
MULTIMEDIA WEB DESIGN
AND DEVELOPMENT

LICENSE, DISCLAIMER OF LIABILITY, AND LIMITED WARRANTY

By purchasing or using this book (the “Work”), you agree that this license grants
permission to use the contents contained herein, but does not give you the right
of ownership to any of the textual content in the book or ownership to any of the
information or products contained in it. This license does not permit uploading of the
Work onto the Internet or on a network (of any kind) without the written consent of
the Publisher. Duplication or dissemination of any text, code, simulations, images,
etc. contained herein is limited to and subject to licensing terms for the respective
products, and permission must be obtained from the Publisher or the owner of the
content, etc., in order to reproduce or network any portion of the textual material (in
any media) that is contained in the Work.

MERCURY LEARNING AND INFORMATION (“MLI” or “the Publisher”) and anyone involved
in the creation, writing, or production of the companion disc, accompanying algo-
rithms, code, or computer programs (“the software”), and any accompanying Web
site or software of the Work, cannot and do not warrant the performance or results
that might be obtained by using the contents of the Work. The author, developers,
and the Publisher have used their best efforts to insure the accuracy and functional-
ity of the textual material and/or programs contained in this package; we, however,
make no warranty of any kind, express or implied, regarding the performance of
these contents or programs. The Work is sold “as is” without warranty (except for
defective materials used in manufacturing the book or due to faulty workmanship).

The author, developers, and the publisher of any accompanying content, and anyone
involved in the composition, production, and manufacturing of this work will not be
liable for damages of any kind arising out of the use of (or the inability to use) the
algorithms, source code, computer programs, or textual material contained in this
publication. This includes, but is not limited to, loss of revenue or profi t, or other
incidental, physical, or consequential damages arising out of the use of this Work.

The sole remedy in the event of a claim of any kind is expressly limited to replace-
ment of the book, and only at the discretion of the Publisher. The use of “implied
warranty” and certain “exclusions” vary from state to state, and might not apply to
the purchaser of this product.

Mercury Learning and Information
Dulles, Virginia

Boston, Massachusetts
New Delhi

MULTIMEDIA WEB DESIGN
AND DEVELOPMENT

Using Languages to
Build Dynamic Web Pages

Theodor Richardson
Charles Thies

Copyright ©2013 by MERCURY LEARNING AND INFORMATION. All rights reserved.

This publication, portions of it, or any accompanying software may not be
reproduced in any way, stored in a retrieval system of any type, or
transmitted by any means, media, electronic display or mechanical display,
including, but not limited to, photocopy, recording, Internet postings, or
scanning, without prior permission in writing from the publisher.

Publisher: David Pallai

MERCURY LEARNING AND INFORMATION
22841 Quicksilver Drive
Dulles, VA 20166
info@merclearning.com
www.merclearning.com
1-800-758-3756

This book is printed on acid-free paper.

Theodor Richardson and Charles Thies. Multimedia Web Design and Development.
ISBN: 978-1-936420-38-4

The publisher recognizes and respects all marks used by companies, manu-
facturers, and developers as a means to distinguish their products.
All brand names and product names mentioned in this book are
trademarks or service marks of their respective companies. Any omission
or misuse (of any kind) of service marks or trademarks, etc. is not an
attempt to infringe on the property of others.

 Library of Congress Control Number: 2012952664

131415 321

Printed in the United States of America

Our titles are available for adoption, license, or bulk purchase by
institutions, corporations, etc. For additional information, please contact
the Customer Service Dept. at 1-800-758-3756 (toll free).

The sole obligation of MERCURY LEARNING AND INFORMATION to the purchaser
is to replace the disc, based on defective materials or faulty workmanship,
but not based on the operation or functionality of the product.

I dedicate this book to Katherine; she is my muse and the love
of my life. I would be lost without you, and everything in my life

means more because you are in it.

— Theodor Richardson

To my sons, Matt and Will: Dream the impossible, learn from
your mistakes, and try again. Hard work and perseverance will

make all your dreams come true.

—Charles Thies

C o n t e n t s — vii

Introduction . xiii
Acknowledgments . xvii

Chapter 1
WEB DESIGN BASICS. 1

 1.1 Introduction to the World Wide Web ...1
 1.1.1 Web Pages and Web Browsers 4
 1.1.2 Hypertext Markup Language (HTML) 6
 1.1.3 Uniform Resource Locator (URL)............................... 8

 1.2 HTML Page Construction ...10

 1.2.1 The Doctype Declaration ...12
 1.2.2 Adding a Title ...14
 1.2.3 Adding Content ..15
 1.2.4 Adding a Hyperlink ..15
 1.2.5 Page Testing ...17

 1.3 Principles of Web Design ...18

 1.3.1 Page Layout and Real Estate19
 1.3.2 Purpose and Audience Consideration21
 1.3.3 Typography and Font Selection22
 1.3.4 Color Choice..25
 1.3.5 Evaluating Existing Design for Tone27
 Chapter Summary ...28
 Chapter Knowledge Check ..28
 Chapter Projects ..30
 Chapter Exercises ...31
 Chapter Review Questions..33

Chapter 2
SITE PLANNING AND PRODUCTION 35

 2.1 Web Site Planning ...36

 2.1.1 The Design and Development Process36
 2.1.2 Initial Client Communication38
 2.1.3 Establishing Audience and Purpose40
 2.1.4 Emphasizing and Showcasing Content41
 2.1.5 Creating a Design Set ..42

 2.2 The Case Project ...45

CONTENTS

vii i — C o n t e n t s

 2.3 Professional HTML Authoring Tools45

 2.3.1 Adobe Dreamweaver ..46
 2.3.2 Microsoft Expression Web ...48
 2.3.3 Notepad++ ..49
 Chapter Summary ...51
 Chapter Knowledge Check ..51
 Chapter Projects ..53
 Chapter Exercises ...54
 Chapter Review Questions..55

Chapter 3
INTRODUCTION TO HTML . 57

 3.1 Creating an Initial Site Layout ..57

 3.1.1 Decomposing a Design ...58
 3.1.2 Structuring a Page ...60
 3.1.3 Creating Layouts in HTML60

 3.2 Images ...63

 3.2.1 Image Formats ...63
 3.2.2 Image Creation Software ...65
 3.2.3 Creating Site Images ...67
 3.2.4 Inserting Images ..70
 Chapter Summary ...73
 Chapter Knowledge Check ..73
 Chapter Projects ..75
 Chapter Exercises ...75
 Chapter Review Questions..77

Chapter 4
CSS3. 79

 4.1 Introduction to Cascading Style Sheets79
 4.1.1 Invoking Styles in HTML ..80
 4.1.2 CSS Classes and Tags ..81
 4.1.3 CSS IDs...82
 4.1.4 Pseudo-classes ..83
 4.1.5 Inheritance ...84
 4.2 Positioning and Layering ...84
 4.2.1 Element Position ..85
 4.2.2 Layers ...89
 4.2.3 Height and Width...91
 4.2.4 Margins and Padding ...94

 4.3 Display Properties ..97

 4.3.1 Background Images ...97

C o n t e n t s — ix

 4.3.2 Colors ..99
 4.3.3 Borders ...103
 4.3.4 Shadows ..104
 4.3.5 Content Alignment ...105
 4.3.6 Text Modification ...106

 4.4 Reusing CSS Styles .. 108

 Chapter Summary ... 110
 Chapter Knowledge Check ... 116
 Chapter Projects ... 118
 Chapter Exercises ... 118
 Chapter Review Questions..120

Chapter 5
HTML5 .123

 5.1 Branding a Site ...124
 5.1.1 Planning for Content ...124
 5.1.2 Creating a Site Map ...125
 5.1.3 Hyperlinks ..126
 5.1.4 Image Links/Hotspots ..127
 5.1.5 Meta Tags ...130
 5.1.6 Cloning Pages ...131
 5.1.7 Adding a Site Icon ..133
 5.2 Adding Content ...135
 5.2.1 Using Paragraphs and Line Breaks135
 5.2.2 Ampersand Commands ..136
 5.2.3 Adding Tables ...137
 5.2.4 Adding Forms ...141
 5.2.5 Audio and Video ...145
 5.2.6 Embedded Code ..146
 Chapter Summary ...148
 Chapter Knowledge Check ...148
 Chapter Projects ..150
 Chapter Exercises ...151
 Chapter Review Questions..152

Chapter 6
 JAVASCRIPT AND JQUERY. .155

 6.1 JavaScript Basics .. 155

 6.1.1 Variable Declarations ..158
 6.1.2 Assigning Values ..159
 6.1.3 Function Calls ..161
 6.1.4 Defining Functions ...163
 6.1.5 Conditional Statements ...165

x — C o n t e n t s

 6.1.6 Looping ...168

 6.2 Using JavaScript .. 170

 6.2.1 Using the alert() Function171
 6.2.2 String Parsing and Form Validation171
 6.2.3 Dynamic Content ...179
 6.2.4 Events ...182
 6.2.5 External JavaScript ...184

 6.3 jQuery .. 185

 6.3.1 Installing jQuery ..186
 6.3.2 jQuery Code and Use ...187
 Chapter Summary ..190
 Chapter Knowledge Check ..190
 Chapter Projects ..192
 Chapter Exercises ...193
 Chapter Review Questions..194

Chapter 7
PHP AND PERL. .197

 7.1 Hosting a Web Site .. 197

 7.2 PHP .. 201

 7.2.1 PHP Basics ...202
 7.2.2 Form Processing ...204
 7.2.3 E-mailing with PHP ...208
 7.3 Perl ..210
 7.3.1 Perl Basics .. 211
 7.3.2 Form Processing ...212
 7.3.3 E-mailing with Perl ..216
 Chapter Summary ...219
 Chapter Knowledge Check ..219
 Chapter Projects ..221
 Chapter Exercises ...222
 Chapter Review Questions..223

Chapter 8
 MYSQL .227

 8.1 MySQL .. 227

 8.1.1 MySQL Data Types ..228
 8.1.2 Creating a MySQL Database230

 8.2 Structured Query Language (SQL).. 234

 8.2.1 Select Queries ...234

C o n t e n t s — xi

 8.2.2 Update Queries ..235
 8.2.3 Insert Queries ..236

 8.3 Using MySQL with PHP ... 236

 8.3.1 Accessing a MySQL Database with PHP237
 8.3.2 Storing Data in a MySQL Database239
 8.3.3 Retrieving Data from a MySQL Database240
 Chapter Summary ...243
 Chapter Knowledge Check ..243
 Chapter Projects ..245
 Chapter Exercises ...246
 Chapter Review Questions..247

Appendix
SELECTED ANSWERS .251

Index .259

Introduction
This book is a complete guide to the concepts and practices of Web

design and development. It includes hands-on activities and profes-
sional advice for best practices in learning the procedures and prac-
tices of both design and development, allowing you to practice the
entire life cycle of a Web project. The material herein captures all of
the stages, from initial designs to back-end programming, of creating
complex Web applications. After completing this text, you will have
the ability to create dynamic, engaging Web sites with interactive
components and persistent styles. Each topic provides all of the neces-
sary instruction for getting started in that particular area.

The fi rst fi ve chapters of the book focus on the front-end design of a
Web site. This includes the use of HTML5 and CSS3 to create profes-
sional Web pages. This also includes guidelines for graphic design to
make the most of your pages using color, font, and style. The profes-
sional tools Adobe Dreamweaver and Microsoft Expression Web are
also introduced, with guidelines for their use in creating the case proj-
ect that continues throughout the text.

Chapter 6 focuses on the use of JavaScript for creating dynamic
elements and enabling interactions with the user. This also serves
as an introduction to the common syntax for conditional statements,
variable declarations, looping, and branching. This chapter completes
the front-end development of the Web site and transitions into con-
siderations for back-end Web application development. The jQuery
library of functions for creating complex JavaScript effects across
browsers is also introduced in this chapter, including instructions on
installing the library to a site, linking it to a page, and implementing
its functionality.

Chapter 7 introduces both PHP and Perl for developing back-end
code for Web applications. It gives an overview of both programming
languages, with the goal of focusing on common tasks needed for inter-
activity and processing user input through forms or JavaScript sub-

xiv — Introduct ion

missions. This chapter includes instructions for emailing from both of
these server-side languages. In order to complete the activities for this
chapter, you will need Web hosting that supports one or both of them.
Ideally, the hosting solution you choose will also support MySQL for
completing the case project in its entirety. GoDaddy.com basic hosting
is recommended for this project, as it meets all of these criteria at a
relatively low cost.

Chapter 8 introduces MySQL, the most commonly used open
source database software, for data management and storage. This
includes an introduction to databases and the SQL database language.
The PHP toolkit is used for accessing, storing, and modifying data for
use in a Web application. The case project is completed in this chapter
with the storage and retrieval of information from the interactive form
developed for the site.

Chapter Structure
Each chapter is structured so as to provide you with an overview

and best practices for one component of creating a complete Web site
from the front-end design to the back-end programming. The chapters
contain hands-on activities both in the text and as standalone chal-
lenges to help you master the material. A case project is given as an
example for you to follow and expand on. Two additional projects are
presented to reinforce the material and allow you to practice it with
different objectives. A knowledge check is provided to allow you to test
your comprehension of the chapter. Answers to select odd-numbered
questions are provided at the back of the book. Additional exercises
and discussion questions are presented to help you further explore the
concepts in each chapter.

Code Notation
Some lines of code are longer than the lines of text in this book.

Whenever you see a  symbol in the code, the line immediately follow-
ing it is a continuation that should be on the same line in your actual
code. In HTML this is not important but in formal languages it is

Introduct ion — xv

necessary to keep all of the code on the same line. The code snippets
on the companion DVD contain the code in the correct lines for use.

Student Resource DVD
The textbook provides a DVD inside the back cover that includes

resources and sample video tutorials for the student. This DVD includes
all of the fi les needed to complete the chapter exercises within the
text. You will also fi nd a repository of high-resolution images from the
chapters and companion Excel template documents for using common
functions effectively. There are also student resources with additional
project samples and videos for each chapter, as well as video tutorials,
on the companion Web site for the book (authorcloudware.com).

Instructor Resource DVD
The instructor DVD contains the solutions for all of the exercises

and knowledge checks, along with PowerPoint presentations for each
chapter (authorcloudware.com).

Acknowledgments
Theodor Richardson:

I am very proud of the book that you now hold in your hands, and
I want to thank you for choosing it over others. Web design has been
a passion of mine and a profession for decades now, and I am pleased
to share what I have learned with you. This book is the result of the
combined creative forces of everyone who has worked to make it pos-
sible, and I want to offer my sincere thanks to them all, whether we
have met or not. I want to thank Katie Kennedy for her continued sup-
port, patience, and understanding as well as for her unprecedented
ability to make café lattes instantly as needed. I also want to thank
my grandparents, Leonard and Sylvia Ullom, and my parents, Dan
and Deborah Richardson, for giving me such a wonderful upbringing
and perpetual support and for helping me to capitalize on the oppor-
tunities that have led to my lifelong dream of seeing a book of my own
creation in print. I would like to thank my publisher, David Pallai,
and my co-author and friend, Charles Thies, for seeing another project
through to completion. Last, and certainly not least, I want to thank
you, dear reader, for your support.

Charles Thies:
I certainly have many people to thank who have made this project

possible. We have been writing now for a couple of years, and I would
like to thank my beautiful wife, Lea, and my sons, Matt and Will, for
their patience and support throughout. I would like to extend a special
thank you to my friend and co-author, Ted, for all of his guidance and
support throughout the project. A very special thank you to all of the
people we know worked to make this textbook possible but we never
met. Finally, a very special thank you to the students and professors
who have adopted this book; you are the reason we are always think-
ing about new ways to present material in the best format so that you
will be prepared in your fi eld of study.

Web Design Basics
IN THIS CHAPTER

This chapter presents an introduction to the basic concepts
of Web design. This includes an introduction to the World
Wide Web (WWW), including a brief history and an overview
of how resources can be interlinked via a Uniform Resource
Locator (URL). You will also start to practice creating and
opening HTML fi les, the basis of the interconnectivity of
the World Wide Web, and explore some preliminary designs
for the two core projects of the text, as well as principles
that you can use for your own projects later. Once you have
completed this chapter, you should be able to:

 ● Discuss the history of the World Wide Web

 ● Identify the components of a URL and
understand interlinking of Web documents

 ● Construct a new HTML document and open it
in a Web browser

 ● Create a preliminary design for your Web site

INTRODUCTION TO THE
WORLD WIDE WEB

The Internet is a vast interconnection of networks that spans the
world and allows computers to communicate from any point on the

1.1

CHAPTER

1

2 — Mult imedia Web Des ign

globe to any other point on the globe that shares a connection to this
vast complex network. The Internet of today grew from an initial
interconnection of United States government servers under a project
called ARPANET and has expanded across the globe. From the user
perspective, the Internet is most recognizable from the services that it
offers; these services prominently include e-mail and the World Wide
Web.

The World Wide Web (commonly abbreviated as “the Web”) is
a service that runs on the Internet to allow users with an Internet
connection to access publicly available documents that are shared by
organizations and individuals. It is the most common application on
the Internet and is most likely what people have in mind when they
think of the Internet.

In the 1980s and 1990s, Tim Berners-Lee, a physicist working as
a contractor at CERN (Conseil Européen pour la Recherche Nuclé-
aire, which translated from French means European Organization for
Nuclear Research), developed what is now known as the World Wide
Web through a variety of projects. Berners-Lee had a grand vision for
a system that could link information through a “web” of interconnec-
tions between documents across different computers.

These interconnections between resources were called hyperlinks
and acted as a way of managing and sharing information among
individual nodes, documents, and machines. The hyperlinked docu-

The Internet is a global interconnection of networks made up of
hardware devices, such as personal computers and servers, which supports
communication between different computing devices using an addressing
scheme known as Internet Protocol (IP).

The World Wide Web (or Web) is a service that runs on the Internet to
provide access to documents, audio, and video and allows the interconnection
of these documents through the use of hyperlinks.

DEFINITION

C h a pt e r 1 — We b D e s i g n B a s i c s — 3

ments contained text and hyperlinks and became known as hypertext
documents; this is the same as a Web page today, though they have
become much more sophisticated and have integrated a number of
other scripting and programming languages and technologies.

Tim Berners-Lee developed the Hypertext Transfer Protocol (HTTP),
which would essentially allow a user to click on one of these hyperlinks
to easily move from one hypertext document (or later, Web page) to
another using an interpreter program that is called a Web browser; the
early Web browser that he wrote was called WorldWideWeb.

This system allowed resources to be accessed by remote machines
that were interconnected via shared network protocols. Using the back-
bone of the Internet, HTTP and the resource access and hyperlinking it
enables have allowed the Web to expand into daily use on desktop com-
puters, servers, laptops, and mobile devices. Web pages are individual
documents that are stored on Web-enabled servers (or Web servers),
which contain hyperlinks to other Web pages, documents, and applica-
tions. A set of interrelated Web pages is called a Web site.

As the power of computers has grown, Web browsers have
expanded in capability from simple document retrieval and display to
media-rich interfaces that can act as robustly as a standalone appli-
cation installed on a computer. However, the core principles of this
system remain and will be the focus of this fi rst chapter.

A Web site is a collection of Web pages, documents, audio, and video that
is stored in a location such as a Web server and can be accessed by a unique
address determined by a Uniform Resource Locator (URL) value.

A Web server is a repository that contains all of the fi les and folders for a
Web site and provides remote access to them via various protocols such as
HTTP and File Transfer Protocol (FTP), over the Internet.

A Web browser is a software application used to search, navigate, and
retrieve information and data from the Web.

DEFINITION

4 — Mult imedia Web Des ign

Web Pages and Web Browsers
A Web page is a document designed for interpretation in a spe-

cialized application called a Web browser. Modern Web pages have
evolved from the simple concept of linking text documents to each
other via hyperlinks to an interrelated set of scripting and program-
ming languages that operate to provide a complex display capable of
providing rich, media-driven experiences for a user. Web pages use
a base language called Hypertext Markup Language (HTML), which
provides a means of complex media display and delivery along with
simple text inclusion. The fi le type of a Web page is .htm or .html.

A Web browser is a user application that retrieves Web pages and
interprets them for display on a user’s machine. The Web browser dis-
play is known as a WYSIWYG display, for “What You See Is What
You Get”; each Web browser will interpret the HTML code differently,
so content may not display the same way on different browsers. There
are a variety of Web browsers available for use.

The most common Web browsers in use today are Microsoft Inter-
net Explorer, Mozilla Firefox, Google Chrome, and Apple Safari. The
global statistics on browser use (as determined by statowl.com) can be
seen in Figure 1.1. The use of the different browsers varies by region.
Internet Explorer is the primary browser used in North America,
whereas Google Chrome has the largest use in Asia. Mozilla Firefox
is the most used browser in Europe. Apple Safari has seen increased
usage in recent years because of its integration with the Apple iPad.

1.1.1

Because of the differences in display, the World Wide Web Consortium (W3C)
has set standards of behavior and display for Web-based languages such
as HTML and Cascading Style Sheets (CSS). You should bookmark www.
w3c.org on your most commonly used Web browser as a reference for
usage whenever you are in doubt about the behavior and application of a
Web-based language component.

NOTE

C h a pt e r 1 — We b D e s i g n B a s i c s — 5

At this point, it is safe
to assume that support-
ing Internet Explorer,
Mozilla Firefox, Google
Chrome, and Apple
Safari will allow your
site to reach nearly any
audience set you desire.

The four most com-
mon browsers can be
downloaded for free. It is
recommended that you
have at least three of them installed on your computer for testing pur-
poses as you begin to design and develop more complex Web pages
and applications. The most common Web browsers can be downloaded
from the following sites:

• Microsoft Internet Explorer (IE): This browser is a Win-
dows OS–exclusive browser designed to integrate more fully
with the Windows desktop environment. IE contains ActiveX
technology, which can allow it to function in a more robust
manner and provide greater depth of content on Windows
machines; scripting for ActiveX requires separate consider-
ations from those of normal Web design and development for

 FIGURE 1.1 Global Browser Usage Statistics

ACTIVITY 1.1 – WEB BROWSER INSTALLATION AND
UPDATING

As you go further in the chapter, you will start to plan two course projects. You
will need to test these on multiple Web browsers to ensure compatibility. To pre-
pare for this, you should make sure you have at least Internet Explorer (www.
microsoft.com) and Firefox (www.fi refox.com) on a Windows
machine and Safari (www.apple.com/safari) and Firefox
(www.fi refox.com) on a Mac OS machine. You can use the indicated
homepages for each of these software tools to download the respective software
or update the Web browsers you already have installed to the latest version.

ACTIVITY

6 — Mult imedia Web Des ign

general use. IE can be downloaded from the Microsoft
homepage at www.microsoft.com.

• Mozilla Firefox: This browser is compatible with the Win-
dows, Mac OS, and Linux operating systems, as well as some
mobile devices (as an app). It can be downloaded from the
homepage www.fi refox.com.

• Google Chrome: Chrome is a browser that has recently
gained market share. It is compatible with multiple
operating systems and integrates with Google’s other online
services, such as Google Docs. It can be downloaded from
www.google.com/chrome.

• Apple Safari: Safari is the default browser for Mac OS and is
directly integrated with Apple iOS devices, including the iPad.
A version of Safari is also available for Windows. You can
download Safari from www.apple.com/safari.

Hypertext Markup Language (HTML)
A Web page is written in the language of the Web, Hypertext

Markup Language (HTML). HTML fi les are made up of text and
formatting commands called tags. The tags of HTML can be used to
format the text in the page and to establish page structure. Without
any tags, HTML pages act like continuous lines of text, breaking at
the boundaries of the Web browser window. (This is similar to their
behavior in text editors like Microsoft Word when no formatting is
applied). The HTML tags allow this fl ow to be changed and formatted
to create complex pages with clearly delineated visual elements.

1.1.2

One of the browsers you should seriously consider having on your computer for
testing is Mozilla Firefox. It includes a Web Developer tool (accessible directly
from the Firefox main menu), which will assist you in evaluating your HTML
code, CSS commands, and JavaScript execution. If you are unsure why your
page is not working or displaying properly, opening it in Firefox and using the
Web Developer tools Web Console and Error Console can save you a signifi cant
amount of time debugging your page or application.

PROFESSIONAL
TIP

C h a pt e r 1 — We b D e s i g n B a s i c s — 7

HTML is a highly structured
language. Its rules and form are
defi ned by the structure of its par-
ent language, Standard Generalized
Markup Language (SGML). HTML
is a sister language to eXtensible
Markup Language (XML), which
is used for data transmission and
interoperability. This is the reason
for the commonality in tag format
between HTML and XML. You can
see this hierarchy visually in Figure 1.2.

The tags in HTML are signifi ed by angle brackets (the less than and
greater than symbols) wrapping the name of the tag, such as <title> to
signify the title tag. You can view tags in HTML as on and off switches.
Anything that is turned on must be turned off. To turn off a tag, you
would use a slash before the name of the tag between the less than and
greater than symbols, such as </title> to signify the end of the title.
Any text included between the initialization tag and the end tag will be
formatted according to the behavior of the tag. For example, the HTML
code <title>My Page</title> would make the page title “My Page” in
the Web browser in which it is displayed. HTML is interpreted by the
browser, and the application of the tags for formatting the document
depends upon their placement in the page. You will discover the rules
and specifi cs of HTML tags as you continue through the text.

HTML 5 has deviated from strict adherence to SGML, but the tags and rules
that have carried over from prior versions of HTML (such as HTML 4.01) still
operate under SGML rules and constraints. This deviation in structure will be
covered in later chapters, but you should concentrate on structured HTML to
help you learn good habits as you begin using the language.

NOTE

 FIGURE 1.2 Hierarchy of Markup
Languages

8 — Mult imedia Web Des ign

Uniform Resource Locator (URL)
Web resources are identifi ed by a Uniform Resource Locator

(URL). This is a pathway that establishes the server and fi le that the
Web browser is attempting to access on behalf of the user. You can see
a sample breakdown of the pieces of a URL in Figure 1.3. The URL
is entered into the address bar of the Web browser to establish a con-
nection to the specifi ed resource. URLs cannot include blank spaces
(Whenever you see “%20” in a URL, it is the browser attempting to
reconcile a blank space in the path.)

 FIGURE 1.3 Example Breakdown of a URL

The individual pieces of the URL
http://www.example.com/fi les/mypage.html are as follows:

• First, http is the protocol. A protocol is a set of messages
coupled together to transmit information in a way that both
the sender and receiver can understand. The common proto-
cols you may see for Web use are http (used for connecting to
a Web resource), https (the secure version of HTTP), ftp (File
Transfer Protocol, used for uploading and downloading fi les),
and mailto (used to invoke the default e-mail program).

• Next, the colon (:) separates the protocol from the input com-
mand. The input command is the rest of the URL information
after the colon.

1.1.3

HTML is case insensitive, so the tag <TiTLE> and the tag <title> will behave
in the same manner. But according to W3C, the HTML tag names should
always be in lowercase letters, so that is the convention you should adopt.

NOTE

C h a pt e r 1 — We b D e s i g n B a s i c s — 9

• The two slashes (//) signify that contact to a server should be
established.

• The next section is the Web server identifi cation (which is also
called the hostname); in this case it is www.example.com. This
specifi es a unique Web server to which the Web browser will
submit a resource request. Alternatively, you may see a set of
numbers separated by period characters, such as 128.163.1.1;
this also uniquely identifi es a server by its Internet Protocol
(IP) address. The humanly readable text is a convenience for
users that connects to a numerical server address.

• Within the Web server identifi cation, the www signifi es the
server that should be listening for a request from the protocol.
The www can be omitted in almost all cases because it will be
assumed by default. Other text may precede the domain name,
representing subdomains (such as videos.example.com, in
which videos is the subdomain).

• The text example.com is the domain name. This is uniquely
bound to a preset folder on a Web server by whoever owns the
domain.

• The text com is the Top-Level Domain (TLD), the top level in
the domain hierarchy; it assists in uniquely identifying server
names. There are only a limited number of these in existence,
though more are being created as the old ones are exhausted.
Common TLD names include com (for commercial use), org
(typically for non-profi t organizations), edu (for educational
use), and gov (for government Web sites).

• The rest of the address is used to locate local resources on
the specifi ed Web server. The fi les portion of the address
represents the fi le structure (called the fi le path) beyond the
main folder of the location within the Web server. Multiple
subfolders can be identifi ed as part of the fi le path (such as
media/videos, in which videos is a subfolder of media and
the media folder resides in the main folder identifi ed for the
Web server identifi cation).

• The fi nal portion of the URL is the fi lename. In this case, it is
mypage.html. This identifi es the specifi c resource that the
Web browser is requesting from the Web server. Most of these
fi lenames will be HTML fi les with an extension of .htm or
.html.

10 — Mult imedia Web Des ign

HTML PAGE CONSTRUCTION
HTML pages are written in text, and they act the same way no

matter which program is used to write them. You will experience
some of the different design tool options in the next chapter, but no
matter which one you choose, the code that results will be the same
format and can be opened in any Web authoring or text processing
program. The simplest program to use when writing HTML is a plain
text editor, like Notepad on Windows or TextEdit for Mac OS. Any
program that saves plain text fi les (as .txt) can be used to create an
HTML document.

Every HTML page has the same basic structure. It includes an
initial <html> tag to signify that HTML formatting rules should be
applied by the browser; this must be turned off at the end of the page
with an </html> tag to close the document content. Inside the HTML
page are two main parts, the head and the body.

1.2

When there is no fi lename specifi ed, the server will look for either
index.htm or index.html. For this reason, you should always name the
homepage of your site either index.htm or index.html so the server can
fi nd it immediately with a reference to the containing folder. This will be reiter-
ated throughout the project planning, but you should make note of it now.

NOTE

More complex word processing programs, like Microsoft Word, can create
HTML, but their use is not recommended. You must be careful with how you
save your fi les on these programs to avoid formatting code in your document
in a language other than HTML and extraneous code added by the editor. You
should make sure that the Type fi eld of the Save As dialog box says either
“Text” or “Plain Text” before you complete the save operation.

NOTE

C h a pt e r 1 — We b D e s i g n B a s i c s — 11

The recommended text editor to use for HTML creation is Notepad++; it runs
on any operating system and can be downloaded (for free) either as an
executable fi le or as source fi les that can be compiled for your specifi c
machine. The benefi t of this program is that it identifi es tags in your document
with highlighting after you have saved the page with an HTML extension (either
.htm or .html). It can also identify code in other programming languages, such
as JavaScript and PHP, which you will use as you start to develop more com-
plex Web pages and Web sites. Even when you start using design tools for your
HTML pages, Notepad++ is a benefi cial tool for editing and error-checking
HTML and embedded code. Notepad++ is available from the Web site note-
pad-plus-plus.org.

PROFESSIONAL
TIP

The head is signifi ed by the <head> tag and closed by the </head>
tag. This section is used for confi guration information and non-dis-
playing elements. The only portion of the head that displays in the
browser is the title. This is where you will place your CSS styles and
interlink external resources as you add complexity to your pages.

The body is signifi ed by the <body> tag, which should be placed after
the closing </head> tag. The body is where all of the content should be
placed that you want to display in the browser window. The body must
also be closed with </body> before you close the HTML tag with </html>.

ACTIVITY 1.2 – CREATING A TEMPLATE PAGE AND
PROJECT FOLDER

For this activity, you will create a folder to house your projects for this textbook
and create a template fi le for your HTML pages. First, choose a location on your
computer and create a new folder called “WebProjects” (with no spaces in the
name; you should not include spaces in any folder or fi lenames used for the Web).
You will create new folders inside of this folder for the activities and projects
throughout this text. Housing everything in the same folder structure will help you
when linking documents together and invoking resources within your pages.

Using the page outline given below, open a text editor and type the page struc-
ture into it, from the <html> tag to the </html> tag. You should save this fi le as
template.html inside the WebProjects folder. This will allow you to
create a new page by opening this fi le without the need to retype this structure.
You should follow along with the remaining parts of this chapter to expand your
template fi le to include the additional elements needed.

ACTIVITY

12 — Mult imedia Web Des ign

The complete structure for an HTML page with the head and body
elements included is as follows:

<html>

 <head>

 </head>

 <body>

 </body>

</html>

You can use this as a guide for placing your content and resources.
There are additional elements that are common to all HTML pages
that you will explore in the next few sections. These include the docu-
ment type (doctype) declaration and page title.

The Doctype Declaration
A Doctype Declaration (DTD) is an instruction to the browser spec-

ifying the type of content the browser will encounter in the page. The
need for a DTD is based on the different versions of HTML that can
be used in a page and the widespread inclusion of XML documents on
the Web. A DTD tells the browser how to interpret what follows in the
page.

There are a variety of DTD values that you may encounter, but
the two DTDs you will likely need to use most often are for HTML 5
and HTML 4.01. Eventually, you should construct all of your pages in
HTML 5. The command for a DTD is <!DOCTYPE>; this is in upper
case because it is a browser instruction, not an HTML tag.

1.2.1

Some Web browsers are more forgiving of errors than others. For example, Firefox
allows you to open a page that does not include a DTD, but you should never
depend on this forgiveness, as it can cause compatibility issues in other browsers.

NOTE

C h a pt e r 1 — We b D e s i g n B a s i c s — 13

The DTD you should use for HTML 4.01 is:
<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01 Transi-

tional//EN” “http://www.w3.org/TR/html4/loose.dtd”>

There are different DTDs for HTML 4.01, but the “loose” specifi -
cation from the example is more forgiving and allows the use of pre-
sentational content and deprecated tags (tags that were once part
of the standard but have been retired). Ideally, you would use the
strict DTD, but it is more diffi cult to determine errors as a begin-
ner, since the errors may simply be omitted from the browser con-
tent. The words and strings (denoted by quotation marks) following
the word DOCTYPE inside the tag are called attributes; you will
encounter attributes frequently as you expand your understanding
of HTML. Attributes are always separated from the tag name by a
blank space.

The DTD for HTML 5 is simpler, because it is not a derivative of
SGML. The DTD for HTML 5 is as follows:

<!DOCTYPE html>

The DTD tag for a page does not have an end tag like most
HTML tags and does not have to be closed. These tags are also case
insensitive, like other HTML tags, but convention dictates that they
should be capitalized. The page structure with an HTML 5 DTD is
as follows:

<!DOCTYPE html>

<html>

 <head>

 </head>

 <body>

 </body>

</html>

14 — Mult imedia Web Des ign

Adding a Title
The next element that should always be included in an HTML

page is a title. A title is added inside the head using the <title> and
</title> tags. Whatever text is typed between the opening and closing
tags will be treated as the page title by the browser. For instance, to
call a page “My Page Title,” you would use the following code inside
the head of the fi le:

<title>My Page Title</title>

The complete code for the page with a title included is:
<!DOCTYPE html>

<html>

 <head>

 <title>My Page Title</title>

 </head>

 <body>

 </body>

</html>

1.2.2

ACTIVITY 1.4 – ADDING A TITLE

For this activity, you will add a placeholder for your page title in your
template.html fi le. Make sure you place the <title> and </title> tags
within the head of the HTML document. You can use “My Page Title” as your
placeholder value, but you will need to change this for each page you create.
Be sure to save your fi le when you are fi nished.

ACTIVITY

ACTIVITY 1.3 – ADDING DTDS TO THE TEMPLATE PAGE

For this activity, you should open template.html in the text editor of your
choice and add a DTD declaration before the <html> tag. Be sure to save your
fi le when you are fi nished.

ACTIVITY

C h a pt e r 1 — We b D e s i g n B a s i c s — 15

Adding Content
The content of your page that you want to display in the main win-

dow of the Web browser is placed inside of the body (between the <body>
and </body> tags). You can type plain text in this area and it will dis-
play in the Web browser window using the default font and format for
the browser. Without any formatting, the text may appear differently
on different browsers. Almost all of your page development will be for
the body of the document, since this is what your audience will see. Only
the title, meta information about the page, JavaScript code and CSS
formatting will be placed inside the head of the document.

Adding a Hyperlink
One of the key features of using hypertext is the ability to link a

document to other resources and documents. To do this, you can cre-
ate a hyperlink (or link) inside your HTML document. The tag that
you will use to create this link is the anchor tag, denoted <a> in HTML.
Link text will (by default) be colored blue and underlined. You can see
an example of linked text compared to regular text in Figure 1.4.

The text between the opening <a> tag and the closing tag
will be the highlighted text that appears in the browser window. For
example, in Figure 1.4, the text between the <a> and tags is

“This is a link.”

1.2.3

1.2.4

ACTIVITY 1.5 – HELLO, WORLD!

One of the fi rst programming activities in any language is to create a program
to print the text “Hello, World!” on the screen. This has become a computing
tradition that you will continue in this activity. Fortunately, displaying text is
very simple once you have the HTML page structure complete. For this activity,
you should open the template.html fi le in a text editor and save the fi le as
hello.html inside the WebProjects folder. Change the title of your
HTML page (the content between <title> and </title>) to the text “Hello, World!”
and add the text “Hello, World!” to the page inside the body of the document
(between the <body> and </body> tags).

ACTIVITY

16 — Mult imedia Web Des ign

In order to set a destination for the link (the resource to which
the Web browser will connect when the link is clicked by the user),
you must use an attribute inside of the <a> tag. This attribute is
the hyper-reference attribute, abbreviated href. The attribute href
requires a value; this creates what is called an attribute/value pair.
The code for this is:

This is a link.

The text “This is a link.” can be changed to any text. Similarly,
the text “destination” should be replaced with the actual URL of the
resource that is to be accessed. There are two types of URL referencing
that are accepted by the href attribute:
• Global Referencing: This type of reference specifi es the com-

plete URL for a resource. For example, you could link to the
Google homepage with the following code:
Google HomePage

• Relative Referencing: This type of reference specifi es a
resource based on its location relative to the current page. For
example, if you had two pages in the same folder named page1.
html and page2.html, then you could link to page2.html inside
page1.html with the following code:
Page 2

You do not have to add any attributes to a closing tag; all of the
attribute/value pairs should be contained in the opening tag.

 FIGURE 1.4 Linked Text

C h a pt e r 1 — We b D e s i g n B a s i c s — 17

Page Testing
Once you have made changes to an HTML page or created a new

one, it is always a good idea to test it in a Web browser. If you have a
default Web browser set for your computer, the easiest way to test the
document is to double-click the icon inside of the WebProjects folder.
Since the document type is HTML, it will open in a Web browser
instead of a text editor. If you do not have a default Web browser set
for your computer or you wish to test the fi le in a different browser, you
can right-click the icon and select Open with and choose the browser
you want to use to open the fi le.

The browser will interpret the page content for display and show
it in the browser window. You can see an example of this in Figure 1.5
for the hello.html page you have created through the activities in this
chapter. You should open this fi le in your own Web browser of choice
to see how the results of your work are interpreted.

1.2.5

ACTIVITY 1.6 – CREATING A LINK

For this activity, you will enhance the hello.html fi le to add a link from the
word “World” to the homepage of Google Earth. To hyperlink the word
“World” in the body of the document, you should fi rst wrap it in the <a>
and tags. The href attribute of the <a> tag should point to the URL
www.google.com/earth using the http protocol. The content of your
body should be as follows:

Hello, World!

Make sure to save your work when you are fi nished.

ACTIVITY

In Firefox, you can select the Firefox menu, choose New Tab, and then
choose Open File to select an HTML fi le you want to open on your local
computer.

NOTE

18 — Mult imedia Web Des ign

From the fi gure, you can see where the different elements of the
page translate in the browser. The title of the page will be located in
the top part of the browser interface. The main browser window is
where the body of the page is displayed. The address bar will display
the URL of the fi le. In this case, it will begin with fi le://C:, because
it is using local fi le access on the C drive of your machine. (A differ-
ent letter may display if you have selected a different default storage
drive.)

PRINCIPLES OF WEB DESIGN
Now that you have an understanding of the basic mechanics of

constructing and testing a page, you should pause to consider how
you will design and structure your HTML pages individually or for an
entire Web site. When you create pages for the Web, you are creating
a complete visual interface that is more dynamic than print and more
interactive than slides or videos. You need to keep this interactivity in
mind and consider the fl ow of information through your page. There
are basic principles you should consider for even small projects and

1.3

 FIGURE 1.5 Testing an HTML Page

C h a pt e r 1 — We b D e s i g n B a s i c s — 19

individual pages of content. Applying these will ensure that you con-
struct an appealing presentation for your viewers, which is one of the
most critical aspects of creating effective Web pages.

Page Layout and Real Estate
By default, the content of a Web page will display from left to right

in a continuous line until it hits the end of the browser window, at
which point it will continue in the next line down back at the left mar-
gin. There are techniques for dividing up the page into more man-
ageable sections (such as using tables and using positioning style
commands). When you consider where elements should be placed on
your page, you should consider the importance of the location on the
page (commonly called “real estate”) where you will place them.

