

PROGRAMMING FUNDAMENTALS

USING JAVA

LICENSE, DISCLAIMER OF LIABILITY, AND LIMITED WARRANTY

By purchasing or using this book (the “Work”), you agree that this license grants permission

to use the contents contained herein, but does not give you the right of ownership to any of

the textual content in the book or ownership to any of the information or products contained

in it. This license does not permit uploading of the Work onto the Internet or on a network

(of any kind) without the written consent of the Publisher. Duplication or dissemination

of any text, code, simulations, images, etc. contained herein is limited to and subject to

licensing terms for the respective products, and permission must be obtained from the

Publisher or the owner of the content, etc., in order to reproduce or network any portion of

the textual material (in any media) that is contained in the Work.

MERCURY LEARNING AND INFORMATION LLC (“MLI” or “the Publisher”) and anyone involved

in the creation, writing, or production of the companion disc, accompanying algorithms,

code, or computer programs (“the software”), and any accompanying Web site or software

of the Work, cannot and do not warrant the performance or results that might be obtained

by using the contents of the Work. The author, developers, and the Publisher have used

their best efforts to insure the accuracy and functionality of the textual material and/or

programs contained in this package; we, however, make no warranty of any kind, express

or implied, regarding the performance of these contents or programs. The Work is sold “as

is” without warranty (except for defective materials used in manufacturing the book or due

to faulty workmanship).

The author, developers, and the publisher of any accompanying content, and anyone

involved in the composition, production, and manufacturing of this work will not be liable

for damages of any kind arising out of the use of (or the inability to use) the algorithms,

source code, computer programs, or textual material contained in this publication. This

includes, but is not limited to, loss of revenue or profi t, or other incidental, physical, or

consequential damages arising out of the use of this Work.

The sole remedy in the event of a claim of any kind is expressly limited to replacement of

the book, and only at the discretion of the Publisher. The use of “implied warranty” and

certain “exclusions” vary from state to state, and might not apply to the purchaser of this

product.

A Game Application Approach

MERCURY LEARNING AND INFORMATION

Dulles, Virginia

Boston, Massachusetts

New Delhi

PROGRAMMING FUNDAMENTALS

USING JAVA

William McAllister and S. Jane Fritz

St Joseph’s College, New York

Copyright ©2015 by MERCURY LEARNING AND INFORMATION. All rights reserved.

This publication, portions of it, or any accompanying software may not be reproduced in any way, stored in

a retrieval system of any type, or transmitted by any means, media, electronic display or mechanical display,

including, but not limited to, photocopy, recording, Internet postings, or scanning, without prior permission in

writing from the publisher.

Publisher: David Pallai

MERCURY LEARNING AND INFORMATION

22841 Quicksilver Drive

Dulles, VA 20166

info@merclearning.com

www.merclearning.com

1-800-758-3756

This book is printed on acid-free paper.

W. McAllister and S. Jane Fritz.

Programming Fundamentals Using Java: A Game Application Approach.

ISBN: 978-1-938549-76-2

The publisher recognizes and respects all marks used by companies, manufacturers, and developers as a

means to distinguish their products. All brand names and product names mentioned in this book are trade-

marks or service marks of their respective companies. Any omission or misuse (of any kind) of service marks

or trademarks, etc. is not an attempt to infringe on the property of others.

Library of Congress Control Number: 2014941166

141516321 Printed in the United States of America

This book is printed on acid-free paper.

Our titles are available for adoption, license, or bulk purchase by institutions, corporations, etc.

For additional information, please contact the Customer Service Dept. at 1-800-758-3756 (toll free). Digital

versions of our titles are available at: www.authorcloudware.com

The sole obligation of MERCURY LEARNING AND INFORMATION to the purchaser is to replace the disc, based on

defective materials or faulty workmanship, but not based on the operation or functionality of the product.

To the memory of my mother Alma, who cherished in me something she was not

afforded - a formal education.

—Bill McAllister

To all those who have taught me by example that “if you can dream it,

you can do it,” with gratitude.

—S. Jane Fritz

To our students, whose enthusiasm for learning has always

inspired us to pursue improved teaching techniques.

—Bill McAllister

—S. Jane Fritz

Contents

Preface xv

Acknowledgments xxiii

Credits xxv

Chapter 1 Introduction 1

1.1 The Computer System 2

1.2 A Brief History of Computing 5

1.2.1 Early Computing Devices 6

1.2.2 Computers Become a Reality 7

1.2.3 Computer Generations 9

1.2.4 More Notable Contributions 11

1.2.5 Smaller, Faster, Cheaper Computers 12

1.3 Specifying a Program 13

1.3.1 Specifying a Game Program 15

1.4 Sample Student Games 17

1.5 Java and Platform Independence 17

1.5.1 The Java Application Programmer Interface 19

1.6 Object Oriented Programming Languages 21

1.7 Integrated Development Environments and the

Program Development Process 22

1.7.1 Mobile-Device Application Development Environments 25

1.8. Our Game Development Environment: A First Look 26

1.8.1 The Game Window 26

1.8.2 The Game Board Coordinate System 27

1.8.3 Installing and Incorporating the Game Package into a Program 28

viii ■ Contents

1.8.4 Creating and Displaying a Game Window and Its Title 28

1.8.5 Changing the Game Board’s Size 29

1.9 Representing Information in Memory 30

1.9.1 Representing Character Data 30

1.9.2 Representing Translated Instructions 31

1.9.3 Representing Numeric Data 32

1.10 Chapter Summary 34

Chapter 2 Variables, Input/Output, and Calculations 39

2.1 The Java Application Program Template 40

2.2 Variables 41

2.3 Primitive Variables 42

2.4 System Console Output 44

2.4.1 String Output 44

2.4.2 The Concatenation Operator and Annotated Numeric Output 44

2.4.3 Escape Sequences 45

2.5 String Objects and Reference Variables 48

2.6 Calculations and the Math Class 50

2.6.1 Arithmetic Calculations and the Rules of Precedence 50

2.6.2 The Assignment Operator and Assignment Statements 53

2.6.3 Promotion and Casting 54

2.6.4 The Math Class 56

2.7 Dialog Box Output and Input 58

2.7.1 Message Dialog Boxes 59

2.7.2 Input Dialog Boxes 60

2.7.3 Parsing Stings Into Numerics 60

2.8 Graphical Text Output 64

2.8.1 The drawString Method 64

2.8.2 The draw Call Back Method 65

2.8.3 The setFont Method: A First Look 67

2.9 The Counting Algorithm 67

2.9.1 A Counting Application: Displaying a Game’s Time 68

2.10 Formatting Numeric Output: A First Pass 70

2.11 Chapter Summary 71

Chapter 3 Methods, Classes, and Objects: A First Look 75

3.1 Methods We Write 76

3.1.1 Syntax of a Method 76

3.2 Information Passing 79

3.2.1 Parameters and Arguments 79

3.2.2 Scope and Side Effects of Value Parameters 82

3.2.3 Returned Values 84

3.2.4 Class-level Variables 85

 Contents ■ ix

3.3 The API Graphics Class 89

3.3.1 Changing the Drawing Color 89

3.3.2 Drawing Lines, Rectangles, Ovals, and Circles 90

3.4 Object Oriented Programming 93

3.4.1 What Are Classes and Objects? 93

3.5 Defining Classes and Creating Objects 94

3.5.1 Specifying a Class: Unified Modeling Language Diagrams 94

3.5.2 The Class Code Template 95

3.5.3 Creating Objects 96

3.5.4 Displaying an Object 98

3.5.5 Designing a Graphical Object 100

3.6 Adding Methods to Classes 102

3.6.1 The show Method 103

3.6.2 Constructors and the Keyword this 107

3.6.3 Private Access and the set/get Methods 109

3.6.4 The toString and input Methods 116

3.7 Overloading Constructors 121

3.8 Passing Objects To and From Worker Methods 125

3.9 Chapter Summary 128

Chapter 4 Boolean Expressions, Making Decisions,

and Disk Input and Output 137

4.1 Alternatives to Sequential Execution 138

4.2 Boolean Expressions 138

4.2.1 Simple Boolean Expressions 139

4.2.2 Compound Boolean Expressions 140

4.2.3 Comparing String Objects 143

4.3 The if Statement 144

4.4 The if-else Statement 150

4.5 Nested if Statements 158

4.6 The switch Statement 160

4.7 Console Input and the Scanner Class 169

4.8 Disk Input and Output: A First Look 172

4.8.1 Sequential Text File Input 173

4.8.2 Determining the Existence of a File 175

4.8.3 Sequential Text File Output 175

4.8.4 Appending Data to an Existing Text File 179

4.8.5 Deleting, Modifying, and Adding File Data Items 179

4.9 Exceptions: A First Pass 179

4.10 Chapter Summary 185

x ■ Contents

Chapter 5 Repeating Statements: Loops 191

5.1 A Second Alternative to Sequential Execution 192

5.2 The for Statement 193

5.2.1 Syntax of the for Statement 193

5.2.2 A for Loop Application 197

5.2.3 The Totaling and Averaging Algorithms 200

5.3 Formatting Numeric Output: A Second Pass 202

5.3.1 Currency Formatting 202

5.3.2 The DecimalFormat Class: A Second Look 204

5.4 Nesting for Loops 208

5.5 The while Statement 212

5.5.1 Syntax of the while Statement 212

5.5.2 Sentinel Loops 214

5.5.3 Detecting an End of File 217

5.6 The do-while Statement 219

5.6.1 Syntax of the do-while Statement 219

5.7 The break and continue Statements 221

5.8 Which Loop Statement to Use 222

5.9 The Random Class 224

5.10 The Enhanced for Statement 228

5.11 Chapter Summary 229

Chapter 6 Arrays 235

6.1 The Origin of Arrays 236

6.2 The Concept of Arrays 236

6.3 Declaring Arrays 238

6.3.1 Dynamic Allocation of Arrays 239

6.4 Arrays and Loops 241

6.5 Arrays of Objects 243

6.5.1 Processing an Array’s Objects 245

6.6 Passing Arrays Between Methods 250

6.6.1 Passing Arrays of Primitives to a Worker Method 251

6.6.2 Passing Arrays of Objects to a Worker Method 253

6.6.3 Returning an Array from a Worker Method 257

6.7 Parallel Arrays 258

6.8 Common Array Algorithms 265

6.8.1 Searching 266

6.8.2 Minimums and Maximums 267

6.8.3 Sorting 269

6.9 Application Programming Interface Array Support 278

6.9.1 The arraycopy Method 278

6.9.2 The Arrays Class 279

6.10 Multidimensional Arrays 283

6.10.1 Two-Dimensional Arrays 284

 Contents ■ xi

6.11 Deleting, Modifying, and Adding Disk File Items 286

6.12 Chapter Summary 290

Chapter 7 Methods, Classes, and Objects: A Second Look 297

7.1 Static Data Members 298

7.2 Methods Invoking Methods Within their Class 301

7.3 Comparing Objects 303

7.3.1 Shallow Comparisons 304

7.3.2 Deep Comparisons 305

7.4 Copying and Cloning Objects 306

7.4.1 Shallow Copies 307

7.4.2 Deep Copies and Clones 308

7.5 The String Class: A Second Look 318

7.5.1 Creating Strings from Primitive Values 318

7.5.2 Converting Strings to Characters 319

7.5.3 Processing Strings 319

7.6 The Wrapper Classes: A Second Look 322

7.6.1 Wrapper Class Objects 322

7.6.2 Autoboxing and Unboxing 324

7.6.3 Wrapper Class Constants 326

7.6.4 The Character Wrapper Class 326

7.7 Aggregation 328

7.8 Inner Classes 337

7.9 Processing Large Numbers 340

7.10 Enumerated Types 343

7.11 Chapter Summary 347

Chapter 8 Inheritance

8.1 The Concept of Inheritance 354

8.2 The UML Diagrams and Language Inheritance 355

8.3 Implementing Inheritance 357

8.3.1 Constructors and Inherited Method Invocations 360

8.3.2 Overriding Methods 364

8.3.3 Extending Inherited Data Members 368

8.4 Using Inheritance in the Design Process 372

8.4.1 Abstract Classes 372

8.4.2 Designing Parent Methods to Invoke Child Methods 381

8.4.3 Abstract Parent Methods 382

8.4.4 Final Classes 383

8.4.5 Protected Data Members 383

8.4.6 Making a Class Inheritance Ready: Best Practices 384

8.5 Polymorphism 385

8.5.1 Parent and Child References 385

8.5.2 Polymorphic Invocations 387

xii ■ Contents

8.5.3 Polymorphic Arrays 390

8.5.4 Polymorphism’s Role in Parameter Passing 392

8.5.5 The Methods getClass and getName and the instanceof Operator 393

8.6 Interfaces 398

8.6.1 Adapter Classes 405

8.7 Serializing Objects 406

8.8 Chapter Summary 411

Chapter 9 Recursion 417

9.1 What is Recursion? 418

9.2 Understanding a Recursive Method’s Execution Path 421

9.3 Formulating and Implementing Recursive Algorithms 423

9.3.1 The Base Case, Reduced Problem, and General Solution 423

9.3.2 Implementing Recursive Algorithms 425

9.3.3 Practice Problems 428

9.4 A Recursion Case Study: The Towers of Hanoi 429

9.5 Problems With Recursion 435

9.5.1 When to Use Recursion 437

9.5.2 Dynamic Programming 440

9.6 Chapter Summary 444

Chapter 10 Exceptions: A Second Pass 449

10.1 An Overview 450

10.2 Java’s Exception Classes and Exception Objects 451

10.3 Processing Thrown Exceptions 453

10.3.1 Nonerror Checking Use of Exceptions 459

10.3.2 The finally Clause 461

10.4 The throw Statement and Error Messages 464

10.5 Defining and Exception Classes 472

10.6 Chapter Summary 475

Chapter 11 Graphical User Interfaces 479

11.1 Overview 480

11.2 Enhancing Dialog Boxes 482

11.3 Creating a Graphical User Interface for an Application 487

11.3.1 The Content Pane 488

11.3.2 Creating and Displaying a Program Window 488

11.3.3 Adding GUI Components to a Window 492

11.4 Event Processing 500

11.4.1 Implementing Event Handler Methods 501

11.4.2 Registering the Event Handler 503

11.4.3 Paint Events, JPanels and Two-Dimensional Graphics 509

11.4.4 Mouse, Keyboard, and Timer Events 512

 Contents ■ xiii

11.5 Layout Managers 522

11.5.1 Designating the Layout Manager 523

11.5.2 Border Layout 524

11.5.3 Flow Layout 527

11.5.4 Grid Layout 529

11.6 Applets 531

11.6.1 Developing an Applet 532

11.6.2 HTML Document Basics 534

11.6.3 The Applet Execution Path 535

11.6.4 Incorporating GUIs and Two-Dimensional

Graphics into Applets 536

11.6.5 Portability and Security Issues 543

11.7 Chapter Summary 544

Chapter 12 Graphical User Interfaces: A Second Look 549

12.1 Borders, Check Boxes, and Radio Buttons 550

12.1.1 Borders 550

12.1.2 Check Boxes 551

12.1.3 Radio Buttons 555

12.2 Combo Boxes and Lists 563

12.3 Menus 572

12.3.1 Drop-Down Menus 572

12.3.2 Pop-Up Menus 581

12.4 File Chooser and Color Chooser Dialog Boxes 585

12.4.1 File-Chooser Dialog Box 585

12.4.2 Color-Chooser Dialog Box 587

12.5 Chapter Summary 590

Chapter 13 Generics and the API Collections Framework 595

13.1 Overview 596

13.2 Generic Methods 596

13.2.1 Overloading Generic Methods 600

13.2.2 Arrays as Generic Parameters and Returned Values 603

13.2.3 Copying a Generic Array 606

13.2.4 Operating on Generic Objects 608

13.3 Generic Classes 611

13.3.1 Generic Data Structure Classes 615

13.4 The API Collections Framework 621

13.4.1 Framework Interfaces 622

13.4.2 Framework Algorithms: The Collections Class 622

13.4.3 The LinkedList and ArrayList Classes 623

13.4.4 The HashSet, TreeSet, and LinkedSet Classes 630

xiv ■ Contents

13.4.5 The ArrayDeque and PriorityQueue Classes 630

13.4.6 The HashMap, TreeMap, and LinkedHashMap Classes 633

13.5 Chapter Summary 637

Chapter 14 Multithreading and Concurrency 643

14.1 Overview 644

14.2 Creating and Initiating Threads 645

14.3 Thread States 649

14.3.1 The New, Runnable, and Terminated States 649

14.3.2 The Blocked, Waiting, and Timed Waiting States 651

14.4 The Producer and Consumer Problem 652

14.5 Solutions to the Producer and Consumer Problem 660

14.5.1 Synchronizing a Buffer Class: Synchronized Methods 660

14.5.2 The API ArrayBlockingQueue Class 668

14.6 The Synchronized Statement 673

14.7 Chapter Summary 677

Appendix A Description of the Game Environment 683

Appendix B Using the Game Environment Package 691

Appendix C ASCII Table 693

Appendix D Java Key Words 697

Appendix E Java Operators and Their Relative

Precedence 699

Appendix F Glossary of Programming Terms 701

Appendix G Using the Online API Documentation 709

Appendix H Solutions to Selected Knowledge Exercises 713

Index 725

Preface

This is a Java textbook for beginning programmers that uses game programming as a central peda-

gogical tool to improve student engagement, learning outcomes, and retention. Game programming

is incorporated into the text in a way that does not compromise the amount of material traditionally

covered in a basic or advanced programming course and permits instructors who are not familiar

with game programming and computer graphics concepts to realize the verified pedagogical advan-

tages of game programming.

The book’s DVD includes a game environment that is easily integrated into projects created

with the popular Java Development Environments, including Eclipse, NetBeans, and JCreator in a

student-friendly way and also includes a set of executable student games to pique their interest by

giving them a glimpse into their future capabilities. The material presented in the book is in full

compliance with the 2013 ACM/IEEE computer science curriculum guidelines and provides an

in-depth discussion of graphical user interfaces (GUIs). It has been used to teach programming to

students whose majors are within and outside of the computing fields.

Features
We use an objects-early approach to learning Java in that the defining and implementation of classes

is introduced in the middle of Chapter 3. In preparation for this material, the terms object and class

are introduced in Chapter 1 in the context of game piece objects and reinforced in Chapter 2 by

continually referring to strings as string objects and differentiating between the primitive types and

the String class. In addition, the concept of a reference variable is introduced within the concept

of string objects in Chapter 2, and students become familiar with the idea that classes contain data

members and methods via the chapter’s discussion of the Math class, dialog boxes, and the format-

ting of numeric values. All of this facilitates the discussion in Chapter 3 of the definition and imple-

mentation of methods and classes and the declaration of objects.

xvi ■ Preface

The pedagogical tool, game programming, makes the concepts of object-oriented programming

more tangible and more interesting to the student. For example, objects are output by drawing them

at their current location rather than outputting their (x, y) coordinates to the system console. The

functionality of set and get methods and the counting algorithm is illustrated by using them to

relocate and animate game piece objects and keep a game’s score. Decision statements are used to

reflect animated game pieces, detect collisions between them, and to decide when a game is over,

and loops are used to draw checkerboard squares and checkers. Because of this new pedagogical

approach, student smiles have replaced frowns, enthusiasm has replaced complacency, and “teach

us this” has replaced “do we have to know that?” Our classrooms have been transformed from a

lecture-based venue to a highly engaged interactive learning environment.

Throughout the book, after a concept is introduced and discussed, its use is illustrated in a suc-

cinctly composed working program, and the parts of the program that utilize the new concepts are

fully discussed.

Use of the Book
The material in this book can be covered within two courses: a basic programming course followed

by an advanced programming course. The basic programming course would normally cover the

first seven chapters supplemented with selected materials from Chapters 8 and 10. The remainder

of the material would be covered in the advanced course. Alternately, the advanced topics can be

incorporated into several other courses such as the use of the GUI chapters in a Web-page-building

course, the use of the recursion, generics, and the Application Programming Interface (API) and

Collections Framework chapters in a data-structures course, and the multitasking and concurrency

chapter in an operating-system course.

The book is written in a way that it and its associated resources could not only be used at the

college level, but also at the high school level or used in a self-instructional mode.

Chapter Overviews

Chapter 1: Introduction

This chapter includes a brief history of computer science and topics that are fundamental to an

understanding of the concepts presented in the remainder of the textbook. These topics include

an overview of the computer system and the representation of data in memory, the programming

process and the role of an IDE in that process, platform independence and how Java achieves it, as

well as an overview of object-oriented programming and the Application Programming Interface

(API). Readers are asked to execute several student-written games contained on the book’s DVD,

which usually peaks their interest, as does the brief description of the game environment included

in this chapter.

Chapter 2: Variables, Input/Output, and Calculations

Primitive variables, dialog box input, performing calculations, and performing output to dialog

boxes, the system console, and to the game-board window are discussed in this chapter. The dec-

laration of objects and the topic of reference variables are introduced within the context of the

 Preface ■ xvii

declaration of String objects, as are the topics of classes and methods within the chapter’s discus-

sion of the Math class, the formatting of text and numeric output, and graphical text output.

Chapter 3: Methods, Classes, and Objects: A First Look

The foundational object oriented programming concepts used in the next three chapters are dis-

cussed in this chapter. It begins with the techniques used to write methods and pass information via

value parameters and return statements, and the Graphic class’s two-dimensional shape-drawing

methods are used in the discussion of parameter passing. The techniques used to specify and write

classes are then discussed via a progressively developed game piece class’s UML diagram and the

progressive implementation of its data members, constructors, and methods. The motivation for set

and get methods, and the toString, input, and show methods are discussed and these methods

are implemented. Throughout the chapter, sketches are used to illustrate the reference variable and

data-member memory model, and the chapter concludes with a graphical application that utilizes

the learned concepts.

Chapter 4: Boolean Expressions, Making Decisions, and Disk Input and Output

This chapter begins a two-chapter sequence on control of flow. After a discussion of Boolean expres-

sions and relational and logic operators, the students are introduced to Java’s if, if-else, and

switch statements. Their use is illustrated within a graphical context to reflect animated objects,

detect when they collide, and to decide which direction to move them in response to a keystroke

input. Disk text file I/O is also introduced in this class, which is preceded by a discussion of input

using the scanner class and followed by an introduction to the concept and processing of thrown

exceptions. The chapter concludes with a graphical application that utilizes the learned concepts.

Chapter 5: Repeating Statements: Loops

The for, while, do-while, and enhanced for loops are presented in this chapter, as are the con-

cepts of counting loops, sentinel loops, and nested loops. The role that the break and continue

statements play in repetition constructs is discussed, and Chapter 2’s discussion of the formatting

of numeric information and the generation of pseudorandom numbers is extended via a discussion

of currency formatting and the API DecimalFormat and Random classes. The chapter includes

with a discussion of which loop construct to use for a particular application, and uses a graphical

guessing game application and an application that draws a checker board to illustrate these learned

concepts.

Chapter 6: Arrays

We placed this chapter after the loops chapter in an effort to immediately reinforce the student’s

understanding of loops via a discussion of the role loops play in the processing of arrays and the

implementation of that processing. The chapter begins with a discussion of the concept of an array

and arrays of primitive variables, and it illustrates the primitive array memory model. It then extends

these concepts to arrays of reference variables and the objects they reference, and it discusses the

passing of arrays to and from methods and illustrates the memory model used to accomplish this.

The concept of parallel arrays is discussed as well as the array copying, sorting, minimum, and

xviii ■ Preface

maximum algorithms and the API implementations of these algorithms. The chapter also discusses

multidimensional arrays and the role arrays play in the addition, and deletion of information con-

tained in disk files. The learned concepts are illustrated within graphical applications that use arrays

of game piece objects to display an animated parade and to sort and locate particular game piece

objects.

Chapter 7: Methods, Classes, and Objects: A Second Look

This chapter extends the object oriented programming concepts discussed in Chapter 3 and serves

as the OOP foundation on which the remaining chapters of the text are built. It begins with a discus-

sion of static data members, shallow and deep copying and comparisons, and the cloning of objects.

The concept of aggregation and its implementation is then discussed, as are inner classes and their

methods and the autoboxing feature of the wrapper classes. The processing of large numeric values

is also covered in this chapter, as well as enumerated types and the methods of the String class.

The learned concepts are illustrated within graphical applications that clone objects, use aggregated

game piece objects, parse words from sentences, and perform calculations on large numbers.

Chapter 8: Inheritance

In this chapter, the terminology and concept of inheritance are discussed, as is the way this concept

is used in the design and implementation phases of a software project to reduce the time and effort

required to complete the project. The topics of extended classes, overriding methods, sub and super

classes invoking each other’s methods, and the role of abstract and final classes and methods in the

design process are also discussed. All of these topics lead into a discussion of polymorphism and

polymorphic arrays and the role of polymorphism in the design process. The chapter concludes

with a discussion of interface and adapter classes and the serialization of objects. These learned

concepts are illustrated in an evolving series of graphical applications that begin with the inheritance

of a boat’s hull and ends with a polymorphic display of all of the types of boats in a boat dealer’s

inventory.

Chapter 9 Recursion

This chapter begins by explaining the concept of recursion and recursive methods and a methodol-

ogy for formulating and implementing recursive algorithms correctly. It then illustrates the use of

the methodology in the discovery and implementations of several recursive algorithms, including

the Towers of Hanoi. As students progress through the discovery and implementation of these algo-

rithms, they develop the ability to think recursively and to extend the methodology to the discovery

and implementation of other recursive algorithms. The chapter concludes with a discussion of the

runtime problems associated with recursive algorithms, the role of dynamic programming in the

implementation process, and when it is appropriate or efficient to use recursion in the programs we

write. The learned concepts are illustrated in applications that compute the terms of the Fibonacci

sequence, draw a Sierpinsky fractal, and solve the Towers of Hanoi problem.

Preface ■ xix

Chapter 10: Exceptions: A Second Pass

Chapter 4’s discussion of catching exceptions thrown from methods we invoke is expanded upon in

this chapter, which discusses the throwing of exception objects from methods we write. The impact

that this has on a method’s reusability is discussed and illustrated, as is the ability to create and

process exception error messages. In addition, the motivation for creating new exception classes

is discussed, as well as the techniques for implementing these classes and using the concept of an

exception in a non-error checking mode. The learned concepts are illustrated in several applications

that include the use of exceptions in a graphical application to keep a game piece on a game board.

Chapter 11: Graphical User Interfaces

This chapter presents methods used to display enhanced dialog boxes and the fundamental tech-

niques used to incorporate a graphical user interface (GUI) into an application and a Web-based

applet program. These techniques include the building of an interface that contains two-dimensional

shapes and text fields, labels and button components, and the sizing and positioning of these com-

ponents within the interface with and without the use of a layout manager. The techniques used to

write and register event-handler methods that respond to the program user’s interaction with these

interfaces via mouse actions and keystrokes, and respond to the expiration of timer intervals are

also discussed. The chapter concludes with a discussion of the implementation of Java applets, the

downloading and execution of these programs by a Web browser, and the security issues associated

with applets. The learned concepts are illustrated in several applications that use GUIs, a functional

applet, and game applications built without the use of the book’s game environment.

Chapter 12: Graphical User Interfaces: A Second Look

The GUI components discussed in Chapter 11 are expanded upon in this chapter to include radio

buttons, check boxes, combo boxes, lists, and drop-down and pop-up menus. The chapter also

includes a discussion of the use of API dialog boxes that facilitate the specification of a file path

to be used in a file I/O operation and the selection of a color to be used in a graphical application.

These learned concepts are illustrated in an evolving series of GUI applications that solicit a meal

choice from the program user and an application that permits the user to select the background color

of the application’s window.

Chapter 13: Generics and the API Collections Framework

This chapter begins by introducing the concept of generics and its role in extending the reusability

of the methods and classes we write. It discusses the techniques used to implement a generic method

that can be passed any type of object and a generic class whose data members’ types can be speci-

fied when an instance of the class is created. The chapter concludes with a discussion of the API

Collections Framework, which contains a set of generically implemented data structure classes,

generic methods that operate on the data stored in these classes, and a set of generic interfaces asso-

ciated with these classes. These learned concepts are illustrated in a set of applications that imple-

ment generic methods and a generic data structure class, and applications that use two of the generic

classes in the Collections Framework to store a data set.

Chapter 14: Multithreading and Concurrency

The terminology, concepts, advantages, implementation, and problems associated with multi-

threaded programs are discussed in this chapter. After discussing the implementation of multithread

applications in Java and the states in which a thread can exist during its lifecycle, our attention

turns to the discovery of the problems, including the Producer-Consumer problem, associated with

sharing data between threads. Armed with an understanding of these problems, the student is then

introduced to the synchronized statement and synchronized methods used to avoid these problems.

The chapter concludes with a discussion of the API class ArrayBlockingQueue, which is used to

share data between threads in a problem-free (thread-safe) way. The learned concepts are illustrated

in a set of multithreaded applications that share data in an unsafe and safe way and an application

that uses an ArrayBlockingQueue instance to share data among threads.

Appendices of the Textbook

The eight appendices contain:

� A description of the game programming environment (Appendix A)

� Directions on how to incorporate the game environment into a programming project

(Appendix B)

 Note: The book’s DVD contains the game environment and predefined Eclipse, NetBeans,

and JCreator project templates that have the game environment incorporated into them.

� An ASCII table that contains the decimal, octal, hexadecimal, and binary representation of

each the characters defined in the table (Appendix C)

� A list of Java keywords (Appendix D)

� A list of all of the Java operators and their precedence (Appendix E)

� A glossary of programming terms (Appendix F)

� A brief description of how to use the API online documentation (Appendix G)

� Answers to the odd numbered Knowledge Exercises that appear at the end of each chapter to

facilitate student self-instruction outside the classroom (Appendix H).

The Book’s DVD

The DVD in the back of the book contains a table of contents and the following materials, arranged

in separate folders:

� Samples of student-written games in an executable format with instruction on how to run

them

� The game environment

o Eclipse, NetBeans, and JCreator template projects with the environment incorporated

into them and instructions on how to use them to begin a new project without altering

the system’s CLASSPATH variable

o A description of the environment and its call back methods used to draw and animate

objects and respond to mouse, keyboard, and timer events

o The environment’s classes and methods in the form of class files, a jar file, and an

importable package

xx ■ Preface

 Preface ■ xxi

� The source files for all of the applications presented in the text

� All of the book’s figures

� All of the book’s appendices

The Instructor’s DVD (available upon adoption to instructors)

The DVD contains a table of contents and the following materials, arranged in separate folders:

� Answers to all of the knowledge exercises that appear at the end of each chapter

� Microsoft PowerPoint lecture slides for each chapter

� The source files for all of the applications presented in the text

� All of the book’s figures

� Samples of student-written games in an executable format with instruction on how to run

them

Digital Versions

Digital versions of this text and its resources are available on the publisher’s electronic delivery site,

www.authorcloudware.com, as well as other popular e-vendor sites.

W. McAllister

S. Jane Fritz

Patchogue, NY

August, 2014

Acknowledgments

We would like to thank three of our students who graciously granted us permission to include their

game projects on the DVD that accompanies this book: Arielle Gulino, Andrew Zaech, and Ryan

McAllister. We also thank all of our students whose enthusiasm for the incorporation of game pro-

gramming into our pedagogy was the inspiration for the preparation of this book.

We would also like to thank the administration of St. Joseph’s College and the members of the

Promotions and Awards Committee for granting Bill a sabbatical, which was dedicated to the prepa-

ration of this manuscript, as well as our colleagues, and the entire St. Joseph’s College Community

who offered encouragement and support during its preparation.

We also thank David Pallai, the publisher and founder of Mercury Learning and Information for

establishing and managing a publishing company that produces a high-quality product at an afford-

able cost, and his production team for guiding us through the development and production process,

specifically Jennifer Blaney and Meg Salvia.

Finally, we would like to thank our families and friends for their endless patience when we were

too busy to be ourselves.

To the Students

It is our hope that the approach to the material in this book will challenge you, engage you,

and inspire you to continue your study of computer science and to enjoy a rewarding career by

immersing yourself in this area of national need.

Credits

Chapter 1

Computer © Robert Lucian Crusitu/Shutterstock.com, Image ID: 156076811

Figure 1.5 Abacus, by Gisling (Own work) [CC-BY-3.0 (http://creativecommons.org/licenses/

by/3.0)], via Wikimedia Commons), (http://upload.wikimedia.org/wikipedia/commons/d/d4/

Positional_decimal_system_on_abacus.JPG)

Figure 1.6 Slide rule, by Ricce (Own work) [Public domain], via Wikimedia Common,

(http://upload.wikimedia.org/wikipedia/commons/9/98/Regolo_calcolatore.jpg)

Figure 1.7 Blaise Pascal, by Mahlum (Own work) [Public domain], via Wikimedia Commons,

(http://upload.wikimedia.org/wikipedia/commons/4/4d/Pascal_Blaise.jpeg)

Figure 1.8 Jacquard’s Loom,

(http://upload.wikimedia.org/wikipedia/commons/6/65/Jacquard_loom.jpg)

Figure 1.9 Charles Babbage, (http://upload.wikimedia.org/wikipedia/commons/1/1d/Charles_

Babbage_Difference_Engine_No1.jpg)

Figure 1.10 Ada, Margaret Sarah Carpenter [Public domain], via Wikimedia Commons (http://

commons.wikimedia.org/wiki/Ada_Lovelace#mediaviewer/File:Carpenter_portrait_of_Ada_

Lovelace_-_detail.png)

Figure 1.11 Hollerith (https://www.census.gov/history/img/HollerithMachine.jpg)

Figure 1.12 Turing Statue © Guy Erwood/Shutterstock.com

Figure 1.13a. Troubleshooting the ENIAC (http://ftp.arl.army.mil/ftp/historic- computers/jpeg/

eniac3.jpg)

Figure 1.13b. Troubleshooting the ENIAC (http://ftp.arl.army.mil/ftp/historic- computers/jpeg/

eniac1.jpg)

Figure 1.14a. Programming the ENIAC (http://ftp.arl.army.mil/ftp/historic-computers/jpeg/first_

four.jpg)

Figure 1.14 b. Programming the ENIAC (http://ftp.arl.army.mil/ftp/historic-computers/gif/eniac4.

gif)

Figure 1.15 John von Neumann, (Public domain), (http://commons.wikimedia.org/wiki/

File:JohnvonNeumann-LosAlamos.gif)

xxvi ■ Credi ts

Figure 1.16 Grace Hopper (http://www.history.navy.mil/photos/pers-us/uspers-h/g-hoppr.htm)

Figure 1.17 Grace Hopper’s Bug (http://www.history.navy.mil/photos/pers-us/uspers-h/g-hoppr.

htm)

Figure 17.18 Steve Jobs, by Kees de Vos from The Hague, The Netherlands [CC-BY-SA-2.0 (http://

creativecommons.org/licenses/by-sa/2.0)], via Wikimedia Commons, (http://upload.wikimedia.org/

wikipedia/commons/5/54/Steve_Jobs.jpg)

Figure 1.19 Bill Gates, by Matthew YoheAido2002 at en.wikipedia [CC-BY-3.0 (http://creative-

commons.org/licenses/by/3.0)], from Wikimedia Com, (http://upload.wikimedia.org/wikipedia/

commons/7/7f/Bill_Gates_2004_cr.jpg)

Figure 1.20 Vinton Cerf and Robert Kahn (http://georgewbush-whitehouse.archives.gov/

ask/20051109-2.html)

Figure 1.21 Donald Knuth (Case Alumni Association and Foundation 2010, Flicker and (http://

www.casealum.org/view.image?Id=1818)

Figure 1.22 Tim Berners-Lee, Courtesy of World Wide Web Consortium, Massachusetts Institute of

Technology (www.w3.org/People/Berners-Lee)

Chapter 3

Green tea cup on windowsill © GoodMood Photo/Shutterstock.com, Image ID: 158310728

Chapter 4

Two Game Figurines © Melanie Kintz, Mellimage/Shutterstock.com, Image ID: 70027117

Chapter 5

Loops of a scaring roller coaster © Marcio Jose Bastos Silva /Shutterstock.com, Image ID: 97819241

Chapter 8

Boats on phewa-lake-nepal © Worapan Kong /ShutterStock.com, Image ID: 132349601

Chapter 9

Nested Traditional Matryoschka Dolls © PiXXart/Shutterstock.com, Image ID: 112054022

Chapter 10

Construction site © Victor Correia/ShutterStock.com, Image ID: 113180041

Chapter 11

Pocket sliding fifteen puzzle game © Coprid/ShutterStock.com, Image ID: 81197962

Chapter 12

Vector Retro Menu Design © Yienkeat /ShutterStock.com, Image ID: 108289445

Chapter 13

Collection of spaceship, planets and stars © Motuwe/ Shutterstock.com, Image ID: 140336917

Chapter 14

Maze Game with Solution © VOOK /ShutterStock.com, Image ID: 95912809

■ ■ ■ ■ ■

In this chapter

This chapter presents topics that are fundamental to computing and the programming

process and discusses tools that programmers use to write programs. Because the focus of

this text is on learning to program, an understanding of these concepts and tools is essential.

The topics include a brief history of computing, which will highlight some of the important

contributions to the field and facilitate an understanding of the modern computer system

as well as how data is stored. The tools discussed in the chapter are used to develop an

unambiguous description of a program and to minimize the effort required to transform this

description into a functional program that can run on any computer system or mobile device.

After successfully completing this chapter, you should:

� Understand the hardware and software components of a computer system

� Gain an appreciation for the history and evolution of computing

� Be able to specify simple programs and games

� Have used some examples of student-written game programs

� Understand why Java programs can be run on any computer system

� Be familiar with the concept of objects, classes, and the object-oriented programming paradigm

� Understand the programming process and the role of Integrated Development Environment

programs in this process

� Be familiar with the features of the game-development tool on the CD that accompanies

this textbook

� Understand how data is represented inside computer systems

1CHAPTERCHAPTER

1.1 The Computer System .2

1.2 A Brief History of Computing .5

1.3 Specifying a Program . 13

1.4 Sample Student Games . 17

1.5 Java and Platform Independence 17

1.6 Object-Oriented Programming Languages 21

1.7 Integrated Development Environments

and the Program Development Process.22

1.8 Our Game Development Environment: A First Look . . .26

1.9 Representing Information in Memory.30

1.10 Chapter Summary .34

INTRODUCTIONINTRODUCTION

2 ■ Programming Fundamentals Using Java

 1.1 1.1 THE COMPUTER SYSTEM THE COMPUTER SYSTEM

Over the last twenty years, computers and the use of the Internet have become part of our

everyday lives. Daily communication that was performed using postal systems and telephone con-

versations are now performed more efficiently using computer-based e-mails and text messaging.

Much of the information gathering we performed in libraries is now done from the comfort of our

homes using a computer attached to the Internet, as is much of the shopping we do. As a result, the

number of computers available in the world continues to grow (Figure 1.1).

Proliferation of Computers

USA

Austrailia

Singapore

Switzerland

China

0

100

200

300

400

500

600

700

800

900

Year

N
u

m
b

e
r

o
f

C
o

m
p

u
te

rs
 p

e
r

1
,0

0
0
 C

it
iz

e
n

s
 USA

Austrailia

Singapore

Switzerland

China

Figure 1.1

Growth in the number of computers per capita over a fifteen-year period.

In many of the developed countries of the world there is now one computer, or more accurately,

one computer system for every citizen in the country. Although many of these people would say that

they use a computer every day, they really should say that they use a computer system every day.

As shown in Figure 1.2, a computer system is comprised of two major components: software

and hardware. As its name implies, hardware is the hard, or tangible, part of the computer system.

It is the collection of electronic circuits, mechanical devices, and enclosures manufactured in a

factory. When we purchase a computer system and look into the box it comes in, what we see is

the hardware.

However, the box also contains software, but, as its name implies, it is the soft, or less-tangible

portion of the computer system, and so it is not as easy to detect. Software, or programs, consists

Computer System

Software Component

(Instructions to be

executed by the hardware)

Hardware Component

(Electronic circuits, enclosures,

mechanical devices)

Figure 1.2

The two major components of a computer system.

 Chapter 1 · Introduct ion ■ 3

of sequences of instructions written by programmers to perform specific tasks. These instructions

are executed by the computer system’s hardware, and both components are essential to a computer

system. A computer system that contained only hardware would have no instructions to execute, so

it would do nothing but consume electrical power. A computer system that contained only software

would not be able to execute the program’s instructions.

The software of a computer system is comprised of two major subcomponents: operating sys-

tem software and application software (Figure 1.3). Microsoft Windows, Apple OS, and Linux are

all examples of operating system programs. This set of programs contains instructions to manage

the hardware resources of the computer system and provides an interface, usually a point-and-click

interface, through which the user interacts with the computer system. In addition, most application

software interacts with the hardware through various groups of operating system instructions.

Although nonoperating system software can be categorized in several groupings, we will con-

sider all nonoperating system software to be collected into one group, application software, as

shown in Figure 1.3. In this textbook, we will learn how to write application software using the

programming language Java.

Software Component

(Instructions)

Application Software

(MS Word, Angry Birds,

Internet Explorer)

Operating System

Software

(Windows, OS, and Linux)

Figure 1.3

Computer software subcomponents.

The hardware of the computer system can be divided into three main categories, or subcom-

ponents, based on the function they perform. Hardware that communicates with humans and other

computer systems is grouped into the category input/output (I/O) devices. Hardware used to store

information inside the computer system is grouped into the category storage devices. Finally, all

other functions performed by the hardware are part of a category named the central processing

unit (CPU).

Figure 1.4 shows the standard conceptual arrangement of the three hardware categories with

the CPU at the center of the arrangement. The storage devices are shown on the right and bot-

tom of the figure and are divided into two types of devices: backing storage, often referred to

as secondary storage, and random access memory (RAM), also called main memory. With the

exception of backing storage, each of the hardware components has been assigned an acronym,

which is shown parenthetically below the name of the component in Figure 1.4. For brevity,

the components are most often referred to using their acronyms: I/O devices, CPU, and RAM

(pronounced as “ram”).

The arrows into and out of the I/O devices at the top left of Figure 1.4 indicate the flow of

information entering (input) and leaving (output) the computer system. The other arrows in the

4 ■ Programming Fundamentals Using Java

figure represent the flow of information among the computer-system components. The central

processing unit can receive information from (arrows labeled “input”) and send information to

(arrows labeled “output”) the other system components. The flow of information is always relative

to the CPU. Information sent to the CPU is considered input, and information sent from the CPU

is considered output.

Hardware that communicates with humans and other computer systems is grouped into the

component I/O devices. These devices are the interface between the computer system and the rest

of the world. Input devices send information into the system. Examples of input devices include

a keyboard, a touch screen, a mouse, a microphone, a digitizer, and a modem. Output devices

send information out from the system. Examples of output devices include a monitor, a printer, a

speaker, and a modem. A modem is both an input and output device and is normally used to trans-

fer information between computer systems.

Hardware devices that have the ability to store and recall information are grouped into the

component storage services. All but one of these devices fall into the subcomponent backing stor-

age, shown on the top right side of Figure 1.4. Examples of storage devices include hard drives,

flash drives, subscriber identification module (SIM) cards, CD drives, and magnetic tape drives.

One storage device, random access memory (RAM) is depicted separately at the bottom of Figure

1.4. One difference between this storage device and all of the other storage devices is its speed. It

can access information, meaning store and recall information, faster than any other storage device.

Its information-access speed approaches the speed at which the CPU can transfer information.

Programs run faster when their instructions are stored in RAM, so it is an advantage to have

a high-capacity RAM in a computer system. Unfortunately, the materials and manufacturing pro-

cess used to achieve RAM’s speed make it the most expensive type of storage. To make computer

systems affordable, backing-storage devices are added to the system. When a program is in execu-

tion, the operating system software attempts to transfer the program’s instructions and the data the

instruction processes from backing storage to RAM before this information is needed by the CPU.

Storage Devices

input output

Input/Output

Devices

(I/O Devices)

Backing

Storage

output

input

Central

Processing Unit

(CPU)

output

input

output

input

Random Access

Memory

(RAM)

Figure 1.4

Arrangement of the hardware subcomponents of a computer system.

 Chapter 1 · Introduct ion ■ 5

Another reason for adding backing storage, or secondary storage, to a computer system is the

fact that RAM is volatile, which means that it only retains its memory when it is attached to an

electrical power source: no electricity, no memory. All backing-storage devices are nonvolatile,

which means that the information they store is not lost when they are detached from a power

source. As a result, these devices can be used to archive program instructions and data within the

computer system when it is powered down (e.g., hard drives), and can be used to manually trans-

port information between computer systems (e.g., flash drives).

The I/O and storage components of the computer system give us the ability to transfer informa-

tion into and out of the computer system and the ability to store and recall that information. The

CPU depicted in the center of Figure 1.4 gives us the ability to process the information, and so it

is aptly named the central processing unit. If we were inclined to designate one of the computer-

system components as the brain of the system, we would probably bestow that title on the CPU.

However, despite the remarkable tasks that computers perform, the CPU’s electronic circuits only

perform five very basic processing operations:

 1. Transfer information (i.e., instructions and data) to and from the other components of the

computer system and interpret instructions

 2. Store a very small amount of information, e.g., one instruction and sixteen pieces of data

 3. Perform arithmetic operations such as addition, subtraction, multiplication, and division

 4. Perform logic operations involving relational operators (such as 10 < 6, and a > = 12) and

logical operators (such as A AND B, and A OR B)

 5. Execute instructions in the order in which they are written or skip some instructions based

on the truth value of a logic operation

The magic here is that all of the remarkable tasks that computers do have been expressed as a

sequence of these five basic processing operations. A step-by-step sequence of these operations to

perform a particular task is called an algorithm. The most difficult part of a programmer’s job is to

develop, or discover, algorithms. Once an algorithm is discovered, it is written into a programming

language and verified via a testing process.

Definition

An algorithm is a step-by-step sequence of the five processing operations a computer system

can execute to solve a problem or perform a particular task.

A computer program is an algorithm written in a programming language.

 1.2 1.2 A BRIEF HISTORY OF COMPUTING A BRIEF HISTORY OF COMPUTING

Long before our modern computers existed, people had the need to count or compute. As a

matter of fact, the early meaning of the term computer referred not to a machine but to a person who

performed calculations. In this section, we will see the amazing development of the revolutionary

machines that have changed the way we learn, teach, shop, do research, and are entertained.

6 ■ Programming Fundamentals Using Java

 1.2.1 1.2.1 Early Computing Devices Early Computing Devices11

If computers are really such an important part of our lives today, you might wonder and ask the

question: Who invented the computer?

Although this is a simple question, it does not have a simple answer such as Thomas Edison

invented the light bulb or Alexander Graham Bell invented the telephone. One reason for this

complexity is that computers evolved over thousands of years, and many people from different

cultures and diverse fields such as mathematics, physics, engineering, business, and even textile

design were involved in laying the foundation for the modern

electronic computer.

The roots of computing dates from about 50,000 to

30,000 BC when people counted their sheep and other pos-

sessions using their fingers, stones, or notches on sticks. The

first computing device, the abacus, was introduced in China

around 2,600 BC and used pebbles or stones. A later version

of the abacus (shown in Figure 1.5) used beads that could be

moved on a wire frame to perform basic counting and arith-

metic functions. These were widely used in Europe and Asia,

and some of these devices are still in use today.2

It was not until the seventeenth century that there were

other notable attempts at building computing devices. Napier’s

bones and the slide rule (Figure 1.6) were two of these devices.

Blaise Pascal (Figure 1.7), at the age of 18, built a mechanical calculator called the

Pascaline to perform basic addition and multiplication.

Because manufacturing technology was not yet well developed, these devices had

to be carved or forged by hand, which required tedious work. Although it would seem

likely that the development of computing devices would continue at a more rapid pace,

very little progress was made from the seventeenth century until the

1800s, and we might ask why. Perhaps it was because this was a time of

war, colonization, and the struggle for survival in much of the world. (If

you think about the United States, for example, from 1776 through the

1800s, building a calculator was not considered a priority at that time.)

In 1801, Joseph Marie Jacquard, a textile designer, discovered that

he could program his weaving loom (Figure 1.8) to create intricate pat-

terns in the fabric, by storing the instructions on punched cards or paper

tape. These binary instructions directed the loom to raise or lower certain threads

depending upon whether or not a hole was punched on the tape. Later on, this

concept would develop into the idea of creating a stored program computer based

on binary instructions; it would be implemented in the twentieth century using

punched cards for computer input.

Figure 1.5

The abacus.

Figure 1.6

A typical modern slide rule.

Figure 1.7

Blaise Pascal:

philosopher,

mathematician,

inventor.

Figure 1.8

A Jacquard Loom.

 Chapter 1 · Introduct ion ■ 7

 1.2.2 1.2.2 Computers Become a RealityComputers Become a Reality

Charles Babbage, a mathematician working in England around 1822, designed the prototype of

a machine, known as the Difference Engine, to compile mathematical tables. It was a large hand-

cranked machine built of metal wheels and gears and although he continued to add refinements

to it, he never fully completed it. By 1837, Babbage took his ideas one step further and designed a

more complex Analytical Engine Figure 1.9), which he envisioned to be a general purpose compu-

tational machine and which had many characteristics in common with modern computers. He de-

signed it to be steam powered, which would not make it portable, but would automate mathematical

calculations. Due to the limitations of available technology, it was not completed in his lifetime, but

it has recently been completed and works as he described it. Charles Babbage has been called the

father of the computer for his innovative work on the first mechanical computer.

Lady Ada Augusta Byron Lovelace (Figure 1.10), the daughter of the poet Lord Byron, became

intrigued with Babbage’s work and began to write instructions, or what we now call programs, for

his machine. She is known today as the first programmer, and the programming language used for

U.S. government applications is named Ada in her honor. Ada was unique in being a well-educated

woman, skilled in mathematics, at a time when women had little formal or advanced schooling.

She was able to perform the advanced mathematical and engineering design functions required for

programming a theoretical computer that was not yet completely operational.

In the 1890s, in the United States, Herman Hollerith was working on a mechanical calculator

and was asked by the government to design a machine that could record and store census data. The

population was growing so fast that hand calculation could not keep pace with the growing volume

of data: by the time the data was tabulated it was outdated and the next census had begun. Hol-

lerith used punched cards to input the data to his new machine (Figure 1.11), which successfully

compiled and tabulated even greater amounts of data in record time. Following this success, he

founded a company with Thomas Watson, which later became known for computing, the Interna-

tional Business Machine Corporation (IBM).

Figure 1.9

Charles Babbage’s Analytical

Engine.

Figure 1.11

Hollerith’s electric tabulating machine.

Figure 1.10

Lady Ada Augusta

Byron Lovelace, the

first programmer.

8 ■ Programming Fundamentals Using Java

In the 1900s, the demand for recording and processing large amounts of data

continued to increase, and there were numerous attempts to design more advanced

computing machines. The need came from businesses as well as the military. Large

universities and mathematicians throughout the world began to design and build these

early computing machines. Around 1939–1942, the Atanasoff-Berry computer (ABC)

was built by Dr. John V. Atanasoff and Clifford Berry at Iowa State University. It was

the first electronic digital computer. At about the same time, Konrad Zuse, working

in Germany, built the first fully programmable computer, the Z3.

Also in the early 1940s, the Colossus was built with the assistance of the brilliant

British mathematician Alan Turing (Figure 1.12). It was designed as a code-breaking

machine that could decipher the German codes created with the Enigma encoding

machine. Turing’s contribution to breaking the German codes helped to defeat Hitler

in World War II. Turing also explored Artificial Intelligence (Google “Turing Test” for specific

details), and he is highly regarded as the father of theoretical computer science, laying a foundation

upon which to build advanced computing machines.

In 1944, the Harvard Mark I was designed and built through the efforts of Howard Aiken

working with Grace Hopper. Built at Harvard University by IBM, the Mark I was the first elec-

tromechanical computer, and it was used to produce mathematical tables. It could be programmed

using paper tape.

The first electronic general purpose digital computer, the Electronic Numerical Integrator and

Computer (ENIAC) was built at the University of Pennsylvania in 1946 by John Mauchly and J.

Presper Eckert. This computer weighed 30 tons and had over 18,000 vacuum tubes and thousands

of electronic relays (Figure 1.13). It filled a large room that was required to be air conditioned

because of the heat this machine generated. It could add or subtract 5,000 times a second, a thou-

sand times faster than any other machine at that time. It also had modules to multiply, divide, and

calculate square roots.

 (a) Replacing vacuum tubes. (b) Programming the ENIAC.

U.S. Army photos.

Figure 1.13

Troubleshooting the ENIAC.

Figure 1.12

Alan Turing, father of

theoretical computer

science.

 Chapter 1 · Introduct ion ■ 9

Most of the ENIAC’s programming was done by six women, including those shown in Figure 1.14.

 U.S. Army photo U.S Army photo

Figure 1.14

First programmers of the ENIAC.

John von Neumann (Figure 1.15) proposed modifications to the ENIAC, which

included using binary instead of decimal numbers. His design for a stored program

binary computer where both the program and the data could be stored in the com-

puter’s memory became known as the von Neumann architecture, which is still in

use today. In 1945, he proposed the design for the Electronic Discrete Variable Au-

tomatic Computer (EDVAC) and later worked on the Institute for Advanced Study

(IAS) computer in Princeton. He is often called the father of the modern computer

and game theory.

 1.2.31.2.3 Computer Generations Computer Generations33

The computers that followed are usually grouped into generations, each characterized by a

specific component or technology. The dates are approximate.

First-Generation (1937–1946): Vacuum Tubes

These very large computers used thousands of vacuum tubes, generated a lot of heat, and were

fairly unreliable. Memory storage was on magnetic drums, input was performed using punched

cards or paper tape, and output was displayed on paper printouts. Computers of this generation

could only perform a single task, lacked an operating system, and were programmed using a

sequence of ones and zeros known as machine language. First-generation machines include the

ENIAC, Electronic Delay Storage Automatic Calculator (EDSAC) and EDVAC computers.

Second-Generation (1947–1963): Transistors

This generation of computers used transistors, which were much more reliable than the vac-

uum tubes they replaced. Transistors were also smaller, cheaper, and consumed less electrical

Figure 1.15

John von Neumann, father

of the modern computer

and game theory.

10 ■ Programming Fundamentals Using Java

power. Machine language was replaced with assembly language, which was a more English-like

language, and higher-level languages such as Common Business Oriented Language (COBOL)

and Formula Translation (FORTRAN) were developed for this generation of computers. In 1951,

the universal automatic computer (UNIVAC 1) was introduced as the first commercial com-

puter. In 1953, the IBM 650 and 700 series computers were introduced. Operating systems were

designed for these machines, and over 100 computer-programming languages were developed

during this generation. Storage media such as magnetic tape and disks were in use, and printers

were available for output.

Third-Generation (1964–1971): Integrated Circuits (IC) or “chips”

Transistors were miniaturized and placed on chips and integrated circuits (IC), developed by

Jack Kilby and Robert Noyce. This invention resulted in smaller, more powerful, more reliable,

and cheaper computers. Users could now interact with computers through keyboards and moni-

tors instead of punched cards and printouts. Operating systems monitored memory usage and

controlled the scheduling of multiple applications that could share the system resources.

Fourth-Generation (1971-present): Microprocessors and Very Large Scale

Integration (VLSI)

Very-large-scale integration (VLSI) resulted in thousands of computer circuits being reduced

to fit on a chip, reducing the room-size computers of the first generation to something that could

fit in your hand. Components of the computer, from the central processing unit and memory to

input/output controls, could now be located on a single microprocessor chip. In addition to their

small size, computers became affordable for individuals, and in 1977, the personal computer (PC)

became available from three companies: Apple, Tandy/Radio Shack, and Commodore. In 1980,

Microsoft released its disk operating system (MS-DOS), and in 1981, IBM introduced the PC for

home and office use. Three years later, Apple introduced the Macintosh computer with its icon-

driven interface. In 1985, Microsoft released the Windows operating system. Fourth-generation

computers also used graphical user interfaces (GUI, pronounced “gooey”) and provided a mouse

for ease of use. Object-oriented languages, such as Java, were developed for more efficient soft-

ware development. These smaller, more reliable and powerful computers could now be linked

together, resulting in the growth of networks and the Internet.

Fifth-Generation (Present and Beyond): Artificial Intelligence, Parallel Processing,

Quantum Computing

Fifth-generation computing devices are characterized by artificial intelligence and the ad-

vancement of devices that will respond to natural language and be capable of learning. Although

these features are still in the early stages of development, some applications such as voice recogni-

tion are currently available. The use of parallel processing, quantum computing, and nanotechnol-

ogy will help to achieve these advances and will change computing in the future.

 Chapter 1 · Introduct ion ■ 11

 1.2.41.2.4 More Notable Contributions More Notable Contributions

In addition to the achievements already mentioned, there were many others who

made notable contributions to the computing field. The names and contributions of a few

of these innovators follow, and you are invited to continue to add to the list.

Admiral Grace Murray Hopper (Figure 1.16) was a pioneer in the field of computing.

She was one of the first programmers of the Harvard Mark I computer and is known for

the development of the first compiler and assembly language. Her work in programming

led to the development of the language COBOL, and she later worked on Ada.

She coined the term “debugging” when she removed a bug (or moth) from a comput-

er’s circuitry that was interrupting the flow of electricity, and taped it into her notebook

(Figure 1.17).

Steve Jobs (Figure 1.18) and Steve Wozniak were the cofounders of Apple Computers. The

Apple I was one of the three personal computers introduced in 1977 for home use. Together they

developed the point-and-click approach to computing. In 1984, they introduced the MAC OS that

developed into the modern graphical user interface, which today is standard on modern comput-

ers. Steve Jobs is also a cofounder of Pixar Animation and has been described as the father of the

digital revolution.

Bill Gates (Figure 1.19) and Paul Allen cofounded Microsoft, one of the largest U.S. corpora-

tions, and supplied the disk operating system (DOS) to IBM to run on its PCs. In 1985, Microsoft

developed a graphical operating system known as Windows, which is the operating system used

on over 80% of today’s computers.

James Gosling is credited with the development of the object-oriented programming language

known as Java. He is called the father of Java programming.

Bob Metcalfe and David Boggs invented the Ethernet, the technology upon which local com-

puter area networks are based.

Vinton Cerf (Figure 1.20a) and Robert Kahn (Figure 1.20b) are considered to be the fathers

of the Internet and the Transmission Control Protocol/Internet Protocol (TCP/IP) upon which the

Figure 1.16

Admiral Grace

Hopper.

Figure 1.18

Steve Jobs, cofounder of

Apple Computer.

Figure 1.19

Bill Gates, cofounder of

Microsoft Corporation.

Figure 1.17

Grace Hopper’s first recorded computer “bug.”

12 ■ Programming Fundamentals Using Java

Internet is based. Vinton Cerf created the first commercial Internet e-mail system and is now Vice

President and Chief Internet Evangelist for Google.

Donald Knuth (Figure 1.21), a computer scientist, mathematician, and Professor Emeritus at

Stanford University, has been called the father of the analysis of algorithms. His multivolume set

of books entitled The Art of Computer Programming is the classical reference for all programmers.

He is also the developer of the text document (TEX) typesetting system for creating high-quality

digital publications.

Tim Berners-Lee (Figure 1.22) is known as the inventor of the World Wide Web and continues

to direct the Web’s development as the director of The World Wide Web Consortium (W3C). He

is also a director of the World Wide Web Foundation, which furthers the potential of the Web to

benefit humanity.

 1.2.5 1.2.5 Smaller, Faster, Cheaper Computers Smaller, Faster, Cheaper Computers44

Computing has made more progress in 15 years than transportation has made in 2,000 years,

having gotten smaller, faster, and cheaper during that time. Your cell phone today is about a million

times cheaper, a thousand times more powerful, and a hundred thousand times smaller than the one

computer that was used at MIT in 1965.

According to Ed Lazowska, chairman of the University of Washington’s Computer Science

and Engineering Department, if Detroit car makers could have paralleled the innovations that hard-

ware and software manufacturers have realized for computers, today’s cars would be tiny, power-

ful, and inexpensive. They would be as small as toasters, cost $200, travel 100,000 miles per hour,

and would run 150,000 miles on a gallon of fuel. “In Roman times, people traveled along on horses

or in carts at about 20 miles per day,” he said. “In the early part of this century, the automobile

allowed people to travel at 20 miles per hour. Today, supersonic military aircraft travel at about

20 miles per minute. That progress is about a factor of 1,000 in about 2,000 years,” Lazowska

wrote in an e-mail message.

Another analogy by Rick Decker and Stuart Hirshfield in The Analytical Engine states, “If

automotive technology had progressed as fast as computer technology between 1960 and today,

 (a) (b)

Figure 1.20

Vinton Cerf and Robert Kahn, inventors of the Internet.

Figure 1.21

Donald Knuth, father

of the analysis of

algorithms.

Figure 1.22

Tim Berners-Lee,

inventor of the World

Wide Web.

 Chapter 1 · Introduct ion ■ 13

the car today would have an engine less than a tenth of an inch across, would get 120,000 miles

per gallon, have a top speed of 240,000 miles per hour, and would cost $4.00.”5 Also, at a recent

Computer Dealers Exhibition (COMDEX) meeting, Bill Gates is reported to have said that if GM

had kept up with technology like the computer industry has, we would all be driving $25 cars that

get 1,000 miles per gallon.

Computers and the programs that provide their instructions will continue to increase in speed,

reliability, and functionality, limited only by human creativity.

 1.3 1.3 SPECIFYING A PROGRAM SPECIFYING A PROGRAM

As discussed in Section 1.1, an increasingly large number of people own and use a computer as

part of their everyday lives, yet a very low percentage of these computer users actually know how

to write a computer program. In fact, if you understand the material in the first two sections of this

textbook, you already know more about computer programming than most of the world’s popula-

tion. As a result, most programs are not written by the program users. Rather, they are written by a

group of computer processionals most people would refer to as programmers, but more accurately,

they should be called software engineers. A new program that does not meet the needs of the end

user is not going to be well received, so it is important that there be a way to describe the require-

ments of a new program in a way that is understandable to the end users.

Definition

A software engineer is a computer professional who produces programs that are on time, within

budget, are fault free, and satisfy the end users’ needs.

The more formal techniques for describing the requirements of a new program are part of the dis-

cipline of systems analysis, which is a subset of software engineering. These formal techniques are all

based on one specification of the arrangement of the components of the computer system shown Fig-

ure 1.4. They assume that the users’ interaction with the program is via the input and output devices,

so the simplest way for end users to define what task the program is to perform is to enter into con-

versation with a systems analyst aimed at defining the inputs to, and the outputs from, the program.

For example, suppose your friend Annie recently purchased a computer and is having trouble

managing her money. Knowing you completed a course in computer programming, she comes to

you for help. You and Annie enter into the following conversation, which typically involves the

probative words who, what, why, where, when, and how:

Annie: I want to know where my money goes.

You: OK Annie, what bills do you pay each month?

Annie: Well, there’s food, rent, electric, telephone, and clothing.

You: How much is each bill?

Annie: That’s part of the problem; they change each month, and so does my income be-

14 ■ Programming Fundamentals Using Java

cause I work on commission.

You: Well, do you know roughly what percent of your income is spent on each?

Annie: No, but I sure would like to know that. I have a feeling some months I’m spending too

much of my income on food and clothing, which leaves me with no mad money.

You: What is mad money?

Annie: You know, money I can spend on anything I like other than these bills. I want to know

how much that is each month. I am sure someone is taking my money.

You: Gee, Annie, you sound a little paranoid.

Annie: You’d be paranoid too if everyone was out to get you!

You (whispered): Why do I bother?

Based on this conversation, you know the two things Annie would like her computer system

to determine and output are the amount of “mad money” (discretionary funds) she will have at

the end of a month and the percent of her monthly income she spent on each of her five monthly

bills. To determine this, she will have to input the amount of each of her five monthly bills and her

income for that month. You have decided to include the month and year as two additional inputs to

the program, so she will be able to save and distinguish one month’s results from another. A simple

description, or specification, for this program is shown below. It is a tabulation of the program

inputs and outputs preceded by the name of the program and a brief statement that describes the

overall task the program performs.

Program Specification

Program Name: Annie’s Money Manager

Task: To determine Annie’s monthly discretionary funds and the distribution of

her monthly expenses

Inputs (8): Month and Year

 Income for the month

 Amount spent during the month on each of the following five items: food,

rent, electric, telephone, and clothing

Outputs (6): Percent of monthly income spent on each of these five items:

 food, rent, electric, telephone and clothing

 Amount of discretionary funds

Typically, the program specification is refined through an iterative process that involves its

review by the end user and a subsequent conversation. This process could introduce more func-

tionality into the specification of Annie’s program. For example, it could also include the ability to

output an annual report showing the values of the six outputs for any given year, or perhaps for a

range of months. Obviously, this would expand the specification given above.

Given the specification of the program, the programmers’ goal is to write a program that ac-

cepts the specified inputs and produces the desired outputs. The programmers may have to consult

 Chapter 1 · Introduct ion ■ 15

with other experts if it is unclear to them how to determine the outputs from the given inputs. For

example, if the programmers assigned to write Annie’s program did not know how to compute

percentages, they would have to consult a mathematician.

 1.3.11.3.1 Specifying a Game Program Specifying a Game Program

The technique discussed to specify Annie’s program is similar to that of specifying any pro-

gram: conduct a brief conversation with the user and then tabulate the program’s name, the task it

performs, the inputs, and the outputs. This approach can also be used to specify a program that is

used to play a game. In addition, the realization that all game programs share a common set of fea-

tures can facilitate the specification process if the systems analysts include questions about these

features in the conversations they have with the game’s inventor.

For example, most games involve game objects (e.g., trucks, cars, and a frog). In addition,

all games have an objective or a way to win the game (e.g., moving a frog object to the other side

of a road without having it run over by a truck or a car). Most games also have other features in

common. A list of common features to include in a game’s specification conversation is given in

Figure 1.23.

• Name of the game

• Objects (starships, trucks, sling shots, etc.) that will be part of the game

• Objective of the game

• Way to calculate the score of the game

• Time limits imposed on the game

• Game pieces (objects) that will be animated

• Game pieces controlled by the game player (the program’s user)

• Input devices used to control the game objects

• Particular colors to include in the game

• Determining when the game ends

• Events that take place when the game ends

• Keeping track of the highest game score achieved and the name of the game player who

achieved it

Figure 1.23

Common game features.

Armed with this checklist of common game features, a typical conversation with your friend

Ryan (an aspiring game inventor who has not taken a programming course) could be:

You: Hi Ryan, what’s up?

Ryan: I’ve got a great idea for a video game called Deep Space Delivery.

16 ■ Programming Fundamentals Using Java

You: What is the objective of the game?

Ryan: To deliver as many supply packets as possible (picked up from a supply depot) to five

different planets before time runs out.

You: How is a player’s score calculated?

Ryan: The player gets one point for each packet delivered, and if the player delivers all of

the packets at the depot before the time runs out, the player receives one point for each

second of time remaining.

You: What is the time limit on the game, and how many packets will be in the depot?

Ryan: One minute and 30 packets.

You: Looks like the game pieces (objects) are the planets, the supply packets, and the sup-

ply ship. Is that correct?

Ryan: Yes, but don’t forget to include the supply depot.

You: How will the player move the supply ship and pick up and drop off the packets?

Ryan: Using keys on the keyboard.

You: Will any of the other game pieces be moving?

Ryan: Yes, the planets will be moving and bouncing off the edges of the game board. Also,

make one of the planets white and another red.

You: Would you want to keep track of the highest game score achieved and the name of the

game player that achieved it?

Ryan: Yes, that’s a good idea.

You: Sounds good Ryan. I’ll write up a specification for the game for you to look over. Then,

I’ll write the program, and we’ll split the profits. How’s that sound?

Ryan: How about a 40% share for you?

Ryan (whispered): It’s all my idea.

You: OK.

You (whispered): But I’m doing all the work.

Based on this conversation, the specification of Ryan’s game is given below.

Program Specification

Program Name: Deep Space Delivery

Task: A starship is to pick up supply packets at a supply depot and deliver as many

supply packets as possible to five moving planets before time runs out. The

player will receive one point per packet delivered and one point per second

remaining on the game time after all packets are delivered.

Inputs (7): The four cursor control keys (up, down, right, and left) used to control the posi-

tion of the starship

 Chapter 1 · Introduct ion ■ 17

 The ‘A’ key, which is used to pick up a supply packet when the ship is at the sup-

ply depot

 The ‘Z’ key, which is used to drop off a packet when the starship is at a planet

 The game player’s name input when the game is launched

Outputs (5): The time remaining in the game, in seconds, beginning from 60 seconds

 The player’s score

 The message “Game Over” when the game time reaches zero, or when all pack-

ets are delivered

 The highest score achieved and the name of the person who achieved it to be

output to the game board and a disk file when the game time reaches zero

The details for more functionality could be added to the specification of Ryan’s program. For

example, the delivery of a packet to a faster moving planet could be awarded multiple points, mul-

tiple levels of difficulty could be added to the game, and the highest game score achieved with the

name of the game player who achieved it could be announced at the beginning of the game.

 1.4 1.4 SAMPLE STUDENT GAMES SAMPLE STUDENT GAMES

We will soon be able to write a program that implements the specification of the Deep Space

Delivery game presented in the preceding section. The game programs on the DVD that

accompanies this textbook were specified and written by students enrolled in an intro-

ductory programming course. To run these programs, simply double click the “Sample

Student Games” folder on the DVD and copy the subfolders onto your hard drive. Dou-

ble click one of the subfolders and then double click the file with the .jar extension. Running these

programs will give you a sense of what you will be able to accomplish after gaining an understand-

ing of the material in the first five chapters of this book.

 1.5 1.5 JAVA AND PLATFORM INDEPENDENCE JAVA AND PLATFORM INDEPENDENCE

A computer system’s platform is the CPU model and the operating system software it is run-

ning. For example, many PCs run on an Intel CPU/Windows platform, and Apple computers manu-

factured after the midpoint of 2011 run on an Intel CPU/OS X platform. As a result of the evolution

of CPUs and operating system software that has taken place over the last 30 years, there are many

different platforms in use today.

The variety of platforms has always been a problem for software developers because each plat-

form has a language of its own, meaning that a platform can only execute a program that is written

in its language. To produce a program that could run on two different platforms, the programmer

either had to write the program twice, first in the language of one platform and then in the language

of the other, or write the program in a more generic language (for example, C++) and then use two

other programs to translate that program into the language of the individual platforms. In this case,

the C++ program is referred to as source code, and the resulting translations of this source code are

called executable modules or executables.

on the d
v
d

18 ■ Programming Fundamentals Using Java

When we consider the number of platforms that exist and the fact that writing in the language of a

particular platform is a very tedious and time-consuming process, writing programs in a generic lan-

guage is the most efficient and cost-effective approach. Figure 1.26 illustrates the use of this process

to produce executable modules for three different platforms. The programmer would have to translate

the program using three different translators to generate the three different executable modules.

During the early 1990s, the Internet was made commercially available to private individuals,

which made it possible for them to share information between their computer systems. The idea

that this information could be a program resident on one computer system (perhaps a program to

display a Website) presented a fundamental problem. If the two computers were not running the

same platform, the executable module downloaded from one platform (the host platform) would not

run on the other (the client platform), and the Website would not be displayed on the client machine.

Using the process illustrated in Figure 1.24 to produce a downloadable executable module for all

platforms was an impractical solution because, for one thing, a program that was written today

should be able to be run on the platforms of tomorrow. Fortunately, a team of computer scientists

at Sun Microsystems lead by James Gosling had already come up with a more practical solution.

The team’s idea was to change the process used to produce an executable module. Instead

of the host machine producing the executable module, the client machine would produce it. The

host machine would simply translate the program, written in a new programming language

named Java, into a set of byte codes. Byte codes should be thought of as a pseudo-executable

module for a virtual machine, named the Java Virtual Machine (JVM), which are not in the lan-

guage of any platform in existence. Once generated, the byte codes could then be downloaded to

any client machine, and the client machine would use a byte code translator program to translate

the downloaded byte codes into the language of its platform. Figure 1.25 illustrates the Gosling

team’s new process.

A C++

program

C++ translator

for the Intel

CPU/Windows

platform

C++ translator

for the Intel

CPU/OS X

platform

C++ translator

for the Motorola

CPU/Windows

platform

Programmer’s Systems Program Users’ Systems

A computer

running an Intel

CPU/Windows

platform

A computer

running an Intel

CPU/OS X

platform

A computer

running a

Motorola CPU/

Windows platform

Executable module for the Intel

CPU/Windows platform

Executable module for the Intel

CPU/OS X platform

Executable module for the

Motorola CPU/Windows platform

Figure 1.24

The C++ multiple-platform translation process.

 Chapter 1 · Introduct ion ■ 19

NOTE
The grammatical rules for writing a program in the Java language were described by the

Gosling team in the Java Language Specification (JLS), available online.

To make this process work, Gosling’s team assumed that the manufacturer of the client com-

puter system would install a translator that translated Java byte codes into the language of their sys-

tem’s platform. Realizing that all future customers would want to attach their new computer to the

Internet, computer manufacturers complied and proudly advertised their system as “Internet ready.”

The fact that the same set of byte codes could be downloaded and used to produce an execut-

able module on any platform that had a byte code translation program on it made Java programs

platform independent. Programs written in Java (oj20r more accurately, the program’s byte codes)

could be downloaded, translated, and then executed on any platform that contained a platform-

specific byte code translator.

 1.5.11.5.1 The Java Application Programmer Interface The Java Application Programmer Interface

In addition to providing a translator that translates Java programs into byte codes, the creators

of Java also identified a group of data (e.g., the mathematical constant pi) and tasks (e.g., comput-

ing the square root of a given number) that were likely to be used in Java programs. A description

of these data and tasks was then published as the Java Application Programming Interface (API)

specification. If a Java programmer wanted to create a new window for a program, which normally

most programmers want to do, it could be easily done by incorporating the API task that contained

all of the Java byte codes necessary to display a window into that program.

For ease of use, the data and tasks that are similar were grouped together. These grouping are

called packages, and within the packages there are subgroupings called classes. There are approxi-

Java code

Byte code

translator for

the Intel

CPU/Windows

platform

Programmer’s Systems

Download of the

JVM byte codes Executable module for the Intel

CPU/Windows platform

Executable module for the

Intel CPU/OS X platform

Java translator

for the JVM

Executable module for the

Motorola CPU/Windows platform

Byte code

translator for

the Intel

CPU/OS X

platform

Byte code

translator for

the Motorola

CPU/Windows

platform

Program Users’ Systems

Figure 1.25

The Java multiple-platform translation process.

20 ■ Programming Fundamentals Using Java

mately 200 packages and 4,000 classes in the Java API. Most of these classes contain both data and

the Java instructions to perform common tasks. A set of instructions to perform a task is called a

method. The data and methods that are in the same class are said to be members of the class.

Definition

A class is made up of a group of related data members and member methods.

A method is a set of instructions used to perform a task.

Data members are the instance variables that contain the data values for the class.

Just as Java’s creators assumed that the manufacturers of computer systems would install a

translator that translated byte codes into the language of their system’s platform, they also assumed

that the manufacturers would install an implementation of the data and methods defined in the

API specification. Once again, to advertise that their system was Internet ready, the manufacturers

complied. Technically speaking, the byte code translator and the API implementation on the client

machine (along with a memory manager) are called the Java Runtime Environment (JRE), and the

JRE and the client system’s operating system are considered an implementation of the Java Virtual

Machine. Figure 1.26 gives the components of the Java Virtual Machine specific to a system run-

ning an Intel CPU/Windows platform.

Based on Gosling’s team’s idea, any programming language can achieve platform indepen-

dence if the language designers provide a translator that translates the language into Java byte

codes. The resulting translation will run on any computer system or mobile device that implements

the Java Virtual Machine.

Java byte code

download

Intel CPU executable

statements

 API implementation for the Intel

CPU/Windows platform

Memory

manager

Windows operating system

An Implementation of

the JVM

JRE

Website

Intel CPU

Byte code

translator for the

Intel CPU/Windows

platform

Byte code

translator for the

Intel CPU/Windows

platform

Figure 1.26

System-specific components of the Java Virtual Machine.

 Chapter 1 · Introduct ion ■ 21

 1.6 1.6 OBJECT-ORIENTED PROGRAMMING LANGUAGES OBJECT-ORIENTED PROGRAMMING LANGUAGES

Just as related methods and data are grouped into classes in the API specification, they can also

be grouped into classes that are defined within programs written using object-oriented programming

(OOP) languages. Java, by design, is an OOP language. Grouping related methods and data inside a

class that is defined in a Java program is more than a convenient way of arranging related data and meth-

ods. The real motivation for permitting this class grouping in object-oriented programming languages

is that it is a good way of modeling the objects that the program will deal with.

As an example, consider a video game program that involves starship objects. Each starship

object will have a name and a (x, y) location. In addition, as the game is played a new starship can

be created, starships can be drawn on the monitor, and a starship’s location can be changed. A good

model for these starship objects would be to define a class named Starship (depicted as the blue

rectangle in Figure 1.27). As shown in the figure, the class would have three data members (name,

x, and y), and three member methods (create, draw, and move).

It is important to understand that a class is not itself an object, but rather it is a description of

an object. From one class we can create an unlimited number of objects or instances of the class.

A useful analogy is to consider classes we encounter in everyday life: a blueprint, a cookie cutter,

a stencil, a pottery mold, a dress pattern, and the human genome pattern. From one blueprint we

can create lots of houses, from one cookie cutter lots of cookies, from one stencil lots of pictures,

The Class Starship

Three Starship objects

name: Orion

x: 20

y: 30

name: Maggie

x: 50

y: 100

Game board after

creating three starships

1

Game board relocating

the Jewel

3

Orion

2

Orion

Game board after

drawing the Orion

name: Jewel

x: 300 20

y: 500 100

Data members: name, x, y

1

Member methods: draw, create, move

2 3

3

Figure 1.27

The Starship class, three Starship objects, and the use of the class’s methods.

22 ■ Programming Fundamentals Using Java

from one pottery mold lots of vases, from one pattern lots of dresses, and from one human genome

pattern lots of people.

Definition

In an object-oriented programming language, a class is a template for an object, and an object

is a particular instance of a class.

The Starship class would be a template for a starship object. Each time a starship enters the

game, a new starship would be created from this template with a given name and initial (x, y) loca-

tion using the class’s create method. A starship’s name and (x, y) location would be stored in its

three data members, which each object created from the class Starship would contain. In addition,

the tasks of drawing and relocating a starship would be performed by the Java instructions that

make up the class’s draw and move methods.

The center and bottom sections of Figure 1.1.27 depict the use of the Starship class’s three

member methods used in the following order:

 1. The create method (indicated by the number 1 in the figure) was used to create or construct

the three starship objects shown in the center of the figure: the Orion at (20, 30), the

Maggie at (50, 100), and the Jewel at (300, 500). Notice that after they are created, each

starship contains three data members to store the ship’s name and its (x, y) location. Al-

though these three starships have been created, they are not displayed on the game board

shown at the lower left portion of the figure because the draw method has not been used.

 2. The draw method (shown as number 2 in the figure) was used to display the starship Orion

at its current location (20, 30), as depicted in the bottom center of the figure. The draw

method has not operated on the other two starships, so, even though they exist, they do

not appear on the game board. (Note: The origin is located at the upper left corner of the

game board and positive y is downward.)

 3. The move method (represented by the number 3 in the figure) was used to change the cur-

rent location of the starship Jewel from (300, 500) to (20, 100) as depicted on the center

right portion of the figure. As shown at the bottom right portion of the figure, it is not

displayed because the draw method was not performed on it. After relocating the starship,

if the draw task were performed on the Jewel, it would have been displayed directly below

the Orion at (20, 100).

NOTE
Each object contains the data members of its class and can be operated on by the class’s

methods.

 1.7 1.7 INTEGRATED DEVELOPMENT ENVIRONMENTS INTEGRATED DEVELOPMENT ENVIRONMENTS
AND THE PROGRAM DEVELOPMENT PROCESSAND THE PROGRAM DEVELOPMENT PROCESS

An Integrated Development Environment (IDE) is a program to help programmers write pro-

grams. Usually they are language specific in that a particular IDE can be used to develop programs

in one, and only one, programming language. For example, NetBeans and Eclipse are two popular

 Chapter 1 · Introduct ion ■ 23

IDEs used to develop programs written in Java, and the IDE Microsoft Visual C++ can be used to

develop programs written in the language C++. Many popular IDEs can be downloaded for free

from the IDE’s Website.

What these programs have in common is that they integrate a set of program development

tools into one program. Examples of these tools are a text editor used to type, edit, save, and re-

open the program’s instructions, and a translator used to translate the program instructions into

the language of the platform it is to run on. In the case of a Java IDE, this would be a translation

from Java into Java byte codes. In addition, most IDEs have an autocomplete feature to facilitate

the typing of the program and a grammar checker to help locate and correct grammatical errors in

the program’s instructions.

Armed with a good specification of a program and a good IDE, we are almost ready to begin the

program development process, which is illustrated in Figure 1.28. Before we begin, we must read the

program’s task contained in its specification and discover a set of algorithms that perform the tasks.

For example, how will we determine when a starship delivers a supply packet to a planet in Ryan’s

Deep Space Delivery program? As mentioned at the end of Section 1.1, this can be the most difficult

part of writing a program, and most software engineers take an advanced course in algorithm dis-

covery. We will illustrate the discovery process via the programming examples presented throughout

this textbook.

After discovering the program’s algorithms, we are ready to begin the program development

process (Figure 1.28). Generally, the process begins with representing the algorithms as a set

of program instructions (called code), translating the code, and then correcting the grammati-

cal errors (called syntax errors in computer science). Once all of the syntax errors have been

eliminated, the IDE’s translator will produce an executable module that it then runs. In the case

of Java, the IDE generates and then executes the Java byte codes on the Java Virtual Machine

installed on the programmer’s computer.

The programmer then changes roles from programmer to program user to test the program for

correctness. To do this, the user (or tester) supplies the inputs to the program and examines the out-

Locate and correct

syntax errors

Tester's role

Outputs

correct,

end

begin

Outputs incorrect

Write//rewrite

program

instructions

Translate

instruction

Supply program

inputs and verify

outputs

Locate

erroneous

instructions

Programmer's role

Figure 1.28

An overview of the program development process.

24 ■ Programming Fundamentals Using Java

puts it produces. If the program produces the correct outputs for several well-chosen sets of inputs,

the program is complete. If it does not, the tester changes back to the role of a programmer, locates

the erroneous instruction(s), and the process is repeated beginning with rewriting those instructions.

One refinement to the process is necessary for anything other than a very, very small program

because of the fact that we cannot effectively solve large problems. When we consider that we hu-

mans have visited the moon and that many of the more common operating systems consist of over a

million lines of instructions, this statement leads us to a paradox: If we can’t solve large problems,

how did we do these things?

The answer lies in the 4,000 BC writings on a Chinese cave wall that explain that big things

can be divided into little things, little things can be divided into nothing. Today’s version of this

is: divide and conquer. Just as the task of going to the moon was divided into hundreds of small

problems whose solutions were integrated into the lunar mission, a large program is divided into

many small parts, which can be combined to become the large program.

Object-oriented programming languages present several obvious dividing lines. Because the

specification identifies the types of objects the program will deal with, the program is first divided

into classes, one for each type of object. Then, within each class, the tasks to be performed on the

class’s objects are defined. Simple tasks become member methods, complex tasks are divided into

several simple tasks (each of which also becomes a member method). Each method within a class

is written and tested separately. Basically, each method is considered to be a small program, and

it is developed using the process illustrated in Figure 1.28. Once all of the methods in a class are

operating correctly, the methods in another class are developed using this divide-and-conquer con-

cept. When all the classes are complete, they are integrated into the large program. Object-oriented

programming languages make it easy to integrate the classes into the large program.

As an example, consider the development of the Starship class shown in Figure 1.27, which is

part of a game program. Three methods (create, draw, and move) have to be developed using the

process illustrated in Figure 1.28. Because we cannot draw or move a Starship that has not yet been

created, the create method would be developed first. After the method is written and the syntax

errors are found and corrected, we would write a few more lines of Java to test the method. This

code is often referred to as driver code because it takes the method for a “test drive.” It would use

the method to construct a Starship object, perhaps Maggie in the center of Figure 1.27, and output

its data members. If the name Maggie and position (50, 100) were output, we would conclude the

create method was working. If not, we would examine the instructions that make up the create

method, locate and correct the errors, and repeat the translation and test portion of the process.

NOTE
Driver code is disposable Java instructions use to test a method. It normally does not

become part of the final program’s instructions.

The next logical step would be to develop the draw method because, as we will see, it can be

used in the testing of the move method. After the syntax errors are found and corrected, we would

write a few more lines of Java driver code to test the method. The code would use the create method

to construct a Starship object, perhaps Orion shown on the left side of Figure 1.27, and then use

the draw method to display it on the game board. If it were displayed in its proper location with the

 Chapter 1 · Introduct ion ■ 25

name Orion on the side of the ship, we would conclude the draw method was working. If not, we

would examine the instructions that make up the draw method, locate and correct the errors, and

then repeat the translation and test portion of the process.

Next, we would develop the move method, write its code, translate the code and correct the

syntax errors, and then write a few more lines of Java driver code to test it. The code would create

a Starship object, perhaps Jewel at (300, 500), as shown on the right side of Figure 1.27, then use

the move method to change its position to (20, 100) and the draw method to display it on the game

board (monitor). If it were displayed in its new location (20, 100) with the name Jewel on the side of

the ship, we would conclude the move method was working. If not, we would examine the instruc-

tions that make up the move method, locate and correct the errors, and repeat the translation and

test portion of the process.

After completing the development of our Starship class in three manageable steps, we would

eliminate the driver code and replace it with the instructions to use the Starship class and its meth-

ods in our game program.

 1.7.11.7.1 Mobile-Device Application Development Environments Mobile-Device Application Development Environments

The level of miniaturization of the basic components of a computing system that has taken

place in the last ten years has brought to the marketplace a variety of hand-held computing devices.

These devices, often referred to as mobile devices, include smart phones, personal digital assistants

(PDAs), and tablet devices.

The development of a program for a mobile device follows the same process as that used to de-

velop a program for a non-mobile computing device discussed in this chapter. After a specification

is written and the program’s algorithms are discovered, an IDE is used to develop the specification

into a functional program using the process shown in Figure 1.28. However, two problems arise

when applying the development process to mobile-device applications. Because these devices have

limited computing power, it is impractical to conduct the development process on them, so the

process is conducted on a more powerful non-mobile computing system. In addition, the concept

of platform independence has not been extended to mobile devices, so an executable module must

be produced for each mobile-device platform.

Because a majority of mobile applications run on smartphones, and a great majority of smart-

phones run an Android-based platform, this section will conclude with an overview of the tools

available for developing applications for any Android-based smartphone or tablet device. Although

the details presented are specific to those devices, the concepts presented are typical of the tools

employed to develop applications on most mobile devices.

Android device applications can be written in Java on a personal computer. The preferred IDE

is Eclipse, which is a free download. Eclipse is preferred because two sets of tools that facilitate the

development of an Android-device application are easily integrated into it. Both of these tools can be

freely downloaded. The first of these, the Android Software Development Kit (SDK), can be down-

loaded from the Android developers’ Website. The second set of tools, the Android Development

Tools (ADT) Eclipse plug-in can be downloaded from the Eclipse Website. If your personal computer

26 ■ Programming Fundamentals Using Java

is running a Windows operating system, you can download the Eclipse IDE, the SDK, and the ADT

as one bundle from the Android Developers Website, found at http://developer.android.com/sdk/index.

html.

Some of the features the two sets of tools provide include:

� The latest version of the Android operating system

� Platform-dependent translators

� A set of emulators that run the translated code on a simulation of any Android-based

mobile device including displaying its screen and emulating all of its I/O functionality

� The ability to upload developed applications to the Android Market (a Web-based store

for free and purchased applications)

Using these tools and knowledge of Java, you will be able to develop and market applications

for any Android device from the comfort of your own personal-computer system.

 1.8 1.8 OUR GAME DEVELOPMENT OUR GAME DEVELOPMENT
ENVIRONMENT: A FIRST LOOKENVIRONMENT: A FIRST LOOK

In Section 1.4, you were asked to run several of the sample game programs contained on the

DVD that accompanies this textbook. The DVD also contains a folder named Package

that contains a Java package named edu.sjcny.gpv1. This package can be thought

of as a game development addition to the API because it contains methods that perform

tasks that are common to most game programs. Appendix A contains descriptions of

the methods contained in this package.

The incorporation of this package, or game development environment, into a game program

facilitates its development. The students who created all the sample game programs contained on

the book’s DVD incorporated it into their programs. In this section, we will describe how to easily

create and display a game window using the methods in this package, how to incorporate the pack-

age into a game program, and how to change some of the game window’s properties.

 1.8.11.8.1 The Game Window The Game Window

When incorporated into a Java program, two of the game environment’s methods can be used

to create and display the game window shown in Figure 1.29. The Pause and Start buttons on the

right side of the game window can be used by the game player to pause the game and to start/restart

the game. The directional buttons below them, or the keyboard keys, can be used to control the

position of the game objects during the game.

The coral-colored area on left side of the game window, called the game board, is where the

game objects appear. Like most windows, it can be dragged around by its title bar, minimized

to the status bar, and redisplayed by clicking its icon on the status bar. It cannot be maximized,

however, the programmer can change its size to accommodate the needs of a particular game. The

default size of the game window is 622x535 pixels, which are closely spaced dots of color that make

up the surface of a computer monitor.

on the d
v
d

 Chapter 1 · Introduct ion ■ 27

 1.8.2 1.8.2 The Game Board Coordinate System The Game Board Coordinate System

Figure 1.30 shows the game board coordinate system. Game objects are positioned on the

game board by specifying their x and y game board coordinates. The system is a two-dimensional

Cartesian system with its origin at the upper left corner of the game window. The positive x

direction is to the right, and positive y direction is down. The units of the axis system are pixels.

Figure 1.29

The game environment’s window.

622 pixels

Figure 1.30

The game board coordinate system.

28 ■ Programming Fundamentals Using Java

As shown on the upper right and lower left sides of Figure 1.30, the title bar of the window is

30 pixels high, and the left boundary of the window is 5 pixels wide. The coordinates of the lower

right corner of the game board for the default window size are (500, 500). If the programmer de-

cides that a larger or smaller game board is appropriate for the game being developed, the x and y

coordinates of the lower right corner of the game board can be changed, which will be described

in Section 1.8.5.

 1.8.3 1.8.3 Installing and Incorporating the Game Package into a Program Installing and Incorporating the Game Package into a Program

Appendix B contains detailed instructions on how to incorporate the game package, which

contains the game development environment, into a Java program. The simplest ap-

proach is to use one of the projects contained in the “IDE Specific Tools” subfolder on

the DVD that accompanies this book. This subfolder contains an Eclipse, a NetBeans,

and a JCreator project that has the game package already incorporated into them as well

as the code described in the next section, which creates and displays the game window. When the

projects are run, they display the game window shown in Figure 1.29. Game program specific code

and classes can be added to them.

The JCreator and NetBeans projects on the DVD can be copied from the DVD and pasted into

a folder, and then the project can be opened, modified, and run from within the IDEs. The Eclipse

project must be imported into an Eclipse workspace folder using the Import feature available on

the Eclipse File drop-down menu. After the Eclipse project is imported from the DVD, it can be

opened, modified, and run from within Eclipse. Detailed instructions on the use of the DVD’s

three preexisting game projects are given in Appendix B.

As an alternative, the game package edu.sjcny.gpv1 in the “Game Environment” folder on the

DVD can be added to any newly created Java project by following the procedures given in Appen-

dix B, most of which do not include having to change the system’s CLASSPATH variable. When

these alternative approaches are used, the code described in the next section, which creates and

displays the game window, must be added to the project’s code.

 1.8.41.8.4 Creating and Displaying a Game Window and Its Title Creating and Displaying a Game Window and Its Title

After you have incorporated (imported) the game package into your program, you can use the

methods in the package to create and display the graphical window in which your game will run.

The Java program shown in Figure 1.31 is a template, or starting point, for all of our graphical

game application programs. When this program is run, the game window shown in Figure 1.29 is

created and displayed.

As we will learn in Chapter 2, lines 2, 3, 7, 8, 10, and 11 are the minimum set of instruc-

tions that make up a Java application program. For that reason, many IDEs generate these instruc-

tions when a new programming application is created. The one exception is the phrase extends

DrawableAdapter, which must be added to the end of line 2 if the game package is to be used

in the program. Lines 1, 4, 5, and 9 complete the game program template.

on the d
v
d

 Chapter 1 · Introduct ion ■ 29

1 import edu.sjcny.gpv1.*;

2 public class GameWindowDemo extends DrawableAdapter

3 {

4 static GameWindowDemo ga = new GameWindowDemo();

5 static GameBoard gb = new GameBoard(ga, "The Game Window");

6

7 public static void main(String[] args)

8 {

9 showGameBoard(gb);

10 }

11 }

Figure 1.31

The Java instructions to create and display the game window.

The import statement on line 1 of Figure 1.31 makes the methods in the game package avail-

able to the program. Lines 4, 5, and 9 use these methods to create and display the game window

shown in Figure 1.29. Each Java program is given a name, which is part of its specification. This

program is named GameWindowDemo, which is typed on line 2 after the word class and typed

two more times on line 4.

As previously mentioned, Figure 1.31 will be the template for all of our graphical game appli-

cation programs. To adapt it to a particular game program, the new program’s name would appear

on lines 2 and 4, and the game’s title and perhaps the name of its creator would appear at the end of

line 5. For example, if a new game program’s name was Project1, and the game was Frogger created

by Bob, the changes to lines 2, 4, and 5 would be as highlighted below:

1 import edu.sjcny.gpv1.*;

2 public class Project1 extends DrawableAdapter

3 {

4 static Project1 ga = new Project1 ();

5 static GameBoard gb = new GameBoard(ga, "Frogger, by Bob");

6

7 public static void main(String[] args)

8 {

9 showGameBoard(gb);

10 }

11 }

 1.8.5 1.8.5 Changing the Game Board’s Size Changing the Game Board’s Size

As mentioned in Section 1.8.1, the default size of the game window is 622x535 pixels. This

was chosen to make the coordinates of the game board’s lower right corner (500, 500). To change

the game board’s size, and thus the window size, we add the new coordinates of the game board’s

lower right corner to the end of line 5 of Figure 1.31. This is the line that constructs the window.

For example, to obtain a game board whose lower right corner is located at (700, 650), we would

change line 5 to:

static GameBoard gb = new GameBoard(ga, "The Game Window",700, 650);

30 ■ Programming Fundamentals Using Java

The title bar of the window would still be 30 pixels high, and the left border of the window

would still be 5 pixels wide, as shown in Figure 1.29, but the window’s height and width would be

increased to accommodate the larger game board.

 1.9 1.9 REPRESENTING INFORMATION IN MEMORY REPRESENTING INFORMATION IN MEMORY

As discussed in Section 1.1, the memory component of the computer system has the ability to

store and recall information, and that information could be the data that the program processes or

the instructions that make up the program. The scheme used to store or represent the information

in memory is dependent on the type of information being stored. Data is stored using a different

scheme than translated program instructions. In addition, character data, which is data typed into

a word processor or IDE, is stored differently than numeric data, which is data that will be used in

arithmetic expressions.

There are three memory storage schemes used to represent three different types of informa-

tion: (1) character data, (2) translated instructions, and (3) numeric data. All three of these schemes

were designed around the basic hardware memory unit: a bit, which stands for binary digit. Con-

ceptually, a bit should be thought of as a single switch that can be turned on or off. All of memory

uses this storage concept, and storage devices such as RAM, disks, flash drives, and tape drives

may contain billions (giga) and even trillions (tera) of these bits.

For brevity, when a bit is turned on we say it is in state 1 (one), and when it is off we say it is

in state 0 (zero). These should only be thought of as the numerics one and zero when the informa-

tion stored is numeric data. Figure 1.32 depicts eight adjacent bits in on-off states and their briefer

binary (1-0) depiction.

 off on off off off off on off 01000010

 on-off Depiction 1-0 Depiction

Figure 1.32

The state of eight adjacent on-off bits and their 1-0 depiction.

 1.9.1 1.9.1 Representing Character Data Representing Character Data

The scheme used to represent character data in memory is rather straightforward. A table7

was composed in which each character to be represented was assigned a unique eight-bit pattern.

For example, the character B was assigned the pattern 01000010, the lower-case version of this

character, b, was assigned the pattern 01100010, and the character 1 was assigned the pattern

00110001.

The table is named the Extended American Standard Code for Information Interchange

because it was an expansion of a table named the American Standard Code for Information

Interchange, which represented characters using patterns of seven bits. The seven-bit table was

assigned the acronym ASCII (pronounced “ask ee”), and the extended table is referred to as the

Extended ASCII table. Both tables include all of the upper- and lower-case letters of the Modern

 Chapter 1 · Introduct ion ■ 31

Latin (English) alphabet, the digits 0 to 9, a set of special characters (e.g., !, @, #, $, %, ^, etc.),

and some control characters such as horizontal tab and line feed. Because there are 128 (27) unique

ways to arrange 7 bits and 256 (28) unique ways to arrange 8 bits, adding the eighth bit to the Ex-

tended ASCII table doubled the size of the ASCII table.

The first 128 characters in the Extended ASCII table are given in Appendix C. The bit patterns

in this table are used to represent character information on all computer systems when the alpha-

betic characters the system is processing are limited to the Modern Latin (English) alphabet. When

this is the case, and we want to represent the letter B in storage, eight adjacent (or contiguous) bits

of storage (called a byte of storage) are set to the Extended ASCII pattern for B: 01000010. If we

fetched a byte of storage from an area of memory in which we knew that characters were stored,

and that byte contained the pattern 01000010, we would know that the character B was stored there.

We say that a keyboard is an ASCII keyboard if it generates this bit pattern when a capital B is

struck, and a printer is an ASCII printer if it prints the character B when it receives this bit pattern.

Definition

Eight adjacent or contiguous bits are called a byte of storage

To accommodate the international exchange of information over the Internet, the Extended

ASCII table was expanded to include unique bit patterns for the symbols used in the other alpha-

bets of the world. To provide a unique bit pattern for each entry in this expanded table, named the

UNICODE table, the number of bits assigned to each character was increased from 8 to 16 bits (2

bytes) per character. The first 256 entries in the UNICODE table are the characters in the Extended

ASCII table, with the leftmost 8 bits of their 16-bit pattern set to 0 and the rightmost 8 bits set to

their Extended ASCII table patterns. For example, because the Extended ASCII representation of

B is 01000010, its UNICODE representation is 00000000 01000010. Characters processed by Java

programs are stored in memory using their UNICODE table representations.

NOTE
Character data is represented in memory using either the Extended ASCII or UNICODE

table.

 1.9.2 1.9.2 Representing Translated Instructions Representing Translated Instructions

The technique used to represent translated instructions in memory is the same technique used

to represent characters in memory. A table is composed containing all of the possible translated

instructions, and a unique bit pattern is assigned to each of them. For example, the bit pattern for

the translated instruction to subtract two integers could be 01000000, and the bit pattern to divide

two integers could be 01000010.

Unlike the Extended ASCII and UNICODE tables that are used by all computer systems to

store characters, these translated instruction tables vary from one CPU to another. Not only do the

bit patterns vary, but the number of bits used to represent a translated instruction also varies. The

tables are platform dependent, which is the reason Java came into being. To determine the trans-

lated memory representation of a divide instruction on a particular platform, we have to look up the

bit pattern for the divide instruction in the instruction table of the CPU of that platform.

32 ■ Programming Fundamentals Using Java

For the Java Virtual Machine, each translated instruction is assigned an eight-bit pattern. Be-

cause the patterns consist of eight bits, or one byte, the patterns are called byte codes. Table 1.1

gives the Java byte codes for the translated integer arithmetic instructions: add, subtract, multi-

ply, and divide. As indicated in this table, when the Java Virtual Machine receives a byte code of

01101100, it performs a divide operation.

Table 1.1

Java Byte Codes for Integer Arithmetic Instructions

Instruction Java Byte Code

add 01100000

subtract 01100100

multiply 01101000

divide 01101100

!

TIP

Translated Java instructions are represented in memory using patterns of eight bits

called byte codes.

 1.9.3 1.9.3 Representing Numeric Data Representing Numeric Data

Unlike the two previously described schemes, the scheme used to represent numeric data does

not use a table because, for one thing, the table would be infinitely long. Rather, the scheme is

based on the theory of numbers. All number systems have a base. Our number system’s base is 10,

which anthropologists speculate is due to the fact that we have ten fingers and ten toes. In number

theory, the base of a number system determines the number of digits in the system. Because our

number system is base 10, it has 10 digits (0 through 9). Conversely, the theory of numbers tells us

that if a number system has 10 digits, its base is 10.

Armed with this knowledge of number systems, it was decided that numeric data would be

represented in memory using a number system whose base is 2 because one bit can represent the

system’s two digits: 0 and 1*. Anthropologists would tell us that a base-2 number system would

probably be our number system if we had two fingers. Because we do not have two fingers, we

need to understand how to convert from base 2 to base 10 to interpret what base-10 number a bit

pattern represents and how to convert numbers from base 10 to base 2 so we can store numbers in

memory.

!

TIP

Numeric data (data that will be used in a mathematical expression) is represented in

memory using a binary number system.

Fundamental to these conversions is the realization that digit position values in a base-2

number system are not the same as in our base-10 system. Starting from the right, the digit po-

sition values in our number system are the 1s position, the 10s position, the 100s position, etc.

*John von Neumann, often called the father of the modern computer, originally proposed this scheme.

 Chapter 1 · Introduct ion ■ 33

These represent 100, 101, 102, etc. Extrapolating this to a base-2 system, the digit position values

starting from the right are 20, 21, 22, etc. Figure 1.33 gives the first eight digit position values

of the base-2 number system with their decimal (base 10) equivalent below them. Knowing the

digit position values of the binary number system, we can now convert from base 2 to base 10,

and base 10 to base 2.

 27 26 25 24 23 22 21 20

 128 64 32 16 8 4 2 1 base-2 position values

Figure 1.33

First eight digit position values of the binary number system.

To convert a base-2 representation (e.g., 01000010) of an integer numeric value stored in mem-

ory to base 10, we simply write the bit pattern below the base-10 digit position values that are

shown in Figure 1.33 and add the values that have a 1 under them. For example, for the bit pattern

01000010, the process would be:

128 64 32 16 8 4 2 1 base-2 position values
0 1 0 0 0 0 1 0 internal representation

 64 2

Therefore, 01000010 represents the base-10 number 66 (64 + 2).

This conversion process implies that the bit pattern 11111111 represents the largest integer that

can be represented using 8 bits, which is the base-10 number 255 (255 = 128 + 64 + 32 + 16 + 8 +

4 + 2 + 1). To represent integers larger than 255, more bytes of storage would be dedicated to each

integer numeric value.

To convert a base-10 integer to its binary bit pattern to store the numeric value in memory, we

begin by writing out the base-10 digit position values that are shown in Figure 1.33. Then starting

on the left, we place a 1 under all of the position values that when added together give the base-10

number. The remaining position values are filled in with zeros.

To quickly determine which positions that should have a 1 placed under them, use the follow-

ing algorithm until the right most position value is reached:

 1. Let n (e.g., 66) be the base-10 integer value to be represented in memory

 2. Start at the left most bit, b

 3. Set v to b’s position value (e.g., v = 128)

 4. If (n – v) is positive or equal to zero then:

 a. Place a 1 under b’s position

 b. Set n = (n – v)

 Else place a 0 under b’s position

 5. Move b to the next bit to the right

 6. Go to step 3

34 ■ Programming Fundamentals Using Java

Table 1.2 illustrates the use of this algorithm to convert 66 to its 8-bit binary representation.

Each row in the table represents an execution of steps 3 and 4 of the algorithm.

Table 1.2

Conversion of the Integer 66 to its 8-Bit Binary Representation

n b v n - v Binary Representation of n

66 7 128 62 0

66 6 64 2 01

2 5 32 30 010

2 4 16 14 0100

2 3 8 6 01000

2 2 4 2 010000

2 1 2 0 0100001

0 0 1 1 01000010

Before we conclude our discussion on how numeric data is stored in memory, we should

comment on how negative integers and numbers with fractional parts, which are called real num-

bers in mathematics, are represented in memory. The short answer is that negative integers are

represented using a scheme named twos complement form, and numbers with fractional parts

are represented in a standardized6 form analogous to scientific notation (as when 235.2374 is

expressed as 2.352374 x 102). The details of these schemes are beyond the scope of this text, how-

ever, an understanding of the representation of positive integers as binary numbers discussed in

this section is fundamental to an understanding these two representation schemes.

Finally, consider a byte of storage that contained the bit pattern 01000010. When we attempt to

determine what is stored in this byte, a dilemma arises. If we look into the Extended ASCII table

we would conclude the character B is stored there. We have also learned that this could also be

the base-10 integer 66. It is also the byte code instruction to store an integer in RAM memory. To

resolve these kinds of dilemmas, the language translator keeps track of the types of information

that is stored in various parts of RAM. If we knew that the bit pattern 01000010 was in the area of

RAM where characters are stored, then it represents character B.

 1.10 1.10 CHAPTER SUMMARY CHAPTER SUMMARY

In this chapter, you learned about the hardware and software components of a computer sys-

tem, how they are arranged, and how they interact with the user. The hardware components consist

of the central processing unit, memory, and input/output devices. Main or RAM memory inter-

acts with the CPU and stores the data and instructions that are about to be processed by the CPU.

The backing store or secondary memory, such as a hard drive, stores data and instructions more

permanently.

The modern computer was developed over centuries through the efforts of many people. It has

become smaller, faster, cheaper, and more reliable as it evolved from a room-sized device to the

small hand-held mobile and wearable devices common today.

 Chapter 1 · Introduct ion ■ 35

Java is an object-oriented programming language that allows a programmer to represent and

process real-world objects within application programs and computer games. Classes are the tem-

plates for creating objects, which contain both data and methods to operate on the data. All infor-

mation contained in a computer is represented in binary as translated instructions, numeric data,

and character data. Java programs are translated into byte codes, which can be executed by the Java

Virtual Machine, making them platform independent and portable.

New programs are defined in a written specification, then the program’s algorithms are discovered

and an IDE is used to compose and test the program. Game programs are more easily composed by

importing a game environment into the program, such as the one contained on the DVD that accom-

panies this textbook. Game environments supplement the Java API by providing methods that perform

tasks common to most games, such creating an interactive game board on which the game objects can

be drawn and moved.

The discovery of a program’s algorithms is usually the most difficult part of producing a new

program. Throughout this text, we will use game programming to illustrate the use of programming

concepts and use game algorithms to introduce the reader to the algorithm discovery process.

