Programming
Fundamentals
Using Java

A Game Application Approach

PROGRAMMING FUNDAMENTALS
UsSING JAva

LICENSE, DISCLAIMER OF LIABILITY, AND LIMITED WARRANTY

By purchasing or using this book (the “Work™), you agree that this license grants permission
to use the contents contained herein, but does not give you the right of ownership to any of
the textual content in the book or ownership to any of the information or products contained
in it. This license does not permit uploading of the Work onto the Internet or on a network
(of any kind) without the written consent of the Publisher. Duplication or dissemination
of any text, code, simulations, images, etc. contained herein is limited to and subject to
licensing terms for the respective products, and permission must be obtained from the
Publisher or the owner of the content, etc., in order to reproduce or network any portion of
the textual material (in any media) that is contained in the Work.

MERCURY LEARNING AND INFORMATION LLC (“MLI” or “the Publisher”) and anyone involved
in the creation, writing, or production of the companion disc, accompanying algorithms,
code, or computer programs (“the software”), and any accompanying Web site or software
of the Work, cannot and do not warrant the performance or results that might be obtained
by using the contents of the Work. The author, developers, and the Publisher have used
their best efforts to insure the accuracy and functionality of the textual material and/or
programs contained in this package; we, however, make no warranty of any kind, express
or implied, regarding the performance of these contents or programs. The Work is sold “as
is” without warranty (except for defective materials used in manufacturing the book or due
to faulty workmanship).

The author, developers, and the publisher of any accompanying content, and anyone
involved in the composition, production, and manufacturing of this work will not be liable
for damages of any kind arising out of the use of (or the inability to use) the algorithms,
source code, computer programs, or textual material contained in this publication. This
includes, but is not limited to, loss of revenue or profit, or other incidental, physical, or
consequential damages arising out of the use of this Work.

The sole remedy in the event of a claim of any kind is expressly limited to replacement of
the book, and only at the discretion of the Publisher. The use of “implied warranty” and
certain “exclusions” vary from state to state, and might not apply to the purchaser of this
product.

PROGRAMMING FUNDAMENTALS
UsING Java

A Game Application Approach

William McAllister and S. Jane Fritz
St Joseph's College, New York

MW,

MERCURY LEARNING AND INFORMATION
Dulles, Virginia
Boston, Massachusetts
New Delhi

Copyright ©2015 by MERCURY LEARNING AND INFORMATION. All rights reserved.

This publication, portions of it, or any accompanying software may not be reproduced in any way, stored in

a retrieval system of any type, or transmitted by any means, media, electronic display or mechanical display,
including, but not limited to, photocopy, recording, Internet postings, or scanning, without prior permission in
writing from the publisher.

Publisher: David Pallai

MERCURY LEARNING AND INFORMATION
22841 Quicksilver Drive

Dulles, VA 20166
info@merclearning.com
www.merclearning.com
1-800-758-3756

This book is printed on acid-free paper.

W. McAllister and S. Jane Fritz.
Programming Fundamentals Using Java: A Game Application Approach.
ISBN: 978-1-938549-76-2

The publisher recognizes and respects all marks used by companies, manufacturers, and developers as a
means to distinguish their products. All brand names and product names mentioned in this book are trade-
marks or service marks of their respective companies. Any omission or misuse (of any kind) of service marks
or trademarks, etc. is not an attempt to infringe on the property of others.

Library of Congress Control Number: 2014941166

141516321 Printed in the United States of America
This book is printed on acid-free paper.

Our titles are available for adoption, license, or bulk purchase by institutions, corporations, etc.
For additional information, please contact the Customer Service Dept. at 1-800-758-3756 (toll free). Digital
versions of our titles are available at: www.authorcloudware.com

The sole obligation of MERCURY LEARNING AND INFORMATION to the purchaser is to replace the disc, based on
defective materials or faulty workmanship, but not based on the operation or functionality of the product.

To the memory of my mother Alma, who cherished in me something she was not
afforded - a formal education.

—Bill McAllister

To all those who have taught me by example that “if you can dream it,
you can do it,” with gratitude.

—S. Jane Fritz

To our students, whose enthusiasm for learning has always
inspired us to pursue improved teaching techniques.

—Bill McAllister
—S. Jane Fritz

Contents

Preface
Acknowledgments
Credits

Chapter 1 Introduction

1.1 The Computer System
1.2 A Brief History of Computing
1.2.1 Early Computing Devices
1.2.2 Computers Become a Reality
1.2.3 Computer Generations
1.2.4 More Notable Contributions
1.2.5 Smaller, Faster, Cheaper Computers
1.3 Specifying a Program
1.3.1 Specifying a Game Program
1.4 Sample Student Games
1.5 Java and Platform Independence
1.5.1 The Java Application Programmer Interface
1.6 Object Oriented Programming Languages
1.7 Integrated Development Environments and the
Program Development Process
1.7.1 Mobile-Device Application Development Environments
1.8. Our Game Development Environment: A First Look
1.8.1 The Game Window
1.8.2 The Game Board Coordinate System
1.8.3 Installing and Incorporating the Game Package into a Program

XV

Xx1i1
XXV

— O 3 O W N =

13
15
17
17
19
21

22
25
26
26
27
28

1.8.4 Creating and Displaying a Game Window and Its Title
1.8.5 Changing the Game Board’s Size
1.9 Representing Information in Memory
1.9.1 Representing Character Data
1.9.2 Representing Translated Instructions
1.9.3 Representing Numeric Data
1.10 Chapter Summary

Chapter 2 Variables, Input/Output, and Calculations

2.1 The Java Application Program Template
2.2 Variables
2.3 Primitive Variables
2.4 System Console Output
2.4.1 String Output
2.4.2 The Concatenation Operator and Annotated Numeric Output
2.4.3 Escape Sequences
2.5 String Objects and Reference Variables
2.6 Calculations and the Math Class
2.6.1 Arithmetic Calculations and the Rules of Precedence
2.6.2 The Assignment Operator and Assignment Statements
2.6.3 Promotion and Casting
2.6.4 The Math Class
2.7 Dialog Box Output and Input
2.7.1 Message Dialog Boxes
2.7.2 Input Dialog Boxes
2.7.3 Parsing Stings Into Numerics
2.8 Graphical Text Output
2.8.1 The drawString Method
2.8.2 The draw Call Back Method
2.8.3 The setFont Method: A First Look
2.9 The Counting Algorithm
2.9.1 A Counting Application: Displaying a Game’s Time
2.10 Formatting Numeric Output: A First Pass
2.11 Chapter Summary

Chapter 3 Methods, Classes, and Objects: A First Look
3.1 Methods We Write
3.1.1 Syntax of a Method
3.2 Information Passing
3.2.1 Parameters and Arguments
3.2.2 Scope and Side Effects of Value Parameters
3.2.3 Returned Values
3.2.4 Class-level Variables

viii l Contents

28
29
30
30
31
32
34

39

40
41
42
44
44
44
45
48
50
50
53
54
56
58
59
60
60
64
64
65
67
67
68
70
71

75

76
76
79
79
82
84
85

33

34

3.5

3.6

3.7
3.8
3.9

The API Graphics Class
3.3.1 Changing the Drawing Color
3.3.2 Drawing Lines, Rectangles, Ovals, and Circles
Object Oriented Programming
3.4.1 What Are Classes and Objects?
Defining Classes and Creating Objects
3.5.1 Specifying a Class: Unified Modeling Language Diagrams
3.5.2 The Class Code Template
3.5.3 Creating Objects
3.5.4 Displaying an Object
3.5.5 Designing a Graphical Object
Adding Methods to Classes
3.6.1 The show Method
3.6.2 Constructors and the Keyword this
3.6.3 Private Access and the set/get Methods
3.6.4 The toString and input Methods
Overloading Constructors
Passing Objects To and From Worker Methods
Chapter Summary

Chapter 4 Boolean Expressions, Making Decisions,
and Disk Input and Output

4.1
4.2

43
4.4
4.5
4.6
4.7
4.8

4.9

Alternatives to Sequential Execution
Boolean Expressions
4.2.1 Simple Boolean Expressions
4.2.2 Compound Boolean Expressions
4.2.3 Comparing String Objects
The if Statement
The if-else Statement
Nested i f Statements
The switch Statement
Console Input and the Scanner Class
Disk Input and Output: A First Look
4.8.1 Sequential Text File Input
4.8.2 Determining the Existence of a File
4.8.3 Sequential Text File Output
4.8.4 Appending Data to an Existing Text File
4.8.5 Deleting, Modifying, and Adding File Data Items
Exceptions: A First Pass

4.10 Chapter Summary

&9
&9
90
93
93
94
94
95
96
98
100
102
103
107
109
116
121
125
128

137

138
138
139
140
143
144
150
158
160
169
172
173
175
175
179
179
179
185

Contents M ix

Chapter 5 Repeating Statements: Loops

5.1 A Second Alternative to Sequential Execution
5.2 The for Statement
5.2.1 Syntax of the for Statement
5.2.2 A for Loop Application
5.2.3 The Totaling and Averaging Algorithms
5.3 Formatting Numeric Output: A Second Pass
5.3.1 Currency Formatting
5.3.2 The DecimalFormat Class: A Second Look
5.4 Nesting for Loops
5.5 The while Statement
5.5.1 Syntax of the while Statement
5.5.2 Sentinel Loops
5.5.3 Detecting an End of File
5.6 The do-while Statement
5.6.1 Syntax of the do-while Statement
5.7 The break and continue Statements
5.8 Which Loop Statement to Use
5.9 The Random Class
5.10 The Enhanced for Statement
5.11 Chapter Summary

Chapter 6 Arrays

x l Contents

6.1 The Origin of Arrays
6.2 The Concept of Arrays
6.3 Declaring Arrays
6.3.1 Dynamic Allocation of Arrays
6.4 Arrays and Loops
6.5 Arrays of Objects
6.5.1 Processing an Array’s Objects
6.6 Passing Arrays Between Methods
6.6.1 Passing Arrays of Primitives to a Worker Method
6.6.2 Passing Arrays of Objects to a Worker Method
6.6.3 Returning an Array from a Worker Method
6.7 Parallel Arrays
6.8 Common Array Algorithms
6.8.1 Searching
6.8.2 Minimums and Maximums
6.8.3 Sorting
6.9 Application Programming Interface Array Support
6.9.1 The arraycopy Method
6.9.2 The Arrays Class
6.10 Multidimensional Arrays
6.10.1 Two-Dimensional Arrays

191
192
193
193
197
200
202
202
204
208
212
212
214
217
219
219
221
222
224
228
229

235

236
236
238
239
241
243
245
250
251
253
257
258
265
266
267
269
278
278
279
283
284

6.11 Deleting, Modifying, and Adding Disk File Items
6.12 Chapter Summary

Chapter 7 Methods, Classes, and Objects: A Second Look

7.1 Static Data Members
7.2 Methods Invoking Methods Within their Class
7.3 Comparing Objects
7.3.1 Shallow Comparisons
7.3.2 Deep Comparisons
7.4 Copying and Cloning Objects
7.4.1 Shallow Copies
7.4.2 Deep Copies and Clones
7.5 The string Class: A Second Look
7.5.1 Creating Strings from Primitive Values
7.5.2 Converting Strings to Characters
7.5.3 Processing Strings
7.6 The Wirapper Classes: A Second Look
7.6.1 Wrapper Class Objects
7.6.2 Autoboxing and Unboxing
7.6.3 Wrapper Class Constants
7.6.4 The Character Wrapper Class
7.7 Aggregation
7.8 Inner Classes
7.9 Processing Large Numbers
7.10 Enumerated Types
7.11 Chapter Summary

Chapter 8 Inheritance

8.1 The Concept of Inheritance
8.2 The UML Diagrams and Language Inheritance
8.3 Implementing Inheritance
8.3.1 Constructors and Inherited Method Invocations
8.3.2 Overriding Methods
8.3.3 Extending Inherited Data Members
8.4 Using Inheritance in the Design Process
8.4.1 Abstract Classes
8.4.2 Designing Parent Methods to Invoke Child Methods
8.4.3 Abstract Parent Methods
8.4.4 Final Classes
8.4.5 Protected Data Members
8.4.6 Making a Class Inheritance Ready: Best Practices
8.5 Polymorphism
8.5.1 Parent and Child References
8.5.2 Polymorphic Invocations

286
290

297

298
301
303
304
305
306
307
308
318
318
319
319
322
322
324
326
326
328
337
340
343
347

354
355
357
360
364
368
372
372
381
382
383
383
384
385
385
387

Contents W xi

8.5.3 Polymorphic Arrays 390

8.5.4 Polymorphism’s Role in Parameter Passing 392

8.5.5 The Methods getClass and getName and the instanceof Operator 393

8.6 Interfaces 398
8.6.1 Adapter Classes 405

8.7 Serializing Objects 406
8.8 Chapter Summary 411
Chapter 9 Recursion 417
9.1 What is Recursion? 418
9.2 Understanding a Recursive Method’s Execution Path 421
9.3 Formulating and Implementing Recursive Algorithms 423
9.3.1 The Base Case, Reduced Problem, and General Solution 423

9.3.2 Implementing Recursive Algorithms 425

9.3.3 Practice Problems 428

9.4 A Recursion Case Study: The Towers of Hanoi 429
9.5 Problems With Recursion 435
9.5.1 When to Use Recursion 437

9.5.2 Dynamic Programming 440

9.6 Chapter Summary 444
Chapter 10 Exceptions: A Second Pass 449
10.1 An Overview 450
10.2 Java’s Exception Classes and Exception Objects 451
10.3 Processing Thrown Exceptions 453
10.3.1 Nonerror Checking Use of Exceptions 459

10.3.2 The finally Clause 461

10.4 The throw Statement and Error Messages 464
10.5 Defining and Exception Classes 472
10.6 Chapter Summary 475
Chapter 11 Graphical User Interfaces 479
11.1 Overview 480
11.2 Enhancing Dialog Boxes 482
11.3 Creating a Graphical User Interface for an Application 487
11.3.1 The Content Pane 488

11.3.2 Creating and Displaying a Program Window 488

11.3.3 Adding GUI Components to a Window 492

11.4 Event Processing 500
11.4.1 Implementing Event Handler Methods 501

11.4.2 Registering the Event Handler 503

11.4.3 Paint Events, Jpanels and Two-Dimensional Graphics 509

11.4.4 Mouse, Keyboard, and Timer Events 512

xii @ Contents

11.5 Layout Managers
11.5.1 Designating the Layout Manager
11.5.2 Border Layout
11.5.3 Flow Layout
11.5.4 Grid Layout
11.6 Applets
11.6.1 Developing an Applet
11.6.2 HTML Document Basics
11.6.3 The Applet Execution Path
11.6.4 Incorporating GUIs and Two-Dimensional
Graphics into Applets
11.6.5 Portability and Security Issues
11.7 Chapter Summary

Chapter 12 Graphical User Interfaces: A Second Look

12.1 Borders, Check Boxes, and Radio Buttons
12.1.1 Borders
12.1.2 Check Boxes
12.1.3 Radio Buttons
12.2 Combo Boxes and Lists
12.3 Menus
12.3.1 Drop-Down Menus
12.3.2 Pop-Up Menus
12.4 File Chooser and Color Chooser Dialog Boxes
12.4.1 File-Chooser Dialog Box
12.4.2 Color-Chooser Dialog Box
12.5 Chapter Summary

Chapter 13 Generics and the API Collections Framework

13.1 Overview
13.2 Generic Methods
13.2.1 Overloading Generic Methods
13.2.2 Arrays as Generic Parameters and Returned Values
13.2.3 Copying a Generic Array
13.2.4 Operating on Generic Objects
13.3 Generic Classes
13.3.1 Generic Data Structure Classes
13.4 The API Collections Framework
13.4.1 Framework Interfaces
13.4.2 Framework Algorithms: The Collections Class
13.4.3 The LinkedList and ArrayList Classes
13.44 The HashSet, TreeSet, and LinkedSet Classes

522
523
524
527
529
531
532
534
535

536
543
544

549
550
550
551
555
563
572
572
581
585
585
587
590

595

596
596
600
603
606
608
611
615
621
622
622
623
630

Contents W xiii

13.5

13.4.5 The ArrayDeque and PriorityQueue Classes
13.4.6 The HashMap, TreeMap, and LinkedHashMap Classes
Chapter Summary

Chapter 14 Multithreading and Concurrency

14.1
14.2
14.3

14.4
14.5

14.6
14.7

Overview

Creating and Initiating Threads

Thread States

14.3.1 The New, Runnable, and Terminated States
14.3.2 The Blocked, Waiting, and Timed Waiting States
The Producer and Consumer Problem

Solutions to the Producer and Consumer Problem

14.5.1 Synchronizing a Buffer Class: Synchronized Methods
14.5.2 The API ArrayBlockingQueue Class

The Synchronized Statement

Chapter Summary

Appendix A Description of the Game Environment

Appendix B Using the Game Environment Package

Appendix C ASCII Table

Appendix D Java Key Words

Appendix E Java Operators and Their Relative

Precedence

Appendix F Glossary of Programming Terms

Appendix G Using the Online API Documentation

Appendix H Solutions to Selected Knowledge Exercises

Index

xiv Il Contents

630
633
637

643

644
645
649
649
651
652
660
660
668
673
677

683

691

693

697

699

701

709

713

725

Preface

This is a Java textbook for beginning programmers that uses game programming as a central peda-
gogical tool to improve student engagement, learning outcomes, and retention. Game programming
is incorporated into the text in a way that does not compromise the amount of material traditionally
covered in a basic or advanced programming course and permits instructors who are not familiar
with game programming and computer graphics concepts to realize the verified pedagogical advan-
tages of game programming.

The book’s DVD includes a game environment that is easily integrated into projects created
with the popular Java Development Environments, including Eclipse, NetBeans, and JCreator in a
student-friendly way and also includes a set of executable student games to pique their interest by
giving them a glimpse into their future capabilities. The material presented in the book is in full
compliance with the 2013 ACM/IEEE computer science curriculum guidelines and provides an
in-depth discussion of graphical user interfaces (GUISs). It has been used to teach programming to
students whose majors are within and outside of the computing fields.

Features

We use an objects-early approach to learning Java in that the defining and implementation of classes
is introduced in the middle of Chapter 3. In preparation for this material, the terms object and class
are introduced in Chapter 1 in the context of game piece objects and reinforced in Chapter 2 by
continually referring to strings as string objects and differentiating between the primitive types and
the String class. In addition, the concept of a reference variable is introduced within the concept
of string objects in Chapter 2, and students become familiar with the idea that classes contain data
members and methods via the chapter’s discussion of the Math class, dialog boxes, and the format-
ting of numeric values. All of this facilitates the discussion in Chapter 3 of the definition and imple-
mentation of methods and classes and the declaration of objects.

The pedagogical tool, game programming, makes the concepts of object-oriented programming
more tangible and more interesting to the student. For example, objects are output by drawing them
at their current location rather than outputting their (x, y) coordinates to the system console. The
functionality of set and get methods and the counting algorithm is illustrated by using them to
relocate and animate game piece objects and keep a game’s score. Decision statements are used to
reflect animated game pieces, detect collisions between them, and to decide when a game is over,
and loops are used to draw checkerboard squares and checkers. Because of this new pedagogical
approach, student smiles have replaced frowns, enthusiasm has replaced complacency, and “teach
us this” has replaced “do we have to know that?”” Our classrooms have been transformed from a
lecture-based venue to a highly engaged interactive learning environment.

Throughout the book, after a concept is introduced and discussed, its use is illustrated in a suc-
cinctly composed working program, and the parts of the program that utilize the new concepts are
fully discussed.

Use of the Book

The material in this book can be covered within two courses: a basic programming course followed
by an advanced programming course. The basic programming course would normally cover the
first seven chapters supplemented with selected materials from Chapters 8 and 10. The remainder
of the material would be covered in the advanced course. Alternately, the advanced topics can be
incorporated into several other courses such as the use of the GUI chapters in a Web-page-building
course, the use of the recursion, generics, and the Application Programming Interface (API) and
Collections Framework chapters in a data-structures course, and the multitasking and concurrency
chapter in an operating-system course.

The book is written in a way that it and its associated resources could not only be used at the
college level, but also at the high school level or used in a self-instructional mode.

Chapter Overviews

Chapter 1: Introduction

This chapter includes a brief history of computer science and topics that are fundamental to an
understanding of the concepts presented in the remainder of the textbook. These topics include
an overview of the computer system and the representation of data in memory, the programming
process and the role of an IDE in that process, platform independence and how Java achieves it, as
well as an overview of object-oriented programming and the Application Programming Interface
(API). Readers are asked to execute several student-written games contained on the book’s DVD,
which usually peaks their interest, as does the brief description of the game environment included
in this chapter.

Chapter 2: Variables, Input/Output, and Calculations

Primitive variables, dialog box input, performing calculations, and performing output to dialog
boxes, the system console, and to the game-board window are discussed in this chapter. The dec-
laration of objects and the topic of reference variables are introduced within the context of the

xvi l Preface

declaration of String objects, as are the topics of classes and methods within the chapter’s discus-
sion of the Math class, the formatting of text and numeric output, and graphical text output.

Chapter 3: Methods, Classes, and Objects: A First Look

The foundational object oriented programming concepts used in the next three chapters are dis-
cussed in this chapter. It begins with the techniques used to write methods and pass information via
value parameters and return statements, and the Graphic class’s two-dimensional shape-drawing
methods are used in the discussion of parameter passing. The techniques used to specify and write
classes are then discussed via a progressively developed game piece class’s UML diagram and the
progressive implementation of its data members, constructors, and methods. The motivation for set
and get methods, and the toString, input, and show methods are discussed and these methods
are implemented. Throughout the chapter, sketches are used to illustrate the reference variable and
data-member memory model, and the chapter concludes with a graphical application that utilizes
the learned concepts.

Chapter 4: Boolean Expressions, Making Decisions, and Disk Input and Output

This chapter begins a two-chapter sequence on control of flow. After a discussion of Boolean expres-
sions and relational and logic operators, the students are introduced to Java’s if, if-else, and
switch statements. Their use is illustrated within a graphical context to reflect animated objects,
detect when they collide, and to decide which direction to move them in response to a keystroke
input. Disk text file I/O is also introduced in this class, which is preceded by a discussion of input
using the scanner class and followed by an introduction to the concept and processing of thrown
exceptions. The chapter concludes with a graphical application that utilizes the learned concepts.

Chapter 5: Repeating Statements: Loops

The for, while, do-while, and enhanced for loops are presented in this chapter, as are the con-
cepts of counting loops, sentinel loops, and nested loops. The role that the break and continue
statements play in repetition constructs is discussed, and Chapter 2’s discussion of the formatting
of numeric information and the generation of pseudorandom numbers is extended via a discussion
of currency formatting and the API DecimalFormat and Random classes. The chapter includes
with a discussion of which loop construct to use for a particular application, and uses a graphical
guessing game application and an application that draws a checker board to illustrate these learned
concepts.

Chapter 6: Arrays

We placed this chapter after the loops chapter in an effort to immediately reinforce the student’s
understanding of loops via a discussion of the role loops play in the processing of arrays and the
implementation of that processing. The chapter begins with a discussion of the concept of an array
and arrays of primitive variables, and it illustrates the primitive array memory model. It then extends
these concepts to arrays of reference variables and the objects they reference, and it discusses the
passing of arrays to and from methods and illustrates the memory model used to accomplish this.
The concept of parallel arrays is discussed as well as the array copying, sorting, minimum, and

Preface W xvii

maximum algorithms and the API implementations of these algorithms. The chapter also discusses
multidimensional arrays and the role arrays play in the addition, and deletion of information con-
tained in disk files. The learned concepts are illustrated within graphical applications that use arrays
of game piece objects to display an animated parade and to sort and locate particular game piece
objects.

Chapter 7: Methods, Classes, and Objects: A Second Look

This chapter extends the object oriented programming concepts discussed in Chapter 3 and serves
as the OOP foundation on which the remaining chapters of the text are built. It begins with a discus-
sion of static data members, shallow and deep copying and comparisons, and the cloning of objects.
The concept of aggregation and its implementation is then discussed, as are inner classes and their
methods and the autoboxing feature of the wrapper classes. The processing of large numeric values
is also covered in this chapter, as well as enumerated types and the methods of the String class.
The learned concepts are illustrated within graphical applications that clone objects, use aggregated
game piece objects, parse words from sentences, and perform calculations on large numbers.

Chapter 8: Inheritance

In this chapter, the terminology and concept of inheritance are discussed, as is the way this concept
is used in the design and implementation phases of a software project to reduce the time and effort
required to complete the project. The topics of extended classes, overriding methods, sub and super
classes invoking each other’s methods, and the role of abstract and final classes and methods in the
design process are also discussed. All of these topics lead into a discussion of polymorphism and
polymorphic arrays and the role of polymorphism in the design process. The chapter concludes
with a discussion of interface and adapter classes and the serialization of objects. These learned
concepts are illustrated in an evolving series of graphical applications that begin with the inheritance
of a boat’s hull and ends with a polymorphic display of all of the types of boats in a boat dealer’s
inventory.

Chapter 9 Recursion

This chapter begins by explaining the concept of recursion and recursive methods and a methodol-
ogy for formulating and implementing recursive algorithms correctly. It then illustrates the use of
the methodology in the discovery and implementations of several recursive algorithms, including
the Towers of Hanoi. As students progress through the discovery and implementation of these algo-
rithms, they develop the ability to think recursively and to extend the methodology to the discovery
and implementation of other recursive algorithms. The chapter concludes with a discussion of the
runtime problems associated with recursive algorithms, the role of dynamic programming in the
implementation process, and when it is appropriate or efficient to use recursion in the programs we
write. The learned concepts are illustrated in applications that compute the terms of the Fibonacci
sequence, draw a Sierpinsky fractal, and solve the Towers of Hanoi problem.

xviii Il Preface

Chapter 10: Exceptions: A Second Pass

Chapter 4’s discussion of catching exceptions thrown from methods we invoke is expanded upon in
this chapter, which discusses the throwing of exception objects from methods we write. The impact
that this has on a method’s reusability is discussed and illustrated, as is the ability to create and
process exception error messages. In addition, the motivation for creating new exception classes
is discussed, as well as the techniques for implementing these classes and using the concept of an
exception in a non-error checking mode. The learned concepts are illustrated in several applications
that include the use of exceptions in a graphical application to keep a game piece on a game board.

Chapter 11: Graphical User Interfaces

This chapter presents methods used to display enhanced dialog boxes and the fundamental tech-
niques used to incorporate a graphical user interface (GUI) into an application and a Web-based
applet program. These techniques include the building of an interface that contains two-dimensional
shapes and text fields, labels and button components, and the sizing and positioning of these com-
ponents within the interface with and without the use of a layout manager. The techniques used to
write and register event-handler methods that respond to the program user’s interaction with these
interfaces via mouse actions and keystrokes, and respond to the expiration of timer intervals are
also discussed. The chapter concludes with a discussion of the implementation of Java applets, the
downloading and execution of these programs by a Web browser, and the security issues associated
with applets. The learned concepts are illustrated in several applications that use GUISs, a functional
applet, and game applications built without the use of the book’s game environment.

Chapter 12: Graphical User Interfaces: A Second Look

The GUI components discussed in Chapter 11 are expanded upon in this chapter to include radio
buttons, check boxes, combo boxes, lists, and drop-down and pop-up menus. The chapter also
includes a discussion of the use of API dialog boxes that facilitate the specification of a file path
to be used in a file I/O operation and the selection of a color to be used in a graphical application.
These learned concepts are illustrated in an evolving series of GUI applications that solicit a meal
choice from the program user and an application that permits the user to select the background color
of the application’s window.

Chapter 13: Generics and the API Collections Framework

This chapter begins by introducing the concept of generics and its role in extending the reusability
of the methods and classes we write. It discusses the techniques used to implement a generic method
that can be passed any type of object and a generic class whose data members’ types can be speci-
fied when an instance of the class is created. The chapter concludes with a discussion of the API
Collections Framework, which contains a set of generically implemented data structure classes,
generic methods that operate on the data stored in these classes, and a set of generic interfaces asso-
ciated with these classes. These learned concepts are illustrated in a set of applications that imple-
ment generic methods and a generic data structure class, and applications that use two of the generic
classes in the Collections Framework to store a data set.

Preface M xix

Chapter 14: Multithreading and Concurrency

The terminology, concepts, advantages, implementation, and problems associated with multi-
threaded programs are discussed in this chapter. After discussing the implementation of multithread
applications in Java and the states in which a thread can exist during its lifecycle, our attention
turns to the discovery of the problems, including the Producer-Consumer problem, associated with
sharing data between threads. Armed with an understanding of these problems, the student is then
introduced to the synchronized statement and synchronized methods used to avoid these problems.
The chapter concludes with a discussion of the API class ArrayBlockingQueue, which is used to
share data between threads in a problem-free (thread-safe) way. The learned concepts are illustrated
in a set of multithreaded applications that share data in an unsafe and safe way and an application
that uses an ArrayBlockingQueue instance to share data among threads.

Appendices of the Textbook

The eight appendices contain:
* A description of the game programming environment (Appendix A)
* Directions on how to incorporate the game environment into a programming project
(Appendix B)
Note: The book’s DVD contains the game environment and predefined Eclipse, NetBeans,
and JCreator project templates that have the game environment incorporated into them.

* An ASCII table that contains the decimal, octal, hexadecimal, and binary representation of
each the characters defined in the table (Appendix C)

* A list of Java keywords (Appendix D)

* A list of all of the Java operators and their precedence (Appendix E)

e A glossary of programming terms (Appendix F)

* A brief description of how to use the API online documentation (Appendix G)

* Answers to the odd numbered Knowledge Exercises that appear at the end of each chapter to
facilitate student self-instruction outside the classroom (Appendix H).

The Book’s DVD

The DVD in the back of the book contains a table of contents and the following materials, arranged
in separate folders:
* Samples of student-written games in an executable format with instruction on how to run
them

* The game environment

o Eclipse, NetBeans, and JCreator template projects with the environment incorporated
into them and instructions on how to use them to begin a new project without altering
the system’s CLASSPATH variable

o A description of the environment and its call back methods used to draw and animate
objects and respond to mouse, keyboard, and timer events

o The environment’s classes and methods in the form of class files, a jar file, and an
importable package

xx Il Preface

The source files for all of the applications presented in the text
All of the book’s figures
All of the book’s appendices

The Instructor’s DVD (available upon adoption to instructors)

The DVD contains a table of contents and the following materials, arranged in separate folders:

Answers to all of the knowledge exercises that appear at the end of each chapter
Microsoft PowerPoint lecture slides for each chapter

The source files for all of the applications presented in the text

All of the book’s figures

Samples of student-written games in an executable format with instruction on how to run

them

Digital Versions

Digital versions of this text and its resources are available on the publisher’s electronic delivery site,

www.authorcloudware.com, as well as other popular e-vendor sites.

W. McAllister
S. Jane Fritz
Patchogue, NY
August, 2014

Preface W xxi

Acknowledgments

We would like to thank three of our students who graciously granted us permission to include their
game projects on the DVD that accompanies this book: Arielle Gulino, Andrew Zaech, and Ryan
McAllister. We also thank all of our students whose enthusiasm for the incorporation of game pro-
gramming into our pedagogy was the inspiration for the preparation of this book.

We would also like to thank the administration of St. Joseph’s College and the members of the
Promotions and Awards Committee for granting Bill a sabbatical, which was dedicated to the prepa-
ration of this manuscript, as well as our colleagues, and the entire St. Joseph’s College Community
who offered encouragement and support during its preparation.

We also thank David Pallai, the publisher and founder of Mercury Learning and Information for
establishing and managing a publishing company that produces a high-quality product at an afford-
able cost, and his production team for guiding us through the development and production process,
specifically Jennifer Blaney and Meg Salvia.

Finally, we would like to thank our families and friends for their endless patience when we were
too busy to be ourselves.

1o the Students

It is our hope that the approach to the material in this book will challenge you, engage you,
and inspire you to continue your study of computer science and to enjoy a rewarding career by
immersing yourself in this area of national need.

Credits

Chapter 1

Computer © Robert Lucian Crusitu/Shutterstock.com, Image ID: 156076811

Figure 1.5 Abacus, by Gisling (Own work) [CC-BY-3.0 (http://creativecommons.org/licenses/
by/3.0)], via Wikimedia Commons), (http://upload.wikimedia.org/wikipedia/commons/d/d4/
Positional decimal system_on_abacus.JPG)

Figure 1.6 Slide rule, by Ricce (Own work) [Public domain], via Wikimedia Common,
(http://upload.wikimedia.org/wikipedia/commons/9/98/Regolo_calcolatore.jpg)

Figure 1.7 Blaise Pascal, by Mahlum (Own work) [Public domain], via Wikimedia Commons,
(http://upload.wikimedia.org/wikipedia/commons/4/4d/Pascal_Blaise.jpeg)

Figure 1.8 Jacquard’s Loom,
(http://upload.wikimedia.org/wikipedia/commons/6/65/Jacquard_loom.jpg)

Figure 1.9 Charles Babbage, (http://upload.wikimedia.org/wikipedia/commons/1/1d/Charles_
Babbage Difference Engine Nol.jpg)

Figure 1.10 Ada, Margaret Sarah Carpenter [Public domain], via Wikimedia Commons (http://
commons.wikimedia.org/wiki/Ada_Lovelace#mediaviewer/File:Carpenter portrait of Ada
Lovelace - detail.png)

Figure 1.11 Hollerith (https://www.census.gov/history/img/HollerithMachine.jpg)

Figure 1.12 Turing Statue © Guy Erwood/Shutterstock.com

Figure 1.13a. Troubleshooting the ENIAC (http://ftp.arl.army.mil/ftp/historic- computers/jpeg/
eniac3.jpg)

Figure 1.13b. Troubleshooting the ENIAC (http://ftp.arl.army.mil/ftp/historic- computers/jpeg/
eniacl.jpg)

Figure 1.14a. Programming the ENIAC (http://ftp.arl.army.mil/ftp/historic-computers/jpeg/first
four.jpg)

Figure 1.14 b. Programming the ENIAC (http://ftp.arl.army.mil/ftp/historic-computers/gif/eniac4.
gif)

Figure 1.15 John von Neumann, (Public domain), (http://commons.wikimedia.org/wiki/
File:JohnvonNeumann-LosAlamos.gif)

Figure 1.16 Grace Hopper (http://www.history.navy.mil/photos/pers-us/uspers-h/g-hoppr.htm)
Figure 1.17 Grace Hopper’s Bug (http://www.history.navy.mil/photos/pers-us/uspers-h/g-hoppr.
htm)

Figure 17.18 Steve Jobs, by Kees de Vos from The Hague, The Netherlands [CC-BY-SA-2.0 (http://
creativecommons.org/licenses/by-sa/2.0)], via Wikimedia Commons, (http://upload.wikimedia.org/
wikipedia/commons/5/54/Steve Jobs.jpg)

Figure 1.19 Bill Gates, by Matthew YoheAido2002 at en.wikipedia [CC-BY-3.0 (http://creative-
commons.org/licenses/by/3.0)], from Wikimedia Com, (http://upload.wikimedia.org/wikipedia/
commons/7/7f/Bill_Gates_2004 cr.jpg)

Figure 1.20 Vinton Cerf and Robert Kahn (http://georgewbush-whitehouse.archives.gov/
ask/20051109-2.html)

Figure 1.21 Donald Knuth (Case Alumni Association and Foundation 2010, Flicker and (http://
www.casealum.org/view.image?1d=1818)

Figure 1.22 Tim Berners-Lee, Courtesy of World Wide Web Consortium, Massachusetts Institute of
Technology (www.w3.org/People/Berners-Lee)

Chapter 3

Green tea cup on windowsill © GoodMood Photo/Shutterstock.com, Image ID: 158310728
Chapter 4

Two Game Figurines © Melanie Kintz, Mellimage/Shutterstock.com, Image ID: 70027117
Chapter 5

Loops of a scaring roller coaster © Marcio Jose Bastos Silva /Shutterstock.com, Image ID: 97819241
Chapter 8

Boats on phewa-lake-nepal © Worapan Kong /ShutterStock.com, Image ID: 132349601
Chapter 9

Nested Traditional Matryoschka Dolls © PiXXart/Shutterstock.com, Image ID: 112054022
Chapter 10

Construction site © Victor Correia/ShutterStock.com, Image ID: 113180041

Chapter 11

Pocket sliding fifteen puzzle game © Coprid/ShutterStock.com, Image ID: 81197962
Chapter 12

Vector Retro Menu Design © Yienkeat /ShutterStock.com, Image ID: 108289445
Chapter 13

Collection of spaceship, planets and stars © Motuwe/ Shutterstock.com, Image ID: 140336917
Chapter 14

Maze Game with Solution © VOOK /ShutterStock.com, Image ID: 95912809

xxvi l Credits

CHAPTER 1

INTRODUCTION

1.1 The Computer Systemcccoviinnnn... 2
1.2 A Brief History of Computing 5
1.3 Specifyinga Program 13
1.4 Sample Student Games 17
1.5 Java and Platform Independence 17
1.6 Object-Oriented Programming Languages. 21
1.7 Integrated Development Environments

and the Program Development Process. 22
1.8 Our Game Development Environment: A First Look . . .26
1.9 Representing Information in Memory. 30
110 Chapter Summary 34

In this chapter

This chapter presents topics that are fundamental to computing and the programming
process and discusses tools that programmers use to write programs. Because the focus of
this text is on learning to program, an understanding of these concepts and tools is essential.
The topics include a brief history of computing, which will highlight some of the important
contributions to the field and facilitate an understanding of the modern computer system

as well as how data is stored. The tools discussed in the chapter are used to develop an
unambiguous description of a program and to minimize the effort required to transform this

description into a functional program that can run on any computer system or mobile device.
After successfully completing this chapter, you should:

* Understand the hardware and software components of a computer system

* Gain an appreciation for the history and evolution of computing

* Be able to specify simple programs and games

* Have used some examples of student-written game programs

* Understand why Java programs can be run on any computer system

» Be familiar with the concept of objects, classes, and the object-oriented programming paradigm

* Understand the programming process and the role of Integrated Development Environment
programs in this process

* Be familiar with the features of the game-development tool on the CD that accompanies
this textbook

* Understand how data is represented inside computer systems

2 B Programming Fundamentals Using Java

THE COMPUTER SYSTEM

Over the last twenty years, computers and the use of the Internet have become part of our
everyday lives. Daily communication that was performed using postal systems and telephone con-
versations are now performed more efficiently using computer-based e-mails and text messaging.
Much of the information gathering we performed in libraries is now done from the comfort of our
homes using a computer attached to the Internet, as is much of the shopping we do. As a result, the
number of computers available in the world continues to grow (Figure 1.1).

Proliferation of Computers

900

800
ad —e—USA

700 f

600 —B— Austrailia

500
400 // Singapore
/ Switzerland

300 =
200 - —%— China

Number of Computers per
1,000 Citizens

100
0 *— *— — X
Year
Figure 1.1

Growth in the number of computers per capita over a fifteen-year period.

In many of the developed countries of the world there is now one computer, or more accurately,
one computer system for every citizen in the country. Although many of these people would say that
they use a computer every day, they really should say that they use a computer system every day.

As shown in Figure 1.2, a computer system is comprised of two major components: software
and hardware. As its name implies, hardware is the hard, or tangible, part of the computer system.
It is the collection of electronic circuits, mechanical devices, and enclosures manufactured in a
factory. When we purchase a computer system and look into the box it comes in, what we see is
the hardware.

However, the box also contains software, but, as its name implies, it is the soft, or less-tangible
portion of the computer system, and so it is not as easy to detect. Software, or programs, consists

Computer System

Hardware Component Software Component
(Electronic circuits, enclosures, (Instructions to be
mechanical devices) executed by the hardware)
Figure 1.2

The two major components of a computer system.

Chapter 1 - Introduction Il 3

of sequences of instructions written by programmers to perform specific tasks. These instructions
are executed by the computer system’s hardware, and both components are essential to a computer
system. A computer system that contained only hardware would have no instructions to execute, so
it would do nothing but consume electrical power. A computer system that contained only software
would not be able to execute the program’s instructions.

The software of a computer system is comprised of two major subcomponents: operating sys-
tem software and application software (Figure 1.3). Microsoft Windows, Apple OS, and Linux are
all examples of operating system programs. This set of programs contains instructions to manage
the hardware resources of the computer system and provides an interface, usually a point-and-click
interface, through which the user interacts with the computer system. In addition, most application
software interacts with the hardware through various groups of operating system instructions.

Although nonoperating system software can be categorized in several groupings, we will con-
sider all nonoperating system software to be collected into one group, application software, as
shown in Figure 1.3. In this textbook, we will learn how to write application software using the
programming language Java.

Software Component

(Instructions)
I
I I
Operating System Application Software
Software (MS Word, Angry Birds,
(Windows, OS, and Linux) Internet Explorer)

Figure 1.3
Computer software subcomponents.

The hardware of the computer system can be divided into three main categories, or subcom-
ponents, based on the function they perform. Hardware that communicates with humans and other
computer systems is grouped into the category input/output (I/O) devices. Hardware used to store
information inside the computer system is grouped into the category storage devices. Finally, all
other functions performed by the hardware are part of a category named the central processing
unit (CPU).

Figure 1.4 shows the standard conceptual arrangement of the three hardware categories with
the CPU at the center of the arrangement. The storage devices are shown on the right and bot-
tom of the figure and are divided into two types of devices: backing storage, often referred to
as secondary storage, and random access memory (RAM), also called main memory. With the
exception of backing storage, each of the hardware components has been assigned an acronym,
which is shown parenthetically below the name of the component in Figure 1.4. For brevity,
the components are most often referred to using their acronyms: I/O devices, CPU, and RAM
(pronounced as “ram”).

The arrows into and out of the I/O devices at the top left of Figure 1.4 indicate the flow of
information entering (input) and leaving (output) the computer system. The other arrows in the

4 B Programming Fundamentals Using Java

inout)]
inpu input |_input
Input/Output Central .
Devices Processing Unit Exeldlu
(I/0 Devices) (CPU) Storage
output :output output
A
input output
A
Random Access
Memory
(RAM)
Storage Devices —
Figure 1.4

Arrangement of the hardware subcomponents of a computer system.

figure represent the flow of information among the computer-system components. The central
processing unit can receive information from (arrows labeled “input”) and send information to
(arrows labeled “output”) the other system components. The flow of information is always relative
to the CPU. Information sent to the CPU is considered input, and information sent from the CPU
is considered output.

Hardware that communicates with humans and other computer systems is grouped into the
component I/O devices. These devices are the interface between the computer system and the rest
of the world. Input devices send information into the system. Examples of input devices include
a keyboard, a touch screen, a mouse, a microphone, a digitizer, and a modem. Output devices
send information out from the system. Examples of output devices include a monitor, a printer, a
speaker, and a modem. A modem is both an input and output device and is normally used to trans-
fer information between computer systems.

Hardware devices that have the ability to store and recall information are grouped into the
component storage services. All but one of these devices fall into the subcomponent backing stor-
age, shown on the top right side of Figure 1.4. Examples of storage devices include hard drives,
flash drives, subscriber identification module (SIM) cards, CD drives, and magnetic tape drives.
One storage device, random access memory (RAM) is depicted separately at the bottom of Figure
1.4. One difference between this storage device and all of the other storage devices is its speed. It
can access information, meaning store and recall information, faster than any other storage device.
Its information-access speed approaches the speed at which the CPU can transfer information.

Programs run faster when their instructions are stored in RAM, so it is an advantage to have
a high-capacity RAM in a computer system. Unfortunately, the materials and manufacturing pro-
cess used to achieve RAM’s speed make it the most expensive type of storage. To make computer
systems affordable, backing-storage devices are added to the system. When a program is in execu-
tion, the operating system software attempts to transfer the program’s instructions and the data the
instruction processes from backing storage to RAM before this information is needed by the CPU.

Chapter 1 - Introduction M5

Another reason for adding backing storage, or secondary storage, to a computer system is the
fact that RAM is volatile, which means that it only retains its memory when it is attached to an
electrical power source: no electricity, no memory. All backing-storage devices are nonvolatile,
which means that the information they store is not lost when they are detached from a power
source. As a result, these devices can be used to archive program instructions and data within the
computer system when it is powered down (e.g., hard drives), and can be used to manually trans-
port information between computer systems (e.g., flash drives).

The I/0 and storage components of the computer system give us the ability to transfer informa-
tion into and out of the computer system and the ability to store and recall that information. The
CPU depicted in the center of Figure 1.4 gives us the ability to process the information, and so it
is aptly named the central processing unit. If we were inclined to designate one of the computer-
system components as the brain of the system, we would probably bestow that title on the CPU.
However, despite the remarkable tasks that computers perform, the CPU’s electronic circuits only
perform five very basic processing operations:

1. Transfer information (i.e., instructions and data) to and from the other components of the
computer system and interpret instructions

Store a very small amount of information, e.g., one instruction and sixteen pieces of data

3. Perform arithmetic operations such as addition, subtraction, multiplication, and division
Perform logic operations involving relational operators (such as 10 <6, and a>=12) and
logical operators (such as A AND B, and A OR B)

5. Execute instructions in the order in which they are written or skip some instructions based
on the truth value of a logic operation

The magic here is that all of the remarkable tasks that computers do have been expressed as a
sequence of these five basic processing operations. A step-by-step sequence of these operations to
perform a particular task is called an algorithm. The most difficult part of a programmer’s job is to
develop, or discover, algorithms. Once an algorithm is discovered, it is written into a programming
language and verified via a testing process.

Definition

An algorithm is a step-by-step sequence of the five processing operations a computer system
can execute to solve a problem or perform a particular task.

A computer program is an algorithm written in a programming language.

A BRIEF HISTORY OF COMPUTING

Long before our modern computers existed, people had the need to count or compute. As a
matter of fact, the early meaning of the term computer referred not to a machine but to a person who
performed calculations. In this section, we will see the amazing development of the revolutionary
machines that have changed the way we learn, teach, shop, do research, and are entertained.

6 M Programming Fundamentals Using Java

Early Computing Devices!

If computers are really such an important part of our lives today, you might wonder and ask the
question: Who invented the computer?

Although this is a simple question, it does not have a simple answer such as Thomas Edison
invented the light bulb or Alexander Graham Bell invented the telephone. One reason for this
complexity is that computers evolved over thousands of years, and many people from different
cultures and diverse fields such as mathematics, physics, engineering, business, and even textile
design were involved in laying the foundation for the modern
electronic computer.

The roots of computing dates from about 50,000 to
30,000 BC when people counted their sheep and other pos-
sessions using their fingers, stones, or notches on sticks. The
first computing device, the abacus, was introduced in China
around 2,600 BC and used pebbles or stones. A later version
of the abacus (shown in Figure 1.5) used beads that could be
moved on a wire frame to perform basic counting and arith-
metic functions. These were widely used in Europe and Asia,
and some of these devices are still in use today.’

Figure 1.5
The abacus.

It was not until the seventeenth century that there were
other notable attempts at building computing devices. Napier’s
bones and the slide rule (Figure 1.6) were two of these devices.

Figure 1.6
A typical modern slide rule.

Blaise Pascal (Figure 1.7), at the age of 18, built a mechanical calculator called the
Pascaline to perform basic addition and multiplication.

Because manufacturing technology was not yet well developed, these devices had
to be carved or forged by hand, which required tedious work. Although it would seem
likely that the development of computing devices would continue at a more rapld pace,
very little progress was made from the seventeenth century until the
1800s, and we might ask why. Perhaps it was because this was a time of
war, colonization, and the struggle for survival in much of the world. (If

Figure 1.7 you think about the United States, for example, from 1776 through the

Blaise Pascal: 1800s, building a calculator was not considered a priority at that time.)
hilosopher,

Ewathen?atician In 1801, Joseph Marie Jacquard, a textile designer, discovered that

inventor. he could program his weaving loom (Figure 1.8) to create intricate pat-

terns in the fabric, by storing the instructions on punched cards or paper
tape. These binary instructions directed the loom to raise or lower certain threads
depending upon whether or not a hole was punched on the tape. Later on, this
concept would develop into the idea of creating a stored program computer based
on binary instructions; it would be implemented in the twentieth century using

punched cards for computer input. Figure 1.8
A Jacquard Loom.

Chapter 1 - Introduction W7

Computers Become a Reality

Charles Babbage, a mathematician working in England around 1822, designed the prototype of
a machine, known as the Difference Engine, to compile mathematical tables. It was a large hand-
cranked machine built of metal wheels and gears and although he continued to add refinements
to it, he never fully completed it. By 1837, Babbage took his ideas one step further and designed a
more complex Analytical Engine Figure 1.9), which he envisioned to be a general purpose compu-
tational machine and which had many characteristics in common with modern computers. He de-
signed it to be steam powered, which would not make it portable, but would automate mathematical
calculations. Due to the limitations of available technology, it was not completed in his lifetime, but
it has recently been completed and works as he described it. Charles Babbage has been called the
father of the computer for his innovative work on the first mechanical computer.

Lady Ada Augusta Byron Lovelace (Figure 1.10), the daughter of the poet Lord Byron, became
intrigued with Babbage’s work and began to write instructions, or what we now call programs, for
his machine. She is known today as the first programmer, and the programming language used for
U.S. government applications is named Ada in her honor. Ada was unique in being a well-educated
woman, skilled in mathematics, at a time when women had little formal or advanced schooling.
She was able to perform the advanced mathematical and engineering design functions required for
programming a theoretical computer that was not yet completely operational.

In the 1890s, in the United States, Herman Hollerith was working on a mechanical calculator
and was asked by the government to design a machine that could record and store census data. The
population was growing so fast that hand calculation could not keep pace with the growing volume
of data: by the time the data was tabulated it was outdated and the next census had begun. Hol-
lerith used punched cards to input the data to his new machine (Figure 1.11), which successfully
compiled and tabulated even greater amounts of data in record time. Following this success, he
founded a company with Thomas Watson, which later became known for computing, the Interna-
tional Business Machine Corporation (IBM).

Figure 1.10
Figure 1.9 Lady Ada Augusta
Charles Babbage’s Analytical Byron Lovelace, the Figure 1.11

Engine. first programmer. Hollerith’s electric tabulating machine.

8 M Programming Fundamentals Using Java

Figure 1.12
Alan Turing, father of

In the 1900s, the demand for recording and processing large amounts of data
continued to increase, and there were numerous attempts to design more advanced
computing machines. The need came from businesses as well as the military. Large
universities and mathematicians throughout the world began to design and build these
early computing machines. Around 1939-1942, the Atanasoff-Berry computer (ABC)
was built by Dr. John V. Atanasoff and Clifford Berry at lowa State University. It was
the first electronic digital computer. At about the same time, Konrad Zuse, working
in Germany, built the first fully programmable computer, the Z3.

Also in the early 1940s, the Colossus was built with the assistance of the brilliant
British mathematician Alan Turing (Figure 1.12). It was designed as a code-breaking

theoretical computer machine that could decipher the German codes created with the Enigma encoding

science.

machine. Turing’s contribution to breaking the German codes helped to defeat Hitler
in World War II. Turing also explored Artificial Intelligence (Google “Turing Test” for specific
details), and he is highly regarded as the father of theoretical computer science, laying a foundation
upon which to build advanced computing machines.

In 1944, the Harvard Mark I was designed and built through the efforts of Howard Aiken
working with Grace Hopper. Built at Harvard University by IBM, the Mark [was the first elec-
tromechanical computer, and it was used to produce mathematical tables. It could be programmed
using paper tape.

The first electronic general purpose digital computer, the Electronic Numerical Integrator and
Computer (ENIAC) was built at the University of Pennsylvania in 1946 by John Mauchly and J.
Presper Eckert. This computer weighed 30 tons and had over 18,000 vacuum tubes and thousands
of electronic relays (Figure 1.13). It filled a large room that was required to be air conditioned
because of the heat this machine generated. It could add or subtract 5,000 times a second, a thou-
sand times faster than any other machine at that time. It also had modules to multiply, divide, and
calculate square roots.

(a) Replacing vacuum tubes. (b) Programming the ENIAC.
U.S. Army photos.

Figure 1.13
Troubleshooting the ENIAC.

Chapter 1 - Introduction W9

Most of the ENIAC’s programming was done by six women, including those shown in Figure 1.14.

U.S. Army photo U.S Army photo

Figure 1.14
First programmers of the ENIAC.

John von Neumann (Figure 1.15) proposed modifications to the ENIAC, which
included using binary instead of decimal numbers. His design for a stored program
binary computer where both the program and the data could be stored in the com-
puter’s memory became known as the von Neumann architecture, which is still in
use today. In 1945, he proposed the design for the Electronic Discrete Variable Au-
tomatic Computer (EDVAC) and later worked on the Institute for Advanced Study
(IAS) computer in Princeton. He is often called the father of the modern computer g; gure 1.15
and game theory. John von Neumann, father

of the modern computer
and game theory.

Computer Generations?

The computers that followed are usually grouped into generations, each characterized by a
specific component or technology. The dates are approximate.

First-Generation (1937-1946): Vacuum Tubes

These very large computers used thousands of vacuum tubes, generated a lot of heat, and were
fairly unreliable. Memory storage was on magnetic drums, input was performed using punched
cards or paper tape, and output was displayed on paper printouts. Computers of this generation
could only perform a single task, lacked an operating system, and were programmed using a
sequence of ones and zeros known as machine language. First-generation machines include the
ENIAC, Electronic Delay Storage Automatic Calculator (EDSAC) and EDVAC computers.

Second-Generation (1947-1963): Transistors

This generation of computers used transistors, which were much more reliable than the vac-
uum tubes they replaced. Transistors were also smaller, cheaper, and consumed less electrical

10 B Programming Fundamentals Using Java

power. Machine language was replaced with assembly language, which was a more English-like
language, and higher-level languages such as Common Business Oriented Language (COBOL)
and Formula Translation (FORTRAN) were developed for this generation of computers. In 1951,
the universal automatic computer (UNIVAC 1) was introduced as the first commercial com-
puter. In 1953, the IBM 650 and 700 series computers were introduced. Operating systems were
designed for these machines, and over 100 computer-programming languages were developed
during this generation. Storage media such as magnetic tape and disks were in use, and printers
were available for output.

Third-Generation (1964—1971): Integrated Circuits (IC) or “chips”

Transistors were miniaturized and placed on chips and integrated circuits (IC), developed by
Jack Kilby and Robert Noyce. This invention resulted in smaller, more powerful, more reliable,
and cheaper computers. Users could now interact with computers through keyboards and moni-
tors instead of punched cards and printouts. Operating systems monitored memory usage and
controlled the scheduling of multiple applications that could share the system resources.

Fourth-Generation (1971-present): Microprocessors and Very Large Scale
Integration (VLSI)

Very-large-scale integration (VLSI) resulted in thousands of computer circuits being reduced
to fit on a chip, reducing the room-size computers of the first generation to something that could
fit in your hand. Components of the computer, from the central processing unit and memory to
input/output controls, could now be located on a single microprocessor chip. In addition to their
small size, computers became affordable for individuals, and in 1977, the personal computer (PC)
became available from three companies: Apple, Tandy/Radio Shack, and Commodore. In 1980,
Microsoft released its disk operating system (MS-DOS), and in 1981, IBM introduced the PC for
home and office use. Three years later, Apple introduced the Macintosh computer with its icon-
driven interface. In 1985, Microsoft released the Windows operating system. Fourth-generation
computers also used graphical user interfaces (GUI, pronounced “gooey”) and provided a mouse
for ease of use. Object-oriented languages, such as Java, were developed for more efficient soft-
ware development. These smaller, more reliable and powerful computers could now be linked
together, resulting in the growth of networks and the Internet.

Fifth-Generation (Present and Beyond): Artificial Intelligence, Parallel Processing,
Quantum Computing

Fifth-generation computing devices are characterized by artificial intelligence and the ad-
vancement of devices that will respond to natural language and be capable of learning. Although
these features are still in the early stages of development, some applications such as voice recogni-
tion are currently available. The use of parallel processing, quantum computing, and nanotechnol-
ogy will help to achieve these advances and will change computing in the future.

Chapter 1 - Introduction I 11

More Notable Contributions

In addition to the achievements already mentioned, there were many others who
made notable contributions to the computing field. The names and contributions of a few
of these innovators follow, and you are invited to continue to add to the list.

She was one of the first programmers of the Harvard Mark I computer and is known for
the development of the first compiler and assembly language. Her work in programming
led to the development of the language COBOL, and she later worked on Ada.

Figure 1.16
She coined the term “debugging” when she removed a bug (or moth) from a comput- Admiral Grace
er’s circuitry that was interrupting the flow of electricity, and taped it into her notebook Hopper.
(Figure 1.17).

Steve Jobs (Figure 1.18) and Steve Wozniak were the cofounders of Apple Computers. The
Apple I was one of the three personal computers introduced in 1977 for home use. Together they
developed the point-and-click approach to computing. In 1984, they introduced the MAC OS that
developed into the modern graphical user interface, which today is standard on modern comput-
ers. Steve Jobs is also a cofounder of Pixar Animation and has been described as the father of the
digital revolution.

Bill Gates (Figure 1.19) and Paul Allen cofounded Microsoft, one of the largest U.S. corpora-
tions, and supplied the disk operating system (DOS) to IBM to run on its PCs. In 1985, Microsoft
developed a graphical operating system known as Windows, which is the operating system used
on over 80% of today’s computers.

James Gosling is credited with the development of the object-oriented programming language
known as Java. He is called the father of Java programming.

Bob Metcalfe and David Boggs invented the Ethernet, the technology upon which local com-
puter area networks are based.

Vinton Cerf (Figure 1.20a) and Robert Kahn (Figure 1.20b) are considered to be the fathers
of the Internet and the Transmission Control Protocol/Internet Protocol (TCP/IP) upon which the

e
- P S 0] i-o... Four ms #ui

-ﬂ " e ® o e ey
o e a8 omd 8 TRET TR] 'u-u_.-!::.

Yoot i A =
My o e s
* alwr el C’.__.'L';;fih..‘.-..q

Rel®ne Puuy ¢
< 3Vl

.

e S‘:.;:.'::ﬂ sess o] hay l...‘f...l

e alend g

Figure 1.18 Figure 1.19
Figure 1.17 Steve Jobs, cofounder of Bill Gates, cofounder of
Grace Hopper's first recorded computer “bug.” Apple Computer. Microsoft Corporation.

12 B Programming Fundamentals Using Java

Figure 1.21 Figure 1.22

Donald Knuth, father Tim Berners-Lee,
Figure 1.20 of the analysis of inventor of the World
Vinton Cerf and Robert Kahn, inventors of the Internet. algorithms. Wide Web.

Internet is based. Vinton Cerf created the first commercial Internet e-mail system and is now Vice
President and Chief Internet Evangelist for Google.

Donald Knuth (Figure 1.21), a computer scientist, mathematician, and Professor Emeritus at
Stanford University, has been called the father of the analysis of algorithms. His multivolume set
of books entitled 7The Art of Computer Programming is the classical reference for all programmers.
He is also the developer of the text document (TEX) typesetting system for creating high-quality
digital publications.

Tim Berners-Lee (Figure 1.22) is known as the inventor of the World Wide Web and continues
to direct the Web’s development as the director of The World Wide Web Consortium (W3C). He
is also a director of the World Wide Web Foundation, which furthers the potential of the Web to
benefit humanity.

E¥XA Smaller, Faster, Cheaper Computers®

Computing has made more progress in 15 years than transportation has made in 2,000 years,
having gotten smaller, faster, and cheaper during that time. Your cell phone today is about a million
times cheaper, a thousand times more powerful, and a hundred thousand times smaller than the one
computer that was used at MIT in 1965.

According to Ed Lazowska, chairman of the University of Washington’s Computer Science
and Engineering Department, if Detroit car makers could have paralleled the innovations that hard-
ware and software manufacturers have realized for computers, today’s cars would be tiny, power-
ful, and inexpensive. They would be as small as toasters, cost $200, travel 100,000 miles per hour,
and would run 150,000 miles on a gallon of fuel. “In Roman times, people traveled along on horses
or in carts at about 20 miles per day,” he said. “In the early part of this century, the automobile
allowed people to travel at 20 miles per hour. Today, supersonic military aircraft travel at about
20 miles per minute. That progress is about a factor of 1,000 in about 2,000 years,” Lazowska
wrote in an e-mail message.