The upper left-hand corner is considered your most valuable real
estate. This is the portion of the page that the viewer will see fi rst,
which is why it is considered the most valuable. This is also the rea-
son most logos are placed in the upper left-hand corner of a Web page.
Above all, you want your viewer to be able to identify the site and its
ownership on sight. There is no set demarcation for the primary real
estate of a page, but you should not assume it extends further than
25% of the horizontal or vertical space of the page.

The secondary real estate of a page extends in two directions. Any-
thing to the right of the primary real estate is considered secondary
real estate. This is because most viewers will be able to see this space
without scrolling, which makes it second only to the upper left-hand
corner for visibility and accessibility.

1.3.1

According to W3C, the common browser display size is now 1024 pixels by
768 pixels. This means you can plan a site for this size and assume that 98%
of your viewing audience will be able to see the site in a single window without
scrolling. NOTE

20 — Mult imedia Web Des ign

The other area of secondary real estate is from the bottom left-
hand corner of the browser window up to the primary real estate.
The entire left-hand side is not considered secondary real estate,
because part of it may not be visible without scrolling. When you
plan your site, you want to make sure any left-hand menu content
does not require the user to scroll down on the page, or they will
likely not see those menu items.

The space beyond these two areas is what is typically desig-
nated for the content of the page. This is the tertiary real estate.
In a complete Web site, this is the only area that should be altered
from page to page, in order to establish consistency. Additionally,
you should not require a user to scroll down on the page more than
once (if at all). Users are unlikely to scroll more than once on a
page and remain on the page. You can see a complete breakdown
of these regions of a Web page in Figure 1.6.

 FIGURE 1.6 Real Estate of a Web Page

Users will not scroll a page unless they are vested in it by interest in some-
thing it contains. There is almost no possibility of their fi nding content
hidden past the standard browser size of the page unless it is related directly
to content presented on the visible part of the page that prompts them to
explore further. You always want to make sure your menu and branding infor-
mation fi t within the standard browser size, so you do not have to rely on user
scrolling and exploration for them to be able to navigate through your site.

PROFESSIONAL
TIP

C h a pt e r 1 — We b D e s i g n B a s i c s — 21

Considering Purpose and Audience
The two most important aspects to consider when creating either a

single page or a complete Web site are the purpose of the site and the
intended audience. These two elements will vary drastically by project,
but establishing them early will prevent you from having to redesign
the site later.

The purpose of your site is something you should be able to sum-
marize in one sentence at most. This should be your key idea behind
every decision later in constructing the site. For a personal site that
advertises your skills and history, the purpose may be “to showcase
your skills and accomplishments in a visually interesting way.” You
can then ask design questions against this core goal. For instance, if
there is an element you are not sure you should include, you can ask,

“Does this element showcase my skills and accomplishments in a visu-
ally interesting way?” If the answer is yes, then it should be kept. If
not, you need to rethink how to integrate that information or whether
to include it at all.

The audience is another essential consideration. You should deter-
mine who will be viewing the site and what impression you want to
give them. For instance, a military site fi lled with cartoon characters
and bright colors will likely not be taken very seriously. Similarly, a
site intended for children that contains nothing but black text on a
white background will not grab the attention of your audience and
will likely never be viewed again. You have to consider the tone of your
site when deciding how to present your content. Knowing the audi-
ence you wish to address should help to set that tone. The question
you can use to test your design ideas against your audience is “Will
my audience react well to this design element?” According to research
done by the Stanford Web Credibility Project, the professionalism and
coherence of a site are among the most infl uential factors in a user’s
believing in the credibility of the site and its content.

1.3.2

22 — Mult imedia Web Des ign

Typography and Font Selection
Typography is the process of arranging letters in a specifi c

arrangement to make language readable. This was once a specialized
occupation, but with the advent of personal computing, typography is
something in which everyone who types a document participates. The
typeface, size, and spacing of the letters are all contributing factors
in typography; these are all choices that are made in composing any
visual document, including Web pages.

A typeface is a collection of symbols that form an alphabet; each
typeface has its own unique style of display, such as the typefaces
Times New Roman and Arial, two common typefaces installed on most
machines. It is very likely that you will see typeface confused with the
term font (as in the case of CSS), since they are almost synonymous.
A font is actually a combination of a typeface and a size, so 10-point
Arial is a font. With the advent of digital typography, the selection of
a font is typically separate from the sizing, making the choice of type-
face and that of the font virtually indistinguishable.

1.3.3

According to a study by CBS News (cbsnews.com), users spend an aver-
age of 33 seconds on a single Web page. They also form an opinion of the page
within approximately 8 seconds. That means you have approximately 8 seconds
to entice them to stay and 33 seconds to interest them in your content. Your
design should be what gives them a favorable impression within the fi rst 8 sec-
onds, and your content should be what retains them past 33 seconds.

PROFESSIONAL
TIP

Typography is the process of arranging letters and punctuation to create
a readable outcome in any document. Most typography is done for artistic
reasons, but readability and clarity should be primary concerns in any
typography effort.

A typeface is a complete set of keyboard characters in one particular style.
(The style is the name of the typeface.) Most typefaces support standard sizes,
as well as bold and italic variants.

DEFINITION

C h a pt e r 1 — We b D e s i g n B a s i c s — 23

There are two major classifi cations of fonts: serif and sans-serif. A
serif is a text decoration added to letters of the font, such as you would
fi nd in Times New Roman. Sans-serif means a font without these text
decorations present. You can see examples of both types of fonts in
Figure 1.7.

 FIGURE 1.7 Examples of Serif and Sans-Serif Fonts

The font is also determined by the size of the text. Most modern
fonts accommodate multiple sizes with the same display. A pixel is
the smallest unit of display on your computer monitor; the standard
resolution for a computer is 72 pixels per inch. In the world of type-
setting, there are 72 points per inch, meaning that a point is roughly
equivalent to a pixel on the screen. Therefore, a 12-point (abbreviated
12pt) font would occupy roughly 12 pixels of space on a digital display.
A less common measurement you may see is a pica; a pica is equiva-

A font is a typeface combined with a set size, such as 10pt Arial. In most
modern computing systems, fonts allow size modifi cations, so the terms
“typeface” and “font” are becoming synonymous.

A serif is a decoration on a letter of text. This is a nonessential element that
graphically enhances a character without adding any new information; these
are used mostly to enhance readability by distinguishing the letters from each
other and for artistic effect.

Monospacing in terms of typing is the characteristic of having all letters
typed occupying the same amount of horizontal space regardless of the
inherent letter size.

24 — Mult imedia Web Des ign

lent to 12 points. Pica rulers are most common in desktop publishing
applications.

There are two types of spacing available in the design of fonts:
monospacing and proportional spacing. In monospacing, all of the
characters in the font occupy the same horizontal width when typed;
this was the common case for most fonts in mechanical typewriters,
since the motion of the typing carriage was fi xed. Proportional spac-
ing, on the other hand, allows letters to occupy only the space each one
needs to display.

The spacing between adjacent letters in a font is also established
by default, but you can adjust this manually; this process of adjust-
ment is called kerning. Adjusting the spacing between words is called
tracking. The spacing between lines (which is typically part of para-
graph formatting) is called leading. Most of these parameters can be
adjusted using style commands (via Cascading Style Sheets [CSS]).

The choice of font for a project varies greatly. With the variety of
fonts available from which to choose, it is a matter of creative choice.
However, as a general rule of design, you should have no more than
two fonts occupying the same page, a primary font and a secondary
font. More than this makes the arrangement look haphazard and
poorly planned. You can use different sizes of each font on the page to
add emphasis with size variation.

There are a variety of typefaces or fonts that come installed on any
modern computer system, but not all of these are common to every
machine. The Web browser uses the computer’s installed fonts to visu-
alize the page, so if a user does not have a font installed because it is
uncommon, your page will not look the way you designed it. It is pos-
sible (through style commands) to select multiple fonts, so you have
a backup if your fi rst choice of font is not installed on the user’s com-
puter, but you should restrict your font choices to commonly installed
fonts like Arial, Helvetica, Times New Roman, and Courier New. If
you need a unique font to complete the look of your page, you should
consider placing it inside an image, so it remains constant whether
the font is installed on the user’s machine or not.

C h a pt e r 1 — We b D e s i g n B a s i c s — 25

Color Choice
Color choice in a page is as essential as the content. Color carries

a signifi cant amount of visual information that is consciously and sub-
consciously interpreted by the viewer. You should always limit your
color palette for the design of a page or site. (This does not include
photographs and videos included in the site.)

A general guideline to use is to have two main colors and an accent
color. You can use different shades of the main colors, and the two
main colors should blend well together. The accent color should be
used sparingly, and it should provide enough contrast to be readable
over both of the main colors. You can see a map of complementary and
analogous colors on the color wheel in Figure 1.8.

 FIGURE 1.8 The Color Wheel, with Complementary and Analogous Colors

There are an almost endless number of usable color combinations,
but using two analogous colors and a complementary color for one of

1.3.4

A good way to evaluate your color choice for a page is to view the colors adja-
cent to each other to test for contrast and confl ict. As you become more profi -
cient with design, you can create a table and set the background color of each
cell to one of the colors you want to use and see how they interact. This will be
revisited later, but it is something you should start to consider now.

PROFESSIONAL
TIP

26 — Mult imedia Web Des ign

them is usually a safe way to construct your palette. You can also use
the Web to research standard color palettes, but you need to make
sure you have a limited number of colors, or your page will appear
cluttered and unorganized. You should make sure that any text you
include is readable above all else and that the tension between the col-
ors does not draw attention away from the content; you can lighten or
darken any of the colors to enhance or decrease the contrast presented.
Remember, the more contrast you have between your text and the
background, the clearer your text will be.

When choosing the colors for your pages or site, you should con-
sider the emotional association that people have with colors. There is
some variation in this in different cultures (such as traditional black
for mourning in the Western world and traditional white for mourn-
ing in the Eastern world), and context plays a signifi cant role, but Fig-
ure 1.9 will give you a starting point to research the colors you want to
use and associate them with the message you want to convey.

 FIGURE 1.9 Color and Emotion

One color you should avoid is pure red; it is incredibly diffi cult for a person
to look at pure red on a computer screen for any sustained period of time. If
you want to verify this, you can open your template.html page and save it as
red.html. Inside the body tag, add the attribute/value pair bgcolor=“red” and
change the title to “Red.” The code for the <body> tag should be the following:

<body bgcolor=”red”>

Now save the page and open it in a Web browser. How long can you look at the
page before you have to turn away or close it?

NOTE

C h a pt e r 1 — We b D e s i g n B a s i c s — 27

Evaluating Existing Design for Tone
One of the best methods of learning to establish the right tone for

your Web projects is to evaluate the sites you use on a regular basis for
their tone and alignment with their intended purpose and audience.
As you traverse the Web, you will start to see elements that do not
work effectively or that disrupt the fl ow of a page. You may also fi nd
sites that do not have consistency across pages. These should begin to
infl uence your own design decisions; knowing what works and what
does not work will allow you to better align your own sites to their
intended purpose and audience.

1.3.5

ACTIVITY 1.7: WEB SITE EVALUATIONS

For this activity, you should fi nd fi ve Web sites that effectively align their pre-
sentation with their purpose and audience and fi ve Web sites that do not. For
each site, record at least two things that the site designers did right or wrong,
depending on the category to which you assign them.

ACTIVITY

28 — Mult imedia Web Des ign

CHAPTER SUMMARY
This chapter introduced you to the fundamental structure and his-

tory of HTML, the language of the Web. HTML can be written in any
text editor, because it is a combination of plain text and formatting.
Every HTML page should contain a Doctype Declaration (DTD), a head,
and a body. The head of the page is used for confi guration information
and references to external resources. The body of the page is what is
displayed in the Web browser when the page is accessed via its Uniform
Resource Locator (URL). The Web presents a unique environment that
can deliver rich and interactive media experiences. The fundamental
elements that should guide the development of Web pages are a clear
purpose and target audience. The tone of the site will be established
through font and color choices. The next chapter will cover site planning
and the professional HTML creation tools available on the market.

CHAPTER KNOWLEDGE CHECK
Which of the following document elements does not reside between the

<html> and </html> tags?

● A. head

● B. body

● C. title

● D. doctype

● E. None of the above

Which of the following is not part of a URL?

● A. Protocol

● B. Hostname

● C. Filename

● D. File path

● E. None of the above

1

2

C h a pt e r 1 — We b D e s i g n B a s i c s — 29

By technical defi nition, a font is an associated ____________and

a____________.

● A. Family, kerning

● B. Typeface, kerning

● C. Typeface, size

● D. Family, size

Which of the following is a sibling language of HTML?

● A. SGML

● B. XML

● C. XHTML

● D. VBML

Which of the following retains the largest global market share of Web

browsers in use, according to research by statowl.com?

● A. Firefox

● B. Chrome

● C. Internet Explorer

● D. Safari

Which of the following is the native Web browser for Mac OS computers and

iOS devices?

● A. Firefox

● B. Chrome

● C. Internet Explorer

● D. Safari

What is the maximum number of fonts you should include on a single page?

● A. 5

● B. 2

● C. 3

● D. 1

● E. None of the above

3

4

5

6

7

You should choose common fonts for your Web pages, because not all fonts

are installed on all users’ computers.

● A. True

● B. False

The two primary characteristics that should be determined for any Web design

project are:

● A. Tone and color

● B. Audience and purpose

● C. Purpose and tone

● D. Font and color

The logo of a Web site should be placed in the primary real estate, which is

located ____________.

● A. In the upper right-hand corner

● B. In the lower right-hand corner

● C. In the center of the page

● D. In the lower left-hand corner

● E. None of the above

CHAPTER PROJECTS
These two projects will be used throughout the text. One is a per-

sonal project to develop your own Web site geared toward your own
career objective. The other is a sample Web site with fi ve pages to
allow you to follow the design and development process from start to
fi nish. The sample site is designed to be a creative exercise, so you
should be as creative as you can in designing the content for it.

Project 1: Personal Web site
For this project, you will be designing a simple set of Web pages to

showcase your experience and skills. When you are fi nished, you can
use this site on business cards and as part of your hiring materials for
your career. For the fi rst part of this project, you should write out your
purpose and target audience. You should also consider the tone you

8

9

10

30 — Mult imedia Web Des ign

wish to present and make sure it is consistent with the career path
you desire. For example, in a more creative career, you can be less for-
mal and use more color and more whimsical fonts. In your materials
for this site, you should decide what information you want to present
on this site. Keep in mind that anything posted on the Web is public
knowledge, so you should refrain from including information such as
a personal phone number or address. Choose an initial color scheme
and font set for your site.

Project 2: Creating a Resort Web Site
For this project, you are going to create your own fi ctional adven-

ture resort. You can choose the location and the types of excursions
and services your resort will offer. You should choose fi ve pages for
your site, including a homepage and a contact page. The content of the
other three pages is your choice. For this part of the project, you should
decide on the type of resort, the purpose and audience for your site,
and the pages you will include. Choose an initial color scheme and font
set for your site. Consider the tone you want to convey with this site.

CHAPTER EXERCISES
1. Choose three travel Web sites (such as priceline.com and

travelocity.com) that offer similar travel options and evaluate
which of these sites you believe to have a better design
and adherence to purpose. List at least three factors that
infl uenced your decision.

2. Choose three news Web sites (such as cnn.com) and evaluate
which of these sites you believe to be more credible based
only on the design of the Web site. List at least three factors
that infl uenced your decision.

3. Choose three commercial Web sites (such as amazon.com
and macys.com) and evaluate which of these sites you believe
to have the best design and adherence to purpose. Explain

C h a pt e r 1 — We b D e s i g n B a s i c s — 31

which of these sites you would be most likely to use for online
purchases. Give reasons for your answer.

4. Visit the Web site of the W3C (www.w3c.org). Explain what
the intended audience for this site is and what its overall
purpose is. Determine whether the design of the site is
aligned with your analysis of its audience and purpose.
Justify your position.

5. Find an example of a nonprofi t Web site in the .org TLD and
an example of a commercial Web site in the .com TLD. Explain
how the audience and purpose of these two sites differ and
explain what they have in common. Justify your position.

6. Find an example of a Web page that is poorly designed.
Identify as many as possible of the issues with the design and
judge whether they deviate from the intended purpose and
audience of the site. Justify your position.

7. Using the template.html fi le you built in the Activity
lessons in the chapter, create a new HTML page called

“myname.html.” Change the title of the page to your name.
Add your name to the body of the page. Use the anchor tag to
hyperlink your name to your favorite Web site. Save and test
your page when you are fi nished.

8. The tag (which is now deprecated in favor of
but still functions) willbold the text between the and
 tags. Create a page with text in the body and save it
as bold.html. Use these tags to bold one of the words in the
document. Save and test your page when you are fi nished.

9. The <i> tag (which is now deprecated in favor of but
still functions) will italicize the text between the <i> and

32 — Mult imedia Web Des ign

</i> tags. Create a page with text in the body and save it
as italic.html. Use these tags to italicize one of the words
in the document. Save and test your page when you are
fi nished.

10. You can nest HTML tags to add the effects of each tag to the
text inside the document. Create a new HTML fi le and save it
as nest.html. Add a line of text to the document, wrap the text
in the opening tags <i>, and end it with the tags </i>.
The tags should be closed in the reverse order from which they
were applied. Save and test your page when you are fi nished.

CHAPTER REVIEW QUESTIONS
1. Briefl y explain the difference between XHTML and HTML.

What are the benefi ts of adhering to XHTML rigor in a
Web page? (You may want to use the W3C Web site to help
evaluate the differences.)

2. It is important to brand your site consistently. What are
the benefi ts of using a template structure for HTML page
creation when you are writing Web pages in a te xt editor?

3. How would you determine the intended audience for a Web
site for a rock band? Briefl y explain the factors you would
consider.

4. How would you describe the purpose of a news Web site? How
would you determine if the site was adhering to its purpose?

5. Find an example of a Web page that uses too many colors in
its palette. What is the effect of this on your perception of the
Web site? How would you recommend that the site owners
correct this issue?

C h a pt e r 1 — We b D e s i g n B a s i c s — 33

6. When would you recommend using global referencing within
a Web site instead of local referencing? What is the benefi t of
global referencing? What is the benefi t of local referencing?

7. Create a sample palette of two primary colors and a
secondary color. How do the colors interrelate? Describe why
you chose these colors.

8. Suggest a color palette that would accurately represent a
Web site dedicated to environmental conservation. Why did
you choose these colors, and what do they represent?

9. Readability is one of the key issues to consider when choosing
a font for a Web site. On computer screens, sans-serif fonts
are easier to read than serif fonts. Describe a type of site
that would benefi t from using a serif font and what would
infl uence the decision to use it.

10. Why is it important to test your Web pages on multiple
browsers? What is the consequence of not testing your pages
suffi ciently before posting them live on the Web?

34 — Mult imedia Web Des ign

Site Planning and
Production

IN THIS CHAPTER

This chapter takes a closer look at the planning phase
of constructing a Web site. This includes the primary
considerations for a site, as well as how to tailor the site to the
client’s needs. The other important element of this chapter is
the introduction to the professional tools for HTML authoring,
including Adobe Dreamweaver. You will also learn about how
to structure a page based on its expected functionality and
the preliminary site modeling. Once you have completed this
chapter, you should be able to:

 ● Describe the process of creating and
implementing a Web site through the design
and development process

 ● Direct a client discussion for gathering
information to plan a Web site

 ● Create an initial design set for a Web site
based on requirements

 ● Navigate Adobe Dreamweaver and other
professional HTML authoring tools

CHAPTER

2

36 — Mult imedia Web Des ign

WEB SITE PLANNING
If you are designing a Web site or even just a single page for yourself,

then you get to choose what you want included, how you want every-
thing to look and feel, and how you want it to fl ow. However, most often
the sites that you create will be either for your organization or for a
client. When this is the case, you have to consider the organization’s or
client’s needs above your own preferences and work to deliver the kind
of product that meets those needs, tempered with the professional attri-
butes of good site design and fl ow. This section will introduce you to the
overall process of Web site design and construction, techniques for elicit-
ing client requirements, and ways to shape these into an initial design.

The Design and Development Process
There is no single process for designing and developing Web sites

perfectly. If you perform an online search for “Web Development Pro-
cess,” you will get a variety of results, with very different terminology
and steps. There are, however, two phases to creation of any Web site:
design and development. It is possible to spend too much or too little
time in either of these processes. The best approach is to move forward
steadily in both areas, but you have to establish a starting point in
order to do that. Figure 2.1 shows a concise method for Web site con-
struction and represents a repeatable and malleable process that you
can adapt to your own needs.

 FIGURE 2.1 The Web Site Design and Development Process

The process outlined in Figure 2.1 will allow you to move forward
in both design and development while integrating client feedback.
Everything stems from the initial client communication, in which you

2.1

2.1.1

C h a pt e r 2 — S i t e P l a n n i n g a n d P r o d u c t i o n — 37

will ask the right questions to get the client to identify the essential
elements of the project. From there, you will distill the responses to
your questions to fi nd out what is most important and begin planning
the site both visually and functionally. When you have created three
initial site designs for the client to review, you will present them as a
design set to the client for feedback. You should also transition from
the planned functionality to a solid plan for implementation, including
the languages and server-side resources you will need. Understanding
what resources to use will take time and practice, but this text will
guide you through planning a few sample projects to get a better idea
of what can be accomplished in each language.

After the client has chosen one of the designs, or preferred aspects
of the designs, you can create a revised design as a visual prototype
that you can use to start constructing your site. It is a good idea to
get a sign-off from the client on this visual prototype, to make sure it
is what he wants in the fi nished product. By working from this model
and integrating some amount of functionality (which may just consist
of hyperlinks at this point), you can create a functional prototype, on
which the fi nal site will be based.

A prototype is an initial design or construction representing
the fi nished product in some aspect.
A visual prototype (formerly called a paper prototype) is a
nonfunctional artistic representation of a Web site, showing
how the fi nished product will look. This prototype is often
created in an art program and does not use HTML. This
prototype is later discarded.
A design set is a series of quick visual prototypes presented
to the client. Out of this set, one will be chosen and revised
for the client as a fi nal visual prototype to be implemented in
HTML code. A functional prototype is a working model of a
completed Web site in HTML that incorporates some level of
the fi nal functionality of the site along with the visual elements
of the site design. Once this has been revised and iterated
enough, it becomes the fi nal site deliverable.

DEFINITION

38 — Mult imedia Web Des ign

How often you communicate with the client for each level of imple-
mentation will vary depending upon the complexity of the site. If it is a
mostly static site presenting information, you may not need more than
one or two iterations to complete the site from the initial functional
prototype. For more complex and dynamic sites (such as e-commerce
sites or business applications), you may want more rounds of presen-
tation and refi nement to make sure it is meeting the client’s business
needs. The back-end construction of the functionality will follow a
more traditional software development model than the visual front-
end construction, which requires more interaction with the client. Get-
ting the client sign-off on the model and any improvement notes or
changes at the end of each presentation will help you keep the project
on track and help protect you if there are any problems with the fi nal
site implementation. Chapters 3 through 5 of this text focus on the
front-end characteristics of the site, and Chapters 7 and 8 focus on the
back-end functionality of the site. Chapter 6 presents the JavaScript
language (and its common library jQuery), which has applications to
both the front end and the back end of the site and can act as an effec-
tive bridge between the two pieces of the site itself.

Initial Client Communication
The goals of the initial client communication are to build the cli-

ent’s confi dence in what you have to offer and to get a good understand-
ing of what the client expects. If possible, you should try to conduct
this meeting in person. This meeting is really not about you and your
accomplishments but about the client’s vision for the site.

2.1.2

It may be helpful in an initial meeting with a client to come prepared with a
repertoire of sites you have constructed in the past loaded for display, because
clients like to see that they have chosen someone with demonstrable skill,
especially in a market like Web design that is very competitive. If you are new
to the fi eld or if you are working on a site for an employer, it is better to omit
this and just focus on the client. In fact, you should point out your prior work
only if the client specifi cally requests it.

PROFESSIONAL
TIP

C h a pt e r 2 — S i t e P l a n n i n g a n d P r o d u c t i o n — 39

You need to set a time frame for this meeting, and it should be
relatively short. Half an hour should be long enough for the client to
convey what he wants from the site if you have the right questions
prepared. This is an interview as much as it is a planning session; you
need to drive the conversation to the items you need to know in order
to proceed with your preliminary design.

Two key elements you need to understand clearly when you leave
this meeting are the audience and the purpose of the site, which are
discussed in the next section. You should start by having the client
describe for you what his vision of the site is. Try to visualize it from
this description and imagine how it might look and feel.

Keep the conversation on the issues of branding and visualiza-
tion. Items like programming languages and implementation details
should be saved for later in the process. If you raise these now, you will
stall the creativity and cast doubt on your design abilities. If the cli-
ent wants to talk about technical details, try to give reassurance that

One of the additional items you should know before ending the initial meeting
with the client is any existing branding the company or client is planning to use
on the site. You will have to work within the framework of this branding, such as
the color scheme and visual style of what is required on the site. You can ask the
client if there is any fl exibility on this or just what the required branding will be.

NOTE

ACTIVITY 2.1 – CREATING A CLIENT QUESTIONNAIRE

For this activity, you should create a list of fi fteen to twenty questions that you
would ask a client in an initial interview. You should try to keep these focused
on the visual aspect of the site and the overall vision of the client. Review your
list and determine whether or not any of the questions should be left for later, if
any of them pertain to development rather than planning, and whether they can
or should be addressed now. Combine or eliminate questions until you have fi ve
questions that you feel will adequately capture everything you need to know
about the site to start drafting a visual prototype.

ACTIVITY

40 — Mult imedia Web Des ign

those will be handled in the next meeting, but what you really need as
a designer at this point is to understand the overall vision.

Establishing Purpose and Audience
This topic was briefl y mentioned in the fi rst chapter; it applies to

client-driven Web sites as well as to those you design for your own
needs. There are two aspects of a site that should guide every deci-
sion you make about what goes on every page: the audience and the
purpose. The audience of a site is the group of people for whom the
site is created. If the site is an entertainment site, the audience will
be fans of the group, movie, or whatever is being advertised, and it
should address their expectations and needs. If the site is a news site,
the audience will be people concerned with the topics on which you are
reporting. Determination of the audience should come primarily from
the client’s intention for the site. If you have enough time during the
design phase of the site, you can even interview or survey a sample
group to ask what they would want out of a site like the one you are
creating. The question to ask about the design elements for this aspect
is: do they serve the audience the site is targeting?

Purpose is the other key aspect to consider when planning a site.
The purpose of the site is the reason it even exists. The purpose of a
Web site may be advertising, information dissemination, information
gathering, or any number of other things. The purpose of the site will
again come from the client, who should have a clear mission for the
site and a reason to construct it.

2.1.3

The client is often not a Web designer or even familiar with the medium and
what it can do. Therefore, you cannot expect them to be completely articulate on
their vision of the site or its true purpose without some prompting. You may get
answers like, “I was told it has to be constructed in conjunction with Project X.”
With answers like this, you can delve deeper by asking questions about that proj-
ect or asking the client why a certain thing is preferable. You should focus on this
in conversation until you feel you have elicited the real purpose of the site rather
than a superfi cial answer that will not get you far in constructing the design.

PROFESSIONAL
TIP

C h a pt e r 2 — S i t e P l a n n i n g a n d P r o d u c t i o n — 41

When you are evaluating design choices, you should ask two
questions:

1. What is the purpose of this element?

2. How does this element promote the purpose of the site?

If either of the answers is unsatisfactory, then you should consider
whether the element should be included in the design. Everything you
add to your page should enhance the purpose of the site and serve the
needs of the audience. This will become clearer as you begin construct-
ing pages, but keep these principles in mind as you create your visual
prototypes. These prototypes will lead directly to the fi nal product, so
you should take care in their construction and start asking these ques-
tions now.

Emphasizing and Showcasing Content
Part of your task as a designer is to identify what needs to be

emphasized on the page. This means establishing visual fl ow of the
page and determining what elements need to receive the most atten-
tion. Figure 2.2 gives two layouts using the same visual components
but in slightly different ways. Both of these are for a coffee company
that is trying to advertise and sell its product to consumers. Which of
these two uses the visual emphasis to showcase the product?

2.1.4

Nothing undermines confi dence in a Web designer/developer like asking clients
minute questions about the site whenever an issue arises. If you have a clear
audience and a clear purpose, you should be able to answer your own ques-
tions by weighing them against these two aspects. If you are contemplating
something visual to add to the page, ask yourself a few questions about the
site’s priorities. Does this serve the audience of the site?
Does it serve the purpose of the site? These questions will
most often give you the answers you need without pestering the client between
scheduled meetings.

PROFESSIONAL
TIP

42 — Mult imedia Web Des ign

 FIGURE 2.2 Different Emphases in Visual Design

You want to make sure that the elements important to the audi-
ence and purpose receive the most attention on the page. It can be dif-
fi cult to map where your eye travels and what receives the emphasis.
In most Western civilizations, the eye is trained by reading to start at
the top left corner of the page and travel to the right and down. You
can test your design for emphasis by looking away and then glancing
quickly at your design to see where your eye stops on the page fi rst.
You should use the visual elements of the page to create a map from
the highest-emphasis element to the lowest, which should guide the
design of your page (which is part of the branding, which will be dis-
cussed later). The eye naturally focuses on the area of highest contrast,
so you should make sure that area is where you want your emphasis
to be.

Creating a Design Set
When you have an understanding of what the client is expecting,

you should begin constructing the design set for the site. The design
set is typically three visual prototypes for the Web site. Remember
that two of these will be discarded, so you should design them in a
low-effort program like Microsoft PowerPoint to produce them effi -
ciently and work more on the layout and what to include rather than
the technical aspect of the site. Even if the elements are just mocked
up at this point, your job is to convey the overall look and feel of the
site in each of the visual prototypes. Each of the designs you create
should be unique but should convey the same information. Think of
it as three versions of the same exact Web page.) It is helpful to have

2.1.5

C h a pt e r 2 — S i t e P l a n n i n g a n d P r o d u c t i o n — 43

these printed and ready to share when you meet with the client a sec-
ond time, so they can be seen side by side and changes can be drawn
directly onto a copy of the design.

Creating the design set is one of the most diffi cult tasks for the
front end of a site. You can research similar sites or just review sites
that you like and dislike to get an idea of how the page should look. As
you progress through the text or your course, you should start to log
ten Web sites that work visually and ten Web sites that do not work
visually. These will help you to develop a more critical eye for site
design and give you a feel for how the user should respond to particu-
lar elements in a site.

In all of your site designs, make sure to account for a menu, an area
for the menu to expand, and a place for the content to be displayed. The
designs you create should not be just a splash or landing page but rather
a complete map of what the interior of the site will be once the user gets
to the content. You can see an example design set in Figure 2.3.

When you are creating a design set, you should work within the same color
palette for each visual prototype. Your client should be deciding between visual
nuances in the layout and look of the site rather than choosing between a blue
site and a green site. NOTE

ACTIVITY 2.2 – WEB SITES THAT WORK AND WEB SITES
THAT DON’T WORK

For this activity, you will start a journal of Web sites that work well and Web
sites that do not work well. You should confi ne this to the visual element for
now, as you begin to develop a critical eye for designing sites and understanding
user interfaces. You should create your journal in Microsoft Word. For each site
on your list (good and bad), list the URL and at least three reasons the site either
works well or does not work well visually. In Word 2010 or Word 2011, you can
insert a screenshot within the document while you have the site open in a Web
browser; this will help you later when you revisit your journal.

ACTIVITY

44 — Mult imedia Web Des ign

 FIGURE 2.3 Sample Design Set

The splash page (if there will be one) should be designed later,
after the content has already been established. You can label these
elements on your design for clarity if you do not know what the menu
items or content will be at the time you create the design set. Having
a clear design and distinct visual elements will help the client under-
stand what to expect in the site.

GUIDING THE DESIGN DECISION

When you present your design set to the client in a second meeting, it is easy
to overwhelm them. If the client is not Web savvy and does not have experi-
ence with launching Web sites, it is better to help move this process forward by
presenting one design that can be eliminated immediately. This should not be a
bad design, since you do not want to give a poor impression of your skills, but it
should stand apart from the other two as the least interesting. Getting the client
to agree to discard this one will give him confi dence to move forward in making
a decision on the last two designs. This can create a more engaging discussion
between you and the client and get you better feedback for refi ning the fi nal
visual prototype that you will create for sign-off after this second meeting.

PROFESSIONAL
TIP

C h a pt e r 2 — S i t e P l a n n i n g a n d P r o d u c t i o n — 45

THE CASE PROJECT
For the rest of this book, the examples and activities will focus on

a fi ctional coffee company looking to establish a Web presence. Your
task is to act as the designer and developer for the functionality they
wish to have on their site. The Zippy Beans Coffee Company is a com-
pletely organic, high-quality coffee producer with a single store in
your town. The palette for the site should be earth tones, greens and
browns. The company does have a logo
already, but no other branding. You can
see the company logo in Figure 2.4.

You can fi nd a copy of this logo in the
Web Projects folder of the companion
DVD You may also opt to create your
own, but using the existing logo will help
you learn to establish consistency with
existing branding for a Web site. You
saw an example of a design set for this
case project in Figure 2.3; in Activity 2.3,
you will create your own.

PROFESSIONAL HTML
AUTHORING TOOLS

While text editors like Notepad are capable of writing HTML
code, they are not recommended for professional projects. Instead, you

2.2

ON THE DVD

2.3

 FIGURE 2.4 Logo for Case Project:
Zippy Beans Coffee Co.

ACTIVITY 2.3 – CREATING A DESIGN SET

For this activity, you should use Microsoft PowerPoint or an equivalent program
to construct a design set for the sample company using the logo the company
has already established. (More experienced graphic designers can use Adobe
InDesign or Adobe Photoshop, but these should still be throwaway designs.) You
should use the earth-tone color palette (greens, browns, and light blues) to con-
struct your design set. Remember that the color scheme should not be a primary
distinguishing factor among the different designs.

ACTIVITY

46 — Mult imedia Web Des ign

should consider purchasing a professional Web authoring tool. The
industry standard for Web development is Adobe Dreamweaver. This
is an expensive product; a cheaper alternative is Microsoft Expression
Web, which has the same overall functionality. Another tool that you
should consider downloading is Notepad++. This is a versatile text
editing program that can color-code text for a multitude of different
languages, including JavaScript, PERL, and PHP, which will be cov-
ered in later chapters. Keep in mind that HTML code is the same
regardless of the program that creates it, so you can open the same fi le
in any of the HTML editor programs listed.

 Adobe Dreamweaver
Adobe Dreamweaver is the industry standard for Web authoring.

It is part of the Adobe Master Collection, which includes Adobe Photo-
shop, the standard for image creation. The Adobe products, particularly
Photoshop, have a steep learning curve. However, you can get started
with the basic features of the software quickly and learn more as you
go. You can see the layout of the interface for Adobe Dreamweaver in
Figure 2.5. The fi gure highlights the key areas you will need to learn so
you can use the program to design HTML documents effectively.

The File menu and the Insert menu are two items in the interface
that you will use often to create and manage Web pages. You can use
the File menu to open fi les, save fi les, and create new fi les. The Insert
menu is what you will use to add hyperlinks, images, and tables to
your HTML document; it has an equivalent panel on the right-hand
side of the interface that you can use to visually insert elements into
your pages.

2.3.1

You can download a trial version of Adobe Dreamweaver from
http://www.adobe.com. You will need to create a free Adobe
membership in order to download any of their trial products. If you are a stu-
dent, you can also get a discounted version of the software from Journey Ed at
http://www.journeyed.com.

NOTE

C h a pt e r 2 — S i t e P l a n n i n g a n d P r o d u c t i o n — 47

The View Selection allows you to choose Code, Design, or Split.
The Code view shows just the plain HTML text, with color coding to
distinguish the tags and text. The Design view shows a preview of
what the page will look like in a browser. This is called a What You See
Is What You Get (WYSIWYG) view. The selection Split allows you to
see the code and the design simultaneously in smaller windows.

The Properties (also called “attributes” in HTML) panel is context
sensitive. It allows you to adjust the parameters for whatever tag you
have currently selected. For an image tag, you can adjust the height
and width. For a table, you can adjust the cell padding and border
attributes. The CSS Styles panel is where you will manage the inte-
gration of CSS commands as you progress farther into the book. There
are a multitude of tools and menus available, but this will give you a
starting point for exploration and the creation of more dynamic pages.

ACTIVITY 2.4 – PROFESSIONAL TOOLS

For this activity, you should select and install either the trial or the full version
of either Adobe Dreamweaver or Microsoft Expression Web. Create the
template page (or open a copy you have already saved) in the program.
Describe how the different elements of the page are color coded. How does
this improve productivity in scripting HTML?

ACTIVITY

 FIGURE 2.5 Adobe Dreamweaver

48 — Mult imedia Web Des ign

Microsoft Expression Web

Microsoft Expression Web is part of the Microsoft Expression suite
of programs. It is very similar in layout and functionality to Adobe
Dreamweaver, but it costs less. You can see the layout of the interface
for Expression Web in Figure 2.6. The fi gure highlights the key areas
you will need to learn so you can use the program to design HTML
documents effectively.

 FIGURE 2.6 Microsoft Expression Web

The interface elements for Microsoft Expression Web are similar
to that of Adobe Dreamweaver and both contain similar elements.
The File menu a nd the Insert menu are the two items in the interface
that you will use most often. You can use the File menu to open fi les,
save fi les, and create new fi les. The Insert menu is what you will use
to add hyperlinks, images, and tables to your HTML document. The
View Selection allows you to choose Code, Design, or Both. The Code
view shows just the plain HTML text, with color coding to distinguish
the tags and text. The Design view shows a preview of what the page
will look like in a browser. The selection Both allows you to see the
code and the design simultaneously in smaller windows.

2.3.2

You can download a trial version of Microsoft Expression Web from
http://www.microsoft.com/expression. If you are a student,
you can also get a discounted version of the software from Journey Ed at
http://www.journeyed.com.NOTE

C h a pt e r 2 — S i t e P l a n n i n g a n d P r o d u c t i o n — 49

Just like the Properties panel in Dreamweaver, the Attributes
panel in Expression Web is context sensitive. It allows you to adjust
the parameters for whatever tag you have currently selected. For an
image tag, you can adjust the height and width. For a table, you can
adjust the cell padding and border attributes. The CSS Styles Panel is
where you will manage the integration of CSS commands as you prog-
ress farther into the book. There are a multitude of tools and menus
available, but this will give you a starting point for exploration and the
creation of more dynamic pages.

Notepad++

Notepad++ is an excellent tool for programming back-end lan-
guages and even front-end languages like JavaScript. It has color cod-
ing of elements that shows which pieces of text represent variables,
constructs, comments, and strings. You can see an example of the
color coding in Notepad++ in Figure 2.7.

 FIGURE 2.7 Notepad++

2.3.3

Notepad++ is available as a free download from
http://notepad-plus-plus.org. If you use the program and like it, you
should consider donating to the organization that produces it. You can do this
through the same Web site as the download.

NOTE

50 — Mult imedia Web Des ign

As soon as a fi le is saved through the program, the color coding will
be automatically activated for the type of text fi le it is (such as .html
for HTML fi les and .php for PHP). The color coding will change based
on the fi le type, but coding within an HTML page will register other
languages, such as JavaScript. This allows you to see scripts placed
within HTML pages as well as the HTML code itself.

CHAPTER SUMMARY
This chapter covered the basic process of designing and developing

a Web site. This includes guidelines for communicating with a client
and the essential information that needs to be gathered in the initial
meeting. Two of the vital pieces of information you must obtain are
the audience of the site and the purpose of the site. This will help
guide design decisions later in the project and help plan the design set,
the alternative designs you offer to your client for review and selec-
tion. The outcome of this will be a visual prototype that you will use to
construct the fi nal site. The other part of this chapter is the acquisition
of the proper tools for developing your site; you should have at least
one of these editors and the Notepad++ utility before proceeding to
the next chapter. That chapter will cover the translation from your
visual prototype to actual HTML code, including image construction
and content placement on the page.

CHAPTER KNOWLEDGE CHECK
A ____ consists of possible layouts for a Web site from which the client will

choose.

● A. Visual prototype

● B. Functional prototype

● C. Design set

● D. All of the above

● E. None of the above

A ____ prototype is one that will be discarded. It should be accurate but

quick to construct so not much effort is wasted on its development.

● A. Visual

● B. Functional

● C. Design

● D. None of the above

1

2

C h a pt e r 2 — S i t e P l a n n i n g a n d P r o d u c t i o n — 51

A ____ prototype will be iterated repeatedly with improvements until it is

handed to the client as a fi nished product.

● A. Visual

● B. Functional

● C. Design

● D. Throwaway

The process for designing and developing a Web site is the same for all

organizations and all developers.

● A. True

● B. False

Which of the following tools is the industry standard for Web site creation?

● A. Adobe Dreamweaver

● B. Microsoft Expression Web

● C. Notepad++

● D. None of the above

Which of the following is one of the essential items a designer must get from

the client before developing a design set?