Knowledge ExercisesKnowledge Exercises

 1. Between 1989 and 2004, the number of computers per 1,000 U.S. citizens increased by a factor

of approximately:

 a) 2 b) 4

 c) 8 d) 12

 2. What is the difference between hardware and software?

 3. Explain the difference between operating systems and application programs.

 4. Which of the following characteristics are associated with RAM (main) memory?

 a) Nonvolatile b) Very fast

 c) Very large capacity d) Expensive

 5. Which of the following characteristics are associated with backing (secondary) storage?

 a) Nonvolatile b) Very fast

 c) Very large capacity d) Expensive

 6. Give three examples of:

 a) Input devices b) Output devices

 c) Backing (secondary) storage devices

 7. Some computer devices have a single use while others have multiple uses.

 a) Name a device that is only used for output.

 b) Name a device that is only used for input.

 c) What device can be used for both input and output?

 8. Name and explain the function of each of the three major hardware components of a computer

system.

36 ■ Programming Fundamentals Using Java

 9. How would you respond to a friend who asked you who invented the computer?

 10. Examples of operating system programs include all of the following except:

 a) MAC OS b) Windows

 c) Java d) Linux

 11. Volatile memory refers to memory that:

 a) Permanently stores data

 b) Loses its contents if power is interrupted

 c) Is added to the computer externally

 12. Word processing, e-mailing, and searching the Web are all examples of using:

 a) Application software b) Systems software

 c) Programming d) None of the above

 13. Which of these replaced vacuum tubes in second-generation computers?

 a) Paper tape b) The mouse

 c) Chips d) Transistors

 14. Who developed assembly language, the first compiler, and the language COBOL?

 a) Alan Turing b) Ada Lovelace

 c) Grace Hopper d) John von Neumann

 15. Name the person referred to by each of these titles or descriptions:

 a) First programmer b) Inventor of the Java programming language

 16. Give the four features of a program that are identified in its specification.

 17. What is meant by platform independence?

 18. True or False: To achieve platform independence, Java byte codes are translated on the end user’s

computer system.

 19. What is the difference between a class and an object?

 20. In a video game, a paddle will be used to reflect a ball into a pile of 200 bricks.

 a) How many objects will be involved in the game? What are they?

 b) How many classes will be defined in the program? Name them.

 21. Give the terms that are represented by the following acronyms:

 a) CPU b) RAM

 c) I/O d) IDE

 e) JVM f) API

 g) GUI

 22. Which of these refers to the process of breaking a problem into smaller parts in order to solve

or program it?

 a) Divide and conquer b) Platform independence

 c) Portability d) Translation

 Chapter 1 · Introduct ion ■ 37

 23. The upper left corner of the game environment’s game board is located at the (x, y) pixel

coordinates:

 a) (0, 0) b) (500,500)

 c) (622,535) d) (5, 30)

 24. Which of these is not a component of a typical game program?

 a) Score b) Time limits

 c) Napier’s bones d) Game piece objects

 25. Name the three types of information represented in memory.

 26. Write the 8-bit binary equivalent for each of these base-10 numeric values:

 a) 51 b) 77

 c) 115 d) 131

 e) 227 f) 254

 27. Write the base-10 (decimal) equivalent number for each of these binary values:

 a) 01010011 b) 00101111

 c) 00000000

 28. Give the 8-bit memory representation of the characters C and c.

Preprogramming ExercisesPreprogramming Exercises

 1. Think of a video game and conduct a conversation with yourself that includes the features

common to most games that are tabulated in Figure 1.1.23. Based on that conversation, write

a specification for the game that gives the game’s name, the task or objective of the game, and

a description of the inputs and outputs. The game must include at least two different types of

game objects and one of the objects has to be controlled by the user via the cursor control keys

and the game board directional buttons.

 2. Logan is a teacher with 25 students in his class. Write a specification for a program that will

show Logan the lowest, highest, and average class grades on an examination.

 3. Using the template given in Figure 1.31 and the directions given in Section 1.8.5, write the

line of code necessary to change the game window’s size to 800x600 with the new title “My

Great Game Window.”

EnrichmentEnrichment

In the same way that computers and programming languages have evolved over time, game programs

also have developed from very simple games to the present multiuser, interactive games. Search the Inter-

net to discover some of the historical developments of computer games. Some of the questions you might

research are:

� When and where the first games were developed

� What companies were created for developing games

38 ■ Programming Fundamentals Using Java

� Who are the leaders today in the field of games

� How do today’s games differ from the earliest computer games

(Be sure to record the sources of your information.)

ReferencesReferences

Fullerton, Tracy, Game Design Workshop, 2nd ed. Burlington, MA: Morgan Kaufman Publishers, 2008.

Iverson, Jakob, and Michael Eierman. Learning Mobile App Development. Upper Saddle River, NJ: Addison-
Wesley, 2013.

Lucci, Stephen, and Danny Kopec. Artificial Intelligence in the 21st Century. Dulles, VA: Mercury Learning
and Information, 2013.

Swade, Doron. Charles Babbage and his Calculating Machines. London: Science Museum, 1998.

EndnotesEndnotes

1 http://en.wikipedia.org/wiki/History_of_computing

2 http://www.computersciencelab.com/ComputerHistory/History.htm

3 http://www.webopedia.com/DidYouKnow/Hardware_Software/2002/FiveGenerations.asp

4 http://community.seattletimes.nwsource.com/archive/?date=19961124&slug=2361376

5 Decker, Rick and Stuart Hirschfield. The Analytical Engine. Belmont, CA. Wadsworth Publishing Com-

pany, 1992, p.17 (Now online: http://www.course.com/downloads/computerscience/aeonline/)

6 The standard is named IEEE 754-2008

7 http://docs.oracle.com/javase/specs/jvms/se7/html/jvms-7.html

■ ■ ■ ■ ■

In this chapter

In this chapter, you will learn how to use the basic Java program template to develop a

program that performs input, mathematical calculations, and output. Various methods to

facilitate meaningful input and understandable output will be introduced, as will techniques

for storing data in RAM memory and performing mathematical calculations that go beyond

basic arithmetic operations. All these techniques are used in most programming applications.

After successfully completing this chapter you should:

� Understand the basic components of a Java program

� Recognize the difference between primitive and reference variables and how they store data

� Be able to declare and use variables in a program

� Perform input from a dialog box

� Perform output to a dialog box, as well as output to the system console and a graphical

window

� Use arithmetic calculations and mathematical functions and constants in the Java Math

class

� Perform basic formatting of numeric output

� Understand and be able to use the counting algorithm

� Apply these concepts to begin producing a computer game

2CHAPTERCHAPTER

2.1 The Java Application Program Template.40

2.2 Variables . 41

2.3 Primitive Variables. .42

2.4 System Console Output .44

2.5 String Objects and Reference Variables.48

2.6 Calculations and the Math Class 50

2.7 Dialog Box Output and Input .58

2.8 Graphical Text Output .64

2.9 The Counting Algorithm .67

2.10 Formatting Numeric Output: a First Pass70

2.11 Chapter Summary . 71

VARIABLES, INPUT/VARIABLES, INPUT/OUTPUT, OUTPUT,

AND CALCULATIONSAND CALCULATIONS

40 ■ Programming Fundamentals Using Java

 2.1 2.1 THE JAVA APPLICATION PROGRAM TEMPLATE THE JAVA APPLICATION PROGRAM TEMPLATE

If you were writing a letter to you friend Sally, it would probably begin with an opening salu-

tation, for example, “Dear Sally,” and end with a closing salutation, for example, “Sincerely,” fol-

lowed by your signature. Opening and closing salutations are usually considered to be a minimum

template for any letter we compose. In between these salutations, we would put the text specific to

the letter we are writing.

Similarly, most programming languages have templates for composing a program in that lan-

guage. These templates begin and end with text specific to the language, and we write, or code, the

instructions specific to the program we are composing inside the template. The minimum template

for a Java program is depicted in the top half of Figure 2.1.

1 public class ProgramName

2 {

3 public static void main(String[] args)

4 {

5

6 }

7 }

Java Program Template

1 public class ProgramName

2 {

3 public static void main(String[] args)

4 {

5 System.out.println("Hello");

6 }

7 }

Java Program to Output the Word “Hello”

Figure 2.1

Template of a Java program and a program that outputs the word “Hello.”

The phrase ProgramName on line 1 of this template is replaced with the name of the program

being composed, and the instructions specific to the program are placed within the program’s

code block, within the braces that appear on lines 4 and 6. For example, in the bottom half of

Figure 2.1 an instruction, or executable statement, has been added to line 5 of the template to pro-

duce a program that outputs the word “Hello.”

NOTE All Java executable statements end with a semicolon.

When a Java program is run, the first instruction to execute is always the first executable

instruction coded after the open brace on line 4. In programming jargon this statement is said to

be the program entry point, and all programming languages designate a location in the program

template to be the program’s entry (starting) point. By default, the program statements that follow

the program entry point usually execute sequentially in the order they appear in the program.

If an Integrated Development Environment (IDE) is being used to compose a program, it will

normally ask for the name of the program (or project). Then the IDE generates the code template with

 Chapter 2· Variables , Input /Output , and Calculat ions ■ 41

the phrase ProgramName on line 1 replaced with the program’s name. In addition to the seven lines

shown in the top of Figure 2.1, some IDEs add several other lines to the template, the most common

of which is a statement on line 5 to output the phrase “Hello World.” However, for the template to be

grammatically correct, all IDEs will include the seven lines shown in the top portion of Figure 2.1.

 2.2 2.2 VARIABLES VARIABLES

Most programs process data that is input to the program. For example, a program may compute

the sum of two input bank deposits. To be processed, data must be stored in the memory of the

computer system. All programming languages contain statements for defining variables, which

are memory cells that can store one piece of data. Before a variable can be used in a Java program,

it must first be declared. When a variable is defined, or declared in a program, the programmer

assigns it a name and designates the type of information to be stored in the cell. For example, a

variable named deposit could be used to store the amount of a deposit, in which case its type

would be a number with a fractional part.

Definition

A variable is a named memory cell that can store a specific type of data.

Variables must be declared before they can be used.

In Java, valid variable names must begin with a letter and cannot contain spaces. After the first

letter, the remaining characters can be letters, digits, or an underscore. They cannot be Java key

words. (See Appendix D.) Variable names that do not follow these rules are invalid and are identi-

fied by the Java translator as syntax (grammatical) errors. Good coding style dictates that variables

begin with a lowercase letter, and new words in the variable name begin with an uppercase letter.

In addition, the name of the variable should be representative of the data item being stored in the

memory cell yet be as brief as possible. For example, a variable used to store the balance of my

savings account could be named myBalance.

Good choices for variable names make our programs more readable. The variables on the left

side of Figure 2.2 are well composed: they are syntactically correct, use good naming conventions,

and imply what they store. The variable names on the right side of the figure are not well com-

posed, concise, or meaningful.

Well Composed Poorly Composed

firstName Fst

deposit1 theFirstOftheBankDeposits

myBalance mb

Valid Invalid

zipCode zip Code

phoneNum phone#
grade1 1stGrade

Figure 2.2

Variable names.

42 ■ Programming Fundamentals Using Java

The information stored in a memory cell can change or vary during the execution of the pro-

gram (which is why these storage cells are call variables). However, once designated, the type of

the information stored in the memory cell (e.g., a number with a fractional part) cannot be changed.

In Java, there are two kinds of variables: primitive variables and reference variables. The

type of data stored in primitive variables can be a single numeric data value, one character, or one

Boolean truth value. Reference variables store RAM memory addresses. The grammar, or syntax,

used to declare a primitive variable is the same grammar used to declare a reference variable. In

the next section, we will discuss this syntax and the use of primitive variables in our programs. The

use of reference variables will be discussed in Section 2.5.

Definition

Primitive variables store one numeric value, one character, or one truth value.

Reference variables store memory addresses.

 2.3 2.3 PRIMITIVE VARIABLES PRIMITIVE VARIABLES

The Java statement used to declare a variable begins with the type of the information stored in

the variable, said to be the variable’s type, followed by the name of the variable. Like all Java state-

ments, variable declaration statements end with a semicolon. Optionally, the declaration statement

can also include the value to be initially stored in the variable. If the initial value is not specified

within the variable declaration statement, the variable is set to a default value. Default values are

dependent on the type of information stored in the variable. For example, the statements

double deposit;

double price = 5.21;

declare the variables named deposit and price, with deposit initialized to the default value

0.0 and price initialized to the value 5.21. The word double is a keyword in Java.

In programming languages, keywords are words that have special meaning to the trans-

lator that translates program statements into the language of the computer system. The

keyword double means that the memory cell being defined will store a number with a

fractional part and the size of the storage cell will be 8 bytes (64 bits). Table 2.1 gives the

keywords used to specify the type of a primitive variable. The size of the storage cell im-

plied by the use of the keywords is also given. As noted in the table, the keywords used to

declare integer and real numeric types are different, and the size of the storage cell limits

the numeric range and precision of the stored numeric value.

When storage is not at a premium, it is best to use the type int for integer variables because

most programs deal with integers within the range -2,147,483,648 to +2,147,483,647. If a data item

were beyond that range, it would not be properly represented in an int variable. For larger integer

values, the type long should be used. Integer data beyond the range of the type long cannot be

stored in a primitive variable. The Java API class BigInteger provides a remedy for this situa-

tion and will be discussed in Chapter 7, “Methods and Objects: A Second Look.”

 Chapter 2· Variables , Input /Output , and Calculat ions ■ 43

Table 2.1

Primitive Data Types

Data Type Key Word

Cell Size

(bytes) Range and Precision

byte 1 -128 to +127

Integer

Numeric

short 2 -32,768 to +32,767

int 4 -2,147,483,648 to +2,147,483,647

long 8
-9,223, 372,036,854,775,808 to

+9,223, 372,036,854,775,807

Real Numeric

float 4

±1.40129846432481707 E-45 to

±3.4028234663852886 E+38

(7 digits of precision)

double 8

±4.94065645841246544 E-324 to

±1.797693134862157 E+308

(15 digits of precision)

Truth Value boolean 1 true or false

One Character

char 2

Upper and lowercase keyboard characters and other

entities

(see Appendix C)

When storage is not at a premium, it is best to use the type double for variables that will store

real numbers (numbers with fractional or decimal parts) because the range of the real numbers

processed by a program is usually within the range of the type double. As is the case for large

integers, Java provides an API class (BigDouble) for storing real numbers whose range exceeds

that of a double. In addition, because numeric literals, (e.g., 1.5) are represented as type double, an

f (for float) must be added to the end of an initial value in a float variable declaration to inform the

translator that the loss of precision is acceptable:

float change = 1.5f;

When the initial value of a character variable is specified, it is enclosed in single quotation marks,

and the initial values of Boolean variables begin with a lowercase letter:

char myFirstIntial = 'W';

boolean isRaining = false;

Multiple variables of the same type can be declared in a single Java statement. The variables are

separated by commas, and the statement cannot include initial values:

short n1, n2, n3;

boolean isRaining, isSnowing;

char letter1, letter2, digit1, digit2;

When initial values are not specified in a variable declaration statement, the variables are set to

default values. The default value for the integer types (byte, short, int, and long) is zero, and

44 ■ Programming Fundamentals Using Java

the default value for the real types (float and double) is 0.0. For the Boolean type (boolean),

the default value is false, and for the character type (char), it is ''. The values true and false

are Java keywords.

 2.4 2.4 SYSTEM CONSOLE OUTPUT SYSTEM CONSOLE OUTPUT

The system console is a window that a program can use to communicate with the user of the

program. When information flows from the program to the system-console window, we say that

the program is performing output. Conversely, when the information flow is from the system-

console window to the program, we say the program is performing input. For brevity, these infor-

mation transfers are referred to as console input and console output, respectively, or more simply

console I/O. In this section, we will discuss console output, and console input will be discussed in

Chapter 4 “Boolean Expressions, Making Decisions, and Disk I/O.”

The two Java statements used to perform output to the system console are:

System.out.print();

System.out.println();

Like all Java executable statements, they both end with a semicolon. The output item, which

is referred to as an argument, is coded inside the statement’s open and close parentheses. The only

difference between these two statements is that the first one leaves the console’s cursor at the end

of the output item, and the second one positions it at the beginning of the next line.

 2.4.1 2.4.1 String Output String Output

Technically speaking, the item to be output must be a sequence of characters, which in pro-

gramming languages is called a string (e.g., This is Console Output). In Java, strings can either be

string literals or String objects. String objects will be discussed in Section 2.5.

String literals are strings enclosed in double quotes. To output “This is Console Output” we

would code the string literal "This is Console Output" inside the parentheses of a console

output statement. The following code fragment would display two lines of output:

System.out.println("This is Console Output");

System.out.print ("from the program");

The first line would contain This is Console Output, and the second line would contain from the

program. Because the second line is a print statement, the console’s cursor would appear on the

second line just after the word program.

2.4.22.4.2 The Concatenation Operator and Annotated Numeric Output The Concatenation Operator and Annotated Numeric Output

The concatenation operator, which is coded as a plus (+) sign, can be used to combine two

strings into one. The statement

System.out.println("Hello" + "World");

 Chapter 2· Variables , Input /Output , and Calculat ions ■ 45

produces the output Hello World to the system console. Before the output is performed, the first

string literal, containing the word "Hello", is combined with the second string literal "World".

The resulting string, "Hello World", is then output to the console. There is no limit to the

number of string literals that can be combined using concatenation operators to produce the string

argument output by the print and println methods. The statement

System.out.println("Hello" + "World," + " I'm Bill.");

produces the console output Hello World, I’m Bill.

To make the output of numeric data more meaningful and user-friendly, the output should

always be identified or annotated. For example, the output The price is $5.21 is much more infor-

mative than the output 5.21 The annotation The price is $ can be included in the output using the

concatenation operator.

System.out.println("The price is $" + price);

The Java translator interprets the plus sign used in this context as the concatenation operator

because the item to its left is a string literal. It will fetch the contents of the variable price, convert

it to a string, and then concatenate that string with the previous string literal. The resulting console

output is “The price is $5.21.”

Because there is no limit to the number of string literals that can be combined to produce the

string argument of the println and print methods, the annotated contents of several variables

can be output to the console using one console output statement. The console output The price of

the 10 items is $5.21. is produced by the code fragment:

int quantity = 10;

double price = 5.21;

System.out.println("The price of the " + quantity +

 " items is $” + price + ".");

The indentation in the above System.out.println statement has been used to improve its

readability. It prevents the statement from going beyond the eightieth column and is considered

good programming practice.

2.4.32.4.3 Escape Sequences Escape Sequences

It is often necessary to output strings containing characters that have special meaning to the

Java translator. For example, a double quotation mark (“) is meant either to begin or end a string

literal, and a single quote (‘) is meant to begin or end a character literal. Suppose we wanted to out-

put Joe said, “Hello” followed by a period. To be grammatically correct in English, the word Hello

has quotes around it because it is something Joe said. However, the output statement

System.out.println("Joe said, "Hello".");

would result in a syntax error because a double quotation mark in Java is meant to be either the

beginning or end of a string literal. Therefore, the translator would assume the quotation mark pre-

ceding the word Hello was meant to terminate the string literal, which began with the quotation

mark preceding the word Joe. Under this assumption, the translator expects the next character to

46 ■ Programming Fundamentals Using Java

be a close parenthesis followed by a semicolon, or a concatenation operator. Instead, it finds the

character H, which produces a syntax error.

To solve this problem, Java provides escape sequences, which are a sequence of two characters

coded inside a string literal. The first character in the sequence is always the backslash (\) charac-

ter. When the translator encounters a backslash inside a string literal, it always considers this to be

the beginning of an escape sequence and effectively looks up the meaning of the escape sequence,

given in Table 2.2. In other words, the backslash tells the translator to escape from its normal way

of interpreting this backslash and the next character, and instead look into the table of escape se-

quences for the meaning of these two characters.

For example the escape sequence \" (coded inside a string literal) means don’t interpret the

quotation mark as the beginning or end of a string literal but output a quotation mark. Therefore,

the syntactically correct way to output the sentence Joe said, “Hello”. is:

System.out.printlin("Joe said, \"Hello\".");

Now the quotation mark preceding the H in Hello is part of the escape sequence to output a

quotation mark. It is not interpreted as the close of the string literal, which began with the quota-

tion mark preceding the word Joe. Another escape sequence is coded after the o in Hello for

the same reason. Proceeding to the right in the string literal, the translator encounters the quotation

mark that follows the period, which it correctly interprets as the close of the string literal.

Because a backslash inside a string literal is interpreted as the beginning of an escape se-

quence, one obvious question is “how would we output a backslash?” The answer is that there is

an escape sequence for outputting a backslash, which is a double backslash. The statement

System.out.println("Down \\/ Up /\\");

produces the output: Down ˅ Up ˄.

The escape sequence \' is used to output a single quotation mark, and the escape sequence

\n causes the cursor to move to a new line before completing the output. The escape sequence \t

tabs the cursor to the right; this is useful when you want output to appear in columns. A list of the

escape sequences is shown in Table 2.2.

Table 2.2

Escape Sequences

Escape

Sequence Sequence Name Meaning

\" Double quote Output the double quotation mark (“) character

\\ Backslash Output the backslash (\) character

\' Single quote Output the single quotation mark (‘) character

\b Backspace Move the cursor back one character position

\t Horizontal tab Move the cursor to the next horizontal tab position

\n New line Move the cursor to beginning of the next line

\r Carriage return Move the cursor to beginning of the current line

\f New page (form feed) Move the cursor to the top left of the next page

 Chapter 2· Variables , Input /Output , and Calculat ions ■ 47

The application shown in Figure 2.3 illustrates the declaration and initialization of primitive

variables and the use of string literals and escape sequences to output the data stored in these vari-

ables. The program’s outputs are included in the figure after the program’s code.

1 public class ConsoleOutput

2 {

3 public static void main(String[] args)

4 {

5 // Primitive variable declarations

6 int age = 21;

7 double weight = 185.25;

8 boolean isRaining = false;

9 char letter1 = 'A';

10

11 System.out.println("The Program's Output Appears Below");

12 System.out.println("\t\t\"Hello World!\"");

13 System.out.print("\nJohn is " + age + " years old");

14 System.out.println(" and weighs " + weight + " pounds");

15 System.out.println("Today it is " + isRaining +

16 " that it is raining\n");

17 System.out.println("The first letter of the alphabet is " +

18 letter1);

19

20 System.out.println("1/2 + 1/4 = 3/4");//blank lines are ignored

21 }

22 }

Program Output

The Program’s Output Appears Below

 “Hello World!”

John is 21 years old and weighs 185.25 pounds

Today it is false that it is raining

The first letter of the alphabet is A

1/2 + 1/4 = 3/4

Figure 2.3

The application ConsoleOutput and the output it produces.

!

TIP
It is good coding style to declare all variables at the beginning of a program.

Lines 6-9 declare and initialize four different types of primitive variables. Lines 11 and 12 produce

the first two lines of the program’s output. Each statement contains one string literal. The string

literal on line 12 begins with two tab escape sequences, which are used to center the second line

of output under the first. In addition, Hello World! coded on line 12, is surrounded by two

double-quote escape sequences, which produces the quotation marks on the second output line.

48 ■ Programming Fundamentals Using Java

Lines 13–18 output the variables declared and initialized on lines 6-9. A new-line escape se-

quence begins the first string literal on line 13, which produces the blank line that precedes the

third line of text output. Two concatenation operators are used on line 13 to combine the two string

literals and the contents of the variable age after it is converted to a string. Line 14 uses similar

operations to annotate the output of John’s age and weight. The output displayed by lines 13 and

14 appear on the same line because line 13 uses a print rather than a println statement. As a

result, the cursor is not advanced to the beginning of the next line after line 13 completes execu-

tion, which causes the output produced by line 14 to begin immediately after the word old. One

subtlety on line 14 of the program is that its string literal begins with a space. This space becomes

the space that separates the word old from the word and in the output produced by lines 13 and 14.

Lines 15-16 produce the next line of output, which contains the string version of the contents

of the Boolean variable isRaining. They also produce the next blank line of output because the

last string literal ends in a new-line escape sequence. The final two lines of output are produced

by lines 17-18, which output the contents of the character variable letter1, and line 20, which

outputs a single string literal.

Comments and Blank Lines

Line 5 of the program contains a single-line comment. A single-line comment begins with two

forward slashes (//) and is terminated by a new line (Enter) keystroke. Comments are added to a

program to improve the program’s readability; they are ignored by the translator.

!

TIP

It is good practice to include comments in your program to describe the portions

that are not obvious to the reader.

A second comment appears at the end of line 20, stating blank lines (e.g., lines 10 and 19) in a pro-

gram are ignored by the translator. It is good programming practice to separate major portions of a

program with a blank line. This technique, like comments, improves the readability of a program.

We will see more examples of the use of blank lines in a program later in this chapter.

 2.5 2.5 STRING OBJECTS AND REFERENCE VARIABLES STRING OBJECTS AND REFERENCE VARIABLES

As previously mentioned, in Java there are two kinds of variables: primitive variables and ref-

erence variables. Primitive variables store numeric, character, or Boolean data values. Reference

variables store memory addresses. These addresses are the addresses of memory resident program-

ming constructs called objects, and the contents of a reference variable is used to locate a particular

object. We say they refer to an object, which is how they get their name, reference variables.

Suppose that we were writing a program and we wanted store the string John in memory.

Based on what we have learned about primitive variables, we should declare a string variable, per-

haps named firstName, and then initialize it to the string "John". Unfortunately, Java does not

contain string type variables, so the statement

string firstName = "John"; // error

 Chapter 2· Variables , Input /Output , and Calculat ions ■ 49

is grammatically incorrect. However, there are String objects in Java. A String object can

store a sequence of characters, and the address of the object can be stored in a reference variable.

We begin by declaring a String reference variable that will store the address of our String object.

Then we store the address of a newly created String object, containing the string "John" in the

reference variable:

String firstName;

firstName = new String("John");

As we will learn in Chapter 3 “Methods, Classes and Objects: A First Look,” this two-line

grammar can be used to create objects in any class. For example, Starship objects, Snowman

objects, or Paddle objects can be created simply by replacing the word String on both lines

with the class names Starship, Snowman, or Paddle, and replacing the string “John” with

something more relevant to these objects. The first line creates an uninitialized reference variable

that, like uninitialized primitive variables, is set to a default value. The default value for reference

variables is null. When the variable is a String reference variable, we say that the reference

variable stores the null string.

!

TIP
“String s contains the null string,” means that s stores a null value.

Because strings are so commonly used in programs, Java provides a simplified one-line grammar

for creating and initializing String objects:

String firstName = "John";

NOTE
The abbreviated grammar to declare a string String object is: String

referenceVariableName = intialStringLiteralValue;

This one-line grammar can only be used to create String objects and is modeled on the

grammar used to declare and initialize primitive variables. Although the grammar is very similar,

we must keep in mind that unlike the primitive variable age, initialized to store the value 21 on

line 6 of Figure 2.3, the reference variable firstName is not initialized to the string "John".

Rather, the reference variable firstName stores the address of and refers to the String object

that is initialized to the string "John". Figure 2.4 shows the statements used to allocate memory

to primitive variables and objects/reference variables. The arrow in the figure indicates that the

reference variable firstName refers, or points, to the object.

“John”

The String object at

memory address 1096

age 21 firstName 1096

 int age = 21; String firstName = "John";

Figure 2.4

Memory allocated to primitive variables and objects/reference variables.

50 ■ Programming Fundamentals Using Java

In addition to providing a simplified grammar for creating String objects, Java also provides a

simplified grammar for outputting the strings contained inside these objects. Once again, it is mod-

eled after the grammar used to output primitive variables. To output the string contained in a String

object, we simply code the name of the variable that refers to the object. For example, the following

code fragment produces the output My name is John Smith, my age is 21 on the system console:

int age = 21;

String firstName = "John";

String lastName = "Smith";

System.out.print ("My name is " + firstName + " " + lastName);

System.out.println (", my age is " + age);

The differences between the way Java stores primitive data items and string data items can be

ignored when writing variable declaration statements and output statements. As we will see in

Chapter 3, these differences cannot be ignored for any other kind of object.

 2.6 2.6 CALCULATIONS AND THE MATH CLASS CALCULATIONS AND THE MATH CLASS

The first operational computers were used by mathematicians to compute the values of equa-

tions, which is how they obtained their name computers, and a significant portion of the process-

ing that modern computers perform is still calculations. Java, like most programming languages,

provides the ability to perform basic arithmetic calculations and provides additional features to

perform more complex calculations. This section begins with a discussion of how to incorporate

basic arithmetic calculations into a Java program and then discusses how to incorporate commonly

used mathematical constants and functions into these calculations.

2.6.12.6.1 Arithmetic Calculations and the Rules of Precedence Arithmetic Calculations and the Rules of Precedence

Arithmetic calculations are performed in Java using arithmetic expressions. Arithmetic ex-

pressions consist of a series of operands separated by operators. In the simplest case, the operands

are numeric constants, and the operators are the four arithmetic operators: add subtract, multiply,

and divide. For example, 10 + 21 – 5 is a simple arithmetic expression that evaluates to 26. Gener-

ally, simple arithmetic expressions are evaluated from left to right. The addition would therefore be

performed before the subtraction.

The symbols used for the four arithmetic operators are given in Table 2.3. The third entry in

the table, the modulo (or mod) operator, is used to find the remainder in division. For example,

14 % 3 evaluates to 2. All of the operators can be used with integer or real operands.

In addition to numeric constants, called numeric literals, operands can be the names of vari-

ables that store numeric values. When a memory cell name is used in an arithmetic expression, the

value stored in the memory cell is fetched, substituted for the memory cell name, and the arithme-

tic expression is evaluated. For example, given the variable declarations:

int x = 10;

int y = 29;

int z = 5;

 Chapter 2· Variables , Input /Output , and Calculat ions ■ 51

the arithmetic expression x + y – z evaluates to 34. A mix of numeric literals and memory cell

names can be used as the operands in any arithmetic expression, so the expression x + 29 – z is a

valid arithmetic expression that also evaluates to 34.

An arithmetic operation performed on two integers always results in an integer value, and an

arithmetic operation performed on two real values always results in a real value. When one oper-

and is an integer and the other is a real value, the result is always a real value, and the arithmetic

is referred to as mixed mode arithmetic. Before mixed mode arithmetic is performed, the integer

value is converted to a real value (e.g., 10 becomes 10.0).

Integer Division

When the two operands are integers and division is performed, the results are sometimes

surprising. That is because the division of two integers always produces an integer result that is

truncated and not rounded. For example, given the variable declarations

int x = 10;

int y = 29;

int z = 5;

the following arithmetic expressions would evaluate to the values on the far right side of each ex-

pression:

x / z = 10 / 5 = 2

y / x = 29 / 10 = 2 (0.9 lost, due to truncation)

z / x = 5 / 10 = 0 (the most surprising result, 0.5 is truncated to zero)

Precedence Rules

Consider the arithmetic expression 10 + 6 – 2. The expression evaluates to 14 whether we

perform the addition first (16-2) or the subtraction first (10+4). Similarly, the expression 10 *

6/2 evaluates to 30 whether we perform the multiplication first (60/2) or the division first (10*3).

In both cases, the value of the expressions is independent of the order in which we apply the arith-

metic operators. In general, if an expression contains just addition and subtraction operators, or

contains just multiplication and division operators, then the evaluation of the expression is inde-

pendent of the order in which we apply the arithmetic operators. Java considers these expressions

to be simple arithmetic expressions and, as previously stated, they are evaluated from left to right.

Table 2.3

The Java Symbols for the Arithmetic Operators (In Order of Precedence)

Arithmetic Operation Java Symbol

multiply *

divide /

Modulo or mod %

add +

subtract -

52 ■ Programming Fundamentals Using Java

This is not the case for arithmetic expressions that mix addition and/or subtraction opera-

tors with multiplication and/or division operators. Consider the expression 10 + 6 * 2, which per-

forms addition and multiplication. If we perform the addition first, the expression evaluates to 32

(16 * 2), but if the multiplication is done first it evaluates to 22 (10 + 12). The arithmetic expres-

sion appears to be ambiguous. Fortunately, mathematicians have stipulated a way of resolving the

ambiguity called the rules of precedence. These rules state that multiplication and division are

performed before, or take precedence over, addition and subtraction. Using this rule, the expression

10 + 6 * 2 evaluates to 22.

Operators that are performed first, such as multiplication and division, are said to have higher

precedence. Table 2.3 lists the arithmetic operators in high-to-low precedence order, with multipli-

cation and division being the highest precedence operators in the table, and addition and subtrac-

tion the lowest. The expression 5 * 7 % 2 would evaluate to 1 because multiplication is of higher

precedence than the mod operator. Java contains other operators, for example logic operators, and

each Java operator has been assigned a precedence level. A complete list of Java operators and their

assigned precedence level is given in Appendix E.

NOTE

Java evaluates arithmetic expressions using this mathematical rule of precedence:

multiplication and division are performed before modulo (mod) operations, which

are performed before addition and subtraction operations.

If we wanted the addition or subtraction in an arithmetic expression to be performed before

multiplication or division, we would use a set of parentheses to override the precedence rules. The

expression (10 + 6) * 2 would evaluate to 32. To average the numbers 2, 4, and 6, we would write

(2 + 4 + 6) / 3, which would evaluate to the correct average 4 = 12 / 3. (Without the parenthe-

ses, only the 6 would be divided by the 3 because the division operation would be performed

first.)

NOTE Parentheses override the rules of precedence.

In summary, the parts of an arithmetic expression inside parentheses are evaluated first us-

ing the rules of precedence to determine the order of the operations. If the operators are of equal

precedence, they are evaluated from left to right. The following example, which contains a set of

nested parentheses and evaluates to 36, illustrates this process.

6 * (8 + (2 / 2) - 3)

 8 + 1

 9 - 3

6 * 6

 36

 Chapter 2· Variables , Input /Output , and Calculat ions ■ 53

2.6.22.6.2 The Assignment Operator and Assignment Statements The Assignment Operator and Assignment Statements

In Section 2.3, we learned that a variable named price could be declared and initialized to

the value 5.21 by coding:

double price = 5.21;

The equals (=) symbol used in this declaration is called the assignment operator because it assigns

values to memory cells. In this case, the memory cell named price is assigned the value 5.21.

Although the statement should be read as “double price is assigned 5.21,” most programmers would

read it as “double price equals 5.21,” which is unfortunate because (as we will see) the operator

does not represent the mathematical concept of equality. Rather, it represents the flow of the data

value on its right side (in the above statement, 5.21) into the memory cell named on its left side,

(in the above statement, price).

Assignment Statements

In addition to being used to initialize variables in a declaration statement, the assignment

operator is also used in statements that reassign (actually overwrite) the contents of memory cells

previously declared in a program. These statements are called assignment statements. For example,

after the following two statements execute, the variable price stores the value 6.25.

double price = 5.21;

price = 6.25;

In addition to being a numeric literal, the entity on the right side of the assignment operator can be

an arithmetic expression. For example:

answer = x + 21 – z;

When this is the case, we should realize that the execution of the statement is performed in three

steps:

 1. Fetch the contents of the variables coded on the right side of the assignment operator from

memory and substitute these values into the arithmetic expression

 2. Evaluate the arithmetic expression considering parentheses and the rules of precedence

 3. Store the value of the arithmetic expression in the memory cell coded on the left side of

the assignment operator

In an assignment statement, the item on the left side of the assignment operator must be the

name of a variable. The statement cannot be reversed by placing the name of the variable on the

right side of the assignment operator. That is,

answer = x + 21 –z;

is not the same as

x + 21 –z = answer;

The second expression will produce a syntax error. Armed with this understanding, the assignment

statement (which is probably executed on a person’s birthday)

age = age + 1;

54 ■ Programming Fundamentals Using Java

will increase the value stored in the memory cell age by one. In addition, a mathematician would

now understand that the assignment operator does not represent equality and would not run from

this statement in horror proclaiming that nothing (in this case age) could be equal to itself plus

one. Surveys of programs conducted in the 1970s indicate that 47% of the statements contained in

programs are assignment statements, so this is an important concept to understand.

2.6.32.6.3 Promotion and Casting Promotion and Casting

Generally speaking, the type of the value being assigned to a variable should match the type of the

variable. When this is not the case, the Java translator checks this to make sure that there is no chance

that part of the value being assigned to the variable could be lost when the value is stored in the vari-

able. For example, if a real number (e.g., 2.7) was assigned to an integer-type variable, the fractional

part of the value (0.7) would be lost. As a result, the statement below produces the translation error

“possible loss of precision,” because it assigns a double value (2.7) to an integer memory cell.

int newValue = 2.7;

!

TIP

Avoid assigning a numeric with a fractional part (e.g., types float and double) to

an integer type variable because it will generate a translation error.

This statement does not produce a syntax error because performing an arithmetic operation on two

integers (21 / 10) always results in an integer (in this case, 21 / 10 = 2).

int newValue = 21/10;

The Java translator also checks assignment statements to determine if the value being assigned

to the variable, coded on the left side of the assignment operator, is within the variable’s range.

As shown in the right column of Table 2.1, the range of the numeric values that can be stored in a

numeric variable depends on its type. Within the four integer types, the type long has the largest

numeric range, and within the real types, the type double has the largest range.

The progression shown in Figure 2.5 summarizes the valid assignments between types (those

that will not result in a loss of precision and guarantees that the range of the variable being assigned

is large enough to store the value assigned to it). A valid assignment is when the type of the variable

being assigned is to the left of the type of the value being assigned to it (e.g., a double variable

can be assigned int values). When this is the case, we say that the value has been promoted to the

type of the variable.

double  float  long  int  short  byte  char

Note: a valid promotion is from right to left ()

Figure 2.5

Valid promotions of numeric types.

Although the types of the variables used in the code fragment in the assignment statements

below are not the same, they are valid because they follow the promotion order given in Figure 2.5.

byte aByte = 20;

char a = 'a';

 Chapter 2· Variables , Input /Output , and Calculat ions ■ 55

int anInt;

double aDouble;

anInt = aByte;

anInt = a;

aDouble = aByte;

aDouble = anInt;

Mixed Mode Arithmetic Expressions

Mixed mode arithmetic expressions are expressions in which the operands are not of the same

type. To evaluate the terms of these expressions, the operand whose type is further to the right in

Figure 2.5 is promoted to the type of the other operand, the term is evaluated, and the resulting

value is in the promoted type. For example, the following code fragment contains a mixed mode

arithmetic expression:

double salary = 523.56;

float raise = 1.1f;

salary = 10 + salary * raise;

The arithmetic expression in the assignment statement contains an integer literal, a double vari-

able, and a float variable. During the evaluation of this expression, the value stored in raise

would be converted to a double, and then the multiplication operation would be performed. The

result would be a double value. That value would then be added to the integer literal 10 after it was

converted to double. The resulting double value would be assigned to the variable salary.

Casting

One use of the word casting is the process of turning an entity into something it is not. For ex-

ample, a frail mild-mannered actor could be cast into the role of a professional wrestler. In comput-

er science, the term is used to describe the process of changing the type of a value to another type.

Changing the type of a variable or numeric literal in mixed mode arithmetic expressions

previously discussed is an example of automatic casting. Even when an arithmetic expression

is not a mixed-mode expression, there are times when it is desirable to cast operands into other

types before the expression is evaluated. For example, a value that is an integer variable could

be cast into a real value before it is used in an arithmetic expression. This is a very common use

of casting.

Consider the calculation of the ratio of two integer variables n1 and n2.

int n1 = 111;

int n2 = 10;

double ratio = n1 / n2;

The arithmetic expression will evaluate to an integer because both operands are integers. As a re-

sult, we will lose the factional part of the ratio, and the variable ratio will be assigned 11.0.

A situation that is more confusing is illustrated in the code fragment below. The integer de-

nominator (100) is larger than the integer numerator (90). In this case, the variable ratio is

always assigned 0.0.

int numberOfStudents = 100;

56 ■ Programming Fundamentals Using Java

int numberPassing = 90;

double ratio = numberPassing / numberOfStudents;

To retain the factional part of a value calculated by dividing to integers, we change, or cast, the type

of one of the operands into one of the real types (double or float). The syntax of this nonautomatic

casting is to enclose the numeric type into which the operand is being cast inside of parentheses.

The following fragment uses casting to change the fetched contents of the variable n1 into a double

before the arithmetic operation is performed. The outer set of parentheses in the third statement is

necessary because arithmetic operators take precedence over casting.

int n1 = 111;

int n2 = 10;

double ratio = ((double) n1) / n2;

After casting is performed, the arithmetic expression involves a double value (111.0) and an integer

variable (n2): a mixed mode expression. Automatic casting then converts n2 to a double, and then

the division is performed that produces a double (11.1). The value 11.1 is assigned to ratio. In this

code fragment, ratio would be assigned the value 0.9.

int numberOfStudents = 100;

int numberPassing = 90;

double ratio = ((double) numberPassing) / numberOfStudents;

NOTE Arithmetic operators take precedence over nonautomatic casting.

Another common use of casting is to inform the translator that you want to violate the promo-

tion-only rules it imposes on assignment statements, shown in Figure 2.5. If we wanted the integer

part of a double value to be assigned to an integer variable, we would use casting. The following

statements assign the value 1 to the integer variable age:

double daysSinceBirth = 401.5;

int age = (int) daysSinceBirth / 365;

The mixed mode arithmetic in the second statement produces the value 1.1, which the casting

converts to an integer (1) before it is assigned to the variable age. If the casting were left out of

the second statement, it would not translate because it would be a violation of the promotion rules

given in Figure 2.5. This use of casting informs the translator that we are intentionally violating

these rules.

2.6.42.6.4 The Math Class The Math Class

If we were to examine the code of applications written by several different programmers, we

would quickly come to the realization that mathematical calculations, such as raising a number to a

power or calculating the square root of a number, are performed in many programs. For example, a

program that computes the radius of a circle given its area would divide the area by the constant PI,

and then take the square root of the result. Obviously, the accuracy of the calculation is dependent

on a precise value of PI. In addition, because the square root is not one of the mathematical opera-

tors available in most programming languages, the programmer would have to know the algorithm

 Chapter 2· Variables , Input /Output , and Calculat ions ■ 57

for computing the square root of a number using the math operators available in the programming

language.

To facilitate the coding of programs that use common mathematical constants and calculations,

Java, like most programming languages, provides precoded libraries containing these constants

and mathematical functions. The constants are coded as initialized variables, and the mathemati-

cal functions are coded into subprograms. In Java, subprograms are called methods, and related

methods and variables are collected into classes. As discussed in Section 1.5.1, the collection of

the precoded classes available in Java is called the Java Application Programmer Interface, or Java

API. A complete description of the classes contained in the API, is available online. To locate this

documentation, simply type “Java API Specification” into the search window of your browser.

The API class that contains mathematical constants and methods is called the Math class.

Table 2.4 lists a mathematical constant and some of the most commonly used methods that are

included in this class. The third column of the table gives a series of assignment statements that

illustrate the use of the class’s constants and methods. Notice that the name of the Math class fol-

lowed by a dot precedes the name of the constant or method used in the statement. The angles used

in the trigonometric functions that appear in the last three rows must be expressed in radians. The

methods compute and return a value, which the coding examples in the rightmost column of the

table assign to a variable.

Table 2.4

Commonly Used Math Class Constants and Methods

Constant or

Method Description Coding Example

PI
The ratio of the circumference of a circle to its

diameter (a double)
area = Math.PI * r * r;

abs
Computes and returns the absolute value of a

number, n (returns the type it is sent)
nAbsolute = Math.abs(n);

pow
Computes and returns a number, n, raised to the

power p (returns a double)
nToTheP = Math.pow(n, p);

sqrt
Computes and returns the square root of a num-

ber, n (returns a double)
rootN = Math.sqrt(n);

toRadians
Converts an angle, a, in degrees to radians (re-

turns a double)
aRads = Math.toRadians(a);

sin
Computes and returns the sine of an angle,

aRads, specified in radians
sinA = Math.sin(aRads);

cos
Computes and returns the cosine of an angle,

aRads, specified in radians
cosA = Math.cos(aRads);

tan
Computes and returns the tangent of an angle,

aRads, specified in radians
tanA = Math.tan(aRads);

The following code fragment calculates and outputs the sine of 45 degrees and 2 raised to the

third power:

58 ■ Programming Fundamentals Using Java

double angle = 45.0;

double angleInRadians = Math.toRadians(angle); //returns a double

double sineOfAngle = Math.sin(angleInRadians); //returns a double

System.out.println("The sine of " + angle + " is " + sineOfAngle);

System.out.println("2 cubed = " + Math.pow(2, 3));

Random Numbers

“A random number is a number generated by a process whose outcome is unpredictable and

which cannot be subsequently reliably reproduced.”2 Random numbers are used in many computer

applications such as game programs, encryption programs, and simulation programs. For example,

flight simulator programs used to train pilots to react to air turbulence introduce turbulence into

the flight at random times during the simulation.

The Math class contains a method named random that can be used to generate pseudorandom

numbers. The numbers are not truly random because the sequence of numbers the method gener-

ates is based on the computer’s real-time clock (i.e., the time of day) resolved to one millisecond,

and therefore can be reliably reproduced.

The method returns a double in the range: 0.0 ≤ randomNumber < 1.0. (The highest number

generated by the method is always less than 1.0.) The following code fragment outputs two random

numbers in that range. The specific numbers output would depend on the time of day the code

fragment was executed.

double randomNumber;

randomNumber = Math.random();

System.out.println(randomNumber);

randomNumber = Math.random();

System.out.println(randomNumber);

The method can be used to generate numbers in the range: min ≤ randomNumber < max using the

assignment statements:

double randomNumber1 = min + Math.random() * (max - min);

int randomNumber2 = int(min + Math.random() * (max - min));

The second assignment statement uses casting to change the computed real number into an integer.

 2.7 2.7 DIALOG BOX OUTPUT AND INPUT DIALOG BOX OUTPUT AND INPUT

Dialog boxes are a graphical way to communicate with the user of a Java program and offer

an alternative to the console-based output produced by the println method in the System class.

The message dialog box (Figure 2.6) is used to convey output to the user, and the input dialog

box (Figure 2.7) is used to obtain input from the user. They are predefined graphical objects that

automatically resize themselves to display the string argument sent to them. The string sent to a

message dialog box is the text to be output to the user. In the case of an input dialog box, the string

is an input prompt to be displayed to the user.

 Chapter 2· Variables , Input /Output , and Calculat ions ■ 59

After a dialog box is displayed, the program execution is halted until the user clicks a button

displayed in the box or strikes the return key. In the case of a graphics application, dialog boxes are

normally used for all communication between the program and its user. Two methods in the class

JOptionPane, showMessageDialog, and showInputDialog are used to display message

(output) and input dialog boxes, respectively.

2.7.12.7.1 Message Dialog Boxes Message Dialog Boxes

The method showMessageDialog is a static method, as are the Math class’s methods

presented in Table 2.4 and its random method. As we will learn in Chapter 3, not all methods are

static methods. When static methods are invoked, we must precede the name of the method with

the name of its class followed by a dot. The showMessageDialog method and the Math class’s

pow method have another thing in common: they are both sent two arguments that are coded inside

the parenthesis that follows the name of the method. For the pow method, we learned that these are

the numbers to be raised to a power followed by the power to which to raise it.

In the case of the showMessageDialog, its two arguments describe to which window the

message box will be output followed by a string that contains the text of the output message. To

output the message “Frogger, by George Smith,” we would code

JOptionPane.showMessageDialog(null, "Frogger, by George Smith");

This would produce the message box shown in Figure 2.6(a). Coding null as the first argument

causes the message dialog box to be displayed in the center of the monitor.

 (a) (b)

Figure 2.6

Two message dialog boxes.

The second argument, the string, can contain all of the elements and features of the string sent to

the println method used to perform output to the console. As we have learned, the string can be a

concatenation of a mix of string literals and numeric variables. Just as with console output, the string

will be output on one line unless new-line escape sequences (\n) are included in the string. The width

and height of the message box will expand to accommodate the string. For example, the statement

JOptionPane.showMessageDialog(null, "Frogger," + "\nby George Smith," +

 "\nAKA Game Boy Georgie." + "\nOK?");

produces the output in Figure 2.6(b).

60 ■ Programming Fundamentals Using Java

These features are especially useful in a very common use of a message box: to display a

game’s splash screen. A game splash screen is used to describe a game, its objective, and the man-

ner in which the game pieces are controlled by the player. Usually, the name of the game and its

creator (e.g., “Created by Game Boy Georgie”) are also included.

2.7.22.7.2 Input Dialog Boxes Input Dialog Boxes

Input dialog boxes, which are displayed by the static method showInputDialog, are used

to obtain input from the program’s user (Figure 2.7). It is sent one argument, which the method

displays as a prompt to the user. A text box is displayed below the prompt into which the user types

the input. The box contains two buttons labeled “OK” and “Cancel.” The string sent to the method

can be a concatenation of a mix of string literals and variables, and the width and height of the input

box is adjusted to accommodate the string and its embedded new-line escape sequences. Figure 2.7

shows the input dialog box produced by the statement

String s = JOptionPane.showInputDialog("Frogger has five " +

 "difficulty levels:" +

 "\n1 is the easiest," +

 "\n5 the most difficult," +

 "\nEnter your level");

Figure 2.7

An input dialog box before the user enters input.

If, in response to the displayed prompt, the user types into the text box and then clicks “OK”

(or strikes the Enter key), the location of a String object that stores the user input text would be

placed in the reference variable s. (For brevity, we would say that the InputDialogBox method

“returns a string,” when in fact it actually creates and returns the address of a String object.)

If the user clicked “OK” or struck the Enter key without making an entry in the text box, the

returned String object would contain the empty string (“”). Finally, if the user clicked “Cancel,”

s would store the null string. (It would be set to null.)

2.7.32.7.3 Parsing Strings into Numerics Parsing Strings into Numerics

Most of us would agree that there is a fundamental difference between the string "one hun-

dred seventy-six” and the number 176. For one thing, we would not try to add the string

 Chapter 2· Variables , Input /Output , and Calculat ions ■ 61

"one hundred seventy six" to the string "ten" to obtain "one hundred eighty

six". Rather, if we read the question, “what is the sum of one hundred seventy-six and ten?” we

would first convert the numbers to their numeric representations, 176 and 10, and then perform the

addition. In computer science, the difference between strings and numerics goes deeper than that

because even if we were told to add “176” and “10,” we would still have to convert these two strings

to their numeric representations before performing the addition.

!

TIP
Operands in arithmetic expressions cannot be strings.

As discussed in Chapter 1, characters are stored using their Extended ASCII representation, and

numerics are represented using their binary representation. Inside of String objects, the Extended

ASCII representation is used. The difference between these two representations is shown below.

Extended ASCII Representation of 176 Binary Representation of 176

 00110001 00110111 00110110 10110000

 ‘1’ ‘7’ ‘6’ 176

Because an input dialog box returns a string, when 176 is typed into its text box it returns the

string ����� , which must be converted to a numeric if it is to be used in an arithmetic expres-

sion. This conversion process is referred to as parsing strings into numerics. There is a set of class-

es in the API, called wrapper classes, which contain static methods to perform this conversion. The

string to be converted to a numeric is sent to the method as an argument coded inside the open and

close parentheses that follow the name of the method. The decision as to which class and method to

use is based on the primitive numeric type the string is being converted to, as shown in Table 2.5.

Table 2.5

Numeric Wrapper Classes and Their Parsing Methods

To Convert a String to the

Numeric Type Use the Static Method In the Wrapper Class

byte parseByte Byte

short parseShort Short

int parseInt Integer

long parseLong Long

float parseFloat Float

double parseDouble Double

To change the string literal "176" to its integer numeric representation, we would code:

int numericValue = Integer.parseInt("176");

To convert the string s to a numeric double, we would code:

double numericValue = Double.parseDouble(s);

Most often, the statements to accept a user input via an input dialog box, and the conversion of the

returned string to a numeric, are coded one after the other.

62 ■ Programming Fundamentals Using Java

String s = JOPtionPane.showInputDiaog("Enter your age");

int age = Integer.parseInt(s);

s = JOPtionPane.showInputDiaog("Enter your weight");

double weight = Double.parseDouble(s);

If the string sent to the wrapper class methods contains anything other than digits (i.e., the charac-

ters ‘0’, ‘1’, …, ‘9’), a runtime error NumberFormatException occurs, and the program ter-

minates. If the empty string is passed to the methods (the user clicked “OK” in an input dialog box

without typing an input) or the null string is passed to methods (the user clicked “Cancel” without

making an entry), the same runtime error occurs. We will learn how to deal with these errors at

runtime to bring the program to a more informative conclusion in Chapter 4 and how to permit the

user to correct the erroneous input in Chapter 5 “Repeating Statements: Loops.”

NOTE A runtime error is an error that occurs while the program is in execution.

The application shown in Figure 2.8 calculates the area of a circle given its radius, and it also

calculates the radius of a circle given its area. The inputs to the program (a radius of 10 and an area

1 import javax.swing.JOptionPane;

2

3 public class AssignmentMathAndDialogIO

4 {

5 public static void main(String[] args)

6 {

7 String s;

8 double area, radius;

9

10 JOptionPane.showMessageDialog(null, "Circle area and radius" +

11 "\n calculation program");

12 s = JOptionPane.showInputDialog("To calculate an area," +

13 "\n enter a radius");

14 radius = Double.parseDouble(s);

15 area = Math.PI * Math.pow(radius, 2);

16 JOptionPane.showMessageDialog(null, "The area of a circle" +

17 " whose radius = " +

18 radius + "\n is " + area);

19

20 s =JOptionPane.showInputDialog("To calculate a radius" +

21 "\n enter an area");

22 area = Double.parseDouble(s);

23 radius = Math.sqrt(area / Math.PI);

24 JOptionPane.showMessageDialog(null, "The radius of a circle" +

25 " whose area = " +

26 area + "\nis " + radius);

27 }

28 }

Figure 2.8

The application AssignmentMathAndDialogIO.

 Chapter 2· Variables , Input /Output , and Calculat ions ■ 63

of 200) and the corresponding outputs are show in Figure 2.9. The program demonstrates the use

of assignment statements, parsing a string into a numeric, performing calculations, the use of the

Math class, and dialog box I/O.

Line 1 of Figure 2.8 is an import statement. Import statements make API classes, and the

constants and methods they contain, available to our programs. In this case, the class JOption-

Pane, which contains the methods to perform dialog box input and output, is imported into the

program. These methods are used to output the program’s splash screen (lines 10–11) and to input

the radius of a circle (lines 12–13). The new-line escape sequences (\n) in the strings sent to these

methods produce a two-line message on the splash screen and a two-line input prompt, as shown

at the top of Figure 2.9.

Line 14 parses the string representation of the input radius returned from the input dialog box

into a double and assigns that double to the variable radius. Line 15 calculates the area of the

circle. It uses the Math class’s method pow to square the input radius and then multiplies that by the

constant pi (Math.PI). Lines 16–18 output the radius and the computed area to a message dialog

box (Figure 2.9c). The input radius and the calculated area are added to the output string with the

use of the concatenation operator on line 18.

 (a) (b)

 (c) (d)

 (e)
Figure 2.9

Input and resulting output from the application AssignmentMathAndDialogIO.

64 ■ Programming Fundamentals Using Java

In a similar way, lines 20–26 accept an input area and compute the circle’s radius. This calcula-

tion uses the Math class’s sqrt method on line 23 to perform the calculation. The method accepts

one argument, which in this case is the result of dividing the area by pi. The input to and output

from this portion of the program is shown in Figure 2.9.

 2.8 2.8 GRAPHICAL TEXT OUTPUT GRAPHICAL TEXT OUTPUT

In Section 2.4, we invoked (or some would say “used” or “called”) the println and print

methods of the PrintStream class to perform text output to the system console. In this section,

we will learn how to use the method drawString in the API Graphics class to perform text

output to a graphics window. This type of output is called graphical text output. Unlike console

output, we can specify the font type, size, and style (e.g., bold style) of graphical text output. In

addition, we can output the text to any location in a graphics window. In game programming, text

output is typically used to display the game’s level of difficulty, the remaining time, the score, or

other information on the game’s status.

With this added capability come added responsibilities. For example, every time a graphics

window that has been minimized is restored, the graphical text must be output again, or it will not

be visible in the window. In fact, anything that appears in the window before it was minimized

must be redrawn when the window is restored. One mechanism for doing this in graphics programs

is to place the graphical output in a call back method. Our game environment contains several call

back methods. In this section, we will learn how to use the call back method draw, the Graphic

class’s drawString method, and how to set the font type, size, and style of graphical text output.

2.8.12.8.1 The The drawStringdrawString Method Method

The drawString method is a part (member) of the API Graphics class and is used to output

text to a graphical object (perhaps a window). When the method is invoked three arguments are

passed to it. The first argument is the text to be output. The second and third arguments are the x

and y coordinates where the text will be output. These coordinates locate the lower left position

of the first character of text. Their origin is the upper left corner of the graphical object in which

the text is to be displayed (e.g., our game board), with x positive to the right and y positive down.

To output the text “Hello World” to our game environment’s game board, positioned with the

lower left corner of the “H” at (200, 300), we would code:

 g.drawString("Hello World", 200, 300);

Notice that the two characters g. precede the name of the method. This is because the method

must draw its text on a Graphics object. In our case, the object g would have to be a Graphics

object attached to our game board because we want the text to be drawn on the game board. As we

will see in the next section, the attachment of the object g to our game board is performed for us

by the game environment.

A method that operates on an object is called a nonstatic method. The syntax used to invoke

these methods is the name of the object it is operating on, followed by a dot, followed by the name

of the method and its argument list. We have used this syntax in Section 2.4 to invoke the print

 Chapter 2· Variables , Input /Output , and Calculat ions ■ 65

and println methods. They were invoked by proceeding their names with the Java pre-defined

PrintStream object System.out followed by a dot. (As previously discussed, when we in-

voke static methods, we precede the method’s name with the name of the method’s class followed

by a dot. For example, Math.sqrt(9);)

The simplest way to determine if a method is static or nonstatic is to click on its class name

in the lower left window of the online Java API Specification then scroll down through the API

documentation to the method’s name. If the method is static, the word “static” will appear in the

column to the left of the methods name. For example:

static double sqrt(double a)

 Returns the correctly rounded positive square root of a double value

If the method is a nonstatic method, the word “static” will not appear in the column to the left of

the methods name.

The remaining issue is determining where in our game application program we place the invoca-

tion to drawString. The short answer is in the draw call back method, which we will discuss next.

2.8.22.8.2 The The drawdraw Call Back Method Call Back Method

Figure 2.10 presents the Java application class GraphicalTextOutput that creates a game

window object on line 7, which is displayed by line 11 when the main method executes. Lines 2–12

are identical to that of the game code template in Figure 1.31 except for the change in the applica-

tion’s class name (lines 4 and 6) and the title of the window (line 7). When the program is run, the

window shown in Figure 2.11 appears on the monitor.

1 import edu.sjcny.gpv1.*;

2 import java.awt.Graphics;

3

4 public class GraphicalTextOutput extends DrawableAdapter

5 {

6 static GraphicalTextOutput ga = new GraphicalTextOutput();

7 static GameBoard gb = new GameBoard(ga, "Graphical Text Output");

8

9 public static void main(String[] args)

10 {

11 showGameBoard(gb);

12 }

13

14 public void draw(Graphics g) //the drawing call back method

15 {

16 g.drawString("Hello World", 250, 220);

17

18 }

19 }

Figure 2.10

The application GraphicalTextOutput.

66 ■ Programming Fundamentals Using Java

Lines 14 –18 is a coding of the game environment’s draw call back method. The first line of

the draw method, called the method’s signature, must always be identical to the code on line 14,

and it requires that the game environment be added (imported) to the program (line 1). The invoca-

tion to the drawString method has been coded on line 16, which, when executed, outputs the

graphical text “Hello World” to our game board beginning at pixel location (250, 220). To use the

drawString method the Graphics class must be imported into the program (line 2). But, when

does it execute?

We have learned that the main method is invoked by the Java runtime environment causing its

statements to execute, beginning with its first executable statement (the program entry point) and

ending when the execution reaches the end of its code block, in this case, line 12. Thus, it would

appear that line 11 would display the application’s window, and then the program would end. But

the draw method must have executed because the characters Hello World appear in the program’s

window (Figure 2.11). So again, we ask the question, “when does it execute?”

The answer is fundamental to why the method draw is referred to as a call back method.

Line 11 in the main method invokes the method showGameBoard, which requests that the

game environment display the game board window. Before the game environment displays the

game’s window, it invokes, or calls back, the draw method coded in the application, causing it

to execute. When the draw method ends, the game environment completes the display of the

game’s window requested by the showGameBoard method. Thus, the application calls the

game environment to display the game board window (line 11), and the game environment calls

back the application’s draw method to perform its drawings on the game board before the win-

dow is displayed. Specifically, the execution sequence is line 11 in the method main, the code of

the showGameBoard method, the code at the beginning of a method in the game environment,

the draw call back method lines 14-18), and finally, the remainder of the code in the game-

environment method.

Figure 2.11

The output produced by the application GraphicalTextOutput.

 Chapter 2· Variables , Input /Output , and Calculat ions ■ 67

In fact, every time the program’s window has to be redrawn (e.g., the window was minimized

and then the window’s icon on the status bar is clicked), the game environment’s code invokes the

draw method to redo its drawings on the game board. This can easily be verified by adding the

statement

System.out.println("the draw method was invoked");

to the draw call back method. Then, every time the draw method is invoked, we will see an out-

put on the system console.

NOTE

Even though the main method containing the program’s entry point ends its ex-

ecution, a graphical program continues to execute until the program’s graphical

window (e.g., the gameboard window) is closed.

2.8.32.8.3 The setFont Method: A First Look The setFont Method: A First Look

Like the drawString method, the setFont method is a part (member) of the API Graph-

ics class. It is used to change font type, style, and size. The output in Figure 2.11 used the default

font values. Once changed, all subsequent graphical text output will use the new (or current) font

type, style, and size until it is changed again. The method is passed one argument. The following

code, when added to the draw method, changes the font type to Arial, the style to bold italic, and

the font size to 16 points, and then outputs the text The Font was Changed. The syntax of the argu-

ment sent to the setFont method will be explained in Chapter 3.

g.setFont(new Font("Arial", Font.BOLD + Font.ITALIC, 16));

g.drawString("The Font was Changed", 150, 300);

 2.9 2.9 THE COUNTING ALGORITHM THE COUNTING ALGORITHM

Counting is something that is done in most programs and is considered to be a fundamental

algorithm in computer science. For example, in game programs it is used to count the number of

seconds remaining in a game or the number of seconds since the game began. In the first case, the

time starts at a designated amount of time and counts down to zero; in the second case, the time

starts at zero and counts up. In both cases, the game’s time is usually displayed on the game board.

In this section, we will discuss the counting algorithm, and we will learn how to use it inside the

game environment’s call back method timer1 to count seconds.

Most of us began to learn how to count by memorizing the integers beginning with 1. Our par-

ents may have said to us, “say this: one, two, three, four.” Most of us, on the first try, perhaps said

“three, four,” or “one, two, four,” or some other erroneous sequence. Through repetition, eventually

we memorized the sequence and extended it by recognizing that each new element is “one more.”

Somewhere along our cognitive development path, we discovered the counting algorithm. In

support of that is the realization that most people never memorized the integers from 1,242,518 to

1,243,589. However, most of us could recite that sequence of integers if asked to do so because we

use the counting algorithm to determine the sequence. Below is the generalized counting algorithm

that can be used to count forward or backward by any increment:

68 ■ Programming Fundamentals Using Java

int count = aBeginningValue;

// repeat the next statement until count reaches the ending value

count = count + aCountingIncrement

For example, to count upward from 1 to 10 by 1s, we code:

int count = 1;

// repeat the next statement until count reaches 10

count = count + 1; // 1 becomes 2, 2 becomes 3, 3 becomes 4, …

To count backward by 5s, from 1,165 to 875, we code:

int count = 1165;

// repeat the next statement until count reaches 875

count = count + -5; // 1165 becomes 1160, 1160 becomes 1155, …

Repeating statements is the topic of Chapter 5, so we will revisit the counting algorithm in

that chapter. However, if we want to count seconds within a game program, the second line of

the counting algorithm can be repeated by placing it inside a call back method named timer1.

This method is invoked by the game environment once every second causing the statement to be

repeated once a second.

2.9.12.9.1 A Counting Application: Displaying a Game’s Time A Counting Application: Displaying a Game’s Time

The game environment has three timer call back methods named timer1, timer2, and

timer3. Their signatures (first lines) are:

public void timer1()

public void timer2()

public void timer3()

If you code these methods into your game program, they will be invoked every time their respec-

tive timers “tick.” For example, the method timer2 will be invoked every time timer2 ticks.

Because counting seconds is so common in games, by default timer1 ticks every second. It be-

gins ticking when the game window’s Start button is clicked, pauses when the Stop button is

clicked, and resumes ticking when the Start button is clicked. After a timer call back method

ends its execution, the game environment invokes the draw call back method. The details of the

other two timers, which are normally used to animate game objects, will be discussed in Chapter

6.

Figure 2.12 presents the graphical application CountingSeconds that illustrates the use of

the counting algorithm to count upwards by one, starting from zero. The output produced by the

program three seconds after the user clicks the Start button is shown in Figure 2.13.

The declaration of the counter variable count and its initialization to zero seconds is coded on

line 8. (Note that the key word static is coded at the beginning of this line. The need for it will

be explained in Chapter 3.) Declaring this variable on line 8 places it outside of the code blocks (the

open and close braces) of all of the class’s methods, which makes it makes available to all of the

class’s methods. Variables declared in this way are said to be class level variables.

 Chapter 2· Variables , Input /Output , and Calculat ions ■ 69

1 import edu.sjcny.gpv1.*;

2 import java.awt.Graphics;

3 import java.awt.Font;

4 public class CountingSeconds extends DrawableAdapter

5 {

6 static CountingSeconds ga = new CountingSeconds();

7 static GameBoard gb = new GameBoard(ga, "The Counting Algorithm");

8 static int count = 0; // a class level variable

9

10 public static void main(String[] args)

11 {

12 showGameBoard(gb);

13 }

14

15 public void draw(Graphics g) // the drawing call back method

16 {

17 g.setFont(new Font("Arial", Font.BOLD, 18));

18 g.drawString("Your game time is: " + count, 10, 50);

19 }

20

21 public void timer1()

22 {

23 count = count + 1;

24 }

25 }

Figure 2.12

The application CountingSeconds.

Figure 2.13

The output produced by the application CountingSeconds three seconds after the Start button is clicked.

70 ■ Programming Fundamentals Using Java

The second line of the counting algorithm is coded on line 23 inside the timer1 call back

method (lines 21–24). Because timer1 ticks once a second (by default), line 23 is repeated every

second, causing the counter variable count to count seconds. Each time the timer1 method

ends, the game environment invokes the draw method, which displays the new time on the game

board by outputting the contents of the class-level variable count (line 18). The output appears in

bold Arial 18 point font because line 17 invokes the Graphic class’s setFont method to change

the current font values. The import statement on line 3 makes the constants and methods of the

Font class available for use by that statement.

 2.10 2.10 FORMATTING NUMERIC OUTPUT: A FIRST PASS FORMATTING NUMERIC OUTPUT: A FIRST PASS

In this chapter, we have discussed how to perform numeric output, but we have not discussed

how to format numeric output to improve its readability, such as adding a comma every three

digits to the left of the decimal point, or adjusting the precision of the fractional part of a number

output to the right of the decimal point. The format method in the DecimalFormat class can

be used to accomplish both of these commonly used types of output formatting. We will conclude

this chapter with an introduction to the techniques used to format numeric output; we will present

more details on these techniques in Chapter 5.

The application presented in Figure 2.14 uses the DecimalFormat class’s format method

to format the output of a real number (line 12) and an integer (line 13). The method returns a string

containing the formatted numeric value and is sent one argument. The argument is the numeric

variable to be formatted: speedOfLight and population on lines 12 and 13 respectively.

This nonstatic method is invoked (on lines 12 and 13) using the DecimalFormat object df

declared on line 10. The formatting to be performed is associated with the decimal format object

and is specified as a string literal coded inside the parentheses at the end of line 10. The string lit-

eral #,###.## coded on this line indicates that commas will appear every three digits to the left of

1 import java.text.DecimalFormat;

2

3 public class BasicNumericFormatting

4 {

5 public static void main(String[] args)

6 {

7 double speedOfLight = 299792458.7153;

8 int population = 1097603176;

9

10 DecimalFormat df = new DecimalFormat("#,###.##");

11

12 System.out.println(df.format(speedOfLight));

13 System.out.println(df.format(population));

14 }

15 }

Figure 2.14

The application BasicNumericFormatting.

 Chapter 2· Variables , Input /Output , and Calculat ions ■ 71

the decimal point, and real numbers (nonintegers) will be output with two digits of precision. The

level of precision used in the formatting can be changed by adding or removing pound signs to the

right of the decimal point on line 10.

The output produced by the program is given in Figure 2.15. As this output shows, real num-

bers are always rounded up (299792458.7153 was output as 299792458.72), and integer output does

not contain a decimal point.

299,792,458.72

1,097,603,176

Figure 2.15

The output produced by the BasicNumericFormatting application.

 2.11 2.11 CHAPTER SUMMARY CHAPTER SUMMARY

This chapter introduced the basic components of a Java program and the Java template for

developing a program that performs input, mathematical calculations, and output. Variables are

declared to store data during the program’s execution. Primitive variables store one data value,

and reference variables store a memory address where the object that contains the data is located.

The type of the data (for example, character or integer), must also be declared. Good coding style

dictates that variable names be meaningful as well as syntactically correct. Meaningful variable

names indicate what the data represents. They begin with a letter and cannot contain spaces.

The print and println methods are used to output a string to the console window to which the

object System.out is attached. Escape sequences permit characters with special meaning to be used

in output statements. The concatenation operator joins data values and strings into a single output string.

String objects, which are reference variables store the memory address that refers to, or ref-

erences, the actual string. Strings can be created and initialized using either a one-line or two-line

grammar. The default value for an uninitialized string is null. Strings have to be converted into

numeric values to perform mathematical operations, and there is a set of classes in the API, called

wrapper classes, which contain static methods to perform this conversion.

Java, like most programming languages, provides the ability to perform basic arithmetic calcu-

lations and provides additional features, including the API Math class, to perform more complex

calculations. Arithmetic calculations are performed in Java using arithmetic expressions. Arithmetic

expressions consist of a series of operands separated by operators. The parts of an arithmetic expres-

sion inside the parentheses are evaluated first using the rules of precedence to determine the order of

the operations. If the operators are of equal precedence, they are evaluated from left to right. Higher

precedence operators are evaluated first. The division of two integers always results in a truncated

integer value, and the mod operator is used to determine the remainder of integer division.

Values are assigned to variables using the assignment operator. Generally, the type of the value

being assigned to a variable should match the type of the variable. Type casting and promotion are

provided and are used with mixed-mode expressions to ensure that the variable types are compat-

ible and there is no loss of precision.

72 ■ Programming Fundamentals Using Java

Dialog boxes are a graphical way to communicate with the user of a Java program and offer an

alternative to console-based input and output. The method drawString in the API Graphics

class can be used to perform text output to a graphics window, and the setFont method can be used

to change the default font, style and size. The counting algorithm is used to keep track of elapsed

seconds in a game program. Chapter 3 will extend the concepts of objects, classes, and methods

and their application to creating game programs.

Finally, the DecimalFormat class is introduced to provide ways to format numeric output

to improve its readability.

Knowledge ExercisesKnowledge Exercises

 1. True or False:

 a) The type of the data stored in a variable can change as the program executes.

 b) Variables must be declared in a program before they are used.

 c) Variables must be initialized when they are declared.

 d) It is grammatically incorrect to begin a variable name with an upper-case letter.

 e) Spaces can be used in variable names for better readability.

 2. Which statement in a Java application program is executed first?

 3. What are variables? Name two types of variables and the information each one stores.

 4. Which of the following is not a primitive data type?

 a) boolean b) char c) String d) int

 5. Give the default initial values for variables declared to be of the following types:

 a) boolean b) char c) double d) int

 6. Write a well-composed declaration statement to declare variables that can store:

 a) Maggie’s age initialized to 32

 b) The first initial of Ryan’s name initialized to the letter ‘R’

 c) The cost of a taco

 d) The number 21,234,096,464

 e) The fact that it is snowing

 7. Is a numeric literal, coded in a program, represented as a float or a double? Explain.

 8. Determine if each of the following variables is well composed and valid. For those that are not,

explain why not.

 a) 2ndplace b) middleInitial c) winningTeam

 d) fgp3 e) test1 grade f) myScore

 g) SalePrice

 9. Give the code to output two lines to the system console. The first line will contain your name,

and the second line will contain the town in which you live, using:

 a) Two statements b) One statement

 Chapter 2· Variables , Input /Output , and Calculat ions ■ 73

 10. Write a well-composed variable declaration statement to declare a string String object

initialized to Skyler’s address, which is 21 First Avenue, using the:

 a) One-line object-declaration grammar b) Two-line object-declaration grammar

 11. Draw a picture of the memory allocated by the statements:

 a) int distance = 675; b) String myName = new String("Jane");

 12. Give one statement to:

 a) Output the annotated contents of the memory cell priceOfCorn

 b) Output the sentence: Martin said: “I had a dream.”

 c) Change the contents of the variable myBalance to 234.54.

 13. Evaluate each of these expressions:

 a) 17 - 5 * 2 + 12 b) 31 - 7 * 2 + 14

 c) (48 + 12) / 12 + 18 * 2 d) 21 - 9 + 18 + 4 * 3.7

 14. Give the code to:

 a) Declare the variable quizAverage and store the average of the variables quiz1,

quiz2, quiz3, and quiz4 in it

 b) Calculate the sine of 45 degrees and store the value in the variable sineOf45

 c) Calculate and output the square root of 45.67

 d) Calculate and output 34.7 to the 5th power

 15. Write the variable declaration to declare the variable average and the assignment statement

to store the average of three speed limits: 55, 57, and 60 miles per hour.

 16. Give an assignment statement to store the integer part of the value stored in the double variable

bankBalance in the variable dollars.

 17. True or False:

 a) You must include an import statement in a program to perform I/O using dialog boxes.

 b) A message dialog box can be used to obtain input from the program user.

 c) A string is always returned from an input dialog box.

 d) When the user clicks “OK” without making an input into an input dialog box, null is

returned.

 e) Dialog boxes will size themselves to accommodate the string argument sent to them.

 18. Write the code to output two lines to a message dialog box. The first line will contain your first

and last name, and the second line will contain your date of birth in the format “My birthday

is: dd\mm\yyyy” (yes, those are backslashes).

 19. Give the code to allow the program user to enter a checking account balance using an input

dialog box. Include a well-composed user prompt.

 20. Think of a game. Write the code to output the name of the game and its creator, the task

(objective) of the game, and how the game pieces are controlled to a message dialog box of

reasonable size.

74 ■ Programming Fundamentals Using Java

 21. Give the code to declare a double variable named deposit and to parse the input contained

in the string sDeposit into it.

 22. Write the code to declare an integer variable named speedLimit and to parse the input

contained in the string sSpeedLimit into it.

Programming ExercisesProgramming Exercises

 1. Write a Java application that outputs your name on one line followed by the town in which you

live to the system console.

 2. Write a program to calculate the average of five quiz grades: 100, 97, 67, 85, and 79. Output the

quiz grades and the average to the system console. The output should be well annotated with

the quiz grades on one line and the output on another.

 3. Write a program to accept an angle (input in degrees) and a real number. Then, output the angle

and its sine, cosine, and tangent. Follow that output with the output of the input real number,

its cube, and the square root of the number. The outputs should occupy several lines and be

sent to both the system console and to a message dialog box. The input prompts should be well

composed, and the outputs should be well annotated.

 4. Repeat Programming Exercise 3, but output the information to the system console and to the

middle of the game board. Use 20-point italic Arial font for the game-board output.

 5. Write a program to ask the user to enter the product of a pair of real numbers (of your choosing),

with the input rounded to one digit of precision. After the product is entered, output the user’s

input and the correct product, rounded to one digit of precision. The outputs should occupy

several lines, and be sent to the system console and to a message dialog box. The input prompts

should be well composed, and the outputs should be well annotated.

 6. Write a program to ask the user to enter the product of a pair of real numbers of your choosing.

After the product is entered, output the correct answer and the number of seconds it took

the user to enter the product to the center of the game board and to the system console. Use

20-point italic Arial font for the game-board output. The output should be on two lines and well

annotated.

 7. Repeat Programming Exercise 6, but output the numbers with commas every three digits on

the left side of the decimal point, and use one digit of precision.

EndnotesEndnotes

1 The URL of the Edition 7 API documentation is: http://docs.oracle.com/javase/7/docs/api/ It is named:
Java Platform, Standard Edition 7 API Specification.

2 http://www.randomnumbers.info/content/Random.htm

■ ■ ■ ■ ■

In this chapter

This chapter extends the concepts of methods, classes, and objects discussed in the previous

chapter to enable us to design and implement our own classes and the methods that they

contain. These concepts facilitate the development of our programs by allowing us to divide a

large program into several smaller classes, separately develop these classes, and then integrate

them into the larger program. Once written, these classes can also be used in other programs,

just as the API classes are. Several design tools will be introduced in the chapter to methodize

the specification of a class and the object it defines. The understanding of material presented

in this chapter is the foundation of the advanced OOP topics discussed in Chapters 7 and 8.

After successfully completing this chapter, you should:

� Be able to write void and nonvoid methods

� Understand how to share primitive information and objects between methods

� Understand the concept of value parameters

� Be able to read a Unified Modeling Language (UML) diagram and use it to specify a class

� Understand how to design and specify graphical and nongraphical objects

� Be able to identify, write, and use a set of methods that most classes contain

� Understand the concept and use of public and private data members and methods

� Be able to design, construct, modify, and access an object using its class’s methods

� Use methods of the Graphics class to draw lines, rectangles, ovals, and circles

� Have acquired the foundational skills required for a study of Chapters 7 and 8

3CHAPTERCHAPTER

3.1 Methods We Write .76

3.2 Information Passing. .79

3.3 The API Graphics Class .89

3.4 Object Oriented Programming .93

3.5 Defining Classes and Creating Objects94

3.6 Adding Methods to Classes .102

3.7 Overloading Constructors. 121

3.8 Passing Objects To and From Worker Methods 125

3.9 Chapter Summary .128

METHODS, CLASSESMETHODS, CLASSES, AND , AND

OBJECTS: A OBJECTS: A FIRST LOOKFIRST LOOK

76 ■ Programming Fundamentals Using Java

 3.1 3.1 METHODS WE WRITEMETHODS WE WRITE

In Chapter 2, we became familiar with several methods available in the Java Application Pro-

grammer Interface. For example, the methods println and print perform output to the system

console, pow and sqrt perform calculations, and drawString and setFont perform text output

to the program window. Being resident in the API, these methods are available to all Java pro-

grammers, and their use expedites the program development process because only one program-

mer, the API programmer, had to discover their algorithms and then write, test, and debug their

code. The rest of us simply use the methods by importing them into our program and writing a one-

line invocation statement. Because most of the cost of software development is the salaries paid to

the programmers, the use of prewritten methods also makes software more affordable.

In this section, we will learn how to write our own methods. Not only will this allow us to re-

use the code that we write in other programs, but it also facilitates the development of our programs

by dividing a large program into several smaller subprograms called methods. By dividing a large

program into subprograms, these methods can be developed by several programmers working in

parallel, which greatly reduces the calendar time required to produce a program.

NOTE

The Motivation for Writing Methods

Extends our problem solving capabilities: Humans are good at solving small prob-

lems but not large problems

Reduces development time: Methods can be developed in parallel by several mem-

bers of a programming team

Reduces cost: Methods can be written in such a way that they can be used in any

program using a one-line invocation statement

 3.1.13.1.1 Syntax of a Method Syntax of a Method

In Java, all the methods we write must be part of a class. They must be coded within the class’s

code block, the open and close braces that begin and end a class statement. The class statement can

be the one that contains the program entry point, the method main, or some other class that we will

learn how to create later in this chapter. When methods are coded inside the class that contains the

method main, good coding style dictates that they be coded after it.

The minimum code required to create a method is:

returnType� methodName()
{

 //the code of the method is placed here

}

The first line of the method is called the method’s signature. The signature is followed by a set

of open and close braces that define the bounds of the method’s code block. The statements to be

executed when the method is invoked are coded inside this code block.

The method’s signature, the first line of the method’s code, must include the type of the infor-

mation returned from the method, followed by the method’s name, followed by an open and close

 Chapter 3· Methods, Classes , and Objects : A Firs t Look ■ 77

set of parentheses. If the method does not return a value to the invoker, for example, compute and

return the square root of a number, the keyword void is used as the return type. In this case, the

method is said to be a void method.

A method that simply outputs the name of the student newspaper to the system console every

time it is invoked would be an example of a void method.

void outputNewspaperName()

{

 System.out.println("The Student Voice");

}

The syntax and coding style used for naming methods are the same as those used to name variables:

� they cannot contain spaces

� they should begin with a lower-case letter

� new words should begin with an upper-case letter

Normally, they are only comprised of letters. Digits, the dollar sign, and the underscore are not

normally used in their names. For example, a method that adds two integers together and returns

the result could be named addTwoInts rather than add _ 2 _ Ints.

Figure 3.1 presents the application AVoidMethod that contains the implementation and two

different invocation forms of the void method outputNewspaperName. The output it produces

is shown in Figure 3.2.

 1 public class AVoidMethod

 2 {

 3 public static void main(String[] args)

 4 {

 5 AVoidMethod.outputNewspaperName(); //1st method invocation

 6 System.out.println("Page 1\n");

 7 outputNewspaperName(); //2nd method invocation

 8 System.out.println("Page 2\n");

 9 }

 10

 11 static void outputNewspaperName() //method signature

 12 {

 13 System.out.println("The Student Voice");

 14 }

 15 }

Figure 3.1

The console application AVoidMethod.

The Student Voice

Page 1

The Student Voice

Page 2

Figure 3.2

The output produced by the console application AVoidMethod.

78 ■ Programming Fundamentals Using Java

The program consists of two methods: the method main (lines 3–9) and the method output-

NewspaperName (lines 11–14). Both of these methods are coded within the program class’s code

block that begins on line 2 and ends on line 15.

NOTE A method cannot be coded inside of another method’s code block.

The signature of the method outputNewspaperName, coded on line 11, begins with the key

word static. Not all method signatures begin with this key word. As we have learned, methods

fall into two categories: those that operate on objects (static methods) and those that do not (non-

static methods). An example of a method that operates on an object is the method println. It

operates on, or sends its output string to, the console object whose name is System.out. Methods

that do not operate on an object must include the key word static in their signature. The method

outputNewspaperName does not operate on an object, so its signature begins with the key word

static. In Section 3.5, we will discuss methods that we write that do operate on objects, and we will

gain more insight into what it means to say a method operates on an object.

NOTE
Methods that do not operate on an object must include the key word static in

their signature.

The method outputNewspaperName is invoked in lines 5 and 7 of the application’s main

method. Line 7 just mentions the name of the method followed by open and close parentheses.

This invocation syntax is valid because the static method is coded within the same class, AVoid-

Method, as the invocation statement (line 7). The more generalized syntax for invoking a static

method is used on line 5. Here, the invocation statement begins with the name of the class in which

the method is coded followed by a dot:

AVoidMethodApp.outputNewspaperName();

We used this syntax to invoke the static methods pow and sqrt that are coded in the Math class.

double ans = Math.pow(3.0, 2.0);

double root = Math.srt(9.0);

Because these two methods are not coded in the same class in which they are normally in-

voked, the name of the class must be included in the invocation statement. The only exception to

this is the use of a static import statement. When either syntax is valid, the shorter syntax makes

our programs more readable and is therefore preferred.

The execution sequence of the application begins on line 5 of the main method. This invocation

statement causes the code in the code block of the outputNewspaperName method to execute

(lines 12–14), which produces the first line of output (Figure 3.2). Then line 6 of the main method

executes, producing the second line of output. Line 7 causes the outputNewspaperName method

to execute a second time, which produces the third line of output. Finally, line 8 executes, which

produces the last output line.

NOTE
After a method executes, the next statement to execute is the statement immediately

after the statement that invoked it.

 Chapter 3· Methods, Classes , and Objects : A Firs t Look ■ 79

 3.2 3.2 INFORMATION PASSINGINFORMATION PASSING

For a method to function properly, information must often be passed to it when it is invoked,

and some methods must return one piece of information to the invoking statement. Consider the

Math class’s nonvoid static method pow. When it is invoked, a number (n) and a power (p) are

passed to it, and the method returns the result of its calculation: np. The left side of Figure 3.3 de-

picts this sharing of information between the invoker (top left) of the method pow and the method

(bottom left). The right side of the figure generalizes this concept of shared information between

the invoker, often called the client, and the method that performs some "work" for the client, often

referred to as the worker method. For example pow’s work is to compute a given number (n) raised

to a given power (p).

Invoker

pow

Invoker

(client)

Method

(worker)

:

:

Argument 1

2

n

Parameter 1

n

2
Returned

value

(for a nonvoid

method)

Number, n

np

The Math Class’s pow Method Any (Worker) Method

Exponent, p

Figure 3.3

The sharing of information between a method and its invoker.

As depicted in the right side of Figure 3.3, an unlimited number of pieces of information can

be sent from the invoking client to a worker method, however, only one piece of information can be

sent back to the client from the worker method. We say that the client sends the method an argu-

ment list containing the shared information, and the worker method receives the shared informa-

tion in its parameter list (either or both of which could be empty).

NOTE No more than one piece of information can be returned from a method.

 3.2.1 3.2.1 Parameters and Arguments Parameters and Arguments

If a method is to receive information passed to it from the client, then its signature must contain

a parameter list. The parameter list is coded inside the open and close parenthesis of the method’s

signature. The parameters in the list are separated by commas, and each parameter consists of a

variable name preceded by its type. For example, the signature of a method whose work is to output

a person’s age and weight would have an int and a double parameter in its parameter list.

80 ■ Programming Fundamentals Using Java

static void outputAgeAndWeight(int age, double weight)

{

 System.out.println(age: " + age + " weight: " + weight);

}

Each parameter receives one piece of information sent to it by the client code’s invocation

statement, and the type of the parameter must match the type of the information sent to it. The cli-

ent’s statement used to invoke the method outputAgeAndWeight would contain two arguments

in its argument list, within parentheses.

outputAgeAndWeight(myAge, myWeight);

This statement passes the contents of the variables myAge and myWeight to the method.

Arguments, information that is to be shared with the worker method, can be variables (e.g.,

myAge, myWeight) that have been previously declared in the client code, or string or primitive

literals.

NOTE
The order, number, and type of the arguments in a method invocation statement must

match the order, number, and type of the parameters in the method’s signature.

Each time a method is invoked, the variables in the method’s parameter list are allocated and

paired up with the arguments in the invocation’s argument list (the first parameter paired with the

first argument, the second parameter paired with the second argument, etc.), and the value stored

in each of the arguments is copied into the paired parameters. For the invocation statement

outputAgeAndWeight(myAge, myWeight);

the value in the argument myAge is copied into the parameter age of the method outputAgeAnd-

Weight, and the value contained in the argument myWeight is copied into the parameter weight.

This type of information passing is called passing by value, and the parameters are called value

parameters because the values contained in the arguments are copied into the parameters. Once

the parameters have been allocated and this transfer of information is complete, the code in the

worker method’s code block begins execution.

Consider the sequence of code that contains a main method and the method

outputAgeAndWeight:

public static void main(String[] args)

{ int myAge = 23;

 double myWeight = 185.4;

 outputAgeAndWeight(myAge, myWeight);

}

static void outputAgeAndWeight(int age, double weight)

{

 System.out.println("age: " + age + " weight: " + weight);

}

 Chapter 3· Methods, Classes , and Objects : A Firs t Look ■ 81

Figure 3.4 depicts a sequence of seven events that occur when this code executes and illustrates

the process of passing information using value parameters. The left side of figure shows the main

method’s (client) code and its execution sequence (events 1, 2, 3), which includes the RAM memory

allocated to its two arguments (event 2 is depicted in the bottom left portion of the figure).

The right side of the figure shows the code of the method and its execution sequence (events 4,

5, 6, and 7), which includes the RAM memory allocated to its two parameters (event 5 is depicted

in the bottom right portion of the figure). The passing of the values stored in the client’s arguments

into the paired worker parameters is depicted as event 6 in the bottom center of the figure. After

the information is passed, the code block of the method executes (event 7).

 int myAge = 23;

double myWeight = 185.4;

outputAgeAndWeight(myAge, myWeight)

1 4

myAge

myWeight

 age

 weight

5: Memory

cells allocated

6: Pairings made

and values copied

7

Client’s RAM Memory Method’s RAM Memory

2

3

23

185.4

23

185.4

static void outputAgeAndWeight(int age, doube weight)

{

 System.out.println("age: "+ age + " weight: " + weight);

}

Figure 3.4

The transfer of information to a method via value parameters.

The dotted line in the figure is a line that the code in the client and worker methods cannot

cross. The client code on the left of the figure cannot access the contents of the member cells age

and weight, and the worker method code cannot access the memory cells myAge and myWeight.

Inserting the statement

myAge = myAge + 1;

into the code of the method outputAgeAndWeight would result in a translation error because

myAge is only known to the client code.

When the method completes its execution, the variables named in its parameter list are de-al-

located, and their storage is returned to the memory manager. The result is that the values stored in

these memory cells are lost, in that they are no longer available to the program. An understanding

of this is fundamental to the notion of value parameters. It is also important to realize that the four

memory cells created during events 2 and 5 are separate and distinct. To emphasize this, the names

of the parameters (age and weight), coded in the worker method’s signature, were intentionally

82 ■ Programming Fundamentals Using Java

chosen to be different than the names of the arguments passed to method (myAge and myWeight).

Even if the argument and parameter names were the same (e.g., both coded as age and weight),

event 5 would still create two distinct memory cells on the right side of Figure 3.4 named age and

weight. A coding of the symbols age and weight in the worker method would refer the contents

of these to memory cells, which would be de-allocated when the method ends its execution.

NOTE
Every time a method is invoked, the variables in its parameter list are allocated,

and they are de-allocated when the method ends its execution.

 3.2.23.2.2 Scope and Side Effects of Value Parameters Scope and Side Effects of Value Parameters

The only way to pass information between arguments and parameters (i.e., between client code

and worker method code) in Java is via value parameters, so it is important that we understand the

limitations of the value parameter memory model presented in Figure 3.4 and its implications. As

depicted in the figure, the client code has two variables it can access, myAge and myWeight, and the

method has two variables it can access, age and weight. The client code cannot access the variables

age and weight, and the worker method cannot access the variables myAge and myWeight.

In programming language jargon, we say that the worker method’s variables age and weight

are defined within the scope of its code, and the variables myAge and myWeight are out of its

scope. A Java statement can only access variables that are within its scope.

Definition

The scope of a variable is the portion of a program in which it is defined and can therefore be

accessed.

It is syntactically correct to make the argument names in a method invocation the same as the

parameter names coded in the method’s signature. For example, the names of the variables de-

clared in the main method and the worker method’s parameter list could both be named myAge and

myWeight.

public static void main(String[] args)

{ int myAge = 23;

 double MyWeight = 185.4;

 outputAgeAndWeight(myAge, myWeight);

}

static void outputAgeAndWeight(int myAge, double myWeight)

{

 System.out.println("age: " + myAge + " weight: " + myWeight);

}

As previously mentioned, this coding of the method would still create two memory cells as-

signed to the method’s parameters on the lower right side of Figure 3.4, but their names would now

be myAge and myWeight. Now, the statement

myAge = myAge + 1;

 Chapter 3· Methods, Classes , and Objects : A Firs t Look ■ 83

written into the worker method’s code would not result in a translation error because there is now a

variable named myAge that is within its scope. The method’s code would access the contents of its

memory cell myAge, and the contents of that variable would be changed to 24. When the method

endes and execution returnes to the client code, the contents of the client code’s memory cell my-

Age would be unchanged. It would still contain the value 23.

Normally, this is a good thing because it prevents an unwanted side effect of the method’s code

changing the client’s data. Preventing this side effect assures that the values stored in the client

code variables before the method was invoked will be the same values stored in those variables

after the method completes it execution. In some cases, however, this is not what we want.

Consider the case of a method, named swap, that the client invokes to swap the contents of two

of its variables, a and b, via the statements

int a = 10;

int b = 20;

swap(a, b);

System.out.println("a is: " + a + " and b: is " + b);

If the method is successful, the output produced after swap completes its execution should be

a is 20 and b is 10.

The method swap would have two integer parameters to receive the values to be swapped, and

its code would implement the swapping algorithm. The code of the method, preceded by a main

method that invokes it, is given below:

 public static void main(String[] args)

 {

 int a = 10;

 int b = 20;

 swap(a, b);

 System.out.println("a is:" + a + " and b: " + b);

 }

 static void swap(int a, int b)

 {

 int temp = a;

 a = b;

 b = temp;

 }

Unfortunately, because Java uses value parameters, this coding of the method does not swap

the client’s variables, and the output produced by the last statement in the main method is a is 10

and b is 20.

Consistent with the memory model of value parameters, the client and the method each have

their own memory cells named a and b. The method swaps the values contained in its two memory

cells a and b, which has no side effects on the contents of the memory cells a and b allocated in the

84 ■ Programming Fundamentals Using Java

client code. These two cells remain unchanged (they still contain 10 and 20, respectively), which

makes it appear that the swap algorithm was improperly coded in the worker method.

It turns out that it is impossible to write a method that swaps the contents of two client vari-

ables using primitive-type parameters because, by design, value parameters prevent a method from

changing the values in the client’s argument list. Some programming languages (e.g., C and C++)

solve this problem by allowing another type of parameter called a reference parameter. Java does

not support this type of parameter because it can lead to some undesirable side effects

 3.2.33.2.3 Returned Values Returned Values

A worker method can return one, and only one value to the method that invokes it. A method

that returns a value is called a value returning or nonvoid method, and the key word void is not

used in its signature. It is replaced with the type of the information the method returns. For ex-

ample, the method showInputDialog in the API class JOptionPane is a nonvoid method that

returns a reference to a String, so its signature contains the type String rather than the keyword

void.

Methods can return the contents of reference variables, as the method showInputDialog

does, or they can return the contents of primitive variables. In both cases, the returned value should

be thought of as replacing the invocation of the method in the statement that invoked the method

after the method executes. If the value is to be used later in the program, the invocation should be

coded as the right part of an assignment statement that assigns the returned value to a variable.

For example, the two statements below prompt the user to enter a person’s age and return the

characters that are entered, but only the second one retains the location of the String object that

is returned.

JOptionPane.showInputDialog("enter a person's age");

String sAge = JOptionPane.showInputDialog("enter a person's age");

A nonvoid method must contain a return statement or the method will not translate. The

statement begins with the key word return, which is followed by the value that is to be returned.

The value to be returned can be a literal, a variable, the value of an arithmetic expression, or a

value returned from a method invocation. The following code segment contains a nonvoid method

multiply preceded by the code of the main method that invokes it. The method multiply calcu-

lates and returns the product of two numbers passed to it.

public static void main(String[] args)

{

 double a = 10.0;

 double b = 20.0;

 double product = multiply(a, b);

 System.out.println(a + " x " + b + " = " product);

}

 Chapter 3· Methods, Classes , and Objects : A Firs t Look ■ 85

static double multiply(double a, double b)

{

 double c;

 c = a * b;

 return c;

}

Because, as previously mentioned, an arithmetic expression can be coded in a return statement,

the method could have been coded more succinctly as:

static double multiply(double a, double b)

{

 return a * b;

}

There can be more than one return statement in a nonvoid method, but we will not have a use for

that feature of the language until we gain an understanding of the material presented in the next

chapter.

 3.2.43.2.4 Class Level Variables Class Level Variables

Class level variables are another way of sharing information among methods. However, the

manner in which the information is shared and the syntax used to code class level variables are

both very different than when arguments parameters and return statements are used to share

information.

To begin with, unlike using arguments and parameters to pass information to a worker method,

in order for methods to share information using class variables, the methods must be coded in the

same class. The information sharing is accomplished by coding the variable outside of the code

blocks of the methods in the class. Good coding style dictates that they be coded at the top of the

class before the code of any of the methods. When this done, the variable is within the scope of

all of the methods in the class. The methods actually share the same variable, which permits any

method in the class to fetch and overwrite the variable’s contents. Unlike arguments and param-

eters, class variables provide a two-way path for methods to share information. One method can

write a value into the variable, and another method can read the value from it.

Although we did not explain class variables in this much detail in Chapter 2, the program pre-

sented in Figure 2.12 used a class variable named count (line 8) to share the game’s time between

the method timer that was incrementing it (line 23), and the method draw that was outputting it

to the game board (line18). As shown on line 8 when a class variable is used in the program’s class,

its declaration must begin with the key word static:

static int count = 0;

Aside from that, its declaration syntax is the same as that used to declare a variable inside of a

method’s code block.

A variable can be declared inside a method’s code block that has the same name of a class-

variable. When this is done, a memory cell is created with the same name as the class variable and

86 ■ Programming Fundamentals Using Java

is called a local variable. All uses of the variable’s name inside the method’s code block refer to

the local variable, and the local variable can only be accessed by the method’s code. To access the

class variable from inside the method, the name of the variable would be preceded by the name of

the class followed by a dot (just as when we invoke static methods).

Wherever possible, it is good programming practice not to use the names of class variables for

naming variables declared inside of methods. For one thing, it reduces the program’s readability

because, if we fail to realize that the local variable is declared, we would erroneously believe that

the class variable is being used inside the method. In addition, if we neglect to declare the local

variable when coding the method, the translator will assume we want to use the class variable, and

it will not remind us that we neglected to declare the local variable.

!

TIP

It is good programming practice not to use the names of class variables for naming

local variables declared inside of methods.

Figure 3.5 presents a program that contains four worker methods and demonstrates informa-

tion sharing via value parameters, return statements, and class variables, the use of local variables,

and the features of methods that make them reusable. The inputs to the program and the outputs

the program produces are shown Figure 3.6.

Lines 30–36 contain the code of the method inputInteger. Its signature (line 30) indicates

that it is a nonvoid method that returns an integer and has a String parameter named prompt. The

method passes the string sent to it to an input dialog box (line 33) to be displayed as a prompt to

the program user. The returned user input is parsed into the integer variable a (line 34), and then

the parsed value is returned to the invoker (line 35). The inclusion of a string parameter in its sig-

nature allows the invoker to specify the prompt sent to the input dialog box. In addition, the method

parses the input integer, freeing the invoker from that responsibility. Both of these features make

this a highly reusable method. It is invoked five times within the program (on lines 11, 17, 18, 23,

and 24), and each time it is sent a different prompt.

Two class variables, a and b, are declared on lines 4 and 5 with a initialized to 10. The value

in the class variable a is included in the string passed to the invocation of inputInteger on

line 11, which is displayed as the prompt in the input dialog box (Figure 3.6a) produced by line

33. The method inputInteger declares its own local variable a on line 32, so the assignment

of the parsed value of the user input into the variable a (line 34) changes the contents of the local

variable, leaving the class variable unchanged. This is verified by the first output (Figure 3.6b)

produced by the program (lines 14–15), which indicates that a 10-year-old child will be 13 in 3

more years.

The method dif is invoked on line 13 to calculate the first output: the years to reach the de-

sired age. It is passed the desired age, input on lines 11-12, as the first argument on line 13. Because

the method main does not declare a local variable named a, the second argument on line 13, a, is

the class variable. The method then calculates the difference between the two values passed to its

two parameters (line 40), the desired age and the value stored in the class variable. Because the de-

sired age was input as 13, and the output indicates that it will be reached in 3 more years, the class

 Chapter 3· Methods, Classes , and Objects : A Firs t Look ■ 87

variable passed to the method’s second parameter must have contained the value 10 at the time

dif was invoked. The previous assignment into the local variable a on line 34 had no effect on it.

It should be noted that even if the parameter a was reassigned inside the method dif, the class

variable would still retain the value 10 because Java uses value parameters. All references in the

method dif to the variable a refer to the parameter, which can be thought of as a local variable.

Two swap methods, swapParameters and swapClassLevels, are coded on lines 43–55.

The first of these methods is invoked on line 19. It contains two parameters, a and b (line 43), to

receive the values to be swapped, which are input on lines 17 and 18 (Figures 3.6 c and d). Although

the names of the parameters are the same as the names of the class-level variables, they are not the

same memory cells as the class variables. When the values stored in the parameters are swapped

(lines 45–47), the output produced by lines 20–21 of the main method confirms a feature of value

parameters: changes to parameters have no effect on the arguments sent to the method. The num-

bers output by the main method are output in the same order in which they were input: 1111 fol-

lowed by 2222 (Figure 3.6 e).

Because the main method does not declare local variables named a and b, lines 23 and 24 store

the values returned from inputInteger in the program’s class variables (Figures 3.6 f and g). The

second swap method, swapClassLevels, is invoked on line 25. It has an empty parameter list

(line 50) and only one local variable, temp. Therefore, the variables a and b used in this method

default to the class-level variables. Because these are shared with the main method, the swapping of

the values in these variables performed on lines 52–55 does have an effect on the output produced

by the main method (lines 26–27). As a result, the numbers input on lines 23 and 24 (8888 and

9999) are output in reverse order (9999 followed by 8888) by lines 26 and 27 (Figure 3.6 h).

1 import javax.swing.JOptionPane;

2

3 public class MethodsAndParms

4 { static int a = 10; // Two classlevel variables

5 static int b;

6

7 public static void main(String[] args)

8 {

9 int desiredAge, first, second, difference; // local Variables

10

11 desiredAge = inputInteger("You are " + a + " years old" +

12 "\nHow old do you wish you were?");

13 difference = dif(desiredAge, a);

14 JOptionPane.showMessageDialog(null, + "Only " + difference +

15 " Years to go");

16

17 first = inputInteger("Enter the first number to swap");

18 second = inputInteger("Enter the second number to swap");

19 swapParameters(first, second);

20 JOptionPane.showMessageDialog(null, "Swapped using parameters: " +

21 first + " " + second);

88 ■ Programming Fundamentals Using Java

22

23 a = inputInteger("Enter the first number to swap");

24 b = inputInteger("Enter the second number to swap");

25 swapClassLevels();

26 JOptionPane.showMessageDialog(null, "Swapped using class " +

27 "levels: " + a + " " + b);

28 }

29

30 static int inputInteger(String prompt)

31 {

32 int a; // a local variable

33 String sInput = JOptionPane.showInputDialog(prompt);

34 a = Integer.parseInt(sInput);

35 return a;

36 }

37

38 static int dif(int desiredAge, int a)

39 {

40 return desiredAge - a;

41 }

42

43 static void swapParameters(int a, int b)

44 {

45 int temp = a;

46 a = b;

47 b = temp;

48 }

49

50 static void swapClassLevels()

51 {

52 int temp = a;

53 a = b;

54 b = temp;

55 }

56 }

Figure 3.5

The application MethodsAndParameters.

 (a) (b)

 Chapter 3· Methods, Classes , and Objects : A Firs t Look ■ 89

 3.3 3.3 THE API THE API GRAPHICSGRAPHICS CLASS CLASS

Having gained a deeper understanding of methods and the techniques for sharing informa-

tion between methods and the program code that invokes them, we will reinforce those concepts

in this section by examining several worker methods in the API Graphics class. As discussed

in Chapter 2, this class contains methods for drawing text on Graphics objects. It also contains

methods used to change the drawing color and for drawing lines, rectangles, ovals, and circles on

Graphics objects.

 3.3.1 3.3.1 Changing the Drawing Color Changing the Drawing Color

All drawing performed on a Graphics object is performed in the current color. The default

current color is black. The setColor method in the Graphics class can be used to change the

 (c) (d)

 (e) (f)

 (g) (h)

Figure 3.6

Inputs and resulting outputs produced by the application MethodsAndParameters.

90 ■ Programming Fundamentals Using Java

current drawing color. One argument, used to specify the new value of the current drawing color,

is passed to the method. Table 3.1 gives the names of the thirteen predefined color variables in the

class Color. Because these variables are static variables, they are referred to by their name pre-

ceded by Color followed by a dot. For example, to set the color of all subsequent drawings on the

Graphics object g to red, we would code:

g.setColor(Color.RED);

As previously discussed, the Graphics object attached to our game board is passed into the draw

method’s parameter g when the game environment invokes the draw method. Therefore, if this

statement were coded in the draw call back method, the current drawing color of the game board

would be changed to red.

Table 3.1

Thirteen of the Predefined Colors in the Color Class

Color Variable Name

black BLACK

blue BLUE

cyan CYAN

dark gray DARK_GRAY

gray GRAY

green GREEN

light gray LIGHT_GRAY

magenta MAGENTA

orange ORANGE

pink PINK

red RED

white WHITE

yellow YELLOW

 3.3.2 3.3.2 Drawing Lines, Rectangles, Ovals, and CirclesDrawing Lines, Rectangles, Ovals, and Circles

Figure 3.7 presents five of the methods in the Graphics class. These methods are nonstatic

void methods. As their names imply, the first method is used to a draw line, and the remaining four

methods are used to draw rectangles and ovals. To specify the location of the item to be drawn, all

of the methods are passed (x, y) coordinates whose units are pixels.

The line drawing method, drawLine, is passed two sets of (x, y) coordinates, which are the

endpoints of the line to be drawn. For example, to draw a line from (30, 50) to (60, 80) on the

Graphics object g, we would code:

g.drawLine(30, 50, 60, 80);

The rectangle drawing methods drawRect and fillRect are used to draw the outline of a rect-

angle and to draw a filled (solid) rectangle, respectively. Their first two arguments specify the

 Chapter 3· Methods, Classes , and Objects : A Firs t Look ■ 91

coordinates of the upper left corner of the rectangle, and the third and forth coordinates specify the

width and height of the rectangle in pixels. For example, to draw the outline of a rectangle whose

upper left corner is at (100, 200) and is 50 pixels wide and 75 pixel high on the Graphics object

g, we would code:

g.drawRect(100, 200, 50, 75);

To draw this rectangle as a solid rectangle, filled with the current drawing color, we code:

g.fillRect(100, 200, 50, 75);

The method drawOval is used to draw the outline of an oval, and the method fillOval is used to

draw a solid oval filled with the current color. These ovals are drawn within a specified rectangle

(which is not drawn). The method’s four parameters are identical to those of the rectangle methods

previously discussed and are used to specify the rectangle’s (x, y) location and its width and height.

For example, to draw the outline of an oval 50 pixels wide and 70 pixels high inscribed inside a

rectangle whose upper left corner is at (100, 200), we would code:

g.drawOval(100, 200, 50, 75);

To draw this oval as a solid oval filled with the current drawing color, we code:

g.fillOval(100, 200, 50, 75);

drawLine(int x1, int y1, int x2, int y2)

Draws a line, using the current color, between the points (x1, y1) and (x2, y2)

drawRect(int x, int y, int width, int height)

Draws the outline of a rectangle whose upper left corner is at (x, y) and whose width and

height are width and height, using the current color

drawOval(int x, int y, int width, int height)

Draws the outline of an oval bounded by the rectangle whose upper left corner is at (x, y) and

whose width and height are width and height, using the current color

fillRect(int x, int y, int width, int height)

Draws a rectangle whose upper left corner is at (x, y) and whose width and height are width

and height, filled with the current color

fillOval(int x, int y, int width, int height)

Draws an oval bounded by the rectangle whose upper left corner is at (x, y) and whose width

and height are width and height, filled using the current color

Figure 3.7

Primitive-shape drawing methods in the Graphics class.

