point is altered, the entire curve is affected. Thus, natural cubic splines allow for no 
“local control” so that we cannot restructure part of the curve without specifying 
an entirely new set of control points.

SUMMARY

In this section, first we described the way to represent curve, either in parametric 
or nonparametric form: parametric cubic curves, a major type of curve, are hermit 
curves defined by two endpoints and tangent vectors, Bezier curves defined by two 
endpoints and two other points that control the endpoints tangent vectors, and 
spline curves. All the Bezier curves, hermite curves, and B-splines are translation 
and rotation invariant. The distinction between curves that interpolate the points 
and those that only approximate the points was emphasized. In either case the 
small set of control points, along with an algorithm, produce an infinite set of 
points along the curve, one for each value of the parameter t.

The Bezier curve is the simplest one. In a Bezier curve the de Casteljau algorithm 
can compute any point on the curve in a few iterations. The complication of the 
Bezier curve is that the degree of the Bezier curve depends on the number of 
control points. The Bezier curve lacks local control. Changing the position of one 
control point affects the entire curve.

We therefore examine a richer class of blending functions based on spline, 
which are piecewise polynomials that piece together in such a way that various 
order of derivatives are everywhere continuous. The B-spline can generate any 
spline and is the most concentrated of such shapes. It allows local control of 
shapes. It is more complex than a Bezier curve. The degree of curve is independent 
of the number of control points.

Then we discussed interpolation where, instead of being attracted towards the 
control point, the algorithm is forced to interpolate the given control points. We 
focused on piecewise polynomial curves, and developed conditions on various 
coefficients so that the curve not only interpolates the points but also has a 
prescribed velocity at each point.

Finally we discussed the curve design technique to design of different families 
of surfaces, including ruled surfaces and surface of revolution.
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EXERCISES

1. Define OpenGL. Explain it with some examples.

2. Explain briefly at least six graphical functions of OpenGL.

3. List the open GL operations. Explain any four in detail.

4. What are the advantages of OpenGL?

5. How does OpenGL work? Explain the OpenGL rendering pipeline.

OBJECTIVE QUESTIONS

13.1.  The technique used to produce a transformation of one object into another 
is known as
(a) morphing (b) betweening
(c) blindfolding (d) cutaway

13.2. A phosphor with low persistence is useful for
(a) animation (b) image processing
(c) CAD method (d) presentation

13.3. A system designed for some training applications is a
(a) GUI (b) simulator
(c) CAD (d) process monitor

13.4. A transformation used for dragging in computer graphics is 
(a) translation (b) rotation 
(c) scaling (d) reflection

13.5. At which part of the OpenGL graphics pipeline is illumination performed?
(a) before the MODELVIEW transformation
(b)  between the MODELVIEW transformation and PROJECTION 

transformation
(c)  between the PROJECTION transformation and viewport 

transformation
(d) between the viewport transformation and rasterization

13.6. What is the purpose of the reshape callback in OpenGL?
(a) to change the shape of the model
(b) to change the shape of the viewport
(c)  to re-calculate the camera properties when the window is resized or 

reshaped
(d)  to re-calculate the modeling transformation when the window is 

reshaped
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 13.7.  When the sides of rectangles are aligned with the coordinate axes then the 
rectangles are called
(a) overlapping rectangles (b) aligned rectangles
(c) symmetric rectangles (d) equivalent rectangles

 13.8. What does glut stands for?
(a) OpenGL Utility Toolkit (b) Graphic Language Utility
(c) Graphic Language Utility Toolkit (d) General Language Utility

 13.9. What is the meaning of Vertex2i in command glVertex2i()?
(a)  Command takes 2 arguments of integer types representing pixel 

information of vertices
(b)  Command takes 2 vertices in argument and represent them in integer 

format
(c) Command initializes the vertices as value equals to 2 in integer
(d) Command allows the vertices value differ by integer 2

13.10. The data type supported by the GLint() OpenGL is
(a) 16-bit integer (b) 32-bit integer
(c) 8-bit integer (d) 64-bit integer

13.11. The value for the aspect ratio of a golden rectangle is
(a) 1.6085 (b) 1.618034
(c) 1.628876 (d) 1.652151

13.12.  What is the trivial acceptance condition in the Cohen-Sutherland line 
clipping algorithm?
(a) FFFF (b) FTTT
(c) TTTT (d) FFFT