● A. Audience

● B. Purpose

● C. Existing branding

● D. All of the above

● E. None of the above

The color scheme of a page should be one of the deciding factors between

different designs in a design set.

● A. True

● B. False

3

4

5

6

7

52 — Mult imedia Web Des ign

Color coding in a design tool can help you identify which strings of text are

tags and which are content.

● A. True

● B. False

Deciding what content to showcase is the responsibility of the client and not

the designer.

● A. True

● B. False

A functional prototype should be shown to the client every time it is updated

to a new version.

● A. True

● B. False

CHAPTER PROJECTS
Project 1: Personal Web site

Using the color scheme you established in Chapter 1, create a
design set for your personal site. Remember to allocate enough space
in the visual design for content and a menu. Once you have created
your design set, review the designs and refi ne one of them into a visual
prototype. Keep all of your designs. You will use your fi nal visual pro-
totype for implementation beginning in the next chapter.

Project 2: Creating a Resort Web Site
Using the design decisions you established in Chapter 1, create a

design set for this project. Be sure to allocate space in the visual design
for both content and a menu. Once you have created the design set,
interview several classmates, co-workers, or family members for their
opinions on which design they like most for a vacation location. You
should use them as a target audience for choosing and refi ning your
visual prototype. Create the fi nal visual prototype, which will be used
for implementing the site beginning in Chapter 3.

8

9

10

C h a pt e r 2 — S i t e P l a n n i n g a n d P r o d u c t i o n — 53

CHAPTER EXERCISES
1. Visit three commercial Web sites that advertise products

(such as cocacola.com). How does each site make you feel
about the product? Which of these sites does the best job of
showcasing its product? What made you choose this site?

2. Visit three commercial Web sites that advertise services (such
as godaddy.com). How does each site make you feel about the
service? How is the service showcased on the site? Which of
these sites does the best job of showcasing its service? What
made you choose this site?

3. Use the Internet to research different HTML authoring
tools. Select two of these and compare them to Adobe
Dreamweaver in terms of functionality, benefi ts, drawbacks,
and cost. Which of the alternatives would you recommend if
Dreamweaver were not an option and why?

4. Perform a feature comparison between Adobe Dreamweaver
and Microsoft Expression Web. Include items like cost,
features, support, languages supported, benefi ts, and
drawbacks in your analysis.

5. What is the purpose and audience for a Web site used as a
digital presence for you? How would you target the audience?

6. What is the audience and purpose for a vacation destination
site? How would you showcase the destination? You may
provide a specifi c example in your analysis rather than a
general strategy.

54 — Mult imedia Web Des ign

7. Using the design set you constructed for the case project,
explain how you utilized the color scheme and existing
branding in your designs.

8. Using the design set you constructed for the case project,
explain how you would guide the design decision with the
client. Which design would you eliminate fi rst and why? How
would you guide the discussion between the remaining two
designs?

9. Using the design set you constructed for the case project,
explain the transition process you used to get to the fi nal
visual prototype. What aspects of the design(s) led to your
decision?

10. Describe three ways to showcase the coffee product in the
case project without using a coffee cup. Explain the benefi ts
of each of these and select the best alternative. Explain your
choice.

CHAPTER REVIEW QUESTIONS
1. Briefl y explain why it is important not to spend an enormous

amount of time on developing a design set. What are the
essential items to include in the design set? Justify your
position.

2. Write a strategy for guiding the design decision with a client.
What are the main ways to guide the conversation? What
are some problems with trying too hard to direct the design
decision?

3. Devise a strategy for revising a functional prototype to
completion. How often should you show the prototype to the

C h a pt e r 2 — S i t e P l a n n i n g a n d P r o d u c t i o n — 55

56 — Mult imedia Web Des ign

client? What factors will affect this schedule? What are the
drawbacks of showing the prototype to the client too often or
not often enough?

4. Why is PowerPoint a good alternative for making a design
set? Explain the convenience and drawbacks of using
PowerPoint instead of professional image creation software
for creating the design sets.

5. Explain why existing branding needs to be a high
consideration when planning a Web site for a client.

6. What are the benefi ts provided by a WYSIWYG view of the
HTML code you are constructing for a page? When would
this be more useful than just the HTML text? When would
the HTML text be more useful?

7. What is the benefi t of having color coding in your HTML code
view when creating a Web page? How would it help you in
designing the page structure? Explain your answer.

8. Why is it important to move technical conversations and
considerations to a later discussion with the client after the
design set is already in construction? Explain your answer.

9. Why should you arrange to have the planning of the
functionality coincide with the creation of the visual
prototypes? What benefi t does this provide? What diffi culties
does it create?

10. Why is it essential to derive the correct important elements
after an initial client conversation? Consider the scope of the
project in your answer (what the project will guarantee at
completion).

Introduction to HTML
IN THIS CHAPTER

This chapter moves you from the design phase to the
development of a functional prototype for your site. Here, you
will be concerned with the planning of the site elements over
their functionality. As part of this chapter, you will start to
create the branding for the site and establish a fi rm site map
so you can plan the navigation correctly. This chapter also
introduces you to the basic elements of images and hyperlinks
for creating a fully visualized and functional site. Once you
have completed this chapter, you should be able to:

 ● Plan a site layout from a visual prototype

 ● Construct an HTML layout for a page

 ● Describe file formats and software for image
creation and editing

 ● Construct images and incorporate them into
your HTML document

CREATING AN INITIAL SITE LAYOUT
Once you have refi ned the visual prototype for yourself or for a cli-

ent, you are ready to move into the creation of the functional prototype
of the site, which will eventually become the fi nished product. The

3.1

CHAPTER

3

58 — Mult imedia Web Des ign

planning of functionality on the site is not the primary focus of this
book, but you should have a list of functions the site must perform.
These functions can range from delivery of static information, such
as contact hours and an e-mail address, to complex interaction with a
back-end database system that will return dynamic results. The major
impact that the desired functionality will have at this stage is on the
navigation. However, if you plan your navigation as a section of the
page layout with room to expand, then you will likely have no trouble
incorporating additional pages (provided you clone your site correctly,
which will be discussed later in this chapter). Another area you want
to allocate is a consistent area for the main content of each page, where
either the static or the dynamic information will be located. This will
be a placeholder for the page content; you should have included this in
your design set and your revised visual prototype.

Decomposing a Design
In order to properly lay out your page in HTML code, you will need

to identify the different sections of the page that you want to include.
The easiest way to do this is to draw red lines around the areas in a
copy of the visual prototype in whatever program you used to design it.
The areas you should mark are:
• Any area where the content changes (for instance, where you

may have two objects that overlap on different layers)
• Any area with a distinct purpose (such as a content area or a

menu area)
• Any area with a distinct image
• Any area with distinct coloring or shading
• Any area that needs exact spacing (such as a separator image

or spacing device)
You should take the time to label each of the sections bordered

with red lines. This will help you simplify your coding efforts later.
For the labels, you should use names with no spaces, numbers, or spe-
cial characters; this will allow you to use these names directly in your
HTML code to identify the correct section of the design. The exception

3.1.1

C h a pt e r 3 — I n t r o d u c t i o n t o H T M L — 59

to this is the background, which will be handled separately. Figure 3.1
shows the fi nal visual prototype for the case project that will be con-
structed throughout the rest of this text. The lower part of the image
shows the notation of the distinct visual areas that you will need to
create. This is called decomposing the prototype.

 FIGURE 3.1 Visual Prototype and Section Markup

The majority of the placement and image construction work for
the base site will be done in this phase of development. The next few
chapters use these same elements and simply refi ne their placement
and positioning. You should always begin your development efforts by
structuring the page according to the sections you have created.

ACTIVITY 3.1 – DECOMPOSING YOUR VISUAL
PROTOTYPE

For this activity, you will use the fi nal visual prototype you constructed for the
case project in Chapter 2. You should use the same program you used to create
the visual prototype and create a new copy of it that you will mark with red
lines. (You can name it prototype_markup.) In the copy, draw lines around
every distinct visual area according to the suggested guidelines listed at the
beginning of this section. Label each of the sections that you have created by
placing these red lines.

ACTIVITY

60 — Mult imedia Web Des ign

Structuring a Page
The default layout for HTML elements is to display each element

from the upper left corner going to the right and then moving down the
page once the right margin is reached. If you do not use any position-
ing style commands on your elements, this is the layout with which
you are stuck. Fortunately, the next chapter will cover how to change
this default behavior. For now, you should concentrate on getting the
elements of your site into the page. To begin, you should number each
of the sections in the order in which it is initially encountered from the
top left to the bottom right; this may not be an exact numbering since
there are objects that will overlap. Once again, you should omit the
background from this numbering. When you begin coding in the next
section, this will be the order in which you enter the elements. You can
see an example of this numbering for the sample layout in Figure 3.2.

 FIGURE 3.2 Numbered Sections for Sample Layout

Creating Layouts in HTML
If you are just starting out with Web design, you may be tempted to

organize your content into a table without borders showing. This was a
popular method for constructing layouts prior to the widespread adop-
tion of Cascading Style Sheets (CSS) for positioning. This type of layout
is still possible, and for simple, static pages, it can still work. However,
the modern approach is to use <div> tags to divide your content into
sections and then use CSS to guide the placement of the <div> section.
This method will take slightly longer to get to the end product, but it is

3.1.2

3.1.3

C h a pt e r 3 — I n t r o d u c t i o n t o H T M L — 61

the professional method. That is the approach that will be adopted for
this text. Keep that in mind when you preview your pages in a browser
before you get to Chapter 4, when you start to apply CSS.

You should open your template page or create a new template
page with the same structure. Create a new project folder called Zippy.
Save your template page as index.html in the Zippy folder. For any
site, you should name the fi rst page index.html. Every server is pro-
grammed to look for this fi le name in any folder to which it is directed,
so you should always make sure that this fi le is there and that it is the
main page of your site. To convert your layout to HTML, you will start
by typing the <div> tags into the body of your page.

Each <div> tag should have two attributes within it, an id and
a name. The value used for both of these attributes can be the same.
These attributes provide two ways to reference the element, which will
come into play later in the text, when you invoke JavaScript to adjust
positioning and content. The name and id should both be all lowercase.
(They can include numbers as well as letters if there is at least one
letter preceding the number.) Between the <div> and </div> tags, you
should type the name of the section as a placeholder for content. You
should place the <div> tags into your page in the order in which you
numbered them in your layout. Remember to exclude the background;
that part will be handled separately. For the sample layout, the code
for the index.html page should look as follows:

<!DOCTYPE html>

<html>

 <head>

 <title>Zippy Beans Coffee Co.</title>

There is another type of layout called frames that was used when Web sites
were fi rst becoming popular. These are blocky and cumbersome; in modern
Web browsing there is no need for frames, and you should not consider them as
an option for any layout. NOTE

62 — Mult imedia Web Des ign

 </head>

 <body>

 <div id=”banner” name=”banner”>Banner</div>

 <div id=”logo” name=”logo”>Logo</div>

 <div id=”menu” name=”menu”>Menu</div>

 <div id=”cup” name=”cup”>Cup</div>

 <div id=”content” name=”content”>Content</div>

 <div id=”bottom” name=”bottom”>Bottom</div>

 </body>

</html>

As you will see in the coming sections, you can use one fi le with a
completed layout as a template for your entire site. This reduces the
overall effort of creating the pages and guarantees that the content on
the pages will be displayed the same way from page to page. You can
preview your page in a Web browser so you can see how the code posi-
tions the <div> elements naturally within the page.

The code for the sample layout can be found in the WebProjects folder of the
companion DVD in the fi le layout.html.

ON THE DVD

ACTIVITY 3.2 – CREATING A LAYOUT IN HTML

For this activity, you will use the decomposition of your visual prototype for the
case project to guide the construction of your index.html fi le. First, you
should create a new project folder called MyZippy. This will distinguish your
project from the sample and allow you to develop both of them at the same
time. Using the decomposition and coding process outlined for the sample,
create your index.html page based on the generic HTML template fi le. Save
your new fi le as index.html in the MyZippy folder.

ACTIVITY

C h a pt e r 3 — I n t r o d u c t i o n t o H T M L — 63

IMAGES
The next step to creating your design is to add images to your page.

The available image formats for the Web vary in their characteristics
and application, so one of the fi rst tasks is identifying which image for-
mat to use in which circumstance. You will also need to consider which
elements should be separated into different images. As a general rule,
images should be created to be entirely contained within the <div>
tag in which they are to be placed without consideration for the back-
ground of the image. This section will look at some of the image tools
available and how to display images within your page. The tag
is the HTML code used to place images within your document.

Image Formats
There are a number of different fi le formats for image content.

Typical image fi le formats are JPEG (Joint Photographic Experts
Group) File Interchange Format, Graphics Interchange Format
(GIF), Bitmap (BMP), Portable Network Graphic (PNG), and Tag
Image File Format (TIFF). All of these have specifi c characteristics
and uses, but they are not all suited to the Web. There are two kinds;
the primary distinction between them is how the visual information
is stored in the fi le, which determines how much of the information
is retained from the original source. These are known as lossless and
lossy formats.

3.2

3.2.1

You may wonder when an image should contain text. In most cases, it is better
for the display and better for the overall page to keep text out of images. The
exception to this is when the text must be in a particular font that is uncommon
to most machines. For instance, the font used for the sample visual prototype for
the case project is Bauhaus 93. If this were a real company and that were the
font the company used in its logo, it should be included in an image, since this
font is not as common as Arial or Times New Roman. If there is a choice of fonts,
though, you should opt to type the text in the HTML code and use formatting
instead of an image.

PROFESSIONAL
TIP

64 — Mult imedia Web Des ign

The fi le formats you should become familiar with for Web design
are the following:
• Bitmap and TIFF: These are lossless image formats. They

tend to have larger fi le sizes, but they retain all of the image
information. Their support for display on the Web is mostly
included for older pages of the Web, and these are not recom-
mended as the fi nal format for your images. However, these
are great formats to use on a working copy of an image that
you are going to convert to a JPG or PNG.

• GIF: A GIF image is a limited-palette image that can support
256 colors per image. It is good for images with large areas of
the same color but performs poorly for images with gradients
and dithering. The GIF format allows image transparency
(where part of the image is empty space so the element behind
it in the page is visible in that space), and it has an animated
version that rotates through a sequence of GIF images using
the same color palette. Because of its limitations and the
restrictions on creating fi les in this format, it has largely dis-
appeared from modern Web sites. You should use this format
only if you have a specifi c need for lightweight animation;
otherwise you should use the PNG format for transparency.

• PNG: The PNG format was created as an open-source succes-
sor to the GIF format. The PNG format supports a truecolor
(16 million colors) palette and allows image transparency.
This is an excellent format for layering images, and it is fully
supported in modern browsers.

Lossless describes a fi le format that does not lose pixel or
color information from the original image source. These tend to
be larger fi les than compressed, lossy formats.
Lossy describes a fi le format that loses pixel or color
information from the original image source. These tend to be
compressed and have a smaller fi le size than lossless formats.
A palette is the range of colors that an image fi le format can
contain. Some formats, such as GIF, have a limited palette.
Most lossless formats allow a truecolor palette, which contains
16 million colors.

DEFINITION

C h a pt e r 3 — I n t r o d u c t i o n t o H T M L — 65

• JPEG: The JPEG (or JPG) format is a lossy, compressed
format that is well suited to photographs and complex images.
This is a well-supported and highly recommended format for
images on the Web. The compression method of JPEG fi les
does not work well for images with a large section of the same
color; in this case, PNG is the better format to use even though
the fi le size is larger.

Image Creation Software
The professional standard program for image creation and modi-

fi cation is Adobe Photoshop. This is part of the Adobe Master Collec-
tion, along with Adobe Dreamweaver. This is also expensive software,
especially if you buy it for commercial use. The learning curve on Pho-
toshop is steep; it has a multitude of tools that you can use to create
complex images and perform advanced modifi cation of existing images.
You can see an example of a layout for Adobe Photoshop in Figure 3.3.

 FIGURE 3.3 Adobe Photoshop Interface

3.2.2

Google has developed the WebP (or WEBP) format, which is a lossy compression
designed to reduce fi le sizes for sharing photographs on the Web; so far, JPEG
images are still widely used as the standard.

NOTE

66 — Mult imedia Web Des ign

If you are in the business of graphic design and are learning Web
design as a supplement to that, it is highly recommended that you
obtain a copy of this software. If you are approaching Web design from
the programming standpoint and are primarily concerned with the
back end of the process, the cheaper alternatives for image creation
will most likely suffi ce.

A free alternative to Adobe Photoshop is the Pixlr® Editor, an
online-only software package that provides a substantial subset
of the tools available in Photoshop. It can be accessed online at
http://pixlr.com/editor. This can be used to create transparent
PNG images and JPG images. You can see an example of the layout
of the Pixlr® Editor interface in Figure 3.4.

 FIGURE 3.4 Pixlr® Editor Interface from http://pixlr.com/editor

You can even use the Pixlr® Editor to import photos or images
from your desktop to edit online. If you are new to image creation,
this is a good alternative to Photoshop, since it has a more limited
scope of functionality. Additionally, the tools contained in the Pixlr®

Editor closely equate to those in Photoshop, meaning that you can
learn a tool for Pixlr® and use the same tool in Photoshop with mini-
mal effort.

C h a pt e r 3 — I n t r o d u c t i o n t o H T M L — 67

Creating Site Images
When you are creating images for your site, you should consider

the image boundaries and the format you want to use for the image.
The primary formats you should use for your images on the Web are
JPG and PNG. Photographs and images that do not require transpar-
ency and do not have large sections of solid color should use the JPG
format. The PNG format is more versatile, but it produces a larger fi le
size than a JPG image. You also need to decide when to use an image
and when to use CSS to create the effect.

To evaluate what images need to be created for your site, you can
start by going through your layout section by section to decide how to
build it in HTML. For the sample layout, the sections can be evaluated
as follows:
1. This is the banner section, which will require a background

image. Since the image shows the layers beneath it, it will need
to be transparent. The image fi le for this is called banner.png
within the WebProjects folder of the companion DVD.

3.2.3

ON THE DVD

If you are less concerned with the quality of your images in Web design, there
is a shortcut for using image editing software to create JPG images. It will not
work for transparency or layered images, though. All you need for this alterna-
tive is Microsoft PowerPoint® and Microsoft Paint™. Use the screen capture
functionality of your laptop or PC on your image in PowerPoint and then paste
the result into Paint. From here, just crop the image in Paint and save it as a JPG
fi le. To crop the image in Paint and match the “canvas” size to the image size,
just use the selection tool to grab the area you want, copy the selection, create a
new image in Paint, and paste the result. You can use the grip points around the
canvas edges to resize the canvas to match your image content.

PROFESSIONAL
TIP

This is the stage at which you want to spend the time on creation of profes-
sional-quality images for your site. These are the images that will go live in the
fi nal product.

NOTE

68 — Mult imedia Web Des ign

2. This is the logo. Since it fi ts over other layers, it needs to be
transparent as well. The image fi le for this is called logo.png
within the WebProjects folder of the companion DVD

3. The menu is a solid color. This effect can be achieved using CSS in
Chapter 4.

4. This is the cup image. This should be made transparent in order
to stack it over the layers beneath it. If this were not transparent,
it could fi t only in one precise location without disrupting the
design. You can see in Figure 3.5 the difference between creating
this image for its fi nal placement within the layout (the left image)
versus setting it on a background which will become transparent
(the right image). The image fi le for this is called cup.png within
the WebProjects folder of the companion DVD.

 FIGURE 3.5 Comparison of Backgrounds for Image Placement

ON THE DVD

ON THE DVD

When you are creating an image with transparency, you should place it over a
background as close to the color of the actual background as possible. You may
end up with outer pixels that refl ect the background color of the original image,
so it will look more integrated if this color looks natural on the real background
for which the image is intended.

NOTE

C h a pt e r 3 — I n t r o d u c t i o n t o H T M L — 69

5. This is the content area. Once again, this is a solid color. This
effect can be achieved with CSS, so no images are necessary.

6. This is the bottom of the interface. Just like the top banner,
this layer needs to show the layers beneath it. This will also be
used for legal and disclaimer information, so the image created
will be used as a background. The image fi le for this is called
footer.png within the WebProjects folder of the companion
DVD.

Remember that the JPG format is lossy, so you should save your
image as a JPG fi le only one time. You should always have a working
copy saved as a PNG, Bitmap, or TIFF. Saving JPG fi les repeatedly
will cause them to lose clarity. You also want to be economical with
your fi le sizes; the larger your fi le size, the longer it takes to load your
page on a client’s machine. Too much wasted download time and the

ON THE DVD

To create the effect of the cup image in Pixlr, you can complete the following
steps. Create your initial drawing without adding the shadow effect in a photo
creation software system (Photoshop, Pixlr, Paint, or even PowerPoint) and save
it as a Bitmap fi le. Open the Pixlr editor in a Web browser and choose the option
Open image from computer. Select and load your bitmap.

Use the selection tool to highlight the area of the image you want to keep and
copy it. Open the File menu and choose New Image. In the dialog box that
opens, click the checkbox for Transparent. (Do not select the Create
image from clipboard checkbox.) Paste the copied image information
into the new image canvas (which should fi t perfectly). Use the Wand tool to
select the background you want to become transparent and then hit the delete
key. If you have done this correctly, you should see a checkerboard background
where the image was; this indicates transparency. You can save your image now
as a PNG, and it will retain this transparency.

To add a shadow effect like the one used on the cup, go to the layer where
your image was pasted and right-click your mouse on the layer image. Select
Layer Styles from the menu that opens. In the dialog box, choose Drop
Shadow. You can adjust the parameters of the shadow by clicking on the
Drop Shadow text within the dialog. Now you can save your image with a
shadow that will retain transparency.

PROFESSIONAL
TIP

70 — Mult imedia Web Des ign

ACTIVITY 3.3 — CREATING IMAGES

For this activity, you will create the images needed for your own version of the
Zippy Beans site for the case project. Use the analysis of the sample layout to
walk through your own design and decide which images need to be created.
Create a guide to the images where you analyze what images are needed and
record the name of the image you used on a copy of the layout. Save your
images in a folder called Media inside your project folder; this will keep your
images in one place without cluttering your main folder, which contains the
HTML fi les.

Aside from any additional content you may need later, this is the only image
work you will need to do for this project. The Chapter Projects section will ask
you to perform the same task for your other projects.

ACTIVITY

client will be off your page before even seeing it. To make sure the fi le
sizes are as small as possible, you should design your images to fi t
exactly in the space for which they are intended using the sizing fea-
tures of the image creation tools. This way there is no wasted down-
load time fi tting larger fi les into small spaces when smaller images
would serve the same purpose.

Inserting Images
The tag for inserting images into your HTML document is the

 tag. This is a self-contained tag that has no closing tag to follow
it. Instead, the closing angle (greater than sign) at the end of the tag
name is preceded by a space and a slash () to signify that the
tag is closed. The important aspect of an image tag is the attributes
used to defi ne it:
• src: This is the source of the image fi le. You can use relative

addressing or absolute addressing to point to the source fi le.
In relative addressing, you are directing the browser from the
location of the current page to the fi le; for the logo image in
a Media folder in your project fi le, you would use src=“Media/
logo.png” as the src attribute. The absolute address is the com-
plete reference to the image fi le regardless of where the cur-
rent page is located. An example of absolute addressing would

3.2.4

C h a pt e r 3 — I n t r o d u c t i o n t o H T M L — 71

be src=“http://www.somewhere.com/Media/logo.png” for the
src attribute.

• alt: The alt attribute contains a text description of the image.
This text description is read by browsers for the visually
impaired. Including this attribute is imperative for ADA com-
pliance, so it should always be used. It is helpful in any case
in which images are disabled in a browser. An example of this
would be alt=“Zippy Beans Logo” for the logo.png fi le.

• id: This is the reference identifi cation for the image within the
document. If the image is static and used only for decoration,
this can be omitted. However, it is better to include this in the
tag in case you need to refer to it in the code. This works as an
identifi er for the tag and its content the same way it does in
the <div> tag.
The accepts other attributes such as height and width, but

it is better to use CSS to control these aspects within the design rather
than hard coding them in the HTML. For the example layout for
the case project, you should create a folder called Media in your
project folder and move the following fi les into it: logo.png, banner.png,
footer.png, and cup.png.

When you are using relative addressing, the character sequence “../” moves up
one directory. You can chain these together to move up multiple directories. The
character sequence “./” points to the current directory; this is often omitted and
assumed (so src=“./logo.png” is equivalent to src=“logo.png”). NOTE

Some lines of code are longer than the lines of text in this book. Whenever you
see a  symbol in the code, the line immediately following it is a continuation
that should be on the same line in your actual code. In HTML this is not impor-
tant but in formal languages it is necessary to keep all of the code on the same
line. The code snippets on the companion DVD contain the code in the correct
lines for use.

NOTE

72 — Mult imedia Web Des ign

The banner and footer images will be used as background images,
so they will not be added until the next chapter. The logo and cup
images, however, will be used directly inside the <div> tag for those
elements and replace the text you added as a placeholder. The com-
pleted code for the added images inside the layout is as follows:

<!DOCTYPE html>

<html>

 <head>

 <title>Zippy Beans Coffee Co.</title>

 </head>

 <body>

 <div id=”banner” name=”banner”>Banner</div>

 <div id=”logo” name=”logo”><img id=”logo_img”

alt=”Zippy Beans Logo” src=”Media/logo.png” /></div>

 <div id=”menu” name=”menu”>Menu</div>

 <div id=”cup” name=”cup”><img id=”cup_img” 

alt=”Zippy Beans Cup” src=”Media/cup.png” /></div>

 <div id=”content” name=”content”>Content</div>

 <div id=”bottom” name=”bottom”>Bottom</div>

 </body>

</html>

Save your fi le as index.html in the project folder for the sample
site. You can test your code to make sure it works anytime in a Web
browser. If you have entered the code correctly and placed your images
in the Media folder, you should see two images and the text for the
remaining <div> elements.

ACTIVITY 3.4 – ADDING IMAGES TO HTML

For this activity, you should update the HTML page for your version of the case
project with image tags. You should add only the tags of the images that are
displayed in the foreground of their <div> section. The rest will be added in the
next chapter using CSS. You should save your work in index.html and verify that
your image links are correct using a Web browser.

ACTIVITY

CHAPTER SUMMARY
In this chapter, you learned how to decompose a design into sec-

tions for implementation in HTML. This included the use and struc-
ture of the <div> tag, which is used to segment different pieces of the
page, and the order of placement of the sections for display. This chap-
ter also covered the basic use of image creation software and the main
formats for image fi les that can be used on the Web. You learned to
analyze which parts of the design need to be turned into images and
whether they should be placed in the foreground or in the background.
Finally, you learned to use the tag for placing images in your
page. The next chapter will show you how to use Cascading Style
Sheets (CSS) to format and position the <div> elements and create
complex visual styles for your elements with simple commands.

CHAPTER KNOWLEDGE CHECK
Which of the following programs cannot be used to create image fi les?

● A. Adobe Photoshop

● B. Pixlr Editor

● C. Microsoft PowerPoint

● D. Microsoft Paint

● E. None of the above

Which of the following compression types is lossless?

● A. Bitmap

● B. JPG

● C. GIF

● D. All of the above

● E. None of the above

A table layout in HTML will no longer function in a Web browser.

● A. True

● B. False

1

2

3

C h a pt e r 3 — I n t r o d u c t i o n t o H T M L — 73

____ addressing is the use of the full URL for determining an image location

in the src attribute of the tag.

● A. Uniform

● B. Relative

● C. Relational

● D. Absolute

● E. None of the above

Which of the following image fi le formats supports transparency?

● A. JPG

● B. Bitmap

● C. GIF

● D. TIFF

Truecolor images defi ne roughly 16 million colors for use.

● A. True

● B. False

An image element should have a transparent background if there is any

possibility of its moving on the page based on the size of the browser window.

● A. True

● B. False

GIF images are highly desirable for modern Web sites because of their

transparency and ability to show complex animations.

● A. True

● B. False

All image formats are supported by all major browsers, so which fi le format to

use is an individual choice.

● A. True

● B. False

4

5

6

7

8

9

74 — Mult imedia Web Des ign

Once a visual prototype is fi nalized, the challenge of the Web designer is to

make the fi nal HTML site look as close to that design as possible.

● A. True

● B. False

CHAPTER PROJECTS
Project 1: Personal Web Site

For your project in this chapter, you will decompose your visual
prototype for your personal site into sections and create the index.
html page for your project based on the decomposition. You should
save this fi le in the project folder designated for your personal site.
Next, you will analyze the sections for which images need to be cre-
ated, create them, and save them to a Media folder within your project
folder. Finally, you will add the images into your HTML page using
the tag.

Project 2: Creating a Resort Web Site
For your project in this chapter, you will decompose your visual

prototype for your resort site into sections and create the index.html
page for your project based on the decomposition. You should save this
fi le in the project folder designated for your resort site. Next, you will
analyze the sections for which images need to be created, create them,
and save them to a Media folder within your project folder. Finally,
you will add the images into your HTML page using the tag.

CHAPTER EXERCISES
1. Choose three Web sites and look at how they layer images

within the site. For each site, list the URL and describe the
different visual layers used in its layout. Which of these sites
creates the most depth? Which of the sites uses images most
effectively?

10

C h a pt e r 3 — I n t r o d u c t i o n t o H T M L — 75

76 — Mult imedia Web Des ign

2. A <div> tag is a block layout element. Use the Web to
research what this means and defi ne it in your own words.
What other HTML tags have this default property?

3. Which type of image format is most desirable when download
speed is the highest priority on a Web site? What is the
tradeoff of using this fi le type? Justify your position.

4. Create an image as a PNG, a Bitmap, and a JPG. What is the
effect of saving the same image repeatedly in each of these
formats? Show your results in a Word document with your
explanation of the effects.

5. Create a table to compare the features available in Adobe
Photoshop with the features of the Pixlr editor. Summarize
the key differences and explain why you chose the specifi c
features for comparison.

6. Create a JPG image (from a photo, screen capture, or other
source) and convert it to a transparent PNG. Why is JPG a
poor format to choose for this type of conversion? What are
the artifacts (unwanted pixels) that remain in your image
after the transparency is applied? Show your results in a
Word document.

7. Look up the reference on the tag. What are the
available attributes for this tag? Why are only a limited
number of them recommended for use in constructing your
HTML document? Hint: consider CSS in your answer.

8. One method of decomposing a table layout into <div> tags is
to add the table to your page using a visual editor (like Adobe
Dreamweaver) and adding a <div> tag inside of each table
cell. Using the sample layout for the case project, explain

C h a pt e r 3 — I n t r o d u c t i o n t o H T M L — 77

what the result of this type of table decomposition is. Why is
this less effective than creating a <div> layout initially?

9. Another type of tag that divides sections of a page is the
 tag. Look up the specifi cations of the tag and
compare its use and purpose to those of the <div> tag. Which
of these is better for decomposing a visual prototype into
sections and why?

10. Give at least three examples in which relative addressing
would be less effective than absolute addressing for linking
to an image fi le. Why is absolute addressing not used all the
time with images? Justify your answer.

CHAPTER REVIEW QUESTIONS
1. Explain the purpose of decomposing a site into <div> tag

sections rather than using a table layout for a design. Are
there circumstances in which a table layout would be better
to use than a <div> layout? Justify your position.

2. Explain the purpose of choosing an order of elements within
a visual prototype. Would this order matter in a table layout?
Justify your position.

3. Explain the purpose of placeholder content in establishing
a <div> layout. Are there cases when a <div> tag would be
completely empty in a display? Justify your answer.

4. Why is it helpful to outline the sections of a visual prototype
in red boxes when decomposing a layout? What signifi cance
does the rectangle have in these notations, or could any
shape be used? Explain your answer.

78 — Mult imedia Web Des ign

5. Why should images be created more carefully in the fi nal
design rather than using the images from the visual
prototype for the fi nal product? Explain your answer.

6. Explain the rationale for always including an alt description
of an image in an HTML document, even if the image is
purely for decoration.

7. The tag has the functionality to link to a longer
description of the image beyond the alt attribute. Give at
least two examples of when this would be helpful or even
necessary.

8. Why is it important for Web browsers to maintain backward
compatibility with older HTML tags and prior layout styles?
Justify your position.

9. Explain briefl y why construction of HTML pages needs to
begin with the visual prototype rather than the functionality
of the page.

10. Why is it important to plan all of the elements needed for a
page (such as a menu and content area) into the initial visual
prototype? What is the consequence of not planning for one of
these items?

CSS3
IN THIS CHAPTER

The chapter covers the use of Cascading Style Sheets (CSS).
The style commands in this language allow you to modify the
presentation of your HTML elements in a complex way and
achieve unique, layered displays of information and images
within a page. CSS commands are essential to site branding
and will allow you to create a consistent look and feel across
your entire site. Once you have completed this chapter, you
should be able to:

 ● Create a style class

 ● Use style commands to modify positioning and
placement of elements in a page

 ● Use style commands to modify the color and
display of elements in a page

 ● Create an external CSS document that can be
referenced across an entire Web site

INTRODUCTION TO CASCADING
STYLE SHEETS

Cascading Style Sheets (CSS) is a language added to Web design
to allow the separation of presentation (or style) from structure. This

4.1

CHAPTER

4

80 — Mult imedia Web Des ign

reduces the amount of code in a page by providing a centralized loca-
tion for presentation information, which can be reused through tags
and classes. CSS3 is the current standard for CSS. A style command
works just like an HTML tag attribute. It contains a property and
value pair with the structure:

property: value(s);

You can invoke a style command independently within a tag by
using the style property. An example of this is:

In this case, the property is width and the value assigned to it is
150 pixels (px). This is the same as using the code:

The power of style commands is not in their individual use. Instead,
their value comes from establishing classes and defi ning style sets for
tags across entire pages and entire Web sites. This section will look
at the structure of various CSS classes and their applications. The
rest of the chapter will explore some of the specifi c style commands
that are most useful for constructing the layout of your HTML pages.
You should keep a copy of your current index.html page from the case
project (you can save it as nostyle.html) as a reference for how much
the style commands change the display of the page in a Web browser.
Remember that the structure of the page is already established; the
style commands simply modify the presentation, or display.

Invoking Styles in HTML
In order to use CSS in a Web page, you have to invoke it with

a <style> tag. Anything that falls between the <style> and </style>

4.1.1

W3Schools (http://w3schools.com) maintains an exhaustive reference
for every possible style command. Once you have completed this chapter, you
should keep its Web site as a reference for additional style commands and the
evolution of new and updated style commands.NOTE

C h a pt e r 4 — C S S 3 — 81

tags will be interpreted as CSS commands. The <style> tag should be
placed inside the <head> tags of a page rather than inside the <body>
tags, since it is not defi ning the actual content to be displayed. The
<style> tag has only one attribute, the type attribute, which should be
set to “text/css” as follows:

<style type=”text/css”>

 …

</style>

You can add comments to the styles using the character string
“/*”; this will comment out everything until the character string “*/” is
encountered. You can use this to describe the different styles or make
notes. You can see an example of this in the following:

<style type=”text/css”>

 /* This is a comment. */

</style>

 CSS Classes and Tags
The default application of CSS is to apply it to all tags of the same

type within an HTML page. For instance, you can set properties for all
<div> tags within a page. The structure for this type of style command
grouping is as follows:

<style type=”text/css”>

 div {

/* The style property/value pairs go here. */

 }

</style>

Anything wrapped within the curly braces ({ and }) will apply to
every <div> tag in the page.

If you want your style set to apply only to a subset of tags within
the page, you can defi ne a class for the style. You defi ne a class by
using a period (stop character) before the name of the class (which can
be any alphanumeric character string as long as it starts with a letter).

4.1.2

82 — Mult imedia Web Des ign

For instance, you can defi ne a logo class using the following:
<style type=”text/css”>

 div {

/* The style property/value pairs go here. */

 }

 .logo {

 width: 150px;

}

</style>

You can defi ne multiple style sets and classes within the same set
of <style> tags. To invoke a class, you must call it within the tag to
which you want the style set to apply. To call the logo class, you would
use the following:

CSS IDs
Style sets can also be defi ned for an individual element within a

page. The problem with doing this is that the style set is used only
once and cannot be invoked again later. The benefi t of doing this is
that you do not need to invoke the class call for the style to apply. In
cases where the HTML is dynamically generated or changed during
display, this can be an easier way to apply styles than with class calls.
To defi ne a style for a particular element, you just need to know the
element’s id value. To apply a style to a specifi c tag based on its id
value, you defi ne the style set using a hash symbol (#). You can see an
example of this type of style defi nition in the following:

<style type=”text/css”>

 #logo {

4.1.3

When calling a style class, you do not need the period before the class name.
This is necessary only when you defi ne the class itself.

NOTE

C h a pt e r 4 — C S S 3 — 83

 width: 150px;

}

</style>

In this example, the style set defi ned would apply only to the ele-
ment with the attribute id=“logo” within the page. The element id
must be unique for the page to work properly. There is no need to
invoke the style; it will be applied automatically.

Pseudo-classes
Another type of class within CSS is a pseudo-class. This type of

class is invoked depending on the state of the tag to which it is applied.
One of the most common applications of a pseudo-class is with hyper-
links, which you will see in Chapter 5. When a user hovers the mouse
over the hyperlink, the tag enters the state hover; you can use this
state to defi ne a pseudo-class that will change the style properties
only while this state is active. The “hover” state would become inactive
when the mouse leaves the hyperlink element and the style set in the
pseudo-class would no longer apply. You can apply this pseudo-class
to other elements as well, particularly <div> tags.

The pseudo-class is a subclass of a tag, a class, or a tag id. You
defi ne a hover pseudo-class for the logo class using the following code:

<style type=”text/css”>

 .logo:hover {

 width: 180px;

}

</style>

Now when a user hovers over the tag invoking the logo class, the
width of the tag will change to 180 pixels.

There are a number of available pseudo-classes, including hover,
visited, active, and focus. As you learn more about hyperlinks, you may
want to revisit this topic to determine how to tailor your link display
based on current or prior user actions. You will use the hover pseudo-
class to expand the menu in the sample layout in this chapter.

4.1.4

84 — Mult imedia Web Des ign

Inheritance
CSS is designed to allow elements to inherit styles from their par-

ent tags (the tags that contain them). The simplest example of this is
that any text modifi cations defi ned for the <body> tag will apply to all
tags and elements within the <body> tag. This inheritance also allows
you to defi ne certain styles once and then ignore that property later.
For instance, if you set the font for the <body> tag, you do not need to
set the font again unless you want a different font within a specifi c set
of tags or element.

The style commands that are closest to the actual element are
applied fi rst for that element. This means that any style commands
for an invoked class will supersede style commands for the tag, which
will supersede style commands for the parent element. These inheri-
tance rules can be applied in interesting ways. An element can inherit
styles from a parent, a class, a tag, and an ID. You can also invoke
multiple classes in CSS and defi ne classes for nested elements, but
this can be overwhelming when you are fi rst getting started.

POSITIONING AND LAYERING
When you render a page in HTML, the default positioning for any

element is to be placed as it appears in the document, one element
after another. This is called static positioning. For simple layouts this
may suffi ce. For a long time, this was the only option for positioning
elements. With CSS, however, you have the ability to position ele-
ments wherever you want them on the page. This is accomplished
using the position property in a style command. In order to actually

4.1.5

4.2

In some browsers, <table> tags do not inherit from the <body> tag. This is also
true for form elements. You can force properties to be inherited by setting their
value to inherit in the style defi nitions for the tags that are not cooperating. This
prevents you from having to defi ne the same code multiple times, because it will
force changes in the <body> tag to apply to any tag whose value specifi es that
it should inherit that property value.

NOTE

C h a pt e r 4 — C S S 3 — 85

move the element around within the page or within the browser win-
dow, you need to use several other properties to establish where the
element should appear. These additional properties set any or all of
the following: the left and top displacement, the layering, the height
and width, and the margins and padding for an element. These prop-
erties give you precise control over your layout and over how each ele-
ment appears within the browser window.

Element Position
The position property controls how the element positioning is han-

dled within the page display. In order to make adjustments to the ele-
ment, you must fi rst know how it will be positioned within the page.
There are several possible position values to consider for an element:
• Static: The items are positioned on the page in the order in

which they appear in the HTML document. This is the default
case.

• Inherit: The positioning of the element is based on the posi-
tion property value of the parent. You can commonly set more
property values to inherit to force them to take on the parent
characteristic for that property.

• Absolute: This positions the element in relation to its fi rst posi-
tioned parent (which is most often the <body> tag). This is the
most common positioning you will use for elements that you
still want to scroll on the page but also want to retain their
position on the page.

• Relative: This positions the element at an offset from its par-
ent element. For instance, you can set a left value of 20 pixels,
which will place this element 20 pixels to the right of the parent.

• Fixed: This setting positions the element relative to the
browser window itself. It will fi x the item in place and will
not allow it to scroll on the page. This is useful for banner and
menu items that you want to have always appearing on your
page regardless of the length of the content.