The oval drawing methods can be used to draw circles by making the third and fourth argu-

ments, the height and width of the rectangle that encloses the oval, the same number of pixels. For

example, to draw a solid circle 50 pixels in diameter inscribed inside a rectangle whose upper left

corner is at (100, 200) we would code:

g.fillOval(100, 200, 50, 50);

92 ■ Programming Fundamentals Using Java

When the statements presented in this section are coded in the game environment’s draw call

back method, the lines and shapes they draw appear on the game board because, as mentioned at

the end of Section 3.3.1, the Graphics object passed into the draw call back method’s parameter

g is attached to our game board.

Figure 3.8 presents the application LinesAndShapes that draws two lines in the default color

(black), two dark-gray rectangles, a red oval, and a blue circle on the game-board object. The

graphical output of the program is shown in Figure 3.9. Lines 16–26 coded inside the draw method

perform the drawing. Consistent with the variable names given in Table 3.1, the argument sent to

the setColor method on line 19 has an underscore separating the words DARK and GRAY.

1 import edu.sjcny.gpv1.*;

2 import java.awt.*;

3

4 public class LinesAndShapes extends DrawableAdapter

5 {

6 static LinesAndShapes ga = new LinesAndShapes();

7 static GameBoard gb = new GameBoard(ga, "Lines and Shapes");

8

9 public static void main(String[] args)

10 {

11 showGameBoard(gb);

12 }

13

14 public void draw(Graphics g) // the drawing call back method

15 {

16 g.drawLine(100, 75, 260, 75); //Lines

17 g.drawLine(300, 50, 400, 100);

18

19 g.setColor(Color.DARK_GRAY);

20 g.drawRect(100, 170, 100, 60); //Rectangles

21 g.fillRect(280, 170, 150, 40);

22

23 g.setColor(Color.RED);

24 g.drawOval(55, 300, 180, 80); //Ovals

25 g.setColor(Color.BLUE);

26 g.fillOval(280, 300, 100, 100);

27

28 }

29 }

Figure 3.8

The application LinesAndShapes.

 Chapter 3· Methods, Classes , and Objects : A Firs t Look ■ 93

Figure 3.9

The output produced by the application LinesAndShapes.

 3.4 3.4 OBJECT ORIENTED PROGRAMMINGOBJECT ORIENTED PROGRAMMING

Early programming languages were designed in the procedural paradigm. In this paradigm,

a program is decomposed into smaller parts called subprograms, and the language provides a

mechanism for combining the subprograms into the larger program. During the design process,

the programmer focuses on the definition of the subprograms and how the program’s data will be

stored. In this paradigm, the subprograms and the program’s data are separated and coded into two

distinct entities.

Object oriented programming is a more recent programming paradigm. The paradigm is an at-

tempt to facilitate the development of programs that deal with objects, such as starships, or people,

or Web pages. In this paradigm, the program is decomposed into the various classes to which the

objects belong. During the design process, the programmer focuses on determining the objects the

program will deal with, the attributes of each object (e.g., a starship’s name), and the operations

that can be performed on each object (e.g., changing a starship’s location). In this paradigm, the op-

erations (subprograms) and attributes (data) are collected and coded into one entity called a class.

Both paradigms are in use today. Some programming solutions are better designed and more

easily implemented using the procedural paradigm, and others are more easily designed and imple-

mented using the object paradigm. C is a procedural language, C++ is a language that can be used

in both the procedural and object paradigm, and Java is an object oriented language. If the program

deals with objects, then the object paradigm should be strongly considered.

 3.4.1 3.4.1 What Are Classes and Objects? What Are Classes and Objects?

A class is a blueprint of how to construct an item, and an object is a particular item or instance

of a class. For example, we all belong to the class human. That class contains a genetic blueprint of

94 ■ Programming Fundamentals Using Java

how to construct a human object, which we call a person. As per the human blueprint, all people

have common attributes. For example, all people have colored-eyes, colored-hair, and eventually

grow to an adult height. But clearly, all people (except identical twins) are also different. For ex-

ample, people grow to different heights, have different-colored eyes, and different hair colors, what

makes objects different is that each object contains its own value of the attributes contained in the

blueprint.

Definition

A class is a blueprint of how to construct an item, and an object is a particular item or instance

of a class.

The value of Mary’s three attributes could be 63 inches for height, blue for eye color, and red

for hair color. The value of her sister Kate’s attributes could be 68 inches for height, brown for eye

color, and black for hair color. No wonder these two objects look different. Now suppose Kate, who

always admired her sister’s red hair and blue eyes, dyed her hair to a red color and inserted a set of

blue contact lenses into her eyes. These hair coloring and lens insertion operations would change

the values of two of Kate’s attributes, and she would then look like a taller version of Mary.

In object oriented languages, a class is the mechanism for defining the blueprint of an entity.

As such, it contains the attributes that each object in the class will have (e.g., height, hair color,

and eye color). To store the different values of these attributes for each object constructed from

the blueprint, the attributes are represented within the class as variables. In addition, because the

values of the attributes of an object can change, the class contains methods (e.g., setEyeColor

and setHairColor) that can operate on the variables to change, or set, the values they store to

new values.

 3.5 3.5 DEFINING CLASSES AND CREATING OBJECTSDEFINING CLASSES AND CREATING OBJECTS

During the design process of an object oriented program, the programmer focuses on deter-

mining the objects the program will deal with, the attributes of each object, and the operations that

can be performed on them. The blueprint for each type of object will be coded into a programming

construct called a class that will represent the attributes as variables and the operations as methods.

In the remainder of Section 3.5, we will discuss a graphical tool used to specify a class and the Java

syntax used to code that specification into a Java program.

NOTE
The programming construct class is comprised of variable definitions and method

definitions.

 3.5.13.5.1 Specifying a class: Unified Modeling Language Diagrams Specifying a class: Unified Modeling Language Diagrams

A unified modeling language (UML) diagram is a graphical representation of a class. The

diagram consists of three rectangles stacked on top of each other. From top to bottom, as shown

in Figure 3.10, these rectangles are used to specify the class name, the variables that will be part

 Chapter 3· Methods, Classes , and Objects : A Firs t Look ■ 95

of the class, and the class’s methods. The variables are called data members (of the class), and the

methods are called member methods because they are both part of (members of) the class being

specified.

As an example, consider a program that is going deal with people objects where each person has

three attributes: eye color, hair color, and height. The UML diagram used to specify the class, whose

name was chosen to be Person, is shown in Figure 3.11. The name of the class appears at the top of

the diagram, and the class’s three data members are tabulated in the second box of the diagram.

To succinctly convey information about a class’s data members and methods, UML diagrams

employ a standardized notation, some of which is included in Figure 3.11. For example, the type

of each data member is specified by following its variable name with a colon and the type of the

variable. As shown in the figure, the class Person has two String data members and one integer

data member.

The three data members of the class Person are preceded with a plus (+) sign. The plus sign

is used to denote the access property of a data member of a class. When the UML specification of

a class is coded into a Java class construct, the + sign is coded as the key word public. Another

alternative is to precede the names of the data members with a minus (-) sign, which is coded as

the key word private. We will learn more about the implications of the use access modifiers in

the next section.

 3.5.23.5.2 The Class Code Template The Class Code Template

Like the data members of a class, a class itself can be public or private, although most classes

are public. We will discuss private classes in Chapter 7. The code template for a public Java class

is given below:

public class ClassName

{

 //data members are coded here

 //member methods are coded here

}

Person

+ eyeColor: String

+ hairColor: String

+ height: int

Figure 3.11

The specification of the class Person, Version 1.

Class Name

Data Members

(variables)

Member Methods

Figure 3.10

The template of a UML diagram.

96 ■ Programming Fundamentals Using Java

The name of the class, given at the top of the UML diagram, is substituted for ClassName on

the first line of the template. The declaration of the class’s data members and the code of its mem-

ber methods are coded inside of a pair of braces that make up the class’s code block. The variables

that represent a class’s data members are coded before the code of the class’s member methods.

While this is not a Java syntax rule, it is considered good coding practice. The code of the class

specified by the UML diagram presented in Figure 3.11 is given in Figure 3.12 with the data mem-

bers set to initial values.

public class Person

{

 //data members

 public String eyeColor = "blue";

 public String hairColor = "red";

 public int height = 65;

 //member methods

}

Figure 3.12

The code of the class Person specified in Figure 3.11.

Normally, the initial values are chosen to be the most common value of the data members. In

this case, the assumption is that most people have blue eyes, red hair, and are 65 inches tall.

 3.5.33.5.3 Creating Objects Creating Objects

In Section 2.5, we examined a two-line syntax for declaring objects in the class String. For

example:

String firstName;

firstName = new String("John");

The first line creates the reference variable firstName that can store the address of a String

object, which is initialized to the default value null. The second line creates a new String object,

stores the string John "John" inside of it, and then overwrites the null value stored in the variable

firstName with the address of the object. Alternately, the two lines of code can be consolidated

into one line:

String firstName = new String("John");

When talking about the object created with either the two- or one-line syntax, in the interest

of brevity we say that "we created a string object named firstName," or we might be asked to

"output the object firstName." However, experienced programmers know that it is more accurate

to say, "we created a string object referenced by the variable firstName," or "output the object

referenced by firstName." With that understanding, we will use the brief version in the remain-

der of this text.

 Chapter 3· Methods, Classes , and Objects : A Firs t Look ■ 97

By changing the name of the class coded in the one- or two-line syntax and usually the code

inside the parentheses, both versions of the syntax can be used to declare an object in any class. The

code fragment below uses the one-line grammar to create two Person objects, one named mary

and the other named kate:

Person mary = new Person();

Person kate = new Person();

The memory allocated by these two statements is shown in Figure 3.13. As defined in the Person

class (Figure 3.12), each object contains the same three variables set to initial values. The variables

hairColor and eyeColor store the address of string objects that contain the initial values. At this

point, Mary and Kate are identical twins and will remain so until we add methods to the class that

can change the values of the data members.

15 15mary 25

15

100
hairColor

eyeColor

height

red

 blue

25

hairColor

eyeColor

height

Person kate = new Person();

25kate

200

65

red

blue

30

300

65

Person mary = new Person();

Figure 3.13

Two Person objects and the statements that constructed them.

Constructor methods

Let us assume that the two lines of code that created the objects mary and kate

 Person mary = new Person();

 Person kate = new Person();

were coded in the main method of a program that dealt with people, or more precisely, Person ob-

jects. These two lines of code should be thought of as the main method’s request to the class to create

two Person objects. If I call a carpenter and request that he create, or construct, a shed for me, I

become his client. The two terms, construct and client, used in this analogy are used in the program-

ming jargon of classes and objects. We would say that the class Person has constructed two objects

for the client code main. Any section of code that declares an object in a class is considered to be cli-

ent code (of that class), and the class is said to have constructed the objects for the client code.

Every class has at least one member method that constructs new objects. These non-void meth-

ods are called constructors, and they execute every time the object declaration syntax is used to

declare an object. During the execution of a constructor method, the storage is allocated for the

98 ■ Programming Fundamentals Using Java

class’s data members, the initial values are stored in the data members, the collection of data mem-

bers is assigned a memory location (considered to be the location of the object), and that location

is returned to the client code. The assignment operator included in the object-declaration grammar

then stores the returned location of the object in the object’s reference variable (e.g., mary).

The name of a constructor method is always the name of its class, so the code to the right of the

key word new in the declaration of mary’s object

Person mary = new Person();

is actually an invocation to the constructor method named Person that has no parameters and

returns the address of a newly created Person object.

The class Person shown in Figure 3.12 does not contain a constructor method, which in this

case would be a method named Person. When a class does not contain a constructor, a Java-pro-

vided constructor method is used to construct objects. This constructor, referred to as the default

constructor, has no parameters, and it performs the functions previously mentioned:

 1. Allocates the storage for the data members of the class

 2. Stores the initial values in the data members

 3. Assigns the collection of data members a memory location

 4. Returns the location to the client code

Because the class Person does not contain any methods, the two Person objects mary and kate

declared as

Person mary = new Person();

Person kate = new Person();

would be created by the default constructor, which would perform the four functions listed above.

Each object’s data members would be set to the initial values specified in the data-member portion

of their class (Figure 3.12) during function 2. In Section 3.6.2, we will learn how to add constructor

methods that we write to a class. These methods can contain parameters and code to extend the

four functions performed by the default constructor.

 3.5.43.5.4 Displaying an Object Displaying an Object

Objects can be displayed to the system console and to a graphical game board in one of two

ways. We can simply mention the name of the object or invoke the toString method on the object

inside a method invocation used to display strings, or we can add a method to the object’s class that,

when invoked, outputs the object. The following statements use the first approach to display the

Person object mary to the system console object, System.out and then to a GameBoard object

named g at location (210, 100).

System.out.println(mary);

g.drawString(mary.toString(), 210, 100);

This approach is usually not too interesting because what is displayed is the location of the object

that is stored in the reference variable mary preceded by an ampersand (@) and the name of the

object’s class. Referring to Figure 3.13, Mary’s object is located at address 15, so the output to the

 Chapter 3· Methods, Classes , and Objects : A Firs t Look ■ 99

system console and the game board would be Person@15. The second alternative, adding a method

to the object’s class that when invoked outputs the object, produces a more interesting and useful

output. This technique will be discussed in Section 3.6.

Figure 3.14 presents an application that creates two Person objects, whose class is defined in

Figure 3.12, and outputs their locations to the system console and the game board. The output is

shown in Figure 3.15, except that the program does not produce the more interesting output of the

actual object Mary shown in the middle of the game board. As previously mentioned, the tech-

niques for producing that output will be discussed Section 3.6, and the code to produce the output

will be left as an exercise for the student.

Lines 7, 10, and 11 create two Person objects using the two-line syntax. The reference vari-

ables mary and kate are declared as class variables on line 7, so they can be accessed from the

main method and the draw call back method. Lines 13–14 and lines 21–22 output the object’s lo-

cations to the system console and the game board, respectively. These locations can be thought of

as the locations assigned to the two objects by Java’s memory manager when lines 10–11 execute.

1 import edu.sjcny.gpv1.*;

2 import java.awt.*;

3 public class ClassAndObjectBasics extends DrawableAdapter

4 {

5 static ClassAndObjectBasics ge = new ClassAndObjectBasics();

6 static GameBoard gb = new GameBoard(ge, "Class & Object Basics");

7 static Person mary, kate;

8

9 public static void main(String[] args)

10 { mary = new Person();

11 kate = new Person();

12

13 System.out.println(mary);

14 System.out.println(kate);

15

16 showGameBoard(gb);

17 }

18

19 public void draw(Graphics g)

20 {

21 g.drawString(mary.toString(), 210, 100);

22 g.drawString(kate.toString(), 210, 120);

23 }

24 }

Figure 3.14

The application ClassAndObjectBasics.

System console output:

Person@3a6727

Person@4a65e0

100 ■ Programming Fundamentals Using Java

Game board output:

Figure 3.15

The object locations output by the application ClassAndObjectBasics.

 3.5.5 3.5.5 Designing a Graphical ObjectDesigning a Graphical Object

During the specification and design of a program we identify the types of objects that the pro-

gram will deal with and the operations to be performed on them. Then during the program devel-

opment process, a class is developed for each of the object types, and the operations performed on

the objects become the methods of the class. A common operation performed on objects is to dis-

play them, and in the previous section we were able to display a Person object’s location without

adding a method to the Person class. To produce the more interesting display of an object, such as

the drawing of the object mary with her red hair and blue eyes shown in the middle of Figure 3.15,

we add a method to the object’s class that uses the shape and line drawing methods of the Graph-

ics class to produce the output.

In Section 3.6, we will learn how to add this method, whose name usually begins with the

prefix show, and other methods that perform common operations on objects to an object’s class.

In preparation for the coding of this method, the programmer has to design each type of graphical

object using the basic drawing shapes available in the Graphics class. In this section, we will be-

come familiar with techniques used to design these objects so that the drawing can be easily coded

into a show method, and the object can be easily manipulated by other class methods that perhaps

relocate the object, erase the object, or animate the object.

Drawing an Object

To begin, we draw a picture of the object using the graphical shapes available in the API

Graphics class discussed in Section 3.3. The object should be inscribed in a rectangle, and if ovals

 Chapter 3· Methods, Classes , and Objects : A Firs t Look ■ 101

are used, they should be inscribed in their own rectangle. Figure 3.16 shows a sketch of a snowman-

type object comprised of two rectangles and two circles. The rectangles that inscribe the ovals and

the entire object are shown in red.

The dimensions, in pixels, of each of the basic shapes that make up the game piece should be

given in the drawing. For example, the snowman’s hat is specified on the upper right side of the

figure to be 10 pixels wide and 15 pixels high. Ovals that are circles, such as a snowman’s head and

body, can be specified with one dimension (e.g., the diameter of the snowman’s head is 20 pixels).

After the dimensions of all of the shapes that make up the object have been noted on the drawing, the

overall width and height of the inscribing rectangle is added to the drawing. This is shown in Fig-

ure 3.16 on the bottom and left side of the inscribing rectangle. The width is simply the width of the

snowman’s body, 40, and the height is the sum of the heights of the shapes that make up the snowman,

77 (15 + 2 + 20 + 40).

The color of each shape that makes up the

object should also be given, as shown in the

lower right portion of the figure. The word

default used in the object’s color specification

implies that snowmen objects could be con-

structed with hats that are not black. Finally, a

point that will be used to locate the object on

the game board is noted on the drawing. As

shown in the upper left side of the figure, this

point is typically the upper left corner of the

inscribing rectangle.

The next step in this design process is to

determine the locations of each of the shapes’

upper-left corner relative to the (x, y) location

of the game piece, which for our snowman is

the upper left corner of the inscribing rectan-

gle. These locations, along with the width and

height of each of the shapes, are entered into in a table that will be used in the show method to draw

each of the shapes. The table is a digital representation of the object, and the process of determin-

ing the data is referred to as digitizing the object.

The digital representation of our snowman object is given in Table 3.2. As previously men-

tioned, each location in the table is relative to the (x, y) location of the upper corner of the rectangle

that inscribes the snowman object. Therefore, each location given in the table begins with an x or y

followed by the x or y distance to the corner of the shape. When reading the locations in the table,

it should be remembered that the positive x direction is to the right, and the positive y direction is

down.

To determine these distances, we either consider the dimensions of each of the shapes given in

Figure 3.16, or we draw the object on a piece of graph paper whose origin is the upper left corner of

the object’s inscribing rectangle. Then, the x and y distances to the upper-left corner of each shape

(x, y) location of the

snowman.

40

20

20 x 2

10 x 15

The circles are

white, the default

color of the hat is

black.

40

77

Figure 3.16

The design of a snowman game piece.

102 ■ Programming Fundamentals Using Java

are simply the x and y coordinates of the shape’s inscribing rectangle’s upper left corner. The fol-

lowing two examples illustrate the technique of determining the x and y coordinates of each shape

by considering the dimensions given in Figure 3.16.

 1. To determine the x location of the upper left corner of the snowman’s hat, which is

x + (20-5) as indicated in the first row and third column of the table, half the width of

the snowman’s inscribing rectangle (20) is added to x because the center of the hat is at

the center of the inscribing rectangle. Half the width of the hat (5) is subtracted from x

because the left side of the hat is half the width of the hat closer to the left side of the

snowman’s inscribing rectangle than is the center of the hat.

 2. To determine the y location of the upper left corner of snowman’s head, which is

y + (15+2) as indicated in the third row and fourth column of the table, the height of the

hat (15) and the height of the hat brim (2) are added to y.

It should be noted that when lines are used in the object’s drawing, each line is entered on a

separate row of the table and, as indicated in the column headings of Table 3.2, the coordinates

of the endpoints of the lines are entered into the rightmost four columns of the table. During the

design phase of the program, a table is produced for each type of object in the program.

 3.6 3.6 ADDING METHODS TO CLASSESADDING METHODS TO CLASSES

Many of the methods added to a class perform operations on the objects in the class. Some of

these operations are so commonly performed, such as a method to display an object or a method

to change the value of a data member, that they are included in most classes. To improve program

readability, the names of these methods usually begin with a designated prefix. For example, the

names of methods that display objects usually begin with the prefix show, and a method that be-

gins with the prefix set usually changes the value of one of an object’s data members.

In this section, we will study the techniques for adding methods to classes and how to use

them to perform operations on objects. These methods will be added to a class named SnowmanV1

that defines the object depicted in Figure 3.16 and digitized in Table 3.2. Its UML diagram will be

progressively developed, by adding methods to it, as we move through the next few sections of this

chapter.

Table 3.2

Digital Representation of the Snowman Object Shown in Figure 3.16

Component Shape Shape’s X or

Line’s X
1

Coordinate

Shape’s Y or

Line’s Y
1

Coordinate

Width or Line’s

X
2
 Coordinate

Height or

Line’s Y
2

Coordinate

Hat Rectangle x + (20 – 5) y 10 15

Hat Brim Rectangle x + (20 – 10) y + (15) 20 2

Head Circle x + (20 – 10) y + (15 + 2) 20 20

Body Circle x y + (15 + 2 + 20) 40 40

 Chapter 3· Methods, Classes , and Objects : A Firs t Look ■ 103

Our starting point will be the UML diagram shown in

Figure 3.17, which is implemented in Figure 3.18. The class has

three data members, two integers, and a reference variable used to

specify the location of a SnowmanV1 object and its hat color.

As shown in the UML diagram, the data member hatColor

will refer to a color constant in the class Color. The code of the

class SnowmanV1 is presented in Figure 3.18. The three data

members are coded on lines 4–6. The default location of the

snowman is (5, 30), which is the upper left corner of the game

board. The hat color has been initialized to the color constant

BLACK.

1 public class SnowmanV1

2 {

3 //data members

4 public int x = 5;

5 public int y = 30;

6 public Color hatColor = Color.BLACK;

7 }

Figure 3.18

The Class SnowmanV1

The use of a graphical snowman in this chapter will make the concept of operating on an object

less abstract, and therefore more easily understood. For example, rather than the class’ show meth-

od simply displaying an object’s (x, y) location, its show method will display the object in a more

tangible way: by drawing it on the game board at its (x, y) location. Rather than simply outputting

the increased value of an object’s x location, we will see the object move to the right.

 3.6.13.6.1 The The showshow Method Method

A method that begins with the prefix show is used to display an object and is a nonstatic

method. Because the drawing methods of the Graphics class cannot be used to draw on the sys-

tem console, we have to define what it means to show an object on the system console. The com-

monly accepted meaning is that the output would consist of the annotated values of the object’s

data members. This version of a show method, named showXYToSC (SC for system console) would

invoke the println method and pass it a string that concatenates the annotation and the class’s x

and y data members. For example:

public void showXYToSC()

{

 System.out.println("x is: " + x +

 "\ny is: " + y);

}

SnowmanV1

+ x: int

+ y: int

+ hatColor: Color

Figure 3.17

The UML diagram of the class

SnowmanV1

104 ■ Programming Fundamentals Using Java

After this code is added to the class then snowman sm1 could be output to the system console us-

ing the statement:

sm1.showXYToSC();

which would produce the output:

x is: 5

y is: 30

The statement sm1.showXYToSC(); can be read in three different ways:

 1. The object sm1 is invoking the showXYToSC method.

 2. The method showXYToSC is invoked on the object sm1.

 3. The showXYToSC method is operating on the object sm1.

All three of these are synonymous; that is, they mean the same thing. In general, to cause a method

to operate on an object, we precede the name of the method with the name of the object followed

by a dot.

An important point to remember is that if we just focused on the code of the showXYToSC

method and asked the question, when it mentions the data members x and y, which object’s data

members is it talking about, the answer is the data members of the object that invoked it. The true

meaning of the statement "a method operates on an object" is that all occurrences of the names of

the data members coded inside the method refer to the data members of the object that invoked it.

Figure 3.19 presents the expanded UML diagram that reflects the addition of two show methods,

showXYToSC and show. The method show will use the digitized version of a snowman, presented in

Table 3.2, to display a SnowmanV2 object on the game board. Because the shape drawing methods

in the Graphics class will need access to the game board object, the show method will have one

parameter: a reference to a Graphics object. The characters g: Graphics that appear inside the

parentheses of this method in the UML diagram is UML notation to indicate that this method has one

parameter named g that is a reference to a Graphics object.

The code of this expanded class is given in Figure 3.20. A client application that declares a

SnowmanV2 object and outputs the object’s address to the system console and the object to both the

system console and the game board is shown in Figure 3.21.

The application’s output is shown in Figure 3.22.

The client code (Figure 3.21) invokes the default con-

structor on line 7 to declare a SnowmanV2 object named sm1.

The declaration uses the one-line object declaration syntax

and is at the class level, so the object can be accessed by the

main method and the draw call back method. Line 11 out-

puts the object’s location to the system console, and line 12

invokes the showXYToSM method of the Snowman’s class to

display snowman sm1 to the system console. This method is

coded on lines 12–16 of the Snowman class (Figure 3.20).

SnowmanV2

+ x : int

+ y : int

+ hatColor: Color

+ showXYToSC()

+ show(g: Graphics)

Figure 3.19

The UML diagram of the class

SnowmanV2.

 Chapter 3· Methods, Classes , and Objects : A Firs t Look ■ 105

Line 19 of the application invokes the SnowmanV2 class’s show method to display snowman

sm1 on the game board. This invocation is coded in the draw call back method for two reasons.

First, the show method must be passed a Graphics object on which to perform its drawing, and

the draw method is the only call back method that is passed a Graphics object when it is invoked.

It passes the Graphics object to the show method as an argument on line 19. Secondly, when the

game board needs to be redrawn, the game environment invokes draw, which will then invokes

show to redraw the snowman.

Lines 18–26 of Figure 3.20 are the code of the show method. The method’s signature (line 18)

includes the parameter g specified in the class’s UML diagram (Figure 3.19). It uses this parameter

to invoke methods in the Graphics class used to change the current drawing color (setColor

lines 20 and 23) and to draw the rectangles and circles specified in Table 3.2. All of the shape loca-

tions sent to the Graphics class methods as arguments on lines 21–25 are those contained in the

table. They contain the variables x and y because they are relative to the upper left corner of the

rectangle that inscribes the snowman. Because the method does not declare local variables named

x and y, the class-level data members x and y are used in these arguments. As a result, the snow-

man is drawn as shown in Figure 3.21 with the upper left corner of its inscribing rectangle at (5, 30).

1 import java.awt.Color;;

2 import java.awt.Graphics;; //needed for drawing shapes

3

4 public class SnowmanV2

5 {

6 //data members

7 public int x = 5;

8 public int y = 30;

9 public Color hatColor = Color.BLACK;

10

11 //member methods

12 public void showXYToSC()

13 {

14 System.out.println("x is: " + x +

15 "\ny is: " + y);

16 }

17

18 public void show(Graphics g) //g is passed to the method

19 {

20 g.setColor(hatColor);

21 g.fillRect(x + 15, y, 10, 15); //hat

22 g.fillRect(x + 10, y + 15, 20, 2); //brim

23 g.setColor(Color.WHITE);

24 g.fillOval(x + 10, y + 17, 20, 20); //head

25 g.fillOval(x, y + 37, 40, 40); //body

26 }

27 }

Figure 3.20

The class SnowmanV2.

106 ■ Programming Fundamentals Using Java

1 import edu.sjcny.gpv1.*;

2 import java.awt.Graphics;

3 public class ShowMethods extends DrawableAdapter

4 {

5 static ShowMethods ga = new ShowMethods();

6 static GameBoard gb = new GameBoard(ga, "Show Methods");

7 static SnowmanV2 sm1 = new SnowmanV2();

8

9 public static void main(String[] args)

10 {

11 System.out.println(sm1);

12 sm1.showXYToSC();

13

14 showGameBoard(gb);

15 }

16

17 public void draw(Graphics g) //the drawing call back method

18 {

19 sm1.show(g);

20

21 }

22 }

Figure 3.21

The application ShowMethods.

System Console Output

SnowmanV2@3a6727

x is: 5

y is: 30

Graphical Output

Figure 3.22

The console and graphical output produced by the application ShowMethods.

 Chapter 3· Methods, Classes , and Objects : A Firs t Look ■ 107

 3.6.23.6.2 Constructors and the Keyword Constructors and the Keyword thisthis

In Section 3.5.3, we learned that constructors are methods that construct objects, and the

names of these methods must be the same as the class of the objects they construct. If a constructor

method is not included in the specification and code of a class, a Java provided default constructor

creates the object by performing the following four functions:

 1. Allocate the storage for the data members of the class

 2. Set the initial values into the data members

 3. Assign the collection of data members a memory location

 4. Return the location to the client code

Because the class SnowmanV2 does not contain a constructor method, the default constructor

is used to create all instances of this class (objects declared in this class). As a result, function 2

would locate them all at (5, 30), and they would all have black hats. When displayed, they would be

displayed on top of each other giving the appearance that only one of them was displayed.

To allow the client code to specify the values of the data members of a newly constructed ob-

ject, we add a constructor method to its class. Its code template is the same as the template used

to code any other method, except its name must be the same as the class’s name, and its signature

cannot contain a return type. Its signature can contain a parameter list, and it can contain Java

statements in its code block. When a constructor method is included in the code of a class, the

default constructor is no longer available to construct objects in the class.

Figure 3.23 presents the UML diagram of the class SnowmanV3 that contains a two-parameter

constructor, which is a constructor with a parameter list that contains two parameters. When the

client code uses this constructor method to create an object, just before the fourth function nor-

mally performed by the default constructor is performed, the constructor method executes. Storage

is allocated for the constructor’s parameters, the values of the client’s arguments are copied into

them, and then the code of the constructor executes.

As with any method, the values copied into the pa-

rameters of the constructor could be used anywhere in

the constructor’s code block by coding the names of the

parameters. It is often the case that these parameters are

used by the client code to specify the initial values of

the data members. When this is the case, the construc-

tor’s code block simply assigns the parameters to the data

members:

public SnowmanV3(int xLoc, int yLoc)

{ x = xloc;

 y = yLoc;

}

After this two-parameter constructor’s code is included in the code of the class SnowmanV3,

the client could use the following code to declare two snowmen located at the upper right and lower

left corners of the game board:

SnowmanV3

+ x : int

+ y : int

+ hatColor: Color

+ SnowmanV3(xLoc: int, yLoc: int)

+ showXYToSC()

+ show(g: Graphics)

Figure 3.23

The UML diagram of the class SnowmanV3.

108 ■ Programming Fundamentals Using Java

 SnowmanV3 sm1 = new SnowmanV3(5, 30);

 SnowmanV3 sm1 = new SnowmanV3(460, 423);

The Keyword this

A method in a class can contain a parameter whose name is the same as the name of one of the

class’s data members. When this occurs, we say that the parameters shadow the data members. For

example, the signature of the SnowmanV3 class’s two-parameter constructor could have been coded as:

public SnowmanV3(int x, int y)

When the parameter names shadow data member names, the use of the name within the con-

structor refers to the parameter, not to the data member. As previously stated, parameters should be

considered to be local variables. An assignment into the variable x within the constructor’s code body

changes the value stored in the parameter, not the value stored in the class-level data member x. We

can refer to the data member within the code of constructor (or any other member method whose pa-

rameter list employs shadowing), by preceding the data member’s name with the key word this fol-

lowed by a dot, e.g., this.x. This syntax could be thought of as the variable x that is a data member

of this class. Using this syntax, the SnownanV3 class’s two-parameter constructor could be coded as:

public SnowmanV3(int x, int y)

{ this.x = x;

 this.y = y;

}

This coding of the two-parameter constructor, which uses shadowing, is actually preferred when

the parameter list is being used to reset the initial values of the data members. When shadowing is

used, the name and type of the parameters and the class’s data members in the UML diagram (Figure

3.24) are the same, which is a cue to anyone looking at the UML diagram that the constructor will reset

the initial values of the data members.

Figure 3.25 is the implementation of the SnowmanV3 class specified in Figure 3.24. A client

application that declares and displays two instances of the class is shown in Figure 3.26, and the

output to the game board produced by the application is shown in Figure 3.27.

The two-parameter constructor is coded on lines 12–16 of Figure 3.25. It is good programming

style to code the constructor as the first method after the data member declarations. Because the

names of the constructor’s parameters are the same as the

class’s data members, the keyword this is used on lines

14 and 15 to access the class’s data members and assign the

initial values passed into the parameters to them.

The client code (Figure 3.26) invokes the construc-

tor twice, once on line 9 and again on line 10, to create

two snowmen named sm1 and sm2. The arguments sent

to the constructor specify the initial (x, y) locations of the

snowmen, which the constructor stores in the two data

members of the objects. Lines 19 and 20 of the client code

invoke the show method. During the first execution of the

SnowmanV3

+ SnowmanV3(x: int, y: int)

+ showXYToSC()

+ show(g: Graphics)

+ x: int

+ y: int

+ hatColor: Color

Figure 3.24

The modified UML diagram of the class

SnowmanV3.

 Chapter 3· Methods, Classes , and Objects : A Firs t Look ■ 109

method, the variables x and y on lines 27–31 of Figure 3.25 refer to the x and y data members of

snowman sm1. Because these variables contain the coordinates (5, 30), this snowman is drawn

in the upper left corner of the game board. Similarly, during the second invocation of the show

method of the SnowmanV3 class, the variables x and y on lines 26–31 refer to the x and y data

members of snowman sm2, and it is drawn at the lower right corner of the game board (460, 423).

 3.6.33.6.3 Private Access and the set/get Methods Private Access and the set/get Methods

In the interest of simplicity, the data members and the member methods of the classes we have

discussed all had public assess as indicated by the plus (+) sign that precedes them in their UML

diagrams. Another type of access available in Java is private access, which is denoted in a UML

diagram by a minus (-) sign. In this section, we will examine the difference between public and

1 import java.awt.Color;

2 import java.awt.Graphics; //needed for drawing shapes

3

4 public class SnowmanV3

5 {

6 //data members

7 public int x = 5;

8 public int y = 30;

9 public Color hatColor = Color.BLACK;

10

11 // member methods

12 public SnowmanV3(int x, int y)

13 {

14 this.x = x;

15 this.y = y;

16 }

17

18 public void showXYToSC()

19 {

20 System.out.println("x is: " + x +

21 "\ny is: " + y);

22 }

23

24 public void show(Graphics g) // g is passed to the method

25 {

26 g.setColor(hatColor);

27 g.fillRect(x + 15, y, 10, 15); //hat

28 g.fillRect(x + 10, y + 15, 20, 2); //brim

29 g.setColor(Color.WHITE);

30 g.fillOval(x + 10, y + 17, 20, 20); //head

31 g.fillOval(x, y + 37, 40, 40); //body

32 }

33 }

Figure 3.25

The class SnowmanV3.

110 ■ Programming Fundamentals Using Java

private access and learn which access modifier is normally used for the data members and member

methods of a class. This will lead us to a discussion of methods that begin with the prefixes set

and get that are commonly coded in most classes.

1 import edu.sjcny.gpv1.*;

2 import java.awt.Graphics;

3

4 public class ConstructorAndThis extends DrawableAdapter

5 {

6 static ConstructorAndThis ga = new ConstructorAndThis();

7 static GameBoard gb = new GameBoard(ga,"Constructors and " +

8 "Key Word:this");

9 static SnowmanV3 sm1 = new SnowmanV3(5, 30);

10 static SnowmanV3 sm2 = new SnowmanV3(460, 423);

11

12 public static void main(String[] args)

13 {

14 showGameBoard(gb);

15 }

16

17 public void draw(Graphics g) //the drawing call back method

18 {

19 sm1.show(g);

20 sm2.show(g);

21 }

22 }

Figure 3.26

The application ConstructorAndThis.

Figure 3.27

The output from the application ConstructorAndThis.

 Chapter 3· Methods, Classes , and Objects : A Firs t Look ■ 111

Public and Private Access

In the case of a member method, access is the act of invoking the method. In the case of a data

member, access is the act of fetching or assigning the contents of the data member. Designating

private access to the data members or methods of a class places no restrictions on the code of the

methods contained in the class. Any line of code in a method of a class can invoke any private or

public method in the class and can fetch and assign the value stored in any of its data members.

Private access places restrictions on client code. Client code cannot invoke methods of a class

that are assigned private access, nor can it access the data members of a class that are assigned

private access. If an application declared an object named mary, and the object’s class contained a

method named show, then the client code statement

mary.show();

would result in a translation error if the method was assigned private access.

NOTE
Public access allows client code to access a class’s data member or method, but

private access does not.

The syntax we have used in client code to access (invoke) a public method can also be used

in client code to access an object’s public data. The syntax is the member (method or data) name

proceeded by the object name followed by a dot. This syntax was used on line 12 of the application

shown in Figure 3.21

 sm1.showXYToSC()

to invoke the public method showXYToSC coded on lines 12–16 of Figure 3.20. This method out-

puts two data members, x and y, to the system console. Because the access modifier used in the

declaration of these two data members is public, their contents could have been fetched and then

output by the client code by replacing line 12 of the client code (Figure 3.21) with the statement:

System.out.println("x is: " + sm1.x + "\ny is: " + sm1.y);

In addition, the client code could set the x location of snowman sm1 to 10 by coding:

sm1.x = 10;

Normally, methods in a class are assigned public access. Exceptions to this will be given in subse-

quent chapters. Assigning them public access allows the client code to invoke them.

Good programming practice dictates that all data members in a class be assigned private ac-

cess because allowing the client public access to an object’s data members can lead to some insidi-

ous and difficult to find programming errors.

That being said, it is often the case that client code has a need to obtain (get) the value stored

in an object’s private data member, or set the value to a new value. Because any method in a class

can access both private and public data members that are part of its class, public methods that begin

with the prefixes get and set are added to the class. The client then invokes these methods to fetch

and change the values stored in an object’s private data members.

112 ■ Programming Fundamentals Using Java

NOTE

Normally, methods in a class are assigned public access, and data members are

assigned private access. Client code invokes the set and get methods of the class

to access an object’s private data.

Set Methods

A set method is a void method used to change, or set, the value stored in an object’s private

data member to a new value. The new value is passed into it as an argument. Because most classes

have more than one data member, set is not a method name, but a prefix used in naming methods.

Normally, we code a set method for every private data member in the class. The method names

begin with the set prefix, which is followed by the name of the data member they operate on. For

example, setX would be the name of the method the client code would invoke to change the con-

tents of an object’s private data member named x.

The signature of a set method contains one parameter and its code block contains one line

of code. The method’s parameter receives the new value of the data member, and the line of code

simply assigns the new value to the data member. Because the value passed into the method is to

be the new value of the data member, the parameter’s type always matches the type of the data

member. Below is the code of the setX method that sets the value of a private integer data member

named x to the value of the argument passed to it.

public void setX(int x)

{

 this.x = x;

}

Because the method is public, the client code could invoke it to change the data member x of

the object sm1 to 100:

sm1.setX(100);

String Immutability

The String class does not contain set methods to change the value of the characters stored

in a String object. This is because Java strings are immutable. Once a value has been stored in

a String object, the value cannot be changed. Although the following code fragment appears to

change the value "Robert" stored in the string object created on the first line to "Bob", in fact it

does not. Rather, it creates a new string object, stores "Bob" in it, and assigns the address of the

newly created object to the variable name.

String name = "Robert";

name = "Bob";

Although this gives the appearance that the value stored in the object has changed, in reality,

the new string value "Bob" is stored in a different object. The process is illustrated in Figure 3.28.

 Chapter 3· Methods, Classes , and Objects : A Firs t Look ■ 113

Storage created by:

String name = "Robert";

21

"Robert"

Name 21 867

"Bob"

Address

867

Storage after executing:

name = "Bob";

Name
Address

21

Figure 3.28

The immutability of String objects.

get Methods

A get method is a nonvoid method used to fetch, or get, the value stored in an object’s pri-

vate data member. The value is returned via a return statement. Like set, get is a prefix used in

naming methods that fetch and return private data, and normally, a get method is coded for every

private data member in a class.

Good programming practice dictates that the names of these methods begin with the prefix

get, which is followed by the name of the data member on which they operate. For example, getX

would be the name of the method the client code would invoke to fetch the contents of an object’s

private data member named x.

The signature of a get method contains a return type, and its parameter list is empty. The

return type is always the same as the type of the data member it fetches. Its code block contains

one line of code that simply returns the value of the data member. Below is the code of the getX

method that returns the integer value of an object’s private data member named x:

public int getX()

{

 return x;

}

Assuming a client application had declared an object named sm1, the following client code in-

creases the object’s private data member x by one:

int currentX = sm1.getX();

sm1.setX(currentX + 1);

Figure 3.29 shows the code of the class SnowmanV4. It is the same code as the class Snow-

manV3 shown in Figure 3.25, except its three data members have been assigned private access

(lines 6–8) and the console output method has been removed. In addition, set and get methods

for its private data members x and y have been added to the class. The code of these four methods,

getX, setX, getY, and setY begin on lines 27, 32, 37, and 42, respectively.

114 ■ Programming Fundamentals Using Java

1 import java.awt.*;

2

3 public class SnowmanV4

4 {

5 //data members

6 private int x = 7;

7 private int y = 30;

8 private Color hatColor = Color.BLACK;

9

10 // member methods

11 public SnowmanV4(int x, int y)

12 {

13 this.x = x;

14 this.y = y;

15 }

16

17 public void show(Graphics g) // g, is passed to the method

18 {

19 g.setColor(hatColor);

20 g.fillRect(x + 15, y, 10, 15); //hat

21 g.fillRect(x + 10, y + 15, 20, 2); //brim

22 g.setColor(Color.WHITE);

23 g.fillOval(x + 10, y + 17, 20, 20); //head

24 g.fillOval(x, y + 37, 40, 40); //body

25 }

26

27 public int getX()

28 {

29 return x;

30 }

31

32 public void setX(int newX)

33 {

34 x = newX;

35 }

36

37 public int getY()

38 {

39 return y;

40 }

41

42 public void setY(int newY)

43 {

44 y = newY;

45 }

46 }

Figure 3.29

The class SnowmanV4.

 Chapter 3· Methods, Classes , and Objects : A Firs t Look ■ 115

The application class SetGetButtonClick shown in Figure 3.30 illustrates the use of set

and get methods to access private data members.

1 import edu.sjcny.gpv1.*;

2 import javax.swing.*;

3 import java.awt.Graphics;

4

5 public class SetGetButtonClick extends DrawableAdapter

6 {

7 static SetGetButtonClick ga = new SetGetButtonClick ();

8 static GameBoard gb = new GameBoard(ga,"Get Set and Button Click");

9 static SnowmanV4 sm1 = new SnowmanV4(5, 30); //top-left corner

10 static SnowmanV4 sm2 = new SnowmanV4(460, 423); //bottom-right corner

11

12 public static void main(String[] args)

13 {

14 String s = JOptionPane.showInputDialog("sm2's new x location?");

15 int newX = Integer.parseInt(s);

16 sm2.setX(newX);

17 showGameBoard(gb);

18 }

19

20 public void draw(Graphics g) //the drawing call back method

21 {

22 sm1.show(g);

23 sm2.show(g);

24 }

25

26 public void rightButton() //moves sm1 one pixel right per click

27 {

28 int currentX = sm1.getX();

29 sm1.setX(currentX + 1);

30 }

31 }

Figure 3.30

The application SetGetButtonClick.

The program is identical to the ConstructorAndThis application shown in Figure 3.26,

except that lines 14–16 and 26–30 have been added. Lines 16 and 29 illustrate the use of the setX

method to change the x value of Snowman sm2 and thus reposition it horizontally. Lines 26–30

illustrate the use of the getX method and the rightButton call back method to move snowman

sm1 to the right one pixel every time the right button is clicked.

When the program begins, two snowmen, sm1 and sm2, declared on lines 9 and 10, are dis-

played on the game board by lines 22 and 23 of the draw call back method (Figure 3.30) at the

upper-left and lower-right corners of the game board. Then, line 14 displays an input dialog box

asking the user to enter the new value of snowman sm2’s x coordinate. Line 16 invokes the setX

116 ■ Programming Fundamentals Using Java

method to operate on snowman sm2, passing it the new x coordinate parsed on line 15. The method

stores the new value in sm2’s x data member (line 34 of Figure 3.29). The result is that when the

game board is redrawn after the dialog box closes, the snowman is drawn at its new x position.

Figure 3.31 shows snowman sm2 in its new location, at the middle of the game board, after the user

enters 250 in the input dialog box.

Lines 26–30 is an implementation of the game environment’s rightButton call back method.

As its name implies, this method is invoked every time the button on the game window with the

right arrow head () is clicked. It uses the getX method on line 28 to fetch the current x coordinate

of sm1. Then it invokes the setX method to set the x data member of snowman sm1 to one more

than its current value. Because the rightButton call back method executes every time the right

button is clicked, and the draw method is invoked when it completes its execution, sm1 moves one

pixel to the right very time the button is clicked. The upper portion of Figure 3.31 shows sm1’s new

location after 60 clicks of the game board’s right () button.

 3.6.43.6.4 The The toStringtoString and and inputinput Methods Methods

The methods we have developed in Section 3.6 perform work for a client application. They

construct objects, display objects, and access the values of an object’s private data members. The

methods toString and input are two other methods that perform work for the client applica-

tions. These methods expand the client’s ability to access private data members, and both of the

methods normally permit access to all of an object’s data members in one invocation.

The toString Method

The toString method is a nonvoid method that returns a string containing all the annotated

values of an object’s data members to the client application. The method’s parameter list is empty.

Its code progressively concatenates identifying annotation with the value of each of an object’s data

members, and the resulting string is the method’s returned value. For example, the SnowmanV4

class shown in Figure 3.29 contains three data members: x, y, and hatColor. A typical coding of

this class’s toString method would be:

1 public String toString()

2 {

3 String s;

4 s = "x is: " + x +

5 "\ny is: " + y +

6 "\nhatColor is: " + hatColor;

7 return s;

8 }

Because a class can have an unlimited number of data members, it is good coding practice to

code the concatenation of each data member’s annotation and variable name on a separate line,

as coded on lines 4, 5, and 6. Because the client code often sends the returned string to an output

device, the inclusion of a new-line escape sequence in all but the first data member’s annotation

improves the readability of the output.

 Chapter 3· Methods, Classes , and Objects : A Firs t Look ■ 117

The variable hatColor,coded at the end of line 6, is declared as a reference variable in the

SnowmanV4 class. When a reference variable is coded where a string is expected (as is expected

here because the variable is preceded by the concatenation operator), the translator considers it

to be an implicit invocation of another toString method. In Section 3.5.4, the location stored

in the reference variable mary was output with an explicit invocation of a Java-provided default

toString method. Because the class Color contains its own toString method, that method is

implicitly invoked on line 6, and the string it returns is then concatenated into the string s. Rather

than returning contents of the variable hatColor (an address), Color's toString method places

a description of the color stored in the Color object hatColor into the returned string.

The input Method

The input method is a void method that allows the program user to enter new values for all

of the data members of an object. The method’s parameter list is empty. Its code prompts the user

to enter new values for each of an object’s data members, parses numeric inputs, and assigns the

new values to the object’s data members. For example, the SnowmanV4 class shown in Figure 3.29

contains three data members: x, y, and hatColor. A typical coding of this class’s input method

would be:

1 public void input()

2 {

3 String s;

4 int red, green, blue;

5

6 s = JOptionPane.showInputDialog("enter the value of x");

7 x = Integer.parseInt(s);

8 s = JOptionPane.showInputDialog("enter the value of y");

9 y = Integer.parseInt(s);

Figure 3.31

The output of the application SetGetButtonClick after the snowmen are relocated.

118 ■ Programming Fundamentals Using Java

10 s = JOptionPane.showInputDialog("enter hat's red intensity");

11 red = Integer.parseInt(s);

12 s = JOptionPane.showInputDialog("enter hat's green intensity");

13 green = Integer.parseInt(s);

14 s = JOptionPane.showInputDialog("enter hat's blue intensity");

15 blue = Integer.parseInt(s);

16 hatColor = new Color(red, green, blue);

17 }

Because the variables x,y, and hatColor are not declared within the method, assignments

into them (on lines 7, 9, and 16) change the values stored in the SnowmanV4 object’s data members.

Line 16 creates a new color object using the Color class’s three-parameter constructor and

stores its address in the data member hatColor. The arguments sent to the constructor are the

shade intensities of the colors red, green, and blue that combine to produce the desired new color.

The range of a color’s intensity is 0 (lowest intensity) to 255 (highest intensity). High intensities

produce bright colors. The program user would have to have knowledge of how to mix shade inten-

sities of these three colors to produce a desired color. These intensities are input and parsed on lines

10–15. In the simplest case, if the desired color were to be either red, green, or blue, the intensity

of the other two colors would be input as zero. White is an equal mix of the three colors, and black

is the absence (zero intensity) of the three colors.

Figure 3.32 presents the class SnowmanV5 that includes the code of the toString (lines

29–36) and input methods (lines 38–54) discussed in this section, and Figure 3.33 presents the

application ToStringAndInput that demonstrates the use of these methods. The console and

graphical outputs produced by the program are presented in Figure 3.34.

Lines 8 and 9 of the application (Figure 3.33) declares two snowmen, sm1 and sm2, located at

(7, 30) and (460, 420), respectively. The SnowmanV5 class’s toString method is invoked inside of

the println method’s argument list on lines 13 and 14 to obtain annotated versions of the current

values of each snowman’s data members. The returned string is concatenated with the names of the

snowman and output to the system console (top of Figure 3.34).

The output contains a description of each the snowman’s current hat color: java.awt.

Color[r=0,g=0,b=0]. This is the string returned from the SnowmanV5 class’s toString method’s

implicit invocation of the Color class’ toString method (line 34 of Figure 3.32). The r=0, g=0,

b=0 portion of the output indicates that the red (r), green (g), and blue (b) intensities of the color are

all zero: the default hat color black.

Line 15 of the application displays the game board, with the two snowmen drawn on it at their

initial locations wearing their black hats (Figure 3.34a). The SnowmanV5 class’s input method

is invoked on lines 20 and 21 of the application (Figure 3.33), which allows the user to input new

values of the two snowmen’s data members. Finally, line 18 redisplays the game board, and the two

snowmen are drawn at their new locations with their new colored hats as shown on in Figure 3.34b.

This output reflects user inputs of:

(200, 200) for sm1’s location and (0, 255, 0) for its (red, green, blue) color intensities;

(250, 200) for sm2’s location and (0, 0, 255) for its (red, green, blue) color intensities.

 Chapter 3· Methods, Classes , and Objects : A Firs t Look ■ 119

1 import java.awt.*;

2 import javax.swing.*; // needed for dialog box input

3

4 public class SnowmanV5

5 {

6 //data members

7 private int x = 7;

8 private int y = 30;

9 private Color hatColor = Color.BLACK;

10

11 //member methods

12 public SnowmanV5(int x, int y)

13 {

14 this.x = x;

15 this.y = y;

16 }

17

18 public void show(Graphics g) //g is passed to the method

19 {

20 g.setColor(hatColor);

21 g.fillRect(x + 15, y, 10, 15); //hat

22 g.fillRect(x + 10, y + 15, 20, 2); //brim

23 g.setColor(Color.WHITE);

24 g.fillOval(x + 10, y + 17, 20, 20); //head

25 g.fillOval(x, y + 37, 40, 40); //body

26

27 }

28

29 public String toString()

30 {

31 String s;

32 s = "x is: " + x +

33 "\ny is: " + y +

34 "\nhatColor is: " + hatColor;

35 return s;

36 }

37

38 public void input()

39 {

40 String s;

41 int red, green, blue;

42

43 s = JOptionPane.showInputDialog("enter the value of x");

44 x = Integer.parseInt(s);

45 s = JOptionPane.showInputDialog("enter the value of y");

46 y = Integer.parseInt(s);

47 s = JOptionPane.showInputDialog("enter hat's red intensity");

48 red = Integer.parseInt(s);

49 s =JOptionPane.showInputDialog("enter hat's green intensity");

120 ■ Programming Fundamentals Using Java

50 green = Integer.parseInt(s);

51 s = JOptionPane.showInputDialog("enter hat's blue intensity″);
52 blue = Integer.parseInt(s);

53 hatColor = new Color(red, green, blue);

54 }

55 }

Figure 3.32

The class SnowmanV5.

1 import edu.sjcny.gpv1.*;

2 import java.awt.*;

3

4 public class ToStringAndInput extends DrawableAdapter

5 {

6 static ToStringAndInput ge = new ToStringAndInput();

7 static GameBoard gb = new GameBoard(ge," toString And input

Methods");

8 static SnowmanV5 sm1 = new SnowmanV5(7, 30);

9 static SnowmanV5 sm2 = new SnowmanV5(460, 420);

10

11 public static void main(String[] args)

12 {

13 System.out.println("sm1's\n" + sm1.toString());

14 System.out.println("sm2's\n" + sm2.toString());

15 showGameBoard(gb);

16 sm1.input();

17 sm2.input();

18 showGameBoard(gb);

19 }

20

21 public void draw(Graphics g)

22 {

23 sm1.show(g);

24 sm2.show(g);

25 }

26 }

Figure 3.33

The application ToStringAndInput.

Console Output:

sm1’s

x is: 7

y is: 30

hatColor is: java.awt.Color[r=0,g=0,b=0]

sm2’s

x is: 460

y is: 420

hatColor is: java.awt.Color[r=0,g=0,b=0]

 Chapter 3· Methods, Classes , and Objects : A Firs t Look ■ 121

Game Board Output:

 (a) (b)

Figure 3.34

The console and game board output from the application ToStringAndInput.

 3.7 3.7 OVERLOADING CONSTRUCTORSOVERLOADING CONSTRUCTORS

Overloading constructors is an object oriented programming term used to describe a class that

contains more than one constructor method. The code of each constructor is different, which is the

motivation for coding more than one constructor. There is no limit on the number of constructors

a class can contain. The name of a constructor method must be the name of the class, so all of the

constructor methods in a class have the same name. For example, if the class’s name is SnowmanV4,

then the name of all of the constructors would be SnowmanV4.

Any of a class’s constructors can be used by a client application to allocate an object in the

constructor’s class. Because the names of the methods are the same, the only way the Java transla-

tor knows which constructor is being used is to examine the type and number of arguments in the

client’s invocation statement.

Consider the code of the class SnowmanV6 presented in Figure 3.35. It contains three construc-

tors, which begin on lines 12, 15, and 20. The signature (line 12) of the first of these constructors

contains no parameters and is therefore referred to as the no-parameter constructor. To use the no-

parameter constructor, the client’s declaration statement would not contain any arguments:

SnowmanV6 s1 = new SnowmanV6();

Because the constructor’s code block is empty, the snowman’s x, y, and hatColor data members

would retain their default values set on lines 7–9, and when the snowman was drawn it would ap-

pear at (7, 30) with a black hat.

122 ■ Programming Fundamentals Using Java

To use the two-parameter constructor on line 15, the client’s declaration statement would have

to contain two integer arguments:

SnowmanV6 s1 = new SnowmanV6(250, 250);

This constructor allows the client to specify the initial location of the newly created snowman.

Lines 17–18 would execute and set the value copied into the method’s parameters (250) into the

object’s x and y data members. When the snowman was drawn, it would appear at (250, 250) wear-

ing a black hat.

To use the three-parameter constructor on line 20, the client’s declaration statement would

have to contain two integer arguments and a reference to aColor object:

SnowmanV6 s1 = new SnowmanV6(350, 250, Color.BLUE);

This constructor allows the client not only to specify the initial location of the snowman, but also

its hat color. Lines 22–24 would execute and set the values 350 and 250 into the object’s x and y

data members, and it would set the object’s data member hatColor to blue. In this case, when the

snowman was drawn, it would appear at (350, 250), and because line 28 of Figure 3.35 uses the

object’s hatColor data member to set the current color before drawing the hat, it would be wear-

ing a blue hat.

An attempt to create a snowman with an argument list that does not match one of the parameter

lists on lines 12, 15, or 20 would result in a translation error. For example, the client statement

SnowmanV6 s1 = new SnowmanV6(350.34, 200, Color.BLUE);

would result in a translation error indicating that the translator can find a constructor whose pa-

rameters are a double, followed by an integer, followed by a Color object.

NOTE

Each constructor in a class must have a unique parameter list, and the type and

number of the arguments in the client’s object declaration statement must match

one of these lists.

It should be noted that once a constructor is coded in a class, the Java-provided default con-

structor discussed in Section 3.5.3 can no longer be used to create an instance of the class. As a

result, to default to the values in data member’s declaration statements, a no-parameter constructor

(e.g., lines 12–14 of Figure 3.35) must be added to the class.

Figure 3.36 presents the application OverloadingConstructors that uses the three con-

structors shown in Figure 3.35 to construct three snowmen on lines 8, 9, and 10: one at the default

location (7, 30), one at the center of the game board (250, 250), and one to its right at (350, 250)

with a blue hat. Before each snowman’s hat is drawn, line 28 of the snowman’s class’s show method

(Figure 3.35) sets the current drawing color to the snowman’s hat color. As a result, when the three

snowmen are drawn on the game board (lines 19–21 of Figure 3.36) at their initial locations, one is

wearing a blue hat (Figure 3.37).

 Chapter 3· Methods, Classes , and Objects : A Firs t Look ■ 123

1 import java.awt.Color;

2 import java.awt.Graphics; // needed for drawing shapes

3

4 public class SnowmanV6

5 {

6 //data members

7 private int x = 7;

8 private int y = 30;

9 private Color hatColor = Color.BLACK;

10

11 // member methods

12 public SnowmanV6()

13 {

14 }

15 public SnowmanV6(int x, int y)

16 {

17 this.x = x;

18 this.y = y;

19 }

20 public SnowmanV6(int x, int y, Color hatColor)

21 {

22 this.x = x;

23 this.y = y;

24 this.hatColor = hatColor;

25 }

26 public void show(Graphics g) // g is passed to the method

27 {

28 g.setColor(hatColor);

29 g.fillRect(x + 15, y, 10, 15); // hat

30 g.fillRect(x + 10, y + 15, 20, 2); // brim

31 g.setColor(Color.WHITE);

32 g.fillOval(x + 10, y + 17, 20, 20); // head

33 g.fillOval(x, y + 37, 40, 40); // body

34 }

35 public int getX()

36 {

37 return x;

38 }

39 public void setX(int newX)

40 {

41 x = newX;

42 }

43 public int getY()

44 {

45 return y;

46 }

47

48 public void setY(int newY)

49 {

124 ■ Programming Fundamentals Using Java

50 y = newY;

51 }

52 }

Figure 3.35

The class SnowmanV6.

1 import edu.sjcny.gpv1.*;

2 import java.awt.*;

3

4 public class OverloadingConstructors extends DrawableAdapter

5 {

6 static OverloadingConstructors ga= new OverloadingConstructors();

7 static GameBoard gb = new GameBoard(ga, " Overloading

 Constructors");

8 static SnowmanV6 sm1 = new SnowmanV6(7, 30);

9 static SnowmanV6 sm2 = new SnowmanV6 (250, 250);

10 static SnowmanV6 sm3 = new SnowmanV6(350, 250, Color.BLUE);

11

12 public static void main(String[] args)

13 {

14 showGameBoard(gb);

15 }

16

17 public void draw(Graphics g) //the drawing call back method

18 {

19 sm1.show(g);

20 sm2.show(g);

21 sm3.show(g);

22 }

23 }

Figure 3.36

The application OverloadingConstructors.

Figure 3.37

The output from the application OverloadingConstructors.

 Chapter 3· Methods, Classes , and Objects : A Firs t Look ■ 125

 3.8 3.8 PASSING OBJECTS TO AND FROM WORKER METHODSPASSING OBJECTS TO AND FROM WORKER METHODS

The techniques and syntax used to pass primitive information (i.e., values stored in primitive

variables) between client and worker methods were discussed in Section 3.2. The same techniques

and syntax presented in that section can be used to pass objects between client and worker meth-

ods. In the case of objects, the information passed is actually the addresses of the objects stored

in the reference variables that refer to the objects. An unlimited number object addresses can be

passed to a worker method via its parameter list, and the address of one object can be returned from

a worker method via its return statement.

Passing Objects to Worker Methods

The first row of Table 3.3 gives the syntax used to invoke the Game class’s static method add-

1ToX passing it the address of the SnowmanV6 object sm1. The right-most column gives the syntax

of the method’s signature. For comparative purposes, the second row of the table gives the syntax

used to pass the integer age to static method add1toAge and the syntax of the method’s signature.

As shown in the table, the syntax used to pass objects to worker methods is the syntax used to

pass primitive values to worker methods. The primitive type coded in the method’s parameter list

is replaced with the type of the reference variable (i.e., the object’s class name), as shown in the

rightmost column of the table.

The following code segment is a static worker method named moveRight that increases the

x data member of the SnowmanV6 object passed to it by one pixel:

 public static void moveRight(SnowmanV6 aSnowman)

 {

 int currentX = aSnowman.getX();

 aSnowman.setX(currentX + 1);

 }

Table 3.3

Syntax Used To Pass Objects and Primitives to Worker Methods

Information Passed
Client Method’s

Invocation Statement

Worker Method’s Signature Coded in the

Class Game

An Object’s address Game.add1ToX(sm1) static void add1ToX(SnowmanV6 sm)

An Integer value Game.add1ToAge(age1) static void add1ToAge(int age)

Figure 3.38 is modified version of the program presented in Figure 3.30 that moves a snow-

man one pixel to the right every time the game board’s right arrow button is clicked. The method

moveRight has been added to the program (lines 32–37), and it is used to move two snowmen to the

right every time the right arrow button is clicked. This method is invoked on lines 28 and 29 to move

the two SnowmanV6 objects, sm1 and sm2, to the right one pixel. The objects are created on lines 9

and 10 using the class’s three-parameter constructor. The first invocation of moveRight (line 28)

passes the location of sm1 to the method, and the second invocation (line 29) passes sm2’s location

to the method. Because the static method moveRight is coded in the same class as the invocation

statements on lines 28 and 29, the name of the class need not be included in the invocations.

126 ■ Programming Fundamentals Using Java

1 import edu.sjcny.gpv1.*;

2 import javax.swing.*;

3 import java.awt.*;

4

5 public class ObjectsAsParameters extends DrawableAdapter

6 {

7 static ObjectsAsParameters ga = new ObjectsAsParameters();

8 static GameBoard gb = new GameBoard(ga, "Objects As Parameters");

9 static SnowmanV6 sm1 = new SnowmanV6(5, 40, Color.RED);

10 static SnowmanV6 sm2 = new SnowmanV6(460, 423, Color.BLUE);

11

12 public static void main(String[] args)

13 {

14 String s = JOptionPane.showInputDialog("sm2's new x location?");

15 int newX = Integer.parseInt(s);

16 sm2.setX(newX);

17 showGameBoard(gb);

18 }

19

20 public static void draw(Graphics g) // the drawing call back method

21 {

22 sm1.show(g);

23 sm2.show(g);

24 }

25

26 public void rightButton() // moves sm1 & sm2 one pixel right per

click

27 {

28 moveRight(sm1);

29 moveRight(sm2);

30 }

31

32 public void moveRight(SnowmanV6 aSnowman)

33 {

34 int currentX = aSnowman.getX();

35 currentX++;

36 aSnowman.setX(currentX);

37 }

38 }

Figure 3.38

The application ObjectsAsParameters.

Figure 3.39 illustrates the passing of the location from the reference variable sm1 into the

method’s moveRight parameter aSnowman, and the change in the x data member of the object

after the method executes. The client code’s RAM memory is shown on the left side of the fig-

ure, and the worker method’s RAM memory is shown on the right side of the figure. Each time

the method is invoked, the value stored in the invocation’s argument is copied into the parameter

 Chapter 3· Methods, Classes , and Objects : A Firs t Look ■ 127

aSnowman. The dashed arrow at the top of the figure illustrates this process for the first invocation

of the method (line 28) when the location of snowman sm1 is passed to the parameter aSnowman.

After the snowman’s location, 200, is copied into the worker method’s parameter aSnowman,

the use of this variable on lines 34 and 36 of Figure 3.38 refers to the client’s snowman object sm1.

Line 34 fetches sm1’s x data member, and line 36 changes the value stored in this data member.

While the method is in execution, the snowman object is shared between the client code and the

worker method it invoked. Although we normally say we are “passing an object to a method,” we

really should say we are “passing the address of the object to a method.”

NOTE
Technically speaking, objects are not passed to and from methods. Rather, the ad-

dresses of the objects are passed between the methods.

Because the sm1’s address is shared, when the worker method ends the initial value of its x data

member (10) stored inside the object has been overwritten with the value 11. This is not a contradic-

tion of the idea that value parameters prevent worker methods from changing the client’s informa-

tion passed to it as parameters because the information passed to the method moveRight is the

contents of the variable sm1, not the object’s data member x. This is a subtle but important point to

understand. While it is true that the worker method can change the contents of the data members of

the object sm1 because aSnowman stores the object’s address, it cannot change the address stored

in the variable sm1 (which was passed to it).

Returning an Object from a Worker Method

An object’s address can be returned from a method using the same syntax used to return a

primitive value from a method. The keyword void in the method’s signature is replaced with the

200 sm1

RAM address 200

200 aSnowman

Client’s (invoker's) RAM Worker Method moveRight’s RAM

Copied upon invocation of the method

 5 6

 40

 Color.RED hatColor

 40y

 5 x

0 5 6
current X

Figure 3.39

The passing of the object sm1 to the worker method moveRight.

128 ■ Programming Fundamentals Using Java

type of the information being returned. To return the location of an object from a method, the name

of the returned object’s class replaces the keyword void. As is the case when primitive values are

returned from a method, if the returned address is to be used by the client code that invoked the

method, the client code must assign the returned address to a variable.

The static method shown in Figure 3.40 creates a snowman object located half way between

the two snowmen whose addresses are passed into its parameters, and returns the address of the

newly created snowman. Assuming the method is added to the class SnowmanV6, the following

code fragment invokes the method and stores the returned address of the newly created snowman

in the reference variable aSnowman:

SnowmanV6 aSnowman;

aSnowman = SnowmanV6.halfWayBetween(snowman1, snowman2);

The signature of the method on line 1 of Figure 3.40 states that the address of a SnowmanV6 object

will be returned from the method. A SnowmanV6 object is created on line 4, and its address is

returned on line 9.

1 public static SnowmanV6 halfWayBetween(SnowmanV6 sm1,SnowmanV6 sm2)

2 {

3 int x, y;

4 SnowmanV6 aSnowman = new SnowmanV6();

5 x = (sm1.getX() + sm2.getX()) / 2);

6 y = (sm1.getX() + sm2.getX()) / 2);

7 aSnowman.setX(x);

8 aSnowman.setY(y);

9 return aSnowman;

10 }

Figure 3.40

A method that returns an object.

 3.9 3.9 CHAPTER SUMMARYCHAPTER SUMMARY

This chapter began our study of the concepts used to design and implement classes, which will

be expanded in Chapters 7 and 8. We learned that a class is similar to a blueprint enabling us to

define and construct an item, and that an object is a particular item or instance of the class. In the

same manner that we use the classes and methods available in the Java API to facilitate the design

and development of a program, we can also use and reuse the classes we create.

Methods are subprograms, which are key components of classes. They perform the work of the

class by creating, displaying, and manipulating the class’s objects. Several versions of a class’s con-

structor methods are normally available in a class to create an object and initialize various subsets

of its data members. The names of methods that perform tasks common to most classes have been

standardized, and they are included in most classes. The methods named toString and show are

used to display an object on the console or on the game board, and the input method and methods

 Chapter 3· Methods, Classes , and Objects : A Firs t Look ■ 129

that whose names begin with the prefixes set and get are used to change the values of an object’s

data members.

The first line of a method is called the method’s signature. Java uses value parameters to pass

information to a method and a return statement to transfer one value from a method. The list of in-

formation passed to a method is called an argument list, which is a sequence of variables and literal

values separated by commas. This information is copied into the list of variables declared in the

method’s signature, which is called a parameter list. Before the method begins execution, the value

stored in the ith argument of the invocation statement is copied into the ith parameter of the method.

An argument’s type must match the type of its corresponding parameter. Value parameters prevent

a method from changing the value stored in thevariables coded in the argument list.

Several methods in a class can have the same name if their parameter lists are different. When

this feature is used in the coding of a class’s methods, we say that the methods with the same name

are overloaded. Constructor methods are often overloaded because their names must be the same

as the class’s name. Normally, methods have public access to permit methods defined outside of the

class to invoke them, and data members have private access to prevent methods defined outside of

the class from inadvertently changing their values.

A class’s data members are declared as class level variables. Class level variables are variables

declared outside of the code block of a method and inside the code block of the class. It is good pro-

gramming practice to declare these class-level variables at the beginning of the class’s code block

before the implementation of the class’s methods.

All class variables declared in a class, whether they are declared public or private, can be

directly accessed within the class’s methods by simply coding the name of the variable. The only

exceptions to this are if the method declares a parameter, or variable, within its code block with the

same name. When this is the case, the class variable is accessed within the method by preceding its

name with the key word this followed by a period. The context in which direct access syntax can

be used to access a variable is called the scope of the variable.

A UML diagram is a graphical depiction of a class developed during the design of the class.

This tool not only facilitates the design of the class, but it also documents the data members and

methods that make up the class. It is used as the starting point for the implementation of the class.

Other class design tools discussed in this chapter are the techniques used to depict and digitize a

graphical object, which serve as the basis for the implementation of their show methods.

The methods in the API Graphics class can be used to implement a graphical object’s show

method. This class provides methods for drawing lines and basic shapes on a previously declared

Graphics object. The units of the (x, y) location of the lines, shapes, and the size of the shapes

passed to these methods is pixels or picture elements. These methods provide the foundation for the

rest of the graphical topics in this text.

130 ■ Programming Fundamentals Using Java

Knowledge ExercisesKnowledge Exercises

 1. Indicate whether the following statements are true or false:

 a) Methods must be coded inside the code block (i.e., the open and close brackets) of a class.

 b) The first line of a method is called its title.

 c) The first line of a method always ends with a semicolon.

 d) All methods must contain a code block.

 e) The method pow in the Math class is an example of a void method.

 f) We can invoke methods we did not write.

 2. Indicate whether the following statements are true or false.

 a) It is good programming practice to begin a method name with an uppercase letter.

 b) It is good programming practice to make the names of methods representative of the work

they perform.

 c) A method’s name should not contain capital letters.

 3. Fill in the blank:

 a) The signature of a method that does not operate on an object must contain the

keyword.

 b) The signature of a method that does not return a value must contain the

keyword __________.

 c) When we invoke a static method, we begin the invocation statement with the name of

__________ followed by a dot.

 d) When we invoke a nonstatic method, we begin the invocation statement with the name of

__________followed by a dot.

 4. Give the invocation statement to invoke the class Boat’s moveBoat method whose signature

is: public static void moveBoat().

 5. Indicate whether the following statements are true or false:

 a) Client code is code that invokes a method.

 b) A method can invoke the same method more than once.

 c) Parameters are used to pass information to a method, and the information is passed into

the method’s arguments.

 d) One or more pieces of information can be passed to a method.

 e) One or more pieces of information can be returned from a method.

 f) The type of a parameter must match the type of the information it receives.

 g) Parameters and arguments share the same variable.

 h) Java passes information to methods using the concept of reference parameters.

 i) When a method changes the value of an integer passed to it, the original value is no longer

available to the client code.

 6. Give the signature of a public method named add that adds two integers sent to it and returns

the result.

 Chapter 3· Methods, Classes , and Objects : A Firs t Look ■ 131

 7. After an invoked method completes its execution, which statement executes next?

 8. Indicate whether the following statements are true or false:

 a) A class-level variable must be coded inside a method in the class.

 b) Class-level variables are used to share information between all of the methods defined in

the class.

 c) A method cannot declare a variable with the same name as a class-level variable.

 d) When a method changes the value stored in a class-level variable, the original value is no

longer available to the other method in the class.

 e) More than one class-level variable can be coded in a class.

 9. Give the declaration of a class-level variable named checkAmount that is coded in the

program’s class.

 10. Fill in the blank:

 a) The method __________ in the Graphics class is used to change the current drawing

color.

 b) The constant__________in the Color class stores the color red.

 c) The import statement __________ is used to access the methods defined in the

Graphics class.

 d) The import statement __________ is used to access the color constants defined in the

Color class.

 11. Give the name of the method in the Graphics class used to:

 a) Draw the outline of a rectangle

 b) Draw a filled rectangle

 c) Draw the outline of an ellipse

 d) Draw the outline of a circle

 e) Draw a filled circle

 f) Draw a line

 12. Give the Java statement (or statements) to draw the following shapes and lines on the Graphics

object g:

 a) A line from (200, 30) to (100, 75) drawn in the current color

 b) The outline of a 100-pixel wide by 50-pixel high rectangle located at (20, 200) drawn

usingthe current color

 c) A blue filled circle whose diameter is 30 pixels located at (250, 300)

 d) A blue filled ellipse 100-pixel wide by 50-pixel high located at (300, 100)

 13. Fill in the blank:

 a) Using the words object and class in: House is to __________ as blueprint

to__________.

 b) Classes are comprised of member __________ and __________.

 c) The name of the graphic used to specify a class is a __________ diagram.

132 ■ Programming Fundamentals Using Java

 d) Data members of a class are usually designated to have __________ access.

 e) Member methods of a class are usually designated to have __________ access.

 14. Give the Java code to declare an object named joe in the class Person using the class’s no-

parameter constructor, and:

 a) the one-line declaration syntax.

 b) the two-line declaration syntax.

 15. Referring to Exercise 14:

 a) What is actually stored in the variable joe?

 b) Is joe a primitive-type variable? If not, what is the its type?

 c) Draw a picture (similar to Figure 3.13) of the memory allocated by Exercise 14a, assuming

the class Person has two integer data members named age and idNumber.

 16. Give the Java code to declare a class whose object will be coffee cups. Each coffee cup will

have a size (ounces) and a price. The class will not contain any methods.

 17. Referring to Exercise 16:

 a) Give the code of the two-parameter constructor of the class defined in Exercise 16.

 b) Give the client code used to declare a $3.85 coffee cup whose size is 8 ounces.

 c) Give the code to output the coffee cup declared in part B to the system console using an

implicit invocation of the toString method.

 d) Repeat part C of this question using an explicit invocation of the toString method.

 e) What is output to the console by the invocation in part C and B?

 f) Give the code to produce the same output generated by part D to the graphic object g.

 18. Give the code of a method named toString that, when added to the class defined in Exercise

16, returns the values of its two data members fully annotated.

 19. Give the code of a method named show that, when added to the class defined in Exercise 16,

outputs the values of its two data members to the center of a 500 wide by 500 high Graphics

object named g.

 20. Using a sketch similar to Figure 3.16, show the design of a recreational

vehicle (RV) that has two side windows, tires a large entrance door.

 21. Give a table similar to Table 3.2 that contains the digitized version of the RV design specified

in Exercise 20.

 22. When must the keyword this be used in a method to access one of the data members of its class?

 23. A class contains one integer data member named total whose access is private.

 a) Use the keyword this in a statement coded inside one of the class’s method that doubles

the value stored in the data member total.

 b) Give a statement coded inside one of the class’s method that doubles the value stored in the

data member total without using the keyword this.

 c) Give the code of a set method that client code could use to change the value of the data

member total.

 Chapter 3· Methods, Classes , and Objects : A Firs t Look ■ 133

 d) Give the code of a get method that client code could use to fetch the value of the data

member total.

 e) Assuming the appropriate set and get methods exist, give the client code to double the

value of the total of the object named myAccount that uses the set and get methods.

 f) Assuming the data member total was declared to have public access, give the client code

to double the value of the total of the object named myAccount without using set and get

methods.

 g) Give the code of the class’s toString method.

 h) Give the code of the class’s input method.

 i) Which access modifier key word, public or private, results in more restricted access?

 24. Indicate whether the following statements are true or false:

 a) A class need not contain an explicitly coded constructor.

 b) A class can contain several constructors.

 c) A class can contain several constructors with different names.

 d) A class can contain several constructors with the same signature.

 e) When a constructor invocation is proceed by the keyword new, an object is created, and its

address is returned.

 f) The Java provided default constructor has no parameters.

 25. A client application has declared three objects named ship1, ship2, and ship3 that are

instances of the existing class Starship. Each starship contains a data member that stores the

color used to draw the starship.

 a) Give the signature of a static method in the Starship class named largest that is

passed two Starship objects and returns the address of one of them.

 b) Give the client code statement used to invoke the static method described in part A of this

exercise and place the returned address in ship1.

 c) If the method changed the value of the color data member of one of the starships passed to

it, would it be drawn in the new or old color after the method completes its execution?

 d) Give the signature of a nonstatic method in the Starship class named sameModel that

compares two Starship objects and returns a Boolean value.

 e) Give the client code statement used to invoke the nonstatic method described in part D of

this exercise and store the returned Boolean value in the variable isSame.

 26. Using a sketch similar to Figure 3.16, show the design of the user-controlled game piece that is

part of the game you specified in Preprogramming Exercise 1 of Chapter 1.

 27. Give a table similar to Table 3.2 that contains the digitized version of the game piece design

specified in Exercise 26.

Programming ExercisesProgramming Exercises

 1. Write a nongraphical application that contains a static method with an empty parameter list

that outputs your name and your age on one line to the system console. The main method of the

application should invoke it three times. The output it produces should be annotated as shown

134 ■ Programming Fundamentals Using Java

below (assuming your name is Tommy and you are 18 years old):

The author of this program is Tommy who is 18 years old.

 2. Write a graphical application that contains a static method that is invoked by the draw call

back method. It should have one parameter to receive the Graphics object g passed to it.

When invoked, the method should output your name and your age to the center of the game

board as shown below (assuming your name is Tommy and you are 18 years old):

The author of this program is Tommy who is 18 years old.

 3. Write a nongraphical application that contains a static method to compute and return the square

root of the product of three real numbers passed to it. The main method of the application

should invoke it and then output the three numbers and the returned value clearly annotated.

 4. Write a graphical application that contains a static method to compute and return the square

root of the product of three real numbers passed to it. The draw method should invoke it and

then output the three numbers and the returned value clearly annotated.

 5. Write a nongraphical application that contains a static method to compute and return the

square root of the product of three real numbers that are declared and initialized as class-

level variables. The main method of the application should invoke it and then output the three

numbers and the returned value clearly annotated.

 6. Write a graphical application whose draw method displays an old television on a

table with an antenna on it.

 7. The statistics kept for each player on a ladies softball team include each player’s

name, number of homeruns, and batting average a real number.

 a) Give the UML diagram for a class named TeamMember whose objects can store the three

private pieces of data for a player. The class should include a three-parameter constructor,

a toString method, a method to input the statistics for a player, and a showSC method to

output a player’s statistics to the system console.

 b) Progressively implement and test the TeamMember class by adding one method and verifying

it before adding the next method. A good order to add the methods is the toString method,

followed by the constructor, the show method, and finally the input method. (The client

code can create a TeamMember object using the Java supplied default constructor to test the

toString method.)

 c) After all of the methods are verified, comment out the test code in the client application and

add two TeamMember instances to the program whose statistics are passed to the three-

parameter constructor. Output these players to the system console and then output them

again after the user inputs new names, home run counts, and batting averages for each

player.

 8. Write a graphical application that contains a class named RV whose objects are the recreational

vehicle designed and digitized as described in Knowledge Exercises 20 and 21. The class’s

private data members should be the vehicle’s body color and (x, y) location.

 a) Give the UML diagram for the class. It should include a three-parameter constructor, a

toString method, a method to input the values of all of an object’s data members, and a

show method to draw the RV at its current (x, y) location.

 Chapter 3· Methods, Classes , and Objects : A Firs t Look ■ 135

 b) Progressively implement and test the RV class by adding a method and verifying it before

adding the next method. A good order to add the methods to the class is the three-parameter

constructor, followed by the toString method, the show method, and finally the input

method. The client code should create an RV object using the three-parameter constructor to

test all of the methods as they are progressively added to the class.

 c) After all of the methods are verified, comment out the test code in the client application

and add two RV instances to the program whose location and color are passed to the three-

parameter constructor. Output these vehicles to the system console and the game board and

then output them again after the user inputs a new color and a new (x, y) location for each

vehicle.

 9. After implementing and testing the class described in Programming Exercise 7, progressively

add a set and a get method to the class for each of the class’s data members. After the set and

a get methods have been verified, create two instances of the class using the three-parameter

constructor and display them to the system console. Then, ask the user how many home runs

and batting average points should be added to each player’s statistics. Use the set and a get

methods to change the statistics and then output the two players to the system console.

 10. After implementing and testing the class described in Programming Exercise 8, progressively

add a set and a get method to the class for each of the class’s data members. After the set

and a get methods have been verified, create an instance of the class using the three-parameter

constructor and display it on the system console and the game board. Every time one of the

game board’s directional buttons is clicked, the RV’s location should be changed by two pixels

in the appropriate direction.

 11. Using the skills developed in this chapter, begin to implement the game you specified in

Preprogramming Exercise 1 of Chapter 1. Begin by completing Knowledge Exercises 26

and 27 to design and digitize the user-controlled game piece. Then, implement the class of

the digitized game object, beginning with a UML diagram of the game piece that includes a

constructor with the appropriate number of parameters, a show method to draw the object on

the game board at its current (x, y) location, a toString method, and a set and a get method

for each of the class’s data members. After progressively implementing and testing all of the

class’s methods, write a graphical application that displays the game piece on the game board

and then moves the game piece by two pixels in the appropriate direction every time one of the

game board’s directional buttons is clicked.

Endnotes and ReferencesEndnotes and References

1 Lanzinger, Franz. Classic Game Design: From Pong to Pac-Man with Unity. Dulles, Virginia: Mercury
Learning and Information, 2014.

2 Schell, Jesse. The Art of Game Design. Burlington, MA: Morgan Kaufmann Publishers, 2010.

■ ■ ■ ■ ■

In this chapter

To control the sequence of operations, Java provides three decision-making statements, and

in this chapter, we will learn how to write the Boolean condition on which these decisions

are based. By default, Java statements execute in the order in which they are coded, although

at some point in most algorithms, a decision has to be made as to which of its steps should

be executed next. When depicted in a flow chart, this part of the algorithm begins with a

diamond shape. To implement these algorithms, programming languages include decision

statements that use Boolean expressions as conditions to determine whether to execute or

skip statements. Java also provides two statements that always skip a predetermined set of

statements, one of which will be discussed in this chapter.

 In addition, this chapter extends the input and output techniques of the previous chapters to in-

clude input from the system console as well as disk I/O, and it introduces a technique used to alter the

sequential execution path of a program when an unexpected error occurs.

After successfully completing this chapter, you should:

� Be familiar with the logical and relational operators and their order of precedence

� Be able to write and evaluate simple and complex Boolean expressions

� Understand how to compare strings and determine their alphabetic order

� Be able to write if, if-else, and switch statements to implement the decision-making

part of an algorithm

4CHAPTERCHAPTER

4.1 Alternatives to Sequential Execution 138

4.2 Boolean Expressions . 138

4.3 The if statement . 144

4.4 The if-else Statement . 150

4.5 Nested if Statements. 158

4.6 The switch statement .160

4.7 Console Input and the Scanner Class.169

4.8 Disk Input and Output: A First Look 172

4.9 Exceptions: A First Pass . 179

4.10 Chapter Summary . 185

BOOLEAN EXPRESSIONS, MAKING DECISIONS, BOOLEAN EXPRESSIONS, MAKING DECISIONS,

AND AND DISK INPUT AND OUTPUTDISK INPUT AND OUTPUT

138 ■ Programming Fundamentals Using Java

� Understand the use of the break statement

� Be able to perform console input using the Scanner class and its methods

� Be able to create, open, read, and write sequential text files to and from a disk

� Begin to understand how to use try and catch blocks to handle an error exception

� Use decision-making statements to control a timer, a graphical object’s visibility and

motion, and detect collisions between two objects

 4.1 4.1 ALTERNATIVES TO SEQUENTIAL EXECUTION ALTERNATIVES TO SEQUENTIAL EXECUTION

When a Java application begins, the first statement to execute is the first executable statement

in the method main. The order in which the remainder of the instructions execute is referred to as

the execution path of the program, or the flow of the program. The default execution path of a Java

statement block is sequential. It can be thought of as the statements executing in line number order.

After the first statement in the block executes, the remaining statements execute in the order in

which they are written unless one of the statements specifically alters the execution path.

Many algorithms cannot be formulated in a way that all of its steps are executed sequentially.

Therefore, programming languages provide statements to change the default sequential execution

path. Programmers use these statements, or constructs, to alter the sequential flow of the program,

so they are referred to as control-of-flow or control statements. We have already used one of these

constructs: the invocation of a method. Assuming a method was invoked on line 10 of a program,

the next statement to execute would not be line 11, but rather, the first executable statement in the

method’s code block. Line 11 would execute after the method completed its execution.

Aside from method invocation statements, programming languages provide additional control-

of-flow statements to alter the default execution path. Some of these statements are used to skip a

group of statements, and others are used to repeat a group of statements. Most often, these control-

of-flow statements include a logical expression, called a Boolean expression, to decide when to

skip statements or to decide how many times to repeat statements. In this chapter, we will discuss

the Java statements used to skip a group of statements. The Java statements that are used to repeat

a group of will be discussed in Chapter 5.

 4.2 4.2 BOOLEAN EXPRESSIONS BOOLEAN EXPRESSIONS

Boolean (logical) expressions are named after George Boole, an English mathematician who

conceived of a symbolic algebra for logic. Like mathematical algebraic expressions, Boolean ex-

pressions consist of operators and operands. Unlike mathematical expressions, Boolean expres-

sions evaluate to one of two values: true or false. Boolean expressions used in control-of-flow

statements can either be a simple Boolean expression, or a combination of two or more simple

Boolean expressions called compound Boolean expressions.

 Chapter 4· Boolean Expressions, Making Decis ions, and Disk Input and Output ■ 139

 4.2.1 4.2.1 Simple Boolean Expressions Simple Boolean Expressions

A simple Boolean expression evaluates to either true or false. In Java, these expressions

consist of a relational or an equality operator surrounded by two operands. Java’s four relational

operators are given at the top of the Table 4.1, and its two equality operators are at the bottom of the

table. The first column in the table gives the name (which implies the meaning) of each operator,

and the second column gives the Java symbols (keystrokes) that represent them. The symbols for

the last four operators in the table are typed as two keystrokes without spaces. The third column

of the table gives examples of simple Boolean expressions involving each of the six operators, all

of which evaluate to true.

Table 4.1

Java’s Relational and Equality Operators

Operator Java Symbol Examples that Evaluate to true

Less than < 5 < 7

Greater than > 6.31 > 3.14

Less than or equal to <= 5 <= 5

Greater than or equal to >= ‘c’ >= ‘a’

Equal to == 6 == 3 * 2

Not equal to != 23 != 54

!

TIP

A common mistake made when coding simple Boolean expressions is to code the

equal to operator as a single equal (=) keystroke, which is interpreted by the transla-

tor as the assignment operator. Think of this operator as "is equal" to (= =).

When one of the four relational operators is used, the two operands can be anything that can

be converted to (interpreted as) a numeric. This includes numeric literals, numeric variables, and

arithmetic expressions, as well as character literals and character variables. When a character lit-

eral or character variable is used, the character (e.g., 'A') is interpreted as an integer (e.g., 65), and

the numeric value is used to evaluate the relational expression. The following code fragments are

syntactically correct, and the third one evaluates to true because 'A' and 'C' are interpreted as

65 and 67 (see Appendix C), then the expression is evaluated.

int age = 13;

5 < 2 * 21

100 >= age

'A' < 'C'

25 <= 2 * (age + 1)

The interpretation of characters in simple Boolean expressions as numeric imposes an ordering

on them called lexicographical or dictionary order, which is the order in which they appear in the

Extended ASCII table (Appendix C).

When the types of the operands used with one of the four relational operators do not match

(e.g., one is a float and one is a double, or one is an integer and the other is a character), one of the

operands is promoted before the expression is evaluated. For example, the following simple Bool-

ean expressions are syntactically correct and evaluate to true:

140 ■ Programming Fundamentals Using Java

4.521 < 10 // 10 is promoted to the double 10.0

Math.PI >= -2 // -2 is promoted to double -2.0

2 < 'A' // 'A' is promoted to 65

When one of the two equality operators is used in a simple Boolean expression, the choices

for the operands are expanded. Not only can the two operands be anything that can be converted

to a numeric, but they can also be two Boolean operands (literals or variables) or two reference

variables (including the value null). For example:

4.535 != 21

65 == 'A'

true != false

myName != yourName

name == null

Like the arithmetic operators, the operators in Table 4.1 have an order of precedence associated

with them. The four relational operators have equal precedence, and the two equality operators

have equal precedence. The precedence value of the relational operators is higher than the prece-

dence value of the equality operators. The expression

true == 'C' >= 'A'

is syntactically correct and evaluates to true because first 'C' >= 'A' evaluates to true, and

then true == true evaluates to true. As shown in Appendix E, the arithmetic operators have

higher precedence than the relational and equality operators.

NOTE

Arithmetic expressions in simple Boolean expressions are evaluated first. In more

complex expressions, the relational operators are evaluated next, followed by the

equality operators, and then the logical operators. The assignment operator is eval-

uated last.

 4.2.24.2.2 Compound Boolean Expressions Compound Boolean Expressions

Like simple Boolean expressions, compound Boolean expressions also evaluate to either true

or false. When used in a control-of-flow statement, compound Boolean expressions use the Java

conditional binary logical operators AND and OR to combine the truth values of two or more oper-

ands. Alternately, compound Boolean expressions can use the unary logic operator NOT to reverse

the truth value of a single operand, just as the negation operator reverses the sign of an operand

in a mathematical expression. The operands in compound Boolean expressions must evaluate to

Boolean values (true or false). Most often, these operands are simple Boolean expressions but

could be a Boolean literal or a non-void method invocation that returns a Boolean value.

Table 4.2 gives the three Java logical operators normally used in control-of-flow statements

and the symbols used to represent them. The three operators are shown in decreasing prece-

dence order: the NOT operator has the highest precedence, followed by the AND operator, and the

OR operator has the lowest precedence. As shown in Appendix E, the arithmetic operators and

the relational and equality operators have higher precedence than the logic operators. The Java

 Chapter 4· Boolean Expressions, Making Decis ions, and Disk Input and Output ■ 141

symbols for the AND (&&) and OR (||) operators given in the second column of the table are each

two keystrokes. The keystrokes (||) used in the symbol for the OR operator is located above the

Enter key on the keyboard.

Table 4.2

Java’s Logical Operators

Logical Operator Java Symbol Examples that Evaluate to true

Not ! ! (‘p’ > ‘x’)

And && 8 < 10 && 6 == 2 * 3

Or || 7 < 4 || 8 >= 5

All of the compound logical expressions shown in the rightmost column of Table 4.2 evaluate

to true. To evaluate the truth value of a complex Boolean expression, we must know the meaning

of the conditional logic operators. As previously stated, the meaning of the unary NOT(!) operator

is simply to reverse the truth value of its operand. For example, because 'p' comes before 'x'

in the extended ASCII table, ('p' > 'x') evaluates to false and !('p' > 'x') evaluates to true.

Similarly, !(6 > 10) evaluates to true.

The meaning of the two binary logical operators, AND and OR, is usually conveyed in truth

tables such as the one shown in Table 4.3. The four possible combinations of the truth values of

their two Boolean operands, A and B, are given in the two columns on the left side of the table.

The corresponding values of the AND and OR operators for each of the four possible values of

their operands is given in the two columns on the right side of the table. Summarizing the resulting

values, A && B evaluates to true only when A and B are both true, and A || B evaluates to false

only when A and B are both false. The compound Boolean expression in the third row of Table

4.2 evaluates to true because one of the operands, 8 >= 5, is true.

Table 4.3

Meaning of Java’s Binary Logical Operators

Operand Truth Values Meaning of Operators

A B A && B A || B

true true true true

true false false true

false true false true

false false false false

Figure 4.1 presents an application that evaluates simple Boolean expressions whose operands

are literals, primitive and reference variables, and a compound Boolean expression. The output

produced by the program is given at the bottom of the figure.

When a compound expression is evaluated, it follows the order of precedence from left to right.

Parentheses can also be used to make the ordering clear or to enforce a certain ordering in the

evaluation. For example, the expression on line 23 might be written as

((i1 == 5 || c1 < 'A') && (d1 != 21.8))

142 ■ Programming Fundamentals Using Java

to specify the order of evaluation. Evaluating the sub-expressions in a different order might give a

different result.

1 public class BooleanExpressions

2 {

3 public static void main(String[] args)

4 {

5 int i1 = 5;

6 double d1 = 3.53; double d2 = 54.88;

7 char c1 = 'A'; char c2 ='C';

8 boolean b1 = true; boolean b2 = false;

9 String s1 = new String("Bob");

10 String s2 = new String("Bob");

11

12 System.out.println(i1 < 5);

13 System.out.println(d1 > d2);

14

15 System.out.println(i1 >= d1); // integer i1 promoted

16 System.out.println(d1 <= 3); // integer 3 is promoted

17

18 System.out.println(c1 < c2); // lexicographical order used

19 System.out.println(10 > c2); // c2 promoted to numeric 67

20

21 System.out.println(b1 == b2) ;

22

23 System.out.println(i1 == 5 || c1 < 'A' && d1 != 21.8);

24

25 System.out.println(s1 == s2); // compares contents of s1 and s2

26 }

27 }

Output

false

false

true

false

true

false

false

true

false

Figure 4.1

The application BooleanExpressions and the output it produces.

Lines 5–8 declare and initialize integer, double, character, and Boolean variables. These vari-

ables are used in simple Boolean expressions that are evaluated and output on lines 15–21. The

types of the operands in the expressions on lines 15, 16, and 19 do not match, so promotion is

used before these expressions are evaluated. The contents of the character variables on line 18 are

 Chapter 4· Boolean Expressions, Making Decis ions, and Disk Input and Output ■ 143

interpreted as numerics before the Boolean expression is evaluated. Because 65 ('A') is less than

67 ('C'), the fifth output is true.

Line 23 contains an example of a compound Boolean expression containing two conditional

logical operators OR and AND. Although the order of the operations in this expression is not im-

portant, the AND operation, having higher precedence, is evaluated first. This reduces the expres-

sion to

i1 == 5 || false

which evaluates to true (the next to the last output in Figure 4.1).

The operands in the Boolean expression output on line 25 are the two string variables declared

on lines 9 and 10. Both strings are initialized to "Bob" by the String class’s one-parameter con-

structor, yet the comparison for equality on line 25 produces an output of false (the last output).

This is because the equality operators always compare the contents of the reference variables rather

than the contents of the objects they refer to. Because the objects s1 and s2 are stored in different

locations, the contents of s1 and s2 are not equal, and the Boolean expression on line 25 evaluates

to false. Most often, to compare the contents of two objects, we have to add a method to the

object’s class that performs the comparison and then returns a Boolean value.

 4.2.3 4.2.3 Comparing String Objects Comparing String Objects

In Chapter 7, we will discuss techniques for comparing the contents of any two objects. Strings

are used so often in programs that the String class provides several methods for comparing them.

One of these is the equals method. It is a non-static method that returns a Boolean value. The

returned value is true when the contents of the string object sent to it is the same as the contents of

the string object that invoked it. The comparison of the two strings is case sensitive. The following

code fragment demonstrates the use of the method. The first three invocations to the method return

true, and the last two return false.

String name1 = new String("Bob");

String name2 = new String("Bob");

String name3 = "BOB";

String name4 = "Mary";

System.out.println(name1.equals(name2));

System.out.println(name1.equals("Bob"));

System.out.println(name1.equals("Bob") || name1.equals("Mary");

System.out.println(name1.equals(name3)); // false, case mismatch

System.out.println(name1.equals(name4)); // false, different names

The third invocation demonstrates that a method that returns a Boolean value can be used as an

operand in a compound Boolean expression.

The String class contains three other non-static methods for comparing strings. Their names

are: equalsIgnoreCase, compareTo, and the compareToIgnoreCase. Like the equals

method, the equalsIgnoreCase method returns a Boolean value, which is true when the con-

tents of the string object sent to it is the same as the contents of the string object that invoked it.

Unlike the equals method, case sensitivity is ignored when making the comparison.

144 ■ Programming Fundamentals Using Java

The String class’s compareTo and compareToIgnoreCase methods determine the relative

lexicographical order of two String objects. These non-static methods return an integer whose

value reflects the lexicographical order of the string that invoked it relative to the string sent to it

as an argument. The compareTo method considers case sensitivity, and the compareToIgnore-

Case ignores case sensitivity. The code fragment below compares the lexicographical order two

strings s1 and s2:

int order1 = s1.compareTo(s2);

int order2 = s2.compareToIgnoreCase(s2);

The values returned to the variables order1 and order2 would be:

� negative when s1 comes before s2 in lexicographical order

� positive when s1 comes after s2 in lexicographical order

� zero when s1 and s2 are equal in lexicographical order

Although the compareTo and the CompareToIgnoreCase methods can be used to determine

when two strings are equal, it is good coding practice to use the equals and equalsIgnoreCase

methods when testing two strings for eq uality because it makes our code more readable.

 4.3 4.3 THE THE IFIF STATEMENT STATEMENT

The if statement is one of two Java control-of-flow statements that can be used to alter the

default sequential execution of a program based on the truth value of a Boolean expression. The

other statement is the if-else statement, which will be discussed in Section 4.4.

The syntax of the if statement begins with the keyword if, followed by a Boolean expres-

sion inside parentheses, followed by a statement or group of statements to be skipped or executed.

When there is a group of statements, they must be coded as a statement block; that is, they must be

enclosed in braces. The group of statements will be executed when the Boolean condition is true,

and skipped when the Boolean expression is false. Thus, the syntax of the statement is:

One Statement Syntax

if(a Boolean expression)

a Statement to be skipped

or executed

Multiple Statement Syntax

if(a Boolean expression)

{ Statement1 to be skipped or executed

 :

 Statementn to be skipped or executed

}

Even when there is just one statement, it is better coding practice to enclose the one statement in

braces, which makes the statement more readable and less prone to errors. For example, if during the

development of the program we were to decide to add a second statement and neglected to add the

open and close braces around the two statements, the second statement would not be considered part

of the if statement. It would always execute. The two coding examples given below are not equivalent:

if(a false Boolean expression) if(a false Boolean expression)

 statement1 { statement1

 statement2 statement2

 }

 Chapter 4· Boolean Expressions, Making Decis ions, and Disk Input and Output ■ 145

The code on the left always executes statement2, even though the indentation seems to im-

ply that its execution is dependent on the truth value of the Boolean expression. A good habit to

acquire when writing an if statement is to write this code fragment first:

if()

{

}

and then fill in the Boolean condition and the statements to be skipped when the condition is

false. Most often, we see the if statement coded as:

if(a Boolean expression)

{

 //One or more statements possibly to be skipped

}

The meaning, or semantics, and the execution path of the if statement is illustrated in Figure 4.2

Statements preceding

the if statement

Boolean

expression

Code block of the if

statement

Statements after the

if statement

false

true

Figure 4.2

The meaning and execution path of the if statement.

146 ■ Programming Fundamentals Using Java

We conclude this section with a discussion of a use of the if statement, making game objects

disappear, and then present a game programming application that demonstrates several uses of the

if statement.

Using the if Statement

In many games, the game’s objects disappear based on events that occur as the game pro-

gresses. When Pac-Man collides with a food pellet, the pellet disappears, or when Frogger is hit

by a car, she disappears. Often, after the event occurs the object not only becomes invisible, but it

is eliminated from the game. Graphic objects can be made to disappear by either drawing them in

the color of the program’s window (or in our case the game board), or by not drawing them at all.

To convey the visibility status of a game piece object, e.g., a food pellet, a Boolean data mem-

ber is added to the object’s class. When an event occurs that changes the status (for example, when

food pellet p1 is eaten by Pac-Man), the truth value of the data member is reversed by the code

that detected the event. The draw call back method can use the truth value of this data member in

an if statement’s Boolean condition to decide whether or not to draw the object. If a Boolean data

member named eaten, initialized to false, was added to the class of Pac-Man’s pellets, and the

data member was set to true when the pellet was eaten, then adding the following code fragment

to the draw call back method would make pellet p1 disappear after the pellet was is eaten.

if(p1.getEaten() == false)

{

 p1.show(g);

}

If the variable count was being used to keep track of the game’s time, and pellet p1 was only

to appear after the game had been played for 20 seconds, then a compound Boolean expression

would be used in the above code fragment.

if(p1.getEaten() == false && count >= 20)

{

 p1.show(g);

}

In this case the pellet, p1, would appear 20 seconds into the game, and it would disappear when an

event changes that pellet’s data member eaten to true.

In Section 2.9.1 (Figure 2.12), the counting algorithm was used to keep track of a game’s time.

Figure 4.3 presents the code discussed in that section with three if statements added to it: two to

the draw call back method (lines 17–31) and one to the timer1 method (lines 33–40). In addition,

a BoxedSnowman object s1, whose class is given Figure 4.4, has been added to the application

(line 10). The graphical output produced by the program is given in Figure 4.5.

When the application shown in Figure 4.3 is launched, the number of elapsed seconds is dis-

played on the game board starting from zero (top left side of Figure 4.5). To begin the game the

start button is clicked, which causes the elapsed time to be updated every second. Five seconds into

the game, the snowman s1 appears at the center of the game board (top right side of Figure 4.5).

After ten seconds, the game ends. The elapsed time remains at ten seconds, a message appears on

 Chapter 4· Boolean Expressions, Making Decis ions, and Disk Input and Output ■ 147

the game board indicating that the game is over, and the snowman disappears from the game board

(bottom portion of Figure 4.5).

Line 20 of the application displays the number of elapsed seconds, which is stored in the class

variable count. This variable is incremented on line 35 of the timer1 call back method, which (by

default) executes once a second. Ten seconds into the game, the Boolean condition of the if state-

ment that begins on line 36 becomes true, and line 38 invokes the game environment’s stop-

Timer method to stop timer 1 from ticking. As described in Appendix B, this method is passed

one argument, which specifies the timer number (1, 2, or 3) that is to be stopped. It is a nonstatic

method, invoked on the program’s GameBoard object gb, which was declared on line 8.

The Boolean data member visible has been declared on line 9 of the BoxedSnowman class

(Figure 4.4) to store the visibility status of a snowman, and the class contains a set and get

method (lines 51–59) to allow client code to access this private data member. To make the snow-

man appear after five seconds has elapsed, snowman s1’s visibility status is fetched by a call to the

getVisible method on line 21 of the application, and the returned value is used in the compound

Boolean expression to decide when to show the snowman on the game board. The snowman will

be shown when its visible data member is true and the game’s time is five seconds or greater.

Since visible is initialized to on line 9 of the BoxedSnowman class to true, the snowman is

displayed on the game board five seconds into the game.

To make the snowman disappear after ten seconds, the if statement inside the timer1 call

back method (lines 33–41) sets snowman s1's visible property to false (line 36) when count

equals ten. This causes the first term in the Boolean expression on line 21 to become false, and

line 23, which displays the snowman on the game board, does not execute.

The if statement that begins on line 26 displays the game ending messages when the game

time reaches ten seconds.

1 import edu.sjcny.gpv1.*;

2 import java.awt.Graphics;

3 import java.awt.Font;

4

5 public class IfStatement extends DrawableAdapter

6 {

7 static IfStatement ga = new IfStatement();

8 static GameBoard gb = new GameBoard(ga, "The if Statement");

9 static int count = 0;

10 static BoxedSnowman s1 = new BoxedSnowman(250, 215, Color.BLACK);

11

12 public static void main(String[] args)

13 {

14 showGameBoard(gb);

15 }

16

17 public void draw(Graphics g) // the draw call back method

18 {

19 g.setFont(new Font("Arial", Font.BOLD, 18));

148 ■ Programming Fundamentals Using Java

20 g.drawString("Your game time is: " + count, 10, 50);

21 if(s1.getVisible() == true && count >= 5)

22 {

23 s1.show(g);

24 }

25

26 if(count == 10)

27 {

28 g.drawString("Game Over", 10, 70);

29 g.drawString("Have a Good Day", 10, 90);

30 }

31 }

32

33 public void timer1()

34 {

35 count = count + 1;

36 if(count == 10)

37 {

38 gb.stopTimer(1);

39 s1.setVisible(false);

40 }

41 }

42 }

Figure 4.3

The application IfStatement.

1 import java.awtGraphics;

2 import java.awt.Color;

3

4 public class BoxedSnowman

5 {

6 private int x = 8;

7 private int y = 30;

8 private Color hatColor = Color.BLACK;

9 private boolean visible = true;

10

11 public BoxedSnowman(int intialX, int intialY, Color hatColor)

12 { x = intialX;

13 y = intialY;

14 this.hatColor = hatColor;

15 }

16

17 public void show(Graphics g) //g is the game board object

18 {

19 g.setColor(hatColor);

20 g.fillRect(x + 15, y, 10, 15); //hat

21 g.fillRect(x + 10, y + 15, 20, 2); //brim

 Chapter 4· Boolean Expressions, Making Decis ions, and Disk Input and Output ■ 149

22 g.setColor(Color.WHITE);

23 g.fillOval(x + 10, y + 17, 20, 20); // head

24 g.fillOval(x, y + 37, 40, 40); //body

25 g.setColor(Color.RED);

26 g.fillOval(x + 19, y + 53, 4, 4); //button

27 g.setColor(Color.BLACK);

28 g.drawRect(x, y, 40, 77); //inscribing rectangle

29 }

30

31 public int getX()

32 {

33 return x;

34 }

35

36 public void setX(int newX)

37 {

38 x = newX;

39 }

40

41 public int getY()

42 {

43 return y;

44 }

45

46 public void setY(int newY)

47 {

48 y = newY;

49 }

50

51 public boolean getVisible()

52 {

53 return visible;

54 }

55

56 public void setVisible(boolean newVisible)

57 {

58 visible = newVisible;

59 }

60 }

Figure 4.4

The BoxedSnowman class.

150 ■ Programming Fundamentals Using Java

 4.4 4.4 THE THE IFIF--ELSEELSE STATEMENT STATEMENT

Like the if statement, the if-else statement is a Java control-of-flow statement that can be

used to alter the default sequential execution path of a program by skipping statements based on

the truth value of a Boolean expression. This statement can be thought of as having two clauses:

an if clause and an else clause. Each clause has a statement block associated with it. One, and

only one, of these blocks will execute. When the Boolean condition is true, the statement block

associated with the if clause executes. When it is false, the statement block associated with the

else clause executes. The syntax of the if-else statement is:

 (a) (b)

(c)

Figure 4.5

The output produced by the application IfStatement.