Another analogy by Rick Decker and Stuart Hirshfield in The Analytical Engine states, “If
automotive technology had progressed as fast as computer technology between 1960 and today,

Chapter 1 - Introduction 13

the car today would have an engine less than a tenth of an inch across, would get 120,000 miles
per gallon, have a top speed of 240,000 miles per hour, and would cost $4.00. Also, at a recent
Computer Dealers Exhibition (COMDEX) meeting, Bill Gates is reported to have said that if GM
had kept up with technology like the computer industry has, we would all be driving $25 cars that
get 1,000 miles per gallon.

Computers and the programs that provide their instructions will continue to increase in speed,
reliability, and functionality, limited only by human creativity.

SPECIFYING A PROGRAM

As discussed in Section 1.1, an increasingly large number of people own and use a computer as
part of their everyday lives, yet a very low percentage of these computer users actually know how
to write a computer program. In fact, if you understand the material in the first two sections of this
textbook, you already know more about computer programming than most of the world’s popula-
tion. As a result, most programs are not written by the program users. Rather, they are written by a
group of computer processionals most people would refer to as programmers, but more accurately,
they should be called software engineers. A new program that does not meet the needs of the end
user is not going to be well received, so it is important that there be a way to describe the require-
ments of a new program in a way that is understandable to the end users.

Definition

A software engineer is a computer professional who produces programs that are on time, within
budget, are fault free, and satisfy the end users’ needs.

The more formal techniques for describing the requirements of a new program are part of the dis-
cipline of systems analysis, which is a subset of software engineering. These formal techniques are all
based on one specification of the arrangement of the components of the computer system shown Fig-
ure 1.4. They assume that the users’ interaction with the program is via the input and output devices,
so the simplest way for end users to define what task the program is to perform is to enter into con-
versation with a systems analyst aimed at defining the inputs to, and the outputs from, the program.

For example, suppose your friend Annie recently purchased a computer and is having trouble
managing her money. Knowing you completed a course in computer programming, she comes to
you for help. You and Annie enter into the following conversation, which typically involves the
probative words who, what, why, where, when, and how:

Annie: | want to know where my money goes.

You: OK Annie, what bills do you pay each month?

Annie: Well, there’s food, rent, electric, telephone, and clothing.

You: How much is each bill?

Annie: That’s part of the problem; they change each month, and so does my income be-

14 B Programming Fundamentals Using Java

cause | work on commission.
You: Well, do you know roughly what percent of your income is spent on each?

Annie: No, but | sure would like to know that. | have a feeling some months I’'m spending too
much of my income on food and clothing, which leaves me with no mad money.

You: What is mad money?

Annie: You know, money | can spend on anything | like other than these bills. | want to know
how much that is each month. | am sure someone is taking my money.

You: Gee, Annie, you sound a little paranoid.
Annie: You'd be paranoid too if everyone was out to get you!
You (whispered): Why do | bother?

Based on this conversation, you know the two things Annie would like her computer system
to determine and output are the amount of “mad money” (discretionary funds) she will have at
the end of a month and the percent of her monthly income she spent on each of her five monthly
bills. To determine this, she will have to input the amount of each of her five monthly bills and her
income for that month. You have decided to include the month and year as two additional inputs to
the program, so she will be able to save and distinguish one month’s results from another. A simple
description, or specification, for this program is shown below. It is a tabulation of the program
inputs and outputs preceded by the name of the program and a brief statement that describes the
overall task the program performs.

Program Specification

Program Name: Annie’s Money Manager

Task: To determine Annie’s monthly discretionary funds and the distribution of
her monthly expenses

Inputs (8): Month and Year
Income for the month
Amount spent during the month on each of the following five items: food,
rent, electric, telephone, and clothing

Outputs (6): Percent of monthly income spent on each of these five items:
food, rent, electric, telephone and clothing
Amount of discretionary funds

Typically, the program specification is refined through an iterative process that involves its
review by the end user and a subsequent conversation. This process could introduce more func-
tionality into the specification of Annie’s program. For example, it could also include the ability to
output an annual report showing the values of the six outputs for any given year, or perhaps for a
range of months. Obviously, this would expand the specification given above.

Given the specification of the program, the programmers’ goal is to write a program that ac-
cepts the specified inputs and produces the desired outputs. The programmers may have to consult

Chapter 1 - Introduction Il 15

with other experts if it is unclear to them how to determine the outputs from the given inputs. For
example, if the programmers assigned to write Annie’s program did not know how to compute
percentages, they would have to consult a mathematician.

Specifying a Game Program

The technique discussed to specify Annie’s program is similar to that of specifying any pro-
gram: conduct a brief conversation with the user and then tabulate the program’s name, the task it
performs, the inputs, and the outputs. This approach can also be used to specify a program that is
used to play a game. In addition, the realization that all game programs share a common set of fea-
tures can facilitate the specification process if the systems analysts include questions about these
features in the conversations they have with the game’s inventor.

For example, most games involve game objects (e.g., trucks, cars, and a frog). In addition,
all games have an objective or a way to win the game (e.g., moving a frog object to the other side
of a road without having it run over by a truck or a car). Most games also have other features in
common. A list of common features to include in a game’s specification conversation is given in
Figure 1.23.

¢ Name of the game

¢ Objects (starships, trucks, sling shots, etc.) that will be part of the game
¢ Objective of the game

e Way to calculate the score of the game

e Time limits imposed on the game

e Game pieces (objects) that will be animated

e Game pieces controlled by the game player (the program’s user)
¢ Input devices used to control the game objects

e Particular colors to include in the game

e Determining when the game ends

e Events that take place when the game ends

e Keeping track of the highest game score achieved and the name of the game player who
achieved it

Figure 1.23
Common game features.

Armed with this checklist of common game features, a typical conversation with your friend
Ryan (an aspiring game inventor who has not taken a programming course) could be:
You: Hi Ryan, what’s up?

Ryan: I've got a great idea for a video game called Deep Space Delivery.

16 M Programming Fundamentals Using Java

You: What is the objective of the game?

Ryan: To deliver as many supply packets as possible (picked up from a supply depot) to five
different planets before time runs out.

You: How is a player’s score calculated?

Ryan: The player gets one point for each packet delivered, and if the player delivers all of
the packets at the depot before the time runs out, the player receives one point for each
second of time remaining.

You: What is the time limit on the game, and how many packets will be in the depot?
Ryan: One minute and 30 packets.

You: Looks like the game pieces (objects) are the planets, the supply packets, and the sup-
ply ship. Is that correct?

Ryan: Yes, but don’t forget to include the supply depot.

You: How will the player move the supply ship and pick up and drop off the packets?
Ryan: Using keys on the keyboard.

You: Will any of the other game pieces be moving?

Ryan: Yes, the planets will be moving and bouncing off the edges of the game board. Also,
make one of the planets white and another red.

You: Would you want to keep track of the highest game score achieved and the name of the
game player that achieved it?

Ryan: Yes, that’s a good idea.

You: Sounds good Ryan. I'll write up a specification for the game for you to look over. Then,
I'll write the program, and we’ll split the profits. How’s that sound?

Ryan: How about a 40% share for you?
Ryan (whispered): It’s all my idea.

You: OK.

You (whispered): But I'm doing all the work.

Based on this conversation, the specification of Ryan’s game is given below.

Program Specification
Program Name: Deep Space Delivery

Task: A starship is to pick up supply packets at a supply depot and deliver as many
supply packets as possible to five moving planets before time runs out. The
player will receive one point per packet delivered and one point per second
remaining on the game time after all packets are delivered.

Inputs (7): The four cursor control keys (up, down, right, and left) used to control the posi-
tion of the starship

Chapter 1 - Introduction W 17

The ‘A’ key, which is used to pick up a supply packet when the ship is at the sup-
ply depot
The ‘Z’ key, which is used to drop off a packet when the starship is at a planet
The game player’s name input when the game is launched

Outputs (5): The time remaining in the game, in seconds, beginning from 60 seconds
The player’s score
The message “Game Over” when the game time reaches zero, or when all pack-
ets are delivered
The highest score achieved and the name of the person who achieved it to be
output to the game board and a disk file when the game time reaches zero

The details for more functionality could be added to the specification of Ryan’s program. For
example, the delivery of a packet to a faster moving planet could be awarded multiple points, mul-
tiple levels of difficulty could be added to the game, and the highest game score achieved with the
name of the game player who achieved it could be announced at the beginning of the game.

SAMPLE STUDENT GAMES

We will soon be able to write a program that implements the specification of the Deep Space

Delivery game presented in the preceding section. The game programs on the DVD that

'§ accompanies this textbook were specified and written by students enrolled in an intro-

% toe ductory programming course. To run these programs, simply double click the “Sample

Student Games” folder on the DVD and copy the subfolders onto your hard drive. Dou-

ble click one of the subfolders and then double click the file with the .jar extension. Running these

programs will give you a sense of what you will be able to accomplish after gaining an understand-
ing of the material in the first five chapters of this book.

JAVA AND PLATFORM INDEPENDENCE

A computer system’s platform is the CPU model and the operating system software it is run-
ning. For example, many PCs run on an Intel CPU/Windows platform, and Apple computers manu-
factured after the midpoint of 2011 run on an Intel CPU/OS X platform. As a result of the evolution
of CPUs and operating system software that has taken place over the last 30 years, there are many
different platforms in use today.

The variety of platforms has always been a problem for software developers because each plat-
form has a language of its own, meaning that a platform can only execute a program that is written
in its language. To produce a program that could run on two different platforms, the programmer
either had to write the program twice, first in the language of one platform and then in the language
of the other, or write the program in a more generic language (for example, C++) and then use two
other programs to translate that program into the language of the individual platforms. In this case,
the C++ program is referred to as source code, and the resulting translations of this source code are
called executable modules or executables.

18 B Programming Fundamentals Using Java

A Cat C++ translator A computer
program for the Intel Executable module for the Intel running an Intel
CPU/Windows CPU/Windows platform .| CPU/Windows
platform e platform
C++ translator A computer
N for the Intel Executable module for the Intel running an Intel
CPU/OS X CPU/OS X platform R CPU/OS X
platform platform
C++ translator A computer
» for the Motorola Executable module for the running a
CPU/Windows Motorola CPU/Windows platform | Motorola CPU/
platform "|Windows platform
Programmer’s Systems Program Users’ Systems

Figure 1.24
The C++ multiple-platform translation process.

When we consider the number of platforms that exist and the fact that writing in the language of a
particular platform is a very tedious and time-consuming process, writing programs in a generic lan-
guage is the most efficient and cost-effective approach. Figure 1.26 illustrates the use of this process
to produce executable modules for three different platforms. The programmer would have to translate
the program using three different translators to generate the three different executable modules.

During the early 1990s, the Internet was made commercially available to private individuals,
which made it possible for them to share information between their computer systems. The idea
that this information could be a program resident on one computer system (perhaps a program to
display a Website) presented a fundamental problem. If the two computers were not running the
same platform, the executable module downloaded from one platform (the host platform) would not
run on the other (the client platform), and the Website would not be displayed on the client machine.
Using the process illustrated in Figure 1.24 to produce a downloadable executable module for all
platforms was an impractical solution because, for one thing, a program that was written today
should be able to be run on the platforms of tomorrow. Fortunately, a team of computer scientists
at Sun Microsystems lead by James Gosling had already come up with a more practical solution.

The team’s idea was to change the process used to produce an executable module. Instead
of the host machine producing the executable module, the client machine would produce it. The
host machine would simply translate the program, written in a new programming language
named Java, into a set of byte codes. Byte codes should be thought of as a pseudo-executable
module for a virtual machine, named the Java Virtual Machine (JVM), which are not in the lan-
guage of any platform in existence. Once generated, the byte codes could then be downloaded to
any client machine, and the client machine would use a byte code translator program to translate
the downloaded byte codes into the language of its platform. Figure 1.25 illustrates the Gosling
team’s new process.

Java code
R —

Java translator
for the JVM

Download of the
JVM byte codes

Byte code
translator for
the Intel

Chapter 1 - Introduction Il 19

Executable module for the Intel
CPU/Windows platform

v

CPU/Windows
platform

Byte code
translator for
the Intel
CPU/OS X
platform

Executable module for the
Intel CPU/OS X platform

v

Byte code
translator for
the Motorola

CPU/Windows
platform

Executable module for the
Motorola CPU/Windows platform

v

<>

Programmer’s Systems

>

Program Users’ Systems

Figure 1.25
The Java multiple-platform translation process.

The grammatical rules for writing a program in the Java language were described by the

NOTE Gosling team in the Java Language Specification (JLS), available online.

To make this process work, Gosling’s team assumed that the manufacturer of the client com-
puter system would install a translator that translated Java byte codes into the language of their sys-
tem’s platform. Realizing that all future customers would want to attach their new computer to the
Internet, computer manufacturers complied and proudly advertised their system as “Internet ready.”

The fact that the same set of byte codes could be downloaded and used to produce an execut-
able module on any platform that had a byte code translation program on it made Java programs
platform independent. Programs written in Java (0j20r more accurately, the program’s byte codes)
could be downloaded, translated, and then executed on any platform that contained a platform-
specific byte code translator.

EEEE The Java Application Programmer Interface

In addition to providing a translator that translates Java programs into byte codes, the creators
of Java also identified a group of data (e.g., the mathematical constant pi) and tasks (e.g., comput-
ing the square root of a given number) that were likely to be used in Java programs. A description
of these data and tasks was then published as the Java Application Programming Interface (API)
specification. If a Java programmer wanted to create a new window for a program, which normally
most programmers want to do, it could be easily done by incorporating the API task that contained
all of the Java byte codes necessary to display a window into that program.

For ease of use, the data and tasks that are similar were grouped together. These grouping are
called packages, and within the packages there are subgroupings called classes. There are approxi-

20 B Programming Fundamentals Using Java

mately 200 packages and 4,000 classes in the Java API. Most of these classes contain both data and
the Java instructions to perform common tasks. A set of instructions to perform a task is called a
method. The data and methods that are in the same class are said to be members of the class.

Definition

A class is made up of a group of related data members and member methods.

A method is a set of instructions used to perform a task.

Data members are the instance variables that contain the data values for the class.

Just as Java’s creators assumed that the manufacturers of computer systems would install a
translator that translated byte codes into the language of their system’s platform, they also assumed
that the manufacturers would install an implementation of the data and methods defined in the
API specification. Once again, to advertise that their system was Internet ready, the manufacturers
complied. Technically speaking, the byte code translator and the API implementation on the client
machine (along with a memory manager) are called the Java Runtime Environment (JRE), and the
JRE and the client system’s operating system are considered an implementation of the Java Virtual
Machine. Figure 1.26 gives the components of the Java Virtual Machine specific to a system run-
ning an Intel CPU/Windows platform.

Based on Gosling’s team’s idea, any programming language can achieve platform indepen-
dence if the language designers provide a translator that translates the language into Java byte
codes. The resulting translation will run on any computer system or mobile device that implements
the Java Virtual Machine.

Website
Java byte code
download ,
/
Byte code
Memory translator for the
manager Intel CPU/Windows
platform
> JRE
An Implementation of
the JVM

APl implementation for the Intel
CPU/Windows platform

Windows operating system

Intel CPU executable
statements

A
Intel CPU

Figure 1.26
System-specific components of the Java Virtual Machine.

Chapter 1 - Introduction Il 21

OBJECT-ORIENTED PROGRAMMING LANGUAGES

Just as related methods and data are grouped into classes in the API specification, they can also
be grouped into classes that are defined within programs written using object-oriented programming
(OOP) languages. Java, by design, is an OOP language. Grouping related methods and data inside a
class that is defined in a Java program is more than a convenient way of arranging related data and meth-
ods. The real motivation for permitting this class grouping in object-oriented programming languages
is that it is a good way of modeling the objects that the program will deal with.

As an example, consider a video game program that involves starship objects. Each starship
object will have a name and a (x, y) location. In addition, as the game is played a new starship can
be created, starships can be drawn on the monitor, and a starship’s location can be changed. A good
model for these starship objects would be to define a class named Starship (depicted as the blue
rectangle in Figure 1.27). As shown in the figure, the class would have three data members (name,
x, and y), and three member methods (create, draw, and move).

It is important to understand that a class is not itself an object, but rather it is a description of
an object. From one class we can create an unlimited number of objects or instances of the class.
A useful analogy is to consider classes we encounter in everyday life: a blueprint, a cookie cutter,
a stencil, a pottery mold, a dress pattern, and the human genome pattern. From one blueprint we
can create lots of houses, from one cookie cutter lots of cookies, from one stencil lots of pictures,

The Class Starship

Data members: name, X, y
Member methods: draw, create, move

name: Orion name: Maggie name: Jewel
x: 20 x: 50 x: 300 20
y: 30 y: 100 7 500{—:100
I
Three Starship objects @

@ @ ®

Game board after Game board after Game board relocating
creating three starships drawing the Orion the Jewel

Figure 1.27
The Starship class, three Starship objects, and the use of the class’s methods.

22 B Programming Fundamentals Using Java

from one pottery mold lots of vases, from one pattern lots of dresses, and from one human genome
pattern lots of people.

In an object-oriented programming language, a class is a template for an object, and an object
is a particular instance of a class.

The Starship class would be a template for a starship object. Each time a starship enters the
game, a new starship would be created from this template with a given name and initial (x, y) loca-
tion using the class’s create method. A starship’s name and (x, y) location would be stored in its
three data members, which each object created from the class Starship would contain. In addition,
the tasks of drawing and relocating a starship would be performed by the Java instructions that
make up the class’s draw and move methods.

The center and bottom sections of Figure 1.1.27 depict the use of the Starship class’s three
member methods used in the following order:

1. Thecreate method (indicated by the number 1 in the figure) was used to create or construct
the three starship objects shown in the center of the figure: the Orion at (20, 30), the
Maggie at (50, 100), and the Jewel at (300, 500). Notice that after they are created, each
starship contains three data members to store the ship’s name and its (x, y) location. Al-
though these three starships have been created, they are not displayed on the game board
shown at the lower left portion of the figure because the draw method has not been used.

2. The draw method (shown as number 2 in the figure) was used to display the starship Orion
at its current location (20, 30), as depicted in the bottom center of the figure. The draw
method has not operated on the other two starships, so, even though they exist, they do
not appear on the game board. (Note: The origin is located at the upper left corner of the
game board and positive y is downward.)

3. The move method (represented by the number 3 in the figure) was used to change the cur-
rent location of the starship Jewel from (300, 500) to (20, 100) as depicted on the center
right portion of the figure. As shown at the bottom right portion of the figure, it is not
displayed because the draw method was not performed on it. After relocating the starship,
if the draw task were performed on the Jewel, it would have been displayed directly below
the Orion at (20, 100).

Each object contains the data members of its class and can be operated on by the class’s
methods.

NOTE

INTEGRATED DEVELOPMENT ENVIRONMENTS
AND THE PROGRAM DEVELOPMENT PROCESS

An Integrated Development Environment (IDE) is a program to help programmers write pro-
grams. Usually they are language specific in that a particular IDE can be used to develop programs
in one, and only one, programming language. For example, NetBeans and Eclipse are two popular

Chapter 1 - Introduction Il 23

IDEs used to develop programs written in Java, and the IDE Microsoft Visual C++ can be used to
develop programs written in the language C++ Many popular IDEs can be downloaded for free
from the IDE’s Website.

What these programs have in common is that they integrate a set of program development
tools into one program. Examples of these tools are a text editor used to type, edit, save, and re-
open the program’s instructions, and a translator used to translate the program instructions into
the language of the platform it is to run on. In the case of a Java IDE, this would be a translation
from Java into Java byte codes. In addition, most IDEs have an autocomplete feature to facilitate
the typing of the program and a grammar checker to help locate and correct grammatical errors in
the program’s instructions.

Armed with a good specification of a program and a good IDE, we are almost ready to begin the
program development process, which is illustrated in Figure 1.28. Before we begin, we must read the
program’s task contained in its specification and discover a set of algorithms that perform the tasks.
For example, how will we determine when a starship delivers a supply packet to a planet in Ryan’s
Deep Space Delivery program? As mentioned at the end of Section 1.1, this can be the most difficult
part of writing a program, and most software engineers take an advanced course in algorithm dis-
covery. We will illustrate the discovery process via the programming examples presented throughout
this textbook.

After discovering the program’s algorithms, we are ready to begin the program development
process (Figure 1.28). Generally, the process begins with representing the algorithms as a set
of program instructions (called code), translating the code, and then correcting the grammati-
cal errors (called syntax errors in computer science). Once all of the syntax errors have been
eliminated, the IDE’s translator will produce an executable module that it then runs. In the case
of Java, the IDE generates and then executes the Java byte codes on the Java Virtual Machine
installed on the programmer’s computer.

The programmer then changes roles from programmer to program user to test the program for
correctness. To do this, the user (or tester) supplies the inputs to the program and examines the out-

begin | Write//rewrite Translate Supply program Outputs
—> P ify ——»
) progre_lm instruction 2.k At v correct,
instructions outputs
end
A

Locate and correct
syntax errors

Locate
erroneous <
instructions Outputs incorrect

[] Programmer'srole [| Tester's role

Figure 1.28
An overview of the program development process.

24 B Programming Fundamentals Using Java

puts it produces. If the program produces the correct outputs for several well-chosen sets of inputs,
the program is complete. If it does not, the tester changes back to the role of a programmer, locates
the erroneous instruction(s), and the process is repeated beginning with rewriting those instructions.

One refinement to the process is necessary for anything other than a very, very small program
because of the fact that we cannot effectively solve large problems. When we consider that we hu-
mans have visited the moon and that many of the more common operating systems consist of over a
million lines of instructions, this statement leads us to a paradox: If we can’t solve large problems,
how did we do these things?

The answer lies in the 4,000 BC writings on a Chinese cave wall that explain that big things
can be divided into little things, little things can be divided into nothing. Today’s version of this
is: divide and conquer. Just as the task of going to the moon was divided into hundreds of small
problems whose solutions were integrated into the lunar mission, a large program is divided into
many small parts, which can be combined to become the large program.

Object-oriented programming languages present several obvious dividing lines. Because the
specification identifies the types of objects the program will deal with, the program is first divided
into classes, one for each type of object. Then, within each class, the tasks to be performed on the
class’s objects are defined. Simple tasks become member methods, complex tasks are divided into
several simple tasks (each of which also becomes a member method). Each method within a class
is written and tested separately. Basically, each method is considered to be a small program, and
it is developed using the process illustrated in Figure 1.28. Once all of the methods in a class are
operating correctly, the methods in another class are developed using this divide-and-conquer con-
cept. When all the classes are complete, they are integrated into the large program. Object-oriented
programming languages make it easy to integrate the classes into the large program.

As an example, consider the development of the Starship class shown in Figure 1.27, which is
part of a game program. Three methods (create, draw, and move) have to be developed using the
process illustrated in Figure 1.28. Because we cannot draw or move a Starship that has not yet been
created, the create method would be developed first. After the method is written and the syntax
errors are found and corrected, we would write a few more lines of Java to test the method. This
code is often referred to as driver code because it takes the method for a “test drive.” It would use
the method to construct a Starship object, perhaps Maggie in the center of Figure 1.27, and output
its data members. If the name Maggie and position (50, 100) were output, we would conclude the
create method was working. If not, we would examine the instructions that make up the create
method, locate and correct the errors, and repeat the translation and test portion of the process.

Driver code is disposable Java instructions use to test a method. It normally does not
become part of the final program’s instructions.

NOTE

The next logical step would be to develop the draw method because, as we will see, it can be
used in the testing of the move method. After the syntax errors are found and corrected, we would
write a few more lines of Java driver code to test the method. The code would use the create method
to construct a Starship object, perhaps Orion shown on the left side of Figure 1.27, and then use
the draw method to display it on the game board. If it were displayed in its proper location with the

Chapter 1 - Introduction Il 25

name Orion on the side of the ship, we would conclude the draw method was working. If not, we
would examine the instructions that make up the draw method, locate and correct the errors, and
then repeat the translation and test portion of the process.

Next, we would develop the move method, write its code, translate the code and correct the
syntax errors, and then write a few more lines of Java driver code to test it. The code would create
a Starship object, perhaps Jewel at (300, 500), as shown on the right side of Figure 1.27, then use
the move method to change its position to (20, 100) and the draw method to display it on the game
board (monitor). If it were displayed in its new location (20, 100) with the name Jewel on the side of
the ship, we would conclude the move method was working. If not, we would examine the instruc-
tions that make up the move method, locate and correct the errors, and repeat the translation and
test portion of the process.

After completing the development of our Starship class in three manageable steps, we would
eliminate the driver code and replace it with the instructions to use the Starship class and its meth-
ods in our game program.

Mobile-Device Application Development Environments

The level of miniaturization of the basic components of a computing system that has taken
place in the last ten years has brought to the marketplace a variety of hand-held computing devices.
These devices, often referred to as mobile devices, include smart phones, personal digital assistants
(PDAs), and tablet devices.

The development of a program for a mobile device follows the same process as that used to de-
velop a program for a non-mobile computing device discussed in this chapter. After a specification
is written and the program’s algorithms are discovered, an IDE is used to develop the specification
into a functional program using the process shown in Figure 1.28. However, two problems arise
when applying the development process to mobile-device applications. Because these devices have
limited computing power, it is impractical to conduct the development process on them, so the
process is conducted on a more powerful non-mobile computing system. In addition, the concept
of platform independence has not been extended to mobile devices, so an executable module must
be produced for each mobile-device platform.

Because a majority of mobile applications run on smartphones, and a great majority of smart-
phones run an Android-based platform, this section will conclude with an overview of the tools
available for developing applications for any Android-based smartphone or tablet device. Although
the details presented are specific to those devices, the concepts presented are typical of the tools
employed to develop applications on most mobile devices.

Android device applications can be written in Java on a personal computer. The preferred IDE
is Eclipse, which is a free download. Eclipse is preferred because two sets of tools that facilitate the
development of an Android-device application are easily integrated into it. Both of these tools can be
freely downloaded. The first of these, the Android Software Development Kit (SDK), can be down-
loaded from the Android developers’ Website. The second set of tools, the Android Development
Tools (ADT) Eclipse plug-in can be downloaded from the Eclipse Website. If your personal computer

26 M Programming Fundamentals Using Java

is running a Windows operating system, you can download the Eclipse IDE, the SDK, and the ADT
as one bundle from the Android Developers Website, found at http./developer.android.com/sdk/index.
html.

Some of the features the two sets of tools provide include:

* The latest version of the Android operating system

e Platform-dependent translators

* A set of emulators that run the translated code on a simulation of any Android-based
mobile device including displaying its screen and emulating all of its I/O functionality

* The ability to upload developed applications to the Android Market (a Web-based store
for free and purchased applications)

Using these tools and knowledge of Java, you will be able to develop and market applications
for any Android device from the comfort of your own personal-computer system.

OUR GAME DEVELOPMENT
ENVIRONMENT: A FIRST LOOK

In Section 1.4, you were asked to run several of the sample game programs contained on the
DVD that accompanies this textbook. The DVD also contains a folder named Package
that contains a Java package named edu.sjcny.gpvl. This package can be thought
of as a game development addition to the API because it contains methods that perform
tasks that are common to most game programs. Appendix A contains descriptions of
the methods contained in this package.

The incorporation of this package, or game development environment, into a game program
facilitates its development. The students who created all the sample game programs contained on
the book’s DV D incorporated it into their programs. In this section, we will describe how to easily
create and display a game window using the methods in this package, how to incorporate the pack-
age into a game program, and how to change some of the game window’s properties.

The Game Window

When incorporated into a Java program, two of the game environment’s methods can be used
to create and display the game window shown in Figure 1.29. The Pause and Start buttons on the
right side of the game window can be used by the game player to pause the game and to start/restart
the game. The directional buttons below them, or the keyboard keys, can be used to control the
position of the game objects during the game.

The coral-colored area on left side of the game window, called the game board, is where the
game objects appear. Like most windows, it can be dragged around by its title bar, minimized
to the status bar, and redisplayed by clicking its icon on the status bar. It cannot be maximized,
however, the programmer can change its size to accommodate the needs of a particular game. The
default size of the game window is 622x535 pixels, which are closely spaced dots of color that make
up the surface of a computer monitor.

Chapter 1 - Introduction I 27

v

V'S

622 pixels

Figure 1.29
The game environment’s window.

The Game Board Coordinate System

Figure 1.30 shows the game board coordinate system. Game objects are positioned on the
game board by specifying their x and y game board coordinates. The system is a two-dimensional
Cartesian system with its origin at the upper left corner of the game window. The positive x
direction is to the right, and positive y direction is down. The units of the axis system are pixels.

x

& i The coordinates of this
point are used to size the game board.

Figure 1.30
The game board coordinate system.

28 M Programming Fundamentals Using Java

As shown on the upper right and lower left sides of Figure 1.30, the title bar of the window is
30 pixels high, and the left boundary of the window is 5 pixels wide. The coordinates of the lower
right corner of the game board for the default window size are (500, 500). If the programmer de-
cides that a larger or smaller game board is appropriate for the game being developed, the x and y
coordinates of the lower right corner of the game board can be changed, which will be described
in Section 1.8.5.

Installing and Incorporating the Game Package into a Program

Appendix B contains detailed instructions on how to incorporate the game package, which
contains the game development environment, into a Java program. The simplest ap-
proach is to use one of the projects contained in the “IDE Specific Tools” subfolder on
the DVD that accompanies this book. This subfolder contains an Eclipse, a NetBeans,
and a JCreator project that has the game package already incorporated into them as well
as the code described in the next section, which creates and displays the game window. When the
projects are run, they display the game window shown in Figure 1.29. Game program specific code
and classes can be added to them.

The JCreator and NetBeans projects on the DVD can be copied from the DVD and pasted into
a folder, and then the project can be opened, modified, and run from within the IDEs. The Eclipse
project must be imported into an Eclipse workspace folder using the Import feature available on
the Eclipse File drop-down menu. After the Eclipse project is imported from the DVD, it can be
opened, modified, and run from within Eclipse. Detailed instructions on the use of the DVD’s
three preexisting game projects are given in Appendix B.

As an alternative, the game package edu.sjcny.gpvl in the “Game Environment” folder on the
DVD can be added to any newly created Java project by following the procedures given in Appen-
dix B, most of which do not include having to change the system’s CLASSPATH variable. When
these alternative approaches are used, the code described in the next section, which creates and
displays the game window, must be added to the project’s code.

Creating and Displaying a Game Window and Its Title

After you have incorporated (imported) the game package into your program, you can use the
methods in the package to create and display the graphical window in which your game will run.
The Java program shown in Figure 1.31 is a template, or starting point, for all of our graphical
game application programs. When this program is run, the game window shown in Figure 1.29 is
created and displayed.

As we will learn in Chapter 2, lines 2, 3, 7, 8, 10, and 11 are the minimum set of instruc-
tions that make up a Java application program. For that reason, many IDEs generate these instruc-
tions when a new programming application is created. The one exception is the phrase extends
DrawableAdapter, which must be added to the end of line 2 if the game package is to be used
in the program. Lines 1, 4, 5, and 9 complete the game program template.

Chapter 1 - Introduction I 29

1 import edu.sjcny.gpvl.*;

2 public class GameWindowDemo extends DrawableAdapter
3

4 static GameWindowDemo ga = new GameWindowDemo () ;
5 static GameBoard gb = new GameBoard(ga, "The Game Window") ;
6

7 public static void main (String[] args)

8 {

9 showGameBoard (gb) ;

10 }

11 }

Figure 1.31
The Java instructions to create and display the game window.

The import statement on line 1 of Figure 1.31 makes the methods in the game package avail-
able to the program. Lines 4, 5, and 9 use these methods to create and display the game window
shown in Figure 1.29. Each Java program is given a name, which is part of its specification. This
program is named GameWindowDemo, which is typed on line 2 after the word class and typed
two more times on line 4.

As previously mentioned, Figure 1.31 will be the template for all of our graphical game appli-
cation programs. To adapt it to a particular game program, the new program’s name would appear
on lines 2 and 4, and the game’s title and perhaps the name of its creator would appear at the end of
line 5. For example, if a new game program’s name was Projectl, and the game was Frogger created
by Bob, the changes to lines 2, 4, and 5 would be as highlighted below:
import edu.sjcny.gpvl.*;
public class Projectl extends DrawableAdapter

{
static Projectl ga = new Projectl ();
static GameBoard gb = new GameBoard(ga, "Frogger, by Bob");

public static void main (String[] args)

{
showGameBoard (gb) ;

0 }

1
2
3
4
5
6
7
8
9
1
11 }

XX Changing the Game Board’s Size

As mentioned in Section 1.8.1, the default size of the game window is 622x535 pixels. This
was chosen to make the coordinates of the game board’s lower right corner (500, 500). To change
the game board’s size, and thus the window size, we add the new coordinates of the game board’s
lower right corner to the end of line 5 of Figure 1.31. This is the line that constructs the window.
For example, to obtain a game board whose lower right corner is located at (700, 650), we would
change line 5 to:

static GameBoard gb = new GameBoard(ga, "The Game Window",700, 650);

30 M Programming Fundamentals Using Java

The title bar of the window would still be 30 pixels high, and the left border of the window
would still be 5 pixels wide, as shown in Figure 1.29, but the window’s height and width would be
increased to accommodate the larger game board.

REPRESENTING INFORMATION IN MEMORY

As discussed in Section 1.1, the memory component of the computer system has the ability to
store and recall information, and that information could be the data that the program processes or
the instructions that make up the program. The scheme used to store or represent the information
in memory is dependent on the type of information being stored. Data is stored using a different
scheme than translated program instructions. In addition, character data, which is data typed into
a word processor or IDE, is stored differently than numeric data, which is data that will be used in
arithmetic expressions.

There are three memory storage schemes used to represent three different types of informa-
tion: (1) character data, (2) translated instructions, and (3) numeric data. All three of these schemes
were designed around the basic hardware memory unit: a bit, which stands for hinary digiz. Con-
ceptually, a bit should be thought of as a single switch that can be turned on or off. All of memory
uses this storage concept, and storage devices such as RAM, disks, flash drives, and tape drives
may contain billions (giga) and even trillions (tera) of these bits.

For brevity, when a bit is turned on we say it is in state 1 (one), and when it is off we say it is
in state O (zero). These should only be thought of as the numerics one and zero when the informa-
tion stored is numeric data. Figure 1.32 depicts eight adjacent bits in on-off states and their briefer
binary (1-0) depiction.

off on off off off off on off 01000010

on-off Depiction 1-0 Depiction

Figure 1.32
The state of eight adjacent on-off bits and their 1-0 depiction.

EEXE Representing Character Data

The scheme used to represent character data in memory is rather straightforward. A table’
was composed in which each character to be represented was assigned a unique eight-bit pattern.
For example, the character B was assigned the pattern 01000010, the lower-case version of this
character, b, was assigned the pattern 01100010, and the character 1 was assigned the pattern
00110001.

The table is named the Extended American Standard Code for Information Interchange
because it was an expansion of a table named the American Standard Code for Information
Interchange, which represented characters using patterns of seven bits. The seven-bit table was
assigned the acronym ASCII (pronounced “ask ee”), and the extended table is referred to as the
Extended ASCII table. Both tables include all of the upper- and lower-case letters of the Modern

Chapter 1 - Introduction [31

Latin (English) alphabet, the digits 0 to 9, a set of special characters (e.g., !, @, #, $, %, *, etc.),
and some control characters such as horizontal tab and line feed. Because there are 128 (27) unique
ways to arrange 7 bits and 256 (2%) unique ways to arrange 8 bits, adding the eighth bit to the Ex-
tended ASCII table doubled the size of the ASCII table.

The first 128 characters in the Extended ASCII table are given in Appendix C. The bit patterns
in this table are used to represent character information on all computer systems when the alpha-
betic characters the system is processing are limited to the Modern Latin (English) alphabet. When
this is the case, and we want to represent the letter B in storage, eight adjacent (or contiguous) bits
of storage (called a byte of storage) are set to the Extended ASCII pattern for B: 01000010. If we
fetched a byte of storage from an area of memory in which we knew that characters were stored,
and that byte contained the pattern 01000010, we would know that the character B was stored there.
We say that a keyboard is an ASCII keyboard if it generates this bit pattern when a capital B is
struck, and a printer is an ASCII printer if it prints the character B when it receives this bit pattern.

Definition

Eight adjacent or contiguous bits are called a byte of storage

To accommodate the international exchange of information over the Internet, the Extended
ASCII table was expanded to include unique bit patterns for the symbols used in the other alpha-
bets of the world. To provide a unique bit pattern for each entry in this expanded table, named the
UNICODE table, the number of bits assigned to each character was increased from 8 to 16 bits (2
bytes) per character. The first 256 entries in the UNICODE table are the characters in the Extended
ASCII table, with the leftmost 8 bits of their 16-bit pattern set to 0 and the rightmost 8 bits set to
their Extended ASCII table patterns. For example, because the Extended ASCII representation of
B is 01000010, its UNICODE representation is 00000000 01000010. Characters processed by Java
programs are stored in memory using their UNICODE table representations.

Character data is represented in memory using either the Extended ASCII or UNICODE

M table.

EE¥A Representing Translated Instructions

The technique used to represent translated instructions in memory is the same technique used
to represent characters in memory. A table is composed containing all of the possible translated
instructions, and a unique bit pattern is assigned to each of them. For example, the bit pattern for
the translated instruction to subtract two integers could be 01000000, and the bit pattern to divide
two integers could be 01000010.

Unlike the Extended ASCII and UNICODE tables that are used by all computer systems to
store characters, these translated instruction tables vary from one CPU to another. Not only do the
bit patterns vary, but the number of bits used to represent a translated instruction also varies. The
tables are platform dependent, which is the reason Java came into being. To determine the trans-
lated memory representation of a divide instruction on a particular platform, we have to look up the
bit pattern for the divide instruction in the instruction table of the CPU of that platform.

32 B Programming Fundamentals Using Java

For the Java Virtual Machine, each translated instruction is assigned an eight-bit pattern. Be-
cause the patterns consist of eight bits, or one byte, the patterns are called byte codes. Table 1.1
gives the Java byte codes for the translated integer arithmetic instructions: add, subtract, multi-
ply, and divide. As indicated in this table, when the Java Virtual Machine receives a byte code of
01101100, it performs a divide operation.

Table 1.1
Java Byte Codes for Integer Arithmetic Instructions

Instruction Java Byte Code

add 501100000

Subtract .. O llOOlOO ...
multlply ... O 11 010 O O ...
leIde .. 0 11 Oll 0 O ...

! Translated Java instructions are represented in memory using patterns of eight bits
TIP called byte codes.

Representing Numeric Data

Unlike the two previously described schemes, the scheme used to represent numeric data does
not use a table because, for one thing, the table would be infinitely long. Rather, the scheme is
based on the theory of numbers. All number systems have a base. Our number system’s base is 10,
which anthropologists speculate is due to the fact that we have ten fingers and ten toes. In number
theory, the base of a number system determines the number of digits in the system. Because our
number system is base 10, it has 10 digits (0 through 9). Conversely, the theory of numbers tells us
that if a number system has 10 digits, its base is 10.

Armed with this knowledge of number systems, it was decided that numeric data would be
represented in memory using a number system whose base is 2 because one bit can represent the
system’s two digits: 0 and 1". Anthropologists would tell us that a base-2 number system would
probably be our number system if we had two fingers. Because we do not have two fingers, we
need to understand how to convert from base 2 to base 10 to interpret what base-10 number a bit
pattern represents and how to convert numbers from base 10 to base 2 so we can store numbers in
memory.

! Numeric data (data that will be used in a mathematical expression) is represented in
TIP memory using a binary number system.

Fundamental to these conversions is the realization that digit position values in a base-2
number system are not the same as in our base-10 system. Starting from the right, the digit po-
sition values in our number system are the 1s position, the 10s position, the 100s position, etc.

*John von Neumann, often called the father of the modern computer, originally proposed this scheme.

Chapter 1 - Introduction Il 33

These represent 10°, 10', 102, etc. Extrapolating this to a base-2 system, the digit position values
starting from the right are 2°, 2!, 2%, etc. Figure 1.33 gives the first eight digit position values
of the base-2 number system with their decimal (base 10) equivalent below them. Knowing the
digit position values of the binary number system, we can now convert from base 2 to base 10,
and base 10 to base 2.

27 26 25 24 23 22 2! 20

128 64 32 16 8 4 2 1 base-2 position values

Figure 1.33
First eight digit position values of the binary number system.

To convert a base-2 representation (e.g., 01000010) of an integer numeric value stored in mem-
ory to base 10, we simply write the bit pattern below the base-10 digit position values that are
shown in Figure 1.33 and add the values that have a 1 under them. For example, for the bit pattern
01000010, the process would be:

128 64 32 16 4 2 1 base-2 position values
0 1 0 0 1 0 internal representation
64 2

Therefore, 01000010 represents the base-10 number 66 (64 + 2).

S o0
(e}

This conversion process implies that the bit pattern 11111111 represents the largest integer that
can be represented using 8 bits, which is the base-10 number 255 (255=128 + 64 + 32+ 16 + 8§ +
4 + 2 + 1). To represent integers larger than 255, more bytes of storage would be dedicated to each
integer numeric value.

To convert a base-10 integer to its binary bit pattern to store the numeric value in memory, we
begin by writing out the base-10 digit position values that are shown in Figure 1.33. Then starting
on the left, we place a 1 under all of the position values that when added together give the base-10
number. The remaining position values are filled in with zeros.

To quickly determine which positions that should have a 1 placed under them, use the follow-
ing algorithm until the right most position value is reached:
Let n (e.g., 66) be the base-10 integer value to be represented in memory
Start at the left most bit, b

Set v to b’s position value (e.g., v = 128)

v b

If (n — v) is positive or equal to zero then:
a. Place a 1 under b’s position
b.Setn=(n-v)

Else place a 0 under b’s position

5. Move b to the next bit to the right

Go to step 3

34 B Programming Fundamentals Using Java

Table 1.2 illustrates the use of this algorithm to convert 66 to its 8-bit binary representation.
Each row in the table represents an execution of steps 3 and 4 of the algorithm.

Table 1.2

Conversion of the Integer 66 to its 8-Bit Binary Representation

n b Binary Representation of n
........... 66 i e ——— b ——————
........... 66 i — i ——
2 5 010
i 2100
2 3 01000
e s T
T B T
S S e Q1000010

Before we conclude our discussion on how numeric data is stored in memory, we should
comment on how negative integers and numbers with fractional parts, which are called real num-
bers in mathematics, are represented in memory. The short answer is that negative integers are
represented using a scheme named twos complement form, and numbers with fractional parts
are represented in a standardized® form analogous to scientific notation (as when 235.2374 is
expressed as 2.352374 x 10?). The details of these schemes are beyond the scope of this text, how-
ever, an understanding of the representation of positive integers as binary numbers discussed in
this section is fundamental to an understanding these two representation schemes.

Finally, consider a byte of storage that contained the bit pattern 01000010. When we attempt to
determine what is stored in this byte, a dilemma arises. If we look into the Extended ASCII table
we would conclude the character B is stored there. We have also learned that this could also be
the base-10 integer 66. It is also the byte code instruction to store an integer in RAM memory. To
resolve these kinds of dilemmas, the language translator keeps track of the types of information
that is stored in various parts of RAM. If we knew that the bit pattern 01000010 was in the area of
RAM where characters are stored, then it represents character B.

CHAPTER SUMMARY

In this chapter, you learned about the hardware and software components of a computer sys-
tem, how they are arranged, and how they interact with the user. The hardware components consist
of the central processing unit, memory, and input/output devices. Main or RAM memory inter-
acts with the CPU and stores the data and instructions that are about to be processed by the CPU.
The backing store or secondary memory, such as a hard drive, stores data and instructions more
permanently.

The modern computer was developed over centuries through the efforts of many people. It has
become smaller, faster, cheaper, and more reliable as it evolved from a room-sized device to the
small hand-held mobile and wearable devices common today.

Chapter 1 - Introduction Il 35

Java is an object-oriented programming language that allows a programmer to represent and
process real-world objects within application programs and computer games. Classes are the tem-
plates for creating objects, which contain both data and methods to operate on the data. All infor-
mation contained in a computer is represented in binary as translated instructions, numeric data,
and character data. Java programs are translated into byte codes, which can be executed by the Java
Virtual Machine, making them platform independent and portable.

New programs are defined in a written specification, then the program’s algorithms are discovered
and an IDE is used to compose and test the program. Game programs are more easily composed by
importing a game environment into the program, such as the one contained on the DVD that accom-
panies this textbook. Game environments supplement the Java API by providing methods that perform
tasks common to most games, such creating an interactive game board on which the game objects can
be drawn and moved.

The discovery of a program’s algorithms is usually the most difficult part of producing a new
program. Throughout this text, we will use game programming to illustrate the use of programming
concepts and use game algorithms to introduce the reader to the algorithm discovery process.

Knowledge Exercises

1. Between 1989 and 2004, the number of computers per 1,000 U.S. citizens increased by a factor

of approximately:
a)2 b) 4
c) 8 d) 12

2. What is the difference between hardware and software?
3. Explain the difference between operating systems and application programs.

4. Which of the following characteristics are associated with RAM (main) memory?

a) Nonvolatile b) Very fast
¢) Very large capacity d) Expensive
5. Which of the following characteristics are associated with backing (secondary) storage?
a) Nonvolatile b) Very fast
¢) Very large capacity d) Expensive

6. Give three examples of:
a) Input devices b) Output devices
¢) Backing (secondary) storage devices

7. Some computer devices have a single use while others have multiple uses.
a) Name a device that is only used for output.
b) Name a device that is only used for input.
¢) What device can be used for both input and output?

8. Name and explain the function of each of the three major hardware components of a computer
system.

36 M Programming Fundamentals Using Java

9.
10.

11.

12.

13.

14.

15.

16.
17.
18.

19.
20.

21.

22.

How would you respond to a friend who asked you who invented the computer?

Examples of operating system programs include all of the following except:
a) MAC OS b) Windows
¢) Java d) Linux

Volatile memory refers to memory that:

a) Permanently stores data

b) Loses its contents if power is interrupted
¢) Is added to the computer externally

Word processing, e-mailing, and searching the Web are all examples of using:
a) Application software b) Systems software
¢) Programming d) None of the above

Which of these replaced vacuum tubes in second-generation computers?

a) Paper tape b) The mouse

¢) Chips d) Transistors

Who developed assembly language, the first compiler, and the language COBOL?
a) Alan Turing b) Ada Lovelace

¢) Grace Hopper d) John von Neumann

Name the person referred to by each of these titles or descriptions:
a) First programmer b) Inventor of the Java programming language

Give the four features of a program that are identified in its specification.
What is meant by platform independence?

True or False: To achieve platform independence, Java byte codes are translated on the end user’s
computer system.

What is the difference between a class and an object?

In a video game, a paddle will be used to reflect a ball into a pile of 200 bricks.
a) How many objects will be involved in the game? What are they?
b) How many classes will be defined in the program? Name them.

Give the terms that are represented by the following acronyms:

a) CPU b) RAM
) 1/0 d) IDE
e) JVM f) API
g) GUI

Which of these refers to the process of breaking a problem into smaller parts in order to solve
or program it?

a) Divide and conquer b) Platform independence

¢) Portability d) Translation

Chapter 1 - Introduction Il 37

23. The upper left corner of the game environment’s game board is located at the (x, y) pixel

coordinates:
a) (0, 0) b) (500,500)
¢) (622,535) d) (5, 30)
24. Which of these is not a component of a typical game program?
a) Score b) Time limits
¢) Napier’s bones d) Game piece objects

25. Name the three types of information represented in memory.

26. Write the 8-bit binary equivalent for each of these base-10 numeric values:

a) 51 b) 77
o 115 d) 131
e) 227 f) 254
27. Write the base-10 (decimal) equivalent number for each of these binary values:
a) 01010011 b) 00101111
¢) 00000000

28. Give the 8-bit memory representation of the characters C and c.

Preprogramming Exercises

1. Think of a video game and conduct a conversation with yourself that includes the features
common to most games that are tabulated in Figure 1.1.23. Based on that conversation, write
a specification for the game that gives the game’s name, the task or objective of the game, and
a description of the inputs and outputs. The game must include at least two different types of
game objects and one of the objects has to be controlled by the user via the cursor control keys
and the game board directional buttons.

2. Logan is a teacher with 25 students in his class. Write a specification for a program that will
show Logan the lowest, highest, and average class grades on an examination.

3. Using the template given in Figure 1.31 and the directions given in Section 1.8.5, write the
line of code necessary to change the game window’s size to 800x600 with the new title “My
Great Game Window.”

Enrichment

In the same way that computers and programming languages have evolved over time, game programs
also have developed from very simple games to the present multiuser, interactive games. Search the Inter-
net to discover some of the historical developments of computer games. Some of the questions you might
research are:

* When and where the first games were developed
* What companies were created for developing games

38 M Programming Fundamentals Using Java

* Who are the leaders today in the field of games
* How do today’s games differ from the earliest computer games

(Be sure to record the sources of your information.)

References

Fullerton, Tracy, Game Design Workshop, 2™ ed. Burlington, MA: Morgan Kaufman Publishers, 2008.

Iverson, Jakob, and Michael Eierman. Learning Mobile App Development. Upper Saddle River, NJ: Addison-
Wesley, 2013.

Lucci, Stephen, and Danny Kopec. Artificial Intelligence in the 21st Century. Dulles, VA: Mercury Learning
and Information, 2013.

Swade, Doron. Charles Babbage and his Calculating Machines. London: Science Museum, 1998.

Endnotes

http://en-wikipedia.org/wiki/History of computing
http://www.computersciencelab.com/ComputerHistory/History.htm
http://www.webopedia.com/DidYouKnow/Hardware Software/2002/FiveGenerations.asp
http://community.seattletimes.nwsource.com/archive/?date=19961124&slug=2361376

5 Decker, Rick and Stuart Hirschfield. The Analytical Engine. Belmont, CA. Wadsworth Publishing Com-
pany, 1992, p.17 (Now online: http://www.course.com/downloads/computerscience/aeonline/)

¢ The standard is named IEEE 754-2008

http://docs.oracle.com/javase/specs/jvms/se7/html/jjvms-7.html

CHAPTER 2

VARIABLES, INPUT/OUTPUT,
AND CALCULATIONS

21 The Java Application Program Template. 40 JEp—r—— =
22 Variables........... 41

2.3 Primitive Variables. 42 i B i .

2.4 System Console OQutput 44 PR

2.5 String Objects and Reference Variables. 48 sl T kg =
2.6 Calculations and the Math Class 50 Wi i =
27 Dialog Box Outputand Input 58

2.8 Graphical Text OQutput.ccccc.... 64

2.9 The Counting Algorithm 67

2.10 Formatting Numeric Output: a First Pass. 70

211 Chapter Summaryccciiieeeeeenninn. 71

In this chapter

In this chapter, you will learn how to use the basic Java program template to develop a
program that performs input, mathematical calculations, and output. Various methods to
facilitate meaningful input and understandable output will be introduced, as will techniques
for storing data in RAM memory and performing mathematical calculations that go beyond
basic arithmetic operations. All these techniques are used in most programming applications.

After successfully completing this chapter you should:

* Understand the basic components of a Java program

* Recognize the difference between primitive and reference variables and how they store data
* Be able to declare and use variables in a program

* Perform input from a dialog box

* Perform output to a dialog box, as well as output to the system console and a graphical
window

e Use arithmetic calculations and mathematical functions and constants in the Java Math
class

* Perform basic formatting of numeric output
* Understand and be able to use the counting algorithm
* Apply these concepts to begin producing a computer game

40 B Programming Fundamentals Using Java

THE JAVA APPLICATION PROGRAM TEMPLATE

If you were writing a letter to you friend Sally, it would probably begin with an opening salu-
tation, for example, “Dear Sally,” and end with a closing salutation, for example, “Sincerely,” fol-
lowed by your signature. Opening and closing salutations are usually considered to be a minimum
template for any letter we compose. In between these salutations, we would put the text specific to
the letter we are writing.

Similarly, most programming languages have templates for composing a program in that lan-
guage. These templates begin and end with text specific to the language, and we write, or code, the
instructions specific to the program we are composing inside the template. The minimum template
for a Java program is depicted in the top half of Figure 2.1.

public class ProgramName
{

public static void main(String[] args)

{

}

~N o Uk w N

Java Program Template

public class ProgramName
{
public static void main(String[] args)
{
System.out.println ("Hello");
}

~N oUW N

Java Program to Output the Word “Hello”

Figure 2.1
Template of a Java program and a program that outputs the word “Hello.”

The phrase ProgramName on line 1 of this template is replaced with the name of the program
being composed, and the instructions specific to the program are placed within the program’s
code block, within the braces that appear on lines 4 and 6. For example, in the bottom half of
Figure 2.1 an instruction, or executable statement, has been added to line 5 of the template to pro-
duce a program that outputs the word “Hello.”

NOTE All Java executable statements end with a semicolon.

When a Java program is run, the first instruction to execute is always the first executable
instruction coded after the open brace on line 4. In programming jargon this statement is said to
be the program entry point, and all programming languages designate a location in the program
template to be the program’s entry (starting) point. By default, the program statements that follow
the program entry point usually execute sequentially in the order they appear in the program.

If an Integrated Development Environment (IDE) is being used to compose a program, it will
normally ask for the name of the program (or project). Then the IDE generates the code template with

Chapter 2+ Variables, Input/Output, and Calculations H 41

the phrase ProgramName on line | replaced with the program’s name. In addition to the seven lines
shown in the top of Figure 2.1, some IDEs add several other lines to the template, the most common
of which is a statement on line 5 to output the phrase “Hello World.” However, for the template to be
grammatically correct, all IDEs will include the seven lines shown in the top portion of Figure 2.1.

VARIABLES

Most programs process data that is input to the program. For example, a program may compute
the sum of two input bank deposits. To be processed, data must be stored in the memory of the
computer system. All programming languages contain statements for defining variables, which
are memory cells that can store one piece of data. Before a variable can be used in a Java program,
it must first be declared. When a variable is defined, or declared in a program, the programmer
assigns it a name and designates the type of information to be stored in the cell. For example, a
variable named deposit could be used to store the amount of a deposit, in which case its type
would be a number with a fractional part.

Definition

A variable is a named memory cell that can store a specific type of data.

Variables must be declared before they can be used.

In Java, valid variable names must begin with a letter and cannot contain spaces. After the first
letter, the remaining characters can be letters, digits, or an underscore. They cannot be Java key
words. (See Appendix D.) Variable names that do not follow these rules are invalid and are identi-
fied by the Java translator as syntax (grammatical) errors. Good coding style dictates that variables
begin with a lowercase letter, and new words in the variable name begin with an uppercase letter.
In addition, the name of the variable should be representative of the data item being stored in the
memory cell yet be as brief as possible. For example, a variable used to store the balance of my
savings account could be named myBalance.

Good choices for variable names make our programs more readable. The variables on the left
side of Figure 2.2 are well composed: they are syntactically correct, use good naming conventions,
and imply what they store. The variable names on the right side of the figure are not well com-
posed, concise, or meaningful.

Well Composed Poorly Composed
firstName Fst
depositl theFirstOftheBankDeposits
myBalance mb
Valid Invalid
zipCode zip Code
phoneNum phonei#
gradel lstGrade
Figure 2.2

Variable names.

42 B Programming Fundamentals Using Java

The information stored in a memory cell can change or vary during the execution of the pro-
gram (which is why these storage cells are call variables). However, once designated, the type of
the information stored in the memory cell (e.g., a number with a fractional part) cannot be changed.

In Java, there are two kinds of variables: primitive variables and reference variables. The
type of data stored in primitive variables can be a single numeric data value, one character, or one
Boolean truth value. Reference variables store RAM memory addresses. The grammar, or syntax,
used to declare a primitive variable is the same grammar used to declare a reference variable. In
the next section, we will discuss this syntax and the use of primitive variables in our programs. The
use of reference variables will be discussed in Section 2.5.

Definition

Primitive variables store one numeric value, one character, or one truth value.

Reference variables store memory addresses.

PRIMITIVE VARIABLES

The Java statement used to declare a variable begins with the type of the information stored in
the variable, said to be the variable’s type, followed by the name of the variable. Like all Java state-
ments, variable declaration statements end with a semicolon. Optionally, the declaration statement
can also include the value to be initially stored in the variable. If the initial value is not specified
within the variable declaration statement, the variable is set to a default value. Default values are
dependent on the type of information stored in the variable. For example, the statements

double deposit;
double price = 5.21;

declare the variables named deposit and price, with deposit initialized to the default value
0.0 and price initialized to the value 5.21. The word double is a keyword in Java.

In programming languages, keywords are words that have special meaning to the trans-
lator that translates program statements into the language of the computer system. The
keyword double means that the memory cell being defined will store a number with a
fractional part and the size of the storage cell will be 8 bytes (64 bits). Table 2.1 gives the
keywords used to specify the type of a primitive variable. The size of the storage cell im-
plied by the use of the keywords is also given. As noted in the table, the keywords used to
declare integer and real numeric types are different, and the size of the storage cell limits
the numeric range and precision of the stored numeric value.

When storage is not at a premium, it is best to use the type int for integer variables because
most programs deal with integers within the range -2,147,483,648 to +2,147,483,647. If a data item
were beyond that range, it would not be properly represented in an int variable. For larger integer
values, the type long should be used. Integer data beyond the range of the type long cannot be
stored in a primitive variable. The Java API class BigInteger provides a remedy for this situa-
tion and will be discussed in Chapter 7, “Methods and Objects: A Second Look.”

Chapter 2- Variables, Input/Output, and Calculations [43

Table 2.1
Primitive Data Types

Cell Size
Data Type Key Word (bytes) Range and Precision
' ‘byte : 1 :-128to +127
e s E R e
fmteger it 4L 2047436012 147483647
: Numeric long L g 179.223,372,036,854,775,808 to

.. A

: : 1 +1.40129846432481707 E-45 to
 f1oat . 4 i+3.4028234663852886 E+38

(7 digits of precision)
; ; +4.94065645841246544 E-324 to
! double 8 :£1.797693134862157 E+308

(15 digits of precision)

One Character Upper and lowercase keyboard characters and other
: : char 2 : entities

(see Appendix C)

When storage is not at a premium, it is best to use the type double for variables that will store
real numbers (numbers with fractional or decimal parts) because the range of the real numbers
processed by a program is usually within the range of the type double. As is the case for large
integers, Java provides an API class (BigDouble) for storing real numbers whose range exceeds
that of a double. In addition, because numeric literals, (e.g., 1.5) are represented as type double, an
f (for float) must be added to the end of an initial value in a float variable declaration to inform the
translator that the loss of precision is acceptable:

float change = 1.5f;
When the initial value of a character variable is specified, it is enclosed in single quotation marks,
and the initial values of Boolean variables begin with a lowercase letter:

char myFirstIntial = 'W';
boolean isRaining = false;

Multiple variables of the same type can be declared in a single Java statement. The variables are
separated by commas, and the statement cannot include initial values:

short nl, n2, n3;
boolean isRaining, isSnowing;
char letterl, letter2, digitl, digit2;

When initial values are not specified in a variable declaration statement, the variables are set to
default values. The default value for the integer types (byte, short, int, and long) is zero, and

44 B Programming Fundamentals Using Java

the default value for the real types (float and double) is 0.0. For the Boolean type (boolean),
the default value is £alse, and for the character type (char), itis ''. The values true and false
are Java keywords.

EXH SYSTEM CONSOLE OUTPUT

The system console is a window that a program can use to communicate with the user of the
program. When information flows from the program to the system-console window, we say that
the program is performing output. Conversely, when the information flow is from the system-
console window to the program, we say the program is performing input. For brevity, these infor-
mation transfers are referred to as console input and console output, respectively, or more simply
console I/0. In this section, we will discuss console output, and console input will be discussed in
Chapter 4 “Boolean Expressions, Making Decisions, and Disk [/0.”

The two Java statements used to perform output to the system console are:

System.out.print ();
System.out.println();

Like all Java executable statements, they both end with a semicolon. The output item, which
is referred to as an argument, is coded inside the statement’s open and close parentheses. The only
difference between these two statements is that the first one leaves the console’s cursor at the end
of the output item, and the second one positions it at the beginning of the next line.

String Output

Technically speaking, the item to be output must be a sequence of characters, which in pro-
gramming languages is called a string (e.g., This is Console Output). In Java, strings can either be
string literals or String objects. String objects will be discussed in Section 2.5.

String literals are strings enclosed in double quotes. To output “7This is Console Output” we
would code the string literal "This is Console Output" inside the parentheses of a console
output statement. The following code fragment would display two lines of output:

System.out.println("This is Console Output");
System.out.print ("from the program");

The first line would contain This is Console Output, and the second line would contain from the
program. Because the second line is a print statement, the console’s cursor would appear on the
second line just after the word program.