An example of the position property can be seen in the following:
<style type=”text/css”>

 #banner {

 position: fi xed;

4.2.1

86 — Mult imedia Web Des ign

}

</style>

Setting this value does not by itself alter the appearance of the
element at all. In order to do this, you must set an anchor point for
the element on the page. For this, you will typically use the top and
left properties (though combinations of the top, bottom, left, and right
elements can be used to defi ne an anchor point at any of the corners
of the element).

The following is an example of this that will place the banner ele-
ment in the sample case project layout at the top left corner of the
browser window:

<style type=”text/css”>

 #banner {

 position: fi xed;

 top: 0px;

 left: 0px;

}

</style>

If you cannot see the effect of this, you can make your browser win-
dow smaller until there is enough content to allow you to scroll the page.

In CSS, the abbreviation px following a number represents the number of
individual pixels the property value should be, so 100px is 100 pixels. The
number of pixels in the display area is governed by the display resolution of the
viewer’s monitor.NOTE

An anchor point consists of the vertical and horizontal
coordinates of a single point that defi ne how an element is
placed on a page. The anchor point is typically the top left
corner of the element, but it can be defi ned at any point within
the element, depending on the application.

DEFINITION

C h a pt e r 4 — C S S 3 — 87

The next step in your layout construction is to set the positioning
and the anchor points for the <div> tags in your page. For the sample
layout for the case project, each of the <div> tags should be analyzed
for placement:
• Banner: The banner should be placed in a fi xed position so it

always appears above the content itself. It should start at the
upper left corner of the browser.

• Logo: The logo should appear on top of the banner element,
so it should also be fi xed. It should appear at the upper left of
the browser, but some padding will be added to it later.

• Menu: This should be fi xed beneath the banner so it is
always on display but hidden under the branding of the ban-
ner. This will be offset into the page so it rests on top of the
content.

• Cup: This element is for display only; it is the image of the
coffee cup shown in the sample layout. Its location can be
fi xed to establish consistency even if the content scrolls. It
should be placed behind the banner and logo and offset lower
into the page.

• Content: This should be an expandable area where the main
content of each page will be displayed. It should have an off-
set so it begins behind and to the right of the cup. The width
of this element will be fi xed so that it can grow as needed
only in the vertical direction.

• Bottom: This is the end of the branding. This section will
contain the disclaimer, which can be hidden from view off the
screen as long as it is on the page. It can be either fi xed, so
the content is viewed as a scrolling window within the brand-
ing, or allowed to move with the page. The choice on this is
left to you; for the sample, it will be fi xed at the bottom to
show you how this can be done.

In CSS, this translates to the following style sets for the sam-
ple layout:
<style type=”text/css”>

 #banner {

 position: fi xed;

 top: 0px;

88 — Mult imedia Web Des ign

 left: 0px;

 }

 #logo {

 position: fi xed;

 top: 0px;

 left: 0px;

 }

 #menu {

 position: fi xed;

 top: 80px;

 left: 220px;

 }

 #cup {

 position: fi xed;

 top: 160px;

 left: 0px;

 }

 #content {

 position: absolute;

 top: 140px;

 left: 200px;

 }

 #bottom {

 position: fi xed;

 bottom: 0px;

 left: 0px;

 }

</style>

Note the positioning of the bottom element. You can use per-
centages as well as exact pixel numbers for values. By setting
this bottom property value to 0, you keep it at the bottom of the
page no matter what size the browser window is. The value of the

C h a pt e r 4 — C S S 3 — 89

bottom property is the distance above the bottom of the containing
element, which in this case is the <body> tag. If you test this page
in a browser, you will start to see the layout coming together, but
as you expand the CSS style set for each element, your design will
come closer and closer to the visual prototype you designed!

Layers
Even after the positioning of the elements is set, two elements can-

not reside in the same space on the same layer. The CSS property
that governs the layer used is the z-index property. The value of this
property is a number representing the stack order from background to
foreground. The lowest number is furthest in the browser background,
and the highest number is closest in the foreground.

In order to set the stack order with z-index values, you need to
consider which element should be on the bottom of the stack and work
your way forward. A best practice is to set your <body> tag at z-index

4.2.2

ACTIVITY 4.1 – CREATING STYLE SETS

For this activity, you will analyze your visual prototype for the case project and
decide on the positioning for each of the elements on the page (each section that
you defi ned with a <div> tag). Using the <style> tag, create the initial style sets
for the element IDs (using a # prefi x). As you plan this out, consider the height and
width you want to use for each element in your design. Keep in mind the expected
layout size in pixels that you will use as you plan these elements. Chapter 1 has
the standard layout guidelines for modern browser and display sizes.

ACTIVITY

The depth distance (along the z-axis) between elements is not determined by
the relative values of the z-index property. A difference between 1 and 2 in
property values for two elements has no display effect compared to property
values between 1 and 500 for two elements. NOTE

90 — Mult imedia Web Des ign

value 1 and build forward. For your convenience, you can increment
the z-index values by 5 or 10 to allow the addition of other elements
in a redesign later. With the analysis in the prior section on the <div>
elements in the page, the following is the updated style set:

<style type=”text/css”>

 #banner {

 position: fi xed;

 top: 0px;

 left: 0px;

 z-index: 30;

 }

 #logo {

 position: fi xed;

 top: 0px;

 left: 0px;

 z-index: 40;

 }

 #menu {

 position: fi xed;

 top: 80px;

 left: 220px;

 z-index: 20;

 }

 #cup {

 position: fi xed;

 top: 160px;

 left: 0px;

 z-index: 10;

 }

 #content {

 position: absolute;

 top: 140px;

 left: 200px;

 }

C h a pt e r 4 — C S S 3 — 91

 #bottom {

 position: fi xed;

 bottom: 0px;

 left: 0px;

 z-index: 30;

 }

</style>

Height and Width
In addition to positioning, it is a good idea to set the height, the

width, or both for an element. The height and width CSS properties
can be set for any element. You can specify a value in pixels (px), per-
centages (%), or elastic measurements (em). If both of these properties
are set for an element, they can be set in different base units.

For this part of the layout refi nement, you should consider which
elements have to span the entire page, which elements should have a
fi xed size, and which elements should be allowed to grow. In the exam-
ple below, the banner and footer should span the entire width of the
page. The content area should be allowed to grow vertically (but should
have a fi xed width). The images should be fi xed in size in both directions.

In addition to the <div> tags, you can use the height and width
properties to set the parameters for the images themselves within the
page. If these properties are left blank, the default behavior of the
 tag is to display the image at 100% of its height and width
according to the fi le size of the image. The height and width decisions
for the sample layout for the case project result in an update to the

4.2.3

An elastic measurement is a multiplier on the base font size of the par-
ent element. For most browsers, this is a default 16px, but it can be changed by
the user for readability, and it allows the design to be scaled with the text. An
elastic value of 0.75em on a default element would be 0.75 ∙ 16px = 12px as
an actual pixel measurement. This can take some practice, but with time it can
be as precise as a pixel-based layout.

NOTE

92 — Mult imedia Web Des ign

CSS style sets (and the inclusion of new style sets to defi ne sizing):
<style type=”text/css”>

 #banner {

 position: fi xed;

 top: 0px;

 left: 0px;

 z-index: 30;

 width: 100%;

 height: 150px;

 }

 #logo {

 position: fi xed;

 top: 0px;

 left: 0px;

 z-index: 40;

 height: 175px;

 width: 175px;

 }

 #logo_img {

 height: 150px;

 width: 150px;

 }

 #logo_img:hover {

 height: 175px;

 width: 175px;

 }

 #menu {

 position: fi xed;

 top: 140px;

 left: 220px;

 z-index: 20;

 width: 760px;

 }

 #cup {

C h a pt e r 4 — C S S 3 — 93

 position: fi xed;

 top: 160px;

 left: 0px;

 z-index: 10;

 }

 #cup_img {

 width: 220px;

 height: 306px;

 }

 #content {

 position: absolute;

 top: 160px;

 left: 200px;

 width: 800px;

 }

 #bottom {

 position: fi xed;

 bottom: 0px;

 left: 0px;

 z-index: 30;

 width: 100%;

 height: 116px;

 }

</style>

When you are testing your layout as it develops, you can add a temporary class
to the <div> tag so you can see where the element sits on the page. The class
you should add is:

div {

 border-style: solid;

 border-width: 5px;

 border-color: red;

}

PROFESSIONAL
TIP

94 — Mult imedia Web Des ign

The example above includes CSS code for the hover pseudo-class
on the logo image; this will increase the size of the image whenever
the user hovers the mouse over it. This will be useful when the link to
the home page is added to this image. Any kind of effects like this that
you can add with CSS will maintain cross-compatibility and eliminate
the need for JavaScript coding, which tends to be more browser-spe-
cifi c and complex.

Margins and Padding
There are two property sets that help defi ne both positioning of

the element itself and placement of content within the element. The
margins defi ne how far the element resides from its neighboring ele-
ments or from the border of the browser. The padding defi nes how far
inside the surrounding element the content starts. You can defi ne the
padding or margins for each of the sides: top, bottom, right, and left.
You can see an example of these properties in the following:

div {

 margin-top: 20px;

 padding-left: 20px;

}

4.2.4

You should make sure you remove the temporary style set (or the lines that
defi ne the border, at least) once the layout adjustments are complete.

You can check the height and width of an image by clicking on the fi le in Win-
dows Explorer in Windows 7. If these values are not automatically displayed or
if you are using a different OS that does not include this functionality, you can
right-click and select Properties to get this information.NOTE

C h a pt e r 4 — C S S 3 — 95

You can see the added padding and margins for the sample case
project layout in the following code:

<style type=”text/css”>

 body {

 margin-left: 0px;

 margin-right: 0px;

 margin-top: 0px;

 margin-bottom: 0px;

 }

 #banner {

 position: fi xed;

 top: 0px;

 left: 0px;

 z-index: 30;

 width: 100%;

 height: 130px;

 padding-left: 200px;

 padding-top: 10px;

 padding-right: 10px;

 }

 #logo {

 position: fi xed;

 top: 0px;

 left: 0px;

 z-index: 40;

 height: 175px;

 width: 175px;

 margin-left: 20px;

 }

 #logo_img {

 height: 150px;

 width: 150px;

 }

96 — Mult imedia Web Des ign

 #logo_img:hover {

 height: 175px;

 width: 175px;

 }

 #menu {

 position: fi xed;

 top: 80px;

 left: 220px;

 z-index: 20;

 width: 780px;

 height: 60px;

 padding-top: 20px;

 }

 #cup {

 position: fi xed;

 top: 160px;

 left: 0px;

 z-index: 10;

 }

 #cup_img {

 width: 220px;

 height: 306px;

 }

 #content {

 position: absolute;

 top: 140px;

 left: 200px;

 width: 800px;

 padding-left: 20px;

 padding-right: 20px;

 padding-top: 35px;

 padding-bottom: 20px; }

 #bottom {

C h a pt e r 4 — C S S 3 — 97

 position: fi xed;

 bottom: 0px;

 left: 0px;

 z-index: 30;

 width: 100%;

 height: 80px;

 padding-left: 10px;

 padding-right: 10px;

 padding-top: 0px;

 }

</style>

DISPLAY PROPERTIES
CSS is a powerful tool not just for positioning and element place-

ment but for altering the display of the elements as well. This behav-
ior was previously reserved for a tag, which is now unnecessary
(and deprecated). Part of the display-oriented CSS is control of the
background, coloring, borders, shadows, and font selection. These
properties can be applied to classes, tags, and element id values.

Background Images
Using CSS, you can add a background image to a tag. This works

well for block-display elements like <div> tags. The property to use for
this is background-image, and its value should be either the relative
or the absolute path to the image from the current page (even if the

4.3

4.3.1

ACTIVITY 4.2 – FINALIZING POSITIONING

For this activity, you will complete the CSS commands for the layout of your
index.html page for the case project. You should add the necessary lay-
ers, margins, padding, and height and width values for each
<div> tag and set the margins for the <body> tag. This will prepare your page
for the display property modifi ers in the next section. Make sure to save your
changes and test your layout adjustments in a Web browser.

ACTIVITY

98 — Mult imedia Web Des ign

CSS is located externally, as you will learn in the last part of this
chapter). In order for this to be used in CSS, you need to wrap the
path in a function to convert the text to a URL with url(‘./string
value’). An example of this is:

#banner {

 …

background-image:url(‘./Media/banner.png’);

}

There are a number of additional support properties that can
modify the placement and attachment of the background image
to the tag. One of the key properties is background-size, which
sets the width and height of the background image for the tag (as
two separate values). The property background-repeat determines
whether the image will tile in one or both directions (or neither); the
available values for this are repeat (which tiles in both directions),
repeat-x (which tiles horizontally), repeat-y (which tiles vertically),
and no-repeat (which uses the image only once). The property back-
ground-attachment can be set to scroll (which allows the image to
scroll with the content) or to fi xed (which keeps the background in
place). The background-position property sets the relative position
of the image. The available values for this can be any of the set {left,
right, center} combined with any of the set {top, bottom, center} or
can be a horizontal value (percentage or measurement offset) and
a vertical value (percentage or measurement offset).

These properties can be combined and used as needed. For
the sample layout, the following are used to set the background
images for the banner and the footer of the page:

<style type=”text/css”>

 …

#banner {

 …

 background-image:url(′./Media/banner.png′);
 background-repeat:no-repeat;

C h a pt e r 4 — C S S 3 — 99

 background-position: top;

 background-size: 100% 130px;

 }

 …

 #bottom {

 …

 background-image:url(′./Media/footer.png′);
 background-repeat:no-repeat;

 background-size: 100% 80px;

 background-position: bottom;

 }

</style>

Colors
You can use CSS to defi ne colors for use in backgrounds as well

as colors for the content (mostly the text that displays in an element).
The two properties for color are background-color and color. The back-
ground-color property is used to defi ne the color behind the content;
this can be used in conjunction with a transparent background image
in most browsers, as long as the color is defi ned before the background
image. The color property is used to defi ne the text and content fore-
ground color. You can see an example of this in the code:

#menu {

 …

 background-color: #3c3;

 color: #efe;

}

There are a variety of values that can be used for color in
either of these properties. There are named colors that can
be used, such as red, green, and blue. There are 17 base col-
ors, which are recognized across all browsers as standard. You
can see a list of all standard colors at the W3Schools site:
http://www.w3schools.com/cssref/css_colornames.asp. You can
also specify individual color values in one of two formats:

4.3.2

100 — Mult imedia Web Des ign

• Hexadecimal (hex): These values use a # mark to signify the
start of the code and use a #RedGreenBlue or #RGB format,
such as #0f0 for pure green. A more specialized form of this
uses two hexadecimal characters for each color instead of one.
This format allows you to specialize the color even more; an
example of this is #a347a3 for a specifi c shade of purple. The
three-character version of a hexadecimal code is shorthand
for both characters allocated for a single color being the same.
Each color in hexadecimal notation has a range of intensity
from 0 to 255 (or ff).

• Red Green Blue Alpha (RGBA): In this alternative format for
displaying color, the color values are represented in standard
integer values ranging from 0 to 255. The alpha value is used
to determine the transparency and ranges in decimal values
from 0 to 1, where 0 is completely transparent and 1 is fully
opaque. An example of this is rgba(0,255,0,1) for pure green
with full opacity. You can specify percentages for the color
values instead of integers (up to 100%). An alternative form of
this format omits the alpha value, as in rgb(0,255,0) for pure
green.

A more complex application of the color properties can be
used to create a gradient effect as the background of a content area
on the page. A great tool for creating this can be found at Damian
Galarza’s page at http://gradients.glrzad.com. The code for this is
very browser-specifi c, so you have to include multiple CSS style com-
mands in the style set; the other codes that are not part of the browser
just get ignored. The tool will generate the code for all browsers that
accept gradients. This will be used for the gradient background in the
sample layout design (which will be attached to the <body> tag). For
this to work, you should have a width and height specifi ed as well as
background attachment and repeat properties. You should also choose
a single background color for browsers in which the gradient CSS is

The W3Schools site maintains a color picker tool for choosing any color
and getting its hexadecimal representation. The address for this tool is
http://www.w3schools.com/tags/ref_colorpicker.asp.

NOTE

C h a pt e r 4 — C S S 3 — 101

not supported. The gradient code generated by the tool described is as
follows:

body {

 …

 height: 100%;

 width: 100%;

 background-color: #E0FFD1;

 background-attachment: fi xed;

 background-repeat: no-repeat;

 /* The gradient information follows. */

 background-image: linear-gradient(left top, 

#4BE60E 2%, #E0FFD1 65%);

 background-image: -o-linear-gradient(left top, 

#4BE60E 2%, #E0FFD1 65%);

 background-image: -moz-linear-gradient(left top, 

#4BE60E 2%, #E0FFD1 65%);

 background-image: -webkit-linear-gradient 

(left top, #4BE60E 2%, #E0FFD1 65%);

 background-image: -ms-linear-gradient(left top, 

#4BE60E 2%, #E0FFD1 65%);

 background-image: -webkit-gradient(

 linear,

 left top,

 right bottom,

 color-stop(0.02, #4BE60E),

 color-stop(0.65, #E0FFD1)

);

 /* This is the end of the gradient information.

*/

}

The CSS color codes for the different design elements in the
sample design layouts are as follows:

<style type=”text/css”>

102 — Mult imedia Web Des ign

 body {

 height: 100%;

 width: 100%;

 background-color: #E0FFD1;

 background-attachment: fi xed;

 background-repeat: no-repeat;

 background-image: linear-gradient(left top, 

#4BE60E 2%, #E0FFD1 65%);

 background-image: -o-linear-gradient(left 

top, #4BE60E 2%, #E0FFD1 65%);

 background-image: -moz-linear-gradient(left 

top, #4BE60E 2%, #E0FFD1 65%);

 background-image: -webkit-linear-gradient 

(left top, #4BE60E 2%, #E0FFD1 65%);

 background-image: -ms-linear-gradient(left 

top, #4BE60E 2%, #E0FFD1 65%);

 background-image: -webkit-gradient(

 linear,

 left top,

 right bottom,

 color-stop(0.02, #4BE60E),

 color-stop(0.65, #E0FFD1)

);

 }

…

 #banner {

 …

 color: #fff;

 }

 …

 #menu {

 …

 background-color: #3c3;

 color: #efe;

C h a pt e r 4 — C S S 3 — 103

 }

 …

#content {

 …

 color: #010;

 background-color: #fff;

 }

 #bottom {

 …

 background-position: bottom;

 color: #fff;

 }

…

</style>

Borders
CSS allows you to set borders for your elements as well. You can

do this with the border-width, border-style, border-color, and border-
radius properties. The last of these can be used to establish custom
radii for each corner of the tag boundary. All of them are best used
in combination with the background-color or background-image prop-
erty. These properties take specifi c values:
• Border-width: This property uses either a percentage or a

measurement.
• Border-style: This uses a specifi c value, such as groove, solid,

dashed, or double; a complete list of these can be found at
http://www.w3schools.com/cssref/pr_border-style.asp.

• Border-color: This accepts the color formats discussed in the
previous section.

• Border-radius: This property accepts either a percentage or a
measurement.
The border-radius property has modifi ers, which can specify the

corner to be changed. For example, the menu needs only rounded bot-
tom left and bottom right corners. The properties for this are border-
bottom-left-radius and border-bottom-right-radius. You can see the

4.3.3

104 — Mult imedia Web Des ign

code for rounding the menu and content <div> tags for the example in
the following code:

<style type=”text/css”>

 …

#menu {

 …

 border-bottom-left-radius: 16px;

 border-bottom-right-radius: 16px;

 }

 …

 #content {

 …

 border-radius: 16px;

 }

</style>

Shadows
Another useful property in CSS is the box-shadow property. This

allows you to add shadows to layered content, which can add a sense
of depth and perspective to the layout of your page. The box-shadow
property is supported in most of the main modern browsers, but Safari
supports the -webkit-box-shadow property, which you should include
as a separate line in the CSS style set. The parameters (in this case a
set of values) for box-shadow are as follows:
• H-shadow: This is the horizontal distance by which the

shadow should be offset; this value is required.
• V-shadow: This is the vertical distance by which the shadow

should be offset; this value is required.
• Blur: This is the distance over which the shadow should be

blurred; this value is optional and defaults to 0.
• Spread: This is the distance over which the shadow should

spread; this value is optional and defaults to 0.
• Color: This is the color of the shadow; this value is optional

and defaults to pure black.

4.3.4

C h a pt e r 4 — C S S 3 — 105

• Inset: This value sets the shadow to be internal; to enable this,
just add the text inset to the end of the parameter list.
In the sample layout, this is added to the menu element of the

design. You can see the code for this in the following:
<style type=”text/css”>

 …

#menu {

 …

 box-shadow: 2px 2px 6px 0px #030;

 -webkit-box-shadow: 2px 2px 6px 0px #030;

 }

 …

</style>

Content Alignment
You can use CSS to align content within a tag both vertically and

horizontally. The text-align property is used to align the content left,
right, center, or justify. (Each line has equal width.) The vertical-align
property is used to vertically orient the content within a tag; the com-
mon values for this property are top, middle, and bottom, though oth-
ers exist. The issue with vertical-align is that it applies only to table
cells (or elements formatted with display: table-cell in more advanced
CSS). You can see an example of the content alignment for the logo
<div> tag that contains the image in the following code:

<style type=”text/css”>

 …

 #logo {

 …

 text-align: center;

 }

 …

</style>

4.3.5

106 — Mult imedia Web Des ign

Text Modifi cation
There are a number of different properties that control the display

of text within an element. These are some of the simpler CSS com-
mands to use, and most of them have been around since CSS version 1.
The common text adjustment properties, their descriptions, and their
accepted values are as follows:
• Font-family: This property defi nes the order in which the

browser will seek fonts to render the contents of the tag. The
value for this is a comma-separated list of font names. It is a
good idea to end the list with either serif or sans-serif, which
are the default fonts for these categories in case no other font
in the list can be found. If there are spaces in the font name,
you have to add single quotation marks around the name of
the font or it will not read as a single font. An example of this
is font-family: Arial, Helvetica, sans-serif;

• Font-size: This defi nes the size of the font. (Remember that a
font is both a typeface and a size.) The value of this property
is a measurement, which can include traditional point (pt)
values for font size in addition to the other measurements dis-
cussed for placement. An example of this is font-size: 10pt;

• Font-weight: This describes whether text is normal or modi-
fi ed to be lighter or bolder. The common values for this are
normal (default) and bold (bold type). An example of this is
font-weight: bold;

• Font-style: This property is used to italicize text. The common
values for this are normal (default) and italic. An example of
this is font-style: italic;

• Text-decoration: This property is used to apply text decorations
such as strikethrough and underline. The common values for
this are none (default except for hyperlinks) and underline.
An example of this is text-decoration: none; (which actually
removes the underline from a hyperlink).

• Text-shadow: This is a unique property that allows you to
add a shadow to the text in an element. This property takes
a series of values: h-shadow, v-shadow, blur, and color. The
values h-shadow and v-shadow are required; they are the
offset distances in, respectively, the horizontal and the vertical
distance from the text. The values blur and color are optional.
The blur value is the distance over which the shadow blurs,

4.3.6

C h a pt e r 4 — C S S 3 — 107

and the color value accepts color input and determines the
base color of the shadow. An example of this is text-shadow:
2px 2px 3px #010;
You can see the text modifi ers added to the style sets for the sam-

ple layout for the case project in the following code:
<style type=”text/css”>

 body {

 …

 font-family: arial, helvetica, sans-serif;

 font-size: 12pt;

 }

 #banner {

 …

 font-family: ‘Bauhaus 93’;

 font-size: 36pt;

 text-shadow: 2pt 2pt 4pt #020;

 }

 …

 #menu {

 …

 font-size: 10pt;

 }

 …

 #content {

 …

 text-shadow: 1px 1px 2px rgba(0,10,0,0.2);;

 }

 …

</style>

108 — Mult imedia Web Des ign

REUSING CSS STYLES
Now that you have a better understanding of how to use CSS to

format the display of elements, you should learn to reuse your CSS
across your entire Web site. This will allow you to further capitalize
on the power of CSS by defi ning the styles in one central location to
apply to all pages. As your site grows, this becomes more important.
Imagine if you had to change one property for a particular style that
was redefi ned in every page of a fi fty-page site? With an external style
sheet, you would need to change only one value in one location.

To create an external style sheet, you should fi rst create a new
subfolder within your project folder called Include. Create a new fi le
in a text editor like Notepad++ and save it as styles.css within the
Include folder. Copy the styles you have defi ned in your index.html
page (everything between the <style> and </style> tags) and paste it
into this new text document. The fi le extension .css tells the browser
what kind of content the fi le contains.

To invoke this fi le, you need to use a <link> tag to connect to an
external resource. The link tag has several properties:
• rel: This defi nes the relationship (how the resource interacts)

between the current document and the referenced document.
In this case, it is stylesheet.

4.4

ACTIVITY 4.3 – MODIFYING ELEMENT DISPLAY WITH CSS

For this activity, you will incorporate the display adjustment properties of CSS
into your evolving style sheet for the index.html page of your case project.
You should not defi ne new HTML elements to adjust your display at this time;
instead, you should focus on establishing the effects for your layout of using
CSS on the existing HTML tags and IDs, including the <body> tag. You can test
the results in a Web browser to be sure you have done this correctly. Feel free
to modify the CSS as needed until your page is displayed correctly. You should
test your result in at least two of the major browsers: Internet Explorer, Mozilla
Firefox, Apple Safari, and/or Google Chrome.

ACTIVITY

C h a pt e r 4 — C S S 3 — 109

• Type: This defi nes the type of content the browser should
ex pect. For CSS, this is text/css.

• href: This stands for hyper-reference; it is the location of the
document in relation to the current page on the server. This
is used the same way the src property is used in an tag.
You can use absolute or relative positioning for this.
An example of the complete <link> tag for the stylesheet you have

defi ned for the sample site is:
<link rel=”stylesheet” type=”text/css”

href=”Include/styles.css” />

The <link> tag is most often placed between the <head> tags for
a page. You can defi ne styles inside the <body> tag, but this is not a
recommended practice.

ACTIVITY 4.4 – CREATING AN EXTERNAL STYLE SHEET

For this activity, you will cut and paste the styles that you have defi ned for your
site into an external style sheet. You should replace the entire <style> block
within your page with a <link> tag to the new style sheet you have created.
You should make sure to place your external style sheet in an Include folder
within your main project folder. The fi le extension for the external CSS fi le
should be .css. You can test the results in a Web browser to be sure you have
done this correctly.

ACTIVITY

110 — Mult imedia Web Des ign

CHAPTER SUMMARY
In this chapter, you learned how to defi ne style sets in CSS for tags,

classes, and IDs. You learned when each of these should be invoked
and how to reuse each. The standard format of CSS style commands
was covered and practiced, and you should now be able to read and
understand CSS code, as well as use the properties covered in this
chapter. If you have followed along with the sample layout code, your
page content should be as follows (prior to creation of the external
style sheet):

<!DOCTYPE html>

<html>

 <head>

 <title>Zippy Beans Coffee Co.</title>

 <style type=”text/css”>

 body {

 margin-left: 0px;

 margin-right: 0px;

 margin-top: 0px;

 margin-bottom: 0px;

 height: 100%;

 width: 100%;

 background-color: #E0FFD1;

 background-attachment: fi xed;

 background-repeat: no-repeat;

 background-image: linear-

gradient(left top, #4BE60E 2%, #E0FFD1 65%);

 background-image: -o-linear-

gradient(left top, #4BE60E 2%, #E0FFD1 65%);

 background-image: -moz-linear- 

gradient(left top, #4BE60E 2%, #E0FFD1 65%);

 background-image: -webkit- 

linear-gradient(left top, #4BE60E 2%, #E0FFD1 65%);

 background-image: -ms-linear-

C h a pt e r 4 — C S S 3 — 111

gradient(left top, #4BE60E 2%, #E0FFD1 65%);

 background-image: -webkit-

gradient(

 linear,

 left top,

 right bottom,

 color-stop(0.02, #4BE60E),

 color-stop(0.65, #E0FFD1)

);

 font-family: arial, helvetica, 

sans-serif;

 font-size: 12pt;

 }

 .grad {

 background-image: linear- 

gradient(left top, #4BE60E 2%, #E0FFD1 65%);

 background-image: -o-linear- 

gradient(left top, #4BE60E 2%, #E0FFD1 65%);

 background-image: -moz-linear- 

gradient(left top, #4BE60E 2%, #E0FFD1 65%);

 background-image: -webkit- 

linear-gradient(left top, #4BE60E 2%, #E0FFD1 65%);

 background-image: -ms-linear- 

gradient(left top, #4BE60E 2%, #E0FFD1 65%);

 background-image: -webkit- 

gradient(

 linear,

 left top,

 right bottom,

 color-stop(0.02, #4BE60E),

 color-stop(0.65, #E0FFD1)

);

 }

112 — Mult imedia Web Des ign

 #banner {

 position: fi xed;

 top: 0px;

 left: 0px;

 z-index: 30;

 width: 100%;

 height: 130px;

 padding-left: 200px;

 padding-top: 10px;

 padding-right: 10px;

 background-image:url(‘./Media/ 

banner.png’);

 background-repeat:no-repeat;

 background-position: top;

 background-size: 100% 130px;

 color: #fff;

 font-family: ‘Bauhaus 93’;

 font-size: 36pt;

 text-shadow: 2pt 2pt 4pt #020;

 }

 #logo {

 position: fi xed;

 top: 0px;

 left: 0px;

 z-index: 40;

 height: 175px;

 width: 175px;

 margin-left: 20px;

 text-align: center;

 }

 #logo_img {

 height: 150px;

 width: 150px;

 }

C h a pt e r 4 — C S S 3 — 113

 #logo_img:hover {

 height: 175px;

 width: 175px;

 }

 #menu {

 position: fi xed;

 top: 80px;

 left: 220px;

 z-index: 20;

 width: 780px;

 height: 30px;

 padding-top: 50px;

 padding-left: 8px;

 padding-bottom: -4px;

 background-color: #3c3;

 color: #efe;

 border-bottom-left-radius: 16px;

 border-bottom-right-radius: 16px;

 box-shadow: 2px 2px 6px 0px #030;

 -webkit-box-shadow: 2px 2px 

6px 0px #030;

 text-align: left;

 font-size: 10pt;

 }

 #cup {

 position: fi xed;

 top: 160px;

 left: 0px;

 z-index: 10;

 }

 #cup_img {

 width: 220px;

 height: 306px;

 }

114 — Mult imedia Web Des ign

 #content {

 position: absolute;

 top: 140px;

 left: 200px;

 width: 800px;

 background-color: #fff;

 padding-left: 20px;

 padding-right: 20px;

 padding-top: 35px;

 padding-bottom: 20px;

 color: #010;

 background-color: #fff;

 border-radius: 16px;

 text-shadow: 1px 1px 2px 

rgba(0,10,0,0.2);;

 }

 #bottom {

 position: fi xed;

 bottom: 0px;

 left: 0px;

 z-index: 30;

 width: 100%;

 height: 80px;

 padding-left: 10px;

 padding-right: 10px;

 padding-top: 30px;

 background-image:url(‘./Media/ 

footer.png’);

 background-repeat:no-repeat;

 background-size: 100% 80px;

 background-position: bottom;

 color: #fff;

 }

 </style>

C h a pt e r 4 — C S S 3 — 115

 </head>

 <body class=”grad”>

 <div id=”banner” name=”banner”>Banner</div>

 <div id=”logo” name=”logo”><img id=” 

logo_img” alt=”Zippy Beans Logo” src=”Media/logo.

png” /></div>

 <div id=”menu” name=”menu”>Menu</div>

 <div id=”cup” name=”cup”><img id=”cup_img” 

alt=”Zippy Beans Cup” src=”Media/cup.png” /></div>

 <div id=”content” name=”content”>Content 

</div>

 <div id=”bottom” name=”bottom”>Bottom</div>

 </body>

</html>

Figure 4.1 shows a comparison of the initial visual prototype with
the implemented results in Mozilla Firefox using this code.

 FIGURE 4.1 Comparison of Initial Visual Prototype (top) and Implemented Results (bottom)

116 — Mult imedia Web Des ign

You should take this time to create the external style sheet for your
projects so you have an easy place to refi ne elements as you complete
your front-end site design in the next chapter. That chapter will focus
on additional HTML elements to include in your page, content plan-
ning, and site fi nalization. The rest of the book (Chapters 6 through 8)
focuses on implementing dynamic content and handling user actions
on the site.

CHAPTER KNOWLEDGE CHECK
Which of the following CSS properties does not affect element positioning?

● A. position

● B. top

● C. left

● D. layer

● E. None of the above

Which of the following is an incorrect label for a style set in CSS?

● A. #img { … }

● B. .img { … }

● C. img { … }

● D. img { … }

Which of the following values are not accepted by the position property?

● A. absolute

● B. relative

● C. inline

● D. static

● E. None of the above

The greater the difference in z-index values, the greater the visual depth of

the layers will become.

● A. True

● B. False

1

2

3

4

C h a pt e r 4 — C S S 3 — 117

The following are accepted values for height for an element except:

● A. 100%

● B. 10px

● C. 10em

● D. 1%

● E. None of the above

The _____ defi nes the distance between an element and its nearest allowed

neighbor.

● A. spacing

● B. padding

● C. margin

● D. buffer

The property background____ defi nes how the background tiles within the

boundaries of an element.

● A. width

● B. attachment

● C. repeat

● D. image

● E. All of the above

● F . None of the above

 The style command nearest to the HTML tag takes precedence for display.

● A. True

● B. False

Which of the following properties governs the application of italic text?

● A. font-size

● B. font-weight

● C. text-style

● D. text-decoration

5

6

7

8

9

118 — Mult imedia Web Des ign

Which of the following is an incorrect color declaration in CSS?

● A. #fef

● B. #ddffee

● C. rgb(1,1,10)

● D. rgba(10,10,10,0.5)

● E. All of the above

● F . None of the above

CHAPTER PROJECTS
Project 1: Personal Web Site

For your project in this chapter, you should construct the external
style sheet for your site to adjust the initial HTML so it is displayed
according to your visual prototype. While you have only one page now, it
will be imperative to have an external style sheet before the next chapter,
so you can adjust global settings and styles quickly and have them apply
to all pages. Make sure to save and test your work in a Web browser.

Project 2: Resort Web Site
For your project in this chapter, you should construct the external

style sheet for your site to adjust the initial HTML so it is displayed
according to your visual prototype. While you have only one page now,
it will be imperative to have an external style sheet before the next
chapter, so you can adjust global settings and styles quickly and have
them apply to all pages. Make sure to save and test your work in a
Web browser.

CHAPTER EXERCISES
1. Give an example of when you would use a style set on a

tag name, a class to be invoked, and a single ID within
a document. Explain the reason for this choice in each
circumstance.

10

C h a pt e r 4 — C S S 3 — 119

2. How would you represent the color #0f0 in two-character
hexadecimal format, RGB format, and RGBA format? Explain
your answer.

3. What is the maximum number of style commands (or style
sets) that can affect the following tag (assuming no external
style sheet):

<div id=”mydiv” name=”mydiv” style=”font-weight:

bold;”>

Explain your answer.
4. Create a style set for a bold, 10pt, sans-serif font with a text

shadow that will apply to every <div> tag in a page. Explain
your answer.

5. Create a style set for white text over a background mixing
pure green with pure blue; defi ne it to apply as a class.

6. Describe two reasons that comments are needed in CSS. Give
an example of both uses.

7. If a single tag has an external style sheet, a <style> tag within
the page, a style set defi ned for its ID, a class, and a style
attribute, which of these would take precedence if the same
style property were defi ned multiple times? Explain your
answer.

8. Explain why it may be useful to defi ne a style set for a tag ID
and still invoke a class for that tag.

9. Create a class for headers in a page using at least six style
attributes. Describe how the contents of the tag will appear in
the page when the class is called.

120 — Mult imedia Web Des ign

10. The use of the style attribute in HTML elements should
be limited to absolute necessity. Explain why using this
attribute undercuts some of the power and usefulness of CSS.
Justify your position.

CHAPTER REVIEW QUESTIONS
1. Explain briefl y why it is important to separate the display of

elements within a page from the structure of elements within
a page. Justify your answer.

2. Briefl y explain the benefi ts of inheritance in style sheets.
How does this save effort and centralize style commands?
Justify your answer.

3. Explain why it is important for older browsers to “fail
gracefully” and ignore a style command that they do not
recognize. What would be the consequences if the browser did
not have this behavior? Justify your answer.

4. Explain the purpose of altering a style set on a hyperlink
when a user hovers the mouse over it. What benefi t does this
provide the user?

5. Explain the benefi ts of using an external style sheet for a site.
Are there any negative consequences to using this type of
CSS? Justify your answer.

6. Explain the purpose of an anchor point in element display.
Why are the corners good candidates for anchor points? What
factors affect the choice of a corner for an anchor point?

7. Which aspect of CSS is more important to the presentation of
content on a Web site, positioning or display? Explain your
position.

C h a pt e r 4 — C S S 3 — 121

8. Why are borders a better troubleshooting tool for CSS than
setting a background color? Explain your answer.

9. Briefl y explain the purpose of listing multiple fonts in a font-
family value. What is the drawback of not defi ning multiple
fonts in this list? Justify your position.

10. Briefl y defi ne the concept of an elastic measurement in CSS.
What are three of the possible applications of this type of
measurement unit?

HTML5
IN THIS CHAPTER

This chapter ends the design phase of the site and moves
into content creation and establishing functionality. As part
of this chapter, you will establish a fi rm site map so you
can plan the navigation correctly. You will also incorporate
hyperlinks for creating a fully connected and functional site.
This chapter also includes an expansion of the HTML tag
usage you have already learned to facilitate content creation
and presentation on the individual site pages using HTML
version 5 (or HTML5). Once you have completed this chapter,
you should be able to:

 ● Create a site map for a project and establish
consistent branding of pages

 ● Add hyperlinks and image hotspots to establish
page connectivity

 ● Add content to a page, including line breaks,
tables, and forms

 ● Add multimedia elements to your site,
including video, audio, and plug-in content

CHAPTER

5

124 — Mult imedia Web Des ign

BRANDING A SITE
One of the most important things on a Web site is consistency of

elements across all of the pages of the site. Maintaining this consis-
tency helps to establish the professionalism and credibility of your
site. This is an essential element of presentation on any site, and it is
one of the reasons the careful creation of a visual prototype is such a
worthwhile exercise. Establishing consistent navigation and making
sure you have working links is necessary for any site. Users are driven
away from any site with even a single broken link; this will destroy
any credibility on the site regardless of how much effort was put into
the display or the content.

 Planning for Content
The next exercise that you need to complete as you move forward

in the visual presentation of the site is establishing the pages of con-
tent you will have. This will allow you to construct a consistent naviga-
tion strategy for your site so users can fi nd content easily when they
go from page to page within the site. It is important to make sure the
content of a single page is all very closely related. Any content that
extends below the bottom of the screen (requiring the user to scroll)
should be structured so that the important information is listed at the
top and users are required to scroll down only if they are interested in
the content that is lower on the current page. You also want to make
sure that your Web pages are clearly identifi ed and that the text link-
ing to the Web page is closely associated with the link text for clarity.

5.1

5.1.1

For this text, you will establish a consistent navigation strategy for your pages in
the project. In more advanced sites, you can dynamically generate the naviga-
tion text and even make it context sensitive. Doing this generally requires either
JavaScript or a back-end server-side language like PHP or PERL.NOTE

C h a pt e r 5 — H T M L 5 — 125

Creating a Site Map
When planning content, you should establish a clear site map for

the project. This should detail the title of the page, the name of the
fi le for the page, and the pages to which it is connected. You should
establish each page based on the content it will include (based on
the content that is essential to present) and group together similar
pages that will be linked to it. The homepage (which should be the
index.html fi le) should have a substantial enough number of links in
the navigation to reach all of the pages in the site through some path
of links. You should also strive to minimize the number of clicks to
reach a destination.

You can use PowerPoint to create a site map, just as you did to cre-
ate your initial visual prototype. The rectangle shapes and the lines
you used then are good for constructing a map of content pages for
the site. You should start with the homepage (index.html) and expand
the content links from that. You can see an example of a site map in
Figure 5.1.

For the sample project, you will construct four pages, including the
homepage. The homepage will include the content about the company.
The additional pages will include a contact page, a menu of bever-
ages and/or food, and a page with directions and hours. For most sites,
the navigation system would be much more extensive than this and

5.1.2

It is a careful balancing act to determine how large to make your navigation
system to minimize the number of clicks needed to reach a destination. A
navigation panel that is too large can be overwhelming to a user, but taking too
many clicks to reach a page will deter users as well. There is no precise solution
for any of this, but context-sensitive menus and expanding menus are options
to reduce the number of clicks and still preserve a small navigation area on the
page. These are more advanced topics than introductory HTML and support-
ing languages. Courses or books on human-computer interface will help in this
regard.