 Chapter 4· Boolean Expressions, Making Decis ions, and Disk Input and Output ■ 151

if(a Boolean expression)

{

 // One or more if clause statements

}

else

{

 // One or more else clause statements

}

and its meaning and execution path is given in Figure 4.6

Boolean

expression

 Code block of

the else clause

true false

Statements preceding the

if-else statement

Code block of

the if clause

Statements after the

else clause

Figure 4.6

The meaning and execution path of the if-else statement.

Because the statements in the code block that follow the else clause are executed when the

if statement’s Boolean expression is false, the else clause does not contain its own Boolean

expression. The following code fragment determines what weight jacket to wear based on the tem-

perature stored in the memory cell temperature:

if(temperature <= 45)

{ System.out.println("It is a frigid " + temperature + " degrees,");

152 ■ Programming Fundamentals Using Java

 System.out.println("Wear your heavy jacket.");

}

else

{ System.out.println("It is rather mild " + temperature + " degrees,");

 System.out.println("Wear your light weight jacket");

}

The if-else statement is used to choose one of two statement blocks to execute: the first

when the if statement’s Boolean condition is true and the second when it is false. By coding

just one statement into the else clause’s statement block that is another if-else statement, we

can choose between one of three mutually exclusive alternatives, as illustrated in the following

coding template:

 if(Boolean expression 1)

{

 // One or more if clause statements in code block 1

}

 else if(Boolean expression 2)

{

 // One or more if clause statements in code block 2

}

 else

{

 // One or more else clause statements in code block 3

}

As indicated by the second comment in the template, the second set of open and close paren-

theses defines the code block of the second if statement. Because the second if statement is the

only statement in the first else clause’s code block, not coding it inside a set of brackets improves

readability. Figure 4.7 illustrates the meaning and execution path of the code template.

This coding process can be progressively repeated when there are more than three mutually

exclusive alternatives. The following code template illustrates the use of this concept to choose one

of four mutually exclusive code blocks to execute:

if(Boolean expression 1)

{

 // One or more if clause statements in code block 1

}

else if(Boolean expression 2)

{

 // One or more if clause statements in code block 2

}

else if(Boolean expression 3)

{

 // One or more if clause statements in code block 3

}

else

 Chapter 4· Boolean Expressions, Making Decis ions, and Disk Input and Output ■ 153

{

 // One or more else clause statements in code block 4

}

To improve the readability, it is good programming practice to indent as shown above and to

keep the first line of the if statements on the same line as the else clauses that proceeded them.

As an example, the following code fragment determines which one of four colors, red, green,

blue, or white, was contained in the String object carColor.

if(carColor.equals("Red"))

{

 System.out.println("the car color is Red");

}

else if(carColor.equals("Green"))

{

 System.out.println("the car color is Green");

}

else if(carColor.equals("Blue"))

{

 System.out.println("the car color is Blue");

Statements preceding

the decision

statement

truefalse

Statements in the

3rd (else) code block

Statements after the decision statements

Statements in the

2nd code block

2nd if Statement’s

Boolean

expression

Statements

in the

1st code block

1st if Statement’s

Boolean

expression

false true

Figure 4.7

The meaning and execution path of an if-else statement whose else clause statement is an if-else statement.

154 ■ Programming Fundamentals Using Java

}

else

{

 System.out.println("the car color is White");

}

These decision statements are executed in the sequence shown in Figure 4.7. The Boolean ex-

pressions are evaluated in the order in which they are coded. Only one of the statement blocks will

execute, which will be the statement block associated with the first true Boolean condition. When

none of the Boolean conditions are true, the statement block associated with the last else clause

executes. The last else clause and its associated statement block are optional. When it is included,

one and only one statement block in the construct always executes.

is carColor

“Blue”?

output

“White”

output

“Blue”

output

“Green”

output

“Red”

truefalse

true

true

false

false

is carColor

“Green”?

is carColor

“Red”?

Figure 4.8

Determining the color contain in the String object carColor.

We conclude this section with a discussion of a common use of the if-else statement (de-

tecting collisions between game pieces) and then present a game-programming application that

utilizes this common game event.

Detecting Collisions: Use of the if and else-if Statements

Most games involve some sort of interaction between the game-piece objects. For example, the

ball in a Pong game rebounds off a paddle, the frog in a Frogger game is hit by a truck, or a mete-

orite collides with a space craft. All of these interactions are referred to as collisions, and usually

 Chapter 4· Boolean Expressions, Making Decis ions, and Disk Input and Output ■ 155

the score or the length of the game is influenced by these collisions. The Boolean conditions in an

if-else construct are used to detect the occurrence of collisions, and the code blocks inside the

construct are used to take the appropriate action (e.g., change the score or end the game) when a

collision occurs.

There are several algorithms used to detect collisions, all of which involve the use of decisions

statements. In one of the simplest algorithms, we imagine a rectangle enclosing each game piece.

That is, the entire game piece is inscribed inside a rectangle, as shown in Figure 4.9, and the loca-

tion of the upper-left corner of the rectangle is the game piece’s (x, y) location. Then, we consider

two objects to be in a collided state when their rectangles touch or overlap.

For example, consider the two snowmen s1 and s2 depicted in Figure 4.9a that are 40 pixels

wide and 77 pixels high. If snowman s2 were moving to the left, a collision with snowman s1

would occur when the left side of s2’s rectangle was at the same x location as the right side of s1’s

rectangle. This situation is depicted in Figure 4.9b. The following Boolean expression, which is

true when this event occurs, can be used to detect this collision state.

s2.getX() == s1.getX + 40; // The snowmen are 40 pixels wide

77

S1 S2

40

S1 S2

S3

S4

S3

S4

(a) No collision (b) Collision

(c) No collision (d) Pseudo collision

(x, y)

location of

snowman s1

Figure 4.9

Noncollided and collided game pieces.

156 ■ Programming Fundamentals Using Java

Although this collision detection scheme is simple, it is not always accurate. When the rect-

angles of the two snowmen depicted in Figure 4.9b are at the same x location, the bodies of the two

snowmen are touching each other. This is not the case for the two snowmen, s3 and s4, shown in

Figure 4.9c. If snowman s4 were moving to the left when the left side of its rectangle is at the same

x location as the right side of s3’s rectangle, as shown in Figure 4.9d, the two snowmen would not

be in a collided state. There would still be a small amount of separation between the left side of s4’s

body and the right side of s3’s head.

Fortunately, in most cases, the game’s player would not notice the separation and would visu-

ally confirm this pseudo-collision as an actual collision. If we are willing to accept this limitation

of our collision-detection scheme, we can extend this simple scheme to detect a collision between

the two snowmen as they approach each other from any direction.

Figure 4.10 depicts snowman s2 in the following four positions relative to snowman s1:

� Position 1: s2 is to the right of s1

� Position 2: s2 is to the left of s1

When snowman s2 is in any of these positions relative to snowman s1, then the two snowmen

cannot be in a collided state. In fact, s2 could be in two of these positions simultaneously, e.g., to

the right and above of snowman s1, which would also be a non-collided state.

Each of the four positions depicted in Figure 4.10 can be easily detected with a simple Boolean

expression. Assuming the snowman is inscribed inside a rectangle that is w pixels wide and h

pixels high, the right column of Table 4.4 gives the Boolean conditions that evaluate to true when

the snowmen are in each of the four positions.

Table 4.4

Boolean Expressions to Detect the Four Non-collided Positions in Figure 4.8

Position of Snowman s2 Relative to s1 Boolean Expression to Detect the Position

1. s2 is to the right of s1 s2.getX() > s1.getX() + w

2. s2 is to the left of s1 s2.getX() + w < s1.getX()

These four Boolean expressions can be used in if-else statements to determine when the two

snowmen have not collided; otherwise they have collided.

if(s2.getX() > s1.getX() + w) // s2 right of s1

{

 System.out.println("no collision");

}

else if(s2.getX() + w < s1.getX()) // s2 left of s1

{

 System.out.println("no collision");

}

else if(s2.getY() > s1.getY() + h) // s2 below s1

{

 System.out.println("no collision");

}

 Chapter 4· Boolean Expressions, Making Decis ions, and Disk Input and Output ■ 157

else if(s2.getY() + h < s1.getY()) // s2 above s1

{

 System.out.println("no collision");

}

else // collision

{

 System.out.println("collision");

}

Alternately, the Boolean conditions could be combined to form a compound Boolean condition

that would evaluate to true for a non-collision.

(s2.getX() > s1.getX() + w || s2.getX() + w < s1.getX() ||

 s2.getY() > s1.getY() + h || s2.getY() + h < s1.getY())

S1 S2

S2

S2

S2

Position 2, s2 right of s1

w

h

(x, y)

Position 3, s2 below s1

Position 2, s2 left of s1

Position 4, s2 above s1

location of

snowman, s2

Figure 4.10

The non-collided positions of snowman s2 relative to snowman s1.

158 ■ Programming Fundamentals Using Java

Using this compound Boolean expression, the series of if-else statements to detect a colli-

sion would become

if(s2.getX() > s1.getX() + w || s2.getX() + w < s1.getX() ||

 s2.getY() > s1.getY() + h || s2.getY() + h < s1.getY())

{

 System.out.println("no collision");

}

 else //collision

{

 System.out.println("collision");

}

The truth value of the Boolean condition could also be reversed, using Java’s not (!) logical

operator, and the if clause of the if-else statement would detect a collision between the two

snowmen.

if(!(s2.getX() > s1.getX() + w || s2.getX() + w < s1.getX() ||

 s2.getY() > s1.getY() + h || s2.getY() + h < s1.getY()))

{

 System.out.println("collision");

}

else // no collision

{

 System.out.println("no collision");

}

The following code fragment uses an expanded version this if-else statement’s Boolean ex-

pression to detect when a collision occurs and snowman s2 is in a visible state. When this occurs,

the game’s score (the variable score) is increased by 1, and snowman s1’s visible property is set

to false.

 if(!(s2.getX() > s1.getX() + w || s2.getX() + w < s1.getX()||

 s2.getY() > s1.getY() + h || s2.getY() + h < s1.getY()) &&

 s1.getVisible == true) // collision and s1 is visible

 {

 score = score + 1;

 s1.setVisible(false);

 }

An additional term has been added at the end of the Boolean expression. Because it is preceded

by the && (AND) operator, the expanded expression is only true when the two snowmen collide

and snowman s1 is visible. This prevents the score from increasing when a game object (i.e., s2)

collides with an invisible game object that is no longer part of the game (i.e., s1).

 4.54.5 NESTED NESTED IFIF STATEMENTS STATEMENTS

Just as the else clause of an if-else statement can contain an if statement, the statement

block of an if statement can also contain other if statements. This method of coding is referred

 Chapter 4· Boolean Expressions, Making Decis ions, and Disk Input and Output ■ 159

to as nested if statements, because the second if statement can be thought of as an egg inside the

nest formed by the first if statement’s code block.

The following code fragment contains a Boolean variable raining and an integer variable

temperature, and uses a nested if statement to determine if a sweater and a raincoat should be

carried on a cold day when it is raining.

if(raining == true)

{

 System.out.println("Take your umbrella, ");

 if(temperature <= 50) // begins a nested if-else statement

 {

 System.out.println("take a sweater, ");"

 System.out.println("and your raincoat.");

 }

}

An if-else statement can also be nested inside an if statement as demonstrated in the below

code fragment:

if(raining == true)

{

 System.out.println("Take your umbrella, ");

 if(temperature <= 50) // begins a nested if statement

 {

 System.out.println("take a sweater, ");"

 System.out.println("and your raincoat.");

 }

 else // temperature is > 50 degrees

 {

 System.out.println("and your raincoat");

 }

}

The else clause in an if statement is always paired with the if statement whose code block

ends just before the else clause. The indentation used in the code fragment above is considered

good programming practice because it implies this pairing: the else clause is part of the if state-

ment that checks the temperature. This code fragment is equivalent to the code fragment below,

which is considered to be poor programming style because its indentation erroneously implies that

the else clause is part of the if statement that determines if it is raining.

if(raining == true)

{

 System.out.println("Take your umbrella, ");

 if(temperature < 50) // begins a nested if statement

 {

 System.out.println("and carry your raincoat too");

 } // end of the inner if statement

else

160 ■ Programming Fundamentals Using Java

{

 System.out.println("but not your raincoat");

}

{ // end of the outer if statement

The following code segment is another example of the use of a nested if statement. It is an

alternate way of determining when snowmen s1 and s2 have collided and s1 is visible.

if(!(s2.getX() > s1.getX() + w || s2.getX() + w < s1.getX()||

 s2.getY() > s1.getY() + h || s2.getY() + h < s1.getY()))//collision

{

 if(s1.getVisible == true) // and s1 is visible

 {

 score = score + 1;

 s1.setVisible(false);

 }

}

 4.64.6 THE THE SWITCHSWITCH STATEMENT STATEMENT

The switch statement is another control-of-flow statement available in Java. It is not as ver-

satile as the if and if-else statements in that the decisions these statements make cannot be

based on an explicitly written simple or compound Boolean expression. The syntax of the switch

statement limits the operator used in its decision making to equality. In addition, the equality must

be between:

� two String objects

� two byte, short, char, or int primitive-data types (or classes that "wrap" these data

types), or

� two instances of a previously defined enumerated type (which will be discussed in

Chapter 7)

All uses of the switch statement can be coded using an if-else statement, but not vice versa.

That being said, there are times when the use of the switch statement makes our programs more

readable and therefore easier to understand, modify, and maintain. It can only be used when the de-

cision as to which statements to execute and which statements to skip is based on a choice selected

from a group, or menu, of finite choices. When this is the case, the use of the switch statement is

considered to be good programming practice.

The syntax of the switch statement is depicted in Figure 4.11. The indentation used in the

figure also reflects good programming practice.

 Chapter 4· Boolean Expressions, Making Decis ions, and Disk Input and Output ■ 161

switch (choiceExpression)

{

 case choiceValue1:

 {

 // statement block for choiceValue1

 break;

 }

 case choiceValue2:

 {

 // statement block for choiceValue2

 break;

 }

 :

 :

 case choiceValueN:

 {

 // statement block for choiceValueN

 break;

 }

 default:

 {

 // default statements

 }

}

Figure 4.11

The syntax of the switch statement.

As shown in the figure, the first line of the statement begins with the keyword switch, and

the remaining lines of the statement consist of case clauses and a default clause enclosed in a set

of brackets. When typing the statement, it is best to begin by typing the following required syntax

and then filling in the remainder of the statement’s first line and the case and default clauses

that are appropriate to the particular use of the statement.

switch()

{

}

Referring to Figure 4.11, the three most common (and difficult to discover) syntax errors made

when coding a switch statement are:

 1. neglecting to code the open and close parentheses after the keyword switch

 2. coding a semicolon after the close parenthesis on the first line of the statement

 3. neglecting to code the colon (not semicolon) after the choiceValue1, or choiceValue2...

or after the keyword default

The entity enclosed in the parentheses after the keyword switch is referred to as the choice

expression. The choice expression must be a variable whose type is one of the allowable types pre-

162 ■ Programming Fundamentals Using Java

viously mentioned (e.g., a String object, an integer variable, etc.) or it can be an expression that

evaluates to one of these types.

switch(choice)

{

 case choiceValue1:

 {

 // statements for choiceValue1

 break;

 }

 case choiceValue2:

 {

 // statements for choiceValue2

 break;

 }

 :

 :

 case choiceValueN:

 {

 // statements for choiceValueN

 break;

 }

 default

 {

 // default statements

 }

}

if (choice == choiceValue1)

{

 {

 // statements for choiceValue1

 }

else if(choice == choiceValue2)

 {

 // statements for choiceValue2

 }

 :

 :

else if(choice == choiceValueN)

 {

 // statements for choiceValueN

 }

else

 {

 // default statements

 }

}

(a) (b)

Figure 4.12

Semantically equivalent switch and if-else statements.

When a switch statement begins execution, the value of the choice expression is determined

and then the statement block of the first case clause whose choice value is equal to that value is

executed. If the choice expression is not equal to one of the choice values, the default clause’s state-

ment block executes. Figure 4.12 illustrates the meaning and execution path of a switch statement

(Figure 4.12a) by comparing it with an equivalent if-else statement (Figure 4.12b).

As an example, the following code fragment determines which one of four colors, red, green,

blue, or white, is contained in the String object carColor:

switch (carColor)

{

 case "red":

 {

 System.out.println("the car color is red");

 break;

 }

 case "green":

 Chapter 4· Boolean Expressions, Making Decis ions, and Disk Input and Output ■ 163

 {

 System.out.println("the car color is green");

 break;

 }

 case "blue":

 {

 System.out.println("the car color is blue");

 break;

 }

 default:

 {

 System.out.println("the car color is white");

 }

}

The following code fragment illustrates the use of an arithmetic expression as the choice ex-

pression in a switch statement:

int i;

String s = JOptionPane.showInputDialog("enter an integer");

i = Integer.parseInt(i);

switch (i * 2)

{

 case 10:

 {

 System.out.println("two times the number is 10");

 break;

 }

 case 20:

 {

 System.out.println("two times the number is 20");

 break;

 }

 default:

 {

 System.out.println("two times the number is not 10 or 20");

 }

}

There is no limit to the number of case clauses that can be used in a switch statement. The

default clause is optional and, if used, must be coded as the last clause in the statement. The

brackets surrounding the statements in the case and default clauses are not necessary and are

only used to improve readability.

Several cases can be assigned to the same statement block using the syntax

case 2: case 5: case 7:

{

 // statement block for all three cases

 break;

}

164 ■ Programming Fundamentals Using Java

The above statement block would execute when the choice expression evaluates to 2, 5, or 7.

The break statement at the end of the code block of each case is also optional. However,

unlike the optional bracket pairs, its presence has a major impact on the execution path of the con-

struct. A break statement is a control-of-flow statement that does not use a logical expression to

decide when to execute or skip statements. Rather, when a break statement is executed inside a

switch statement, it always ends the execution of the switch statement in which it is coded. Basi-

cally, it means: break out of this statement. It can also be used inside if or if-else statements to

end their execution.

When a break statement inside a control-of-flow statement is executed, the next statement to

execute is the one that immediately follows the control-of-flow statement. When executed inside

a switch statement, the statement blocks in all of the subsequent case clauses and the statement

block in the default clause are skipped, and the next statement to execute is the one that follows

the close brace at the end of the switch statement. (That is, the close brace that is paired with the

open brace after the keyword switch.)

When the break statement is not coded at the end of a case clause, after the statements in that

clause execute, the statements in all subsequent case clauses execute until a break statement is

encountered. If a break statement is not encountered, the default clause also executes. Because

most times the choices coded into the switch construct are mutually exclusive, a break statement

is usually coded as the last statement in each case clause.

Figure 4.13 shows a game application that uses the switch and break statements to change

the position of a snowman on a game board, uses the if and if-else statements to determine

the game’s score, make a second snowman disappear and then reappear at a new location, and to

determine when the game is over.

When the application is launched, two snowmen, one wearing a black hat and the other wear-

ing a green hat, appear on the game board below the game’s score and remaining time (Figure

4.14a). The game begins when the player clicks the Start button on the game board. The objective of

the game is to make the two snowmen collide as many times as possible before time runs out, using

the keyboard cursor control keys to move the black-hat snowman. Each time they collide, a point is

awarded and the green-hat snowman disappears. It reappears at a new location after the black-hat

snowman has been moved to a location such that the two snowmen are no longer in a collision state.

The game’s snowmen, s1 and s2, are instances of the BoxedSnowman class (Figure 4.4). They

are created on lines 9 and 10 of the application shown in Figure 4.13 using a three parameter con-

structor to specify the snowmen’s position and hat color: s1 green, s2 black. Line 29 of the draw

call back method outputs the remaining time, and line 60 outputs the player’s score just before the

draw method ends.

Lines 54–58 invokes the BoxedSnowman class’s show method to draw the snowmen on the

game board at their current (x, y) locations. The if statement that beings on line 55 checks the

visibility status of snowman s1 to decide if it should be drawn (line 57). The initial value of a

BoxedSnowman’s visible property is true (Figure 4.4, line 9), so when the game is launched, it

appears on the game board.

 Chapter 4· Boolean Expressions, Making Decis ions, and Disk Input and Output ■ 165

1 import edu.sjcny.gpv1.*;

2 import java.awt.*;

3 //Use of decision statements

4

5 public class DecisionsControlOfFlow extends DrawableAdapter

6 {

7 static DecisionsControlOfFlow ge = new DecisionsControlOfFlow();

8 static GameBoard gb = new GameBoard(ge, "Control Of Flow");

9 static BoxedSnowman s1 = new BoxedSnowman(300, 200, Color.GREEN);

10 static BoxedSnowman s2 = new BoxedSnowman(30, 100, Color.BLACK);

11 static int score = 0;

12 static int count = 10;

13

14 public static void main(String[] args)

15 {

16 showGameBoard(gb);

17 }

18

19 public void draw(Graphics g) //call back method

20 {

21 int w = 40;

22 int h = 77;

23 int s1X, s1Y, s2X, s2Y, temp;

24

25 s1X = s1.getX(); s1Y = s1.getY();

26 s2X = s2.getX(); s2Y = s2.getY();

27 g.setColor(Color.BLACK);

28 g.setFont(new Font("Arial", Font.BOLD, 18));

29 g.drawString("Time remaining: " + count, 260, 50);

30

31 if(count == 0) //game over

32 {

33 g.setColor(Color.BLACK);

34 g.drawString("Game Over", 205, 70);

35 g.drawString("Have a Good Day", 175, 90);

36 }

37 else if(!(s2X > s1X + w || s2X + w < s1X || s2Y > s1Y + h ||

38 s2Y + h < s1Y) && s1.getVisible() == true) // collision

39 {

40 score = score + 1;

41 s1.setVisible(false);

42 }

43 else if(s2X > s1X + w || s2X + w < s1X || s2Y > s1Y + h ||

44 s2Y + h < s1Y) // no collision

45 {

46 if(s1.getVisible() == false) // not visible

47 { temp = s1.getX();

48 s1.setX(s1.getY());

49 s1.setY(temp);

166 ■ Programming Fundamentals Using Java

50 s1.setVisible(true);

51 }

52 }

53

54 s2.show(g);

55 if(s1.getVisible() == true)

56 {

57 s1.show(g);

58 }

59 g.setColor(Color.BLACK);

60 g.drawString("Score: " + score, 150, 50);

61 }

62

63 public void keyStruck(char key) // call back method

64 {

65 int newX, newY;

66

67 switch (key)

68 {

69 case 'L':

70 {

71 newX = s2.getX() - 2;

72 s2.setX(newX);

73 break;

74 }

75 case 'R':

76 {

77 newX = s2.getX() + 2;

78 s2.setX(newX);

79 break;

80 }

81 case 'U':

82 {

83 newY = s2.getY() - 2;

84 s2.setY(newY);

85 break;

86 }

87 case 'D':

88 {

89 newY = s2.getY() + 2;

90 s2.setY(newY);

91 }

92 } // end of switch statement

93 }

94 public void timer1() // call back method

95 {

96 count = count - 1;

97 if(count == 0)

 Chapter 4· Boolean Expressions, Making Decis ions, and Disk Input and Output ■ 167

98 {

99 gb.stopTimer(1);

100 }

101 }

102 }

Figure 4.13

The DecisionsControlOfFlow application: A decision statement case study.

The use of a switch statement is illustrated on lines 67–92. In this case, the switch statement

is used to determine which of the four cursor-control keyboard keys was struck to move the snow-

man s2 two pixels from its current location. The statement is coded inside the game environment’s

call back method keyStruck (line 63), which is invoked by the game environment every time a

keyboard key is struck. The method has one parameter named key whose type is char, and the

game environment passes a character, the key that was struck, into it. After keyStruck completes

its execution, the game environment invokes the draw call back method.

The parameter key on line 63 is used as the switch statement’s choice expression on line 67.

When the keyboard left, right, up, or down cursor-control keys are struck, they generate the char-

acters 'L', 'R', 'U', or 'D', respectively. These characters are used as the switch statement’s cases

on lines 69, 75, 81, and 87 to decide in which direction to move snowman s2.

!

TIP

When a key on the keyboard is held down, it transmits characters 20 times a second

just as if the key was being pressed and released 20 times a second. For this reason,

to control the motion of game pieces, key strokes are preferred over button clicks.

Figure 4.14b shows the game board three seconds after the Start button was clicked and the

right and down cursor keys were used to move snowman s2 adjacent to snowman s1. One more

right cursor keystroke will cause a collision.

Line 31 begins an if-else statement that contains a nested if-else statement (line 37) and

two nested if statements (lines 43 and 46). The keyword else that appears on lines 37 and 43 are

part of the if-else statements that begin on lines 31 and 37, respectively. Line 31 decides if the

game is over, and when it is, it announces it to the game’s player.

The if-else statement that begins on line 37 decides if the two snowmen have collided when

snowman s2 is visible. Its Boolean expression, as discussed at the end of Section 4.4, is true when

it is not the case that snowman s2 is to the right, to the left, or below or above snowman s1, and

s1 is visible. When this is the case, the if clause’s code block increases the player’s score by one

point using the counting algorithm (line 40) and sets the visible property of snowman s1 to false

(line 41). Setting s1’s visible property to false causes it to disappear from the game board

(Figure 4.14c) because the Boolean condition in the if statement that draws s1 (line 55) is now

false. The setting of s1’s visible property to false also prevents the awarding of points until s1

is again visible which occurs when the two snowmen are no longer in a collision state. The deter-

mination that the two snowmen are no longer in a collision state is performed by the if statement

168 ■ Programming Fundamentals Using Java

on line 43. Its Boolean condition is the same as the condition on lines 37 and 38, except that the

NOT (!) operator and the test for visible have been removed. This Boolean condition is true when

the snowmen are not in a collision state. Then the nested if statement that begins on line 46 ex-

ecutes and decides if snowman s1 is invisible. When it is invisible, the nested if statement’s code

block executes relocating snowman s1 by swapping its x and y coordinates. This code block also

sets s1’s visible property to true (line 50), which causes the if statement that begins on line 55

to draw snowman s1 on the game board at its new location (Figure 4.14d).

 (a) (b)

 (c) (d)

Figure 4.14

The output of the DecisionsControlOfFlow application.

 Chapter 4· Boolean Expressions, Making Decis ions, and Disk Input and Output ■ 169

 4.74.7 CONSOLE INPUT AND THE CONSOLE INPUT AND THE SCANNERSCANNER CLASS CLASS

We have already learned how to perform input and output using message dialog boxes and how

to send output to the system console using the println method. The system console can also be

used to perform keyboard input using methods in the Scanner class. These nonstatic methods can

also be used to perform input from a disk file, which will be discussed in the next section.

Just as there is a predefined output object attached to the system console, System.out, there

is a predefined input object attached to the console, System.in. However, before we use the input

methods in the Scanner class we have to declare a Scanner object and pass the console object to

the Scanner class’s one-parameter constructor. The following code fragment declares the Scan-

ner object consoleIn:

Scanner consoleIn = new Scanner(System.in);

The Scanner object, consoleIn, can then be used to invoke non-void methods in the Scan-

ner class, which accept input from the system console. As the user types the input, the keystrokes

are output to the console. The names of the three most frequently used methods in this class all

begin with the word next. Their full names and the type of data they return are given in Table 4.5.

To use the methods, include the following import statement in your program:

import java.util.Scanner;

Table 4.5

Commonly Used Input Methods in the Scanner Class

Method Name Returned Type

nextInt int

nextDouble double

nextLine String

As their names imply, nextInt and nextDouble are both used to accept numeric input.

When the input is an integer, nextInt is used, and nextDouble is used when the input is a real

number. Both methods parse the input characters into a numeric value, and so there is no need to

use the parsing methods in the wrapper classes Integer and Double. The method nextLine is

used to accept String input.

When these methods are invoked, the program’s execution is suspended until the user com-

pletes the keyboard input by striking the Enter key. Then, the methods return the input value. Until

that point, the user can edit the input using the Backspace and Delete keys. It is good programming

practice to precede the method invocations with a well-composed prompt output to the system

console. The following code fragment accepts a person’s name, age, and weight entered into the

system console:

Scanner consoleIn = new Scanner(System.in);

String name;

int age;

double weight;

170 ■ Programming Fundamentals Using Java

System.out.print("Enter your name: ");

name = consoleIn.nextLine();

System.out.print("\nEnter your age: ");

age = consoleIn.nextInt();

System.out.print("\nEnter your weight: ");

weight = consoleIn.nextDouble();

Several numeric inputs can be entered on one line as long as they are separated (delimited) by

at least one space. Spaces that precede a numeric input are ignored. The following code segment

accepts a person’s age and weight input on one line to the system console.

int age;

double weight;

Scanner consoleIn = new Scanner(System.in);

System.out.print ("Enter your age and weight on one line " +

 "separated by at least one space: ");

age = consoleIn.nextInt();

weight = consoleIn.nextDouble();

!

TIP

Several numeric inputs, separated by at least one space, can be input on the same

line.

Spaces that precede a string input are not ignored. They are considered, and become, part of

the input string. Spaces typed after a numeric input will become part of a string input subsequently

read from the same line. For this reason, strings should not be input on the same line as numeric

inputs.

!

TIP
Numeric and string inputs should not be input on the same line.

When a numeric input and a string are read from two separate input lines, and the numeric

input precedes the string, two invocations of nextLine are required to capture the string. This

is because numeric inputs leave the character generated by the Enter key "behind," and the nex-

tLine method considers this a valid input string (the empty string ""). The following statements

accept a person’s age, followed by the person’s name and address. The first string input is properly

preceded by an additional invocation of the nextLine method.

Scanner consoleIn = new Scanner(System.in);

int age;

String name;

String address;

System.out.print("\nEnter your age: ");

age = consoleIn.nextInt();

 Chapter 4· Boolean Expressions, Making Decis ions, and Disk Input and Output ■ 171

consoleIn.nextLine(); // clears the enter keystroke left behind

System.out.print("Enter your name: ");

name = consoleIn.nextLine();

System.out.print("Enter your address: ");

address = consoleIn.nextLine();

To fully understand Scanner class input, we must recognize that the characters the user types

are transferred to a memory resident storage area called an input buffer. When a Scanner method

is invoked and the buffer is empty, the method pauses until an Enter key is struck. If the buffer is

not empty, the method accepts an input from the buffer, and then the input is deleted from the buf-

fer. The nextLine method also deletes the Enter keystroke from the buffer; however, Scanner

methods that return numeric values do not remove this character from the buffer.

 When reading numeric inputs, this is not a problem because the numeric input methods

not only skip leading spaces in the buffer, they also skip the Enter keystroke. This whitespace is

ignored until the buffer is empty or they find an input to process. However, the newline method

does not skip the Enter keystroke. As a result, when an invocation to nextLine follows a numeric

input it encounters a nonempty buffer containing an Enter keystroke. The nextLine method reads

and removes the Enter keystroke from the buffer and returns the empty string ("").

NOTE

When reading a string from the console after a numeric input, two invocations of

the newLine method are required to read the string. The first invocation flushes

the new line (empty string) from the buffer.

Figure 4.15 presents an application that demonstrates the use of the Scanner class’s methods

to accept input from the system console. The console inputs and corresponding outputs are given

at the bottom of the figure.

Line 1 imports the Scanner class’s methods into the application, and line 6 uses the Scanner

class’s one-parameter constructor to create the object consoleIn passing it the predefined con-

sole input object System.in. Lines 11–16 accept a string, integer, and a double from the system

console, each input on a separate line. These values are output on lines 17–18.

Lines 20-25 change the order of the inputs beginning with two numeric inputs on the same

console line (lines 20–22). Then, a string is input (lines 23–25). Line 24 clears the Enter keystroke

left in the buffer after the second numeric is read (line 22). Lines 26–27 outputs the second set of

inputs. Referring to the bottom of Figure 4.15, the user entered several spaces between the input

age, 5, and the input weight, 35. These spaces were ignored by the nextDouble method invoked

on line 22. The weight output (35.4) on the last line of the figure confirms this.

1 import java.util.Scanner;

2 public class ScannerConsoleInput

3 {

4 public static void main(String[] args)

5 {

172 ■ Programming Fundamentals Using Java

6 Scanner consoleIn = new Scanner(System.in);

7 String name;

8 int age;

9 double weight;

10

11 System.out.print("Enter your name: ");

12 name = consoleIn.nextLine();

13 System.out.print("Enter your age: ");

14 age = consoleIn.nextInt();

15 System.out.print("Enter your weight: ");

16 weight = consoleIn.nextDouble();

17 System.out.println("Age: " + age + " Weight: " + weight +

18 " Name: " + name);

19

20 System.out.print("\nEnter your age and weight on one line: ");

21 age = consoleIn.nextInt();

22 weight = consoleIn.nextDouble();

23 System.out.print("Enter your name: ");

24 consoleIn.nextLine(); // clears the enter keystroke from buffer

25 name = consoleIn.nextLine();

26 System.out.println("Age: " + age + " Weight: " + weight +

27 " Name: " + name);

28 }

29 }

Console inputs and outputs:

Enter your name: Breanne

Enter your age: 18

Enter your weight: 125.7

Age: 18 Weight: 125.7 Name: Breanne

Enter your age and weight on one line: 5 35.4

Enter your name: Nora

Age: 5 Weight: 35.4 Name: Nora

Figure 4.15

The application ScannerConsoleInput followed by sample inputs and the corresponding outputs.

 4.84.8 DISK INPUT AND OUTPUT: A FIRST LOOK DISK INPUT AND OUTPUT: A FIRST LOOK

Unlike RAM memory, disk storage is nonvolatile, which means it retains the information

stored on it when the computer system is powered down. As a result, it is used to archive data and

program instructions. There are two types of disk files: text files and binary files. Information

stored in binary files normally occupies less storage on the disk, and the information transfer is

faster. That being said, text files are in wide use because all of the information in the file is stored

 Chapter 4· Boolean Expressions, Making Decis ions, and Disk Input and Output ■ 173

as ASCII characters, which means it can be opened, read, modified, and restored using any text

editor.

In this section, we will limit our discussion of disk file I/O to text files and the techniques for

accessing the file’s data items in the order in which they appear in the file. This type of access is

called sequential access. The alternate form of access, called random access, allows the data items

to be accessed in any order. We will extend our discussion of disk I/O in subsequent chapters.

 4.8.1 4.8.1 Sequential Text File Input Sequential Text File Input

Information stored in a text file can be sequentially read into a program using the Scanner

class’s methods presented in Table 4.5. In fact, all of the concepts discussed in Section 4.7 used to

read or input data from the system console apply to sequential text file input. The one exception is

the creation of the Scanner object.

To accept input from the system console, the object was created by passing the predefined ob-

ject System.in to the Scanner class’s one-parameter constructor. To accept input from a sequen-

tial text file, a File object is passed to the Scanner class’s one-parameter constructor. This File

object is created using the File class’s one-parameter constructor that accepts a string argument

containing the file’s path and name. Case sensitivity in this string is ignored. The import statement

import java.io.*; is used to access the File class.

The code fragment presented in Figure 4.16 reads an integer from the beginning of the file

named data.txt resident on the root of the C drive.

1 File fileObject = new File("c:/data.txt");

2 Scanner fileIn = new Scanner(fileObject);

3 int score;

4

5 score = fileIn.nextInt();

Figure 4.16

Code fragment to read an integer from the disk file data.txt resident on the root of the C drive.

The string argument sent to the File class’s constructor (on line 1 of Figure 4.16) contains a

forward slash, which is preferred over the backslash for two reasons. First, all operating systems

accept a forward slash in a path definition. Second, to use a backslash the escape sequence for a

backslash (\\) would have to be used inside the string argument. Most Windows-friendly program-

mers often forget to code the escape sequence and code the string argument as "c:\data.txt".

This would result in a translation error: illegal escape character, because \d is not a valid escape

sequence.

A more insidious error occurs when a single backslash is erroneously coded, and the character

that comes after it is a valid escape character. For example, if the file name was newData.txt, and

174 ■ Programming Fundamentals Using Java

it was located on the root of the C drive, the following line of code would not result in a translation

error on a Windows system because \n is a valid escape sequence.

File fileObject = new File("c:\newData.txt");

However, it would result in a runtime error indicating that the file does not exist because the \n

would be replaced at compile time with a new line or line feed (LF) character, and the name of the

file passed to the constructor would be the LF character followed by ewData.txt.

!

TIP
Always use forward slashes (/) when specifying a file path.

Even when the forward slash is used to specify the path to the file, the file must exist or a run-

time error indicating that the file does not exist will occur. If the path is not specified (i.e., just the

file name and its extension is coded), the file is assumed to be inside the project folder created by

the IDE or a subfolder of that folder. The exact location may be IDE-specific.

Except for lines 1 and 2 of Figure 4.16, the code used to read data from a text file is the same

as the code used to read data from the system console, except that no prompts are output. We sim-

ply imagine that instead of the user typing the data into the system console in response to input

prompts, the same data (character for character, line for line) was typed into a text editor and then

saved to the disk file.

For example, if a person’s age, weight, and name were typed into the C-drive resident text file

data.txt whose contents are shown in Figure 4.17, then the code fragment presented in Figure

4.18 would read these values from the disk file. With the exception of lines 1 and 2, Figure 4.18

contains the same code used to read an age, weight, and name from the system console (lines 7–9

and 20–25 of Figure 4.15) with the two user prompts (lines 20 and 23) removed and the name of

the Scanner object changed.

5 35.4

Nora

Figure 4.17

The data contained in the disk file data.txt resident on the root of the C drive.

1 File fileObject = new File("c:/data.txt");

2 Scanner fileIn = new Scanner(fileObject);

3 String name;

4 int age;

5 double weight;

6

7 age = fileIn.nextInt();

8 weight = fileIn.nextDouble();

9 fileIn.nextLine();

10 name = fileIn.nextLine();

Figure 4.18

The code fragment to read the data contained in the file shown in Figure 4.17.

 Chapter 4· Boolean Expressions, Making Decis ions, and Disk Input and Output ■ 175

To process a sequential file, Java maintains a read position pointer that is initially positioned

at the first character in the file. Each time a data item is read from the file, this pointer is moved

to the next item in the file. After the last item in the file has been read, the pointer is positioned at

a special character called an end of file (EOF), which is automatically placed at the end of all disk

files. In Chapter 5, we will discuss the importance of the addition of the EOF character to the file

and how to detect when we have reached it.

There are some additional issues to consider when reading data from a text file that do not arise

when performing console input. These include the need to know:

� the name and the path to the file to declare the File object (line 1 of Figure 4.18)

� the order of the information in the file, so the statements on lines 7, 8, 9, and 10 of

Figure 4.18 are coded in the proper sequence

� the type of each piece of information in the file, so the proper Scanner class method

can be invoked to read each piece of information

This information is described in a file specification given to the programmer by the software

engineer who designed the file.

 4.8.24.8.2 Determining the Existence of a File Determining the Existence of a File

Another issue to consider when reading data from a text file that does not arise when perform-

ing console input is how to prevent a runtime error if the data file does not exist. The File class

contains a non-void method named exists that can be used to detect the existence of a file, and

the System class contains a static method named exit that can be used to end a program.

The exists method in the File class returns true when the file exists, and the exit method

in the System class has one integer parameter, which is usually passed a zero. The following code

segment demonstrates the use of these two methods to bring a program to a more informative user-

friendly ending when it tries to use a disk file that does not exist:

File fileObject = new File("c:/data.txt");

if(!fileObject.exists()) // file does not exist

{

 System.out.println("the file does not exist, the program is terminating")

 System.exit(0);

}

!

TIP

It is good programming practice to check for a disk file’s existence to avoid a run-

time error that is normally difficult for the user to understand.

 4.8.34.8.3 Sequential Text File Output Sequential Text File Output

Information can be sequentially output (written) to a text file using the print and println

methods that are used to write information to the system console. In addition, the Java syntax used

176 ■ Programming Fundamentals Using Java

to format console output data, such as the spacing of the output information, moving to a new line,

and specifying the precision of numeric outputs, is the same syntax used to format disk-file output.

The one exception to this is the output annotation.

Output annotation is normally not included in the string sent to the methods and print and

println when writing to a disk file because most disk files are read by programs, not people.

When the file’s data will not be processed or read by a program (perhaps the file’s contents will be

examined after it is printed), output annotation is included. Alternately, the reader could refer to

the file’s specification to identify unannotated file information.

To write to the system console, the print and println methods operate on a predefined ob-

ject System.out attached to the system console. To write to a sequential text file, these methods

operate on a programmer-defined object in the PrintWriter class. This object is created using

two lines of code that are analogous to the two lines used to create the Scanner object used to

perform disk input.

The PrintWriter object is created using the class’s two-parameter constructor, which is

passed to an object in the FileWriter class. The file’s path and name is passed to the File-

Writer object when it is created. Case sensitivity in this string is ignored. The import statement

import java.io.*; is used to access the PrintWriter and the FileWriter classes.

 The code fragment presented in Figure 4.19 creates a sequential text file named data.txt

on the root of the C drive and then outputs the contents of the variable score followed by a new-

line character to the beginning of the file.

1 FileWriter fileWriterObject = new FileWriter("c:/data.txt");

2 PrintWriter fileOut = new PrintWriter(fileWriterObject, false);

3 int score = 20;

4

5 fileOut.println(score);

Figure 4.19

Code fragment to write an integer to the beginning of the disk file data.txt resident on the root of the C drive.

Lines 1 and 2 of Figure 4.19 create the disk file and the object fileOut that is used to invoke

the println method on line 5. A generic term used to describe the functionality of these two lines

is that they create and open the file. If the file had already existed, it would have been deleted and

then recreated. All the information previously written to a deleted file is lost.

Data written to a text file using the print and println methods should be thought of as be-

ing placed in the file exactly as the data would have appeared on the system console (line for line,

character for character) had the methods operated on System.out. The only exception is that a

new-line character does not appear on the system console. Rather, it causes the cursor to move to

the beginning of the next line. The characters of the first data item are followed in the file by the

characters of the second item, which are followed by the third, etc.

Figure 4.20 presents an application that writes a person’s age, weight, and name to a sequential

text file named data.txt and then reads the data from the file and outputs the information to the

 Chapter 4· Boolean Expressions, Making Decis ions, and Disk Input and Output ■ 177

system console. The system console output produced by the program is shown at the end of the

figure, and the characters written to the disk file are shown in Figure 4.21.

Lines 1 and 2 of Figure 4.20 make the Scanner, File, FileWriter, and PrintWriter class-

es available to the program. Their constructors are used on lines 8–12 to create objects fileIn and

fileOut, which are used on lines 18–19 and lines 23–26, respectively, to write to and read from

the file.

1 import java.util.Scanner;

2 import java.io.*;

3

4 public class DiskIO

5 {

6 public static void main(String[] args) throws IOException

7 {

8 File fileObject = new File("data.txt"); // input

9 Scanner fileIn = new Scanner(fileObject);

10 FileWriter fileWriterObject = new FileWriter("data.txt"); // output

11 PrintWriter fileOut = new PrintWriter(fileWriterObject, false);

12

13 String name = "Nora Smith";

14 int age = 5;

15 double weight = 35.4;

16

17 // write three data items to the disk file

18 fileOut.println(age + " " + weight);

19 fileOut.println(name);

20 fileOut.close();

21

22 //read the data from the disk file

23 age = fileIn.nextInt();

24 weight = fileIn.nextDouble();

25 fileIn.nextLine(); // clears New Line after a numeric from the buffer

26 name = fileIn.nextLine();

27 fileIn.close();

28

29 System.out.println("Age: " + age + " Weight: " + weight +

30 " Name: " + name);

31 }

32 }

System console output

Age: 5 Weight: 35.4 Name: Nora Smith

Figure 4.20

The application DiskIO and the console output it produces.

178 ■ Programming Fundamentals Using Java

5 35.4nlNora Smithnleof

nl represents a new-line character

eof represents an end of file (EOF) character

Figure 4.21

The characters output to the file data.txt by the application DiskIO.

A throws clause has been added to the end of the signature of the main method (line 6).

This tells the translator that the programmer is aware that some serious runtime problems (e.g.,

an attempt was made to read past the EOF character) could develop during the execution of the

program. However, the programmer has chosen not to include code to deal with those problems.

Without the throws clause, this program will not translate. We will discuss the code to deal with

these problems in the next section of this chapter.

The string containing the name of the file on lines 8 and 10 does not contain a path. Therefore,

the file is created inside the project folder created by the IDE. This is not always desirable but is

often used in game programs because the file contains information about the game, such as the

highest score achieved to date.

Line 18 writes two numbers to the file separated by a space as shown in Figure 4.21. The space

is a very important part of the output. Without it, Nora’s age (5) and her weight (35.4) would be

adjacent to each other and would therefore be considered one number (534.4) by anyone reading the

file including line 23 of the program. The result would be one of the serious runtime errors the pro-

grammer chose to ignore because a double, 534.4, cannot be parsed into the integer variable age.

Lines 20 and 27 invoke the close method in the FileWriter and Scanner classes. These

statements release the system resources required to perform disk I/O. If they are not included

in a program that performs disk input and/or output, the Java runtime environment releases the

resources when the program ends. It is not only good programming practice to code them imme-

diately after the last disk I/O statements, but in this program it is essential that line 20 be part of

the program.

Here’s why: During the execution of a program that writes to a disk file, the data is actually

written to a RAM resident buffer. The characters stored in the buffer are written to the disk file

when the buffer is full or the FileWriter’s close method is executed. This method flushes a par-

tially full buffer to the disk file during the program’s execution. Because the number of characters

written by this program does not fill the buffer, eliminating line 20 from the program presents line

23 with an empty disk file from which to read. This situation causes the program to terminate in

a runtime error.

When the FileWriter class’s close method executes an end of file (EOF) character is added

to the end of the file.

NOTE

Always invoke the FileWriter class’s close method after the last file output

statement.

Always invoke the Scanner’s class’s close method after the last file input

statement.

 Chapter 4· Boolean Expressions, Making Decis ions, and Disk Input and Output ■ 179

 4.8.4 4.8.4 Appending Data to an Existing Text File Appending Data to an Existing Text File

Data can be appended (added to the end) of a disk file by changing the second argument sent

to the PrintWriter’s two-parameter constructor from false to true. For example, line 11 of

Figure 4.20 to would be changed to:

PrintWriter fileOut = new PrintWriter(fileWriterObject, true);

When the program is run, if the file does exist it would not be deleted. (If it does not exist, it would

be created.) Each execution of the program would add data to the end of the file followed by an

EOF character. Figure 4.22 shows the contents of the file after three executions of the program,

assuming the file did not exist before the program’s first execution and the value true was passed

to the PrintWriter constructor.

5 35.4nlNora Smithnl5 35.4nlNora Smithnl5 35.4nlNora Smithnleof

nl represents a new-line character

eof represents an EOF character

Figure 4.22

The output by 3 executions of DiskIO with the file open for append.

 4.8.54.8.5 Deleting, Modifying, and Adding File Data Items Deleting, Modifying, and Adding File Data Items

Java, like most programming languages, does not contain a method to delete or modify a file

data item or add a data item anywhere in the file except at its end. These operations can be ac-

complished by including the disk I/O methods discussed in this chapter in algorithms that perform

these tasks. For example, the delete algorithm would be:

 1. Read all of the file’s information into RAM memory

 2. Close the file

 3. Delete the file

 4. Recreate the file

 5. Write all of the information except the item to be deleted back into to the file

 6. Close the file

Because the coding of these algorithms requires knowledge of the material covered in Chap-

ters 5 and 6, we will return to this topic in Chapter 6.

 4.94.9 EXCEPTIONS: A FIRST PASS EXCEPTIONS: A FIRST PASS

An exception is a Java feature that a method can use to communicate to its invoker that an un-

expected event has occurred during the method’s execution when the method does not contain code

to deal with it. When the event is one that Java deems serious, a throws clause must be added to

the signature of the method in which the invocation is coded, or instructions to deal with the event

must be added to the code block that contains the invocation statement.

180 ■ Programming Fundamentals Using Java

The former approach was taken in the program that appears in Figure 4.20 on line 6. The

Scanner and FileWriter class constructors invoked on lines 9 and 10 are methods that can

encounter serious unexpected events during their execution. Therefore, a throws clause was

added to the signature of the main method (line 14) because the main method contains these two

invocations. In this section, we will cover a brief introduction to the alternative to the throws

clause: adding instructions to deal with the event in the code block that contains the invocation

statements. Chapter 10, "Exceptions, A Second Pass" contains a more in-depth discussion of

exceptions.

As the word “throws” implies, a baseball analogy was used in the selection of the Java keywords

associated with exceptions, and the analogy is helpful in gaining an understanding of exceptions.

Imagine that when the serious event occurs during a method’s execution the method says, "I take

exception to that event, and I am not going to continue executing. My last action will be to let my

invoker know of this problem by throwing an exception object back to it."

If the invoker wants to deal with the problem, its code block catches the exception object

and deals with the problem. Otherwise it throws the exception object on to the Java runtime

environment. The term throws is a Java keyword we have already used (line 6 of Figure 4.20)

when we did not want to deal with an unexpected problem. Two other keywords, try and catch,

are used when we want to deal with the problem.

Each of these keywords begins a code block, and the try code block is always coded

immediately before the catch code block. The following code fragment is a template for a try

statement that will catch a thrown IOException object. As shown in the template, the type of

exception object caught is coded in a parameter list after the keyword catch.

try

{

 // the code containing the method invocations and other statements

}

catch(IOException e)

{

 // the statements to deal with the unexpected events

}

The statements that invoked the methods that could throw the exception object must be coded

inside the try block. Other statements can be included in the try block. Effectively, you are trying

these invocation statements to see if the methods they invoke throw an exception object.

When an exception object is thrown by a method invoked inside the try block, the remainder

of the statements in the try block does not execute, and execution passes to the first statement

in the catch block. If an exception is not thrown, the statements in the try block complete their

execution, and the catch block statements are not executed. In either case, the statements following

the catch code block executes after the try block or the catch block completes execution.

The use of the template is illustrated in the following code fragment. It attempts to read the

value stored in a disk file into the variable score and catches the IOException object thrown by

the Scanner class’s constructor when this constructor encounters a problem.

 Chapter 4· Boolean Expressions, Making Decis ions, and Disk Input and Output ■ 181

int score;

try

{

 File fileObject = new File("data.txt"); // input

 Scanner fileIn = new Scanner(fileObject);

 score = fileIn.nextInt();

 fileIn.close();

}

catch(IOException e)

{

 System.out.print ("The score could not be read from the disk file,");

 System.out.println(" but the game will continue.");

}

//rest of the game's statements

If the reading of the score was essential to the continuation of the program, the second state-

ment in the catch block would be replaced with the following two statements to terminate the

program’s execution:

System.out.println(" the program is terminating.");

System.exit(0);

The program in Figure 4.23 illustrates the use of disk input and output in a game program and

the use of exceptions to deal with unexpected disk I/O problems. It is the same program presented

in Figure 4.13, modified to keep track of the highest game score ever achieved. When the game is

over, this score is read from a disk file. If a new high score was not achieved, the game player is

informed and encouraged to keep practicing. Otherwise, the new high score is written to the disk

file and the game player is congratulated.

1 import edu.sjcny.gpv1.*;

2 import java.awt.*;

3 import java.util.Scanner;

4 import java.io.*;

5 //illstrates basic exceptions

6

7 public class ExceptionBasics extends DrawableAdapter

8 {

9 static ExceptionBasics ge = new ExceptionBasics ();

10 static GameBoard gb = new GameBoard(ge, "Exception Basics");

11 static BoxedSnowman s1 = new BoxedSnowman(300, 200, Color.GREEN);

12 static BoxedSnowman s2 = new BoxedSnowman(30, 100, Color.BLACK);

13 static int score = 0;

14 static int count = 10;

15

16 public static void main(String[] args)

17 {

18 showGameBoard(gb);

19 }

182 ■ Programming Fundamentals Using Java

20

21 public void draw(Graphics g) // a call back method

22 {

23 int w = 40;

24 int h = 77;

25 int s1X, s1Y, s2X, s2Y, temp;

26

27 s1X = s1.getX(); s1Y = s1.getY();

28 s2X = s2.getX(); s2Y = s2.getY();

29 g.setColor(Color.BLACK);

30 g.setFont(new Font("Arial", Font.BOLD, 18));

31 g.drawString("Time remaining: " + count, 260, 50);

32

33 if(count == 0) // the game is over

34 {

35 g.setColor(Color.BLACK);

36 g.drawString("Game Over", 205, 70);

37 g.drawString("Have a Good Day", 175, 90);

38

39 try

40 {

41 int highScore;

42 File fileObj = new File("HiScore.txt");

43 Scanner fileIn = new Scanner(fileObj);

44 highScore = fileIn.nextInt();

45 fileIn.close();

46

47 if(score >= highScore) // a new high score

48 {

49 g.drawString("Great, Your Score is the Highest Ever.," +

50 "It Will Be Saved", 10, 110);

51 FileWriter fileWriterObj = new FileWriter("HiScore.txt");

52 PrintWriter fileOut = new PrintWriter(fileWriterObj, false);

53

54 fileOut.println(score);

55 fileOut.close();

56 }

57 else // not a new high score

58 {

59 g.drawString("Best Score is: " + highScore +

60 ", Keep Practicing", 110, 110);

61 }

62 }

63 catch(IOException e)

64 {

65 g.drawString("Problems With High Score File", 120, 110);

66 }

67 }

 Chapter 4· Boolean Expressions, Making Decis ions, and Disk Input and Output ■ 183

68 else if(!(s2X > s1X + w || s2X + w < s1X || s2Y > s1Y + h ||

69 s2Y + h < s1Y) && s1.getVisible() == true)

70 {

71 score = score + 1;

72 s1.setVisible(false);

73 }

74 else if(s2X > s1X + w || s2X + w < s1X || s2Y > s1Y + h ||

75 s2Y + h < s1Y) // no collision

76 {

77 if(s1.getVisible() == false) // not visible

78 { temp = s1.getX();

79 s1.setX(s1.getY());

80 s1.setY(temp);

81 s1.setVisible(true);

82 }

83 }

84

85 s2.show(g);

86 if(s1.getVisible() == true)

87 {

88 s1.show(g);

89 }

90 g.setColor(Color.BLACK);

91 g.drawString("Score: " + score, 150, 50);

92 }

93

94 public void keyStruck(char key) // a call back method

95 {

96 int newX, newY;

97

98 switch (key)

99 {

100 case 'L':

101 {

102 newX = s2.getX() - 2;

103 s2.setX(newX);

104 break;

105 }

106 case 'R':

107 {

108 newX = s2.getX() + 2;

109 s2.setX(newX);

110 break;

111 }

112 case 'U':

113 {

114 newY = s2.getY() - 2;

115 s2.setY(newY);

116 break;

184 ■ Programming Fundamentals Using Java

117 }

118 case 'D':

119 {

120 newY = s2.getY() + 2;

121 s2.setY(newY);

122 }

123 }

124 }

125 public void timer1() // a call back method

126 {

127 count = count - 1;

128 if(count == 0)

129 {

130 gb.stopTimer(1);

131 }

132 }

133 }

Figure 4.23

The ExceptionBasics Application: A decision and exceptions case study.

When the application is launched, two snowmen, one wearing a black hat and the other wearing a

green hat, appear on the game board below the game’s score and remaining time (Figure 4.24a). The

game begins when the player clicks the Start button on the game board. The objective of the game is

to make the two snowmen collide as many times as possible before time runs out using the keyboard

cursor-control keys to move the black-hat snowman. Each time they collide, a point is awarded, and

the green-hat snowman disappears. It reappears at a new location after the black-hat snowman has

been moved to a location such that the two snowmen are no longer in a collision state.

The changes to the program are the additions of the lines 3–4 that make the Scanner, File,

FileWriter, and PrintWriter classes needed to perform disk I/O available to the program, the

elimination of the throws clause in the main method’s signature and the addition of lines 40–67

that perform the disk I/O. Figure 4.24 presents several outputs produced by the program under

various game conditions.

The signature of the main method (line 16) does not contain a throws clause because the disk

I/O is performed inside the code block of a try statement (line 39). Line 44 reads the highest score

ever achieved from the disk file HiScore.txt using the Scanner object inFile created by lines

42–43. Then, the file is closed (line 45). Normally, the programmer would use a text editor to cre-

ate the file and store a score of zero in it as part of the program’s development. Because the file’s

path is not specified on line 42, the file must be stored inside the project folder created by the IDE.

When a new high score is achieved, as determined by line 47, line 49–50 informs the game

player of this achievement (Figure 4.24b). The new high score is written to the disk file (line 54)

using the PrintWriter object fileOut created on lines 51–52, and the file is closed (line 55).

Because the second argument sent to the PrintWriter constructor on line 52 is false, the file

containing the old high score is deleted and recreated before the new high score is written to it.

(The new high score is not appended to the file.)

 Chapter 4· Boolean Expressions, Making Decis ions, and Disk Input and Output ■ 185

When a new high score is not achieved, lines 59–60 of the if-else statement that begins

in line 47 produces the output shown in Figure 4.24c. If a problem occurs during the disk I/O

performed inside of the try block, execution of the try block is terminated, and the catch

block (lines 63–66) executes producing the error message at the end of the text output shown in

Figure 4.24d.

 (a) (b)

 (c) (d)

Figure 4.24

Outputs produced by the application ExceptionBasics.

 4.104.10 CHAPTER SUMMARY CHAPTER SUMMARY

Ordinarily, a Java program executes its statements sequentially. The if, if-else, and switch

statements are used to alter this sequential path of execution by selecting which statement, or group

of statements, to execute next. When the resulting decision of an if or if-else construct ef-

fect more than one statement, these statements must be coded inside a code block.

Both the if and if-else statements evaluate Boolean expressions to determine whether to

execute or skip the statements included in their code blocks. Boolean expressions use the logical

186 ■ Programming Fundamentals Using Java

and relational operators (all of which have a precedence order associated with them) and evaluate to

true or false. These statements may be nested, which allows them to test for several conditions,

or several conditions can be tested by one statement using compound Boolean conditions. The if

statement is used to decide to skip or execute one group of statements, and the if-else statement

is used to decide which of two mutually exclusive groups of statements to execute.

Although all uses of the switch statement can be coded using an equivalent set of nested if-

else statements, the use of the switch statement makes our programs more readable when the de-

cision to be made is based on one or more discrete values. The values can be references to a strings

or primitive values whose type is byte, short, char or int, or the values of an enumerated type.

Most often, a break statement is used to prevent the cases coded below the one that is equiva-

lent to the current value of the switch variable from executing. A default clause can be included

at the end of the statement that will execute when the value of the switch variable does not match

any of the statement’s cases. Decision statements have many applications to game programming,

such as controlling the value of a timer, increasing a score when an event occurs, testing to see

when there is a collision between objects, and determining which keystroke has been entered and

responding to it.

The String class provides methods for comparing String objects because they cannot be

compared using the relational operators. The equality operator compares the contents of variables,

but String reference variables contain the address of the strings they refer to, not the strings

themselves. Therefore, to compare strings, the String class provides methods such as equals

and compareTo, which make case sensitive comparisons, and equalsIgnoreCase and compa-

reToIgnoreCase, which ignore case sensitivity.

Disk I/O is useful for storing game data, such as the highest score achieved, and any other

type of data that must be retained after a program ends. When data is stored in RAM buffers, it is

volatile and is not preserved from one game to the next. In contrast, when data is stored in a text

file, it can be read and compared each time the game is played. The constructors in the File and

Scanner classes, and the constructors in the FileWriter and PrintWriter classes, can be used

to "attach" Scanner and PrintWriter I/O objects to a file. Text output can then be sent to the file

using the methods in the PrintWriter class, and information can be read from the file using the

Scanner class’s methods. Methods in the scanner class can also be used to accept input from the

system console. The File class method, exists, can determine if a file exists before attempting

to use it, and it is always good programming style to close a file after using it.

Disk I/O often causes errors such as when code attempts to access a file that does not exist or

whose pathname is incorrect. This causes an exception error to be generated, which disrupts the

normal flow of a program. Java provides two exception-related constructs, called try and catch

blocks. When an exception occurs within the code of a try block, the program’s execution path

is transferred into the code of the catch block, which is designed to process (handle) and recover

from runtime exceptions. A System class method, exit, can be used inside a catch block to

terminate a program gracefully.

 Chapter 4· Boolean Expressions, Making Decis ions, and Disk Input and Output ■ 187

Knowledge ExercisesKnowledge Exercises

 1. The variables i, j, k and m have been declared as: int i = 10; int j = 20; int k = 30; int m = 40.

Evaluate the following as true or false:

 a) i <= j

 b) k == 30

 c) i != j && j >= k

 d) i != j || j >= k

 e) (i <= k && k >= m) || (j * 2 == m && k > j)

 f) m <= k || i + j + k >= m

 2. What is the normal default execution sequence (path) of all Java programs?

 3. What are the two types of statements available in Java to alter the default execution path?

 4. Write the Java code to output the contents of the variable myBalance when it stores the value

10.0 to the system console.

 5. Modify the Java code in Question 4 by adding a statement to output my balance is not 10.0

when the memory cell myBalance does not store 10.0.

 6. Write an if or if-else statement to perform each of these tasks:

 a) Add 5 to a grade if the grade is greater than 75

 b) Produce the output buy tickets if the cost is less than $150.00, otherwise output too

expensive.

 c) Output the value stored in the variable GPA to the system console if the String object

name contains the string Anna

 d) For the strings referenced by s1 and s2, if s1 comes before s2 in alphabetical order,

output in alphabetical order otherwise output the message not in order.

 7. True or false:

 a) An if statement must contain one Boolean expression.

 b) An if-else statement must contain two Boolean expressions.

 c) An if statement must contain a statement block.

 d) The code block of an if statement executes when its Boolean condition is true.

 e) The code block of an if statement can contain another if statement.

 f) The code block of an else clause cannot contain another if statement.

 g) An if or if-else statement may be nested within another if statement’s code block.

 h) Java contains an if-else-if statement.

 8. The string s1 just received input from an input dialog box. Give the statement to output OK to

the system console when the user enters Stop Sign (case sensitive).

 9. True or false:

 a) A switch statement must contain a default clause.

 b) A switch statement can have multiple cases.

188 ■ Programming Fundamentals Using Java

 c) The choice values of a switch statement can be strings.

 d) A switch statement must contain at least one break statement.

 e) A switch statement is normally used to determine a choice between several alternatives.

 f) Every switch statement can be written as equivalent if-else statements.

 g) A sequence of if-else statements can always be written as an equivalent switch

statement.

 10. Write the switch statement to output the menu selection stored in the string variable item,

assuming the choices are Hamburger, Taco, or BLT (use system-console output).

 11. Write the equivalent if-else statements to output the menu selections given in Question 10.

 12. What API class must be imported into your program to accept input from the system console?

 13. Give all of the statements, excluding import statements, to:

 a) accept the year of a person’s birth input from the system console (include a prompt)

 b) accept a person’s name input from the system console (include a prompt)

 14. What is the advantage of saving information in disk files versus saving the information in main

memory?

 15. True or false:

 a) Text files can be viewed using the program Notepad.

 b) Text files cannot be printed on a printer.

 c) By convention, text files end with the extension .txt

 d) It is best to use two forward slashes to specify the path name where the file is located.

 16. Write all of the import statement(s) necessary to perform disk I/O.

 17. Give all of the statements, excluding import statements, to:

 a) read the year of a person’s birth from the disk file Dates.txt stored on the root of the E

drive

 b) read a person’s age and name from the disk file Names.txt stored on the root of the E

drive

 c) read the year of a person’s birth from the disk file bDays.txt stored on the root of the E

drive

 18. Give all the statements necessary to append the contents of the variables myBalance and

yourBalance to the disk file Balances.txt stored on the root of the C drive.

 19. Give all the statements necessary to output the contents of the variables myBalance and

yourBalance to the disk file Balances.txt stored on the root of the C drive. If the file

already exists, delete it before performing the output.

 20. Give all the statements necessary to determine if the file Data.txt exists on the root of the C

drive, and output The File Exists to the system console if it does.

 21. Write the statement needed to close the file attached to the scanner object inputFile.

 Chapter 4· Boolean Expressions, Making Decis ions, and Disk Input and Output ■ 189

 22. Briefly discuss how the try and catch block can be used to handle exceptions detected by

methods invoked within a program.

Programming ExercisesProgramming Exercises

 1. Write a program to ask a user to input two strings from the system console. If the strings are

identical output Stings Identical to the system console. Otherwise output them in alphabetical

order.

 2. Write a program for a travel agency, which presents the user with the following menu as a

console input prompt:

 Where do you want to vacation?

 Enter: 1 for Disney World, 2 for Las Vegas, 3 for Paris or 4 for Alaska

 After accepting the customer’s numeric response from the system console, use either an if-

else or a switch statement to output two destination-appropriate messages to the text file

vacation.txt (for example, if the user chose 4 for Alaska, you might want to output the

messages Bring a warm jacket and enjoy Alaska and Say "Hello" to Frosty for me). Feel free to

add bells and whistles such as adding a welcome message or adding additional destinations.

3. Write a program to ask a user to enter a student name, major, and GPA from the system console.

If the GPA is greater than 3.5, set a Boolean variable, honors, to true, otherwise set it to

false. Create a text file called StudentInfo.txt and output the name, major, GPA, and the

student’s honors status to four separate lines of the file.

4. Extend the program described in Programming Exercise 4 to ask the user the name of the file in

which to store the data. After writing the data to a text file with that name, add the phrase End

of Student Record as the last line of the file. Then, read five lines store in the file and output

them on five separate lines to a message box with the appropriate annotation. Before reading

the data, ask the user the name of the file from which to read. Use a try and a catch block to

output the message problems opening or reading the file when an IOException is thrown.

5. Write a graphical game application that contains a class named RV whose objects are the

recreational vehicle designed and digitized as described in Knowledge Exercises 20 and 21 of

Chapter 3. When the application is launched, the RVs appear on the screen. The game player is

given 10 seconds to move any part of the RV beyond the top, bottom, right side, and left side of

the game board using the keyboard cursor control keys. The game begins when the game player

clicks the Start button and ends when the time expires or some part of the RV has moved beyond

all four boundaries of the game board. During the game, a countdown of the time remaining

should be displayed at the top of the game board, and the countdown should stop at the end of

the game.

6. Write a graphical game application that contains a class named RV whose objects are the

recreational vehicles designed and digitized as described in Knowledge Exercises 20 and

21 of Chapter 3. The application should also contain a class named Mouse whose objects

are designed and digitized in a similar manner. When the application is launched, one RV

190 ■ Programming Fundamentals Using Java

and one mouse appear on the screen at different random locations. The user is given 10 seconds

to move the mouse to the RV using the keyboard’s cursor control keys. The game begins when

the game player clicks the Start button and ends when the time expires or the mouse has collided

with the RV. During the game, a countdown of the time remaining should be displayed at the

top of the game board, and the countdown should stop at the end of the game. The game begins

when the game player clicks the Start button and ends when the time expires or some part of the

mouse has collided with the RV.

7. Write the game application described in Programming Exercise 7 modified to include three RVs

at different locations. In this version of the game, the game player has to make the mouse collide

into all three RVs and the RVs disappear when the mouse collides with them. The player’s score

will be the time remaining after all the RVs have disappeared. A record of the lowest score ever

achieved will be kept in the disk file LowScore.txt.

8. Using the skills developed in this chapter, continue the implementation of the parts of your

game (specified in Preprogramming Exercise 1 of Chapter 1) that require cursor-key motion

control, disk I/O, collision detection, and stopping a time countdown. To test the collision

detection, you will have to add a class to your application that implements your second type of

game piece.

■ ■ ■ ■ ■

In this chapter

In this chapter, we will learn the techniques used to repeat the execution of a designated

group of statements an unlimited number of times, which gives us the ability to perform

a significant amount of processing with just a few repeated statements. Not only does this

reduce the time and effort required to produce a program, but it also allows us to utilize

algorithms whose implementation require the use of these repetition, or loop, statements. We

will discuss the syntax and execution path of Java’s three how to nest these statements. Our

knowledge of these statements will be expanded in Chapter 6, which covers the concept of

arrays, because loops are used to unlock the power of arrays.

We will learn why repetition statements are an integral part repetition statements, consider which

one is best suited for particular applications, and learn of two fundamental algorithms, summing and

averaging, and how to generate a repeatable sequence of pseudorandom numbers using loops and the

methods in the class Random. In addition, we will extend our knowledge of numeric formatting intro-

duced in Chapter 2 and learn to produce output consistent with any of the world’s currency systems.

After successfully completing this chapter you should:

� Understand the syntax and execution path of Java’s for, while, and do-while repetition

statements

� Know which statement to use for a particular application

� Understand why a for loop is an automatic counting loop

� Understand the role of sentinels in repetition statements and their use in while and

do-while loops

5CHAPTERCHAPTER

5.1 A Second Alternative to Sequential Execution. 192

5.2 The for Statement. 193

5.3 Formatting Numeric Output: A Second Pass.202

5.4 Nesting for Loops .208

5.5 The while Statement . 212

5.6 The do-while Statement . 219

5.7 The break and continue Statements 221

5.8 Which Loop Statement to Use . 222

5.9 The Random class. .224

5.10 The Enhanced for Statement. .228

5.11 Chapter Summary .229

REPEATING STATEMENTS: LOOPSREPEATING STATEMENTS: LOOPS

192 ■ Programming Fundamentals Using Java

� Be able to explain the totaling and counting algorithms and the role loops play in their

implementation

� Know how to generate a set of random numbers using the methods in the class Random

and loop statements

� Be able to use the NumberFormat class’s methods to format currency output in a local

specific format

� Be able to use the DecimalFormat class’s methods to format numeric output with

leading/trailing zeros and comma separators and display a numeric value as a percent-

age or using scientific notation

 5.1 5.1 A SECOND ALTERNATIVE TO SEQUENTIAL EXECUTION A SECOND ALTERNATIVE TO SEQUENTIAL EXECUTION

Often, the proper execution path of a program’s statements requires that a sequence of instruc-

tions be executed several times. For example, a program accepts three input deposits and adds them

to a bank balance after each input. In this case, the input statement and the arithmetic statement to

add the input deposit to the bank balance would be repeated three times.

One alternative would be to code one input and one arithmetic statement, copy and paste them

into the program two more times, and then execute the three groups of statements sequentially.

Another alternative would be to enclose one input and one arithmetic statement in a repetition

statement’s code block, which is repeated three times. Although both approaches would produce

the same result, the second alternative is most often preferred, especially when the statements are

to be repeated a large number of times. Not only does this approach save coding time, but it also

improves the readability of our programs by significantly reducing the length of the program, and,

more importantly, making it obvious to the reader that the statements are being repeated.

A repetition statement is most often referred to as a loop statement. The term loop comes from

an aircraft “loop” maneuver often performed at air shows during which the aircraft repeatedly

travels in a vertical circle. Figure 5.1 illustrates the maneuver and programming analogy.

Like many programming languages, Java provides three repetition or loop statements: the for,

the while, and the do-while statements. While there is the possibility for significant overlap in

statement 1

statement 2

statement 3

:

statement n

Figure 5.1

Airplane and programming loops.

 Chapter 5· Repeat ing Statements: Loops ■ 193

the use of these three statements in our programs, good coding practice and ease of use greatly

narrow the choice of which statement to use in a particular context. One of the objectives of this

chapter is to specify clear criteria for when each of these three statements is best used in our

programs. We will begin our study of repetition statements with the for statement.

 5.2 5.2 THE THE FORFOR STATEMENT STATEMENT

The for statement is often called an automatic counting loop. It is most often used when we

know how many times to repeat the loop’s statements. In some cases, this is known at the time the

program is written; for example, a program that always processes three deposits. In other cases, the

number of times the loop is to execute is specified, or determined, during the program’s execution.

For example, before entering deposits the program users are asked to enter the number of deposits

they will be making into their bank account during this execution of the program. The criterion

common to both of these alternatives is that before the loop executes the number of repetitions is

known. When this is the case, the for loop is the best repetition statement to use.

 5.2.15.2.1 Syntax of the Syntax of the forfor Statement Statement

The left side of Figure 5.2 shows an example of a for statement containing a group of state-

ments that will executes its statement block three times. The meaning of the statement and its exe-

cution path are illustrated on the right side of Figure 5.2. The integer variable i is called the loop or

i = 1;

i <= 3;

statement(s)

i = i + 1;

true

false

int i;

for (i=1; i<=3; i=i+1)

{

//statement(s) to be repeated

}

Set the initial value

Test to continue

Change the loop variable

Figure 5.2

A for loop that executes three times and its execution path.

194 ■ Programming Fundamentals Using Java

loop control variable. The statement(s) enclosed inside the braces are called the loop’s code block,

or the body of the loop. They are said to be inside the loop. These are the statements to be repeated.

When a loop is correctly written, the loop variable is initialized, tested, and changed. In a for

loop, all three of these actions are coded within the for statement’s parentheses. Referring to the

left side of Figure 5.2, the statement i=1; sets the initial value, i<=3; tests to see if i has reached

its terminating value or if the loop should continue, and i=i+1; changes or increments the value of

the loop’s control variable.

Referring to the items enclosed inside the parentheses after the keyword for, the code:

� i=1; is called the initialization expression

� i<=3; is called the condition to continue expression or continuation condition

� i=i+1; is called the increment

The initialization expression is an assignment statement. As shown on the top-right side of

Figure 5.2, this assignment statement always executes once to initialize the loop variable just be-

fore the loop begins. The condition to continue expression is a Boolean expression involving the

loop variable, which executes at least once. The loop body is repeatedly executed while this Bool-

ean expression is true. If the Boolean condition is false when the loop begins, the statements in

the loop body are not executed. The increment is an assignment statement. The statement is used

to change the loop variable after the statements in the loop body are executed. When the increment

is one, the equivalent coding i++; is commonly used.

The loop shown in Figure 5.2 executes its statement body three times. When the for statement

begins, the loop variable i is initialized to 1. The condition to continue (i <= 3) evaluates to true

(1 <= 3), and the statements in the loop body execute for the first time. The loop variable is then

incremented to 2, the condition is tested and is still true (2 <= 3), and the statements execute a

second time. The loop variable is then incremented to 3, the condition is still true (3 <= 3), and

the statements execute a third time. Finally, the loop variable becomes 4, the condition (4 <= 3) is

false, and the loop ends. After the loop ends, the statement immediately following its close brace

executes.

The following code fragment contains a for statement that executes its loop body 500 times:

int i;

for(i=1; i<=500; i=i+1)

 {

 //statement(s) to be repeated

 }

The most common errors made when coding the for statement are:

� placing a semicolon after the close parenthesis

� neglecting to code the semicolon after the initial condition or after the condition to

continue, both of which result in a translation error

� neglecting to code the open and close braces around the statements when more than one

statement is to be repeated

 Chapter 5· Repeat ing Statements: Loops ■ 195

� modifying the loop variable within the body of the loop which alters the automatic

counting

When a semicolon is coded after the close parenthesis, the statement is syntactically correct,

however, none of the statements that would have normally formed the loop body are considered to

be part of (inside) the loop. They default to sequential execution and each statement executes once.

When braces are not coded, the statement is also syntactically correct, however, the first statement

after the for statement is the only statement considered to be part of the loop. Regardless of the

indentation used, it is the only statement repeated.

The generalized syntax of the for statement and its execution path are shown at the top and

bottom of Figure 5.3, respectively.

for(initialization expression; condition to continue; increment)

{

 //statement(s) to be repeated

}

true

false

initialization

expression

condition to

continue

statement(s)

increment(s)

Figure 5.3

The generalized syntax of the for statement and its execution path.

In addition to the loop variable, the initialization expression, test to continue, and the incre-

ment can all contain other variables that can be used to adjust the flow of the statement at runtime.

For example, the following code fragment outputs the values in the five times table from 10 to 50

on one line:

int i;

int beginValue = 10;

196 ■ Programming Fundamentals Using Java

int endValue = 50;

int tableValue = 5;

for(i=beginValue; i<=endValue, i=i+tableValue)

{

System.out.print(i + " ");

}

Figure 5.4 presents a console application named ForLoopCounting that utilizes this feature

of the statement to count from a user input starting value to a specified ending value, by a specified

increment. The bottom part of the figure gives the user prompts and inputs and the corresponding

outputs generated by the program.

The input starting and ending values, and the increment to count by, are parsed into the vari-

ables start, end, and increment on lines 10, 12, and 14 of Figure 5.4. These variables are used

in the initialization expression, condition to continue, and increment of the for statement that

begins on line 18. As indicated by the input and output at the bottom of Figure 5.5, the program

user inputs 3 as a starting value, 27 as an ending value, and an increment of 5. After the value 23 is

output, the loop variable i becomes 28 (= 23 + 5). Because 28 is not less than or equal to the ending

value 27, the loop ends and 28 is not output.

1 import javax.swing.*;

2

3 public class ForLoopCounting

4 {

5 public static void main(String[] args)

6 { int start, end, increment;

7 String input;

8

9 input = JOptionPane.showInputDialog("Enter the starting value:");

10 start = Integer.parseInt(input);

11 input = JOptionPane.showInputDialog("Enter the ending value: ");

12 end = Integer.parseInt(input);

13 input = JOptionPane.showInputDialog("Count by?: ");

14 increment = Integer.parseInt(input);

15

16 System.out.println("Counting from " + start + " to " + end +

17 " by " + increment + "s:");

18 for(int i=start; i<=end; i=i+increment)

19 {

20 System.out.println(i);

21 }

22 }

23 }

Input prompts and user inputs:

Enter the starting value: 3

Enter the ending value: 27

Count by?: 5

 Chapter 5· Repeat ing Statements: Loops ■ 197

Outputs:

Counting from 3 to 23 by 5s:

3

8

13

18

23

Figure 5.4

The application ForLoopCounting and typical inputs and outputs.

Line 18 presents a feature of the for statement we have not previously discussed. It declares

the loop variable i as part of the initialization expression by proceeding its assignment statement

with the keyword int. When this is done, the scope of the loop variable is limited to the for state-

ment and its statement body. The loop variable cannot be used by statements that follow the loop

or by statements that precede the loop. After the loop ends, the Java memory manager reclaims the

storage assigned to the loop variable, and the variable’s lifetime is said to be over. If another vari-

able named i had been declared in the program before or after the loop statement, all references to

the variable i inside the for statement (lines 18-21) would refer to the loop variable, not the vari-

able declared outside the loop. This feature ensures that the loop will count correctly.

A for loop can also be used to count down to an ending value. In this case, the loop variable

is initialized to the starting countdown value, and it is decremented each pass through the loop.

The statement’s Boolean condition checks to see if the ending value is reached. The following code

fragment counts down from ten to zero:

for(int i= 10; i>= 0; i--)

{

 System.out.println(i);

}

In general, the initialization expression and the increment can contain more than one assign-

ment statement. When this is the case, they are separated with commas as shown in code fragment

below. The loop’s execution path is shown in Figure 5.5.

int i, j, k;

for(i=1, j=10, k=4; i<= 3; i=i+1, j=j+3, k=k-1)

{

 //statement(s) to be repeated

}

 5.2.25.2.2 A A forfor Loop Application Loop Application

Figure 5.6 shows a graphical application that draws the first row of a checkerboard on a light-

gray-colored game board as shown in Figure 5.7. The program uses a for loop to draw the eight

checkerboard squares and then uses another for loop to draw a red checker on the row’s black

squares.

198 ■ Programming Fundamentals Using Java

Inside the draw method, line 26 of Figure 5.6 uses the game

environment’s setBackground method to change the game

board’s background color to light gray. Then line 29 begins a

for loop that executes eight times. During each iteration of the

loop, a black or red checkerboard box is drawn (line 36) using

the current drawing color. The first statement in the loop body

(line 31) sets the current color to firstColor (black), then line

32 uses the modulus operator to determine if the loop variable,

col, is even (col % 2 == 0). If it is, the current color is

changed to secondColor (red), which causes the even check-

erboard boxes (2, 4, 6, and 8) to be drawn in red. The counting

algorithm, whose increment is the width of the checkerboard

boxes, is used on line 37 to calculate the x location of the next

checkerboard box to be drawn.

Line 42 begins a second for loop that draws a red checker

(line 45) on the black checkerboard boxes. Before the loop be-

gins, the current drawing color is set to red (line 41). Because

the for statement’s increment adds 2 to the loop variable col,

this variable stores the column numbers 1 (firstChecker-

Col), then 3, 5, and 7. These are the column numbers of the

black boxes, which are used on line 44 to calculate the x loca-

tion of each column’s checker. In this calculation, one is subtracted from the column number col

before it is multiplied by the box width because column 1’s checker should be drawn at an x value

of 20.

1 import java.awt.*;

2 import edu.sjcny.gpv1.*;

3

4 public class CheckerBoardRow extends DrawableAdapter

5 {

6 static CheckerBoardRow ge = new CheckerBoardRow();

7 static GameBoard gb = new GameBoard(ge, "Checker Board Row");

8

9 public static void main(String[] args)

10 {

11 showGameBoard(gb);

12 }

13

14 public void draw(Graphics g)

15 {

16 int boxX = 12;

17 int boxY = 50;

18 int boxWidth = 60;

19 int boxHeight = 53;

20 int checkerX = 20;

i = 1; j = 10; k = 4;

i <= 3

Statement(s)

true

false

i = i + 1; j = j + 3; k = k - 1;

Figure 5.5

Execution path of a for loop containing multiple

initialization-expression and increment-assignment

statements.

 Chapter 5· Repeat ing Statements: Loops ■ 199

21 int checkerY = 55;

22 int firstCheckerCol = 1;

23 Color firstColor = Color.BLACK;

24 Color secondColor = Color.RED;

25

26 gb.setBackground(Color.LIGHT_GRAY);

27

28 //Draw the Checker board boxes

29 for(int col = 1; col <= 8; col++)

30 {

31 g. setColor(firstColor); //black

32 if(col % 2 == 0)

33 {

34 g. setColor(secondColor); //red

35 } //end if

36 g.fillRect(boxX, boxY, boxWidth, boxHeight);

37 boxX = boxX + boxWidth;

38 } //end for loop

39

40 //Draw the Red checkers

41 g.setColor(Color.RED);

42 for(int col = firstCheckerCol; col <=8; col= col + 2)

43 {

44 checkerX = 20 + (col - 1) * boxWidth;

45 g.fillOval(checkerX, checkerY, 40, 40);

46 }

47 }

48 }

Figure 5.6

The application CheckerBoardRow.

Figure 5.7

The output from the application CheckerBoardRow.

200 ■ Programming Fundamentals Using Java

 5.2.35.2.3 The Totaling and Averaging Algorithms The Totaling and Averaging Algorithms

The totaling or summation algorithm, like the counting algorithm, is a fundamental algorithm

of computer science. Both of these algorithms are used in most programs. As the totaling algo-

rithm’s name implies, it is used to calculate a total, or sum, of a group of values. For example, it

could be used to calculate the total of a group of deposits input to a program, and once the total

is known, the average deposit can be easily determined by dividing the total by the number of

deposits.

The totaling algorithm is very similar to the counting algorithm, except that the counting al-

gorithm adds (or subtracts) a constant increment to the current value of the counter every time it

is executed, and the totaling algorithm adds the next item to be totaled to the current value of the

total every time it is executed:

counting algorithm: count = count ± constantIncrement;

totaling algorithm: total = total + newItem

If we were adding a group of deposits, the variable newItem would contain the next deposit.

As was the case with the counting algorithm, the name of the variable on the left side of the assign-

ment operator can be any valid variable name. Similarly, the same variable name must be used on

the right side of the assignment operator, and the name should be representative of what it stores.

For example, when calculating a new bank balance:

balance = balance + deposit;

The chosen variable is generically referred to as the totaling or summation variable. Before the

algorithm is used, the variable is set to an initial value, which is the current (beginning) value of

the sum. For example, it could be the bank balance before the new deposits are made. Often, this

value is zero. As is the case with the counting algorithm, once the initial value is set, the summation

algorithm is repeatedly executed.

The following code fragments add up the integers from one to four:

int sum = 0; int sum = 0;

sum = sum + 1; for(int i = 1; i <= 4; i = i + 1)

sum = sum + 2; OR {

sum = sum + 3; sum = sum + i;

sum = sum + 4; }

The contents of the memory cell sum would progress from 0, to 1, to 3, to 6, and finally to 10. In

most cases, as shown on the right, a loop is used to repeat the summation algorithm.

Figure 5.8 presents a Java console application named TotalingLoop that demonstrates the

use of the totaling algorithm and the calculation of an average. A set of sample inputs and the pro-

gram’s corresponding outputs is given at the bottom of the figure. The monetary outputs produced

by lines 15–16 and lines 30–34 are formatted as U.S. currency using an object in the NumberFor-

mat class declared on line 13. This class and its methods used to produce this currency formatting

will be discussed in the next section.

 Chapter 5· Repeat ing Statements: Loops ■ 201

The program accepts a given number of input deposits and uses the totaling algorithm (line 25)

to calculate their total. The number of deposits to be processed is input on line 17, then the parsed

value is used in the Boolean condition of the for statement that begins on line 21 to process that

number of deposits.

Before the loop begins, the totaling variable, total, is initialized to zero (line 20). During

each iteration of the loop that begins on line 21, a new deposit is input and parsed. Then, the total

algorithm is used on line 25 to add the new deposit to the total of the previously input deposits.

After all the deposits are processed, the new balance (line 27) and the average deposit (line 28)

are calculated. Lines 15–16 output the beginning balance, and lines 30–34 output the total of the

deposits, the average deposit, and the new balance to the system console.

1 import javax.swing.JOptionPane;

2 import java.text.NumberFormat;

3 import java.util.Locale;

4

5 public class TotalingLoop

6 {

7 public static void main(String[] args)

8 {

9 double balance = 1000.24;

10 int numOfDeposits;

11 double deposit, total, newBalance, averageDeposit;

12 String input;

13 NumberFormat us = NumberFormat.getCurrencyInstance(Locale.US);

14

15 System.out.println("Your beginning balance is: " +

16 us.format(balance));

17 input = JOptionPane.showInputDialog("How Many Deposits?");

18 numOfDeposits = Integer.parseInt(input);

19

20 total = 0.0;

21 for(int i = 1; i <= numOfDeposits; i++)

22 {

23 input = JOptionPane.showInputDialog("Enter a deposit");

24 deposit = Double.parseDouble(input);

25 total = total + deposit;

26 }

27 balance = balance + total;

28 averageDeposit = total / numOfDeposits;

29

30 System.out.println("The total of the " + numOfDeposits +

31 " deposits is " + us.format(total));

32 System.out.println("The average deposit was: " +

33 us.format(averageDeposit));

34 System.out.println("Your new balance is: " + us.format(balance));

35 }

36 }

202 ■ Programming Fundamentals Using Java

Inputs

3

20.10

30.20

40.30

Outputs

Your beginning balance is: $1,000.24

The total of the 3 deposits is $90.60

The average deposit was: $30.20

Your new balance is: $1,090.84

Figure 5.8

The application TotalingLoops and typical inputs and outputs.

 5.3 5.3 FORMATTING NUMERIC OUTPUT: A SECOND PASS FORMATTING NUMERIC OUTPUT: A SECOND PASS

The use of the DecimalFormat class to improve the readability of numeric outputs was brief-

ly discussed in Chapter 2 (Section 2.10). In this section, we will expand that discussion and also

discuss the use of the NumberFormat and Locale classes that were used to format the currency

outputs produced by the program shown in Figure 5.8. We will begin with an introduction to the

techniques used to format numeric output as currency.

NOTE

All numeric formatting rounds up the fractional part of a numeric value, and all

of the digits in the integer portion of the numeric value are always included in the

formatted version of the number.

 5.3.15.3.1 Currency Formatting Currency Formatting

The monetary outputs produced by the program shown in Figure 5.8 are formatted as United

States currency. There is a leading dollar sign and a decimal point separating the dollar amount

from the cents, which are displayed as two rounded digits to the right of the decimal point. In ad-

dition, a comma is used as a thousands separator in the dollar amount. Had the output been nega-

tive, it would have been enclosed in parentheses. All of this formatting conforms to the way U.S.

currency is displayed within the world of finance and makes the units of the output recognizable

as dollars and cents.

Two methods in the NumberFormat class, getCurrencyInstance and format, and con-

stants defined in the class Locale can be used to format numeric values as currency. The constants

in the class Locale are used to specify which of the world’s currencies to use in the formatting.

The NumberFormat class’s method getCurrencyInstance is used on line 12 of Figure 5.8

to create a currency formatting object named us. The method accepts one argument, which is nor-

mally one of the predefined static constants in the Locale class. As the name of the class implies,

 Chapter 5· Repeat ing Statements: Loops ■ 203

this argument specifies the locale of the format that will be associated with the formatting object.

Line 13 uses the constant Locale.US, to specify that the currency formatting associated with the

object us will be United States currency: dollars and cents.

The object us is then used on lines 15-16 and lines 30-33 to invoke the NumberFormat class’s

format method. This method converts the numeric value passed to it to a string using the format-

ting associated with the object that invoked it. As a result, the four numeric outputs produced by

the program are formatted as U.S. currency.

By changing the argument passed to the method getCurrencyInstance on line 13, the nu-

meric output produced by the program could be made to conform to other currency formats used in

the financial world. For example, the following code fragment produces the two outputs, which are

formatted as pounds (the United Kingdom’s currency) and euros (the European Union currency),

respectively. The output of the code fragment is given below the code.

double price = 1234567.889;

NumberFormat uk = NumberFormat.getCurrencyInstance(Locale.UK);

NumberFormat france = NumberFormat.getCurrencyInstance(Locale.FRANCE);

 System.out.println(uk.format(price));

 System.out.println(france.format(price));

Output:

£1,234,567.89

1 234 567,89 €

NOTE The formatting performed does not take into account monetary exchange rates.

The Default Locale

The getCurrencyInstance method invoked on line 13 of Figure 5.8 is overloaded. There

are two version of it: a one-parameter version that was invoked on line 13 and a no-parameter

version. The no-parameter version of the method can be used to format numeric currency in the

default locale of the computer’s operating system. Assuming the default locale of the operating

system was Italy, the following code fragment would produce two identical lines of output format-

ted as euros (Italy’s currency).

double price = 1435.2;

NumberFormat italy = NumberFormat.getCurrencyInstance(Locale.ITALY);

NumberFormat osDefault = NumberFormat.getCurrencyInstance();

System.out.println(italy.format(price));

System.out.println(osDefault.format(price));

204 ■ Programming Fundamentals Using Java

 5.3.2 5.3.2 The The DecimalFormatDecimalFormat Class: A Second Look Class: A Second Look

The methods in the DecimalFormat class, which were briefly discussed in Section 2.10 of

Chapter 2, can also be used to format numeric output. Normally, these methods are used when the

numeric value is not currency.

Like the NumberFormat class, the DecimalFormat class contains a nonstatic method named

format that returns a string containing the formatted version of the numeric value sent to it as an

argument. This method is invoked with a DecimalFormat object that can be declared using the

class’s one-parameter constructor. The constructor is passed a string argument, called the format-

ting string, which contains the formatting information. In Section 2.10, we used the formatting

string argument "#,###.##" to produce an output that contained a comma every three digits to the

left of the decimal point and to format real numbers (nonintegers) with a maximum of two digits

of precision.

Other characters can be used in the formatting string to produce other forms of numeric output

formatting. The pound signs (#) to left and right of the decimal point can be replaced with zeros,

which are used to format the numeric value with leading and trailing zeros. In addition, a percent

sign (%) can be added to the end of the formatting string. The percent sign is used to format the nu-

meric value as a percentage. For example, the value 0.237 would be formatted as 23.7%, assuming

one digit of precision was specified in the formatting string. Numeric values can also be formatted

in scientific notation.

Regardless of the characters used in the formatting string, the fractional part of a numeric

value is always rounded up and all of the digits in the integer portion of the numeric value or a

leading zero are always included in the formatted value unless scientific notation is being used.

Leading and Trailing Zeros

Inserting zeros into the formatting string adjacent to the decimal point will add leading or

trailing zeros to the formatted value. For example, when the numeric value being formatted does

not have an integer part (e.g., .254), inserting a zero to the left of the decimal point in the formatting

string will format the value as 0.254. Adding a zero the right of the decimal point will format the

value 167 as 167.0. If the number does have a fractional or integer part, then the digit adjacent to

the decimal point in the numeric value always appears in the formatted value.

The code fragment below formats numeric values with one leading zero and two trailing zeros

and produces the output shown below the code. The third output value is rounded to the specified

two digits of precision.

 double n1 = .2;

 double n2 = 167.0

 double n3 = 1.4672

 DecimalFormat ltz = new DecimalFormat("#,##0.00");

 System.out.print(ltz.format(n1) + " " + ltz.format(n2) + " " +

 ltz.format(n3));

 Chapter 5· Repeat ing Statements: Loops ■ 205

Output:
0.20 167.00 1.47

Percentages

A formatting string that ends with a percent sign is used to format a numeric value as a per-

centage. The value will be multiplied by 100, and a percent sign will be added to the right side of

the string from the format method. For example, the value 0.254 would be formatted as 25.4%.

The code fragment below formats numeric values as percentages with one leading zero and one

trailing zero. The output it produces is shown below the code.

double n1 = 0.002;

double n2 = 0.16 DecimalFormat pct = new DecimalFormat("#,##0.0%");

System.out.println(pct.format(n1) + " " + pct.format(n2));

Output:

0.2% 16.0%

Scientific Notation

Scientific notation is a formatting of a numeric value into a mantissa followed by an exponent.

Usually, the mantissa and the exponent are separated by the letter E. The mantissa contains the

digits of the numeric value with its decimal point shifted left or right. To determine the numeric

value, the mantissa is multiplied by 10 raised to the value of the exponent. For example, 23.971E2

represents the numeric value 2,397.1.

A formatting string that ends with the character E followed by the number of leading zeros to

be displayed in the exponent is used to format a numeric value in scientific notation. At least one

zero must be included after the letter E in the formatting string. The formatted value will contain

the mantissa and the exponent separated by the letter E. The mantissa is formatted using the

portion of the formatting string to the left of the letter E, which should contain only zeroes and a

decimal point.

The code fragment below formats numeric values in scientific notation with the mantissa

shown with one digit to the left of the decimal. The output it produces is shown below the code.

double n1 = 0.00000215;

double n2 = 16123067533.1

DecimalFormat sn = new DecimalFormat("0.0000E0");

System.out.println(sn.format(n1) + " " + sn.format(n2));

Output:

2.1500E-6 1.6123E10

NOTE
All digits of the exponent will always be included in the scientific formatted version

of a numeric value.

206 ■ Programming Fundamentals Using Java

Table 5.1 summarizes the characters used in the DecimalFormat class’s format string and the

formatting they produce. All digits in the integer portion of numeric value will always be included

in the formatted version of the numeric unless scientific notation is being used. All digits of the

exponent are always displayed when using scientific notation.

Table 5.1

The DecimalFormat Class’s Formatting Characters and Their Meaning

Character Formatting Produced Formatting String Example

. Output a decimal point in this position

Output a digit in this position if it exists "#.#"

0
Output a digit in this position if it exists,

else a zero

"0.00"

One leading zero, two digits of precision

,
Output a comma separator in this posi-

tion, as necessary

"#,##0.00"

Comma separator every three digits

(with one leading zero and two digits of

precision)

%

Output a numeric value as a percentage

(Multiply the numeric by 100 and add a

percent sign to its right)

"0.000%"

Convert numeric to a percentage fol-

lowed by a percent sign (with one lead-

ing zero, three digits of precision)

E
Output the numeric value in scientific

notation

"0.0000E0"

Mantissa formatted with 5 digits

 x.xxxxEx

 All digits of the exponent are displayed

Figure 5.9 illustrates the use of the methods in the DecimalFormat class to format numeric

outputs. The program produces four groupings of outputs, which are shown in Figure 5.10. Each

grouping outputs the same three numbers: n1, n2, and n3 (lines 15–33) using different formatting

strings, which are defined on lines 7–10.

The first three output groupings use comma separators every three digits. The second and third

groupings also use leading and trailing zeros, with the outputs in the third grouping displayed as

percentages. The fourth output grouping uses scientific notation.

The first numeric output in the first grouping (0.006) has been truncated because its format-

ting string (line 7) only contains three digits of precision. It contains a leading zero because all

numeric values contain a leading zero unless scientific notation is being used. The last two outputs

in the first grouping do not contain trailing zeros because the pound sign (#) was used on line 7 to

specify their precision.

The outputs in the second grouping contain trailing zeros because a zero was used in their for-

matting string to specify their precision (line 8). Finally, the exponent (11) in the second numeric

output of the last grouping contains two digits even though its formatting string specifies one digit

 Chapter 5· Repeat ing Statements: Loops ■ 207

of precision. All the digits of an exponent are always displayed, regardless of the number of zeros

used to specify the leading zeros of the exponent.

1 import java.text.DecimalFormat;

2

3 public class DecimalFormatClass

4 {

5 public static void main(String[] args)

6 {

7 DecimalFormat cs = new DecimalFormat("#,###.###"); //commas

8 DecimalFormat ltz = new DecimalFormat("#,##0.000"); //zeros

9 DecimalFormat pct = new DecimalFormat("#,##0.00%"); //percentages

10 DecimalFormat sn = new DecimalFormat("0.0000E0"); //scientific

11 double n1 = 0.0062;

12 double n2 = 161234563468.5;

13 double n3 = 1.530;

14

15 System.out.println("Comma-separators");

16 System.out.println(cs.format(n1));

17 System.out.println(cs.format(n2));

18 System.out.println(cs.format(n3));

19

20 System.out.println("\nLeading & Trailing Zeros, & Commas");

21 System.out.println(ltz.format(n1));

22 System.out.println(ltz.format(n2));

23 System.out.println(ltz.format(n3));

24

25 System.out.println("\nPercentages");

26 System.out.println(pct.format(n1));

27 System.out.println(pct.format(n2));

28 System.out.println(pct.format(n3));

29

30 System.out.println("\nScientific Notation");

31 System.out.println(sn.format(n1));

32 System.out.println(sn.format(n2));

33 System.out.println(sn.format(n3));

34 }

35 }

Figure 5.9

The application DecimalFormatClass.

208 ■ Programming Fundamentals Using Java

Comma separators

0.006

161,234,563,468.5

1.53

Leading & Trailing Zeros &Commas

0.006

161,234,563,468.500

1.530

Percentages

0.62%

16,123,456,346,850.00%

153.00%

Scientific Notation

6.2000E-3

1.6123E11

1.5300E0

Figure 5.10

The output produced by the application DecimalFormatClass.

 5.45.4 NESTING NESTING FORFOR LOOPS LOOPS

As we have learned, loops can be used to repeat a statement or a group of statements contained

inside a statement block. When the statement block contains a loop, we say that the loop that is

inside the statement block is nested inside the other loop. The loop in the statement block is called

the inner loop because it is inside the other loop, which is referred to as the outer loop. The loop in

the statement block can be thought of as an egg inside the nest formed by the outer loop. Consider

the following code fragment that computes the average of a runner’s ten qualifying race times:

total = 0;

for(int i = 1; i<=10; i++)

{

 input = JOptionPane.showInputDialog("Enter a race time");

 aRaceTime = Double.parseDouble(input);

 total = total + aRaceTime;

}

System.out.println(" Your average time is " + total / 10);

This code could be used to process 100 runners by nesting it inside an outer loop that executes

100 times.

for(int j = 1; j<=100; j++) //each runner (the outer loop)

{

 Chapter 5· Repeat ing Statements: Loops ■ 209

 total = 0;

 for(int i = 1; i<=10; i++) //each race (the inner loop)

 {

 input = JOptionPane.showInputDialog("Enter a race time");

 aRaceTime = Double.parseDouble(input);

 total = total + aRaceTime;

 }

 System.out.println(" Your average time is + total / 10);

}

As is the case with nested decision statements, there is no limit on how many loops can be

nested inside of other loops. The following code fragment processes the 10 qualifying times for 100

racers in 5 states using two levels of nesting.

for(int k = 1; k<=5; k++) //each state

{

 for(int j = 1; j<=100; j++) //each runner

 {

 total = 0;

 for(int i = 1; i<=10; i++) //each race

 {

 input = JOptionPane.showInputDialog("Enter a race time");

 aRaceTime = Double.parseDouble(input);

 total = total + aRaceTime;

 }

 System.out.println("Your average time is + total /10);

 }

}

The indentation used in the above code fragment is considered good programming practice be-

cause it makes the use of nested loops, and the nesting levels, obvious to anyone reading the code. It

can be quickly determined that the three statements in the innermost loop will execute 5,000 times

(= 5 * 100 * 10). When using nested loops, it is also good programming practice to progressively

develop the code from the inside of the nest outward. The innermost loop (e.g., one that processes

10 races) is coded first, tested, and corrected. Then, this loop is enclosed in a loop (e.g., one that

processes 100 runners), and this nested structure is again tested. The process continues until the

outermost loop (e.g., one that processes 5 states) is complete.

Figure 5.11 contains a graphics application that illustrates the use of nested for loops to draw

the checkerboard shown in Figure 5.12, and a second set of nested for loops to draw three rows of

red checkers on the board. A significant portion of the code is the same as the code shown in Figure

5.6 that drew one row of a checkerboard containing red checkers.

Lines 31 to 49 contain the first set of nested for loops used to draw the eight rows of the check-

erboard. The inner loop, that begins on Lines 33 and ends on Line 42, is same code used on Lines

29 to 38 of Figure 5.6 to draw one row of a checkerboard. This loop is now nested inside an outer

loop that begins on line 31, which executes eight times. With each pass through the outer loop, the

inner loop draws another row of the board. To prevent the rows from being drawn on top of each

other, line 43 increases the y location of the next row of boxes to be draw in the inner loop by the

210 ■ Programming Fundamentals Using Java

1 import edu.sjcny.gpv1.*;

2 import java.awt.Color;

3 import java.awt.Graphics;

4

5 public class CheckerBoard extends DrawableAdapter

6 {

7 static CheckerBoard ge = new CheckerBoard ();

8 static GameBoard gb = new GameBoard(ge, "Nested For loops");

9

10 public static void main(String[] args)

11 {

12 showGameBoard(gb);

13 }

14

15 public void draw(Graphics g)

16 {

17 int xBox = 12;

18 int yBox = 50;

19 int boxWidth = 60;

20 int boxHeight = 53;

21 int firstCheckerCol = 1;

22 int checkerX = 20;

23 int checkerY = 55;

24 Color firstColor = Color.BLACK;

25 Color secondColor = Color.RED;

26 Color temp;

27

28 gb.setBackground(Color.LIGHT_GRAY);

29

30 //Draw the checker board boxes

31 for(int row = 1; row <= 8; row++) //each row

32 {

33 for(int col = 1; col <=8; col++) //each column

34 {

35 g. setColor(firstColor);

36 if(col % 2 == 0)

37 {

38 g. setColor(secondColor);

39 }

40 g.fillRect(xBox, yBox, boxWidth, boxHeight);

41 xBox = xBox + boxWidth;

42 }

43 yBox = yBox + boxHeight;

44 xBox = 12;

45

46 temp = firstColor; //swap the box colors

47 firstColor = secondColor;

48 secondColor = temp;

49 }

 Chapter 5· Repeat ing Statements: Loops ■ 211

height of the boxes, and line 44 resets the x location

of the each row’s first box to 12. Before the outer loop

ends, lines 46–48 swap the colors of the odd and even

column boxes. This will make the colors of the boxes

to be drawn in each column of the next row different

from the color of the boxes in the row above them.

The inner loop that begins on lines 60 and ends on

line 64 is the same code used on lines 42–46 of Fig-

ure 5.6 to draw one row of red checkers. This loop is

now nested inside an outer loop that begins on line 31,

which executes three times. With each pass through

the outer loop, the inner loop draws the next row of

checkers. After a row is drawn, the y location of

the next row of checkers is calculated and assigned to

the variable checkerY on line 65. The value stored

in this variable is increased by the height of the boxes

then used during the next iteration of the inner loop (line 63) to draw a row of checkers.

Line 66 reinitializes the x location of the first checker in a row to 20. The if statement on

line 54 decides when the row number is even. Because only the odd-numbered rows (rows 1 and

3) should have a checker in the first column of the board (at x = 20), checkerX is increased by the

width of a checkerboard box (line 56) when the row number is even. Then, line 57 sets the variable

firstCheckerCol, used on line 60 as the column number of a row’s first checker, to 2 (line 57)

50

51 //Draw the red checkers

52 for(int row = 1; row <= 3; row++) //first three rows

53 {

54 if(row % 2 == 0) //an even numbered row

55 {

56 checkerX = checkerX + boxWidth;

57 firstCheckerCol = 2;

58 }

59 g.setColor(Color.RED);

60 for(int col = firstCheckerCol; col <=8; col= col + 2)

61 { //red checker locations

62 checkerX = 20 + (col -1) * boxWidth;

63 g.fillOval(checkerX, checkerY, 40, 40);

64 }

65 checkerY = checkerY + boxHeight;

66 checkerX = 20;

67 firstCheckerCol = 1;

68 }

69 }

70 }

Figure 5.11

The graphical application CheckerBoard.

Figure 5.12

The output produced by the application CheckerBoard.

212 ■ Programming Fundamentals Using Java

 5.55.5 THE THE WHILEWHILE STATEMENT STATEMENT

Many applications require that a sequence of statements be repeated until a Boolean condition

becomes false, rather than repeating until the statements have been executed a given or known

number of times. For example, a program might continue to ask for a password until the correct

password is entered. When this is the case, the while or the do-while statements are normally

used to code the loop that repeats the statements. If the statements should be executed at least

once, the do-while statement is used. Otherwise, the while statement is used. In this section, the

while statement will be discussed, and the do-while statement will be discussed in Section 5.6.

 5.5.15.5.1 Syntax of the Syntax of the whilewhile Statement Statement

The generalized syntax of the while statement and its execution path are shown on the left and

right sides of Figure 5.13, respectively:

while (Boolean expression)

{

//statement(s) to be repeated

} true

Boolean

expression

Statement(s) to be repeated

false

Figure 5.13

The syntax and execution path of the while statement.

The statement begins with the keyword while followed by a Boolean expression enclosed in

parentheses, which is followed by a code block containing the statements to be repeated. While

it is the case that a single statement to be repeated need not be coded inside a statement block, as

discussed in Section 5.2.1, it is good programming practice to do so.

As shown on the right side of Figure 5.13, the statements in the block will be repeated as long

as the Boolean condition is true. If, when the statement begins execution, the Boolean condition

is false, the statement block will not be executed.

The following code fragment outputs the square root of 1.2, 2.3, 3.4, and 4.5:

double n = 1.2;

while(n != 5.6)

{

 Chapter 5· Repeat ing Statements: Loops ■ 213

 System.out.println(Math.sqrt(n));

 n = n + 1.1;

}

The most common errors made when coding the while statement are:

� placing a semicolon after the close parenthesis

� neglecting to code the open and close brace around the statements when more than one

statement is to be repeated

When a semicolon is coded after the close parentheses, the statement is syntactically correct,

however, none of the statements that would have normally formed the loop body are considered to

be part of (inside) the loop. They default to sequential execution, and each statement executes once.