PX®A The Concatenation Operator and Annotated Numeric Output

The concatenation operator, which is coded as a plus (+) sign, can be used to combine two
strings into one. The statement

System.out.println ("Hello" + "World");

Chapter 2- Variables, Input/Output, and Calculations I 45

produces the output Hello World to the system console. Before the output is performed, the first
string literal, containing the word "Hel1lo", is combined with the second string literal "Wor1d".
The resulting string, "Hello World", is then output to the console. There is no limit to the
number of string literals that can be combined using concatenation operators to produce the string
argument output by the print and println methods. The statement

System.out.println ("Hello" + "World," + " I'm Bill.");
produces the console output Hello World, I'm Bill.

To make the output of numeric data more meaningful and user-friendly, the output should
always be identified or annotated. For example, the output The price is $5.21 is much more infor-
mative than the output 5.2/ The annotation The price is § can be included in the output using the
concatenation operator.

System.out.println ("The price is $" + price);

The Java translator interprets the plus sign used in this context as the concatenation operator
because the item to its left is a string literal. It will fetch the contents of the variable price, convert
it to a string, and then concatenate that string with the previous string literal. The resulting console
output is “The price is $5.21.”

Because there is no limit to the number of string literals that can be combined to produce the
string argument of the print1n and print methods, the annotated contents of several variables
can be output to the console using one console output statement. The console output The price of
the 10 items is $5.21. is produced by the code fragment:

int quantity = 10;

double price = 5.21;

System.out.println("The price of the " + quantity +
" items is $” + price + ".");

The indentation in the above System.out.println statement has been used to improve its

readability. It prevents the statement from going beyond the eightieth column and is considered
good programming practice.

Escape Sequences

It is often necessary to output strings containing characters that have special meaning to the
Java translator. For example, a double quotation mark () is meant either to begin or end a string
literal, and a single quote (‘) is meant to begin or end a character literal. Suppose we wanted to out-
put Joe said, “Hello” followed by a period. To be grammatically correct in English, the word Hello
has quotes around it because it is something Joe said. However, the output statement

System.out.println ("Joe said, "Hello".");

would result in a syntax error because a double quotation mark in Java is meant to be either the
beginning or end of a string literal. Therefore, the translator would assume the quotation mark pre-
ceding the word He11o was meant to terminate the string literal, which began with the quotation
mark preceding the word Joe. Under this assumption, the translator expects the next character to

46 M Programming Fundamentals Using Java

be a close parenthesis followed by a semicolon, or a concatenation operator. Instead, it finds the
character H, which produces a syntax error.

To solve this problem, Java provides escape sequences, which are a sequence of two characters
coded inside a string literal. The first character in the sequence is always the backslash (\) charac-
ter. When the translator encounters a backslash inside a string literal, it always considers this to be
the beginning of an escape sequence and effectively looks up the meaning of the escape sequence,
given in Table 2.2. In other words, the backslash tells the translator to escape from its normal way
of interpreting this backslash and the next character, and instead look into the table of escape se-
quences for the meaning of these two characters.

For example the escape sequence \" (coded inside a string literal) means don’t interpret the
quotation mark as the beginning or end of a string literal but output a quotation mark. Therefore,
the syntactically correct way to output the sentence Joe said, “Hello”. is

System.out.printlin("Joe said, \"Hello\".")

Now the quotation mark preceding the H in Hello is part of the escape sequence to output a
quotation mark. It is not interpreted as the close of the string literal, which began with the quota-
tion mark preceding the word Joe. Another escape sequence is coded after the o in Hello for
the same reason. Proceeding to the right in the string literal, the translator encounters the quotation
mark that follows the period, which it correctly interprets as the close of the string literal.

Because a backslash inside a string literal is interpreted as the beginning of an escape se-
quence, one obvious question is “how would we output a backslash?” The answer is that there is
an escape sequence for outputting a backslash, which is a double backslash. The statement

System.out.println ("Down \\/ Up /\\")
produces the output: Down V Up A.

The escape sequence \' is used to output a single quotation mark, and the escape sequence
\n causes the cursor to move to a new line before completing the output. The escape sequence \t
tabs the cursor to the right; this is useful when you want output to appear in columns. A list of the
escape sequences is shown in Table 2.2.

Table 2.2
Escape Sequences

Escape

Sequence Sequence Name Meaning
N ... Doblequote :Output the double quotation mark () character :
AN L N Cuiputi the lbedhsloh (DAMEBSIS | eeeeeccnennd
\' Single quote Output the single quotation mark (‘) character
R e O N G
2 'Horizontal tab : Move the cursor to the next horizontal tab position :
. 1 More fhe oo e
. G Mo the oo e bt

Chapter 2+ Variables, Input/Output, and Calculations [47

The application shown in Figure 2.3 illustrates the declaration and initialization of primitive
variables and the use of string literals and escape sequences to output the data stored in these vari-
ables. The program’s outputs are included in the figure after the program’s code.

1 public class ConsoleOutput
2 {
3 public static void main (String[] args)
4 {
5 // Primitive variable declarations
9 int age = 21;
7 double weight = 185.25;
8 boolean isRaining = false;
9 char letterl = 'A';
10
11 System.out.println ("The Program's Output Appears Below");
12 System.out.println ("\t\t\"Hello World!\"");
13 System.out.print ("\ndJohn is " + age + " years old");
14 System.out.println (" and weighs " + weight + " pounds");
15 System.out.println ("Today it is " + isRaining +
16 " that it is raining\n");
17 System.out.println ("The first letter of the alphabet is " +
18 letterl);
19
20 System.out.println("1/2 + 1/4 = 3/4");//blank lines are ignored
21 }
22}
Program Output
The Program’s Output Appears Below
“Hello World!”
John is 21 years old and weighs 185.25 pounds
Today it is false that it is raining
The first letter of the alphabet is A
12+ 1/4=3/4

Figure 2.3
The application ConsoleOutput and the output it produces.

TIP It is good coding style to declare all variables at the beginning of a program.

Lines 6-9 declare and initialize four different types of primitive variables. Lines 11 and 12 produce
the first two lines of the program’s output. Each statement contains one string literal. The string
literal on line 12 begins with two tab escape sequences, which are used to center the second line
of output under the first. In addition, He1lo World! coded on line 12, is surrounded by two
double-quote escape sequences, which produces the quotation marks on the second output line.

48 B Programming Fundamentals Using Java

Lines 13—18 output the variables declared and initialized on lines 6-9. A new-line escape se-
quence begins the first string literal on line 13, which produces the blank line that precedes the
third line of text output. Two concatenation operators are used on line 13 to combine the two string
literals and the contents of the variable age after it is converted to a string. Line 14 uses similar
operations to annotate the output of John’s age and weight. The output displayed by lines 13 and
14 appear on the same line because line 13 uses a print rather than a println statement. As a
result, the cursor is not advanced to the beginning of the next line after line 13 completes execu-
tion, which causes the output produced by line 14 to begin immediately after the word old. One
subtlety on line 14 of the program is that its string literal begins with a space. This space becomes
the space that separates the word o/d from the word and in the output produced by lines 13 and 14.

Lines 15-16 produce the next line of output, which contains the string version of the contents
of the Boolean variable 1 sRaining. They also produce the next blank line of output because the
last string literal ends in a new-line escape sequence. The final two lines of output are produced
by lines 17-18, which output the contents of the character variable letterl, and line 20, which
outputs a single string literal.

Comments and Blank Lines

Line 5 of the program contains a single-line comment. A single-line comment begins with two
forward slashes (//) and is terminated by a new line (Enter) keystroke. Comments are added to a
program to improve the program’s readability; they are ignored by the translator.

! It is good practice to include comments in your program to describe the portions
TIP that are not obvious to the reader.

A second comment appears at the end of line 20, stating blank lines (e.g., lines 10 and 19) in a pro-
gram are ignored by the translator. It is good programming practice to separate major portions of a
program with a blank line. This technique, like comments, improves the readability of a program.
We will see more examples of the use of blank lines in a program later in this chapter.

XA STRING OBJECTS AND REFERENCE VARIABLES

As previously mentioned, in Java there are two kinds of variables: primitive variables and ref-
erence variables. Primitive variables store numeric, character, or Boolean data values. Reference
variables store memory addresses. These addresses are the addresses of memory resident program-
ming constructs called objects, and the contents of a reference variable is used to locate a particular
object. We say they refer to an object, which is how they get their name, reference variables.

Suppose that we were writing a program and we wanted store the string John in memory.
Based on what we have learned about primitive variables, we should declare a string variable, per-
haps named firstName, and then initialize it to the string "John". Unfortunately, Java does not
contain string type variables, so the statement

string firstName = "John"; // error

Chapter 2- Variables, Input/Output, and Calculations [49

is grammatically incorrect. However, there are String objects in Java. A String object can
store a sequence of characters, and the address of the object can be stored in a reference variable.
We begin by declaring a St ring reference variable that will store the address of our String object.
Then we store the address of a newly created St ring object, containing the string "John" in the
reference variable:

String firstName;
firstName = new String("John");

As we will learn in Chapter 3 “Methods, Classes and Objects: A First Look,” this two-line
grammar can be used to create objects in any class. For example, Starship objects, Snowman
objects, or Paddle objects can be created simply by replacing the word String on both lines
with the class names Starship, Snowman, or Paddle, and replacing the string “John” with
something more relevant to these objects. The first line creates an uninitialized reference variable
that, like uninitialized primitive variables, is set to a default value. The default value for reference
variables is null. When the variable is a String reference variable, we say that the reference
variable stores the null string.

TIP “String s contains the null string,” means that s stores a null value.

Because strings are so commonly used in programs, Java provides a simplified one-line grammar
for creating and initializing St ring objects:

String firstName = "John";

The abbreviated grammar to declare a string String object is: String

NOTE referenceVariableName = intialStringLiteralValue;

This one-line grammar can only be used to create String objects and is modeled on the
grammar used to declare and initialize primitive variables. Although the grammar is very similar,
we must keep in mind that unlike the primitive variable age, initialized to store the value 21 on
line 6 of Figure 2.3, the reference variable £irstName is not initialized to the string "John".
Rather, the reference variable i rstName stores the address of and refers to the St ring object
that is initialized to the string "John". Figure 2.4 shows the statements used to allocate memory
to primitive variables and objects/reference variables. The arrow in the figure indicates that the
reference variable £irstName refers, or points, to the object.

age firstName | 1096

The String object at
memory address 1096

int age = 21; String firstName = "John";
Figure 2.4
Memory allocated to primitive variables and objects/reference variables.

50 M Programming Fundamentals Using Java

In addition to providing a simplified grammar for creating St ring objects, Java also provides a
simplified grammar for outputting the strings contained inside these objects. Once again, it is mod-
eled after the grammar used to output primitive variables. To output the string contained ina String
object, we simply code the name of the variable that refers to the object. For example, the following
code fragment produces the output My name is John Smith, my age is 21 on the system console:

int age = 21;

String firstName = "John";

String lastName = "Smith";

System.out.print ("My name is " + firstName + " " + lastName);
System.out.println (", my age is " + age);

The differences between the way Java stores primitive data items and string data items can be
ignored when writing variable declaration statements and output statements. As we will see in
Chapter 3, these differences cannot be ignored for any other kind of object.

XA CALCULATIONS AND THE MATH CLASS

The first operational computers were used by mathematicians to compute the values of equa-
tions, which is how they obtained their name computers, and a significant portion of the process-
ing that modern computers perform is still calculations. Java, like most programming languages,
provides the ability to perform basic arithmetic calculations and provides additional features to
perform more complex calculations. This section begins with a discussion of how to incorporate
basic arithmetic calculations into a Java program and then discusses how to incorporate commonly
used mathematical constants and functions into these calculations.

Arithmetic Calculations and the Rules of Precedence

Arithmetic calculations are performed in Java using arithmetic expressions. Arithmetic ex-
pressions consist of a series of operands separated by operators. In the simplest case, the operands
are numeric constants, and the operators are the four arithmetic operators: add subtract, multiply,
and divide. For example, 10 + 21 — 5 is a simple arithmetic expression that evaluates to 26. Gener-
ally, simple arithmetic expressions are evaluated from left to right. The addition would therefore be
performed before the subtraction.

The symbols used for the four arithmetic operators are given in Table 2.3. The third entry in
the table, the modulo (or mod) operator, is used to find the remainder in division. For example,
14 % 3 evaluates to 2. All of the operators can be used with integer or real operands.

In addition to numeric constants, called numeric literals, operands can be the names of vari-
ables that store numeric values. When a memory cell name is used in an arithmetic expression, the
value stored in the memory cell is fetched, substituted for the memory cell name, and the arithme-
tic expression is evaluated. For example, given the variable declarations:

int x = 10;

int y = 29;

int z 5;

Chapter 2- Variables, Input/Output, and Calculations [l 51

Table 2.3
The Java Symbols for the Arithmetic Operators (In Order of Precedence)

: multiply P E
divide
:Moduloormod i
cadd e ee e nemnen
subtract -

the arithmetic expression x + y — z evaluates to 34. A mix of numeric literals and memory cell
names can be used as the operands in any arithmetic expression, so the expression x +29 —z is a
valid arithmetic expression that also evaluates to 34.

An arithmetic operation performed on two integers always results in an integer value, and an
arithmetic operation performed on two real values always results in a real value. When one oper-
and is an integer and the other is a real value, the result is always a real value, and the arithmetic
is referred to as mixed mode arithmetic. Before mixed mode arithmetic is performed, the integer
value is converted to a real value (e.g., 10 becomes 10.0).

Integer Division

When the two operands are integers and division is performed, the results are sometimes
surprising. That is because the division of two integers always produces an integer result that is
truncated and not rounded. For example, given the variable declarations

int x = 10;

int vy = 29;

int z = 5;

the following arithmetic expressions would evaluate to the values on the far right side of each ex-
pression:

x/z=10/5=2
y/x=29/10=2 (0.9 lost, due to truncation)
z/x=5/10=0 (the most surprising result, 0.5 is truncated to zero)

Precedence Rules

Consider the arithmetic expression 10 + 6 — 2. The expression evaluates to 14 whether we
perform the addition first (16-2) or the subtraction first (10+4). Similarly, the expression 10 *
6/2 evaluates to 30 whether we perform the multiplication first (60/2) or the division first (10*3).
In both cases, the value of the expressions is independent of the order in which we apply the arith-
metic operators. In general, if an expression contains just addition and subtraction operators, or
contains just multiplication and division operators, then the evaluation of the expression is inde-
pendent of the order in which we apply the arithmetic operators. Java considers these expressions
to be simple arithmetic expressions and, as previously stated, they are evaluated from left to right.

52 B Programming Fundamentals Using Java

This is not the case for arithmetic expressions that mix addition and/or subtraction opera-
tors with multiplication and/or division operators. Consider the expression 10 + 6 * 2, which per-
forms addition and multiplication. If we perform the addition first, the expression evaluates to 32
(16 * 2), but if the multiplication is done first it evaluates to 22 (10 + 12). The arithmetic expres-
sion appears to be ambiguous. Fortunately, mathematicians have stipulated a way of resolving the
ambiguity called the rules of precedence. These rules state that multiplication and division are
performed before, or take precedence over, addition and subtraction. Using this rule, the expression
10 + 6 * 2 evaluates to 22.

Operators that are performed first, such as multiplication and division, are said to have higher
precedence. Table 2.3 lists the arithmetic operators in high-to-low precedence order, with multipli-
cation and division being the highest precedence operators in the table, and addition and subtrac-
tion the lowest. The expression 5 * 7 % 2 would evaluate to 1 because multiplication is of higher
precedence than the mod operator. Java contains other operators, for example logic operators, and
each Java operator has been assigned a precedence level. A complete list of Java operators and their
assigned precedence level is given in Appendix E.

Java evaluates arithmetic expressions using this mathematical rule of precedence:
NOTE multiplication and division are performed before modulo (mod) operations, which
are performed before addition and subtraction operations.

If we wanted the addition or subtraction in an arithmetic expression to be performed before
multiplication or division, we would use a set of parentheses to override the precedence rules. The
expression (10 + 6) * 2 would evaluate to 32. To average the numbers 2, 4, and 6, we would write
(2 +4 + 6) / 3, which would evaluate to the correct average 4 = 12 / 3. (Without the parenthe-
ses, only the 6 would be divided by the 3 because the division operation would be performed
first.)

NOTE Parentheses override the rules of precedence.

In summary, the parts of an arithmetic expression inside parentheses are evaluated first us-
ing the rules of precedence to determine the order of the operations. If the operators are of equal
precedence, they are evaluated from left to right. The following example, which contains a set of
nested parentheses and evaluates to 36, illustrates this process.

*

+ (2

~

2) -

oo{—oo

+

Tt

]

* 6

w
[e)}

Chapter 2- Variables, Input/Output, and Calculations [l 53

The Assignment Operator and Assignment Statements

In Section 2.3, we learned that a variable named price could be declared and initialized to
the value 5.21 by coding:

double price = 5.21;

The equals (=) symbol used in this declaration is called the assignment operator because it assigns
values to memory cells. In this case, the memory cell named price is assigned the value 5.21.
Although the statement should be read as “double price is assigned 5.21,” most programmers would
read it as “double price equals 5.21,” which is unfortunate because (as we will see) the operator
does not represent the mathematical concept of equality. Rather, it represents the flow of the data
value on its right side (in the above statement, 5.21) into the memory cell named on its left side,
(in the above statement, price).

Assignment Statements

In addition to being used to initialize variables in a declaration statement, the assignment
operator is also used in statements that reassign (actually overwrite) the contents of memory cells
previously declared in a program. These statements are called assignment statements. For example,
after the following two statements execute, the variable price stores the value 6.25.

double price = 5.21;

price = 6.25;
In addition to being a numeric literal, the entity on the right side of the assignment operator can be
an arithmetic expression. For example:

answer = x + 21 - z;

When this is the case, we should realize that the execution of the statement is performed in three
steps:

1. Fetchthe contents of the variables coded on the right side of the assignment operator from
memory and substitute these values into the arithmetic expression

Evaluate the arithmetic expression considering parentheses and the rules of precedence

3. Store the value of the arithmetic expression in the memory cell coded on the left side of
the assignment operator

In an assignment statement, the item on the left side of the assignment operator must be the
name of a variable. The statement cannot be reversed by placing the name of the variable on the
right side of the assignment operator. That is,

answer = x + 21 -z;
1S not the same as
X + 21 -z = answer;

The second expression will produce a syntax error. Armed with this understanding, the assignment
statement (which is probably executed on a person’s birthday)

age = age + 1;

54 B Programming Fundamentals Using Java

will increase the value stored in the memory cell age by one. In addition, a mathematician would
now understand that the assignment operator does not represent equality and would not run from
this statement in horror proclaiming that nothing (in this case age) could be equal to itself plus
one. Surveys of programs conducted in the 1970s indicate that 47% of the statements contained in
programs are assignment statements, so this is an important concept to understand.

Promotion and Casting

Generally speaking, the type of the value being assigned to a variable should match the type of the
variable. When this is not the case, the Java translator checks this to make sure that there is no chance
that part of the value being assigned to the variable could be lost when the value is stored in the vari-
able. For example, if a real number (e.g., 2.7) was assigned to an integer-type variable, the fractional
part of the value (0.7) would be lost. As a result, the statement below produces the translation error
“possible loss of precision,” because it assigns a double value (2.7) to an integer memory cell.

int newValue = 2.7;

! Avoid assigning a numeric with a fractional part (e.g., types £loat and double) to
TIP an integer type variable because it will generate a translation error.

This statement does not produce a syntax error because performing an arithmetic operation on two
integers (21 / 10) always results in an integer (in this case, 21 / 10 = 2).

int newValue = 21/10;

The Java translator also checks assignment statements to determine if the value being assigned
to the variable, coded on the left side of the assignment operator, is within the variable’s range.
As shown in the right column of Table 2.1, the range of the numeric values that can be stored in a
numeric variable depends on its type. Within the four integer types, the type 1ong has the largest
numeric range, and within the real types, the type double has the largest range.

The progression shown in Figure 2.5 summarizes the valid assignments between types (those
that will not result in a loss of precision and guarantees that the range of the variable being assigned
is large enough to store the value assigned to it). A valid assignment is when the type of the variable
being assigned is to the left of the type of the value being assigned to it (e.g., a double variable
can be assigned int values). When this is the case, we say that the value has been promoted to the
type of the variable.

double < float ¢ 1long <€ int ¢ short < byte <& char

Note: a valid promotion is from right to left (<€)

Figure 2.5
Valid promotions of numeric types.

Although the types of the variables used in the code fragment in the assignment statements
below are not the same, they are valid because they follow the promotion order given in Figure 2.5.

byte aByte = 20;
char a = 'a';

Chapter 2- Variables, Input/Output, and Calculations [l 55

int anInt;
double aDouble;
anInt = aByte;

anInt = a;
aDouble = aByte;
aDouble = anInt;

Mixed Mode Arithmetic Expressions

Mixed mode arithmetic expressions are expressions in which the operands are not of the same
type. To evaluate the terms of these expressions, the operand whose type is further to the right in
Figure 2.5 is promoted to the type of the other operand, the term is evaluated, and the resulting
value is in the promoted type. For example, the following code fragment contains a mixed mode
arithmetic expression:

double salary = 523.56;
float raise = 1.1f;
salary = 10 + salary * raise;

The arithmetic expression in the assignment statement contains an integer literal, a double vari-
able, and a float variable. During the evaluation of this expression, the value stored in raise
would be converted to a double, and then the multiplication operation would be performed. The
result would be a double value. That value would then be added to the integer literal 10 after it was
converted to double. The resulting double value would be assigned to the variable salary.

Casting

One use of the word casting is the process of turning an entity into something it is not. For ex-
ample, a frail mild-mannered actor could be cast into the role of a professional wrestler. In comput-
er science, the term is used to describe the process of changing the type of a value to another type.

Changing the type of a variable or numeric literal in mixed mode arithmetic expressions
previously discussed is an example of automatic casting. Even when an arithmetic expression
is not a mixed-mode expression, there are times when it is desirable to cast operands into other
types before the expression is evaluated. For example, a value that is an integer variable could
be cast into a real value before it is used in an arithmetic expression. This is a very common use
of casting.

Consider the calculation of the ratio of two integer variables n1 and n2.

int nl = 111;
int n2 = 10;
double ratio = nl / n2;

The arithmetic expression will evaluate to an integer because both operands are integers. As a re-
sult, we will lose the factional part of the ratio, and the variable ratio will be assigned 11.0.

A situation that is more confusing is illustrated in the code fragment below. The integer de-
nominator (100) is larger than the integer numerator (90). In this case, the variable ratio is
always assigned 0.0.

int numberOfStudents = 100;

56 M Programming Fundamentals Using Java

int numberPassing = 90;
double ratio = numberPassing / numberOfStudents;

To retain the factional part of a value calculated by dividing to integers, we change, or cast, the type
of one of the operands into one of the real types (double or float). The syntax of this nonautomatic
casting is to enclose the numeric type into which the operand is being cast inside of parentheses.
The following fragment uses casting to change the fetched contents of the variable n1 into a double
before the arithmetic operation is performed. The outer set of parentheses in the third statement is
necessary because arithmetic operators take precedence over casting.

int nl = 111;

int n2 = 10;

double ratio = ((double) nl) / n2;

After casting is performed, the arithmetic expression involves a double value (111.0) and an integer
variable (n2): a mixed mode expression. Automatic casting then converts n2 to a double, and then
the division is performed that produces a double (11.1). The value 11.1 is assigned to ratio. In this
code fragment, ratio would be assigned the value 0.9.

int numberOfStudents = 100;

int numberPassing = 90;
double ratio = ((double) numberPassing) / numberOfStudents;
NOTE Arithmetic operators take precedence over nonautomatic casting.

Another common use of casting is to inform the translator that you want to violate the promo-
tion-only rules it imposes on assignment statements, shown in Figure 2.5. If we wanted the integer
part of a double value to be assigned to an integer variable, we would use casting. The following
statements assign the value 1 to the integer variable age:

double daysSinceBirth = 401.5;
int age = (int) daysSinceBirth / 365;

The mixed mode arithmetic in the second statement produces the value 1.1, which the casting
converts to an integer (1) before it is assigned to the variable age. If the casting were left out of
the second statement, it would not translate because it would be a violation of the promotion rules
given in Figure 2.5. This use of casting informs the translator that we are intentionally violating
these rules.

The Math Class

If we were to examine the code of applications written by several different programmers, we
would quickly come to the realization that mathematical calculations, such as raising a number to a
power or calculating the square root of a number, are performed in many programs. For example, a
program that computes the radius of a circle given its area would divide the area by the constant PI,
and then take the square root of the result. Obviously, the accuracy of the calculation is dependent
on a precise value of PL. In addition, because the square root is not one of the mathematical opera-
tors available in most programming languages, the programmer would have to know the algorithm

Chapter 2- Variables, Input/Output, and Calculations

for computing the square root of a number using the math operators available in the programming
language.

To facilitate the coding of programs that use common mathematical constants and calculations,
Java, like most programming languages, provides precoded libraries containing these constants
and mathematical functions. The constants are coded as initialized variables, and the mathemati-
cal functions are coded into subprograms. In Java, subprograms are called methods, and related
methods and variables are collected into classes. As discussed in Section 1.5.1, the collection of
the precoded classes available in Java is called the Java Application Programmer Interface, or Java
APIL. A complete description of the classes contained in the API, is available online. To locate this
documentation, simply type “Java API Specification” into the search window of your browser.

The API class that contains mathematical constants and methods is called the Math class.
Table 2.4 lists a mathematical constant and some of the most commonly used methods that are
included in this class. The third column of the table gives a series of assignment statements that
illustrate the use of the class’s constants and methods. Notice that the name of the Math class fol-
lowed by a dot precedes the name of the constant or method used in the statement. The angles used
in the trigonometric functions that appear in the last three rows must be expressed in radians. The
methods compute and return a value, which the coding examples in the rightmost column of the
table assign to a variable.

Table 2.4
Commonly Used Math Class Constants and Methods

Constant or

Method Description Coding Example

? . The ratio of the circumference of a circle to its
':PI : 'C 00 € CIrcu erence o Circlie to 1ts §area=Math.PI*r*r;
- : diameter (a double) :

: Computes and returns the absolute value of a

b : .. Absolute = Math. ;
abs : number, n (returns the type it is sent) LR inglosliE
—— Computes and returns a number, n, raised to the nToTheP = Math.pow(n, p);

: Computes and returns the square root of a num-
t ; tN = Math.sqrt(n);
o bernn(retumsadouble) SO
. : le, a, i i - : :
T Converts an angle, a, in degrees to radians (re il = Ml Rty
:turns a double) :
sin Computes apd re‘Furns the sine of an angle, o = b (R
S {:1-.::: 1 nic =y QS R
cos Computes apd re‘Fums the cosine of an angle, e = il eas(ERed);
S {1~ ne 2=y U S RS
fan : Computes and returns the tangent of an angle, i = N R

- aRads, specified in radians

The following code fragment calculates and outputs the sine of 45 degrees and 2 raised to the
third power:

W 57

58 M Programming Fundamentals Using Java

double angle = 45.0;
double angleInRadians = Math.toRadians (angle); //returns a double
double sineOfAngle = Math.sin(angleInRadians); //returns a double

System.out.println ("The sine of " + angle + " is " + sineOfAngle);
System.out.println ("2 cubed = " + Math.pow (2, 3));

Random Numbers

“A random number is a number generated by a process whose outcome is unpredictable and
which cannot be subsequently reliably reproduced.”” Random numbers are used in many computer
applications such as game programs, encryption programs, and simulation programs. For example,
flight simulator programs used to train pilots to react to air turbulence introduce turbulence into
the flight at random times during the simulation.

The Math class contains a method named random that can be used to generate pseudorandom
numbers. The numbers are not truly random because the sequence of numbers the method gener-
ates is based on the computer’s real-time clock (i.e., the time of day) resolved to one millisecond,
and therefore can be reliably reproduced.

The method returns a double in the range: 0.0 < randomNumber < 1.0. (The highest number
generated by the method is always less than 1.0.) The following code fragment outputs two random
numbers in that range. The specific numbers output would depend on the time of day the code
fragment was executed.

double randomNumber;

randomNumber = Math.random() ;
System.out.println (randomNumber) ;
randomNumber = Math.random() ;
System.out.println (randomNumber) ;

The method can be used to generate numbers in the range: min < randomNumber < max using the
assignment statements:

double randomNumberl = min + Math.random() * (max - min);
int randomNumber2 = int (min + Math.random() * (max - min));

The second assignment statement uses casting to change the computed real number into an integer.

DIALOG BOX OUTPUT AND INPUT

Dialog boxes are a graphical way to communicate with the user of a Java program and offer
an alternative to the console-based output produced by the print1n method in the System class.
The message dialog box (Figure 2.6) is used to convey output to the user, and the input dialog
box (Figure 2.7) is used to obtain input from the user. They are predefined graphical objects that
automatically resize themselves to display the string argument sent to them. The string sent to a
message dialog box is the text to be output to the user. In the case of an input dialog box, the string
is an input prompt to be displayed to the user.

Chapter 2+ Variables, Input/Output, and Calculations [l 59

After a dialog box is displayed, the program execution is halted until the user clicks a button
displayed in the box or strikes the return key. In the case of a graphics application, dialog boxes are
normally used for all communication between the program and its user. Two methods in the class
JOptionPane, showMessageDialog, and showInputDialog are used to display message
(output) and input dialog boxes, respectively.

Message Dialog Boxes

The method showMessageDialog is a static method, as are the Math class’s methods
presented in Table 2.4 and its random method. As we will learn in Chapter 3, not all methods are
static methods. When static methods are invoked, we must precede the name of the method with
the name of its class followed by a dot. The showMessageDialog method and the Math class’s
pow method have another thing in common: they are both sent two arguments that are coded inside
the parenthesis that follows the name of the method. For the pow method, we learned that these are
the numbers to be raised to a power followed by the power to which to raise it.

In the case of the showMessageDialog, its two arguments describe to which window the
message box will be output followed by a string that contains the text of the output message. To
output the message “Frogger, by George Smith,” we would code

JOptionPane.showMessageDialog (null, "Frogger, by George Smith");

This would produce the message box shown in Figure 2.6(a). Coding null as the first argument
causes the message dialog box to be displayed in the center of the monitor.

r =)
) @ Frogger
. E by George Smith
. AKA Game Boy Georgie.
Frogger, by George Smith OK?
OK OK
(@) (b)

Figure 2.6
Two message dialog boxes.

The second argument, the string, can contain all of the elements and features of the string sent to
the print 1n method used to perform output to the console. As we have learned, the string can be a
concatenation of a mix of string literals and numeric variables. Just as with console output, the string
will be output on one line unless new-line escape sequences (\n) are included in the string. The width
and height of the message box will expand to accommodate the string. For example, the statement

JOptionPane.showMessageDialog (null, "Frogger," + "\nby George Smith," +
"\nAKA Game Boy Georgie." + "\nOK?");

produces the output in Figure 2.6(b).

60 M Programming Fundamentals Using Java

These features are especially useful in a very common use of a message box: to display a
game’s splash screen. A game splash screen is used to describe a game, its objective, and the man-
ner in which the game pieces are controlled by the player. Usually, the name of the game and its
creator (e.g., “Created by Game Boy Georgie”) are also included.

Input Dialog Boxes

Input dialog boxes, which are displayed by the static method showInputDialog, are used
to obtain input from the program’s user (Figure 2.7). It is sent one argument, which the method
displays as a prompt to the user. A text box is displayed below the prompt into which the user types
the input. The box contains two buttons labeled “OK” and “Cancel.” The string sent to the method
can be a concatenation of a mix of string literals and variables, and the width and height of the input
box is adjusted to accommodate the string and its embedded new-line escape sequences. Figure 2.7
shows the input dialog box produced by the statement

String s = JOptionPane.showInputDialog ("Frogger has five " +
"difficulty levels:" +
"\nl is the easiest," +
"\n5 the most difficult," +
"\nEnter your level");

Frogger has five difficulty levels:
1is the easiest,
5 the most difficult,

Enter your level

I
| oK |_.Cancel.

Figure 2.7
An input dialog box before the user enters input.

If, in response to the displayed prompt, the user types into the text box and then clicks “OK”
(or strikes the Enter key), the location of a St ring object that stores the user input text would be
placed in the reference variable s. (For brevity, we would say that the TnputDialogBox method
“returns a string,” when in fact it actually creates and returns the address of a String object.)
If the user clicked “OK” or struck the Enter key without making an entry in the text box, the
returned St ring object would contain the empty string (“”*). Finally, if the user clicked “Cancel,”
s would store the null string. (It would be set to null.)

Parsing Strings into Numerics

Most of us would agree that there is a fundamental difference between the string "one hun-
dred seventy-six” and the number 176. For one thing, we would not try to add the string

Chapter 2- Variables, Input/Output, and Calculations [61

"one hundred seventy six" to the string "ten" to obtain "one hundred eighty
six". Rather, if we read the question, “what is the sum of one hundred seventy-six and ten?” we
would first convert the numbers to their numeric representations, 176 and 10, and then perform the
addition. In computer science, the difference between strings and numerics goes deeper than that
because even if we were told to add “176” and “10,” we would still have to convert these two strings
to their numeric representations before performing the addition.

TIP Operands in arithmetic expressions cannot be strings.

As discussed in Chapter 1, characters are stored using their Extended ASCII representation, and
numerics are represented using their binary representation. Inside of St ring objects, the Extended
ASCII representation is used. The difference between these two representations is shown below.

Extended ASCII Representation of 176 Binary Representation of 176
00110001 00110111 00110110 10110000
51’ ‘7’ 667 176

Because an input dialog box returns a string, when 176 is typed into its text box it returns the
string 11761 , which must be converted to a numeric if it is to be used in an arithmetic expres-
sion. This conversion process is referred to as parsing strings into numerics. There is a set of class-
es in the API, called wrapper classes, which contain static methods to perform this conversion. The
string to be converted to a numeric is sent to the method as an argument coded inside the open and
close parentheses that follow the name of the method. The decision as to which class and method to
use is based on the primitive numeric type the string is being converted to, as shown in Table 2.5.

Table 2.5
Numeric Wrapper Classes and Their Parsing Methods

To Convert a String to the
Numeric Type Use the Static Method In the Wrapper Class
DYES o panseByte Y
short parseShort Short
EE e pATSeInt o Ineger
long parseLong Long
s Rl e
s ﬁé}s'éb e e

To change the string literal "176" to its integer numeric representation, we would code:
int numericValue = Integer.parselnt("176");

To convert the string s to a numeric double, we would code:
double numericValue = Double.parseDouble (s);

Most often, the statements to accept a user input via an input dialog box, and the conversion of the
returned string to a numeric, are coded one after the other.

62 M Programming Fundamentals Using Java

String s = JOPtionPane.showInputDiaog ("Enter your age");
int age = Integer.parselnt(s);
s = JOPtionPane.showInputDiaog ("Enter your weight");

double weight = Double.parseDouble (s);

If the string sent to the wrapper class methods contains anything other than digits (i.e., the charac-
ters 0°, ‘1°, ..., 9°), a runtime error NumberFormatException occurs, and the program ter-
minates. If the empty string is passed to the methods (the user clicked “OK” in an input dialog box
without typing an input) or the null string is passed to methods (the user clicked “Cancel” without
making an entry), the same runtime error occurs. We will learn how to deal with these errors at
runtime to bring the program to a more informative conclusion in Chapter 4 and how to permit the
user to correct the erroneous input in Chapter 5 “Repeating Statements: Loops.”

NOTE A runtime error is an error that occurs while the program is in execution.

The application shown in Figure 2.8 calculates the area of a circle given its radius, and it also
calculates the radius of a circle given its area. The inputs to the program (a radius of 10 and an area

1 import javax.swing.JOptionPane;

2

3 public class AssignmentMathAndDialogIO

4 A

5 public static void main (String[] args)

6 {

7 String s;

8 double area, radius;

9

10 JOptionPane.showMessageDialog(null, "Circle area and radius" +
11 "\n calculation program");
12 s = JOptionPane.showInputDialog("To calculate an area," +

13 T\) enter a radius");

14 radius = Double.parseDouble (s) ;

15 area = Math.PI * Math.pow (radius, 2);

16 JOptionPane.showMessageDialog(null, "The area of a circle" +
17 " whose radius = " +

18 radius + "\n is " + area);
19

20 s =JO0ptionPane.showInputDialog("To calculate a radius" +

21 "\n enter an area");

22 area = Double.parseDouble(s) ;

23 radius = Math.sqrt (area / Math.PI);

24 JOptionPane.showMessageDialog(null, "The radius of a circle" +
25 " whose area = " +

26 area + "\nis " + radius);
27 }

28 '}

Figure 2.8

The application AssignmentMathAndDialogIO.

Chapter 2+ Variables, Input/Output, and Calculations I 63

of 200) and the corresponding outputs are show in Figure 2.9. The program demonstrates the use
of assignment statements, parsing a string into a numeric, performing calculations, the use of the
Math class, and dialog box /0.

Line 1 of Figure 2.8 is an import statement. Import statements make API classes, and the
constants and methods they contain, available to our programs. In this case, the class JOption-
Pane, which contains the methods to perform dialog box input and output, is imported into the
program. These methods are used to output the program’s splash screen (lines 10—11) and to input
the radius of a circle (lines 12—13). The new-line escape sequences (\n) in the strings sent to these
methods produce a two-line message on the splash screen and a two-line input prompt, as shown
at the top of Figure 2.9.

Line 14 parses the string representation of the input radius returned from the input dialog box
into a double and assigns that double to the variable radius. Line 15 calculates the area of the
circle. It uses the Math class’s method pow to square the input radius and then multiplies that by the
constant pi (Math.PI). Lines 16—18 output the radius and the computed area to a message dialog
box (Figure 2.9c). The input radius and the calculated area are added to the output string with the
use of the concatenation operator on line 18.

@ Circle area and radius @ To;::::::;: o
calculation program 1
[_ox_]| cance
(@) (b)
e = Input =
The area of a circle whose radius = 10.0 @ To:;":::;;“m
is 314.1592653589793 200
[_ox_][cance
© (d)
Message (=)
The radius of a circle whose area = 200.0
is 7.978845608028654
(€

Figure 2.9
Input and resulting output from the application AssignmentMathAndDialogIO.

64 B Programming Fundamentals Using Java

In a similar way, lines 20—26 accept an input area and compute the circle’s radius. This calcula-
tion uses the Math class’s sqrt method on line 23 to perform the calculation. The method accepts
one argument, which in this case is the result of dividing the area by pi. The input to and output
from this portion of the program is shown in Figure 2.9.

EXE GRAPHICAL TEXT OUTPUT

In Section 2.4, we invoked (or some would say “used” or “called”) the println and print
methods of the PrintStream class to perform text output to the system console. In this section,
we will learn how to use the method drawString in the API Graphics class to perform text
output to a graphics window. This type of output is called graphical text output. Unlike console
output, we can specify the font type, size, and style (e.g., bold style) of graphical text output. In
addition, we can output the text to any location in a graphics window. In game programming, text
output is typically used to display the game’s level of difficulty, the remaining time, the score, or
other information on the game’s status.

With this added capability come added responsibilities. For example, every time a graphics
window that has been minimized is restored, the graphical text must be output again, or it will not
be visible in the window. In fact, anything that appears in the window before it was minimized
must be redrawn when the window is restored. One mechanism for doing this in graphics programs
is to place the graphical output in a call back method. Our game environment contains several call
back methods. In this section, we will learn how to use the call back method draw, the Graphic
class’s drawSt ring method, and how to set the font type, size, and style of graphical text output.

The drawString Method

The drawString method is a part (member) of the API Graphics class and is used to output
text to a graphical object (perhaps a window). When the method is invoked three arguments are
passed to it. The first argument is the text to be output. The second and third arguments are the x
and y coordinates where the text will be output. These coordinates locate the lower left position
of the first character of text. Their origin is the upper left corner of the graphical object in which
the text is to be displayed (e.g., our game board), with x positive to the right and y positive down.

To output the text “Hello World” to our game environment’s game board, positioned with the
lower left corner of the “H” at (200, 300), we would code:

g.drawString ("Hello World", 200, 300);

Notice that the two characters g. precede the name of the method. This is because the method
must draw its text on a Graphics object. In our case, the object g would have to be a Graphics
object attached to our game board because we want the text to be drawn on the game board. As we
will see in the next section, the attachment of the object g to our game board is performed for us
by the game environment.

A method that operates on an object is called a nonstatic method. The syntax used to invoke
these methods is the name of the object it is operating on, followed by a dot, followed by the name
of the method and its argument list. We have used this syntax in Section 2.4 to invoke the print

Chapter 2+ Variables, Input/Output, and Calculations I 65

and println methods. They were invoked by proceeding their names with the Java pre-defined
PrintStream object System.out followed by a dot. (As previously discussed, when we in-
voke static methods, we precede the method’s name with the name of the method’s class followed
by a dot. For example, Math.sqrt(9);)

The simplest way to determine if a method is static or nonstatic is to click on its class name
in the lower left window of the online Java API Specification then scroll down through the API
documentation to the method’s name. If the method is static, the word “static” will appear in the
column to the left of the methods name. For example:

static double |sqgrt(double a)
Returns the correctly rounded positive square root of a double value

If the method is a nonstatic method, the word “static” will not appear in the column to the left of
the methods name.

The remaining issue is determining where in our game application program we place the invoca-
tion to drawString. The short answer is in the draw call back method, which we will discuss next.

The draw Call Back Method

Figure 2.10 presents the Java application class GraphicalTextOutput that creates a game
window object on line 7, which is displayed by line 11 when the ma i n method executes. Lines 2—12
are identical to that of the game code template in Figure 1.31 except for the change in the applica-
tion’s class name (lines 4 and 6) and the title of the window (line 7). When the program is run, the
window shown in Figure 2.11 appears on the monitor.

1 import edu.sjcny.gpvl.*;

2 import java.awt.Graphics;

3

4 public class GraphicalTextOutput extends DrawableAdapter

5 {

6 static GraphicalTextOutput ga = new GraphicalTextOutput();
7 static GameBoard gb = new GameBoard(ga, "Graphical Text Output");
8

9 public static void main (String[] args)

10 {

11 showGameBoard (gb) ;

12 }

13

14 public void draw (Graphics g) //the drawing call back method
15 {

16 g.drawString ("Hello World", 250, 220);

17

18 }

19 1}

Figure 2.10
The application GraphicalTextOutput.

66 M Programming Fundamentals Using Java

, Graphical Test Cutput [E=RECR ="

Hello World
Stont
Stop

Figure 2.11
The output produced by the application GraphicalTextOutput.

Lines 14-18 is a coding of the game environment’s draw call back method. The first line of
the draw method, called the method’s signature, must always be identical to the code on line 14,
and it requires that the game environment be added (imported) to the program (line 1). The invoca-
tion to the drawString method has been coded on line 16, which, when executed, outputs the
graphical text “Hello World” to our game board beginning at pixel location (250, 220). To use the
drawString method the Graphics class must be imported into the program (line 2). But, when
does it execute?

We have learned that the main method is invoked by the Java runtime environment causing its
statements to execute, beginning with its first executable statement (the program entry point) and
ending when the execution reaches the end of its code block, in this case, line 12. Thus, it would
appear that line 11 would display the application’s window, and then the program would end. But
the draw method must have executed because the characters Hello World appear in the program’s
window (Figure 2.11). So again, we ask the question, “when does it execute?”

The answer is fundamental to why the method draw is referred to as a call back method.
Line 11 in the main method invokes the method showGameBoard, which requests that the
game environment display the game board window. Before the game environment displays the
game’s window, it invokes, or calls back, the draw method coded in the application, causing it
to execute. When the draw method ends, the game environment completes the display of the
game’s window requested by the showGameBoard method. Thus, the application calls the
game environment to display the game board window (line 11), and the game environment calls
back the application’s draw method to perform its drawings on the game board before the win-
dow is displayed. Specifically, the execution sequence is line 11 in the method main, the code of
the showGameBoard method, the code at the beginning of a method in the game environment,
the draw call back method lines 14-18), and finally, the remainder of the code in the game-
environment method.

Chapter 2- Variables, Input/Output, and Calculations I 67

In fact, every time the program’s window has to be redrawn (e.g., the window was minimized
and then the window’s icon on the status bar is clicked), the game environment’s code invokes the
draw method to redo its drawings on the game board. This can easily be verified by adding the
statement

System.out.println ("the draw method was invoked");

to the draw call back method. Then, every time the draw method is invoked, we will see an out-
put on the system console.

Even though the main method containing the program’s entry point ends its ex-
NOTE ecution, a graphical program continues to execute until the program’s graphical
window (e.g., the gameboard window) is closed.

The setFont Method: A First Look

Like the drawString method, the set Font method is a part (member) of the API Graph-
ics class. It is used to change font type, style, and size. The output in Figure 2.11 used the default
font values. Once changed, all subsequent graphical text output will use the new (or current) font
type, style, and size until it is changed again. The method is passed one argument. The following
code, when added to the draw method, changes the font type to Arial, the style to bold italic, and
the font size to 16 points, and then outputs the text The Font was Changed. The syntax of the argu-
ment sent to the setFont method will be explained in Chapter 3.

g.setFont (new Font ("Arial", Font.BOLD + Font.ITALIC, 16));
g.drawString ("The Font was Changed", 150, 300);

FXA THE COUNTING ALGORITHM

Counting is something that is done in most programs and is considered to be a fundamental
algorithm in computer science. For example, in game programs it is used to count the number of
seconds remaining in a game or the number of seconds since the game began. In the first case, the
time starts at a designated amount of time and counts down to zero; in the second case, the time
starts at zero and counts up. In both cases, the game’s time is usually displayed on the game board.
In this section, we will discuss the counting algorithm, and we will learn how to use it inside the
game environment’s call back method timerl to count seconds.

Most of us began to learn how to count by memorizing the integers beginning with 1. Our par-
ents may have said to us, “say this: one, two, three, four.” Most of us, on the first try, perhaps said
“three, four,” or “one, two, four,” or some other erroneous sequence. Through repetition, eventually
we memorized the sequence and extended it by recognizing that each new element is “one more.”

Somewhere along our cognitive development path, we discovered the counting algorithm. In
support of that is the realization that most people never memorized the integers from 1,242,518 to
1,243,589. However, most of us could recite that sequence of integers if asked to do so because we
use the counting algorithm to determine the sequence. Below is the generalized counting algorithm
that can be used to count forward or backward by any increment:

68 M Programming Fundamentals Using Java

int count = aBeginningValue;
// repeat the next statement until count reaches the ending value
count = count + aCountingIncrement

For example, to count upward from 1 to 10 by 1s, we code:

int count = 1;
// repeat the next statement until count reaches 10
count = count + 1; // 1 becomes 2, 2 becomes 3, 3 becomes 4,

To count backward by S5s, from 1,165 to 875, we code:

int count = 1165;
// repeat the next statement until count reaches 875
count = count + -5; // 1165 becomes 1160, 1160 becomes 1155,

Repeating statements is the topic of Chapter 5, so we will revisit the counting algorithm in
that chapter. However, if we want to count seconds within a game program, the second line of
the counting algorithm can be repeated by placing it inside a call back method named timerl.
This method is invoked by the game environment once every second causing the statement to be
repeated once a second.

A Counting Application: Displaying a Game’s Time

The game environment has three timer call back methods named timerl, timer2, and
timer3. Their signatures (first lines) are:
public void timerl()

public void timer2()
public void timer3()

If you code these methods into your game program, they will be invoked every time their respec-
tive timers “tick.” For example, the method timer2 will be invoked every time timer2 ticks.
Because counting seconds is so common in games, by default t imer1 ticks every second. It be-
gins ticking when the game window’s Start button is clicked, pauses when the Stop button is
clicked, and resumes ticking when the Start button is clicked. After a timer call back method
ends its execution, the game environment invokes the draw call back method. The details of the
other two timers, which are normally used to animate game objects, will be discussed in Chapter
6.

Figure 2.12 presents the graphical application CountingSeconds that illustrates the use of
the counting algorithm to count upwards by one, starting from zero. The output produced by the
program three seconds after the user clicks the Start button is shown in Figure 2.13.

The declaration of the counter variable count and its initialization to zero seconds is coded on
line 8. (Note that the key word static is coded at the beginning of this line. The need for it will
be explained in Chapter 3.) Declaring this variable on line 8 places it outside of the code blocks (the
open and close braces) of all of the class’s methods, which makes it makes available to all of the
class’s methods. Variables declared in this way are said to be class level variables.

Chapter 2+ Variables, Input/Output, and Calculations [l 69

1 import edu.sjcny.gpvl.*;

2 import java.awt.Graphics;

3 import java.awt.Font;

4 public class CountingSeconds extends DrawableAdapter
5 {

6 static CountingSeconds ga = new CountingSeconds();
7 static GameBoard gb = new GameBoard(ga, "The Counting Algorithm");
8 static int count = 0; // a class level variable

9

10 public static void main (String[] args)

11 {

12 showGameBoard (gb) ;

13 }

14

15 public void draw (Graphics g) // the drawing call back method
16 {

17 g.setFont (new Font ("Arial", Font.BOLD, 18));

18 g.drawString ("Your game time is: " + count, 10, 50);
19 }

20

21 public void timerl ()

22 {

23 count = count + 1;

24 }

25 1}

Figure 2.12
The application CountingSeconds.

Figure 2.13
The output produced by the application CountingSeconds three seconds after the Start button is clicked.

70 @ Programming Fundamentals Using Java

The second line of the counting algorithm is coded on line 23 inside the timerl call back
method (lines 21-24). Because timerl ticks once a second (by default), line 23 is repeated every
second, causing the counter variable count to count seconds. Each time the timerl method
ends, the game environment invokes the draw method, which displays the new time on the game
board by outputting the contents of the class-level variable count (line 18). The output appears in
bold Arial 18 point font because line 17 invokes the Graphic class’s setFont method to change
the current font values. The import statement on line 3 makes the constants and methods of the
Font class available for use by that statement.

FORMATTING NUMERIC OUTPUT: A FIRST PASS

In this chapter, we have discussed how to perform numeric output, but we have not discussed
how to format numeric output to improve its readability, such as adding a comma every three
digits to the left of the decimal point, or adjusting the precision of the fractional part of a number
output to the right of the decimal point. The format method in the DecimalFormat class can
be used to accomplish both of these commonly used types of output formatting. We will conclude
this chapter with an introduction to the techniques used to format numeric output; we will present
more details on these techniques in Chapter 5.

The application presented in Figure 2.14 uses the DecimalFormat class’s format method
to format the output of a real number (line 12) and an integer (line 13). The method returns a string
containing the formatted numeric value and is sent one argument. The argument is the numeric
variable to be formatted: speedOfLight and population on lines 12 and 13 respectively.

This nonstatic method is invoked (on lines 12 and 13) using the DecimalFormat object df
declared on line 10. The formatting to be performed is associated with the decimal format object
and is specified as a string literal coded inside the parentheses at the end of line 10. The string lit-
eral #, ###.## coded on this line indicates that commas will appear every three digits to the left of

1 import java.text.DecimalFormat;

2

3 public class BasicNumericFormatting

4 {

5 public static void main(String[] args)

6 {

7 double speedOfLight = 299792458.7153;

8 int population = 1097603176;

9

10 DecimalFormat df = new DecimalFormat ("#, ###.##");
11

12 System.out.println (df.format (speedOfLight)) ;
13 System.out.println (df.format (population)) ;
14 }

15 1}

Figure 2.14

The application BasicNumericFormatting

Chapter 2- Variables, Input/Output, and Calculations Il 71

the decimal point, and real/ numbers (nonintegers) will be output with two digits of precision. The
level of precision used in the formatting can be changed by adding or removing pound signs to the
right of the decimal point on line 10.

The output produced by the program is given in Figure 2.15. As this output shows, real num-
bers are always rounded up (299792458.7153 was output as 299792458.72), and integer output does
not contain a decimal point.

299,792,458.72
1,097,603,176

Figure 2.15
The output produced by the BasicNumericFormatting application.

CHAPTER SUMMARY

This chapter introduced the basic components of a Java program and the Java template for
developing a program that performs input, mathematical calculations, and output. Variables are
declared to store data during the program’s execution. Primitive variables store one data value,
and reference variables store a memory address where the object that contains the data is located.
The type of the data (for example, character or integer), must also be declared. Good coding style
dictates that variable names be meaningful as well as syntactically correct. Meaningful variable
names indicate what the data represents. They begin with a letter and cannot contain spaces.

The print and print1n methods are used to output a string to the console window to which the
object System.out is attached. Escape sequences permit characters with special meaning to be used
in output statements. The concatenation operator joins data values and strings into a single output string,

String objects, which are reference variables store the memory address that refers to, or ref-
erences, the actual string. Strings can be created and initialized using either a one-line or two-line
grammar. The default value for an uninitialized string is null. Strings have to be converted into
numeric values to perform mathematical operations, and there is a set of classes in the API, called
wrapper classes, which contain static methods to perform this conversion.

Java, like most programming languages, provides the ability to perform basic arithmetic calcu-
lations and provides additional features, including the API Math class, to perform more complex
calculations. Arithmetic calculations are performed in Java using arithmetic expressions. Arithmetic
expressions consist of a series of operands separated by operators. The parts of an arithmetic expres-
sion inside the parentheses are evaluated first using the rules of precedence to determine the order of
the operations. If the operators are of equal precedence, they are evaluated from left to right. Higher
precedence operators are evaluated first. The division of two integers always results in a truncated
integer value, and the mod operator is used to determine the remainder of integer division.

Values are assigned to variables using the assignment operator. Generally, the type of the value
being assigned to a variable should match the type of the variable. Type casting and promotion are
provided and are used with mixed-mode expressions to ensure that the variable types are compat-
ible and there is no loss of precision.

72 B Programming Fundamentals Using Java

Dialog boxes are a graphical way to communicate with the user of a Java program and offer an
alternative to console-based input and output. The method drawString in the API Graphics
class can be used to perform text output to a graphics window, and the setFont method can be used
to change the default font, style and size. The counting algorithm is used to keep track of elapsed
seconds in a game program. Chapter 3 will extend the concepts of objects, classes, and methods
and their application to creating game programs.

Finally, the DecimalFormat class is introduced to provide ways to format numeric output
to improve its readability.

Knowledge Exercises

1. True or False:
a) The type of the data stored in a variable can change as the program executes.
b) Variables must be declared in a program before they are used.
¢) Variables must be initialized when they are declared.
d) It is grammatically incorrect to begin a variable name with an upper-case letter.
e) Spaces can be used in variable names for better readability.

2. Which statement in a Java application program is executed first?
3. What are variables? Name two types of variables and the information each one stores.

4. Which of the following is not a primitive data type?
a) boolean b) char ¢) String d) int

5. Give the default initial values for variables declared to be of the following types:
a) boolean b) char ¢) double d) int

6. Write a well-composed declaration statement to declare variables that can store:
a) Maggie’s age initialized to 32
b) The first initial of Ryan’s name initialized to the letter ‘R’
¢) The cost of a taco
d) The number 21,234,096,464
e) The fact that it is snowing

7. Is a numeric literal, coded in a program, represented as a float or a double? Explain.

8. Determine if each of the following variables is well composed and valid. For those that are not,
explain why not.

a) 2ndplace b) middlelnitial ¢) winningTeam
d) fgp3 e) testl grade f) myScore
g) SalePrice

9. Give the code to output two lines to the system console. The first line will contain your name,
and the second line will contain the town in which you live, using:

a) Two statements b) One statement

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Chapter 2- Variables, Input/Output, and Calculations I 73

Write a well-composed variable declaration statement to declare a string String object
initialized to Skyler’s address, which is 21 First Avenue, using the:

a) One-line object-declaration grammar b) Two-line object-declaration grammar

Draw a picture of the memory allocated by the statements:
a) int distance = 675; b) string myName = new String("Jane");

Give one statement to:

a) Output the annotated contents of the memory cell priceOfCorn
b) Output the sentence: Martin said: “I had a dream.”

¢) Change the contents of the variable myBalance to 234.54.

Evaluate each of these expressions:
a)l7-5*2+12 b)31-7*2+14
c)(@8+12) /12 +18 * 2 d)21-9 +18 + 4 * 37

Give the code to:

a) Declare the variable quizAverage and store the average of the variables quiz1,
quiz2, quiz3,and quiz4 init

b) Calculate the sine of 45 degrees and store the value in the variable sine0Of45

¢) Calculate and output the square root of 45.67

d) Calculate and output 34.7 to the 5" power

Write the variable declaration to declare the variable average and the assignment statement
to store the average of three speed limits: 55, 57, and 60 miles per hour.

Give an assignment statement to store the integer part of the value stored in the double variable
bankBalance in the variable dollars.

True or False:

a) You must include an import statement in a program to perform I/O using dialog boxes.
b) A message dialog box can be used to obtain input from the program user.

¢) A string is always returned from an input dialog box.

d) When the user clicks “OK” without making an input into an input dialog box, null is
returned.

e) Dialog boxes will size themselves to accommodate the string argument sent to them.

Write the code to output two lines to a message dialog box. The first line will contain your first
and last name, and the second line will contain your date of birth in the format “My birthday
is: dd\mm\yyyy” (yes, those are backslashes).

Give the code to allow the program user to enter a checking account balance using an input
dialog box. Include a well-composed user prompt.

Think of a game. Write the code to output the name of the game and its creator, the task
(objective) of the game, and how the game pieces are controlled to a message dialog box of
reasonable size.

74 B Programming Fundamentals Using Java

21. Give the code to declare a double variable named deposit and to parse the input contained
in the string sDeposit into it.

22. Write the code to declare an integer variable named speedLimit and to parse the input
contained in the string sSpeedLimit into it.

Programming Exercises

1. Write a Java application that outputs your name on one line followed by the town in which you
live to the system console.

2. Write a program to calculate the average of five quiz grades: 100, 97, 67, 85, and 79. Output the
quiz grades and the average to the system console. The output should be well annotated with
the quiz grades on one line and the output on another.

3. Write a program to accept an angle (input in degrees) and a real number. Then, output the angle
and its sine, cosine, and tangent. Follow that output with the output of the input real number,
its cube, and the square root of the number. The outputs should occupy several lines and be
sent to both the system console and to a message dialog box. The input prompts should be well
composed, and the outputs should be well annotated.

4. Repeat Programming Exercise 3, but output the information to the system console and to the
middle of the game board. Use 20-point italic Arial font for the game-board output.

5. Write a program to ask the user to enter the product of a pair of real numbers (of your choosing),
with the input rounded to one digit of precision. After the product is entered, output the user’s
input and the correct product, rounded to one digit of precision. The outputs should occupy
several lines, and be sent to the system console and to a message dialog box. The input prompts
should be well composed, and the outputs should be well annotated.

6. Write a program to ask the user to enter the product of a pair of real numbers of your choosing.
After the product is entered, output the correct answer and the number of seconds it took
the user to enter the product to the center of the game board and to the system console. Use
20-point italic Arial font for the game-board output. The output should be on two lines and well
annotated.

7. Repeat Programming Exercise 6, but output the numbers with commas every three digits on

the left side of the decimal point, and use one digit of precision.

Endnotes

' The URL of the Edition 7 API documentation is: http://docs.oracle.com/javase/7/docs/api/ Tt is named:
Java Platform, Standard Edition 7 API Specification.

2 http://www.randomnumbers.info/content/Random.htm

31
3.2
3.3
34
3.5
3.6
3.7
3.8
3.9

CHAPTER 3

METHODS, CLASSES, AND
OBJECTS: A FIRST LOOK

Methods We Write, 76
Information Passing.c.c.c.o.... 79
The APIGraphics Class 89
Object Oriented Programming 93
Defining Classes and Creating Objects 94
Adding Methods to Classes 102
Overloading Constructors. 121
Passing Objects To and From Worker Methods 125
Chapter Summarycoiiiiiiiii... 128

In this chapter

This chapter extends the concepts of methods, classes, and objects discussed in the previous

chapter to enable us to design and implement our own classes and the methods that they

contain. These concepts facilitate the development of our programs by allowing us to divide a

large program into several smaller classes, separately develop these classes, and then integrate

them into the larger program. Once written, these classes can also be used in other programs,

just as the API classes are. Several design tools will be introduced in the chapter to methodize

the specification of a class and the object it defines. The understanding of material presented

in this chapter is the foundation of the advanced OOP topics discussed in Chapters 7 and 8.