PROFESSIONAL
TIP

126 — Mult imedia Web Des ign

would have different levels. The sample projects for this text while you
are getting started all have simple navigation with a small number of
pages.

Hyperlinks
One of the most essential tools for Web site construction is hyper-

links. A hyperlink in terms of Web pages is a connection between
resources, commonly used to link one page to another or to link sec-
tions within a page. The tags for this are the anchor tags, <a> and </
a>. There are two uses for a hyperlink: to link to a resource outside the
page (external referencing) and to provide a connection to a bookmark
within the same page (ID referencing). The href (or hyper-reference)

5.1.3

 FIGURE 5.1 Site Map for the Sample Project

ACTIVITY 5.1 – CREATING A SITE MAP

For this activity, you will plan one additional page for the sample project and
construct a site map that includes all of the sample pages and the new content
page you have planned. You can use PowerPoint to construct this page, but you
should be sure to include the name of the fi le as well as the title of the page.

ACTIVITY

C h a pt e r 5 — H T M L 5 — 127

attribute is used for both. Like the src attribute in tags, href can
use both relative and absolute addressing. Any text between the <a>
and tags will be activated as the link, which activates the connec-
tion to the reference when clicked. An example of this is:

Contact Us!

Clicking the text “Contact Us!” using the mouse will take the user
to the contact page.

To use the href attribute for a link within the page, the target sec-
tion must be tagged with its ID. Any tag (such as <div>) with an id
attribute in it can be targeted using the <a> tag. For the reference to
be activated, the tag with the id attribute must be below the content
visible in the browser window. In the href attribute, you can simply
precede the value of the ID you want to reference with a # symbol. An
example of this is:

Bookmark

…

Image Links/Hotspots
In addition to text, you can also wrap an image tag in anchor tags

to allow the image to act as a link. An example of this is:
<img src=”Media/logo.png”

alt=”Zippy Beans”>

This will cause the entire image to act as a link. Combining this
with the previous description of the anchor tags, the hyperlink naviga-
tion code for the sample project should be:

 <body>

5.1.4

You can also use a combination of external referencing and ID referencing by
adding a link to the page followed by a hash symbol and the ID you wish to
reference.

NOTE

128 — Mult imedia Web Des ign

 …

 <div id=”logo” name=”logo”><a href=” 

index.html”><img id=”logo_img” alt=”Zippy Beans 

Logo” src=”Media/logo.png” /> </div>

 <div id=”menu” name=”menu”><a href=”menu. 

html”>Menu | Hours and 

Directions | Contact 

Us!</div>

 …

 </body>

When you view this in a browser, you will see that by default the
display of any hyperlinked text is to display as blue with an under-
line. Visited links by default display as underlined purple text. You
can change this appearance by creating a CSS command set for the
anchor tag that sets the color and text-decoration values.

You can also use hotspots to link pieces of an image. Hotspots are
clickable sections of an image defi ned through an image map; most
Web authoring tools have the ability to create these easily. This is use-
ful for large images that you want to map to multiple locations. The
most common types of hotspots are rectangles and circles, but it is also
possible to defi ne your own custom hotspots point by point.

The easiest way to establish hotspots in a page is to use a Web
design tool like Adobe Dreamweaver or Microsoft Expression Web. In
Dreamweaver, the Hotspot tool is located in the Insert panel at the
upper right corner of the interface; from here, you can select a rectan-
gular, oval, or polygon hotspot (where you defi ne your own point set to
create an enclosed polygon). In Expression Web, the Pictures toolbar

In some browsers, wrapping an image tag with anchor tags will cause the
image to have a border displayed around it. To eliminate this, you can add the
CSS command border: 0; to the style defi nition for the tag.

NOTE

C h a pt e r 5 — H T M L 5 — 129

must be activated to access the tools for creating hotspots. To activate
the toolbar, select View, Toolbars, and then Pictures. With the Pic-
tures toolbar active, select an image to activate the options and then
choose the Rectangular Hotspot, the Circular Hotspot, or the Polygo-
nal Hotspot tool.

With the Pictures tool active, you can simply draw the shape on
the image to create the hotspot. A series of prompts will appear, ask-
ing you to provide the link and alternative text information for each
hotspot you create. The code generated by this will look as follows:

<map name=”Map” id=”Map”>

<area shape=”circle” coords=”56,48,36” href=”index.

html” alt=”Home Page” />

</map>

You can create this code manually, but it requires knowing exactly
where you want the shape placed and the pixel coordinates of its ver-
tices and/or radius distance.

The common expectation in modern Web sites is to click the logo of the page to
return to the homepage of the site. You should make sure to provide this
functionality either by linking your entire logo image to the homepage or by
creating a hotspot within your banner to allow a user to go back to the start of
the site.

PROFESSIONAL
TIP

ACTIVITY 5.2 – CONSTRUCTING NAVIGATION ELEMENTS

For this activity, you will alter the index.html page for your project to add
hyperlinked navigation elements for each of the included pages. You should add
an image link around the logo to link to index.html. You should also add
links to the <div> tag for navigation to each of the pages in your site individu-
ally. Be sure to defi ne a CSS style set for the anchor tag, so the hyperlink text
will be displayed correctly on your page. You can also adjust the width of the
menu element to account for the size of the navigation system.

ACTIVITY

130 — Mult imedia Web Des ign

Meta Tags
Another support tag that you should consider for your site is the

<meta> tag, which is used to provide information about the site. (meta
information is information about information.) These tags appear
inside the page header (between the <head> and </head> tags). The
common attributes used in a <meta> tag are name and content. The
name attribute specifi es the type of <meta> tag, and the content attri-
bute specifi es the value associated with the name attribute. An exam-
ple of this is:

<meta name=”author” content=”Dr. Theodor 

Richardson”>

There are a number of common <meta> tags that can be used to
provide site information. Some of the common <meta> tag names are:
• description: The content item for this is a text description of

the page and its contents.
• author: The content item for this is the name of the page

author.
• keywords: The content item for this is a comma-separated list

of key terms by which the page should be identifi ed by search
engines.

• robots: This is a de facto standard for whether pages will be
indexed by a search bot (like those used by Google) or whether
the links in the page will be followed for further site explora-
tion. The default value for this is “index, follow,” allowing
search bots to index the page and follow the links in it. To
disallow one or the other, just add no in front of the term. A
full exclusion would be “noindex, nofollow,” but you can also
specify these values independently (such as “index, nofollow”).

Meta information is helpful for search engine optimization, allow-
ing your site to be visited by search engine bots (called spiders) and
catalogued according to the meta information you provide. Without
this meta information, the initial text content of the page will be dis-
played in the search results for most search engines that fi nd your
page.

5.1.5

C h a pt e r 5 — H T M L 5 — 131

 Cloning Pages
At this point, you should fi nalize your content for the index.html

page, including any content that will be common to all pages. For
instance, in the sample case project page, you still need to add the
banner text and the disclaimer text. With the subheading of the ban-
ner text (shown in the visual prototype for the case project) and the
disclaimer placement, you need to add two new <div> elements to
accomplish this.

With the added <div> tags, CSS defi nitions, and content for these
common elements, the code for your index.html page should be:

 <head>

 <title>Zippy Beans Coffee Co.</title>

 <style type=”text/css”>

 …

 a {

 color: #fff;

 text-decoration: none;

 }

 #menu a {

 background-color: #3c3;

 border-radius: 4px;

 }

 #disclaimer {

 margin-top: 40px;

 font-size: 8pt;

 }

5.1.6

Remember that new tags should be introduced only for structural elements.
Since the subheading has to be formatted differently from the banner text and
the disclaimer has to be positioned within the footer, both of these additions fall
into this category. NOTE

132 — Mult imedia Web Des ign

 #subhead {

 font-size: 22pt;

 }

 </style>

 </head>

 <body class=”grad”>

 <div id=”banner” name=”banner”>Zippy Beans 

Coffee Co.<div id=”subhead”>Totally Organic, Man!</

div></div>

 …

 <div id=”bottom” name=”bottom”><div id= 

”disclaimer”>This is a fi ctional company. No coffee 

beans were harmed in the making of this site.<div> 

</div>

 </body>

Figure 5.2 shows the result of adding these new <div> elements.
This should be your fi nal index.html if you have followed along with
the examples so far.

 FIGURE 5.2 Completed index.html File

C h a pt e r 5 — H T M L 5 — 133

An important part of branding your site is creating pages that
have elements in exactly the same place from page to page. Fortu-
nately, this also saves you work. You can use your index.html page
as a template for the rest of your site. To do this, simply use the Save
As functionality in whatever software program you are using to write
your HTML, and name the fi le with the fi lename of one of the other
pages in the site from your site map. This is known as cloning the
page. Repeat this process for every page you wish to create. When
you are fi nished, you should have every page listed in your site map
as an identical fi le within your project folder. For the example, this
would mean cloning index.html into menu.html, contact.html, and
direct.html. To fi nish each page, all you need to do is add content spe-
cifi c to each of the pages individually.

Adding a Site Icon
You may notice when browsing different Web sites that profes-

sional sites have an icon to the left of the site name. This is created by
a fi le called favicon.ico in the root directory of the site. (This is default
behavior, with more complex alternatives available.) This adds a great
fi nishing touch to a site, even if it is a personal site. The quickest way
to create one of these icons for your site is to use a Web application at
http://www.favicon.cc called favicon.ico Generator. This application
allows you to create a favicon pixel by pixel or to import an image. You
can see an example of the imported logo for the case project in the
pixel grid on Figure 5.3.

5.1.7

You may notice the style entry for #menu a in the sample code in this sec-
tion. This is an example of a complex class that applies only to <a> tags within
the <div> tag with the ID value menu. This can be a powerful way to format
elements within other elements without calling each of them by name or
invoking classes in every tag.

PROFESSIONAL
TIP

134 — Mult imedia Web Des ign

 FIGURE 5.3 Sample favicon.ico for the Case Project

When you have fi nished your icon, make sure to save it as favi-
con.ico in the root folder (your project folder) for your site. You can do
this by selecting the Download Favicon link at the bottom of the icon
display. These icons may not be displayed when you are viewing your
local copy, but they should be displayed once your site is hosted on a
Web server.

ACTIVITY 5.3 – FINAL SITE BRANDING

For this activity, you will fi nalize the index.html page for your project (with any
remaining common elements needed) and clone it into the rest of the pages
established in your site map. At this point, you should make use of an external
style sheet if you have not already done this. Remember to update
the image links in the style commands if you change the
folder in which your styles are kept. This centralizes your style
commands so they can all be changed in one place when you have multiple
pages using the same style set. You should also create a favicon.ico fi le for
your site. This will prepare you to complete the content pages as the fi nal activ-
ity of this chapter. Be sure to include the additional content page you created for
the site map exercise.

ACTIVITY

C h a pt e r 5 — H T M L 5 — 135

ADDING CONTENT
Now that your site is branded and you have all of your pages linked

via your navigation system, it is time to add content to your site. If you
have followed the steps of planning so far, this should be one of the eas-
iest steps in the process. For each page you created, you should add
the content that is necessary and relevant for that page. If a user must
scroll to view it all, it should be a continuation of what is presented in
the initial window rather than a new topic that must be found. This pro-
cess will begin with adding content to the index.html page, which will
be a company description. If you have a photo to advertise the business
(such as a storefront) this page would be a good place to add that as well.

Using Paragraphs and Line Breaks
For the main page in the sample site, the only content needed is

text describing the business and its philosophy and history. The way
to separate text into paragraphs is to wrap each paragraph in <p> and
</p> tags. This will automatically add space before and after the text
and end the last line at the closing </p> tag. You can see an example
of this here:

<div id=”content” name=”content”><p>Welcome to 

Zippy Beans! Our company is committed to the 

greenest technologies available to deliver you the 

fi nest, freshest cup of coffee you have ever had!</p>

<p>Our factory has one of the highest smog outputs 

of any organization in the world, and we are proud 

to say that we plant trees to make up for every 

single carbon emission. By 2014, we will have to 

plant trees within trees to make up for this 

defi cit, and that will be exciting to see!</p>

<p>Join us in Times Square for a fresh, fast, 

overpriced cup of our delicious, eco-friendly, 

totally organic, highly caffeinated coffee! We 

hope you have a zippy day!</p></div>

5.2

5.2.1

136 — Mult imedia Web Des ign

If you need to manually insert a line break, you can do so with a

 tag. (
 is also commonly acceptable but is considered improper
form for the stricter document type XHTML.) Like the tag, this
tag has no closing, so the closing mark is included before the end of
the tag itself to signify that it has no partner tag. You should use the

 tag only to end lines as needed rather than to create individual
paragraphs. For that, you should use the <p> and </p> tags. You can
see an example of this for creating a signature line in the index.html
page of the sample project:

<div id=”content” name=”content”><p>Welcome to 

 Zippy Beans! … We hope you have a zippy day! 

</p>Sincerely,
The Zippy Team</div>

Ampersand Commands
One of the issues with using HTML is white space. Any consec-

utive white space is treated as a single blank character space. This
means you can add blank lines, spaces, and tabs in your source docu-
ment and the only display effect will be a single blank letter space. To
add specifi c spacing, you can use a tool called an ampersand command
(also called a character entity in HTML). These commands begin with
the ampersand (&) character and end with a semicolon (;). For a non-
breaking space, the ampersand command is to display a sin-
gle blank space. You can add multiple ampersand commands to force
spacing. Adding to your docu-
ment will add fi ve consecutive white spaces to the text.

There are other useful ampersand commands. For instance, any
less than (<) or greater than (>) characters in HTML will be parsed
as tags, so if you want these characters to be displayed in your con-
tent, you can use the ampersand commands < and >, respec-

5.2.2

Remember that you can control the behavior of the <p> tag with CSS com-
mands. This includes setting indents and margins for the text within the para-
graph tag wrapper.

NOTE

C h a pt e r 5 — H T M L 5 — 137

tively, to display them. Other unique characters, like the copyright
symbol, can be created using ampersand commands (in this case,
©). These can also be used to create foreign language charac-
ters and currency notations in text display. A complete reference
for ampersand commands is provided at the Webmonkey Web site:
http://www.webmonkey.com/2010/02/special_characters.

Adding Tables
Tables in HTML are added with the <table> and </table> tags.

Tables are divided into rows (which use the <tr> and </tr> tags) and
then into cells (which use the <td> and </td> tags). To create a table
with two rows and three columns, the code is:

<table>

 <tr>

 <td>1</td>

<td>2</td>

<td>3</td>

 </tr>

 <tr>

 <td>4</td>

<td>5</td>

<td>6</td>

 </tr>

</table>

5.2.3

Unlike the case with HTML tags, capitalization does matter in ampersand com-
mands just as it does in simple text. There are diacritics marks which can apply
to either the lowercase or uppercase character and will need to be capitalized
correctly to display the correct variant. NOTE

138 — Mult imedia Web Des ign

The easiest way to insert a table into an HTML document is using
a visual editor like Adobe Dreamweaver or Microsoft Expression Web.
To do this, select the Insert menu and choose Table in Adobe Dream-
weaver; for Expression Web, select the Table menu and choose Insert
Table. From here you can add a table based on the number of rows
and columns you wish it to have. You can see an example of this in
Figure 5.4.

 FIGURE 5.4 Sample Dialog for Table Creation

Just like <div> tags, <table> tags can be nested inside each other. To do this,
you just need to start and end the table inside a single table data cell of the
original table.

NOTE

C h a pt e r 5 — H T M L 5 — 139

You can merge cells within a table using the rowspan and colspan
attributes. The rowspan attribute merges the specifi ed number of
cells across a row. The colspan attribute merges the specifi ed num-
ber of cells down a column. Table cells are ordered left to right in the
specifi ed table row. You can omit the <td> tags for cells that have been
incorporated into a merge. You can see an example of cell merging in
a table here:

<table>

 <tr>

 <td colspan=”2”>1 and 2</td>

 <!-- This table cell is combined into cell

 1 and 2 -->

 <td rowspan=”2”>3 and 6</td>

 </tr>

 <tr>

 <td>4</td>

 <td>5</td>

 <!-- This table cell is combined into 

cell 3 and 6 -->

 </tr>

</table>

You can control table display with CSS commands, just as you can
control the display of other elements. The CSS commands text-align
and vertical-align control the horizontal and vertical placement of con-
tent within <td> tags. Inside the <table> tag, you can place attributes
for cellpadding (the distance between cell walls and content) and cell-

A comment in HTML begins with <!-- and ends with -->. Anything between
these will be ignored by the browser but can still be seen by a user viewing the
source code for the page.

NOTE

140 — Mult imedia Web Des ign

spacing (the distance between cells). You can see these together in the
content for the menu.html page for the sample case project:

<div id=”content” name=”content”>

 <table cellspacing=”0” cellpadding=”4”>

 <tr>

 <td></td>

 <td>Mini-Large</td>

 <td>Large</td>

 <td>Gallons</td>

 </tr>

 <tr>

 <td>Zippy Coffee</td>

 <td>$3.50</td>

 <td>$3.75</td>

 <td>$15.50</td>

 </tr>

 <tr>

 <td>Zippyccino</td>

 <td>$4.50</td>

 <td>$5.50</td>

 <td>$27.50</td>

 </tr>

 <tr>

 <td>Zippy Mochaccino</td>

 <td>$5.50</td>

 <td>$6.50</td>

 <td>$29.50</td>

 </tr>

 <tr>

 <td>Double Zippyspresso</td>

 <td>$3.50</td>

 <td>$4.50</td>

 <td>$25.50</td>

C h a pt e r 5 — H T M L 5 — 141

 </tr>

 <tr>

 <td>Zippy Macchiatoccino</td>

 <td>$7.50</td>

 <td>$8.50</td>

 <td>$45.50</td>

 </tr>

 </table>

</div>

Adding Forms
Forms are one of the most effi cient and effective ways to gather

user feedback and provide interactivity on a Web site. Forms have
a variety of inputs that can be incorporated, but to function correctly
and submit their values when the form is submitted, they all must
be wrapped within the same <form> and </form> tags. The <form>
tag has a number of attributes that determine how the form behaves
when a user submits it:
• name: This is the name of the form. It is important to add this

attribute so the form can be referenced by JavaScript and
back-end languages like PHP.

• action: This defi nes the location to which the form data should
be sent when the form is submitted. This is typically a back-
end server language page or a servlet.

5.2.4

You can use CSS commands to control the cellpadding and cellspacing
in a <table> tag, but this is one instance in which it is recommended that you
use the HTML attributes for formatting. The CSS alternative for cellspacing
(the border-collapse command) is not well supported across browsers,
and it will be overridden by the value of the HTML attribute anyway. The pad-
ding CSS command can be used in place of cellpadding tag attribute if you
are defi ning table styles already, but the padding style command should be
applied to the <tr> and <td> tags.

PROFESSIONAL
TIP

142 — Mult imedia Web Des ign

• method: This attribute has two common values, POST and
GET. POST submits the form data to the action destination
as a packet. GET places the information in the query string
after the action address in a URL; this is the less secure
and less common way to process forms.

You can see an example of the form wrapper here:
<form name=”contact” action=”contact.php”

method=”POST”>

 …

</form>

There are a number of different types of input that can be
added to a form. Most of these use the <input> tag. The common
attributes for the <input> tag are name, type, and value. The name
attribute uniquely identifi es the input within the form. The value
attribute is used to provide an initial value for the form or the selec-
tion value for checkboxes and radio buttons. The common values
for the type attribute are as follows:
• text: This is a standard text box for data entry.
• password: This is the same as a text entry, but it hides the

user input from view for entries such as a password that
have to be kept secret.

• radio: This type codes for a radio button, a selection
method that allows the user to choose only one item from a
list. The name attribute should be the same for every entry
in the same radio button group. A value attribute must be
used for each radio button.

• checkbox: A checkbox is similar to a radio button, but it
allows users to select multiple items within a list. Check-
box items can be individually named, or they can be named
as a group.

• hidden: The hidden input type is a way to retain a value
within a form without displaying it as part of the page con-
tent. The name and value attributes are what make this
input type useful, since a user cannot directly modify the
contents of this fi eld. Remember that the user can see the
contents of this fi eld when viewing the source code for the
page.

C h a pt e r 5 — H T M L 5 — 143

• submit: The submit type creates a “Submit” button for the
form, which sends the form input to the destination identifi ed
by the form’s action attribute. The value attribute for a submit
input type will be the text displayed on the button.

You can see an example of these in the following code:
<form name=”contact” action=”contact.php” 

method=”POST”>

Name: <input type=”text” name=”myname”>

 Email: <input type=”text” name=”email”>

 Preferred Method of Contact:

 <input type=”radio” name=”preference” 

value=”Email”>Email

 <input type=”radio” name=”preference” 

value=”Phone”>Phone

 <input type=”checkbox” name=”subscribe” 

value=”Yes”>Subscribe to the Zippy Beans 

newsletter!

 <input type=”submit” value=”Submit!”>

</form>

There are two additional form input types that can be added.
These are the text area and the selection box. A text area is similar to
a text input, but it allows multiple rows of text in a single entry. This
is good for user input that is longer, such as the content of a contact
form. The tags for a text area are <textarea> and </textarea>. The
attributes for a text area are name, cols, and rows. The cols attribute
defi nes how many character widths across the text area box will be,
and rows defi nes how many rows of input will be shown at one time.
The text can overfl ow beyond the rows and cols attribute parameters.
Any text that appears between the opening and closing tags for the
text area will be displayed as a value for the fi eld. An example of the
code for the text area is:

Message:

<textarea name=”message” rows=”4” cols=”50”></

textarea>

144 — Mult imedia Web Des ign

The selection type for form input works differently from other form
input types. The listed items each have their own tag within a wrap-
per of <select> and </select>. The <select> tag just requires a name
attribute. Each possible value is wrapped in <option> and </option>
tags. The <option> tag has to have a value attribute which defi nes
the value of the selection when that option is chosen. You can add the
standalone attribute (one with no value pairing) selected to one of the
<option> tags to give it a default value. You can see an example of a
selection tag for salutations here:

<select name=”salutation”>

 <option value=”Miss”>Miss</option>

 <option value=”Mrs”>Mrs.</option>

 <option value=”Ms”>Ms.</option>

 <option value=”Mr”>Mr.</option>

 <option value=”Dr” selected>Dr.</option>

 <option value=”Sir”>Sir</option>

 <option value=”Madam”>Madam</option>

</select>

To put all of this together, the code for the contact form (on the
contact.html page) for the sample case project should be:

<div id=”content” name=”content”>

 <form name=”contact” action=”contact.php” 

method=”POST”>

 Name:

 <select name=”salutation”>

 <option value=”Miss”>Miss</option>

 <option value=”Mrs”>Mrs.</option>

 <option value=”Ms”>Ms.</option>

 <option value=”Mr”>Mr.</option>

 <option value=”Dr” selected>Dr.

</option>

 <option value=”Sir”>Sir</option>

 <option value=”Madam”>Madam</option>

C h a pt e r 5 — H T M L 5 — 145

 </select>

 <input type=”text” name=”myname”>

 Email: <input type=”text” name=”email”>

 Preferred Method of Contact:

 <input type=”radio” name=”preference” 

value=”Email”> Email

 <input type=”radio” name=”preference” 

value=”Phone”> Phone

 <input type=”checkbox” name=”subscribe” 

value=”Yes”> Subscribe to the Zippy Beans 

newsletter!

 Message:

 <textarea name=”message” rows=”4” 

cols=”50”></textarea>

 <input type=”submit” value=”Submit!”>

 </form>

</div>

Audio and Video
In HTML5, the incorporation of audio and video into your Web

pages has become very easy. This used to require the support of com-
plex code or external plug-ins which have limited support and require
user installation. Now you can simply use the <audio> and <video>
tags to add this content. The preferred format for audio is MP3, and the

5.2.5

If you preview the form with this code, everything will be displayed correctly,
but it will not be formatted nicely. In order to control the display of your form
elements, you should consider placing them in a table. This will allow for con-
sistent spacing and alignment of the form entries and the descriptive text. It is
a worthwhile practice exercise to convert the form for the sample project to a
table layout.

PROFESSIONAL
TIP

146 — Mult imedia Web Des ign

preferred format for video is MP4. Most audio and video construction
software packages support these formats. The source fi le for either an
audio or video element should be referenced for this tag using a single
<source> tag. You can see an example of these tags here:

<audio controls=”controls”>

<source src=”example.mp3” type=”audio/mp3” />

</audio>

<video width=”320” height=”240” controls=”controls”>

<source src=”example.mp4” type=”video/mp4” />

</video>

There are a variety of options available, such as playback con-
trols and features you can add for the audio and video content. You
can also set the content to play automatically (autoplay) or loop. You
can set the height and width for the display of the video as well. You
should allow your users to have as much control as possible over the
content, but you should also make it minimally invasive (low empha-
sis) unless the page is dedicated specifi cally to that media element. If a
browser does not support these tags, whatever content is between the
opening and closing tags will be displayed as text content on the page.

Embedded Code
Another case you will likely encounter is the need to embed

external content into your pages. Fortunately, most times that this
will be necessary, the code will be provided for you. An example of
this would be code for adding an Adobe Flash® object (which uses

5.2.6

Unless the site has a specifi c need for background audio, you should not add
this type of sound to your pages. Consider that it will play whenever a user
enters the page; it can get obnoxious quickly and will drive users away. With
that said, there are sites for which this works, such as band Web sites and sites
for movies and games. In general, though, it should be avoided.

NOTE

C h a pt e r 5 — H T M L 5 — 147

the <object> and <embed> tags) or a video from a site like You-
Tube® (www.youtube.com). As practice for this, you will use the
Google Maps™ application to add a location map to the Hours and
Directions page of the case project site. You can start this process
at http://maps.google.com/help/maps/getmaps/.

You can select any location for the business and fi nd it in Google
Maps (maps.google.com), then click the icon that looks like a chain
to create the link. This will provide you with the ability to customize
your map; you can copy the embed code provided and paste it into the
content of your site (in this case, the direct.html page). You should add
a one-row, two-column table to the page and place the hours in the left
column and the embedded map in the right one.

Using embed codes is common for external content, custom objects,
and widgets. Most plug-ins will generate specifi c HTML code for using
them in your page. One thing you should remember is to test the code
in multiple browsers to be sure it is displayed correctly.

ACTIVITY 5.4 – CREATING CONTENT

For this activity, you will construct the content for the pages of the case project.
This should include all of the pages from the sample site map, as well as the
page you created to add to the project information. You can change any of the
information given for these pages, but you should be sure to practice using the
tags to create the specifi ed content. Be sure to consider the display of your
content as well and add CSS style sets as needed to format your display. Be
sure to test your pages in multiple browsers.

ACTIVITY

148 — Mult imedia Web Des ign

CHAPTER SUMMARY
This chapter concluded the creation of the static content for your

site. This represents the initial functional prototype for the site. The
next step is to implement any dynamic content and the processing
of the form content that you have set up in this chapter. You may
have noticed that the form content directs users to a page that has not
been created. The next chapter will focus on the JavaScript language
and how it can be used to validate input and manipulate display ele-
ments. Chapter 7 focuses on form processing and directing content
using back-end languages like PHP and PERL. Finally, Chapter 8
covers the integration of MySQL for managing data on a Web site.
You should now have the tools to construct almost any page in HTML
and format it for display using CSS commands.

CHAPTER KNOWLEDGE CHECK
Which of the following is not a valid type value for form input?

● A. text

● B. password

● C. radio

● D. select

● E. None of the above

Which of the following attributes of the <table> tag is most diffi cult to

reproduce in CSS?

● A. border

● B. cellpadding

● C. cellspacing

● D. colspan

● E. None of the above

1

2

C h a pt e r 5 — H T M L 5 — 149

Which of the following attributes is used to merge two adjacent cells in the

same line on a table?

● A. rowspan

● B. colspan

● C. merge

● D. mergecells

Which of the following is a valid ampersand command?

● A. :

● B.

● C. :nbsp&

● D.

● E. None of the above

Which of the following is a valid shape that can be added as an image

hotspot?

● A. Rectangle

● B. Oval

● C. Circle

● D. Pentagon

● E. All of the above

● F. None of the above

Which of the following tags defi nes a table cell?

● A. <table>

● B. <td>

● C. <tc>

● D. <th>

● E. All of the above

● F. None of the above

3

4

5

6

150 — Mult imedia Web Des ign

Tables can be nested inside of other tables in a page, just as <div> tags can

be nested.

● A. True

● B. False

Input values outside of a form will not be processed when the form is

submitted.

● A. True

● B. False

Which of the following tags requires an end tag?

● A. <input>

● B.

● C.

● D. <textarea>

● E. None of the above

Which of the following tags are new to HTML5?

● A. <p> and

● B. <audio> and <video>

● C. and <a>

● D. <textarea> and <select>

● E. None of the above

CHAPTER PROJECTS
Project 1: Personal Web Site

For this project, you should create a site map for your personal site.
You should plan pages for your site that are relevant and important
as individual topics. It is better to have more content on the homepage
than to create unnecessary pages. You should choose what to show-
case on your site and focus on that. Unnecessary pages will deter an
audience, so your site will not promote you as it should. You should

7

8

9

10

C h a pt e r 5 — H T M L 5 — 151

focus on the content of this site rather than on its complexity; you will
be able to practice complexity with the resort site.

Project 2: Resort Web Site
For this project, you should build out the content for the resort.

On this site, you should focus on media (including images and video)
and creating engaging content to make the viewer want to travel to
the resort. The site branding should be appealing and complex. The
branding of this site should be the focus of the project; it is meant to be
engaging and enticing to the audience.

CHAPTER EXERCISES
1. Describe two cases in which you would want to use comments

in an HTML fi le. Should these comments ever be allowed to
remain in the HTML document even when the site is posted
live?

2. Using the Web, research the attributes of the <video> tag.
Describe how these could be used to modify how the video
content plays. Explain why multiple source fi les are allowed
inside this tag.

3. Using the Web, research the attributes of the <audio> tag.
Describe how these could be used to modify how the audio
content plays. Explain why multiple source fi les are allowed
inside this tag.

4. Give at least three possible uses for the hidden input type in
a form. With your examples, consider that a user can view
the content of these hidden items when viewing the page’s
source code.

5. Give three examples of when you would use an ampersand
command in an HTML document. Why would the character

152 — Mult imedia Web Des ign

not display correctly without the use of this special character
format?

6. Use the Web to fi nd at least two <meta> tags that are not
mentioned in this chapter. Explain what information they
provide about the page and what their purpose is.

7. Radio buttons and selection fi elds serve a similar purpose in
an HTML form. Explain in general terms when you would
use one or the other. Justify your position.

8. Table cells can be merged only into rectangular
arrangements. Explain the logistics of why this is necessary.
What would the consequences be if this could be violated?
Describe how the <td> tags would be processed in this case.

9. Explain the benefi t of wrapping a form in a table. How does
this affect usability as well as display?

10. Use the Web to research the CSS commands to create a fi rst-
line indentation for paragraphs. Construct the style set for
the <p> tag to enable this functionality.

CHAPTER REVIEW QUESTIONS
1. Why is it a good idea to limit the amount of audio or video

used on a page? Are there exceptions to this rule, or is it a
constant? Justify your answer.

2. Explain in your own words the benefi t of cloning pages for
creating all of the initial pages in your site without content.
Are there any drawbacks to this technique? Justify your
position.

C h a pt e r 5 — H T M L 5 — 153

3. What is the purpose of using hyperlinks to reference IDs of tags
within the same page? Give at least two examples of when this
would be a useful feature on a page. Justify your position.

4. Give an example of when you would need to use the
ampersand command to explicitly add spaces to a document.
Is there any other way this could be accomplished in HTML or
CSS?

5. Why is it important to limit the use of plug-in content on
a Web page? What risk do you run when adding plug-in
content that is not inherently supported by the Web browser
itself? Explain your answer.

6. The <th> tag can be used to provide a header row for a table.
Use the Web to research this tag and its application. What is
the benefi t of using this tag? Is this required for formatting a
table correctly? Explain your answer.

7. Explain the purpose of a favicon in a Web site. Is it important
to have one for your own site? Why or why not? Justify your
position.

8. Why is it better to format text using paragraph tags rather
than simply using line breaks to separate text into sections?
Justify your answer.

9. Why is it important to adhere to a site map once it has been
established? What steps would have to be taken to add a new
page of content later?

10. The <object> and <embed> tags serve similar purposes for
adding non-standard content to an HTML document. Compare
these two tags and identify whether both are needed. Justify
y our position.

JavaScript and jQuery
IN THIS CHAPTER

This chapter introduces you to JavaScript, a language that can
be used to enhance your Web sites with dynamic content. As
part of this chapter, you will learn the basic tools of JavaScript
and learn to use these tools to create form validation. You will
also learn some of the common applications of JavaScript and
some of the effects it can produce. This chapter also includes
an introduction and overview of jQuery, a library for more
easily creating complex effects in JavaScript across browsers.
Once you have completed this chapter, you should be able to:

 ● Learn the variable declarations and syntax
structures used in creating JavaScript scripts

 ● Use common functions in JavaScript to create
dynamic effects on a page

 ● Incorporate JavaScript events into pages to
invoke scripting based on user actions

 ● Install and use jQuery in a Web site
application

JAVASCRIPT BASICS
JavaScript is a scripting language that can be embedded into

HTML pages to enhance their functionality. Unlike HTML, Java-

6.1

CHAPTER

6

156 — Mult imedia Web Des ign

Script does not establish the structure of a document but modifi es
elements of it based on the use of variables and functions like those
used in traditional programming languages. Functionally, there is not
a signifi cant difference in the syntax of the languages; instead, the
difference is in how each of them behaves. JavaScript is a client-side
language, meaning all of the computations are done and actions are
taken on the client’s Web browser.

When JavaScript is invoked, the browser is using the computing
resources of the local machine to process the information and com-
pute the results. This means the server is not slowed down by this
computation, but it also means the speed and effi ciency of the script

A programming language is a formal set of commands that
can be used to manipulate data in a system; the programs
using this kind of language are compiled and linked, turning
the manually typed code into machine code prior to execution.
A scripting language is a formal set of commands that can
be used to manipulate data in a system; the scripts using this
kind of language are written without the steps to compile and
link them into machine code prior to execution.
A client-side language, or front-end language, is a scripting or
programming language that is executed on the local machine
without involvement from the server. The client can view all
source code.
A server-side language, or back-end language, is a scripting
or programming language that is executed on the server, where
only the results of the computation are delivered to the client
machine. In general, the client does not see the source code.
Computational complexity is an estimate of how long it will
take a program or a script to complete its operation. Syntax
structures like loops and complex mathematics increase the
complexity of a program or script. This can be measured in
different units and is often a general estimate.
A variable is a named placeholder representing a data value
that may or may not change during execution.

DEFINITION

C h a pt e r 6 — J ava S c r i pt a n d j Q u e r y — 157

are determined by the state of the user’s machine, which is generally
unknown. For this reason, JavaScript works best when it is concise
and limited in computational complexity.

The client-side nature of JavaScript means that any computations
done in JavaScript cannot be guaranteed, because JavaScript is part
of the client’s machine; this is particularly important when consid-
ering the security of information sent from JavaScript to the server.
There are languages that can process information passed back from
the client browser and even pre-process information before it is sent to
the client. These are server-side languages, and they will be the focus
of the remaining two chapters of this text.

JavaScript can be invoked within an HTML page by using the
<script> and </script> tags. These can be placed within the head or
the body of the page. You can see an example of the use of these tags
in the following code:

<html>

 <head>

 <script type=”text/javascript”>

 </script>

…

</head>

<body>

…

</body>

</html>

The type attribute is optional in HTML5, but it is required in
HTML4. It is still a best practice to include it for browsers that are
not fully compliant with the HTML5 standards yet. There is also a set
of <noscript> and </noscript> tags for browsers that do not support
JavaScript; any content placed within these tags will be displayed only
when JavaScript is disabled or is not supported. All of the major mod-
ern browsers (even mobile browsers) fully support JavaScript, so the

158 — Mult imedia Web Des ign

use of this tag is optional and typically unnecessary. An example of
the use of the <noscript> tags follows:

<html>

 <head>

 <script type=”text/javascript”>

 </script>

 <noscript>Your browser does not support 

JavaScript, so the content of this page may not 

display as expected on your system.</noscript>

…

</head>

<body>

…

</body>

</html>

Variable Declarations
A variable is a named placeholder representing a data value that

may or may not change during execution. It allows you to reference
the name of the variable instead of hard-coding the data value itself.
These are fundamental building blocks of all scripting and program-
ming languages, and JavaScript is no exception to this. Unlike most
languages, JavaScript uses the same variable declaration, var, for all
types of data. This means you do not have to decide ahead of time
what data type your variable will hold.

6.1.1

JavaScript is case sensitive, so the variable names jeeves, Jeeves,
JeeVes, and jeeVes are all considered different variables in JavaScript.
This means that you must watch your capitalization carefully and that you
should review the naming of your variables if any of your scripts do not work as
expected.

NOTE

C h a pt e r 6 — J ava S c r i pt a n d j Q u e r y — 159

JavaScript variable names can contain any alphanumeric (alpha-
betic or numeric) characters and the underscore (_). Variable names
cannot start with a number, so 3brooms is an invalid variable name
in JavaScript but br00ms is valid. To declare a variable in JavaScript,
use the var declaration and the name of the variable, and end the line
with a semicolon (;). An example of this for defi ning variables x and y is:

<script type=”text/javascript”>

 var x;

 var y;

</script>

Alternatively, you can combine these declarations into a single
line by separating the variable names with a comma:

<script type=”text/javascript”>

 var x, y;

</script>

Assigning Values
When you initially declare a variable in JavaScript, it has the

value undefi ned. This means that no computations can be performed
on the variable, or the results will also have the value undefi ned. To
assign an actual value to a variable, you use the equals sign (=) fol-
lowed by the value you wish to store. There are a variety of data types
that can be stored in a JavaScript variable. The most common ones
include the following:
• Boolean values: These are true and false, which are most com-

monly used for evaluating conditional statements. These are
reserved words (words that are part of the language itself) in
JavaScript, so they can be typed as values without annotation.

• Integer and decimal values: These are numeric values that
may or may not have a decimal component after them. Literal
values do not require annotation and can be typed directly as a
stored value.

• Characters: Each of these is a single symbol from the alpha-
bet, the digits 0 through 9, or punctuation. A character must
be wrapped in quotation marks (such as ‘a’); by convention,

6.1.2

160 — Mult imedia Web Des ign

characters use single quotation marks and strings use double
quotation marks, but either is valid syntax in JavaScript.

• Strings: These are combinations of characters stored as a
single value. A string must be wrapped in quotation marks
(such as “Hello, World!”). By convention, strings are wrapped
in double quotation marks, but both double and single quota-
tion marks are valid syntax in JavaScript.

An example of these declarations in code along with explanatory
comments follows:

<script type=”text/javascript”>

 var x = true; // This is a Boolean value

 var y = 12.347; // This is a numeric assignment

 var c = ‘A’; // This is a character assignment

 var s = “Hello, World!”; // This is a string as-

signment

</script>

When declaring variables, you can make multiple assignments in
the same line. A variable can be referenced by its name; it can be reas-
signed at any time using the equals sign (=) syntax used to assign it
initially. When a variable is referenced to give it a new assigned value,

You can use comments in JavaScript to annotate code. A single-line comment in
JavaScript is denoted by //, which tells the browser to ignore the rest of the line.
Alternatively, using /* starts a multiline comment that ends only with a corre-
sponding */. An example of the syntax for these comments follows:

<script type=”text/javascript”>

 var x, y; //This part is now a comment and 

will not be parsed as code.

 /* Everything within these symbols will be 

ignored as a comment, even across multiple lines 

of code. This is useful for debugging. */

</script>

NOTE

C h a pt e r 6 — J ava S c r i pt a n d j Q u e r y — 161

it must have its own line. An example of assigning multiple values in
the same line is:

<script type=”text/javascript”>

 var x = true, y = 12.347, c = ‘A’, s = “Hello 

World!”;

 y = 14; // This is a reassignment of value and 

must stand alone.

</script>

In addition to static values, variables can be assigned the results of
mathematics, string concatenation, or even returned values from func-
tion calls (explained in the next section). Mathematical operations can
be typed using the common format for the standard operations, along
with parentheses and a minus sign (–) for negative values. String con-
catenation is accomplished by using the plus sign (+) between any two
strings you wish to join (whether they are variables or literal values).
Variables can be assigned the return value of a function only if the
function actually returns a value. Examples of this type of assignment
are shown in the following code:

<script type=”text/javascript”>

 var x = 2.3, y = 12.347, s1 = “Hello”, s2 = 

“World!”;

x = (x*4)/3 + y - 1;

 s1 = s1 + “” + s2;

</script>

Function Calls
A function is a reusable set of lines of code that perform a spe-

cifi c task. It can take input through the use of parameters and return
a single value. Functions are incredibly useful in code, because they
allow you to reuse what you have already constructed. A collection of
predefi ned functions is called a library. JavaScript has a large number
of predefi ned functions available for use, such as the alert() function,
which is covered in greater depth in section 6.2.1.