When braces are not coded, the statement is also syntactically correct, however, the first state-

ment after the while statement is the only statement considered to be part of the loop. Regardless

of the indentation used, it is the only statement repeated. When coding a while loop, it is good

programming practice to code the following fragment and then add the Boolean condition and the

statements to be repeated:

while()

{

}

A common logic error made when coding the while statement is that the statements inside

the statement block, during some repetition of the loop, do not change the Boolean expression to

false. The statement, or statements, intended to do that were either incorrectly coded or were

not included in the loop’s statement block. In either case, once the loop begins, it never ends, and

the loop is said to be an infinite loop. The following code fragment is an infinite loop because the

statement that increments n is not part of the loop’s statement block. On each iteration through the

loop, n’s value remains 1.2, and the Boolean condition never becomes false.

double n = 1.2;

while(n != 5.6)

{

 System.out.println(Math.sqrt(n));

}

n = n + 1.1;

Infinite loops can also occur when the loop’s Boolean expression is improperly coded, as is the

case in the following code fragment. The variable n assumes the values 1.2, 2.3, 3.4, 4.5, 5.6 …,

but never the value 5.5.

double n = 1.2;

while(n != 5.5) //n never becomes 5.5

{

 System.out.println(Math.sqrt(n));

 n = n + 1.1;

}

214 ■ Programming Fundamentals Using Java

 5.5.25.5.2 Sentinel Loops Sentinel Loops

Many applications require that a sequence of instructions be repeated until a signal to stop is

detected. The signal is referred to as a sentinel value, and a loop that ends when it detects a sentinel

value is called a sentinel loop.

Sentinel loops are commonly used to process a set of input data, and the sentinel value is cho-

sen to be a specific value of the input data. The value selected must be a value that would never

occur in that data set (for example, a student grade of -1). As another example, you might want to

continue to process bank deposits until a negative deposit is entered, or when data is being read

from a disk file to continue to process data from until an End of File (EOF) marker is encountered.

Although for loops that contain break statements could be used to code sentinel loops, they are

more easily coded using the while and do-while statements.

Often, the use of sentinel loops in our programs makes them easier to use. Imagine you are

a data-entry person using the program shown in Figure 5.8 to process a group of input deposits.

When the program is launched, you are asked for the number of deposits. If the first item on the list

of deposits you were given to enter was the number of deposits, the automatic counting performed

by the for loop used in the program would be perfect for the application.

However, if the number of deposits was not included in the list of deposits, then before you

used the application, you would have to count the number of deposits. Not only would this be time

consuming when the list of deposits was long, but if you miscounted the number of deposits, the

program would either terminate before all the deposits were entered (because your count was too

low) or ask you to enter a deposit that did not exist (because your count was too high). Generally

speaking, when the number of data items to be processed is not easily determined, sentinel loops

make our programs much easier to use.

The following code fragment is a template for a sentinel loop that uses a while statement to

process a set of inputs. Each input is read into a variable called the sentinel variable.

//obtain the first input into the sentinel variable

while(//the input is not the sentinel value)

{

 //statement(s) to perform the loop's processing

 //obtain the next input into the sentinel variable

}

The template begins with a statement to accept the first input and the same statement, which

accepts all subsequent inputs, is also coded as the last statement in the while statement’s code

block. The other statements in the statement block perform the processing of each input. This

placement of the input statements in a sentinel loop prevents the processing of the sentinel value,

even if it is the first input (i.e., the data set is empty).

The three most common errors made when coding a sentinel loop are:

� neglecting to code the statement to accept the first sentinel variable input before the

while statement

 Chapter 5· Repeat ing Statements: Loops ■ 215

� neglecting to code the statements to accept all subsequent inputs of the sentinel vari-

able at the end of the loop’s code block

� coding the statements to accept all subsequent inputs of the sentinel variable inside the

loop’s code block before the processing statements

The first error results in the loop processing the default value of the sentinel variable, or if the

default value is the sentinel value, the loop does not execute at all. The second error results in an

infinite loop because once the loop is entered, the sentinel variable is not changed. When the third

error is made, the first input is not processed.

The application SentinelWhileLoop presented in Figure 5.14 demonstrates the use of the

code template. It is a sentinel loop version of the program shown in Figure 5.8 that totals and aver-

ages a set of input deposits. Typical inputs and outputs are shown at the bottom of Figure 5.14. As

previously discussed, this version would be preferred if the number of deposits was not the first

data item.

Following the format of the while loop sentinel template, line 18 accepts the initial value of

the sentinel variable input. The Boolean expression (on line 19) of the while statement uses this

variable to decide if the statement’s code block should be executed. If anything other than the sen-

tinel value (-1) has been input, an execution of the loop’s statement block is performed.

 Because an average is to be calculated and the user is no longer required to enter the number of

deposits, the counting algorithm is used on line 23 to count the number of deposits processed. The

counting variable, numOfDeposits, is initialized to zero on line 15. Consistent with the while

sentinel loop template, the last line of the loop’s code block (line 24) accepts the next input value

and stores it in the sentinel variable input.

1 import javax.swing.JOptionPane;

2 import java.text.NumberFormat;

3

4 public class SentinelWhileLoop

5 {

6 public static void main(String[] args)

7 {

8 double balance = 1000.24;

9 int numOfDeposits;

10 double deposit, total, newBalance, averageDeposit;

11 String input;

12 NumberFormat us = NumberFormat.getCurrencyInstance();

13

14 System.out.println("Your beginning balance was:

 "+ us.format(balance));

15 numOfDeposits = 0;

16 total = 0.0;

17

18 input = JOptionPane.showInputDialog("Enter a deposit, -1 to end");

19 while(!input.equals("-1")) //input is not "-1"

216 ■ Programming Fundamentals Using Java

20 {

21 deposit = Double.parseDouble(input);

22 total = total + deposit;

23 numOfDeposits++;

24 input = JOptionPane.showInputDialog("Enter a deposit, -1 to end");

25 }

26

27 balance = balance + total;

28 averageDeposit = total / numOfDeposits;

29

30 System.out.println("The total of the " + numOfDeposits +

31 " deposits is "+ us.format(total));

32 System.out.println("The average deposit was: " +

33 us.format(averageDeposit));

34 System.out.println("Your new balance is: " + us.format(balance));

35 }

36 }

Inputs

20.10

30.20

40.30

-1

Outputs

Your beginning balance was: $1,000.24

The total of the 3 deposits is $90.60

The average deposit was: $30.20

Your new balance is: $1,090.84

Figure 5.14

The console application SentinelWhileLoop and the output it produces.

Another commonly used form of a while sentinel loop parses the input after each input is ac-

cepted. This adaptation of the while loop sentinel template in the program shown in Figure 5.14

would be coded as:

input = JOptionPane.showInputDialog("Enter a deposit, -1 to end");

deposit = Double.parseDouble(input);

while (!deposit == -1.0)

{

 //statement(s) to perform the loop's processing, less the parsing

 input = JOptionPane.showInputDialog("Enter a deposit, -1 to end");

 deposit = Double.parseDouble(input);

}

 Chapter 5· Repeat ing Statements: Loops ■ 217

 5.5.3 5.5.3 Detecting an End Of File Detecting an End Of File

Often, large data sets are stored in disk files, and the programs that process them read the data

from the disk file until a sentinel value is detected. Because the sentinel value is chosen to be a

value outside the range of the data set’s values, most sentinel values vary from one application to

another. In the case of a disk-based data file, there is one sentinel value that works for all data sets:

the End of File (EOF) marker that is placed at the end of each file.

In Section 4.8.1 of Chapter 4, we used the methods in the Scanner class to read data from

a disk text file. The Scanner class also contains a method named hasNext that can be used to

detect the EOF marker in a file. The method has no parameters and returns false when the EOF

marker is encountered. The following code fragment uses a sentinel loop to read all the integer data

values from the disk text file data.txt stored on the root of the C drive and outputs the values to

the system console. The value returned from the method hasNext is stored in the sentinel-variable

notEOF.

int dataItem;

File fileObject = new File("c:/data.txt");

Scanner fileIn = new Scanner(fileObject);

boolean notEOF; //the sentinel variable

notEOF = fileIn.hasNext(); //fetch the 1st sentinel variable value

while(notEOF) //more data to process

{

 dataItem = fileIn.nextInt();

 System.out.println(dataItem);

 notEOF = fileIn.hasNext(); //fetch next sentinel value

}

fileIn.close();

The following code fragment is a more succinct and more commonly used version of an EOF

sentinel loop:

int dataItem;

File fileObject = new File("c:/data.txt");

Scanner fileIn = new Scanner(fileObject);

while(fileIn.hasNext()) //more data to process

{

 dataItem = fileIn.nextInt();

 System.out.println(dataItem);

}

fileIn.close();

Figure 5.15 presents a modified version of the program shown in Figure 5.14 that processed a

group of deposits entered from the keyboard. The new version of the program reads the deposits

from a disk file using the file’s EOF marker as a sentinel value. A set of file inputs and the corre-

sponding program outputs are given at the bottom of Figure 5.15.

218 ■ Programming Fundamentals Using Java

The instructions in Figure 5.14 that accept input from the keyboard have been removed from

the program. Lines 1 and 2 of Figure 5.15 have been added to access the Scanner and File

classes. In the interest of brevity, exceptions that could be generated during the disk file input per-

formed by the program are not processed by the modified program. Rather, a throws clause has

been added to the end of line 7.

Line 21 begins a sentinel while loop that ends when an EOF marker is detected. Inside the

loop, line 23 reads and parses the next deposit using the Scanner object created by lines 13 and

14. Line 35 closes the disk file after the console output is performed.

1 import java.util.Scanner;

2 import java.io.*;

3 import java.text.NumberFormat;

4

5 public class EndOfFile

6 {

7 public static void main(String[] args) throws IOException

8 {

9 double balance = 1000.24;

10 int numOfDeposits;

11 double deposit, total, newBalance, averageDeposit;

12 NumberFormat us = NumberFormat.getCurrencyInstance();

13 File fileObject = new File("c:/data.txt");

14 Scanner fileIn = new Scanner(fileObject);

15

16 numOfDeposits = 0;

17 total = 0.0;

18

19 System.out.println("Your beginning balance is: " +

20 us.format(balance));

21 while(fileIn.hasNext()) //more data to process

22 {

23 deposit = fileIn.nextDouble();

24 total = total + deposit;

25 numOfDeposits++;

26 }

27 balance = balance + total;

28 averageDeposit = total / numOfDeposits;

29

30 System.out.println("The total of the " + numOfDeposits +

31 " deposits is " + us.format(total));

32 System.out.println("The average deposit was: " +

33 us.format(averageDeposit));

34 System.out.println("Your new balance is: " + us.format(balance));

35 fileIn.close();

36 }

37 }

 Chapter 5· Repeat ing Statements: Loops ■ 219

Disk File Inputs

20.10

30.20

40.30

Outputs

Your beginning balance was: $1,000.24

The total of the 3 deposits is $90.60

The average deposit was: $30.20

Your new balance is: $1,090.84

Figure 5.15

The application EndOfFile, a set of file inputs, and corresponding outputs.

An alternate approach to using the Scanner class’s hasNext method to detect the end of a file

is to write the number of data items into the file as the file’s first value. If the data file processed by

the program shown in Figure 5.15 had been written this way, lines 21-26 would be coded as shown

below:

21 numOfDeposits = fileIn.nextInt(); //read the number of data items

22 for(int i = 1; i <= numOfDeposits; i++) //each data item

23 {

24 deposit = fileIn.nextDouble();

25 total = total + deposit;

26 }

Most often, the use of the hasNext method to detect the end of the file is the better approach

because if new data were added to end of the file, updating the number of data items at the be-

ginning of the file would require reading, deleting, and rewriting the entire file. This is a time-

consuming process.

 5.65.6 THE THE DO-WHILEDO-WHILE STATEMENT STATEMENT

As previously discussed, when a loop in an application is to execute a known number of times,

the for statement is best suited for the application. When the number of times to execute the loop is

not known, either the while or the do-while statements are preferred. Of these two statements,

the do-while statement is the better alternative when the loop’s statements should be executed at

least once. For example, the code to check a password is normally coded inside a do-while loop

because the password has to be entered at least once.

 5.6.15.6.1 Syntax of the Syntax of the do-whiledo-while Statement Statement

The generalized syntax of the do-while statement and its execution path are shown on the left

and right sides of Figure 5.16, respectively.

220 ■ Programming Fundamentals Using Java

true

Boolean

expression

do

{

//statement(s) to be repeated

}while (Boolean expression); false

Statement(s) to be

repeated

Figure 5.16

The generalized syntax of the do-while statement.

The statement begins with the keyword do followed by the loop’s statement block. The key-

word while and the statement’s Boolean expression enclosed in parentheses are coded after the

statement block’s close brace. It is good programing style to code the keyword while and the

Boolean expression on the same line as the close brace because it improves the readability of the

statement. The do-while statement ends with a semicolon coded after the close parentheses that

terminates the Boolean expression.

As shown on the right side of Figure 5.16, the loop’s statement(s) will be executed at least once

because they are executed before the Boolean condition is tested. After they execute, the Boolean

expression is tested, and the statements are repeated until the Boolean condition becomes false.

The do-while loop is called a post-test loop because the test to terminate the loop is performed

after the loop’s statement block has executed at least once.

The most common syntactical errors made when coding the do-while statement are:

� placing a semicolon after the keyword do

� neglecting to include a semicolon after the Boolean expression

� neglecting to code the open and close braces around the statements when more than one

statement is to be repeated

All of these coding errors are syntax errors and are detected and reported by the Java transla-

tor. When coding a do-while loop, it is good programming practice to code the following code

fragment and then add the statements to be repeated and the Boolean condition, even if only one

statement is to be repeated.

do

{

}while();

 Chapter 5· Repeat ing Statements: Loops ■ 221

The most common logic error made when coding this statement is that the statements inside

the statement block, during some repetition of the loop, do not change the Boolean expression

to false. In this case, once the loop begins, it never ends and is said to be an infinite loop. For

example, the following code sequence is an infinite loop because the loop’s statement does not

change the string variable password, which is used in the Boolean condition. The user-entered

password is mistakenly stored in the string object pw leaving the string password unchanged each

time through the loop.

String password = "";

String pw;

do

{

 pw = JOptionPane.showInputDialog("Enter The Password");

}while(!password.equals("Mercury"));

The following code fragment is the correct coding of a do-while statement that verifies the

entry of the correct password, Mercury.

String password = "";

do

{

 password = JOptionPane.showInputDialog("Enter The Password");

}while(!password.equals("Mercury"));

Infinite loops can also occur when the loop’s Boolean expression is improperly coded. In the

code fragment below, the logical operator NOT(!) has been left out of the Boolean expression, and

any password other than the correct password, Mercury, is accepted.

String password = "";

do

{

 password = JOptionPane.showInputDialog("Enter The Password");

}while(password.equals("Mercury"));

 5.75.7 THE THE BREAKBREAK AND AND CONTINUECONTINUE STATEMENTS STATEMENTS

The break and continue statements are used inside a for, while, or do-while loop’s cod-

ed block to alter the loop’s execution path. Just as a break statement terminates the execution of a

switch statement, a break statement may also be used to terminate a loop. Execution continues

with the statement that follows the loop.

NOTE
When a break statement is executed inside a loop, the execution of the loop

terminates.

When a continue statement is executed in a loop, the current iteration of the loop is termi-

nated, and statements that come after it in the loop’s body are not executed during that iteration of

the loop. Execution continues with the testing of the loop statement’s Boolean condition. When

a continue statement is executed inside a for loop, the loop variable is incremented before the

Boolean condition is tested.

222 ■ Programming Fundamentals Using Java

NOTE
When a continue statement is executed inside a loop, the current iteration of the

loop terminates.

To illustrate the use of these two statements, the code fragment below gives a game player

three chances to enter the password “Mars” to access a game. The break statement is used to exit

the loop after the message Look up your password is output. The continue statement is used to

skip the message box output and the break statement until three incorrect passwords are entered.

int count = 1;

String password = "";

do

{

 if(count <= 3)

 {

 password = JOptionPane.showInputDialog("Enter your password");

 count++;

 continue;

 }

 JOptionPane.showMessageDialog(null, "Look up your password");

 break;

}while(!password.equals("Mars"));

 5.8 5.8 WHICH LOOP STATEMENT TO USE WHICH LOOP STATEMENT TO USE

When the number of times to repeat the loop’s statements is known, the for statement should

be used to code the loop. The number of times to repeat the loop could be known at the time the

program is written (e.g., the program will always process 100 race times), or it is determined dur-

ing the program’s execution before the loop statement is executed. For example, before entering a

group of deposits, the program users are asked to enter the number of deposits they will be making

into their bank account. In both of these cases the for loop is the preferred loop statement.

When the number of times to execute the loop is not known, either a while or a do-while

loop is preferred to a for loop. The while statement is the better alternative when there are times

(cases) when the loop body should not execute even once. The do-while statement is the better

alternative when the loop’s statements should always be executed at least once. Table 5.2 summa-

rizes the criteria for selecting the best loop statement for a particular application.

Table 5.2

Criteria for Selecting the Best Loop Statement

Is the Number of Times the Loop Will Execute Known? Loop Statement

Yes for

No, and there are cases when the loop body should not execute even once while

No, and the loop body should always execute at least once do-while

The boundaries between the use of the three loop statements become somewhat blurred with

the use of the counting algorithm inside a while loop and the use of a break statement inside a

for loop. For example, to average 100 items, most programmers would use a for loop. However,

 Chapter 5· Repeat ing Statements: Loops ■ 223

a while loop that contains the counting algorithm can also be used, as illustrated in the following

code fragment:

int count = 1;

double total = 0;

double average;

String sItem;

while (count <= 100)

{

 sItem = JOptionPane.showInputDialog("enter and item");

 total = total + Double.parseDouble(sItem);

 count++;

}

average = total / 100;

System.out.println("The average of the 100 items is: " + average);

The for loop is preferred for this application because when a while loop is used and we ne-

glect to increment the counter (count++;) in the loop’s body, the loop becomes an infinite loop. If

we use a for loop and neglect to increment the counter in the first line of the for statement, the

translator would alert us to the oversight.

Consider a program that totals input items until a -1 is entered or 100 items have been entered.

Most programmers would use a while loop for this application. However, it can be coded using a

for loop that contains a break statement.

double total = 0;

String sItem;

for(int i = 1; i <= 100; i++)

{

 sItem = JOptionPane.showInputDialog("enter an item");

 if(sItem.equals("-1"))

 {

 break;

 }

 total = total + Double.parseDouble(sItem);

}

System.out.println("The total of the items is: " + total);

When this for loop is used it would appear that the loop will always execute 100 times.

However, the loop terminates before 100 iterations when the break statement executes. From a

code readability point of view, the following while loop is the preferred loop statement for this

application because the first line of the while loop clearly states the two conditions that will end

the input loop.

int count = 1;

double total = 0;

String sItem;

224 ■ Programming Fundamentals Using Java

sItem = JOptionPane.showInputDialog("enter an item, or -1");

while (!sItem.equals("-1") && count <= 100) //tests both conditions

{

 total = total + Double.parseDouble(sItem);

 count = count++;

 sItem = JOptionPane.showInputDialog("enter an item, or -1");

}

System.out.println("The total of the items is: " + total);

 5.9 5.9 THE THE RANDOMRANDOM CLASS CLASS

Pseudorandom numbers, their use in computer programs, and the ability to generate them with

the Math class’s random method were discussed in Section 2.6.4 of Chapter 2. The methods in the

class Random can also be used to generate pseudorandom numbers. In fact, these methods do the

work of the Math class’s random method in that the method random invokes the Random class’s

methods to generate the numbers it returns.

Table 5.3 lists the Random class’s constructors and some of its methods used to generate pseu-

dorandom numbers. Each time these methods are invoked, they return the next number in a se-

quence of random numbers. An object in the class Random is used to invoke them, which is created

using one of the class’s constructors.

Random randomObject1 = new Random();

Random randomObject2 = new Random(123456);

Table 5.3

Random Class Methods

Method Description Coding Example

Random()

Creates a Random object

based on the seed value time

of day

Random ro = new Random();

Random(long seed)

Creates a Random object

based on the seed argument

sent to it

Random ro = new Random(675);

nextDouble()

Returns the next pseudo-

random real number in the

range: 0.0<=randomNum-

ber<1.0

double rn = ro.nextDouble();

nextInt()

Returns the next pseudoran-

dom integer in the range of

the int primitive type

int rn = ro.nextInt();

nextInt(int max)

Returns the next pseudo-

random integer in the range

zero to one less than max

int rn = ro.nextInt(20);

 Chapter 5· Repeat ing Statements: Loops ■ 225

When the one-parameter constructor is used to create the object, the sequence of numbers the

methods generate is based on the integer argument sent to the constructor, which is called a seed

value. When the no-parameter constructor is used to create the object, the sequence of numbers

the methods generate is based on the time of day because the seed value defaults to the real-time

clock’s value expressed in milliseconds. Sequences of numbers generated with objects created us-

ing the same seed value will be identical.

The one-parameter constructor is used when it is desirable to generate the same sequence of

pseudorandom numbers every time the program is run. Conversely, the no-parameter constructor

is used when it is desirable to generate a sequence of pseudorandom numbers that rarely repeats

because the program would have to be run at exactly the same time of day to generate the same

sequence of numbers.

Like the Math class’s random method, the method nextDouble generates and returns a pseu-

dorandom real number (a double) in the range: 0.0 <= randomNumber < 1.0. The method can be

used to generate a real number in the range: min ≤ randomNumber < max using the following

assignment statement (and sample object declaration):

Random randomObject2 = new Random(98765);

randomNumber = min + randomObject2.nextDouble() * (max - min);

The following code sequence outputs a sequence of ten pseudorandom real numbers in the range

20.0 ≤ randomNumber < 50.0. It would be very unusual for this code to generate the same sequence

of numbers during two executions of the program because the sequence’s seed value is the time of day

in milliseconds. (The Random object is created with the no-parameter constructor.) Alternately, the

one-parameter constructor could be used to generate a repeatable sequence of numbers.

double randomNumber;

double min = 20.0;

double max = 50.0;

Random randomObject2 = new Random(); // time of day seed value

for(int i = 1; i<=10; i++)

{

 randomNumber = min + randomObject2.nextDouble() * (max - min);

 System.out.println(randomNumber);

}

As shown in the Table 5.3, there are two versions of the nextInt method, which is used to

generate and return a random integer (of type int). The no-parameter version returns a pseudoran-

dom number over the full range of an int type variable (see Table 2.1).

The one-parameter version of the nextInt method is used to generate a sequence of integers,

each of which are within a specified range. The numbers returned from the method are in the range

zero to one less than the argument sent to it. The following code sequence generates a pseudoran-

dom number between zero and nine, inclusive:

Random randomObject2 = new Random();

randomNumber = randomObject2.nextInt(10)

226 ■ Programming Fundamentals Using Java

The use of this method can be generalized. The following code sequence outputs ten random

integers in the range three to six, inclusive. The initial values of the variables max and min specify

the lowest and highest numbers generated in the sequence. Every time this code is run, the same

sequence of numbers is generated (5, 5, 5, 4, 3, 5, 5, 3, 6, 4) because the one-parameter constructor

was used to create the Random object.

int randomNumber;

int min = 3;

int max = 6;

Random randomObject1 = new Random(98765); //repeatable random set

for(int i = 1; i<=10; i++)

{

 randomNumber = min + randomObject1.nextInt(max - min + 1);

 System.out.println(randomNumber); //in the range min to max inclusive

}

Figure 5.17 shows a number-guessing game program in which the player is asked to guess a

number between 32 and 38, inclusive. The inputs and outputs for a correct answer on the second

guess are shown in Figure 5.18.

Line 1 imports the Random class into the program. Line 8 declares an instance of this class,

randomObject, which is used to invoke the nextInt method on line 15. The use of the no-

parameter constructor on line 8 ensures that each time the program is run, there is the possibility

that a different pseudorandom number will be generated by line 15. The maximum and minimum

values of the pseudorandom numbers used on line 15 are specified on lines 9 and 10.

1 import java.util.Random;

2 import javax.swing.*;

3

4 public class RandomClass

5 {

6 public static void main(String[] args)

7 {

8 Random randomObject = new Random(); //time of day seed value

9 int min = 32;

10 int max = 38;

11 int secretNumber;

12 String sGuess;

13 int count = 1;

14

15 secretNumber = min + randomObject.nextInt(max - min + 1);

16 JOptionPane.showMessageDialog(null, "Secret Number Guessing Game" +

17 "\nguess a number between " +

18 max + " and " + min);

19 do

20 {

 Chapter 5· Repeat ing Statements: Loops ■ 227

21 sGuess = JOptionPane.showInputDialog("Enter a guess " + count +

22 "\nOr click Cancel to quit");

23 count++;

24 if(sGuess == null) //Cancel was clicked

25 {

26 break;

27 }

28 }while(secretNumber != Integer.parseInt(sGuess));

29

30 if(sGuess == null) //Cancel was clicked

31 {

32 JOptionPane.showMessageDialog(null, "Secret Number was " +

33 secretNumber);

34 }

35 else

36 {

37 JOptionPane.showMessageDialog(null, "Great, you guessed it.");

38 }

39 }

40 }

Figure 5.17

The application RandomClass.

 (a) (b)

 (c) (d)

Figure 5.18

The inputs and corresponding outputs produced by the application RandomClass.

228 ■ Programming Fundamentals Using Java

 5.10 5.10 THE ENHANCED THE ENHANCED forfor STATEMENT STATEMENT

The enhanced for statement is an alternate syntax of a for loop that is used to fetch all of

the elements of an array sequentially. During the execution of the loop, the elements of the array

cannot be modified, so its use is limited. It can be used to output or total the elements of an array.

The syntax of the statement is given in below, in which anElement is a variable whose type,

aType, is always the type of the elements of the array arrayName:

for(aType anElement: arrayName)

{

 //statement(s) that use the variable anElement

}

For example, if the array is an array of references to String objects, the statement would be

coded as shown below:

for(String anElement: arrayName)

{

 //statement(s) that use the variable anElement

}

A colon is always coded after the variable anElement. If there is only one statement to be

executed within the loop, the open and close braces need not be coded, but it is good programming

practice to include them.

The number of times the loop executes is always equivalent to the length of the array, in the

above case arrayName.length. During the execution of the loop, the variable anElement as-

sumes the value of each element of the array in ascending order, beginning with the first element

(during the first iteration of the loop) and ending with the last element (during the last iteration of

the loop). The two loops shown below are equivalent, and both produce the system console output

Nora Ryan Logan.

String anArray = {"Nora", "Ryan", "Logan");

for(String anElement: arrayName)

{

 System.out.print (anElement + " ");

}

System.out.println();

for(int i = 0; i < 3; i++)

{

 System.out.print (arrayName[i] + " ")

}

Within the loop’s body, the variable used in the enhanced for statement (e.g., anElement),

can be used anywhere it is syntactically correct to use a variable of its type. An advantage of the

enhanced for loop is that it cannot produce an ArrayIndexOutOfBounds error because it does

 Chapter 5· Repeat ing Statements: Loops ■ 229

not use a loop variable to access the elements of the array. The disadvantage is that the elements of

the array cannot be changed inside the loop. We will see a more practical use of the enhanced for

statement in Chapter 13, "Generics."

 5.11 5.11 CHAPTER SUMMARY CHAPTER SUMMARY

Many applications require that the statements in a statement block be repeated, and in this

chapter we discussed three ways to perform this repetition: a for loop, a while loop, and a do-

while loop. The for loop is an automatic counting loop used when the number of times to repeat

the statements is known. The do-while and while loops end when their Boolean condition be-

comes false and they are usually used to detect a sentinel value of the data they are processing.

The do-while loop is used whenever the loop’s block should be executed at least once, and the

while loop is a more general-purpose loop that can be used in most applications.

The loop control variable of a for loop is used to control the number of iterations of the loop.

The statement’s initialization expression sets its initial value. At the end of each loop iteration, the

increment expression executes, which normally changes the value of the loop variable. The for

and while loops are called pretest loops: they test their Boolean condition to continue at the begin-

ning of the loop; the do-while loop is a posttest loop, testing its condition to continue at the end

of an iteration.

The totaling or summation algorithm is a loop-based algorithm because it sums a set of items

by repeatedly adding the value of a new item to an existing subtotal and making the result the new

subtotal. Its template is: total = total + newItem. Each time through the loop, the value

of the variable newItem assumes the next value to be totaled, which is often input by the user or

from a disk file. The variable total is initialized to zero before the totaling loop begins. The count-

ing algorithm can use used inside a loop’s statement block to count the number of times the loop

executes and can then be divided into the total the loop calculates to determine the average of the

totaled values.

Often, a sentinel value is used to terminate a loop when the number of input values to be

processed is unknown. Two Java statements, break and continue, also enable us to control the

number of times all or some of the statements within the body of the loop will be executed. When a

break is executed within a loop, the loop terminates. The continue statement can be used to end

the current iteration of the loop and is useful when conditions dictate that the remaining statements

in the loop’s block should be skipped during the current iteration. When a loop is used to obtain

and process an unknown number of inputs from a file, Java’s End of File (EOF) character or the

Scanner class’s hasnext method can be used as a sentinel to terminate the loop.

Nested loops are used to repeat loop-based algorithms. Examples include averaging 10 grades

and repeating this for 20 students or processing a set of race times for 100 runners. Nested loops

are particularly useful in creating two-dimensional graphics that are composed of many instances

of the same repetitive shape, such as the eight rows of eight squares of a checkerboard.

230 ■ Programming Fundamentals Using Java

The Random class’s nextInt and nextDouble methods can be used to generate a random

integer or real number and, when used inside of a loop, to generate a set of random numbers. The

nextInt method is easier to use than the Math class’s random method because it returns an inte-

ger in the positive range of the int type or within a specified range. This makes it ideal for generat-

ing random game board pixel locations. In addition, when the methods are invoked using a Random

object created with the class’s one-parameter constructor, they generate a repeatable sequence of

pseudorandom numbers. This is particularly useful in applications that require the same starting

point every time they are launched and is always used when the random numbers are generated

within a graphics call back method.

The methods in the DecimalFormat class can be used to insert leading/training zeros and

comma separators into numeric output, specify the output’s precision, and convert the output to a

percentage or display it using scientific notation. The methods in the NumberFormat and Locale

classes are used to produce local dependent currency formatting for use in financial and interna-

tional applications.

Our knowledge of these statements will be expanded in Chapter 6, which covers the concept

of arrays because loops are used to unlock the power of arrays. Also, in the next chapter, we will

see how loops can be used with arrays to enable us to input, output, and process large data sets.

Knowledge ExercisesKnowledge Exercises

 1. True or false:

 a) The body of a while loop will always execute at least once.

 b) The for loop is an automatic counting loop and should be used where the number of

repetitions is known.

 c) A sentinel is a data value that can be used to terminate a loop.

 d) The do-while loop will continue until the Boolean expression in the while statement

becomes true.

 e) A while loop is a posttest loop.

 f) Checking for the EOF condition can be used to control a loop.

 g) A nested loop is a loop within a loop.

 h) Every while loop can be written as a for loop without using a break statement.

 i) Every for loop can be written as a while loop.

 j) The break statement ends the current iteration of a loop.

 k) A for loop ends when Boolean condition becomes true.

 l) The continue statement can be coded inside any loop.

 m) Placing a semicolon after the parenthesis in a while loop can cause an infinite loop.

 n) The statement block of a do-while loop may not be executed.

 o) A for loop may be designed to count down by decrementing the control variable.

 p) Loops may be used to validate user input or to give the user another chance to enter a

value, such as a password, that was typed incorrectly.

 Chapter 5· Repeat ing Statements: Loops ■ 231

 2. Write a loop that outputs the integers from 20 to 100 to the system console and the appropriate

term, odd or even, next to each output value.

 3. Write a loop that outputs the sum of the even integers from 1 to n, where n is a value input by

the user, to a message box.

 4. Consider the following code fragment:
 int i = 10;

 int sum = 0;

 while (i <= 100)

 {

 sum = sum + i;

 i++;

 }

 System.out.println(" The sum of the integers from 10 to 100 is: " +

sum);

 a) How many times does this loop execute?

 b) Write an equivalent for loop.

 c) Write an equivalent do-while loop.

 5. Consider the following code fragment:
 int i = 1;

 while (i != 20)

 {

 i = i + 2;

 }

 System.out.println("The value of i is " + i);

 a) Will this loop terminate? If not, why not?

 b) What numbers does it output?

 6. Consider the following code fragment:
 int num = 4;

 for (int i = 2; i <= 7; i++)

 { System.out.println("Number is " + num);

 num = num + i;

 }

 a) What is the value of num after the loop has executed twice?

 b) How many times will the body of the loop be executed?

 c) What value will be output on the fourth time through the loop?

 d) What is the value of num when the loop ends?

 e) What causes this loop to terminate?

 7. Consider the following code fragment:
 int x = 11;

 while (x > 0)

 { x = x - 3;

 System.out.println(x);

 }

232 ■ Programming Fundamentals Using Java

 a) Give its output

 b) Write an equivalent for loop

 8. Write the code fragment for an input validation loop that asks a user to enter an integer in

the range of zero to five, displays an error if the input is out of range, and gives the user an

unlimited number of chances to enter it correctly.

 9. Write the code fragment for an input validation loop that asks a user to enter an integer in the

range of zero to five, displays an error if the input is out of range, and gives the user at most

three chances to enter it correctly.

 10. Explain the difference in the execution paths of a while loop and a do-while loop.

 11. Give a code fragment to produce the following output to the system console every time it is

executed:

 a) A different set of 20 random integers in the range 0 to 500

 b) The same set of 20 random integers in the range 0 to 500

 c) The same set of 20 random integers in the range 7 to 500

 d) The same set of 20 random integers in the range min to max

 12. Give the declarations and output statements required to display the value stored in the double

variable balance, formatted as specified below. Also give the resulting formatted output.

 a) US currency

 b) One leading and one trailing zero, with comma separators every three digits to the left of

the decimal point

 c) Scientific notation with four digits of precision

 d) Two trailing zeros, comma separators every three digits to the left of the decimal point,

and a leading zero only when the balance contains a value that only has a fractional part

 e) Spanish currency

Programming ExercisesProgramming Exercises

 1. Write a program that uses a for loop to calculate and output the product of the integers from

n to 1 (n factorial) to a message box. For example, when n = 4, the output would be 24 = 4 * 3

* 2 * 1. The value of n will be input by the user via an input dialog box, and the output should

be properly annotated.

 2. You have just been hired by the TravelStars agency, and your first assignment is to produce

a histogram to graphically represent the ratings that travelers have given to various hotels.

Your program will begin by asking the user to enter the number of hotels to be including in

the histogram. Then, ask a user to input each hotel’s name, the hotel’s star rating, an integer

between 1 and 10 stars inclusive. The histogram should be output to the system console and

formatted as shown below.

 Hotel Name Rating

 Hotel 1 **********

 Hotel 2 ******

 Chapter 5· Repeat ing Statements: Loops ■ 233

 Hotel 3 ********

 Hotel 4 **

 Hotel 5 ****

 3. Write a program that uses nested loops to output one or more of these patterns (or create some

of your own):
 a) ********** b) * c) *

 ********** *** * *

 ********** ***** * * *

 ********** ******* * * * *

 ********** ********* * * * * *

 4. Write a program that asks the program users for the country in which they were born and their

salary for the each of the last 12 months. Output each month’s salary, as well as the total pay

for that year in the format of their local currency, to the system console, properly annotated.

 5. Write a program that outputs 25 random integers to the system console that are within a range

(minimum value and maximum value) specified by the user.

 6. Write a program to simulate the toss of two dice. Every time the user clicks the OK button on

a message generate two random outputs between 1–6, as well as the sum of the two dice. If the

total is 7 or 11, output You win, otherwise output Better luck next time.

 7. Write a graphical application that displays 650 of the 2,500 stars that can be seen in the

night time sky. The stars will be drawn on the game board as filled ovals whose diameter

is a random number between one and three pixels. There will be 400 white, 200 yellow,

and 50 red stars, positioned at random (x, y) locations on a black-colored game board. You

can change the color of the game board by invoking the Component class’s setBackground

method in the main method and passing it the color black.

 8. Write the application described in Programming Exercise 7 using three nested loops to draw

the stars.

 9. Write a graphical application to simulate a journey to the sun by Captain Burk. Before

the game board is displayed, the captain will be required to enter the noncase sensitive

password "SS" (short for Starship). Then, he will be asked to enter the tonnage of each

item in his cargo. When a -1 is entered, output the total weight of the cargo to a message

box and display the game board described in Programming Exercise 7 or 8 with a 50-pixel-

diameter sun positioned at the center of the game board. The sun will be a yellow instance of

a HeavenlyBodies class you will add to the application that contains:

� The four data members of a heavenly body: its (x, y) location coordinates, its diameter,

and its color

� A four-parameter constructor

� A show method, and set and get methods for all the data members

 Use an input dialog box for all input.

234 ■ Programming Fundamentals Using Java

 10. Write the graphical application described in Programming Exercise 9 expanded to include

these features:

� Before the game board is displayed, the captain will be asked how many (of a maxi-

mum of three) planets to add to the night sky and then asked to enter the location and

diameter of each planet. The color of the three planets will be red, green, and brown,

respectively, and they will be instances of HeavenlyBodies displayed on the game

board.

� When the Start button is clicked, the diameter of the sun should increase by 2 pixels

every 20 milliseconds to simulate the Captain Burk’s journey to the sun.

� When the Start button is clicked a white comet (a HeavenlyBodies object) will

travel from the upper-left to the lower-right corner of the gameboard with its diameter

increasing from 3 to 50 pixels.

 11. Using the skills developed in this chapter, continue the implementation of the parts of your

game requiring knowledge of loops. Be sure to add this feature:

� Do not permit the game to be played until the case-sensitive password "gp" (game

player) is entered. After three unsuccessful password entries, output the statement pass-

words are case sensitive and terminate the program by invoking the System class's

exit method.

■ ■ ■ ■ ■

In this chapter

In this chapter, we will introduce the concept of an array and the powerful features of the

construct that make it a part of most programs. These features include the ability to store

and retrieve large data sets, and, when combined with the concept of a loop, these data sets

can be processed with only a few instructions. Array processing algorithms such as sorting,

searching, and copying will be discussed and implemented, as will algorithms introduced in

Chapter 4 for inserting and deleting items stored in a disk text file. We will also explore the

API methods that implement many of the classical array processing algorithms.
One-dimensional arrays, which can be used to store a list of items, will be discussed as well as

multi-dimensional arrays, and we will use two-dimensional arrays to organize data in tables as rows

and columns.

After successfully completing this chapter you should:

� Understand the advantages and importance of using arrays

� Be familiar with the Java memory model used to store arrays

� Be able to construct and use arrays of primitives and objects

� Understand and be able to implement the algorithms used to search an array, sort it, and

find the minimum and maximum values stored in it

� Be familiar with and be able to use the array-processing methods in the API

� Understand the concept of parallel arrays and use them to process data sets

� Know how to use arrays to insert, delete, or update data items stored in a disk file

� Be able to apply array techniques to game programs

6CHAPTERCHAPTER

6.1 The Origin of Arrays .236

6.2 The Concept of Arrays .236

6.3 Declaring Arrays .238

6.4 Arrays and Loops .241

6.5 Arrays of Objects .243

6.6 Passing Arrays Between Methods 250

6.7 Parallel Arrays .258

6.8 Common Array Algorithms.265

6.9 Application Programmer Interface Array Support .278

6.11 Deleting, Modifying, and Adding Disk File Items . 286

6.12 Chapter Summary. 290

ARRAYSARRAYS

236 ■ Programming Fundamentals Using Java

 6.1 6.1 THE ORIGIN OF ARRAYSTHE ORIGIN OF ARRAYS

The machines we call computers received their name because the first operational versions of

these machines were primarily used by mathematicians to perform rapid computations on large

data sets. They were machines whose task was to compute; they were computers. However, long

before computers were operational, mathematicians were using subscripted variables, such as x2 or

x4, to represent the data used in their formulas and calculations, so it was natural for them to want

to use these subscripted variables in the formulas evaluated by these early computing machines.

To facilitate the writing of these subscripted variables into a program, the designers of FOR-

TRAN (which stands for Formula Translation), the first high level programming language used

by mathematicians, included a construct that modeled subscripted variables. The construct was

named array. Thus, the computer concept of an array has its roots in the mathematical model of

subscripted variables.

 6.26.2 THE CONCEPT OF ARRAYS THE CONCEPT OF ARRAYS

Consider a program that processes five people’s ages stored in the integer memory cells age0,

age1, age2, age3, and age4. The declaration of these variables would be rather straightforward:

 int age0, age1, age2, age3, age4;

But suppose that instead of processing five people’s ages, the program processed five million

people’s ages. Although the declaration syntax for the five million memory cells would still be

straight forward, it would be quite lengthy and very time consuming to write. In fact, a good typist

would take more than a month to type just the variable declarations for this program, assuming

the typist typed continuously for eight hours each day without stopping to eat. (This, by the way,

is a violation of the federal labor laws.) Using the construct array, the same typist could type the

declaration of the five million memory cells in seconds.

That’s all an array is: a technique used to declare memory cells, which is rooted in the math-

ematical concept of subscripted variables.

Definition

An array is a programming concept used to declare groups of related memory cells in which

each member of the group has the same data type, the same first name, the array’s name, and a

unique last name called an index.

The memory cells are related in the same way that our integer memory cells age0 through

age4 were related: each one stores a person’s age, or perhaps a person’s weight, or perhaps an ad-

dress of a snowman game piece. In Java, The unique last names, the indexes (or indices), are always

sequential integers beginning with zero (i.e., 0, 1, 2, 3, 4, …). In addition, Java syntax requires that

the unique last name is enclosed in open and close brackets, for example, [2].

Figure 6.1 shows ten memory cells used to store people’s ages. The five memory cells on the

left were declared to be five separate integer variables with the statement

 int age0, age1, age2, age3, age4;

 Chapter 6· Arrays ■ 237

The five memory cells on the right were declared to be part of a five-member or element array

named age.

 Non-array Array

age0 0 0 age[0]

age1 0 0 age[1]

age2 0 0 age[2]

age3 0 0 age[3]

age4 0 0 age[4]

Figure 6.1

Storage allocated to five integer variables and to a five-element array named age.

As shown in Figure 6.1, the amount of storage allocated to the integer variables on the left

side of the figure is the same as the amount of storage allocated to array elements shown on the

right side of the figure: five distinct integer memory cells. From a memory-allocation viewpoint,

the only difference in the way memory is allocated to the memory cells that make up the elements

of an array is that the array elements are always allocated as contiguous memory; that is, if each

memory cell occupied four bytes of storage, and age[0] was stored in bytes 100–103, the memory

allocated to the subsequent four elements of the array would begin at byte addresses 104, 108, 112,

and 116. (In contrast, the five integer variables might be stored in different locations scattered

around memory.)

Array elements can be used in our programs anywhere it is syntactically correct to code the

name of a memory cell: in input and output statements, in arithmetic and logic expressions, on

the left side of an assignment operator, and as arguments and parameters. To use them, we simply

code their complete names. For example, the statements on the left and right sides of Figure 6.2 are

equivalent, although they are syntactically different because the statements on the right side of the

figure use the array construct.

age3=new Scanner(System.in).nextInt();

age3 = age3 + 1;

System.out.println("Your age is" +

 age3);

if(age3 >= 18)

{

 System.out.println("You can " +

 "Drive now");

}

double avgAge = averageTwo(age0,

 age1);

age[3]=new Scanner(System.in).nextInt();

age[3] = age[3] + 1;

System.out.println("Your age is" +

 age[3]);

if(age[3] >= 18)

{

 System.out.println("You can " +

 "Drive now");

}

double avgAge = averageTwo(age[0],

 age[1]);

Without arrays With arrays

Figure 6.2

Equivalent statements with and without the use of arrays.

238 ■ Programming Fundamentals Using Java

Although the syntax involved in using arrays is a bit more cumbersome because of the cod-

ing of the open and close brackets, as previously mentioned, they do give us the ability to rapidly

declare large numbers of variables. In addition, as we will see later in this chapter, when arrays are

used inside of loops they also give us the ability to process large data sets with just a few lines of

code. For these two reasons, most programs use arrays.

 6.36.3 DECLARING ARRAYS DECLARING ARRAYS

In Java, all arrays are stored inside of an object. Although we most often state that we are

“declaring an array,” it is more accurate to state that we are “declaring an object that contains an

array.” In fact, as we shall see, the object contains not only the array but an also an integer data

member named length.

The syntax used to declare an array object is similar to the syntax used to declare non-array ob-

jects in that a reference variable is declared that will refer to the array object, and the keyword new

is used to construct the object. Where they differ is that the array-object declaration syntax also

includes a set of brackets to indicate that the reference variable will refer to an array object, and the

number of elements the array will contain (called the size of the array) is enclosed in another set of

brackets. The generalized syntax is:

aType[] arrayName = new aType[arraySize];

where:

aType is the type of the elements of the array

arrayName is the name of a reference variable that will store the address of the array object,

also considered to be the name of the array

arraySize is the number of elements in the array

To declare an array object that could store five integer ages we would write:

int[] ages = new int[5];

This statement allocates the memory shown in Figure 6.3. Not only is the storage for the array’s

elements allocated inside the object, but an integer named length is allocated and initialized to

the size of the array. The index of the first element of an array is always zero, and the indexes of

the remaining elements of an array are assigned sequential integer values in ascending order. This

implies that the index of the last element of an array is always one less than the size of the array. In

a five-element array, ages[5] does not exist, which is somewhat counterintuitive, and attempting

to access it results in a runtime error.

NOTE
The indices of an array containing n elements are 0 through n-1, and the size of the

array is n.

Conceptually, the array object declaration would be drawn as shown on the right side of

Figure 6.1, which is the way we most often visualize an array. Figure 6.3 gives a more accurate

depiction of the storage allocated to the array object created by the declaration given in the figure’s

caption and the reference variable, ages, that refers to the array object.

 Chapter 6· Arrays ■ 239

null 100age
0

0

0

0

0

5

4

2

3

1

index 0

length

100

Figure 6.3

The array object created by the statement int[] ages = new int[5];.

When an array object is created, the elements of the array are initialized to their default values

(e.g., zero for an array of integers), and the array object is assigned an address (address 100 in Fig-

ure 6.3). The data member length is initialized to the size of the array. For example in Figure 6.3,

length stores the value 5 inside the array object ages.

The data member length is a public data member, so rather than using a get method to ac-

cess it, it can be accessed by coding the name of the array object followed by length, preceded by

a dot. The following code fragment outputs a 5, the size of the array ages:

 int[] ages = new int[5];

 System.out.println(ages.length);

The data member length is a final variable and cannot be assigned a value. The following code

fragment results in a translation error:

 int[] ages = new int[5];

 ages.length = 23; //syntax error: can’t re-assign a final constant

 6.3.16.3.1 Dynamic Alloc Dynamic Allocaation of Arraystion of Arrays

An array object, like any other object, can be allocated dynamically during the execution of

the program. As we have learned, to do this we most often use the two-line object declaration

syntax. The first line is used to declare the reference variable that will refer to the object, and good

programming practice dictates that this line is coded at the top of the method or class in which the

array will be used. The second line of the syntax is used to allocate the object and set the reference

variable pointing to it. This line is normally coded further down in a method.

The splitting of the array object declaration syntax permits the size of the array to be deter-

mined by the processing the program performs. For example, the size of the array could be read

from the first line of a disk file that also contains the data that will be stored in the array, or the size

of the array could be input by the user. For example:

 int[] ages;

 String sSize = JOPtionPane.showInputDialiog("How many ages" +

 "will be entered?");

240 ■ Programming Fundamentals Using Java

 int size = Integer.parseInt(sSize);

 ages = new int[size];

Many applications, in which the number of data items to be processed is determined at run

time, would be very difficult to code without the use of arrays. For example, consider an applica-

tion that outputs a set of input data in reverse order. This requires declaring a variable for every

data item because they must all be saved until the last data item is input and then output. Because

the number of inputs is not known until runtime, without the use of arrays, we would have to guess

the maximum number of inputs, allocate that number of variables, and keep our fingers crossed

that we did not guess too low.

The fact that the length data member of an array object cannot be changed is consistent with

the fact that, in Java, the size of an array cannot be changed. As is the case with all objects, the

reference variable that refers to the object can be assigned to another object. In the case of an array,

we can make use of this fact to effectively resize the array at runtime by assigning the reference

variable to the address of a smaller, or a larger, array object.

For example, an array initially sized to five elements could be made to refer to a new array

object whose size is based on a user input.

 int[] data = new int[5];

 :

 :

 String sSize = JOPtionPane.showInputDialiog("How many ages" +

 "will be entered?");

 int size = Integer.parseInt(sSize);

 data = new int[size];

Assuming the user entered a “3” in response to the above prompt, Figure 6.4 shows the changes

in the contents of the reference variable data and the array object that data refers to, resulting

from the execution of the above code. It should be noted that if the original five-element array con-

tained five people’s ages, these ages would be lost after the dynamic allocation.

null 100 200 data 33

56

2

0

17

5

4

2

3

1

0

length

100

3length

0

200

01

02

0

Figure 6.4

The effect of the statement data = new int[3];.

 Chapter 6· Arrays ■ 241

As shown in Figure 6.4, the five-element array object’s address is overwritten with the address

of the new three-element array object, causing the storage allocated to the five-element array to be

reclaimed by the Java runtime memory manager. In Java, the storage allocated to objects that are

not referred to by a reference variable is reclaimed for use by other programs. In Section 6.9, we

will discuss techniques for transferring the values into a resized array when it is created.

 6.4 6.4 ARRAYS AND LOOPS ARRAYS AND LOOPS

Using arrays inside loops gives us the ability to process large data sets with just a few lines of

code. This is because the index used to specify which element of the array is being processed can

not only be a numeric literal (e.g., a = age[2];), but it can also be an integer variable. The only

restriction on the integer variable is that the value stored in it must be a valid element number of

the array. The following code segment outputs the third element of the array price twice. When

the last statement executes, the current contents of the variable index is fetched, substituted for

the variable index, and the output is performed.

 double[] price = new double[100];

 int index = 2;

 System.out.println(price[2]);

 System.out.println(price[index]);

This array feature is commonly used with the loop variable of a for statement as the array

index. Using this approach, the code to decrease the price of each of the 10,000 items a department

store sells by 10% in preparation for its annual Labor Day sale can be coded in just two lines of

code:

 for(int i = 0; i < 10000; i++)

 {

 salePrice[i] = price[i] * 0.9;

 }

The first time through the loop the variable i stores the value 0, and salePrice[0] is com-

puted. The second time through the loop i stores the value 1, and salePrice[1] is computed.

This process continues until finally salePrice[9999] is computed.

Two common mistakes are made when processing arrays inside of loops, both of which are

syntactically correct:

� the loop variable is initialized to 1 instead of to 0

� the Boolean condition is incorrectly coded using the <= operator instead of <

The first mistake stems from the fact that most of us begin with 1 when we count: 1, 2, 3, etc., so

our natural tendency is to initialize the loop variable to 1 instead of 0. When this mistake is made,

the first element of the array (element zero) is not processed.

Coding the Boolean condition incorrectly is the most common mistake. When all the elements

of the array are to be processed, our code is much more understandable if we use the size of the

242 ■ Programming Fundamentals Using Java

array, price.length, in the Boolean condition. However, when we do this, we must use the less

than (<) operator in the condition (e.g., i < price.length). Unfortunately, most novice program-

mers, intent on processing the last element of the array, use the <= operator, and the last iteration

of the loop generates an index that is one greater that of the last element of the array (e.g., 5 for a

five-element array). The result is a runtime error indicating that the program generated an Array-

IndexOutOfBoundsException. This error occurs whenever a program uses an array index that

is not in the range 0 to one less than the array’s size.

Figure 6.5 presents the application ArraysAndLoops that uses many of the array concepts

discussed thus far in this chapter to compute, and output, the sale price of a group of input items.

It accepts the prices of a set of items to be placed on sale, then computes and outputs the sale price

of the items. A sample set of inputs and the corresponding outputs produced by the program are

given at the bottom of the figure.

1 import javax.swing.*;

2 import java.text.NumberFormat;

3

4 public class ArraysAndLoops

5 {

6 public static void main(String[] args)

7 {

8 double[] price, salePrice;

9 String s;

10 int size;

11 NumberFormat fm = NumberFormat.getCurrencyInstance();

12 s = JOptionPane.showInputDialog("How many sale items?");

13 size = Integer.parseInt(s);

14 price = new double[size];

15 salePrice = new double[size];

16

17 for(int i = 0; i < size; i++)

18 {

19 s = JOptionPane.showInputDialog("Enter item " + (i + 1) +

20 " 's price");

21 price[i] = Double.parseDouble(s);

22 }

23

24 for(int i = 0; i < price.length; i++)

25 {

26 salePrice[i] = price[i] * 0.9;

27 System.out.println("The sale price of item " + (i + 1) +

28 " is " + fm.format(salePrice[i]));

29 }

30 }

31 }

 Chapter 6· Arrays ■ 243

Inputs:

5

10.00

20.00

30.00

40.00

50.00

Outputs:

The sale price of item 1 is $9.00

The sale price of item 2 is $18.00

The sale price of item 3 is $27.00

The sale price of item 4 is $36.00

The sale price of item 5 is $45.00

Figure 6.5

The application ArraysAndLoops and a set of inputs and corresponding outputs.

After the user enters the number of items to be placed on sale (line 12), two array objects are

dynamically allocated on lines 14 and 15, and their addresses are assigned to the reference vari-

ables price and salePrice. These variables were declared on line 8.

The program uses two for loops that begin on lines 17 and 24. The first loop accepts the input

of the non-sale prices, and the second loop computes and outputs the sale prices. The loop variable,

i, of the for loop that begins on line 17 is used to change the element of the array price (line 21)

that stores the parsed input. The second for loop, which begins on line 24, uses its loop variable to

index its way through the array price and the array salePrice (line 26) as it computes the new

values of the salePrice array.

The first loop uses the variable size, which was used to size both arrays on lines 14 and 15,

in its Boolean condition. The second loop uses the length data member of the array object price

in its Boolean condition. Either approach can be used. However, the latter approach is preferred

because it more clearly indicates that the entire array is being processed within the loop, and elimi-

nates the chance that an incorrect variable (other than size) would be coded in the Boolean condi-

tion. The second approach is also preferred when the array is passed into a method that will process

the array’s contents for reasons that we will discuss in Section 6.6. Both for statements correctly

use the less than operator (<) in their Boolean conditions.

 6.56.5 ARRAYS OF OBJECTS ARRAYS OF OBJECTS

Technically speaking, there is no way to declare an array of objects. The elements of an array

cannot be objects; they can only be primitive or reference variables. However, when the array ele-

ments are reference variables, each element of the array can contain the address of an object. When

this is the case, we often say that we have “an array of objects” because it is easier to say than “an

array of reference variables that refer to objects” (which is what we actually have).

244 ■ Programming Fundamentals Using Java

Leaving aside the technical jargon, when we set each element of an array of reference variables

to point to an object, we can rapidly process all of the objects by indexing through the array of ref-

erence variables. In addition, just as it was easy to declare a large number of variables using arrays,

we can easily declare a large number of objects using arrays of reference variables.

The first step in applying the power of arrays to programs that process objects is to declare (an

array object that contains) an array of reference variables. The second step is to declare the objects

and set their addresses into the elements of the array. The syntax used to declare the array of refer-

ence variables is the same syntax used to declare an array of primitive variables. The following

declaration creates an array of reference variables that could refer to five Snowman objects:

 Snowman[] sm = new Snowman[5];

The storage allocated by this declaration is shown in Figure 6.6. Because the array contains

reference variables, they are initialized to the default value of a newly created reference variable:

null. Otherwise, the figure is identical to Figure 6.3, which shows the storage allocated when an

array of five integers is declared.

null 100sm
null

null

null

null

null

5

4

2

3

1

index 0

length

100

Figure 6.6

The storage created by the declaration Snowman[] sm = new Snowman[5];.

As shown in Figure 6.6, the declaration of the array object does not allocate any Snowman

objects. To do this, we have to invoke a constructor in the Snowman class and set the returned ad-

dress of the newly constructed Snowman into an element of the array. Assuming the class has a

two-parameter constructor, one way to do this is to write five declaration statements:

 sm[0] = new Snowman(50, 100);

 sm[1] = new Snowman(100, 100);

 sm[2] = new Snowman(150, 100);

 sm[3] = new Snowman(200, 100);

 sm[4] = new Snowman(250, 100);

Assuming the constructor’s parameters are the (x, y) location of a Snowman object, our five

newly created snowmen will be standing shoulder to shoulder (at x = 50, 100, 150, 200, and 250)

when they are drawn on the game board. An equivalent but more efficient way to construct the

five snowmen would be to place the invocation of the constructor inside a loop. The use of a loop

 Chapter 6· Arrays ■ 245

is the preferred coding technique, which we would quickly realize if we had to declare a group of

5,000 snowmen.

 for(int i = 0; i < 5; i++)

 {

 sm[i] = new Snowman(50 + i * 50, 100);

 }

Because the loop variable is used as the index into the array sm, sm[0] receives the address of

the first Snowman created inside the loop. During each additional pass through the loop, the next

sequential element of the array receives the address of a newly created Snowman. In addition, the

loop variable is used to change the x coordinate of the snowmen, using the expression (50 + i * 50),

each time through the loop. The storage created after the loop completes its execution is shown in

Figure 6.7.

null 100 sm

4

2

3

1

index 0

length

100
null 256

null 32

null 512

null 516

null 88

5

Figure 6.7

An array of five reference variables pointing to five Snowman objects.

 6.5.1 6.5.1 Processing an Array’s Objects Processing an Array’s Objects

In Section 6.4, we learned that large primitive data sets could be processed with just a few

lines of code using the concepts of arrays and loops. To accomplish this, the data set was stored in

an array of primitive variables, and the processing instructions were coded inside a loop. The loop

variable was used as the index into the array, which caused the processing instruction(s) to operate

on a different element of the array during each pass through the loop.

Similarly, we can process large sets of objects with just a few lines of code by storing the

objects’ addresses inside an array of reference variables and then perform the processing on each

object inside a loop. The only difference is that instead of performing the processing on the array

elements themselves, the array elements are used to invoke the class’s processing methods on the

objects they reference.

For example, the code to add one to each of five people’s ages stored in an array of integers

named ages is very similar to the code that moves each of five snowmen stored in an array of

objects named sm one pixel to the right. The following code fragment illustrates the similarities:

246 ■ Programming Fundamentals Using Java

 int x;

 for(int i = 0; i < 5; i++)

 {

 ages[i] = ages[i] + 1; //increment the ages

 x = sm[i].getX(); //move the snowmen

 sm[i].setX(x + 1);

 }

Each time through this loop, the loop variable is used to change the element of the two arrays

involved in loop’s processing instructions. In the case of the integer array, the value stored in one

of the elements of the array, ages, is incremented by one; that is, the contents of the array ages

is changed. However, the loop processing does not change the contents of the array sm. Rather, it

uses the contents of the array sm to specify which Snowman object will be changed (operated on)

by the getX and setX methods during each pass through the loop. In this case, the x data member

of each Snowman object is increased by one.

That is not to say that the contents of an array of reference variables cannot be changed inside

a loop. As we have already seen, this is done when objects are constructed and the default null

values stored in the elements of the array are overwritten with the location of the newly constructed

(Snowman) objects. Conversely, all five snowmen could be eliminated from a game by overwriting

their addresses stored in the array with the value null:

 for(int i = 0; i < 5; i++)

 {

 sm[i] = null;

 }

This would cause the Java memory manager to recycle the storage allocated to the five Snowmen

objects and make it available to other programs running on the system.

The game application in Figure 6.8 uses the concepts discussed in this section to conduct a

parade of eight snowmen whose class is shown in Figure 6.9. The output produced by the program

when it is launched and the output produced several seconds after the start button is clicked are

shown on the left and right sides of Figure 6.10, respectively.

An array of reference variables named parade that will be used to store the addresses of eight

Snowman objects, is created on line 7 of Figure 6.8. When the game is launched, the snowmen

are displayed along a left-to-right downward-sloping diagonal (as shown in Figure 6.10a), until

the Start button is clicked. Then they parade around the game board reflecting off its boundaries,

eventually coming to the positions shown in Figure 6.10b.

The creation, display, animation, and reflection of the snowmen are performed inside four

loops. Within each iteration of these loops, a different snowman is processed because the loop

variable is used as an index into the parade array. The first of these loops (lines 11–14 of Figure

6.8) is used to create the snowmen and place the addresses of these eight objects in the reference

 Chapter 6· Arrays ■ 247

variable array parade. On line 13, the loop variable, i, is used inside the argument list sent to the

SnowmanV7 class’s two-parameter constructor to calculate each snowman’s initial (x, y) location

along a downward-sloping diagonal. During each iteration of the loop that begins on line 21, a dif-

ferent snowman is displayed on the game board at its current (x, y) location.

The remaining two loops, which begin on lines 31 and 41, move the snowmen around the game

board and bounce (reflect) them off the vertical and horizontal boundaries of the game board. The

loops are coded inside the timer3 call back method (lines 27–56), whose interval is set to 20 mil-

liseconds on line 15. As a result, every 20 milliseconds (1/50th of a second), the game environment

invokes this method, and the loops are executed. After the timer3 method completes its execu-

tion, the game environment invokes the application’s draw method (line 19), which displays the

snowmen at their new (x, y) position.

The for loop coded on lines 31–39 of the application performs the animation of the snow-

men. By using the loop variable, i, as an index into the parade array, each snowman’s x and y

position is fetched (lines 33 and 36), incremented by their corresponding speed data members

(lines 34 and 37), and set to their new values (lines 35 and 38). Being coded inside the timer3

method, this code changes each snowman’s (x, y) position every 20 milliseconds. The rapid re-

positioning and redrawing of the snowmen (every 1/50th of a second) gives the appearance of

continuous motion.

The for loop coded on lines 41–55 of Figure 6.8 performs the reflection of the snowmen off

the boundaries of the game board. The two data members, xSpeed and ySpeed were added to the

class SnowmanV7 (Figure 6.9, lines 7 and 8) along with their corresponding set and get methods

(lines 41, 45, 49, and 53) to perform this reflection. The loop variable, i, is used inside two if state-

ments (that begin on lines 43 and 49 of Figure 6.8) to index into the parade array. Their Boolean

conditions determine when a snowman’s current (x, y) position is at or beyond the vertical (line 43)

and horizontal (line 49) boundaries of the game board.

When this is the case, the snowman’s speed is fetched (lines 45 and 51), its sign is reversed

(lines 46 and 50), and the new value is set into the snowman’s speed data member (lines 47 and

53). Then, during the next execution of the timer3 method, when each snowman’s speed is used

to reposition it on the game board, those that reached a game board edge appear to bounce off the

edge because the sign of their speed has been reversed.

1 import java.awt.Graphics;

2 import edu.sjcny.gpv1.*;

3

4 public class SnowmanParade extends DrawableAdapter

5 { static SnowmanParade ge = new SnowmanParade();

6 static GameBoard gb = new GameBoard(ge, "Snowman Parade");

7 static SnowmanV7[] parade = new SnowmanV7[8];

8

9 public static void main(String[] args)

10 {

248 ■ Programming Fundamentals Using Java

11 for(int i=0; i < parade.length; i++) //create each snowman

12 {

13 parade[i] = new SnowmanV7(10 + i * 50 , 100 + i * 30);

14 }

15 gb.setTimerInterval(3, 20);

16 showGameBoard(gb);

17 }

18

19 public void draw(Graphics g) //draw each snowman

20 {

21 for(int i = 0; i < parade.length; i++)

22 {

23 parade[i].show(g);

24 }

25 }

26

27 public void timer3()

28 {

29 int x, speed, y;

30

31 for(int i = 0; i <parade.length; i++) //move each snowman

32 {

33 x = parade[i].getX();

34 x = x + parade[i].getXSpeed();

35 parade[i].setX(x);

36 y = parade[i].getY();

37 y = y + parade[i].getYSpeed();

38 parade[i].setY(y);

39 }

40

41 for(int i = 0; i < parade.length; i++) //reflect each snowman

42 {

43 if(parade[i].getX() >= 460 || parade[i].getX() <= 6)//x

44 {

45 speed = parade[i].getXSpeed();

46 speed = -speed;

47 parade[i].setXSpeed(speed);

48 }

49 if(parade[i].getY() >= 420 || parade[i].getY() <= 30)//

50 {

51 speed = parade[i].getYSpeed();

52 speed = -speed;

53 parade[i].setYSpeed(speed);

54 }

55 }

56 }

57 }

Figure 6.8

The application SnowmanParade.

 Chapter 6· Arrays ■ 249

1 import java.awt.*;

2

3 public class SnowmanV7

4 {

5 int x;

6 int y;

7 int xSpeed = 2;

8 int ySpeed = 2;

9

10 public SnowmanV7(int x, int y)

11 { this.x = x;

12 this.y = y;

13 }

14

15 public void show(Graphics g) // g is the game board object

16 { g.setColor(Color.BLACK);

17 g.fillRect(x + 15, y, 10, 15); // hat

18 g.fillRect(x + 10, y + 15, 20, 2); // brim

19 g.setColor(Color.WHITE);

20 g.fillOval(x + 10, y + 17, 20, 20); // head

21 g.fillOval(x, y + 37, 40, 40); // body

22 g.setColor(Color.RED);

23 }

24

25 public int getX()

26 { return x;

27 }

28

29 public void setX(int newX)

30 { x = newX;

31 }

32

33 public int getY()

34 { return y;

35 }

36

37 public void setY(int newY)

38 { y = newY;

39 }

40

41 public int getXSpeed()

42 { return xSpeed;

43 }

44

45 public void setXSpeed(int newXSpeed)

250 ■ Programming Fundamentals Using Java

46 { xSpeed = newXSpeed;

47 }

48

49 public int getYSpeed()

50 { return ySpeed;

51 }

52

53 public void setYSpeed(int newYSpeed)

54 { ySpeed = newYSpeed;

55 }

56 }

Figure 6.9

The class SnowmanV7.

 (a) Initial output (b) Output several seconds after Start is clicked

Figure 6.10

The output of the application SnowmanParade.

 6.66.6 PASSING ARRAYS BETWEEN METHODS PASSING ARRAYS BETWEEN METHODS

As discussed in Section 3.8, reference variables can be part of a worker method’s parameter

list. This gives us the ability to pass the location of objects declared in a method into a worker

method it invokes. Knowing the object’s location enables the worker method to perform some

processing on the object by referring to it using the parameter name that received the object’s

location. In addition, when the returned type of a non-void worker method is the name of a

class, the worker method can return the location of one object in that class to the method that

invoked it.

Because arrays are stored in objects, the ability to pass reference variables to and from worker

methods also gives us the ability to pass arrays to and from worker methods. To do this, we sim-

ply pass the array object’s reference variable to and from the worker method. While there are no

 Chapter 6· Arrays ■ 251

conceptual differences to consider when passing array and non-array objects to and from worker

methods, there are some minor syntactical differences in the signature of the worker method.

In the remainder of this section, we will discuss these differences and present examples of

passing arrays to and from worker methods. We will begin with a discussion of passing arrays to a

worker method and conclude with a discussion of returning an array from a worker method.

 6.6.16.6.1 Passing Arrays of Primitives to a Worker Method Passing Arrays of Primitives to a Worker Method

Consider the array age, shown on the left side of Figure 6.11, which stores the ages of five

people that have the same birthday. The following code fragment defines and initializes this array

and passes it to the static worker method birthday coded in the class Party.

 int[] age = new int[5];

 for(int i=0; i < age.length; i++)

 {

 age [i] = 21 + i;

 }

 Party.birthday(age); //method invocation statement

 age

100

100 theAges

Client’s (invoker's) RAM Memory Worker Method’s RAM

21

22

23

24

25

5

0

length

1

The argument: The parameter:

Copied upon invocation of the method:

2

3

4

100

Figure 6.11

Passing an array of primitives to a method.

Looking at the method invocation statement, there is no way to tell if the argument age sent to

the method birthday is a primitive variable or an array. This is because the syntax of an invoca-

tion statement used to pass an array reference to a worker method is the same syntax used to pass

a primitive variable to a worker method, which is also the same syntax used to pass any reference

variable to a worker method. From an invocation statement’s viewpoint, there is nothing new to

learn about passing arrays to worker methods.

252 ■ Programming Fundamentals Using Java

As previously discussed, it is the syntax of the signature of the worker method that is different.

When a parameter listed in a method’s signature is an array, a pair of braces [] is coded in between

the parameter’s name and its type. The following is the code of the static worker method birthday

that is passed an integer array. The work of the method is to add one to each element of the array.

 static void birthday(int[] theAges)

 {

 for(int i=0; i < theAges.length; i++)

 {

 theAges[i] = theAges[i] + 1;

 }

 }

NOTE

When a parameter in a worker method’s signature is an array, code a pair of brac-

es [] in between the parameter’s name and its type. For example:

 static void birthday(int[] theAges)

As indicated by the dashed arrows at the top of Figure 6.11, when the method is invoked and

passed the argument ages, Java’s use of value parameters copies the value stored in the argument

(100) into the method’s parameter theAges. Then the method’s code is able to access the elements

of the array object because its parameter, theAges, now stores the array’s address. Effectively,

while the method is executing, the array object is shared between the client code and the worker

method it invokes. Although we normally say we are “passing an array to a method,” we really

should say we are “passing the address of an array object to a method.”

NOTE
When passing an array to a worker method, the address of the array is passed to

the method, and the array object is shared between the client and worker methods.

Because the array’s address is shared, if the worker method changes the contents of the array,

the client code no longer has access to the original contents of the array. This is not a contradiction

of the idea that value parameters prevent worker methods from changing the client’s information

passed to it because the information passed to the worker method is the array’s address, not the

array’s elements. This is a subtle but important point to understand. Referring to Figure 6.11, while

it is true that the worker method can change the contents of the elements of the array because

theAges stores the object’s address, it cannot change the address of the array stored in the variable

age (which was the information passed to it).

If the worker method contained the statement below, it would lose access to the client’s array

object, but the client code would not. The address of the client’s array object would still be stored

in the variable age.

 theAges = new int[20];

 Chapter 6· Arrays ■ 253

 6.6.2 6.6.2 Passing Arrays of Objects to a Worker Method Passing Arrays of Objects to a Worker Method

As mentioned in Section 6.5, technically speaking, Java does not support arrays of objects.

However, an array’s elements can be reference variables that each store the address of an object.

When this is the case, we often say that the array is “an array of objects” because it is simpler than

saying the array is “an array of reference variables that point to objects.” When passing an array

of objects to a method, the invocation statement and the method’s signature use the same syntax

used to pass an array of primitive variables to a method. As discussed in the previous section, the

only indication that arrays are being passed is the inclusion of a pair of braces [] in between the

parameter’s name and its type in the signature of the worker method.

The left side of Figure 6.12 shows the array, parade, containing five reference variables that

store the addresses of five SnowmanV7 objects whose class is shown in Figure 6.9. To pass this ar-

ray to a worker method, we take advantage of Java’s value parameter implementation and pass the

address of the array to the method using the same syntax we used to pass the address of an array

of primitives to a method.

100 parade

4

2

3

1

0

length

100
256

32

512

516

88

5

 100 sm

Client’s RAM Memory Worker Method’s RAM

Copied upon invocation of the method

The argument: The parameter:

Figure 6.12

Passing the location of an array of objects to a method.

For example, suppose we wanted to use the static worker methods move and bounce coded

in the class PassingArrays to reposition the SnowmanV7 objects on the game board and reflect

them off the edges of the board. Assuming these methods each had one parameter used to pass the

array of snowmen named parade to the methods, the client code statements to invoke the worker

methods would be:

 PassingArrays.move(parade);

 PassingArrays.bounce(parade);

If the parameter name in the worker methods was sm, the signature of the methods would be:

254 ■ Programming Fundamentals Using Java

 static void move(SnowmanV7[] sm);

 static void bounce(SnowmanV7[] sm);

The dashed arrows at the top of Figure 6.12 illustrate the passing of the array’s location into the

method’s parameter, sm, which permits the methods to reference the array of snowmen during their

execution. The result is that while the methods are executing, the client code and the worker meth-

ods share the array of reference variables and the objects they refer to. If the worker methods’ code

writes new values into the data members of the snowmen objects, then these new values would be

available to the client code after the worker methods completed their execution.

The application PassingArrays, shown in Figure 6.13, illustrates the sharing of the infor-

mation contained in integer and object arrays with invoked methods and the methods’ ability to

change the contents of the array’s elements and the objects they reference. Figure 6.14 shows the

console output produced by the program, and Figure 6.15 shows the graphical output it produces

(which is the same as that produced by the application SnowmanParade). The class SnowmanV7

referred to in Figure 6.13 is the same class (shown in Figure 6.9) used in the SnowmanParade ap-

plication.

To verify the concept that the client and worker methods share primitive arrays, we have also

included the array object ages and the method birthday within the PassingArrays applica-

tion. Referring to Figure 6.13, the application’s main method declares an array of five integers

named ages on line 11. These variables are initialized to the values 21 through 25 inside the for

loop that begins on line 13. On line 17, this array is passed to the method birthday (lines 45–51),

and the address of the array is stored in the method’s parameter theAges (line 45). The code of

the method increases each element of the array by 1 inside its for loop (line 49). When the method

ends, the for loop in the method main (lines 18–20) outputs the contents of the array, producing

the console output shown in Figure 6.14. The fact that all of the ages output by the method main

have been increased by 1 verifies that the methods main and birthday shared the same array of

integers.

The code of the graphical portion of the applications PassingArrays is the same as the code

of the application SnowmanParade (Figure 6.8) except that the code that moves and reflects the

snowmen (coded on lines 29–55 of Figure 6.8) have been placed inside the static methods move and

bounce (lines 53–87 of Figure 6.13). In addition, invocations of these methods have been placed

inside the game environment’s timer3 method, lines 41 and 42. Thus, the graphical output of the

two programs is the same. When the game is launched, the snowmen are displayed along the left-

to-right downward-sloping diagonal, as shown Figure 6.15a. When the Start button is clicked, they

parade around the game board bouncing off its edges. Figure 6.15b shows the program’s graphical

output several seconds after the Start button is clicked.

The timer3 method now consists of two statements: the invocations of the move and re-

flect methods (lines 41 and 42 of Figure 6.13). The address of the array parade (declared on

line 7) is passed into the parameter sm of these methods, whose signatures are given on lines 53

and 68. Inside their for loops, the methods change the (x, y) location (lines 61 and 64) and speed

data members (lines 78 and 84) of the snowmen referenced by sm’s elements. Because the array

is shared between these methods and the timer3 method, the new locations and speed of the

 Chapter 6· Arrays ■ 255

snowmen have been placed into the Snowman array reference by parade. This fact is verified dur-

ing the next invocation of the game environments draw method when the snowmen are drawn at

their new locations and reflected off the edges of the game board.

1 import edu.sjcny.gpv1.*;

2 import java.awt.*;

3

4 public class PassingArrays extends DrawableAdapter

5 { static PassingArrays ge = new PassingArrays();

6 static GameBoard gb = new GameBoard(ge, "Snowman Parade");

7 static SnowmanV7[] parade = new SnowmanV7[8];

8

9 public static void main(String[] args)

10 {

11 int[] ages = new int[5];

12

13 for(int i = 0; i < 5; i++)

14 {

15 ages[i] = 21 + i;

16 }

17 birthday(ages);

18 for(int i = 0; i < 5; i++)

19 { System.out.print(ages[i] + " ");

20 }

21

22 for(int i = 0; i < 8; i++)

23 {

24 parade[i] = new SnowmanV7(10 + i * 50, 100 + i * 30);

25 }

26

27 gb.setTimerInterval(3, 20);

28 showGameBoard(gb);

29 }

30

31 public void draw(Graphics g)

32 {

33 for(int i = 0; i < 8; i++)

34 {

35 parade[i].show(g); // show the parade at its current location

36 }

37 }

38

39 public void timer3()

40 {

41 move(parade);

42 bounce(parade);

43 }

44

45 static void birthday(int[] theAges)

256 ■ Programming Fundamentals Using Java

46 {

47 for(int i = 0; i < theAges.length; i++)

48 {

49 theAges[i] = theAges[i] + 1;

50 }

51 }

52

53 static void move(SnowmanV7[] sm)

54 {

55 int x, y;

56

57 for(int i = 0; i < 8; i++)

58 {

59 x = sm[i].getX();

60 x = x + sm[i].getXSpeed();

61 sm[i].setX(x);

62 y = sm[i].getY();

63 y = y + sm[i].getYSpeed();

64 sm[i].setY(y);

65 }

66 }

67

68 static void bounce(SnowmanV7[] sm)

69 {

70 int speed;

71

72 for(int i = 0; i < 8; i++)

73 {

74 if(sm[i].getX() >= 460 || sm[i].getX() <= 6)

75 {

76 speed = sm[i].getXSpeed();

77 speed = -speed;

78 sm[i].setXSpeed(speed);

79 }

80 if(sm[i].getY() >= 420 || sm[i].getY() <= 30)

81 {

82 speed = sm[i].getYSpeed();

83 speed = -speed;

84 sm[i].setYSpeed(speed);

85 }

86 }

87 }

88 }

Figure 6.13

The application PassingArrays.

22 23 24 25 26

Figure 6.14

The console output produced by the application PassingArrays.

 Chapter 6· Arrays ■ 257

 (a) Initial output (b) Output after several reflections

Figure 6.15

 The graphical output of the application PassingArrays.

 6.6.36.6.3 Returning an Array from a Worker Method Returning an Array from a Worker Method

As discussed in Section 3.8, an object’s address can be returned from a method via a return

statement. Because arrays are stored in objects, this also gives us the ability to return the address

of an array from a worker method. The only syntactical difference to consider when returning the

address of an array object is in the signature of the worker method. When a method returns an ar-

ray, a pair of braces [] is coded in between the method’s name and its returned type. As is the case

when any value or address is returned from a method, if the returned address is to be used by the

client code that invoked the method, the client code must assign the returned address to a variable.

The following is the code of the static worker method birthdayV2 that is passed an integer

array and returns a copy of the array with all of its elements increased by one. The contents of the

array theAges passed into the method are unchanged.

static int[] birthdayV2(int[] theAges)

{

 int[] newAges = new int[length.theAges]; //declares the returned array

 for(int i = 0; i < theAges.length; i++)

 {

 newAges[i] = theAges[i] + 1;

 }

 return newAges; //returns the address of the new array

}

The syntax of the signature of a method that returns an array of objects is the same as the syn-

tax used in the above method’s signature, except the primitive type is replaced with the name of

the object’s class (e.g., SnowmanV7[] would replace int[]). In Chapter 7, we discuss and present a

very important example of returning an array of objects from a method.

258 ■ Programming Fundamentals Using Java

NOTE

When a method returns an array, a pair of braces [] is coded in between the meth-

od’s name and its returned type in the method’s signature. For example:

 static int[] birthday(int[] theAges)

The return statement only contains the name of the array without the braces. For

example:

 return newAges;

 6.76.7 PARALLEL ARRAYS PARALLEL ARRAYS

Suppose you were writing a program to maintain a database of student information for a school

that had 1,000 students. Specifically, three pieces of information would be stored for each student:

the student’s identification number, age, and grade point average (GPA). If you were an object

oriented programmer, you would begin by creating a class, probably named Student, which con-

tained three data members, one for each piece of information. In addition, the class would contain

a constructor to construct student objects and an input method to input information into a student

object. Your application could then create the database as shown below:

Student[] studentInfo = new Student[1000]; //1,000 Student object array

for(int i = 0; i < 1000, i++)

{

 studentInfo[i] = new Student(); //create a new Student object

 student[i].input; //input a student’s information

}

Now suppose that your program was going to be maintained by Anna, a programmer who

was not trained in object oriented programming. She is not familiar with the concept of classes,

the construction of objects, data members, and the idea that a class’s non-static methods (e.g., the

input method) can operate on an object’s data members.

Anna’s programming training was in the alternate programming paradigm, the procedural

paradigm, in which objects do not play a central role in the language’s constructs. She is not “ob-

ject friendly”. Because both the procedural and object oriented paradigms include the concept of

arrays, you have decided to eliminate the use of the Student class from your program and simply

use three arrays. One array will store all the student identification numbers, another will store all

the student ages, and the third array will store all the student grade point averages (GPAs). Your

application would then create the database as shown below:

1 int[] id = new int[1000];

2 int[] age = new int[1000];

3 double[] gpa = new double[1000];

4 String sInput;

 Chapter 6· Arrays ■ 259

5

6 for(int i = 0; i < 1000, i++)

7 {

8 sInput = JOptionPane.showInputDialog("Enter a student's ID number);

9 id[i] = Integer.parseInt(sInput);

10 sInput = JOptionPane.showInputDialog("Enter THAT student's age);

11 age[i] = Integer.parseInt(sInput);

12 sInput = JOptionPane.showInputDialog("Enter THAT student's GPA);

13 gpa[i] = Double.parseDouble(sInput);

14 }

The code that is used to input the student information is an example of the use of parallel ar-

rays. This is easily recognized when we examine the input prompts on lines 8, 10, and 12. On line

8, the user is instructed to input a student’s ID number, implying that any of the 1,000 student IDs

could be entered. Perhaps ID number 15647. However, on lines 10 and 12, the user is instructed to

enter THAT student’s age and THAT student’s GPA. This implies that the next two entries must be

the age and GPA of the student whose ID number was just entered.

Because the loop variable is used as the index into the three arrays, a student’s information is

stored in the same element of all three arrays. This is the concept of parallel arrays. Each piece of

data that is associated with a particular student is stored in the same element of each of the three ar-

rays that comprise the data set. We would not be using the concept of parallel arrays if a particular

student’s ID number was stored in element 3 of the id array, and that student’s age and GPA were

stored in element 24 of the age array and element 6 of the GPA array, respectively.

The name parallel arrays comes from the idea that if we were to draw the three arrays side by

side and then draw parallel horizontal lines below and above each element of the array, as depicted

in Figure 6.16, all of a student’s information would be contained between two of the lines. For ex-

ample, the age of the student whose ID is 76892 would be 19, and the student’s GPA would be 4.0.

All of Al’s information, including his GPA of 1.7, would have been entered during the first iteration

of the input loop. (Please study more, Al.)

id age gpa

0 15647 18 1.7 Al’s info

1 3452 21 2.55 Flo’s info.

2 76892 19 4.0 Bob’s info.

3 34376 22 3.85 Jo’s info.

4 77834 19 3.3 Ed’s info.

: : : : :

999 45823 20 2.3 Jen’s info.

Figure 6.16

Three parallel arrays.

It is important to remember that parallel arrays are a concept or a model, not a programming

language construct. The concept is used when the programmer stores all the data for a particular

entity in the same elements of two or more arrays.

260 ■ Programming Fundamentals Using Java

Parallel arrays are used less frequently in programs coded in object oriented programming

languages like Java because all of the data for a particular entity can be stored inside an object as

its data members, rather than in the elements of several arrays. However, if we wanted to group

several different objects together, e.g., a snowman and its child, then a set of parallel arrays of ob-

jects is a perfect way to do this.

For example, suppose that five snowmen had one snow child each. Then, if the arrays parent

and child were used to store the addresses of the snowmen and the snow children, respectively,

by considering the two arrays to be parallel, we could quickly locate a child’s parent or locate a

parent’s child. The address of a parent and the address of its child would be stored in the same two

elements of the arrays: parent[2]’s child’s address would be stored in child[2].

Figure 6.17 shows the graphical application ParallelArrays that uses three parallel arrays

to associate a parent snowman with its snow child and their family name. The parent snowman’s

class, ParentSnowman, is shown in Figure 6.18, and the snow child’s class, SnowChild, is shown

in Figure 6.19.

When the program is launched, the graphical output shown in Figure 6.20a is produced. The

parent snowmen are lined up vertically on the left of the game board, and the snow children are

located at random locations to their right. Every child and parent has their family name (last name)

displayed on their bellies. When a key is struck, the children are repositioned next to their parents

as shown Figure 6.20b. Parallel arrays are used to make the association between a parent, its child,

and the family name.

Three array objects are created on lines 14 –16, with the first of these (the array names) initial-

ized to the names of the five families (B, D, A, E, and C). Then the other two array objects are

filled with references to ParentSnowman and SnowChild objects inside the for loop that begins

on line 20. The constructors used to create the objects on lines 24 and 25 accept three arguments.

The first two are the x and y location of the object, which for the children are random numbers gen-

erated on lines 22 and 23. The third parameter is the family name that will appear on the object’s

belly. The constructors store this name in the parent and child classes’ data member name on line

17 of Figures 6.18 and 6.19, respectively.

The loop that begins on line 20 of Figure 6.17 establishes the arrays as parallel arrays. With

each pass through the loop, the loop variable i is used on lines 24 and 25 as an index into the array

names to select the family name of a parent (line 24) and its child (line 25). This name is passed

to the ParentSnowman and SnowChild constructors, and the returned addresses are stored in the

element i of the parent and child arrays. Because the same index number is used in all three

arrays, a parent, its child, and their family name are all stored in the same element number of their

respective arrays.

The parallel construction of the arrays makes it easy to reposition the children next to their

parents, which is done in the for loop that begins on line 42 of the keyStruck call back method.

Lines 44 and 45 fetch the (x, y) location of the ith child’s parent, and these values are used on lines

46 and 47 to reposition the ith child to the right of its parent. Fifty pixels are added to the parent’s

 Chapter 6· Arrays ■ 261

x coordinate to move the child to the right of its parent, and 35 pixels are added to the y coordinate

of the parent to account for the difference in height of the parent and child objects.

Parallel arrays are also used in the API Graphics class’s method fillPolygon. This method

is used on lines 31 and 28 of Figures 6.18 and 6.19, respectively, to draw the triangular noses of the

parent snowmen and their children. The method has three parameters, two of which are arrays of

integers:

 public void fillPolygon(int[] xPoints, int[] yPoints , int nPoints)

The parameters are used to specify the x coordinates of the vertices of a polygon (xPoints),

the y coordinates of the vertices of a polygon (yPoints), and the number of vertices (nPoints).

Within the method, the two arrays are used as parallel arrays. The coordinate of the ith vertex of

the polygon is assumed to be (xPoints[i], yPoints[i]). That is, the x and y coordinates of a

vertex are assumed to be at the same element number in the xPoints and yPoints arrays. Know-

ing this, the two arrays xPoly and yPoly passed to the method on line 31 of Figure 6.18 have been

set up as parallel arrays on lines 20 and 21. Because the desired coordinates of the three vertices of

a parent’s nose are (x + 20, y + 25), (x + 15, y + 30), and (x + 25, y + 30), these x and y parings are

coded in the same elements of both arrays. A similar set of parings defines a child’s nose on lines

21 and 22 of Figure 6.19, which are used to draw the child’s nose on line 28 of that figure.

1 import edu.sjcny.gpv1.*;

2 import java.awt.*;

3 import java.util.Random;

4

5 public class ParallelArrays extends DrawableAdapter

6 {

7 static ParallelArrays ge = new ParallelArrays();

8 static GameBoard gb = new GameBoard(ge, "Parallel Object ArraysApp");

9 static ParentSnowman[] parent;

10 static SnowChild[] child;

11

12 public static void main(String[] args)

13 {

14 String[] names = { "B", "D", "A", "E", "C"};

15 parent = new ParentSnowman[5];

16 child = new SnowChild[5];

17 Random rn = new Random(500);

18 int x, y;

19

20 for(int i = 0; i < 5; i++)

21 {

22 x = 100 + rn.nextInt(500 - 100 - 30);

23 y = 30 + rn.nextInt(500 - 30 - 30);

24 parent[i] = new ParentSnowman(50, 50 + 90*i, names[i]);

25 child[i] = new SnowChild(x, y, names[i]);

26 }

262 ■ Programming Fundamentals Using Java

27 showGameBoard(gb);

28 }

29

30 public void draw(Graphics g)

31 {

32 for(int i = 0; i<5; i++)

33 {

34 parent[i].show(g);

35 child[i].show(g);

36 }

37 }

38

39 public void keyStruck(char key)

40 {

41 int x, y;

42 for(int i = 0; i< 5; i++)

43 {

44 x = parent[i].getX();

45 y = parent[i].getY();

46 child[i].setX(x + 50);

47 child[i].setY(y + 35);

48 }

49 }

50 }

Figure 6.17

The application ParallelArrays.

1 import java.awt.*;

2

3 public class ParentSnowman

4 {

5 private int x = 8;

6 private int y = 30;

7 private boolean visible = true;

8 private String name;

9

10 public ParentSnowman()

11 {

12 }

13

14 public ParentSnowman(int intialX, int intialY, String name)

15 { x = intialX;

16 y = intialY;

17 this.name = name;

18 }

19

20 public void show(Graphics g) //g is the game board object

21 { int[] xPoly = {x + 20, x + 15, x + 25};

 Chapter 6· Arrays ■ 263

22 int[] yPoly = {y + 25, y + 30, y + 30};

23

24 g.setColor(Color.BLACK);

25 g.fillRect(x + 15, y, 10, 15); //hat

26 g.fillRect(x + 10, y + 15, 20, 2); //brim

27 g.setColor(Color.WHITE);

28 g.fillOval(x + 10, y + 17, 20, 20); //head

29 g.fillOval(x, y + 37, 40, 40); //body

30 g.setColor(Color.RED);

31 g.fillPolygon(xPoly, yPoly, 3); //nose

32 g.setColor(Color.BLACK);

33 g.setFont(new Font("Arial", Font.BOLD, 16));

34 g.drawString(name, x + 16, y + 62); //name

35 }

36

37 public int getX()

38 { return x;

39 }

40

41 public void setX(int newX)

42 { x = newX;

43 }

44

45 public int getY()

46 { return y;

47 }

48

49 public void setY(int newY)

50 { y = newY;

51 }

52

53 public boolean getVisible()

54 { return visible;

55 }

56

57 public void setVisible (boolean newVisible)

58 { visible = newVisible;

59 }

60

61 public String getName()

62 { return name;

63 }

64 }

Figure 6.18

The class ParentSnowman.

264 ■ Programming Fundamentals Using Java

1 import java.awt.*;

2

3 public class SnowChild

4 {

5 private int x = 8;

6 private int y = 30;

7 private boolean visible = true;

8 private String name;

9

10 public SnowChild()

11 {

12 }

13

14 public SnowChild(int intialX, int intialY, String name)

15 { x = intialX;

16 y = intialY;

17 this.name = name;

18 }

19

20 public void show(Graphics g) //g is the game board object

21 { int[] xPoly = {x + 15, x + 12, x + 18};

22 int[] yPoly = {y + 5, y + 8, y + 8};

23

24 g.setColor(Color.WHITE);

25 g.fillOval(x + 8, y, 14, 14); //head

26 g.fillOval(x, y + 14, 28, 28); //body

27 g.setColor(Color.RED);

28 g.fillPolygon(xPoly, yPoly, 3); //nose

29 g.setColor(Color.BLACK);

30 g.setFont(new Font("Arial", Font.BOLD, 16));

31 g.drawString(name, x + 10, y + 33); //name

32 }

33

34 public int getX()

35 { return x;

36 }

37

38 public void setX(int newX)

39 { x = newX;

40 }

41

42 public int getY()

43 { return y;

44 }

45

46 public void setY(int newY)

47 { y = newY;

48 }

49

 Chapter 6· Arrays ■ 265

50 public boolean getVisible()

51 { return visible;

52 }

53

54 public void setVisible (boolean newVisible)

55 { visible = newVisible;

56 }

57

58 public void setName(String newName)

59 { name = newName;

60 }

61

62 public String getName()

63 { return name;

64 }

65 }

Figure 6.19

The class SnowChild.

 (a) (b)

Figure 6.20

The graphical output of the application ParallelArrays.

 6.86.8 COMMON ARRAY ALGORITHMS COMMON ARRAY ALGORITHMS

As we have seen, arrays can be used to easily declare and process large data sets. Often, the

processing performed on these data sets involves searching for a particular piece of data (e.g., the

snowman family whose name is C), finding the name of the snowman family that is first or last

in alphabetical order, or displaying the snowman families in sorted order based on their names.

Searching, finding minimums and maximums, and sorting are all array-processing algorithms that

are very commonly used in programs. We will begin our study of these algorithms with the array

searching algorithm.

266 ■ Programming Fundamentals Using Java

 6.8.1 6.8.1 Searching Searching

As its name implies, this algorithm is used to search an array to determine the element number

of the array that contains a given value. For example, it could be used to search an array containing

a group of people’s ages to find the element number whose value is 32. If a parallel array contained

the names of the people, then the element number could be used as an index into the name array to

output the name of a person who is 32 years old. In an object oriented context, it could be used to

search an array of parent snowmen to find the element number of the snowman whose name data

member contains the string “C” and then use this element number to display its family name on

the game board.

The algorithm to search for, or locate, a particular value contained in an array is shown in

Figure 6.21. The implementation on the left side of the figure searches the integer array ages for

the value 32, and the code on the right searches the object array parent for an object whose age

data member is 32. These target values are specified on line 1. Lines 2–12 constitute the searching

algorithm. Except for the names of the arrays and the Boolean conditions on line 6, the algorithms

are identical. Line 6 of the array of objects version of the algorithm (the right side of the figure) as-

sumes that the class of the objects contains a getAge method to fetch an object’s age data member.

1 int target = 32;

2 int elementNumber = -1;

3 boolean found = false;

4 for(int i = 0; i < ages.length; i++)

5 {

6 if(ages[i] == target)

7 {

8 found = true;

9 elementNumber = i

10 break;

11 }

12}

1 int target = 32;

2 int elementNumber = -1;

3 boolean found = false;

4 for(int i = 0; i< parent.length; i++)

5 {

6 if(parent[i].getAge() == target))

7 {

8 found = true;

9 elementNumber = i

10 break;

11 }

12}

Searching an Array of Primitives Searching an Array of Objects

Figure 6.21

The array searching algorithm.

The initializing value on line 1 of Figure 6.21 is the target value to be found. Line 2 initializes

the Boolean variable found to false. This variable will be set to true if the target being searched

for is found. The loop that begins on line 4 indexes its way through the array. Inside that loop, the

if statement on line 6 determines if element i of the array contains the target value. If it does,

found is set to true (line 8), elementNumber is set on line 9 to the element number that contains

the target value, and the code breaks out of the loop (line 10). Subsequent code would have to ex-

amine the variable found before using the index stored in the variable elementNumber because,

if the target value is not found, the value stored in the variable elementNumber would be out of

bounds (i.e., equal to its initial value, -1).

 Chapter 6· Arrays ■ 267

The algorithm on the right side of Figure 6.21 can be used to locate a value stored in any primi-

tive-type data member contained in the array’s objects, as long as the class of the objects contains a

get method to fetch the data member (which would be invoked on line 6). If the data member is not

a primitive-type variable, but rather a reference variable, then the class of the object it references

also must contain an equals method to be used in the Boolean condition on line 6. Typically, this

method returns true when the object that invoked it is equal to the argument sent to it (the variable

target). The String class contains an implementation of this method.

Assuming the data member’s name was lastName that referenced a string, and we were

searching for the name Jones, lines 1 and 6 of the algorithm would become:

 Line 1: String target = "Jones";

 Line 6: if(parent[i].getLastName().equals(target))

It should be noted that if several elements of the array contained the target value, the variable el-

ementNumber would be set to the index of the lowest of these elements. If the highest element

number of the array that contains the minimum value is desired, then the break statement on line

10 of Figure 2.21 would be eliminated from the algorithm. In addition, when the algorithms are

implemented as a method that returns the element number of the target value, the method returns

the variable elementNumber. The signature of the method would be:

public static int findValue(ArrayType[] arrayOfvalues, TargetType target)

where ArrayType and TargetType are the types of the array and the value being searched for,

respectively. The method below searches the array of SnowChild objects passed to its first param-

eter and returns the index of the first child whose name is the string passed to its second parameter.

Otherwise, it returns a -1.

 public static int findValue(SnowChild[] anArray, String target)

 {

 int elementNumber = -1;

 for(int i = 0; i < anArray.length; i++)

 {

 if(anArray[i].getName().equals(target))

 {

 elementNumber = i;

 break;

 }

 }

 return elementNumber;

 }

 6.8.26.8.2 Minimums and Maximums Minimums and Maximums

The algorithms to locate the minimum or maximum value contained in an array are very simi-

lar to the searching algorithm discussed in the previous section. They also use a for loop to search

the entire array, but when the loop terminates, the variable elementNumber contains the element

268 ■ Programming Fundamentals Using Java

number of the minimum or maximum value in the array. When the array is an array of objects,

this value is the minimum or maximum value stored in a particular data member of the objects.

The code shown on the left side of Figure 6.22 is an implementation of the algorithm to locate

the minimum value contained in an array of primitive values (in this case, an array of people’s

ages). The code on the right searches the object array parent for the minimum value stored in one

of the object’s data members (in this case, the integer data member age). Except for lines 1, 6, and

the different array names the algorithms are identical.

Lines 1 and 6 of the array of objects version of the algorithm (right side of the figure) assume

that the class of the objects contains a getAge method to fetch the object’s data member (age).

Both algorithms begin with the assumption that the minimum value is stored in, or is refer-

enced by, the first element of the array. Therefore, line 1 sets the variable min to that value, and

line 2 stores its index (zero) in the variable elementNumber. The for loop that begins on line 4

compares the value stored in the variable min to all of the other members of the array. If it finds a

value smaller than the value stored in min (line 6), it saves that value in min (line 8) and its element

number in the variable elementNumber (line 9). When the loop ends, elementNumber contains

the index of the minimum value in the array.

Using an approach similar to the search algorithm, the algorithm on the right side of Figure 6.22

can be used to locate the minimum value of any primitive type data member contained in the ar-

ray’s objects, as long as the objects’ class contains a get method to fetch the data member (invoked

on lines 1, 6, and 8). If the data member is not a primitive type variable, but rather a reference vari-

able, then the class of the object it references also must contain a compareTo method to be used in

the Boolean condition on line 6. Typically, this method returns a negative number when the object

that invoked it is less than the argument sent to it (the variable min). The String class contains an

implementation of this method.

Assuming the data member referenced a String object, and the data member’s name was

lastName, lines 1 and 6 of the algorithm would become:

1 int min = ages[0];

2 int elementNumber = 0;

3

4 for(int i = 1; i < ages.length; i++)

5 {

6 if(ages[i] < min)

7 {

8 min = ages[i];

9 elementNumber = i

10 }

11}

1 int min = parent[0].getAge();

2 int elementNumber = 0;

3

4 for(int i = 1; i< parent.length; i++)

5 {

6 if(parent[i].getAge() < min)

7 {

8 min = parent[i].getAge();

9 elementNumber = i

10 }

11}

Minimum Primitive Array Value Algorithm Minimum Object Array Value Algorithm

Figure 6.22

The minimum value algorithm.

 Chapter 6· Arrays ■ 269

 Line 1: String min = parent[0].getLastName();

 Line 6: if(parent[i].getLastName().compareTo(min) < 0)

Finally, when the array is an array of String objects, lines 1 and 6 of the algorithm would become:

 Line 1: String min = parent[0];

 Line 6: if(parent[i].compareTo(min) < 0)

It should be noted that if several elements of the array contained the minimum value, the

variable elementNumber would be set to the index of the lowest value of these elements. If the

highest index of the array that contains the minimum value is desired, then the less than opera-

tor (<) used in the Boolean expression on line 6 would be changed to the less than or equal to

operator (<=). When the algorithms are coded as a method that returns the element number of

the minimum value, the method returns the variable elementNumber. The signature of the

method would be:

 public int findMin(ArrayType[] arrayOfvalues)

where ArrayType is the types of the array elements (e.g., double, String, SnowChild, etc.).

The following method searches the array of SnowChild objects passed to it and returns the index

of the snow child that contains the minimum value of the primitive data member x.

 public int findMin(SnowChild[] arrayOfvalues)

 {

 int min = arrayOfValues[0].getX();

 int elementNumber = 0;

 for(int i = 1; i < arrayOfValues.length; i++)

 {

 if(arrayOfValues[i].getAge() < min)

 {

 min = arrayOfValues[i].getAge();

 elementNumber = i;

 }

 return elementNumber;

 }

Locating Maximums

The algorithm to locate the maximum value contained in an array is the same as that used to

locate the minimum value, except that the less than operator (<) used on line 6 of Figure 6.22 is

replaced with the greater than operator (>), and good coding style dictates that the variable min be

renamed max.

 6.8.36.8.3 Sorting Sorting

There are many algorithms for sorting the elements of an n element array. One of the simplest

is the Selection Sort algorithm. It begins by locating the minimum value contained in elements 1 to

270 ■ Programming Fundamentals Using Java

n-1, and if it is smaller than element zero (j = 0), it is swapped into element zero. Then it locates

the next smallest value, and if it is smaller than element one (j = 1), swaps it into element one. This

process is repeated for j = 2, 3, … n-2. When the algorithm ends, the array is sorted in ascending

order.

For example, suppose we wanted to sort an array of five integers, 12, 9, 3, 4, and 11, shown

in the left column of Table 6.1 in ascending order. First, we locate the smallest value among 9, 3,

4, and 11 which is 3. Because it is less than 12 (the value in element j = 0), it is swapped with 12,

which produces the ordering shown in the second column of the table. Then the smallest value

among 12, 4, and 11 is located, which is 4. Because it is less than 9 (the value in element j = 1), it

is swapped with 9, producing the ordering shown in the third column of the table. The remaining

two steps for j = 2 and j = 3 and the final sorted array are shown in the three right-most columns.

When the array is an array of objects, the algorithm sorts the objects based on the value of one of

the class’s data members.

Table 6.1

The Progression of the Selection Sort Algorithm

j = 0 j = 1 j = 2 j = 3

index 0 12 3 3 3 3

 1 9 9 4 4 4

 2 3 12 12 9 9

 3 4 4 9 12 11

 4 11 11 11 11 12

Original

Array

After 12 and 3

were swapped

After 9 and 4

were swapped

After 12 and 9

were swapped

After 12

and 11 were

swapped

The code shown on the left side of Figure 6.23 is an implementation of the Selection Sort algo-

rithm for sorting an array of primitive values (in this case an array of people’s ages). It uses nested

loops: the inner loop searches for a minimum value, and the outer loop places it into its correct

positioning in the array. The right side of the figure is an implementation of the algorithm used to

sort an array of ParentClass objects based on the value of one of their primitive type data mem-

bers (in this case, the integer data member age). Except for the names of the arrays, the type of the

variable declared on line 2, and the use of the getAge method on lines 6, 10, and 12 on the right

side of the figure, the implementations are identical.

The code that begins on line 6 and ends on line 15 is essentially the algorithm to locate the

minimum value of an array’s elements, which was discussed in Section 6.8.2 and implemented in

Figure 6.22. The differences are that line 6 initializes the minimum value, min, to the jth element

of the array rather than the first element, and line 7 initializes the minimum element number,

iMin, to j rather than zero. In addition, the loop that begins on line 8 initializes its loop variable

to j + 1 rather than one. The variable j is the loop variable of an outer loop that begins on line 4

 Chapter 6· Arrays ■ 271

and ends on line 23. Because it is initialized to zero on line 4 the first time lines 6–15 execute, this

code is in fact identical to the minimum value algorithm.

After the search for the minimum value ends (line 15), if j is not the index of the minimum

value of the remaining unsorted portion of the array (as determined by the if statement on line

17), then lines 19–21 place the minimum value in element j by swapping element j with element

iMin. The first time through the outer loop, element zero stores the minimum value contained in

the array. After the second iteration of the outer loop, the next lowest element is stored in element

1. When the algorithm ends, the array is sorted in ascending order. To sort the elements of an array

in descending order, the less than (<) operator in the Boolean condition on line 10 is changed to the

greater than (>) operator.

It should be noted that when sorting an array of objects (right side of Figure 6,23), lines 19–21

swaps the references to the objects contained in the array parents. For example, on the first itera-

tion of the outer loop, the location of the object whose age data member is the minimum value is

placed in the first element of the array parents. The alternative is to swap the contents of the data

members of the objects, which is more time consuming. In either case, if the sorted objects were

output from the first element of the array to the last, they would appear in sorted order based on the

contents of the age data member.

1 int iMin, min;

2 int temp;

3

4 for (int j = 0; j < ages.length; j++)

5 {

6 min = ages[j];

7 iMin = j;

8 for (int i = j+1; i < ages.length; i++)

9 {

10 if (ages[i] < min)

11 {

12 min = ages[i];

13 iMin = i;

14 }

15 }

16

17 if (iMin != j)

18 {

19 temp = ages[j];

20 ages[j] = ages[iMin];

21 ages[iMin] = temp;

22 }

23 }

1 int iMin, min;

2 ParentClass temp;

3

4 for (int j = 0; j < parent.length; j++)

5 {

6 min = parent[j].getAge();

7 iMin = j;

8 for (int i = j+1; i < parent.length; i++)

9 {

10 if (parent[i].getAge() < min)

11 {

12 min = parent[i].getAge();

13 iMin = i;

14 }

15 }

16

17 if (iMin != j)

18 {

19 temp = parent[j];

20 parent[j] = parent[iMin];

21 parent[iMin] = temp;

22 }

23 }

Sorting an Array of Primitives The selection sort algorithm.

Figure 6.23

The minimum value algorithm.

272 ■ Programming Fundamentals Using Java

The algorithm on the right side of Figure 6.23 can be used to sort an array of objects based on

any primitive type data member contained in the array’s objects, as long as the class of the objects

contains a get method to fetch the data member (which would be invoked on lines 6, 10, and 12).

If the data member is not a primitive type variable, but rather a reference variable, then the

class of the object it references also must contain a compareTo method to be used in the Boolean

condition on line 10. Typically, this method returns a negative number when the object that invoked

it is less than the argument sent to it (the variable min). The String class contains an implementa-

tion of this method. Assuming the data member referenced a String object and the data member’s

name was lastName, line 10 of the algorithm would become:

 Line 10: if(parent[i].getLastName().compareTo(min) < 0)

When the array is an array of String objects, line 10 of the algorithm would become:

 Line 10: if(parent[i].compareTo(min) < 0)

An Array Algorithm Case Study

Figure 6.24 presents the graphical application ArrayAlgorithms that illustrates the use of

the array processing algorithms discussed in this chapter to process parallel arrays of snow fami-

lies. When the application begins, the user is asked to enter the names of five snow families (e.g.,

“I”, “B”, “N”, “E”, and “G”). Then the five families, each consisting of a ParentSnowman and a

SnowChild object, whose classes are shown in Figures 6.18 and 6.19, respectively, are displayed

(Figure 6.25a).

After the program is launched, when the user types the name of a snow family (e.g., “I”),

the family is searched for and alternately disappears (Figure 6.25b) and reappears (Figure 6.25a).