After successfully completing this chapter, you should:

Be able to write void and nonvoid methods

Understand how to share primitive information and objects between methods

Understand the concept of value parameters

Be able to read a Unified Modeling Language (UML) diagram and use it to specify a class

Understand how to design and specify graphical and nongraphical objects

Be able to identify, write, and use a set of methods that most classes contain

Understand the concept and use of public and private data members and methods

Be able to design, construct, modify, and access an object using its class’s methods

Use methods of the Graphics class to draw lines, rectangles, ovals, and circles

Have acquired the foundational skills required for a study of Chapters 7 and 8

76 M Programming Fundamentals Using Java

METHODS WE WRITE

In Chapter 2, we became familiar with several methods available in the Java Application Pro-
grammer Interface. For example, the methods print1ln and print perform output to the system
console, pow and sgrt perform calculations, and drawString and setFont perform text output
to the program window. Being resident in the API, these methods are available to all Java pro-
grammers, and their use expedites the program development process because only one program-
mer, the API programmer, had to discover their algorithms and then write, test, and debug their
code. The rest of us simply use the methods by importing them into our program and writing a one-
line invocation statement. Because most of the cost of software development is the salaries paid to
the programmers, the use of prewritten methods also makes software more affordable.

In this section, we will learn how to write our own methods. Not only will this allow us to re-
use the code that we write in other programs, but it also facilitates the development of our programs
by dividing a large program into several smaller subprograms called methods. By dividing a large
program into subprograms, these methods can be developed by several programmers working in
parallel, which greatly reduces the calendar time required to produce a program.

The Motivation for Writing Methods
Extends our problem solving capabilities: Humans are good at solving small prob-
lems but not large problems

NOTE Reduces development time: Methods can be developed in parallel by several mem-
bers of a programming team
Reduces cost: Methods can be written in such a way that they can be used in any
program using a one-line invocation statement

Syntax of a Method

In Java, all the methods we write must be part of a class. They must be coded within the class’s
code block, the open and close braces that begin and end a class statement. The class statement can
be the one that contains the program entry point, the method main, or some other class that we will
learn how to create later in this chapter. When methods are coded inside the class that contains the
method main, good coding style dictates that they be coded after it.

The minimum code required to create a method is:

returnType methodName ()

{
//the code of the method is placed here

}

The first line of the method is called the method’s signature. The signature is followed by a set
of open and close braces that define the bounds of the method’s code block. The statements to be
executed when the method is invoked are coded inside this code block.

The method’s signature, the first line of the method’s code, must include the type of the infor-
mation returned from the method, followed by the method’s name, followed by an open and close

Chapter 3- Methods, Classes, and Objects: A First Look W 77

set of parentheses. If the method does not return a value to the invoker, for example, compute and
return the square root of a number, the keyword void is used as the return type. In this case, the
method is said to be a void method.

A method that simply outputs the name of the student newspaper to the system console every
time it is invoked would be an example of a void method.
void outputNewspaperName ()

{
System.out.println ("The Student Voice");

}
The syntax and coding style used for naming methods are the same as those used to name variables:
* they cannot contain spaces
* they should begin with a lower-case letter
e new words should begin with an upper-case letter
Normally, they are only comprised of letters. Digits, the dollar sign, and the underscore are not

normally used in their names. For example, a method that adds two integers together and returns
the result could be named addTwoInts rather than add 2 1Ints.

Figure 3.1 presents the application AVvoidMethod that contains the implementation and two
different invocation forms of the void method outputNewspaperName. The output it produces
is shown in Figure 3.2.

1 public class AVoidMethod
2 {
3 public static void main(String[] args)
4 {
5 AVoidMethod.outputNewspaperName () ; //1st method invocation
6 System.out.println ("Page 1\n");
7 outputNewspaperName () ; //2nd method invocation
8 System.out.println ("Page 2\n");
S }
10
11 static void outputNewspaperName () //method signature
12 {
13 System.out.println ("The Student Voice");
14 }
15 }
Figure 3.1

The console application AVoidMethod.

The Student Voice
Page 1

The Student Voice
Page 2

Figure 3.2
The output produced by the console application AVoidMethod.

78 B Programming Fundamentals Using Java

The program consists of two methods: the method main (lines 3-9) and the method output-
NewspaperName (lines 11-14). Both of these methods are coded within the program class’s code
block that begins on line 2 and ends on line 15.

NOTE A method cannot be coded inside of another method’s code block.

The signature of the method outputNewspaperName, coded on line 11, begins with the key
word static. Not all method signatures begin with this key word. As we have learned, methods
fall into two categories: those that operate on objects (static methods) and those that do not (non-
static methods). An example of a method that operates on an object is the method println. It
operates on, or sends its output string to, the console object whose name is System.out. Methods
that do not operate on an object must include the key word static in their signature. The method
outputNewspaperName does not operate on an object, so its signature begins with the key word
static. In Section 3.5, we will discuss methods that we write that do operate on objects, and we will
gain more insight into what it means to say a method operates on an object.

NOTE Methods that do not operate on an object must include the key word static in
— their signature.

The method outputNewspaperName is invoked in lines 5 and 7 of the application’s main
method. Line 7 just mentions the name of the method followed by open and close parentheses.
This invocation syntax is valid because the static method is coded within the same class, Avoid-
Method, as the invocation statement (line 7). The more generalized syntax for invoking a static
method is used on line 5. Here, the invocation statement begins with the name of the class in which
the method is coded followed by a dot:

AVoidMethodApp.outputNewspaperName () ;

We used this syntax to invoke the static methods pow and sqgrt that are coded in the Math class.

double ans = Math.pow (3.0, 2.0);
double root = Math.srt(9.0);

Because these two methods are not coded in the same class in which they are normally in-
voked, the name of the class must be included in the invocation statement. The only exception to
this is the use of a static import statement. When either syntax is valid, the shorter syntax makes
our programs more readable and is therefore preferred.

The execution sequence of the application begins on line 5 of the main method. This invocation
statement causes the code in the code block of the cutputNewspaperName method to execute
(lines 12—-14), which produces the first line of output (Figure 3.2). Then line 6 of the main method
executes, producing the second line of output. Line 7 causes the outputNewspaperName method
to execute a second time, which produces the third line of output. Finally, line 8 executes, which
produces the last output line.

NOTE After a method executes, the next statement to execute is the statement immediately

after the statement that invoked it.

Chapter 3- Methods, Classes, and Objects: A First Look I 79

INFORMATION PASSING

For a method to function properly, information must often be passed to it when it is invoked,
and some methods must return one piece of information to the invoking statement. Consider the
Math class’s nonvoid static method pow. When it is invoked, a number (n) and a power (p) are
passed to it, and the method returns the result of its calculation: n?. The left side of Figure 3.3 de-
picts this sharing of information between the invoker (top left) of the method pow and the method
(bottom left). The right side of the figure generalizes this concept of shared information between
the invoker, often called the client, and the method that performs some "work" for the client, often
referred to as the worker method. For example pow’s work is to compute a given number (n) raised
to a given power (p).

Number, n Argument 1
Invoker 2
Invok lient
nvoker Exponent, p (client) q
. n
< Returned .
value Method o
o pow (for a nonvoid (worker)
method) <
< Parameter 1
The Math Class’s pow Method Any (Worker) Method

Figure 3.3
The sharing of information between a method and its invoker.

As depicted in the right side of Figure 3.3, an unlimited number of pieces of information can
be sent from the invoking client to a worker method, however, only one piece of information can be
sent back to the client from the worker method. We say that the client sends the method an argu-
ment list containing the shared information, and the worker method receives the shared informa-
tion in its parameter list (either or both of which could be empty).

NOTE No more than one piece of information can be returned from a method.

Parameters and Arguments

If a method is to receive information passed to it from the client, then its signature must contain
a parameter list. The parameter list is coded inside the open and close parenthesis of the method’s
signature. The parameters in the list are separated by commas, and each parameter consists of a
variable name preceded by its type. For example, the signature of a method whose work is to output
a person’s age and weight would have an int and a double parameter in its parameter list.

80 M Programming Fundamentals Using Java

static void outputAgeAndWeight (int age, double weight)

{
System.out.println(age: " + age + " weight: " + weight);

}

Each parameter receives one piece of information sent to it by the client code’s invocation
statement, and the #ype of the parameter must match the type of the information sent to it. The cli-
ent’s statement used to invoke the method outputAgeAndWeight would contain two arguments
in its argument list, within parentheses.

outputAgeAndWeight (myAge, myWeight) ;
This statement passes the contents of the variables myAge and myWeight to the method.

Arguments, information that is to be shared with the worker method, can be variables (e.g.,
myAge, myWeight) that have been previously declared in the client code, or string or primitive
literals.

The order, number, and type of the arguments in a method invocation statement must

NOTE
NOTE match the order, number, and type of the parameters in the method’s signature.

Each time a method is invoked, the variables in the method’s parameter list are allocated and
paired up with the arguments in the invocation’s argument list (the first parameter paired with the
first argument, the second parameter paired with the second argument, etc.), and the value stored
in each of the arguments is copied into the paired parameters. For the invocation statement

outputAgeAndWeight (myAge, myWeight) ;

the value in the argument myAge is copied into the parameter age of the method outputAgeAnd-
Weight, and the value contained in the argument myWeight is copied into the parameter weight.
This type of information passing is called passing by value, and the parameters are called value
parameters because the values contained in the arguments are copied into the parameters. Once
the parameters have been allocated and this transfer of information is complete, the code in the
worker method’s code block begins execution.

Consider the sequence of code that contains a main method and the method
outputAgeAndWeight:
public static void main (String[] args)
{ int myAge = 23;
double myWeight = 185.4;

outputAgeAndWeight (myAge, myWeight) ;

static void outputAgeAndWeight (int age, double weight)

{
System.out.println("age: " + age + " weight: " + weight);

Chapter 3- Methods, Classes, and Objects: A First Look I 81

Figure 3.4 depicts a sequence of seven events that occur when this code executes and illustrates
the process of passing information using value parameters. The left side of figure shows the main
method’s (client) code and its execution sequence (events 1, 2, 3), which includes the RAM memory
allocated to its two arguments (event 2 is depicted in the bottom left portion of the figure).

The right side of the figure shows the code of the method and its execution sequence (events 4,
5, 6, and 7), which includes the RAM memory allocated to its two parameters (event 5 is depicted
in the bottom right portion of the figure). The passing of the values stored in the client’s arguments
into the paired worker parameters is depicted as event 6 in the bottom center of the figure. After
the information is passed, the code block of the method executes (event 7).

1 4 static void outputAgeAndWeight (int age, doube weight)
. B {
int myhAge = 23; l System.out.println("age: "+ age + " weight: " + weight);
double myWeight = 185.4; 7

3 outputAgeAndWeight (myAge, myWeight) l

6: Pairings made

and values copied
myAge 23 : 23 age
2 ‘ 5: Memory
; cells allocated
myWeight ! weight
185.4 | 185.4
Client’s RAM Memory i Method’s RAM Memory

Figure 3.4
The transfer of information to a method via value parameters.

The dotted line in the figure is a line that the code in the client and worker methods cannot
cross. The client code on the left of the figure cannot access the contents of the member cells age
and weight, and the worker method code cannot access the memory cells myAge and myWeight.
Inserting the statement

myAge = myAge + 1;

into the code of the method outputAgeAndieight would result in a translation error because
myAge is only known to the client code.

When the method completes its execution, the variables named in its parameter list are de-al-
located, and their storage is returned to the memory manager. The result is that the values stored in
these memory cells are lost, in that they are no longer available to the program. An understanding
of this is fundamental to the notion of value parameters. It is also important to realize that the four
memory cells created during events 2 and 5 are separate and distinct. To emphasize this, the names
of the parameters (age and weight), coded in the worker method’s signature, were intentionally

82 M Programming Fundamentals Using Java

chosen to be different than the names of the arguments passed to method (myAge and myWeight).
Even if the argument and parameter names were the same (e.g., both coded as age and weight),
event 5 would still create two distinct memory cells on the right side of Figure 3.4 named age and
weight. A coding of the symbols age and weight in the worker method would refer the contents
of these to memory cells, which would be de-allocated when the method ends its execution.

NOTE Every time a method is invoked, the variables in its parameter list are allocated,

and they are de-allocated when the method ends its execution.

Scope and Side Effects of Value Parameters

The only way to pass information between arguments and parameters (i.e., between client code
and worker method code) in Java is via value parameters, so it is important that we understand the
limitations of the value parameter memory model presented in Figure 3.4 and its implications. As
depicted in the figure, the client code has two variables it can access, myAge and myWeight, and the
method has two variables it can access, age and weight. The client code cannot access the variables
age and weight, and the worker method cannot access the variables myAge and myWeight.

In programming language jargon, we say that the worker method’s variables age and weight
are defined within the scope of its code, and the variables myAge and myWeight are out of its
scope. A Java statement can only access variables that are within its scope.

Definition

The scope of a variable is the portion of a program in which it is defined and can therefore be
accessed.

It is syntactically correct to make the argument names in a method invocation the same as the
parameter names coded in the method’s signature. For example, the names of the variables de-
clared in the main method and the worker method’s parameter list could both be named myAge and
myWeight

public static void main(String[] args)

{ int myAge = 23;

double MyWeight = 185.4;

outputAgeAndWeight (myAge, myWeight) ;
}

static void outputAgeAndWeight (int myAge, double myWeight)

{
System.out.println("age: " + myAge + " weight: " + myWeight);
}

As previously mentioned, this coding of the method would still create two memory cells as-
signed to the method’s parameters on the lower right side of Figure 3.4, but their names would now
be myAge and myWeight. Now, the statement

myAge = myAge + 1;

Chapter 3- Methods, Classes, and Objects: A First Look I 83

written into the worker method’s code would not result in a translation error because there is now a
variable named myAge that is within its scope. The method’s code would access the contents of its
memory cell myAge, and the contents of that variable would be changed to 24. When the method
endes and execution returnes to the client code, the contents of the client code’s memory cell my-
Age would be unchanged. It would still contain the value 23.

Normally, this is a good thing because it prevents an unwanted side effect of the method’s code
changing the client’s data. Preventing this side effect assures that the values stored in the client
code variables before the method was invoked will be the same values stored in those variables
after the method completes it execution. In some cases, however, this is not what we want.

Consider the case of a method, named swap, that the client invokes to swap the contents of two
of its variables, a and b, via the statements

int a = 10;

int b = 20;

swap (a, b);

System.out.println("a is: " + a + " and b: is " + Db);

If the method is successful, the output produced after swap completes its execution should be
ais 20 and b is 10.

The method swap would have two integer parameters to receive the values to be swapped, and
its code would implement the swapping algorithm. The code of the method, preceded by a main
method that invokes it, is given below:

public static void main(String[] args)
{

int a = 10;

int b 20;

swap(a, b):;
System.out.println("a is:" + a + " and b: " + b);

}
static void swap (int a, int b)

int temp = a;
a = b;
b = temp;

Unfortunately, because Java uses value parameters, this coding of the method does not swap
the client’s variables, and the output produced by the last statement in the main method is a is 10
and b is 20.

Consistent with the memory model of value parameters, the client and the method each have
their own memory cells named a and b. The method swaps the values contained in its two memory
cells a and b, which has no side effects on the contents of the memory cells a and b allocated in the

84 M Programming Fundamentals Using Java

client code. These two cells remain unchanged (they still contain 10 and 20, respectively), which
makes it appear that the swap algorithm was improperly coded in the worker method.

It turns out that it is impossible to write a method that swaps the contents of two client vari-
ables using primitive-type parameters because, by design, value parameters prevent a method from
changing the values in the client’s argument list. Some programming languages (e.g., C and C++)
solve this problem by allowing another type of parameter called a reference parameter. Java does
not support this type of parameter because it can lead to some undesirable side effects

Returned Values

A worker method can return one, and only one value to the method that invokes it. A method
that returns a value is called a value returning or nonvoid method, and the key word void is not
used in its signature. It is replaced with the type of the information the method returns. For ex-
ample, the method showInputDialog in the API class JOptionPane is a nonvoid method that
returns a reference to a String, so its signature contains the type St ring rather than the keyword
void.

Methods can return the contents of reference variables, as the method showInputDialog
does, or they can return the contents of primitive variables. In both cases, the returned value should
be thought of as replacing the invocation of the method in the statement that invoked the method
after the method executes. If the value is to be used later in the program, the invocation should be
coded as the right part of an assignment statement that assigns the returned value to a variable.

For example, the two statements below prompt the user to enter a person’s age and return the
characters that are entered, but only the second one retains the location of the String object that
is returned.

JOptionPane.showInputDialog ("enter a person's age");
String sAge = JOptionPane.showInputDialog("enter a person's age");

A nonvoid method must contain a return statement or the method will not translate. The
statement begins with the key word return, which is followed by the value that is to be returned.
The value to be returned can be a literal, a variable, the value of an arithmetic expression, or a
value returned from a method invocation. The following code segment contains a nonvoid method
multiply preceded by the code of the main method that invokes it. The method multiply calcu-
lates and returns the product of two numbers passed to it.

public static void main (String[] args)
{
double a = 10.0;
double b = ;

|
N
o
.
o
~

double product = multiply(a, b);
System.out.println(a + " x " + Db + " = " product);

Chapter 3- Methods, Classes, and Objects: A First Look H 85

static double multiply(double a, double Db)

{
double c;
c =a * b;
return c;

}

Because, as previously mentioned, an arithmetic expression can be coded in a return statement,
the method could have been coded more succinctly as:

static double multiply(double a, double Db)
{

return a * b;

}

There can be more than one return statement in a nonvoid method, but we will not have a use for
that feature of the language until we gain an understanding of the material presented in the next
chapter.

Class Level Variables

Class level variables are another way of sharing information among methods. However, the
manner in which the information is shared and the syntax used to code class level variables are
both very different than when arguments parameters and return statements are used to share
information.

To begin with, unlike using arguments and parameters to pass information to a worker method,
in order for methods to share information using class variables, the methods must be coded in the
same class. The information sharing is accomplished by coding the variable outside of the code
blocks of the methods in the class. Good coding style dictates that they be coded at the top of the
class before the code of any of the methods. When this done, the variable is within the scope of
all of the methods in the class. The methods actually share the same variable, which permits any
method in the class to fetch and overwrite the variable’s contents. Unlike arguments and param-
eters, class variables provide a two-way path for methods to share information. One method can
write a value into the variable, and another method can read the value from it.

Although we did not explain class variables in this much detail in Chapter 2, the program pre-
sented in Figure 2.12 used a class variable named count (line 8) to share the game’s time between
the method timer that was incrementing it (line 23), and the method draw that was outputting it
to the game board (linel8). As shown on line 8 when a class variable is used in the program’s class,
its declaration must begin with the key word static:

static int count = 0;

Aside from that, its declaration syntax is the same as that used to declare a variable inside of a
method’s code block.

A variable can be declared inside a method’s code block that has the same name of a class-
variable. When this is done, a memory cell is created with the same name as the class variable and

86 M Programming Fundamentals Using Java

is called a local variable. All uses of the variable’s name inside the method’s code block refer to
the local variable, and the local variable can only be accessed by the method’s code. To access the
class variable from inside the method, the name of the variable would be preceded by the name of
the class followed by a dot (just as when we invoke static methods).

Wherever possible, it is good programming practice not to use the names of class variables for
naming variables declared inside of methods. For one thing, it reduces the program’s readability
because, if we fail to realize that the local variable is declared, we would erroneously believe that
the class variable is being used inside the method. In addition, if we neglect to declare the local
variable when coding the method, the translator will assume we want to use the class variable, and
it will not remind us that we neglected to declare the local variable.

! It is good programming practice not to use the names of class variables for naming
TIP local variables declared inside of methods.

Figure 3.5 presents a program that contains four worker methods and demonstrates informa-
tion sharing via value parameters, return statements, and class variables, the use of local variables,
and the features of methods that make them reusable. The inputs to the program and the outputs
the program produces are shown Figure 3.6.

Lines 3036 contain the code of the method inputInteger. Its signature (line 30) indicates
that it is a nonvoid method that returns an integer and has a St ri ng parameter named prompt. The
method passes the string sent to it to an input dialog box (line 33) to be displayed as a prompt to
the program user. The returned user input is parsed into the integer variable a (line 34), and then
the parsed value is returned to the invoker (line 35). The inclusion of a string parameter in its sig-
nature allows the invoker to specify the prompt sent to the input dialog box. In addition, the method
parses the input integer, freeing the invoker from that responsibility. Both of these features make
this a highly reusable method. It is invoked five times within the program (on lines 11, 17, 18, 23,
and 24), and each time it is sent a different prompt.

Two class variables, a and b, are declared on lines 4 and 5 with a initialized to 10. The value
in the class variable a is included in the string passed to the invocation of inputInteger on
line 11, which is displayed as the prompt in the input dialog box (Figure 3.6a) produced by line
33. The method inputInteger declares its own local variable a on line 32, so the assignment
of the parsed value of the user input into the variable a (line 34) changes the contents of the local
variable, leaving the class variable unchanged. This is verified by the first output (Figure 3.6b)
produced by the program (lines 14—15), which indicates that a 10-year-old child will be 13 in 3
more years.

The method dif is invoked on line 13 to calculate the first output: the years to reach the de-
sired age. It is passed the desired age, input on lines 11-12, as the first argument on line 13. Because
the method main does not declare a local variable named a, the second argument on line 13, a, is
the class variable. The method then calculates the difference between the two values passed to its
two parameters (line 40), the desired age and the value stored in the class variable. Because the de-
sired age was input as 13, and the output indicates that it will be reached in 3 more years, the class

Chapter 3- Methods, Classes, and Objects: A First Look I 87

variable passed to the method’s second parameter must have contained the value 10 at the time
dif was invoked. The previous assignment into the local variable a on line 34 had no effect on it.

It should be noted that even if the parameter a was reassigned inside the method di £, the class
variable would still retain the value 10 because Java uses value parameters. All references in the
method di f to the variable a refer to the parameter, which can be thought of as a local variable.

Two swap methods, swapParameters and swapClassLevels, are coded on lines 43-55.
The first of these methods is invoked on line 19. It contains two parameters, a and b (line 43), to
receive the values to be swapped, which are input on lines 17 and 18 (Figures 3.6 ¢ and d). Although
the names of the parameters are the same as the names of the class-level variables, they are not the
same memory cells as the class variables. When the values stored in the parameters are swapped
(lines 45—-47), the output produced by lines 20-21 of the main method confirms a feature of value
parameters: changes to parameters have no effect on the arguments sent to the method. The num-
bers output by the main method are output in the same order in which they were input: 1111 fol-
lowed by 2222 (Figure 3.6 e).

Because the main method does not declare local variables named a and b, lines 23 and 24 store
the values returned from inputInteger inthe program’s class variables (Figures 3.6 fand g). The
second swap method, swapClassLevels, is invoked on line 25. It has an empty parameter list
(line 50) and only one local variable, temp. Therefore, the variables a and b used in this method
default to the class-level variables. Because these are shared with the main method, the swapping of
the values in these variables performed on lines 52—55 does have an effect on the output produced
by the main method (lines 26—27). As a result, the numbers input on lines 23 and 24 (8888 and
9999) are output in reverse order (9999 followed by 8888) by lines 26 and 27 (Figure 3.6 h).

import javax.swing.JOptionPane;

1
2
3 public class MethodsAndParms

4 { static int a = 10; // Two classlevel variables
5 static int b;

6

7

8

public static void main(String[] args)

{

9 int desiredAge, first, second, difference; // local Variables
10

11 desiredAge = inputInteger ("You are " + a + " years old" +

12 "\nHow old do you wish you were?");
13 difference = dif (desiredAge, a);

14 JOptionPane.showMessageDialog(null, + "Only " + difference +
15 " Years to go");

16

17 first = inputlInteger ("Enter the first number to swap");

18 second = inputInteger ("Enter the second number to swap");

19 swapParameters (first, second);

20 JOptionPane.showMessageDialog (null, "Swapped using parameters: " +

21 first + " " + second);

88 M Programming Fundamentals Using Java

22

23 a = inputInteger ("Enter the first number to swap"):;
24 b = inputInteger ("Enter the second number to swap");
25 swapClassLevels () ;

26 JOptionPane.showMessageDialog (null, "Swapped using class " +
27 "levels: " + a + " " + b);
28 }

29

30 static int inputlInteger (String prompt)

31 {

32 int a; // a local variable

33 String sInput = JOptionPane.showInputDialog (prompt) ;
34 a = Integer.parselnt (sInput);

35 return a;

36 }

37

38 static int dif (int desiredAge, int a)

39 {

40 return desiredAge - a;

41 }

42

43 static void swapParameters (int a, int b)

44 {

45 int temp = a;

46 a = b;

47 b = temp;

48 }

49

50 static void swapClassLevels ()

51 {

52 int temp = a;

53 a = b;

54 b = temp;

55 }

56 }

Figure 3.5

The application MethodsAndParameters.

You are 10 years old M
“) " How old do you wish you were?

hal ‘ ® Only 3 Years to go

OK Cancel J OK

Chapter 3- Methods, Classes, and Objects: A First Look I 89

(ﬁ

« | Enter the first number to swap
?
" 1111]

(ﬁ

< | Enter the second number to swap
2229]

'@ | Enter the first number to swap

-

8888 |
OK oK || cancel
© ()
= | Enter the second number to swap
' |g99g| ‘ @ Swapped using class levels: 9999 8888
oK Cancel OK
© (h)
Figure 3.6

Inputs and resulting outputs produced by the application MethodsAndParameters.

THE API GRAPHICS CLASS

Having gained a deeper understanding of methods and the techniques for sharing informa-
tion between methods and the program code that invokes them, we will reinforce those concepts
in this section by examining several worker methods in the API Graphics class. As discussed
in Chapter 2, this class contains methods for drawing text on Graphics objects. It also contains
methods used to change the drawing color and for drawing lines, rectangles, ovals, and circles on

Graphics objects.

Changing the Drawing Color

All drawing performed on a Graphics object is performed in the current color. The default
current color is black. The setColor method in the Graphics class can be used to change the

90 M Programming Fundamentals Using Java

current drawing color. One argument, used to specify the new value of the current drawing color,
is passed to the method. Table 3.1 gives the names of the thirteen predefined color variables in the
class Color. Because these variables are static variables, they are referred to by their name pre-
ceded by Color followed by a dot. For example, to set the color of all subsequent drawings on the
Graphics object g to red, we would code:

g.setColor (Color.RED);

As previously discussed, the Graphics object attached to our game board is passed into the draw
method’s parameter g when the game environment invokes the draw method. Therefore, if this
statement were coded in the draw call back method, the current drawing color of the game board
would be changed to red.

Table 3.1
Thirteen of the Predefined Colors in the Color Class

Color Variable Name

black : BLACK
e BLUE
Cy R Enc'a'(’A'N'
S gray E’bﬁf{kgéf’{z&'i
3 gray GRAY
3 green GREEN
hght . g ray L f&;ﬁq’:’;c’;’f{z&
3 magent e e
o ge ORANGE
plnk oo
S oo
o WHITE

yellow : YELLOW

Drawing Lines, Rectangles, Ovals, and Circles

Figure 3.7 presents five of the methods in the Graphics class. These methods are nonstatic
void methods. As their names imply, the first method is used to a draw line, and the remaining four
methods are used to draw rectangles and ovals. To specify the location of the item to be drawn, all
of the methods are passed (x, y) coordinates whose units are pixels.

The line drawing method, drawLine, is passed two sets of (x, y) coordinates, which are the
endpoints of the line to be drawn. For example, to draw a line from (30, 50) to (60, 80) on the
Graphics object g, we would code:

g.drawLine (30, 50, 60, 80);

The rectangle drawing methods drawRect and fillRect are used to draw the outline of a rect-
angle and to draw a filled (solid) rectangle, respectively. Their first two arguments specify the

Chapter 3- Methods, Classes, and Objects: A First Look H 91

coordinates of the upper left corner of the rectangle, and the third and forth coordinates specify the
width and height of the rectangle in pixels. For example, to draw the outline of a rectangle whose
upper left corner is at (100, 200) and is 50 pixels wide and 75 pixel high on the Graphics object
g, we would code:

g.drawRect (100, 200, 50, 75);

To draw this rectangle as a solid rectangle, filled with the current drawing color, we code:
g.fillRect (100, 200, 50, 75);

The method drawOval is used to draw the outline of an oval, and the method £i110val is used to
draw a solid oval filled with the current color. These ovals are drawn within a specified rectangle
(which is not drawn). The method’s four parameters are identical to those of the rectangle methods
previously discussed and are used to specify the rectangle’s (x, y) location and its width and height.
For example, to draw the outline of an oval 50 pixels wide and 70 pixels high inscribed inside a
rectangle whose upper left corner is at (100, 200), we would code:

g.drawOval (100, 200, 50, 75);
To draw this oval as a solid oval filled with the current drawing color, we code:

g.fill0val(100, 200, 50, 75);

drawLine (int x1, int yl, int x2, int vy2)
Draws a line, using the current color, between the points (x1, y1) and (x2, y2)

drawRect (int x, int y, int width, int height)
Draws the outline of a rectangle whose upper left corner is at (x, y) and whose width and
height are width and height, using the current color

drawOval (int x, int y, int width, int height)
Draws the outline of an oval bounded by the rectangle whose upper left corner is at (x, y) and
whose width and height are width and height, using the current color

fillRect (int x, int y, int width, int height)
Draws a rectangle whose upper left corner is at (x, v) and whose width and height are width
and height, filled with the current color

fillOval (int x, int vy, int width, int height)
Draws an oval bounded by the rectangle whose upper left corner is at (x, y) and whose width
and height are width and height, filled using the current color

Figure 3.7
Primitive-shape drawing methods in the Graphics class.

The oval drawing methods can be used to draw circles by making the third and fourth argu-
ments, the height and width of the rectangle that encloses the oval, the same number of pixels. For
example, to draw a solid circle 50 pixels in diameter inscribed inside a rectangle whose upper left
corner is at (100, 200) we would code:

g.fill0val (100, 200, 50, 50);

92 B Programming Fundamentals Using Java

When the statements presented in this section are coded in the game environment’s draw call
back method, the lines and shapes they draw appear on the game board because, as mentioned at
the end of Section 3.3.1, the Graphics object passed into the draw call back method’s parameter

g is attached to our game board.

Figure 3.8 presents the application LinesAndShapes that draws two lines in the default color
(black), two dark-gray rectangles, a red oval, and a blue circle on the game-board object. The
graphical output of the program is shown in Figure 3.9. Lines 16—26 coded inside the draw method
perform the drawing. Consistent with the variable names given in Table 3.1, the argument sent to

the setColor method on line 19 has an underscore separating the words DARK and GRAY.

1 import edu.sjcny.gpvl.*;

2 import java.awt.*;

3

4 public class LinesAndShapes extends DrawableAdapter
5 {

6 static LinesAndShapes ga = new LinesAndShapes();
7 static GameBoard gb = new GameBoard(ga, "Lines and Shapes");
8

9 public static void main(String[] args)

10 {

11 showGameBoard (gb) ;

12 }

13

14 public void draw (Graphics g) // the drawing call back method
15 {

16 g.drawLine (100, 75, 260, 75); //Lines

17 g.drawLine (300, 50, 400, 100);

18

19 g.setColor (Color.DARK GRAY);

20 g.drawRect (100, 170, 100, 60); //Rectangles
21 g.fillRect (280, 170, 150, 40);

22

23 g.setColor (Color.RED) ;

24 g.drawOval (55, 300, 180, 80); //Ovals

25 g.setColor (Color.BLUE) ;

26 g.fillOval (280, 300, 100, 100);

27

28 }

29 }

Figure 3.8

The application LinesAndShapes

Chapter 3- Methods, Classes, and Objects: A First Look I 93

|- Lines and Shapes =]

™

Start
Stop

Figure 3.9
The output produced by the application LinesAndShapes.

OBJECT ORIENTED PROGRAMMING

Early programming languages were designed in the procedural paradigm. In this paradigm,
a program is decomposed into smaller parts called subprograms, and the language provides a
mechanism for combining the subprograms into the larger program. During the design process,
the programmer focuses on the definition of the subprograms and how the program’s data will be
stored. In this paradigm, the subprograms and the program’s data are separated and coded into two
distinct entities.

Object oriented programming is a more recent programming paradigm. The paradigm is an at-
tempt to facilitate the development of programs that deal with objects, such as starships, or people,
or Web pages. In this paradigm, the program is decomposed into the various classes to which the
objects belong. During the design process, the programmer focuses on determining the objects the
program will deal with, the attributes of each object (e.g., a starship’s name), and the operations
that can be performed on each object (e.g., changing a starship’s location). In this paradigm, the op-
erations (subprograms) and attributes (data) are collected and coded into one entity called a class.

Both paradigms are in use today. Some programming solutions are better designed and more
easily implemented using the procedural paradigm, and others are more easily designed and imple-
mented using the object paradigm. C is a procedural language, C++ is a language that can be used
in both the procedural and object paradigm, and Java is an object oriented language. If the program
deals with objects, then the object paradigm should be strongly considered.

What Are Classes and Objects?

A class is a blueprint of how to construct an item, and an object is a particular item or instance
of a class. For example, we all belong to the class human. That class contains a genetic blueprint of

94 B Programming Fundamentals Using Java

how to construct a human object, which we call a person. As per the human blueprint, all people
have common attributes. For example, all people have colored-eyes, colored-hair, and eventually
grow to an adult height. But clearly, all people (except identical twins) are also different. For ex-
ample, people grow to different heights, have different-colored eyes, and different hair colors, what
makes objects different is that each object contains its own value of the attributes contained in the
blueprint.

Definition

A class is a blueprint of how to construct an item, and an object is a particular item or instance
of a class.

The value of Mary’s three attributes could be 63 inches for height, blue for eye color, and red
for hair color. The value of her sister Kate’s attributes could be 68 inches for height, brown for eye
color, and black for hair color. No wonder these two objects look different. Now suppose Kate, who
always admired her sister’s red hair and blue eyes, dyed her hair to a red color and inserted a set of
blue contact lenses into her eyes. These hair coloring and lens insertion operations would change
the values of two of Kate’s attributes, and she would then look like a taller version of Mary.

In object oriented languages, a class is the mechanism for defining the blueprint of an entity.
As such, it contains the attributes that each object in the class will have (e.g., height, hair color,
and eye color). To store the different values of these attributes for each object constructed from
the blueprint, the attributes are represented within the class as variables. In addition, because the
values of the attributes of an object can change, the class contains methods (e.g., setEyeColor
and setHairColor) that can operate on the variables to change, or set, the values they store to
new values.

DEFINING CLASSES AND CREATING OBJECTS

During the design process of an object oriented program, the programmer focuses on deter-
mining the objects the program will deal with, the attributes of each object, and the operations that
can be performed on them. The blueprint for each type of object will be coded into a programming
construct called a class that will represent the attributes as variables and the operations as methods.
In the remainder of Section 3.5, we will discuss a graphical tool used to specify a class and the Java
syntax used to code that specification into a Java program.

m The programming construct class is comprised of variable definitions and method
—— definitions.

Specifying a class: Unified Modeling Language Diagrams

A unified modeling language (UML) diagram is a graphical representation of a class. The
diagram consists of three rectangles stacked on top of each other. From top to bottom, as shown
in Figure 3.10, these rectangles are used to specify the class name, the variables that will be part

Chapter 3- Methods, Classes, and Objects: A First Look I 95

Person
Class Name + eyeColor: String
+ hairColor: String
Data Members + height: int
(variables)
Member Methods
Figure 3.10 Figure 3.11
The template of a UML diagram. The specification of the class Person, Version 1.

of the class, and the class’s methods. The variables are called data members (of the class), and the
methods are called member methods because they are both part of (members of) the class being
specified.

As an example, consider a program that is going deal with people objects where each person has
three attributes: eye color, hair color, and height. The UML diagram used to specify the class, whose
name was chosen to be Person, is shown in Figure 3.11. The name of the class appears at the top of
the diagram, and the class’s three data members are tabulated in the second box of the diagram.

To succinctly convey information about a class’s data members and methods, UML diagrams
employ a standardized notation, some of which is included in Figure 3.11. For example, the type
of each data member is specified by following its variable name with a colon and the type of the
variable. As shown in the figure, the class Person has two String data members and one integer
data member.

The three data members of the class Person are preceded with a plus (+) sign. The plus sign
is used to denote the access property of a data member of a class. When the UML specification of
a class is coded into a Java class construct, the + sign is coded as the key word public. Another
alternative is to precede the names of the data members with a minus (-) sign, which is coded as
the key word private. We will learn more about the implications of the use access modifiers in
the next section.

The Class Code Template

Like the data members of a class, a class itself can be public or private, although most classes
are public. We will discuss private classes in Chapter 7. The code template for a public Java class
is given below:

public class ClassName

{
//data members are coded here
//member methods are coded here

96 M Programming Fundamentals Using Java

The name of the class, given at the top of the UML diagram, is substituted for ClassName on
the first line of the template. The declaration of the class’s data members and the code of its mem-
ber methods are coded inside of a pair of braces that make up the class’s code block. The variables
that represent a class’s data members are coded before the code of the class’s member methods.
While this is not a Java syntax rule, it is considered good coding practice. The code of the class
specified by the UML diagram presented in Figure 3.11 is given in Figure 3.12 with the data mem-
bers set to initial values.

public class Person

{
//data members
public String eyeColor = "blue";
public String hairColor = "red";
public int height = 65;

//member methods

}

Figure 3.12
The code of the class Person specified in Figure 3.11.

Normally, the initial values are chosen to be the most common value of the data members. In
this case, the assumption is that most people have blue eyes, red hair, and are 65 inches tall.

Creating Objects

In Section 2.5, we examined a two-line syntax for declaring objects in the class String. For
example:

String firstName;
firstName = new String("John");

The first line creates the reference variable firstName that can store the address of a String
object, which is initialized to the default value null. The second line creates a new St ring object,
stores the string John "John" inside of it, and then overwrites the nul1l value stored in the variable
firstName with the address of the object. Alternately, the two lines of code can be consolidated
into one line:

String firstName = new String("John");

When talking about the object created with either the two- or one-line syntax, in the interest
of brevity we say that "we created a string object named firstName," or we might be asked to
"output the object £irstName." However, experienced programmers know that it is more accurate
to say, "we created a string object referenced by the variable firstName," or "output the object
referenced by firstName." With that understanding, we will use the brief version in the remain-
der of this text.

Chapter 3- Methods, Classes, and Objects: A First Look I 97

By changing the name of the class coded in the one- or two-line syntax and usually the code
inside the parentheses, both versions of the syntax can be used to declare an object in any class. The
code fragment below uses the one-line grammar to create two Person objects, one named mary
and the other named kate:

Person mary = new Person();
Person kate = new Person|();

The memory allocated by these two statements is shown in Figure 3.13. As defined in the Person
class (Figure 3.12), each object contains the same three variables set to initial values. The variables
hairColor and eyeColor store the address of string objects that contain the initial values. At this
point, Mary and Kate are identical twins and will remain so until we add methods to the class that
can change the values of the data members.

mary 15 kate 25

hairColor
eyeColor

height

Person mary = new Person(); Person kate = new Person();

Figure 3.13
Two Person objects and the statements that constructed them.

Constructor methods

Let us assume that the two lines of code that created the objects mary and kate

Person mary = new Person();
Person kate = new Person|();

were coded in the main method of a program that dealt with people, or more precisely, Person ob-
jects. These two lines of code should be thought of as the main method’s request to the class to create
two Person objects. If I call a carpenter and request that he create, or construct, a shed for me, |
become his client. The two terms, construct and client, used in this analogy are used in the program-
ming jargon of classes and objects. We would say that the class Person has constructed two objects
for the client code main. Any section of code that declares an object in a class is considered to be cli-
ent code (of that class), and the class is said to have constructed the objects for the client code.

Every class has at least one member method that constructs new objects. These non-void meth-
ods are called constructors, and they execute every time the object declaration syntax is used to
declare an object. During the execution of a constructor method, the storage is allocated for the

98 M Programming Fundamentals Using Java

class’s data members, the initial values are stored in the data members, the collection of data mem-
bers is assigned a memory location (considered to be the location of the object), and that location
is returned to the client code. The assignment operator included in the object-declaration grammar
then stores the returned location of the object in the object’s reference variable (e.g., mary).

The name of a constructor method is always the name of its class, so the code to the right of the
key word new in the declaration of mary’s object

Person mary = new Person();

is actually an invocation to the constructor method named Person that has no parameters and
returns the address of a newly created Person object.

The class Person shown in Figure 3.12 does not contain a constructor method, which in this
case would be a method named Person. When a class does not contain a constructor, a Java-pro-
vided constructor method is used to construct objects. This constructor, referred to as the default
constructor, has no parameters, and it performs the functions previously mentioned:

1. Allocates the storage for the data members of the class
2. Stores the initial values in the data members
3. Assigns the collection of data members a memory location

4. Returns the location to the client code

Because the class Person does not contain any methods, the two Person objects mary and kate
declared as

Person mary = new Person();
Person kate = new Person|();

would be created by the default constructor, which would perform the four functions listed above.
Each object’s data members would be set to the initial values specified in the data-member portion
of their class (Figure 3.12) during function 2. In Section 3.6.2, we will learn how to add constructor
methods that we write to a class. These methods can contain parameters and code to extend the
four functions performed by the default constructor.

Displaying an Object

Objects can be displayed to the system console and to a graphical game board in one of two
ways. We can simply mention the name of the object or invoke the toSt ring method on the object
inside a method invocation used to display strings, or we can add a method to the object’s class that,
when invoked, outputs the object. The following statements use the first approach to display the
Person object mary to the system console object, System.out and then to a GameBoard object
named g at location (210, 100).

System.out.println (mary);
g.drawString (mary.toString(), 210, 100);

This approach is usually not too interesting because what is displayed is the location of the object
that is stored in the reference variable mary preceded by an ampersand (@) and the name of the
object’s class. Referring to Figure 3.13, Mary’s object is located at address 15, so the output to the

Chapter 3- Methods, Classes, and Objects: A First Look I 99

system console and the game board would be Person@15. The second alternative, adding a method
to the object’s class that when invoked outputs the object, produces a more interesting and useful
output. This technique will be discussed in Section 3.6.

Figure 3.14 presents an application that creates two Person objects, whose class is defined in
Figure 3.12, and outputs their locations to the system console and the game board. The output is
shown in Figure 3.15, except that the program does not produce the more interesting output of the
actual object Mary shown in the middle of the game board. As previously mentioned, the tech-
niques for producing that output will be discussed Section 3.6, and the code to produce the output
will be left as an exercise for the student.

Lines 7, 10, and 11 create two Person objects using the two-line syntax. The reference vari-
ables mary and kate are declared as class variables on line 7, so they can be accessed from the
main method and the draw call back method. Lines 13—14 and lines 21-22 output the object’s lo-
cations to the system console and the game board, respectively. These locations can be thought of
as the locations assigned to the two objects by Java’s memory manager when lines 10—11 execute.

1 import edu.sjcny.gpvl.*;

2 import java.awt.*;

3 public class ClassAndObjectBasics extends DrawableAdapter
4 |

5 static ClassAndObjectBasics ge = new ClassAndObjectBasics();
9 static GameBoard gb = new GameBoard(ge, "Class & Object Basics");
7 static Person mary, kate;

8

9 public static void main(String[] args)

10 { mary = new Person();

11 kate = new Person () ;

12

13 System.out.println (mary) ;

14 System.out.println (kate);

15

16 showGameBoard (gb) ;

17 }

18

19 public void draw (Graphics g)

20 {

21 g.drawString (mary.toString(), 210, 100);

22 g.drawString (kate.toString (), 210, 120);

23 }

24 3

Figure 3.14
The application ClLassAndObjectBasics.

System console output:
Person@3a6727
Person@4a65e0

100 M Programming Fundamentals Using Java

Game board output:

.. Class & Object Basics |

Personi@s42a590d
Person@l B3cTab

Lo

Start
Stop

L1]

Figure 3.15
The object locations output by the application CLassAndObjectBasics.

Designing a Graphical Object

During the specification and design of a program we identify the types of objects that the pro-
gram will deal with and the operations to be performed on them. Then during the program devel-
opment process, a class is developed for each of the object types, and the operations performed on
the objects become the methods of the class. A common operation performed on objects is to dis-
play them, and in the previous section we were able to display a Person object’s location without
adding a method to the Person class. To produce the more interesting display of an object, such as
the drawing of the object mary with her red hair and blue eyes shown in the middle of Figure 3.15,
we add a method to the object’s class that uses the shape and line drawing methods of the Graph-
ics class to produce the output.

In Section 3.6, we will learn how to add this method, whose name usually begins with the
prefix show, and other methods that perform common operations on objects to an object’s class.
In preparation for the coding of this method, the programmer has to design each type of graphical
object using the basic drawing shapes available in the Graphics class. In this section, we will be-
come familiar with techniques used to design these objects so that the drawing can be easily coded
into a show method, and the object can be easily manipulated by other class methods that perhaps
relocate the object, erase the object, or animate the object.

Drawing an Object

To begin, we draw a picture of the object using the graphical shapes available in the API
Graphics class discussed in Section 3.3. The object should be inscribed in a rectangle, and if ovals

Chapter 3- Methods, Classes, and Objects: A First Look I 101

are used, they should be inscribed in their own rectangle. Figure 3.16 shows a sketch of a snowman-
type object comprised of two rectangles and two circles. The rectangles that inscribe the ovals and
the entire object are shown in red.

The dimensions, in pixels, of each of the basic shapes that make up the game piece should be
given in the drawing. For example, the snowman’s hat is specified on the upper right side of the
figure to be 10 pixels wide and 15 pixels high. Ovals that are circles, such as a snowman’s head and
body, can be specified with one dimension (e.g., the diameter of the snowman’s head is 20 pixels).
After the dimensions of all of the shapes that make up the object have been noted on the drawing, the
overall width and height of the inscribing rectangle is added to the drawing. This is shown in Fig-
ure 3.16 on the bottom and left side of the inscribing rectangle. The width is simply the width of the
snowman’s body, 40, and the height is the sum of the heights of the shapes that make up the snowman,
77 (15 + 2 + 20 + 40).

The color of each shape that makes up the
object should also be given, as shown in the 4
lower right portion of the figure. The word
default used in the object’s color specification () jocation’of the
implies that snowmen objects could be con- snowman.
structed with hats that are not black. Finally, a
point that will be used to locate the object on
the game board is noted on the drawing. As
shown in the upper left side of the figure, this
point is typically the upper left corner of the
inscribing rectangle.

+—1—10x15

+——1—20x2

0

a

The circles are

/ white, the default
40 >

color of the hat is
black.

The next step in this design process is to
determine the locations of each of the shapes’ v
upper-left corner relative to the (x, y) location
of the game piece, which for our snowman is Figure 3.16
the upper left corner of the inscribing rectan- The design of a snowman game piece.
gle. These locations, along with the width and
height of each of the shapes, are entered into in a table that will be used in the show method to draw
each of the shapes. The table is a digital representation of the object, and the process of determin-

ing the data is referred to as digitizing the object.

[k

The digital representation of our snowman object is given in Table 3.2. As previously men-
tioned, each location in the table is relative to the (x, y) location of the upper corner of the rectangle
that inscribes the snowman object. Therefore, each location given in the table begins with an x or y
followed by the x or y distance to the corner of the shape. When reading the locations in the table,
it should be remembered that the positive x direction is to the right, and the positive y direction is
down.

To determine these distances, we either consider the dimensions of each of the shapes given in
Figure 3.16, or we draw the object on a piece of graph paper whose origin is the upper left corner of
the object’s inscribing rectangle. Then, the x and y distances to the upper-left corner of each shape

102 @ Programming Fundamentals Using Java

Table 3.2
Digital Representation of the Snowman Object Shown in Figure 3.16

Component Shape Shape’s X or Shape’s Y or Width or Line’s Height or
Line’s X, Line’s Y, X, Coordinate Line’s Y,
Coordinate Coordinate Coordinate
: Hat : Rectangle X+ (20-5) ty 10 15
HatBrim | Rectangle ix+(20-10) | Cy(l5) 120 2
Head Circle x+(20-10) iy+(15+2) 20 20
..].?;.6.(1.}.,. e s y X .(.1.5.; .2.;..2.(.).). R e

are simply the x and y coordinates of the shape’s inscribing rectangle’s upper left corner. The fol-
lowing two examples illustrate the technique of determining the x and y coordinates of each shape
by considering the dimensions given in Figure 3.16.

1. To determine the x location of the upper left corner of the snowman’s hat, which is
x + (20-5) as indicated in the first row and third column of the table, half the width of
the snowman’s inscribing rectangle (20) is added to x because the center of the hat is at
the center of the inscribing rectangle. Half the width of the hat (5) is subtracted from x
because the left side of the hat is half the width of the hat closer to the left side of the
snowman’s inscribing rectangle than is the center of the hat.

2. To determine the y location of the upper left corner of snowman’s head, which is

y + (15+2) as indicated in the third row and fourth column of the table, the height of the
hat (15) and the height of the hat brim (2) are added to y.

It should be noted that when lines are used in the object’s drawing, each line is entered on a
separate row of the table and, as indicated in the column headings of Table 3.2, the coordinates
of the endpoints of the lines are entered into the rightmost four columns of the table. During the
design phase of the program, a table is produced for each type of object in the program.

ADDING METHODS TO CLASSES

Many of the methods added to a class perform operations on the objects in the class. Some of
these operations are so commonly performed, such as a method to display an object or a method
to change the value of a data member, that they are included in most classes. To improve program
readability, the names of these methods usually begin with a designated prefix. For example, the
names of methods that display objects usually begin with the prefix show, and a method that be-
gins with the prefix set usually changes the value of one of an object’s data members.

In this section, we will study the techniques for adding methods to classes and how to use
them to perform operations on objects. These methods will be added to a class named Snowmanv1
that defines the object depicted in Figure 3.16 and digitized in Table 3.2. Its UML diagram will be
progressively developed, by adding methods to it, as we move through the next few sections of this
chapter.

Chapter 3- Methods, Classes, and Objects: A First Look I 103

Our starting point will be the UML diagram shown in
Figure 3.17, which is implemented in Figure 3.18. The class has
threedatamembers, twointegers, and areference variableusedto + x: int
specify the location of a Snowmanv1 object and its hat color. : i;téﬁor: color
As shown in the UML diagram, the data member hatColor
will refer to a color constant in the class Color. The code of the
class Snowmanv1l is presented in Figure 3.18. The three data
members are coded on lines 4—6. The default location of the
snowman is (5, 30), which is the upper left corner of the game
board. The hat color has been initialized to the color constant Figure 3.17

SnowmanV1

BLACK. The UML diagram of the class
SnowmanV1

1 public class SnowmanVl

2 {

3 //data members

4 public int x = 5;

5 public int y = 30;

6 public Color hatColor = Color.BLACK;

7 }

Figure 3.18
The Class SnowmanVv1

The use of a graphical snowman in this chapter will make the concept of operating on an object
less abstract, and therefore more easily understood. For example, rather than the class’ show meth-
od simply displaying an object’s (X, y) location, its show method will display the object in a more
tangible way: by drawing it on the game board at its (X, y) location. Rather than simply outputting
the increased value of an object’s x location, we will see the object move to the right.

The show Method

A method that begins with the prefix show is used to display an object and is a nonstatic
method. Because the drawing methods of the Graphics class cannot be used to draw on the sys-
tem console, we have to define what it means to show an object on the system console. The com-
monly accepted meaning is that the output would consist of the annotated values of the object’s
data members. This version of a show method, named showxyTosc (SC for system console) would
invoke the print1n method and pass it a string that concatenates the annotation and the class’s x
and y data members. For example:

public void showXYToSC ()
{

System.out.println("x is: " + x +
"\ny is: " + y);

104 B Programming Fundamentals Using Java

After this code is added to the class then snowman sm1 could be output to the system console us-
ing the statement:

sml.showXYToSC () ;
which would produce the output:
X is: 5
y is: 30
The statement sm1.showXYToSC(); can be read in three different ways:

1. The object sm1 is invoking the showXYTosSC method.
2. The method showxYTosC is invoked on the object sm1.
3. The showxYToSC method is operating on the object sm1.

All three of these are synonymous; that is, they mean the same thing. In general, to cause a method
to operate on an object, we precede the name of the method with the name of the object followed
by a dot.

An important point to remember is that if we just focused on the code of the showxyToSC
method and asked the question, when it mentions the data members x and y, which object’s data
members is it talking about, the answer is the data members of the object that invoked it. The true
meaning of the statement "a method operates on an object" is that all occurrences of the names of
the data members coded inside the method refer to the data members of the object that invoked it.

Figure 3.19 presents the expanded UML diagram that reflects the addition of two show methods,
showXYToSC and show. The method show will use the digitized version of a snowman, presented in
Table 3.2, to display a Snowmanv2 object on the game board. Because the shape drawing methods
in the Graphics class will need access to the game board object, the show method will have one
parameter: a reference to a Graphics object. The characters g: Graphics that appear inside the
parentheses of this method in the UML diagram is UML notation to indicate that this method has one
parameter named g that is a reference to a Graphics object.

The code of this expanded class is given in Figure 3.20. A client application that declares a
SnowmanV2 object and outputs the object’s address to the system console and the object to both the
system console and the game board is shown in Figure 3.21.

Snowmanv2 The application’s output is shown in Figure 3.22.
+ x : int The client code (Figure 3.21) invokes the default con-
+ vy : int

structor on line 7 to declare a Snowmanv2 object named sm1.
The declaration uses the one-line object declaration syntax
and is at the class level, so the object can be accessed by the
main method and the draw call back method. Line 11 out-
puts the object’s location to the system console, and line 12
invokes the showXYToSM method of the Snowman’s class to
Figure 3.19 display snowman sm1 to the system console. This method is
The UML diagram of the class coded on lines 12-16 of the Snowman class (Figure 3.20).

+ hatColor: Color

+ showXYToSC ()

+ show (g: Graphics)

SnowmanV2.

Chapter 3- Methods, Classes, and Objects: A First Look I 105

Line 19 of the application invokes the Snowmanv?2 class’s show method to display snowman
sml on the game board. This invocation is coded in the draw call back method for two reasons.
First, the show method must be passed a Graphics object on which to perform its drawing, and
the draw method is the only call back method that is passed a Graphics object when it is invoked.
It passes the Graphics object to the show method as an argument on line 19. Secondly, when the
game board needs to be redrawn, the game environment invokes draw, which will then invokes
show to redraw the snowman.

Lines 18-26 of Figure 3.20 are the code of the show method. The method’s signature (line 18)
includes the parameter g specified in the class’s UML diagram (Figure 3.19). It uses this parameter
to invoke methods in the Graphics class used to change the current drawing color (setColor
lines 20 and 23) and to draw the rectangles and circles specified in Table 3.2. All of the shape loca-
tions sent to the Graphics class methods as arguments on lines 21-25 are those contained in the
table. They contain the variables x and y because they are relative to the upper left corner of the
rectangle that inscribes the snowman. Because the method does not declare local variables named
x and v, the class-level data members x and y are used in these arguments. As a result, the snow-
man is drawn as shown in Figure 3.21 with the upper left corner of its inscribing rectangle at (5, 30).

1 import java.awt.Color;;

2 import java.awt.Graphics;; //needed for drawing shapes
3

4 public class SnowmanV2

5 {

6 //data members

7 public int x = 5;

8 public int y = 30;

9 public Color hatColor = Color.BLACK;

10

11 //member methods

12 public void showXYToSC ()

13 {

14 System.out.println("x is: " + x +

15 "\ny is: " + y);

16 }

17

18 public void show (Graphics g) //g is passed to the method
19 {

20 g.setColor (hatColor) ;

21 g.fillRect(x + 15, vy, 10, 15); //hat

22 g.fillRect(x + 10, y + 15, 20, 2); //brim
23 g.setColor (Color.WHITE) ;

24 g.filloval(x + 10, y + 17, 20, 20); //head
25 g.fillOval(x, y + 37, 40, 40); //body
26 }

27 }

Figure 3.20
The class SnowmanVv2.

106 M Programming Fundamentals Using Java

1 import edu.sjcny.gpvl.*;

2 import java.awt.Graphics;

3 public class ShowMethods extends DrawableAdapter
4 {

5 static ShowMethods ga = new ShowMethods ();

9 static GameBoard gb = new GameBoard(ga, "Show Methods");
7 static SnowmanV2 sml = new SnowmanV2 () ;

8

9 public static void main (String[] args)

10 {

11 System.out.println (sml) ;

12 sml.showXYToSC () ;

13

14 showGameBoard (gb) ;

15 }

16

17 public void draw (Graphics g) //the drawing call back method
18 {

19 sml.show(qg) ;

20

21 }

22}

Figure 3.21

The application ShowMethods.

System Console Output
SnowmanV2@3a6727
x1is: 5

y is: 30
Graphical Output

Figure 3.22
The console and graphical output produced by the application ShowMethods.

Chapter 3- Methods, Classes, and Objects: A First Look I 107

Constructors and the Keyword this

In Section 3.5.3, we learned that constructors are methods that construct objects, and the
names of these methods must be the same as the class of the objects they construct. If a constructor
method is not included in the specification and code of a class, a Java provided default constructor
creates the object by performing the following four functions:

1. Allocate the storage for the data members of the class

2. Set the initial values into the data members

3. Assign the collection of data members a memory location
4. Return the location to the client code

Because the class Snowmanv2 does not contain a constructor method, the default constructor
is used to create all instances of this class (objects declared in this class). As a result, function 2
would locate them all at (5, 30), and they would all have black hats. When displayed, they would be
displayed on top of each other giving the appearance that only one of them was displayed.

To allow the client code to specify the values of the data members of a newly constructed ob-
ject, we add a constructor method to its class. Its code template is the same as the template used
to code any other method, except its name must be the same as the class’s name, and its signature
cannot contain a return type. Its signature can contain a parameter list, and it can contain Java
statements in its code block. When a constructor method is included in the code of a class, the
default constructor is no longer available to construct objects in the class.

Figure 3.23 presents the UML diagram of the class Snowmanv3 that contains a two-parameter
constructor, which is a constructor with a parameter list that contains two parameters. When the
client code uses this constructor method to create an object, just before the fourth function nor-
mally performed by the default constructor is performed, the constructor method executes. Storage
is allocated for the constructor’s parameters, the values of the client’s arguments are copied into
them, and then the code of the constructor executes.

SnowmanV3

As with any method, the values copied into the pa-
rameters of the constructor could be used anywhere in | | . j,¢
the constructor’s code block by coding the names of the | + hatColor: Color
parameters. It is often the case that these parameters are
used by the client code to specify the initial values of | + Snowmanv3(xLoc: int, yLoc: int)
the data members. When this is the case, the construc- | + showxYTosc ()
tor’s code block simply assigns the parameters to the data | + show(g: Graphics)
members:

+ x : int

public SnowmanV3 (int xLoc, int yLoc) Figure 3.23
{ x = xloc; The UML diagram of the class SnowmanV3.
y = yLoc;

}

After this two-parameter constructor’s code is included in the code of the class Snowmanv3,
the client could use the following code to declare two snowmen located at the upper right and lower
left corners of the game board:

108 M Programming Fundamentals Using Java

SnowmanV3 sml new SnowmanV3 (5, 30);
SnowmanV3 sml = new SnowmanV3 (460, 423);

The Keyword this

A method in a class can contain a parameter whose name is the same as the name of one of the
class’s data members. When this occurs, we say that the parameters shadow the data members. For
example, the signature of the Snowmanv3 class’s two-parameter constructor could have been coded as:

public SnowmanV3(int x, int y)

When the parameter names shadow data member names, the use of the name within the con-
structor refers to the parameter, not to the data member. As previously stated, parameters should be
considered to be local variables. An assignment into the variable x within the constructor’s code body
changes the value stored in the parameter, not the value stored in the class-level data member x. We
can refer to the data member within the code of constructor (or any other member method whose pa-
rameter list employs shadowing), by preceding the data member’s name with the key word this fol-
lowed by a dot, e.g., this.x. This syntax could be thought of as the variable x that is a data member
of this class. Using this syntax, the Snownanv3 class’s two-parameter constructor could be coded as:

public SnowmanV3 (int x, int y)
{ this.x = x;
this.y = y;

}

This coding of the two-parameter constructor, which uses shadowing, is actually preferred when
the parameter list is being used to reset the initial values of the data members. When shadowing is
used, the name and type of the parameters and the class’s data members in the UML diagram (Figure
3.24) are the same, which is a cue to anyone looking at the UML diagram that the constructor will reset
the initial values of the data members.