6.1.3

162 — Mult imedia Web Des ign

To call (or invoke) a function in JavaScript, you type the name of
the function (which must be defi ned in code prior to the function call),
followed by a left parenthesis, the arguments you wish to use accord-
ing to the function’s defi nition, a right parenthesis, and a semicolon.
The alert() function, for instance, has one parameter, which accepts
the text you wish to display as an alert. When you invoke the function
and assign a specifi c value to the parameter, the value is called an
argument. You can use literal values or variables as arguments when
you invoke a function in JavaScript. Parameters appear in function
defi nitions, and arguments appear in function calls. Function defi ni-
tions are covered in section 6.1.4.

The alert() function does not return a value, so you can call it with-
out storing the result in another variable. An example of using the
alert() function in JavaScript follows:

<script type=”text/javascript”>

 alert(“Hello, World!”);

</script>

A function is a reusable set of lines of code that perform a
specifi c task. It can take input through the use of parameters
and return a single value.
A library is a collection of predefi ned functions that can be
called in the code as soon as the library is attached to the page.
A parameter is a placeholder for an input value for a function
that is defi ned when the function is written to determine how
the function should behave.
An argument is a specifi c input value for a function when it is
invoked for operation. The argument should be the same data
type required by the parameter of the function it is fi lling.

DEFINITION

C h a pt e r 6 — J ava S c r i pt a n d j Q u e r y — 163

Defi ning Functions
JavaScript allows you to defi ne your own functions as well. To

defi ne a function, you need to know what parameters it should accept,
what it should accomplish, and what value (if any) it should return.
The rules for naming functions are the same rules that apply to nam-
ing variables. Due to the nature of variables in JavaScript, you can
simply name the parameters rather than specify the data type. If a
function needs to return a value, you should add a return statement
to the end of the function. An example of a trivial function follows, to
demonstrate the syntax:

<script type=”text/javascript”>

functionmessage_me(param) {

 alert(param);

 return true;

 }

</script>

In this example, the function name is message_me and the param-
eter is param. The function treats whatever text is used as an argu-
ment for param as an alert and returns the literal value true. When
the function is called, the argument given will take the place of param
in the content of the function. The lines of code included in the func-
tion are surrounded by curly braces ({ and }) to group them into the
defi nition of the function, as shown in the example.

6.1.4

ACTIVITY 6.1 – HELLO FROM JAVASCRIPT

For this activity, you will alter the template.html page to add an alert()
function. You should add script tags within the body element to invoke JavaS-
cript. Within the script tags, add the function call for the alert() function using
“Hello World!” as the argument. Save the page as jshello.html and test the
results in a Web browser. Explain why the alert() function would be useful in
a page. How could overuse of the alert() function be a detriment to the user
experience? Justify your answer with examples.

ACTIVITY

164 — Mult imedia Web Des ign

To call this function, you need to do something with the returned
value. You can set it to a new variable or assign the result to an exist-
ing variable. For trivial functions, it is better not to return anything,
since the value is meaningless; the return statement is included here
only for clarity of syntax. An example of the function defi nition and
call for the message_me() function is:

<script type=”text/javascript”>

functionmessage_me(param) {

 alert(param);

 return true;

 }

 var x = “Hello, World!”, y = false;

 y = message_me(x);

</script>

The function invocation here is alerting the contents of the vari-
able x (which in this case is the string Hello, World!) and storing the
return value (true) in the y variable.

The scope of a variable is an important consideration in function use. This is
the part of the script or program where the variable is defi ned. You can defi ne
variables within a function, but they will be usable only within the function itself.
Any changes you make to the value of the argument within a function will not
change the original variable used as input. To change this variable, you have to
call the variables defi ned outside of the function with an assignment (=) com-
mand inside the function itself. The following code has been annotated to clarify
some of the issues surrounding scope:

<script type=”text/javascript”>

var x = “Hello, World!”, y = false, c = ‘A’;

function message_me2(param) {

 alert(param);

 var d = false; // This variable exists 

NOTE

C h a pt e r 6 — J ava S c r i pt a n d j Q u e r y — 165

Conditional Statements
Conditional statements are a way to branch the execution of your

script based on values of variables or object states. There are two
primary statements used for conditional branching: if and switch. If
statements evaluate a condition to see if it is true in order to execute
its set of commands. A switch is a conditional branch that compares a
value to preset results to determine which path to execute.

An if statement evaluates its argument to see if it is true or false.
The argument can be any variable that contains a value of true or
false, a conditional expression, or a combination of values that logi-
cally evaluates to true or false. The basic structure of an if statement
in JavaScript is:

if (condition) {

 // These are statements that will execute only if

condition is true

}

6.1.5

only inside the function

param = “Goodbye”; /* This changes the value 

only within the function */

c = ‘B’; // This updates the external variable c

 }

 var x = “Hello, World!”, y = false;

 message_me2(x); /* This function call will 

change the value of c to ‘B,’ but it will not 

affect the value of x, which was used as an 

argument. The variable d cannot be used outside 

of the function, because it exists only while the 

function is active. */

</script>

166 — Mult imedia Web Des ign

For conditional expressions, the following symbols can be used to
evaluate comparisons of variables, functions, and literal values:
• > will evaluate to true if the left side of the statement is

greater than the right side; an example of this is (x > y)
• >= will evaluate to true if the left side of the statement is

greater than or equal to the right side ; an example of this is (x
>= y)

• < will evaluate to true if the left side of the statement is less
than the right side; an example of this is (x < y)

• <= will evaluate to true if the left side of the statement is less
than or equal to the right side; an example of this is (x <= y)

• == will evaluate to true only if both sides of the statement are
equal; an example of this is (x == y)

• != will evaluate to true only if both sides of the statement are
not equal; an example of this is (x != y)

 Multiple values can be concatenated with logical operations
for the conditional statement as well:

• || represents an OR condition, which evaluates to true if
either side of the statement is true; an example of this is (x ||
y)

• && represents an AND condition, which evaluates to true only
if both sides of the statement are true; an example of this is (x
&& y)

Care must be taken to group chains of these statements correctly
so that no more than two arguments are present for each of the con-
catenated elements. A statement can also be inverted using the NOT
operator, which is represented by an exclamation point before the
value; an example of this is !(x) which would switch the boolean value
of x. These elements can be combined into complex conditional evalu-
ations, such as:

((!(x > y))&&(y >= z))

An if statement can be extended to include an else case, which will
execute if the condition evaluates to false. The structure for this is:

if (condition) {

C h a pt e r 6 — J ava S c r i pt a n d j Q u e r y — 167

 // These are statements that will execute only 

if the condition is true

} else {

 // These are statements that will execute only 

if the condition is false

}

An additional if statement can be added after the else to further
branch the statement, as in the following:

if (condition1) {

 // These are statements that will execute only 

if condition1 is true

} else if (condition2) {

 /* These are statements that will execute only 

if condition1 is false and condition2 is true */

} else {

 /* These are statements that will execute only 

if condition1 and condition2 are false */

}

These if statements can also be nested, but care must be taken to
make sure they are grouped correctly using the curly braces.

The switch statement evaluates a variable and compares it to
defi ned cases. The switch statement typically operates on integers and
characters. Each case will have its own set of statements. The break
statement must be used at the end of a case to stop operation, or it
will continue executing into the next case. A fi nal default statement
should be included to catch any exceptions, in which none of the cases
matches the variable. The structure of a switch statement is:

switch (variable) {

 case ‘A’: // Note that the case is a literal value

 // This will execute if the variable == ‘A’

 break; // This stops execution from moving

to the next case

 case ‘B’:

168 — Mult imedia Web Des ign

 // This will execute if the variable == ‘B’

 break; // This stops execution from moving

to the next case default:

 // This will execute if no other case

matches the variable

 break; // This is not necessary, but it is

good coding practice

}

Looping
Looping is a repeated execution of the same set of statements. This

is incredibly helpful if an action needs to be repeated or if a similar
action needs to be performed repeatedly (such as counting from 1 to
5). There are three different basic types of loops that can be used in
JavaScript: for, while, and do/while. Each of these will continue to
operate while a condition is still valid.

A for loop has three statements as part of its signature: a state-
ment that executes before the loop begins, a statement (condition)
that determines whether the loop will execute, and a statement that
executes after the loop fi nishes. An example showing the structure of
a for loop is:

for (var x = 0; x < 5; x = x + 1) {

 // These are statements that will execute when

the condition is true

 alert(x + 1);

}

6.1.6

It is possible to create loops that do not ever stop. This happens if the condition
for execution never becomes false; these are called infi nite loops, and they
will crash the user’s browser. You must always make sure the loops you create
will terminate.NOTE

C h a pt e r 6 — J ava S c r i pt a n d j Q u e r y — 169

In this example, the statement var x = 0 executes before the loop
ever starts. If x < 5, then the code of the loop, alert(x + 1), executes.
After the loop statements fi nish executing, the statement x = x + 1 will
run. If the condition x < 5 is still true, the loop will run again; if not, the
loop will stop and move to the next statement in the script.

A while loop has a simpler structure than a for loop. One thing to
remember when using a while loop is to make sure the condition is
eventually updated to become false; this will prevent it from being an
infi nite loop. An example of a while loop demonstrating such a struc-
ture is:

var x = 0;

while (x < 5) {

 // These are statements that will execute when

the condition is true

 alert(x + 1);

 x = x + 1; // This is the statement to update the

condition

}

In this instance, the operation is the same as that in the for loop
outlined in the previous example. You should note where the state-
ments have been placed in the while loop. The only requirement for
the while loop is having a conditional statement to evaluate. The
last statement of the code block is there to make sure the while loop
will terminate, as well as setting the increment for the count. Most
for and while loops can be written interchangeably, but care must be
taken to make sure the operation is correct when converting between
them.

There is also a for/in loop for working with arrays of data, but that is beyond the
scope of this text and represents one of the more advanced functionalities of the
JavaScript language.

NOTE

170 — Mult imedia Web Des ign

A do/while loop has a structure similar to that of a while loop, but
it forces execution of the loop once before testing the condition at all.
An example of a do/while loop showing the syntax is:

var x = 0;

do {

 /* These are statements that will execute once

and will repeat if the condition is true */

 alert(x + 1);

 x = x + 1; // This is the statement to update the

condition

} while (x < 5); // This will determine the condi-

tion for continuation

Loop statements can also be nested to perform more complex com-
putations and functions. Loops are incredibly useful and very adapt-
able tools for coding in any language.

USING JAVASCRIPT
JavaScript is a rich and complex language. Learning its full scope

would take much more than just a chapter. However, there are a num-
ber of common functions and applications of JavaScript that will give
you the initial practice you need to get started with adding this power-
ful and dynamic content to your Web pages. This part of the chapter
focuses on some of the most common applications of JavaScript, which
you can use and modify for your own pages.

6.2

ACTIVITY 6.2 – COUNTING BOT

For this activity, you will create a page from the template.html page to use
JavaScript to alert the numbers from 0 to 10. Within the script tags, add a loop
to alert the numbers from 0 to 10 and then stop. Save the page as count_
bot.html and test the results in a Web browser. Explain the loop
you constructed and the parameters that were needed to make it function
correctly.

ACTIVITY

C h a pt e r 6 — J ava S c r i pt a n d j Q u e r y — 171

Using the alert() Function
Now that you have some practice with using the alert() function,

you can consider its practical applications in a page. The primary pur-
pose of the alert() function is to notify users of some piece of informa-
tion. Originally, this would be used to alert users to errors in their
form data or problems with page execution. Dynamic content changes
the page itself and lets users know inside the page if there is an error,
providing a better user experience. This is what you will do for the
case project contact form. The alert() function still has a signifi cant
use, though. You can use it to display internal variables when you
need to debug a page. When an alert is triggered, it will pause the
execution until the pop-up window created by the alert is closed, so
you can freeze your script at that point and see what value is stored in
a variable that is not behaving as expected. An example of this type
of use is:

<script type=”text/javascript”>

var x = 24, y = 12;

x = x*2 + y;

alert(x); // This will display the current value of x

x = x/3;

alert(x); // This will display the new value of x

</script>

It is important to remember to comment out or delete the alert()
functions used to debug your code prior to posting it live on your site.

String Parsing and Form Validation
One of the most useful applications of JavaScript since its inception

is to provide client-side form validation (making sure the user-entered
data in the form is correct). JavaScript has a library of functions for
use in parsing and comparing strings. These will be explored to con-
struct a form validation script for the case project. This will make sure
that each fi eld in the contact form is completed correctly before it is

6.2.1

6.2.2

172 — Mult imedia Web Des ign

submitted to the destination identifi ed in the action attribute of the
form.

There are several fi elds that need to be completed and some that
have data considerations, particularly the e-mail address for the user.
To begin, a function should be constructed to process the form data
before sending it to the back-end server (for repeat processing). Every-
thing in JavaScript is an object within a hierarchy on the page, so this
structure will be used to identify each piece of the form that will be
validated. This structure can take time to understand, so try to follow
each example closely and understand how the references work before
moving to the next. The JavaScript that will provide the form valida-
tion framework is:

<!DOCTYPE html>

<html>

 <head>

 …

<script type=”text/javascript”>

 Function validateContact() {

 // This will be the function body

 return true;

 }

</script>

</head>

<body>

 …

Anything that comes from the client-side browser cannot be trusted, so form
validation needs to be done on both ends to verify the data before it is used in
a back-end application, where it could corrupt a database or cause problems in
an online system if it is incorrect. Being aware of security is a responsibility of
developers as well as of security specialists.

PROFESSIONAL
TIP

C h a pt e r 6 — J ava S c r i pt a n d j Q u e r y — 173

 <form name=”contact” action=”contact.php” 

onsubmit=”return validateContact();”method=”POST”>

 …

</body>

</html>

In the code above, the function validateContact() is given a blank
framework, while the event onsubmit is attached to the form itself. If
the form validation fails, this function needs to return a false value so
the form submission does not complete. If the default behavior is set
to return false, then the form will never submit. You can test this in a
browser to verify the results.

The fi rst item that will be checked is that the myname text box
contains at least some text. JavaScript contains a length property as
part of the string class that returns the length of a string. This can be
done with the following code:

function validateContact() {

 if (document.contact.myname.value.length <= 0) {

 alert(“The name fi eld cannot be empty.”);

 return false;

 }

return true;

}

Note the reference to the form object contact and the myname fi eld
within the form. The value property refers to the text within the fi eld
itself. Any of the fi elds in a form can be referenced by this sequence, in
which the name of the fi eld is substituted for myname in the example.
This same test can be applied to the e-mail and message fi elds as fol-
lows:

function validateContact() {

 if (document.contact.myname.value.length<= 0) {

 alert(“The name fi eld cannot be empty.”);

 return false;

 }

174 — Mult imedia Web Des ign

 if (document.contact.email.value.length<= 0) {

 alert(“The email fi eld cannot be empty.”);

 return false;

 }

 if (document.contact.message.value.length<= 0) {

 alert(“The message fi eld cannot be

empty.”);

 return false;

 }

return true;

}

Note that each of these fi elds must be evaluated separately, so
each one requires a separate if statement to evaluate the length for
a potential problem. The issue with the code above is that once there
is a failure in the validation, it ends and returns false. It is better to
let the user know what all of the problems are with the form at once
rather than force them to resubmit for each one, so the false value will
be determined by a new variable called okay, which is initially set to
true (so the form will be submitted) and then set to false if there is a
problem. You can see this new code in action below:

function validateContact() {

 var okay = true;

if (document.contact.myname.value.length<= 0) {

 alert(“The name fi eld cannot be empty.”);

 okay = false;

 }

 if (document.contact.email.value.length<= 0) {

 alert(“The email fi eld cannot be empty.”);

 okay = false;

 }

 if (document.contact.message.value.length<= 0) {

 alert(“The message fi eld cannot be empty.”);

C h a pt e r 6 — J ava S c r i pt a n d j Q u e r y — 175

 okay = false;

 }

returnokay;

}

This function will now check the entire form before returning a
result.

Returning to the validation of the myname fi eld, names gener-
ally do not have numbers, so you could specify that they are to be
excluded. Several characters, though, must be excluded for the safety
of the back-end system where this form will be processed. These are
quotation marks (‘ and “), the semicolon (;), the ampersand (&), and
the escape character (\); all are risky to allow, since they could corrupt
data or be used to initiate an attack on the server. To make sure the
name does not contain these unsafe characters, you can invoke the
JavaScript test() function for parsing strings.

This takes a regular expression as an object, which is a formal-
ized way to express a group of characters. The syntax of regular
expressions can become very complex, so this example will group
the unwanted characters in a single expression, which is commonly
denoted in JavaScript with the format /expression/g. The pipe char-
acter (|) is used to separate characters in the list, representing an
OR condition.

The escape character (\) has to be used in strings and regular expressions
when you want to use a literal character in place of one that would otherwise
terminate the string or expression. For instance, to add a double quotation mark
within a string, you have to escape the double quotation mark as follows:
“This string contains a \” mark” to make it a valid string in JavaScript.
Whenever you want to reference the escape character itself as a literal value,
you have to escape the escape character as follows: \\.

NOTE

176 — Mult imedia Web Des ign

The code to perform the validation test described on the content of
myname is:

function validateContact() {

 var okay = true;

…

 var pattern = /;|’|”|&|\\/g;

 if (pattern.test(document.contact.myname.value))

{

 alert(“The name fi eld contains invalid 

characters. These include & ; ‘ \” and \\.”);

 okay = false;

 }

returnokay;

}

Note the use of the escape character in both the regular expression
and the string that is being used as the argument for the alert. The
test() function works only on regular expression objects like the one
defi ned for the pattern variable. Once again, this same test should be
applied to the e-mail and message fi elds as well.

While these tests are suffi cient for the myname and message fi elds,
some additional tests need to be performed on the e-mail fi eld to make
sure it at least has the necessary structure of an e-mail address. It
is almost impossible to truly validate an e-mail address, but the two
characteristics it must have are a single @ character and at least one
period after the @ with at least two characters after it. This test will
be performed to make sure the e-mail address fi ts the basic structure,
though the address may still be invalid.

To test for specifi c characters in an e-mail address or any string,
there are two methods within the string object that can be used:
indexOf() and lastIndexOf(). Both of these accept characters as argu-
ments and will return an integer value indicating where in the string
the character occurs. If the value returned is –1, then the character is
not located within the string. Note that the fi rst character in a string

C h a pt e r 6 — J ava S c r i pt a n d j Q u e r y — 177

in JavaScript is counted at position 0. The code to perform these tests
is:

function validateContact() {

 var okay = true;

…

varat_position = document.contact.email.value.in-

dexOf(‘@’);

vardot_position = document.contact.email.value. 

lastIndexOf(‘.’);

varemail_length = document.contact.email.value. 

length;

if (((at_position< 1)||(dot_position< 1))||((dot_ 

position + 2) > email_length)) {

 alert(“The email address entered is not valid.”);

 okay = false;

 }

return okay;

}

The code will fi nd the position of the @ symbol, the last period in
the e-mail address, and the length of the e-mail address. The condi-
tional evaluation will make sure both the @ and the period are present
and then make sure there are at least two characters after the period.
This is a minimal check of an e-mail address; there are many more
ways to test this value, but they can become exhaustive and cumber-
some, when the biggest risk of an invalid e-mail address is undeliver-
able mail. For businesses, it is wise to include a second fi eld to have
the user verify the address by entering it a second time. This will mini-
mize typos and mistakes.

The last step to be performed in this validation is to make sure one
of the radio buttons is selected for the preferred method of contact. If
you look at the code, you will see that the form fi eld name is the same
for both options. It must be the same for the options to work as a group.
In order to test which one is selected, you need to add an identifi er that

178 — Mult imedia Web Des ign

can be used to select them individually; the value of the fi eld will not
work for this purpose. You should be familiar with using ID values in
tags now, so you can add the following code to create an ID for each
radio box:

*** INSERT CODE

<form name=”contact” action=”contact.php”

onsubmit=”return validateContact();” method=”POST”>

 …

<input type=”radio” name=”preference” id=”pref_ 

email” value=”Email”>Email

 <input type=”radio” name=”preference” id=”pref_ 

phone” value=”Phone”>Phone

 …

</form>

You can now use JavaScript to test whether either of these is
selected. The method to fi nd a tag by its ID value is getElementById().
This accepts a string value as an argument to reference the ID inside
the tag. The method for testing whether a radio button is selected is
called checked. The code to test whether either of the options is selected
is:

function validateContact() {

 var okay = true;

…

if (!document.getElementById(“pref_email”).checked 

&& !document.getElementById(“pref_phone”).checked) {

 alert(“A preferred method of contact must be 

selected.”);

 okay = false;

}

return okay;

}

This code will generate an error if both “E-mail” and “Phone”
remain unselected. This is accomplished by inverting the result of the

C h a pt e r 6 — J ava S c r i pt a n d j Q u e r y — 179

checked method and combining both statements with an AND opera-
tor.

There are a number of other useful functions for validating vari-
ous types of form input, but this will get you started with validating
your own form data. In the next section, you will learn how to make
the messages to the user more user-friendly and make your Web site
look more professional.

Dynamic Content
One of the more popular uses of JavaScript is to dynamically

rewrite page content without reloading a page for the user. This can
be used to provide feedback on forms or to display and hide elements
of the page. This works particularly well in conjunction with CSS. The
application of this dynamic content that will be explored in this sec-
tion is to provide feedback on the form errors on the page itself rather
than to generate alert boxes. To do this, new structural elements need
to be added to the form so that the alert information has a place to go.
The <div> tag will perform this function, as seen in the following code:

<form name=”contact” action=”contact.php”

onsubmit=”return validateContact();” method=”POST”>

 <div id=”name_err”></div>

 Name:

 <select name=”salutation”>

 …

 </select>

 <input type=”text” name=”myname”>

 <div id=”email_err”></div>

 Email: <input type=”text” name=”email”>

 <div id=”method_err”></div>

 Preferred Method of Contact:

 <input type=”radio” name=”preference” id=”pref_ 

email” value=”Email”>Email

 <input type=”radio” name=”preference” id=”pref_ 

phone” value=”Phone”>Phone

6.2.3

180 — Mult imedia Web Des ign

<input type=”checkbox” name=”subscribe” 

value=”Yes”> Subscribe to the Zippy Beans 

newsletter!

 <div id=”message_err”></div>

 Message:

 <textarea name=”message” rows=”4” cols=”50”> 

</textarea>

 <input type=”submit” value=”Submit!”>

</form>

You can test this in a browser to see that the empty <div>tags do
not change the display at all. You can add style classes to these ele-
ments so they are displayed in red text to alert the user to the content.

The means to access the contents of an HTML tag as a JavaScript
object within a page is called innerHTML. This value can be retrieved
as a string or set to a new string value. An example of this for the fi rst
error in the name value is:

function validateContact() {

 …

if (document.contact.myname.value.length <= 0) {

 document.getElementById(“name_err”). 

innerHTML = “The name fi eld cannot be empty.”;

 okay = false;

 }

…

}

Try to submit the form with an empty name value to see this effect
in action. All of the remaining alerts will still generate pop-ups, but
the name length error will show up in the page.

Adding this code to each of the errors would be cumbersome, so
it will be easier to create a new function that will perform this task.
You can then reference the function for each of the errors generated. A
sample function to perform this task is:

functionerrDisplay(elementID,message) {

C h a pt e r 6 — J ava S c r i pt a n d j Q u e r y — 181

 document.getElementById(elementID).innerHTML = 

message;

}

functionvalidateContact() {

…

}

You can now replace the alerts with calls to the new function, such
as:

function validateContact() {

 …

if (document.contact.myname.value.length<= 0) {

 errDisplay(“name_err”,”The name fi eld 

cannot be empty.”);

 okay = false;

 }

…

}

The fi nal step is to clear the error values whenever the form is
submitted. This can be accomplished using the same function already
defi ned:

function validateContact() {

 var okay = true;

errDisplay(“name_err”,””);

 errDisplay(“email_err”,””);

 errDisplay(“method_err”,””);

 errDisplay(“message_err”,””);

…

}

You can see an example of this functionality i n Figure 6.1.

182 — Mult imedia Web Des ign

 FIGURE 6.1 Sample Functionality of Dynamic Form Content

This is just one example of using dynamic content. It can be applied
to show tooltips or hints, or even to personalize pages. It is a versatile
tool for generating engaging and dynamic user experiences on a Web
site.

Events
An event in JavaScript is generated whenever a user takes an

action on a page. These events can be captured within various tags,
such as images and links, to detect things like the mouse clicking a
tag element or the mouse moving within a tag. These are attached to
the tag as attributes, just like an ID or a source. The value of these
attributes is a line of code that can be executed as JavaScript. This
code can call functions, make assignments, or perform any task that
JavaScript can accomplish.

You may have noticed in the contact form that the user has the
option to select “Phone” as a preferred method of contact but that
there is no place to enter a phone number. JavaScript will be used to
create this box dynamically when the “Phone” option is selected. This
will be done using a custom function, innerHTML, and the onchange
event attribute.

6.2.4

C h a pt e r 6 — J ava S c r i pt a n d j Q u e r y — 183

The function will have to test whether the phone fi eld is displayed
or not and then toggle the display accordingly. The code for this is:

function phoneDisplay() {

 if (document.getElementById(“pref_phone”).

checked) {

 document.getElementById(“phone_div”). 

innerHTML = “Phone Number: <input type=\”text\” 

name=\”phone\”>”;

 } else {

 document.getElementById(“phone_div”). 

innerHTML = “”;

 }

}

The structural code to support this is the addition of a <div> tag
with the ID phone_div to hold the content. In the form, this will be:

*** INSERT CODE

<form name=”contact” action=”contact. 

php” onsubmit=”return validateContact();” 

method=”POST”>

 …

 <input type=”radio” name=”preference” 

id=”pref_phone” value=”Phone”>Phone

 <div id=”phone_div”></div>

<input type=”checkbox” name=”subscribe” 

value=”Yes”>Subscribe to the Zippy Beans

newsletter!

 …

</form>

Finally, the event code that will call the function whenever the
radio button selection is changed is:

<form name=”contact” action=”contact. 

php” onsubmit=”return validateContact();”

184 — Mult imedia Web Des ign

method=”POST”>

 …

 <input type=”radio” name=”preference” id=”pref_

email” onchange=”phoneDisplay()”value=”Email”>Email



<input type=”radio” name=”preference” id=”pref_ 

phone” onchange=”phoneDisplay()”value=”Phone”> 

Phone

 …

</form>

This is just one example of an event in JavaScript. These can be
added to almost any tag that allows user interaction and can be coded
to react to the user’s exploration of the page.

External JavaScript
Just as with CSS, you can create an external fi le to store your

JavaScript code and link it to your page. This is particularly useful for
functions you defi ne that apply to multiple pages within your site. The
common extension for a JavaScript fi le is .js.

If you have a set of functions that applies to your entire site, you
should name your fi le main.js. If it applies to a specifi c page (such as
a contact page), you can call the set by the name of the page (such as
contact.js), for clarity. You should move function defi nitions only to an
external JavaScript fi le, because whenever the fi le is attached to the

6.2.5

ACTIVITY 6.3 – VALIDATING THE PHONE NUMBER

For this activity, you will add another piece of verifi cation to the form in
contact.html. With the addition of the script to dynamically generate the
phone fi eld, you should add verifi cation to make sure the phone number is
valid. It should have at least ten digits and should not contain any letters. Be
sure to test in the code whether the phone number should be included (if phone
is chosen as the preferred contact method) so it does not test a value that does
not exist when you attempt to submit the form. What strategy did you use to
perform these tests in JavaScript? Explain your answer.

ACTIVITY

C h a pt e r 6 — J ava S c r i pt a n d j Q u e r y — 185

page, the contents of the fi le will execute. If you have code that applies
to a specifi c part of the page, it should be left where it is.

To create an external JavaScript fi le, copy everything you want
to move externally to a blank text document and save it with the .js
extension. That fi le should not contain any script tags at all, since it is
not HTML content. In the HTML page, you will modify the script tag
to include a source attribute, such as:

<script src=”include/contact.js” type=”text/javas-

cript”></script>

The path to the external JavaScript fi le should be relative to the
location of the page itself, just as it was for the external CSS document.
Whenever a script tag has a source attribute, it must not contain any
additional scripting. You must create a new script tag set to insert
additional script content. You can see an example of this here:

<script src=”include/contact.js” type”text/javas-

cript”></script>

<script type=”text/javascript”>

// Additional script commands can be placed here.

</script>

JQUERY
As it has developed, JavaScript has been modifi ed with function-

ality that applies only to specifi c browsers. A notable example of this
is separate functionality on Internet Explorer and Mozilla Firefox.

6.3

ACTIVITY 6.4 – EXTERNAL JAVASCRIPT

For this activity, you will create an external JavaScript fi le for the contact
page of the case project. You should save the external JavaScript fi le as
contact.js. Briefl y describe what JavaScript content was moved out of the
HTML page and what was left in the page. What are the benefi ts of using exter-
nal fi les for JavaScript? Is it important to use external JavaScript for a single
page in the site, as in the example here? Justify your answer.

ACTIVITY

186 — Mult imedia Web Des ign

While this is not part of the core functionality of JavaScript, it can
be used to provide signifi cant enhancements to a user’s experience. It
can be used for effects such as repositioning elements on the screen
or creating dynamic tooltips. To get around the browser differences
and take advantage of this functionality, developers have to write code
that identifi es the browser and then operates based on the specifi c
browser’s format.

Libraries have been developed to simplify this type of coding across
browsers and generally make it easier for developers to use the more
advanced features of JavaScript. One of the most popular and compre-
hensive of these libraries is jQuery, which is available for free down-
load at http://jquery.com. This library allows you to create dynamic
pop-ups, add drag-and-drop functionality, and perform a myriad of
other tasks with simplifi ed coding. The remainder of this chapter will
provide a brief introduction to using jQuery, but this is an extensive
library that, like JavaScript itself, would take more than one chapter
to fully explore.

 Installing jQuery
From the jQuery Web site (jquery.com), there are two options for

the code you wish to download, Development and Production. The
Development selection is the more straightforward, but it has a larger
fi le size; this is uncompressed code that will be either displayed in the
browser or downloaded to your machine. If the code is displayed in
your browser, you can copy the page (use Select All if necessary) and
save the results as jquery.js. If you download the fi le to your machine,
you can rename the fi le jquery.js or use the original fi le name in your
source path.

6.3.1

The Production (compressed) fi le for the jQuery library has a different nam-
ing convention. The Development version is used in this chapter for clarity and
simplicity. The Development version makes the jQuery library readable should
you wish to explore how any of its functions work.NOTE

C h a pt e r 6 — J ava S c r i pt a n d j Q u e r y — 187

You can add this fi le to any of your Web projects by pasting a copy
of this fi le wherever you store your other external JavaScript fi les.
Inside any HTML page, you can link the jQuery library to your page
the same way you use any other external JavaScript fi le. For example,
if you had all of your external JavaScript (including jquery.js) in the
Include folder, you would use the code:

<script src=”include/jquery.js”></script>

This activates the jQuery library for use in your page. You can
now use script tags (without the type attribute) to write jQuery code
inside your page. For example, you could use the following script to
generate an alert as soon as the document is ready to begin loading on
the screen:

<script src=”include/jquery.js”></script>

<script>

 $(document).ready(function(){

 alert(“Hello, jQuery!”);

 });

</script>

If you can get this code to work correctly in a page on your site, the
jQuery library is installed and functional for that site. You can save
this in a page called jtest.html, which can be reused from site to site to
make sure jQuery is working before you begin scripting; just be sure
to update the src path to the correct location of jquery.js.

 jQuery Code and Use
While the example from Section 6.2.4 will work in practice for

dynamically adding the text box for a phone number entry, it requires
coding the HTML structure within the JavaScript, which is not a best
practice. Using jQuery, you can accomplish the same task of showing
and hiding the phone number entry while it is coded in the HTML
structure itself. To begin, you will need to create two CSS classes
either in the external style sheet or within the contact.html page.
These involve the display style command:

6.3.2

188 — Mult imedia Web Des ign

.myphone {

 display: none;

}

.show {

 display: block;

}

You also need to adjust the structure of the <div> tags that contain
the phone number. This involves adding a class to hide the entry and
adding the form fi eld itself within the structure of the page. The code
for this is:

*** INSERT CODE

<form …>

 …

Preferred Method of Contact:

 <input type=”radio” name=”preference” 

id=”pref_email” onchange=”phoneDisplay()” 

value=”Email”>Email

 <input type=”radio” name=”preference” 

id=”pref_phone” onchange=”phoneDisplay()” 

value=”Phone”>Phone

 <div id=”phone_div” class=”myphone”>Phone 

Number: <input type=text name=”phone”></div>

 <input type=”checkbox” name=”subscribe” 

value=”Yes”> Subscribe to the Zippy Beans 

newsletter!

 …

</form>

You also need to add the jQuery library to your contact.html page,
using the instructions in the previous section. With this enabled, you
can take advantage of the addClass() function in jQuery to dynami-
cally adjust the CSS of an element within the page. The similar func-
tion removeClass() will take away a class from a tag. Both of these
take a string argument that references a CSS class defi ned in the

C h a pt e r 6 — J ava S c r i pt a n d j Q u e r y — 189

style sheets for the page; this can be an external or an internal style.
By adding or removing the CSS class to reveal the display, you can
change whether the element appears in the page display.

To invoke these functions, you can refer to an element by its tag
and class using dot notation (such as div.myphone). The call to jQuery
is signifi ed by the dollar ($) sign. The code for toggling the display of
the phone number value can then be updated to the following:

<script type=”text/javascript”>

functionphoneDisplay() {

 if (document.getElementById(“pref_phone”).

checked) {

 $(“div.myphone”).addClass(“show”); 

/* This is the new jQuery code */

 } else {

 $(“div.myphone”).removeClass(“show”);

 }

}

…

</script>

jQuery has an extensive array of functionality, and this is just
a small example. It is recommended that you learn both JavaScript
basics and jQuery to make the most of this coding library. A working
knowledge of CSS is also required to make these commands function
effectively. The jQuery Web site has extensive tutorials and API docu-
mentation for you to learn the library and practice its applications.

CHAPTER SUMMARY
This chapter showcased JavaScript and its ability to create

dynamic content within a page and alter the display of a single page
based on user interaction. This is an incredibly powerful language
that can be added seamlessly into HTML documents across all mod-
ern browsers, from desktops to mobile devices. The jQuery library was
also introduced, with instructions for its inclusion in Web sites and its
practical use. JavaScript is a client-side language, so all of the content
created up to this point can be tested on a local browser. The remaining
two chapters of this text focus on server-side languages, which require
Web hosting in order to test and use them, since the server compiles
the code before delivering the result to the client browser. The next
chapter introduces you to two server-side scripting languages and
gives a brief overview of Web hosting.

CHAPTER KNOWLEDGE CHECK
Which of the following is not allowed as part of a JavaScript variable name?

● A. letters

● B. numbers

● C. the underscore character

● D. the @ symbol

● E. None of the above

Which of the following is not a type of loop in JavaScript?

● A. do

● B. while

● C. for

● D. when

1

2

190 — Mult imedia Web Des ign

A conditional if statement can operate on any variable or statement that

evaluates to true or false.

● A. True

● B. False

Which of the following is a valid variable declaration in JavaScript?

● A. var a; b

● B. var a = This text;

● C. var a = true

● D. var a, b;

● E. None of the above

Which of the following reserved words in JavaScript is not associated with

coding a switch statement?

● A. default

● B. case

● C. break

● D. do

● E. All of the above

● F. None of the above

A function takes ____________ when called in code.

● A. Parameters

● B. Arguments

● C. Variables

● D. Values

The type of data stored in a JavaScript variable does not have to be specifi ed

when the variable is declared.

● A. True

● B. False

3

4

5

6

7

C h a pt e r 6 — J ava S c r i pt a n d j Q u e r y — 191

jQuery is a separate programming language that interacts with JavaScript

inside an HTML page.

● A. True

● B. False

A coding library is a ____________.

● A. complete syntax for a scripting or programming

language.

● B. method for defi ning an external fi le containing

code.

● C. collection of functions that can be reused in

code.

● D. All of the above

● E. None of the above

A value can be assigned to a variable in JavaScript at the time it is defi ned.

● A. True

● B. False

CHAPTER PROJECTS
Project 1: Personal Web Site

For this project, you should create the validation for the contact
page on your site. This should do a fi rst pass on the data entered to
make sure it is valid. Document your code with comments to explain
the process of validation that is being performed. Be sure to add the
structural elements to your HTML to allow reporting of any errors
within the fi elds themselves.

Project 2: Resort Web-Site
For this project, you should build out a script that cycle through

images on your home page to advertise the various accommodations
and options. Each image should be displayed for a set amount of time
and then change. The onload attribute within the <body> tag can call

8

9

10

192 — Mult imedia Web Des ign

the function initially, and then it should update the picture through a
loop. (You can also use document.ready() if you have jQuery installed
on your page.) Be sure that the loop is designed to terminate. In the
code documentation, explain how the function works.

CHAPTER EXERCISES
1. Describe the two formats for comments in JavaScript. Give

two examples for cases in which each would be useful in code.

2. Defi ne a loop in JavaScript to count from 0 to 20 by
increments of 2. Explain the choice of loop and the
parameters needed to make this work correctly.

3. Defi ne a switch statement in JavaScript that switches on a
numerical value from 1 to 12 and displays the month as an
alert. The default case should alert the user that the value is
not equal to a month. Explain how your statement works.

4. Explain the path name used to access a form fi eld value
within an HTML page in JavaScript. Use an example and
defi ne what each part of the path name represents.

5. Give at least two additional applications of using innerHTML.
What kinds of effects can be created with this functionality?

6. Use the Web to research additional methods of parsing
strings in JavaScript. Identify two functions that can be used
for this purpose and give an example of how they could be
used.

7. Use the Web to research additional events in JavaScript that
can be used to initiate JavaScript code. Identify two events,
explain when they would be activated, and make a short list
of tags to which they could be added.

C h a pt e r 6 — J ava S c r i pt a n d j Q u e r y — 193

194 — Mult imedia Web Des ign

8. Can any if-else statement be converted to a switch statement
in JavaScript? Can any switch statement be converted into
an if-else statement? Give examples to explain your answer.

9. Give an example of string concatenation in JavaScript. What
happens when you concatenate a numerical value to the
string? Test this and explain your fi ndings.

10. Using the documentation available on www.jquery.com,
choose an additional piece of functionality that jQuery
includes and explain how to use it in a simple example.

CHAPTER REVIEW QUESTIONS
1. Explain the difference between arguments and parameters

in your own words. Defi ne and call a simple function in
JavaScript code to showcase the difference and justify your
answer.

2. When would JavaScript be more benefi cial within a page
than external to the page? Give an example to justify your
answer.

3. Briefl y explain the benefi ts of coding libraries like jQuery.
How do they make scripting and programming easier for a
developer? Justify your answer.

4. Briefl y explain the purpose of using an alert in debugging
code. Why is the alert() function not considered user-friendly?

5. Briefl y explain the difference between a programming
language and a scripting language. Why is JavaScript
considered a scripting language? Explain your answer.

C h a pt e r 6 — J ava S c r i pt a n d j Q u e r y — 195

6. Briefl y explain the difference between a client-side language
and a server-side language. What are the benefi ts of using
each type of language? Justify your answer.

7. Are all of the different loop types in JavaScript
interchangeable? Give examples to justify your answer.

8. In normal programming languages, why is it sometimes
acceptable to use an infi nite loop? What is the risk of using
this in any language? Explain your answer.

9. Why must a function defi nition be added to a page prior to
the function being called within a page? What does this
mean for the order of defi ning a function used within another
function? Explain your answer.

10. Explain why cross-browser functionality is an issue in
JavaScript. You can use Internet Explorer and Mozilla
Firefox as examples. How do libraries like jQuery help
developers to overcome these problems? Explain your answer.

PHP and Perl
IN THIS CHAPTER

This chapter introduces you to the basic back-end, or server-
side, languages PHP and Perl. Both of these languages are
full-featured and capable of creating robust Web applications.
Learning one of these languages (or a similar back-end
language, like Java Server Pages (JSP) or Active Server Pages
[ASP]) will allow you to develop a full Web site for yourself or
for a client. Once you have completed this chapter, you should
be able to:

 ● Understand the concept of Web hosting and
know where to find a Web host for your site

 ● Produce dynamic content on a Web page from
the server side

 ● Create a form-processing page in both PHP and
Perl

 ● Use either PHP or Perl to send e-mail as part
of a Web application

HOSTING A WEB SITE
Up to this point in the text, everything you have created can be

tested on your local machine, but with the inclusion of back-end lan-

7.1

CHAPTER

7

198 — Mult imedia Web Des ign

guages, you will need a live Web site for testing your code. In most
cases, when you create a Web site, you will want it to be publicly acces-
sible, so you will also need a domain name so people can fi nd the site.
There are two services you will need to create a fully operational Web
site: domain name registration and Web hosting. Domain name reg-
istration is the reservation of a human-readable Web address (URL)
and an association between that name and the server location where
the HTML pages reside. Domain name registration can typically be
done as part of Web hosting.