When the up-arrow cursor key is struck, the family whose name is the minimum in sorted or-

der (e.g., “B”), alternately disappears (Figure 6.25c) and reappears (Figure 6.25a). Finally, when

the “S” key is struck, the visible snow families are displayed in sorted order by family name

(Figure 6.25d).

1 import edu.sjcny.gpv1.*;

2 import java.awt.*;

3 import javax.swing.*;

4

5 public class ArrayAlgorithms extends DrawableAdapter

6 {

7 static ArrayAlgorithms ge = new ArrayAlgorithms();

8 static GameBoard gb = new GameBoard(ge, "ArrayAlgorithmsApp");

9 static ParentSnowman[] parent;

10 static SnowChild[] child;

11

12 public static void main(String[] args)

13 {

14 String name;

 Chapter 6· Arrays ■ 273

15 parent = new ParentSnowman[5];

16 child = new SnowChild[5];

17

18 for(int i = 0; i < 5; i++)

19 {

20 name = JOptionPane.showInputDialog("enter a family name");

21 name = name.toUpperCase();

22 child[i] = new SnowChild(50 + 60, 80 + 90 * i, name);

23 parent[i] = new ParentSnowman(50, 50 + 90 * i, name);

24 }

25 showGameBoard(gb);

26 }

27

28 public void draw(Graphics g)

29 {

30 for(int i = 0; i<5; i++)

31 {

32 if(parent[i].getVisible() == true)

33 { parent[i].show(g);

34 child[i].show(g);

35 }

36 }

37 }

38

39 public void keyStruck(char key)

40 {

41 int index;

42

43 String sKey = Character.toString(key);

44 index = findValue(parent, sKey);

45 if(index != -1) //name is valid, reverse family's visibility

46 {

47 if(parent[index].getVisible() == true)

48 {

49 parent[index].setVisible(false);

50 }

51 else

52 {

53 parent[index].setVisible(true);

54 }

55 }

56

57 if (key == 'U') //up arrow struck, reverse visibility of min name

58 {

59 index = findMin(parent); //index of first family in alphabetic order

60 if(parent[index].getVisible() == true)

61 {

62 parent[index].setVisible(false);

274 ■ Programming Fundamentals Using Java

63 }

64 else

65 {

66 parent[index].setVisible(true);

67 }

68 }

69 if(key == 'S') //sort the families

70 {

71 selectionSort(parent);

72 }

73 }

74

75 public static int findValue(ParentSnowman[] parent, String targetValue)

76 {

77 int elementNumber = -1;

78 for(int i = 0; i< parent.length; i++)

79 {

80 if(parent[i].getName().equalsIgnoreCase(targetValue))

81 {

82 elementNumber = i;

83 break;

84 }

85 }

86 return elementNumber;

87 }

88

89 public static int findMin(ParentSnowman[] parent)

90 {

91 String min = parent[0].getName();

92 int elementNumber = 0;

93 for(int i = 1; i < parent.length; i++)

94 {

95 if(parent[i].getName().compareToIgnoreCase(min) < 0)

96 {

97 min = parent[i].getName();

98 elementNumber = i;

99 }

100 }

101 return elementNumber;

102 }

103

104 public static void selectionSort(ParentSnowman[] parent)

105 {

106 int iMin, tempInt;

107 ParentSnowman tempParent;

108 SnowChild tempChild;

109 String min;

110

 Chapter 6· Arrays ■ 275

111 for (int j = 0; j < parent.length; j++)

112 {

113 min = parent[j].getName();

114 iMin = j;

115 for (int i = j+1; i < parent.length; i++)

116 {

117 if (parent[i].getName().compareToIgnoreCase(min) < 0)

118 {

119 min = parent[i].getName();

120 iMin = i;

121 }

122 }

123 if(iMin != j) //swap element j with minimum element

124 {

125 tempParent = parent[j]; //swap array references

126 parent[j] = parent[iMin];

127 parent[iMin] = tempParent;

128 tempChild = child[j];

129 child[j] = child[iMin];

130 child[iMin] = tempChild;

131

132 tempInt = parent[j].getY(); //swap Y positions

133 parent[j].setY(parent[iMin].getY());

134 parent[iMin].setY(tempInt);

135 child[j].setY(parent[j].getY() + 30);

136 child[iMin].setY(parent[iMin].getY() + 30);

137 }

138 }

139 }

140 }

Figure 6.24

The application ArrayAlgorithms.

The loop that begins on line 18 of the main method accepts the five family names (line 20)

and allocates the five child and parent objects (lines 22 and 23). With each pass though the loop, a

child and a parent object is created, assigned positions next to each other on the game board, and

given their family name. Then, the loop variable is used to write the addresses of these two newly

created family members into the same (ith) element of the child and parent arrays, making

these two arrays parallel.

The loop that begins on line 30 of the draw method displays the five snow families on the

game board, if they are visible as determined by the if statement’s Boolean condition on line 32.

When the Boolean condition is true, the ith parent and the ith child are drawn. Because the ar-

rays were set up to be parallel, a parent and its child are drawn (lines 31–34).

276 ■ Programming Fundamentals Using Java

Use of the Search Algorithm

The code, to make a family alternately disappear and reappear when their one-character family

name is typed, is on lines 43–55 of the keyStruck method. This method is invoked by the game

environment whenever a key is typed, and the typed character is passed into the method’s param-

eter, key (line 43). To locate a ParentSnowman object with that family name, line 44 invokes the

findValue method (lines 75–87) passing it the parent array (parent) and the string version of

the family name (sKey). The method findValue is an implementation of the object version of the

search algorithm discussed at the end of Section 6.8.1. If an object is found with that family name

(the returned array index is not -1 on line 45), then the index is used on lines 47–54 to reverse the

visibility of the parent object. Assuming an “I” was struck twice, the game board would change

from the board displayed in Figure 6.25a to that shown in Figure 6.25b and then back again.

(a) After the program is launched (b) After the “I” key is struck the first time

(c) Second strike of “I” key followed by a strike of the up cursor key (d) After the “S” key is struck

Figure 6.25

The graphical output of the application ArrayAlgorithms.

 Chapter 6· Arrays ■ 277

Because in this application the search is for a particular value of a String object (the case-

insensitive family name), this implementation of the search algorithm uses the String class’s

equalsIgnoreCase method on line 80 to compare the name passed to it (contained in the pa-

rameter targetValue) to the name returned by the ParentSnowman class’s getName method.

Use of the Minimum Value Algorithm

The code to make a family whose name is first in alphabetical order alternately disappear

and reappear when the up-arrow curser key is struck is coded on lines 57–68 of the keyStruck

method. To locate a ParentSnowman object whose family name is first in alphabetic order, line

59 invokes the findMin method (lines 89–102), passing it the parent array. The method find-

Min is an implementation of the algorithm discussed in Section 6.8.2 that searches an array for

a minimum value. In this coding of the algorithm, the method returns the array element number

(line 101) that references the object whose name data member is first in alphabetic order (line 95).

The returned element number is used on lines 60–67 to reverse the visibility of the parent object.

Because the draw method (lines 28–37) only draws the snowman parent and its child when the

parent’s visible data member is true (line 32), both the parent and child disappear and reappear

when the up-arrow key is typed.

In this application, the search is for a minimum value of a String object (the case-insensitive

family name), findMin uses the String class’s compareToIgnoreCase method on line 95 to

determine if the name returned by the ParentSnowman class’s getName method is less than the

string referenced by min.

Use of the Selection Sort Algorithm

The code to sort the parent and child arrays in ascending order based on family names when

the S key is struck is coded on lines 69–72 of the keyStruck method. To sort the parent and child

arrays, line 71 invokes the selectionSort method (lines 104–139) passing it the parent array.

The method selectionSort is an implementation of the sorting algorithm discussed in Section

6.8.3. In this coding of the algorithm, the method not only swaps the elements of the array passed

to it (lines 125–127) but also the elements of its parallel array child (lines 128–130). (Because the

address of the child array is declared as a class-level variable, the selectionSort method has ac-

cess to it.) In addition, the method swaps the y data members of the parent objects (lines 132–134)

and then positions the children next to their parents (lines 135–137), so the families will appear in

sorted order from the top to the bottom of the game board.

Because in this application, the sorting is based on a String object (the case-insensitive fam-

ily name), the method selectionSort uses the String class’s compareToIgnoreCase method

on line 117 to determine if the name returned by the ParentSnowman class’s getName method is

less than the string referenced by min.

278 ■ Programming Fundamentals Using Java

 6.9 6.9 APPLICATION PROGRAMMER APPLICATION PROGRAMMER
INTERFACE ARRAY SUPPORTINTERFACE ARRAY SUPPORT

The System and Arrays classes in the Java Application Programming Interface contain

methods for processing arrays, and the API class ArrayList provides a means of storing data in

an “array-like” object that can expand beyond its original size. The ArrayList class is one of the

API’s generic collection classes, which will be discussed in Chapter 12 after the topic of generics

is introduced. We begin our discussion with the System class’s arraycopy method.

 6.9.16.9.1 The arraycopy Method The arraycopy Method

As its name implies, the arraycopy method in the System class is used to copy the contents of

one array (called the source array) into another array (called the destination array). The method is a

static method and is therefore invoked by first coding the name of its class, System, rather than the

name of an object. Its signature contains five parameters, and a typical invocation would be:

 System.arraycopy(sourceArray, sourceIndex, destinationArray,

 destinationIndex, numElements);

where:

sourceArray is the name of the array that is being copied (an array

object reference variable)

sourceIndex is the index of the first element copied from sourceArray

(an int)

destinationArray is the name of the array being copied to (an array

object reference variable)

destinationIndex is the index of the first element copied into

destinationArray (an int)

numElements is the number of sequential elements to be copied (an int)

Both the source array and destination arrays must exist (have been previously declared) before

the method is invoked. Figure 6.24 shows the result of executing the invocation:

System.arraycopy(age, 0, sum, 1, 2);

System.arraycopy(age, 0, sum, 1, 2);

100 age

4

2

3

1

0

100

16

21

12

160

3421

5 length

33

8 16

3 21

11

4 length

200sum

0

1

2

3

Figure 6.26

The use of the System class’s arraycopy method.

 Chapter 6· Arrays ■ 279

If the sourceIndex, destinationIndex, and numElements values passed to the method

are such that the copying causes element numbers to be generated that do not exist, a runtime error

(ArrayIndexOutOfBoundsException) will occur.

 6.9.26.9.2 The Arrays Class The Arrays Class

The API Arrays class contains two methods that can be used to copy one array into another

and contains several other useful methods for processing arrays of primitives and strings. These

include a method to facilitate the output of all of the elements of an array by converting them to

a single string, a sorting method, a search method, a method to determine if the corresponding

elements of two arrays are equal, and a method that sets the elements of an array to a specified

value. The searching and sorting method algorithms execute faster than the algorithms dis-

cussed in Sections 6.8.1 and 6.8.3. Some of the methods in the class Arrays are summarized in

Table 6.2.

Table 6.2

Methods in the API Arrays Class

Function Method Name Typical Invocation

Copies all or a

portion of an array

beginning with the

first element

copyOf

int[] a = Arrays.copyOf(sourceArray, 10);

Returns an array containing the first ten elements of the array

sourceArray

Copies an array

beginning with any

element

copyRangeOf

int[] a = Arrays.copyOfRange(sourceArray, 2, 10);

Returns an array containing the third (index 2) through the ninth

elements of array sourceArray

Converts an

array’s contents to

a string

toString

String arrayContents = Arrays.toString(anArray);

Returns a string enclosed in braces containing the contents of the

array’s elements, each separated by a comma and a space

Sorts the elements

of an array in

ascending order

sort

Arrays.sort(anArray);

Sorts all of the elements of the array anArray

Arrays.sort(anArray, 1, 5);

Sorts the values at index 1 through index 4 of the array anArray

Searches for

(locates) a target

value in a sorted

array

binarySearch

int[] i = Arrays.binarySearch(anArrray,

 targetValue)

Returns the index of an occurrence of targetValue in the sorted

array anArray or returns a negative value if an occurrence is not

found

Sets the elements

of an array to a

given value

fill

Arrays.fill(intArray, 4);

Sets all of the elements of the array intArray to the value 4

Arrays.fill(stringArray, 1, 4, "FillValue");

Sets the second (index 1) to the fourth (index 3) elements of the

array stringArray to “FillValue”

280 ■ Programming Fundamentals Using Java

All of these methods are static methods, and the program presented in Figure 6.27 illustrates

their use. The output generated by this program appears in Figure 6.28.

Lines 15 and 16 of Figure 6.27 output all of the elements of the string and integer arrays

stringArray and intArray created on lines 6 and 8. The parameter sent to the println meth-

od on lines 15 and 16 is the string returned from the Arrays class’s toString method. The re-

turned string is a concatenation of all of the elements of the array sent to the method separated by

a comma and a space (lines 2 and 3 of Figure 6.28). It begins with an open bracket [and ends with

a close bracket].

Lines 21 and 23 of Figure 6.27 use the Arrays class’s static copyOf method to create a copy

of the arrays stringArray and intArray and assign the newly created array addresses to the

variables copyStringArray and copyIntArray, respectively. The second parameter sent to this

method specifies the number of elements to be copied, and the copy always begins at element 0. If

the number of elements to be copied exceeds the size of the source array (as it does on line 21), the

elements are filled in with default values consistent with their type (null for string references) as

shown on line 6 of Figure 6.28.

The Arrays class’s equals method is used on lines 29 and 31 of Figure 6.27 to compare two

integer arrays for equality. The method returns true if all of the corresponding elements of the

two arrays passed to it are equal, as they are on line 29; otherwise, it returns false (line 31). The

returned Boolean values are output and shown on lines 10 and 11 of Figure 6.28.

Line 36 of Figure 6.27 uses the one-parameter version of the Arrays class’s static method

sort to sort all of the elements of the array stringArray, and line 38 uses the three-parameter

version of the method to sort the values at indices 1 through 4 of the array intArray. The third

argument sent the three-parameter version of the method is always one larger than the index of the

highest element to be sorted. This can be verified by comparing the output of the unsorted values

(line 7 of Figure 6.28) to the output of the sorted values (line 15 of Figure 6.28). The sort is always

performed inside the arrays passed to the method.

After the array stringArray is sorted (line 36), the Arrays class’s method binarySe-

arch can be used to determine the index of a given value in the array. Line 44 invokes this meth-

od to search the array for the index of the element containing the string “Fred.” This string’s

position in sorted order is index 2 (line 14 of Figure 6.28), so the method returns the value 2

(line 18 of Figure 6.28). If there were several occurrences of the item being searched for in the

array, it is uncertain as to which occurrence’s index would be returned. Line 45 searches for the

name “Doris,” which is not contained in the array. When the item searched for is not in the array,

a negative index is returned, in this case the value -3 (line 19 of Figure 6.28). When the search

value is not found, the absolute value of the returned index is one greater than the index where

the item would be if it were in its sorted position in the array. Line 14 of Figure 6.28 shows the

sorted version of the array.

The Arrays class’s methods copyOf and copyOfRange can be used to copy all or part of the

elements of an array. As previously stated, the copyOf method always begins its copy at index 0

 Chapter 6· Arrays ■ 281

of the array, and the second argument passed to it indicates the number of elements to copy. The

method is used on line 50 of Figure 6.27 to copy the first four elements of the array intArray into

a newly created array whose address is assigned to the variable copyIntArray. The contents of

the returned array is shown on line 22 of Figure 6.28, which can be compared to the contents of the

array intArray shown on line 15 of the figure.

When the copyOfRange method is used, the copying can begin and end anywhere in the

source array. As shown on line 52 of Figure 6.27, the source array is specified as the first argument

sent to the method, the starting index is the second argument, and the third argument is always one

more that the last index to be copied. Therefore, line 52 specifies that the elements at index 2–9

should be copied into a newly created array. If the value of the last argument specifies an index that

is beyond the bounds of the source array (as it is on line 52), default values (e.g., zero for numeric

types, null for char and String types) are entered into the out-of-bounds elements of the re-

turned array. Thus, the last four elements in the integer array returned from the invocation on line

52 contain zeros (line 22 of Figure 6.28).

Lines 58 and 60 of Figure 6.27 use the Arrays class’s fill method to set sequential

elements of the arrays intArray and stringArray (specified as the first argument sent to

this method) to a value specified by the last argument sent to the method. The two-parameter

version of this method (invoked on line 58) fills all of the elements of the array sent to it. The

four-parameter version of this method, invoked on line 60, fills a specified sequential range

of elements of the array sent to it. The index at which to start the fill is the second argument

sent to the four-parameter version of the method, and the third argument is always one more

than the last index to be filled. The contents of the filled arrays are shown on lines 25 and 26

of Figure 6.28.

1 import java.util.Arrays;

2 public class ArraysClass

3 {

4 public static void main(String[] args)

5 {

6 String[] stringArray = {"Tom","Mary","Bob","Alice","Joe","Fred"};

7 String[] copyStringArray;

8 int[] intArray = { 3, 5, 2, 8, 6, 4};

9 int[] copyIntArray;

10 int[] filledIntArray;

11

12 //outputting the elements of an arrays

13 System.out.println("Outputing arrays using the " +

14 "Arrays.toString method");

15 System.out.println(Arrays.toString(stringArray));

16 System.out.println(Arrays.toString(intArray));

17

18 //copying the elements of an array;

282 ■ Programming Fundamentals Using Java

19 System.out.println("\nCopying arrays using the " +

20 "Arrays.copyOf method");

21 copyStringArray = Arrays.copyOf(stringArray, 10);

22 System.out.println(Arrays.toString(copyStringArray));

23 copyIntArray = Arrays.copyOf(intArray, intArray.length);

24 System.out.println(Arrays.toString(copyIntArray));

25

26 //determining if all the elements of two arrays are equal

27 System.out.println("\nTesting two arrays for equality " +

28 "using the Arrays.equals method");

29 System.out.println(Arrays.equals(intArray, copyIntArray));

30 copyIntArray[0] = 1;

31 System.out.println(Arrays.equals(intArray, copyIntArray));

32

33 //sorting arrays

34 System.out.println("\nSorting all or part of an array: " +

35 "the Arrays.sort method");

36 Arrays.sort(stringArray);

37 System.out.println(Arrays.toString(stringArray));

38 Arrays.sort(intArray, 1, 5);

39 System.out.println(Arrays.toString(intArray));

40

41 //searching for an element of a sorted array

42 System.out.println("\nSearching for a value: the " +

43 "Arrays.binarySearch method");

44 System.out.println(Arrays.binarySearch(stringArray, "Fred"));

45 System.out.println(Arrays.binarySearch(stringArray, "Doris"));

46

47 //copying a part of an array

48 System.out.println("\nPartial copies: the " +

49 "Arrays.copy and copyRange methods");

50 copyIntArray = Arrays.copyOf(intArray, 4);

51 System.out.println(Arrays.toString(copyIntArray));

52 copyIntArray = Arrays.copyOfRange(intArray, 2, 10);

53 System.out.println(Arrays.toString(copyIntArray));

54

55 //setting all elements of a array to one value

56 System.out.println("\nFilling all or part of an array: " +

57 "the Arrays.fill method");

58 Arrays.fill(intArray, 4);

59 System.out.println(Arrays.toString(intArray));

60 Arrays.fill(stringArray, 1, 4, "FillValue");

61 System.out.println(Arrays.toString(stringArray));

62 }

63 }

Figure 6.27

The application ArraysClass.

 Chapter 6· Arrays ■ 283

1 Outputting arrays using the Arrays.toString method

2 [Tom, Mary, Bob, Alice, Joe, Fred]

3 [3, 5, 2, 8, 6, 4]

4

5 Copying arrays using the Arrays.copyOf method

6 [Tom, Mary, Bob, Alice, Joe, Fred, null, null, null, null]

7 [3, 5, 2, 8, 6, 4]

8

9 Testing two arrays for equality: the Arrays.equals method

10 true

11 false

12

13 Sorting first all, then part of an array: the Arrays.sort method

14 [Alice, Bob, Fred, Joe, Mary, Tom]

15 [3, 2, 5, 6, 8, 4]

16

17 Searching for a value: the Arrays.binarySearch method

18 2

19 -3

20 Partial copies: the Arrays.copy and copyRange methods

21 [3, 2, 5, 6]

22 [5, 6, 8, 4, 0, 0, 0, 0]

23

24 Filling all or part of an array: the Arrays.fill method

25 [4, 4, 4, 4, 4, 4]

26 [Alice, FillValue, FillValue, FillValue, Mary, Tom]

27

Figure 6.28

The output produced by the application ArraysClass.

 6.106.10 Multi-dimensional Arrays Multi-dimensional Arrays

Java, like most programming languages, supports multidimensional arrays. Like one-dimen-

sional arrays, each memory cell in a multidimensional array shares the same “first name,” the

name of the array, and all of the array’s element must be the same type. To close out this analogy,

unlike one-dimensional arrays, each element of multi-dimensional arrays have two or more unique

last names.

The simplest multi-dimensional array is a two-dimensional array, which conceptually is a

group of memory cells arranged in rows and columns (left side of Figure 6.29). In Java, there is

no limit to the number of dimensions an array can have. Three-dimensional arrays can be visual-

ized as multiple two-dimensional arrays each in a different plane (right side of Figure 6.30). In

effect, we have added a depth dimension to the two-dimensional array. Because we live in a three-

dimensional world, multi-dimensional arrays with more than three dimensions are not often used

in programs, although there are times when they are useful.

284 ■ Programming Fundamentals Using Java

 6.10.1 6.10.1 Two-Dimensional Arrays Two-Dimensional Arrays

A two-dimensional array is similar to a two-dimensional table with rows and columns. Two-

dimensional arrays are typically used to store a group of data items for several entities. For ex-

ample, a group of 5 examination grades for each of 4 students, or the 10 qualifying times for each

of the 100 cyclists in the Tour de France. (A three-dimensional array with five planes could store

the last five years’ Tour de France qualifying time results, one year per plane.)

The names of the memory cells (elements) that make up a two-dimensional array begin with

the name of the array followed by the element’s row and column number. Figure 6.30 shows the

names of all of the twenty elements of a four-row by five-column two-dimensional array named

grades.

The name of an array element can be used anywhere the name of a non-array variable can be

used, e.g., in arithmetic expressions, in output and input statements, in argument lists, and on the

right side of the assignment operator. When they are used, the element’s row number is always

written before its column number. Thus, we would code grades[2][4] to access the contents of

the third row and fifth column of the grades array shown in Figure 6.30.

NOTE The indices of both the row and column numbers start from zero.

column 0 column 1 column 2 column 3 column 4

row 0 grades[0][0] grades[0][1] grades[0][2] grades[0][3] grades[0][4]

row 1 grades[1][0] grades[1][1] grades[1][2] grades[1][3] grades[1][4]

row 2 grades[2][0] grades[2][1] grades[2][2] grades[2][3] grades[2][4]

row 3 grades[3][0] grades[3][1] grades[3][2] grades[3][3] grades[3][4]

Figure 6.30

The element names of a four-by-five two-dimensional array named grades.

 A Two-Dimensional Array A Three-Dimensional Array

Figure 6.29

Visualization of a two- and three-dimensional array.

 Chapter 6· Arrays ■ 285

The syntax used to declare a two-dimensional array is a simple extension of the one-dimen-

sional array declaration syntax discussed in Section 6.3. The only difference is that an additional

set of empty brackets is added before the name of the array, and the number of columns is specified

after the number of rows. (In a similar way, a third set of empty brackets and the number of planes

is added to declare a three-dimensional array.) The Java statement to declare the two-dimensional

integer array grades, shown in Figure 6.30, would be:

 int[][] grades = new int[4][5]; //four rows and five columns

The equivalent two-line syntax is:

 int[][] grades;

 grades = new int[4][5];

The numeric literals in the second line of the two-line grammar can be replaced with integer vari-

ables to specify or change the size of the array at run time.

As is the case with all array declarations, these declarations create a reference variable named

grades that refers to an array object containing the array’s elements. To facilitate the processing of

all of the elements of a two-dimensional array, the array object also contains one additional pub-

lic data member per row that stores the number of elements (columns) in each row of the array.

For the array grades, depicted in Figure 6.30, each of these variables would store the integer value

5, and their names would be:

grades[0].length, grades[1].length, grades[2].length, and grades[3].length

The array object would still contain the public data member grades.length that stores the

number of rows contained in the array (the integer value 4).

Initializing Two-Dimensional Arrays

The elements of a two-dimensional array can be initialized when the array is declared. As with

one-dimensional arrays, when this is done the number of rows and columns in the array is not spe-

cifically stated but is implied from the number of initial values, and an initial value must be speci-

fied for each element of the array. The initialization syntax is most easily understood if we consider

a two-dimensional array to be a one-dimensional array with each of its elements being a row of the

two-dimensional array. In addition, it is most easily read if we write each row’s initial values on

a separate line. The array declaration below uses this coding style to declare the two-dimensional

array ages depicted in Figure 6.31, initializing all of its values to those shown in the figure.

 int[][] ages = { {10, 11, 12, 13, 14},

 {20, 21, 22, 23, 24},

 {30, 31, 32, 33, 34},

 {40, 41, 42, 43, 44} };

NOTE If one element of an array is to be initialized, all of the elements must be initialized.

286 ■ Programming Fundamentals Using Java

column 0 column 1 column 2 column 3 column 4

row 0 10 11 12 13 14

row 1 20 21 22 23 24

row 2 30 31 32 33 34

row 4 40 41 42 43 44

Figure 6.31

The elements of the array grades after its initialization.

The number of initial values specified in each row of a two-dimensional array need not be the

same. The following declaration produces the array ages, shown in Figure 6.32, which has a dif-

ferent number of elements in each of its three rows:

 int[][] ages = { {10, 11, 12},

 {20, 21, 22, 23, 24},

 {30, 31} };

Inside the array object ages, the public variables named ages[0].length, ages[1].

length, and ages[2].length would store the integer values 3, 5, and 2, respectively. These

variables are used in the code fragment below to output all of the elements of the array ages shown

in Figure 6.32 and are often used by methods that are passed two-dimensional arrays to determine

the number of columns in each row of the array.

for(int row = 0; row < ages.length; row++) //each row

{

 for(int col = 0, col < ages[row].length; col++) //each column in a row

 {

 System.out.print(ages[row][col] + " ");

 }

 System.out.println();

}

column 0 column 1 column 2 column 3 column 4

row 0 10 11 12

row 1 20 21 22 23 24

row 2 30 31

Figure 6.32

The elements of the array ages after its initialization.

 6.116.11 DELETING, MODIFYING, AND ADDING DISK FILE ITEMS DELETING, MODIFYING, AND ADDING DISK FILE ITEMS

In Section 4.8.5, it was mentioned that Java, like most programming languages, does not con-

tain a method to delete or modify a file data item or to add a data item anywhere in the file except

 Chapter 6· Arrays ■ 287

at its end. These operations can be performed by algorithms that combine the disk I/O methods

discussed in Chapter 4 with the use of arrays and loops. An array is used because all of the data

must be read into RAM memory to delete or modify a data item or to add an item to an arbitrary

position in a data file. Because disk data files normally contain large data sets, this can easily be

accomplished by reading each item into an element of the array and placing the read statement

inside a loop.

In the remainder of this chapter, we will discuss these algorithms and their processing of a

file of primitive data items that are all of the same type. The use of algorithms to process a file

that contains the data members of several objects, with the data members possibly being different

types, will be discussed in Chapter 7.

Deleting an Item From a Disk File

The algorithm to delete a data item from a file would be:

 1. Open the file, read the number of items contained in the file, and allocate an array of that

size

 2. Inside a for loop, read all of the file’s data items into the array

 3. Close the file

 4. Delete and recreate the file and write the new number of items to the file

 5. Inside a for loop, write the elements of the array, except the item to be deleted, to the file

 6. Close the file

When the algorithm ends, there would be one less item in the file, the deleted item, and the

remaining data would be in their original order.

The item to be deleted can be specified by its position in the file, e.g., “delete item number 25,”

or by specifying the data value to be deleted, e.g., “delete the deposit 34.56.” When the position in

the file is specified, Step 5’s loop variable is used to decide if the next element of the array should

be written to the file. Assuming Step 1 of the algorithm stored the number of items read from the

file in the variable count, and Step 2 reads the data into the array data, the following code frag-

ment illustrates Step 5’s process when deleting item 25 from the file:

 //delete item 25

 for(int i = 0; i < count; i++)

 {

 if(i != 25 - 1)

 {

 //write the item, data[i], to the file

 }

 }

When the value of the data item to be deleted is specified, the decision to write the next ele-

ment of the array back into the file is based on the contents of the array element. Assuming Step 1

of the algorithm stored the number of items read from the file in the variable count and then read

288 ■ Programming Fundamentals Using Java

the data into the array data, the following code fragment illustrates Step 5’s process when deleting

all of the occurrences of 35.56 from the file:

 //delete 35.56 from the file

 for(int i = 0; i < count; i++)

 {

 if(data[i] != 35.56)

 {

 //write the item, data[i], to the file

 }

 }

The application DeleteFileItem shown in Figure 6.33 deletes a game score input by the pro-

gram’s user from the disk text file scores.txt. It uses the six-step algorithm discussed in this sec-

tion and the file input and output methods discussed in Chapter 4. The number of items in the file

is read from the file on line 16 and then used to size the array on line 17. It is also used on line 31 to

write the new number of file items into the file after it is deleted and recreated by lines 29 and 30.

The value to be deleted from the file is parsed into the variable deletedItem on line 35 and then

used in the Boolean condition on line 38 to prevent the deleted item from being rewritten to the file.

1 import java.util.Scanner;

2 import java.io.*;

3 import javax.swing.*;

4

5 public class DeleteFileItem

6 {

7 public static void main(String[] args) throws IOException

8 {

9 double[] data;

10 double deletedItem;

11 int count = 0;

12

13 //Step 1: Open the file, read the number of items, allocate the array

14 File fileObject = new File("score.txt");

15 Scanner fileIn = new Scanner(fileObject);

16 count = fileIn.nextInt();

17 data = new double[count];

18

19 //Step 2: Read all of the file’s data items into the array

20 for(int i = 0; i < count; i++)

21 {

22 data[i] = fileIn.nextDouble();

23 }

24

25 //Step 3: Close the file

26 fileIn.close();

27

 Chapter 6· Arrays ■ 289

28 //Step 4: Delete and recreate the file

29 FileWriter fileWriterObject = new FileWriter("data.txt");

30 PrintWriter fileOut = new PrintWriter(fileWriterObject, false);

31 fileOut.println(count - 1);

32

33 //Step 5: write the elements of the array without the deleted item

34 String s = JOptionPane.showInputDialog("enter score to delete");

35 deletedItem = Double.parseDouble(s);

36 for(int i = 0; i < count; i++)

37 {

38 if(data[i] != deletedItem)

39 {

40 fileOut.println(data[i]);

41 }

42 }

43

44 //Step 6: Close the file

45 fileOut.close();

46 }

47 }

Figure 6.33

The application DeleteFileItem.

Detecting an End of a File

If the number of items in the file was not stored in the file, then line 16 of Figure 6.33 would

be replaced with the following code fragment that counts the number of items in the file before the

array is declared and then closes and reopens the file. In addition, line 31 would be removed from

the program.

 while(fileIn.hasNext()) //count the data items

 {

 count++;

 fileIn.nextDouble();

 }

 fileIn.close();

 fileObject = new File("data.txt");

 fileIn = new Scanner(fileObject);

Modifying an Item Stored in a Disk File

The algorithm to modify an item in a disk file would be the same as the deletion algorithm

except that an else clause would be added to Step 5’s if statement (line 38 of Figure 6.33). As-

suming the new value of the data item was stored in the variable newValue, the else clause would

be coded as:

 else

 {

 //write the new value to the file

 }

290 ■ Programming Fundamentals Using Java

Because the number of data items in the file would remain the same, Step 4 (line 31 of Figure 6.33)

would write the original number of data items back into the file.

Inserting a New Item into a File

To insert a new item into a file, its position in the file and its value must be known. The al-

gorithm, shown below, is the same as the deletion algorithm except for Step 5, and the number of

items in the file written to the file in Step 4 would be increased by one:

 1. Open the file, read the number of items contained in the file, and allocate an array of that

size

 2. Inside a for loop, read all of the file’s data items into the array

 3. Close the file

 4. Delete and recreate the file and write the new number of items to the file

 5. Inside a for loop, write the elements of the array, and the new item to the file

 6. Close the file

Assuming the following: the new item’s position in the file is stored in the variable itemNum-

ber; the new value is stored in the variable newValue; and position numbers in the file begin at

zero, then the Step 5 for loop becomes:

 //add newValue to the file at position itemNumber

 for(int i = 0; i < count; i++)

 {

 if(i == itemNumber)

 {

 //write the newValue to the file

 }

 //write the item, data[i], to the file

 }

In addition to modifying text files and data files, these file operations will also enable us to

record players’ scores and update the high scores of a game.

 6.126.12 CHAPTER SUMMARY CHAPTER SUMMARY

The concept of an array presented in this chapter provides us with a powerful tool for stor-

ing, retrieving, and processing data, especially large data sets. Unlike primitive variables, which

contain only a single value, an array contains multiple data elements that are all of the same type.

When an array is created, its data items are all initialized to their default values. The index of an

array always begins at zero and extends to n-1, where n is the number of elements in the array (the

size of the array). To distinguish one element from another, we use an index after the array name,

as in an element’s name, grade[4], which is the name of the fifth element of the array.

In Java, all arrays are stored inside an object. This object is declared using a syntax similar to

that used to declare non-array objects. A set of brackets is added to the declaration after the object’s

type, and a second set of brackets containing the size of the array is written after the keyword new.

 Chapter 6· Arrays ■ 291

Every array has a public data member named length, which stores the size of a one-dimensional

array or the number rows in a two-dimensional array. Two-dimensional arrays also contain an ar-

ray of public data members named length whose elements store the number of elements in each

row of the array.

Loops are often used to efficiently input, output, and process the data in an array using the

loop variable as an index into the array. Array elements can be used in any Java statement where

a variable can be used; they can receive input and be output, used in mathematical expressions,

assigned values, passed as an argument into a method, and returned from a method. In addition,

like any object, the location of an array object can be passed to a method and returned from it. The

concept of parallel arrays is implemented using either multiple one-dimensional arrays or using

multidimensional arrays. In either case, we can use this concept to organize related information

such as student ID numbers and GPAs and quickly and efficiently access it.

Sorting and searching for particular values, including minimum and maximum values, are

very common programming operations, and their algorithms are very similar. The Selection Sort

algorithm can be used to sort an array in ascending or descending order. It uses nested loops to lo-

cate the smallest (or largest) value in the array and to store it in the first element. Then, it searches

for the next smallest value and stores it in the second element, and repeats this process until the

entire list is sorted.

An array’s elements can be either primitive or reference variables. An array of objects can be

simulated by creating an array in which each element is a reference variable. For example, we can

create an array of snowmen, or more correctly, an array of reference variables that refer to Snow-

man objects. The position or speed of all these Snowmen objects can easily be changed within a

loop to create a parade of Snowmen objects that appear to be marching around the game board

screen.

The System class method arraycopy is used to copy a sequential set of elements from one

array into another array. Other API methods include toString, sort, and fill, which converts

all of an array’s elements to a single string, efficiently sorts the elements into ascending order, or

sets an array’s elements to a given value, respectively.

Finally, arrays are used in the implementation of algorithms that insert new items into a text

file and that delete or update existing items. These algorithms use the disk I/O methods discussed

in Chapter 4 to read an existing data set from a disk file into an array. Then, the file is deleted and

recreated, and the data set is written back to the file with new items inserted into it, or existing

items deleted or updated.

Knowledge ExercisesKnowledge Exercises

 1. True or false:

 (a) An array is a technique for naming groups of memory cells.

 (b) All the elements of an array need not be of the same data type.

 (c) The size of an array can be dynamically allocated.

292 ■ Programming Fundamentals Using Java

 (d) Once an array is created, its size cannot be changed.

 (e) The largest index of an array is its length - 1.

 (f) An array cannot be passed into a method.

 (g) Arrays can only be one or two dimensional.

 (h) Arrays can be initialized when they are created.

 (i) An efficient way to perform an operation on an entire array is to process it in a loop.

 (j) In Java, the first index or subscript always begins with 1.

 2. Give two features of an array that makes it more powerful than a set of non-array variables.

 3. Mention at least two differences between an array element and a non-array variable.

 4. Explain the difference between an array and an array object.

 5. Assume that the array gameScores has been created using the following declaration:

 int[] gameScores = new int[100];

 Answer the following questions with respect to this array:

 True or false:

 (a) The size of this array is 100.

 (b) The first element in this array is gameScores[1]

 (c) The last element in this array is gameScores[100]

 (d) This is a valid assignment to this array: gameScores[5] = 93.2;

 (e) When invoked, gameScores.length would return the value 99.

 (f) Give the Java statement to store the value 12 the second element of the array.

 (g) Give the statement to output the last element of the array to the system console.

 (h) Give the Java statements to output all of the elements of the array to the system console.

 (i) Give the Java statements to output the average of all of the elements of the array.

 (j) Draw a picture of the memory allocated by the declaration.

 6. Find at least two errors in the following code and explain what should be done to fix them:
//prices start at $0 (not available) and increase from $5, to $10, $15….

 int size = 25;

 double[] ticketPrice = new double [size];

 for (int i = 1; i <= 25; i++)

 {

 ticketPrice[i] = i * 5;

 }

 System.out.println ("The price of a tier " + " i " + " ticket is: " +

 ticketPrice[i]);

 7. Assume that you have been given these declarations below, answer the questions that follow

them.
 final int MAX = 45;

 int[] x = new int[MAX];

 double[] y = {22.54, 3.6, 54.76, 10.8, 5.62};

 double z;

 Chapter 6· Arrays ■ 293

 (a) How many elements does the array x contain?

 (b) What is the subscript or index of the last element of array x?

 (c) What is the largest valid subscript of array y?

 (d) Write the statements to multiply the very first element of the array by 7.

 (e) Write the statements that increase the last element of array y by 20.5.

 (f) Write a statement that assigns the sum of the first 3 elements of array y to z.

 8. Give a statement to allocate an array that can store:

 (a) Three thousand characters using the one-line declaration syntax

 (b) Two hundred strings using the two-line declaration syntax

 (c) Five thousand Snowmen objects using the one-line declaration syntax

 (d) Five quiz scores for 100 students

 9. Give the statement(s) to:

 (a) Declare three parallel arrays that can store the names, weights, and target weights for 50

people in a weight loss clinic

 (b) Output all of the information stored in the arrays declared in part a to the system console,

one person per line

 (c) Output Joe Smith’s weight and target weight to the system console

 (d) Output all of the names to the system console in alphabetical order

 10. Write a method that is passed two arrays of doubles, each of the same size, and returns an array

whose ith element is the sum up to the ith elements of the two arrays passed to it.

Programming ExercisesProgramming Exercises

 1. Refer to the program in Figure 6.24. Modify the code in the keyStruck method to include the

instructions to move the third parent snowman and its child 20 pixels to the right each time the

“M” key is struck.

 2. As part of a research project, you have collected the following data and have initialized and

stored it in an initialized array using the declaration:
int[] ages = {21, 32, 45, 23, 19, 41, 27, 20 , 21, 43,

 39, 24, 25, 22, 44};

 Write a program to do each of the following tasks (with all output going to the system console):

 (a) Search for a value input by the user and report if it is found or not

 (b) Search for and output the minimum and maximum ages in the data set

 (c) Calculate and output the average age

 (d) Copy the ages to a new array called sortedAges, sort this array in ascending order, and

then output both arrays

 3. Write a program to accept a given number of names, input by the program user, and write the

names in sorted order to a disk file named Students.txt. Then, ask the user which name should

be eliminated from the file and eliminate that name from the file. Finally, read all of the names

from the modified file and output them in reverse alphabetical order.

294 ■ Programming Fundamentals Using Java

 4. Write a graphical application that includes a class that defines a solid disk object whose

diameter, color, and location are specified when an object is constructed. When the

program is launched, the user should be asked how many disks to display on the game board,

then asked the size, color, and location of each disk. The disks should then be displayed on the

game board at their specified locations.

 5. Modify the program described in Programming Exercise 4 so only disks whose diameters are

50 pixels or smaller are displayed when the down-arrow key is struck and only those disks that

are larger than 50 pixels are displayed when the up-arrow key is struck.

 6. Write a graphical application that includes a class that defines a flower with a red center

whose petal color and location is specified when a Flower object is constructed. When

launched, the program should display a garden of 100 flowers at random locations on

the lower portion of the game board. The (x, y) locations of the flowers will be randomly

generated and be in the range (7 ≤ x ≤ 500 – w) and (300 ≤ y ≤ 500 – h), where w and h are the

width and height of the flower.

 7. Modify the program described in Programming Exercise 6 so every time the down-arrow

game board button is clicked, 20 of the remaining flowers disappear from the garden.

 8. Write a graphical application that includes a class that defines a light-gray colored raindrop

whose height is 4 pixels and whose width is 6 pixels. When the application is launched, 300

raindrops should appear on the game board at random locations. The (x, y) locations of the

raindrops will be in the range (7 ≤ x ≤ 496) and (30 ≤ y ≤ 494).

 9. Modify the program described in Programming Exercise 8 so when the Start button on the

game board is clicked, the raindrops move downward two pixels every 40 milliseconds, giving

the appearance that it is raining. When a raindrop reaches the bottom of the game board (the y

coordinate of its location is greater than 500), reset its y coordinate to 30.

 10. Add the garden described in Programming Exercise 6 to Programming

Exercise 8.

 11. Add the garden described in Programming Exercise 6 to Programming

Exercise 9.

 12. Using the skills developed in this chapter, continue the implementation of the parts of your

game that require multiple instances of one of your game pieces. To facilitate the processing of

these objects, they should be part of an array of objects.

EnrichmentEnrichment

Investigate at least two other sorting algorithms and discuss their advantages and disadvantages over

the Selection Sort algorithm.

Investigate why the binarySearch method in the API Arrays class is faster than the search

method presented in this chapter.

 Chapter 6· Arrays ■ 295

ReferencesReferences

Knuth, Donald, The Art of Computer Programming, Volume 3: Sorting and Searching, 2nd ed. New York:
Addison-Wesley, 1998.

Levitin, Analy. Introduction to the Design and Analysis of Algorithms, 3rd ed. New York: Addison-Wesley
Longman, 2011.

McAllister, William. Data Structures and Algorithms. Sudbury, MA: Jones and Bartlett Publishers, 2009.

■ ■ ■ ■ ■

In this chapter

In this chapter, we will extend our knowledge of the features that can be incorporated into

the classes we write, our knowledge of the String and the wrapper classes, and explore

two other often-used classes defined in the Java Application Programming Interface (API).

We will learn the techniques and motivation for writing classes whose objects share a data

member and whose methods invoke each other, as well as the techniques and motivation for

defining classes whose data members are objects. In addition, we will discuss what it means

to compare, copy, and clone objects and how to write methods that perform these operations.

An understanding of the topics in this chapter will enable us to more efficiently write

complex programs, increase the reusability of the classes we write, and process numeric

values that are beyond the size and precision of the primitive numeric types.

After successfully completing this chapter, you should:

� Understand static data members and their ability to share storage among all instances of a

class within an application

� Become more familiar with the distinction between public and private methods

� Understand the fundamental differences between deep and shallow comparisons and copies

� Be able to compare two instances of a class

� Be able to use the deep copy technique to copy data members and clone objects

sm1 sm2

y

x

name

y

x

name
Deep Copy

Shallow Copy

7CHAPTERCHAPTER

7.1 Static Data Members . 298

7.2 Methods Invoking Methods Within their Class.301

7.3 Comparing Objects. .303

7.4 Copying and Cloning Objects. 306

7.5 The String Class: A Second Look318

7.6 The Wrapper Classes: A Second Look 322

7.7 Aggregation .328

7.8 Inner Classes .337

7.9 Processing Large Numbers. 340

7.10 Enumerated Types. .343

7.11 Chapter Summary. .347

METHODS, CLASSES, AND OBJECTS: METHODS, CLASSES, AND OBJECTS:

A A SECOND LOOKSECOND LOOK

298 ■ Programming Fundamentals Using Java

� Know how to create strings from primitive values, convert strings to characters, to-

kenize a string, and utilize other common string-processing methods

� Be able to create and use a wrapper class object and its autoboxing feature

� Understand how to aggregate an object into a class and the advantages of doing so

� Comprehend the relationship between, and implementation of, inner and outer classes

� Be able to use the BigInteger and BigDecimal classes for processing large num-

bers of arbitrary precision

 7.17.1 STATIC DATA MEMBERS STATIC DATA MEMBERS

Consider a worker class named Student that contains two data members named idNumber

and gpa and a two-parameter constructor. The following code fragment would produce the Stu-

dent objects ryan and mary depicted in Figure 7.1, assuming the first and second arguments

passed to the constructor are used to initialize data members idNumber and gpa, respectively. As

discussed in Chapter 3, each instance contains storage for its two data members.

 Student ryan = new Student(1567, 3.26);

 Student mary = new Student(2373, 2.87);

Student ryan = new Student(1567, 3.26); Student mary = new Student(2373, 2.87);

15 ryan

 15

1567 idNumber

3.26 gpa

25 mary

2373 idNumber

2.87 gpa

 25

Figure 7.1

Two Student objects and the data members allocated to them.

Like methods, data members of a worker class can be declared to be static data members by

including the keyword static in the data member’s declaration statement. For example:

 private static int studentCount = 0;

When a data member of a class is declared to be static, each instance of the class declared

within an application does not contain storage for the data member. Rather, one storage cell is

shared among all objects declared within an application. For example, if an additional static data

member named studentCount were added to the class Student, the memory allocated to the two

Student instances ryan and mary shown in Figure 7.1 would be expanded by one shared integer

variable shown at the bottom of Figure 7.2.

 Chapter 7· Methods, Classes , and Objects : A Second Look ■ 299

15

15

1567 idNumber

3.26 gpa

studentCount

ryan 25 mary

2373 idNumber

2.87 gpa

 25

0

Figure 7.2

Two Student objects and the shared static data member studentCount.

A very common use of static data members is to keep track of the number of instances of a

class (objects) that have been declared within an application. To accomplish this, a line of code

to increment the static data member is included in each of the class’s constructors. Below is an

implementation of the Student class’s two-parameter constructor that uses the class’s static data

member studentCount to keep track of the number of objects declared in the class:

 public Student(int idNumber, double gpa)

 {

 studentCount++; //counts the number of Student objects declared

 this.idNumber = idNumber;

 this.gpa = gpa;

 }

Figure 7.3 shows the changes to the data member studentCount after two Student objects

have been constructed with this version of the constructor. Normally, static data members in a class

are declared with private access, and a get method is coded in the class to fetch the value of the

data member. When the data member is being used to count the instances of a class, a set method

is not coded to generally limit the data member’s write access to the class’s methods (and specifi-

cally, to the class’s constructors).

15

15

1567 idNumber

3.26 gpa

studentCount

ryan 25 mary

2373 idNumber

2.87 gpa

 25

0 1 2

Figure 7.3

The changes to the static data member studentCount after two objects are created.

It is good coding style to declare the get method to be a static method. This forces the invoker

(as shown below) to code the name of the class in the invocation statement rather than the name of

300 ■ Programming Fundamentals Using Java

an object, which implies to its reader that the value being fetched does not belong to a particular

object. For example:

 int numberOfStudents = Student.getStudentCount();

Figure 7.4 uses the concepts discussed in this section to keep track of the number of instances

of the class Student that are declared within in a program. Line 2 declares the static data member

studentCount and initializes it to zero. This variable is incremented within the class’s two-pa-

rameter constructor on line 8 every time the constructor is invoked to create an object. The class’s

toString method (lines 13–18) does not return the value of the static variable because normally

the string it returns includes only the values of a particular object’s data members. The number

of Student instances declared in a program can be fetched by invoking the class’s getStudent-

Count method (lines 20–23). As previously discussed, this is a static method, and the class does

not contain a setStudentCount method to restrict applications’ write access to the static vari-

able.

1 public class Student

2 { private static int studentCount = 0;

3 private int idNumber;

4 private double gpa;

5

6 public Student(int idNumber, double gpa)

7 {

8 studentCount++; //counts the number of Student objects declared

9 this.idNumber = idNumber;

10 this.gpa = gpa;

11 }

12

13 public String toString()

14 {

15 String s = "id is " + idNumber +

16 "\ngpa is " + gpa;

17 return s;

18 }

19

20 public static int getStudentCount()

21 {

22 return studentCount;

23 }

24 }

Figure 7.4

The worker class Student.

 Chapter 7· Methods, Classes , and Objects : A Second Look ■ 301

 7.2 7.2 METHODS INVOKING METHODS WITHIN THEIR CLASS METHODS INVOKING METHODS WITHIN THEIR CLASS

A method in a worker class can invoke another method in its class. This is a common coding

technique and, if used properly, can reduce the time required to develop a class and make our pro-

grams easier to read and understand.

Suppose that the UML diagram that specified the class Student shown in Figure 7.4 also

required a method named show to be part of the class that outputs the annotated values of the data

members of an object to the system console. One way to code the method would be:

 public void show()

 {

 String s = "id is " + idNumber +

 "\ngpa is " + gpa;

 System.out.println(s);

 }

However, a better way to code this method would be to take advantage of the fact that the UML

diagram also specified that a toString method would be part of the class, and a method in a class

can invoke other methods in its class. Knowing this, the show method would be coded after the

toString method was completed and verified (taken for a test drive), so it could be invoked to

perform some work for the show method. This approach reduces the code of the show method to

one executable statement, as shown below:

 public void show()

 {

 System.out.println(toString()); //toString does all the work

 }

Figure 7.5 is an expanded version of the class Student shown in Figure 7.4 with this coding of the

show method added to it (lines 25–28).

Normally, when a nonstatic worker method is invoked within client code, its name is preceded

by the name of an object followed by a dot. It would be impossible to use this syntax to invoke

the toString method on line 27 of Figure 7.5 because objects (instances of worker classes) are

declared in client code. Because line 27 is syntactically correct, the question of which object’s data

members will be output to the console by the invocation of toString on line 27 arises. The answer

is: the object the client code used to invoke the show method. When a nonstatic method of a class

is invoked by another method in the class, the method operates on the same object upon which the

method invoking it is operating.

For example, the toString method invoked on line 27 of Figure 7.5 would return a string

containing Ryan’s student information when the following client-code fragment was executed:

 StudentV2 ryan = new StudentV2(1567, 3.26);

 ryan.show();

302 ■ Programming Fundamentals Using Java

NOTE

When a method in a class invokes another method in its class, the invocation state-

ment is not preceded by the name of an object followed by a dot, and both methods

operate on the same object.

1 public class StudentV2

2 { private static int studentCount = 0;

3 private int idNumber;

4 private double gpa;

5

6 public StudentV2(int idNumber, double gpa)

7 {

8 studentCount++; //counts the number of Student objects declared

9 this.idNumber = idNumber;

10 this.gpa = gpa;

11 }

12

13 public String toString()

14 {

15 String s = "id is " + idNumber +

16 "\ngpa is " + gpa;

17 return s;

18 }

19

20 public static int getStudentCount()

21 {

22 return studentCount;

23 }

24

25 public void show()

26 {

27 System.out.println(toString());

28 }

29 }

Figure 7.5

The class StudentV2.

Private Class Methods

Another example of a worker class method invoking a method in its class evolves from the

design process discussed in Section 1.7. When a UML diagram of a class specifies that a compli-

cated method is to be included in the class, it is good programming practice to divide it into several

simpler methods that are added to the complicated method’s class. This is consistent with the divide

and conquer problem-solving technique. Once each of the simpler methods have been coded and

tested, often in parallel by several different programmers, the complicated method is written as a

series of invocations of the simpler methods that are part of its class.

 Chapter 7· Methods, Classes , and Objects : A Second Look ■ 303

Because the only reason the simple methods were written was to perform the work of a more

complex method in their class, the simpler methods are normally declared to be private methods.

Private methods can only be invoked by the code of other methods within their class, and their

signature begins with the keyword private rather than with the keyword public. When this is

done, we say that the method has private access, and an attempt to invoke a private method from

within a method that is not a member of its class results in a translation error. Often, methods are

declared private to prevent methods that are not part of their class from invoking them. We will

discuss this further in Section 7.4.

 7.37.3 COMPARING OBJECTS COMPARING OBJECTS

In Section 6.8, we discussed algorithms for searching, finding minimums and maximums, and

sorting an array of objects. Fundamental to all of these algorithms is the ability to compare two

objects. Generally speaking, the phrase “compare two objects” is ambiguous. It could mean that

we want to compare the contents of a particular data member of two objects or the contents of two

or more data members of two objects, or it could mean that we want to compare the contents of the

reference variables that refer to the objects. Therefore, before we write a method that compares two

objects for a particular application, we have to define what it means to “compare two objects” in

the context of that application.

The simplest case is when the objects being compared are strings, but even then we would have

to decide whether to simply compare the length of the strings or compare the strings for equality

or lexicographical order and decide if these comparisons should be case sensitive. Once we define

what it means to compare two string objects for a particular application, then in most cases, either

the String class’s length method or its equals or compareTo method (or its case-insensitive

versions of these methods) can be used to compare the strings. The use of these methods to com-

pare string objects was discussed in Section 4.2.3, and the use of these methods to compare data

members of objects that are strings was discussed in Section 6.8.

When the objects being compared are not strings, we normally add a method to the object’s

class to perform the comparison after defining what it means to compare two objects. It is good

coding style to name these methods equals or compareTo, or to at least use these words in a

longer method title.

A fish tank analogy is useful in gaining an understanding of how to write and use these meth-

ods as well as the methods that will be discussed in the next section of this chapter. Figure 7.6 de-

picts two snowman objects: sm1 and sm2 in a fish tank. In this analogy, reference variables float

at the top of the tank because they are light (They only contain one address). Objects are depicted

at the deeper levels of the tank because they contain multiple data members, which make them

heavy. Our snowmen contain three data members: each snowman’s (x, y) location and its reference

variable name.

A shallow comparison is performed at the surface of the tank. It compares the contents of the

two reference variables that float on the surface of the tank (e.g., sm1 and sm2 in Figure 7.6). A

deep comparison is performed at the bottom of the tank. A deep comparison compares the contents

304 ■ Programming Fundamentals Using Java

of two objects. The methods that perform shallow and deep comparisons are fundamentally differ-

ent and will be discussed separately.

 y

x

name

sm1 sm2

deep comparisons

compare

data members

shallow comparisons compare

reference variables

y

x

name

Figure 7.6

A fish tank analogy of shallow and deep comparisons.

 7.3.17.3.1 Shallow Comparisons Shallow Comparisons

In Chapter 4, we used the relational operators to compare two primitive values. For example,

to determine if the values stored in the integer variables age1 and age2 are equal, we used the

equality operator (==):

 if(age1 == age2)

This comparison is a shallow comparison because primitive variables contain one value, so they

would float on the top of a fish tank. Because reference variables also float, the same syntax used

to perform a shallow comparison of two primitive values can be used to perform a shallow com-

parison of two objects. In effect, a shallow comparison of two objects determines if two reference

variables refer to the same object.

Normally, a method named equals, such as the method equals in the String class, per-

forms a deep comparison of two objects. It compares information contained inside the objects. For

this reason, when coding a shallow equals method in the class of the objects being compared it

is good coding practice to name the method shallowEquals. This name clearly indicates that

the method is making a shallow comparison. The following method, which would be coded inside

the class ParentSnowman, performs a shallow comparison of the ParentSnowman object that

invoked it and the object passed to its parameter. It uses the equality relational operator to perform

the comparison.

 public boolean shallowEquals(ParentSnowman ps) //a shallow comparison

 {

 if(this == ps) //this contains the address of the invoking object

 Chapter 7· Methods, Classes , and Objects : A Second Look ■ 305

 {

 return true; //the invoking object and ps refer to the same object

 }

 else

 {

 return false; //ps does not reference the invoking object

 }

 }

An exception to this comparison-method naming convention is the method equals in the API

class Object. It performs a shallow comparison of two objects. The following code fragment il-

lustrates the use of this shallow comparison method. It outputs the Boolean value true and then

false because the variables ps1 and ps2 contain the same address and ps1 and ps3 do not.

 ParentSnowman ps1 = new ParentSnowman();

 ParentSnowman ps2 = ps1; //ps2 is initialized to the address in ps1

 ParentSnowman ps3 = new ParentSnowman();

 boolean sameAddresses;

 sameAddresses = ps1.equals(ps2); //shallow comparison, returns true

 System.out.println(sameAddresses);

 sameAddresses = ps1.equals(ps3); //shallow comparison, returns false

 System.out.println(sameAddresses);

 7.3.2 7.3.2 Deep Comparisons Deep Comparisons

Deep comparisons compare the contents of two objects’ data members. As previously men-

tioned, before we write a method that performs a deep comparison for a particular application, we

have to determine which of the objects’ data members to compare for that application. For example,

if we decide that two snowmen are equal if they are at the same game board position, then the x and

y data member of the two objects would be compared. Once this decision is made, the class’s get

methods are used to fetch the data members, and they are compared using the relational operators

if they are primitive variables. If they are reference variables that refer to other objects, they are

compared using the deep comparison method in the objects’ class.

The method shown in Figure 7.7, which would be coded in the class ParentSnowman, per-

forms a deep comparison of two ParentSnowman objects: the object that invokes it and the object

passed to its parameter. As depicted in Figure 7.6, each ParentSnowman object contains its (x, y)

location and a reference to its family name (a string). The method returns true when the two ob-

jects are at the same game board (x, y) location and the objects’ family name, referenced by string

data member name, are the same.

1 public boolean equals(ParentSnowman ps) //a deep comparison

2 {

3 if(x == ps.getX() && y == ps.getY() &&

4 name.equals(ps.getName()))

5 {

306 ■ Programming Fundamentals Using Java

6 return true; //same location and family name

7 }

8 else

9 {

10 return false; //different location and/or family name

11 }

12 }

Figure 7.7

A deep comparison method named equals that would be part of the ParentSnowman class.

It should be noted that the invocation of the equals method on line 4 of Figure 7.7 is an in-

vocation of the String class’s equals method. This method is invoked because name is a string

variable and the argument that follows its name on line 4, ps.getName(), returns a reference to a

String object.

There are four common errors made when coding the third term of the Boolean condition on

lines 3 and 4 of Figure 7.7:

1. name == ps.getName()

2. this.getName() == ps.getName()

3. name.equals(ps)

4. this.equals(ps)

When either of the first two errors is made, a shallow comparison of the name data members is

performed, and the Boolean condition evaluates to false even when the strings are the same. The

two addresses, not the strings, are being compared. When the third error is made, a string is being

compared to a ParentSnowman object, and the Object class’s equals method is invoked, which

also makes a shallow comparison.

When the fourth error is made, the program ends in a runtime StackOverflow error. Two Par-

entSnowman objects are being compared causing line 4 to repeatedly invoke the same method of

which it is a part. This is a concept called recursion. It is not considered a syntax error because

when recursion is properly used, it can facilitate the coding of many algorithms. We will learn

more about the proper use of this coding technique in Chapter 9.

Deep comparisons are also performed to compare the relative order of two objects. A method

that compares two objects to determine their relative order is normally named compareTo, and

it returns an integer. The string class contains a method named compareTo that determines the

lexicographical order of two String objects. Aside from changing the name of the method pre-

sented in Figure 7.7 and the returned type and value, compareTo methods would use the less than

(<) or the greater than (>) operator to compare primitive data members and use previously coded

compareTo methods to compare data members that are objects.

 7.4 7.4 COPYING AND CLONING OBJECTS COPYING AND CLONING OBJECTS

The deep and shallow fish tank analogy also helps us to understand the techniques used to

copy and clone objects. We can make both shallow and deep copies of objects, and clones of objects

 Chapter 7· Methods, Classes , and Objects : A Second Look ■ 307

can easily be created from deep copies of objects. Figure 7.8 illustrates the difference between a

shallow and a deep copy. Shallow copies copy the contents of one object’s reference variable into

another object’s reference variable. Deep copies copy all of the values of one object’s data members

into the data members of another object. We will begin with a discussion of shallow copies.

sm1 sm2

y

x

name

y

x

name
Deep Copy

Shallow Copy

Figure 7.8

A fish tank analogy of shallow and deep copies.

 7.4.17.4.1 Shallow Copies Shallow Copies

In Chapter 2, we used the assignment operator to copy the contents of one primitive variable

into another. For example, the following line of code copies the value stored in the integer variable

age1 into the variable age2:

 age2 = age1;

This statement actually performs a shallow copy between two primitive variables because primi-

tive variables contain only one value, so they would float on the top of a fish tank. Because refer-

ence variables also float (contain one value, an address) and the assignment operator can be used

to assign reference variables, the same syntax is used to make a shallow copy of an object. The

following line of code makes a shallow copy of object sm1 into object sm2:

 sm2 = sm1; //a shallow copy of object sm1 into object sm2

Although we say we are making a shallow copy of an object, we are actually copying the contents

of one object’s reference variable into the other object’s reference variable, as shown at the top of

Figure 7.8. It is important that we understand the consequences of this.

Referring to Figure 7.8, after the shallow copy of object sm1 into sm2 is complete, the address

of the snowman object on the right side of the fish tank that was stored in the reference variable

sm2 has been overwritten with the address of the snowman object on the left side of the fish tank.

Now both reference variables, sm1 and sm2, refer to the same object. As a result, the snowman on

308 ■ Programming Fundamentals Using Java

the left now has two names. In addition, the snowman on the right side of Figure 7.8 is no longer

part of the program (unless another variable in the program also stored its address) because the

address of the object is no longer known to the program. When an object’s address is not stored in

a program reference variable, the Java memory manager reclaims its storage.

NOTE
A shallow copy gives one object two names, and it may eliminate an object from

the program.

The following code fragment makes a shallow copy of object ps1 into ps2, and as a result

outputs the data members of the object declared on line 1 twice:

 1 ParentSnowman ps1 = new ParentSnowman(250, 250, "A");

 2 ParentSnowman ps2 = new ParentSnowman(10, 20, "X");

 3

 4 sm2 = sm1; // makes a shallow copy of object sm1 into object sm2

 5 System.out.println(ps1.show());

 6 System.out.println(ps2.show());

 7.4.27.4.2 Deep Copies and Clones Deep Copies and Clones

As shown in the bottom of Figure 7.8, when we make a deep copy of an object, the values of

its data members are copied into the data members of another object. Unlike performing a shal-

low copy, when a deep copy is complete both objects still exist, and the values stored in their data

members are identical. The method arraycopy discussed in Section 6.9.1 can be used to deep

copy one array object into another.

Generally speaking, a method has to be added to a class to be able to make deep copies of in-

stances of the class. A deep copy method uses the class’s set methods to copy the data members of

the object that invoked it into the data members of the object sent to its parameter.

The method shown in Figure 7.9 is a deep copy method, which would be coded in the class

ParentSnowman. As depicted in Figure 7.8, each ParentSnowman object contains its (x, y) loca-

tion and the object’s family name, referenced by the string data member name:

1 public void deepCopy(ParentSnowman ps) //a deep copy into ps method

2 {

3 ps.setX(x);

4 ps.setY(y);

5 ps.setName(name);

6 }

Figure 7.9

A deepCopy method that would be part of the ParentSnowman class.

In some cases, it is desirable to deep copy a subset of one object’s data members into another

object. When this is the case, it is good programming practice to name the method copy, rather

than deepCopy, to alert the reader of the method’s signature to the fact that not all of an object’s

data members are being copied.

 Chapter 7· Methods, Classes , and Objects : A Second Look ■ 309

Cloning Objects

When an object is cloned, a new instance of the object’s class is created, and the values of all

of an existing object’s data members are copied into the corresponding data members of the new

object. If one object existed before the clone was created, two objects exist after it is created. To

create a clone of an object, a method (usually named clone) is coded in the object’s class. The

method is a nonvoid method that returns the address of the newly created clone object.

Figures 7.10 and 7.11 show two alternate codings of a clone method, which would be coded in

the class ParentSnowman. Both methods return the address of a newly created clone of the object

that invoked them. The version shown in Figure 7.10 invokes the class’s deepCopy method on line

4 to copy the values of the data members of the object that invoked the method into the clone object

created on line 3. This version of the method assumes that the class contains a deep copy method

and a no-parameter constructor. The new object is identical to (an exact copy of) an existing object.

1 public ParentSnowman clone() //a deep copy

2 {

3 ParentSnowman theClone = new ParentSnowman();

4 this.deepCopy(theClone);

5 return theClone;

6 }

Figure 7.10

A clone method using a deepCopy method that would be part of the class ParentSnowman.

The alternate coding of the clone method presented in Figure 7.11 uses the class’s three-pa-

rameter constructor on line 3 to copy the values of the data members into the clone when it is con-

structed. If each object only contains three data members, then the newly created object is identical

to (an exact copy of) an existing object. Generally speaking, to produce an exact copy of an object

with n data members, this version of the clone method would have to invoke an n-parameter con-

structor on line 3 of Figure 7.11.

1 public ParentSnowman clone() //a deep copy

2 {

3 ParentSnowman theClone = new ParentSnowman(x, y, name);

4 return theClone;

5 }

Figure 7.11

An alternate clone method that would be part of the class ParentSnowman.

If it is appropriate to a particular application for the clone method to copy only a subset of an

object’s data members into the newly created object, then line 4 of Figure 7.10 would be changed

to an invocation of the class’s copy method, and the clone method would be renamed partial-

Clone to indicate that invocations of this method do not make an identical copy of the object that

invoked it.

310 ■ Programming Fundamentals Using Java

Figure 7.12 is the code of a class named ParentSnowmanV2 that is an expanded version of the

ParentSnowman class shown in Figure 6.18. The expanded version adds the following methods

to the class:

� a copy method (lines 29–35) that copies four of an object’s data members into another

object

� a partial-clone method (lines 36–41) that invokes the copy method

� a shallow compare method (lines 42–52)

� a deep compare method (lines 53–63) that compares the hatColor data members of

two objects

� a method that detects collisions (lines 64–75) between two snowmen

In addition, three static data members (lines 5–7) and a get method (lines 93–96) to fetch one of

these data members have also been added to the class.

As discussed in Section 7.1, the three static data members declared on lines 5, 6, and 7 of

Figure 7.12 are shared by all instances of this class. The first of these, snowmanCount initialized

to zero, will be used to count the number of snowmen constructed. It is incremented inside the

no-parameter constructor (line 18) and the four-parameter constructor (line 27) every time these

constructors execute. The client can fetch the value of the variable snowmanCount using the get

method coded on lines 93–96.

The other two static variables, w and h, store the width (40) and height (77) of a snowman, as

depicted in Figure 4.9. Because the class’s show method draws all snowmen with the same width

and height, it is appropriate that these two variables be shared by all instances of the class. The

variables are used in the Boolean condition coded within the collidedWith method (lines 64–75)

that detects a collision between the snowman that invoked it and the snowman passed to its pa-

rameter ps. The values of the variables x and y used on lines 66 and 67, and within other methods

of the class, are the values of the x and y data members of the snowman that invoked the method.

Alternately, we could code these data members as this.x or this.y.

The class’s copy method (lines 29–35) copies four of a snowman’s seven nonstatic data mem-

bers (lines 31–34). When the method completes its execution, the snowman passed to its parameter

will have the same name, hat color, and location as the snowman that invoked the method. To

prevent methods that are not part of the ParentSnowmanV2 class from erroneously invoking this

method to make a deep copy of all of an object’s data members, it is declared as a private method

on line 29.

The copy method is invoked on line 39 by the class’s partialClone method, which means

that clones will have only the same name, hat color, and location as the snowman from which they

were cloned. Their xSpeed, ySpeed, and visible data members will retain their default values

(set on lines 12–14). As previously discussed in Section 7.2, the fact that the copy method is a pri-

vate method does not prevent the class’s clone method from invoking it.

The deep comparison performed on line 55 of the equals method determines if two snowmen

have the same hat color by invoking the API Color class’s equals method. If they do, the method

returns the value true.

 Chapter 7· Methods, Classes , and Objects : A Second Look ■ 311

1 import java.awt.*;

2

3 public class ParentSnowmanV2

4 {

5 private static int snowmanCount = 0;

6 private static int w = 40;

7 private static int h = 77;

8 private int x = 8;

9 private int y = 30;

10 private String name;

11 private Color hatColor= Color.BLACK;

12 private int xSpeed = 2;

13 private int ySpeed = 2;

14 private boolean visible = true;

15

16 public ParentSnowmanV2()

17 {

18 snowmanCount++;

19 }

20 public ParentSnowmanV2(int intialX, int intialY, String name,

21 Color hatColor)

22 {

23 x = intialX;

24 y = intialY;

25 this.name = name;

26 this.hatColor = hatColor;

27 snowmanCount++;

28 }

29 private void copy(ParentSnowmanV2 ps) //copies 4 data members

30 {

31 ps.setX(x);

32 ps.setY(y);

33 ps.setName(name);

34 ps.setHatColor(hatColor);

35 }

36 public ParentSnowmanV2 partialClone()

37 {

38 ParentSnowmanV2 theClone = new ParentSnowmanV2();

39 this.copy(theClone);

40 return theClone;

41 }

42 public boolean shallowEquals(ParentSnowmanV2 ps)

43 {

44 if(this == ps)

45 {

46 return true;

47 }

48 else

49 {

312 ■ Programming Fundamentals Using Java

50 return false;

51 }

52 }

53 public boolean equals(ParentSnowmanV2 ps)

54 {

55 if(hatColor.equals(ps.getHatColor())) //same hat color

56 {

57 return true;

58 }

59 else

60 {

61 return false;

62 }

63 }

64 public boolean collidedWith(ParentSnowmanV2 ps)

65 {

66 if(!(x > ps.getX() + w || x + w < ps.getX() ||

67 y > ps.getY() + h || y + h < ps.getY()))

68 {

69 return true;

70 }

71 else

72 {

73 return false;

74 }

75 }

76 public void show(Graphics g) // g is the game board object

77 {

78 int[] xPoly = {x + 20, x + 15, x + 25};

79 int[] yPoly = {y + 25, y + 30, y + 30};

80

81 g.setColor(hatColor);

82 g.fillRect(x + 15, y, 10, 15); // hat

83 g.fillRect(x + 10, y + 15, 20, 2); // brim

84 g.setColor(Color.WHITE);

85 g.fillOval(x + 10, y + 17, 20, 20); // head

86 g.fillOval(x, y + 37, 40, 40); // body

87 g.setColor(Color.RED);

88 g.fillPolygon(xPoly, yPoly, 3); // nose

89 g.setColor(Color.BLACK);

90 g.setFont(new Font("Arial", Font.BOLD, 16));

91 g.drawString(name, x + 16, y + 62); // name

92 }

93 public static int getSnowmanCount()

94 {

95 return snowmanCount;

96 }

97 public int getXSpeed()

98 {

 Chapter 7· Methods, Classes , and Objects : A Second Look ■ 313

99 return xSpeed;

100 }

101 public void setXSpeed(int newXSpeed)

102 {

103 xSpeed = newXSpeed;

104 }

105 public int getYSpeed()

106 {

107 return ySpeed;

108 }

109 public void setYSpeed(int newYSpeed)

110 {

111 ySpeed = newYSpeed;

112 }

113 public void setHatColor(Color newHatColor)

114 {

115 hatColor = newHatColor;

116 }

117 public Color getHatColor()

118 {

119 return hatColor;

120 }

121 public int getX()

122 {

123 return x;

124 }

125 public void setX(int newX)

126 {

127 x = newX;

128 }

129 public int getY()

130 {

131 return y;

132 }

133 public void setY(int newY)

134 {

135 y = newY;

136 }

137 public String getName()

138 {

139 return name;

140 }

141 public void setName(String newName)

142 {

143 name = newName;

144 }

145 public boolean getVisible()

146 {

314 ■ Programming Fundamentals Using Java

147 return visible;

148 }

149 }

Figure 7.12

The class ParentSnowmanV2.

The application shown in Figure 7.13 uses most of the concepts discussed up to this point in

this chapter. When the game board’s Start button is clicked, a snowman guard, whose family name

is “G” patrols his game board garden looking for three green-hat snowmen who have wandered

into the garden (Figure 7.14a). When he finds (collides with) one, he positions the green-hat snow-

man behind himself and continues his search (Figure 7.14b). Each time he reaches the border of

his garden, he clones himself and posts the clone at the garden’s edge (Figure 7.14c) to guard the

garden from wandering snowmen. After the guard has found the three green-hat snowmen and

posted six clones at the garden’s boundaries, the animation ends (Figure 7.14d).

1 import edu.sjcny.gpv1.*;

2 import java.awt.*;

3

4 public class DeepAndShallow extends DrawableAdapter

5 { static DeepAndShallow ge = new DeepAndShallow ();

6 static GameBoard gb = new GameBoard(ge, "Deep and Shallow");

7 static ParentSnowmanV2[] ps;

8 static boolean gameOver = false;

9

10 public static void main(String[] args)

11 { ps = new ParentSnowmanV2[10];

12 ps[0] = new ParentSnowmanV2(100, 200, "G", Color.BLUE);

13 ps[1] = new ParentSnowmanV2(300, 275, "1", Color.GREEN);

14 ps[2] = new ParentSnowmanV2(300, 400, "2", Color.GREEN);

15 ps[3] = new ParentSnowmanV2(100, 100, "3", Color.GREEN);

16

17 gb.setTimerInterval(3, 20);

18 showGameBoard(gb);

19 }

20

21 public void draw(Graphics g)

22 {

23 for(int i = 1; i < ps.length; i++)

25 {

26 if(ps[i] != null) //the snowman exists

27 {

28 ps[i].show(g);

29 }

30 }

31 ps[0].show(g); //the patrolling guard

32 }

33

34 public void timer3()

 Chapter 7· Methods, Classes , and Objects : A Second Look ■ 315

35 { int x, speed, y;

36 if(ParentSnowmanV2.getSnowmanCount()== 10)

37 {

38 gb.stopTimer(3);

39 gameOver = true;

40 }

41 //move the guard

42 x = ps[0].getX();

43 x = x + ps[0].getXSpeed();

44 ps[0].setX(x);

45 y = ps[0].getY();

46 y = y + ps[0].getYSpeed();

47 ps[0].setY(y);

48

49 //is ps[0] at a border?

50 if(ps[0].getX() >= 460 || ps[0].getX() <= 6)

51 {

52 speed = ps[0].getXSpeed();

53 speed = -speed;

54 ps[0].setXSpeed(speed);

55 ps[ParentSnowmanV2.getSnowmanCount()] = ps[0].partialClone();

56 }

57 if(ps[0].getY() >= 423 || ps[0].getY() <= 30)

58 {

59 speed = ps[0].getYSpeed();

60 speed = -speed;

61 ps[0].setYSpeed(speed);

62 ps[ParentSnowmanV2.getSnowmanCount()] = ps[0].partialClone();

63 }

64

65 // has ps[0] found a green-hat wandering snowman?

66 for(int i = 1; i <= ps.length; i++)

67 {

68 if(ps[i] != null && ps[0].collidedWith(ps[i]) &&

69 !ps[0].equals(ps[i]))

70 {

71 ps[i].setX(ps[0].getX()); //position wanderer behind ps[0]

72 ps[i].setY(ps[0].getY());

73 }

74 }

75 }

76

77 public void leftButton()

78 {

79 if(gameOver == true)

80 { for(int i=0; i<=3; i++) //move the three intruders left

81 {

82 ps[i].setX(ps[i].getX() – (i * 3));

316 ■ Programming Fundamentals Using Java

83 }

84 ps[0].setX(ps[0].getX() - 1); // move the guard

85 }

86 }

87 }

Figure 7.13

The application DeepAndShallow.

(a) Game board when the program is launched (b) Game board after green-hat snowman 2 is found

and placed behind the guard

(c) Game board after three clones are posted and

green-hat snowman 3 is about to be found

(d) Game board after six clones have been posted and

all the wonderers have been found

Figure 7.14

Graphical output produced by the application DeepAndShallow.

This animation uses an array of ten ParentSnowmanV2 snowmen objects, whose class is shown

in Figure 7.12; the array, ps, is declared on line 11 of Figure 7.13. The patrolling snowman guard and

the three green-hat snowmen, declared on lines 12–15, are referenced by indices 0 and 1–3, respec-

tively. The remaining six elements of the array will be used to reference the clone snowmen.

 Chapter 7· Methods, Classes , and Objects : A Second Look ■ 317

The patrolling of the guard and the game termination are dependent on timer3. Line 17 of

the main method sets timer3’s increment to 20 milliseconds, which means that the timer3 call

back method (lines 34–75) executes every 20 milliseconds. Its code determines if the patrol is

over (lines 36–44), moves the patrolling guard (lines 42–57), posts clone guards (lines 50–63) and

gathers up the intruders (lines 66–74). Line 36 determines if ten snowmen have been constructed,

which would mean that all six guards have been posted. If so, the patrol is ended by line 38, which

stops timer3. While the timer is ticking, lines 42–47 use the Snowman class’s set and get meth-

ods to fetch, change, and overwrite the current values of the patrolling guard’s (x, y) location every

20 milliseconds. This keeps the snowman on patrol.

Lines 50 and 57 determine if the guard has reached a vertical (line 50) or horizontal (line 57)

edge of the garden. If it has, lines 52–54 and lines 59–61 reflect the guard off the edge by changing

the sign of the x and/or y speed data member. Then, lines 55 and 62 invoke the partialClone

method to create the clone snowman and store its returned address in the next available element of

the array ps. The index of this element is the static value returned from the getSnowmanCount

method, which is invoked on the left side of these lines. Because the partialClone method in the

ParentSnowmanV2 class (Figure 7.12) copies the current (x, y) position of the patrolling snowman

into the clone, the clone is positioned at an edge of the garden.

Just before the timer3 method ends, the for loop that begins on line 66 indexes through the

last nine elements of the array. For each of these elements, the if statement’s Boolean condition

on lines 68 and 69 determines if:

� the element of the array references a snowman (is not null)

� the referenced snowman has collided with the patrolling guard (ps[0]) as determined

by the collidedWith method

� the referenced snowman is an intruder as determined by the equals method (Its hat

color is not equal to the guard’s hat color.)

When this is the case, the (x, y) position of the green-hat wandering snowman is set to the

(x, y) position of the patrolling guard (lines 71–72). On the next tick of timer3, the patrolling

guard is only moved two pixels, so the guard and the snowman remain in a collided state, and the

wandering snowman’s position is reset by lines 74–75 to the patrolling guard’s new position. The

resulting effect is that the wandering snowman goes on patrol with the guard. It cannot be seen on

patrol because line 31 of the draw method draws the patrolling guard, ps[0], last (i.e., on top of the

green-hat snowmen that have joined the patrol).

After the game ends, a series of left button clicks will separate the patrolling guard from the

green-hat guards that have joined the patrol as shown in the center portion of Figure 7.15. This is

accomplished by decrementing the x coordinates of each green-hat patrolling snowman (line 82)

and the guard (line 84) by a different amount on each button click. Until the game ends, the left

button is inactive because the body of the if statement on line 79 that separates the snowmen is

only executed when the Boolean variable gameOver is set to true on line 39 of the timer3 call

back method.

318 ■ Programming Fundamentals Using Java

Figure 7.15

Graphical output produced by the application DeepAndShallow

after the animation ends and several left button clicks have been performed.

 7.5 7.5 THE THE STRING CLASSSTRING CLASS: A SECOND LOOK: A SECOND LOOK

In Section 2.5, we discussed the creation of String objects, and in Section 4.2.3, we discussed

the String class’s methods equals and compareTo, which are used to compare two strings. In

addition to these methods, the class contains a rich collection of methods used to create strings, to

convert strings to characters, and to process string data.

 7.5.17.5.1 Creating Strings from Primitive Values Creating Strings from Primitive Values

Aside from the one-parameter constructor discussed in Chapter 2 that is passed a string literal

or a string object such as

 String name1 = new String("Robert");

 String name2 = new String(name1);

the String class also contains several overloaded constructors. Each of these creates a new

string object and returns its address. Two of the most frequently used constructors have a character

array passed to them. The following code fragment uses the one-parameter version of these two

methods to create the string name1 initialized to Joanne Jones and the three-parameter version to

create the string name2 initialized to anne Jo. (The second argument sent to the three-parameter

version of the constructor would be zero to include the first character of the array in the string

object.)

char[] c = {'J', 'o', 'a', 'n', 'n', 'e', ' ', 'J', 'o', 'n', 'e', 's'};

String name1 = new String(c); //all characters used

String name2 = new String(c, 2, 7); //7 characters used, starts @ index 2

The static method valueOf in the String class also can be used to create and return the ad-

dress of a string object initialized to the argument passed to it. Overloaded versions of this method

 Chapter 7· Methods, Classes , and Objects : A Second Look ■ 319

use a char, int, long, float, or double parameter. Integer type byte and short arguments

can be passed to the int parameter version of this method. In addition, there is a version of the

method that accepts a character array passed to it. The following code fragment demonstrates the

use of this overloaded method, to output the string: x102030405.556.66yz.

 char c = 'x';

 byte b = 10;

 short s = 20;

 int i = 30;

 long l = 40;

 float f = 5.55f;

 double d = 6.66;

 char[] cArray = {'y', 'z'}

 String s2 = String.valueOf(c) + String.valueOf(b) + String.valueOf(s) +

 String.valueOf(i) + String.valueOf(f) + String.valueOf(l) +

 String.valueOf(d) + String.valueOf(cArray);

 System.out.println(s2);

 7.5.2 7.5.2 Converting Strings to Characters Converting Strings to Characters

The String class method charAt can be used to convert a particular character contained in

the string object that invoked it to type char, and it returns the character. The following code frag-

ment stores the character 'S' in the variable c.

 String aString = "Joe Smith";

 char c = aString.charAt(4); //character numbers begin at zero

The method toCharArray converts a string object that invokes it to an array of characters and

returns the address of the array. After the following code fragment executes, the character arrays

c1 and c2 contain the same character sequence:

 char[] c1 = {'J', 'o', 'a', 'n', 'n', 'e', ' ', 'R', 'a', 'y'};

 char[] c2;

 String aString = "Joanne Ray";

 c2 = aString.toCharArray();

 7.5.37.5.3 Processing Strings Processing Strings

The String class contains several methods to process string data. Two of these methods,

compareTo and equals (and their related methods compareToIgnoreCase and equalsIgno-

reCase) were discussed in Section 4.2.3. Table 7.1 describes other String class methods often

used to process strings.

All of these methods are nonstatic methods. They can be used to determine the existence or

location of a given substring in a string, fetch a substring from a specified position in the string,

produce an uppercase or lowercase version of a string, replace the first or all occurrences of a

substring with a given string, and tokenize a string determine if a string begins or ends with a

specified string.

320 ■ Programming Fundamentals Using Java

Table 7.1

String Processing Methods in the String Class

Function
Method and

Parameter Type
Example and Description

Locate a given

substring in a

string

indexOf

Parameter(s): String

or

String, int

int i = s1.indexOf(target);

Returns the index of the first occurrence of substring target

in the string s1

int i = s1.indexof(target, start);

Returns the index of the first occurrence of substring target

that begins at or after the index start in the string s1

Fetch a

substring from a

string

substring

Parameter(s):

 int or

int, int

String s2 = s1.substring(start);

Returns the substring of s1 from index start to the end of s1

String s2 = subString(start, end);

Returns the substring of s1 from index start to

index end -1

Convert a string

to upper or

lower case

characters

toUpperCase String s2 = s1.toUpperCase();

Creates a clone of string s1 consisting of all uppercase charac-

ters

toLowerCase String s2 = s1.toLowerCase()

Creates a clone of string s1 consisting of all lowercase charac-

ters

Replace a given

substring in a

string with a

given substring

replaceFirst

Parameter(s): String,

String

String s2 = s1.replaceFirst(target, new);

Returns a string with the first occurrence of the substring tar-

get in s1 replaced with the string new

replaceAll

Parameter(s): String,

String

String s2 = s1.replaceAll(target, new);

Returns a string with all occurrences of the substring target in

s1 replaced with the string new

Determine if a

string begins

or ends with a

given string

startsWith

Parameter: String

boolean b = s1.startsWith(s2);

Returns true if the string s1 begins with the string s2

endsWith

Parameter: String

boolean b = s1.endsWith(s2);

Returns true if the string s1 ends with the string s2

Tokenize a

string

split

Parameter(s): String

or

String, int

String[] s1 = s1.split(" +");

Returns a string array whose elements are the substrings of s1

that are separated by one or more spaces

String[] s1 = s1.split(" +" , n);

Returns a string array whose elements are the substrings of s1

that are separated by one or more spaces; there will be n or few-

er elements in the returned array

 Chapter 7· Methods, Classes , and Objects : A Second Look ■ 321

The application StringProcessing presented in Figure 7.16 uses some of the methods de-

scribed in Table 7.1 to process a sentence input by the user. If the word Hello appears at the be-

ginning of the sentence it is eliminated, and if the word Tom is in the sentence it is changed to

XXX. A typical input and corresponding output are given in the left and right sides of Figure 7.17,

respectively.

Line 16 uses the String class method split to create a new String array and place each

word of the sentence input on line 11 into its elements. Then, it stores the address of the array

returned from split in the variable sArray that is declared on line 8. The string consisting of a

space followed by a plus sign passed to split on line 16 instructs the method to consider one or

more spaces as token, in this case, word delimiters in the sentence. Line 19 clones the string input

on line 11 and stores its address in the variable s2.

Lines 20–23 remove the word from the beginning the cloned string s2. The indexOf method

is used in the if statement’s Boolean condition on line 20 to determine if the substring “Hello”

begins at the index zero of the string s2. If it does, the substring method is used on line 22 to

return the substring of s2 that begins at index 6 (after the word Hello and the space that follows

it). The address of this new string object is stored in (shallow copied into) s2. Line 20 could have

been coded as shown below:

 if(s2.startsWith("Hello"))

The replaceAll method is invoked on line 24. It effectively creates a clone of the string object s2

and replaces all occurrences of the word Tom with the string literal “XXX.” The returned address

of the modified clone is then assigned to (shallow copied into) the variable s2.

1 import javax.swing.*;

2

3 public class StringProcessing

4 {

5 public static void main(String[] args)

6 {

7 String s1, s2;

8 String[] sArray;

9 int nWords;

10

11 s1 = JOptionPane.showInputDialog("Enter a sentence, Please\n" +

12 "Don't begin it with Hello,\n" +

13 "don't include the word Tom.\n" +

14 "Hello will be removed, and \n" +

15 "Tom replaced with XXX.");

16 sArray = s1.split(" +"); //stores each word in separate elements

17 nWords = sArray.length; //the number of words

18

19 s2 = new String(s1);

20 if(s2.indexOf("Hello") == 0)

21 {

322 ■ Programming Fundamentals Using Java

22 s2 = s2.substring(6);

23 }

24 s2 = s2.replaceAll("Tom", "XXX");

25

26 JOptionPane.showMessageDialog(null, "There are " + nWords +

27 " words in your sentence:\n" +

28 s1 + "\nThe revised sentence is:\n" +

29 s2);

30 }

31 }

Figure 7.16

The application StringProcessing.

 (a) Input (b) Output

Figure 7.17

Input to the application StringProcessing and the corresponding output.

 7.6 7.6 THE WRAPPER CLASSES: A SECOND LOOK THE WRAPPER CLASSES: A SECOND LOOK

As discussed in Section 2.7.3, the six numeric wrapper classes (e.g., Integer, Double, etc.)

contain methods that parse a string into integer or real values that can then be stored in primitive

variables. In addition to these methods, all of the wrapper classes contain constructors to create a

wrapper class object and also contain a collection of useful constants. A seventh wrapper class, the

class Character, contains methods to perform common operations on characters. In this section,

we will discuss these additional features of the wrapper classes and a related topic called autoboxing.

 7.6.1 7.6.1 Wrapper Class Objects Wrapper Class Objects

A wrapper class’s one-parameter constructor can be used to create a wrapper object. Wrap-

per class objects contain a single private primitive data member whose type is consistent with the

class’s name. For example, an object in the class Double contains a double primitive data mem-

ber, and an instance of an Integer contains an int data member. The argument passed to the

 Chapter 7· Methods, Classes , and Objects : A Second Look ■ 323

one-parameter constructor is stored in the object’s data member. Envisioning the primitive value

being wrapped in the object is the basis of the phrase wrapper classes.

The wrapper classes contain methods that return the value stored in an object’s data member.

These methods perform the function of get methods, but their names begin with the primitive

type they return followed by the word Value. For example, the Integer class contains a method

named intValue that returns the value of the class’s integer data member, and the Character

class contains the method charValue that returns the value of the class’s character data member.

The Integer class also contains the methods byteValue, shortValue, longValue, float-

Value, and doubleValue that cast the returned value of the data member into the other numeric

primitive types. The other numeric wrapper classes contain five similarly named methods used to

cast the data member they return into different numeric types. The following code segment wraps

the value 20 in an Integer object and outputs the value as an integer and a double (e.g., 20 fol-

lowed by 20.0):

 Integer n = new Integer(20);

 System.out.println(n.intValue() + " " +

 n.doubleValue()); //outputs: 20 20.0

Each of the wrapper classes contains an equals and a compareTo method to perform a deep

comparison of the data wrapped in the object that invoked them and the object sent to their param-

eter. The equals method returns the Boolean value true when the two objects are equal, other-

wise it returns false. The equality operator (==) can be used to perform a shallow comparison to

determine if two wrapper class reference variables refer to the same object.

The compareTo method returns an integer, which is negative, zero, or positive when the in-

voking object is less than, equal to, or greater than the object sent to its parameter, respectively.

This version of the method coded in the numeric wrapper classes always returns -1, 0, or 1. The

integer returned from the Character class’s version of the method also gives an indication of the

lexicographic separation of the characters contained in the objects being compared.

The following code fragment outputs the value -25. The value is negative because the character

‘a’ appears before ‘z’ in the Unicode table, and its absolute value is 25 because ‘a’ is 25 characters

before ‘z’.

 Character c1 = new Character('a');

 Character c2 = new Character('z');

 System.out.println(c1.compareTo(c2)); //outputs: -25

The wrapper classes do not contain set methods to change the value of the data member

wrapped in the object. This is because wrapper class objects, like String objects, are immutable.

Once a value has been stored in a wrapper class’s data member or inside a String object, the value

cannot be changed. As is the case with String objects, the assignment operator can be used to

reassign the address stored in the object’s reference variable to a newly created object that contains

the assigned (different) value. Although this gives the appearance that the value stored in the object

has changed, in reality, the new value has been stored in a different object.

324 ■ Programming Fundamentals Using Java

The assignment operator can also be used to shallow copy (the address of) two wrapper class

objects. The following code fragment outputs the value 12.5 twice. Although it initially creates two

instances of a Double, d1 and d2, after the third line executes, these variables reference the same

object. The object containing the value 54.6 is reclaimed by the Java memory manager. The coding

of the variables d1 and d2 in the argument sent to the println method are two implicit invoca-

tions of the Double class’s toString method.

 Double d1 = new Double(12.5);

 Double d2 = new Double(54.6);

 d2 = d1; //d1 and d2 reference the same object which contains 12.5;

 System.out.println(d1 + " " + d2); //outputs: 12.5 12.5

 7.6.2 7.6.2 Autoboxing and Unboxing Autoboxing and Unboxing

The autoboxing feature of wrapper classes makes it easier to use wrapper class objects in our

programs. This feature automatically “wraps” primitive values into wrapper objects. For example,

wrapper class objects can be declared using the abbreviated syntax used to declare String objects,

as discussed in Section 2.5. The following line of code wraps, or boxes, the integer 20 in an Inte-

ger object and writes its address in the variable n1:

 Integer n1 = 20; //autoboxing of the value 20 in an object declaration

When this statement executes, the autoboxing feature creates an Integer wrapper object,

stores (boxes) 20 in its data member, and returns the object’s address. The statement is equivalent

to the following statement:

 Integer n1 = new Integer(20);

Autoboxing can also be used to effectively reassign or set the primitive value stored in a wrap-

per class object. The following code fragment outputs the value 3.6. The right side of line 2 uses

autoboxing to create a new Integer wrapper object, stores 3.6 in its data member, and returns its

address. The returned address is then stored in the variable n1. The wrapper object containing the

value 2.5 is reclaimed by the Java memory manager.

1 Double n1 = 2.5;

2 n1 = 3.6; //Autoboxing of the value 3.6 in an assignment statement

3 System.out.println(n1);

It should be noted that if the value to be boxed in a wrapper class object (e.g., n2) is already

stored in another wrapper class object (e.g., n1) of the same type, then a new object is not created.

Rather, n2 is set to refer to n1's object. The only exception to this is if the long form of the object-

declaration grammar is used to declare and initialize the new object. This caveat also applies to

String objects. The code fragment shown in Figure 7.19 demonstrates these concepts, as well as

the use of the equality operator and the wrapper class’s equals method. The output it produces is

shown at the bottom of the figure.

Lines 2, 7, and 11 do not create a new object but simply assign n2 the object’s address that is

stored in n1. Line 16 creates a new object even though the object n1 created on line 15 stores the

same value because the long form of the object-declaration syntax (which includes the keyword

new) is used to create it.

 Chapter 7· Methods, Classes , and Objects : A Second Look ■ 325

1 Integer n1 = 20;

2 Integer n2 = 20; //a new object is not created, n2 is assigned n1

3 if(n1 == n2) System.out.println("n1 and n2 refer to the same object");

4 if(n1.equals(n2)) System.out.println("n1 & n2 contain the same value");

5

6 n1 = 30;

7 n2 = 30; //a new object is not created, n2 is assigned n1

8 if(n1 == n2) System.out.println("n1 & n2 refer to the same object");

9 if(n1.equals(n2)) System.out.println("n1 & n2 contain the same value");

10

11 n2 = n1; //a new object is not created, n2 is assigned n1

12 if(n1 == n2) System.out.println("n1 & n2 refer to the same object");;

13 if(n1.equals(n2)) System.out.println("n1 & n2 contain the same value");

14

15 n1 = 40;

16 n2 = new Integer(40); //a new object is created

17 if(n1 == n2) System.out.println("n1 & n2 refer to the same object");

18 if(n1.equals(n2)) System.out.println("n1 & n2 contain the same value");

Output produced:

n1 & n2 refer to the same object

n1 & n2 contain the same value

n1 & n2 refer to the same object

n1 & n2 contain the same value

n1 & n2 refer to the same object

n1 & n2 contain the same value

n1 & n2 contain the same value

Figure 7.18

Examples of when autoboxing creates new objects.

The unboxing feature of wrapper classes allows us to use the name of a numeric wrapper class

object in arithmetic expressions. The following code fragment outputs the values 7 and 16. The

value stored in the object n2 is unboxed from it on lines 2, 3, and 4. The unboxing fetches the value

7 from the object on lines 2 and 3, and the value 8 on line 4.

1 Integer n2 = 7;

2 int n3 = n2; //auto Unboxing of n2

3 n2++; //auto Unboxing of n2, incrementing, and Autoboxing the new value

4 n2 = n2 * 2; //auto Unboxing, multiplying, and Autoboxing the new value

5 System.out.println(n3 + " " + n2);

The location of wrapper class objects can be passed to and returned from a method using the

same syntax used to pass any object’s location to or from a method. The most common use of wrap-

per class objects is to pass a primitive value to a generic method that is expecting an object or to

store a group of primitive values in a Java collection object. Generic methods and collections, and

the role wrapper objects play in their use, will be discussed in Chapter 12.

326 ■ Programming Fundamentals Using Java

 7.6.3 7.6.3 Wrapper Class Constants Wrapper Class Constants

The six numeric wrapper classes all contain static data members named MAX _ VALUE, MIN _

VALUE, and SIZE. The values of a class’s MAX _ VALUE and MIN _ VALUE constants are the maxi-

mum and minimum values that can be stored in the primitive numeric data member of an instance

of that class. The value of the constant SIZE is the number of bits that make up the primitive data

member’s storage cell.

The following code fragment produces the output 127-128 8, which are the maximum and

minimum values that can be wrapped in a Byte object, and the size of the object’s data member (8

bits). These are the same values presented on the first row of Table 2.1, which specified the range

and size of the primitive numeric types.

 System.out.println(Byte.MAX_VALUE, + " " + Byte.MIN_VALUE, +

 " " + Byte.SIZE);

 7.6.4 7.6.4 The Character Wrapper Class The Character Wrapper Class

The wrapper class Character contains all of the methods, constants, and the autoboxing

features of the numeric wrapper classes discussed previously in Section 7.6. Its value method,

named charValue, returns the character stored inside the Character instance that invokes it.

Naturally, the Character class’s constants such as MAX _ VALUE, MIN _ VALUE, and SIZE store

values relevant to primitive char values, and the class’s methods operate on Character objects

and are passed char parameters.

In addition to the analogous numeric wrapper class methods, the Character class contains

two static methods named toUpperCase and toLowerCase that change the case of a character

primitive passed to their char-type parameter. The Character class also contains seven other

static methods described in Table 7.2 that return a Boolean value. These methods can be used to

determine if the character passed to it is a digit or a letter, an uppercase or lowercase letter, or is

Java whitespace. The methods are very useful in programs that process text information.

Figure 7.19 contains a program ParseSentence that demonstrates the use of four of the

methods shown in Table 7.2 to determine the number of upper and lowercase letters, digits, and

whitespace in an input sentence. A typical input sentence and the corresponding output the pro-

gram produces is shown in Figures 7.20a and 7.20b, respectively.

The code inside the for loop that begins on line 14 of Figure 7.19 counts the number of oc-

currences of the four different types of characters contained in the sentence input on line 13. The

String class’s length method is invoked on line 14 to determine the number of characters in the

sentence.

Each time through the loop, the loop variable is passed to the String class’s charAt method

to fetch the ith character from the sentence. Lines 17, 21, 25, and 29 use four of the character-test-

ing methods presented in Table 7.2 to determine if the character returned from the charAt method

is an upper- or lowercase letter, digit, or whitespace.

 Chapter 7· Methods, Classes , and Objects : A Second Look ■ 327

1 import javax.swing.*;

2

3 public class ParseSentence

4 {

5 public static void main(String[] args)

6 {

7 int upperCase = 0;

8 int lowerCase = 0;

9 int numeric = 0;

10 int whitespace = 0;

11 char c;

12

13 String sentence = JOptionPane.showInputDialog("Enter a sentence");

14 for(int i = 0; i < sentence.length(); i++)

15 {

16 c = sentence.charAt(i);

17 if(Character.isUpperCase(c))

Table 7.2

The Character-Testing Methods in the Class Character

Method Name and

Parameter List

Returns true if the

Character Passed to

its Parameter is:

Code Example

isDigit(char c) a digit in the range

0 to 9

Character.isDigit('4');

returns true

isLetter(char c) an upper or lower case

letter of the alphabet

Character.isDigit('C');

returns true

isLetterOrDigit(char c) an upper- or lowercase

letter or digit (0-9)

Character.isLetterORDigit('C');

returns true

Character.isLetterORDigit('6');

returns true

isLowerCase(char c) a lowercase letter of the

alphabet

Character.isDigit('c');

returns true

isSpaceChar(char c) a space character Character.isSpaceChar(' ');

returns true

isUpperCase(char c) an uppercase letter of

the alphabet

Character.isUpperCase('B');

returns true

isWhiteSpace(char c) Java defined white

space (e.g., space,

tab, or a new line

character)

Character.isWhiteSpace(' ');

returns true

328 ■ Programming Fundamentals Using Java

18 {

19 upperCase++;

20 }

21 else if(Character.isLowerCase(c))

22 {

23 lowerCase++;

24 }

25 else if(Character.isDigit(c))

26 {

27 numeric++;

28 }

29 else if(Character.isWhitespace(c))

30 {

31 whitespace++;

32 }

33 }

34 JOptionPane.showMessageDialog(null, "The sentence contains:\n" +

35 upperCase + " Upper case letters,\n" +

36 owerCase + " Lower case letters,\n" +

37 numeric + " Digits and\n" +

38 whitespace + " Whitespace characters");

39 }

40 }

Figure 7.19

The application ParseSentence.

 (a) Input (b) Output

Figure 7.20

An input to the application ParseSentence and the resulting output.

 7.77.7 AGGREGATION AGGREGATION

Just as a group of primitive variables can be collected into an object by declaring them as

data members in the object’s class, instances of other types of objects can also be collected, or ag-

gregated, into an object. We have already utilized this concept many times in this textbook. For

example, lines 10 and 11 of Figure 7.12 indicate that a String and a Color object will be part of

 Chapter 7· Methods, Classes , and Objects : A Second Look ■ 329

a ParentSnowmanV2 object. As a result, the ParentSnowmanV2 class would be considered an

aggregated class.

Definition

An aggregated class is a class that includes in its data members instances of other classes.

Aggregating an object into a class is a simple task. As shown in Figure 7.21, which contains lines

10–11 and lines 20–28 of Figure 7.12, we simply declare a data member that can reference the object

(lines 10 and 11) and assign the reference variable the address of an object (lines 11, 25, and 26).

10 private String name;

11 private Color hatColor= Color.BLACK;

 :

20 public ParentSnowmanV2(int intialX, int intialY, String name,

21 Color hatColor)

22 {

23 x = intialX;

24 y = intialY;

25 this.name = name;

26 this.hatColor = hatColor;

27 snowmanCount++;

28 }

Figure 7.21

A code fragment from an aggregated class.

The difficult part of the aggregation shown in Figure 7.21 falls on the authors of the String

and Color classes. They had to anticipate the operations that would be performed on aggregated

strings or Color objects and provide methods to perform these operations. In the case of the

String class, this includes operations such as comparing two strings, outputting a string to the

console, and all of the other operations that were discussed in Section 7. 5. These methods are in-

voked by the code of the aggregated class to operate on the objects.

Properly anticipating the operations that will be performed on an aggregated object is a key

component of the concept of aggregation. In addition, where possible, the signatures of these meth-

ods are standardized, as is the case for the equals method in the String and Color classes.

Providing commonly used methods whose signatures are standardized facilitates the use of ag-

gregation in our programs.

Instances of a class that we write can also be aggregated into other classes using the same syn-

tax discussed above. (In this case, the burden of identifying the operations that will be performed

on the aggregated objects and writing the classes falls on us.) This use of aggregation gives us the

ability to extend the design concept of divide and conquer, used to divide complicated methods into

smaller methods, to classes we write. The component objects of a large class (e.g., a ParentSnow-

man class) can be identified (e.g., a Hat object and a Nose object), and then the component classes

can be written. Once written, instances of these classes can be aggregated into the larger class. In

addition, instances of component classes can be aggregated into the classes of other programs just

as instances of API classes are used in most Java programs.

330 ■ Programming Fundamentals Using Java

The concept of aggregation gives us the ability to:

� use instances of existing objects in classes we write

� extend the design concept of divide and conquer to classes we write

� define a complicated object as an aggregation of component objects defined in other classes

� easily operate on aggregated component objects as separate entities

Figure 7.22 shows the UML representation of a class named SnowmanV8 that aggregates a Hat

and String object into it. The symbol for aggregation in a UML diagram is the diamond shown

below the SnowmanV8 class. The lines that connect it to the Hat and String classes indicate that the

SnowmanV8 class aggregates at least one Hat and one String object into it. The last two data mem-

bers of the SnowmanV8 class specify that one of each of these objects is aggregated into the class.

Hat

- x: int
- y: int
- w: int
- h: int

- hatColor: Color

+ Hat(x: int, y: int,
 hatColor: Color,
 w: int, h: int)
+ show(g: Graphics)
+ clone(): Hat
+ getH(): int
+ setH(h: int)
+ getW(): int
+ setW(w: int)
+ getX(): int
+ setX(x: int)
+ getY(): int
+ setY(y: int)
+ getHatColor(): Color

SnowmanV8

- x: int

- y: int
- w: int
- h: int
- name: String
- aHat: Hat

+ SnowmanV8(intialX: int,
 intialY: Hat)

+ show(g:Graphics)
+ collidedWith(hat: Hat)
+ setHat(newHat: Hat)
+ getX(): int
+ setX(x: int)
+ getY(): int
+ setY(y: int)

API String

String class data members

String class methods

Figure 7.22

UML diagram of the SnowmanV8 and the Hat classes.

 Chapter 7· Methods, Classes , and Objects : A Second Look ■ 331

During the design of the Hat class, it was anticipated that classes that aggregate hats will want

to include hats of different colors and sizes. The last three parameters of the class’s constructor

were included in its parameter list to allow for this, as were its last three data members. The Hat

class’s show method will use these data members to draw a properly sized and colored hat. In addi-

tion, it has been anticipated that classes that aggregate Hat objects will want to clone them, so the

class includes a clone method. Finally, it was assumed that once created, a hat’s color would not be

changed, so a setHatColor data member was not included in the Hat class.

Figure 7.23 shows the code of the class Hat that is specified in Figure 7.22. Lines 22 and 23

of the show method scale the hat top and its brim using the hat’s specified width (w) and height

(h). This unburdens the authors of all classes that aggregate hats from knowing how to scale a Hat

object. That task is left to the hat specialist, which illustrates another advantage of aggregation.

In addition, they do not have to include the Hat class’s data members and method in their class,

making the aggregated easier to code and understand. The clone method, lines 25–29, invokes the

class’s constructor in line 27 to create a clone of the Hat object that invokes it and returns the ad-

dress of the newly created clone on line 28.

1 import java.awt.*;

2

3 public class Hat

4 {

5 private int x;

6 private int y;

7 private int w = 20;

8 private int h = 17;

9 private Color hatColor;

10

11 public Hat(int x, int y, Color hatColor, int w, int h)

12 {

13 this.x = x;

14 this.y = y;

15 this.hatColor = hatColor;

16 this.w = w;

17 this.h = h;

18 }

19 public void show(Graphics g)

20 {

21 g.setColor(hatColor);

22 g.fillRect(x + w/4, y, w/2, (int)(h*0.9)); // hat top

23 g.fillRect(x, y + (int)(h*0.9), w, (int)(h*0.2)); // brim

24 }

25 public Hat clone()

26 {

27 Hat theClone = new Hat(x, y, hatColor, w, h);

28 return theClone;

29 }

30 public int getW()

332 ■ Programming Fundamentals Using Java

31 {

32 return w;

33 }

34 public int getH()

35 {

36 return h;

37 }

38 public int getX()

39 {

40 return x;

41 }

42 public void setX(int newX)

43 {

44 x = newX;

45 }

46 public int getY()

47 {

48 return y;

49 }

50 public void setY(int newY)

51 {

52 y = newY;

53 }

54 public Color getHatColor()

55 {

56 return hatColor;

57 }

58 }

Figure 7.23

The class Hat.

Figure 7.24 shows the code of the class SnowmanV8 that is specified in Figure 7.22. This class

begins the aggregation of a String and a Hat object with the declaration of its last two data mem-

bers on lines 9 and 10. Line 16 of the constructor completes the aggregation of the String object

by creating a string and setting its address into the data member name.