Figure 3.25 is the implementation of the Snowmanv3 class specified in Figure 3.24. A client
application that declares and displays two instances of the class is shown in Figure 3.26, and the
output to the game board produced by the application is shown in Figure 3.27.

The two-parameter constructor is coded on lines 12—-16 of Figure 3.25. It is good programming
style to code the constructor as the first method after the data member declarations. Because the
names of the constructor’s parameters are the same as the

snowmany3 class’s data members, the keyword this is used on lines
+ 14 and 15 to access the class’s data members and assign the
+ y: int initial values passed into the parameters to them.

+ hatColor: Color
The client code (Figure 3.26) invokes the construc-

tor twice, once on line 9 and again on line 10, to create

+ SnowmanV3(x: int, y: int)

+ ShowXYToSC () two snowmen named sml and sm2. The arguments sent
+ show(g: Graphics) to the constructor specify the initial (x, y) locations of the
snowmen, which the constructor stores in the two data

Figure 3.24 members of the objects. Lines 19 and 20 of the client code
The modified UML diagram of the class invoke the show method. During the first execution of the

SnowmanV3.

Chapter 3- Methods, Classes, and Objects: A First Look I 109

method, the variables x and y on lines 27-31 of Figure 3.25 refer to the x and y data members of
snowman sml. Because these variables contain the coordinates (5, 30), this snowman is drawn
in the upper left corner of the game board. Similarly, during the second invocation of the show
method of the Snowmanv3 class, the variables x and y on lines 2631 refer to the x and y data
members of snowman sm2, and it is drawn at the lower right corner of the game board (460, 423).

Private Access and the set/get Methods

In the interest of simplicity, the data members and the member methods of the classes we have
discussed all had public assess as indicated by the plus (+) sign that precedes them in their UML
diagrams. Another type of access available in Java is private access, which is denoted in a UML
diagram by a minus (-) sign. In this section, we will examine the difference between public and

1 import java.awt.Color;

2 import java.awt.Graphics; //needed for drawing shapes
3

4 public class SnowmanV3

5 {

6 //data members

7 public int x = 5;

8 public int y = 30;

9 public Color hatColor = Color.BLACK;

10

11 // member methods

12 public SnowmanV3 (int x, int y)

13 {

14 this.x = x;

15 this.y = y;

16 }

17

18 public void showXYToSC ()

19 {

20 System.out.println("x is: " + x +

21 "\ny is: " + y);

22 }

23

24 public void show (Graphics g) // g is passed to the method
25 {

26 g.setColor (hatColor);

27 g.fillRect(x + 15, vy, 10, 15); //hat

28 g.fillRect (x + 10, y + 15, 20, 2); //brim
29 g.setColor (Color.WHITE) ;

30 g.filloval(x + 10, y + 17, 20, 20); //head
31 g.filloval(x, y + 37, 40, 40); //body

32 }

33 1}

Figure 3.25
The class SnowmanV3.

110 M Programming Fundamentals Using Java

1 import edu.sjcny.gpvl.*;

2 import java.awt.Graphics;

3

4 public class ConstructorAndThis extends DrawableAdapter

5 {

6 static ConstructorAndThis ga = new ConstructorAndThis () ;
7 static GameBoard gb = new GameBoard(ga,"Constructors and " +
8 "Key Word:this");
9 static SnowmanV3 sml = new SnowmanV3(5, 30);

10 static SnowmanV3 sm2 = new SnowmanV3 (460, 423);

11

12 public static void main(String[] args)

13 {

14 showGameBoard (gb) ;

15 }

16

17 public void draw (Graphics g) //the drawing call back method
18 {

19 sml.show(g) ;

20 sm2.show (g) ;

21 }

22 }

Figure 3.26

The application ConstructorAndThis

Figure 3.27
The output from the application ConstructorAndThis.

private access and learn which access modifier is normally used for the data members and member
methods of a class. This will lead us to a discussion of methods that begin with the prefixes set
and get that are commonly coded in most classes.

Chapter 3- Methods, Classes, and Objects: A First Look I 111

Public and Private Access

In the case of a member method, access is the act of invoking the method. In the case of a data
member, access is the act of fetching or assigning the contents of the data member. Designating
private access to the data members or methods of a class places no restrictions on the code of the
methods contained in the class. Any line of code in a method of a class can invoke any private or
public method in the class and can fetch and assign the value stored in any of its data members.

Private access places restrictions on client code. Client code cannot invoke methods of a class
that are assigned private access, nor can it access the data members of a class that are assigned
private access. If an application declared an object named mary, and the object’s class contained a
method named show, then the client code statement

mary.show() ;

would result in a translation error if the method was assigned private access.

NOTE Public access allows client code to access a class’s data member or method, but

private access does not.

The syntax we have used in client code to access (invoke) a public method can also be used
in client code to access an object’s public data. The syntax is the member (method or data) name
proceeded by the object name followed by a dot. This syntax was used on line 12 of the application
shown in Figure 3.21

sml.showXYToSC()

to invoke the public method showXYToSC coded on lines 12—16 of Figure 3.20. This method out-
puts two data members, x and vy, to the system console. Because the access modifier used in the
declaration of these two data members is public, their contents could have been fetched and then
output by the client code by replacing line 12 of the client code (Figure 3.21) with the statement:

System.out.println("x is: " + sml.x + "\ny is: " + sml.y);

In addition, the client code could set the x location of snowman sm1 to 10 by coding:

sml.x = 10;

Normally, methods in a class are assigned public access. Exceptions to this will be given in subse-
quent chapters. Assigning them public access allows the client code to invoke them.

Good programming practice dictates that all data members in a class be assigned private ac-
cess because allowing the client public access to an object’s data members can lead to some insidi-
ous and difficult to find programming errors.

That being said, it is often the case that client code has a need to obtain (get) the value stored
in an object’s private data member, or set the value to a new value. Because any method in a class
can access both private and public data members that are part of its class, public methods that begin
with the prefixes get and set are added to the class. The client then invokes these methods to fetch
and change the values stored in an object’s private data members.

112 B Programming Fundamentals Using Java

Normally, methods in a class are assigned public access, and data members are
NOTE assigned private access. Client code invokes the set and get methods of the class
to access an object’s private data.

Set Methods

A set method is a void method used to change, or set, the value stored in an object’s private
data member to a new value. The new value is passed into it as an argument. Because most classes
have more than one data member, set is not a method name, but a prefix used in naming methods.
Normally, we code a set method for every private data member in the class. The method names
begin with the set prefix, which is followed by the name of the data member they operate on. For
example, setX would be the name of the method the client code would invoke to change the con-
tents of an object’s private data member named x.

The signature of a set method contains one parameter and its code block contains one line
of code. The method’s parameter receives the new value of the data member, and the line of code
simply assigns the new value to the data member. Because the value passed into the method is to
be the new value of the data member, the parameter’s type always matches the type of the data
member. Below is the code of the setX method that sets the value of a private integer data member
named x to the value of the argument passed to it.

public void setX (int x)
{

this.x = x;

}

Because the method is public, the client code could invoke it to change the data member x of
the object sm1 to 100:

sml.setX (100);
String Immutability

The string class does not contain set methods to change the value of the characters stored
in a String object. This is because Java strings are immutable. Once a value has been stored in
a String object, the value cannot be changed. Although the following code fragment appears to
change the value "Robert" stored in the string object created on the first line to "Bob", in fact it
does not. Rather, it creates a new string object, stores "Bob" in it, and assigns the address of the
newly created object to the variable name.

String name = "Robert";
name = "Bob";

Although this gives the appearance that the value stored in the object has changed, in reality,
the new string value "Bob" is stored in a different object. The process is illustrated in Figure 3.28.

Chapter 3- Methods, Classes, and Objects: A First Look H 113

Name | 21 Address Name | o4-ga7 Address
867
21
"Robert" "Bob"
Storage created by: Storage after executing:
String name = "Robert"; name = "Bob";

Figure 3.28
The immutability of String objects.

get Methods

A get method is a nonvoid method used to fetch, or get, the value stored in an object’s pri-
vate data member. The value is returned via a return statement. Like set, get is a prefix used in
naming methods that fetch and return private data, and normally, a get method is coded for every
private data member in a class.

Good programming practice dictates that the names of these methods begin with the prefix
get, which is followed by the name of the data member on which they operate. For example, getX
would be the name of the method the client code would invoke to fetch the contents of an object’s
private data member named x.

The signature of a get method contains a return type, and its parameter list is empty. The
return type is always the same as the type of the data member it fetches. Its code block contains
one line of code that simply returns the value of the data member. Below is the code of the getXx
method that returns the integer value of an object’s private data member named x:

public int getX()
{

return x;
}
Assuming a client application had declared an object named sm1, the following client code in-
creases the object’s private data member x by one:

int currentX = sml.getX();
sml.setX (currentX + 1);

Figure 3.29 shows the code of the class Snowmanv4. It is the same code as the class Snow-
manv3 shown in Figure 3.25, except its three data members have been assigned private access
(lines 6—8) and the console output method has been removed. In addition, set and get methods
for its private data members x and y have been added to the class. The code of these four methods,
getX, setX, gety, and setY begin on lines 27, 32, 37, and 42, respectively.

114 B Programming Fundamentals Using Java

1 import java.awt.*;

2

3 public class SnowmanV4

4 {

5 //data members

9 private int x = 7;

7 private int y = 30;

8 private Color hatColor = Color.BLACK;
9

10 // member methods

11 public SnowmanV4 (int x, int y)

12 {

13 this.x = x;

14 this.y = y;

15 }

16

17 public void show (Graphics g) // g, is passed to the method
18 {

19 g.setColor (hatColor);

20 g.fillRect(x + 15, y, 10, 15); //hat
21 g.fillRect(x + 10, y + 15, 20, 2); //brim
22 g.setColor (Color.WHITE) ;

23 g.fillOval(x + 10, y + 17, 20, 20); //head
24 g.filloval(x, y + 37, 40, 40); //body
25 }

26

277 public int getX()

28 {

29 return x;

30 }

31

32 public void setX (int newX)

33 {

34 X = newX;

35 }

36

37 public int getY ()

38 {

39 return y;

40 }

41

42 public void setY (int newY)

43 {

44 y = newy;

45 }

46 }

Figure 3.29
The class SnowmanVv4.

and

Chapter 3- Methods, Classes, and Objects: A First Look M 115

The application class SetGetButtonClick shown in Figure 3.30 illustrates the use of set
get methods to access private data members.

O J oy U wN R

Nej

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

import edu.sjcny.gpvl.*;
import javax.swing.*;
import java.awt.Graphics;

public class SetGetButtonClick extends DrawableAdapter
{

static SetGetButtonClick ga = new SetGetButtonClick ();
static GameBoard gb = new GameBoard(ga,"Get Set and Button Click");
static SnowmanV4 sml = new SnowmanV4 (5, 30); //top-left corner
static SnowmanV4 sm2 = new SnowmanV4 (460, 423); //bottom-right corner
public static void main (String[] args)
{
String s = JOptionPane.showInputDialog ("sm2's new x location?");
int newX = Integer.parselnt(s);

sm2.setX (newX) ;
showGameBoard (gb) ;

public void draw (Graphics g) //the drawing call back method
{

sml.show(qg) ;

sm2.show (g) ;

public void rightButton() //moves sml one pixel right per click
{

int currentX = sml.getX();

sml.setX (currentX + 1);

}

Figure 3.30
The application SetGetButtonClick.

The program is identical to the ConstructorAndThis application shown in Figure 3.26,

except that lines 14—16 and 2630 have been added. Lines 16 and 29 illustrate the use of the setX
method to change the x value of Snowman sm2 and thus reposition it horizontally. Lines 2630
illustrate the use of the getx method and the rightButton call back method to move snowman
sm1 to the right one pixel every time the right button is clicked.

When the program begins, two snowmen, sm1 and sm2, declared on lines 9 and 10, are dis-

played on the game board by lines 22 and 23 of the draw call back method (Figure 3.30) at the
upper-left and lower-right corners of the game board. Then, line 14 displays an input dialog box
asking the user to enter the new value of snowman sm2’s x coordinate. Line 16 invokes the setx

116 M Programming Fundamentals Using Java

method to operate on snowman sm2, passing it the new x coordinate parsed on line 15. The method
stores the new value in sm2’s x data member (line 34 of Figure 3.29). The result is that when the
game board is redrawn after the dialog box closes, the snowman is drawn at its new X position.
Figure 3.31 shows snowman sm?2 in its new location, at the middle of the game board, after the user
enters 250 in the input dialog box.

Lines 2630 is an implementation of the game environment’s rightButton call back method.
As its name implies, this method is invoked every time the button on the game window with the
right arrow head (=) is clicked. It uses the get X method on line 28 to fetch the current x coordinate
of sml. Then it invokes the setx method to set the x data member of snowman sml to one more
than its current value. Because the rightButton call back method executes every time the right
button is clicked, and the draw method is invoked when it completes its execution, sm1 moves one
pixel to the right very time the button is clicked. The upper portion of Figure 3.31 shows sm1’s new
location after 60 clicks of the game board’s right () button.

The toString and input Methods

The methods we have developed in Section 3.6 perform work for a client application. They
construct objects, display objects, and access the values of an object’s private data members. The
methods toString and input are two other methods that perform work for the client applica-
tions. These methods expand the client’s ability to access private data members, and both of the
methods normally permit access to all of an object’s data members in one invocation.

The toString Method

The toString method is a nonvoid method that returns a string containing all the annotated
values of an object’s data members to the client application. The method’s parameter list is empty.
Its code progressively concatenates identifying annotation with the value of each of an object’s data
members, and the resulting string is the method’s returned value. For example, the Snowmanv4
class shown in Figure 3.29 contains three data members: x, y, and hatColor. A typical coding of
this class’s toString method would be:

1 public String toString()

2 {

3 String s;

4 s = "x is: " + x +

5 "\ny is: " + y +

6 "\nhatColor is: " + hatColor;
7 return s;

8 }

Because a class can have an unlimited number of data members, it is good coding practice to
code the concatenation of each data member’s annotation and variable name on a separate line,
as coded on lines 4, 5, and 6. Because the client code often sends the returned string to an output
device, the inclusion of a new-line escape sequence in all but the first data member’s annotation
improves the readability of the output.

Chapter 3- Methods, Classes, and Objects: A First Look H 117

St
Sop

Figure 3.31
The output of the application SetGetButtonClick after the snowmen are relocated.

The variable hatColor,coded at the end of line 6, is declared as a reference variable in the
Snowmanv4 class. When a reference variable is coded where a string is expected (as is expected
here because the variable is preceded by the concatenation operator), the translator considers it
to be an implicit invocation of another toString method. In Section 3.5.4, the location stored
in the reference variable mary was output with an explicit invocation of a Java-provided default
toString method. Because the class Color contains its own toString method, that method is
implicitly invoked on line 6, and the string it returns is then concatenated into the string s. Rather
than returning contents of the variable hatColor (an address), Color's toString method places
a description of the color stored in the Color object hatColor into the returned string.

The input Method

The input method is a void method that allows the program user to enter new values for all
of the data members of an object. The method’s parameter list is empty. Its code prompts the user
to enter new values for each of an object’s data members, parses numeric inputs, and assigns the
new values to the object’s data members. For example, the Snowmanv4 class shown in Figure 3.29
contains three data members: x, y, and hatColor. A typical coding of this class’s input method
would be:

public void input ()
{
String s;
int red, green, blue;

= JOptionPane.showInputDialog ("enter the value of x");
= Integer.parselnt(s);
JOptionPane.showInputDialog ("enter the value of y");

1
2
3
4
5
6
7
8
9 = Integer.parselnt(s);

KonoX W
Il

118 M Programming Fundamentals Using Java

10 s = JOptionPane.showInputDialog("enter hat's red intensity");
11 red = Integer.parselnt(s);

12 s = JOptionPane.showInputDialog("enter hat's green intensity");
13 green = Integer.parselnt(s);

14 s = JOptionPane.showInputDialog("enter hat's blue intensity");
15 blue = Integer.parselnt(s);

16 hatColor = new Color(red, green, blue);

17 }

Because the variables x,y, and hatColor are not declared within the method, assignments
into them (on lines 7, 9, and 16) change the values stored in the Snowmanv4 object’s data members.

Line 16 creates a new color object using the Color class’s three-parameter constructor and
stores its address in the data member hatColor. The arguments sent to the constructor are the
shade intensities of the colors red, green, and blue that combine to produce the desired new color.
The range of a color’s intensity is 0 (lowest intensity) to 255 (highest intensity). High intensities
produce bright colors. The program user would have to have knowledge of how to mix shade inten-
sities of these three colors to produce a desired color. These intensities are input and parsed on lines
10—15. In the simplest case, if the desired color were to be either red, green, or blue, the intensity
of the other two colors would be input as zero. White is an equal mix of the three colors, and black
is the absence (zero intensity) of the three colors.

Figure 3.32 presents the class Snowmanv5 that includes the code of the toString (lines
29-36) and input methods (lines 38—54) discussed in this section, and Figure 3.33 presents the
application ToStringAndInput that demonstrates the use of these methods. The console and
graphical outputs produced by the program are presented in Figure 3.34.

Lines 8 and 9 of the application (Figure 3.33) declares two snowmen, sm1 and sm2, located at
(7, 30) and (460, 420), respectively. The Snowmanv5 class’s toString method is invoked inside of
the print1n method’s argument list on lines 13 and 14 to obtain annotated versions of the current
values of each snowman’s data members. The returned string is concatenated with the names of the
snowman and output to the system console (top of Figure 3.34).

The output contains a description of each the snowman’s current hat color: java.awt.
Color{r=0,g=0,b=0]. This is the string returned from the Snowmanv5 class’s toString method’s
implicit invocation of the Color class’ toString method (line 34 of Figure 3.32). The »=0, g=0,
b=0 portion of the output indicates that the red (r), green (g), and blue (b) intensities of the color are
all zero: the default hat color black.

Line 15 of the application displays the game board, with the two snowmen drawn on it at their
initial locations wearing their black hats (Figure 3.34a). The Snowmanv5 class’s input method
is invoked on lines 20 and 21 of the application (Figure 3.33), which allows the user to input new
values of the two snowmen’s data members. Finally, line 18 redisplays the game board, and the two
snowmen are drawn at their new locations with their new colored hats as shown on in Figure 3.34b.
This output reflects user inputs of:

(200, 200) for sm1’s location and (0, 255, 0) for its (red, green, blue) color intensities;
(250, 200) for sm2’s location and (0, 0, 255) for its (red, green, blue) color intensities.

Chapter 3- Methods, Classes, and Objects: A First Look H 119

1 import java.awt.*;

2 import javax.swing.*; // needed for dialog box input

3

4 public class SnowmanVb

5 {

6 //data members

7 private int x = 7;

8 private int y = 30;

9 private Color hatColor = Color.BLACK;

10

11 //member methods

12 public SnowmanV5 (int x, int y)

13 {

14 this.x = x;

15 this.y = y;

16 }

17

18 public void show (Graphics g) //g is passed to the method
19 {

20 g.setColor (hatColor);

21 g.fillRect(x + 15, y, 10, 15); //hat

22 g.fillRect(x + 10, y + 15, 20, 2); //brim

23 g.setColor (Color.WHITE) ;

24 g.filloval(x + 10, y + 17, 20, 20); //head

25 g.filloval(x, y + 37, 40, 40); //body

26

27 }

28

29 public String toString/()

30 {

31 String s;

32 s = "x is: " + x +

33 "\ny is: " + y +

34 "\nhatColor is: " + hatColor;

35 return s;

36 }

37

38 public void input ()

39 {

40 String s;

41 int red, green, blue;

42

43 s = JOptionPane.showInputDialog("enter the value of x");
44 x = Integer.parselnt(s);

45 s = JOptionPane.showInputDialog("enter the value of y");
46 y = Integer.parselnt(s);

47 s = JOptionPane.showInputDialog("enter hat's red intensity");
48 red = Integer.parselnt(s);

49 s =JOptionPane.showInputDialog ("enter hat's green intensity");

120 M Programming Fundamentals Using Java

50 green = Integer.parselnt(s):;

51 s = JOptionPane.showInputDialog("enter hat's blue intensity”);
52 blue = Integer.parselnt(s):;

53 hatColor = new Color(red, green, blue);

54 }

55 }

Figure 3.32
The class SnowmanvV5s.

1 import edu.sjcny.gpvl.*;

2 import java.awt.*;

3

4 public class ToStringAndInput extends DrawableAdapter

5 {

6 static ToStringAndInput ge = new ToStringAndInput();

7 static GameBoard gb = new GameBoard(ge,"toString And input
Methods") ;

8 static SnowmanV5 sml = new SnowmanVb5 (7, 30);

9 static SnowmanV5 sm2 = new SnowmanVb (460, 420);

10

11 public static void main (String[] args)

12 {

13 System.out.println ("sml's\n" + sml.toString());

14 System.out.println ("sm2's\n" + sm2.toString());

15 showGameBoard (gb) ;

16 sml.input () ;

17 sm2.input () ;

18 showGameBoard (gb) ;

19 }

20

21 public void draw (Graphics g)

22 {

23 sml.show(g) ;

24 sm2.show (g) ;

25 }

26}

Figure 3.33
The application ToStringAndInput.

Console Output:

sml1’s

xis: 7

yis: 30

hatColor is: java.awt.Color[r=0,g=0,b=0]
sm2’s

X is: 460

y is: 420

hatColor is: java.awt.Color[r=0,g=0,b=0]

Chapter 3- Methods, Classes, and Objects: A First Look I 121

Game Board Output:

| ol A gt Mtk o (] || g And input Mt = |

Star1 Star1
Stop Slop

@ (b)

Figure 3.34
The console and game board output from the application ToStringAndInput.

OVERLOADING CONSTRUCTORS

Overloading constructors is an object oriented programming term used to describe a class that
contains more than one constructor method. The code of each constructor is different, which is the
motivation for coding more than one constructor. There is no limit on the number of constructors
a class can contain. The name of a constructor method must be the name of the class, so all of the
constructor methods in a class have the same name. For example, if the class’s name is Snowmanv4,
then the name of all of the constructors would be Snowmanv4.

Any of a class’s constructors can be used by a client application to allocate an object in the
constructor’s class. Because the names of the methods are the same, the only way the Java transla-
tor knows which constructor is being used is to examine the type and number of arguments in the
client’s invocation statement.

Consider the code of the class Snowmanvé presented in Figure 3.35. It contains three construc-
tors, which begin on lines 12, 15, and 20. The signature (line 12) of the first of these constructors
contains no parameters and is therefore referred to as the no-parameter constructor. To use the no-
parameter constructor, the client’s declaration statement would not contain any arguments:

SnowmanVé sl = new SnowmanVo6();

Because the constructor’s code block is empty, the snowman’s x, y, and hatColor data members
would retain their default values set on lines 7-9, and when the snowman was drawn it would ap-
pear at (7, 30) with a black hat.

122 B Programming Fundamentals Using Java

To use the two-parameter constructor on line 15, the client’s declaration statement would have
to contain two integer arguments:

SnowmanVé6 sl = new SnowmanVo (250, 250);

This constructor allows the client to specify the initial location of the newly created snowman.
Lines 17-18 would execute and set the value copied into the method’s parameters (250) into the
object’s x and y data members. When the snowman was drawn, it would appear at (250, 250) wear-
ing a black hat.

To use the three-parameter constructor on line 20, the client’s declaration statement would
have to contain two integer arguments and a reference to aColor object:

SnowmanVé sl = new SnowmanVe6 (350, 250, Color.BLUE);

This constructor allows the client not only to specify the initial location of the snowman, but also
its hat color. Lines 22—-24 would execute and set the values 350 and 250 into the object’s x and y
data members, and it would set the object’s data member hatColor to blue. In this case, when the
snowman was drawn, it would appear at (350, 250), and because line 28 of Figure 3.35 uses the
object’s hatColor data member to set the current color before drawing the hat, it would be wear-
ing a blue hat.

An attempt to create a snowman with an argument list that does not match one of the parameter
lists on lines 12, 15, or 20 would result in a translation error. For example, the client statement

SnowmanVé sl = new SnowmanVe6(350.34, 200, Color.BLUE);

would result in a translation error indicating that the translator can find a constructor whose pa-
rameters are a double, followed by an integer, followed by a Color object.

Each constructor in a class must have a unique parameter list, and the type and
NOTE number of the arguments in the client’s object declaration statement must match
one of these lists.

It should be noted that once a constructor is coded in a class, the Java-provided default con-
structor discussed in Section 3.5.3 can no longer be used to create an instance of the class. As a
result, to default to the values in data member’s declaration statements, a no-parameter constructor
(e.g., lines 12—14 of Figure 3.35) must be added to the class.

Figure 3.36 presents the application OverloadingConstructors that uses the three con-
structors shown in Figure 3.35 to construct three snowmen on lines 8, 9, and 10: one at the default
location (7, 30), one at the center of the game board (250, 250), and one to its right at (350, 250)
with a blue hat. Before each snowman’s hat is drawn, line 28 of the snowman’s class’s show method
(Figure 3.35) sets the current drawing color to the snowman’s hat color. As a result, when the three
snowmen are drawn on the game board (lines 19-21 of Figure 3.36) at their initial locations, one is
wearing a blue hat (Figure 3.37).

Chapter 3- Methods, Classes, and Objects: A First Look I 123

O J oy U1 W

B D D D D D D D D W W W W W W W W W wWwNhDNDNDNDNDNDNDMNDMNMNNNRERRRRRRERERERERE O
O 0O Joy U WNE OWOOW-JoUud WNE O WOOWwWJoUu dwWwNhE O WwWOow-Jo Ul dwdheEk o

import java.awt.Color;
import java.awt.Graphics; // needed for drawing shapes

public class SnowmanVo6
{
//data members
private int x = 7;
private int y = 30;
private Color hatColor = Color.BLACK;

// member methods
public SnowmanVeé ()
{
}
public SnowmanVé (int x, int y)
{
this.x = x;
this.y = y;
}
public SnowmanVé (int x, int y, Color hatColor)
{
this.x = x;
this.y = y;
this.hatColor = hatColor;
}

public void show (Graphics g) // g is passed to the method
{

g.setColor (hatColor) ;

g.fillRect(x + 15, y, 10, 15); // hat

g.fillRect(x + 10, y + 15, 20, 2); // brim

g.setColor (Color.WHITE) ;

g.filloval(x + 10, y + 17, 20, 20); // head

g.filloval(x, y + 37, 40, 40); // body

}
public int getX()
{

return x;
}
public void setX (int newX)
{

X = newX;
}
public int getY ()
{

return y;

public void setY (int newY)
{

124 B Programming Fundamentals Using Java

50 y = newy;
51 }

52}

Figure 3.35

The class SnowmanVeé.

1 import edu.sjcny.gpvl.*;

2 import java.awt.*;

3

4 public class OverloadingConstructors extends DrawableAdapter

5 {

6 static OverloadingConstructors ga= new OverloadingConstructors();

7 static GameBoard gb = new GameBoard(ga, "Overloading
Constructors");

8 static SnowmanVé6 sml = new SnowmanVo (7, 30);

9 static SnowmanV6 sm2 = new SnowmanVé (250, 250);

10 static SnowmanVé6 sm3 = new SnowmanVe (350, 250, Color.BLUE) ;

11

12 public static void main(String[] args)

13 {

14 showGameBoard (gb) ;

15 }

16

17 public void draw (Graphics g) //the drawing call back method

18 {

19 sml.show (g) ;

20 sm2.show (g) ;

21 sm3.show (g) ;

22 }

23 1}

Figure 3.36

The application OverloadingConstructors.

Figure 3.37
The output from the application OverloadingConstructors.

Chapter 3- Methods, Classes, and Objects: A First Look I 125

PASSING OBJECTS TO AND FROM WORKER METHODS

The techniques and syntax used to pass primitive information (i.e., values stored in primitive
variables) between client and worker methods were discussed in Section 3.2. The same techniques
and syntax presented in that section can be used to pass objects between client and worker meth-
ods. In the case of objects, the information passed is actually the addresses of the objects stored
in the reference variables that refer to the objects. An unlimited number object addresses can be
passed to a worker method via its parameter list, and the address of one object can be returned from
a worker method via its return statement.

Passing Objects to Worker Methods

The first row of Table 3.3 gives the syntax used to invoke the Game class’s static method add-
1ToX passing it the address of the Snowmanvé object sm1. The right-most column gives the syntax
of the method’s signature. For comparative purposes, the second row of the table gives the syntax
used to pass the integer age to static method add1toAge and the syntax of the method’s signature.
As shown in the table, the syntax used to pass objects to worker methods is the syntax used to
pass primitive values to worker methods. The primitive type coded in the method’s parameter list
is replaced with the type of the reference variable (i.e., the object’s class name), as shown in the
rightmost column of the table.

The following code segment is a static worker method named moveRight that increases the
x data member of the Snowmanvé object passed to it by one pixel:

public static void moveRight (SnowmanVé aSnowman)
{

int currentX = aSnowman.getX();

aSnowman.setX (currentX + 1);

}

Table 3.3
Syntax Used To Pass Objects and Primitives to Worker Methods
. Client Method’s Worker Method’s Signature Coded in the
Information Passed .
Invocation Statement Class Game
: An Object’s address : Game.add1ToX (sml) :static void addlToX (SnowmanVé sm) :
An Integer value Game.add1ToAge (agel) : static void addlToAge (int age)

Figure 3.38 is modified version of the program presented in Figure 3.30 that moves a snow-
man one pixel to the right every time the game board’s right arrow button is clicked. The method
moveRight has been added to the program (lines 32-37), and it is used to move two snowmen to the
right every time the right arrow button is clicked. This method is invoked on lines 28 and 29 to move
the two Snowmanvé objects, sm1 and sm2, to the right one pixel. The objects are created on lines 9
and 10 using the class’s three-parameter constructor. The first invocation of moveRight (line 28)
passes the location of sm1 to the method, and the second invocation (line 29) passes sm2’s location
to the method. Because the static method moveRight is coded in the same class as the invocation
statements on lines 28 and 29, the name of the class need not be included in the invocations.

126 M Programming Fundamentals Using Java

O J oy U1 W

NeJ

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

27
28
29
30
31
32
33
34
35
36
37
38

import edu.sjcny.gpvl.*;
import javax.swing.*;
import java.awt.*;

public class ObjectsAsParameters extends DrawableAdapter

{

}

static ObjectsAsParameters ga = new ObjectsAsParameters();
static GameBoard gb = new GameBoard(ga, "Objects As Parameters");
static SnowmanV6 sml = new SnowmanVé6 (5, 40, Color.RED);

static SnowmanVé6 sm2 new SnowmanVe (460, 423, Color.BLUE) ;

public static void main(String[] args)
{
String s = JOptionPane.showInputDialog("sm2's new x location?");
int newX = Integer.parselnt(s);
sm2.setX (newX) ;
showGameBoard (gb) ;

public static void draw (Graphics g) // the drawing call back method
{

sml.show(qg) ;

sm2.show (g) ;

public void rightButton() //moves sml & sm2 one pixel right per
click
{
moveRight (sml) ;
moveRight (sm2) ;

public void moveRight (SnowmanV6é aSnowman)
{
int currentX = aSnowman.getX();
currentX++;
aSnowman.setX (currentX) ;

Figure 3.38
The application ObjectsAsParameters

Figure 3.39 illustrates the passing of the location from the reference variable sm1 into the

method’s moveRight parameter aSnowman, and the change in the x data member of the object
after the method executes. The client code’s RAM memory is shown on the left side of the fig-
ure, and the worker method’s RAM memory is shown on the right side of the figure. Each time
the method is invoked, the value stored in the invocation’s argument is copied into the parameter

Chapter 3- Methods, Classes, and Objects: A First Look I 127

sml | o0 200 aSnowman
56 current X
RAM address 200
hatColor|Color.RED
Client’s (invoker's) RAM Worker Method moveRight’s RAM

Figure 3.39
The passing of the object sm1 to the worker method moveRight.

aSnowman. The dashed arrow at the top of the figure illustrates this process for the first invocation
of the method (line 28) when the location of snowman sm1 is passed to the parameter aSnowman.

After the snowman’s location, 200, is copied into the worker method’s parameter aSnowman,
the use of this variable on lines 34 and 36 of Figure 3.38 refers to the client’s snowman object sm1.
Line 34 fetches sm1’s x data member, and line 36 changes the value stored in this data member.
While the method is in execution, the snowman object is shared between the client code and the
worker method it invoked. Although we normally say we are “passing an object to a method,” we
really should say we are “passing the address of the object to a method.”

Technically speaking, objects are not passed to and from methods. Rather, the ad-
NOTE .
— dresses of the objects are passed between the methods.

Because the sm1’s address is shared, when the worker method ends the initial value of its x data
member (10) stored inside the object has been overwritten with the value 11. This is not a contradic-
tion of the idea that value parameters prevent worker methods from changing the client’s informa-
tion passed to it as parameters because the information passed to the method moveRight is the
contents of the variable sm1, not the object’s data member x. This is a subtle but important point to
understand. While it is true that the worker method can change the contents of the data members of
the object sm1 because aSnowman stores the object’s address, it cannot change the address stored
in the variable sm1 (which was passed to it).

Returning an Object from a Worker Method

An object’s address can be returned from a method using the same syntax used to return a
primitive value from a method. The keyword void in the method’s signature is replaced with the

128 M Programming Fundamentals Using Java

type of the information being returned. To return the location of an object from a method, the name
of the returned object’s class replaces the keyword void. As is the case when primitive values are
returned from a method, if the returned address is to be used by the client code that invoked the
method, the client code must assign the returned address to a variable.

The static method shown in Figure 3.40 creates a snowman object located half way between
the two snowmen whose addresses are passed into its parameters, and returns the address of the
newly created snowman. Assuming the method is added to the class Snowmanveé, the following
code fragment invokes the method and stores the returned address of the newly created snowman
in the reference variable aSnowman:

SnowmanVeé aSnowman;
aSnowman = SnowmanVé6.halfWayBetween (snowmanl, snowman2) ;

The signature of the method on line 1 of Figure 3.40 states that the address of a Snowmanvé object
will be returned from the method. A Snowmanvé object is created on line 4, and its address is
returned on line 9.

1 public static SnowmanV6 halfWayBetween (SnowmanVé6 sml, SnowmanVé sm2)
2 {

3 int x, vy;

4 SnowmanVé6 aSnowman = new SnowmanVoé () ;

5 x = (sml.getX() + sm2.getX()) / 2);

6 y = (sml.getX() + sm2.getX()) / 2);

7 aSnowman.setX (x) ;

8 aSnowman.setY (y);

9 return aSnowman;

10 1}

Figure 3.40
A method that returns an object.

CHAPTER SUMMARY

This chapter began our study of the concepts used to design and implement classes, which will
be expanded in Chapters 7 and 8. We learned that a class is similar to a blueprint enabling us to
define and construct an item, and that an object is a particular item or instance of the class. In the
same manner that we use the classes and methods available in the Java API to facilitate the design
and development of a program, we can also use and reuse the classes we create.

Methods are subprograms, which are key components of classes. They perform the work of the
class by creating, displaying, and manipulating the class’s objects. Several versions of a class’s con-
structor methods are normally available in a class to create an object and initialize various subsets
of its data members. The names of methods that perform tasks common to most classes have been
standardized, and they are included in most classes. The methods named toString and show are
used to display an object on the console or on the game board, and the i nput method and methods

Chapter 3- Methods, Classes, and Objects: A First Look I 129

that whose names begin with the prefixes set and get are used to change the values of an object’s
data members.

The first line of a method is called the method’s signature. Java uses value parameters to pass
information to a method and a return statement to transfer one value from a method. The list of in-
formation passed to a method is called an argument list, which is a sequence of variables and literal
values separated by commas. This information is copied into the list of variables declared in the
method’s signature, which is called a parameter list. Before the method begins execution, the value
stored in the i argument of the invocation statement is copied into the ith parameter of the method.
An argument’s type must match the type of its corresponding parameter. Value parameters prevent
a method from changing the value stored in thevariables coded in the argument list.

Several methods in a class can have the same name if their parameter lists are different. When
this feature is used in the coding of a class’s methods, we say that the methods with the same name
are overloaded. Constructor methods are often overloaded because their names must be the same
as the class’s name. Normally, methods have public access to permit methods defined outside of the
class to invoke them, and data members have private access to prevent methods defined outside of
the class from inadvertently changing their values.

A class’s data members are declared as class level variables. Class level variables are variables
declared outside of the code block of a method and inside the code block of the class. It is good pro-
gramming practice to declare these class-level variables at the beginning of the class’s code block
before the implementation of the class’s methods.

All class variables declared in a class, whether they are declared public or private, can be
directly accessed within the class’s methods by simply coding the name of the variable. The only
exceptions to this are if the method declares a parameter, or variable, within its code block with the
same name. When this is the case, the class variable is accessed within the method by preceding its
name with the key word this followed by a period. The context in which direct access syntax can
be used to access a variable is called the scope of the variable.

A UML diagram is a graphical depiction of a class developed during the design of the class.
This tool not only facilitates the design of the class, but it also documents the data members and
methods that make up the class. It is used as the starting point for the implementation of the class.
Other class design tools discussed in this chapter are the techniques used to depict and digitize a
graphical object, which serve as the basis for the implementation of their show methods.

The methods in the API Graphics class can be used to implement a graphical object’s show
method. This class provides methods for drawing lines and basic shapes on a previously declared
Graphics object. The units of the (x, y) location of the lines, shapes, and the size of the shapes
passed to these methods is pixels or picture elements. These methods provide the foundation for the
rest of the graphical topics in this text.

130 M Programming Fundamentals Using Java

Knowledge Exercises

1. Indicate whether the following statements are true or false:
a) Methods must be coded inside the code block (i.e., the open and close brackets) of a class.
b) The first line of a method is called its title.
¢) The first line of a method always ends with a semicolon.
d) All methods must contain a code block.
e) The method pow in the Math class is an example of a void method.
f) We can invoke methods we did not write.

2. Indicate whether the following statements are true or false.
a) It is good programming practice to begin a method name with an uppercase letter.

b) It is good programming practice to make the names of methods representative of the work
they perform.

¢) A method’s name should not contain capital letters.

3. Fill in the blank:

a) The signature of a method that does not operate on an object must contain the
keyword.

b) The signature of a method that does not return a value must contain the
keyword

¢) When we invoke a static method, we begin the invocation statement with the name of
__________ followed by a dot.

d) When we invoke a nonstatic method, we begin the invocation statement with the name of
followed by a dot.

4. Give the invocation statement to invoke the class Boat’s moveBoat method whose signature
is: public static void moveBoat().

5. Indicate whether the following statements are true or false:
a) Client code is code that invokes a method.
b) A method can invoke the same method more than once.

¢) Parameters are used to pass information to a method, and the information is passed into
the method’s arguments.

d) One or more pieces of information can be passed to a method.

e) One or more pieces of information can be returned from a method.

f) The type of a parameter must match the type of the information it receives.

g) Parameters and arguments share the same variable.

h) Java passes information to methods using the concept of reference parameters.

i) When a method changes the value of an integer passed to it, the original value is no longer
available to the client code.

6. Give the signature of a public method named add that adds two integers sent to it and returns
the result.

Chapter 3- Methods, Classes, and Objects: A First Look I 131

7. After an invoked method completes its execution, which statement executes next?

8. Indicate whether the following statements are true or false:
a) A class-level variable must be coded inside a method in the class.

b) Class-level variables are used to share information between all of the methods defined in
the class.

¢) A method cannot declare a variable with the same name as a class-level variable.

d) When a method changes the value stored in a class-level variable, the original value is no
longer available to the other method in the class.

€) More than one class-level variable can be coded in a class.

9. Give the declaration of a class-level variable named checkAmount that is coded in the
program’s class.

10. Fill in the blank:

a) The method in the Graphics class is used to change the current drawing

color.
b) The constant in the Color class stores the color red.
¢) The import statement is used to access the methods defined in the

Graphics class.

d) The import statement is used to access the color constants defined in the
Color class.

11. Give the name of the method in the Graphics class used to:
a) Draw the outline of a rectangle
b) Draw a filled rectangle
¢) Draw the outline of an ellipse
d) Draw the outline of a circle
e) Draw a filled circle
f) Draw a line

12. Give the Java statement (or statements) to draw the following shapes and lines on the Graphics
object g:
a) A line from (200, 30) to (100, 75) drawn in the current color
b) The outline of a 100-pixel wide by 50-pixel high rectangle located at (20, 200) drawn
usingthe current color
¢) A blue filled circle whose diameter is 30 pixels located at (250, 300)
d) A blue filled ellipse 100-pixel wide by 50-pixel high located at (300, 100)

13. Fill in the blank:

a) Using the words object and class in: House is to as blueprint

b) Classes are comprised of member and
¢) The name of the graphic used to specify a class is a

diagram.

132 B Programming Fundamentals Using Java

14.

15.

16.

17.

18.

19.

20.

21.

22.
23.

d) Data members of a class are usually designated to have access.

e) Member methods of a class are usually designated to have access.

Give the Java code to declare an object named joe in the class Person using the class’s no-
parameter constructor, and:

a) the one-line declaration syntax.
b) the two-line declaration syntax.

Referring to Exercise 14:
a) What is actually stored in the variable joe?
b) Is joe a primitive-type variable? If not, what is the its type?

¢) Draw a picture (similar to Figure 3.13) of the memory allocated by Exercise 14a, assuming
the class Person has two integer data members named age and idNumber.

Give the Java code to declare a class whose object will be coffee cups. Each coffee cup will
have a size (ounces) and a price. The class will not contain any methods.

Referring to Exercise 16:
a) Give the code of the two-parameter constructor of the class defined in Exercise 16.
b) Give the client code used to declare a $3.85 coffee cup whose size is 8 ounces.

¢) Give the code to output the coffee cup declared in part B to the system console using an
implicit invocation of the toString method.

d) Repeat part C of this question using an explicit invocation of the toSt ring method.
e) What is output to the console by the invocation in part C and B?
f) Give the code to produce the same output generated by part D to the graphic object g.

Give the code of a method named toString that, when added to the class defined in Exercise
16, returns the values of its two data members fully annotated.

Give the code of a method named show that, when added to the class defined in Exercise 16,
outputs the values of its two data members to the center of a 500 wide by 500 high Graphics
object named g.

Using a sketch similar to Figure 3.16, show the design of a recreational
vehicle (RV) that has two side windows, tires a large entrance door.

Give a table similar to Table 3.2 that contains the digitized version of the RV design specified
in Exercise 20.

When must the keyword this be used in a method to access one of the data members of its class?

A class contains one integer data member named total whose access is private.

a) Use the keyword this in a statement coded inside one of the class’s method that doubles
the value stored in the data member total.

b) Give a statement coded inside one of the class’s method that doubles the value stored in the
data member total without using the keyword this.

¢) Give the code of a set method that client code could use to change the value of the data
member total.

24.

25.

26.

Chapter 3- Methods, Classes, and Objects: A First Look I 133

d) Give the code of a get method that client code could use to fetch the value of the data
member total.

e) Assuming the appropriate set and get methods exist, give the client code to double the
value of the total of the object named myAccount that uses the set and get methods.

f) Assuming the data member total was declared to have public access, give the client code
to double the value of the total of the object named myAccount without using set and get
methods.

g) Give the code of the class’s toString method.
h) Give the code of the class’s input method.
i) Which access modifier key word, public or private, results in more restricted access?

Indicate whether the following statements are true or false:

a) A class need not contain an explicitly coded constructor.

b) A class can contain several constructors.

¢) A class can contain several constructors with different names.

d) A class can contain several constructors with the same signature.

e) When a constructor invocation is proceed by the keyword new, an object is created, and its
address is returned.

f) The Java provided default constructor has no parameters.

A client application has declared three objects named shipl, ship2, and ship3 that are

instances of the existing class Starship. Each starship contains a data member that stores the

color used to draw the starship.

a) Give the signature of a static method in the Starship class named largest thatis
passed two Starship objects and returns the address of one of them.

b) Give the client code statement used to invoke the static method described in part A of this
exercise and place the returned address in shipl.

¢) If the method changed the value of the color data member of one of the starships passed to
it, would it be drawn in the new or old color after the method completes its execution?

d) Give the signature of a nonstatic method in the Starship class named sameModel that
compares two Starship objects and returns a Boolean value.

e) Give the client code statement used to invoke the nonstatic method described in part D of
this exercise and store the returned Boolean value in the variable isSame.

Using a sketch similar to Figure 3.16, show the design of the user-controlled game piece that is
part of the game you specified in Preprogramming Exercise 1 of Chapter 1.

27. Give a table similar to Table 3.2 that contains the digitized version of the game piece design

1

specified in Exercise 26.

Programming Exercises

. Write a nongraphical application that contains a static method with an empty parameter list
that outputs your name and your age on one line to the system console. The main method of the
application should invoke it three times. The output it produces should be annotated as shown

134 B Programming Fundamentals Using Java

below (assuming your name is Tommy and you are 18 years old):
The author of this program is Tommy who is 18 years old.

2. Write a graphical application that contains a static method that is invoked by the draw call
back method. It should have one parameter to receive the Graphics object g passed to it.
When invoked, the method should output your name and your age to the center of the game
board as shown below (assuming your name is Tommy and you are 18 years old):

The author of this program is Tommy who is 18 years old.

3. Write a nongraphical application that contains a static method to compute and return the square
root of the product of three real numbers passed to it. The main method of the application
should invoke it and then output the three numbers and the returned value clearly annotated.

4. Write a graphical application that contains a static method to compute and return the square
root of the product of three real numbers passed to it. The draw method should invoke it and
then output the three numbers and the returned value clearly annotated.

5. Write a nongraphical application that contains a static method to compute and return the
square root of the product of three real numbers that are declared and initialized as class-
level variables. The main method of the application should invoke it and then output the three
numbers and the returned value clearly annotated.

6. Write a graphical application whose draw method displays an old television on a
table with an antenna on it.

7. The statistics kept for each player on a ladies softball team include each player’s
name, number of homeruns, and batting average a real number.

a) Give the UML diagram for a class named TeamMember whose objects can store the three
private pieces of data for a player. The class should include a three-parameter constructor,
a toString method, a method to input the statistics for a player, and a showscC method to
output a player’s statistics to the system console.

b) Progressively implement and test the TeamMembe r class by adding one method and verifying
it before adding the next method. A good order to add the methods is the toString method,
followed by the constructor, the show method, and finally the input method. (The client
code can create a TeamMember object using the Java supplied default constructor to test the
toString method.)

¢) After all of the methods are verified, comment out the test code in the client application and
add two TeamMember instances to the program whose statistics are passed to the three-
parameter constructor. Output these players to the system console and then output them
again after the user inputs new names, home run counts, and batting averages for each
player.

8. Write a graphical application that contains a class named RV whose objects are the recreational
vehicle designed and digitized as described in Knowledge Exercises 20 and 21. The class’s
private data members should be the vehicle’s body color and (x, y) location.

a) Give the UML diagram for the class. It should include a three-parameter constructor, a
toString method, a method to input the values of all of an object’s data members, and a
show method to draw the RV at its current (X, y) location.

Chapter 3- Methods, Classes, and Objects: A First Look I 135

b) Progressively implement and test the RV class by adding a method and verifying it before
adding the next method. A good order to add the methods to the class is the three-parameter
constructor, followed by the toString method, the show method, and finally the input
method. The client code should create an RV object using the three-parameter constructor to
test all of the methods as they are progressively added to the class.

¢) After all of the methods are verified, comment out the test code in the client application
and add two RV instances to the program whose location and color are passed to the three-
parameter constructor. Output these vehicles to the system console and the game board and
then output them again after the user inputs a new color and a new (X, y) location for each
vehicle.

9. After implementing and testing the class described in Programming Exercise 7, progressively
add a set and a get method to the class for each of the class’s data members. After the set and
a get methods have been verified, create two instances of the class using the three-parameter
constructor and display them to the system console. Then, ask the user how many home runs
and batting average points should be added to each player’s statistics. Use the set and a get
methods to change the statistics and then output the two players to the system console.

10. After implementing and testing the class described in Programming Exercise 8, progressively
add a set and a get method to the class for each of the class’s data members. After the set
and a get methods have been verified, create an instance of the class using the three-parameter
constructor and display it on the system console and the game board. Every time one of the
game board’s directional buttons is clicked, the RV’s location should be changed by two pixels
in the appropriate direction.

11. Using the skills developed in this chapter, begin to implement the game you specified in
Preprogramming Exercise 1 of Chapter 1. Begin by completing Knowledge Exercises 26
and 27 to design and digitize the user-controlled game piece. Then, implement the class of
the digitized game object, beginning with a UML diagram of the game piece that includes a
constructor with the appropriate number of parameters, a show method to draw the object on
the game board at its current (X, y) location, a toString method, and a set and a get method
for each of the class’s data members. After progressively implementing and testing all of the
class’s methods, write a graphical application that displays the game piece on the game board
and then moves the game piece by two pixels in the appropriate direction every time one of the
game board’s directional buttons is clicked.

Endnotes and References

! Lanzinger, Franz. Classic Game Design: From Pong to Pac-Man with Unity. Dulles, Virginia: Mercury
Learning and Information, 2014.

2 Schell, Jesse. The Art of Game Design. Burlington, MA: Morgan Kaufmann Publishers, 2010.

CHAPTER 4

BOOLEAN EXPRESSIONS, MAKING DECISIONS,
AND Disk INPUT AND OUTPUT

4.1 Alternatives to Sequential Execution 138
4.2 Boolean ExpresSions 138
4.3 Theifstatement, 144
4.4 The if-else Statement 150
4.5 Nested if Statements. 158
4.6 Theswitchstatement 160
4.7 Console Input and the Scanner Class. 169
4.8 Disk Input and Output: A First Look 172
4.9 Exceptions: AFirstPass 179
4.10 Chapter Summary, 185

In this chapter

To control the sequence of operations, Java provides three decision-making statements, and
in this chapter, we will learn how to write the Boolean condition on which these decisions
are based. By default, Java statements execute in the order in which they are coded, although
at some point in most algorithms, a decision has to be made as to which of its steps should
be executed next. When depicted in a flow chart, this part of the algorithm begins with a
diamond shape. To implement these algorithms, programming languages include decision
statements that use Boolean expressions as conditions to determine whether to execute or
skip statements. Java also provides two statements that always skip a predetermined set of
statements, one of which will be discussed in this chapter.

In addition, this chapter extends the input and output techniques of the previous chapters to in-
clude input from the system console as well as disk I/O, and it introduces a technique used to alter the
sequential execution path of a program when an unexpected error occurs.

After successfully completing this chapter, you should:

* Be familiar with the logical and relational operators and their order of precedence
* Be able to write and evaluate simple and complex Boolean expressions
* Understand how to compare strings and determine their alphabetic order

* Beable to write if, if-else, and switch statements to implement the decision-making
part of an algorithm

138 @ Programming Fundamentals Using Java

* Understand the use of the break statement

* Be able to perform console input using the Scanner class and its methods

* Be able to create, open, read, and write sequential text files to and from a disk

* Begin to understand how to use try and catch blocks to handle an error exception

e Use decision-making statements to control a timer, a graphical object’s visibility and
motion, and detect collisions between two objects

ALTERNATIVES TO SEQUENTIAL EXECUTION

When a Java application begins, the first statement to execute is the first executable statement
in the method main. The order in which the remainder of the instructions execute is referred to as
the execution path of the program, or the flow of the program. The default execution path of a Java
statement block is sequential. It can be thought of as the statements executing in line number order.
After the first statement in the block executes, the remaining statements execute in the order in
which they are written unless one of the statements specifically alters the execution path.

Many algorithms cannot be formulated in a way that all of its steps are executed sequentially.
Therefore, programming languages provide statements to change the default sequential execution
path. Programmers use these statements, or constructs, to alter the sequential flow of the program,
so they are referred to as control-of-flow or control statements. We have already used one of these
constructs: the invocation of a method. Assuming a method was invoked on line 10 of a program,
the next statement to execute would not be line 11, but rather, the first executable statement in the
method’s code block. Line 11 would execute after the method completed its execution.

Aside from method invocation statements, programming languages provide additional control-
of-flow statements to alter the default execution path. Some of these statements are used to skip a
group of statements, and others are used to repeat a group of statements. Most often, these control-
of-flow statements include a logical expression, called a Boolean expression, to decide when to
skip statements or to decide how many times to repeat statements. In this chapter, we will discuss
the Java statements used to skip a group of statements. The Java statements that are used to repeat
a group of will be discussed in Chapter 5.

BOOLEAN EXPRESSIONS

Boolean (logical) expressions are named after George Boole, an English mathematician who
conceived of a symbolic algebra for logic. Like mathematical algebraic expressions, Boolean ex-
pressions consist of operators and operands. Unlike mathematical expressions, Boolean expres-
sions evaluate to one of two values: true or false. Boolean expressions used in control-of-flow
statements can either be a simple Boolean expression, or a combination of two or more simple
Boolean expressions called compound Boolean expressions.

Chapter 4- Boolean Expressions, Making Decisions, and Disk Input and Output H 139

Simple Boolean Expressions

A simple Boolean expression evaluates to either true or false. In Java, these expressions
consist of a relational or an equality operator surrounded by two operands. Java’s four relational
operators are given at the top of the Table 4.1, and its two equality operators are at the bottom of the
table. The first column in the table gives the name (which implies the meaning) of each operator,
and the second column gives the Java symbols (keystrokes) that represent them. The symbols for
the last four operators in the table are typed as two keystrokes without spaces. The third column
of the table gives examples of simple Boolean expressions involving each of the six operators, all
of which evaluate to true.

Table 4.1
Java's Relational and Equality Operators

Operator Java Symbol Examples that Evaluate to true

: Less than : <

P s
e qual R S e
G equal s e
Equal e e

A common mistake made when coding simple Boolean expressions is to code the
equal to operator as a single equal (=) keystroke, which is interpreted by the transla-
tor as the assignment operator. Think of this operator as "is equal" to (= =).

!
TIP

When one of the four relational operators is used, the two operands can be anything that can
be converted to (interpreted as) a numeric. This includes numeric literals, numeric variables, and
arithmetic expressions, as well as character literals and character variables. When a character lit-
eral or character variable is used, the character (e.g., '2A") is interpreted as an integer (e.g., 65), and
the numeric value is used to evaluate the relational expression. The following code fragments are
syntactically correct, and the third one evaluates to t rue because 'A' and 'C' are interpreted as
65 and 67 (see Appendix C), then the expression is evaluated.

int age = 13;

5 <2 * 21
100 >= age
IAI < ICI

25 <= 2 * (age + 1)

The interpretation of characters in simple Boolean expressions as numeric imposes an ordering
on them called lexicographical or dictionary order, which is the order in which they appear in the
Extended ASCII table (Appendix C).

When the types of the operands used with one of the four relational operators do not match
(e.g., one is a float and one is a double, or one is an integer and the other is a character), one of the
operands is promoted before the expression is evaluated. For example, the following simple Bool-
ean expressions are syntactically correct and evaluate to true:

140 M Programming Fundamentals Using Java

4.521 < 10 // 10 is promoted to the double 10.0
Math.PI >= -2 // -2 is promoted to double -2.0
2 < 'AT // '"A' is promoted to 65

When one of the two equality operators is used in a simple Boolean expression, the choices
for the operands are expanded. Not only can the two operands be anything that can be converted
to a numeric, but they can also be two Boolean operands (literals or variables) or two reference
variables (including the value null). For example:

4.535 I= 21

65 == 'A'

true != false
myName != yourName
name == null

Like the arithmetic operators, the operators in Table 4.1 have an order of precedence associated
with them. The four relational operators have equal precedence, and the two equality operators
have equal precedence. The precedence value of the relational operators is higher than the prece-
dence value of the equality operators. The expression

true == 'C' >= 'A'

is syntactically correct and evaluates to true because first 'C' >= 'A' evaluates to true, and
then true == true evaluates to true. As shown in Appendix E, the arithmetic operators have
higher precedence than the relational and equality operators.

Arithmetic expressions in simple Boolean expressions are evaluated first. In more
complex expressions, the relational operators are evaluated next, followed by the
equality operators, and then the logical operators. The assignment operator is eval-
uated last.

NOTE

E%%¥1 Compound Boolean Expressions

Like simple Boolean expressions, compound Boolean expressions also evaluate to either true
or false. When used in a control-of-flow statement, compound Boolean expressions use the Java
conditional binary logical operators AND and OR to combine the truth values of two or more oper-
ands. Alternately, compound Boolean expressions can use the unary logic operator NOT to reverse
the truth value of a single operand, just as the negation operator reverses the sign of an operand
in a mathematical expression. The operands in compound Boolean expressions must evaluate to
Boolean values (true or false). Most often, these operands are simple Boolean expressions but
could be a Boolean literal or a non-void method invocation that returns a Boolean value.

Table 4.2 gives the three Java logical operators normally used in control-of-flow statements
and the symbols used to represent them. The three operators are shown in decreasing prece-
dence order: the NOT operator has the highest precedence, followed by the AND operator, and the
OR operator has the lowest precedence. As shown in Appendix E, the arithmetic operators and
the relational and equality operators have higher precedence than the logic operators. The Java

Chapter 4- Boolean Expressions, Making Decisions, and Disk Input and Output H 141

symbols for the AND (s&) and OR (| |) operators given in the second column of the table are each
two keystrokes. The keystrokes (||) used in the symbol for the OR operator is located above the
Enter key on the keyboard.

Table 4.2
Java's Logical Operators

Logical Operator Java Symbol Examples that Evaluate to true
b Not ! ! (cpa > ‘X,)
And && 8§<10&& 6=—=2%*3

7<4[8>=5

All of the compound logical expressions shown in the rightmost column of Table 4.2 evaluate
to t rue. To evaluate the truth value of a complex Boolean expression, we must know the meaning
of the conditional logic operators. As previously stated, the meaning of the unary NOT(!) operator
is simply to reverse the truth value of its operand. For example, because 'p' comes before 'x'
in the extended ASCII table, ("p' > 'x') evaluates to false and !('p' > 'x') evaluates to true.
Similarly, !(6 > 10) evaluates to true.

The meaning of the two binary logical operators, AND and OR, is usually conveyed in truth
tables such as the one shown in Table 4.3. The four possible combinations of the truth values of
their two Boolean operands, A and B, are given in the two columns on the left side of the table.
The corresponding values of the AND and OR operators for each of the four possible values of
their operands is given in the two columns on the right side of the table. Summarizing the resulting
values, A ¢s B evaluates to t rue only when A and B are both true, and A || B evaluates to false
only when 2 and B are both false. The compound Boolean expression in the third row of Table
4.2 evaluates to true because one of the operands, 8 >=5, is true.

Table 4.3
Meaning of Java’s Binary Logical Operators

Operand Truth Values Meaning of Operators

A : B : A && B : A || B
s e e
S e
.............. e
.............. e S

Figure 4.1 presents an application that evaluates simple Boolean expressions whose operands
are literals, primitive and reference variables, and a compound Boolean expression. The output
produced by the program is given at the bottom of the figure.

When a compound expression is evaluated, it follows the order of precedence from left to right.
Parentheses can also be used to make the ordering clear or to enforce a certain ordering in the
evaluation. For example, the expression on line 23 might be written as

((11 == 5 || cl < 'A") && (d1 !'= 21.8))

142 B Programming Fundamentals Using Java

to specify the order of evaluation. Evaluating the sub-expressions in a different order might give a
different result.

1 public class BooleanExpressions

2 {

3 public static void main (String[] args)

4 {

5 int il = 5;

6 double dl = 3.53; double d2 = 54.88;

7 char cl1 = 'A'; char c2 ='C';

8 boolean bl = true; boolean b2 = false;

9 String sl = new String("Bob");

10 String s2 = new String("Bob");

11

12 System.out.println (il < 5);

13 System.out.println(dl > d2);

14

15 System.out.println(il >= dl); // integer il promoted

16 System.out.println(dl <= 3); // integer 3 is promoted
17

18 System.out.println(cl < c2); // lexicographical order used
19 System.out.println (10 > c2); // c2 promoted to numeric 67
20

21 System.out.println (bl == b2) ;

22

23 System.out.println(11 == 5 || cl < 'A' && dl != 21.8);
24

25 System.out.println (sl == s2); // compares contents of sl and s2
26 }

27}

Output

false

false

true

false

true

false

false

true

false

Figure 4.1

The application BooleanExpressions and the output it produces.