Web hosting is a service provided by companies like GoDaddy
(www.godaddy.com), which offer you a share of server space for a
monthly or annual fee. There are a lot of pieces that go into hosting
your Web site. The most common issues to consider are:
• Domain name registration: The domain name is the URL of

your Web site. It should contain a combination of characters
that is easy to remember and relevant to the content of the
site. This will be the human-language address of the site, such
as www.apple.com or www.microsoft.com. You typically have

Back-end languages, also called server-side languages,
are programming languages used within Web sites that are
compiled on the server before the results are sent to the client’s
browser. The source code for back-end languages is typically
hidden from the user. These languages are not limited on
the host machine, like JavaScript, and can access the full
functionality of the machine on which they reside, including
e-mail services and the fi le structure within the folder or
folders allocated for the domain.
Web hosting is a service that allows remote storage of fi les
used on a Web site, which can be accessed through a domain
name or an assigned IP address. The scope of access is
determined by the owner of the site and the type of hosting
being used. Having a Web site hosted on a server is necessary
for connecting to a site from a remote client machine as well
as for development tasks such as testing server-side languages
and sending e-mail from within a Web application.

DEFINITION

C h a pt e r 7 — P H P a n d Pe r l — 199

to pay for a domain name with a domain name registrar. It
is recommended that you use the same company to register
your domain name that you use to host the domain; otherwise
you will need to have additional confi guration to get the name
linked to the hosting server.

• Domain Name Service (DNS) entries: The Domain Name Ser-
vice is a way to resolve the human-readable URL to an actual
server IP address. Managing the data entries for linking the
server to the domain name can be diffi cult, depending on
the host and the domain registry; for this reason it is recom-
mended that you purchase the domain name from the hosting
provider when it is possible.

• ICANN information: The Internet Corporation for Assigned
Names and Numbers (ICANN) is the organization that man-
ages the global allocation of Internet Protocol version 4 (IPv4)
and Internet Protocol version 6 (IPv6) address space, includ-
ing any static address you will associate to your domain name
that will reference the specifi c folder on the server where
your Web site fi les will reside. ICANN operates the Internet
Assigned Numbers Authority (IANA) on behalf of the United
States government. This means that you must provide ICANN
with valid and verifi able contact information for the owner-
ship of any Web address housed within the United States;
this information becomes part of the public record as part of
the WHOIS database available at whois.net. Whenever you
register a domain, you must provide this information before
your domain name will be activated; most hosting services will
guide you through this process either as part of domain name
registration or as part of the Web hosting confi guration.

• Server space: This is the amount of storage space you will be
allowed for your Web site. The purpose and volume of your
media will typically determine how much storage space you
will need. The more media-centric or data-centric your site is,
the more space you should reserve. More space will generally
cost more money.

• E-mail accounts: Some hosting options provide you with
e-mail accounts for your reserved domain name. You should
consider the number of e-mail addresses you will need with
the domain extension as part of your hosting decision. More
e-mail accounts generally cost more money. For sites like the
ones you are constructing in this text, a single e-mail account
should be suffi cient.

200 — Mult imedia Web Des ign

• Traffi c/bandwidth limitations: This is the amount of traffi c
that your site will be allowed to use each month. This may be
tracked in terms of concurrent connections to the site or over-
all volume of data downloaded. You should carefully review
what happens if this limit is exceeded; this can cause the host
to suspend your site (which is bad for viewers), slow down
traffi c to your site, or charge you for the overage incurred. The
purpose and audience size for the site should determine this
metric. You should also research your ability to change this
bandwidth based on traffi c patterns once your site is live; it is
typically easier to increase bandwidth on a plan than it is to
reduce it. Higher bandwidth often costs more money.

• Languages supported: This is the listing of server-side program-
ming languages that are supported by the hosting option. For
the purpose of this text, you should look for hosting options
that support PHP and/or Perl as well as MySQL for data stor-
age (which will be covered in the next chapter). There are other
popular server-side languages, such as JSP, ASP, and Ruby on
Rails, that you may wish to learn once you are familiar with the
concepts of front-end and back-end programming on the Web.

Because of the volume of hosting options, there is no general guide
to setting up your Web hosting, but a good Web host will provide
details on how to load and manage your site once you have enrolled in
their hosting program.

There are a myriad of different Web sites that offer hosting solutions and ser-
vices. Some of these sites are safe, and some of them will take your personal
information to sell. You have to be very careful with what you give to any Web
site, especially your credit card information. You should always look at cus-
tomer reviews for the service before you share any information with the site. If
you have to enter any information to get the prices or product information, you
should generally avoid that site. Any reputable Web hosting service will offer its
service details up front without requiring any information from you.

The author of this text has consistently used GoDaddy® (www.godaddy.com)
as a hosting company for several years without any signifi cant issues. Overall, it
has been a reliable and cost-effective solution that supports most of the major
languages used for programming on the Web. If you are looking for a hosting
solution that is safe and reliable, the author recommends GoDaddy as a starting
point.

PROFESSIONAL
TIP

C h a pt e r 7 — P H P a n d Pe r l — 201

PHP
PHP is a recursive acronym that stands for Hypertext Preproces-

sor. Like that of Perl, though, the reality of this acronym is up for
debate; the original author of the toolset that would become PHP, Ras-
mus Lerdorf, named his toolkit Personal Home Page Tools, or PHP
Tools. PHP is one of the most common server-side languages in use
today. It is a very powerful language, and it embeds easily into any
HTML document. PHP documents can reside anywhere within a Web
site and use the extension .php. When a server is confi gured with it,
PHP will automatically process the page on the server before sending
the result to the client machine when it encounters this fi le type. Host-
ing options that offer PHP typically require little to no confi guration
from the user before using PHP within the server pages.

7.2

ACTIVITY 7.1 – FINDING WEB HOSTING

For this activity, you will research a Web hosting option for your own use. You
should make sure the hosting option provides details on the storage space
and allowed traffi c/bandwidth per month and on the languages supported. You
should generally consider only hosting options that support PHP and/or Perl as
well as MySQL unless you have experience with another server-side program-
ming language. Write a short report on the hosting option you will use. If you
are using this text independent of a college or university that provides you with
server space, you should consider purchasing at least short-term hosting to test
the results of your code for the case project and assignments within this chapter
and the next chapter. The basic hosting plan from GoDaddy meets these general
criteria.

ACTIVITY

Because server-side languages process their output before sending the results
to the client machine, they are not interactive. The results of the code will be
processed linearly and send to the client; any content changes or dynamic inter-
action on the page will require that the results be sent back to the server for it to
re-process the results. Client-side languages like JavaScript can bridge the gap
in interactivity and minimize the number of times the server must be invoked to
produce new content.

NOTE

202 — Mult imedia Web Des ign

PHP Basics
PHP code can be embedded directly into an HTML document,

allowing you to establish the framework and structure of the page and
to provide data processing and dynamic content. This is ideal if you
are learning HTML and CSS for the fi rst time, because it allows you
to utilize what you already know and build an additional language
into the structure. PHP is inserted as tags into a page, just like other
HTML elements. The tags for PHP are <?php to open the PHP code
and ?> to close the PHP code. Any text that exists between these tags
will be treated as code.

The function echo is used to print code to the browser. This will
display content on the user’s machine after the server processes the
page. You can see an example of this here:

<!DOCTYPE html>

<html>

 <head>

 <title>My PHP Page</title>

 </head>

 <body>

 <?php

 echo”Hello, PHP!”;

 ?>

 </body>

</html>

As in the example, each line of PHP ends with a semicolon, just
as it does for JavaScript. In fact, all of the concepts used in

7.2.1

PHP must be installed on the server in order for PHP pages to compile. If it is not
installed, the source code itself will be displayed without processing on most
browsers, which will treat the PHP tag indicators as unknown tags; other
browsers will produce an error. PHP is free to install, but you must have
administrative rights on the server to do so. The best option for beginners is to
select hosting that includes PHP on the server already.

NOTE

C h a pt e r 7 — P H P a n d Pe r l — 203

JavaScript apply to PHP, with some slight modifi cation. Com-
ments, for example, use // for a single line and /* to */ for mul-
tiple lines, just as in JavaScript. The if and switch statements
also use the same syntax in both languages.
The previous example can be formalized to include the end of line

character (similar to a carriage return or enter character in text), as
follows:

<!DOCTYPE html>

<html>

 <head>

 <title>My PHP Page</title>

 </head>

 <body>

 <?php

 echo”Hello, PHP!” . PHP_EOL;

 ?>

 </body>

</html>

The variable PHP_EOL is a reserved global variable that rep-
resents this end of line character. The period operator (.) is used to
concatenate strings. Variables in PHP are defi ned using the dollar
sign ($). As in JavaScript, there is no specifi c data type that must be
declared for a variable, so it can store a character, a string, a Boolean
value, an integer, or any other valid data type. An example of this is:

<!DOCTYPE html>

<html>

 <head>

 <title>My PHP Page</title>

 </head>

 <body>

 <?php

 $mytext = “Hello, PHP!” . PHP_EOL;

 echomytext;

204 — Mult imedia Web Des ign

 ?>

 </body>

</html>

Form Processing

Form processing on the server side has slightly different goals
from those of form processing on the client side. On the client machine,
the goal is to make sure the data is correct and will allow transactions
or contact between the client and the Web application to work cor-
rectly. On the server, your ultimate goal is to protect the application
from malformed or even malicious data. You can still check for errors
in content and reject the input at this stage, but the focus should be
on making sure the length and content of the input are safe for the
application to process.

The fi rst step is to get access to the form data. PHP simplifi es this
process for you: when you use the POST method of form submission,
you can access the name value pairs through the global variable $_
POST. This variable is an array that stores the names as index strings
and their associated values. For instance, the code to return the input
value for myname from the client is:

$_POST[“myname”] You can store this value in another variable
or manipulate the value using this reference to the $_POST array.
You can use this reference to display the form content to the user, to

7.2.2

ACTIVITY 7.2 – SETTING UP A PHP PAGE

For this activity, you will use the template from the case project to create a PHP
page to process the form submission from the contact page. The structure you
use should match that of the other pages in the site, but where the content is
located, you should add PHP tags and code to produce the statement “Form
processing coming soon.” Save the page as contact.php. Because of the nature
of PHP, you can save this in the same directory as the rest of your HTML pages.
If you have a hosting solution already, you should test this page on the server to
make sure it works correctly.

ACTIVITY

C h a pt e r 7 — P H P a n d Pe r l — 205

e-mail the content, or to store the content in a database. Before you use
it for any of those purposes, though, you should make sure the data
is formatted for what is required by the Web application. The data
length may not matter for display or e-mail, but it will matter when
you are storing information in a database that has size constraints.
Even e-mailed data should be screened for unsafe characters. In order
to properly scrub the data for use in the Web application, there are
three steps that should be performed:
• Limit the length: You do not want the size of your data to

exceed the size that can be used by the Web application. This
does not have to be done for all data, such as the message
length for an e-mail body, but it should be considered for each
element of the form to determine individually whether this
step is needed.

• Remove unsafe characters: Unsafe characters are those that
can harm the Web application or any of its components. It is
a good idea to scrub all of the data for these characters unless
they have a specifi c purpose for being included.

• Eliminate HTML/XML tags: This is not always necessary, but
the inclusion of tags allows the data to become active within
the Web application in which it is processed. For instance, code
embedded in <script> and </script> tags can be activated when
the code is displayed to the viewer, allowing the client in some
cases to take over the Web application or manipulate it. Unless
there is a specifi c case in which the tags should be kept, it is
better to eliminate the use of HTML or XML tags in the data.
To process the form data for use, you should start by limiting the

length and moving through the steps as needed. As an example, these
steps will be performed on the myname fi eld of the contact form to
demonstrate the process. Assume the myname fi eld should be limited
to 50 characters based on the typical name size and storage needed
for this value to be saved in a database; this should actually be more
than enough length for this fi eld, so it is unlikely a name would not fi t
in this fi eld.

To limit the length of the myname fi eld, you would use the substr
function to create a substring of the value that contains only the num-
ber of characters you want to include, such as:

206 — Mult imedia Web Des ign

$_POST[“myname”] = substr($_POST[“myname”], 0, 50);

The parameters in this case specify the string value to use, the
starting value, and the number of characters to include beginning
with the starting value. Here, 0 is used as the starting value, because
the string starts counting with 0 as the fi rst character. The length
value of 50 will take 50 characters from the starting value 0.

The next step in the process is to remove any unsafe characters
from the form data. PHP has a function called string_replace that can
be used to perform this task. It requires an array of characters to be
replaced if there are more than one, so the array must fi rst be defi ned.
This can be done using the list of unsafe characters from the chapter
on JavaScript:

$unsafe =array(“;”,”’”,”\””,”&”,”\\”);

Using this array, the following statement will replace these char-
acters with an empty character (denoted “”), effectively removing the
unsafe character from the string:

$unsafe = array(“;”,”’”,”\””,”&”,”\\”);

$_POST[“myname”] = string_replace($unsafe, “”, $_

POST[“myname”]);

The fi nal step is to remove any HTML or XML tags from the data.
PHP has a function that performs this task, called strip_tags. It can
be used as shown:

$_POST[“myname”] = strip_tags($_POST[“myname”]);

Putting all of this together, you can process and display the
myname fi eld using the following code:

<!DOCTYPE html>

You can test the length of a string in PHP by using the function strlen, which
takes the string data as its only parameter and returns the number of characters
found in the string.

NOTE

C h a pt e r 7 — P H P a n d Pe r l — 207

<html>

 <head>

 <title>Contact Page</title>

 </head>

 <body>

 <?php

 // This will process and display the

myname fi eld

$_POST[“myname”] = substr($_POST[“myname”], 0, 50);

$unsafe = array(“;”,”’”,”\””,”&”,”\\”);

$_POST[“myname”] = string_replace($unsafe, “”, 

$_POST[“myname”]);

$_POST[“myname”] = strip_tags($_POST[“myname”]); 

 echo $_POST[“myname”];

 ?>

 </body>

</html>

You can test this by setting the action attribute of the form tag in
contact.html to point to the location of the contact.php page (such as
action=”contact.php” if the fi les are both in the same folder). Your site
must reside on a server with PHP installed for this to work. You can
repeat this process for all of the fi elds in the form you are trying to
process.

ACTIVITY 7.2 – PHP FORM PROCESSING

For this activity, you will use the example code above to process the data from
the form contact.html in the case project. You can modify your
contact.php page to perform these tasks as needed for every fi eld in the
form. The page should display the content that the user submitted. As a chal-
lenge, you should display it in a format that will show the meaning of the con-
tent. Save your work as part of the case project. If you have a hosting solution
already, you should test this page on the server to make sure it works correctly.

ACTIVITY

208 — Mult imedia Web Des ign

E-mailing with PHP
Now that you are able to access and manipulate the data from

the form, you can apply it to a useful purpose. For a contact page, it
is ideal to e-mail the contact information to an administrator who can
then return the contact if needed or log and process the information.
The mail command in PHP can be used to send e-mail from the server
to any valid address.

The most complex element of the mail function is the header
requirement. The easiest way to create this parameter is with a sepa-
rate variable for storing all of the headers. The header values that
must be completed are the MIME type, the content-type of the e-mail,
and the From value. Without a From value, the mail function will
return an error. Without a MIME type or content-type header, the con-
tent may not be displayed correctly. The code to build the headers is
as follows:

$headers = ‘MIME-Version: 1.0’ . ‘\r\n’;

$headers .= ‘Content-type: text/html;

charset=iso-8859-1’ . ‘\r\n’;$headers .= ‘From: The-

odor Richardson <noreply@wherever.com>’ . ‘\r\n’;

Note the use of the period (.) as a concatenation operator both
within the assignment part of the statement and to modify the assign-
ment operator to concatenate the left side of the statement to the
existing string value. The string ‘\r\n’ is a combination of the return
carriage and new line characters; including both will accommodate
Windows and Linux servers. If the mail is not being sent or received,

7.2.3

Not all hosting options allow you to set the e-mail addresses of the sender and
receiver. This is a limitation you should investigate with the host prior to select-
ing your plan. The risk of this functionality is that a Web application may be
used for generating unwanted spam, so some hosts either charge a premium
rate for this functionality or disable it.

NOTE

C h a pt e r 7 — P H P a n d Pe r l — 209

you may need to remove the character that is not supported by your
server.

The mail function takes four parameters: the address of the recipi-
ent (To:), the Subject line, the message body, and the additional head-
ers. An example of this would be:

$mailme = mail(‘to.address@wherever.com’, 

‘This is the subject line’, ‘This is the message 

body.’, $headers);

The mail function returns a true or false value, so it must be
assigned to either a variable or a conditional statement. To put all
of this together, the PHP code to process the form fi eld myname and
e-mail the name to a specifi ed recipient address would be:

<!DOCTYPE html>

<html>

 <head>

 <title>Contact Page</title>

 </head>

 <body>

 <?php

 // This will process and display the

myname fi eld

$_POST[“myname”] = substr($_POST[“myname”], 0, 50);

$unsafe = array(“;”,”’”,”\””,”&”,”\\”);

$_POST[“myname”] = string_replace($unsafe, “”, 

$_POST[“myname”]);

$_POST[“myname”] = strip_tags($_POST[“myname”]);

echo $_POST[“myname”];

$headers = ‘MIME-Version: 1.0’ . ‘\r\n’;

$headers .= ‘Content-type: text/html; 

charset=iso-8859-1’ . ‘\r\n’;

$headers .= ‘From: Theodor Richardson <noreply@wher-

210 — Mult imedia Web Des ign

ever.com>’ . ‘\r\n’;

$mailme = mail(‘to.address@wherever.com’, 

‘Contact Entry Information’, ‘The name fi eld is ‘ . 

$_POST[“myname”], $headers);

 ?>

 </body>

</html>

Note the concatenation to include the form fi eld value of myname.
You should expand this example to include all of the form fi elds in both
the form processing and the e-mail body to provide a more complete
form-processing solution. The next chapter will explore how to use
this data to populate a database.

PERL
Perl has famously been called the “the duct tape of the Internet” by

Hassan Schroeder. It is a language that was intended to combine the
convenience of shell scripting with the more robust features of full lan-
guages like C and C++. It is one of the most commonly used and well-
supported server-side languages, as well as one of the oldest in use on
the Web. Even when other server-side languages are not supported
on a server, Perl is typically available for use. It is not as convenient
to use as PHP, and it requires specifi c invocation of the Perl binary
executable fi le in order to work correctly. Perl is also not as forgiving

7.3

ACTIVITY 7.3 – E-MAILING WITH PHP

For this activity, you will modify the contact.php fi le you have been con-
structing for the case project to process all of the form fi elds and then e-mail
the result to an e-mail address you operate. In the e-mail message, you should
include the names of the form fi elds and the values separated by the new
line and carriage return characters. If you have a hosting solution
already, you should test this page on the server to make sure it works correctly
and verify that you receive the e-mail in the format you specifi ed.

ACTIVITY

C h a pt e r 7 — P H P a n d Pe r l — 211

as PHP, returning only an error message for the page if anything is
incorrect in the code. While hosting options allow you to select the
server-side languages you want to use, it is benefi cial to learn Perl
for cases in which you do not have options for hosting, such as preset
client servers.

Perl was written by Larry Wall. The name Perl is a retronym,
meaning the name itself came fi rst and the expansion of the acro-
nym’s letters came later. As with PHP, the real expansion of the Perl
retronym is up for debate, since its creator has endorsed both Practical
Extraction and Report Language and Pathologically Eclectic Rubbish
Lister. Notice as well that Perl is not capitalized like most acronyms.

Perl Basics
Perl can be written in any text editor, just like HTML. The differ-

ence with Perl is that it must be formatted in the native coding of the
server on which it resides; this is a difference between return carriage
characters in Windows (typically ANSI encoding) and new line char-
acters in Linux (typically UTF-8 encoding). Programs like Notepad++
can change the encoding from one format to another, so you do not
have to write the code on the server if you have a conversion program
like this. Perl fi les should be named with the .pl extension.

The fi rst line of any Perl text fi le must be the path to the Perl
executable binary fi le. The common path to Perl is:

#!/usr/bin/perl

The function print is used to output information to a fi le stream. If
no fi le stream is specifi ed, the default behavior of print is to place the
text in the browser. To print the text “Hello, Perl!” in a browser, the

7.3.1

The path given is the most common path to the Perl executable, but this value
must match the location of the Perl binary fi le on the specifi c server, so there
may be instances where this path will not work and you will have to investigate
where the binary executable fi les are stored for the specifi c server. Hosting
solutions will typically provide you with a path if they support Perl.

NOTE

212 — Mult imedia Web Des ign

following code would be used:
#!/usr/bin/perl

print “Hello, Perl!”;

This is the function you will use to write HTML to the browser
from a Perl fi le. For the case project, you could use the following code
in Perl to produce a page similar to the example for PHP:

#!/usr/bin/perl

print “<!DOCTYPE html>”;

print “<html>”;

print “<head>”;

print “<title>My Perl Page</title>”;

print “</head>”;

print “<body>”;

print “Hello, Perl!”;

print “</body>”;

print “</html>”;

Form Processing
Form processing in Perl is much more complicated than it is in

PHP and represents one of the more diffi cult and involved coding
aspects of this text. Before you can use the form data, you must cap-
ture the information on the input stream from the browser, named

7.3.2

ACTIVITY 7.4 – INVOKING PERL

For this activity, you will create a fi le using Perl that will produce a Web page
on the client machine that matches the template used in your case project.
The content section of the page should contain the text “Hello, Perl!” Unlike the
case with PHP, you will need to code the HTML that will be produced into the
Perl output for the page. You will also have to check the path to the Perl binary
to make sure it works. Save the page as hello.pl. If you have a hosting solution
already, you should test this page on the server to make sure it works correctly.
Comments in Perl are created by using the hash mark (#).

ACTIVITY

C h a pt e r 7 — P H P a n d Pe r l — 213

STDIN. The read function can be used to gather information from an
input stream and place it in a variable. Variables in Perl are denoted
with a dollar sign ($) for single variables and the ‘at’ symbol (@) for
arrays. The code to read the posted form information from STDIN and
place it in the variable called $buffer is:

read(STDIN, $buffer, $ENV{‘CONTENT_LENGTH’});

The reserved variable $ENV{‘CONTENT_LENGTH’} is used to
specify the amount of data to read from the input stream based on
what is available.

From here, it is necessary to parse the $buffer variable for the
name and value pairs of the form. The fi rst step is to separate the
different pairs from each other using split. The split function takes
the following parameters: a character on which to split a string and
the string to split. This function creates an array as its output, which
must be further broken down into names and values. The code for
processing this deconstruction of the STDIN data to name and value
pairs is:

read(STDIN, $buffer, $ENV{‘CONTENT_LENGTH’});

@pairs = split(/&/, $buffer);

foreach $pair (@pairs) {

($name, $value) = split(/=/, $pair);

$FORM{$name} = $value;

}

This code must be further complicated to remove the plus signs
and Web encoding from the text content of the form data:

read(STDIN, $buffer, $ENV{‘CONTENT_LENGTH’});

@pairs = split(/&/, $buffer);

foreach $pair (@pairs) {

 ($name, $value) = split(/=/, $pair);

$value =~ tr/+/ /;

 $value =~ s/%([a-fA-F0-9][a-fA-F0-9])/pack(“C”,

214 — Mult imedia Web Des ign

hex($1))/eg;

 $FORM{$name} = $value;

}

This is complex code beyond the scope of beginner programming;
for now it is best for you to copy the code and evaluate its meaning as
you become more advanced with the language and its use.

The net result of this code is the ability to refer to the form fi eld
through the $FORM variable. An example of this is shown for refer-
encing the myname fi eld in the form from contact.html:

$FORM{‘myname’}

The code for making sure the format of the data in the form fi elds
is suitable for use in the Web application is also more complex in Perl.
To limit the length of the myname fi eld to 50 characters, you can use
the substr operator similarly to the way it was used in PHP:

$FORM{‘myname’} = substr($FORM{‘myname’},0,50);

To remove unsafe characters, the code uses the substitution oper-
ator for regular expressions and an empty substitution string as a
replacement. This uses the regular expression list from JavaScript as
a basis for removing these unsafe characters:

$FORM{‘myname’}=~ s/;|’|”|&|\\//g;

Finally, to eliminate HTML or XML tags from the form data, you
can use another regular expression that identifi es tag formatting and
replaces it with an empty string. An example of this is:

$FORM{‘myname’}=~ s/<!--(.|\n)*-->//g;

The elimination of unsafe characters and HTML/XML tags can be
done inside the main code to produce the $FORM variable. Putting all

Perl can be a diffi cult language, especially when you are attempting to confi gure
it on a new server. However, Perl’s strength is its wide net of availability and its
consistency. The code may take time to get right, but it will work anywhere with
minor adjustments of paths from that point forward. The learning curve of Perl is
more like that of a true programming language that takes patience and time.

PROFESSIONAL
TIP

C h a pt e r 7 — P H P a n d Pe r l — 215

of this together, the most effi cient solution (assuming each fi eld will
have a different length) is:

#!/usr/bin/perl

read(STDIN, $buffer, $ENV{‘CONTENT_LENGTH’});

@pairs = split(/&/, $buffer);

foreach $pair (@pairs) {

 ($name, $value) = split(/=/, $pair);

$value =~ tr/+/ /;

 $value =~ s/%([a-fA-F0-9][a-fA-F0-9])/pack(“C”, 

hex($1))/eg;

This eliminates unsafe characters for every fi eld 

value

$value = =~ s/;|’|”|&|\\//g;

This eliminates HTML or XML tags for every fi eld 

value

$value =~ s/<!--(.|\n)*-->//g;

 $FORM{$name} = $value;

}

This must be individualized for each fi eld if 

they are different sizes

$FORM{‘myname’} = substr($FORM{‘myname’},0,50);

print “<!DOCTYPE html>”;

print “<html>”;

print “<head>”;

print “<title>My Perl Page</title>”;

print “</head>”;

print “<body>”;

print$FORM{‘myname’};

print “</body>”;

print “</html>”;

216 — Mult imedia Web Des ign

 E-mailing with Perl
E-mailing information with Perl uses the same print function that

is used to write output to the browser. Instead of using the default
action, though, you will specify an output stream on which to write the
content. The wrapper for this structure is:

open (MAIL, “|/usr/sbin/sendmail to.address@wher-

ever.com”);

print MAIL “This is the email content...”;

Here the open function is used to create a new stream of informa-
tion; in this case it is opening a path to the e-mail executable on the
server. The second part of the string identifying the e-mail path is
the address to which the e-mail will be sent. The common path to the
e-mail executable sendmail is:

/usr/sbin/sendmail

However, just as with the Perl executable, you must specify the
specifi c path to the sendmail executable on the server itself, which
may vary from server to server.

Just as you used the print function to build the HTML page, you
will use it here to build the e-mail headers and message. This should
include the From and Subject lines. After the header, be sure to indi-
cate a double new line character (\n\n); this will signify to the e-mail
processor that it is has moved from the header to the body of the mes-
sage. You can see an example of this here:

print MAIL “Reply-to: from.address@wherever.com\n”;

print MAIL “From: from.address@wherever.com\n”;

print MAIL “Subject: This is the subject line\n\n”;

print MAIL “This is the message body.”;

Finally, when the content of the e-mail is complete, you will close
the stream, which will send the e-mail message and continue with the
execution of the rest of the Perl code. An example of this is:

close (MAIL);

7.3.3

C h a pt e r 7 — P H P a n d Pe r l — 217

The complete code for processing and e-mailing the myname fi eld
of the form from contact.html is:

#!/usr/bin/perl

read(STDIN, $buffer, $ENV{‘CONTENT_LENGTH’});

@pairs = split(/&/, $buffer);

foreach $pair (@pairs) {

 ($name, $value) = split(/=/, $pair);

$value =~ tr/+/ /;

 $value =~ s/%([a-fA-F0-9][a-fA-F0-9])/pack(“C”, 

hex($1))/eg;

This eliminates unsafe characters for every fi eld 

value

$value = =~ s/;|’|”|&|\\//g;

This eliminates HTML or XML tags for every fi eld 

value

$value =~ s/<!--(.|\n)*-->//g;

 $FORM{$name} = $value;

}

This must be individualized for each fi eld if 

they are different sizes

$FORM{‘myname’} = substr($FORM{‘myname’},0,50);

open (MAIL, “|/usr/sbin/sendmail to.address 

@wherever.com”);

print MAIL “Reply-to: from.address@wherever.com\n”;

print MAIL “From: from.address@wherever.com\n”;

print MAIL “Subject: Contact Form Information\n\n”;

print MAIL “The name of the contact is

$FORM{‘myname’}.”;

close (MAIL);

218 — Mult imedia Web Des ign

print “<!DOCTYPE html>”;

print “<html>”;

print “<head>”;

print “<title>My Perl Page</title>”;

print “</head>”;

print “<body>”;

print$FORM{‘myname’};

print “</body>”;

print “</html>”;

Note in the example that including a variable name within a string
will replace the name with the variable content at execution, eliminat-
ing the need to concatenate strings and variables in Perl.

CHAPTER SUMMARY
This chapter introduced the concept of Web hosting for putting

your Web site live on the Internet. Part of the decision for hosting is
choosing the server-side languages you want supported for the site.
Server-side languages provide you with the ability to preprocess infor-
mation to deliver personalized, dynamic content to your users as well
as to access additional functionality like e-mail messaging. PHP is one
of the most popular server-side languages in use; it offers the user the
ability to embed the code directly within an HTML page, and it pro-
vides powerful tools for accessing databases and generating dynamic
content. Perl is another popular language for server-side scripting;
though it is not as easy to use as PHP, it is more widely available on
both new and old servers. It is worthwhile to learn more than one
server-side language. There are other options to choose in this cat-
egory, such as ASP, which uses Visual Basic as the programming lan-
guage, and JSP, which uses Java. As you learn more programming
in any language, it becomes easier to learn additional languages. The
fi nal chapter of this text is devoted to creating and updating databases
of information for your Web site. The tool that will be presented for
this task is MySQL, which can be used to store data from a Web site
easily and works seamlessly with PHP. Combining all of these tools
will allow you to create dynamic, engaging, and professional-quality
Web sites for yourself and your clients.

CHAPTER KNOWLEDGE CHECK
Which of the following is a valid variable declaration in PHP?

● A. $3 = x;

● B. $x = 3;

● C. x = 3;

● D. All of the above

● E. None of the above

1

C h a pt e r 7 — P H P a n d Pe r l — 219

220 — Mult imedia Web Des ign

Server-side languages process their results when invoked; this means they

are not interactive to the client without the client’s sending another request to

the server.

● A. True

● B. False

PHP code can be embedded into any HTML page and will work without

changing the fi le extension of the page.

● A. True

● B. False

The exact path to the binary executable fi le for PHP must be included in every

page that uses the language.

● A. True

● B. False

PHP code must be written as a standalone fi le, with no HTML elements

included.

● A. True

● B. False

Variables in both PHP and Perl are signifi ed by the dollar sign ($) before the

actual variable name.

● A. True

● B. False

Which of the following functions is used to produce output to the browser in

Perl?

● A. open

● B. echo

● C. print

● D. All of the above

● E. None of the above

2

3

4

5

6

7

C h a pt e r 7 — P H P a n d Pe r l — 221

The path to the Perl executable and that to the mail program are the same for

all servers.

● A. True

● B. False

The ‘at’ symbol (@) must be used to denote an array in both PHP and Perl.

● A. True

● B. False

Which of the following represents the new line character in both PHP and

Perl?

● A. \r

● B. \n

● C. \g

● D. \s

● E. None of the above

CHAPTER PROJECTS
Project 1: Personal Web Site

For this project, you should create a form processing solution for
the contact page of your site. It should test the input sent by the user
and make sure it will not harm the server. This test should be per-
formed on the client side and again on the server side. The results
should be sent to your e-mail address after the form is processed. Find
hosting for your site and test the code to process the contact form.

Project 2: Resort Web Site
For this project, you should create a form processing solution for

the contact page of your site. It should test the input sent by the user
and make sure it will not harm the server. This test should be per-
formed on the client side and again on the server side. The results
should be sent to your email address after the form is processed. Find
hosting for your site and test the code to process the contact form.

8

9

10

222 — Mult imedia Web Des ign

CHAPTER EXERCISES
1. Since the server-side languages execute linearly, is there

a need to defi ne functions in these languages, or should
everything be written to execute once as the code is
interpreted or compiled? Use examples to justify your answer.

2. Explain the purpose of creating external fi les for inclusion in
server-side languages. What benefi t does it provide to have
these additional fi les, and when would they be useful? Use
examples to justify your answer.

3. Write a loop in either PHP or Perl to produce the numbers
1 through 10. How does this compare to the syntax used for
producing this output in JavaScript?

4. Briefl y explain the purpose of the end of line character. Give
two examples of when it should be used.

5. Write an if-else statement in PHP or Perl to determine if the
number stored in a variable is greater than 5 and state the
results as output. How does the syntax of this statement
compare to that needed to produce the same result in
JavaScript?

6. Write a switch statement in PHP or Perl to output the day of
the week based on a numeric value stored in a variable. How
does the syntax of this statement compare to that needed to
produce the same result in JavaScript?

7. Compare the variable declaration process in PHP and
Perl. How does the syntax of the two compare? How does
a variable type get determined in both languages? Use
examples to support your answer.

C h a pt e r 7 — P H P a n d Pe r l — 223

8. Compare and contrast the syntax used in PHP and Perl for
either form processing or sending e-mail. Which language
offers the most convenience? Which language is more
compact? Explain the differences and justify your answer.

9. Identify the necessary information needed to create a
functional Perl fi le for use on a Web server. What steps
must be taken with the fi le to allow it to run correctly on the
server? Briefl y explain your answer.

10. Compare the syntax of PHP to that of either ASP or JSP for
embedding code in an HTML document. What is the benefi t
of being able to embed dynamic content in a page? Explain
your answer using examples.

CHAPTER REVIEW QUESTIONS
1. Research at least three options for hosting a Web site.

Compare the three options in terms of cost, bandwidth, space,
and languages supported. Which option is the best in terms
of this comparison and why? Are these criteria suffi cient to
evaluate a Web hosting solution? Why or why not?

2. Choose a server-side language other than PHP or Perl and
compare its basic use and convenience to those of PHP.
What are the similarities of the language you chose and
PHP? What are the differences? Choose which language you
think would be better for use on a Web site and justify your
answer.

3. Since the source code of a server-side language is typically
hidden from the client, what is the purpose of adding
comments to the source code for these languages? Justify

224 — Mult imedia Web Des ign

your answer and give two examples of when this would be
useful or necessary.

4. Products like Visual Stu dio.NET allow different modules
of code written in different languages to communicate
with each other. What is the purpose of using multiple
programming languages for a Web application? When would
this be useful? Justify your answer with examples.

5. Explain in your own words why it is important to perform
form validation on both the client side and the server side
in a Web application. What are the potential consequences
if either side is not tested for valid formatting and unsafe
characters? Give examples to support your answer.

6. Briefl y explain the difference between JavaScript’s
innerHTML method and the output methods of either PHP
or Perl. When are these invoked to change the content of
the page, and what triggers the use of each method? Give
examples to support your answer.

7. Briefl y explain the reason that languages like PHP and Perl
can be used to send e-mail from a server to a computer but
JavaScript is not capable of generating and sending e-mail on
the client side. What effect would it have if JavaScript had
that capability?

8. Compare the methods of access to form data in JavaScript
and either PHP or Perl. How is the form data accessed? What
is the origin of the form data in both cases? Use examples to
support your answer.

C h a pt e r 7 — P H P a n d Pe r l — 225

9. Perl has a steeper learning curve than PHP, but it is still
widely used. Use the Internet to research the use of Perl and
determine reasons for its continued popularity even with
simpler options like PHP available. Justify your position.

10. When is it a good practice to e-mail a copy of the information
a user submits in a form back to the user who submitted
it? Give at least two examples of when this would be a good
practice and two examples of when this would not be a good
practice. Justify your answer.

MySQL
IN THIS CHAPTER

Data management is an essential task for most interactive
Web sites, especially those with an e-commerce element. One
of the most powerful tools for updating and retrieving data
from a relational database is Structured Query Language
(SQL). One of the most popular choices for integrating
databases with the power of SQL into a Web site is MySQL,
which can be installed on almost any server. Languages like
PHP have inherent functions to let you connect to MySQL
easily, which will be the focus of this chapter. Once you have
completed this chapter, you should be able to:

 ● Understand the basic syntax of SQL

 ● Understand the basic functionality of MySQL

 ● Use PHP to store and retrieve information
from a MySQL database

MYSQL
MySQL (www.mysql.com) is currently the most popular open

source database software used in Web sites. Adding MySQL to a
server or choosing a hosting service with MySQL installed will allow
you to create and manage databases from the server-side languages

8.1

CHAPTER

8

228 — Mult imedia Web Des ign

you learned about in the previous chapter. PHP in particular has a
very simple interface for accessing a MySQL database. The construc-
tion of databases is a complex process that is beyond the scope of this
book, so this chapter will focus on a specifi c example for the case proj-
ect that can be adapted for more complex situations as you learn more
in the fi eld of database design and practice with the other Web lan-
guages for creating more complex Web applications.

MySQL Data Types
A database is composed of tables. Each table represents a closely

coupled grouping of similar information, such as a name, an address,
and a phone number grouped as contact information. Each of the
pieces of data in the table is called a fi eld. In the prior example, the
phone number element would be a fi eld. When creating a table in
MySQL, you need to consider which fi elds you will need to store the
data. In the example for this chapter, you will construct the table to
store the contact information from the contact page of the case project.
The actual storage will take place in the server-side page you wrote to
process the form data.

8.1.1

MySQL is one of the component software pieces associated with the common
LAMP server confi guration, which stands for Linux, Apache™, MySQL, and PHP/
Perl. The confi guration of the Apache server is a separate topic, but you should
have the tools and skills to develop Web sites for a LAMP server when you have
completed all of the objectives in this text.

NOTE

A database is a collection of interrelated data organized
into tables of grouped information. The most common type of
database in use is the relational database, which specifi es
data connections as relationships between fi elds in different
tables of the database. MySQL is a relational database
management system, or RDMS.

DEFINITION

C h a pt e r 8 — M y S Q L — 229

Just like variables, each fi eld in a MySQL table needs to have
a data type defi ned. This specifi es what kind of information will be
stored in the fi eld and how the database should treat the raw data.
The common data types for MySQL which you are likely to encounter
are:
• Boolean value: This represents either true or false, or, in

binary, 1 or 0, respectively. The specifi cation for a Boolean
value in MySQL is either BOOL or BOOLEAN.

• Integer: An integer is any whole number (counting number),
with no decimal component. The integer specifi cation in
MySQL requires a display width, which in this case is the
number of digits in the value. The specifi cation for an integer
in MySQL is INT(n), where n is the number of digits allowed.
There are variations of the integer data type that are
supported (such as TINYINT), which may be needed when
space or effi ciency are a concern in the application.

• Decimal: The decimal data type is used for values that contain
a decimal component. The specifi cation for a decimal value in
MySQL is either DECIMAL(n) or DEC(n), where n again rep-
resents the allowed number of digits in the value. The varia-
tion DEC(n, d) allows you to specify d as the number of digits
allowed in the decimal component of the value. Like integers,
decimal values have variations (such as FLOAT) for specifying
other value ranges.

• Characters and strings: Characters and strings in MySQL
are both stored in the same data type, in which the num-

A table is a group of related data elements, or fi elds, which
forms a cohesive and specifi c data set with some meaning in an
application. The columns represent fi elds in the data, and the
rows represent specifi c entries in the table.
A fi eld is a single piece of data that is included in a table. The
fi eld represents the column heading, and the specifi c entries
are rows under this heading. Fields require a data type to
determine how to treat the values stored in them.
A database entry is a row of data in a table. The values in each
column of an entry specify a single instance of the defi ned fi eld.

230 — Mult imedia Web Des ign

ber of characters allowed is specifi ed as n. The data type
CHAR(n) will allow only fi xed-length strings with n char-
acters; if the stored value is smaller than the fi xed value,
it will be right-padded with spaces. The more versatile
VARCHAR(n) allows strings of variable length up to length
n; this is the most common storage mechanism for text fi elds,
such as the contact entries you will record in the sample
database. For longer text, you can specify a TEXT(n) fi eld,
which has a higher storage capacity: up to 65,535 characters,
compared to the VARCHAR maximum of 255. Using TEXT
as a data type can be wasteful, though, if it is not needed.
Other variations of text, such as BLOB, also exist in MySQL
for more specialized purposes.