The aggregation of the Hat object is completed on line 52 of the setHat method that assigns

the address of a Hat object passed to its parameter on line 50 to the data member aHat declared

on line 10. This means that until the setHat method is invoked, a SnowmanV8 object should

be drawn without a hat on his head. This is easily accomplished by including an if statement

(line 22) in the class’s show method that only invokes the Hat class’s show method (line 26) when

the data member aHat does contain its default value, null. This demonstrates another advantage

of aggregation: aggregated objects can easily be treated as separate entities in a program. The

snowman can be drawn with or without a hat.

Before the hat is drawn, it must be positioned on the snowman’s head. This is accomplished

by lines 24 and 25, which use the Hat class’s setX and setY methods to set the (x, y) position of

the hat above the snowman’s head. The argument sent to these methods uses the Hat class’s setW

 Chapter 7· Methods, Classes , and Objects : A Second Look ■ 333

and setH methods to fetch the height and width of the hat, which are used to center the hat on the

snowman’s head.

Lines 38–49 of Figure 7.24 contain the code of the SnowmanV8 class’s collidedWith method

specified in Figure 7.22. It detects a collision between the snowman that invokes it and the Hat

object passed to its parameter. It uses the Hat class’s get methods in the Boolean expression on

lines 40 and 41 to decide if a collision has occurred.

1 import java.awt.*;

2

3 public class SnowmanV8

4 {

5 private static int w = 40;

6 private static int h = 77;

7 private int x;

8 private int y;

9 private String name; //data members for aggregated objects

10 private Hat aHat;

11

12 public SnowmanV8(int intialX, int intialY)

13 {

14 x = intialX;

15 y = intialY;

16 name = "sm"; //aggregates a String object into this class

17 }

18 public void show(Graphics g)

19 { int[] xPoly = {x + 20, x + 15, x + 25};

20 int[] yPoly = {y + 8, y + 13, y + 13};

21

22 if(aHat != null) //snowman has a hat

23 {

24 aHat.setX(x + w/2 - aHat.getW()/2); //locate the hat on head

25 aHat.setY(y - aHat.getH());

26 aHat.show(g); //draw the hat

27 }

28 g.setColor(Color.WHITE);

29 g.fillOval(x + 10, y, 20, 20); // head

30 g.fillOval(x, y + 20, 40, 40); // body

31 g.setColor(Color.RED);

32 g.fillPolygon(xPoly, yPoly, 3); // nose

33 g.setColor(Color.BLACK);

34 g.setFont(new Font("Arial", Font.BOLD, 16));

35 g.drawString(name, x + 10, y + 45); // name

36 }

37

38 public boolean collidedWith(Hat hat)

39 {

40 if(!(x > hat.getX() + hat.getW() || x + w < hat.getX() ||

334 ■ Programming Fundamentals Using Java

41 y > hat.getY() + hat.getH() || y + h < hat.getY()))

42 {

43 return true;

44 }

45 else

46 {

47 return false;

48 }

49 }

50 public void setHat(Hat newHat)

51 {

52 aHat = newHat; //aggregates a Hat object into this class

53 }

54 public int getX()

55 {

56 return x;

57 }

58 public void setX(int newX)

59 {

60 x = newX;

61 }

62 public int getY()

63 {

64 return y;

65 }

66 public void setY(int newY)

67 {

68 y = newY;

69 }

70 }

Figure 7.24

The class SnowmanV8.

Figure 7.25 presents the application Aggregation. When launched, it displays a hatless snow-

man and a hat rack containing six different hats, as shown in Figure 7.26a. The keyboard cursor-

control keys are used to move the snowman to the hat he wishes to wear, perhaps the blue hat as

shown in the upper right side of the figure (7.26b). The chosen hat is cloned and positioned on his

head (Figure 7.26c), and follows him around the game board as shown on the lower right side of

the figure (7.26d).

The application’s draw method (lines 23–32) draws the hat rack on lines 25 and 26, and then

its for loop invokes the hat class’s show method to draw the six hats created on lines 12 to 17. The

parameters sent to the Hat class’s five-parameter constructor specify different locations, colors,

and sizes for each hat.

Line 31 of the draw method invokes the SnowmanV8 class’s show method to draw the snow-

man that was created on line 8 on the game board. When the application is launched, the snow-

man’s data member, aHat, declared on line 10 of the Figure 7.24, still contains its null default

 Chapter 7· Methods, Classes , and Objects : A Second Look ■ 335

value. This causes the snowman to be drawn without a hat, as shown in Figure 7.26a, because the

Boolean condition on line 22 of Figure 7.24 is false.

Every time a cursor key is struck, the code of the switch statement (lines 37–62) inside the

keyStruck call back method moves the snowman two pixels left, right, up, or down. Then, the if

statement (lines 66–69) uses the loop variable of the for loop to check each hat in the array hats

to determine if the snowman has chosen (collided with) any of the hats on the hat rack.

When a hat is chosen it is cloned, and the clone is aggregated into the snowman object by in-

voking the hat class’s setHat method and passing it the address of the cloned hat (line 68). The ag-

gregation is accomplished by line 52 of Figure 7.24, which assigns the cloned hat’s address (passed

to the setHat method) the snowman’s data member aHat. Because the data member is no longer

null, lines 24–25 of Figure 7.24 position the aggregated hat centered and on top of the snowman’s

head at its current position, and line 26 draws the hat at that position.

1 import edu.sjcny.gpv1.*;

2 import java.awt.*;

3

4 public class Aggregation extends DrawableAdapter

5 { static Aggregation ge = new Aggregation();

6 static GameBoard gb = new GameBoard(ge, "Aggregation");

7 static Hat[] hats = new Hat[6];

8 static SnowmanV8 sm;

9

10 public static void main(String[] args)

11 {

12 hats[0] = new Hat(40, 100, Color.RED, 20, 17);

13 hats[1] = new Hat(120, 100, Color.ORANGE, 25, 21);

14 hats[2] = new Hat(200, 100, Color.YELLOW, 20, 17);

15 hats[3] = new Hat(280, 100, Color.GREEN, 40, 34);

16 hats[4] = new Hat(360, 100, Color.BLUE, 30, 25);

17 hats[5] = new Hat(440, 100, Color.MAGENTA, 35, 29);

18 sm = new SnowmanV8(250, 250);

19

20 showGameBoard(gb);

21 }

22

23 public void draw(Graphics g)

24 {

25 g.setColor(Color.BLACK); //the hat rack

26 g.fillRect(20, 95, 460, 5);

27 for(int i=0; i<hats.length; i++)

28 {

29 hats[i].show(g);

30 }

31 sm.show(g);

32 }

336 ■ Programming Fundamentals Using Java

33 public void keyStruck(char key) //call back method

34 {

35 int newX, newY;

36

37 switch (key) //to move the snowman

38 {

39 case 'L':

40 {

41 newX = sm.getX() - 2;

42 sm.setX(newX);

43 break;

44 }

45 case 'R':

46 {

47 newX = sm.getX() + 2;

48 sm.setX(newX);

49 break;

50 }

51 case 'U':

52 {

53 newY = sm.getY() - 2;

54 sm.setY(newY);

55 break;

56 }

57 case 'D':

58 {

59 newY = sm.getY() + 2;

60 sm.setY(newY);

61 }

62 }

63 //acquiring a new Hat

64 for(int i = 0; i<hats.length; i++)

65 {

66 if(sm.collidedWith(hats[i])) //a hat is chosen

67 {

68 sm.setHat(hats[i].clone()); //clone the hat and add it to sm

69 }

70 }

71 }

72 }

Figure 7.25

The application Aggregation.

 Chapter 7· Methods, Classes , and Objects : A Second Look ■ 337

7.8 7.8 INNER CLASSES INNER CLASSES

An inner class is a class defined inside another class. Just as classes can contain data mem-

bers and methods, they can contain other classes. The class that contains the inner class is called

the outer class. Normally, a class is defined as an inner class only if the outer class will aggregate

instances of the inner class. Consider the Hat class (Figure 7.23) discussed in the previous section.

Because both the class SnowmanV8 and the application Aggregation declared Hat objects, the

Hat class was not coded inside the SnowmanV8 class. Inner classes are most often used in Java

programs that use a Graphical User Interface (GUI), also called a point-and-click interface. In this

section, we will become familiar with the syntax of inner classes and the ability of the inner and

outer classes to access each other’s data members and methods.

 (a) (b)

 (c) (d)

Figure 7.26

Output generated by the application Aggregation.

338 ■ Programming Fundamentals Using Java

Figure 7.27 presents the class PhoneBook that contains an inner class PhoneNumbers, which

begins on line 28 and ends on line 48. Instances of the inner class contain a person’s office, cell,

and home phone numbers. These three strings are declared as aggregated data members of the in-

ner class on lines 30–32, and the class’s constructor assigns them input values (lines 36–40) when

a PhoneNumbers object is created. The class’s show method (lines 43–47) outputs the three phone

numbers to the system console.

1 import javax.swing.*;

2

3 public class PhoneBook

4 {

5 private String[] name;

6 private PhoneNumbers[] numbers;

7

8 public PhoneBook() //a phone book has three listings

9 {

10 name = new String[3];

11 numbers = new PhoneNumbers[3];

12

13 for(int i = 0; i < name.length; i++)

14 {

15 name[i] = JOptionPane.showInputDialog("enter your name");

16 numbers[i] = new PhoneNumbers(i);

17 }

18 }

19 public void showAll()

20 {

21 for(int i = 0; i < name.length; i++)

22 {

23 System.out.println("\nName: " + name[i]);

24 numbers[i].show();

25 }

26 }

27

28 private class PhoneNumbers //an inner class

29 {

30 private String home;

31 private String cell;

32 private String office;

33

34 public PhoneNumbers(int i)

35 {

36 home = JOptionPane.showInputDialog("enter " + name[i] +

37 "'s HOME number");

38 cell = JOptionPane.showInputDialog("enter " + name[i] +

39 "'s CELL number");

40 office = JOptionPane.showInputDialog("enter " + name[i] +

41 "'s OFFICE number");

 Chapter 7· Methods, Classes , and Objects : A Second Look ■ 339

42 }

43 public void show()

44 {

45 System.out.println("PhoneNumbers: home:" + home +

46 " cell:" + cell + " office:" + office);

47 }

48 } //end of the inner class Phonenumbers

49 }

Figure 7.27

The class PhoneBook and its inner class PhoneNumbers.

The outer class PhoneBook declares two parallel arrays each containing three elements on

lines 10 and 11 and assigns their addresses to the variables name and numbers, declared on lines

5 and 6. After creating the arrays, the for loop (lines 13–17) in the outer class’s constructor com-

pletes the aggregation of the String and PhoneNumbers objects into the outer class by creating

new instances of these classes and assigning their addresses to the elements of the parallel arrays

name and numbers (lines 15 and 16).

NOTE The code of an outer class can invoke a constructor in an inner class.

Each time the inner class’s constructor is invoked on line 16, it not only creates a new object,

but it also accepts input into the data members of the newly created object on lines 36–41. The

argument passed to this one-parameter constructor on line 16 is the loop variable declared on line

13. Lines 36, 38, and 40 of the constructor use this value to index into the outer class’s name array,

which causes the person’s name that was just input on line 10 to become part of the prompts output

by lines 36–41.

NOTE The code of an inner class can access the data members of its outer class.

The outer class’s showAll method (lines 19–26) outputs all of the names and numbers in the

two parallel arrays to the system console. Inside its for loop, line 23 outputs a person’s name, and

then line 24 invokes the inner class’s show method to output that person’s phone numbers.

NOTE The code of an outer class can invoke the methods in an inner class.

In general:

� the code of an inner and outer class can access each other’s members (both data mem-

bers and methods)

� an inner class is not visible outside of the outer class

The application InnerClass, shown in Figure 7.28, declares a PhoneBook object to store the

names and phone numbers of a person’s three best friends. Then, it invokes the class’s showAll

method to output the names and numbers input by the program user. Figure 7.29 shows two typical

first inputs and a typical console output produced by the program.

340 ■ Programming Fundamentals Using Java

1 public class InnerClass

2 {

3 public static void main(String[] args)

4 {

5 PhoneBook bestFriends = new PhoneBook();

6 bestFriends.showAll();

7 }

8 }

Figure 7.28

The application InnerClass.

 (a) (b)

Console Output:

Name: Alice

PhoneNumbers: home:657-2342 cell:574-8976 office:345-6589

Name: Tom

PhoneNumbers: home:367-4367 cell:754-3564 office:386-1212

Name: Annie

PhoneNumbers: home:456-4698 cell:765-8294 office:839-5623

Figure 7.29

Two typical inputs to the application InnerClass and a typical set of outputs.

 7.9 7.9 PROCESSING LARGE NUMBERS PROCESSING LARGE NUMBERS

Occasionally, there is a need to process an integer that is larger or smaller than the maximum

or minimum values that can be stored in the primitive type long. For example, the encryption used

on the Internet involves processing prime numbers that contain 309 digits, which far exceeds the

19-digit maximum value that can be stored in the primitive type long. Similarly, we might need

to process a real number that is larger or smaller than the maximum or minimum values of the

primitive type double or require more than the 15 digits of precision the type double provides.

The Java API contains two classes that can be used to process numbers that are too large or

too small to be stored in primitive types or that require more than 15 digits of precision; they are

the BigInteger and BigDecimal classes. As their names imply, they can be used to process

 Chapter 7· Methods, Classes , and Objects : A Second Look ■ 341

numbers beyond the range of the primitive integer and real types, and the BigDecimal can also

provide a specified number of digits of precision. Objects in these classes, like String and wrap-

per class objects, are immutable.

Processing of objects in these classes is performed by using the methods that are part of these

classes. For example, addition is performed by the method add, which adds the object that invoked

it to the object passed to its parameter and returns a reference to an object that contains their sum.

There are methods to perform all of the operations normally performed on primitive numeric

types, including modulo arithmetic, methods that are analogous to the Math class’s methods, and

methods to perform other common operations on numbers such as finding the greatest common

denominator, generating a prime number, and determining if a number is prime.

The BigInteger Class

Consider a program to generate a specified term of the Fibonacci sequence. The first two terms

of this sequence, f1 and f2, are both defined as 1. Any other term in the series is defined as the sum

of the two previous terms: fn = fn-2 + fn-1. From term 93 (f93) on, the values of the terms exceed

the size of the primitive type long.

The application FibonacciTerm, shown in Figure 7.30, demonstrates the use of some of the

constants and methods in the class BigInteger. The program calculates and outputs a specified

term (greater than 2) of the sequence and identifies those terms that are larger than the maximum

value of the primitive type long. A set of program inputs and corresponding outputs are shown in

Figure 7.31.

Line 1 of Figure 7.31 imports the class BigInteger into the program, and lines 10–12 create

three instances of the class. The first two are assigned the address of the class’s static object that

stores the value 1. There are two other static objects defined in the class, TEN and ZERO, which

store the values 10 and 0, respectively. Line 12 uses the class’s valueOf method that returns the

address of a BigInteger object set to the value passed to its parameter. In this case, the maximum

value of the primitive type long is passed to the method, which is a static constant in the wrapper

class Long.

The for loop that begins on line 16 computes the terms of the sequence from 3 to the number

input on line 14. Each time through the loop, the add method is used on line 19 to calculate the next

term of the sequence and the address of the object containing the value returned from the method

is assigned to the variable fn. Line 20 sets fnMinus1 to the previous value of fn.

When the loop ends, line 22 uses the class’s toString method to convert the calculated value

stored in the object fn to a string before it is output. The conversion could have been coded as an

implicit invocation of the toString method:

 System.out.println("f" + n + " = " + fn);

Finally, the BigInteger class’s compareTo method is used in the Boolean condition on line 23 to

determine if the calculated term of the sequence is larger than the maximum value of a long type

primitive. The integer value the method returns is interpreted in the same way as the integer value

retuned from the String class’s compareTo method.

342 ■ Programming Fundamentals Using Java

1 import java.math.BigInteger;

2 import javax.swing.*;

3

4 public class FibonacciTerm

5 {

6 public static void main(String[] args)

7 {

8 int n;

9 BigInteger temp;

10 BigInteger fnMinus1 = BigInteger.ONE;

11 BigInteger fn = BigInteger.ONE;

12 BigInteger longMaxValue = BigInteger.valueOf(Long.MAX_VALUE);

13

14 String s = JOptionPane.showInputDialog("enter the term number");

15 n = Integer.parseInt(s);

16 for(int i = 3; i <= n; i++)

17 {

18 temp = fn;

19 fn = fnMinus1.add(fn);

20 fnMinus1 = temp;

21 }

22 System.out.println("f" + n + " = " + fn.toString());

23 if(fn.compareTo(longMaxValue) > 0)

24 {

25 System.out.println("Which EXCEEDS the maximum value of " +

26 "type long");

27 }

28 else

29 {

30 System.out.println("Which does NOT exceed the maximum value of " +

31 "type long");

32 }

33 }
34 }

Figure 7.30

The application FibonacciTerm.

Inputs to Three Executions of the Program:

92

93

300

Corresponding Outputs:

f92 = 7540113804746346429

Which does NOT exceed the maximum value of type long

 Chapter 7· Methods, Classes , and Objects : A Second Look ■ 343

f93 = 12200160415121876738

Which EXCEEDS the maximum value of type long

f300 = 222232244629420445529739893461909967206666939096499764990979600

Which EXCEEDS the maximum value of type long

Figure 7.31

Sample inputs to the application FibonacciTerm and the corresponding outputs they produce.

The BigDecimal Class

As previously mentioned, the BigDecimal class can be used to represent real values to a

specified precision. The code fragment shown in Figure 7.32 computes and rounds up the number

176 divided by 7 to a precision of 19, 18, 17, and 16 digits. The resulting BigDecimal object, re-

turned from the three-parameter version of the class’s divide method, is output at the bottom of

the figure using an implicit invocation of the BigInteger class’s toString method. The divide

method divides the object that invoked it by the first argument sent to it.

The second argument sent to the divide method specifies the precision of the computed value.

The third argument specifies the rounding mode used to determine the rightmost digit of preci-

sion. This can either be an integer or a constant defined in the class RoundingMode. The class’s

constant HALF_UP, used in Figure 7.32, is used to perform the conventional upward rounding.

 BigDecimal one76 = BigDecimal.valueOf(176);

 BigDecimal seven = BigDecimal.valueOf(7);

 System.out.println(one76.divide(seven, 19, RoundingMode.HALF_UP));

 System.out.println(one76.divide(seven, 18, RoundingMode.HALF_UP));

 System.out.println(one76.divide(seven, 17, RoundingMode.HALF_UP));

 System.out.println(one76.divide(seven, 16, RoundingMode.HALF_UP));

Output:

25.1428571428571428571

25.142857142857142857

25.14285714285714286

25.1428571428571429

Figure 7.32

Use of the BigDecimal class’s divide method.

 7.10 7.10 ENUMERATED TYPES ENUMERATED TYPES

Enumeration is the process of defining a new type and specifying, or enumerating, a finite set

of values that instances of the type can assume. The use of enumeration can make our programs

more readable. Java supports enumerated types. The following enumeration statement defines the

344 ■ Programming Fundamentals Using Java

enumerated type Team and specifies that there are three values in its set of values: Yankees,

Braves, and Giants.

 // Declaration of an enumerated type

 enum Team {Yankees, Braves, Giants}

An enumeration statement is coded at the class level; it cannot be coded inside (local to) a

method. The values that appear in the statement can be any valid identifier, which implies that they

cannot be strings or primitive literals. The following declarations are invalid:

 // Invalid enumeration statements: values not identifier names

 enum Team {"Yankees", "Braves", "Giants"} //can’t contain quotes

 enum ID {NY Yankees, Atlanta Braves, SF Giants} //spaces not allowed

An enumeration statement can also be written in a separate Java file whose name is the same

as the statement’s enumerated type name; e.g., Team.

At an abstract level, the identifiers can be thought of as static constants in a class whose

name is the enumerated type name (e.g., Team) and whose values are the identifier names. In

this abstract view, the enumerated values are analogous to the static double constant PI in the

Math class whose value is the double 3.141592653589793. The following code fragment outputs

3.141592653589793 Yankees to the system console:

 // Accessing the values of enumerated types

 enum Team {Yankees, Braves, Giants}

 System.out.println(Math.PI + " " + Team.Yankees);

Continuing the analogy, just as the numeric constant Math.PI can be assigned to a variable of

its type (i.e., double), an enumerated constant can be assigned to a variable of its type (e.g. Team).

The following code fragment also outputs 3.141592653589793 Yankees to the system console:

 // Assigning an enumerated type value

 enum Team {Yankees, Braves, Giants}

 Team myTeam = Team.Yankees;

 double valueOfPi = Math.PI;

 System.out.println(valueOfPi + " " + myTeam);

For the most part, considering the identifiers in an enumeration statement to be analogous to

static constants is consistent with the Java syntax of enumerations. An exception to this is when an

enumerated type variable is used in a switch statement after the keyword switch. In this context,

the enumerated type name is not used to qualify the identifier coded as the choice value after the

keyword case. In the code fragment shown in Figure 7.33, when an enumerated value such as Yan-

kees is used within the switch statement, the type name Team is not used to qualify the identifier,

as shown on line 6. When the identifier is used in other statements (e.g., line 7 of Figure 7.33), the

type qualifier is used.

 Chapter 7· Methods, Classes , and Objects : A Second Look ■ 345

 // Using enumerated types in switch statements

1 enum Team {Yankees, Braves, Giants}

2

3 Team myTeam = Team.Yankees;

4 switch (myTeam)

5 {

6 case Yankees: // no type name qualifier used here

7 System.out.println(myTeam + " " + Team.Yankees);

8 }

Figure 7.33

Syntax of enumerated types in a switch statement.

The API interface Enum defines a set of methods that implement operations commonly per-

formed on enumerated types. When discussing them, it useful to move away from the abstract

view of an enumeration’s identifiers being static constants to a more concrete view of them. While

it is true that the enumerated type is a class, it is a special kind of class. In addition, the identifiers

are not static constants in the class, but rather each identifier is a static reference variable that refers

to an instance of the class.

As such, like static constants, we access the contents of these reference variables by the name

of the identifier proceed by the name of the class followed by a dot (just as we have been doing).

Figure 7.34 shows the three objects created by the enumeration shown below, the variables that ref-

erence them, and the contents of the variable myTeam after the assignment statement is executed:

// Shallow copy of an enumerated object

enum Team {Yankees, Braves, Giants}

Team myTeam = Team.Yankees; //Shallow copy

Yankees

0

Braves

1

100 200 300

100

Team.Yankees

myTeam

Team.Braves

100 2 00 3 00

Team.Giants

Giants

2

Figure 7.34

Three objects of the enumeration Team.

As shown in Figure 7.34, each object has an ordinal value associated with it, which always

begins with zero. The values are assigned sequentially to the identifiers in the order (left to right)

in which they appear in the enumeration statement. The Enum class’s method ordinal returns

the ordinal value assigned to the object that invoked it. The code fragment below outputs 1 to the

system console.

346 ■ Programming Fundamentals Using Java

 // Invocations of the Team class’ ordinal method

 enum Team {Yankees, Braves, Giants}

 Team myTeam = Team.Braves

 System.out.println(myTeam.ordinal());

The ordinal method can also be used with an enumerated type object in the same way any

other method is used with an instance of its class. For example, the statement

 System.out.println ("The ordinal value of " + Team.Giants +

 " is " + Team.Giants.ordinal());

results in the console output The ordinal value of Giants is 2 .

NOTE The ordinal values of an enumerated type always begin with zero.

The methods in the class Enum, four of which are shown in Table 7.3, operate on an enumerated

type’s objects. The class’s toString method returns the name of the object’s identifier converted

to a string. The code fragment below outputs Yankees Yankees using an explicit and implicit invo-

cation of the method:

 // Invocations of the Enum class’s toString method

 enum Team {Yankees, Braves, Giants}

 Team myTeam = Team.Yankees

 System.out.println(Team.Yankees.toString() + " " + myTeam.Yankees);

The Enum class’s compareTo method is an implementation of the method defined in the inter-

face Comparable. The comparison it makes is based on the ordinal values associated with the ob-

ject that invoked the method and the argument passed to it. The following code fragment outputs -2

because the identifier Yankees’ ordinal value (0) is two less than the identifier Giants’ value (2).

Table 7.3

Commonly Used Methods in the Class Enum

Method Name and

Parameter List

Returned

Type
Description

compareTo(EnumType enum2) int diff = enum1.compareTo(enum2)

Returns the difference between the ordinal values of

enum1 and enum2, positive for

 emum1 > enum2

equals(EnumType enum2) boolean equal = enum1.equals(enum2)

Returns true when the ordinal values of enum1 and

enum2 are equal, otherwise false

ordinal() int value = enum1.ordinal()

Returns the ordinal values of enum1

toString() String value = enum1.toString()

Returns the value of enum1

 Chapter 7· Methods, Classes , and Objects : A Second Look ■ 347

 // Invocations of the Team class’ compareTo method

 enum Team {Yankees, Braves, Giants}

 Team myTeam = Team.Yankees

 System.out.println(myTeam.compareTo(Team.Giants));

The Enum class’s method equals returns true when the object that invoked it has the same

ordinal value as the object passed to its parameter.

 7.117.11 CHAPTER SUMMARY CHAPTER SUMMARY

Java classes consist of data members and methods that operate on the data, and an object is

an instance of a class. When a data member is declared to be static, all instances of the class share

the variable. Often, a static variable is incremented inside a class’s constructor to keep track of the

number of objects that have been created.

It is good programming practice to write a complicated method as several simpler methods that

it can invoke. Usually, the simpler methods are given private access to prevent methods that are

not part of the class from invoking them. Methods can invoke private methods that are part of their

class by simply coding the method’s name and an argument list.

The object addresses stored in two reference variables can be compared using the relational

operators, and they can be copied using the assignment operator. These are referred to as a shallow

comparison and a shallow copy, respectively. After a shallow copy, two reference variables refer to

the same object. To compare or copy objects, we first need to define which of their data members

will be compared or which will be copied. Comparing and copying the data members of two ob-

jects is referred to as deep comparisons and deep copies. In both cases, a method has to be written

to perform these operations.

Deep comparison methods return a Boolean value, and it is good programming practice for

the methods to be named compareTo, as defined in the API interface Comparable, or named

equals when the comparison is performed to determine equality. The String class contains

deep comparison methods with these names. Deep copy methods either copy all of the data mem-

bers from one object to another or copy all of the data members into a newly created object called

a clone and return the address of the clone object. The names of deep copy methods ordinarily

contain the word “copy,” such as the arraycopy method in the System class, and clone methods

are usually named clone.

In addition to deep comparison methods, the String class contains methods to perform com-

mon operations on String objects. These include locating and fetching substrings (the methods

indexOf and substring), changing the case of a string (toUpperCase and toLowerCase),

replacing a part of a string with another string (replaceFirst and replaceAll), and determin-

ing if a string begins or ends with a particular string (startsWith and endsWith). In addition,

its split method can be used to place substrings of a string separated by a designated delimiter,

usually white space, into the elements of the array it creates and returns. The substrings are called

tokens, and the process is called tokenizing the string.

348 ■ Programming Fundamentals Using Java

Autoboxing is the automatic construction of a wrapper class object without having to explic-

itly invoke the class’ constructor, and auto-unboxing is the process of fetching the primitive value

stored in a wrapper class object without having to invoke a get method. This feature can be used

to pass a primitive value to a wrapper-class parameter or to assign a retuned wrapper class object to

a primitive variable. The Character wrapper class contains a variety of methods used to process

characters such as determining if a character is a letter or a digit, if it is lower or upper case, or if

it is white space. The numeric wrapper classes contain static constants whose values are the maxi-

mum and minimum numeric values that they can wrap. The methods in the classes BigInteger

and BigDecimal give us the ability to process numbers whose absolute value is too large to be

stored in primitive types or that require more than 15 digits of precision. Objects in these classes,

like String and wrapper class objects, are immutable.

Aggregation is the process of declaring a data member of a class to be a reference to an object.

This permits us to define a complex object as an aggregate of simpler component objects, extend-

ing the concepts of reusable code and divide and conquer to the design of classes. A class, called

an inner class, can also be defined within another class called an outer class. The inner class can

access the data members defined in the outer class and vice versa. The outer class can create in-

stances of the inner class and invoke its methods. Enumeration is the process of defining a type and

specifying, or enumerating, the values that instances of the type can assume. The use of enumera-

tion can make our programs more readable.

Knowledge ExercisesKnowledge Exercises

1. True or false:

 a) Static data members allow one storage cell to be shared among all instances of their class.

 b) A method cannot invoke another method in its class.

 c) Methods that are declared private can be invoked by other methods within their own

class.

 d) A deep comparison determines if two reference variables refer to the same object.

 e) To make a clone of an object, we make a shallow copy of it.

 f) The variables s1 and s2 refer to two different objects. After I make a shallow copy of s2

into s1, I have two identical objects.

 g) Autoboxing constructs a wrapper class object without explicitly invoking the class’s

constructor.

 h) An outer class can invoke the methods of its inner class.

 2. Consider the class Student shown in Figure 7.4.

 a) Why is its data member studentCount declared to be static?

 b) Why is the class’s get method declared to be a static method?

 c) Write the statement to output the variable studentCount to the system console.

 d) Why does the class not contain a public method named setSudentCount?

 3. Explain the difference between a deep and a shallow comparison.

 Chapter 7· Methods, Classes , and Objects : A Second Look ■ 349

 4. Explain the difference between a deep and a shallow copy.

 5. Explain the difference between a deep copy and a clone.

 6. How does the method equals in the API Object class differ from the equals method in the

String class?

 7. Write a code fragment to output Two Objects to the system console if the variable s1 and s2

refer to two different objects.

 8. Write a method that could be added to the class Student, shown in Figure 7.5, which would

clone the Student object that invoked it.

 9. What is output by these statements, assuming the following declarations have been made:

 String s1 = "Computers rock"; String s2 = "Hello world";

 a) System.out.println(s2.indexOf("world"));

 b) System.out.println(s1.substring(10));

 c) System.out.println(s2.replaceFirst("world", "everyone"));

 d) System.out.println(s2.starts("world"));

 e) String[] s = s2.split();

 System.out.println(s[1]);

 f) if(s1.equalsIgnoreCase("Computers Rock")

 {

 System.out.print("True - these are the same.");

 }

 else

 {

 System.out.print("False - they are not the same.");

 }

 10. Give the code to:

 (a) create an instance of the wrapper class Integer that contains the value 20 without

explicitly invoking the class’s constructor

 (b) set the integer variable age to the value stored in the Integer instance number

 (c) output the maximum and minimum values that can be stored in a primitive variable

declared to be type long to the system console

 (d) output true to the system console if the character contained in the variable aCharacter

is white space or a digit

 11. Define aggregation in the context of a Java class.

 12. Give three advantages of using aggregation in the classes we design.

 13. How would you represent an integer in your program that was larger than the maximum value

of the primitive type long?

 14. How would you input an integer to your program that was larger than the maximum value of

the primitive type long?

350 ■ Programming Fundamentals Using Java

 15. How would you double the integer discussed in Exercise 13?

 16. Give the code to define two BigInteger objects initialized to 1,234,567,890,123,456 and

9,876,543,210,654,321, multiply the numbers, and output the result.

 17. Assume an enumerated type CarColor has been declared as:

 enum CarColor {RED, WHITE, SILVER, BLACK, BLUE}

 a) What is the ordinal value of SILVER?

 b) Write a statement to create a variable, favoriteColor, of type CarColor and set it to

BLUE.

 c) Write a statement to output the favoriteColor and its ordinal value to the system

console.

Programming ExercisesProgramming Exercises

 1. Add a deep comparison method and a clone method to the class shown in Figure 7.4. The

deep comparison method should return 0 when two instances of the class are equal (i.e., both

objects’ id numbers and GPA are equal). Then write an application that declares an instance of

the class named s1 and two other instances named s2 and s3. The object s2 should have the

same id as s1, and s2 should have the same GPA as s1. Output the three objects to the system

console followed by s1 equals s2 or s1 equals s3, as determined by two invocations of the deep

comparison method. Then clone s1, store the returned address in s2, and repeat all of the

output.

 2. Write a program that accepts an arithmetic expression that does not contain parentheses and

verifies that is correctly written. It is correctly written if each of the operators in the expression

is between two operands preceded and followed by a space: for example 2 * 3 + 5. Output a

correct expression to the system console. Otherwise, output the expression up to the point were

the first error was detected, then a caret (Shift 6 key stroke), and then the remainder of the math

expression. The second line of output, in both cases, should be the number of tokens (operators

and operands) that were in the original expression. (Use the split method in the String

class.)

 3. Modify the class PhoneBook shown in Figure 7.27 so each of the three listings in a PhoneBook

instance will also have an address consisting of a street, city, state, and zip code. To accomplish

this, add another inner class named Address to the class Phonebook. The new information

should be input in a similar way to that of the phone numbers. To verify your modifications to

the class, write an application that declares an instance of a PhoneBook, accepts user inputs,

then outputs the entire phonebook.

 4. Write a program that calculates and outputs the sum of the integers from 1 to 10,000,000,000. Hint:

the sum is (10,000,000,000 * 10,000,000,001) / 2, which is not equal to 3,883,139,820,726,120,960.

 5. Write a program to multiply two real numbers of any size input via a dialog box and output

their product with seven digits of precision, rounded up.

 Chapter 7· Methods, Classes , and Objects : A Second Look ■ 351

EnrichmentEnrichment

 1. Investigate and learn who was the first to discover that the sum of the integers from 1 to n is

(n * (n +1)) /2 and the circumstances under which he discovered it.

 2. Explore the Fibonacci sequence to discover its presence in art, architecture, music, and nature

and investigate the relationship of the Fibonacci sequence to the Golden ratio.

 3. Research the Fibonacci searching algorithm.

■ ■ ■ ■ ■

In this chapter

In this chapter, we expand our knowledge of object oriented programming into the advanced

topics of inheritance, polymorphism, interfaces and adapter classes, and the serialization of

objects. These OOP concepts can significantly reduce the time and effort required to design

and develop a software product.

We will learn that Java supports two forms of inheritance, chain inheritance and multiple child

inheritance. Both of these allow us to rapidly create a class from a similar existing class and to easily

expand and/or modify the new class to adapt it to the requirements of a particular project. When used

as a design tool, inheritance not only reduces the cost of a software product under development, but

it also reduces the cost of future products by increasing the reusability of the classes we write. Using

inheritance, application-dependent parts of a method can be written in a way that they can invoke

methods that implement the yet-to-be-determined requirements of future products.

Polymorphism is another fundamental characteristic of OOP, which allows things to exist in many

(“poly”) different forms (“morph”), such as when one array references many different types of objects

or when one invocation morphs itself into an invocation of a method appropriate to a particular launch

of a program. Polymorphism also allows us to pass different types of objects to one type of parameter.

Interfaces allow us to define the signature and functionality of related methods without having to

implement them, and adaptor classes facilitate the use of interfaces. Using object serialization, we can

easily save a collection of objects to a disk file and reuse the objects in a future launch of the same or

different program.

8CHAPTERCHAPTER

8.1 The Concept of Inheritance .354

8.2 The UML Diagrams and Language of Inheritance . . . 355

8.3 Implementing Inheritance . 357

8.4 Using Inheritance in the Design Process 372

8.5 Polymorphism. .385

8.6 Interfaces. .398

8.7 Serializing Objects .406

8.8 Chapter Summary . 411

INHERITANCEINHERITANCE

354 ■ Programming Fundamentals Using Java

After successfully completing this chapter you should:

� Understand the advantages, terminology, syntax, and importance of using inheritance

� Know how to implement a child class that inherits data members and methods from an

existing parent class using the extends clause

� Be able to invoke and modify an inherited method and expand inherited methods and

data members

� Be able to distinguish between overriding and overloading methods

� Know how to use inheritance as part of the design process

� Understand the processes that Java uses to locate a method at translation and run time

� Be able to comprehend and use polymorphism and polymorphic arrays

� Understand abstract classes, interfaces, and adapter classes and how to implement and

use them

� Write and read a group of objects to and from a disk file

 8.1 8.1 THE CONCEPT OF INHERITANCE THE CONCEPT OF INHERITANCE

Definition

Inheritance is an OPP programming concept in which new classes that contain all of the data

members and methods of an existing class can be efficiently created and then expanded and/

or modified. The concept of inheritance implies that two classes have a relationship with each

other in which one class, called a child class, inherits attributes from the other class, called the

parent class.

The concept of inheritance is fundamental to object oriented programming. If properly used,

it can greatly reduce the time and effort required to develop a software product. For example, sup-

pose that one of the classes specified during the design of a new program is similar to an existing

class in that the existing class contains many of the data members and methods listed in the new

class’s UML diagram. The best way to develop the new class would be to simply add the existing

class to the program and modify and/or add to it. One approach to this would be to copy the source

code of the existing class, paste the code into a new class, and then modify the copied code. A bet-

ter approach would be to use the concept of inheritance.

Although we may have been importing the existing class into our programs for many years, we

may not have its source code. For example, the Java API does not contain the source code of any

of the classes included in it. Rather, it contains the classes’ translated byte codes. This fact would

eliminate the copy and paste alternative but not the inheritance alternative. To use the concept of

inheritance, we only need the byte codes of the existing class. In addition, software engineering

studies reveal that copying, pasting, and modifying code that we did not write can be more time

consuming than a completely independent development of a new class. Inheritance allows us to

modify an existing class that was added to a new program in a way that does not introduce the er-

rors that are associated with the copy-paste-modify alternative.

 Chapter 8· Inheri tance ■ 355

Even if there are no existing classes that contain many of the data members and methods of the

classes specified for a new program, the time and cost to develop the program can still be reduced

using the concept of inheritance during the design process. Finally, the use of inheritance in the

design of our programs also makes them easier to read and intuitively easier to understand because

the classes we write better model the real world. Because we know that children inherit attributes

from their parents, it is intuitive that a game’s new ChildSuperHero class would inherit attributes

from an existing game’s ParentSuperHero class. The attributes inherited by the ChildSuper-

Hero class would be the data members and the methods of the ParentSuperHero class, which

could then be efficiently expanded or modified to model the child super hero.

In summary:

� Inheritance reduces the cost and time to develop a software product

� Inheritance is the best way to incorporate and then morph an existing class into a new

class

� We do not need the source code of the existing class, only its byte code translation, to

utilize the concepts of inheritance

� Inheritance is used in the OOP program-design process even when there are no existing

classes to be morphed and incorporated into the program

 8.2 8.2 THE UML DIAGRAMS AND LANGUAGE OF INHERITANCE THE UML DIAGRAMS AND LANGUAGE OF INHERITANCE

Inheritance introduces a new feature into UML diagrams and has a set of terms associated

with it. An early understanding of this feature and the jargon of inheritance is fundamental to the

remainder of the material in this chapter.

Inheritance UML Diagrams

Figure 8.1 shows the UML diagram of the classes RowBoat and SailBoat. The RowBoat

class’s UML diagram contains five data members and twelve methods, and the UML diagram

of the SailBoat contains no data members and one constructor method. Instances of the class

SailBoat will actually contain more data members and methods than those listed in the class’s

UML diagram because the upward-pointing arrow in the center of the figure indicates that the

SailBoat class inherits from the RowBoat class. As noted next to the arrow in the figure, the Java

keyword used to establish this relationship is extends.

The Parent-Child Relationship

The concept of inheritance implies that two classes have a relationship with each other in

which one class, called a child class, inherits attributes from the other class, called the parent class.

The attributes inherited are all of the data members and all of the methods of the parent class except

for the parent class’s constructors. As indicated on the left side of Figure 8.1, there are two other

pairs of terms that are used in the literature to refer to the parent and child class. The parent class

is sometimes called the super class, and then the child class is called the subclass. Alternately, the

term base class can be substituted for parent class, in which case the child class is referred to as a

356 ■ Programming Fundamentals Using Java

derived class. These three pairs of terms: parent class-child class, super class-sub class, and base

class-derived class should not be unpaired and intermixed.

Because a child class inherits all of the data members and methods of the parent class and con-

tains all of the data members and methods specified in its own UML diagram, a child class’s data

members and methods add to, or extend, a parent class. As specified in Figure 8.1, all instances of

the classes SailBoat and RowBoat will have five data members, but the SailBoat class extends

the complement of methods that can operate on a SailBoat object from 12 to 13.

NOTE
Inheritance does not work in reverse. Parents do not inherit the data members and

methods added to the child class.

Establishing the Parent-Child Relationship

When a child class is implemented, the parent-child relationship is established by the inclusion

of an extends clause on the right side of the class’s heading. This clause begins with the keyword

extends followed by the name of the parent class. For example:

+ SailBoat(x: int, y: int, length: int,

 color: Color)

RowBoat

+ RowBoat()

+ RowBoat(x: int, y: int, length: int)

+ calculatePrice(): int

+ show(g: Graphics)

+ getX(): int

+ getY(): int

+ getLength(): int

+ getColor(): Color

+ setX(x: int)

+ setY(y: int)

+ setLength(length: int)

+ setColor(colorw: Color)

extenSds

RowBoat is called the

parent class,or

super class, or

base class

Inherits from

- pricePerFoot: int

- x: int

- y: int

- length : int

- color: Color

SailBoat

SailBoat is called the

child class,or

sub class, or

derived class

Figure 8.1

The class RowBoat and the class SailBoat.

 Chapter 8· Inheri tance ■ 357

 public class SailBoat extends RowBoat

NOTE

To establish an inheritance relationship, an extends clause is included at the end

of the class statement of the child class:

public class ChildClassName extends ParentClassName

Forms of Inheritance

A class can only extend or inherit from one class. In chain inheritance a child class can be the

parent of another class. This is supported in Java, as is the ability for several child classes to inherit

from the same parent class. These two forms of inheritance are illustrated in the upper-left and

upper-right portions of Figure 8.2, respectively.

Multiple inheritance, the concept that a child class can inherit attributes from more than one par-

ent, is not supported in Java. Multiple inheritance is depicted in the lower-right portion of Figure 8.2.

We say that class B on the top left side of Figure 8.2 directly inherits from class A, as do classes

B, C, and D at the top right side of the figure. A class that directly inherits from another class ex-

tends it by including an extends clause in its heading. We say that classes C and D on the top

left side of Figure 8.2 indirectly inherit from class A because they either inherit from a class that

directly inherits from class A (in C’s case) or directly inherit from a class that indirectly inherit

from class A (in D’s case).

Chain inheritance is

supported in Java

Class A

Class B

Class C

Class D

Class A

Class B Class D Class C

Multiple children are

supported in Java

Class D

Class A Class C Class B

Multiple inheritance Is

not supported in Java

Figure 8.2

Various forms of inheritance.

 8.3 8.3 IMPLEMENTING INHERITANCE IMPLEMENTING INHERITANCE

In addition to the keyword extends, which is used to indicate that a child class inherits from

a parent class, there are other keywords and concepts that are associated with inheritance. Most

358 ■ Programming Fundamentals Using Java

of these are used in the implementation of a child class, but an understanding of some of these

keywords, such as final and abstract, and the concepts associated with them, apply to the

implementation of a parent class. In the remainder of this section, we will discuss the keywords

and concepts of inheritance that apply to the implementation of a child class; we will discuss the

relevant parent class issues in Section 8.4.

Figure 8.3 presents the code of the class RowBoat specified in the top portion of Figure 8.1.

The class does not utilize any of the concepts of inheritance presented in this chapter. Neverthe-

less, it can become a parent class if another class extends it. This class will be the parent of child

classes used in parts of this chapter to demonstrate the basic of concepts inheritance and the use of

the keywords associated with these concepts.

1 import java.awt.*;

2 public class RowBoat

3 {

4 private static int PRICE_PER_FOOT = 10;

5 private int x, y, length;

6 private Color color = Color.GREEN;

7

8 public RowBoat()

9 {

10

11 }

12 public RowBoat(int x, int y, int length)

13 {

14 this.x = x;

15 this.y = y;

16 this.length = length;

17 }

18 public int calculatePrice()

19 {

20 return length * PRICE_PER_FOOT;

21 }

22 public void show(Graphics g)

23 {

24 int[] xBoat = {x , x + length, x + 6 * length/7, x + length/14};

25 int[] yBoat = {y, y, y + length / 7, y + length / 7};

26 int price = calculatePrice();

27 g.setColor(color); //draw the Boat

28 g.fillPolygon(xBoat, yBoat, xBoat.length);

29 g.setColor(Color.BLACK); //draw the boat’s price in black

30 g.setFont(new Font("Arial", Font.BOLD, 16));

31 g.drawString("$" + String.valueOf(price), x + 10, y + 16);

32 }

33 public int getX()

34 {

35 return x;

 Chapter 8· Inheri tance ■ 359

36 }

37 public int getY()

38 {

39 return y;

40 }

41 public int getLength()

42 {

43 return length;

44 }

45 public Color getColor()

46 {

47 return color;

48 }

49 public void setX(int x)

50 {

51 this.x = x;

52 }

53 public void setY(int y)

54 {

55 this.y = y;

56 }

57 public void setLength(int length)

58 {

59 this.length = length;

60 }

61 public void setColor(Color color)

62 {

63 this.color = color;

64 }

65 }

Figure 8.3

The class RowBoat.

The RowBoat class’s three-parameter constructor (lines 12–17 of Figure 8.3) can be used to

create and position a rowboat on the game board at the (x, y) location passed to its first two pa-

rameters. The value passed to the constructor’s third parameter is the size (length) of the rowboat.

The x, y, and length data members of a rowboat created with the class’s default constructor (lines

8–11) would retain the default value of the type int: 0. Because the constructor does not include

a parameter to specify the color of the boat, it would default to green (line 6).

The show method (lines 22–32) draws a rowboat on the game board at its current (x, y) location

and then draws the price of the boat on it (lines 29–31). The price is returned from the invocation

of the class’s calculatePrice method on line 26. Line 20 of this method multiplies the length of

the boat by the static variable PRICE _ PER _ FOOT to determine the price of the boat.

The application ShowTwoRowBoats shown in Figure 8.4 creates two rowboats of lengths 200

and 150 feet (lines 7-8) and displays them on the game board (lines 16-17) as shown in Figure 8.5.

360 ■ Programming Fundamentals Using Java

1 import edu.sjcny.gpv1.*;

2 import java.awt.*;

3

4 public class ShowTwoRowBoats extends DrawableAdapter

5 { static ShowTwoRowBoats ge = new ShowTwoRowBoats();

6 static GameBoard gb = new GameBoard(ge, "Show Two Row Boats");

7 static RowBoat rb1 = new RowBoat(30, 150, 200);

8 static RowBoat rb2 = new RowBoat(30, 250, 150);

9

10 public static void main(String[] args)

11 {

12 showGameBoard(gb);

13 }

14 public void draw(Graphics g)

15 {

16 rb1.show(g);

17 rb2.show(g);

18 }
19 }

Figure 8.4

The application ShowTwoRowBoats.

Figure 8.5

The output produced by the application ShowTwoRowBoats.

 8.3.18.3.1 Constructors and Inherited Method Invocations Constructors and Inherited Method Invocations

The class SailBoat is specified in the bottom portion of Figure 8.1. Sailboats use rowboats

for their hull and are delivered without a mast and sail. As delivered, they actually are rowboats,

except for the fact that the purchaser can specify the color of the boat. Because they are so similar

to rowboats, we can utilize the concept of inheritance to rapidly develop their class.

 Chapter 8· Inheri tance ■ 361

To begin with, they will inherit all of a rowboat’s attributes as indicated by the arrow that con-

nects them to the class RowBoat in Figure 8.1. This will save the time and cost associated with de-

claring a sailboat’s five data members, writing and verifying the associated set and get methods,

and writing and verifying the methods to draw them and to calculate their price.

To implement the expanding capability into the SailBoat class, the ability to specify the color

of the boat when it is purchased, a four-parameter constructor is included in the SailBoat class.

When a sailboat is constructed, the color of the new boat will be passed to the constructor’s fourth

parameter.

Figure 8.6 presents the code for the class SailBoat. Because we are using inheritance by

including the extends clause at the end of its heading (line 3), the class consists of only ten lines

of code. A sailboat’s location, price per foot, length, and color can be stored in its inherited data

members. In addition, the values stored in the data members can be fetched and set, the sailboat’s

price can be calculated, and the boat can be drawn on the game board using the methods inherited

from the RowBoat class.

Invoking A Parent Class Constructor

Parent class constructors are not inherited, but they can be invoked within the code of a child

class’s constructor. The SailBoat class’s constructor (lines 5–9 of Figure 8.6) invokes the par-

ent class’s constructor on line 7 and passes it the (x, y) location of the sailboat and its length. The

invocation begins with the keyword super, rather than the name of the parent (also known as

super) class, followed by an argument list. This is the syntax a child class uses to invoke a parent

class constructor. Lines 14–16 of Figure 8.3 then execute and place the values passed to it into the

SailBoat object’s inherited data members x, y, and length.

NOTE
When a child class constructor invokes a parent class constructor, the invocation

statement must be coded as the first line of the child class constructor.

Every time a child class constructor is executed, a parent constructor must be executed before

the remainder of the child class’s constructor is executed. If an explicit invocation, such as the one

on line 7 of Figure 8.6, is not included as the first line of a child class constructor, the parent’s no-

parameter constructor is automatically executed. In this case, the parent class must:

 1. contain the code of a no-parameter constructor

 2. contain no constructors at all, in which case the Java default constructor will be executed

If one of these two conditions is not met, and the first line of the child class is not an explicit invoca-

tion of a parent constructor, the child class will not translate.

Invoking a Parent Class Method

A child class method can invoke any parent method whose access is designated public or

whose access is designated protected. We will discuss protected access, its use, and its implications

later in this chapter.

362 ■ Programming Fundamentals Using Java

Because the RowBoat class does not contain a four-parameter constructor, line 8 of Figure 8.6

invokes the method setColor to store the color of the new sailboat that was passed to the con-

structor on line 3. If the SailBoat class contained a setColor method, it would have executed.

Because it does not, we move up the inheritance chain to the parent class. The parent class does

contain a public setColor method (lines 61–64 of Figure 8.3), and the invocation on line 8 causes

it to execute.

1 import java.awt.*;

2

3 public class SailBoat extends RowBoat

4 {

5 public SailBoat(int x, int y, int length, Color color)

6 {

7 super(x, y, length); //invoke parent constructor

8 setColor(color); //access parent’s protected data method

9 }

10 }

Figure 8.6

The class SailBoat.

An alternate and equivalent coding for line 8 of Figure 8.6 would be:

 this.setColor(color);

Because all of the RowBoat class’s set methods are public, line 7 of Figure 8.6 could have been

coded as the following three lines. The one-line alternative shown in the figure is preferred.

 setX(x); //or this.setX(x);

 setY(y); //or this.setY(y);

 setLength(length); //or this.setLength(length);

NOTE
The syntax used to invoke a parent method from within a child method is the same

syntax (that was discussed in Chapter 7) used to invoke another method in its class.

The application InheritanceBasics presented in Figure 8.7 creates two rowboats and a

cyan-colored sailboat and then displays them on the left and right sides of the game board, respec-

tively. The program’s output is shown in Figure 8.8

The show method is invoked on line 20 of Figure 8.7 to display the sailboat whose location, size,

and color is specified on line 9. Because a SailBoat object (sb1) invoked the method, the search for

the method begins in the SailBoat class just as it does for classes that do not extend other classes. If

the SailBoat class contained a show method with a graphics parameter, it would have been execut-

ed. Because it does not, we move up the inheritance chain to the parent class RowBoat. It contains a

public show method with a graphics parameter (line 22 of Figure 8.3), and the invocation on line 20

causes it to execute. The inherited show method draws the sailboat object sb1.

Line 26 of the inherited show method invokes the method calculatePrice. The search for

this method also begins in the SailBoat class because the show method that issued the invocation

 Chapter 8· Inheri tance ■ 363

is operating on an instance of this class, sb1. Because the SailBoat class does not contain a cal-

culatePrice method, the search continues up the inheritance chain, and RowBoat class’s version

of the method executes.

1 import edu.sjcny.gpv1.*;

2 import java.awt.*;

3

4 public class InheritanceBasics extends DrawableAdapter

5 { static InheritanceBasics ge = new InheritanceBasics();

6 static GameBoard gb = new GameBoard(ge, "Inheritance Basics");

7 static RowBoat rb1 = new RowBoat(30, 150, 200);

8 static RowBoat rb2 = new RowBoat(30, 250, 150);

9 static SailBoat sb1 = new SailBoat(260, 150, 200, Color.CYAN);

10

11 public static void main(String[] args)

12 {

13 showGameBoard(gb);

14 }

15

16 public void draw(Graphics g)

17 {

18 rb1.show(g);

19 rb2.show(g);

20 sb1.show(g);

21 }

22 }

Figure 8.7

The application InheritanceBasics.

Figure 8.8

The output produced by the application InheritanceBasics.

364 ■ Programming Fundamentals Using Java

 8.3.28.3.2 Overriding Methods Overriding Methods

Consistent with the concept of inheritance, the SailBoat class’s four-parameter constructor

added to the attributes inherited from its parent class. As previously mentioned, child classes can

also modify the inherited attributes. The mechanism for modifying an inherited method is called

overriding a method, which allows a child class to contain a method whose signature is exactly the

same (same returned type, name, and parameter list) as the parent’s method it is modifying.

Suppose that a second version of a sailboat, named SailBoatV2, was being offered for sale.

This type of sailboat is not only delivered in a specified color, but it also has a mast installed on

it. In order to properly display the new type of sailboat (with a mast), the RowBoat's show method

would be overridden. The modified version of the method, coded in the new SailboatV2 class,

would incorporate the drawing of the mast into its version of the method.

Because the UML diagram of the RowBoat shown in Figure 8.1 contains many more data

members and methods than the UML diagram of the SailBoat class, we may be tempted to make

the new class a child of the RowBoat class. If we do this, in addition to overriding the inherited

show method, we would also have to rewrite the code of the SailBoat class’s four-parameter

constructor when the new class is coded. A better approach would be to take advantage of the fact

that Java supports chain inheritance, which is depicted on the left side of Figure 8.2, and make the

new class a child of the SailBoat class. The new class would then inherit all of the attributes (data

members and methods) of both the RowBoat and the SailBoat classes, which gives it the ability

to invoke the SailBoat class’s four-parameter constructor. This approach to the design of the new

class is depicted in Figure 8.9.

+ SailBoat(x: int, y: int, length: int,

 color: Color)

SailBoatV2

+ SailBoatV2(x: int, y: int,

 length: int, color: Color)

+ show(g: Graphics)

RowBoat

five data members

+ show(g: Graphics)

and the class’s 11 other methods (see Figure 8.1)

SailBoat

Figure 8.9

The inheritance chain of the class SailBoatV2.

 Chapter 8· Inheri tance ■ 365

The implementation of the class SailBoatV2 is shown in Figure 8.10. As specified in Figure 8.9,

it extends the class SailBoat (line 3). Its four-parameter constructor (lines 5–8) simply invokes its

parent’s four-parameter constructor on line 7, passing it the (x, y) location, length, and color of the

new sailboat that was passed to it. It also overwrites the show method it inherits from the RowBoat

class (lines 11–17).

1 import java.awt.*;

2

3 public class SailBoatV2 extends SailBoat //overriding a parent method

4 {

5 public SailBoatV2(int x, int y, int length, Color color)

6 {

7 super(x, y, length, color); //invoke the parent’s constructor

8 }

9

10 @Override //translator verified an inherited method has this signature

11 public void show(Graphics g) // overwrites the parent's method

12 {

13 super.show(g); //invoke the parent’s method to draw the boat

14 g.setColor(Color.BLACK); //draw the mast

15 g.fillRect(getX() + getLength()/2, getY() - getLength()/2,

16 3, getLength()/2);

17 }
18 }

Figure 8.10

The class SailBoatV2.

Invoking a Parent’s Version of an Overwritten Method

The overridden version of the show method coded in the SailBoatV2 class begins by invok-

ing its inherited show method (line 13 of Figure 8.10) to draw the hull of the sailboat. As when

invoking an inherited constructor, the keyword super is used in the invocation. When invoking a

nonconstructor inherited method, the keyword super is followed by a dot.

The SailBoatV2 class’s inheritance chain is used to locate the invoked method. The syntax

super. that proceeds the name and argument list of the invocation on line 13 tells the translator

that we do not want the search to begin for the invoked method in the SailBoatV2 class but rather

to begin the search in its parent class. Otherwise, the SailBoatV2 class’s show method would

invoke itself.

Because the RowBoat does contain a show method whose parameter is a Graphics object

(line 22 of Figure 8.3), this method executes and draws the hull of the boat. Then, lines 14–16

of Figure 8.10 incorporate the modification to this method by drawing the sailboat’s mast. If the

search up the inheritance chain did not locate a show method whose parameter was a Graphics

object, the translation of the SailBoatV2 class would have ended in a translation error.

366 ■ Programming Fundamentals Using Java

The @Override directive

The @Override directive that appears on line 10 of Figure 8.10 instructs the translator to

search up the SailBoatV2 class’s inheritance chain for a method with the same signature that is

coded on the line that follows it. If it cannot find a method with that signature, the translation ends

in an error.

It is good programming practice to include this translation directive before the signature of a

method that is meant to override an inherited method. Suppose the method name or parameter list

typed on line 11 was syntactically correct but did not match the parameter list of the method it was

overriding. For example, suppose the signature with the method’s name was misspelled as shown

below:

11 public void shown(Graphics g) //does NOT override inherited show method

Without the directive on line 10, the class would translate, but the inherited show method

would not have been overridden. The client invocation on line 20 of Figure 8.11 would then cause

the inherited method to execute, and the sailboat would be drawn without a mast.

Figure 8.11 presents the application OverridingMethods, which is the same application pre-

sented in Figure 8.7, except the sailboat it creates on line 9 is now a SailBoatV2 object. As a

result, the SailBoatV2 class’s overridden show method is invoked on line 20, and the sailboat is

drawn with a mast. The output it produces is shown in Figure 8.12

1 import edu.sjcny.gpv1.*;

2 import java.awt.*;

3

4 public class OverridingMethods extends DrawableAdapter

5 { static OverridingMehtods ge = new OverridingMethods();

6 static GameBoard gb = new GameBoard(ge, "OVERRIDING METHODS");

7 static RowBoat rb1 = new RowBoat(30, 150, 200);

8 static RowBoat rb2 = new RowBoat(30, 250, 150);

9 static SailBoatV2 sb1 = new SailBoatV2(260, 150, 200, Color.CYAN);

10

11 public static void main(String[] args)

12 {

13 showGameBoard(gb);

14 }

15

16 public void draw(Graphics g)

17 {

18 rb1.show(g);

19 rb2.show(g);

20 sb1.show(g);

21 }

22 }

Figure 8.11

The application OverRidingMethods.

 Chapter 8· Inheri tance ■ 367

Figure 8.12

The output produced by the application OverRidingMethods.

Final Methods

A method can be declared to be a final method by coding the keyword final in its signature

immediately after the method’s access modifier. When a method is declared to be final, it cannot

be overridden by a child class. An attempt to do so results in a translation error. For example, if the

signature of the show method on line 22 of the RowBoat class (Figure 8.3) was coded as shown

below, the SailBoatV2 class shown in Figure 8.10 could not override it.

 22 public final void show(Graphics g)

Methods that enforce security on systems are usually declared to be final to prevent them from

being overridden.

Overriding versus Overloading Methods

The concepts of overriding and overloading methods are often confused because both concepts

can be used to code a new method that has the same name as an existing method. In addition, the

two topics are often considered to be more restrictive than they actually are. Before concluding

our discussion of overriding methods, we will discuss the differences between, and commonalities

shared by, these concepts.

One difference between the concepts of overriding and overloading methods also allows us

to identify which concept is being used. When two methods in an inheritance chain have the

same name and the same parameter list, the concept of overriding methods is being used. When

two methods in an inheritance chain, or within the same class, have the same name and different

parameter lists (i.e., either the number and/or type of the parameters are different), the concept of

overloading methods is being used.

A second difference is that the concept of overriding a method cannot be used to modify the

functionality of a method coded in its class because two methods with the same name and parameter

368 ■ Programming Fundamentals Using Java

list cannot be coded in the same class. The code of an overridden method and the code of the meth-

od that overrides it must appear in two different classes in an inheritance chain. The concept of

overloading a method is less restrictive. The code of an overloaded method and that of the method

it overloads can appear in the same class or in different classes within an inheritance chain.

The concepts of overriding and overloading methods have many things in common:

� both concepts are used to modify or expand the functionality of an existing method

� both concepts can be used to produce a new method that has the same name as an exist-

ing method

� both static and nonstatic methods can be overridden and overloaded

� a child class can overload and override any of its inherited methods

� the translator always uses the same technique to locate and identify a method that is be-

ing invoked regardless of the whether the method has been overridden or overloaded

This section will conclude with a summary of the search path the translator uses to locate an invoked

overridden or overloaded method, and a summary of the syntax used to invoke inherited methods.

Summary of the Method Search Path

When an overloaded or overridden method is invoked, the translator uses the same search

process to locate the method that it uses to locate all invoked methods. The class of the object’s

reference variable, or the class of an invoked static method, is searched for a method whose name

and parameter list matches the name and argument list in the invocation statement. If a match is

not found in that class, the search continues up the class’s inheritance chain.

Summary of the Inherited Method Invocation Syntax

As we have learned, a child class method can invoke a method inherited from its parent. If

the method is not overridden in the child class, the method is invoked by coding the name of the

method followed by an argument list. When the method is a static method, this syntax is preceded

by the name of the parent class followed by a dot. If the parent method is overridden and is not a

static method, the invocation is preceded by the keyword super followed by a dot.

 8.3.3 8.3.3 Extending Inherited Data Members Extending Inherited Data Members

A child class’s ability to extend the attributes it inherits is not limited to overriding and over-

loading inherited methods or including new methods in its class. It can also extend the data mem-

bers it inherits by declaring additional data members inside its class definition. Figure 8.13 presents

the inheritance chain of a class named SailBoatV3, which is a sailboat delivered with a mast and

a sail. To facilitate the implementation of the new class, it extends the SailboatV2 class because,

in all other aspects, this new type of sailboat is a SailBoatV2 object.

As shown in its UML diagram, the SailBoatV3 class will override its inherited calculate-

Price method. The new version of this method will use the class’s new data members sailArea

and pricePerSquareFoot to calculate and include the cost of the sail in the boat’s price. The

 Chapter 8· Inheri tance ■ 369

boat’s sailArea will be specified using the last parameter of the class’s five-parameter construc-

tor. In addition, the inherited show method will be overwritten. This version of the method will be

used to draw the sail on the boat’s mast.

NOTE

The name of a data member added to a child class can be the same as the name of

an inherited data member, but it is good programming practice to avoid duplicat-

ing inherited data member names.

+ SailBoat(x: int, y: int, length: int,

 color: Color)

SailBoatV2

+ SailBoatV2 (x: int, y: int, length: int,

 color: Color)

+ show(g: Graphics)

RowBoat

five data members

+ show(g: Graphics)

+ calculatePrice(): int

and the 10 other methods of the class

(See Figure 8.1)

SailBoat

SailBoatV3

Figure 8.13

The inheritance chain of the class SailBoatV3.

Figure 8.14 shows the implementation of the SailBoatV3 class that extends the class Sail-

BoatV2 (line 3). Its two additional data members, pricePerSquareFoot and sailArea, are

370 ■ Programming Fundamentals Using Java

declared on lines 5 and 6. Line 12 of the class’s constructor stores the sail area passed to its last

parameter in the data member sailArea. Line 19 of the expanded calculatePrice method

multiplies these data members to determine the sail’s price and then adds this product to the price

returned from line 18’s invocation of RowBoat’s version of the method.

Lines 25–31 implement additional functionality of the overridden show method by defining

the (x, y) coordinates of the triangular sail’s vertices and then drawing the sail. Line 32 invokes the

class’s inherited show method to draw the boat’s hull and mast.

Figure 8.15 presents the application ExtendingDataMembers, which is the same application

presented in Figure 8.11, except it creates a yellow instance (sb2) of the class SailBoatV3 on line

10. As a result, the SailBoatV3 class’s version of the show method is invoked on line 22, and the

1 import java.awt.*;

2

3 public class SailBoatV3 extends SailBoatV2

4 {

5 private static int pricePerSquareFoot = 2;

6 private int sailArea; // additional data members

7

8 public SailBoatV3(int x, int y, int length,

9 Color color, int sailArea)

10 {

11 super(x, y, length, color);

12 this.sailArea = sailArea;

13 }

14

15 @Override

16 public int calculatePrice() //invokes the method it overrides

17 {

18 int hullPrice = super.calculatePrice(); //invokes RowBoat’s method

19 return hullPrice + sailArea * pricePerSquareFoot;

20 }

21

22 @Override

23 public void show(Graphics g)

24 {

25 int[] xSail = {getX() + getLength()/2, getX(),

26 getX() + getLength()/2,};

27 int[] ySail = {getY() - getLength()/2, getY() - getLength()/8,

28 getY() - getLength()/8};

29

30 g.setColor(Color.WHITE); //draw the sail

31 g.fillPolygon(xSail, ySail, xSail.length);

32 super.show(g);

33 }

34 }

Figure 8.14

The class SailBoatV3.

 Chapter 8· Inheri tance ■ 371

yellow sailboat is drawn with a sail as shown in the bottom right portion of Figure 8.12. Although

the lengths of the two sailboats declared in the application (lines 9–10) are both 200, the cost of the

second boat (sb2) is higher because of the $600 additional cost of the boat’s 300-square-foot sail

(at $2 per square foot as per line 5 of Figure 8.14).

1 import edu.sjcny.gpv1.*;

2 import java.awt.*;

3

4 public class ExtendingDataMembers extends DrawableAdapter

5 { static ExtendingDataMembers ge = new ExtendingDataMembers ();

6 static GameBoard gb = new GameBoard(ge, "EXTENDING DATA MEMBERS");

7 static RowBoat rb1 = new RowBoat(30, 150, 200);

8 static RowBoat rb2 = new RowBoat(30, 250, 150);

9 static SailBoatV2 sb1 = new SailBoatV2(260, 150, 200, Color.CYAN);

10 static SailBoatV3 sb2 = new SailBoatV3(260, 300, 200, Color.YELLOW, 300);

11

12 public static void main(String[] args)

13 {

14 showGameBoard(gb);

15 }

16

17 public void draw(Graphics g)

18 {

19 rb1.show(g);

20 rb2.show(g);

21 sb1.show(g);

22 sb2.show(g);

23 }

24 }

Figure 8.15

The application ExtendingDataMembers.

Figure 8.16

The output produced by the application ExtendingDataMembers.

372 ■ Programming Fundamentals Using Java

Parent Class Methods Invoking Child Class Methods

As previously discussed at the end of Section 8.3.1, when the RowBoat class’s show method

invokes the method calculatePrice (line 26 of Figure 8.3), the search for the method begins

in the class of the object that invoked the show method. When line 22 of Figure 8.15 executes, the

search for the calculatePrice method begins in sb2’s class, SailBoatV3. Because this class

overrides the inherited version of the calculatePrice method, sb2’s price is calculated by its

version of the method coded on lines 16–20 of Figure 8.14. This is precisely what should happen

because otherwise the cost of the sail would not be included in the price of the sailboat sb2. The

Java process used to locate invoked methods, which is summarized at the end of Section 8.3.2,

causes the RowBoat class’s show method to invoke the SailBoatV3 class’s calculatePrice

method to determine the price of a SailBoatV3 sailboat instance.

 8.4 8.4 USING INHERITANCE IN THE DESIGN PROCESS USING INHERITANCE IN THE DESIGN PROCESS

The time and effort required to create a new class can be greatly reduced if we can extend the

attributes of an existing class using the basic techniques of inheritance discussed in the previous

section. These techniques include inheriting methods and data members into the new class, over-

riding and overloading these methods to change and extend their functionality, and adding new

methods and data members to the new class. But even if there are no existing classes that provide

some of the functionality of the classes specified for a new program, the time and cost to develop

the program can still be reduced using the concept of inheritance during the design process.

Suppose your Uncle Ed asked you to develop a Java program to “keep track of the inventory”

of a boat store he was about to open that will carry rowboats, sailboats, and powerboats. After sev-

eral follow-up conversations with him, you have determined that “keeping track of the inventory”

means knowing the location of each boat on his storage lot, knowing each boat’s price and size,

and other details that are particular to the type of the boat such as the number of oars, the sail area,

and the horsepower of a powerboat. Translating all of this into an OPP design, you concluded there

will be three worker classes in the program and produced the UML diagrams shown in Figure 8.17.

Before proceeding to the coding phase of Uncle Ed’s (or any other) program, we should apply

the basic concepts of inheritance previously discussed in this chapter and the other more advanced

inheritance concepts, such as abstract classes, to the design process.

 8.4.1 8.4.1 Abstract Classes Abstract Classes

After the UML diagrams that describe the objects that will be part of the program are pre-

pared, their data members and methods should be compared to determine their commonalities. An

examination of the data members of the classes specified in Figure 8.17 reveals that the first five

data members in all three classes are the same. In addition, the signatures of all of their methods,

except for their constructors, are the same. If we were to give these UML diagrams to three pro-

grammers to implement, each programmer would have to code the same five data members into

their class and write the same six set and get methods to change and fetch the values of the data

 Chapter 8· Inheri tance ■ 373

members. In addition, the code of their calculatePrice, show, and toString methods would

share some similar code.

RowBoatV2

- pricePerFoot: int

- x: int

- y: int

- length : int

- color: Color

- oars : int

+ RowBoatV2 (x: int , y: int,

 length: int, c: Color,

 oars: int)

+ calculatePrice(): int

+ show(g: Graphics)

+ toString(): String

+ getX(): int

+ getY(): int

+ getLength(): int

+ getColor(): Color

+ setX(x: int)

+ setY(y: int)

SailBoatV4

- pricePerFoot: int

- x: int

- y: int

- length : int

- color: Color

- sailArea: int

+ SailBoatV2 (x: int , y: int,

 length: int, c: Color,

 sailArea : int)

+ calculatePrice(): int

+ show(g: Graphics)

+ toString(): String

+ getX(): int

+ getY(): int

+ getLength(): int

+ getColor(): Color

+ setX(x: int)

+ setY(y: int)

PowerBoat

- pricePerFoot: int

- x: int

- y: int

- length : int

- color: Color

- horsePower: int

+ PowerBoat (x: int , y: int,

 length: int, c: Color,

 horsepower: int)

+ calculatePrice(): int

+ show(g: Graphics)

+ toString(): String

+ getX(): int

+ getY(): int

+ getLength(): int

+ getColor(): Color

+ setX(x: int)

+ setY(y: int)

Figure 8.17

The class design of a boat store’s inventory application.

To avoid this duplication among the three classes, a forth class named Boat is added to the

design as shown at the top of Figure 8.18. This class will be an abstract class. A class is designated

to be abstract by including the keyword abstract in its heading. For example:

 public abstract class Boat //an abstract class

374 ■ Programming Fundamentals Using Java

RowBoatV3

- ores: int

+ RowBoatV2 (x: int , y: int,

 length: int , c: Color,

 oars: int)

+ calculatePrice(): int

+ show(g: Graphics)

+ toString(): String

SailBoatV4

- sailArea: int

+ SailBoatV2 (x: int , y: int,

 length: int , c: Color,

 sailArea : int)

+ calculatePrice(): int

+ show(g: Graphics)

+ toString(): String

PowerBoat

- horsePower: int

+ PowerBoat (x: int , y: int,

 length: int , c: Color,

 horsepower: int)

+ calculatePrice(): int

+ show(g: Gr aphics)

+ toString(): String

Boat abstract

- pricePerFoot: int

- x: int

- y: int

- length : int

- color: Color

+ RowBoatV2 (x: int , y: int,

 c: Color, length: int ,

 oars: int)

+ calculatePrice(): int

+ show(g: Graphics)

+ toStr ing(): String

+ getX(): int

+ getY(): int

+ getLength(): int

+ getColor(): Color

+ setX(x: int)

+ setY(y: int)

Figure 8.18

The use of inheritance in the design of a boat store’s inventory application.

An abstract class is used to collect data members and methods that are common to several

classes into one class. It is not meant to be the class of one of the types of objects that will make up

a program. For example, you cannot purchase an instance of a Boat object from Uncle Ed. He only

sells rowboats, sailboats, and powerboats. Consistent with this use of abstract classes, an attempt

to declare an object in an abstract class results in a translation error.

As shown in the bottom portion of Figure 8.17, after the abstract Boat class is added to the

design of Uncle Ed’s program, the duplicated five data members and the set and get methods are

eliminated from the original three classes and moved into the UML diagram of the Boat class.

 Chapter 8· Inheri tance ■ 375

Then, as indicated by the arrows in the figure, the original three classes become subclasses of the

Boat class. By simply including the keyword extends in the heading of the classes they code, the

authors of the original three classes no longer have to code five of their class’s six data members or

the six set and get methods. But the reduction in effort does not end here.

Each of the original classes also contained methods to draw the boat it defines and calculate

its price as well as a toString method. The signatures of these methods are the same in all three

classes, and your conversations with Uncle Ed revealed that they share some common functionality.

He has told you that the base price of each type of boat is calculated in the same way because they

share a common hull. In reflecting on what he said, you realize that this introduces some common

functionality into the show methods because each boat’s hull will look the same. It also introduces

some common functionality into the calculatePrice method because each boat’s hull will be

priced in the same way. Because each of the toString methods will return the annotated values

of the classes’ first five data members, these methods also share some common functionality.

Methods in the child classes that have the same signature and share some common function-

ality also become part of the parent class’s UML diagram, as shown in the UML diagram of the

Boat class, which now includes a calculatePrice, a show, and a toString method. Unlike the

set and get methods that were eliminated from the child classes, some trace of these relocated

methods are retained in the UML diagrams of the child classes to provide the functionality that is

not common to each child class.

For example, the functionality of calculating the additional cost of a powerboat’s motor would

have to be retained in the PowerBoatV2 class, and the cost of a rowboat’s oars would be calculated

in the RowBoat class. In the design presented in Figure 8.18, the child classes provide additional

functionality by overriding the Boat class’s calculatePrice, show, and toString methods.

The code of these methods would invoke Boat’s version of the method to calculate and return the

price of the boat’s hull, draw the boat’s hull, and to build and return a string containing the anno-

tated versions of Boat’s five data members.

Comparing the UML diagrams in Figures 8.17 and 8.18, we can see that the use of inheritance

in the design presented in Figure 8.18 has significantly reduced the effort required to produce Un-

cle Ed’s program. The number of data members to be coded by the programmers has been reduced

from 18 to 8, and the number of methods has been reduced from 30 to 22. In addition, the construc-

tor in the Boat class will implement the commonality within the constructors in the other three

classes, which will reduce the effort required to produce the constructors in the other three classes.

Figures 8.19–8.22 present the implementation of the design depicted in Figure 8.18. The Boat

class is declared abstract on line 4 of Figure 19. Consistent with our design philosophy, it includes

all of the data members common to the other three classes, and its methods provide the functional-

ity shared by the other three classes. Those classes extend the Boat class (line 3 of Figures 8.20–

8.22). They each include a data member particular to their type of boat (e.g., line 5 of Figure 8.20),

and their methods invoke Boat’s methods (e.g., lines 9, 15, 21, and 31 of Figure 8.20) before adding

the functionality particular to their type of boat. For example, line 16 of Figure 8.20 computes the

cost of the oars, lines 22-26 draw the oars, and line 31 adds the number of oars to toStrings

returned strings. The implements clause in the heading of the class Boat (line 4 of Figure 8.19)

will be discussed in Section 8.7.

376 ■ Programming Fundamentals Using Java

The application DesignTechniques shown in Figure 8.23 uses the new design to add a row-

boat with four oars (line 8), a sailboat with a 200-square-foot sail (line 9), and a powerboat with

a 400-horsepower motor (line 10) to Uncle Ed’s inventory. The boats are then displayed on his lot

(Figure 8.24).

1 import java.awt.*;

2 import java.io.Serializable;

3

4 public abstract class Boat implements Serializable //contains attributes

5 { //common to all boats

6 private static int PRICE_PER_FOOT = 10;

7 private int x, y, length; //data members common to all types of boats

8 private Color color;

9

10 public Boat(int x, int y, int length, Color color)

11 {

12 this.x = x;

13 this.y = y;

14 this.length = length;

15 this.color = color;

16 }

17 public int calculatePrice() //will be overridden

18 {

19 return length * PRICE_PER_FOOT;

20 }

21 public void show(Graphics g) //will be overridden

22 {

23 int[] xBoat = {getX() , getX() + length, getX() + 6*length/7,

24 getX() + length/14};

25 int[] yBoat = {getY(), getY(), getY() + length/7,

26 getY() + length/7};

27 int price = calculatePrice();

28 g.setColor(color);

29 g.fillPolygon(xBoat, yBoat, xBoat.length);

30 g.setColor(Color.BLACK);

31 g.setFont(new Font("Arial", Font.BOLD, 16));

32 g.drawString("$" + String.valueOf(price), x + 10, y + 16);

33 }

34 public String toString() //will be overridden

35 {

36 return "Location: (" + x + ", " + y +"), length: " + length +

37 ",Color: " + color;

38 }

39 public int getX() //get & set methods common to all types of boats

40 {

41 return x;

 Chapter 8· Inheri tance ■ 377

42 }

43 public int getY()

44 {

45 return y;

46 }

47 public int getLength()

48 {

49 return length;

50 }

51 public Color getColor()

52 {

53 return color;

54 }

55 public void setX(int x)

56 {

57 this.x = x;

58 }

59 public void setY(int y)

60 {

61 this.y = y;

62 }
63 }

Figure 8.19

The abstract class Boat.

1 import java.awt.*;

2

3 public class RowBoatV2 extends Boat

4 {

5 private int oars; //extended (additional) data member

6

7 public RowBoatV2(int x, int y, int length, Color c, int oars)

8 {

9 super(x, y, length, c);

10 this.oars = oars;

11 }

12 @Override

13 public int calculatePrice() //overrides parent method

14 {

15 int hullPrice = super.calculatePrice();

16 return hullPrice + oars * 10;

17 }

18 @Override

19 public void show(Graphics g) //overrides parent method

20 {

21 super.show(g);

378 ■ Programming Fundamentals Using Java

22 g.setColor(Color.BLACK);

23 for(int i = 1; i <= oars; i++) //each ore

24 {

25 g.fillRect(getX() + i*10, getY() - 20, 2, 20); //handle

26 g.fillOval(getX() + i*10-2, getY() - 30, 6, 10); //paddle

27 }

28 }

29 public String toString() //overrides parent method

30 {

31 return super.toString() + ", Oars: " + oars;

32 }

33 }

Figure 8.20

The child class RowBoatV2.

1 import java.awt.*;

2

3 public class SailBoatV4 extends Boat

4 {

5 private int sailArea; //extended (additional) data member

6

7 public SailBoatV4(int x, int y, int length,

8 Color color, int sailArea)

9 {

10 super(x, y, length, color);

11 this.sailArea = sailArea;

12 }

13 @Override

14 public int calculatePrice() //overrides parent method

15 {

16 int hullPrice = super.calculatePrice();

17 return hullPrice + sailArea * 2;

18 }

19 @Override

20 public void show(Graphics g) //overrides parent method

21 {

22 int[] xSail = {getX() + getLength()/2, getX(),

23 getX() + getLength()/2};

24 int[] ySail = {getY() - getLength()/2, getY() - getLength()/8,

25 getY() - getLength()/8};

26

27 super.show(g);

28 g.setColor(Color.BLACK); //draw the mast

29 g.fillRect(getX() + getLength()/2, getY() - getLength()/2, 3,

30 getLength()/2);

31 g.setColor(Color.WHITE); //draw the sail

32 g.fillPolygon(xSail, ySail, xSail.length);

33 }

 Chapter 8· Inheri tance ■ 379

34 public String toString() //overrides parent method

35 {

36 return super.toString() + ", Sail Area: " + sailArea;

37 }

38 }

Figure 8.21

The child class SailBoatV4.

1 import java.awt.*;

2

3 public class PowerBoat extends Boat

4 {

5 private int horsePower; //extended (additional) data member

6

7 public PowerBoat(int x, int y, int length,

8 Color color, int horsePower)

9 {

10 super(x, y, length, color);

11 this.horsePower = horsePower;

12 }

13 @Override

14 public int calculatePrice() //overrides parent method

15 {

16 int hullPrice = super.calculatePrice();

17 return hullPrice + horsePower * 3;

18 }

19 @Override

20 public void show(Graphics g) //overrides parent method

21 {

22 int[] xSail = {getX() + getLength()/2, getX(),

23 getX() + getLength()/2,};

24 int[] ySail = {getY() - getLength()/2, getY() - getLength()/8,

25 getY() - getLength()/8};

26

27 super.show(g);

28 g.setColor(Color.BLACK); //draw the shaft

29 g.fillOval(getX() - 13, getY() + getLength()/7 , 30, 4);

30 g.setColor(Color.GRAY); //draw the propeller

31 g.fillOval(getX() - 20, getY() + getLength()/7, 20, 6);

32 g.fillOval(getX() - 13, getY() + getLength()/7 - 7, 6, 20);

33 }

34 public String toString() //overrides parent method

35 {

36 return super.toString() + ", Horsepower: " + horsePower;

37 }

38 }

Figure 8.22

The child class PowerBoat.

380 ■ Programming Fundamentals Using Java

1 import edu.sjcny.gpv1.*;

2 import java.awt.*;

3

4 public class DesignTechniques extends DrawableAdapter

5 {

6 static DesignTechniques ge = new DesignTechniques();

7 static GameBoard gb = new GameBoard(ge, "Design Techniques");

8 static RowBoatV2 rb1 = new RowBoatV2(50, 200, 120, Color.YELLOW, 4);

9 static SailBoatV4 sb1 = new SailBoatV4(220, 200, 200, Color.GREEN, 200);

10 static PowerBoat pb1 = new PowerBoat(50, 300, 200, Color.MAGENTA, 400);

11

12 public static void main(String[] args)

13 {

14 showGameBoard(gb);

15 }

16

17 public void draw(Graphics g)

18 {

19 rb1.show(g);

20 sb1.show(g);

21 pb1.show(g);

22 }

23 }

Figure 8.23

The application DesignTechniques.

Figure 8.24

The output produced by the application DesignTechniques.

 Chapter 8· Inheri tance ■ 381

 8.4.2 8.4.2 Designing Parent Methods to Invoke Child Methods Designing Parent Methods to Invoke Child Methods

In addition to creating an abstract class to collect the common attributes shared by the various

objects that will be part of a program, there are other inheritance concepts that should be consid-

ered when designing and coding the methods in an abstract or nonabstract parent class. One of

them is the ability of a parent method to invoke a child class’s method.

As discussed at the end of Section 8.3.3, the code of a method in a super class that is operating

on an instance of a direct or indirect subclass can invoke a method coded in the subclass. The syn-

tax used is the familiar syntax of coding the method’s name followed by the appropriate argument

list. For example, if a nonstatic method named extras is added to the child class RowBoatV2,

shown in Figure 8.20, then it could be invoked inside any of the methods of its parent class Boat,

shown in Figure 8.19, by coding: extras();

This presents an alternate approach to adding functionality to an inherited method during

the design phase. Instead of child classes overriding an inherited method, they simply include a

method that implements their version of the added functionality, and the code of the parent’s inher-

ited method includes an invocation of this method. The signature of the method added to the child

classes must be the same in all of the child classes that intend to add functionality to the inherited

method.

If this design approach was taken to calculate the price of a rowboat, sailboat, and powerboat,

the Boat class’s calculatePrice method, lines 17–20 of Figure 8.19, would be changed to the

version of the method at the top Figure 8.25. This version of the method invokes the method ex-

tras to calculate an additional cost to be added to the price of the hull for oars, a sail, or a motor.

The empty version of the method extras shown at the bottom of the figure has to be added to the

Boat class or it will not compile. The child classes’ calculatePrice methods in Figures 8.20,

8.21, and 8.22 would be replaced with the code of the extras method shown in the upper, middle,

and lower portions of Figure 8.26, respectively.

 public int calculatePrice()

 {

 return length * PRICE_PER_FOOT + extras();

 }

 public int extras()

 {

 }

Figure 8.25

A parent method that invokes the child’s method extras and the empty implementation of the extras method

coded in the parent class.

382 ■ Programming Fundamentals Using Java

public int extras() //RowBoatV2’s version of the method extras

{

 return oars * 10;

}

public int extras() //SailBoatV4’s version of the method extras

{

 return sailArea * 2;

}

public int extras() //PowerBoat’s version of the method extras

{

 return horsePower * 3;

}

Figure 8.26

Three child class implementations of the method extras

 8.4.38.4.3 Abstract Parent Methods Abstract Parent Methods

An alternative to including the empty version of the method extras shown at the bottom of

Figure 8.25 is to code it as an abstract method in the parent class, in this case, the class Boat (Fig-

ure 8.19). Abstract methods include the keyword abstract in their signature before their returned

type. In addition, their signature ends with a semicolon. As shown below, they do not contain an

open and close brace or any code.

 public abstract int extra();

When this approach is used, the parent class must be declared abstract because the parent class no

longer contains an implementation of a method it invokes. In addition, the translator will verify

that each nonabstract class that inherits directly or indirectly from the abstract class implements a

method whose signature matches the signature of the abstract method. If it does not, the child class

will not translate. In effect, the inclusion of an abstract method in a parent class is a promissory

note, enforced by the translator, that child classes will implement (override) the abstract method.

The use of abstract methods in a super class is considered to be good programming practice

when:

� The super class will not be instantiated. Its sole purpose is to collect the common data

members and functionality shared by its direct and indirect subclasses.

� Most of its direct and indirect subclasses will add functionally to the super class

method that invokes the abstract method.

In the event that a subclass does not need to add functionality to the super class method that

invokes an abstract method, the subclass would implement the abstract method with an empty code

block.

 Chapter 8· Inheri tance ■ 383

 8.4.4 8.4.4 Final Classes Final Classes

A class can be declared to be a final class by coding the keyword final in its heading im-

mediately after the class’s access modifier. When a class is declared final, it cannot be extended.

An attempt to do so results in a translation error. For example, if the heading of the PowerBoat

class (line 3 of Figure 8.22) was coded as shown below, then it could not be a parent class.

3 public final class PowerBoat extends Boat

Classes that contain methods that enforce security on systems are usually declared to be final to

prevent their methods from being overridden.

A class cannot be declared abstract and final because it would be rendered useless. If it

were abstract, instances of the class could not be created; if it were also final, it could not be ex-

tended. In short, nothing could be done with it.

 8.4.58.4.5 Protected Data Members Protected Data Members

When a method or a data member in a class is designated to have private access, the method

can only be invoked and the data member can only be directly accessed by the methods defined

inside the class. A private method cannot be invoked by methods defined outside of its class. A

private data member can be indirectly accessed by a method defined in another class by invoking

its set and get methods. When a method or a data member is designated to have public access the

method can be invoked, and the data member can be directly accessed, by methods defined outside

of its class.

A class’s methods and data members can also be declared to have protected access by begin-

ning their declaration with the keyword protected.

 protected int count;

The access modifier protected is less restrictive than private access and more restrictive than

public access. Restrictions imposed by protected access are package dependent.

When a method or a data member is designated to have protected access, the method can

be invoked, and the data member can be directly accessed, by methods defined inside its class and

its direct and indirect subclasses. As illustrated in the bottom and top left portions of Figure 8.27,

the access is permitted whether or not the parent’s protected data members/methods and the child

classes are defined in the same package.

Methods in nonchild classes can only access another class’s protected methods, and directly

access its protected data members, if the nonchild class is defined in the same package as the

protected methods and data. This is illustrated in the top right and bottom portions of Figure 8.27.

384 ■ Programming Fundamentals Using Java

Package 2

 A Child Class

Package 1

 private int a

 protected int b

 public int c

Package 3

 A Non child Class

direct access permitted

Package 4

A Child or

Nonchild

Class

Class B

 private int a

 protected int b

 public int c

Figure 8.27

Restrictions imposed by private, protected, and public access.

NOTE
Protected methods and data members are hidden from nonchild classes defined in

separate packages.

 8.4.68.4.6 Making a Class Inheritance Ready: Best Practices Making a Class Inheritance Ready: Best Practices

When designing a class, we should always consider the possibility that other classes may ex-

tend it. If for some reason we want to prevent the class from being extended, the class is declared

final. If a nonfinal class contains a constructor, it should also contain a no-parameter constructor

even if its code block is empty, otherwise the child class’s constructors will always have to explic-

itly invoke a parent constructor. A parent class that was created to collect the methods and data

members common to other classes should be declared abstract.

Each method in a nonfinal class should be examined to decide if its functionality could be

compromised if it were overridden in a subclass. When that is the case, the method should be de-

clared final. To permit restricted modifications to a final method, the method should invoke an

abstract method whose signature is defined within the final method’s class, then subclasses can

add functionality to a final method by implementing the abstract method. This abstract method

approach should also be used when the algorithm of a parent class method requires that child

classes add functionality particular to them because the translator will verify that the child classes

implement the abstract method. This approach should also be considered when it is anticipated that

a child class is likely to override a parent method.

 Chapter 8· Inheri tance ■ 385

A parent data member that stores a constant should always be declared as final to prevent it

from being changed. Generally speaking, it is good programming practice to declare all nonfinal

data members in a parent class to be private rather than protected and, where appropriate, include

set and get methods to permit access to them. This maintains the encapsulation of the data mem-

bers, which eliminates the possibility that a method in a child class could unintentionally access the

data members by using a variable with the same name that it neglected to declare.

 8.5.8.5. POLYMORPHISM POLYMORPHISM

Polymorphism is the idea that something can exist in several different forms. We have already

discussed several uses of polymorphism in computer science. One use of polymorphism we dis-

cussed is overloading methods. A method can be overloaded or morphed into a new form, with

the new form having a different parameter list. These different forms of the method can be coded

inside the same class, such as constructors with several different parameter lists, or one form of

a method’s parameter list can be coded in a super class, and another form could be coded in its

subclass.

Other uses of polymorphism occur within the concept of inheritance. Two of these uses were

already discussed. The first is the inheritance concept of overriding methods. In this use of poly-

morphism, one form of a method exists in the super class, and another form of the method, with the

exact same signature, exists in the subclass. The second involves the invocation of a method by a

parent method. Due to the search path used to locate the invoked method at run time, this invoca-

tion could take on the form of an invocation of a parent class method or a child class method with

the same signature.

Polymorphism is also used to indicate that a child can take on the form of a parent because a

child is also a parent. This should not be surprising because we have already learned that a child

class inherits everything from a parent: all of its data members and all of its methods (except for

its constructors). This polymorphic inheritance concept opens up a set of programming practices

that makes our programs easier to write and easier to understand. In the remainder of this section,

we will discuss these programming practices and the syntax used to incorporate them into the

programs we write.

 8.5.18.5.1 Parent and Child References Parent and Child References

Because a child object is also considered to be a parent object, a parent reference variable can

store the address of, or point to, a child object. This is a form of polymorphism because it permits

a parent reference variable to assume many different forms. It can be a reference to a parent object,

or it can be a reference to an instance of any class that inherits directly or indirectly from it.

Line 4 of the following code fragment illustrates the use of this form of polymorphism. Line 1

declares the variable aBoat to be a Boat class reference variable. Because the class PowerBoat

(Figure 8.22) extends the class Boat (Figure 8.19), the variable can be morphed into a reference to

a PowerBoat object. This is accomplished using the assignment statement on line 4. After line 4

386 ■ Programming Fundamentals Using Java

executes, the variable aBoat stores the address of a PowerBoat object, the same object referenced

by pb1.

//A super class reference variable can reference a subclass object

1 Boat aBoat; //declares a reference variable in the super class Boat

2 PowerBoat pb1 = new PowerBoat(50, 300, 200, Color.MAGENTA, 400);

3

4 aBoat = pb1; //aBoat and pb1 now reference the same powerboat

Consistent with this form of polymorphism, a super class reference variable that refers to one

type of subclass object can be reassigned to reference an instance of another one of its subclasses.

After the following code sequence executes, the variables aBoat and sb1 both reference the same

SailBoatV4 object, whose class (Figure 8.21) also extends Boat.

//A super class reference variable can reference any subclass object

1 Boat aBoat; //declares a references variable in the super class Boat

2 PowerBoat pb1 = new PowerBoat(50, 300, 200, Color.MAGENTA, 400);

3 SailBoatV4 sb1 = new SailBoatV4(220, 200, 200, Color.GREEN, 200);

4

5 aBoat = pb1; //aBoat references a powerboat

6 aBoat = sb1; //aBoat now references a sailboat

NOTE
A super class reference variable can refer to any instance of a class that directly,

or indirectly, inherits from it.

Using the syntax of coercion, the address of a child class object stored in a parent reference

variable can be coerced into a child reference variable. After line 5 of the following code fragment

executes, the child reference variable pb2 stores the address of a powerboat. If pb2 were declared

to be a reference to a subclass of Boat other than the PowerBoat class, line 6 would result in a

translation error.

//A subclass reference can be coerced into a child reference variable

1 Boat aBoat; //declares a references variable in the super class Boat

2 PowerBoat pb1 = new PowerBoat(50, 300, 200, Color.MAGENTA, 400);

3 PowerBoat pb2;

4

5 aBoat = pb1; //aBoat now reference the same PowerBoat child

6 pb2 = (PowerBoat) aBoat; //valid when aBoat references a PowerBoat

There is one restriction on the use of assignment statements that mixes child and parent refer-

ence variables. A child class reference variable cannot be assigned the address of a parent class

object because a parent object is not a child object. An attempt to do so results in a translation error.

A good way to remember this restriction comes from the old family adage: Parents can point to

their children when they correct them, but it is rude for children to point to their parents.

The following code fragment uses the nonabstract parent class RowBoat defined in Figure 8.3

and the SailBoat class that extends it (Figure 8.6). Assigning the location of the parent class

object declared on line 1 to the child class reference variable, sb1, on line 4 produces a translation

error, as does line 5, which attempts to coerce the address of the parent RowBoat object into the

child class reference variable.

 Chapter 8· Inheri tance ■ 387

//A subclass reference variable can NOT reference a superclass object

1 RowBoat rb1 = new RowBoat(30, 150, 200);

2 SailBoat sb1;

3

4 sb1 = rb1; //syntax error: child reference assigned a parent object

5 sb1 = (SailBoat) rb1; //coercion does not remedy the problem

NOTE The addresses of parent objects cannot be assigned to child reference variables.

 8.5.28.5.2 Polymorphic Invocations Polymorphic Invocations

Definition

A polymorphic invocation is the act of invoking a method using a parent reference variable that

refers to a child object.

When a method is invoked using a parent reference variable that refers to a child object, it is

referred to as a polymorphic invocation. Consider the client code fragment shown in Figure 8.28

that uses the super class Boat (Figure 8.19) and its subclass PowerBoat (Figure 8.22). Although

the variable aBoat declared on line 1 is of type Boat, it has been assigned the address of a child

PowerBoat object. This is valid because parents can point to children. The show method is in-

voked on line 5 using this parent reference variable, which makes line 5 a polymorphic invocation

of the show method.

1 static Boat aBoat = new PowerBoat(50, 300, 200, Color.MAGENTA, 400);

2

3 public void draw(Graphics g)

4 {

5 aBoat.show(g);

6 }

Figure 8.28

Polymorphic invocation of the method show by the object referenced by aBoat.

The translator always looks into the class of the reference variable that invoked a nonstatic

method to verify the signature of the method, for both polymorphic and nonpolymorphic invoca-

tions. As a result, line 5 begins its search in the class Boat for a method named show whose param-

eter list is a Graphics object. Because the Boat class contains a method with that signature (line

21 of Figure 8.19), line 5 is valid syntax. The parent class Boat need not implement the method

show; it can simply define the method’s name and its signature as an abstract method.

If the class Boat did not contain a show method whose parameter list matched line 5’s argu-

ment list, the translator’s search would progress up through the classes in Boat’s inheritance chain.

Because the class Boat does not explicitly extend a class, the search would end unsuccessfully in

the class Object, and line 5 of Figure 8.28 would produce a translation error.

388 ■ Programming Fundamentals Using Java

NOTE

The class of the parent reference variable used in a polymorphic method invoca-

tion must include, or have inherited, an implementation or an abstract version of

the invoked method.

At runtime, the Java runtime environment uses a different starting point in its search to locate

the method named in a polymorphic invocation. Unlike the translator that begins its search in the

class of the parent reference variable coded in the invocation statement, the runtime environment

begins its search in the class of the object referenced by the variable. For example, the search for

the show method invoked on line 5 of Figure 8.28 would begin in the PowerBoat class because the

variable aBoat references the PowerBoat object assigned to it on line 1. In effect, the invocation

is morphed at runtime into an invocation of the show method that correctly draws a powerboat.

The programming language concept use to implement this form of polymorphism is called

dynamic binding. The invocation is attached, or bound to, the method to be executed during

runtime. Line 5 of Figure 8.29 is not a polymorphic invocation because line 1 declares pb1 to

be a PowerBoat reference variable and assigns it the location of a PowerBoat object. For non-

polymorphic invocations, the method located by the translator’s search to verify the existence of a

method with the appropriate signature is the method executed at runtime.

1 static PowerBoat pb1 = new PowerBoat(50, 300, 200, Color.MAGENTA, 400);

2

3 public void draw(Graphics g)

4 {

5 pb1.show(g);

6 }

Figure 8.29

Nonpolymorphic invocation of the method show by the object referenced by pb1.

The application PolymorphicInvocations shown in Figure 8.30 is a modification of

the application DesignTechniques presented in Figure 8.23. This version of the application

uses polymorphic invocations inside its draw call back method to produce the output shown in

Figure 8.31, which is the same output produced by the original version (Figure 8.24).

Line 11 of Figure 8.30 creates three Boat reference variables, which are then assigned (lines

15–17) the location of the three objects created on lines 8, 9, and 10. This is valid syntax because

all three of these objects’ classes (Figures 8.20–8.22) extend the class Boat (Figure 8.19).

Because the variables boat1, boat2, and boat3 now reference child objects, the invocations

on lines 23–25 are polymorphic invocations. The appearance of a properly drawn rowboat, sail-

boat, and powerboat on the game board shown in Figure 8.31 confirms that the search path used

by the Java runtime environment to locate the show method it executed began in the classes of the

objects rather than the class of the three reference variables (i.e., Boat). If the search had begun in

the Boat class, its show method would have drawn three hulls without oars, or a sail, or a propeller

(lines 23-32 of Figure 8.19).

 Chapter 8· Inheri tance ■ 389

1 import edu.sjcny.gpv1.*;

2 import java.awt.*;

3

4 public class PolymorphicInvocations extends DrawableAdapter

5 {

6 static PolymorphicInvocations ge = new PolymorphicInvocations();

7 static GameBoard gb = new GameBoard(ge, "Design Techniques");

8 static RowBoatV2 rb1 = new RowBoatV2(50, 200, 120, Color.YELLOW, 4);

9 static SailBoatV4 sb1 = new SailBoatV4(220, 200, 200, Color.GREEN, 200);

10 static PowerBoat pb1 = new PowerBoat(50, 300, 200, Color.MAGENTA, 400);

11 static Boat boat1, boat2, boat3;

12

13 public static void main(String[] args)

14 {

15 boat1 = rb1;

16 boat2 = sb1;

17 boat3 = pb1;

18 showGameBoard(gb);

19 }

20

21 public void draw(Graphics g)

22 {

23 boat1.show(g);

24 boat2.show(g);

25 boat3.show(g);

26 }

27 }

Figure 8.30

The application PolymorphicInvocations.

Figure 8.31

The output produced by the application PolymorphicInvocations.

390 ■ Programming Fundamentals Using Java

 8.5.38.5.3 Polymorphic Arrays Polymorphic Arrays

Definition

A polymorphic array is an array of parent reference variables that are used to store references

to child objects.

Polymorphic arrays are declared using the syntax discussed in Section 6.5, which is used to

declare any array of reference variables. For example, the array inventory declared below has the

potential to become a polymorphic array because the class Boat defined in Figure 8.19 is the super

class of the subclasses defined in Figures 8.20–8.22:

Boat[] inventory = new Boat[9];

If and when an element of the array inventory is assigned the address of a subclass object, it is

then being used as a polymorphic array. Arrays of abstract class reference variables can only be

used as polymorphic arrays because we cannot create an instance of an abstract class.

Each element of a polymorphic array could be assigned the address of the same type of sub-

class instance, in which case the array would be called a homogeneous polymorphic array. When

at least two different subclass objects are referenced from within the array, the array is being used

as a nonhomogeneous polymorphic array. Nonhomogeneous polymorphic arrays bring the power

of arrays into the concept of inheritance and further reduce the number of lines of code required

to produce an application.

The application PolymorphicArrays shown in Figure 8.32 is a modification of the applica-

tion PolymorphicInvocations presented in Figure 8.30. It uses a polymorphic array to store a

nine-boat inventory of Uncle Ed’s boat store. The output it produces is shown in Figure 8.33.

Line 11 of Figure 8.32 creates a polymorphic array named inventory whose elements are

reference variables in the abstract class Boat (Figure 8.19). Each time the loop that begins on line

15 executes, lines 17–21 create three new boats whose classes are shown in Figures 8.20–8.22.

Then, lines 22–24 add them to Uncle Ed’s inventory by storing them in the polymorphic array.

The loop variable, i, is used on lines 17–20 to change the (x, y) location, number of oars, and size

of the boats. It is also used on lines 22–24 to change the elements of the array that store the boats’

addresses.

The for loop that begins on line 32 uses polymorphic invocations of the show method to draw

each boat on the game board, which represents Uncle Ed’s boat storage lot.

1 import edu.sjcny.gpv1.*;

2 import java.awt.*;

3

4 public class PolymorphicArrays extends DrawableAdapter

5 {

6 static PolymorphicArrays ge = new PolymorphicArrays();

7 static GameBoard gb = new GameBoard(ge, "POLYMORPHIC ARRAYS");

8 static RowBoatV2 rb;

9 static SailBoatV4 sb;

 Chapter 8· Inheri tance ■ 391

10 static PowerBoat pb;

11 static Boat[] inventory = new Boat[9];

12

13 public static void main(String[] args)

14 {

15 for(int i = 0; i < 3; i++)

16 {

17 rb = new RowBoatV2(10 + i * 130, 75, 120, Color.YELLOW, i * 2 + 2);

18 sb = new SailBoatV4(10 + i * 170, 250, 110 + i * 15, Color.GREEN,

19 200 + i * 20);

20 pb = new PowerBoat(20 + i * 160, 350, 120 + i * 15, Color.MAGENTA,

21 400);

22 inventory[i * 3] = rb;

23 inventory[i * 3 + 1] = sb;

24 inventory[i * 3 + 2] = pb;

25 }

26

27 showGameBoard(gb);

28 }

29

30 public void draw(Graphics g)

31 {

32 for(int i = 0; i < 9; i++)

33 {

34 inventory[i].show(g);

35 }

36 }
37 }

Figure 8.32

The application PolymorphicArrays.

Figure 8.33

The output produced by the application PolymorphicArrays.

392 ■ Programming Fundamentals Using Java

Advantages of Polymorphic Arrays

The addresses of the new boats created on lines 17–21 of Figure 8.32 could have been assigned

directly into the array elements on these lines, in which case, lines 8–10 and 22–24 would be elimi-

nated from the program. This approach would have reduced the program to 31 lines with much of

the programs brevity coming from the use of a polymorphic array.

An alternative approach to this program would have been to declare three nonpolymorphic ar-

rays, one for each type of boat, as shown below:

 RowBoatV2[3] rb = new RowBoatV2[3];

 SailBoatV4[3] sb = new SailBoatV4[3];

 PowerBoat[3] pb = new PowerBoat[3];

The addition of these three lines and the additions to the body of the output loop (line 34),

which now requires an output of three arrays rather than one, would expanded the 31-line version

of the program to a 36-line program. Reductions in coding effort are typically realized when poly-

morphic arrays are used.

In addition, if the details of the nine boats in Uncle Ed’s inventory, including their type, were

to be input by the program user instead of being hard coded (as on lines 17–21), the polymor-

phic approach would reduce the storage requirements of the program. Any mix of nine rowboats,

sailboats, and powerboats could be saved in the nine-element polymorphic array, but the three-

nonpolymorphic-array approach would require that all three arrays be expanded to nine elements

to accommodate the case when all of the boats are of one type (e.g., all sailboats).

 8.5.4 8.5.4 Polymorphism’s Role in Parameter Passing Polymorphism’s Role in Parameter Passing

Because a super class can point to (i.e., store the address of) an instance of any of its sub-

classes, a parameter whose type is the super class can be passed an argument whose type is any of

its subclasses. Taking this concept to its extreme, because all classes inherit directly or indirectly

from the class Object, any object’s address can be passed to a parameter whose type is Object.

We will utilize this fact when we code generic classes in Chapter 13.

Suppose we wanted to code a method that determined if two of Uncle Ed’s boats occupied the

same (x, y) location. We would code the method in the super class Boat (Figure 8.19) to enable any

instance of its subclasses (a rowboat, a sailboat, or a powerboat) to invoke it. The method would

compare that object’s x and y data members to those of the objects passed to its parameter. To

ensure that any of these three types of boats could be passed to the method, the parameter’s type

would be the super class Boat. The code for the method is given below:

1 public boolean samePosition(Boat aBoat) //code in the superclass Boat

2 {

3 if(x == aBoat.x && y == aBoat.y)

4 {

5 return true;

6 }

7 else

 Chapter 8· Inheri tance ■ 393

8 {

9 return false;

10 }

11 }

If the method was to determine if any of Uncle Ed’s boats occupied the same (x, y) location, the

static method shown below could be coded in the super class Boat. The method signature contains

one parameter, a reference variable that can store the address of an array of instances of the class

Boat or instances of Boat’s subclasses. When the method is invoked, it is passed the polymorphic

array that contains Uncle Ed’s boat inventory. It returns true if two or more boats are at the same

(x, y) location.

1 public static boolean samePositionV2(Boat[] boats) //coded in the

2 { //superclass Boat

3 for(int i = 0; i< boats.length; i++)

4 {

5 for(int j = i + 1; j< boats.length; j++)

6 {

7 if(boats[i].x == boats[j].x && boats[i].y == boats[j].y)

8 {

9 return true;

10 }

11 }

12 }

13 return false;

14 }

8.5.5 8.5.5 The methods The methods getClassgetClass and and getNamegetName and the and the instanceofinstanceof operator. operator.

Suppose your Uncle Ed expanded the requirements of his inventory program to include output-

ting the inventory of a specified type of boat. For example, print the details of all of the sailboats

in the inventory. Then when a customer expressed an interest in a sailboat, Uncle Ed could give the

customer a list of the sailboats currently in his inventory.