Lines 5-8 declare and initialize integer, double, character, and Boolean variables. These vari-
ables are used in simple Boolean expressions that are evaluated and output on lines 15-21. The
types of the operands in the expressions on lines 15, 16, and 19 do not match, so promotion is
used before these expressions are evaluated. The contents of the character variables on line 18 are

Chapter 4- Boolean Expressions, Making Decisions, and Disk Input and Output H 143

interpreted as numerics before the Boolean expression is evaluated. Because 65 ('a") is less than
67 ('C"), the fifth output is true.

Line 23 contains an example of a compound Boolean expression containing two conditional
logical operators OR and AND. Although the order of the operations in this expression is not im-
portant, the AND operation, having higher precedence, is evaluated first. This reduces the expres-
sion to

il == || false
which evaluates to true (the next to the last output in Figure 4.1).

The operands in the Boolean expression output on line 25 are the two string variables declared
on lines 9 and 10. Both strings are initialized to "Bob" by the String class’s one-parameter con-
structor, yet the comparison for equality on line 25 produces an output of false (the last output).
This is because the equality operators always compare the contents of the reference variables rather
than the contents of the objects they refer to. Because the objects s1 and s2 are stored in different
locations, the contents of s1 and s2 are not equal, and the Boolean expression on line 25 evaluates
to false. Most often, to compare the contents of two objects, we have to add a method to the
object’s class that performs the comparison and then returns a Boolean value.

Comparing String Objects

In Chapter 7, we will discuss techniques for comparing the contents of any two objects. Strings
are used so often in programs that the St ring class provides several methods for comparing them.
One of these is the equals method. It is a non-static method that returns a Boolean value. The
returned value is t rue when the contents of the string object sent to it is the same as the contents of
the string object that invoked it. The comparison of the two strings is case sensitive. The following
code fragment demonstrates the use of the method. The first three invocations to the method return
true, and the last two return false.

String namel = new String("Bob");
String name2 = new String("Bob");
String name3 = "BOB";
String name4 = "Mary";

)7
)7
|

System.out.println (namel.equals (name?2)
System.out.println (namel.equals ("Bob")
System.out.println (namel.equals ("Bob") | namel.equals ("Mary");
(y); // false, case mismatch
()

System.out.println (namel.equals (name3)) ;
); // false, different names

System.out.println (namel.equals (name4

o~~~ —

The third invocation demonstrates that a method that returns a Boolean value can be used as an
operand in a compound Boolean expression.

The String class contains three other non-static methods for comparing strings. Their names
are: equalsIgnoreCase, compareTo, and the compareToIgnoreCase. Like the equals
method, the equalsIgnoreCase method returns a Boolean value, which is t rue when the con-
tents of the string object sent to it is the same as the contents of the string object that invoked it.
Unlike the equals method, case sensitivity is ignored when making the comparison.

144 B Programming Fundamentals Using Java

The string class’s compareTo and compareToIgnoreCase methods determine the relative
lexicographical order of two String objects. These non-static methods return an integer whose
value reflects the lexicographical order of the string that invoked it relative to the string sent to it
as an argument. The compareTo method considers case sensitivity, and the compareToIgnore-
Case ignores case sensitivity. The code fragment below compares the lexicographical order two
strings s1 and s2:

int orderl = sl.compareTo(s2);
int order2 = s2.compareTolIgnoreCase(s2);

The values returned to the variables orderl and order2 would be:

* negative when s1 comes before s2 in lexicographical order
* positive when s1 comes after s2 in lexicographical order
» zero when s1 and s2 are equal in lexicographical order

Although the compareTo and the CompareToIgnoreCase methods can be used to determine
when two strings are equal, it is good coding practice to use the equals and equalsIgnoreCase
methods when testing two strings for eq uality because it makes our code more readable.

THE IF STATEMENT

The if statement is one of two Java control-of-flow statements that can be used to alter the
default sequential execution of a program based on the truth value of a Boolean expression. The
other statement is the i f-else statement, which will be discussed in Section 4.4.

The syntax of the if statement begins with the keyword if, followed by a Boolean expres-
sion inside parentheses, followed by a statement or group of statements to be skipped or executed.
When there is a group of statements, they must be coded as a statement block; that is, they must be
enclosed in braces. The group of statements will be executed when the Boolean condition is t rue,
and skipped when the Boolean expression is false. Thus, the syntax of the statement is:

One Statement Syntax Multiple Statement Syntax
if (a Boolean expression) if (a Boolean expression)

a Statement to be skipped { Statementl to be skipped or executed
or executed :
Statementn to be skipped or executed

}

Even when there is just one statement, it is better coding practice to enclose the one statement in
braces, which makes the statement more readable and less prone to errors. For example, if during the
development of the program we were to decide to add a second statement and neglected to add the
open and close braces around the two statements, the second statement would not be considered part
of the i f statement. It would always execute. The two coding examples given below are not equivalent:

if (a false Boolean expression) if (a false Boolean expression)
statementl { statementl
statement?2 statement?2

Chapter 4- Boolean Expressions, Making Decisions, and Disk Input and Output H 145

The code on the left always executes statement2, even though the indentation seems to im-
ply that its execution is dependent on the truth value of the Boolean expression. A good habit to
acquire when writing an if statement is to write this code fragment first:

if ()
{

}

and then fill in the Boolean condition and the statements to be skipped when the condition is
false. Most often, we see the if statement coded as:

if (a Boolean expression)
{

//One or more statements possibly to be skipped

The meaning, or semantics, and the execution path of the i f statement is illustrated in Figure 4.2

l

Statements preceding
the if statement

Boolean
expression

Code block of the i £
statement

Statements after the
if statement

Figure 4.2
The meaning and execution path of the if statement.

146 M Programming Fundamentals Using Java

We conclude this section with a discussion of a use of the if statement, making game objects
disappear, and then present a game programming application that demonstrates several uses of the
if statement.

Using the if Statement

In many games, the game’s objects disappear based on events that occur as the game pro-
gresses. When Pac-Man collides with a food pellet, the pellet disappears, or when Frogger is hit
by a car, she disappears. Often, after the event occurs the object not only becomes invisible, but it
is eliminated from the game. Graphic objects can be made to disappear by either drawing them in
the color of the program’s window (or in our case the game board), or by not drawing them at all.

To convey the visibility status of a game piece object, e.g., a food pellet, a Boolean data mem-
ber is added to the object’s class. When an event occurs that changes the status (for example, when
food pellet p1 is eaten by Pac-Man), the truth value of the data member is reversed by the code
that detected the event. The draw call back method can use the truth value of this data member in
an 1if statement’s Boolean condition to decide whether or not to draw the object. If a Boolean data
member named eaten, initialized to false, was added to the class of Pac-Man’s pellets, and the
data member was set to true when the pellet was eaten, then adding the following code fragment
to the draw call back method would make pellet p1 disappear after the pellet was is eaten.

if(pl.getEaten() == false)
{

pl.show(g) ;
}

If the variable count was being used to keep track of the game’s time, and pellet p1 was only
to appear after the game had been played for 20 seconds, then a compound Boolean expression
would be used in the above code fragment.

if(pl.getEaten() == false && count >= 20)

{
pl.show(g) ;
}

In this case the pellet, p1, would appear 20 seconds into the game, and it would disappear when an
event changes that pellet’s data member eaten to true.

In Section 2.9.1 (Figure 2.12), the counting algorithm was used to keep track of a game’s time.
Figure 4.3 presents the code discussed in that section with three if statements added to it: two to
the draw call back method (lines 17-31) and one to the t imerl method (lines 33—40). In addition,
a BoxedSnowman object s1, whose class is given Figure 4.4, has been added to the application
(line 10). The graphical output produced by the program is given in Figure 4.5.

When the application shown in Figure 4.3 is launched, the number of elapsed seconds is dis-
played on the game board starting from zero (top left side of Figure 4.5). To begin the game the
start button is clicked, which causes the elapsed time to be updated every second. Five seconds into
the game, the snowman s1 appears at the center of the game board (top right side of Figure 4.5).
After ten seconds, the game ends. The elapsed time remains at ten seconds, a message appears on

Chapter 4- Boolean Expressions, Making Decisions, and Disk Input and Output I 147

the game board indicating that the game is over, and the snowman disappears from the game board
(bottom portion of Figure 4.5).

Line 20 of the application displays the number of elapsed seconds, which is stored in the class
variable count. This variable is incremented on line 35 of the timer1 call back method, which (by
default) executes once a second. Ten seconds into the game, the Boolean condition of the i f state-
ment that begins on line 36 becomes true, and line 38 invokes the game environment’s stop-
Timer method to stop timer 1 from ticking. As described in Appendix B, this method is passed
one argument, which specifies the timer number (1, 2, or 3) that is to be stopped. It is a nonstatic
method, invoked on the program’s GameBoard object gb, which was declared on line 8.

The Boolean data member visible has been declared on line 9 of the BoxedSnowman class
(Figure 4.4) to store the visibility status of a snowman, and the class contains a set and get
method (lines 51-59) to allow client code to access this private data member. To make the snow-
man appear after five seconds has elapsed, snowman s1’s visibility status is fetched by a call to the
getVisible method on line 21 of the application, and the returned value is used in the compound
Boolean expression to decide when to show the snowman on the game board. The snowman will
be shown when its visible data member is true and the game’s time is five seconds or greater.
Since visible is initialized to on line 9 of the BoxedSnowman class to true, the snowman is
displayed on the game board five seconds into the game.

To make the snowman disappear after ten seconds, the if statement inside the timerl call
back method (lines 33—41) sets snowman s1's visible property to false (line 36) when count
equals ten. This causes the first term in the Boolean expression on line 21 to become false, and
line 23, which displays the snowman on the game board, does not execute.

The if statement that begins on line 26 displays the game ending messages when the game
time reaches ten seconds.

1 import edu.sjcny.gpvl.*;

2 import java.awt.Graphics;

3 import java.awt.Font;

4

5 public class IfStatement extends DrawableAdapter

6 {

7 static IfStatement ga = new IfStatement();

8 static GameBoard gb = new GameBoard(ga, "The if Statement");
9 static int count = 0;

10 static BoxedSnowman sl = new BoxedSnowman (250, 215, Color.BLACK):;
11

12 public static void main(String[] args)

13 {

14 showGameBoard (gb) ;

15 }

16

17 public void draw (Graphics g) // the draw call back method
18 {

19 g.setFont (new Font ("Arial", Font.BOLD, 18));

148 @ Programming Fundamentals Using Java

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

g.drawString ("Your game time is: " + count, 10, 50);
if (sl.getVisible () == true && count >= 5)
{

sl.show(g);

if (count == 10)

{
g.drawString ("Game Over", 10, 70);
g.drawString ("Have a Good Day", 10, 90);

public void timerl ()
{
count = count + 1;
if (count == 10)
{
gb.stopTimer (1) ;
sl.setVisible (false);

Figure 4.3
The application IfStatement.

O ~J o U w N

import java.awtGraphics;
import java.awt.Color;

public class BoxedSnowman
{
private int x = 8;
private int y = 30;
private Color hatColor = Color.BLACK;
private boolean visible = true;

public BoxedSnowman (int intialX, int intialY, Color hatColor)
{ x = intialX;

y = intialY;

this.hatColor = hatColor;

public void show(Graphics g) //g is the game board object
{

g.setColor (hatColor);

g.fillRect (x + 15, y, 10, 15); //hat

g.fillRect(x + 10, y + 15, 20, 2); //brim

Chapter 4- Boolean Expressions, Making Decisions, and Disk Input and Output I 149

22 g.setColor (Color.WHITE) ;

23 g.filloval(x + 10, y + 17, 20, 20); // head
24 g.filloval(x, y + 37, 40, 40); //body
25 g.setColor (Color.RED) ;

26 g.filloval(x + 19, y + 53, 4, 4); //button
27 g.setColor (Color.BLACK) ;

28 g.drawRect (x, vy, 40, 77); //inscribing rectangle
29 }

30

31 public int getX()

32 {

33 return x;

34 }

35

36 public void setX (int newX)

37 {

38 X = newX;

39 }

40

41 public int getY ()

42 {

43 return y;

44 }

45

46 public void setY (int newY)

47 {

48 y = newyY;

49 }

50

51 public boolean getVisible ()

52 {

53 return visible;

54 }

55

56 public void setVisible (boolean newVisible)
57 {

58 visible = newVisible;

59 }

60 }

Figure 4.4

The BoxedSnowman class.

150 M Programming Fundamentals Using Java

Figure 4.5
The output produced by the application IfStatement.

EXH THE IF-ELSE STATEMENT

Like the if statement, the i f-else statement is a Java control-of-flow statement that can be
used to alter the default sequential execution path of a program by skipping statements based on
the truth value of a Boolean expression. This statement can be thought of as having two clauses:
an if clause and an else clause. Each clause has a statement block associated with it. One, and
only one, of these blocks will execute. When the Boolean condition is true, the statement block
associated with the if clause executes. When it is false, the statement block associated with the
else clause executes. The syntax of the i f-else statement is:

Chapter 4- Boolean Expressions, Making Decisions, and Disk Input and Output H 151

if (a Boolean expression)

{

// One or more if clause statements

}

else

{

// One or more else clause statements

and its meaning and execution path is given in Figure 4.6

|

Statements preceding the

if-else statement

Boolean
expression

false true

A 4 v

Code block of Code block of
the else clause the i £ clause

N

Statements after the
else clause

Figure 4.6
The meaning and execution path of the 1f-else statement.

Because the statements in the code block that follow the else clause are executed when the
if statement’s Boolean expression is false, the else clause does not contain its own Boolean
expression. The following code fragment determines what weight jacket to wear based on the tem-
perature stored in the memory cell temperature:

if (temperature <= 45)
{ System.out.println ("It is a frigid " + temperature + " degrees,");

152 @ Programming Fundamentals Using Java

System.out.println ("Wear your heavy Jjacket.");

}

else

{ System.out.println("It is rather mild " + temperature + " degrees,");
System.out.println ("Wear your light weight jacket");

}

The if-else statement is used to choose one of two statement blocks to execute: the first
when the if statement’s Boolean condition is t rue and the second when it is false. By coding
just one statement into the else clause’s statement block that is another i f-else statement, we
can choose between one of three mutually exclusive alternatives, as illustrated in the following
coding template:

if (Boolean expression 1)

// One or more if clause statements in code block 1
else if (Boolean expression 2)

// One or more if clause statements in code block 2

else

// One or more else clause statements in code block 3

}

As indicated by the second comment in the template, the second set of open and close paren-
theses defines the code block of the second i f statement. Because the second i f statement is the
only statement in the first else clause’s code block, not coding it inside a set of brackets improves
readability. Figure 4.7 illustrates the meaning and execution path of the code template.

This coding process can be progressively repeated when there are more than three mutually
exclusive alternatives. The following code template illustrates the use of this concept to choose one
of four mutually exclusive Code blocks to execute:

if (Boolean expression 1)
{

// One or more 1if clause statements in code block 1

}
else if (Boolean expression 2)
{
// One or more if clause statements in code block 2
}
else if (Boolean expression 3)
{

// One or more if clause statements in code block 3

}

else

Chapter 4- Boolean Expressions, Making Decisions, and Disk Input and Output H 153

// One or more else clause statements in code block 4

}
To improve the readability, it is good programming practice to indent as shown above and to

keep the first line of the i f statements on the same line as the e1lse clauses that proceeded them.

Statements preceding
the decision
statement

1st i £ Statement’s
Boolean
expression

false true

2n i £ Statement’s
Boolean
expression

Statements
in the
1stcode block

Statements in the Statements in the
3" (else) code block 2nd code block

!

Statements after the decision statements

Figure 4.7
The meaning and execution path of an i £-else statement whose else clause statementis an i £-else Statement.

As an example, the following code fragment determines which one of four colors, red, green,

blue, or white, was contained in the St ring object carColor.

if (carColor.equals ("Red"))

{

System.out.println("the car color is Red");

}

else if (carColor.equals ("Green"))

{

System.out.println("the car color is Green");

}

else if(carColor.equals ("Blue"))

{

System.out.println("the car color is Blue");

154 B Programming Fundamentals Using Java

}

else

{

System.out.println ("the car color is White");

}

These decision statements are executed in the sequence shown in Figure 4.7. The Boolean ex-
pressions are evaluated in the order in which they are coded. Only one of the statement blocks will
execute, which will be the statement block associated with the first t rue Boolean condition. When
none of the Boolean conditions are true, the statement block associated with the last else clause
executes. The last e1se clause and its associated statement block are optional. When it is included,
one and only one statement block in the construct always executes.

is carColor
“Red”?

false true

is carColor
“Green”?

output
A 4 “Red”

output

is carColor «
Green’

“Blue”?

output output
“White” “Blue”

Figure 4.8
Determining the color contain in the String object carColor.

We conclude this section with a discussion of a common use of the i f-else statement (de-
tecting collisions between game pieces) and then present a game-programming application that
utilizes this common game event.

Detecting Collisions: Use of the 1f and else-if Statements

Most games involve some sort of interaction between the game-piece objects. For example, the
ball in a Pong game rebounds off a paddle, the frog in a Frogger game is hit by a truck, or a mete-
orite collides with a space craft. All of these interactions are referred to as collisions, and usually

Chapter 4- Boolean Expressions, Making Decisions, and Disk Input and Output M 155

the score or the length of the game is influenced by these collisions. The Boolean conditions in an
if-else construct are used to detect the occurrence of collisions, and the code blocks inside the
construct are used to take the appropriate action (e.g., change the score or end the game) when a
collision occurs.

There are several algorithms used to detect collisions, all of which involve the use of decisions
statements. In one of the simplest algorithms, we imagine a rectangle enclosing each game piece.
That is, the entire game piece is inscribed inside a rectangle, as shown in Figure 4.9, and the loca-
tion of the upper-left corner of the rectangle is the game piece’s (x, y) location. Then, we consider
two objects to be in a collided state when their rectangles touch or overlap.

For example, consider the two snowmen s1 and s2 depicted in Figure 4.9a that are 40 pixels
wide and 77 pixels high. If snowman s2 were moving to the left, a collision with snowman s1
would occur when the left side of s2’s rectangle was at the same x location as the right side of s1’s
rectangle. This situation is depicted in Figure 4.9b. The following Boolean expression, which is
true when this event occurs, can be used to detect this collision state.

s2.getX() == sl.getX + 40; // The snowmen are 40 pixels wide

X, y) ™, «—— 40 —»
>

location of
snowman s1

7

N N

(@) No collision (b) Collision

o

N

By
By

B

N N

(c) No collision (d) Pseudo collision

Figure 4.9
Noncollided and collided game pieces.

156 M Programming Fundamentals Using Java

Although this collision detection scheme is simple, it is not always accurate. When the rect-
angles of the two snowmen depicted in Figure 4.9b are at the same x location, the bodies of the two
snowmen are touching each other. This is not the case for the two snowmen, s3 and s4, shown in
Figure 4.9c. If snowman s4 were moving to the left when the left side of its rectangle is at the same
x location as the right side of s3’s rectangle, as shown in Figure 4.9d, the two snowmen would not
be in a collided state. There would still be a small amount of separation between the left side of s4’s
body and the right side of s3’s head.

Fortunately, in most cases, the game’s player would not notice the separation and would visu-
ally confirm this pseudo-collision as an actual collision. If we are willing to accept this limitation
of our collision-detection scheme, we can extend this simple scheme to detect a collision between
the two snowmen as they approach each other from any direction.

Figure 4.10 depicts snowman s2 in the following four positions relative to snowman s1:

* Position 1: s2 is to the right of sl
* Position 2: s2 is to the left of s1

When snowman s2 is in any of these positions relative to snowman s1, then the two snowmen
cannot be in a collided state. In fact, s2 could be in two of these positions simultaneously, e.g., to
the right and above of snowman s1, which would also be a non-collided state.

Each of the four positions depicted in Figure 4.10 can be easily detected with a simple Boolean
expression. Assuming the snowman is inscribed inside a rectangle that is w pixels wide and h
pixels high, the right column of Table 4.4 gives the Boolean conditions that evaluate to t rue when
the snowmen are in each of the four positions.

Table 4.4
Boolean Expressions to Detect the Four Non-collided Positions in Figure 4.8

Position of Snowman s2 Relative to s1 Boolean Expression to Detect the Position

i 1. s2 is to the right of s1 i s2.getX() > sl.getX() + w

These four Boolean expressions can be used in i f-else statements to determine when the two
snowmen have not collided; otherwise they have collided.

if (s2.getX () > sl.getX() + w) // s2 right of sl

{ System.out.println("no collision");

;lse if (s2.getX () + w < sl.getX()) // s2 left of sl
{ System.out.println("no collision");

;lse if (s2.getY() > sl.get¥() + h) // s2 below sl

{ System.out.println("no collision");

}

Chapter 4- Boolean Expressions, Making Decisions, and Disk Input and Output W 157

else if(s2.getY() + h < sl.getY()) // s2 above sl
{
System.out.println("no collision");
}
else // collision
{

System.out.println("collision");

Alternately, the Boolean conditions could be combined to form a compound Boolean condition
that would evaluate to true for a non-collision.

(s2.getX() > sl.getX() + w || s2.getX() + w < sl.getX() ||
s2.getY¥() > sl.getY() + h || s2.get¥() + h < sl.get¥())
\\\\Si///
(%, Position 4, s2 above s1
Iocahon of
snowman, s2
h
\\\\ \\\\Si/// \\\\Si///
Position 2, s2 left of s1 Position 2, s2 right of s1
\\\\Si///

Figure 4.10
The non-collided positions of snowman s2 relative to snowman s1.

158 M Programming Fundamentals Using Java

Using this compound Boolean expression, the series of i f-else statements to detect a colli-
sion would become

s2.getX () + w < sl.getX() ||
s2.getY() + h < sl.getY())

if(s2.getX() > sl.getX()

+
s2.getY¥() > sl.get¥ () +

System.out.println("no collision");

else //collision

System.out.println("collision");

}

The truth value of the Boolean condition could also be reversed, using Java’s not (!) logical
operator, and the if clause of the if-else statement would detect a collision between the two

snowmen.

if(! (s2.getX() > sl.getX() + w || s2.getX() + w < sl.getX() ||
s2.getY¥() > sl.get¥Y() + h s2.get¥() + h < sl.get¥()))

System.out.println("collision");

}

else // no collision

{

System.out.println("no collision");

}

The following code fragment uses an expanded version this i f-else statement’s Boolean ex-
pression to detect when a collision occurs and snowman s2 is in a visible state. When this occurs,
the game’s score (the variable score) is increased by 1, and snowman s1’s visible property is set

to false.
if(!(s2.getX() > sl.getX() + w || s2.getX() + w < sl.getX() ||
s2.get¥() > sl.getY() + h || s2.get¥() + h < sl.getY¥Y()) &&
sl.getVisible == true) // collision and sl is visible
{
score = score + 1;

sl.setVisible (false) ;
}

An additional term has been added at the end of the Boolean expression. Because it is preceded
by the s& (AND) operator, the expanded expression is only true when the two snowmen collide
and snowman s1 is visible. This prevents the score from increasing when a game object (i.e., s2)
collides with an invisible game object that is no longer part of the game (i.e., s1).

EXA NESTED IF STATEMENTS

Just as the else clause of an if-else statement can contain an if statement, the statement
block of an if statement can also contain other if statements. This method of coding is referred

Chapter 4- Boolean Expressions, Making Decisions, and Disk Input and Output H 159

to as nested i £ statements, because the second i f statement can be thought of as an egg inside the
nest formed by the first i f statement’s code block.

The following code fragment contains a Boolean variable raining and an integer variable
temperature, and uses a nested i f statement to determine if a sweater and a raincoat should be
carried on a cold day when it is raining.

if (raining == true)
{
System.out.println ("Take your umbrella, ");
if (temperature <= 50) // begins a nested if-else statement
{
System.out.println("take a sweater, ");"
System.out.println("and your raincoat.");

}

An if-else statement can also be nested inside an i f statement as demonstrated in the below
code fragment:

if (raining == true)
{
System.out.println ("Take your umbrella, ");
if (temperature <= 50) // begins a nested if statement
{
System.out.println ("take a sweater, ");"
System.out.println("and your raincoat.");
}
else // temperature is > 50 degrees
{

System.out.println("and your raincoat");

}

The else clause in an i f statement is always paired with the i £ statement whose code block
ends just before the else clause. The indentation used in the code fragment above is considered
good programming practice because it implies this pairing: the else clause is part of the if state-
ment that checks the temperature. This code fragment is equivalent to the code fragment below,
which is considered to be poor programming style because its indentation erroneously implies that
the else clause is part of the i f statement that determines if it is raining.

if (raining == true)

{

System.out.println ("Take your umbrella, ");
if (temperature < 50) // begins a nested if statement

{

System.out.println("and carry your raincoat too");
} // end of the inner if statement
else

160 M Programming Fundamentals Using Java

System.out.println ("but not your raincoat");

}
{ // end of the outer if statement

The following code segment is another example of the use of a nested if statement. It is an
alternate way of determining when snowmen s1 and s2 have collided and s1 is visible.

if(! (s2.getX() > sl.getX() + w || s2.getX() + w < sl.getX() ||
s2.getY() > sl.getY() + h || s2.getY() + h < sl.getY()))//collision
{
if(sl.getVisible == true) // and sl is visible
{
score = score + 1;

sl.setVisible (false) ;

EXA THE SWITCH STATEMENT

The switch statement is another control-of-flow statement available in Java. It is not as ver-
satile as the if and if-else statements in that the decisions these statements make cannot be
based on an explicitly written simple or compound Boolean expression. The syntax of the switch
statement limits the operator used in its decision making to equality. In addition, the equality must
be between:

* two String objects

* two byte, short, char, or int primitive-data types (or classes that "wrap" these data
types), or

* two instances of a previously defined enumerated type (which will be discussed in
Chapter 7)

Alluses of the switch statement can be coded using an i f-else statement, but not vice versa.
That being said, there are times when the use of the switch statement makes our programs more
readable and therefore easier to understand, modify, and maintain. It can only be used when the de-
cision as to which statements to execute and which statements to skip is based on a choice selected
from a group, or menu, of finite choices. When this is the case, the use of the switch statement is
considered to be good programming practice.

The syntax of the switch statement is depicted in Figure 4.11. The indentation used in the
figure also reflects good programming practice.

Chapter 4- Boolean Expressions, Making Decisions, and Disk Input and Output H 161

switch (choiceExpression)
{

case choiceValuel:

// statement block for choiceValuel
break;

case choiceValue?2:

// statement block for choicevValue?2
break;

case choiceValueN:

// statement block for choiceValueN
break;

}

default:

{
// default statements

}

Figure 4.11
The syntax of the switch statement.

As shown in the figure, the first line of the statement begins with the keyword switch, and
the remaining lines of the statement consist of case clauses and a default clause enclosed in a set
of brackets. When typing the statement, it is best to begin by typing the following required syntax
and then filling in the remainder of the statement’s first line and the case and default clauses
that are appropriate to the particular use of the statement.

switch()

{

}

Referring to Figure 4.11, the three most common (and difficult to discover) syntax errors made
when coding a switch statement are:
1. neglecting to code the open and close parentheses after the keyword switch
2. coding a semicolon after the close parenthesis on the first line of the statement
3. neglecting to code the colon (not semicolon) after the choicevaluel, or choicevalue?...
or after the keyword default

The entity enclosed in the parentheses after the keyword switch is referred to as the choice
expression. The choice expression must be a variable whose type is one of the allowable types pre-

162 M Programming Fundamentals Using Java

viously mentioned (e.g., a String object, an integer variable, etc.) or it can be an expression that
evaluates to one of these types.

switch (choice) if (choice == choiceValuel)
{ {
case choiceValuel: {
{ // statements for choiceValuel
// statements for choiceValuel
break; }
}
else if (choice == choiceValue?2)
case choiceValue?2:
{ {
// statements for choiceValue?2 // statements for choiceValue?2
break;
} }
case choiceValueN: else if (choice == choiceValueN)
{ {
// statements for choiceValueN // statements for choiceValueN
break; }
}
default else
{ {
// default statements // default statements
} }
} }
(@) (b)

Figure 4.12
Semantically equivalent switch and if-else statements.

When a switch statement begins execution, the value of the choice expression is determined
and then the statement block of the first case clause whose choice value is equal to that value is
executed. If the choice expression is not equal to one of the choice values, the default clause’s state-
ment block executes. Figure 4.12 illustrates the meaning and execution path of a switch statement
(Figure 4.12a) by comparing it with an equivalent i f-e1se statement (Figure 4.12b).

As an example, the following code fragment determines which one of four colors, red, green,
blue, or white, is contained in the String object carColor:

switch (carColor)
{
case "red":
{
System.out.println("the car color is red");
break;
}

case "green":

Chapter 4- Boolean Expressions, Making Decisions, and Disk Input and Output H 163

System.out.println ("the car color is green");

break;

}

case "blue":

{

System.out.println ("the car color is blue");

break;
}
default:
{

System.out.println ("the car color is white");

}

The following code fragment illustrates the use of an arithmetic expression as the choice ex-

pression in a switch statement:

int i;
String s = JOptionPane.showInputDialog ("enter an
i = Integer.parselnt(i);

switch (i * 2)
{
case 10:
{
System.out.println ("two times the number is
break;
}
case 20:
{
System.out.println ("two times the number is
break;
}
default:
{

System.out.println ("two times the number is

}

integer");

10M);

20M");

not 10 or 20");

There is no limit to the number of case clauses that can be used in a switch statement. The
default clause is optional and, if used, must be coded as the last clause in the statement. The
brackets surrounding the statements in the case and default clauses are not necessary and are

only used to improve readability.

Several cases can be assigned to the same statement block using the syntax

case 2: case 5: case 7:

{
// statement block for all three cases
break;

164 M Programming Fundamentals Using Java

The above statement block would execute when the choice expression evaluates to 2, 5, or 7.

The break statement at the end of the code block of each case is also optional. However,
unlike the optional bracket pairs, its presence has a major impact on the execution path of the con-
struct. A break statement is a control-of-flow statement that does not use a logical expression to
decide when to execute or skip statements. Rather, when a break statement is executed inside a
switch statement, it always ends the execution of the switch statement in which it is coded. Basi-
cally, it means: break out of this statement. It can also be used inside i f or if-else statements to
end their execution.

When a break statement inside a control-of-flow statement is executed, the next statement to
execute is the one that immediately follows the control-of-flow statement. When executed inside
a switch statement, the statement blocks in all of the subsequent case clauses and the statement
block in the default clause are skipped, and the next statement to execute is the one that follows
the close brace at the end of the switch statement. (That is, the close brace that is paired with the
open brace after the keyword switch.)

When the break statement is not coded at the end of a case clause, after the statements in that
clause execute, the statements in all subsequent case clauses execute until a break statement is
encountered. If a break statement is not encountered, the default clause also executes. Because
most times the choices coded into the switch construct are mutually exclusive, a break statement
is usually coded as the last statement in each case clause.

Figure 4.13 shows a game application that uses the switch and break statements to change
the position of a snowman on a game board, uses the if and if-else statements to determine
the game’s score, make a second snowman disappear and then reappear at a new location, and to
determine when the game is over.

When the application is launched, two snowmen, one wearing a black hat and the other wear-
ing a green hat, appear on the game board below the game’s score and remaining time (Figure
4.14a). The game begins when the player clicks the Start button on the game board. The objective of
the game is to make the two snowmen collide as many times as possible before time runs out, using
the keyboard cursor control keys to move the black-hat snowman. Each time they collide, a point is
awarded and the green-hat snowman disappears. It reappears at a new location after the black-hat
snowman has been moved to a location such that the two snowmen are no longer in a collision state.

The game’s snowmen, s1 and s2, are instances of the BoxedSnowman class (Figure 4.4). They
are created on lines 9 and 10 of the application shown in Figure 4.13 using a three parameter con-
structor to specify the snowmen’s position and hat color: s1 green, s2 black. Line 29 of the draw
call back method outputs the remaining time, and line 60 outputs the player’s score just before the
draw method ends.

Lines 54-58 invokes the BoxedSnowman class’s show method to draw the snowmen on the
game board at their current (X, y) locations. The if statement that beings on line 55 checks the
visibility status of snowman s1 to decide if it should be drawn (line 57). The initial value of a
BoxedSnowman’s visible property is true (Figure 4.4, line 9), so when the game is launched, it
appears on the game board.

Chapter 4- Boolean Expressions, Making Decisions, and Disk Input and Output I 165

O J oy U1 W

B D D D D D D D DWW W W W W W W W wWwNhDNDNDNDNDNDNDMNDMNMNNNRERRRRRRERERERERE O
O 0O Jo U WNE OWOOWwW-JoUud WNhNE O WOWwW-JoUu & wWNhE O WwWOow-Joyu bdwdhkEk o

import edu.sjcny.gpvl.*;
import java.awt.*;
//Use of decision statements

public class DecisionsControlOfFlow extends DrawableAdapter

{
static DecisionsControlOfFlow ge = new DecisionsControlOfFlow() ;
static GameBoard gb = new GameBoard(ge, "Control Of Flow");
static BoxedSnowman sl = new BoxedSnowman (300, 200, Color.GREEN) ;
static BoxedSnowman s2 = new BoxedSnowman (30, 100, Color.BLACK);
static int score = 0;
static int count = 10;

public static void main (String[] args)
{
showGameBoard (gb) ;

public void draw(Graphics g) //call back method
{

int w = 40;

int h = 77;

int s1X, slY, s2X, s2Y, temp;

slX = sl.getX(); slY = sl.get¥();

s2X s2.getX(); s2Y s2.get¥ () ;

g.setColor (Color.BLACK) ;

g.setFont (new Font ("Arial", Font.BOLD, 18));
g.drawString ("Time remaining: " + count, 260, 50);

if (count == 0) //game over
{
g.setColor (Color.BLACK) ;
g.drawString ("Game Over", 205, 70);
g.drawString ("Have a Good Day", 175, 90);
}

else if(! (82X > s1X + w || s2X + w < slX || s2Y > slY + h ||
s2Y + h < slY) && sl.getVisible() == true) // collision
{
score = score + 1;

sl.setVisible (false);
}
else if(s2X > slX + w || s2X 4+ w < sl1X || s2Y > slY + h ||
s2Y + h < slY) // no collision

if(sl.getVisible () == false) // not visible
{ temp = sl.getX();

sl.setX(sl.get¥());

sl.setY (temp);

166 M Programming Fundamentals Using Java

50 sl.setVisible (true);
51 }

52 }

53

54 s2.show (g) ;

55 if (sl.getVisible () == true)
56 {

57 sl.show(g);

58 }

59 g.setColor (Color.BLACK) ;

60 g.drawString ("Score: " + score, 150, 50);
61 }

62

63 public void keyStruck (char key) // call back method
64 {

65 int newX, newY;

66

67 switch (key)

68 {

69 case 'L':

70 {

71 newX = s2.getX() - 2;
72 s2.setX (newX) ;

73 break;

74 }

75 case 'R':

76 {

77 newX = s2.getX() + 2;
78 s2.setX (newX) ;

79 break;

80 }

81 case 'U':

82 {

83 newY = s2.getY () - 2;
84 s2.setY (newY) ;

85 break;

86 }

87 case 'D':

88 {

89 newY = s2.getY() + 2;
90 s2.setY (newY) ;

91 }

92 } // end of switch statement
93 }

94 public void timerl() // call back method
95 {

96 count = count - 1;

97 if (count == 0)

Chapter 4- Boolean Expressions, Making Decisions, and Disk Input and Output H 167

98 {

99 gb.stopTimer (1) ;
100 }

101 }

102 }

Figure 4.13
The DecisionsControlO£fF1low application: A decision statement case study.

The use of a switch statement is illustrated on lines 67-92. In this case, the switch statement
is used to determine which of the four cursor-control keyboard keys was struck to move the snow-
man s2 two pixels from its current location. The statement is coded inside the game environment’s
call back method keysStruck (line 63), which is invoked by the game environment every time a
keyboard key is struck. The method has one parameter named key whose type is char, and the
game environment passes a character, the key that was struck, into it. After keyStruck completes
its execution, the game environment invokes the draw call back method.

The parameter key on line 63 is used as the switch statement’s choice expression on line 67.
When the keyboard left, right, up, or down cursor-control keys are struck, they generate the char-
acters 'L', 'R', 'U', or 'D', respectively. These characters are used as the switch statement’s cases
on lines 69, 75, 81, and 87 to decide in which direction to move snowman s2.

When a key on the keyboard is held down, it transmits characters 20 times a second
just as if the key was being pressed and released 20 times a second. For this reason,
to control the motion of game pieces, key strokes are preferred over button clicks.

!
TIP

Figure 4.14b shows the game board three seconds after the Start button was clicked and the
right and down cursor keys were used to move snowman s2 adjacent to snowman s1. One more
right cursor keystroke will cause a collision.

Line 31 begins an i f-else statement that contains a nested i f-else statement (line 37) and
two nested 1if statements (lines 43 and 46). The keyword else that appears on lines 37 and 43 are
part of the i f-else statements that begin on lines 31 and 37, respectively. Line 31 decides if the
game is over, and when it is, it announces it to the game’s player.

The if-else statement that begins on line 37 decides if the two snowmen have collided when
snowman s2 is visible. Its Boolean expression, as discussed at the end of Section 4.4, is true when
it is not the case that snowman s2 is to the right, to the left, or below or above snowman s1, and
s1 is visible. When this is the case, the if clause’s code block increases the player’s score by one
point using the counting algorithm (line 40) and sets the visible property of snowman s1 to false
(line 41). Setting s1’s visible property to false causes it to disappear from the game board
(Figure 4.14c) because the Boolean condition in the if statement that draws s1 (line 55) is now
false. The setting of s1’s visible property to false also prevents the awarding of points until s1
is again visible which occurs when the two snowmen are no longer in a collision state. The deter-
mination that the two snowmen are no longer in a collision state is performed by the if statement

168 M Programming Fundamentals Using Java

on line 43. Its Boolean condition is the same as the condition on lines 37 and 38, except that the
NOT (1) operator and the test for visible have been removed. This Boolean condition is t rue when
the snowmen are not in a collision state. Then the nested if statement that begins on line 46 ex-
ecutes and decides if snowman s1 is invisible. When it is invisible, the nested if statement’s code
block executes relocating snowman s1 by swapping its x and y coordinates. This code block also
sets s1’s visible property to true (line 50), which causes the i £ statement that begins on line 55
to draw snowman s1 on the game board at its new location (Figure 4.14d).

= |53

© (d)

Figure 4.14
The output of the DecisionsControlO£fFlow application.

Chapter 4- Boolean Expressions, Making Decisions, and Disk Input and Output I 169

CONSOLE INPUT AND THE SCANNER CLASS

We have already learned how to perform input and output using message dialog boxes and how
to send output to the system console using the print1n method. The system console can also be
used to perform keyboard input using methods in the Scanner class. These nonstatic methods can
also be used to perform input from a disk file, which will be discussed in the next section.

Just as there is a predefined output object attached to the system console, System.out, there
is a predefined input object attached to the console, System.in. However, before we use the input
methods in the Scanner class we have to declare a Scanner object and pass the console object to
the Scanner class’s one-parameter constructor. The following code fragment declares the Scan-
ner object consolelIn:

Scanner consoleIn = new Scanner (System.in);

The scanner object, consolelIn, can then be used to invoke non-void methods in the Scan-
ner class, which accept input from the system console. As the user types the input, the keystrokes
are output to the console. The names of the three most frequently used methods in this class all
begin with the word next. Their full names and the type of data they return are given in Table 4.5.
To use the methods, include the following import statement in your program:

import java.util.Scanner;

Table 4.5
Commonly Used Input Methods in the Scanner Class

Method Name Returned Type

‘nextInt :int
‘nextDouble i double
‘nextLine String

As their names imply, nextInt and nextDouble are both used to accept numeric input.
When the input is an integer, nextInt is used, and nextDouble is used when the input is a real
number. Both methods parse the input characters into a numeric value, and so there is no need to
use the parsing methods in the wrapper classes Integer and Double. The method nextLine is
used to accept String input.

When these methods are invoked, the program’s execution is suspended until the user com-
pletes the keyboard input by striking the Enter key. Then, the methods return the input value. Until
that point, the user can edit the input using the Backspace and Delete keys. It is good programming
practice to precede the method invocations with a well-composed prompt output to the system
console. The following code fragment accepts a person’s name, age, and weight entered into the
system console:

Scanner consoleIn = new Scanner (System.in);
String name;

int age;

double weight;

170 @ Programming Fundamentals Using Java

System.out.print ("Enter your name: ");
name = consolelIn.nextLine();

System.out.print ("\nEnter your age: ");

age = consolelIn.nextInt();
System.out.print ("\nEnter your weight: ");
weight = consoleIn.nextDouble () ;

Several numeric inputs can be entered on one line as long as they are separated (delimited) by
at least one space. Spaces that precede a numeric input are ignored. The following code segment
accepts a person’s age and weight input on one line to the system console.

int age;

double weight;
Scanner consoleIn = new Scanner (System.in);

System.out.print ("Enter your age and weight on one line " +
"separated by at least one space: ");

age = consolelIn.nextInt();

weight = consoleIn.nextDouble () ;

! Several numeric inputs, separated by at least one space, can be input on the same
TIP line.

Spaces that precede a string input are not ignored. They are considered, and become, part of
the input string. Spaces typed after a numeric input will become part of a string input subsequently
read from the same line. For this reason, strings should not be input on the same line as numeric
inputs.

TP Numeric and string inputs should not be input on the same line.

When a numeric input and a string are read from two separate input lines, and the numeric
input precedes the string, two invocations of nextLine are required to capture the string. This
is because numeric inputs leave the character generated by the Enter key "behind," and the nex-
tLine method considers this a valid input string (the empty string ""). The following statements
accept a person’s age, followed by the person’s name and address. The first string input is properly
preceded by an additional invocation of the nextLine method.

Scanner consoleIn = new Scanner (System.in);
int age;

String name;

String address;

System.out.print ("\nEnter your age: ");
age = consolelIn.nextInt ()

Chapter 4- Boolean Expressions, Making Decisions, and Disk Input and Output H 171

consolelIn.nextLine(); // clears the enter keystroke left behind
System.out.print ("Enter your name: ");
name = consolelIn.nextLine();

System.out.print ("Enter your address: ");
address = consolelIn.nextLine();

To fully understand Scanner class input, we must recognize that the characters the user types
are transferred to a memory resident storage area called an input buffer. When a Scanner method
is invoked and the buffer is empty, the method pauses until an Enter key is struck. If the buffer is
not empty, the method accepts an input from the buffer, and then the input is deleted from the buf-
fer. The nextLine method also deletes the Enter keystroke from the buffer; however, Scanner
methods that return numeric values do not remove this character from the buffer.

When reading numeric inputs, this is not a problem because the numeric input methods
not only skip leading spaces in the buffer, they also skip the Enter keystroke. This whitespace is
ignored until the buffer is empty or they find an input to process. However, the newline method
does not skip the Enter keystroke. As a result, when an invocation to nextLine follows a numeric
input it encounters a nonempty buffer containing an Enter keystroke. The nextLine method reads
and removes the Enter keystroke from the buffer and returns the empty string ("").

When reading a string from the console after a numeric input, two invocations of
NOTE the newLine method are required to read the string. The first invocation flushes
the new line (empty string) from the buffer.

Figure 4.15 presents an application that demonstrates the use of the Scanner class’s methods
to accept input from the system console. The console inputs and corresponding outputs are given
at the bottom of the figure.

Line 1 imports the Scanner class’s methods into the application, and line 6 uses the Scanner
class’s one-parameter constructor to create the object consoleIn passing it the predefined con-
sole input object System.in. Lines 11-16 accept a string, integer, and a double from the system
console, each input on a separate line. These values are output on lines 17-18.

Lines 20-25 change the order of the inputs beginning with two numeric inputs on the same
console line (lines 20-22). Then, a string is input (lines 23-25). Line 24 clears the Enter keystroke
left in the buffer after the second numeric is read (line 22). Lines 26—27 outputs the second set of
inputs. Referring to the bottom of Figure 4.15, the user entered several spaces between the input
age, 5, and the input weight, 35. These spaces were ignored by the nextDouble method invoked
on line 22. The weight output (35.4) on the last line of the figure confirms this.

import java.util.Scanner;
public class ScannerConsolelInput

{

public static void main (String[] args)

g w N

{

172 B Programming Fundamentals Using Java

[Scanner consoleIn = new Scanner (System.in) ;

7 String name;

8 int age;

9 double weight;

10

11 System.out.print ("Enter your name: ");

12 name = consolelIn.nextLine();

13 System.out.print ("Enter your age: ");

14 age = consoleIn.nextInt();

15 System.out.print ("Enter your weight: ");

16 weight = consoleIn.nextDouble() ;

17 System.out.println("Age: " + age + " Weight: " + weight +
18 " Name: " + name);

19

20 System.out.print ("\nEnter your age and weight on one line: ");
21 age = consoleIn.nextInt();

22 weight = consoleIn.nextDouble() ;

23 System.out.print ("Enter your name: ");

24 consolelIn.nextLine(); // clears the enter keystroke from buffer
25 name = consolelIn.nextLine();

26 System.out.println("Age: " + age + " Weight: " + weight +
27 " Name: " + name);

28 1

29 1}

Console inputs and outputs:

Enter your name: Breanne

Enter your age: 18

Enter your weight: 125.7

Age: 18 Weight: 125.7 Name: Breanne

Enter your age and weight on one line: 5 354

Enter your name: Nora

Age: 5 Weight: 35.4 Name: Nora

Figure 4.15
The application ScannerConsoleInput followed by sample inputs and the corresponding outputs.

EXHE DISK INPUT AND OUTPUT: A FIRST LOOK

Unlike RAM memory, disk storage is nonvolatile, which means it retains the information
stored on it when the computer system is powered down. As a result, it is used to archive data and
program instructions. There are two types of disk files: text files and binary files. Information
stored in binary files normally occupies less storage on the disk, and the information transfer is
faster. That being said, text files are in wide use because all of the information in the file is stored

Chapter 4- Boolean Expressions, Making Decisions, and Disk Input and Output H 173

as ASCII characters, which means it can be opened, read, modified, and restored using any text
editor.

In this section, we will limit our discussion of disk file I/O to text files and the techniques for
accessing the file’s data items in the order in which they appear in the file. This type of access is
called sequential access. The alternate form of access, called random access, allows the data items
to be accessed in any order. We will extend our discussion of disk I/O in subsequent chapters.

Sequential Text File Input

Information stored in a text file can be sequentially read into a program using the Scanner
class’s methods presented in Table 4.5. In fact, all of the concepts discussed in Section 4.7 used to
read or input data from the system console apply to sequential text file input. The one exception is
the creation of the Scanner object.

To accept input from the system console, the object was created by passing the predefined ob-
ject System.in to the Scanner class’s one-parameter constructor. To accept input from a sequen-
tial text file, a File object is passed to the Scanner class’s one-parameter constructor. This File
object is created using the File class’s one-parameter constructor that accepts a string argument
containing the file’s path and name. Case sensitivity in this string is ignored. The import statement
import java.io.*; isused to access the File class.

The code fragment presented in Figure 4.16 reads an integer from the beginning of the file
named data.txt resident on the root of the C drive.

File fileObject = new File("c:/data.txt");
Scanner fileIn = new Scanner (fileObject)
int score;

b w N

score = fileIn.nextInt();

Figure 4.16
Code fragment to read an integer from the disk file data.txt resident on the root of the C drive.

The string argument sent to the File class’s constructor (on line 1 of Figure 4.16) contains a
forward slash, which is preferred over the backslash for two reasons. First, all operating systems
accept a forward slash in a path definition. Second, to use a backslash the escape sequence for a
backslash (\\) would have to be used inside the string argument. Most Windows-friendly program-
mers often forget to code the escape sequence and code the string argument as "c:\data.txt".
This would result in a translation error: illegal escape character, because \d is not a valid escape
sequence.

A more insidious error occurs when a single backslash is erroneously coded, and the character
that comes after it is a valid escape character. For example, if the file name was newData.txt, and

174 B Programming Fundamentals Using Java

it was located on the root of the C drive, the following line of code would not result in a translation
error on a Windows system because \n is a valid escape sequence.

File fileObject = new File("c:\newData.txt");

However, it would result in a runtime error indicating that the file does not exist because the \n
would be replaced at compile time with a new line or line feed (LF) character, and the name of the
file passed to the constructor would be the LF character followed by ewData.txt.

[
TiP Always use forward slashes (/) when specifying a file path.

Even when the forward slash is used to specify the path to the file, the file must exist or a run-
time error indicating that the file does not exist will occur. If the path is not specified (i.e., just the
file name and its extension is coded), the file is assumed to be inside the project folder created by
the IDE or a subfolder of that folder. The exact location may be IDE-specific.

Except for lines 1 and 2 of Figure 4.16, the code used to read data from a text file is the same
as the code used to read data from the system console, except that no prompts are output. We sim-
ply imagine that instead of the user typing the data into the system console in response to input
prompts, the same data (character for character, line for line) was typed into a text editor and then
saved to the disk file.

For example, if a person’s age, weight, and name were typed into the C-drive resident text file
data.txt whose contents are shown in Figure 4.17, then the code fragment presented in Figure
4.18 would read these values from the disk file. With the exception of lines 1 and 2, Figure 4.18
contains the same code used to read an age, weight, and name from the system console (lines 7-9
and 20-25 of Figure 4.15) with the two user prompts (lines 20 and 23) removed and the name of
the Scanner object changed.

5 354

Nora

Figure 4.17
The data contained in the disk file data.txt resident on the root of the C drive.

1 File fileObject = new File("c:/data.txt");
2 Scanner fileIn = new Scanner (fileObject) ;
3 String name;

4 int age;

5 double weight;

6

7 age = fileIn.nextInt();

8 weight = filelIn.nextDouble() ;

9 fileIn.nextLine () ;

10 name = fileIn.nextLine();

Figure 4.18
The code fragment to read the data contained in the file shown in Figure 4.17.

Chapter 4- Boolean Expressions, Making Decisions, and Disk Input and Output H 175

To process a sequential file, Java maintains a read position pointer that is initially positioned
at the first character in the file. Each time a data item is read from the file, this pointer is moved
to the next item in the file. After the last item in the file has been read, the pointer is positioned at
a special character called an end of file (EOF), which is automatically placed at the end of all disk
files. In Chapter 5, we will discuss the importance of the addition of the EOF character to the file
and how to detect when we have reached it.

There are some additional issues to consider when reading data from a text file that do not arise
when performing console input. These include the need to know:

* the name and the path to the file to declare the File object (line 1 of Figure 4.18)
e the order of the information in the file, so the statements on lines 7, 8, 9, and 10 of
Figure 4.18 are coded in the proper sequence
» the type of each piece of information in the file, so the proper Scanner class method
can be invoked to read each piece of information
This information is described in a file specification given to the programmer by the software
engineer who designed the file.

EXFA Determining the Existence of a File

Another issue to consider when reading data from a text file that does not arise when perform-
ing console input is how to prevent a runtime error if the data file does not exist. The File class
contains a non-void method named exists that can be used to detect the existence of a file, and
the System class contains a static method named exit that can be used to end a program.

The exists method in the File class returns t rue when the file exists, and the exit method
in the System class has one integer parameter, which is usually passed a zero. The following code
segment demonstrates the use of these two methods to bring a program to a more informative user-
friendly ending when it tries to use a disk file that does not exist:

File fileObject = new File("c:/data.txt");

if (!fileObject.exists()) // file does not exist
{

System.out.println("the file does not exist, the program is terminating")
System.exit (0) ;
}

! It is good programming practice to check for a disk file’s existence to avoid a run-
TIP time error that is normally difficult for the user to understand.

Sequential Text File Output

Information can be sequentially output (written) to a text file using the print and println
methods that are used to write information to the system console. In addition, the Java syntax used

176 M Programming Fundamentals Using Java

to format console output data, such as the spacing of the output information, moving to a new line,
and specifying the precision of numeric outputs, is the same syntax used to format disk-file output.
The one exception to this is the output annotation.

Output annotation is normally not included in the string sent to the methods and print and
println when writing to a disk file because most disk files are read by programs, not people.
When the file’s data will not be processed or read by a program (perhaps the file’s contents will be
examined after it is printed), output annotation is included. Alternately, the reader could refer to
the file’s specification to identify unannotated file information.

To write to the system console, the print and print1n methods operate on a predefined ob-
ject System.out attached to the system console. To write to a sequential text file, these methods
operate on a programmer-defined object in the PrintWriter class. This object is created using
two lines of code that are analogous to the two lines used to create the Scanner object used to
perform disk input.

The PrintWriter object is created using the class’s two-parameter constructor, which is
passed to an object in the FileWriter class. The file’s path and name is passed to the File-
Writer object when it is created. Case sensitivity in this string is ignored. The import statement
import java.io.*; isused to access the PrintWriter and the FileWriter classes.

The code fragment presented in Figure 4.19 creates a sequential text file named data.txt
on the root of the C drive and then outputs the contents of the variable score followed by a new-
line character to the beginning of the file.

FileWriter fileWriterObject = new FileWriter ("c:/data.txt");
PrintWriter fileOut = new PrintWriter (fileWriterObject, false);
int score = 20;

g W NP

fileOut.println (score);

Figure 4.19
Code fragment to write an integer to the beginning of the disk file data.txt resident on the root of the C drive.

Lines 1 and 2 of Figure 4.19 create the disk file and the object £ileoOut that is used to invoke
the print1n method on line 5. A generic term used to describe the functionality of these two lines
is that they create and open the file. If the file had already existed, it would have been deleted and
then recreated. All the information previously written to a deleted file is lost.

Data written to a text file using the print and print1n methods should be thought of as be-
ing placed in the file exactly as the data would have appeared on the system console (line for line,
character for character) had the methods operated on System.out. The only exception is that a
new-line character does not appear on the system console. Rather, it causes the cursor to move to
the beginning of the next line. The characters of the first data item are followed in the file by the
characters of the second item, which are followed by the third, etc.

Figure 4.20 presents an application that writes a person’s age, weight, and name to a sequential
text file named data.txt and then reads the data from the file and outputs the information to the

Chapter 4- Boolean Expressions, Making Decisions, and Disk Input and Output W 177

system console. The system console output produced by the program is shown at the end of the
figure, and the characters written to the disk file are shown in Figure 4.21.

Lines 1 and 2 of Figure 4.20 make the Scanner, File, FileWriter, and PrintWriter class-
es available to the program. Their constructors are used on lines 8—12 to create objects £ileIn and
fileOut, which are used on lines 18—19 and lines 23-26, respectively, to write to and read from
the file.

1 import java.util.Scanner;

2 import java.io.*;

3

4 public class DiskIO

5 {

9 public static void main(String[] args) throws IOException

7 {

8 File fileObject = new File("data.txt"); // input

9 Scanner fileIn = new Scanner (fileObject) ;

10 FileWriter fileWriterObject = new FileWriter ("data.txt"); // output
11 PrintWriter fileOut = new PrintWriter (fileWriterObject, false);
12

13 String name = "Nora Smith";

14 int age = 5;

15 double weight = 35.4;

16

17 // write three data items to the disk file

18 fileOut.println(age + " " + weight);

19 fileOut.println (name) ;

20 fileOut.close () ;

21

22 //read the data from the disk file

23 age = fileIn.nextInt();

24 weight = fileIn.nextDouble() ;

25 fileIn.nextLine(); // clears New Line after a numeric from the buffer
26 name = fileIn.nextLine () ;

27 fileIn.close();

28

29 System.out.println ("Age: " + age + " Weight: " + weight +
30 " Name: " + name);

31 }

32}

System console output

Age: 5 Weight: 35.4 Name: Nora Smith

Figure 4.20
The application DiskIO and the console output it produces.

178 B Programming Fundamentals Using Java

5 35.4n'Nora Smithn'e®f
n' represents a new-line character
e*f represents an end of file (EOF) character

Figure 4.21
The characters output to the file data.txt by the application DiskIO.

A throws clause has been added to the end of the signature of the main method (line 6).
This tells the translator that the programmer is aware that some serious runtime problems (e.g.,
an attempt was made to read past the EOF character) could develop during the execution of the
program. However, the programmer has chosen not to include code to deal with those problems.
Without the throws clause, this program will not translate. We will discuss the code to deal with
these problems in the next section of this chapter.

The string containing the name of the file on lines 8 and 10 does not contain a path. Therefore,
the file is created inside the project folder created by the IDE. This is not always desirable but is
often used in game programs because the file contains information about the game, such as the
highest score achieved to date.

Line 18 writes two numbers to the file separated by a space as shown in Figure 4.21. The space
is a very important part of the output. Without it, Nora’s age (5) and her weight (35.4) would be
adjacent to each other and would therefore be considered one number (534.4) by anyone reading the
file including line 23 of the program. The result would be one of the serious runtime errors the pro-
grammer chose to ignore because a double, 534.4, cannot be parsed into the integer variable age.

Lines 20 and 27 invoke the close method in the FileWriter and Scanner classes. These
statements release the system resources required to perform disk I/O. If they are not included
in a program that performs disk input and/or output, the Java runtime environment releases the
resources when the program ends. It is not only good programming practice to code them imme-
diately after the last disk I/O statements, but in this program it is essential that line 20 be part of
the program.

Here’s why: During the execution of a program that writes to a disk file, the data is actually
written to a RAM resident buffer. The characters stored in the buffer are written to the disk file
when the buffer is full or the FileWriter’s close method is executed. This method flushes a par-
tially full buffer to the disk file during the program’s execution. Because the number of characters
written by this program does not fill the buffer, eliminating line 20 from the program presents line
23 with an empty disk file from which to read. This situation causes the program to terminate in
a runtime error.

When the FileWriter class’s close method executes an end of file (EOF) character is added
to the end of the file.

Always invoke the FileWriter class’s close method after the last file output
Statement.
Always invoke the Scanner’s class’s close method after the last file input
statement.

NOTE

Chapter 4- Boolean Expressions, Making Decisions, and Disk Input and Output H 179

Appending Data to an Existing Text File

Data can be appended (added to the end) of a disk file by changing the second argument sent
to the PrintWriter’s two-parameter constructor from false to true. For example, line 11 of
Figure 4.20 to would be changed to:

PrintWriter fileOut = new PrintWriter (fileWriterObject, true);

When the program is run, if the file does exist it would not be deleted. (If it does not exist, it would
be created.) Each execution of the program would add data to the end of the file followed by an
EOF character. Figure 4.22 shows the contents of the file after three executions of the program,
assuming the file did not exist before the program’s first execution and the value t rue was passed
to the PrintWriter constructor.

5 35.4n'Nora Smithn'5 35.4n'Nora Smithn'5 35.4n'Nora Smithn'e*f
n' represents a new-line character
e’ represents an EOF character

Figure 4.22
The output by 3 executions of DiskIO with the file open for append.

EXE Deleting, Modifying, and Adding File Data Items

Java, like most programming languages, does not contain a method to delete or modify a file
data item or add a data item anywhere in the file except at its end. These operations can be ac-
complished by including the disk I/O methods discussed in this chapter in algorithms that perform
these tasks. For example, the delete algorithm would be:

Read all of the file’s information into RAM memory

Close the file

Delete the file

Recreate the file

Write all of the information except the item to be deleted back into to the file
Close the file

N v R W~

Because the coding of these algorithms requires knowledge of the material covered in Chap-
ters 5 and 6, we will return to this topic in Chapter 6.

EXH EXCEPTIONS: A FIRST PASS

An exception is a Java feature that a method can use to communicate to its invoker that an un-
expected event has occurred during the method’s execution when the method does not contain code
to deal with it. When the event is one that Java deems serious, a throws clause must be added to
the signature of the method in which the invocation is coded, or instructions to deal with the event
must be added to the code block that contains the invocation statement.

180 M Programming Fundamentals Using Java

The former approach was taken in the program that appears in Figure 4.20 on line 6. The
Scanner and FileWriter class constructors invoked on lines 9 and 10 are methods that can
encounter serious unexpected events during their execution. Therefore, a throws clause was
added to the signature of the main method (line 14) because the main method contains these two
invocations. In this section, we will cover a brief introduction to the alternative to the throws
clause: adding instructions to deal with the event in the code block that contains the invocation
statements. Chapter 10, "Exceptions, A Second Pass" contains a more in-depth discussion of
exceptions.