Other data types exist in MySQL; the list here represents only
the most commonly used types you are likely to encounter as you
begin your work as a Web developer. For instance, there are data
types for DATE and TIME to record these specifi c data values,
which can be recorded as either strings or numbers. This list is
enough to get you started with using MySQL, but it is nowhere
near a complete listing of all of the available options. Whenever
you create a database, you need to consider the data storage
carefully.

Creating a MySQL Database
Most hosting solutions will offer you a graphical user Interface

(GUI) for creating and modifying MySQL tables. The example shown
in this chapter is from GoDaddy.com, which provides a GUI from
Starfi eld® Technologies, Inc. Other solutions may be text-based,
which would give you an input/output stream that would allow you
to confi gure MySQL directly. For this reason, both the graphic form
of the table and the SQL code will be presented, so you can perform
this task in either environment. Regardless of the means of creating
the table, the most important consideration is the names and types
of the fi elds you will include in your table.

8.1.2

C h a pt e r 8 — M y S Q L — 231

For the contact.html form in the case project, the following fi elds
should be stored in the database:
• E-mail: This is the e-mail entry on the form; it will always be

text. A rough size of 50 would be a starting point for allocating
this fi eld. It should be given the data type VARCHAR(50).

• Salutation: This is the greeting given along with the name.
The maximum length of the preset options for this fi eld is
currently 4, but this may not be an exhaustive list for interna-
tional users. Therefore, this will be allocated as VARCHAR(5)
to allow for any unknown additions needed later. This is fi ne
here, since the database size will remain small, but it may be
a consideration when the records will number into the hun-
dreds or thousands.

• Name: Since this fi eld contains a fi rst and a last name (which
is typically not recommended, since they are distinct data ele-
ments), the length of 50 should account for most names. This
will be allocated as VARCHAR(50); the testing is already in
place to be certain of this limit in the PHP and Perl examples
from the previous chapter.

• Method: There are only two options for this fi eld, and both
contain 5 letters. Therefore, this fi eld should be allocated as
VARCHAR(5).

• Phone: The variation in formatting of phone numbers in differ-
ent countries means there should be extra space allocated for
international numbers and hyphens. A rough size of 15 char-
acters should suffi ce for most of these variations. This size can
be adjusted later, but it can only contract and not expand from
the values already stored in the table.

The database should govern part of your form processing. Specifi cally, the
length checks on the fi eld values should conform to the length allowed by the
database. Allowing fi elds with a length greater than the length of the fi eld in the
database is inviting errors and retrieval problems when you attempt to store
and use the data from the user. This has to be enforced on the front end (with
JavaScript error detection) and strictly enforced on the server side (with PHP
or Perl); values with a higher length than the allowed storage limit must be
either rejected with no storage or truncated to fi t within the size allowed by the
database.

PROFESSIONAL
TIP

232 — Mult imedia Web Des ign

• Subscribe: This is a simple yes-or-no item based on whether
the box is checked or not. Therefore, it is a good candidate for
BOOL, where TRUE means the subscribe box was checked
and FALSE means it was not.

• Message: This represents the full text of the message the
customer wants to send. It will therefore be the longest fi eld
in the contact entry. It is a good candidate for the TEXT data
type, though it is wise to limit its size in the form processing
stage in both JavaScript and the server-side language.

Figure 8.1 shows the result of creating this table. Note that the
SQL statement that created the table is shown above the structure
information for the table itself.

 FIGURE 8.1 Sample Table for the Zippy Beans Contact Form

One fi nal element that is required for any MySQL table is a pri-
mary key. This is a means of organizing the information in a table and
referring to a specifi c record. The selection of a primary key is typically
a complicated process. In this instance, there are no good candidates
from the existing data for creating a primary key. Therefore, another
fi eld is needed for this table, to complement the record and create a
primary key. The combination of the submission date/time and the
e-mail information makes a unique identifi er for this information.

The submission date should be added to the table as the fi eld sub-
mission and stored as VARCHAR(25). Most date formats are not 25

C h a pt e r 8 — M y S Q L — 233

characters in length, but this will account for any time inclusion on
the date/time stamp from the language used to create and store the
date. This fi eld can be added via the GUI interface or via SQL. The full
SQL statement for creating this table is:

CREATE TABLE ‘your_schema_name_here’, ‘zippy’ (

 ‘submission’ VARCHAR(25) NOT NULL,

 ‘email’ VARCHAR(50) NOT NULL,

 ‘salutation’ VARCHAR(5) NOT NULL,

 ‘name’ VARCHAR(50) NOT NULL,

 ‘method’ VARCHAR(5) NOT NULL,

 ‘phone’ VARCHAR(15) NOT NULL,

 ‘subscribe’ BOOL NOT NULL,

 ‘message’ TEXT NOT NULL,

) ENGINE = MYSIAM COMMENT = ‘Zippy Beans Contact Form’

Note that you will need to specify your own schema information
(which is typically your account name on the server) in the placeholder
that says your_schema_name_here.

The primary key can be added visually using the GUI or via SQL
with the following statement:

ALTER TABLE ‘zippy’ ADD PRIMARY KEY (‘submission’ ,

‘email’)

Now that these steps are completed, the table is ready for use. In
order to use this table for data storage and retrieval, you will need to
understand the syntax of SQL queries and the means of calling the
database in the server-side language.

There are DATETIME, DATE, and TIME data types available in MySQL
for storing date and time information, but converting between these data types
and the server-side languages can be a complex process. For that reason, a
simple VARCHAR data type is used for the submission fi eld.

NOTE

234 — Mult imedia Web Des ign

STRUCTURED QUERY
LANGUAGE (SQL)

Structured Query Language (SQL) is the most widely used data-
base language today. SQL has an intuitive syntax and tremendous
power. It has the ability to create tables, delete tables, add records,
modify records, and delete records within an RDMS. Despite the
power of this language, you will fi nd it used in Web design for three
main purposes: selecting (retrieving) data, updating data, and adding
data within existing tables. There may be exceptions to this, but these
activities will allow you to get a basic understanding of the SQL struc-
ture and perform most of the tasks you need in most Web applications.

Select Queries
The fi rst query you should learn in SQL is a select query; this will

be used to retrieve data from the database and return it to your Web
application for use (such as display). A basic select query has two key-
words: SELECT and FROM. The syntax of this query is:

SELECT x FROM y

Here, x is the fi eld (or fi elds) you want to retrieve and y is the name
of the table from which you want to retrieve them. This type of query

8.2

8.2.1

ACTIVITY 8.1 – CREATING A MYSQL TABLE

For this activity, you will use the hosting service you selected to create a MySQL
table for storing the form data from the contact.html page. You should
name the table zippy and follow the examples above for allocating the data
types and lengths for the table structure. Your hosting provider should have
tutorials or technical support available for you if you need help in setting up your
MySQL account or even creating a table for the fi rst time. You should take the
time to get this set up now, so you can proceed with the use of this table in the
later activities of the chapter. The basic hosting plan from GoDaddy meets the
general criteria for MySQL with a GUI option for creating tables (under infor-
mation_schema in the PHP administrator screen for database manage-
ment).

ACTIVITY

C h a pt e r 8 — M y S Q L — 235

will return all of the results in the table. To limit the items returned to
a specifi c record, you need to add the WHERE clause, as follows:

SELECT x FROM y WHERE z

In this case, z is the condition that is applied to a record and the
record is returned only if the condition is true. An example of this type
of query to return the name fi eld from the database table you created
earlier for an e-mail address of anyone@somewhere.com would be:

SELECT name FROM zippy WHERE email = ‘anyone@some-

where.com’

You should note that this may not produce a unique record, because
the e-mail address is not the entire primary key for the record. You may
have to specify additional conditions for this to return a unique value.

Update Queries
Update queries are used to modify data that exists within a table.

The update query uses three keywords: UPDATE, SET, and WHERE.
You should be familiar with the WHERE clause already. UPDATE
specifi es the table, and SET specifi es the fi eld (or fi elds) to be altered.
The basic syntax of an update query is:

UPDATE y SET x WHERE z

From this example, y still represents the table value, x represents
the fi eld and the value to which it is being set, and z represents the
condition. If z specifi es multiple records, each of them will be updated.
An example of this to update the name for all entries where the e-mail
address is anyone@somewhere.com would be:

UPDATE zippy SET name = ‘Bob’ WHERE email = ‘anyone@

somewhere.com’

8.2.2

Multiple fi elds can be selected in a single select query by separating the fi eld
names with commas. Similarly, multiple clauses can be added to a WHERE
clause; each condition must be joined with either AND or OR. Parentheses
must be used to create complex conditions. NOTE

236 — Mult imedia Web Des ign

Insert Queries
The insert query is used to add a new record in an existing table.

This will be the type of query you will use to store new records from
the contact form in the database. The structure of an insert query in
SQL is:

INSERT INTO y (x) VALUES (v)

In this example, y is the table name, x is the fi eld (or list of fi elds
separated by commas), and v is the value (or list of respective values
separated by commas). In this format, the number of entries in x and
in v must be identical for the query to be processed without an error.
An example of this for storing a new name in the database would be:

INSERT INTO zippy (submission, email, name) VALUES 

(‘12/12/12’,’anyone@somewhere.com’,’Bob’)

The values listed will be stored in the same order as the names of
the specifi ed fi elds.

USING MYSQL WITH PHP
PHP has a convenient toolset for utilizing MySQL databases. This

requires the database to be connected to the PHP page; once this is
done, data can pass freely between PHP and MySQL in the form of
SQL statements sent to MySQL and data lines returned from MySQL.
The data returned from a MySQL database must be parsed for use in
the PHP program, and the SQL statements have specifi c functions
which pass them to MySQL. In this section, you will learn how to con-
nect to a MySQL database, store data in a table, and retrieve and use
data from a table with PHP.

8.2.3

8.3

The primary key must be included for an INSERT statement in SQL to work.
In the sample case, every record added must include an e-mail address and a
date of submission.

NOTE

C h a pt e r 8 — M y S Q L — 237

Accessing a MySQL Database
PHP has a single function for connecting to a MySQL database:

mysql_connect. In order for this to work, you need to supply three
pieces of information:
• URL of the database: This is the Web address of the MySQL

program. This should be provided for you if you choose a host-
ing option.

• User name: This is the user name for your account in MySQL.
This has to be coded into the PHP page in order for the connec-
tion to be made. You generally choose your user name when
confi guring the MySQL database.

• Password: This is the password for your account in MySQL.
This also has to be coded into the PHP page, so you should
choose a password that is used only for this account and
nowhere else, in case the PHP source code is compromised. If
you change your password in MySQL, you will have to change
it in the PHP page as well for it to continue working.

All three of these values should be input into the mysql_connect
function as strings. The function does return a value indicating either
a link value if the connection succeeds or FALSE if the connection
fails. The format of this command is:

$link = mysql_connect(“hostaddress”,”username”,

“password”);

Here, hostaddress is the URL of MySQL on the server, username
is the actual user name you use to connect to MySQL, and password
is the password for your MySQL account. It may be better to create
variables for each of these values, so they can be changed more easily
later. An example of the command for connecting to the MySQL data-
base within a PHP page with this approach is:

$hostaddress = “hostaddress”;

$username = “username”;

$password = “password”;

$link = mysql_connect($hostaddress, $username,

$password);

8.3.1

238 — Mult imedia Web Des ign

You can add simple validation code to determine if the link was a
success or a failure based on the returned value. One possible solution
for this is:

$hostaddress = “hostaddress”;

$username = “username”;

$password = “password”;

$link = mysql_connect($hostaddress, $username,

$password);

if (!$link) {

 // This is the fail case for the connection...

}

Here, the value of $link is inverted, so the conditional statement
will execute to account for the error only if $link is false.

The remaining step is to select the database within the account
after the connection is established. Most of the time, you will create
a new database for each project unless a limit on databases or tables
is imposed by the hosting provider. If you are using shared database
hosting, this may be just the account name. If you have multiple data-
bases, then you should select the one that is used for the relevant proj-
ect. Note that this is the name of the overall database and not a single
table within the database. The command in PHP to select a MySQL
database is:

mysql_select_db(“database_name”);

Here, database_name is just the actual name of the database you
are selecting for the PHP page to use. If you invoke this function when
the MySQL connection attempt has failed, it will generate an error.

Once the connection has been established and the database has
been selected, you can run queries against the database as often as
needed during the execution of the page. Every new invocation of the
page (or any other page on the site) will require a new connection to
the database. When you are fi nished with the connection, you should
close it with the function:

mysql_close($link);

C h a pt e r 8 — M y S Q L — 239

The $link value referenced is the returned variable from establish-
ing the original connection to MySQL.

Storing Data in a MySQL Database
With the connection to the MySQL database established, you are

able to run queries against the database as described in Section 8.2
of this chapter. The query inputs in the PHP commands to access
MySQL all take string data as input, meaning that you can construct
the SQL queries in a string variable and then reference the variable if
it is easier to follow.

The insert query will be used to store the data from the form in
the database. The submission entry will require a date/time stamp to
be generated when the form is submitted. An example of PHP code to
create this date format is:

$submission_date = date(“m/d/y H:i:s”);

The formatting string can be modifi ed to provide different inter-
pretations of the date/time. By default, the date function operates on
the current Unix® timestamp. The form data itself should still be ref-
erenced the same way it was in the previous chapter.

The function to run a SQL query to store data is mysql_query; this
function will again return a value (which is sensitive to the context of the
query) and will return FALSE if the query does not succeed. The code to
store the values in the MySQL database from the contact.html form is:

$submission_date = date(“m/d/y H:i:s”);

8.3.2

ACTIVITY 8.2 – CONNECTING TO MYSQL

For this activity, you will modify the PHP page you created in Chapter 7 to pro-
cess the contact.html form input from users and connect it to the MySQL
database you constructed in Activity 8.1. You should test this connection by sub-
mitting form data through the contact.html page and viewing the output.
Be sure to include the verifi cation testing for the connection with a visual output
showing that the connection attempt has failed. Be sure to close the connection
when you are done.

ACTIVITY

240 — Mult imedia Web Des ign

$query = “INSERT INTO zippy (submission, email, sal-

utation, name, method, phone, message) VALUES (‘” .

$submission_date . “’,’” . $_POST[‘email’]) .”’,’”

. $_POST[‘salutation’] . “’,’” . 

$_POST[‘name’] . “’,’” . $_POST[‘preference’] .

“’,’” . 

$_POST[‘phone’] . “’,’” . $_POST[‘message’] . “’)”;

$result = mysql_query($query);

The values entered are all strings, so they need to be surrounded
with single quotation marks, since the overall query string is sur-
rounded with double quotation marks. Note the use of concatenation
on the overall string to get the variable data from PHP. It is advis-
able to use a conditional evaluation to test whether the query was
successful.

Retrieving Data from a MySQL Database
The select query will be used to retrieve stored data from the

MySQL database for use in your PHP Web application. In the sample
case, the information is stored using the e-mail address and submis-
sion date of the contact as an index to identify unique records. Since
the submission date is being generated within the same PHP page,
this will be a simple way to recall the data. However, in real cases, it

8.3.3

ACTIVITY 8.3 – STORING CONTACT INFORMATION

For this activity, you will modify the PHP page you created to
process the contact.html form input from users. You should
use the code examples given to build an appropriate query to
store the information in your live database and test this connec-
tion by submitting form data through the contact.html page
and viewing the output. Be sure to include the verifi cation test-
ing for the query with a visual output showing that the query
attempt has failed.

ACTIVITY

C h a pt e r 8 — M y S Q L — 241

may be necessary to identify other criteria for this data to return a
unique record or you may need to move through several records to
identify the correct result you want to use.

As it is in the storage process, the mysql_query is used to run the
SQL query. This time, the data returned will be the actual records
that match the criteria. For this usage, you may want only a subset of
the data stored, such as the name and message. You can specify only
these fi elds in the select query and use the submission date and the
e-mail as the criteria to identify the record. One example of a select
query to return this information for the case project example is:

$submission_date = date(“m/d/y H:i:s”);

$query = “SELECT name, message FROM zippy WHERE sub-

mission = ‘” . $submission_date . “’ AND email = ‘”

. $_POST[‘email’]) .”’”;

$result = mysql_query($query);

The variable $result now contains all of the returned records or the
FALSE result if the query failed. It is always advisable to test for the
FALSE case when you run a SQL query.

In order to process the results, you must fi rst extract each record
from the returned set. This is accomplished using the mysql_fetch_
array function, which returns an array of strings matching the order
of the parameters given in the select query. Every time this function is
called, it will pull out the fi rst available record and remove it from the
set. An example of this is:

$submission_date = date(“m/d/y H:i:s”);

$query = “SELECT name, message FROM zippy WHERE sub-

mission = ‘” . $submission_date . “’ AND email = ‘”

. $_POST[‘email’]) .”’”;

$result = mysql_query($query);

$row = mysql_fetch_array($result);

242 — Mult imedia Web Des ign

If this code executes and successfully returns a record, $row is now
an array in which $row[0] contains the name and $row[1] contains the
message.

If there are no records returned, it is imperative that this be deter-
mined before use of any of the array values. Using an array value if
the record is empty will cause an error in the PHP application. The
conditional evaluation isset can be used to determine whether the
variable contains data (in this circumstance and others). One test for
the successful extraction of a record in such a case is:

$submission_date = date(“m/d/y H:i:s”);

$query = “SELECT name, message FROM zippy WHERE sub-

mission = ‘” . $submission_date . “’ AND email = ‘”

. $_POST[‘email’] .”’”;

$result = mysql_query($query);

$row = mysql_fetch_array($result);

if (isset($row)) {

 // The record is present and can be used...

} else {

 // The record is not present and the row is empty...

}

You should plan a fail case for the application if the SQL queries
do not work, since any part of the application that depends on the
result will not work properly.

ACTIVITY 8.4 – RETRIEVING CONTACT INFORMATION

For this activity, you will modify the PHP page you created to process the
contact.html form input from users. You should use the code examples
given to retrieve the data that was just stored in the database to verify that it
was stored correctly. You should display the data to the user from the database
rather than the form itself to show that the storage process was successful. Be
sure to include the verifi cation testing for the query with a visual output showing
that the query attempt has failed or that the record was not returned.

ACTIVITY

CHAPTER SUMMARY
This chapter introduced MySQL as a possible RDMS for a Web

application. This is currently the most popular open source database
solution used on the Web. The language used to power interactions
with MySQL is Structured Query Language (SQL). SQL is a power-
ful database language used in Web applications and standalone data-
bases in businesses worldwide. The basic actions of SQL are creating
and deleting tables and storing, updating, and retrieving records
within tables in a given database. PHP provides a powerful toolset for
interacting with MySQL using the SQL language. This chapter cov-
ered the basic operations of using PHP and MySQL to create a Web
application, but there is much more to learn in both of these areas.
This text has covered the main tools needed to create a dynamic and
modern Web site through both the front-end design and the back-
end programming. Many of these languages have numerous expan-
sions and nuances that come with experience, research, and use. You
should now be on your way to designing and developing professional
Web pages and complete Web applications!

CHAPTER KNOWLEDGE CHECK
Which of the following is not a text data type in MySQL?

● A. TEXT

● B. CHAR

● C. VARCHAR

● D. BLOB

● E. All of the above

● F. None of the above

1

C h a pt e r 8 — M y S Q L — 243

244 — Mult imedia Web Des ign

Which of the following is not a reserved word in SQL?

● A. SELECT

● B. FROM

● C. WHERE

● D. INSERT

● E. All of the above

● F. None of the above

Multiple fi elds can be selected in a single SQL query by separating the values

with a ____.

● A. comma

● B. period

● C. semicolon

● D. slash

The numerical value in a MySQL data type declaration specifi es the number of

characters or digits that can be stored in the fi eld.

● A. True

● B. False

Data values specifi ed in a SQL insert query are all specifi ed as strings,

regardless of how they are stored in the database.

● A. True

● B. False

The ___ clause specifi es the conditions for identifying a record in SQL.

● A. SELECT

● B. WHERE

● C. FROM

● D. WHILE

● E. None of the above

2

3

4

5

6

C h a pt e r 8 — M y S Q L — 245

The username and password for the MySQL account must be coded into the

PHP program in order for it to access the database.

● A. True

● B. False

Which of the following is not a valid PHP function for working with MySQL?

● A. mysql_query

● B. mysql_close

● C. mysql_connect

● D. All of the above

● E. None of the above

The conditional isset is used in PHP to determine whether a variable has been

assigned data by returning TRUE or FALSE.

● A. True

● B. False

A SQL query can return multiple records at the same time.

● A. True

● B. False

CHAPTER PROJECTS
Project 1: Personal Web Site

For this project, you should create a database table to store the
contact information from the contact form and process that form using
PHP. The data results should be e-mailed to your e-mail address and
stored in the database for later use. Document your code to indicate
the actions taken in PHP. Test and verify your solution.

Project 2: Resort Web Site
For this project, you should create a database table to store the

contact information from the contact form and process that form using
PHP. The data results should be e-mailed to your e-mail address and

7

8

9

10

246 — Mult imedia Web Des ign

stored in the database for later use. Document your code to indi-
cate the actions taken in PHP. Test and verify your solution.

CHAPTER EXERCISES
1. What is the benefi t of creating the database access code

as a separate PHP page? Research the inclusion of PHP
pages in other pages and convert the database access code
to its own page. If this included page is used to initiate a
connection to the database, where should the database be
closed in the code?

2. The subscription choice was omitted from the storage code
in the example in this chapter. Compose JavaScript or
PHP code to determine if the checkbox is checked so the
value passed to the database will be TRUE/FALSE or 1/0.
Add this element into the insert query used to store the
contact form data in the database.

3. Explain the benefi t of storing and then retrieving the
same data to and from a database within the same page.
Is this always necessary for testing? Why or why not?

4. Describe the difference in effi ciency and convenience
between creating the query string directly inside the
PHP function and creating it as an external variable. List
benefi ts and drawbacks of each approach.

5. Write a query and loop to return and parse all records
from the database and display them as a contact record.
What information should be included publicly on this
page, and what should be kept hidden? Explain your
answer.

C h a pt e r 8 — M y S Q L — 247

6. Write a PHP statement to update the names in the database
to a single value regardless of the name given. When would
this type of update script be useful? Would a modifi ed form of
this update be more usable for practical purposes?

7. Write a PHP statement to delete a record that meets certain
criteria (such as a matching e-mail address) from the
database. What is the danger of using this type of query?
When would this be useful in a Web application? Justify your
answer.

8. Write a select query with a complex WHERE clause involving
both AND and OR. Test this statement in PHP to verify
that it works. What is the benefi t of using OR for returning
records? Can OR clauses ever uniquely identify just one
record? Explain your answer.

9. List at least three factors that should be used to determine
what data type is used for a fi eld in a MySQL database. Are
these factors common to all database and programming
language data type considerations? Why or why not?

10. Use the Internet to research the use of mysql_query in PHP.
What are the possible return values for this function? Is there
a limitation on the types of queries that can be used, or does
it accommodate all of the different SQL query types? Explain
your answer.

CHAPTER REVIEW QUESTIONS
1. Defi ne a relational database in your own words. What are the

benefi ts of this type of database? Is this type of database able
to handle most application data adequately? Why or why not?

248 — Mult imedia Web Des ign

2. Briefl y explain the main components of a LAMP stack as a
server confi guration. What is the purpose of each component,
and how do they represent a complete Web application
environment when combined?

3. Explain in your own words the benefi t of having a common
language like SQL for use across multiple commercial
database systems. What would happen if each database
system had its own query language? How would this affect
development of Web applications?

4. Research the use of MySQL with Perl. What tools does
Perl provide for connecting to the database and running
queries on the database once it is connected? Provide a brief
comparison between MySQL use in PHP and Perl.

5. What would be the consequence of using SQL queries to
create database tables within Web applications? Explain in
your own words why this is not considered a good practice in
Web design?

6. Why is it important to test whether each query has
successfully completed in a Web application? What can
happen to a Web application if data is expected from a query
and only the FALSE value is returned? Give examples to
support your answer.

7. Give at least two additional uses for isset in a Web
application aside from testing whether a record is present in
a MySQL result. Would this be an essential inclusion in each
example, or does it just represent a best practice? Explain
your answer.

C h a pt e r 8 — M y S Q L — 249

8. Research SQL queries and briefl y describe two additional
query types that were not included in this chapter. When and
how is each of these queries used?

9. Why is it necessary for a MySQL database to have a URL
even when it resides on the same server as the PHP page
that is accessing it? Justify your answer with examples.

10. Why is it important for a PHP page to have the account
user name and password to access a database? Is there an
alternative approach that would still restrict access to just
authorized pages without requiring this information? How
can this issue be managed administratively to minimize
the impact of having to code this information within the
application?

Selected Answers
Chapter 1

Chapter Knowledge Check
1. d
3. c
5. c
7. b
9. b

Chapter Review Questions
3. The intended audience in the case of a rock band would be fans

of the band who wish to learn more, purchase tickets, or fi nd
out the latest news on the band. A good place to start would be
to research the market to which the band appeals. Questions
like “Where do they play most often?” and “What bands play
with them?” will help defi ne the audience in this case.

5. There are wide arrays of sites that use too many colors in the
palette. There should be a limit of two primary colors and an
accent color to be the most appealing. Too many colors make
the site look sloppy and unprofessional. A site that has this
should condense its color scheme with the most relevant colors.

7. This is a very individual assignment. An ideal palette in this
case is two adjacent colors in the color wheel and a comple-
mentary color, but the opinions on this differ in graphic design.

APPENDIX

A

252 — Mult imedia Web Des ign

As long as there is a defense for it and the colors have the
potential of creating a high level of contrast while still appear-
ing to fi t together (such as two cool colors and a warm color or
two warm colors and a cool color), then the palette can work.
Colors that all contrast should be avoided.

Chapter 2

Chapter Knowledge Check
1. c
3. b
5. a
7. b
9. b

Chapter Review Questions
3. One strategy for bringing a functional prototype to completion

would be to iteratively add more functionality until the entire
site is implemented. The prototype should only be shown to
the client when there is a milestone of accomplishment, such
as a working application within the site; the client does not
need to see every iteration or small change to the site. Some
of the factors affecting the schedule would be the level of cod-
ing needed to implement the site, server issues, and language
issues. Showing a prototype too often will lessen the impact
of the development and may cause the client to become irri-
tated with the pestering for approval. Not showing the client
often enough may cause the project to deviate from what the
client expected, causing signifi cant re-development needs and
delays to the project.

5. The client has likely worked very hard at establishing their
image as a company. They will likely want any site that is
developed to build from that impression rather than deviate
into something new. Consider companies that are popular and

Appendix — 253

well-known; what color schemes and logos do they use and
what would you expect on one of their sites? The same prin-
ciple applies with other clients as well.

7. Color coding in the HTML allows you to quickly identify what
tags are being used and it separates the code from the text.
The structure of the page should be clearer if you can look at
the nesting of tags with the contents abstracted.

Chapter 3

Chapter Knowledge Check
1. e
3. b
5. c
7. a
9. b

Chapter Review Questions
3. Placeholder content in a <div> layout allows you to see visu-

ally where the <div> is placed on the page before you have the
content to complete it. A <div> could be empty if it contains
dynamic content that is only fi lled under certain conditions. It
will typically contain some information or a graphic, though.

5. The images in the fi nal design should be clear and sized to fi t
the location where they appear. Any lower or higher size or
resolution will either cause the image to display poorly or it
will be a waste of bandwidth. The visual prototype images are
often low quality and constructed quickly to be discarded. The
fi nal images need to be high quality.

7. An tag can link to a longer description of images. This
can be useful for browsers for the visually impaired, which
read descriptions of the image. It can also be helpful for those
looking for more information about the image.

254 — Mult imedia Web Des ign

Chapter 4

Chapter Knowledge Check
1. d
3. c
5. e
7. c
9. c

Chapter Review Questions
3. It is important for older browsers to “fail gracefully” and ignore

a style command that they do not recognize because it allows
the newer browsers to use the evolving standards without wor-
rying about how older browsers will treat it. The newer brows-
ers will display the content better and the older browsers will
process it as well as they can. If the older browsers did not fail
gracefully, the standards would be limited by the older brows-
ers still in use because it would preclude the population using
it from viewing newer pages that did not fi t their old standard.

5. Using an external style sheet for a site allows every page to
keep the same formatting and display. It allows pages to be
uniform and connects them visually and stylistically. The only
drawback would be to use it extensively for page-specifi c styles.
This may cause confusion if there are too many specifi c styles
defi ned in the use. These work best when they contain the
common elements for multiple pages and allow the individual
pages to use the unique styles that only apply to that page.

7. Either positioning or display could be argued as the most
important benefi t of CSS. Both of these aspects are incred-
ibly powerful and are beyond the scope of simple HTML code
(requiring the use of deprecated tags and attributes to accom-
plish).

Appendix — 255

Chapter 5

Chapter Knowledge Check
1. d
3. b
5. e
7. a
9. d

Chapter Review Questions
3. Using hyperlinks to reference IDs of tags within the same

page allows you to establish bookmarks within a page to jump
to specifi c content. In a long document such a history or tech-
nical specifi cation, you could allow users to jump to a specifi c
section or timeframe. Numerous other applications exist for
this.

5. It is important to limit the use of plug-in content on a Web
page because not every user will have the plug-in installed.
The risk you run when adding plug-in content that is not
inherently supported by the Web browser itself is that the con-
tent will not be seen and the user may not know how to access
it. One example of this is the use of Adobe Flash content on
a mobile device which cannot support the plug-in. This limits
the audience for the content.

7. A favicon in a Web site is an icon that displays next to the
name of the page in a browser. It helps to defi ne site branding
and establish consistency across pages. It is a good idea to
have a favicon for a business but it can be a small item that
shows experience and knowledge even on a personal site.

Chapter 6

Chapter Knowledge Check
1. d
3. a

256 — Mult imedia Web Des ign

5. d
7. a
9. c

Chapter Review Questions
3. Coding libraries like jQuery provide reusable code that is

known to work in various environments. This type of library
can save a lot of time in re-developing existing functions and
functionality.

5. A programming language has to be compiled into machine
code before execution but a scripting language is interpreted
dynamically as it is called. JavaScript is considered a scripting
language because it is executed on the client machine within
the browser without being compiled.

7. All of the different loop types in JavaScript are relatively inter-
changeable. The parameters of each can be adjusted to per-
form the same behavior, but there are more effi cient loops for
specifi c tasks than others.

Chapter 7

Chapter Knowledge Check
1. b
3. b
5. b
7. c
9. b

Chapter Review Questions
3. Since the source code of a server-side language is typically hid-

den from the client, the purpose of adding comments to the
source code for these languages is for later maintenance and
support. Proper documentation can also allow for reuse of
the code later in a different circumstance. This is especially

Appendix — 257

important when creating a library or a common function used
across a site.

5. It is important to perform form validation on both the client
side and the server side in a Web application because the client
cannot be trusted to be benevolent. A client may intentionally
try to inject code to break an application or take over an appli-
cation. The testing on the client side is for legitimate users to
enter correct information for the system to behave properly.

7. Languages like PHP and Perl can be used to send email from
a server to a computer but JavaScript is not capable of gener-
ating and sending e-mail on the client side due to the control
over the host system that JavaScript would have to have for
this behavior. If JavaScript had this power, then it could take
over a host system. PHP and Perl use the server system on
which they reside to perform these tasks, leaving the user’s
machine out of the process.

Chapter 8

Chapter Knowledge Check
1. f
3. a
5. a
7. a
9. a

Chapter Review Questions
3. Having a common language like SQL for use across multiple

commercial database systems provides standards for inter-
communication of database systems and interoperability of
code from one system to another. If each database system had
its own query language, then it would be very diffi cult to trans-
fer data from one system to another and for programming lan-
guages to interact with the database system. Web applications

258 — Mult imedia Web Des ign

would need specifi c code depending upon the type of database
to which they are connected, which would increase develop-
ment cost and limit fl exibility.

5. Using SQL queries to create database tables within Web appli-
cations could cause multiple duplicate tables to be created or
even a new table for each use of the application. This is a poor
decision for design and it would make managing the database
incredibly diffi cult. The system would likely become unstable
as a result.

7. There are a variety of additional uses for isset in a Web appli-
cation aside from testing whether a record is present in a
MySQL result. These include testing for the presence of a vari-
able within a form or as output from a function. This is often
essential to test before using a variable that does not exist,
which would cause an error on the page.

Inde x — 259

INDEX

A
Active Server Pages

(ASP), 197, 200
Adobe Dreamweaver,

35, 46–47, 138
Adobe Flash® object, 146
alert() function, 171
alt attribute, 71
ampersand command,

136–137
anchor point, 86
AND operator, 179
Apple Safari, 6
argument, 162
Arial, 22

B
back-end languages, 197–198
Bitmap (BMP), 63
break statement, 167

C
Cascading Style Sheets (CSS)

classes and tags, 81–82
CSS3, 80
defi ned, 79
display properties, 97–107
height and width properties,

91–94
IDs, 82–83
inheritance, 84
invoking styles in HTML,

80–81
layering, 89–91
margins, 94–97
padding, 94–97
positioning, 84–89
pseudo-classes, 83
reusing of styles, 108–109
style command, 80
Styles Panel, 49

Styles panel, 47
use of, 60

character entity in HTML, 136
cloning of pages, 131–133
color choice in a page, 25–26
computational complexity, 156
conditional statements, 165–168

D
database, 228
decomposing the prototype, 58–59
default statement, 167
design set for the site, 42–44

of Zippy Beans Coffee
Company, case project, 45

digital typography, 22–23
display-oriented CSS

background images, 97–99
colors property, 99–103
content alignment, 104
setting borders, 103–104
shadows property, 104–105
text modifi cation, 106–107

Doctype Declaration (DTD), 12–13
dollar ($) sign, 189
Domain name registration,

198–199
Domain Name Service (DNS), 199
do/while loop, 170
dynamic content, 179–182

E
elastic measurement, 91
e-mail accounts, 199
e-mailing

JavaScript, 173, 175–178
Perl, 216–218
PHP, 208–209

embedded code, 146–147
entry, 228
equals sign (=) syntax, 160
escape character (), 175

260 — Inde x

event in JavaScript, 182–184
exercises/review questions,

chapter, 31–34, 54–56,
75–78, 118–120, 151–153,
193–195, 222–225, 246–249

external JavaScript, 184–185

F
field, 228
File menu, 46, 48
fonts, 23–24
footer.png, 69
for loop, 168–169
frames, 61
function, 161–162

G
global referencing, 16
GoDaddy®, 198, 200
Google Chrome, 6
Google Maps™

application, 147
Graphics Interchange

Format (GIF), 63

H
height and width CSS

properties, 91–94
hotspots, 127–129
href attribute, 16, 127
HTML authoring tools

Adobe Dreamweaver, 46–47
Microsoft Expression Web,

48–49
Notepad++, 49–50

HTML version 5 (HTML5)
ampersand command, 136–137
branding a site, 124–134
capitalization, issues with, 137
cellpadding and cellspacing,

139–140
cloning of pages, 131–133
colspan attribute, 139
content, adding, 135–147
copyright symbol, creating, 137

forms, adding, 141–145
hyperlinks, creating, 126–127
image links/hotspots, creating,

127–129
incorporation of audio and

video on Web pages,
145–146

less than () or greater than ()
characters, 136

meta tags, 130–131
paragraphs and line breaks,

135–136
planning for content, 124
rowspan attribute, 139
site icon, adding, 133–134
site map, creating, 125–126
tables, adding, 137–141
text-align and vertical-align

control, 139
value attribute, 142–143

hyperlink, 126–127
hyper-reference property, 109
Hypertext Markup Language

(HTML), 4, 6–7
add a hyperlink, 15–16
images, creating, 63–72
page construction, 10–18
page testing, 17–18
site layout,

creating, 57–62

I
id attribute, 71
if statements, 166–167, 174
images, creating

banner and footer images, 72
banner section, 67
formats, 63–65
in Pixlr, 69
for sites, 67–70
software for, 65–67
tag for inserting, 70–72

inheritance of style, 84
innerHTML, 180
Insert menu, 46, 48

Inde x — 261

Internet Assigned Numbers
Authority (IANA), 199

Internet Corporation for
Assigned Names and
Numbers (ICANN), 199

Internet Explorer, 185
Internet Protocol version

4 (IPv4), 199
Internet Protocol version

6 (IPv6), 199

J
JavaScript, 49–50, 61

alert() function, 162, 171
assigning values, 159–161
client-side nature of, 157
comments in, 160
conditional statements in,

165–168
declaring variables, 159–160
defi ning functions, 163–164
dynamic content of,

179–182
e-mail and message fi elds, 173,

175–178
events, 182–184
external, 184–185
form validation, 172–179
function calls, 161–162
getElementById() function, 178
in HTML, 157–158
indexOf() function, 176
lastIndexOf() function, 176
length property, 173
looping, 168–170
mathematical operations

using, 161
message_me() function, 164
multiple values in, 161
parsing and comparing strings,

171–179
rules for naming functions, 163
symbols of variables, 166
test() function, 175
using, 170–185

validateContact() function, 173
value property, 173
variable declarations, 158–159

Java Server Pages (JSP), 197, 200
JPEG (Joint Photographic

Experts Group) File
Interchange Format, 63, 67, 69

jQuery library
addClass() function, 188
code, 187–189
installation of, 186–187
removeClass() function, 188

K
kerning, 24
knowledge check, chapter,

28–30, 51–53, 73–74,
116–118, 148–150, 190–
192, 219–220, 243–244

L
layering in CSS, 89–91
leading, 24
library, 161–162
looping, 168–170

M
margins, 94–97
meta tags, 130–131
Microsoft Expression

Web, 48–49, 138
Microsoft Internet

Explorer (IE), 5–6
monospacing, 23
Mozilla Firefox, 6, 185
MySQL

accessing a, 228
accessing database of,

237–239
Boolean specifi cation in, 229
characters and strings in,

229–230
creating a databse, 230–234
data types, 228–230

262 — Inde x

date and time in, 229–230
decimal data type in, 229
graphical user Interface (GUI)

for, 230
integer specifi cation in, 229
retrieving data from database,

240–242
storing data in database,

239–240
using with PHP, 236–242

N
Notepad++, 49–50, 108

P
padding, 94–97
page testing, 17–18
parameter, 162
PERL, 46
Perl

basics, 211–212
e-mailing with,

216–218
form processing, 212–215

PHP, 46, 228
basics, 202–203
e-mailing with, 208–209
form processing, 204–207
MySQL with, 236–242

pipe character (|), 175
pixel, 23
pixels, 86
planning of Web site

audience, 40–41
design and development

process, 36–38
design set for the site, 42–44
emphasizing and showcasing

content, 41–42
initial client communication,

38–40
purpose, 40–41

Portable Network Graphic
(PNG), 63, 67, 69

position property of CSS, 84–89
element position, 85–89
setting positioning and anchor

points, 87–89
values, 85

PowerPoint, 125
programming language, 156
projects, chapter, 30–31,

53, 75, 118, 150–151,
192–193, 221, 245–246

R
relational database, 228
relational database management

system (RDMS), 228
relationship property, 108
relative referencing, 16
Ruby on Rails, 200

S
sans-serif, 23
scope of a variable, 164
scripting language, 156
serif, 23
server-side language, 156
server-side languages, 198
server-side programming

languages, 200
server space, 199
site icon, adding, 133–134
site layout

decomposing a design, 58–59
planning of functionality, 58

site layout in HTML
method for constructing

layouts, 60–62
structuring a page, 60
using HTML text, 60–62

site map, creating, 125–126
src attribute, 70–71, 127
Stanford Web Credibility

Project, 21
Structured Query Language

(SQL), 227
insert queries, 236
select queries, 234–235

Inde x — 263

update queries, 235
style commands, 80, 84
switch statement, 167

T
table, 229
Tag Image File Format (TIFF), 63
text adjustment properties

font-family, 106
font-size, 106
font-style, 106
font-weight, 106
text-decoration, 106
text-shadow, 106–107

Times New Roman, 22
tracking, 24
type attribute, 157
typefaces, 22

U
Uniform Resource Locator

(URL), 1, 8–9

V
values in JavaScript

Boolean values, 159
character values, 159–160
integer and decimal values,

159
string values, 160

variable, 156
View Selection, 47

W
Web browser, 3–6, 24, 62

common, 5–6
Webmonkey Web site
Web page, 4–6
Web pages, principles of

color choice, 25–26
considering purpose and

audience, 21
evaluation of page, 27
page layout and real estate,

19–20
typography and font selection,

22–24
Web server, 3
Web site, 3

hosting a, 197–200
planning of. see planning of

Web site
traffi c patterns, 200

What You See Is What You Get
(WYSIWYG) view, 47

while loop, 169
WHOIS database, 199
World Wide Web Consortium

(W3C), 4, 8, 19
World Wide Web (WWW), 1–3
W3Schools, 80
WYSIWYG display, 4

Y
You Tube®, 147

Z
z-index property, 89–90

	fm
	Chapter 1
	2
	3
	4
	5
	6
	7
	8
	app
	index