13.13. What is the aspect ratio?
(a) width/height (b) height/width
(c) width/width (d) height/height

13.14.  Which syntax of OpenGL is used for setting the world window in 2D 
graphics?
(a) gluOrtho2D() (b) glViewport()
(c) glLoadIdentity() (d) glMatrixMode( )

13.15. What is the format of the data type used to save in OpenGL?
(a) stack (b) queue
(c) matrix (d) file

13.16. Which function of OpenGL is used to plot a point in 2D space?
(a) glVertex2f(x,y) (b) glBegin(GL_LINES)
(c) gluOrtho2D( ) (d) glViewport()
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13.17. Which one is a v–contour generated curve?
(a) v varies while holding u is constant. 
(b) u varies while holding v is constant. 
(c) u and v both vary same time.
(d) none of the above

13.18.  A Bezier curve is a polynomial of degree _____ the number of control 
points used
(a) one more than (b) one less than
(c) two less than (d) none of these

13.19. Clamped B-spline curve P(t) passes through
(a) two middle control points (b) two end control points
(c) both (a) and (b) (d) neither (a) nor (b)

13.20.  Changing the position of control point Pi only affects the curve P(u) on 
interval
(a) [ ui, ui+p+1) (b) [ui-1, ui+p+1)
(c) [ui, ui+1) (d) [ui, ui+p)

13.21. Which of the following is a type of parametric curves and surfaces?
(a) Bezier and rational Bezier (b) B-spline
(c) NURBS (d) all of the above

ANSWERS

 13.1 (a)  13.2 (a)  13.3 (b)  13.4 (a)

 13.5 (b)  13.6 (d)  13.7 (b)  13.8 (a)

 13.9 (a) 13.10 (b) 13.11 (b) 13.12 (a)

13.13 (a) 13.14 (b) 13.15 (c) 13.16 (a)

13.17 (b) 13.18 (b) 13.19 (b) 13.20 (a)

13.21 (d)
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A
Accelerating anode 4
Affine transformation 358–363

3D approach 362–363
geometric effects of 359
inverse of 361–362

Algorithm 29–30
for line generation 36

Aligned rectangles
aspect ratio of 341–342
drawing 341

Alpha blending 312
ARC generation algorithm

in clockwise direction 73–75
counterclockwise direction 71–73
problems 75–79
using trigonometric function 70–79

Axonometric orthographic parallel 
projections 276

B
Bernstein polynomials 372–373
Bézier curves 204–207

are B-spline curves 387–388

designing 369–377
in openGL 374

Bézier surfaces 203
Blending functions 203
Boundary representation 258–261

B-rep scheme 259–261
curved solids 260
polyhedral solids 259–260
primitives 261

Bresenham’s line generation algorithm 43–54
algorithm for line 47, 51–54
mathematical analysis 44–46, 49–51
program for line generation 292–293

Bresenham’s midpoint circle generation 
algorithm 55–60

mathematical analysis 56–58
program for circle generation 293–294

Bresenham’s midpoint ellipse generation 
algorithm 61–70

mathematical analysis 61–67
problems 69–70
program for ellipse generation 294–295

B-spline basis function 377–388
B-spline blending functions 380

INDEX
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B-spline functions, definition 379–380
B-splines 202–203

C
Cabinet projection 279–280
Callback function 332
Calligraphic or random scan display  

system 6–7
Cathode 3
Cathode ray tubes (CRT)

deflection mechanism design 4–5
working of 3–4

Cavalier 278
Character clipping 245–246
Circle 170–174
C Language, graphics programs 291–309
Clipping 230–231

applications of 246
intersection calculation and 236–237
need for 231–232

Clipping candidate or indeterminate 235
Cohen-Hoggman polygon clipping

program 307–309
Cohen-sutherland 2D line clipping 353

program 304–306
Cohen-Sutherland subdivision line clipping 

algorithm 234–235, 237
vs. midpoint subdivision algorithm 238

Color-index mode 312
Computer-aided architectural design 

(CAAD) 325
Computer-aided design (CAD) 323–325

defined 2–3
Computer-generated images, application 

323–329
Computer graphics, definition 1–3
Constructive solid geometry 254–258

Boolean expressions in 255–256
expression and tree 256–258

Control grid 4
CRT based display devices 5–10

advantages 10
disadvantages 10

Cubic spline 191–202

Curve and surface design 365–391
Bezier curves, designing 369–377
B-spline basis function 377–388
curves, description 365–369
interpolation technique 388–391