Asthe word “throws” implies, a baseball analogy was used in the selection of the Java keywords
associated with exceptions, and the analogy is helpful in gaining an understanding of exceptions.
Imagine that when the serious event occurs during a method’s execution the method says, "I take
exception to that event, and I am not going to continue executing. My last action will be to let my
invoker know of this problem by throwing an exception object back to it."

If the invoker wants to deal with the problem, its code block catches the exception object
and deals with the problem. Otherwise it throws the exception object on to the Java runtime
environment. The term throws is a Java keyword we have already used (line 6 of Figure 4.20)
when we did not want to deal with an unexpected problem. Two other keywords, try and catch,
are used when we want to deal with the problem.

Each of these keywords begins a code block, and the try code block is always coded
immediately before the catch code block. The following code fragment is a template for a try
statement that will catch a thrown IOException object. As shown in the template, the type of
exception object caught is coded in a parameter list after the keyword catch.

try
{

// the code containing the method invocations and other statements

}
catch (IOException e)

{

// the statements to deal with the unexpected events

}

The statements that invoked the methods that could throw the exception object must be coded
inside the t ry block. Other statements can be included in the t ry block. Effectively, you are trying
these invocation statements to see if the methods they invoke throw an exception object.

When an exception object is thrown by a method invoked inside the t ry block, the remainder
of the statements in the try block does not execute, and execution passes to the first statement
in the catch block. If an exception is not thrown, the statements in the try block complete their
execution, and the catch block statements are not executed. In either case, the statements following
the catch code block executes after the try block or the catch block completes execution.

The use of the template is illustrated in the following code fragment. It attempts to read the
value stored in a disk file into the variable score and catches the T0Exception object thrown by
the Scanner class’s constructor when this constructor encounters a problem.

Chapter 4- Boolean Expressions, Making Decisions, and Disk Input and Output H 181

int score;

try

{
File fileObject = new File("data.txt"); // input
Scanner fileIn = new Scanner (fileObject);

score = fileIn.nextInt();
fileIn.close();

}

catch (IOException e)

{
System.out.print ("The score could not be read from the disk file,");
System.out.println (" but the game will continue.");

}

//rest of the game's statements

If the reading of the score was essential to the continuation of the program, the second state-
ment in the catch block would be replaced with the following two statements to terminate the
program’s execution:

System.out.println (" the program is terminating.");
System.exit (0) ;

The program in Figure 4.23 illustrates the use of disk input and output in a game program and
the use of exceptions to deal with unexpected disk I/O problems. It is the same program presented
in Figure 4.13, modified to keep track of the highest game score ever achieved. When the game is
over, this score is read from a disk file. If a new high score was not achieved, the game player is
informed and encouraged to keep practicing. Otherwise, the new high score is written to the disk
file and the game player is congratulated.

1 import edu.sjcny.gpvl.*;

2 import java.awt.*;

3 import java.util.Scanner;

4 import java.io.*;

5 //illstrates basic exceptions

6

7 public class ExceptionBasics extends DrawableAdapter

8 {

9 static ExceptionBasics ge = new ExceptionBasics ();

10 static GameBoard gb = new GameBoard(ge, "Exception Basics");

11 static BoxedSnowman sl = new BoxedSnowman (300, 200, Color.GREEN) ;
12 static BoxedSnowman s2 = new BoxedSnowman (30, 100, Color.BLACK):;
13 static int score = 0;

14 static int count = 10;

15

16 public static void main (String[] args)

17 {

18 showGameBoard (gb) ;

=
O
—

182 M Programming Fundamentals Using Java

20

21 public void draw (Graphics g) // a call back method
22 {

23 int w = 40;

24 int h = 77;

25 int sl1X, slY, s2X, s2Y, temp;

26

27 slX = sl.getX(); slY = sl.get¥();

28 s2X = s2.getX(); s2Y = s2.get¥();

29 g.setColor (Color.BLACK) ;

30 g.setFont (new Font ("Arial", Font.BOLD, 18));

31 g.drawString ("Time remaining: " + count, 260, 50);
32

33 if (count == 0) // the game is over

34 {

35 g.setColor (Color.BLACK) ;

36 g.drawString ("Game Over", 205, 70);

37 g.drawString ("Have a Good Day", 175, 90);

38

39 try

40 {

41 int highScore;

42 File fileObj = new File ("HiScore.txt");

43 Scanner fileIn = new Scanner (fileObj);

44 highScore = fileIn.nextInt();

45 fileIn.close();

46

47 if (score >= highScore) // a new high score

48 {

49 g.drawString ("Great, Your Score 1is the Highest Ever.," +
50 "It Will Be Saved", 10, 110);
51 FileWriter fileWriterObj = new FileWriter ("HiScore.txt");
52 PrintWriter fileOut = new PrintWriter (fileWriterObj, false);
53

54 fileOut.println(score);

55 fileOut.close () ;

56 }

57 else // not a new high score

58 {

59 g.drawString ("Best Score is: " + highScore +
60 ", Keep Practicing", 110, 110);
61 }

62 }

63 catch (IOException e)

64 {

65 g.drawString ("Problems With High Score File", 120, 110);
66 }

67 }

68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116

Chapter 4- Boolean Expressions, Making Decisions, and Disk Input and Output I 183

else if(!(s2X > slX + w || 82X + w < sl1lX || s2Y > slY + h
s2Y + h < slY) && sl.getVisible() == true)
{
score = score + 1;

sl.setVisible (false) ;

}
else if(s2X > slX + w || 82X + w < sl1lX || s2Y > slY + h
s2Y + h < slY) // no collision

if (sl.getVisible() == false) // not visible
{ temp = sl.getX();

sl.setX(sl.get¥());

sl.setY (temp);

sl.setVisible (true) ;

s2.show (g) ;
if (sl.getVisible () == true)
{

sl.show(g);

g.setColor (Color.BLACK) ;
g.drawString ("Score: " + score, 150, 50);

public void keyStruck(char key) // a call back method
{

int newX, newY;

switch (key)
{

case 'L':

{
newX = s2.getX() - 2;
s2.setX (newX) ;
break;

1

case 'R':

{
newX = s2.getX() + 2;
s2.setX (newX) ;
break;

1

case 'U':

{
newY = s2.getY () - 2;
s2.setY (newY) ;
break;

184 M Programming Fundamentals Using Java

117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133 }

}

case 'D':

{
newY = s2.getY¥() + 2;
s2.setY (newY) ;

}
}
public void timerl() // a call back method
{

count = count - 1;

if (count == 0)

{

gb.stopTimer (1) ;
}

Figure 4.23
The ExceptionBasics Application: A decision and exceptions case study.

When the application is launched, two snowmen, one wearing a black hat and the other wearing a
green hat, appear on the game board below the game’s score and remaining time (Figure 4.24a). The
game begins when the player clicks the Start button on the game board. The objective of the game is
to make the two snowmen collide as many times as possible before time runs out using the keyboard
cursor-control keys to move the black-hat snowman. Each time they collide, a point is awarded, and
the green-hat snowman disappears. It reappears at a new location after the black-hat snowman has
been moved to a location such that the two snowmen are no longer in a collision state.

The changes to the program are the additions of the lines 3—4 that make the Scanner, File,
FileWriter, and PrintWriter classes needed to perform disk I/O available to the program, the
elimination of the throws clause in the main method’s signature and the addition of lines 40—67
that perform the disk I/O. Figure 4.24 presents several outputs produced by the program under
various game conditions.

The signature of the main method (line 16) does not contain a throws clause because the disk
/0 is performed inside the code block of a try statement (line 39). Line 44 reads the highest score
ever achieved from the disk file HiScore.txt using the Scanner object inFile created by lines
42—43. Then, the file is closed (line 45). Normally, the programmer would use a text editor to cre-
ate the file and store a score of zero in it as part of the program’s development. Because the file’s
path is not specified on line 42, the file must be stored inside the project folder created by the IDE.

When a new high score is achieved, as determined by line 47, line 4950 informs the game
player of this achievement (Figure 4.24b). The new high score is written to the disk file (line 54)
using the PrintWriter object £ileOut created on lines 51-52, and the file is closed (line 55).
Because the second argument sent to the PrintiWriter constructor on line 52 is false, the file
containing the old high score is deleted and recreated before the new high score is written to it.
(The new high score is not appended to the file.)

Chapter 4- Boolean Expressions, Making Decisions, and Disk Input and Output I 185

When a new high score is not achieved, lines 59—-60 of the if-else statement that begins
in line 47 produces the output shown in Figure 4.24c. If a problem occurs during the disk 1/O
performed inside of the try block, execution of the try block is terminated, and the catch
block (lines 63—66) executes producing the error message at the end of the text output shown in
Figure 4.24d.

© (@)

Figure 4.24
Outputs produced by the application ExceptionBasics.

CHAPTER SUMMARY

Ordinarily, a Java program executes its statements sequentially. The i f, i f-else, and switch
statements are used to alter this sequential path of execution by selecting which statement, or group
of statements, to execute next. When the resulting decision of an i f or i f-else construct ef-
fect more than one statement, these statements must be coded inside a code block.

Both the if and if-else statements evaluate Boolean expressions to determine whether to
execute or skip the statements included in their code blocks. Boolean expressions use the logical

186 M Programming Fundamentals Using Java

and relational operators (all of which have a precedence order associated with them) and evaluate to
true or false. These statements may be nested, which allows them to test for several conditions,
or several conditions can be tested by one statement using compound Boolean conditions. The i f
statement is used to decide to skip or execute one group of statements, and the i f-else statement
is used to decide which of two mutually exclusive groups of statements to execute.

Although all uses of the switch statement can be coded using an equivalent set of nested i f-
else statements, the use of the switch statement makes our programs more readable when the de-
cision to be made is based on one or more discrete values. The values can be references to a strings
or primitive values whose type is byte, short, char or int, or the values of an enumerated type.

Most often, a break statement is used to prevent the cases coded below the one that is equiva-
lent to the current value of the switch variable from executing. A default clause can be included
at the end of the statement that will execute when the value of the switch variable does not match
any of the statement’s cases. Decision statements have many applications to game programming,
such as controlling the value of a timer, increasing a score when an event occurs, testing to see
when there is a collision between objects, and determining which keystroke has been entered and
responding to it.

The string class provides methods for comparing String objects because they cannot be
compared using the relational operators. The equality operator compares the contents of variables,
but string reference variables contain the address of the strings they refer to, not the strings
themselves. Therefore, to compare strings, the String class provides methods such as equals
and compareTo, which make case sensitive comparisons, and equalsIgnoreCase and compa-
reToIgnoreCase, which ignore case sensitivity.

Disk 1/0 is useful for storing game data, such as the highest score achieved, and any other
type of data that must be retained after a program ends. When data is stored in RAM buffers, it is
volatile and is not preserved from one game to the next. In contrast, when data is stored in a text
file, it can be read and compared each time the game is played. The constructors in the File and
Scanner classes, and the constructors in the FileWriter and PrintWriter classes, can be used
to "attach" Scanner and PrintiWriter I/O objects to a file. Text output can then be sent to the file
using the methods in the PrintWriter class, and information can be read from the file using the
Scanner class’s methods. Methods in the scanner class can also be used to accept input from the
system console. The File class method, exists, can determine if a file exists before attempting
to use it, and it is always good programming style to close a file after using it.

Disk I/0 often causes errors such as when code attempts to access a file that does not exist or
whose pathname is incorrect. This causes an exception error to be generated, which disrupts the
normal flow of a program. Java provides two exception-related constructs, called try and catch
blocks. When an exception occurs within the code of a try block, the program’s execution path
is transferred into the code of the catch block, which is designed to process (handle) and recover
from runtime exceptions. A System class method, exit, can be used inside a catch block to
terminate a program gracefully.

Chapter 4- Boolean Expressions, Making Decisions, and Disk Input and Output I 187

Knowledge Exercises

1. The variables i, §, k and m have been declared as: int 1 = 10; int 7 = 20; int k = 30; int m = 40.
Evaluate the following as true or false:

a) i <= j

b) k == 30

¢ i =9 & 7 >=k

d)i!=3 || §J>=k

€ (i <=k & k >m) || (3 * 2 ==m & k > 7)
fm <=k || 1 + 5 + k > m

2. What is the normal default execution sequence (path) of all Java programs?
3. What are the two types of statements available in Java to alter the default execution path?

4. Write the Java code to output the contents of the variable myBalance when it stores the value
10.0 to the system console.

5. Modify the Java code in Question 4 by adding a statement to output my balance is not 10.0
when the memory cell myBalance does not store 10.0.

6. Write an 1 f or if-else statement to perform each of these tasks:
a) Add 5 to a grade if the grade is greater than 75

b) Produce the output buy tickets if the cost is less than $150.00, otherwise output foo
expensive.

¢) Output the value stored in the variable GPA to the system console if the String object
name contains the string Anna

d) For the strings referenced by s1 and s2, if s1 comes before s2 in alphabetical order,
output in alphabetical order otherwise output the message not in order.

7. True or false:
a) An if statement must contain one Boolean expression.
b) An if-else statement must contain two Boolean expressions.
¢) An i f statement must contain a statement block.
d) The code block of an i f statement executes when its Boolean condition is true.
¢) The code block of an i f statement can contain another if statement.
f) The code block of an e1se clause cannot contain another i f statement.
g) An if or if-else statement may be nested within another i £ statement’s code block.
h) Java contains an i f-else-if statement.

8. The string s1 just received input from an input dialog box. Give the statement to output OK to
the system console when the user enters Stop Sign (case sensitive).

9. True or false:
a) A switch statement must contain a default clause.
b) A switch statement can have multiple cases.

188 M Pro

10.

11.
12.
13.

gramming Fundamentals Using Java

¢) The choice values of a switch statement can be strings.

d) A switch statement must contain at least one break statement.

e) A switch statement is normally used to determine a choice between several alternatives.
f) Every switch statement can be written as equivalent i f-else statements.

g) A sequence of i f-else statements can always be written as an equivalent switch
statement.

Write the switch statement to output the menu selection stored in the string variable item,
assuming the choices are Hamburger, Taco, or BLT (use system-console output).

Write the equivalent i f-else statements to output the menu selections given in Question 10.
What API class must be imported into your program to accept input from the system console?

Give all of the statements, excluding import statements, to:
a) accept the year of a person’s birth input from the system console (include a prompt)
b) accept a person’s name input from the system console (include a prompt)

14. What is the advantage of saving information in disk files versus saving the information in main

15.

16.
17.

18.

19.

memory?

True or false:

a) Text files can be viewed using the program Notepad.

b) Text files cannot be printed on a printer.

¢) By convention, text files end with the extension .txt

d) It is best to use two forward slashes to specify the path name where the file is located.

Write all of the import statement(s) necessary to perform disk I/O.

Give all of the statements, excluding import statements, to:

a) read the year of a person’s birth from the disk file Dates.txt stored on the root of the E
drive

b) read a person’s age and name from the disk file Names.txt stored on the root of the E
drive

¢) read the year of a person’s birth from the disk file bDays.txt stored on the root of the E
drive

Give all the statements necessary to append the contents of the variables myBalance and
yourBalance to the disk file Balances.txt stored on the root of the C drive.

Give all the statements necessary to output the contents of the variables myBalance and
yourBalance to the disk file Balances.txt stored on the root of the C drive. If the file
already exists, delete it before performing the output.

20. Give all the statements necessary to determine if the file Data.txt exists on the root of the C

21

drive, and output The File Exists to the system console if it does.

. Write the statement needed to close the file attached to the scanner object inputFile.

Chapter 4- Boolean Expressions, Making Decisions, and Disk Input and Output I 189

22. Briefly discuss how the try and catch block can be used to handle exceptions detected by
methods invoked within a program.

Programming Exercises

1. Write a program to ask a user to input two strings from the system console. If the strings are
identical output Stings Identical to the system console. Otherwise output them in alphabetical
order.

2. Write a program for a travel agency, which presents the user with the following menu as a
console input prompt:

Where do you want to vacation?
Enter: 1 for Disney World, 2 for Las Vegas, 3 for Paris or 4 for Alaska

After accepting the customer’s numeric response from the system console, use either an i f-
else or a switch statement to output two destination-appropriate messages to the text file
vacation.txt (for example, if the user chose 4 for Alaska, you might want to output the
messages Bring a warm jacket and enjoy Alaska and Say "Hello" to Frosty for me). Feel free to
add bells and whistles such as adding a welcome message or adding additional destinations.
3. Write a program to ask a user to enter a student name, major, and GPA from the system console.
If the GPA is greater than 3.5, set a Boolean variable, honors, to true, otherwise set it to
false. Create a text file called StudentInfo.txt and output the name, major, GPA, and the
student’s honors status to four separate lines of the file.

4. Extend the program described in Programming Exercise 4 to ask the user the name of the file in
which to store the data. After writing the data to a text file with that name, add the phrase End
of Student Record as the last line of the file. Then, read five lines store in the file and output
them on five separate lines to a message box with the appropriate annotation. Before reading
the data, ask the user the name of the file from which to read. Use a try and a catch block to
output the message problems opening or reading the file when an TOException is thrown.

5. Write a graphical game application that contains a class named RV whose objects are the
recreational vehicle designed and digitized as described in Knowledge Exercises 20 and 21 of
Chapter 3. When the application is launched, the RVs appear on the screen. The game player is
given 10 seconds to move any part of the RV beyond the top, bottom, right side, and left side of
the game board using the keyboard cursor control keys. The game begins when the game player
clicks the Start button and ends when the time expires or some part of the RV has moved beyond
all four boundaries of the game board. During the game, a countdown of the time remaining
should be displayed at the top of the game board, and the countdown should stop at the end of
the game.

6. Write a graphical game application that contains a class named RV whose objects are the gy
recreational vehicles designed and digitized as described in Knowledge Exercises 20 and & 4 i
21 of Chapter 3. The application should also contain a class named Mouse whose objects
are designed and digitized in a similar manner. When the application is launched, one RV \ﬁ

190 M Programming Fundamentals Using Java

and one mouse appear on the screen at different random locations. The user is given 10 seconds
to move the mouse to the RV using the keyboard’s cursor control keys. The game begins when
the game player clicks the Start button and ends when the time expires or the mouse has collided
with the RV. During the game, a countdown of the time remaining should be displayed at the
top of the game board, and the countdown should stop at the end of the game. The game begins
when the game player clicks the Start button and ends when the time expires or some part of the
mouse has collided with the RV.

7. Write the game application described in Programming Exercise 7 modified to include three RVs
at different locations. In this version of the game, the game player has to make the mouse collide
into all three RVs and the RVs disappear when the mouse collides with them. The player’s score
will be the time remaining after all the RVs have disappeared. A record of the lowest score ever
achieved will be kept in the disk file LowScore.txt.

8. Using the skills developed in this chapter, continue the implementation of the parts of your
game (specified in Preprogramming Exercise 1 of Chapter 1) that require cursor-key motion
control, disk 1/0, collision detection, and stopping a time countdown. To test the collision
detection, you will have to add a class to your application that implements your second type of
game piece.

CHAPTER 5

REPEATING STATEMENTS: LooPS

5.1 A Second Alternative to Sequential Execution. 192
5.2 The for Statement. 193
5.3 Formatting Numeric Output: A Second Pass. 202
54 Nesting for Loops.............c.c.ccc i i 208
5.5 Thewhile Statement........................... 212
5.6 Thedo-while Statement 219
5.7 Thebreak and continue Statements............ 221
5.8 Which Loop Statementto Use. 222
59 TheRandomclass................cccciiiiio.n. 224
5.10 The Enhanced for Statement. 228
511 Chapter Summarycccuviiin.. 229

In this chapter

In this chapter, we will learn the techniques used to repeat the execution of a designated
group of statements an unlimited number of times, which gives us the ability to perform

a significant amount of processing with just a few repeated statements. Not only does this
reduce the time and effort required to produce a program, but it also allows us to utilize
algorithms whose implementation require the use of these repetition, or loop, statements. We
will discuss the syntax and execution path of Java’s three how to nest these statements. Our
knowledge of these statements will be expanded in Chapter 6, which covers the concept of
arrays, because loops are used to unlock the power of arrays.

We will learn why repetition statements are an integral part repetition statements, consider which
one is best suited for particular applications, and learn of two fundamental algorithms, summing and
averaging, and how to generate a repeatable sequence of pseudorandom numbers using loops and the
methods in the class Random. In addition, we will extend our knowledge of numeric formatting intro-
duced in Chapter 2 and learn to produce output consistent with any of the world’s currency systems.

After successfully completing this chapter you should:

* Understand the syntax and execution path of Java’s for, while, and do-whi le repetition
statements

* Know which statement to use for a particular application

* Understand why a for loop is an automatic counting loop

» Understand the role of sentinels in repetition statements and their use in while and
do-while loops

192 B Programming Fundamentals Using Java

* Be able to explain the totaling and counting algorithms and the role loops play in their
implementation

* Know how to generate a set of random numbers using the methods in the class Random
and loop statements

* Be able to use the NumberFormat class’s methods to format currency output in a local
specific format

* Be able to use the DecimalFormat class’s methods to format numeric output with

leading/trailing zeros and comma separators and display a numeric value as a percent-
age or using scientific notation

A SECOND ALTERNATIVE TO SEQUENTIAL EXECUTION

Often, the proper execution path of a program’s statements requires that a sequence of instruc-
tions be executed several times. For example, a program accepts three input deposits and adds them
to a bank balance after each input. In this case, the input statement and the arithmetic statement to
add the input deposit to the bank balance would be repeated three times.

One alternative would be to code one input and one arithmetic statement, copy and paste them
into the program two more times, and then execute the three groups of statements sequentially.
Another alternative would be to enclose one input and one arithmetic statement in a repetition
statement’s code block, which is repeated three times. Although both approaches would produce
the same result, the second alternative is most often preferred, especially when the statements are
to be repeated a large number of times. Not only does this approach save coding time, but it also
improves the readability of our programs by significantly reducing the length of the program, and,
more importantly, making it obvious to the reader that the statements are being repeated.

A repetition statement is most often referred to as a loop statement. The term loop comes from
an aircraft “loop” maneuver often performed at air shows during which the aircraft repeatedly
travels in a vertical circle. Figure 5.1 illustrates the maneuver and programming analogy.

Like many programming languages, Java provides three repetition or loop statements: the for,
the while, and the do-while statements. While there is the possibility for significant overlap in

statement 1
statement 2

statement 3

statement n

Figure 5.1
Airplane and programming loops.

Chapter 5- Repeating Statements: Loops I 193

the use of these three statements in our programs, good coding practice and ease of use greatly
narrow the choice of which statement to use in a particular context. One of the objectives of this
chapter is to specify clear criteria for when each of these three statements is best used in our
programs. We will begin our study of repetition statements with the for statement.

THE FOR STATEMENT

The for statement is often called an automatic counting loop. It is most often used when we
know how many times to repeat the loop’s statements. In some cases, this is known at the time the
program is written; for example, a program that always processes three deposits. In other cases, the
number of times the loop is to execute is specified, or determined, during the program’s execution.
For example, before entering deposits the program users are asked to enter the number of deposits
they will be making into their bank account during this execution of the program. The criterion
common to both of these alternatives is that before the loop executes the number of repetitions is
known. When this is the case, the for loop is the best repetition statement to use.

Syntax of the for Statement

The left side of Figure 5.2 shows an example of a for statement containing a group of state-
ments that will executes its statement block three times. The meaning of the statement and its exe-
cution path are illustrated on the right side of Figure 5.2. The integer variable 1 is called the loop or

Set the initial value i=1;

false
Test to continue

int i; true
for (i=1; i<=3; 1i=i+1l)
{

//statement (s) to be repeated statement(s)

Change the loop variable

Figure 5.2
A for loop that executes three times and its execution path.

194 B Programming Fundamentals Using Java

loop control variable. The statement(s) enclosed inside the braces are called the loop’s code block,
or the body of the loop. They are said to be inside the loop. These are the statements to be repeated.

When a loop is correctly written, the loop variable is initialized, tested, and changed. In a for
loop, all three of these actions are coded within the for statement’s parentheses. Referring to the
left side of Figure 5.2, the statement i=1; sets the initial value, i<=3; tests to see if i has reached
its terminating value or if the loop should continue, and i=i+1; changes or increments the value of
the loop’s control variable.

Referring to the items enclosed inside the parentheses after the keyword for, the code:

e i=1;is called the initialization expression
e i<=3; is called the condition to continue expression or continuation condition
e i=i+1; is called the increment

The initialization expression is an assignment statement. As shown on the top-right side of
Figure 5.2, this assignment statement always executes once to initialize the loop variable just be-
fore the loop begins. The condition to continue expression is a Boolean expression involving the
loop variable, which executes at least once. The loop body is repeatedly executed while this Bool-
ean expression is true. If the Boolean condition is false when the loop begins, the statements in
the loop body are not executed. The increment is an assignment statement. The statement is used
to change the loop variable after the statements in the loop body are executed. When the increment
is one, the equivalent coding i++; is commonly used.

The loop shown in Figure 5.2 executes its statement body three times. When the for statement
begins, the loop variable i is initialized to 1. The condition to continue (i <= 3) evaluates to true
(1 <= 3), and the statements in the loop body execute for the first time. The loop variable is then
incremented to 2, the condition is tested and is still true (2 <= 3), and the statements execute a
second time. The loop variable is then incremented to 3, the condition is still true (3 <= 3), and
the statements execute a third time. Finally, the loop variable becomes 4, the condition (4 <= 3)is
false, and the loop ends. After the loop ends, the statement immediately following its close brace
executes.

The following code fragment contains a for statement that executes its loop body 500 times:
int 1i;
for (i=1; 1<=500; 1i=1i+1)
{
//statement (s) to be repeated

}
The most common errors made when coding the for statement are:

* placing a semicolon after the close parenthesis

* neglecting to code the semicolon after the initial condition or after the condition to
continue, both of which result in a translation error

* neglecting to code the open and close braces around the statements when more than one
statement is to be repeated

Chapter 5- Repeating Statements: Loops I 195

* modifying the loop variable within the body of the loop which alters the automatic
counting

When a semicolon is coded after the close parenthesis, the statement is syntactically correct,
however, none of the statements that would have normally formed the loop body are considered to
be part of (inside) the loop. They default to sequential execution and each statement executes once.
When braces are not coded, the statement is also syntactically correct, however, the first statement
after the for statement is the only statement considered to be part of the loop. Regardless of the
indentation used, it is the only statement repeated.

The generalized syntax of the for statement and its execution path are shown at the top and
bottom of Figure 5.3, respectively.

for(initialization expression; condition to continue; increment)
{
//statement (s) to be repeated

initialization
expression

»]
>.

condition to false
continue

statement(s)

N

increment(s)

|
-

Figure 5.3
The generalized syntax of the £oxr statement and its execution path.

In addition to the loop variable, the initialization expression, test to continue, and the incre-
ment can all contain other variables that can be used to adjust the flow of the statement at runtime.
For example, the following code fragment outputs the values in the five times table from 10 to 50
on one line:

int i;

int beginvalue = 10;

196 M Programming Fundamentals Using Java

int endvValue = 50;
int tablevValue = 5;

for (i=beginValue; i<=endValue, i=i+tableValue)

{

System.out.print(i + " ");

}

Figure 5.4 presents a console application named ForLoopCounting that utilizes this feature
of the statement to count from a user input starting value to a specified ending value, by a specified
increment. The bottom part of the figure gives the user prompts and inputs and the corresponding
outputs generated by the program.

The input starting and ending values, and the increment to count by, are parsed into the vari-
ables start, end, and increment on lines 10, 12, and 14 of Figure 5.4. These variables are used
in the initialization expression, condition to continue, and increment of the for statement that
begins on line 18. As indicated by the input and output at the bottom of Figure 5.5, the program
user inputs 3 as a starting value, 27 as an ending value, and an increment of 5. After the value 23 is
output, the loop variable i becomes 28 (=23 + 5). Because 28 is not less than or equal to the ending
value 27, the loop ends and 28 is not output.

O J oy Ul wdN R

NeJ

10
11
12
13
14
15
16
17
18
19
20
21
22
23

import javax.swing.*;

public class ForLoopCounting

{

}

public static void main (String[] args)
{ int start, end, increment;

String input;

input = JOptionPane.showInputDialog ("Enter the starting value:");
start = Integer.parselnt (input) ;

input = JOptionPane.showInputDialog ("Enter the ending value: ");
end = Integer.parselnt (input) ;

input = JOptionPane.showInputDialog ("Count by?: ");

increment = Integer.parselnt (input) ;

System.out.println ("Counting from " + start + " to " + end +
" by " + increment + "s:");
for (int i=start; i<=end; i=i+increment)
{
System.out.println (i) ;

Input prompts and user inputs:
Enter the starting value: 3

Enter the ending value: 27

Count by?: 5

Chapter 5- Repeating Statements: Loops I 197

Outputs:

Counting from 3 to 23 by 5s:
3

8

13

18

23

Figure 5.4
The application ForLoopCounting and typical inputs and outputs.

Line 18 presents a feature of the for statement we have not previously discussed. It declares
the loop variable i as part of the initialization expression by proceeding its assignment statement
with the keyword int. When this is done, the scope of the loop variable is limited to the for state-
ment and its statement body. The loop variable cannot be used by statements that follow the loop
or by statements that precede the loop. After the loop ends, the Java memory manager reclaims the
storage assigned to the loop variable, and the variable’s lifetime is said to be over. If another vari-
able named i had been declared in the program before or after the loop statement, all references to
the variable i inside the for statement (lines 18-21) would refer to the loop variable, not the vari-
able declared outside the loop. This feature ensures that the loop will count correctly.

A for loop can also be used to count down to an ending value. In this case, the loop variable
is initialized to the starting countdown value, and it is decremented each pass through the loop.
The statement’s Boolean condition checks to see if the ending value is reached. The following code
fragment counts down from ten to zero:

for (int i= 10; 1i>= 0; i--)

{

System.out.println(i);

}

In general, the initialization expression and the increment can contain more than one assign-
ment statement. When this is the case, they are separated with commas as shown in code fragment
below. The loop’s execution path is shown in Figure 5.5.

int i, 3, k;

for (i=1, j=10, k=4; i<= 3; i=i+1, j=3+3, k=k-1)

{

//statement (s) to be repeated

EF¥A A for Loop Application

Figure 5.6 shows a graphical application that draws the first row of a checkerboard on a light-
gray-colored game board as shown in Figure 5.7. The program uses a for loop to draw the eight
checkerboard squares and then uses another for loop to draw a red checker on the row’s black
squares.

198 M Programming Fundamentals Using Java

false

true

Statement(s)

Figure 5.5

Execution path of a £or loop containing multiple
initialization-expression and increment-assignment
statements.

Inside the d raw method, line 26 of Figure 5.6 uses the game
environment’s setBackground method to change the game
board’s background color to light gray. Then line 29 begins a
for loop that executes eight times. During each iteration of the
loop, a black or red checkerboard box is drawn (line 36) using
the current drawing color. The first statement in the loop body
(line 31) sets the current color to firstColor (black), then line
32 uses the modulus operator to determine if the loop variable,
col, is even (col % 2 0). If it is, the current color is
changed to secondColor (red), which causes the even check-
erboard boxes (2, 4, 6, and 8) to be drawn in red. The counting
algorithm, whose increment is the width of the checkerboard
boxes, is used on line 37 to calculate the x location of the next
checkerboard box to be drawn.

Line 42 begins a second for loop that draws a red checker
(line 45) on the black checkerboard boxes. Before the loop be-
gins, the current drawing color is set to red (line 41). Because
the for statement’s increment adds 2 to the loop variable col,
this variable stores the column numbers 1 (firstChecker-
Col), then 3, 5, and 7. These are the column numbers of the
black boxes, which are used on line 44 to calculate the x loca-

tion of each column’s checker. In this calculation, one is subtracted from the column number col
before it is multiplied by the box width because column 1’s checker should be drawn at an x value

of 20.

1 import java.awt.*;

2 import edu.sjcny.gpvl.*;

3

4 public class CheckerBoardRow extends DrawableAdapter
5

9 static CheckerBoardRow ge = new CheckerBoardRow () ;
7 static GameBoard gb = new GameBoard(ge, "Checker Board Row");
8

9 public static void main(String[] args)

10 {

11 showGameBoard (gb) ;

12 }

13

14 public void draw (Graphics qg)

15 {

16 int boxX = 12;

17 int boxY = 50;

18 int boxWidth = 60;

19 int boxHeight = 53;

20 int checkerX = 20;

Chapter 5+ Repeating Statements

: Loops H 199

21 int checkerY = 55;

22 int firstCheckerCol = 1;

23 Color firstColor = Color.BLACK;

24 Color secondColor = Color.RED;

25

26 gb.setBackground (Color.LIGHT GRAY) ;

27

28 //Draw the Checker board boxes

29 for (int col = 1; col <= 8; col++)

30 {

31 g. setColor (firstColor); //black

32 if(col % 2 == 0)

33 {

34 g. setColor (secondColor); //red

35 } //end if

36 g.fillRect (boxX, boxY, boxWidth, boxHeight) ;
37 boxX = boxX + boxWidth;

38 } //end for loop

39

40 //Draw the Red checkers

41 g.setColor (Color.RED) ;

42 for (int col = firstCheckerCol; col <=8; col= col + 2)
43 {

44 checkerX = 20 + (col - 1) * boxWidth;
45 g.fillOval (checkerX, checkeryY, 40, 40);
46 }

47 }

48 }

Figure 5.6

The application CheckerBoardRow

Figure 5.7
The output from the application CheckerBoardRow.

200 M Programming Fundamentals Using Java

The Totaling and Averaging Algorithms

The totaling or summation algorithm, like the counting algorithm, is a fundamental algorithm
of computer science. Both of these algorithms are used in most programs. As the totaling algo-
rithm’s name implies, it is used to calculate a total, or sum, of a group of values. For example, it
could be used to calculate the total of a group of deposits input to a program, and once the total
is known, the average deposit can be easily determined by dividing the total by the number of
deposits.

The totaling algorithm is very similar to the counting algorithm, except that the counting al-
gorithm adds (or subtracts) a constant increment to the current value of the counter every time it
is executed, and the totaling algorithm adds the next item to be totaled to the current value of the
total every time it is executed:

counting algorithm: count = count * constantIncrement;
totaling algorithm: total = total + newltem

If we were adding a group of deposits, the variable newItem would contain the next deposit.
As was the case with the counting algorithm, the name of the variable on the left side of the assign-
ment operator can be any valid variable name. Similarly, the same variable name must be used on
the right side of the assignment operator, and the name should be representative of what it stores.
For example, when calculating a new bank balance:

balance = balance + deposit;

The chosen variable is generically referred to as the totaling or summation variable. Before the
algorithm is used, the variable is set to an initial value, which is the current (beginning) value of
the sum. For example, it could be the bank balance before the new deposits are made. Often, this
value is zero. As is the case with the counting algorithm, once the initial value is set, the summation
algorithm is repeatedly executed.

The following code fragments add up the integers from one to four:

int sum = 0; int sum = 0;

sum = sum + 1; for(int i = 1; 1 <= 4; 1 =1 + 1)
sum = sum + 2; OR {

sum = sum + 3; sum = sum + 1i;

sum = sum + 4; }

The contents of the memory cell sum would progress from 0, to 1, to 3, to 6, and finally to 10. In
most cases, as shown on the right, a loop is used to repeat the summation algorithm.

Figure 5.8 presents a Java console application named TotalingLoop that demonstrates the
use of the totaling algorithm and the calculation of an average. A set of sample inputs and the pro-
gram’s corresponding outputs is given at the bottom of the figure. The monetary outputs produced
by lines 1516 and lines 30—34 are formatted as U.S. currency using an object in the NumberFor-
mat class declared on line 13. This class and its methods used to produce this currency formatting
will be discussed in the next section.

Chapter 5- Repeating Statements: Loops I 201

The program accepts a given number of input deposits and uses the totaling algorithm (line 25)
to calculate their total. The number of deposits to be processed is input on line 17, then the parsed
value is used in the Boolean condition of the for statement that begins on line 21 to process that
number of deposits.

Before the loop begins, the totaling variable, total, is initialized to zero (line 20). During
each iteration of the loop that begins on line 21, a new deposit is input and parsed. Then, the total
algorithm is used on line 25 to add the new deposit to the total of the previously input deposits.
After all the deposits are processed, the new balance (line 27) and the average deposit (line 28)
are calculated. Lines 15-16 output the beginning balance, and lines 30—34 output the total of the
deposits, the average deposit, and the new balance to the system console.

1 import javax.swing.JOptionPane;

2 import java.text.NumberFormat;

3 import java.util.Locale;

4

5 public class TotalingLoop

6 {

7 public static void main(String[] args)

8 {

9 double balance = 1000.24;

10 int numOfDeposits;

11 double deposit, total, newBalance, averageDeposit;

12 String input;

13 NumberFormat us = NumberFormat.getCurrencylInstance (Locale.US)
14

15 System.out.println ("Your beginning balance is: " +

16 us.format (balance)) ;

17 input = JOptionPane.showInputDialog ("How Many Deposits?"):;
18 numOfDeposits = Integer.parselnt (input);

19

20 total = 0.0;

21 for(int i = 1; i <= numOfDeposits; i++)

22 {

23 input = JOptionPane.showInputDialog ("Enter a deposit");
24 deposit = Double.parseDouble (input) ;

25 total = total + deposit;

26 }

27 balance = balance + total;

28 averageDeposit = total / numOfDeposits;

29

30 System.out.println ("The total of the " + numOfDeposits +
31 " deposits is " + us.format (total));
32 System.out.println ("The average deposit was: " +

33 us.format (averageDeposit)) ;

34 System.out.println ("Your new balance is: " + us.format (balance));
35 }

36}

202 B Programming Fundamentals Using Java

Inputs
3
20.10
30.20
40.30

Outputs

Your beginning balance is: $1,000.24
The total of the 3 deposits is $90.60
The average deposit was: $30.20
Your new balance is: $1,090.84

Figure 5.8
The application TotalingLoops and typical inputs and outputs.

FORMATTING NUMERIC OUTPUT: A SECOND PASS

The use of the DecimalFormat class to improve the readability of numeric outputs was brief-
ly discussed in Chapter 2 (Section 2.10). In this section, we will expand that discussion and also
discuss the use of the NumberFormat and Locale classes that were used to format the currency
outputs produced by the program shown in Figure 5.8. We will begin with an introduction to the
techniques used to format numeric output as currency.

All numeric formatting rounds up the fractional part of a numeric value, and all
NOTE of the digits in the integer portion of the numeric value are always included in the
formatted version of the number.

Currency Formatting

The monetary outputs produced by the program shown in Figure 5.8 are formatted as United
States currency. There is a leading dollar sign and a decimal point separating the dollar amount
from the cents, which are displayed as two rounded digits to the right of the decimal point. In ad-
dition, a comma is used as a thousands separator in the dollar amount. Had the output been nega-
tive, it would have been enclosed in parentheses. All of this formatting conforms to the way U.S.
currency is displayed within the world of finance and makes the units of the output recognizable
as dollars and cents.

Two methods in the NumberFormat class, getCurrencyInstance and format, and con-
stants defined in the class Locale can be used to format numeric values as currency. The constants
in the class Locale are used to specify which of the world’s currencies to use in the formatting.

The NumberFormat class’s method getCurrencyInstance is used on line 12 of Figure 5.8
to create a currency formatting object named us. The method accepts one argument, which is nor-
mally one of the predefined static constants in the Locale class. As the name of the class implies,

Chapter 5- Repeating Statements: Loops I 203

this argument specifies the locale of the format that will be associated with the formatting object.
Line 13 uses the constant Locale.Us, to specify that the currency formatting associated with the
object us will be United States currency: dollars and cents.

The object us is then used on lines 15-16 and lines 30-33 to invoke the NumberFormat class’s
format method. This method converts the numeric value passed to it to a string using the format-
ting associated with the object that invoked it. As a result, the four numeric outputs produced by
the program are formatted as U.S. currency.

By changing the argument passed to the method getCurrencyInstance on line 13, the nu-
meric output produced by the program could be made to conform to other currency formats used in
the financial world. For example, the following code fragment produces the two outputs, which are
formatted as pounds (the United Kingdom’s currency) and euros (the European Union currency),
respectively. The output of the code fragment is given below the code.

double price = 1234567.889;
NumberFormat uk = NumberFormat.getCurrencyInstance (Locale.UK) ;
NumberFormat france = NumberFormat.getCurrencylInstance (Locale.FRANCE) ;

System.out.println (uk.format (price));
System.out.println (france.format (price));

Output:

£1,234,567.89
1 234 567,89 €

NOTE The formatting performed does not take into account monetary exchange rates.

The Default Locale

The getCurrencyInstance method invoked on line 13 of Figure 5.8 is overloaded. There
are two version of it: a one-parameter version that was invoked on line 13 and a no-parameter
version. The no-parameter version of the method can be used to format numeric currency in the
default locale of the computer’s operating system. Assuming the default locale of the operating
system was Italy, the following code fragment would produce two identical lines of output format-
ted as euros (Italy’s currency).

double price = 1435.2;

NumberFormat italy = NumberFormat.getCurrencyInstance (Locale.ITALY);
NumberFormat osDefault = NumberFormat.getCurrencylnstance();

System.out.println(italy.format (price));
System.out.println (osDefault.format (price)) ;

204 B Programming Fundamentals Using Java

The DecimalFormat Class: A Second Look

The methods in the DecimalFormat class, which were briefly discussed in Section 2.10 of
Chapter 2, can also be used to format numeric output. Normally, these methods are used when the
numeric value is not currency.

Like the NumberFormat class, the DecimalFormat class contains a nonstatic method named
format that returns a string containing the formatted version of the numeric value sent to it as an
argument. This method is invoked with a DecimalFormat object that can be declared using the
class’s one-parameter constructor. The constructor is passed a string argument, called the format-
ting string, which contains the formatting information. In Section 2.10, we used the formatting
string argument "#, ###.4#" to produce an output that contained a comma every three digits to the
left of the decimal point and to format real numbers (nonintegers) with a maximum of two digits
of precision.

Other characters can be used in the formatting string to produce other forms of numeric output
formatting. The pound signs (#) to left and right of the decimal point can be replaced with zeros,
which are used to format the numeric value with leading and trailing zeros. In addition, a percent
sign (%) can be added to the end of the formatting string. The percent sign is used to format the nu-
meric value as a percentage. For example, the value 0.237 would be formatted as 23.7%, assuming
one digit of precision was specified in the formatting string. Numeric values can also be formatted
in scientific notation.

Regardless of the characters used in the formatting string, the fractional part of a numeric
value is always rounded up and all of the digits in the integer portion of the numeric value or a
leading zero are always included in the formatted value unless scientific notation is being used.

Leading and Trailing Zeros

Inserting zeros into the formatting string adjacent to the decimal point will add leading or
trailing zeros to the formatted value. For example, when the numeric value being formatted does
not have an integer part (e.g., .254), inserting a zero to the left of the decimal point in the formatting
string will format the value as 0.254. Adding a zero the right of the decimal point will format the
value 167 as 167.0. If the number does have a fractional or integer part, then the digit adjacent to
the decimal point in the numeric value always appears in the formatted value.

The code fragment below formats numeric values with one leading zero and two trailing zeros
and produces the output shown below the code. The third output value is rounded to the specified
two digits of precision.

double nl = .2;

double n2 167.0

double n3 = 1.4672

DecimalFormat ltz = new DecimalFormat ("#,##0.00");

System.out.print (ltz.format(nl) + " " + ltz.format(n2) + " " +
ltz.format (n3));

Chapter 5- Repeating Statements: Loops I 205

Output:
0.20 167.00 1.47

Percentages

A formatting string that ends with a percent sign is used to format a numeric value as a per-
centage. The value will be multiplied by 100, and a percent sign will be added to the right side of
the string from the format method. For example, the value 0.254 would be formatted as 25.4%.
The code fragment below formats numeric values as percentages with one leading zero and one
trailing zero. The output it produces is shown below the code.

double nl = 0.002;
double n2 = 0.16 DecimalFormat pct = new DecimalFormat("#,##0.0%");
System.out.println(pct.format(nl) + "™ " + pct.format(n2?));

Output.
0.2% 16.0%

Scientific Notation

Scientific notation is a formatting of a numeric value into a mantissa followed by an exponent.
Usually, the mantissa and the exponent are separated by the letter E. The mantissa contains the
digits of the numeric value with its decimal point shifted left or right. To determine the numeric
value, the mantissa is multiplied by 10 raised to the value of the exponent. For example, 23.971E2
represents the numeric value 2,397.1.

A formatting string that ends with the character & followed by the number of leading zeros to
be displayed in the exponent is used to format a numeric value in scientific notation. At least one
zero must be included after the letter E in the formatting string. The formatted value will contain
the mantissa and the exponent separated by the letter £. The mantissa is formatted using the
portion of the formatting string to the left of the letter £, which should contain only zeroes and a
decimal point.

The code fragment below formats numeric values in scientific notation with the mantissa
shown with one digit to the left of the decimal. The output it produces is shown below the code.

double nl = 0.00000215;

double n2 = 16123067533.1

DecimalFormat sn = new DecimalFormat ("0.0000EQ0") ;
System.out.println(sn.format(nl) + " "™ + sn.format(n2));

Output:
2.1500E-6 1.6123E10

NOTE All digits of the exponent will always be included in the scientific formatted version
— of a numeric value.

206 B Programming Fundamentals Using Java

Table 5.1 summarizes the characters used in the DecimalFormat class’s format string and the
formatting they produce. All digits in the integer portion of numeric value will always be included
in the formatted version of the numeric unless scientific notation is being used. All digits of the
exponent are always displayed when using scientific notation.

Table 5.1
The DecimalFormat Class’'s Formatting Characters and Their Meaning

Character Formatting Produced Formatting String Example
] : Output a decimal point in this position :

0 Output a digit in this position if it exists, "0.00" '
- else a zero : One leading zero, two digits of precision :
: M4, #40.00" ’
Qutput a comma separator in this posi- : Comma separator every three digits :
: tion, as necessary : (with one leading zero and two digits of :
: : precision) 3
' : . £ 10, 0ODST
: Output a numeric value as a percentage : 5
: . . : Convert numeric to a percentage fol-:
% : (Multiply the numeric by 100 and add a : & ber & :
: ¢ sion to its Tioht : lowed by a percent sign (with one lead- :
FIESTGIURAEN DIE , . ing zero, three digits of precision) '
i"0.0000EQ"
E : Output the numeric value in scientific : Mantissa formatted with 5 digits

§ notation g X.XXXXEX

All digits of the exponent are displayed

Figure 5.9 illustrates the use of the methods in the DecimalFormat class to format numeric
outputs. The program produces four groupings of outputs, which are shown in Figure 5.10. Each
grouping outputs the same three numbers: nl, n2, and n3 (lines 15-33) using different formatting
strings, which are defined on lines 7-10.

The first three output groupings use comma separators every three digits. The second and third
groupings also use leading and trailing zeros, with the outputs in the third grouping displayed as
percentages. The fourth output grouping uses scientific notation.

The first numeric output in the first grouping (0.006) has been truncated because its format-
ting string (line 7) only contains three digits of precision. It contains a leading zero because all
numeric values contain a leading zero unless scientific notation is being used. The last two outputs
in the first grouping do not contain trailing zeros because the pound sign (#) was used on line 7 to
specify their precision.

The outputs in the second grouping contain trailing zeros because a zero was used in their for-
matting string to specify their precision (line 8). Finally, the exponent (11) in the second numeric
output of the last grouping contains two digits even though its formatting string specifies one digit

Chapter 5- Repeating Statements: Loops I 207

of precision. All the digits of an exponent are always displayed, regardless of the number of zeros

used to specify the leading zeros of the exponent.

1 import java.text.DecimalFormat;

2

3 public class DecimalFormatClass

4

5 public static void main (String[] args)

6 {

7 DecimalFormat cs = new DecimalFormat ("#, ###.###"); //commas
8 DecimalFormat ltz = new DecimalFormat ("#,##0.000"); //zeros
9 DecimalFormat pct = new DecimalFormat ("#, ##0.00%"); //percentages
10 DecimalFormat sn = new DecimalFormat ("0.0000EQ0"); //scientific
11 double nl = 0.0062;

12 double n2 = 161234563468.5;

13 double n3 = 1.530;

14

15 System.out.println ("Comma-separators");

16 System.out.println (cs.format (nl));

17 System.out.println (cs.format (n2));

18 System.out.println (cs.format (n3));

19

20 System.out.println ("\nLeading & Trailing Zeros, & Commas");
21 System.out.println(ltz.format (nl));

22 System.out.println(ltz.format (n2));

23 System.out.println(ltz.format (n3));

24

25 System.out.println ("\nPercentages") ;

26 System.out.println (pct.format (nl));

27 System.out.println (pct.format (n2));

28 System.out.println (pct.format (n3));

29

30 System.out.println ("\nScientific Notation");

31 System.out.println(sn.format (nl));

32 System.out.println (sn.format (n2));

33 System.out.println (sn.format (n3));

34 }

35 }

Figure 5.9

The application DecimalFormatClass

208 B Programming Fundamentals Using Java

Comma separators
0.006
161,234,563,468.5
1.53

Leading & Trailing Zeros &Commas
0.006

161,234,563,468.500

1.530

Percentages

0.62%
16,123,456,346,850.00%
153.00%

Scientific Notation
6.2000E-3
1.6123E11
1.5300E0

Figure 5.10
The output produced by the application DecimalFormatClass.

IEZE NESTING ror LOOPS

As we have learned, loops can be used to repeat a statement or a group of statements contained
inside a statement block. When the statement block contains a loop, we say that the loop that is
inside the statement block is nested inside the other loop. The loop in the statement block is called
the inner loop because it is inside the other loop, which is referred to as the outer loop. The loop in
the statement block can be thought of as an egg inside the nest formed by the outer loop. Consider
the following code fragment that computes the average of a runner’s ten qualifying race times:

total = 0;

for(int i = 1; 1<=10; 1i++)

{

input = JOptionPane.showInputDialog ("Enter a race time");

aRaceTime = Double.parseDouble (input) ;
total = total + aRaceTime;

}

System.out.println (" Your average time is " + total / 10);

This code could be used to process 100 runners by nesting it inside an outer loop that executes
100 times.

for(int j = 1; j<=100; j++) //each runner (the outer loop)
{

Chapter 5- Repeating Statements: Loops I 209

total = 0;

for(int i = 1; i<=10; i++) //each race (the inner loop)

{
input = JOptionPane.showInputDialog ("Enter a race time");
aRaceTime = Double.parseDouble (input) ;
total = total + aRaceTime;

}

System.out.println (" Your average time is + total / 10);

}

As is the case with nested decision statements, there is no limit on how many loops can be
nested inside of other loops. The following code fragment processes the 10 qualifying times for 100
racers in 5 states using two levels of nesting.

for (int k = 1; k<=5; k++) //each state
{
for (int

{

1; j<=100; j++) //each runner

.
Il

total = 0;

for(int i = 1; i<=10; i++) //each race

{
input JOptionPane.showInputDialog ("Enter a race time");
aRaceTime = Double.parseDouble (input) ;
total = total + aRaceTime;

}

System.out.println ("Your average time is + total /10);

}

The indentation used in the above code fragment is considered good programming practice be-
cause it makes the use of nested loops, and the nesting levels, obvious to anyone reading the code. It
can be quickly determined that the three statements in the innermost loop will execute 5,000 times
(=5 * 100 * 10). When using nested loops, it is also good programming practice to progressively
develop the code from the inside of the nest outward. The innermost loop (e.g., one that processes
10 races) is coded first, tested, and corrected. Then, this loop is enclosed in a loop (e.g., one that
processes 100 runners), and this nested structure is again tested. The process continues until the
outermost loop (e.g., one that processes 5 states) is complete.

Figure 5.11 contains a graphics application that illustrates the use of nested for loops to draw
the checkerboard shown in Figure 5.12, and a second set of nested for loops to draw three rows of
red checkers on the board. A significant portion of the code is the same as the code shown in Figure
5.6 that drew one row of a checkerboard containing red checkers.

Lines 31 to 49 contain the first set of nested for loops used to draw the eight rows of the check-
erboard. The inner loop, that begins on Lines 33 and ends on Line 42, is same code used on Lines
29 to 38 of Figure 5.6 to draw one row of a checkerboard. This loop is now nested inside an outer
loop that begins on line 31, which executes eight times. With each pass through the outer loop, the
inner loop draws another row of the board. To prevent the rows from being drawn on top of each
other, line 43 increases the y location of the next row of boxes to be draw in the inner loop by the

210 M Programming Fundamentals Using Java

1 import edu.sjcny.gpvl.*;

2 import java.awt.Color;

3 import java.awt.Graphics;

4

5 public class CheckerBoard extends DrawableAdapter
6 {

7 static CheckerBoard ge = new CheckerBoard ();
8 static GameBoard gb = new GameBoard(ge, "Nested For
9

10 public static void main (String[] args)

11 {

12 showGameBoard (gb) ;

13 }

14

15 public void draw (Graphics g)

16 {

17 int xBox = 12;

18 int yBox = 50;

19 int boxWidth = 60;

20 int boxHeight = 53;

21 int firstCheckerCol = 1;

22 int checkerX = 20;

23 int checkerY = 55;

24 Color firstColor = Color.BLACK;

25 Color secondColor = Color.RED;

26 Color temp;

27

28 gb.setBackground (Color.LIGHT GRAY) ;

29

30 //Draw the checker board boxes

31 for (int row = 1; row <= 8; row++) //each row
32 {

33 for (int col = 1; col <=8; col++) //each column
34 {

35 g. setColor (firstColor);

36 if(col & 2 == 0)

37 {

38 g. setColor (secondColor);

39 }

40 g.fillRect (xBox, yBox, boxWidth, boxHeight) ;
41 xBox = xBox + boxWidth;

42 }

43 yBox = yBox + boxHeight;

44 xBox = 12;

45

46 temp = firstColor; //swap the box colors
47 firstColor = secondColor;

48 secondColor = temp;

49 }

loops") ;

Chapter 5- Repeating Statements: Loops H 211

50

51 //Draw the red checkers

52 for (int row = 1; row <= 3; row++) //first three rows
53 {

54 if(row $ 2 == 0) //an even numbered row

55 {

56 checkerX = checkerX + boxWidth;

57 firstCheckerCol = 2;

58 }

59 g.setColor (Color.RED) ;

60 for (int col = firstCheckerCol; col <=8; col= col + 2)
6l { //red checker locations

62 checkerX = 20 + (col -1) * boxWidth;

63 g.fillOval (checkerX, checkery, 40, 40);

64 }

65 checkerY = checkerY + boxHeight;

66 checkerX = 20;

o7 firstCheckerCol = 1;

68 }

69 }

70 }

Figure 5.11

The graphical application CheckerBoard.

height of the boxes, and line 44 resets the x location e ===

of the each row’s first box to 12. Before the outer loop
ends, lines 46—48 swap the colors of the odd and even
column boxes. This will make the colors of the boxes
to be drawn in each column of the next row different
from the color of the boxes in the row above them.

The inner loop that begins on lines 60 and ends on
line 64 is the same code used on lines 42—46 of Fig-
ure 5.6 to draw one row of red checkers. This loop is
now nested inside an outer loop that begins on line 31,
which executes three times. With each pass through
the outer loop, the inner loop draws the next row of
checkers. After a row is drawn, the y location of
the next row of checkers is calculated and assigned to
the variable checkerY on line 65. The value stored
in this variable is increased by the height of the boxes

Start
Stop

Figure 5.12
The output produced by the application CheckerBoard.

then used during the next iteration of the inner loop (line 63) to draw a row of checkers.

Line 66 reinitializes the x location of the first checker in a row to 20. The if statement on
line 54 decides when the row number is even. Because only the odd-numbered rows (rows 1 and
3) should have a checker in the first column of the board (at x = 20), checkerX is increased by the
width of a checkerboard box (line 56) when the row number is even. Then, line 57 sets the variable
firstCheckerCol, used on line 60 as the column number of a row’s first checker, to 2 (line 57)

212 B Programming Fundamentals Using Java

Il THE WHILE STATEMENT

Many applications require that a sequence of statements be repeated until a Boolean condition
becomes false, rather than repeating until the statements have been executed a given or known
number of times. For example, a program might continue to ask for a password until the correct
password is entered. When this is the case, the while or the do-while statements are normally
used to code the loop that repeats the statements. If the statements should be executed at least
once, the do-while statement is used. Otherwise, the while statement is used. In this section, the
while statement will be discussed, and the do-while statement will be discussed in Section 5.6.

Syntax of the while Statement

The generalized syntax of the while statement and its execution path are shown on the left and
right sides of Figure 5.13, respectively:

Boolean false

while (Boolean expression) expression

{
//statement (s) to be repeated

Statement(s) to be repeated

]
v

Figure 5.13
The syntax and execution path of the while statement.

The statement begins with the keyword while followed by a Boolean expression enclosed in
parentheses, which is followed by a code block containing the statements to be repeated. While
it is the case that a single statement to be repeated need not be coded inside a statement block, as
discussed in Section 5.2.1, it is good programming practice to do so.

As shown on the right side of Figure 5.13, the statements in the block will be repeated as long
as the Boolean condition is true. If, when the statement begins execution, the Boolean condition
is false, the statement block will not be executed.

The following code fragment outputs the square root of 1.2, 2.3, 3.4, and 4.5:

double n = 1.2;
while(n != 5.06)
{

Chapter 5- Repeating Statements: Loops I 213

System.out.println (Math.sgrt(n));
n=n-+1.1;

}
The most common errors made when coding the while statement are:

* placing a semicolon after the close parenthesis

* neglecting to code the open and close brace around the statements when more than one
statement is to be repeated

When a semicolon is coded after the close parentheses, the statement is syntactically correct,
however, none of the statements that would have normally formed the loop body are considered to
be part of (inside) the loop. They default to sequential execution, and each statement executes once.
When braces are not coded, the statement is also syntactically correct, however, the first state-
ment after the while statement is the only statement considered to be part of the loop. Regardless
of the indentation used, it is the only statement repeated. When coding a while loop, it is good
programming practice to code the following fragment and then add the Boolean condition and the
statements to be repeated:

while ()
{

}

A common logic error made when coding the while statement is that the statements inside
the statement block, during some repetition of the loop, do not change the Boolean expression to
false. The statement, or statements, intended to do that were either incorrectly coded or were
not included in the loop’s statement block. In either case, once the loop begins, it never ends, and
the loop is said to be an infinite loop. The following code fragment is an infinite loop because the
statement that increments n is not part of the loop’s statement block. On each iteration through the
loop, n’s value remains 1.2, and the Boolean condition never becomes false.

double n = 1.2;
while(n != 5.06)
{
System.out.println (Math.sqgrt(n));

}
n=n-+1.1;

Infinite loops can also occur when the loop’s Boolean expression is improperly coded, as is the
case in the following code fragment. The variable n assumes the values 1.2, 2.3, 3.4, 4.5, 56 ...,
but never the value 5.5.

double n = 1.2;
while(n != 5.5) //n never becomes 5.5

{
System.out.println (Math.sqgrt(n));
n=n+1.1;

214 B Programming Fundamentals Using Java

Sentinel Loops

Many applications require that a sequence of instructions be repeated until a signal to stop is
detected. The signal is referred to as a sentinel value, and a loop that ends when it detects a sentinel
value is called a sentinel loop.

Sentinel loops are commonly used to process a set of input data, and the sentinel value is cho-
sen to be a specific value of the input data. The value selected must be a value that would never
occur in that data set (for example, a student grade of -1). As another example, you might want to
continue to process bank deposits until a negative deposit is entered, or when data is being read
from a disk file to continue to process data from until an End of File (EOF) marker is encountered.
Although for loops that contain break statements could be used to code sentinel loops, they are
more easily coded using the while and do-while statements.

Often, the use of sentinel loops in our programs makes them easier to use. Imagine you are
a data-entry person using the program shown in Figure 5.8 to process a group of input deposits.
When the program is launched, you are asked for the number of deposits. If the first item on the list
of deposits you were given to enter was the number of deposits, the automatic counting performed
by the for loop used in the program would be perfect for the application.

However, if the number of deposits was not included in the list of deposits, then before you
used the application, you would have to count the number of deposits. Not only would this be time
consuming when the list of deposits was long, but if you miscounted the number of deposits, the
program would either terminate before all the deposits were entered (because your count was too
low) or ask you to enter a deposit that did not exist (because your count was too high). Generally
speaking, when the number of data items to be processed is not easily determined, sentinel loops
make our programs much easier to use.

The following code fragment is a template for a sentinel loop that uses a while statement to
process a set of inputs. Each input is read into a variable called the sentinel variable.