Curves, description 365–369
nonparametric form 365
parametric form 366
polynomial curves 367–368
rational parametric forms 368–369

D
2D clipping 233–234, 244
3D clipping 243–245
DDA algorithm 37–43

problems 40–43
program for line generation 291–292
varieties of lines 41

De Casteljau algorithm 370, 371, 373–374
1D evaluators 375–376
2D evaluators 376–377
2D geometry representation 84
Diametric projection 278
2-dimensional (2D) designs 2
3-dimensional (3D) designs 2
Direct view storage tube (DVST) 6
Display list 312
3D model generation 249–268
Double buffering 312
Drawing figures, OpenGL 329–345

aligned rectangles, drawing 341
basic graphics primitives, drawing 

334–336
coordinate system, establishing 337–338
data types and “states” 336–337
device-independent programming and 331
event-driven programming 331–333
filling polygons 342
getting started, making pictures 330–331
graphics primitives 343
keyboard interaction 345
line drawing, making 339
mouse interaction 344
mouse motion 345
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opening a window, drawing 333–334
polylines and polygons, drawing 339–340

Drawing tools 345–357
circles and arcs, drawing 356–357
implementation, OpenGL 349–350
line clipping 352–354
matched viewport, making 352
polygons, drawing 355–356
screen window, resizing 351
setting window and viewport 350–351
viewports 346–347
window and viewport, mapping 347–349
world coordinates 346–347
world windows 346–347

2D rotation transformation, program for 
296–297

3D space, equations of line 217–218
3D space, equations of plane 217–218
3D transformations, program for 300–304

E
Ellipse 174–177
Engineering process, steps 2
Entertainment 328
Equation of line 30–36

problems 33

F
Feedback 312
Focusing anode 4

G
Geometric entities 29–81
glutCreateWindow function 334
glutDisplayFunc (myDisplay) command 332
glutInitDisplayMode function 333
glutInit function 333
glutInitWindowPosition function 333
glutinitWindowSize function 333
glutkeyboardFunc(myKeyboard) command 

332
glutMouseFunc(myKeyboard) command 332
glutreshapeFunc(myReshape) command 332
Graphics programs, C Language 291–309

Graphic user interface (GUI) 12–16
cursors 12–13
dialog boxes 15
icons 16
menus 15
radio buttons 13
scroll bars 14
valuators 14

Graphic User Interface (GUI) 1

H
Helical spring 224–226
Homogeneous coordinates 90–101
Hyperbola 182–187

I
Image generating techniques 5–12

CRT based display devices 5–10
non-CRT based display devices 11–12

Image generation, screen 3–5
Image processing 325–327
Immediate mode 312
Interpolation technique 388–391

Hermite interpolation 390
natural cubic spline 390–391
piecewise cubic polynomial 389

Inverse transformation 127–132
problems 129–132

Isometric projection 277–278

K
Knot vectors 378, 380

L
Laser printers working 20–26

charging 21–22
cleaning 24
developing 23
exposing 22–23
fusing 23–24
problems 25–26
raster image processing 21
transferring 23

Line algorithm 32, 34
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Line generation 31
comparing, equation of line and DDA 43
using DDA algorithm 37–43

Line generation algorithm 30–36
mathematical analysis 31

Line segment categorization 235
Lineto () approach 340
Liquid crystal display (LCD) 12

M
Materials lighting and shading 312
Midpoint circle generation algorithm 58–60
Midpoint subdivision algorithm 237

advantage of 238
vs. Cohen-Sutherland algorithm 238

Moveto () approach 340
Multiple windowing 245
Multi-segment cubic spline 194
Multi-view orthographic parallel  

projection 276

N
Non-uniform rational B-spline (NURBS) 

207–212
control points 208–209
curves 210
knot values 209
properties of 211
surfaces 210
uses of 212

O
Objects transformation 357–365

affine transformation 358–363
transformation with OpenGL 358

Oblique projection 278–280
OpenGL (Open Graphics Library)

with computer graphics 311–322
developer-driven advantages 313
display lists 316
drawing a polygon in 320–321
drawing figures using 329–345
drawing lines in 319
drawing points in 319–320

3D scenes, drawing 363–365
evaluators 316–317
fragment operations 318
graphical functions of 312–313
hardware implementation 314–315
per-vertex operations 317
pixel operations 317
primitive assembly 317
programming graphics using 323–394
rasterization 318
rendering pipeline 315–316
simple animation in 318–319
software implementation 314
texture assembly 317–318
working of 314