//obtain the first input into the sentinel variable
while(//the input is not the sentinel wvalue)

{
//statement (s) to perform the loop's processing
//obtain the next input into the sentinel variable

}

The template begins with a statement to accept the first input and the same statement, which
accepts all subsequent inputs, is also coded as the last statement in the while statement’s code
block. The other statements in the statement block perform the processing of each input. This
placement of the input statements in a sentinel loop prevents the processing of the sentinel value,
even if it is the first input (i.e., the data set is empty).

The three most common errors made when coding a sentinel loop are:

* neglecting to code the statement to accept the first sentinel variable input before the
while statement

Chapter 5- Repeating Statements: Loops H 215

* neglecting to code the statements to accept all subsequent inputs of the sentinel vari-
able at the end of the loop’s code block

* coding the statements to accept all subsequent inputs of the sentinel variable inside the
loop’s code block before the processing statements

The first error results in the loop processing the default value of the sentinel variable, or if the
default value is the sentinel value, the loop does not execute at all. The second error results in an
infinite loop because once the loop is entered, the sentinel variable is not changed. When the third
error is made, the first input is not processed.

The application SentineliWhileLoop presented in Figure 5.14 demonstrates the use of the
code template. It is a sentinel loop version of the program shown in Figure 5.8 that totals and aver-
ages a set of input deposits. Typical inputs and outputs are shown at the bottom of Figure 5.14. As
previously discussed, this version would be preferred if the number of deposits was not the first
data item.

Following the format of the while loop sentinel template, line 18 accepts the initial value of
the sentinel variable input. The Boolean expression (on line 19) of the while statement uses this
variable to decide if the statement’s code block should be executed. If anything other than the sen-
tinel value (-1) has been input, an execution of the loop’s statement block is performed.

Because an average is to be calculated and the user is no longer required to enter the number of
deposits, the counting algorithm is used on line 23 to count the number of deposits processed. The
counting variable, numOfDeposits, is initialized to zero on line 15. Consistent with the while
sentinel loop template, the last line of the loop’s code block (line 24) accepts the next input value
and stores it in the sentinel variable input.

1 import javax.swing.JOptionPane;
2 import java.text.NumberFormat;
3
4 public class SentinelWhileLoop
S) {
6 public static void main (String[] args)
7 {
8 double balance = 1000.24;
9 int numOfDeposits;
10 double deposit, total, newBalance, averageDeposit;
11 String input;
12 NumberFormat us = NumberFormat.getCurrencyInstance () ;
13
14 System.out.println ("Your beginning balance was:
"+ us.format (balance));
15 numOfDeposits = 0;
16 total = 0.0;
17
18 input = JOptionPane.showInputDialog ("Enter a deposit, -1 to end");
19 while(!input.equals("-1")) //input is not "-1"

216 B Programming Fundamentals Using Java

20 {

21 deposit = Double.parseDouble (input) ;

22 total = total + deposit;

23 numOfDeposits++;

24 input = JOptionPane.showInputDialog ("Enter a deposit, -1 to end");
25 }

26

27 balance = balance + total;

28 averageDeposit = total / numOfDeposits;

29

30 System.out.println ("The total of the " + numOfDeposits +
31 " deposits is "+ us.format (total));
32 System.out.println ("The average deposit was: " +

33 us.format (averageDeposit)) ;

34 System.out.println ("Your new balance is: " + us.format (balance));
35 }

36}

Inputs

20.10

30.20

40.30

-1

Outputs

Your beginning balance was: $1,000.24

The total of the 3 deposits is $90.60

The average deposit was: $30.20

Your new balance is: $1,090.84

Figure 5.14
The console application SentinelWhileLoop and the output it produces.

Another commonly used form of a while sentinel loop parses the input after each input is ac-
cepted. This adaptation of the while loop sentinel template in the program shown in Figure 5.14

would be coded as:

input = JOptionPane.showInputDialog ("Enter a deposit, -1 to end");

deposit = Double.parseDouble (input) ;
while (!deposit == -1.0)
{

//statement (s) to perform the loop's processing, less the parsing
input = JOptionPane.showInputDialog ("Enter a deposit, -1 to end");

deposit = Double.parseDouble (input) ;

Chapter 5- Repeating Statements: Loops W 217

Detecting an End Of File

Often, large data sets are stored in disk files, and the programs that process them read the data
from the disk file until a sentinel value is detected. Because the sentinel value is chosen to be a
value outside the range of the data set’s values, most sentinel values vary from one application to
another. In the case of a disk-based data file, there is one sentinel value that works for all data sets:
the End of File (EOF) marker that is placed at the end of each file.

In Section 4.8.1 of Chapter 4, we used the methods in the Scanner class to read data from
a disk text file. The Scanner class also contains a method named hasNext that can be used to
detect the EOF marker in a file. The method has no parameters and returns false when the EOF
marker is encountered. The following code fragment uses a sentinel loop to read all the integer data
values from the disk text file data.txt stored on the root of the C drive and outputs the values to
the system console. The value returned from the method hasNext is stored in the sentinel-variable
notEQF.

int dataltem;

File fileObject = new File("c:/data.txt");
Scanner fileIn = new Scanner (fileObject);
boolean notEOF; //the sentinel variable

notEOF = fileIn.hasNext(); //fetch the 1lst sentinel variable value
while (notEQF) //more data to process
{
dataltem = fileIn.nextInt();
System.out.println (dataltem) ;
notEOF = fileIn.hasNext(); //fetch next sentinel value
}

fileIn.close () ;

The following code fragment is a more succinct and more commonly used version of an EOF
sentinel loop:

int dataltem;
File fileObject = new File("c:/data.txt");
Scanner fileIn = new Scanner (fileObject);

while (fileIn.hasNext()) //more data to process

{
dataltem = fileIn.nextInt();
System.out.println (dataltem) ;

}

fileIn.close () ;

Figure 5.15 presents a modified version of the program shown in Figure 5.14 that processed a
group of deposits entered from the keyboard. The new version of the program reads the deposits
from a disk file using the file’s EOF marker as a sentinel value. A set of file inputs and the corre-
sponding program outputs are given at the bottom of Figure 5.15.

218 B Programming Fundamentals Using Java

The instructions in Figure 5.14 that accept input from the keyboard have been removed from
the program. Lines 1 and 2 of Figure 5.15 have been added to access the Scanner and File
classes. In the interest of brevity, exceptions that could be generated during the disk file input per-
formed by the program are not processed by the modified program. Rather, a throws clause has
been added to the end of line 7.

Line 21 begins a sentinel while loop that ends when an EOF marker is detected. Inside the
loop, line 23 reads and parses the next deposit using the Scanner object created by lines 13 and
14. Line 35 closes the disk file after the console output is performed.

1 import java.util.Scanner;

2 import java.io.*;

3 import java.text.NumberFormat;

4

5 public class EndOfFile

6 {

7 public static void main(String[] args) throws IOException
8 {

9 double balance = 1000.24;

10 int numOfDeposits;

11 double deposit, total, newBalance, averageDeposit;

12 NumberFormat us = NumberFormat.getCurrencyInstance () ;
13 File fileObject = new File("c:/data.txt");

14 Scanner fileIn = new Scanner (fileObject) ;

15

16 numOfDeposits = 0;

17 total = 0.0;

18

19 System.out.println ("Your beginning balance is: " +

20 us.format (balance)) ;

21 while (fileIn.hasNext ()) //more data to process

22 {

23 deposit = fileIn.nextDouble()

24 total = total + deposit;

25 numOfDeposits++;

26 }

27 balance = balance + total;

28 averageDeposit = total / numOfDeposits;

29

30 System.out.println ("The total of the " + numOfDeposits +
31 " deposits is " + us.format (total));
32 System.out.println ("The average deposit was: " +

33 us.format (averageDeposit)) ;

34 System.out.println ("Your new balance is: " + us.format (balance));
35 fileIn.close();

36 }

37 }

Chapter 5- Repeating Statements: Loops I 219

Disk File Inputs
20.10
30.20
40.30

Outputs

Your beginning balance was: $1,000.24
The total of the 3 deposits is $90.60
The average deposit was: $30.20

Your new balance is: $1,090.84

Figure 5.15
The application EndO£File, a set of file inputs, and corresponding outputs.

An alternate approach to using the Scanner class’s hasNext method to detect the end of a file
is to write the number of data items into the file as the file’s first value. If the data file processed by
the program shown in Figure 5.15 had been written this way, lines 21-26 would be coded as shown
below:

21 numOfDeposits = fileIn.nextInt(); //read the number of data items
22 for(int i = 1; i <= numOfDeposits; i++) //each data item

23 {

24 deposit = fileIn.nextDouble();

25 total = total + deposit;

26 }

Most often, the use of the hasNext method to detect the end of the file is the better approach
because if new data were added to end of the file, updating the number of data items at the be-
ginning of the file would require reading, deleting, and rewriting the entire file. This is a time-
consuming process.

I3 THE DO-WHILE STATEMENT

As previously discussed, when a loop in an application is to execute a known number of times,
the for statement is best suited for the application. When the number of times to execute the loop is
not known, either the while or the do-while statements are preferred. Of these two statements,
the do-while statement is the better alternative when the loop’s statements should be executed at
least once. For example, the code to check a password is normally coded inside a do-while loop
because the password has to be entered at least once.

Syntax of the do-while Statement

The generalized syntax of the do-whi 1e statement and its execution path are shown on the left
and right sides of Figure 5.16, respectively.

220 B Programming Fundamentals Using Java

Statement(s) to be
do repeated

//statement (s) to be repeated

Boolean
expression

}while (Boolean expression); false

Figure 5.16
The generalized syntax of the do-while statement.

The statement begins with the keyword do followed by the loop’s statement block. The key-
word while and the statement’s Boolean expression enclosed in parentheses are coded after the
statement block’s close brace. It is good programing style to code the keyword while and the
Boolean expression on the same line as the close brace because it improves the readability of the
statement. The do-while statement ends with a semicolon coded after the close parentheses that
terminates the Boolean expression.

As shown on the right side of Figure 5.16, the loop’s statement(s) will be executed at least once
because they are executed before the Boolean condition is tested. After they execute, the Boolean
expression is tested, and the statements are repeated until the Boolean condition becomes false.
The do-while loop is called a post-test loop because the test to terminate the loop is performed
after the loop’s statement block has executed at least once.

The most common syntactical errors made when coding the do-while statement are:

* placing a semicolon after the keyword do
* neglecting to include a semicolon after the Boolean expression

* neglecting to code the open and close braces around the statements when more than one
statement is to be repeated

All of these coding errors are syntax errors and are detected and reported by the Java transla-
tor. When coding a do-while loop, it is good programming practice to code the following code
fragment and then add the statements to be repeated and the Boolean condition, even if only one
statement is to be repeated.

do
{

}while();

Chapter 5- Repeating Statements: Loops I 221

The most common logic error made when coding this statement is that the statements inside
the statement block, during some repetition of the loop, do not change the Boolean expression
to false. In this case, once the loop begins, it never ends and is said to be an infinite loop. For
example, the following code sequence is an infinite loop because the loop’s statement does not
change the string variable password, which is used in the Boolean condition. The user-entered
password is mistakenly stored in the string object pw leaving the string password unchanged each
time through the loop.

String password = "";
String pw;
do
{
pw = JOptionPane.showInputDialog ("Enter The Password");
}while (!password.equals ("Mercury")) ;

The following code fragment is the correct coding of a do-while statement that verifies the
entry of the correct password, Mercury.

String password = "";
do
{
password = JOptionPane.showInputDialog ("Enter The Password");
}while (!password.equals ("Mercury")) ;

Infinite loops can also occur when the loop’s Boolean expression is improperly coded. In the
code fragment below, the logical operator NOT(!) has been left out of the Boolean expression, and
any password other than the correct password, Mercury, is accepted.

String password = "";

do

{

password = JOptionPane.showInputDialog ("Enter The Password");
}while (password.equals ("Mercury"));

THE BREAK AND CONTINUE STATEMENTS

The break and continue statements are used inside a for, while, or do-while loop’s cod-
ed block to alter the loop’s execution path. Just as a break statement terminates the execution of a
switch statement, a break statement may also be used to terminate a loop. Execution continues
with the statement that follows the loop.

NOTE When a break statement is executed inside a loop, the execution of the loop
— terminates.

When a continue statement is executed in a loop, the current iteration of the loop is termi-
nated, and statements that come after it in the loop’s body are not executed during that iteration of
the loop. Execution continues with the testing of the loop statement’s Boolean condition. When
a continue statement is executed inside a for loop, the loop variable is incremented before the
Boolean condition is tested.

222 B Programming Fundamentals Using Java

NOTE When a continue statement is executed inside a loop, the current iteration of the

loop terminates.

To illustrate the use of these two statements, the code fragment below gives a game player
three chances to enter the password “Mars” to access a game. The break statement is used to exit
the loop after the message Look up your password is output. The continue statement is used to
skip the message box output and the break statement until three incorrect passwords are entered.

int count = 1;
String password = "";
do

{
if (count <= 3)
{
password = JOptionPane.showInputDialog ("Enter your password");
count++;
continue;
}
JOptionPane.showMessageDialog(null, "Look up your password");
break;
}while (!password.equals ("Mars")) ;

Xl WHICH LOOP STATEMENT TO USE

When the number of times to repeat the loop’s statements is known, the for statement should
be used to code the loop. The number of times to repeat the loop could be known at the time the
program is written (e.g., the program will always process 100 race times), or it is determined dur-
ing the program’s execution before the loop statement is executed. For example, before entering a
group of deposits, the program users are asked to enter the number of deposits they will be making
into their bank account. In both of these cases the for loop is the preferred loop statement.

When the number of times to execute the loop is not known, either a while or a do-while
loop is preferred to a for loop. The while statement is the better alternative when there are times
(cases) when the loop body should not execute even once. The do-while statement is the better
alternative when the loop’s statements should always be executed at least once. Table 5.2 summa-
rizes the criteria for selecting the best loop statement for a particular application.

Table 5.2
Criteria for Selecting the Best Loop Statement

Is the Number of Times the Loop Will Execute Known? Loop Statement

The boundaries between the use of the three loop statements become somewhat blurred with
the use of the counting algorithm inside a while loop and the use of a break statement inside a
for loop. For example, to average 100 items, most programmers would use a for loop. However,

Chapter 5- Repeating Statements: Loops I 223

a while loop that contains the counting algorithm can also be used, as illustrated in the following
code fragment:

int count = 1;

double total = 0;

double average;

String sItem;

while (count <= 100)

{
sItem = JOptionPane.showInputDialog("enter and item");
total = total + Double.parseDouble(sItem);
count++;

}
average = total / 100;

System.out.println ("The average of the 100 items is: " + average);

The for loop is preferred for this application because when a while loop is used and we ne-
glect to increment the counter (count++;) in the loop’s body, the loop becomes an infinite loop. If
we use a for loop and neglect to increment the counter in the first line of the for statement, the
translator would alert us to the oversight.

Consider a program that totals input items until a -1 is entered or 100 items have been entered.
Most programmers would use a while loop for this application. However, it can be coded using a
for loop that contains a break statement.

double total = 0;
String sItem;

for(int i = 1; 1 <= 100; 1i++)
{

sItem = JOptionPane.showInputDialog ("enter an item");
if (sItem.equals("-1"))
{

break;

}
total = total + Double.parseDouble(sItem);
}
System.out.println ("The total of the items is: " + total);

When this for loop is used it would appear that the loop will always execute 100 times.
However, the loop terminates before 100 iterations when the break statement executes. From a
code readability point of view, the following while loop is the preferred loop statement for this
application because the first line of the while loop clearly states the two conditions that will end
the input loop.

int count = 1;

double total =

String sItem;

0;

224 B Programming Fundamentals Using Java

sItem = JOptionPane.showInputDialog("enter an item, or -1");
while (!sItem.equals("-1") && count <= 100) //tests both conditions
{

total total + Double.parseDouble (sItem)

count = count++;

sItem JOptionPane.showInputDialog ("enter an item, or -1");

}
System.out.println ("The total of the items is: " + total);

IEEE THE RANDOM CLASS

Pseudorandom numbers, their use in computer programs, and the ability to generate them with
the Math class’s random method were discussed in Section 2.6.4 of Chapter 2. The methods in the
class Random can also be used to generate pseudorandom numbers. In fact, these methods do the
work of the Math class’s random method in that the method random invokes the Random class’s
methods to generate the numbers it returns.

Table 5.3 lists the Random class’s constructors and some of its methods used to generate pseu-
dorandom numbers. Each time these methods are invoked, they return the next number in a se-
quence of random numbers. An object in the class Random is used to invoke them, which is created
using one of the class’s constructors.

Random randomObjectl = new Random() ;
Random randomObject?2 new Random (123456) ;

Table 5.3
Random (lass Methods

Method Description Coding Example

 Creates a Random object :
: Random() : based on the seed value time : Random ro = new Random() ;

] : Creates a Random object :
:Random (long seed) :based on the seed argument :Random ro = new Random(675) ;
] S sent to it :

: Returns the next pseudo-
: random real number in the

: tDoubl i double rn = ro.nextDouble () ;

] e : range: 0.0<=randomNum- Y
“ber<1.0

] Returns the next pseudoran- :

‘nextInt() : dom integer in the range of :int rn = ro.nextInt();

: the int primitive type
] : Returns the next pseudo- :
‘nextInt(int max) :random integer in the range :int rn = ro.nextInt (20);

: zero to one less than max

Chapter 5- Repeating Statements: Loops I 225

When the one-parameter constructor is used to create the object, the sequence of numbers the
methods generate is based on the integer argument sent to the constructor, which is called a seed
value. When the no-parameter constructor is used to create the object, the sequence of numbers
the methods generate is based on the time of day because the seed value defaults to the real-time
clock’s value expressed in milliseconds. Sequences of numbers generated with objects created us-
ing the same seed value will be identical.

The one-parameter constructor is used when it is desirable to generate the same sequence of
pseudorandom numbers every time the program is run. Conversely, the no-parameter constructor
is used when it is desirable to generate a sequence of pseudorandom numbers that rarely repeats
because the program would have to be run at exactly the same time of day to generate the same
sequence of numbers.

Like the Math class’s random method, the method nextDouble generates and returns a pseu-
dorandom real number (a double) in the range: 0.0 <= randomNumber < 1.0. The method can be
used to generate a real number in the range: min < randomNumber < max using the following
assignment statement (and sample object declaration):

Random randomObject?2 = new Random(98765) ;
randomNumber = min + randomObject2.nextDouble () * (max - min);

The following code sequence outputs a sequence of ten pseudorandom real numbers in the range
20.0 < randomNumber < 50.0. It would be very unusual for this code to generate the same sequence
of numbers during two executions of the program because the sequence’s seed value is the time of day
in milliseconds. (The Random object is created with the no-parameter constructor.) Alternately, the
one-parameter constructor could be used to generate a repeatable sequence of numbers.

double randomNumber;

double min = 20.0;

double max = 50.0;

Random randomObject2 = new Random(); // time of day seed value

for(int 1 = 1; 1i<=10; i++)

{
randomNumber = min + randomObject2.nextDouble() * (max - min);
System.out.println (randomNumber) ;

}

As shown in the Table 5.3, there are two versions of the nextInt method, which is used to
generate and return a random integer (of type int). The no-parameter version returns a pseudoran-
dom number over the full range of an int type variable (see Table 2.1).

The one-parameter version of the nextInt method is used to generate a sequence of integers,
each of which are within a specified range. The numbers returned from the method are in the range
zero to one less than the argument sent to it. The following code sequence generates a pseudoran-
dom number between zero and nine, inclusive:

Random randomObject?2 = new Random() ;
randomNumber = randomObject2.nextInt (10)

226 B Programming Fundamentals Using Java

The use of this method can be generalized. The following code sequence outputs ten random
integers in the range three to six, inclusive. The initial values of the variables max and min specify
the lowest and highest numbers generated in the sequence. Every time this code is run, the same
sequence of numbers is generated (5, 5, 5, 4, 3, 5, 5, 3, 6, 4) because the one-parameter constructor
was used to create the Random object.

int randomNumber;

int min = 3;
int max = 6;
Random randomObjectl = new Random(98765); //repeatable random set

for(int 1 = 1; 1i<=10; i++)

{
randomNumber = min + randomObjectl.nextInt (max - min + 1);
System.out.println (randomNumber); //in the range min to max inclusive

Figure 5.17 shows a number-guessing game program in which the player is asked to guess a
number between 32 and 38, inclusive. The inputs and outputs for a correct answer on the second
guess are shown in Figure 5.18.

Line 1 imports the Random class into the program. Line 8 declares an instance of this class,
randomObject, which is used to invoke the nextInt method on line 15. The use of the no-
parameter constructor on line 8 ensures that each time the program is run, there is the possibility
that a different pseudorandom number will be generated by line 15. The maximum and minimum
values of the pseudorandom numbers used on line 15 are specified on lines 9 and 10.

O J oy U wN R

N T T T N = S G SR S Vo)
O W Jdo U WO

N
(@}

import java.util.Random;
import javax.swing.*;

public class RandomClass
{
public static void main (String[] args)
{
Random randomObject = new Random(); //time of day seed value
int min = 32;
int max = 38;
int secretNumber;
String sGuess;
int count = 1;

secretNumber = min + randomObject.nextInt (max - min + 1);
JOptionPane.showMessageDialog (null, "Secret Number Guessing Game" +
"\nguess a number between " +
max + " and " + min);
do

Chapter 5- Repeating Statements: Loops I 227

21 sGuess = JOptionPane.showInputDialog ("Enter a guess " + count +
22 "\nOr click Cancel to quit");
23 count++;

24 if (sGuess == null) //Cancel was clicked

25 {

26 break;

27 }

28 }while (secretNumber != Integer.parselnt (sGuess));

29

30 if (sGuess == null) //Cancel was clicked

31 {

32 JOptionPane.showMessageDialog (null, "Secret Number was " +

33 secretNumber) ;

34 }

35 else

36 {

37 JOptionPane.showMessageDialog (null, "Great, you guessed it.");
38 }

39 }

40 1}

Figure 5.17
The application RandomClass.

ﬁ;ﬁ Enter guess number 1

Secret Number Guessing Game Or click Cancal to wl
guess a number between 32 and 38 |36|
oK [_ok || cancer |
@ (b)
Input L3 Message
Enter guess number 2
Or click Cancel to quit (:) Great, you guessed it.
3
OK
[_ok || cance | -

© (d
Figure 5.18
The inputs and corresponding outputs produced by the application RandomClass.

228 B Programming Fundamentals Using Java

THE ENHANCED for STATEMENT

The enhanced for statement is an alternate syntax of a for loop that is used to fetch a// of
the elements of an array sequentially. During the execution of the loop, the elements of the array
cannot be modified, so its use is limited. It can be used to output or total the elements of an array.

The syntax of the statement is given in below, in which anElement is a variable whose type,
aType, is always the type of the elements of the array arrayName:

for(aType anElement: arrayName)

{

//statement (s) that use the variable anElement

}

For example, if the array is an array of references to String objects, the statement would be
coded as shown below:

for(String anElement: arrayName)
{
//statement (s) that use the variable anElement

}

A colon is always coded after the variable anElement. If there is only one statement to be
executed within the loop, the open and close braces need not be coded, but it is good programming
practice to include them.

The number of times the loop executes is always equivalent to the length of the array, in the
above case arrayName.length. During the execution of the loop, the variable anElement as-
sumes the value of each element of the array in ascending order, beginning with the first element
(during the first iteration of the loop) and ending with the last element (during the last iteration of
the loop). The two loops shown below are equivalent, and both produce the system console output
Nora Ryan Logan.

String anArray = {"Nora", "Ryan", "Logan");

for (String anElement: arrayName)
{

System.out.print (anElement + " ");

System.out.println();

for(int i = 0; i < 3; i++)
{
System.out.print (arrayName[i] + " ")

}

Within the loop’s body, the variable used in the enhanced for statement (e.g., anElement),
can be used anywhere it is syntactically correct to use a variable of its type. An advantage of the
enhanced for loop is that it cannot produce an ArrayIndexOutOfBounds error because it does

Chapter 5- Repeating Statements: Loops I 229

not use a loop variable to access the elements of the array. The disadvantage is that the elements of
the array cannot be changed inside the loop. We will see a more practical use of the enhanced for
statement in Chapter 13, "Generics."

CHAPTER SUMMARY

Many applications require that the statements in a statement block be repeated, and in this
chapter we discussed three ways to perform this repetition: a for loop, a while loop, and a do-
while loop. The for loop is an automatic counting loop used when the number of times to repeat
the statements is known. The do-while and while loops end when their Boolean condition be-
comes false and they are usually used to detect a sentinel value of the data they are processing.
The do-while loop is used whenever the loop’s block should be executed at least once, and the
while loop is a more general-purpose loop that can be used in most applications.

The loop control variable of a for loop is used to control the number of iterations of the loop.
The statement’s initialization expression sets its initial value. At the end of each loop iteration, the
increment expression executes, which normally changes the value of the loop variable. The for
and while loops are called pretest loops: they test their Boolean condition to continue at the begin-
ning of the loop; the do-while loop is a posttest loop, testing its condition to continue at the end
of an iteration.

The totaling or summation algorithm is a loop-based algorithm because it sums a set of items
by repeatedly adding the value of a new item to an existing subtotal and making the result the new
subtotal. Its template is: total = total + newItem. Each time through the loop, the value
of the variable newItem assumes the next value to be totaled, which is often input by the user or
from a disk file. The variable total is initialized to zero before the totaling loop begins. The count-
ing algorithm can use used inside a loop’s statement block to count the number of times the loop
executes and can then be divided into the total the loop calculates to determine the average of the
totaled values.

Often, a sentinel value is used to terminate a loop when the number of input values to be
processed is unknown. Two Java statements, break and continue, also enable us to control the
number of times all or some of the statements within the body of the loop will be executed. When a
break is executed within a loop, the loop terminates. The cont inue statement can be used to end
the current iteration of the loop and is useful when conditions dictate that the remaining statements
in the loop’s block should be skipped during the current iteration. When a loop is used to obtain
and process an unknown number of inputs from a file, Java’s End of File (EOF) character or the
Scanner class’s hasnext method can be used as a sentinel to terminate the loop.

Nested loops are used to repeat loop-based algorithms. Examples include averaging 10 grades
and repeating this for 20 students or processing a set of race times for 100 runners. Nested loops
are particularly useful in creating two-dimensional graphics that are composed of many instances
of the same repetitive shape, such as the eight rows of eight squares of a checkerboard.

230 B Programming Fundamentals Using Java

The Random class’s nextInt and nextDouble methods can be used to generate a random
integer or real number and, when used inside of a loop, to generate a set of random numbers. The
nextInt method is easier to use than the Math class’s random method because it returns an inte-
ger in the positive range of the int type or within a specified range. This makes it ideal for generat-
ing random game board pixel locations. In addition, when the methods are invoked using a Random
object created with the class’s one-parameter constructor, they generate a repeatable sequence of
pseudorandom numbers. This is particularly useful in applications that require the same starting
point every time they are launched and is always used when the random numbers are generated
within a graphics call back method.

The methods in the DecimalFormat class can be used to insert leading/training zeros and
comma separators into numeric output, specify the output’s precision, and convert the output to a
percentage or display it using scientific notation. The methods in the NumberFormat and Locale
classes are used to produce local dependent currency formatting for use in financial and interna-
tional applications.

Our knowledge of these statements will be expanded in Chapter 6, which covers the concept
of arrays because loops are used to unlock the power of arrays. Also, in the next chapter, we will
see how loops can be used with arrays to enable us to input, output, and process large data sets.

Knowledge Exercises

1. True or false:
a) The body of a while loop will always execute at least once.

b) The for loop is an automatic counting loop and should be used where the number of
repetitions is known.

¢) A sentinel is a data value that can be used to terminate a loop.

d) The do-while loop will continue until the Boolean expression in the while statement
becomes true.

e) A while loop is a posttest loop.

f) Checking for the EOF condition can be used to control a loop.

2) A nested loop is a loop within a loop.

h) Every while loop can be written as a for loop without using a break statement.
i) Every for loop can be written as a while loop.

j) The break statement ends the current iteration of a loop.

k) A for loop ends when Boolean condition becomes t rue.

) The continue statement can be coded inside any loop.

m) Placing a semicolon after the parenthesis in a while loop can cause an infinite loop.
n) The statement block of a do-while loop may not be executed.

0) A for loop may be designed to count down by decrementing the control variable.

p) Loops may be used to validate user input or to give the user another chance to enter a
value, such as a password, that was typed incorrectly.

Chapter 5- Repeating Statements: Loops I 231

2. Write a loop that outputs the integers from 20 to 100 to the system console and the appropriate
term, odd or even, next to each output value.

3. Write a loop that outputs the sum of the even integers from 1 to n, where n is a value input by
the user, to a message box.

4. Consider the following code fragment:
int 1 10;
int sum = 0;
while (i <= 100)
{

sum = sum + 1i;
i++;
}
System.out.println ("The sum of the integers from 10 to 100 is: " +

sum) ;
a) How many times does this loop execute?
b) Write an equivalent for loop.
¢) Write an equivalent do-while loop.

5. Consider the following code fragment:
int i = 1;
while (i !'= 20)

System.out.println ("The value of i is " + 1);
a) Will this loop terminate? If not, why not?
b) What numbers does it output?

6. Consider the following code fragment:

int num = 4;

for (int 1 = 2; i <= 7; i++)

{ System.out.println("Number is " + num);
num num + i;

}
a) What is the value of num after the loop has executed twice?
b) How many times will the body of the loop be executed?
¢) What value will be output on the fourth time through the loop?
d) What is the value of num when the loop ends?
e) What causes this loop to terminate?

7. Consider the following code fragment:
int x = 11;
while (x > 0)
{ x=x - 3;
System.out.println (x);

232 B Pro

gramming Fundamentals Using Java

a) Give its output
b) Write an equivalent for loop
. Write the code fragment for an input validation loop that asks a user to enter an integer in

the range of zero to five, displays an error if the input is out of range, and gives the user an
unlimited number of chances to enter it correctly.

9. Write the code fragment for an input validation loop that asks a user to enter an integer in the

10.
11.

12.

1

range of zero to five, displays an error if the input is out of range, and gives the user at most
three chances to enter it correctly.

Explain the difference in the execution paths of a while loop and a do-while loop.

Give a code fragment to produce the following output to the system console every time it is
executed:

a) A different set of 20 random integers in the range 0 to 500
b) The same set of 20 random integers in the range 0 to 500

¢) The same set of 20 random integers in the range 7 to 500

d) The same set of 20 random integers in the range min to max

Give the declarations and output statements required to display the value stored in the double

variable balance, formatted as specified below. Also give the resulting formatted output.

a) US currency

b) One leading and one trailing zero, with comma separators every three digits to the left of
the decimal point

¢) Scientific notation with four digits of precision

d) Two trailing zeros, comma separators every three digits to the left of the decimal point,
and a leading zero only when the balance contains a value that only has a fractional part

e) Spanish currency

Programming Exercises

. Write a program that uses a for loop to calculate and output the product of the integers from
nto 1 (n factorial) to a message box. For example, when n = 4, the output would be 24 =4 * 3
* 2 * 1. The value of n will be input by the user via an input dialog box, and the output should
be properly annotated.

. You have just been hired by the TravelStars agency, and your first assignment is to produce
a histogram to graphically represent the ratings that travelers have given to various hotels.
Your program will begin by asking the user to enter the number of hotels to be including in
the histogram. Then, ask a user to input each hotel’s name, the hotel’s star rating, an integer
between 1 and 10 stars inclusive. The histogram should be output to the system console and
formatted as shown below.

Hotel Name Rating
Hotel 1 sk okok

Hotel 2 seskskoskok sk

Chapter 5- Repeating Statements: Loops I 233

HOtel 3 skeskkskskoksksk
Hotel 4 *%
Hotel 5 Rk

. Write a program that uses nested loops to output one or more of these patterns (or create some
of your own):

a) * ok ok kkkk Kk k*k b) * C) *
* ok ok kkkk Kk k*k * Kk % * %
* ok ok kkkk Kk k*k * ok ok kK * x %
* ok ok kkkk Kk k*k * ok Kk k ok Kk x * x Kk %
* ok ok kkkk Kk k*k * ok ok kkkkxk ok * X Kk *x %

. Write a program that asks the program users for the country in which they were born and their
salary for the each of the last 12 months. Output each month’s salary, as well as the total pay
for that year in the format of their local currency, to the system console, properly annotated.

. Write a program that outputs 25 random integers to the system console that are within a range
(minimum value and maximum value) specified by the user.

. Write a program to simulate the toss of two dice. Every time the user clicks the OK button on
a message generate two random outputs between 1-6, as well as the sum of the two dice. If the
total is 7 or 11, output You win, otherwise output Better luck next time.

. Write a graphical application that displays 650 of the 2,500 stars that can be seen in the
night time sky. The stars will be drawn on the game board as filled ovals whose diameter

is a random number between one and three pixels. There will be 400 white, 200 yellow,
and 50 red stars, positioned at random (x, y) locations on a black-colored game board. You
can change the color of the game board by invoking the Component class’s setBackground
method in the main method and passing it the color black.

. Write the application described in Programming Exercise 7 using three nested loops to draw
the stars.

. Write a graphical application to simulate a journey to the sun by Captain Burk. Before

the game board is displayed, the captain will be required to enter the noncase sensitive

password "SS" (short for Starship). Then, he will be asked to enter the tonnage of each

item in his cargo. When a -1 is entered, output the total weight of the cargo to a message

box and display the game board described in Programming Exercise 7 or 8 with a 50-pixel-

diameter sun positioned at the center of the game board. The sun will be a yellow instance of

a HeavenlyBodies class you will add to the application that contains:

* The four data members of a heavenly body: its (X, y) location coordinates, its diameter,
and its color

e A four-parameter constructor

* A show method, and set and get methods for all the data members

Use an input dialog box for all input.

234 B Programming Fundamentals Using Java

10. Write the graphical application described in Programming Exercise 9 expanded to include
these features:

Before the game board is displayed, the captain will be asked how many (of a maxi-
mum of three) planets to add to the night sky and then asked to enter the location and
diameter of each planet. The color of the three planets will be red, green, and brown,
respectively, and they will be instances of HeavenlyBodies displayed on the game
board.

When the Start button is clicked, the diameter of the sun should increase by 2 pixels
every 20 milliseconds to simulate the Captain Burk’s journey to the sun.

When the Start button is clicked a white comet (a HeavenlyBodies object) will
travel from the upper-left to the lower-right corner of the gameboard with its diameter
increasing from 3 to 50 pixels.

11. Using the skills developed in this chapter, continue the implementation of the parts of your
game requiring knowledge of loops. Be sure to add this feature:

Do not permit the game to be played until the case-sensitive password "gp" (game
player) is entered. After three unsuccessful password entries, output the statement pass-
words are case sensitive and terminate the program by invoking the System class's
exit method.

CHAPTER 6

6.1 The Originof Arrays 236 'y
6.2 The Conceptof Arrays 236 = .
6.3 Declaring Arrays 238 i

6.4 ArraysandLoops........................... 241 -

6.5 Arraysof Objects 243 o C
6.6 Passing Arrays Between Methods 250 o

6.7 Parallel Arrays 258 ARA
6.8 Common Array Algorithms. 265 1 s

6.9 Application Programmer Interface Array Support .278 E g
6.11 Deleting, Modifying, and Adding Disk File Items . 286 i
6.12 Chapter Summary., 290 :: 2

In this chapter

In this chapter, we will introduce the concept of an array and the powerful features of the
construct that make it a part of most programs. These features include the ability to store
and retrieve large data sets, and, when combined with the concept of a loop, these data sets
can be processed with only a few instructions. Array processing algorithms such as sorting,
searching, and copying will be discussed and implemented, as will algorithms introduced in
Chapter 4 for inserting and deleting items stored in a disk text file. We will also explore the

API methods that implement many of the classical array processing algorithms.

One-dimensional arrays, which can be used to store a list of items, will be discussed as well as
multi-dimensional arrays, and we will use two-dimensional arrays to organize data in tables as rows
and columns.

After successfully completing this chapter you should:

* Understand the advantages and importance of using arrays
* Be familiar with the Java memory model used to store arrays
* Be able to construct and use arrays of primitives and objects

* Understand and be able to implement the algorithms used to search an array, sort it, and
find the minimum and maximum values stored in it

* Be familiar with and be able to use the array-processing methods in the API
* Understand the concept of parallel arrays and use them to process data sets
* Know how to use arrays to insert, delete, or update data items stored in a disk file

* Be able to apply array techniques to game programs

236 B Programming Fundamentals Using Java

THE ORIGIN OF ARRAYS

The machines we call computers received their name because the first operational versions of
these machines were primarily used by mathematicians to perform rapid computations on large
data sets. They were machines whose task was to compute; they were computers. However, long
before computers were operational, mathematicians were using subscripted variables, such as x2 or
x4, to represent the data used in their formulas and calculations, so it was natural for them to want
to use these subscripted variables in the formulas evaluated by these early computing machines.

To facilitate the writing of these subscripted variables into a program, the designers of FOR-
TRAN (which stands for Formula Translation), the first high level programming language used
by mathematicians, included a construct that modeled subscripted variables. The construct was
named array. Thus, the computer concept of an array has its roots in the mathematical model of
subscripted variables.

K¥A THE CONCEPT OF ARRAYS

Consider a program that processes five people’s ages stored in the integer memory cells age0,
agel, age2, age3, and age4. The declaration of these variables would be rather straightforward:

int age0, agel, age2, age3, age4;

But suppose that instead of processing five people’s ages, the program processed five million
people’s ages. Although the declaration syntax for the five million memory cells would still be
straight forward, it would be quite lengthy and very time consuming to write. In fact, a good typist
would take more than a month to type just the variable declarations for this program, assuming
the typist typed continuously for eight hours each day without stopping to eat. (This, by the way,
is a violation of the federal labor laws.) Using the construct array, the same typist could type the
declaration of the five million memory cells in seconds.

That’s all an array is: a technique used to declare memory cells, which is rooted in the math-
ematical concept of subscripted variables.

Definition

An array is a programming concept used to declare groups of related memory cells in which
each member of the group has the same data type, the same first name, the array’s name, and a
unique last name called an index.

The memory cells are related in the same way that our integer memory cells age0 through
age4 were related: each one stores a person’s age, or perhaps a person’s weight, or perhaps an ad-
dress of a snowman game piece. In Java, The unique last names, the indexes (or indices), are always
sequential integers beginning with zero (i.e., 0, 1, 2, 3, 4, ...). In addition, Java syntax requires that
the unique last name is enclosed in open and close brackets, for example, [2].

Figure 6.1 shows ten memory cells used to store people’s ages. The five memory cells on the
left were declared to be five separate integer variables with the statement

int age0, agel, age2, age3, age4;

Chapter 6- Arrays Il 237

The five memory cells on the right were declared to be part of a five-member or element array
named age.

Non-array Array
age0| 0 0 age[0]
agel | 0 0 age[1]
age2 | 0 0 age[2]
age3 | 0 0 age[3]
aged | 0 0 age[4]
Figure 6.1

Storage allocated to five integer variables and to a five-element array named age.

As shown in Figure 6.1, the amount of storage allocated to the integer variables on the left
side of the figure is the same as the amount of storage allocated to array elements shown on the
right side of the figure: five distinct integer memory cells. From a memory-allocation viewpoint,
the only difference in the way memory is allocated to the memory cells that make up the elements
of an array is that the array elements are always allocated as contiguous memory; that is, if each
memory cell occupied four bytes of storage, and age[0] was stored in bytes 100—103, the memory
allocated to the subsequent four elements of the array would begin at byte addresses 104, 108, 112,
and 116. (In contrast, the five integer variables might be stored in different locations scattered
around memory:.)

Array elements can be used in our programs anywhere it is syntactically correct to code the
name of a memory cell: in input and output statements, in arithmetic and logic expressions, on
the left side of an assignment operator, and as arguments and parameters. To use them, we simply
code their complete names. For example, the statements on the left and right sides of Figure 6.2 are
equivalent, although they are syntactically different because the statements on the right side of the
figure use the array construct.

age3=new Scanner (System.in) .nextInt () ;

age3 = age3 + 1;
System.out.println ("Your age is" +
age3) ;
if (age3 >= 18)
{
System.out.println("You can " +

"Drive now");

double avgAge averageTwo (age0,

agel) ;

age[3]=new Scanner (System.in) .nextInt();

age[3] age([3] + 1;

System.out.println ("Your age is"
age[3]);

+

if (age[3]
{

>= 18)
System.out.println("You can " +
"Drive now") ;

double avgAge averageTwo (age[0]

agel[l]);

Without arrays

With arrays

Figure 6.2
Equivalent statements with and without the use of arrays.

238 B Programming Fundamentals Using Java

Although the syntax involved in using arrays is a bit more cumbersome because of the cod-
ing of the open and close brackets, as previously mentioned, they do give us the ability to rapidly
declare large numbers of variables. In addition, as we will see later in this chapter, when arrays are
used inside of loops they also give us the ability to process large data sets with just a few lines of
code. For these two reasons, most programs use arrays.

DECLARING ARRAYS

In Java, all arrays are stored inside of an object. Although we most often state that we are
“declaring an array,” it is more accurate to state that we are “declaring an object that contains an
array.” In fact, as we shall see, the object contains not only the array but an also an integer data
member named length.

The syntax used to declare an array object is similar to the syntax used to declare non-array ob-
jects in that a reference variable is declared that will refer to the array object, and the keyword new
is used to construct the object. Where they differ is that the array-object declaration syntax also
includes a set of brackets to indicate that the reference variable will refer to an array object, and the
number of elements the array will contain (called the size of the array) is enclosed in another set of
brackets. The generalized syntax is:

aType[] arrayName = new aTypel[arraySize];
where:

aType is the type of the elements of the array

arrayName is the name of a reference variable that will store the address of the array object,
also considered to be the name of the array

arraySize is the number of elements in the array
To declare an array object that could store five integer ages we would write:
int[] ages = new int[5];

This statement allocates the memory shown in Figure 6.3. Not only is the storage for the array’s
elements allocated inside the object, but an integer named length is allocated and initialized to
the size of the array. The index of the first element of an array is always zero, and the indexes of
the remaining elements of an array are assigned sequential integer values in ascending order. This
implies that the index of the last element of an array is always one less than the size of the array. In
a five-element array, ages[5] does not exist, which is somewhat counterintuitive, and attempting
to access it results in a runtime error.

NOTE The indices of an array containing n elements are 0 through n-1, and the size of the
— array is n.

Conceptually, the array object declaration would be drawn as shown on the right side of
Figure 6.1, which is the way we most often visualize an array. Figure 6.3 gives a more accurate
depiction of the storage allocated to the array object created by the declaration given in the figure’s
caption and the reference variable, ages, that refers to the array object.

Chapter 6- Arrays Il 239

age n?//l 100

Figure 6.3
The array object created by the statement int[] ages = new int[5];.

When an array object is created, the elements of the array are initialized to their default values
(e.g., zero for an array of integers), and the array object is assigned an address (address 100 in Fig-
ure 6.3). The data member length is initialized to the size of the array. For example in Figure 6.3,
length stores the value 5 inside the array object ages.

The data member length is a public data member, so rather than using a get method to ac-
cess it, it can be accessed by coding the name of the array object followed by 1ength, preceded by
a dot. The following code fragment outputs a 3, the size of the array ages:

int[] ages = new int[5];
System.out.println (ages.length);

The data member length is a final variable and cannot be assigned a value. The following code
fragment results in a translation error:

int[] ages = new int[5];
ages.length = 23; //syntax error: can’t re-assign a final constant

Dynamic Allocation of Arrays

An array object, like any other object, can be allocated dynamically during the execution of
the program. As we have learned, to do this we most often use the two-line object declaration
syntax. The first line is used to declare the reference variable that will refer to the object, and good
programming practice dictates that this line is coded at the top of the method or class in which the
array will be used. The second line of the syntax is used to allocate the object and set the reference
variable pointing to it. This line is normally coded further down in a method.

The splitting of the array object declaration syntax permits the size of the array to be deter-
mined by the processing the program performs. For example, the size of the array could be read
from the first line of a disk file that also contains the data that will be stored in the array, or the size
of the array could be input by the user. For example:

int[] ages;

String sSize = JOPtionPane.showInputDialiog ("How many ages" +
"will be entered?");

240 B Programming Fundamentals Using Java

int size = Integer.parselnt(sSize);
ages = new int[size];

Many applications, in which the number of data items to be processed is determined at run
time, would be very difficult to code without the use of arrays. For example, consider an applica-
tion that outputs a set of input data in reverse order. This requires declaring a variable for every
data item because they must all be saved until the last data item is input and then output. Because
the number of inputs is not known until runtime, without the use of arrays, we would have to guess
the maximum number of inputs, allocate that number of variables, and keep our fingers crossed
that we did not guess too low.

The fact that the 1length data member of an array object cannot be changed is consistent with
the fact that, in Java, the size of an array cannot be changed. As is the case with all objects, the
reference variable that refers to the object can be assigned to another object. In the case of an array,
we can make use of this fact to effectively resize the array at runtime by assigning the reference
variable to the address of a smaller, or a larger, array object.

For example, an array initially sized to five elements could be made to refer to a new array
object whose size is based on a user input.

int[] data = new int[5];

String sSize = JOPtionPane.showInputDialiog ("How many ages" +
"will be entered?");

int size = Integer.parselnt(sSize);

data = new int([size];

Assuming the user entered a “3” in response to the above prompt, Figure 6.4 shows the changes
in the contents of the reference variable data and the array object that data refers to, resulting
from the execution of the above code. It should be noted that if the original five-element array con-
tained five people’s ages, these ages would be lost after the dynamic allocation.

data ny/l /1/00 200 / -------

Figure 6.4
The effect of the statement data = new int[3];.

Chapter 6- Arrays Il 241

As shown in Figure 6.4, the five-element array object’s address is overwritten with the address
of the new three-element array object, causing the storage allocated to the five-element array to be
reclaimed by the Java runtime memory manager. In Java, the storage allocated to objects that are
not referred to by a reference variable is reclaimed for use by other programs. In Section 6.9, we
will discuss techniques for transferring the values into a resized array when it is created.

KXH ARRAYS AND LOOPS

Using arrays inside loops gives us the ability to process large data sets with just a few lines of
code. This is because the index used to specify which element of the array is being processed can
not only be a numeric literal (e.g., a = age[2];), but it can also be an integer variable. The only
restriction on the integer variable is that the value stored in it must be a valid element number of
the array. The following code segment outputs the third element of the array price twice. When
the last statement executes, the current contents of the variable index is fetched, substituted for
the variable index, and the output is performed.

double[] price = new double[100];
int index = 2;

System.out.println(pricel[2]);
System.out.println(price[index]) ;

This array feature is commonly used with the loop variable of a for statement as the array
index. Using this approach, the code to decrease the price of each of the 10,000 items a department
store sells by 10% in preparation for its annual Labor Day sale can be coded in just two lines of
code:

for(int i = 0; 1 < 10000; i++)
{

salePrice[i] = price[i] * 0.9;

}

The first time through the loop the variable i stores the value 0, and salePrice[0] is com-
puted. The second time through the loop i stores the value 1, and salePrice[1] is computed.
This process continues until finally salePrice[9999] is computed.

Two common mistakes are made when processing arrays inside of loops, both of which are
syntactically correct:

* the loop variable is initialized to 1 instead of to 0

* the Boolean condition is incorrectly coded using the <= operator instead of <
The first mistake stems from the fact that most of us begin with 1 when we count: 1, 2, 3, etc., so

our natural tendency is to initialize the loop variable to 1 instead of 0. When this mistake is made,
the first element of the array (element zero) is not processed.

Coding the Boolean condition incorrectly is the most common mistake. When all the elements
of the array are to be processed, our code is much more understandable if we use the size of the

242 B Programming Fundamentals Using Java

array, price.length, in the Boolean condition. However, when we do this, we must use the less
than (<) operator in the condition (e.g., i < price.length). Unfortunately, most novice program-
mers, intent on processing the last element of the array, use the <= operator, and the last iteration
of the loop generates an index that is one greater that of the last element of the array (e.g., 5 for a
five-element array). The result is a runtime error indicating that the program generated an Array-
IndexOutOfBoundsException. This error occurs whenever a program uses an array index that
is not in the range 0 to one less than the array’s size.

Figure 6.5 presents the application ArraysAndLoops that uses many of the array concepts
discussed thus far in this chapter to compute, and output, the sale price of a group of input items.
It accepts the prices of a set of items to be placed on sale, then computes and outputs the sale price
of the items. A sample set of inputs and the corresponding outputs produced by the program are
given at the bottom of the figure.

1 import javax.swing.*;

2 import java.text.NumberFormat;

3

4 public class ArraysAndLoops

5 {

6 public static void main (String[] args)

7 {

8 double[] price, salePrice;

9 String s;

10 int size;

11 NumberFormat fm = NumberFormat.getCurrencyInstance () ;
12 s = JOptionPane.showInputDialog ("How many sale items?");
13 size = Integer.parselnt(s);

14 price = new double[size];

15 salePrice = new double[size];

16

17 for(int 1 = 0; i < size; i++)

18 {

19 s = JOptionPane.showInputDialog ("Enter item " + (i + 1) +
20 " 's price");

21 price[i] = Double.parseDouble (s) ;

22 }

23

24 for(int i = 0; i < price.length; 1i++)

25 {

26 salePrice[i] = price[i] * 0.9;

27 System.out.println ("The sale price of item " + (i + 1) +
28 " is " + fm.format (salePrice[i]));
29 }

30 }

31}

Chapter 6- Arrays W 243

Inputs:

5

10.00

20.00

30.00

40.00

50.00

Outputs:

The sale price of item 1 is $9.00
The sale price of item 2 is $18.00
The sale price of item 3 is $27.00
The sale price of item 4 is $36.00
The sale price of item 5 is $45.00

Figure 6.5
The application ArraysAndLoops and a set of inputs and corresponding outputs.

After the user enters the number of items to be placed on sale (line 12), two array objects are
dynamically allocated on lines 14 and 15, and their addresses are assigned to the reference vari-
ables price and salePrice. These variables were declared on line 8.

The program uses two for loops that begin on lines 17 and 24. The first loop accepts the input
of the non-sale prices, and the second loop computes and outputs the sale prices. The loop variable,
i, of the for loop that begins on line 17 is used to change the element of the array price (line 21)
that stores the parsed input. The second for loop, which begins on line 24, uses its loop variable to
index its way through the array price and the array salePrice (line 26) as it computes the new
values of the salePrice array.

The first loop uses the variable size, which was used to size both arrays on lines 14 and 15,
in its Boolean condition. The second loop uses the length data member of the array object price
in its Boolean condition. Either approach can be used. However, the latter approach is preferred
because it more clearly indicates that the entire array is being processed within the loop, and elimi-
nates the chance that an incorrect variable (other than size) would be coded in the Boolean condi-
tion. The second approach is also preferred when the array is passed into a method that will process
the array’s contents for reasons that we will discuss in Section 6.6. Both for statements correctly
use the less than operator (<) in their Boolean conditions.

KX ARRAYS OF OBJECTS

Technically speaking, there is no way to declare an array of objects. The elements of an array
cannot be objects; they can only be primitive or reference variables. However, when the array ele-
ments are reference variables, each element of the array can contain the address of an object. When
this is the case, we often say that we have “an array of objects” because it is easier to say than “an
array of reference variables that refer to objects” (which is what we actually have).

244 B Programming Fundamentals Using Java

Leaving aside the technical jargon, when we set each element of an array of reference variables
to point to an object, we can rapidly process all of the objects by indexing through the array of ref-
erence variables. In addition, just as it was easy to declare a large number of variables using arrays,
we can easily declare a large number of objects using arrays of reference variables.

The first step in applying the power of arrays to programs that process objects is to declare (an
array object that contains) an array of reference variables. The second step is to declare the objects
and set their addresses into the elements of the array. The syntax used to declare the array of refer-
ence variables is the same syntax used to declare an array of primitive variables. The following
declaration creates an array of reference variables that could refer to five Snowman objects:

Snowman[] sm = new Snowman[5];

The storage allocated by this declaration is shown in Figure 6.6. Because the array contains
reference variables, they are initialized to the default value of a newly created reference variable:
null. Otherwise, the figure is identical to Figure 6.3, which shows the storage allocated when an
array of five integers is declared.

sm ny//l 100

Figure 6.6
The storage created by the declaration Snowman[] sm =new Snowman[5];.

As shown in Figure 6.6, the declaration of the array object does not allocate any Snowman
objects. To do this, we have to invoke a constructor in the Snowman class and set the returned ad-
dress of the newly constructed Snowman into an element of the array. Assuming the class has a
two-parameter constructor, one way to do this is to write five declaration statements:

[0] = new Snowman (50, 100);
[1] = new Snowman (100, 100);
sm[2] = new Snowman (150, 100);
[3] () ;
[4] ()

’

= new Snowman (200, 100
= new Snowman (250, 100

’

Assuming the constructor’s parameters are the (x, y) location of a Snowman object, our five
newly created snowmen will be standing shoulder to shoulder (at x = 50, 100, 150, 200, and 250)
when they are drawn on the game board. An equivalent but more efficient way to construct the
five snowmen would be to place the invocation of the constructor inside a loop. The use of a loop

Chapter 6- Arrays H 245

is the preferred coding technique, which we would quickly realize if we had to declare a group of
5,000 snowmen.

for(int i = 0; 1 < 5; i++)

{

sm[i] = new Snowman (50 + i * 50, 100);

}

Because the loop variable is used as the index into the array sm, sm[0] receives the address of
the first Snowman created inside the loop. During each additional pass through the loop, the next
sequential element of the array receives the address of a newly created Snowman. In addition, the
loop variable is used to change the x coordinate of the snowmen, using the expression (50 + 1 * 50),
each time through the loop. The storage created after the loop completes its execution is shown in
Figure 6.7.

sm ny/l 100

Figure 6.7
An array of five reference variables pointing to five Snowman objects.

[EXW Processing an Array’s Objects

In Section 6.4, we learned that large primitive data sets could be processed with just a few
lines of code using the concepts of arrays and loops. To accomplish this, the data set was stored in
an array of primitive variables, and the processing instructions were coded inside a loop. The loop
variable was used as the index into the array, which caused the processing instruction(s) to operate
on a different element of the array during each pass through the loop.

Similarly, we can process large sets of objects with just a few lines of code by storing the
objects’ addresses inside an array of reference variables and then perform the processing on each
object inside a loop. The only difference is that instead of performing the processing on the array
elements themselves, the array elements are used to invoke the class’s processing methods on the
objects they reference.

For example, the code to add one to each of five people’s ages stored in an array of integers
named ages is very similar to the code that moves each of five snowmen stored in an array of
objects named sm one pixel to the right. The following code fragment illustrates the similarities:

246 B Programming Fundamentals Using Java

int x;
for(int i = 0; i < 5; i++)

{

ages[1i] ages[i] + 1; //increment the ages

x = sm[i].getX(); //move the snowmen
sm[i].setX(x + 1);

Each time through this loop, the loop variable is used to change the element of the two arrays
involved in loop’s processing instructions. In the case of the integer array, the value stored in one
of the elements of the array, ages, is incremented by one; that is, the contents of the array ages
is changed. However, the loop processing does not change the contents of the array sm. Rather, it
uses the contents of the array sm to specify which Snowman object will be changed (operated on)
by the getx and setX methods during each pass through the loop. In this case, the x data member
of each Snowman object is increased by one.

That is not to say that the contents of an array of reference variables cannot be changed inside
a loop. As we have already seen, this is done when objects are constructed and the default null
values stored in the elements of the array are overwritten with the location of the newly constructed
(Snowman) objects. Conversely, all five snowmen could be eliminated from a game by overwriting
their addresses stored in the array with the value null:

for(int i = 0; i < 5; i++)
{
sm[i] = null;

}

This would cause the Java memory manager to recycle the storage allocated to the five Snowmen
objects and make it available to other programs running on the system.

The game application in Figure 6.8 uses the concepts discussed in this section to conduct a
parade of eight snowmen whose class is shown in Figure 6.9. The output produced by the program
when it is launched and the output produced several seconds after the start button is clicked are
shown on the left and right sides of Figure 6.10, respectively.

An array of reference variables named parade that will be used to store the addresses of eight
Snowman objects, is created on line 7 of Figure 6.8. When the game is launched, the snowmen
are displayed along a left-to-right downward-sloping diagonal (as shown in Figure 6.10a), until
the Start button is clicked. Then they parade around the game board reflecting off its boundaries,
eventually coming to the positions shown in Figure 6.10b.

The creation, display, animation, and reflection of the snowmen are performed inside four
loops. Within each iteration of these loops, a different snowman is processed because the loop
variable is used as an index into the parade array. The first of these loops (lines 11-14 of Figure
6.8) is used to create the snowmen and place the addresses of these eight objects in the reference

Chapter 6- Arrays W 247

variable array parade. On line 13, the loop variable, i, is used inside the argument list sent to the
SnowmanV7 class’s two-parameter constructor to calculate each snowman’s initial (x, y) location
along a downward-sloping diagonal. During each iteration of the loop that begins on line 21, a dif-
ferent snowman is displayed on the game board at its current (x, y) location.

The remaining two loops, which begin on lines 31 and 41, move the snowmen around the game
board and bounce (reflect) them off the vertical and horizontal boundaries of the game board. The
loops are coded inside the timer3 call back method (lines 27-56), whose interval is set to 20 mil-
liseconds on line 15. As a result, every 20 milliseconds (1/50th of a second), the game environment
invokes this method, and the loops are executed. After the timer3 method completes its execu-
tion, the game environment invokes the application’s draw method (line 19), which displays the
snowmen at their new (X, y) position.

The for loop coded on lines 31-39 of the application performs the animation of the snow-
men. By using the loop variable, i, as an index into the parade array, each snowman’s x and y
position is fetched (lines 33 and 36), incremented by their corresponding speed data members
(lines 34 and 37), and set to their new values (lines 35 and 38). Being coded inside the timer3
method, this code changes each snowman’s (x, y) position every 20 milliseconds. The rapid re-
positioning and redrawing of the snowmen (every 1/50th of a second) gives the appearance of
continuous motion.

The for loop coded on lines 41-55 of Figure 6.8 performs the reflection of the snowmen off
the boundaries of the game board. The two data members, xSpeed and ySpeed were added to the
class Snowmanv7 (Figure 6.9, lines 7 and 8) along with their corresponding set and get methods
(lines 41, 45, 49, and 53) to perform this reflection. The loop variable, i, is used inside two i f state-
ments (that begin on lines 43 and 49 of Figure 6.8) to index into the parade array. Their Boolean
conditions determine when a snowman’s current (X, y) position is at or beyond the vertical (line 43)
and horizontal (line 49) boundaries of the game board.

When this is the case, the snowman’s speed is fetched (lines 45 and 51), its sign is reversed
(lines 46 and 50), and the new value is set into the snowman’s speed data member (lines 47 and
53). Then, during the next execution of the timer3 method, when each snowman’s speed is used
to reposition it on the game board, those that reached a game board edge appear to bounce off the
edge because the sign of their speed has been reversed.

import java.awt.Graphics;
import edu.sjcny.gpvl.*;

public class SnowmanParade extends DrawableAdapter

{ static SnowmanParade ge = new SnowmanParade () ;
static GameBoard gb = new GameBoard(ge, "Snowman Parade");
static SnowmanV7[] parade = new SnowmanV7[8];

public static void main (String[] args)
0 {

P ©O© 0 Jo O W N

248 B Programming Fundamentals Using Java

11 for (int i=0; i1 < parade.length; i++) //create each snowman
12 {

13 parade[i] = new SnowmanV7 (10 + i * 50 , 100 + i * 30);
14 }

15 gb.setTimerInterval (3, 20);

16 showGameBoard (gb) ;

17 }

18

19 public void draw (Graphics g) //draw each snowman

20 {

21 for(int i = 0; i < parade.length; i++)

22 {

23 parade[i] .show (qg) ;

24 }

25 }

26

27 public void timer3()

28 {

29 int x, speed, y;

30

31 for(int i = 0; i <parade.length; i++) //move each snowman
32 {

33 x = parade[i].getX();

34 X = x + parade[i].getXSpeed();

35 parade[i] .setX(x);

36 y = parade[i].getY();

37 y =y + parade[i].getYSpeed();

38 parade[i] .setY (y)

39 }

40