Orthographic parallel projection 275–278

P
Parabola 178–182
Parallel projection 274–281

mathematical description of 281
orthographic parallel projection 275–278
vs. perspective projection 280

Parametric representation, planar curves 
169–190

of circle 170–174
of ellipse 174–177
of hyperbola 182–187
of parabola 178–182
problems 172–177, 180–187

Parametric representation, space curves 
191–214

Bézier curves 204–207
B-splines 202–203
cubic spline 191–202
non-uniform rational B-spline (NURBS) 

207–212
problems 195–202

Parametric representation, surfaces 215–227
helical spring 224–226
problems 219–226
surface of revolution 215–221
sweep surfaces 222–224
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Perspective projection 271–274
center of projection (CP) 271
location of object 271
vs. parallel projection 280
perspective foreshortening 272
1-point perspective projection 273
2-point perspective projection 274
3-point perspective projection 274
vanishing points 272
view plane or projection plane 271

Pixel operations 312
Planar curves 169–190
Plasma displays 11
Polygon clipping 240–241

concave or non-convex polygon 241
convex polygon 240

Polynomial evaluators 312
Primitive creation functions 254
Process monitoring 327
Projections 269–281

parallel projection 274–281
perspective projection 271–274
problems 281–288

Publishing 328

R
Radiocity rendering 264–265

applications of 265
Rasterization 79
Raster scan display system 7–8
Ray trace rendering 263–264

advantages of 264
disadvantages of 264

Reflection, arbitrary plane in 3D space 158–164
Reflection transformation 101–112, 156–158

problems 107–112
program for 299

Refresh rate 16–20
problems 17–20

Regular clipping window 230
Rendering technique 262–265

global illumination 262
local illumination algorithms 262

radiocity rendering 264–265
ray trace rendering 263–264
scanline rendering 263

Rotation, arbitrary axis/line in 3D space 
143–156

Rotation about a point, program for 298
Rotation transformation 87–89

mathematical analysis 87–88
three-dimensional (3D) transformation 

137–143
two-dimensional (2D) transformation 

87–89

S
Scaling about a point, program 297–298
Scaling transformation 85–87

mathematical analysis 86–87
program for 297
three-dimensional (3D) transformation 

136
two-dimensional (2D) transformation 

85–87
Scanline rendering 263
Selection and picking 312
Shear transformation 112–127, 164–165

problems 113–127
program for 298–299

Simulation 328–329
Single-segment cubic curve 191
Solid modeling 253–261

advantages of 261
applications of 262
boundary representation 258–261
constructive solid geometry 254–258
Engineering design 262
entertainment industry 262
medical industry 262
primitive creation functions 254
sweeping 261

Space curves 191–214
Special transformation 101–127

reflection transformation 101–112
shear transformation 112–127
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Standard knot vectors 385–387
Surface modeling 251–253

advantages of 253
analytic entities 251
Bezier surface 253
B-spline surface 253
disadvantages of 253
plane surface 252
ruled (lofted) surface 252
surface of revolution 252
synthetic entities 251–252
tabulated cylinder 252

Surface of revolution 215–221
Sutherland-Hodgman algorithm 242–243
Sweep surfaces 222–224

T
Tangent vectors, internal points 194–195
Texture mapping 312
Three-dimensional (3D) transformation 

135–168
problems 138–143, 146–156, 159–164
reflection, arbitrary plane in 3D space 

158–164
reflection transformation 156–158
rotation, arbitrary axis/line in 3D space 

143–156
rotation transformation 137–143
scaling transformation 136
shear transformation 164–165
translation transformation 136

Transformation, viewing 232–233
Translation, program for 297

Translation transformation 89–90
three-dimensional (3D) transformation 

136
two-dimensional (2D) transformation 

89–90
Trigonometric function 70–79
Trimetric projection 278
Two-dimensional (2D) transformation 83–134

homogeneous coordinates, need of 90–101
inverse transformation 127–132
rotation transformation 87–89
scaling transformation 85–87
special transformation 101–127
translation transformation 89–90
types of 84–90

V
Variables declaration 30
Vector equation 218
Vector representation 29–81
Viewing transformation 232–233
Viewport 232

W
Window 232
Windowing process 229–230

need for 231–232
problems 239–240

Wireframe modeling 250–251
advantages of 251
disadvantages of 251

Z
Z-buffering 312
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