If the three nonpolymorphic arrays were used in the program, the type of the boat the customer

was interested in could be used in the Boolean conditions of nested if-else statements to decide

which of the three arrays to output. The following pseudocode fragment uses this approach to

output the type of boat stored in the input string typeSpecified:

 if(typeSpecfied.equalsIgnoreCase("rowboat")

 {

 //a for loop to output the contents of the rowboat array

 }

 else if(typeSpecified.equalsIgnoreCase("sailboat")

 {

 //a for loop to output the contents of the sailboat array

 }

 else

 {

394 ■ Programming Fundamentals Using Java

 //a for loop to output the contents of the powerboat array

 }

Although this implementation of the new requirement is rather straight forward, as discussed

at the end of the previous section, this three-nonpolymorphic-array approach increases the pro-

gram’s size and its storage requirements. A more efficient single-polymorphic-array implementa-

tion of the new requirement could be used if there was some way of identifying the type each object

referenced in the polymorphic array. The following pseudocode fragment could then be used to

output only the type of boat stored in the input string typeSpecified:

for(int i=0; i < inventory.length; i++)//inventory is a polymorphic array

{

 if(//inventory[i] is of the typeSpedified)

 {

 System.out.println(inventory[i].toString());

 }

}

Fortunately, the API classes Object and Class provide the ability to identify the type, (i.e.,

the class) of any object.

The getClass Method in the Class Object

All classes inherit from the class Object. It is a super class of all classes contained in the API

and the implied super class of every programmer defined class. The class Object is at the top of

every class’s inheritance chain. We have already taken advantage of this fact in Chapter 3 when

we used the toString method inherited from the class Object to output the location of an object.

One of the other methods inherited from the class Object is its getClass method. This

method has an empty parameter list and returns the location of an instance of a Class object.

The getName Method in the Class Class

When an object is constructed information about the object, such as its class name and the

name of the class it extends, is recorded in an instance of a Class object that is created by the Java

Virtual Machine and associated with the constructed object. The location of the associated Class

object can be fetched by invoking Object’s getClass method on the constructed object, which

can then be used to invoke any of the methods in the class Class.

One of these methods, getName, can be used to determine the name of any object’s class.

The method has an empty parameter list and returns a string containing the class’s name. The fol-

lowing code fragment uses the five-parameter constructor of the class PowerBoat (Figure 8.22)

to construct the object pb2 and uses the getClass and getName methods to output the name of

pb2’s class, PowerBoat:

1 PowerBoat pb = new PowerBoat(160, 350, 120, Color.MAGENTA, 400);

2 Class c = pb.getClass();

3 System.out.println(c.getName());

 Chapter 8· Inheri tance ■ 395

Often lines 2 and 3 are combined into one line:

 System.out.println(pb.getClass.getName());

This abbreviated code version is used in the following code fragment to output only the Power-

Boat objects stored in the polymorphic array inventory:

 for(int i=0; i < inventory.length; i++)

 {

 if(inventory[i].getClass().getName().equalsIgnoreCase("PowerBoat"))

 {

 System.out.println(inventory[i].toString());

 }

 }

The application ObjectAndClass shown in Figure 8.34 is a modification of the application

PolymorphicArrays presented in Figure 8.32. When launched, it asks the user what type of boat

the customer is interested in and then uses the getClass and getName methods to identify that

subset of Uncle Ed’s inventory and outputs a description of these boats to the system console. The

graphical and console output produced by the application is shown in Figure 8.35.

Line 8 of Figure 8.32 and the body of the loop that begins on line 15 create a polymorphic ar-

ray named inventory whose elements are reference variables in the abstract class Boat defined

in Figure 8.19. Each time the loop executes, lines 17–21 create three new boats whose classes are

shown in Figures 8.20–8.22. The addresses of these objects are placed directly into the elements of

the polymorphic array on lines 17, 19, and 21.

The Boolean condition of the if statement coded on line 29 uses the methods getClass and

getName to determine if the class name of the object referenced by the ith element of the array

inventory is the same as the string s input on line 25. If it is, the object is output to the console

on line 31 using a polymorphic invocation of the toString method. The console output is shown

in the bottom portion of Figure 8.35. Figure 8.35a shows the dialog box displayed by line 25 con-

taining the user input SAILBOATV4, which resulted in the console output shown at the bottom of

Figure 8.35. Figure 8.35b shows the graphical output produced by the polymorphic invocations of

the show method (line 41 of Figure 8.34).

1 import edu.sjcny.gpv1.*;

2 import java.awt.*;

3 import javax.swing.*;

4

5 public class ObjectAndClass extends DrawableAdapter

6 { static ObjectAndClass ge = new ObjectAndClass();

7 static GameBoard gb = new GameBoard(ge, "getClass and getName Methods");

8 static Boat[] inventory = new Boat[9];

9

10 public static void main(String[] args)

11 {

12 String s;

13

396 ■ Programming Fundamentals Using Java

14 // Use of a polymorphic array

15 for(int i = 0; i < 3; i++)

16 {

17 inventory[i*3] = new RowBoatV2(10 + i*130, 75, 120,

18 Color.YELLOW, i*2 + 2);

19 inventory[i*3 + 1] = new SailBoatV4(10 + i*170, 250 , 110+ i *15,

20 Color.GREEN, 200 + i*20);

21 inventory[i*3 + 2] = new PowerBoat(20 + i*160, 350 , 120+ i *15,

22 Color.MAGENTA, 400);

23 }

24

25 s = JOptionPane.showInputDialog("Interested in, a rowboatV2," +

26 "\na sailboatV4, or a powerboat?");

27 for(int i = 0; i < inventory.length; i++)

28 {

29 if(inventory[i].getClass().getName().equalsIgnoreCase(s))

30 {

31 System.out.println(inventory[i].toString());

32 }

33 }

34 showGameBoard(gb);

35 }

36

37 public void draw(Graphics g)

38 {

39 for(int i = 0; i < 9; i++)

40 {

41 inventory[i].show(g);

42 }

43 }

44 }

Figure 8.34

The application ObjectAndClass.

 (a) (b)

 Chapter 8· Inheri tance ■ 397

System Console Output:

Location: (10, 250), length: 110, Color: java.awt.Color[r=0,g=255,b=0], Sail Area: 200

Location: (180, 250), length: 125, Color: java.awt.Color[r=0,g=255,b=0], Sail Area: 220

Location: (350, 250), length: 140, Color: java.awt.Color[r=0,g=255,b=0], Sail Area: 240

Figure 8.35

The output produced by the application ObjectAndClass.

The instanceof Operator

Java provides a more succinct syntax than that used on line 29 of Figure 8.34 for determining

the class of an object: its relational operator instanceof. This is a binary operator that can be

used in a Boolean expression. Its first operand must be a reference variable, and its second operator

must be a case-sensitive class name. The operator returns the value true when the class name is

the class of the object referenced by the first operand. The Boolean condition on the last line of this

code fragment evaluates to true.

 Boat[] inventory = new Boat[2];

 inventory[0] = new PowerBoat(50, 100, 200, Color.MAGENTA, 400);

 if(inventory[i] instanceof PowerBoat)

Because a string variable cannot be used as one of the arguments, it cannot be used in the

Boolean condition on line 29 of Figure 8.34 to determine if an element of the array inventory is

an instance of the class whose name is stored in the string s.

The two most common uses of the instanceof operator are to:

 1. Ensure that the casting of a polymorphic reference to an object does not result in a syntax

error

 2. Eliminate the need to include an implementation or an abstract version of a method in a

parent class when the method is invoked polymorphically

The code fragment below demonstrates both of these uses. The instanceof operator is used

on line 8 to prevent the translation error associated with an attempt to cast the RowBoat object

declared in line 3 into a PowerBoat reference on line 10. In addition, because the casting permits

a nonpolymorphic invocation of the show method on line 11, the translator looks into the Power-

Boat class, rather than the Boat class, to verify the method’s signature. The Boat class would not

have to include a show method with the same signature as the PowerBoat class.

1 Boat[] inventory = new Boat[2]; //used as a polymorphic array

2 inventory[0] = new PowerBoat(50, 100, 200, Color.MAGENTA, 400);

3 inventory[1] = new RowBoatV2(50, 300, 75, Color.YELLOW, 2);

4 PowerBoat pb1;

5

6 for(int i = 0; i < inventory.length; i++)

7 {

8 if(inventory[i] instanceof PowerBoat) //show the powerboat(s)

398 ■ Programming Fundamentals Using Java

9 {

10 pb1 = (PowerBoat) inventory[i];

11 pb1.show()

12 }

13 }

NOTE

When using a preexisting super class to implement a polymorphic array, the use

of the instanceof operator and casting eliminates the syntax error associated

with using the elements of the array to polymorphically invoke a child class method

whose signature is not defined in the parent class. It also eliminates the need to

include a version of the method in the super classes that we write.

 8.6 8.6 INTERFACES INTERFACES

An interface is very similar to an abstract super class that contains only abstract methods and/

or static final constant definitions. They are most easily understood by comparing them to this type

of super class. Like a class, the source code of an interface is saved in a file with a .java extension,

and its translation is sorted in a file with a .class extension. In addition, it is good programming

practice to begin the name of an interface with a capital letter.

Definition

An interface is a specification of the signatures of related methods that are implicitly abstract

and/or a declaration of public constants that are implicitly static and final.

Figure 8.36 compares the syntax and keywords associated with an abstract super class and an

interface. At the bottom of the figure, it also compares the syntax of heading of a class that extends

an abstract super class and a class that implements an interface. As shown on the top right side of

the figure, the heading of an interface substitutes the keyword interface for the two keywords

abstract and class used in the definition of an abstract super class. In addition, the interface

definition eliminates the keyword abstract used in the method signatures defined in an abstract

class. Because the constant definitions included in an interface are implicitly static and final,

these keywords are not used and the constants should be initialized. Interface methods and constant

definitions are always implicitly public. They cannot be declared to be private or protected.

As shown in the bottom right side of Figure 8.36, a class that implements an interface uses the

keyword implements in its heading rather than the keyword extends. Consistent with the use of

these keywords, we say that a class implements an interface rather than extends it.

A syntactical difference not shown in Figure 8.36 is that while a class’s heading can state that

it extends one (and only one) super class, it can state that it implements more that one interface.

When this is the case, the names of the interfaces in the class’s implements clause are separated

by commas. For example:

 public class Class1 implements Interface1, Interface2, Interface3

 Chapter 8· Inheri tance ■ 399

When a class implements one or more interfaces and also extends a class, the extends clause is

coded in its heading before the implements clause. For example:

 public class Class2 extends Parent implements Interface1, Interface2

A class that includes an implements clause in its heading must implement all of the methods

whose signatures are included in the interface. There only two exceptions to this. The first excep-

tion is when the class is an abstract class, in which case it cannot implement any of the methods,

and its subclasses must include implementations of all of the interface methods. The second excep-

tion is when the class inherits implementations of the methods. These inherited implementations

are treated like any other inherited methods. For example, the same search techniques are used

to locate them at translation and runtime, and subclasses can override the inherited implementa-

tions. In addition, the inherited version of the overridden method can be invoked by preceding the

method name with the keyword super followed by a dot.

As is the case with abstract classes, we cannot declare an instance of an interface, but the type of a

reference variable can be the name of an interface. A very important use of interface reference variables

and interfaces in general is in the coding of generic classes, which will be discussed in Chapter 13.

In summary, an interface can be considered to be an abstract super class that contains only public

abstract methods and public static final constant definitions, with the following idiosyncrasies:

� a class can implement several interfaces

� interfaces and abstract classes have syntactical differences (shown in Figure 8.36)

� interfaces cannot contain method implementations

� interfaces are used in the coding of generic classes

Abstract Super Class

Definition of the super class Parent

public abstract class Parent

{ public static final int a = 10;

 // other constants can

 // be included

 public abstract int extra();

 //other abstract methods

 //can be included

}

Heading of a class that extends the

super class Parent

public class Child extends Parent

Interface

Definition of the interface AnInterface

public interface AnInterface

{ public int a = 10;

 // other constants can

 // be included

 public int extra();

 //other signatures

 //can be included

}

Heading of a class that implements the

interface AnInterface

public class AClass implements

 AnInterface

Figure 8.36

A comparison of abstract super class and interface syntax.

400 ■ Programming Fundamentals Using Java

When to Define and Use an Interface

The similarities of an interface and an abstract class can be a source of confusion when trying

to decide which construct to use for a particular programming application. An interface is pre-

ferred when we want to standardize the signatures and functionality of methods that implement a

commonly performed task on objects that may not be related. By “may not be related,” we mean

that with the exception of the class Object, the classes that perform these common tasks may not

share a common ancestor.

For example, the need to compare two objects was anticipated to be such a common task that

an interface named Comparable is included in the Java API. It defines the signature of a method

named compareTo, and the interface’s documentation describes the functionality of the method.

Many nonrelated classes included in the API, such as the String class and the BigInteger class,

implement this interface, and they all implement the functionality described in the interface’s

documentation. They all compare two objects and return a zero, a negative or a positive value,

that reflects the equality or ordering of the two objects being compared. This use of interfaces

facilitates the use of any class’s compareTo method if we know that the class has implemented the

interface Comparable. In general:

� an interface is defined to standardize the signatures and functionality of methods that

implement a commonly performed task on objects that may not share a common ances-

tor other than the class Object

� interfaces facilitate the use of methods by standardizing both their signature and their

functionality, as described in their documentation

The code of the interface Drawable is shown in Figure 8.37. It defines the signatures of two

methods commonly used in game applications. As is typically the case, the description of the in-

terface, which is given in Table 8.1, contains the signatures of the methods and describes the func-

tionality of the two methods. It is considered good programming practice that all implementations

of an interface’s methods conform to the functionality described in the interface’s documentation.

1 import java.awt.*;

2

3 public interface Drawable

4 {

5 boolean canDraw(int drawableWidth, int drawableHeight);

6 void show(Graphics g);

7 }

Figure 8.37

The interface Drawable.

 Chapter 8· Inheri tance ■ 401

Table 8.1

The Documentation of the Interface Drawable

The Interface Drawable

Methods

Returned

Type
Signature and Functionality Description

boolean

canDraw(int width, int height)

Returns true if the object that invokes it can be drawn on a Graphics area

whose lower right corner is at location (width, height)

void

show(Graphics g)

Draws the game piece that invoked it on the graphic object g at its current (x, y)

location

To close out our discussion of interfaces, consider the following scenario. The author of the

game application InterfaceUse, shown in Figure 8.38, purchased a package containing the trans-

lated versions (bytecodes) of several game piece class implementations. The documentation of the

package, which included a copy of Table 8.1, stated that all of the game-piece classes implemented

the interface Drawable described in that table.

Six instances of two of these classes, TopHat and SnowmanV9, are declared on lines 11–16

of the application. Knowing that both of these classes implement the interface Drawable, the ap-

plication programmer realized that the addresses of the six objects could be efficiently stored in a

polymorphic array of type Drawable (which is declared on line 7 and assigned on lines 11–16 of

Figure 8.38), and that the objects could then be efficiently drawn/not drawn using invocation of the

two methods defined in the interface (lines 22–27 of Figure 8.38).

The output of the program is given in Figure 8.39, which reflects the fact that top hats can

only be drawn if they are completely on the game board, and snowmen cannot be drawn if they

are completely off the game board. The source code of the two game-piece classes and the class

GamePiece that they extend (which in this hypothetical scenario, the application programmer

never saw) are given in Figures 8.40, 8.41, and 8.42, respectively.

1 import edu.sjcny.gpv1.*;

2 import java.awt.*;

3

4 public class InterfaceUse extends DrawableAdapter

5 { static InterfaceUse ge = new InterfaceUse();

6 static GameBoard gb = new GameBoard(ge, "INTERFACES", 700, 700);

7 static Drawable[] items = new Drawable[6];

8

9 public static void main(String[] args)

10 {

402 ■ Programming Fundamentals Using Java

11 items[0] = new TopHat(-10, 30, Color.BLUE, 51, 60); //part off

12 items[1] = new TopHat(350, 360, Color.BLACK, 51, 60);

13 items[2] = new TopHat(600, 640, Color.GREEN, 51, 60); //part off

14 items[3] = new SnowmanV9(-10, 120, Color.BLUE, 80, 152); //part off

15 items[4] = new SnowmanV9(200, 360, Color.BLACK, 80, 152);

16 items[5] = new SnowmanV9(400, 640, Color.GREEN, 80, 152); //part off

17 showGameBoard(gb);

18 }

19

20 public void draw(Graphics g)

21 {

22 for(int i = 0; i < items.length; i++)

23 {

24 if(items[i].canDraw(700, 700))

25 {

26 items[i].show(g);

27 }

28 }

29 }

30 }

Figure 8.38

The application InterfaceUse.

Figure 8.39

The output produced by the application InterfaceUse.

 Chapter 8· Inheri tance ■ 403

1 import java.awt.*;

2

3 public class TopHat extends GamePiece implements Drawable

4 {

5

6 public TopHat(int x, int y, Color hatColor, int w, int h)

7 {

8 this.x = x;

9 this.y = y;

10 this.hatColor = hatColor;

11 this.w = w;

12 this.h = h;

13 }

14 public void show(Graphics g)

15 {

16 g.setColor(hatColor);

17 g.fillRect(x + w/4, y, w/2, (int)(h*0.9)); // hat top

18 g.fillRect(x, y + (int)(h*0.9), w, (int)(h*0.2)); // brim

19 }

20 public boolean canDraw(int gbWidth, int gbHeight) //Completely on the

21 { //game board

22 if(x >= 6 && x + w <= gbWidth

23 &&

24 y >= 30 && y + (int)(h * 1.1) <= gbHeight)

25 {

26 return true;

27 }

28 else

29 {

30 return false;

31 }

32 }

33 }

Figure 8.40

The class TopHat.

1 import java.awt.*;

2 import javax.swing.*;

3

4 public class SnowmanV9 extends GamePiece implements Drawable

5 {

6 public SnowmanV9(int x, int y, Color hatColor, int w, int h)

7 {

8 this.x = x;

9 this.y = y;

10 this.hatColor = hatColor;

404 ■ Programming Fundamentals Using Java

11 this.w = w;

12 this.h = h;

13 }

14 public void show(Graphics g)

15 {

16 g.setColor(Color.WHITE);

17 g.fillOval(x + 20, y + 30, 40, 40); //head

18 g.fillOval(x, y + 70, 80, 80); //body

19 g.setColor(hatColor);

20 g.fillRect(x + 30, y, 20, 30); //hat

21 g.fillRect(x + 20, y + 30, 40, 2); //brim

22 }

23 public boolean canDraw(int gbWidth, int gbHeight) //Not completely off

24 { //the game board

25 if(x + w >= 6 && x <= gbWidth

26 &&

27 y + h > 30 && y <= gbHeight)

28 {

29 return true;

30 }

31 else

32 {

33 return false;

34 }

35 }

36 }

Figure 8.41

The class SnowmanV9.

1 import java.awt.*;

2

3 public abstract class GamePiece

4 {

5 protected int x;

6 protected int y;

7 protected int w;

8 protected int h;

9 protected Color hatColor;

10

11 }

Figure 8.42

The abstract class GamePiece.

As shown in Figures 8.40 and 8.41, the TopHat and SnowmanV9 classes implement the inter-

face Drawable and include an implementation of the functionality of the two Drawable methods

particular to them. The implementer of the TopHat class decided that a top hat can only be drawn

if it is completely on the game board, so the version of the method coded in Figure 8.40 returns

 Chapter 8· Inheri tance ■ 405

true when this is the case. Snowmen will eventually be made to enter the game board from its

edges, so they can be drawn if any part of them is on the game board. The code of the SnowmanV9’s

canDraw method coded in Figure 8.41 returns true when this is the case.

The output of the program shown in Figure 8.39 contains one top hat and three snowmen. This

confirms the fact that the polymorphic invocations of the canDraw and show methods on lines 24

and 26 of Figure 8.38 are locating the correct subclass methods. As noted by the comments at the

end of lines 11 and 13 of Figure 8.38, the blue and green top hats are partially off the game board,

in which case their canDraw method returns false, and they are not drawn. All three snowmen

are either partially or completely on the game board, in which case their canDraw method returns

true, and they are all drawn.

The data members common to the classes TopHat and SnowmanV9 are collected in the ab-

stract class GamePiece (Figure 8.42), which they extend. They are declared in this super class with

protected access (lines 5–9 of Figure 8.42). As indicated in the top half of Figure 8.27, this gives the

subclasses’ methods the ability to access them directly without using set and get methods (e.g.,

lines 17 and 18 of Figure 8.40). In our hypothetical scenario, the application would be coded in a

separate package, so it would not be able to access these data members.

 8.6.1 8.6.1 Adapter Classes Adapter Classes

When an interface contains a significant number of methods, it is good programming practice

to provide an adapter class for the interface. The term adapter class is a generic term for a class that

implements an interface with methods that contain empty code blocks. It is also good program-

ming practice to assign the name of the adapter class the name of the interface class it implements,

concatenated with the word “Adapter.” For example, the name of the adapter class for the interface

Drawable shown in Figure 8.37 would be DrawableAdapter. The code of this class is given in

Figure 8.43.

public class DrawableAdapter implements Drawable

{

 boolean canDraw(int drawableWidth, int drawableHeight)

 {

 }

 void show(Graphics g);

 {

 }

}

Figure 8.43

The adapter class DrawableAdapter.

406 ■ Programming Fundamentals Using Java

The adapter class is provided to permit a new class to implement only the methods defined in

the interface that are relevant. When this is the case, the new class extends the adapter class and

then overrides the empty methods with its implementation. For example, if the specification of the

class RocketShip only required that it implement the show method in the Drawable interface,

then, assuming the DrawableAdapter class shown in Figure 8.43 exists, the code of the Rocket-

Ship class would be written as follows:

 public class RocketShip extends DrawableAdapter

 {

 // the data members of the class RocketShip

 @Override

 public show (Graphics g)

 {

 //the code to draw a RocketShip object

 }

 //the remainder of the methods of the class RocketShip

 }

We will extend some of the adapter classes in the Java API when we study graphical user in-

terfaces in Chapter 11. The game programming environment contains an interface named Draw-

able that defines the signatures of all of the draw call back methods described in Appendix A.

The game environment also contains the adapter class DrawableAdapter, so a game program’s

class does not have to implement all of the call back methods if it extends DrawAbleAdapter, as

does line 4 of Figure 8.37.

It should be noted that when a new class is a child class the use of an adapter class is not an

alternative, because a class can only extend one class. The new class’s heading would have to con-

tain an implements clause, and all of the interface methods would have to be implemented. The

interface methods not used by the class would simply contain an empty code block.

 8.7 8.7 SERIALIZING OBJECTS SERIALIZING OBJECTS

Definition

Object serialization is the act of disassembling objects before writing them to a disk file.

Object deserialization is the act of reassembling objects after they are read from a disk file.

In Section 4.8, we discussed techniques used to transfer information to and from a disk file.

As part of these techniques, information is written to the disk using the methods in the Print-

Writer class (e.g., println and print). These methods write a string to the file, which means

that the information in the file is represented as ASCII characters. Any piece of information

written to the file that is not a string must be converted to a string before it is written.

This means that when the contents of the variables houseNumber and quantity defined in

the code fragment below are written to the disk, they produce the same output to the disk: the three

characters 175.

 Chapter 8· Inheri tance ■ 407

String houseNumber = "175"

int quantity = 175;

Because the type of the information written to the file (e.g., String and int)is not repre-

sented in the file, a written description of the information in the file must be provided with the file

to properly read and process the data in the file. When a reference to an object is included in the

parameter passed to the PrintWriter’s output methods, the object’s toString method is implic-

itly invoked, and the returned string is written to the file. In this case, the file description should

include not only the types of the data members written to the file, but also the order in which they

were written and the objects’ classes, so the object written to the file can be properly reconstructed

by the program that reads the information from the file.

The writeObject method in the class ObjectOutputStream presents a better alternative

for writing the data members of an object to a disk file. When this method is used to write an object

to a file, all of the information required to reconstruct the object when it is read from the file (the

data members’ types, the order in which they were written, and the class of the objects) is written

to the file by the method. This information can then be used by the readObject method contained

in the ObjectInputStream class to reconstruct the object when the method is used to read the

object from the file. The gleaning of all of this additional information from objects when they are

written to a file is called object serialization, and the use of this information to efficiently recreate

objects when they are read from a file is called object deserialization.

Object serialization allows us to write all of an object’s data members to a disk file as a single

entity by simply invoking the ObjectOutputStream class’s writeObject method and passing

the object to the method’s parameter. Object deserialization allows us to read all of an object’s

data members from a disk file by simply invoking the ObjectInputStream class’s readObject

method. This method recreates a serialized object and returns the address of the recreated object.

Because the class of each object is written to the file, the file can contain different types of objects.

When these objects are related as subclasses of the same super class, the file can be written to and

read from polymorphically.

The application SerializingObjects presented in Figure 8.44 demonstrates the serial-

ized writing and reading of objects to/from a disk file. It is a modification of the application

PolymorphicArrays shown in Figure 8.32. This version of the application outputs the nine-

boat inventory of Uncle Ed’s boat yard, stored in a polymorphic array, to a serialized disk file

using the writeObject method and reads the objects back into the array using the readOb-

ject method. Sample outputs produced at various points in the program’s execution are given

in Figure 8.45.

Line 12 of Figure 8.44 creates a polymorphic array named inventory whose elements are ref-

erence variables in the abstract class Boat (Figure 8.19). Each time the loop that begins on line 16

executes, lines 18–22 create three new boats whose classes are shown in Figures 8.20–8.22. Then,

lines 23–25 add them to Uncle Ed’s inventory by storing them in the polymorphic array. When the

program in Figure 8.44 is launched, line 37 of the draw method displays the boats on the game

board because each element of the array inventory contains a non-null reference (line 35). The

initial output of the program is shown in Figure 8.45a.

408 ■ Programming Fundamentals Using Java

When the game board’s right arrow button is clicked, line 59 of the button’s call back method

writes the serialized version of all of the boat objects to a disk file named “Inventory.” The file is

created and attached to the ObjectOutputStream object outFile on lines 52 and 53; this is the

object used on line 59 to invoke the writeObject method.

After subsequent clicks of the game board’s up arrow button, line 46 of the button’s call back

method deletes the boats from the polymorphic array by setting all of its elements to null. When

the call back method ends, the game environment invokes the draw call back method. This method

then displays an empty game board (Figure 8.45b) because line 35 prevents the show method from

executing. If it had executed, the program would have been terminated by a NullPointerExcep-

tion because all of the elements of the array inventory are null.

To restore and redisplay Uncle Ed’s inventory, line 77 of the left button call back method reads

the serialized boat objects from the disk file “Inventory” and places their addresses into the poly-

morphic array. The file is opened and attached to the ObjectInputStream object inFile on

lines 72 and 73; this is the object used on line 77 to invoke the readObject method. After the left

button call back methods ends, the draw call back method executes and line 37 of the draw call

back method displays the restored nine-boat inventory on the game board (left side of Figure 8.42)

via polymorphic invocations to the boats’ show methods. The redisplay of the inventory verifies

that line 59 correctly wrote the serialized objects to the disk file, and line 77 correctly read them

back into the polymorphic array.

The coercion used in Figure 8.44 on line 77 is necessary because the readObject method,

invoked on that line, returns a reference whose type is Object. When writing and reading serial-

ized objects, the exceptions coded on lines 64, 81, and 84 must be caught (as shown) or thrown (to

be discussed in Chapter 10) inside the methods that perform the disk I/O. Alternately, a throws

clause can be included in the methods’ headings. If the methods override a method, the overridden

method must contain the same throws clause, or the throws clause alternative cannot be used.

Because the call back methods override the methods in the DrawableAdapter class, the catch

clause alternative was used in this program.

1 import edu.sjcny.gpv1.*;

2 import java.awt.*;

3 import java.io.*;

4

5 public class SerializingObjects extends DrawableAdapter

6 {

7 static SerializingObjects ge = new SerializingObjects();

8 static GameBoard gb = new GameBoard(ge, "SERIALIZING OBJECTS");

9 static RowBoatV2 rb;

10 static SailBoatV4 sb;

11 static PowerBoat pb;

 Chapter 8· Inheri tance ■ 409

12 static Boat[] inventory = new Boat[9];

13

14 public static void main(String[] args)

15 {

16 for(int i = 0; i < 3; i++)

17 {

18 rb = new RowBoatV2(10 + i * 130, 75, 120, Color.YELLOW, i * 2 + 2);

19 sb = new SailBoatV4(10 + i * 170, 250, 110 + i * 15, Color.GREEN,

20 200 + i * 20);

21 pb = new PowerBoat(20 + i * 160, 350, 120 + i * 15, Color.MAGENTA,

22 400);

23 inventory[i * 3] = rb;

24 inventory[i * 3 + 1] = sb;

25 inventory[i * 3 + 2] = pb;

26 }

27

28 showGameBoard(gb);

29 }

30

31 public void draw(Graphics g)

32 {

33 for(int i = 0; i < 9; i++)

34 {

35 if(inventory[i] != null)

36 {

37 inventory[i].show(g);

38 }

39 }

40 }

41

42 public void upButton() //delete the RAM based inventory

43 {

44 for(int i = 0; i < 9; i++)

45 {

46 inventory[i] = null;

47 }

48 }

49 public void rightButton() //output inventory to the file

50 {

51 try

52 { FileOutputStream fos = new FileOutputStream("Inventory");

53 ObjectOutputStream outFile = new ObjectOutputStream(fos);

54

55 for(int i = 0; i < 9; i++)

56 {

57 if(inventory[i] != null)

58 {

59 outFile.writeObject(inventory[i]);

60 }

410 ■ Programming Fundamentals Using Java

61 }

62 outFile.close();

63 }

64 catch(IOException e)

65 {

66 }

67 }

68

69 public void leftButton() //input inventory from the file

70 {

71 try

72 { FileInputStream fis = new FileInputStream("Inventory ");

73 ObjectInputStream inFile = new ObjectInputStream(fis);

74

75 for(int i = 0; i < 9; i++)

76 {

77 inventory[i] = (Boat) inFile.readObject();

78 }

79 inFile.close();

80 }

81 catch(IOException e)

82 {

83 }

84 catch(ClassNotFoundException e)

85 {

86 }

87 }

88 }

Figure 8.44

The application SerializingObjects.

 (a) (b)

Figure 8.45

Outputs produced by the application SerializingObjects.

 Chapter 8· Inheri tance ■ 411

In order for an object to be serialized, its data members must be serializable. Primitive vari-

ables and strings are serializable, as are primitive arrays. The API documentation indicates that

if a class implements the interface Serializable, then instances of the class are serializable; in

addition, objects whose data members reference these serializable objects are serializable. The

documentation of the API classes state which interfaces they implement. The API Color class,

the BigDecimal and BigInteger classes, and many other API classes implement the interface

Serializable.

The heading of the class whose objects are permitted to be serialized should indicate that it

implements the interface Serializable, and all of its data members should be serializable. If any

of the class’s data members are not serializable, they should be declared transient.

The Serializable interface is imported from the API java.io package (line 3 of Figure

8.44), and it does not contain any method signatures to implement. Because all of the objects be-

ing serialized in the application SerializingObjects extend the class Boat, the implements

clause was added to that class’s heading (line of Figure 8.19).

 8.8 8.8 CHAPTER SUMMARY CHAPTER SUMMARY

Inheritance establishes a parent-child relationship between two classes in which all of the

methods and data members of the parent class become part of the child class. Including the key-

word extends in the class’s heading of any Java class designates it as a child class, and the class

name that follows it designates its parent class. A Java class can have one parent, and it can have

multiple children unless the class is declared to be final. A child class also inherits the data mem-

bers and methods of its parent’s class’s parent recursively. When a method is invoked on an object,

the runtime environment begins its search for the method in the object’s class and continues the

search up the class’s inheritance chain.

Functionality is added to an inherited class by coding additional data members and methods in

the child class and by overriding an inherited method: that is, including a method in a child class that

has the same signature as an inherited method. The translator will verify the signature of an over-

ridden method if the child class includes the @Override directive before the signature of its version

of the method. This is considered to be good programming practice. Inherited methods can be over-

loaded in the child class by changing the type or number of parameters in their parameter list.

To prevent a method from being overridden, the keyword final is used in its signature. When

a class is declared to be final, it cannot be extended. Methods that enforce security on systems

are usually declared to be final to prevent them from being overridden. An abstract class is used

to collect data members and methods that are common to several classes into one parent class,

which is considered to be good design practice. A class is designated to be abstract by including

the keyword abstract in its heading before the keyword class. An abstract class cannot be

instantiated.

Parent class constructors are not inherited, but they can be invoked as the first line of a child

class constructor by coding the keyword super followed by an argument list. If the child does not

412 ■ Programming Fundamentals Using Java

explicitly invoke a parent constructor, the parent’s default constructor is implicitly invoked. The child

can also invoke inherited public or protected methods, including parent methods that were over-

ridden, by beginning the invocation with the keyword super followed by a dot. This is often done

in overridden methods to include the functionality of the parent method in the child’s version of the

method. Methods and data members whose access is designated protected are hidden from non-

child classes contained in a separate package. Protected methods and data members of a class can be

accessed by members in the same package as the class as well as by members in its subclass.

Polymorphism is a powerful feature of inheritance that is based on the fact that parent refer-

ence variables can store the address of a child class object. This permits us to store references to

any type of child object in one array of parent reference variables, and to execute each child’s ver-

sion of a method by invoking it on each element of the polymorphic array. It also permits a child

class instance to be passed to, and processed by, a method whose parameter type is that of the

parent class. The method can perform child class specific processing by using the getClass and

getName methods and the instanceof operator to determine the name and class of the object

passed to the method. Alternately, polymorphism also permits a parent method to invoke a child

class method to perform child class specific processing. The parent class usually includes an ab-

stract version of the method to impose a translator enforced requirement that its children provide

an implementation of the method.

Interfaces are similar to abstract classes that only contain abstract methods and static

final constants. Interfaces are used to share constants and to standardize the signatures and func-

tionality of methods that perform common tasks on objects that may not share a common ancestor.

When a class includes an implements clause in its heading, it must provide an implementation

for every method defined in the interface. Alternately, it could extend a class (referred to as an

adapter class) that provides empty implementations of the interface’s methods and override one

or more of the methods. A class can implement multiple interfaces, and interfaces play an impor-

tant role in the implementation of generic methods and classes.

Objects can be transferred to and from disk files using the techniques called serializing and

deserializing, respectively. Object serialization is the act of disassembling objects before writing

them to a disk file, and object deserialization reassembles them after they are read from the disk

file.

Knowledge ExercisesKnowledge Exercises

 1. True or false:

 a) Parent class is to child class as base class is to super class.

 b) A parent class can inherit data members and methods from to a child class.

 c) A Java parent class can have multiple child classes that inherit its data members and

methods.

 d) A parent class includes an extends clause in its heading to specify its child class.

 e) A child class inherits all the methods of its parent class including the parent’s constructors.

 f) In Java, a child class may only extend (inherit from) one class.

 Chapter 8· Inheri tance ■ 413

 g) Several child classes can inherit from the same parent.

 h) Parent class constructors are not inherited, but they can be invoked from within the child

class.

 i) When two methods in an inheritance chain have the same name but different parameter

lists, we say they are overridden.

 j) An inherited method can be invoked by a method within a child class.

 k) The keyword final is used to prevent a method from accidentally being overridden.

 l) A class can implement more than one interface.

 m) To extend a class, we must have the source code of the class.

 n) By default, a parent’s no-parameter construct is always invoked when a child class

constructor begins execution.

 2. Explain the difference between chain inheritance and multiple inheritance. Which one does

Java support?

 3. What are two advantages of using inheritance in the software design and implementation

processes?

 4. Give the statement used in a child class method to invoke an inherited two-parameter

constructor.

 5. Explain the restrictions imposed by these three types of access: public, private, and protected.

 6. Give the statement used in a child class method to invoke an inherited method named output

that has no parameters and is not overridden.

 7. Give the statement used in a child class method to invoke an inherited method named input

that has no parameters and is overridden.

 8. Why should the @Override directive be used, and where is it coded?

 9. How can we prevent a method from being overridden by a child class?

 10. Give two reasons for overriding an inherited method.

 11. Explain when you would overload a method instead of overriding it.

 12. How can we prevent a class from being extended? Give an example of when we would want to

impose this restriction.

 13. Explain how an abstract class is used during the design process.

 14. True or false:

 a) A parent reference variable can store the address of a child object.

 b) A child reference variable can store the address of a parent object.

 c) The address of a child object stored in a parent reference variable can be assigned to a

child reference variable.

 d) When a method is invoked on a parent reference variable, the version of the method in the

parent’s class always executes.

 e) Child references variables can be passed to parent type parameters.

414 ■ Programming Fundamentals Using Java

 15. Give the declaration of a 200-element polymorphic array that can store instances of the child

classes Train and Airplane that extend the class Transporter.

 16. What are the differences between using extends and implements in a class’s heading?

 17. What can be included in an interface, and what is an advantage interfaces have over abstract

classes?

 18. What is an adapter class, and what is the advantage of extending an adapter class?

 19. Explain what you would do to implement an adapter class for the interface ManyMethods that

defines 20 method signatures.

Programming ExercisesProgramming Exercises

 1. Develop a UML diagram for a class named Vehicle that has three private data members:

price, color, and model. Its methods will include a default and a three-parameter constructor,

a toString method, set and get methods, and a method to input all of the values of its data

members. Assume the class Vehicle extends the class Transporter.

 2. Implement the class described in Exercise 1 and write an application that verifies your

implementation. You can assume the Transporter class has no data members or methods.

 3. Cars and trucks have a price, color, and model. Cars also have a radio type, and trucks have

a maximum tonnage that they can haul. Develop the UML diagrams for a car and a truck

class using the concepts of inheritance to reduce the time and effort required to develop the

classes. All of the data members should be private, and each class should have a four-parameter

constructor, a toSting method, set and get methods, and a method to input all of the values

of its data members.

 4. Implement the classes described in Exercise 3 and write an application that verifies your

implementation. Then, change the application so it can be used to input a mix of 10 cars and

trucks and output them to the system console.

 5. Modify Exercise 4 to include the use of a polymorphic array.

 6. Write an application that asks the user how many two-dimensional shapes (squares, rectangles,

circles and ellipses) to draw on the game board, as well as the type, location, and color of

each shape. Any of the circles or squares can be drawn filled or unfilled. After all inputs have

been performed, the shapes will appear on the game board. The name of each shape will be

displayed just above it, as will the formula to compute the shapes’ area if the shape is a circle

or a rectangle. When user strikes the S, R, C, or E key, all of the squares, rectangles, circles,

or ellipses will alternately appear or disappear respectively. Your design should utilize the

techniques of inheritance and polymorphism to minimize the effort required to produce the

program.

 7. Supermarkets carry three categories of items in their inventory: canned goods, flowers, and

produce. Every item in the store has a name, a unit price, and a quantity in stock. In addition,

produce items have an expiration date and a weight (because they are sold by the pound), and

flower items have a color and a variety (i.e., house plant, garden plant, arrangement).

 Chapter 8· Inheri tance ■ 415

 Develop UML diagrams for each of the three categories of items, canned goods, produce,

and flowers, utilizing the techniques of inheritance and polymorphism to minimize the effort

required to implement the classes, then implement the classes and verify their implementation.

All of the data members should be private, and each class should have a constructor that can

be passed the values of all of its data members, a toString method, set and get methods, a

method to input all of the values of its data members, and a method to compute an item’s price.

 The price of an item is its base price plus a 15% profit margin. The base price of a canned-good

item is just its unit price. The base price of a produce item is its unit price times its weight,

and the base price a flower item is its unit price, except for arrangements which have a $5.00

preparation fee.

 8. Design and implement a class called SuperStore that clients can use to declare a store that

sells the canned goods, produce, and flowers described in Exercise 7. When an instance of this

class is created, its constructor will be passed the number of items (canned goods plus produce

plus flower items) that the store will carry, and the city location of the store (a string). The class

will contain:

 a) a method (named Superstore(maxNumOfItems, city))

 to create an instance of a super store and specify its location and the maximum

 number of items the store will carry;

 b) a method (named addItem(anItem)) to add a new canned good, produce, or flower item

to the store’s inventory (one method);

 c) a method (named OutputInventory()) to output all the information for the entire

inventory (all canned goods, produce, and flowers) to the system console preceded by the

store’s name and location,

 d) a method (named OutputGenericGroup(integerCategoryID)) to output all the

information for the entire inventory of either canned goods, produce, or flowers to the

console, preceded by the store’s location. Your design should include a polymorphic array to

store the Superstore’s inventory.

 Note: Whenever an item is output, the output should include all of an item’s input information,

preceded by the item’s generic category (e.g., This item is a Canned Good) and the item’s

calculated selling price.

 9. Write an application that creates an instance of the superstore described in Exercise 8, allows

the user to enter the initial inventory (items a–d below), and then repeatedly outputs the

inventory (item e below).

 a) What is the maximum number of items that will be in the new store’s inventory?

 b) What is the location of the store?

 c) How many items will be in the initial inventory?

 d) Repeatedly present a menu to allow the user to select the generic category of an item (an

integer) and then request the information for that item until all items have been entered.

 e) Repeatedly present the user with the following menu until a “3” is entered:

 Enter 1 to output all the information for all of the items in the inventory

 Enter 2 to output all the information for all of the items in a particular generic category

 Enter 3 to quit the program.

416 ■ Programming Fundamentals Using Java

EnrichmentEnrichment

 1. Why does Java not allow multiple inheritance? How is the diamond problem a consequence of

multiple inheritance?

 2. How can most of the features of multiple inheritance be simulated in Java?

■ ■ ■ ■ ■

In this chapter

In this chapter we introduce recursion, a very powerful tool used in problem solving in which

a problem’s solution is expressed in terms of a simpler version of itself. The implementation

of the recursive solution results in a method that invokes itself. We will examine the execution

path of a recursive method, explore a methodology for discovering and implementing recursive

algorithms, and practice this methodology on a set of progressively more difficult problems.

Although recursion can provide succinct and eloquent solutions to many problems, such as the

Towers of Hanoi problem, the drawing of fractals, and the solution to many puzzles, the implementa-

tion of some recursive solutions can produce runtime problems. They can require large amounts of

RAM memory and can result in unacceptably long execution times. We will identify the characteristics

of recursion that cause these problems and learn a technique called dynamic programming used to

solve one cause of unacceptably long execution times.

After successfully completing this chapter you should:

� Understand recursion and a recursive method’s execution path

� Be able to design and implement a recursive solution to a problem by discovering its base

case, a reduced solution, and a general solution

� Understand why recursive solutions require more time and storage than their iterative counterparts

� Know when to use a recursive solution and when an iterative solution would be more practical

or efficient

� Understand how dynamic programming techniques can improve the efficiency of a recursive

algorithm

9CHAPTERCHAPTER

9.1 What is Recursion?. 418

9.2 Understanding a Recursive Method’s Execution Path . 421

9.3 Formulating and Implementing Recursive Algorithms 423

9.4 A Recursion Case Study: The Towers of Hanoi429

9.5 Problems with Recursion. 435

9.6 Chapter Summary .444

RECURSIONRECURSION

418 ■ Programming Fundamentals Using Java

 9.19.1 WHAT IS RECURSION? WHAT IS RECURSION?

In general, recursion is defining something in simpler terms of itself, a property often referred

to as self-similarity. In computer science, recursion is a technique used in the coding of methods

and formulating algorithms. Usually, these methods or algorithms refer back to or are applied to

themselves. When this technique is used to code a method, we say that the method is recursive.

Before the execution of a recursive method ends, it either invokes itself or another method whose

execution eventually leads to an invocation of the recursive method. Figure 9.1 illustrates both of

these forms of recursion.

public void methodA()

//beginning code

//of the methodA

methodB();

//remaining code

//of the method

}

{

public void methodB()

//beginning code

//of the methodB

methodC();

//remaining code

//of the method

}

public void methodC()

{

//beginning code

//of the methodC

methodA();

//remaining code

//of the method

}

A Method Reinvoked by Itself

{

//code of the beginning

//of the method

int value = aRecusiveMethod(21)

//remaining code of the method

}

public int aRecusiveMethod(int p)

A Reinvocation of methodAA Method Eventually Reinvoked by

Another Method

Figure 9.1

The two forms of recursive methods.

In mathematics, recursion is often used to define functions and series that can also be defined

without using recursion. For example, a non-recursive definition of ten factorial (10!) is:

10! = 10 * 9 * 8 * 7 * 6 * 5 * 4 * 3 * 2 * 1

This non-recursive definition of 10! can be generalized to a non-recursive definition of n! for any

positive value of n.

Definition

The non-recursive definition of n! for values of n ≥ 0

n! ≡ n * (n - 1) * (n - 2) * (n – 3) * (n – 4)** 3 * 2 * 1 and 0! ≡ 1

 Chapter 9· Recursion ■ 419

Alternately, the definition of 10! can be more succinctly stated recursively as

10! ≡ 10 * (10 - 1)! and 0! ≡ 1

This recursive definition can be generalized to a recursive definition of n! for any positive value

of n.

Definition

The recursive definition of n!

n! ≡ n * (n - 1)! and 0! ≡ 1

The equivalence of the recursive and non-recursive definitions can be easily understood by

examining the non-recursive definition of 10! and 9!

10! = 10 * 9 * 8 * 7 * 6 * 5 * 4 * 3 * 2 * 1 9! = 9 * 8 * 7 * 6 * 5 * 4 * 3 * 2 * 1

(10 – 1)! = 9! (9 – 1)!

The last nine terms in the equation for 10! are contained in the right side of the equation for 9!,

so 10! can certainly be expressed as 10 * 9!, which is the recursive definition of 10!. Having been

shown this example, most of us would accept the fact that 9! can be used to calculate 10!, that is:

10! = 10 * 9!

This is the recursive way of calculating 10! which we now understand because we have realized

that 9! = 9* 8 * 7 * 6 * 5 * 4 * 3 * 2 * 1. In effect, we have used the non-recursive definition of 9!

to understand the recursive definition of 10!.

A recursive definition typically appears to define an entity in simpler terms of itself. The two

uses of the factorial operator in the recursive definition of n! could be considered an example of

this because the definition states that for positive values of n,

“n factorial is equal to n times n minus one factorial.”

What makes this part of the recursive definition acceptable is that, although the word “factorial”

is used in two phrases that make up the sentence (“n factorial” and “n minus 1 factorial”), the two

phrases are different. In addition, the recursive definition of n! contains another crucial part: zero

factorial is defined as one (0! ≡ 1).

The reason this second part of the definition is crucial to the validity of a recursive defini-

tion is that the recursive definition relies on being able to calculate (n – 1)! in order to calculate

n!. Knowing that the value of zero factorial is defined as one gives us the ability to calculate (n

– 1)!. This fact may come as a surprise, but it becomes more obvious after a close examination of

Figure 9.2, in which the recursive definition of n! is used in a progressive way to calculate (4)!. The

right side of line 6 completes the calculation by substituting the value one (1), which is defined to

be the value of zero factorial (0!)

The recursive definition of n factorial: n! ≡ n * (n – 1)! and 0! ≡ 1.

420 ■ Programming Fundamentals Using Java

1 4! = 4 * (4 - 1)!

2 = 4 * 3!

3 = 4 * (3 * 2!)

4 = 4 * (3 * (2 * 1!))

5 = 4 * (3 * (2 * (1 * 0!)))

6 = 4 * (3 * (2 * (1 * 1)))

7 = 24

Figure 9.2

Calculating 4! using the recursive definition of n factorial.

The progression from lines 2 to 5 of Figure 9.2 is analogous to the progression of four phone

calls shown at the top of Figure 9.3 initiated by you after your friend Evie asks you the value of four

factorial. Remembering the recursive definition of n factorial, you know 4! is 4 * 3!. Because you

don’t know the value of 3!, you call your friend Logan and ask him the value of 3!. He realizes it is

3 * 2! and calls his friend Skyler to ask her the value of 2!, who calls Ryan to ask him the value of

1!. Finally, Ryan calls Breanne to ask her the value of 0!,

Breanne,

what's 0!?

 Hi Ryan,

 0! ≡ 1

 Hi Logan,

 2! = 2*1

Ryan,

what's 1!?

 Hi Skyler,

 1! = 1*1

Skyler,

what's 2!?

Logan,

what's 3!?

Hi, what

is 4!?

Evie You Logan Skyler Ryan

Breanne

Hi Evie,

4! = 4*6

 Hi,

 3! = 3*2

Ryan Skyler Logan You

Figure 9.3

A progression of five phone calls to determine the value of four factorial.

This leads to the end of the sequence of four phone calls as depicted at the bottom-right of Fig-

ure 9.3. In response to Ryan’s call, Breanne examines the definition of 0! and tells Ryan the value

of 0! is defined as 1 and hangs up. Ryan multiplies 1 by the value of 0! that Breanne told him, 1,

tells Skyler the value of 1! is 1, and hangs up his phone. This scenario continues with Skyler telling

Logan the value of 2! is 2, and Logan telling you the value of 3! is 6. Finally, you multiply 4 by the

value of 3! that Logan told you, 6, and you tell Evie the value of 4! is 24.

Recursion is not only used to more succinctly define formulas and series in mathematics, but

it is also used to more succinctly define algorithms in computer science. It is for this reason that

programming languages permit the two types of recursive invocations illustrated in Figure 9.1. If

 Chapter 9· Recursion ■ 421

we were going to write a method that calculated n!, and the recursive definition of n! was used as

the method’s algorithm, then, when it was used to calculate 4!, the sequence of four phone calls

illustrated in Figure 9.3 would be the method invoking itself four times. Evie asking you the value

of 4! would be the initial invocation of the method.

Not all algorithms can be expressed recursively, but the effort expended in implementing those

that can be is significantly less than implementing a non-recursive version of the algorithm. For

this reason, an understanding of how recursive methods execute, how to formulate and implement

a recursive algorithm, and some problems associated with the use of recursion is an essential tool

to have in our programming toolbox.

 9.29.2 UNDERSTANDING A RECURSIVE METHOD’S UNDERSTANDING A RECURSIVE METHOD’S
EXECUTION PATHEXECUTION PATH

A recursive method is invoked, like any other method, by coding its name followed by an argu-

ment list used to pass values to the method’s parameters. If the method returns a value, the value is

either assigned to a variable for use in subsequent statements or used in the statement that contains

the invocation of the method. Looking at the invocation statement, there is no way to determine if

the method being invoked is recursive or not. Below is an invocation of a recursive method named

fact that returns 4!, which could also be the invocation of a method with the same signature that

is non-recursive:

long fourFactorial = fact(4);

The recursive version of this factorial method would differ from the non-recursive version within

the implementation of the method. The recursive version implements the recursive definition of n

factorial using the coding model shown at the top of Figure 9.1. Figure 9.4 shows the code of the

method fact that calculates the value of n! recursively.

1 public long fact(int n)

2 {

3 long nMinus1Factorial, nFact;

4 if(n == 0) //return the definition of 0!

5 {

6 return 1;

7 }

8 else //calculate (n-1)! and then n!

9 {

10 nMinus1Factorial = fact(n-1); //fact invokes itself here

11 nFact = n * nMinus1Factorial;

12 return nFact;

13 }

14 }

Figure 9.4

A recursive method that calculates n!.

422 ■ Programming Fundamentals Using Java

If the Boolean condition on line 4 of Figure 9.4 is true, line 6 returns 1, the value of 0! speci-

fied in the definition of n!. Otherwise, line 10 of the method invokes itself. Consistent with the first

part of recursive definition of n!, it passes fact the value of n-1, and the method calculates and

returns the value of (n-1)!. Then line 11 uses the returned value to calculate n factorial, which is

returned on line 12.

Although the calculations performed by lines 10 and 11 are coded sequentially, they do not

execute sequentially because line 10 of the initial invocation of the method initiates the first of the

progression of four phone calls depicted at the top of Figure 9.3. When calculating 4!, the first of

these phone calls (or, more accurately, recursive invocations) is passed the value 3 (i.e., 4 - 1).

The three subsequent recursive invocations of the method by line 10 pass the values 2, 1, and

finally 0 to the method. The line-by-line execution sequence of the method to reach this point,

beginning with the initial invocation of the method, is given below and is represented by the red

arrows in Figure 9.5.

Lines 1, 2, 3, 4, 8, 9, 10 //which passes the first recursive invocation the value 3

Lines 1, 2, 3, 4, 8, 9, 10 //which passes the second recursive invocation the value 2

Lines 1, 2, 3, 4, 8, 9, 10 //which passes the third recursive invocation the value 1

Lines 1, 2, 3, 4, 8, 9, 10 //which passes the fourth recursive invocation the value 0

1

2 :

3

4 if(n == 0)

5 {

6 return 1;

7 }

8 : 3

9

10 …fact(n -1);

11 :

12 return nfact ;

13 :

14

1

2 :

3 :

4 if(n == 0)

5 {

6 return 1;

7 }

8 : 1

9 :

10 …fact(n -1);

11 : 2

12 return nfact ;

13 :

14 :

1

2 :

3 :

4 if(n == 0)

5 {

6 return 1;

7 }

8 : 0

9 :

10 …fact(n -1);

11 : 1

12 return nfact ;

13 :

14 :

1

2 :

3 :

4 if(n == 0)

5 {

6 return 1;

7 } 1

8 :

9 :

10 …fact(n -1);

11 :

12 return nfact ;

13 :

14 :

1

2 :

3 :

4 if(n == 0)

5 {

6 return 1;

7 }

8 : 2

9 :

10 …fact(n -1);

11 : 6

12 return nfact ;

13 :

14 :

Initial

Invocation:

fact(4)

First Recursive

Invocation

fact(3)

Second Recursive

Invocation:

fact(2)

Third Recursive

Invocation:

fact(1)

Fourth Recursive

Invocation:

fact(0)

Figure 9.5

The execution sequence of the invocations of the method fact to calculate 4!

Because the fourth recursive invocation of the method is passed the value zero, its execution

sequence is lines 1, 2, 3, 4, 5, and 6 because the Boolean condition on line 4 for this execution of

the method evaluates to true. As a result, line 6 returns the value 1 (0!) to line 10 of the third

recursive invocation (as indicated by the green arrow on the right side of Figure 9.5). Then lines 11

and 12 of the third, second, and first recursive invocations execute, returning the values 1, 2, and

6 (as indicated by the other three green arrows in Figure 9.5). Finally, lines 11 and 12 of the initial

invocation of the method execute and return 24 = 4 * 6.

 Chapter 9· Recursion ■ 423

Two important observations to make from an examination of Figure 9.5 are that:

 1. because of the recursive invocations spawned by line 10 of the initial invocation of the

method, a considerable amount of time is required to complete the execution of this line

of code

 2. the recursive invocations of the method would have continued had it not been for the fact

that the fourth recursive invocation was passed the value zero

Armed with an understanding of the execution path of recursive methods, we will discuss the

techniques used to discover recursive algorithms and the nuances of implementing them.

 9.39.3 FORMULATING AND IMPLEMENTING FORMULATING AND IMPLEMENTING
RECURSIVE ALGORITHMSRECURSIVE ALGORITHMS

Most people do not possess an innate ability to think recursively. When shown the non-recur-

sive and recursive definitions of n factorial, most of us would say that we are able to understand

the non-recursive definition, but we are confused by its recursive counterpart. Therefore, it should

come as no surprise that most of us have trouble recognizing that there is a recursive solution to

a problem and have even more trouble trying to discover the algorithm even after we are told that

one does exist.

Fortunately, we can learn to think recursively because the discovery of recursive algorithms

can be methodized, and once discovered, many recursive algorithms are implemented in a very

similar way. After gaining a basic understanding of the methodized process, lots of practice facili-

tates the learning curve.

 9.3.1 9.3.1 The Base Case, Reduced Problem, and General Solution The Base Case, Reduced Problem, and General Solution

The recursive-algorithm discovery process is broken into four discovery steps:

 1. identify the base case or cases

 2. identify the reduced problem or problems

 3. identify the general solution

 4. combine the base case, reduced problem, and general solution into a recursive algorithm

We have already used a base case, reduced problem, and general solution in the program pre-

sented in Figure 9.4 without identifying them by name. The base case, reduced problem, and gen-

eral solution of the recursive algorithm for n factorial implemented in Figure 9.4 are identified in

Table 9.1.

Prior to coding the method shown in Figure 9.4, we did not discover these three parts of the

recursive algorithm for n!. They were discovered by the person that originally formulated the re-

cursive definition of n!, who was probably born with the ability to think recursively. We simply

discussed a method that implemented this definition of n! to gain insights into the execution path

of a recursive method. This was a useful exercise because an understanding of the method’s execu-

424 ■ Programming Fundamentals Using Java

tion path, and an awareness of these three parts of the recursive definition of n!, do facilitate an

understanding of the discovery process.

Table 9.1

The Base Case, Reduced Problem, and General Solution for n!

Base Case Reduced Problem General Solution

0! ≡ 1 (n – 1)! n * (n – 1)!

Discovering the Base Case

The recursive-algorithm discovery process begins with the identification of the problem’s base

case. To discover the base case, we search for a particular instance of the problem whose solution is

known. For example if we were trying to discover the recursive algorithm for n factorial, we would

ask ourselves if there is a particular value of n: 0, or 1, or 2, or 3, or 4, etc., whose factorial value is

known. Most people know that 0! is defined as 1, which is the base case for n factorial. The base

case for another problem, xn, is also a definition: x0, which is also defined as 1. For some problems,

the base case is not a definition but a trivial case of the problem that most of us know, such as

1 * 1 = 1. Another example of a trivial base case is associated with the problem of outputting a

string of n characters in reverse order. In this case, when n is one, we simply output the string.

When the problem involves an integer n, often (as we have seen) the base case is the solution

to the problem when n = 0 or, for some problems, when n = 1. The determination of the base case

is a crucial first step in the discovery process because it is used to discover the reduced problem,

which is then used to discover the general solution. In addition, when we implement the algorithm,

as shown on line 4 of Figure 9.4 and on the far right side of Figure 9.5, it is the base case that halts

the progression of recursive invocations and is sometimes referred to as the stopping condition.

Some problems, as we will see, contain multiple base cases.

Discovering the Reduced Problem

Identifying the reduced problem is often the most difficult part of the four-step discovery pro-

cess. Usually, it can be identified by considering the following three criteria. The reduced problem:

 1. is a problem similar to the original problem

 2. is usually between the original problem and the base case and is usually closer to the origi-

nal problem than it is to the base case

 3. becomes the base case for all versions of the original problem when progressively reduced

For example, the reduced problem for n! is (n – 1)!. Clearly, this is similar to the original prob-

lem in that it also involves n and uses the factorial operator. It is between the original problem and

the base case (0!), and for most values of n (n > 2), it is closer to the original problem than it is to

the base case. This would be an acceptable reduced problem if progressive reductions caused it to

become the base case for all values of n.

 Chapter 9· Recursion ■ 425

By progressive reductions, we mean that we repeatedly apply the relationship between the can-

didate reduced problem and the original problem to the reduced problem to produce new versions

of the problem. For n!, the relationship is that the number used in the reduced problem (n – 1) is

one less than the number used in the original problem (n). Applying this relationship to the reduced

problem (n – 1)!, the new version of the problem becomes ((n – 1) – 1)! = (n – 2)! on the first re-

duction. Subsequent new versions of the problem are ((n – 2) – 1)! = (n – 3)!, (n – 4)!, (n – 5)!, etc.

Because this progressive reduction of (n – 1)! for any positive value of n will eventually become the

base case, (n – 1)! is an acceptable reduced problem for n!.

An example of an unacceptable reduced problem for n! is (n – 2)!, although it satisfies most of our

criteria. It is a problem similar to the original problem, it is between the base case (0!) and the original

problem, and it is also closer to the original problem than it is to the base case. What makes it unac-

ceptable is that progressive reductions, for odd values of n, do not result in the base case. For example,

for n = 7 the reduced problem would be (7 – 2)! = 5!, and its progressive reductions would be:

(5 – 2)! = 3!, (3 – 2)! = 1!, (1 – 2)! = -1!.

The reductions skip over the base case, zero factorial. They never become the base case for odd

values of n. Another unacceptable candidate reduced problem is (n + 1)!. For n = 7, the reduced

problem would be (7 + 1)! = 8!, and its progressive reductions would be 8!, 9!, 10!, 11!, etc. The

result would be an infinite series that never becomes the base case.

Some problems, as we will see, contain multiple reduced problems.

Discovering the General Solution

The general solution is the solution to the original problem. To discover the general solution,

we think of a way to solve the original problem assuming that we have already found a valid re-

duced problem. That is, we think of a way of use the solution to the reduced problem in the solution

of the original problem.

In the case of n!, this translates into the question of how (n – 1)! can be used to calculate n facto-

rial. The answer is multiplying (n – 1)! by n, so the general solution for n! is n × (n – 1)!

The first three steps of the recursive-algorithm discovery process are summarized in Table 9.2.

 9.3.29.3.2 Implementing Recursive Algorithms Implementing Recursive Algorithms

Once we have discovered the base case, reduced problem, and general solution for a particular

problem, they are combined into a recursive algorithm. Finding the correct combination usually

involves some creativity, which comes naturally to some people while the rest of us have to develop

this creative ability through practice.

For many problems, the base case, reduced problem, and general solution are combined in

a similar way. For a subset of these problems, they are combined in an identical way, which is

depicted in the flow chart shown in Figure 9.6. By working with this subset of problems, we will

begin to develop the ability to think recursively. Continued practice with the super set of problems

426 ■ Programming Fundamentals Using Java

will further develop our skills.

The algorithm shown in Figure 9.6 is most easily understood by comparing it to a particular

implementation of it: the code of the method to recursively compute n! presented in Figure 9.4. The

problem of calculating n! is one of the problems in the subset of problems whose three components

(base case, reduced problem, and general solution) can be combined exactly as shown in Figure 9.6.

Figure 9.7 represents the code of this method with comments added to it to aid in an under-

standing of the manner in which the algorithm combines its three components. These comments

refer to the blue-font numbers shown on the left side of each of the flow-chart symbols shown in

Figure 9.6.

The if statement coded on line 4 of Figure 9.7 represents the question in symbol 2 of the flow-

chart, which is used to decide if the problem to be solved is the base case. The return statement

(line 6) inside the if statement’s code block represents flowchart symbols 3 and 4 that terminate

the algorithm after returning the base case solution.

Symbol 5 of the flowchart is typically the most confusing part of the algorithm because it is the

most confusing part of recursion. It calculates the solution to the reduced problem using this same

algorithm. It is the recursive part of the algorithm. The right side of line 10 implements symbol 5

by re-invoking the method and passing it the reduced problem. As we have learned, this symbol of

the flowchart can occupy a significant portion of the algorithm’s execution time. Every time it is

entered, it spawns another execution of the algorithm, beginning at symbol 1, to calculate the solu-

tion to a new (reduced) factorial problem.

After flowchart symbol 5 calculates the solution to the reduced problem, symbol 6 uses it to

calculate the general solution to the original problem. Line 11 of Figure 9.7 implements flowchart

symbol 6. After symbol 7 returns the problem’s solution (line 12 of Figure 9.7), symbol 8 ends the

algorithm.

Step Process Comments

2:

Reduced Problem

Discovery

Search for a version of the problem that:

� is similar to the original problem

� usually is between the original prob-

lem and the base case and closer to

the original problem

� when progressively reduced becomes

the base case for all versions of the

original problem

The reduced problem for n! is

(n – 1)!

n! ≤ (n – 1)! ≤ 0!

The progressive reductions of

(n – 1)! are:

(n – 1)!, (n – 2)!, (n – 3)!, etc.,

which becomes the base case, 0!,

for all values of n.

3:

General Solution

Discovery

Think of a way to solve the original prob-

lem, assuming that we have already found

a solution to the reduced problem.

The reduced problem is used in

the general solution, e.g.,

n! = n * (n – 1)!

 Chapter 9· Recursion ■ 427

1 public long fact(int n)

2 {

3 long nMinus1Factorial

4 if(n == 0) //Flow chart symbol 2

5 {

6 return 1; //Flow chart symbols 3 and 4

7 }

8 else

9 {

10 nMinus1Factorial = fact(n-1); //Flow chart symbol 5

11 nFact – n * nMinus1Factorial; //Flow chart symbol 6

12 return nFact; //Flow chart symbols 7 and 8

13 }

14 }

Figure 9.7

A recursive method that calculates n! commented to correlate to the algorithm presented in Figure 9.6.

Return the known, base

case, solution

Is this the

base case?

Use the reduced problem

solution to determine the

general solution

Return the

general solution

yes

no

1

4

3

5

6

7

2

8

Determine the solution to

the reduced problem using

this algorithm

 S tart

 End

 End

Figure 9.6

A template for some recursive algorithms.

428 ■ Programming Fundamentals Using Java

 9.3.3 9.3.3 Practice Problems Practice Problems

Now that we have acquired a basic understanding of recursion, the best way to extend our abil-

ity to think recursively is to apply our newly acquired skills to a set of problems that can be solved

recursively. The problems presented in Table 9.3 are tabulated in an order intended to extend these

skills in an incremental manner. As we move from the problems at the top of the table to those at

the bottom of the table, their recursive solutions become increasingly dissimilar to the recursive

solution n!. For this reason, which is consistent with the adage that “practice makes perfect,” it is

best to work our way through all of the problems in the order in which they are tabulated. Table 9.4

(included in the Chapter Summary) presents the base case, reduced problem, and general solution

for each of the problems presented in Table 9.3

Table 9.3

Several Problems That Have Recursive Solutions in Difficulty Order

Problem Base Case Reduced Problem General Solution

Factorial of a positive

integer, n!

0!≡ 1 (n-1)! n * (n-1)!

A number x raised to a

positive integer, xn

Sum of the integers

from 1 to n

Product of two

positive integers, m × n

Output an n character

string, s, in reverse

order

Problems with Multiple Base Cases and Reduced Problems

Generate the nth term of

the Fibonacci Sequence,

fn

Find the greatest com-

mon divisor of two

positive integers m and

n, GCD(m, n), for m > n

A Problem with Multiple Base Cases

Search a sorted list of

items for I

A Problem that Uses the Reduced Problem Twice

Towers of Hanoi:

Move n rings from

tower A to tower B

using tower C

 Chapter 9· Recursion ■ 429

As noted in the table, some problems have multiple base cases and reduced problems, and one

problem uses its reduced problem twice in its general solution. As we have learned, the starting point is

the determination of a problem’s base case, then its reduced problem, and then its general solution. They

should be entered into a copy of the last three columns of the table below the column entries for n!, and

in most cases, they can be combined into a recursive solution using the algorithm depicted in Figure 9.6.

The correctness of the discovered base case, reduced problem, and general solutions should be

verified by comparing them to the entries in Table 9.4 in the Chapter Summary. Implementing each

problem’s recursive solution before moving on to the next problem is highly recommended because

it augments the learning process.

It is not unusual in the beginning, or at some other point in this learning process, not to be able

to discover one or more of the three components of the recursive solution (i.e., its base case, reduced

problem, or general solution). When this is the case, it is still useful to implement the recursive algo-

rithm using the component(s) presented in Table 9.4. Consistent with this idea, many students begin

by skipping the discovery process and simply implement a recursive method to calculate xn using the

components given in the second row of Table 9.4 and the flow chart presented in Figure 9.6.

A description of the last problem in Table 9.3, The Towers of Hanoi, is given in the beginning

of the next section.

 9.4 9.4 A RECURSION CASE STUDY: THE TOWERS OF HANOI A RECURSION CASE STUDY: THE TOWERS OF HANOI

The recursive solution to the Towers of Hanoi problem is a good example of the simplicity and

power of recursive algorithms. Its recursive solution can be implemented as seven lines of code.

Applying the techniques we have learned to produce a recursive solution, this problem will serve as

a good capstone to our discussion of how to formulate and implement recursive algorithms. Not only

will this reinforce our knowledge of the discovery process, but the implementation of the problem’s

recursive algorithm will introduce an often-used nuance into the parameter list of a recursive method

that is not used in the solutions of the other problems presented in Tables 9.3 and 9.4.

Statement of the Problem

The problem was conceived by the French mathematician Eduardo Lucas in 1883. It involves

three towers and a set of n disks or rings, each with different diameters. The original legend

claimed that the Brahmins of an ancient Indian temple were charged with moving 64 golden disks,

and when the last one was in its final place, the world would come to an end.1 As we will see, there

is no need to worry about this because the disks had to be moved in a specified order, and if one

disk were move per second it would take 585 billion years (264 - 1 seconds) to relocate the disks.

The left side and right sides of Figure 9.8 illustrate the problem’s starting and ending points for

four rings (n = 4). The rings are initially stacked in decreasing order by size on one of the towers,

which we will refer to as the starting tower. The left side of Figure 9.8 shows four rings stacked on

a starting tower named A. The right side of the figure shows the four rings relocated to the tower

named B, which we will refer to as the destination tower. We will refer to the third tower shown in

430 ■ Programming Fundamentals Using Java

the figure, whose name is C, as the extra tower.

A

becomes

B C A B C

Figure 9.8

The Towers of Hanoi problem’s starting and ending points using four rings.

The solution to the problem is a specification of the order in which to move the rings that will

relocate all of them from a designated starting tower (tower A) to a designated destination tower

(tower B) without violating the following two conditions:

 1. Only one ring (a top ring) can be moved at a time, and it must be placed on a tower before

another ring is moved.

 2. A larger ring cannot be placed on top of a smaller ring.

These conditions imply that when the problem is solved, the rings will be stacked on the desig-

nated destination tower in decreasing size order, as shown on the right side of Figure 9.8. The prob-

lem solutions (i.e., the order in which the rings are moved to relocate them from tower A to tower

B) for two, three, and four rings are given in Figure 9.9. Figure 9.10 depicts the three-ring solution.

Notice that there is a pattern to predicting the number of moves that will be needed for n rings.

For two rings, there are three moves, for three rings, there are seven moves, and for four rings, there

are fifteen moves. In general, the minimum number of moves for n rings will be 2n -1. This is why

moving the legendary 64 golden disks would require 264 -1 moves and extraordinarily long time.

The Base Case

We have learned that the formulation of a recursive solution to a problem begins with a search

for its base case: a known, defined, or trivial solution to the problem. We have also learned that

when the problem involves n items, a good place to begin the search is when n = 0 or n = 1. This

problem involves n rings, so we will begin by considering the case when there are zero rings. This

is a legitimate base case for this problem because the trivial solution would be to do nothing. An

alternate base case is when n = 1 because if we were asked to move one ring from tower A to tower

B, we would simply state “move the top ring on tower A to tower B.” Both of these are trivial solu-

tions because most people would know them, and they do not require a consideration of the two

conditions of the Towers of Hanoi problem. Either of these base cases can be used in the recursive

solution to the problem. The n = 1 base case is the one that appears in Table 9.4.

 Chapter 9· Recursion ■ 431

NOTE
Towers of Hanoi base case:

n = 1: Move 1 ring from one tower to another tower

Two-Ring Solution

1- move one ring from tower A to tower C

2- move one ring from tower A to tower B

3- move one ring from tower C to tower B

Three-Ring Solution

1- move one ring from tower A to tower B

2- move one ring from tower A to tower C

3- move one ring from tower B to tower C

4- move one ring from tower A to tower B

5- move one ring from tower C to tower A

6- move one ring from tower C to tower B

7- move one ring from tower A to tower B

Four-Ring Solution

1- move one ring from tower A to tower C

2- move one ring from tower A to tower B

3- move one ring from tower C to tower B

4- move one ring from tower A to tower C

5- move one ring from tower B to tower A

6- move one ring from tower B to tower C

7- move one ring from tower A to tower C

8- move one ring from tower A to tower B

9- move one ring from tower C to tower B

10- move one ring from tower C to tower A

11- move one ring from tower B to tower A

12- move one ring from tower C to tower B

13- move one ring from tower A to tower C

14- move one ring from tower A to tower B

15- move one ring from tower C to tower B

Figure 9.9

Three Towers of Hanoi problem solutions.

Move 1

B

A

C

B

A

C B

A

C

Move 1

B

A

C

Starting Point

B

A

C B

A

C B

A

C

B

A

C

Move 2

Move 5Move 4Move 3

Move 6 Move 7

Figure 9.10

The solution to the three-ring Towers of Hanoi problem.

432 ■ Programming Fundamentals Using Java

Reduced Problem

To discover the reduced problem, we can use a new tool often employed when the problem in-

volves n items. We try to solve very simple versions of the problem, not quite as trivial as the base

case, but close to it. Then, we examine the solutions looking for similarities and try to generalize

the similarities into a reduced problem. For example, suppose we were able to produce the two- and

three-ring solutions shown in Figure 9.9, which many non-recursive thinking people could prob-

ably do. If we are visual learners, it helps to sketch out each step of the solutions, as has been done

in Figure 9.10 for the three-ring solution.

Examining Figure 9.10 and the two-ring solution in Figure 9.9, we notice that just before the

half-way point of both solutions (move 4 of Figure 9.10 and move 2 of the two-ring solution), all of

the rings except for one have been moved to tower C. Examining the moves made after the mid-

point of both solutions (moves 5–7 in Figure 9.10 and move 3 of the two-ring solution in Figure 9.9),

we realize that these also move all of the rings except for one.

Because the ability to move all but one ring from one tower to another tower is common to both

the two- and three-ring solutions, perhaps this could be the reduced problem. When generalized,

it becomes: move n-1 rings from one tower to another tower. This generalization does satisfy the

three criteria for a reduced problem restated below and is the one that appears in Table 9.4:

 1. It is similar to the original problem: move n rings from one tower to another tower.

 2. It is closer to the original problem than either of the problem’s base cases (n = 0 and n =

1), and it is between the original problem and these base cases.

 3. When progressively reduced, it does eventually become one of the base cases: move one

or move zero rings.

Another way of discovering this reduced solution would be to compare the illustration of the

starting point in Figure 9.10 to the illustration of move 3 in that figure and to compare the illustra-

tions of move 4 to move 7. From these comparisons, we would be likely to observe that the problem

could be solved if we knew how to move n-1 rings, and then conclude that we need to make a call

to a friend who knows how to move n-1 rings from one tower to another tower.

NOTE
Towers of Hanoi reduced problem:

Move n-1 rings from one tower to another tower.

The General Solution

To discover the general solution, we ask ourselves how we can use the reduced problem to solve

the original problem. In the case of the Towers of Hanoi, this question becomes: “how can we use

the ability to move n-1 rings to solve the problem of moving n rings from one tower to another

tower?” The answer can often be found by examining the solutions developed to the very simple

versions of the problem previously used to determine the reduced problem.

The three move sequences on both sides of move 4 in Figure 9.10, which shows the n = 3

solution, represent a movement of 3-1 rings from one tower to another. This means that if move

4 of Figure 9.10 was preceded and followed with a version of the reduced problem, it would be the

 Chapter 9· Recursion ■ 433

general solution of the n = 3 ring problem:

 1. use the reduced problem to move 2 rings from tower A to C (moves 1–3)

 2. move 4 (move 1 ring from tower A to tower B)

 3. use the reduced problem to move 2 rings from tower C to B (moves 5–7)

Once we have found a way to use the reduced problem to solve one of the simpler problems

used in the discovery of the reduced problem (e.g., the 3 ring problem), its use is extrapolated to the

n ring general solution. This is the general solution presented in Table 9.4.

NOTE

Towers of Hanoi general solution:

1. use the reduced problem to move n-1 rings from tower A to C

2. move 1 ring from tower A to tower B

3. use the reduced problem to move n-1 rings from tower C to B

Implementation

The base case, reduced problem, and general solution of this problem can be combined into

a recursive algorithm using the flow chart shown in Figure 9.6. The application presented in Fig-

ure 9.11 implements this algorithm in a method named hanoi (lines 8–24). The signature of the

method contains four parameters: the number of rings, followed by the name of the starting tower,

the name of the destination tower, and the name of the third tower. It is invoked on line 5 to output

the moves required to transfer four rings from tower A to tower B. The output produced by the

program is shown in Figure 9.12.

As the names of the last three parameters in the signatures of the hanoi method on lines 8 and

9 indicate, the method uses the tower name passed to its parameter (fromTower) as the starting

tower, and the tower names passed to the method’s second and third parameters (toTower and

thirdTower) are used as the destination tower and the extra tower, respectively. As a result, when

the method is invoked recursively on line 20 of the general solution to move all but the bottom

ring from the starting tower to the extra tower, the second argument used in the invocation is the

parameter thirdTower, and the last argument is the parameter toTower. This effectively swaps

roles of the extra tower and the destination tower during this invocation of the method, and n-1

rings are relocated to the extra tower.

Similarly, when the method is invoked on line 23 of the general solution to move the n-1 rings

placed on the extra tower from the extra tower to the destination tower, the first argument used in

the invocation is the method’s parameter thirdTower, and the last argument is the method’s pa-

rameter fromTower. This effectively swaps roles of the extra tower and the starting tower during

this invocation of the method.

When the method hanoi is invoked, and line 12 detects the base case (the value passed to

nRings is 1), the output produced by lines 14–15 includes the names of the towers passed to the

method’s first and second parameters fromTower and toTower. This ensures that when the invo-

cations on lines 20 and 23 degenerate to the base case, the values of the first and second arguments

passed to the method will be included in the base case’s output (lines 14–15).

434 ■ Programming Fundamentals Using Java

1 public class TowersOfHanoi

2 {

3 public static void main(String[] args)

4 {

5 hanoi(4, "A", "B", "C"); //output the solution for four rings

6 }

7

8 public static void hanoi(int nRings, String fromTower,

9 String toTower, String thirdTower);

10 {

11

12 if(nRings == 1) //base case

13 {

14 System.out.println("move one ring from tower " + fromTower +

15 " to tower " + toTower);

16 return;

17 }

18

19 //general solution

20 hanoi(nRings-1, fromTower, thirdTower, toTower); //reduced problem

21 System.out.println("move one ring from tower " + fromTower +

22 " to tower " + toTower);

23 hanoi(nRings-1, thirdTower, toTower, fromTower); //reduced problem

24 }

25 }

Figure 9.11

The application TowersOfHanoi.

move one ring from tower A to tower C

move one ring from tower A to tower B

move one ring from tower C to tower B

move one ring from tower A to tower C

move one ring from tower B to tower A

move one ring from tower B to tower C

move one ring from tower A to tower C

move one ring from tower A to tower B

move one ring from tower C to tower B

move one ring from tower C to tower A

move one ring from tower B to tower A

move one ring from tower C to tower B

move one ring from tower A to tower C

move one ring from tower A to tower B

move one ring from tower C to tower B

Figure 9.12

The output produced by the application TowersOfHanoi.

 Chapter 9· Recursion ■ 435

 9.59.5 PROBLEMS WITH RECURSION PROBLEMS WITH RECURSION

Because only a small percentage of the population has an innate ability to think recursively,

most of us need to be trained in how to discover and implement recursive algorithms. To a certain

extent, the discovery and implementation process can be methodized, but a good deal of effort is

necessary to become a good recursive programmer.

Another problem with recursion is that applications that use recursive algorithms tend to run

more slowly. If two versions of the same application were developed, one that used a recursive al-

gorithm and one that used a non-recursive algorithm, the non-recursive version would typically run

faster. The difference in speed is due to the manner in which modern computer systems transfer

execution to, and return from, an invoked method and the larger number of method invocations that

recursive algorithms typically perform by repeatedly invoking themselves.

Every time a method is invoked, whether or not it is recursive, the runtime environment has to

suspend the execution of the program to perform tasks associated with the invocation. Typically,

these tasks include allocating the memory for the invoked method’s parameters and local variables

and transferring the value of the arguments into these parameters. Not only does this take time, but

each method invocation requires additional RAM memory for the storage of the method’s param-

eters and local variables.

Storage must also be allocated to save the contents of the CPU registers and the invoking

method’s return address to complete the method’s execution. Java stores this information in an

area of storage called the run-time stack. After each invocation completes its execution, the invok-

ing method cannot continue its execution until the information is retrieved from the run-time stack

and stored in the CPU’s registers.

As shown in Figure 9.5, the recursive method to calculate n! invokes itself four times to calcu-

late 4!; to compute 40! requires 40 invocations, and n! requires n invocations. A non-recursive, or

iterative, version of the method is given in Figure 9.13. It does not issue any method invocations

during its execution regardless of the value of n. Its speed advantage over the recursive version

increases with increasing values of n. In addition, it does not require storage allocated for the pa-

rameters, local variables, CPU register values and return addresses associated with the additional

invocations of the recursive version of the method.

1 public static long factIterative(int n)

2 {

3 long nFact = 1;

4 for(int i = n; i >= 1; i--)

5 {

6 nFact = nFact * i;

7 }

8 return nFact;

9 }

Figure 9.13

An iterative method that calculates n!.

436 ■ Programming Fundamentals Using Java

The number of invocations issued by some recursive algorithms can make the recursive solu-

tion incalculable from a time viewpoint. The implementation of the recursive definition of the

Fibonacci sequence is one such example.

Definition

The recursive definition of the terms of the Fibonacci sequence:

f
1
 ≡ 1 and f

2
 ≡ 1;

for n ≥ 2: f
n
 = f

n-1
+ f

n-2

Consistent with this definition, the first eight terms of the sequence are 1, 1, 2, 3, 5, 8, 13, and

21. This recursive definition has two base cases, f
1
 ≡ 1 and f

2
 ≡ 1, two reduced problems, f

n-1
 and

f
n-2

, and its general solution is f
n
 = f

n-1
+ f

n-2
. While this may look innocent, when these base cases,

reduced problems, and the general solution are combined as shown in Figure 9.6 and implemented

into a recursive method, the number of recursive invocations made to calculate the 40th term in the

sequence, f40, is 204,668,309. The reason there are this many invocations is illustrated in Figure 9.14,

where the arrows in the figure should be interpreted as the method invoking itself to calculate a

term of the series. Referring to the top of the figure, to calculate f40, the method is invoked to cal-

culate f39 and f38. To calculate f39, the method is invoked to calculate f38 and f37. As shown in

the remainder of the figure, during the recursive definition of f40, f39 is calculated once, but f38 is

calculated twice, f37 three times, f36 five times, f35 eight times, etc.

f38 f39

f37

f36 f35 f35
f35

f35

f35

f35 f35f35f36 f36 f36

f36f38

f37

f40

f37

Figure 9.14

Some of the 204,668,309 invocations required to calculate the 40th term of the Fibonacci sequence.

Another problem with recursion is that during a recursive method’s execution, if the recursive

chain of invocations gets too long, the storage required for the return addresses and CPU register

contents can exceed the capacity of the run-time stack. When this happens, the method’s execution

will produce a runtime StackOverflowException error, and unless the exception is caught,

the application will be terminated. Below is a summary of the problems with recursion that were

discussed in this section:

 1. Most programmers need to be trained in how to discover and implement recursive algo-

rithms.

 2. The number of recursive invocations issued by a recursive method can make it signifi-

cantly slower than its interactive counterpart.

 Chapter 9· Recursion ■ 437

 3. Methods that implement recursive algorithms can require prohibitively large amounts of

RAM storage.

 4. Recursive methods are prone to terminating in a StackOverflowException error.

One solution to the last three problems will be discussed in Section 9.5.2.

 9.5.1 9.5.1 When to Use Recursion When to Use Recursion

In light of the problems associated with recursion, and considering the fact that recursive algo-

rithms have an iterative counterpart, the question of when we should use recursion in our programs

arises. The short answer is when the recursive algorithm significantly reduces the algorithm-dis-

covery and implementation time, and the additional storage requirements and execution time as-

sociated with a recursive method are acceptable.

This is not the case for most of the problems presented in Table 9.3. Certainly, the first five

problems presented in the table would normally not be coded using recursion because their

non-recursive (iterative) solution is easy to discover and simple to code. They were included in

the table to facilitate the learning process. On the other end of the spectrum, recursion is usually

used to find a greatest common divisor and in the solution to the Towers of Hanoi problem. The

following three-line general solution of the Towers of Hanoi is much simpler than a non-recursive

solution to the problem:

 1. move n-1 rings from tower A to tower C

 2. move one ring from tower A to tower B

 3. move n-1 rings from tower C to tower B

Other common uses of recursion include the solution of puzzles, such as mazes, the Sudoku

puzzle, the Eight Queens problem, the Knight’s Tour, the searching and sorting of lists of data, and

the drawing of fractals.

Fractals and the Sierpinsky Triangle

Fractals are mathematical or geometric objects that have the property of self-similarity, that is,

each part of the object is a smaller or reduced copy of itself. Geometric fractals are implicitly recur-

sive because they begin by drawing a shape and then extend the drawing by repeatedly redrawing

the shape at smaller and smaller scales. Generally speaking, the repetitions are infinite, although

the drawing process is normally terminated when the shapes become too small to see.

Given an equilateral triangle, the Sierpinsky fractal is produced by creating three equilateral

triangles whose vertices are the three original vertices and the midpoints of the sides adjacent to

these vertices. This process is then repeated recursively for the three resulting equilateral triangles.

The first three steps in this process are shown in Figure 9.15.

438 ■ Programming Fundamentals Using Java

1 2 3

Figure 9.15

The first three steps in the creation of a Sierpinsky Triangle.

The fractal shown in Figures 9.16 is a Sierpinsky Triangle on which the process has been re-

peated six times. It was created by the application RecursiveFractal shown in Figure 9.17. Line

20 of the application invokes the recursive method drawSierpinsky (31–47) to draw the fractal.

The invocation passes the method the number of times to repeat the Sierpinsky process (plus one

for the drawing of the original triangle), the vertices of the original triangle (declared as Point

objects on lines 8, 9, and 10), and the graphics object g because the method draws the triangles

(lines 39–41). The vertex at the top of Figure 9.16 is p1, the lower left vertex is p2, and the lower

right vertex is p3 (lines 8-10).

Figure 9.16

A six-iteration Sierpinsky fractal.

Line 34 tests for the base case, which is when the number of invocations of the method has been

decremented to zero by line 42. The general solution is in lines 44–46, which recursively invokes

the method to draw three triangles. The vertices of these triangles are one of the vertices passed to

the method and the midpoints of the lines joining the other two vertices. Each of these three invoca-

tions spawns 363 additional invocations of the drawSierpinsky method for the fractal drawn by

 Chapter 9· Recursion ■ 439

the application. The locations of the midpoints of the sides of the triangle passed as the third and

fourth arguments on lines 44–46 are calculated by the midPoint method (lines 23–29). The two

integer data members of the API Point class (x, y) are public data members, which eliminates the

need to invoke set and get methods on lines 26 and 27.

The recursive execution sequence of the lines 44–46 draws all of the blue lines that make up

the mostly blue large upper triangle shown in Figure 9.16, before the mostly blue large lower left

triangle is drawn, which is drawn before the mostly blue large lower right triangle is drawn.

1 import edu.sjcny.gpv1.*;

2 import java.awt.*;

3

4 public class RecursiveFractal extends DrawableAdapter

5 {

6 static RecursiveFractal ge = new RecursiveFractal();

7 static GameBoard gb = new GameBoard(ge, "RECURSIVE FRACTAL");

8 static Point p1 = new Point(250, 70); //vertices of the 1st triangle

9 static Point p2 = new Point(25, 460);

10 static Point p3 = new Point(475, 460);

11

12 public static void main(String args[])

13 {

14 showGameBoard(gb);

15 }

16

17 public void draw(Graphics g)

18 {

19 g.setColor(Color.BLUE);

20 drawSierpinsky(8, p1, p2, p3, g);

21 }

22

23 public static Point midPoint(Point p1, Point p2)

24 {

25 Point midPoint = new Point();

26 midPoint.y = p1.y + (p2.y - p1.y)/2;

27 midPoint.x = p1.x + (p2.x - p1.x)/2;

28 return midPoint;

29 }

30

31 public static void drawSierpinsky(int iterations, Point p1, Point p2,

32 Point p3, Graphics g)

33 {

34 if(iterations == 0) //base case

35 {

36 return;

37 }

38 //general solution

39 g.drawLine(p1.x, p1.y, p2.x, p2.y); //draw a triangle

40 g.drawLine(p2.x, p2.y, p3.x, p3.y);

440 ■ Programming Fundamentals Using Java

41 g.drawLine(p3.x, p3.y, p1.x, p1.y);

42 iterations--;

43 //reduced problems to draw top, left & right side triangles recursively

44 drawSierpinsky(iterations, p1, midPoint(p1,p2), midPoint(p1,p3), g);

45 drawSierpinsky(iterations, p2, midPoint(p2,p1), midPoint(p2,p3), g);

46 drawSierpinsky(iterations, p3, midPoint(p3,p1), midPoint(p3,p2), g);

47 }

48 }

Figure 9.17

The application RecursiveFractal.

 9.5.2 9.5.2 Dynamic Programming Dynamic Programming

Dynamic programming is a technique that can sometimes be used to solve three of the prob-

lems associated with recursion: unacceptably long execution times, excessive memory require-

ments, and a StackOverflowException error. It does this by reducing the number of recursive

invocations. The basis of this technique is the idea that once a value is computed recursively, it

should not be computed again.

For example, Figure 9.18 shows the 25 invocations required to compute the seventh term of the

Fibonacci series recursively. During this computation, once the first invocation to compute f3, shown

on the lower left side of the figure, completes its execution, the other four invocations to compute f3

shown in the figure could be eliminated because the value of f3 is already known. Once computed, if

that value was stored in a static class-level variable, the other four invocations of f3 could be replaced

with a new base case that simply returned the value stored in the variable. A similar approach would

eliminate three of the four invocations to compute f1, seven of the eight to compute f2, two of the

three to compute f4, and one of the invocations to compute f5. The result would be that only seven

invocations would be required to compute f7 recursively: one invocation to compute f7, and six more

recursive invocations to compute f6, f5, f4, f3, f2, and f1 (see highlights in Figure 9.19).

Figure 9.19 illustrates this improved process of computing f7 = 13 using dynamic program-

ming in the implementation of its recursive algorithm. The invocation of the method to compute f7

still spawns the recursive invocations shown on the far left side of Figure 9.18 to compute f6 though

f5

f7

 f3

f2

f1

f2 f2 f2

f2 f2f2

f2 f1f1 f1

f1

f3

f3

f4

f4

f4

f3

f3f5

f6

Figure 9.18

The 25 invocations required to compute the seventh term of the Fibonacci sequence recursively.

 Chapter 9· Recursion ■ 441

f1 (black arrows in Figure 9.19). Now, however, after these terms are computed and before they

are returned (blue arrows in Figure 9.19), the computed values are stored in an array (red arrows)

named data in Figure 9.19. In addition, before a recursive invocation is made to compute the value

of fi, the ith element of the array is examined to see if it is nonzero. If it is, the value has already

been computed, in which case the value is fetched from the array (green arrows in Figure 9.19), and

the recursive invocation is not issued.

Referring to the left side of Figure 9.18, this eliminates the need to recalculate f2 when calcu-

lating f4, to recalculate f3 when calculating f5, to recalculate f4 when calculating f6, and to recal-

culate f5 when calculating f7. When dynamic programming is applied to the calculation of the 40th

term of the Fibonacci series, the number of invocations of the recursive method is reduced from

204,668,309 invocations to 40 invocations.

The application FibonacciDynamic shown in Figure 9.20 contains two implementations of

the recursive algorithm to calculate the nth term of the Fibonacci series. One of these implementa-

tions incorporates dynamic programming into the algorithm. After the user is asked to enter the

number of the term to be calculated, the application invokes both methods and then outputs the

calculated values and the number of invocations required to perform the calculations. A typical

input and the resulting outputs produced by the application are shown in Figure 9.21.

The output statement that begins on line 18 invokes the non-dynamic implementation, fib,

and produces the first two lines of output shown in Figure 9.21. It is passed the number of the term

to be calculated, which was input and parsed on lines 13–16. The method fib (lines 28–42) counts

the number of times it is invoked by incrementing the counter variable invocations on line 31.

The variable is defined as a class-level variable on line 6, so all of the recursive invocations share it.

Line 33 of the method identifies the two defined base cases and returns the base case value,

one, on line 35. Lines 38 and 39 invoke the method recursively to compute the two reduced prob-

lems, and their resulting sum is returned on line 40. A typical set of recursive invocations generated

by this method when it is passed n = 40 and n = 7 are shown in Figures 9.14 and 9.18, respectively.

8 0 1 1 2 3 5

2

3

5

8

5

3

2

 1

0 …

[6] [2] [1] [3] [0] [4] [5] [n+1] data

Invoking method13

Returned value

 Stored value

Recursive invocation

 Fetched value
f2 f1

1

1

f7

f6

f5

f4

f3

Figure 9.19

The seven invocations required to compute the seventh term of the Fibonacci sequence recursively using

dynamic programming.

442 ■ Programming Fundamentals Using Java

The output statement that begins on line 23 invokes the dynamic implementation, fibDy-

namic, and produces the last two lines of output shown in Figure 9.21. Before the dynamic version

of the method is invoked on line 23, line 21 sets the invocation counter back to zero. Like its non-

dynamic counterpart, fib, this method (lines 44–75) is passed the number of the term to be cal-

culated (line 44), counts the number of times it is invoked (line 48), and identifies the two defined

base cases on line 51. Unlike its dynamic counterpart, line 53 stores the value of these base cases

(one) in the array data before returning the value. The array data is defined as a static class-level

array on line 7, and its ith element is used to store the ith term of the sequence after it is calculated.

Lines 56–59 check for an additional base case, the value in the nth element of the array data

is non-zero, in which case it returns the value. This prevents the recursive invocations to calculate

fn-1 and fn-2 when the nth term of the sequence has already been calculated and stored in the array.

Line 62 checks the value data[n-1] to determine if the value of fn-1, the first reduced prob-

lem, has not been calculated. When that is the case, line 64 issues a recursive invocation to cal-

culate it and stores the returned value in element n-1 of the array. Line 64 then sets the variable

rp1 to the calculated value. Lines 67–71 perform the analogous operations for the second reduced

problem, fn-2. The general solution, the value of fn, is calculated and returned on lines 72 and 73.

1 import javax.swing.*;

2 import java.text.DecimalFormat;

3

4 public class FibonacciDynamic

5 {

6 static long invocations = 0;

7 static long[] data = new long[101];

8

9 public static void main(String[] args)

10 {

11 DecimalFormat f = new DecimalFormat("#,###");

12

13 String s = JOptionPane.showInputDialog("Enter the term number," +

14 " n, to be evaluated:" +

15 " 1<= n <=100");

16 int n = Integer.parseInt(s);

17

18 System.out.println("fn = " + f.format(fib(n)) +

19 "\ncalculated making " + f.format(invocations) +

20 " invocations");

21 invocations = 0;

22 System.out.println();

23 System.out.println("fn = " + f.format(fibDynamic(n)) +

24 "\ncalculated making " + f.format(invocations) +

25 " invocations");

26 }

27

28 public static long fib(int n)

29 {

 Chapter 9· Recursion ■ 443

30 long rp1, rp2;

31 invocations++;

32

33 if(n == 1 || n == 2) //defined base cases

34 {

35 return 1;

36 }

37 else //general solution

38 { rp1 = fib(n-1); //calculate first reduced problem

39 rp2 = fib(n-2); //calculate second reduced problem

40 return rp1 + rp2;

41 }

42 }

43

44 public static long fibDynamic(int n)

45 {

46 long rp1 = 0;

47 long rp2, gs;

48 invocations++;

49

50 //three base cases

51 if(n == 1 || n == 2) //defined base cases

52 {

53 data[n] = 1;

54 return 1;

55 }

56 else if(data[n] != 0) //dynamic programming base case

57 {

58 return data[n];

59 }

60 else //general solution

61 {

62 if(data[n-1] == 0) //calculate f1rst reduced problem

63 {

64 data[n-1] = fibDynamic(n-1);

65 }

66 rp1 = data[n-1];

67 if(data[n-2] == 0) //calculate second reduced problem

68 {

69 data[n-2] = fibDynamic(n-2);

70 }

71 rp2 = data[n-2];

72 gs = rp1 + rp2;

73 return gs;

74 }

75 }

76 }

Figure 9.20

The application FibonacciDynamic.

444 ■ Programming Fundamentals Using Java

Console output:

fn = 102,334,155

calculated making 204,668,309 invocations

fn = 102,334,155

calculated making 40 invocations

Figure 9.21

Output of FibonacciDynamic.

 9.6 9.6 CHAPTER SUMMARY CHAPTER SUMMARY

Recursion is a problem solving tool that can provide a more succinct, elegant solution to a

problem than solutions based on other problem solving techniques. Recursive algorithms are im-

plemented within a recursive method, which is a method that repeatedly invokes itself either di-

rectly or indirectly until a condition, called a base case, is reached and terminates the sequence

of invocations. If the base case is not reached, the method terminates in a stack overflow runtime

error because the RAM memory, dedicated to saving the information required to complete each

invocation, has been exceeded. While most people don’t naturally possess the innate ability to

think recursively, they can learn how to do so via a divide-and-conquer methodology reinforced

with lots of recursive problem solving practice.

The methodology consists of discovering a problem’s base case, reduced problem, and general

solution and combining these components into a recursive solution to the problem. The base case

is a known, defined, or trivial solution to a similar but usually simpler problem. If the problem

involves an integer, n, the base case is usually a version of the problem when n is zero or one. For

example, the base case for nn could be the definition, x0 ≡1, or the trivial case x1 = x.

The reduced problem is a simpler version of the problem that satisfies this condition: when

the relationship between the problem and reduced problem is repeatedly applied to the reduced

problem, it becomes the base case. For example, the relationship between nn and the candidate

reduced problem xn-1 is the reduction of the exponent by one. When this is repeatedly applied to

the reduced problem xn-1, it becomes xn-2, which becomes xn-3, which eventually becomes both base

cases: first x1 and then x0. The discovery of the reduced problem is normally the most difficult part

of the methodology.

The general solution is the recursive solution to the original problem under the assumption

that the solution to the reduced problem is known. For example, if we know how to calculate xn-1,

then xn can be calculated by multiplying xn-1 by x. Once a valid base case, reduced problem, and

 Chapter 9· Recursion ■ 445

general solution have been discovered, the last step of the methodology is to combine them as

shown in Figure 9.6. While the methodology cannot be used to formulate all recursive algorithms,

by practicing with problems within its domain, we will develop the skills necessary to extrapolate

the methodology to the recursive solution of problems beyond its domain.

It is important to understand not only how to use recursion, but when to use it or not use it as

well. It should be used when the recursive algorithm significantly reduces the algorithm-discovery

and implementation time and when the additional storage requirements and execution time are ac-

ceptable. Appropriate problems for recursive solutions are those whose structures are inherently

recursive, such as trees, mazes, nested lists, and fractals.

Solutions for some of the common recursive problems are presented in Table 9.4.

Table 9.4

Base Cases, Reduced Problems, and General Solutions for Several Problems With Recursive Solutions

Problem Base Case Reduced Problem General Solution

Factorial of a positive

integer, n!

0! ≡ 1 (n – 1)! n * (n – 1)!

A number x raised to a

positive integer, xn

x0 ≡ 1 x(n-1) x * x(n-1)

Sum of the integers

from 1 to n

sum ≡ 1 for n = 1 Sum of the integers

from 1 to (n – 1)

n + sum of the integers

from 1 to (n – 1)

Product of two positive

integers, m × n

m * 1 = m m * (n – 1) m + m * (n – 1)

Output an n character

string s in reverse order

n == 1 output s Output the last

n – 1 characters of

string s in reverse

order

Output the last n – 1

characters of string s

in reverse order. Then

output the first

character of s

Problems with Multiple Base Cases and Reduced Problems

Generate the nth term of

the Fibonacci

Sequence, fn

f
1
 = 1 and f

2
 = 1 f

n-1
 and f

n-2
f

n-1
 + f

n-2

Find the greatest

common divisor of two

positive integers m and

n, GCD(m, n),

for m > n

if m = n, GCD = m GCD(m – n, n) and

GCD(m, n – m)

if(m > n)

 GCD(m – n, n)

else

 GCD(m, n – m)

(Contd.)

446 ■ Programming Fundamentals Using Java

Problem Base Case Reduced Problem General Solution

A Problem with Multiple Base Cases

Search a sorted list of

items for I

If the list is empty,

return not found

If the middle item

is I, return found

Search a desig-

nated sorted sub

list for I

if I > middle item, sub

list is the items after it,

else sub list is items

before it.

Search the sub list for I

A Problem that Uses the Reduced Problem Twice

Towers of Hanoi

Move n rings from

tower A to tower B

using tower C

n = 1: Move 1 ring

from one tower to

another tower

Move n–1 rings

from one tower to

another tower

Move n–1 rings from

A to C

Move 1 ring from A

to B

Move n–1 rings from

C to A

Knowledge ExercisesKnowledge Exercises

 1. True or false:

 a) A method that invokes itself directly or indirectly is said to be recursive.

 b) By definition, zero factorial is equal to one.

 c) Finding the base case is the most difficult part of discovering a recursive algorithm.

 d) Every problem has a recursive solution.

 e) Implementations of recursive solutions can result in a StackOverFlow error.

 f) Recursion is useful in drawing fractals.

 g) Implementations of recursive solutions always execute quickly.

 2. Which invocation of a recursive method takes the longest time to complete: the first invocation

or the last?

 3. Which of the flow-chart symbols in Figure 9.6 makes the algorithm it depicts recursive?

 4. Calculate the value of 8! using both iterative and recursive techniques.

 5. Calculate the value of the sixth term of the Fibonacci sequence using both iterative and recursive

techniques.

 6. How many terms of the Fibonacci sequence are calculated when the recursive technique

(Figure 9.7) is used to calculate the sixth term of the sequence?

 7. What is the name of the technique used to reduce the calculations performed in Exercise 6?

 8. How many terms of the Fibonacci sequence are calculated when the technique of Exercise 7 is

applied to Exercise 6?

 Chapter 9· Recursion ■ 447

 9. Give the base case, reduced problem, and general solution used in the recursive solution of the

calculation of the sum of the even integers from n up to m, where both n and m are even.

 10. Explain why (n-2)! is not a valid reduced problem for n!.

 11. Why is it important in the calculation of a factorial that zero factorial be defined as 1?

 (0! ≡1)

 12. Use a recursive algorithm for the greatest common divisor to compute the greatest common

divisor of 15 and 255.

 13. What is the last step in the recursive solution-discovery methodology discussed in this chapter?

 14. How many moves would be required in the Towers of Hanoi problem to move six rings? How

many for ten rings? How many for n rings?

Programming ExercisesProgramming Exercises

 1. Write a recursive method that is passed two integers, x and y, and returns the value of x raised

to the power y. Include the method in an application that verifies its functionality.

 2. Write a recursive binary search method that is passed an array of integers and an integer value

and returns the index of the array that contains the integer passed to it. If the integer is not

found, the method returns -1. Include the method in an application that verifies its functionality.

 3. Write a recursive method that calculates the sum of the elements of an integer array passed to

it. Include the method in an application that verifies its functionality.

 4. Write both a recursive and an iterative method to find and return the greatest common divisor

of two integer arguments, x and y, passed to it. Include the methods in an application that

verifies their functionality.

 5. Write a recursive method that returns true when the string passed to it is a palindrome.

A palindrome is a string that reads the same backwards and forwards. For example,

“MADAMIMADAM,” “TOOT,” and “WOW.” Include the method in an application that

verifies its functionality.

 6. Write a recursive method that outputs the string passed to it in reverse. Include the method in

an application that verifies its functionality.

 7. Write a graphical application that moves one of the Towers of Hanoi rings from one tower to

another every time the up button of the game board is clicked. The program should begin by

asking the user to input the number of rings to be relocated, and show the entire solution.

448 ■ Programming Fundamentals Using Java

EnrichmentEnrichment

 1. Binary trees are recursive structures. Find out how binary tree traversals are performed and

explain the recursive algorithms for in-order, pre-order and post-order tree traversals. Why is

recursion a suitable approach to tree traversals?

 2. How can a recursive algorithm be used to count the nodes in a binary tree?

 3. Fractals have the property of self-similarity, and they are often implemented recursively.

Research the characteristics of some well-known fractals, such as the Koch snowflake, the

Cantor Set, and the Mandelbrot and Julia sets. Explore their algorithms and implementations.

 4. Investigate the Heap Sort and Quick Sort recursive algorithms to discover why they are so

efficient. Explain briefly how the algorithms work.

 5. The Eight Queens and the Knight’s Tour problems both have recursive solutions. Investigate

these problems and the recursive algorithms used to solve them.

 6. Recursion is used in solving mazes. Research a recursive algorithm for traversing a maze and

explain the base case, the reduced problem, and the general solution.

ReferencesReferences

Barnsley, Michael. Fractals Everywhere. San Diego, CA: Academic Press, Inc., 1988.

Mandelbrot, Benoit. The Fractal Geometry of Nature. NewYok: W.H. Freeman and Co., 1977.

Peitgen, Heinz-Otto, et al. Fractals for the Classroom, Strategic Activities, Part One. New York: Springer-
Verlag, 1991.

Peitgen, Heinz-Otto, et al. Fractals for the Classroom, Complex Systems and Mandelbrot Set, Vol. 2. New
York: Springer-Verlag, 1992.

Roberts, Eric. Thinking Recursively. NewYork: John Wiley and Sons, 1986.

Roberts, Eric. Thinking Recursively with Java, 20th Anniversary Ed. NewYork: John Wiley and Sons, 2005.

EndnotesEndnotes

1 Epp, Suzanna, Discrete Mathematics with Applications, 3rd Ed., Brooks Cole, 2004. p, 461.

■ ■ ■ ■ ■

In this chapter

In this chapter, we will discuss the features Java provides within its implementation of the

concept of exceptions. This will expand our knowledge of the try-catch construct, the API

exception classes, and the differences between checked and unchecked exceptions, which

were discussed in the context of performing disk I/O. In addition, we will learn how to write

methods that throw exceptions when they detect errors, as the methods in the API classes do,

and how to create our own exception classes that make our programs more readable. We will

also discuss ways of using exceptions to facilitate the implementation of methods that do not

normally detect errors and the role of the finally clause in exception handling.

After successfully completing this chapter, you should:

� Be able to use the try-catch construct to process errors detected by methods you invoke

and fully understand the execution path of the construct

� Know when to include a finally clause within a try-catch construct and its role in the

construct’s execution path

� Understand how to design and implement algorithms that detect errors and throw exception

objects

� Be able to distinguish between the checked and unchecked exceptions as well as to know

the differences between these two types of exceptions and their appropriate use

� Be able to define and use new exception classes to develop more readable code

� Know how to use the features of exceptions in non-error detecting methods to facilitate

their development

� Understand the translator enforced coding order of multiple catch clauses coded within

the try-catch construct

10CHAPTERCHAPTER

10.1 An Overview .450

10.2 Java’s Exception Classes and Exception Objects 451

10.3 Processing Thrown Exceptions. 453

10.4 The Throw Statement and Error Messages 464

10.5 Defining Exception Classes. .472

10.6 Chapter Summary . 475

EXCEPTIONS: A SECOND LOOKEXCEPTIONS: A SECOND LOOK

450 ■ Programming Fundamentals Using Java

 10.1 10.1 AN OVERVIEWAN OVERVIEW

During the development of a program, a significant amount of time is spent testing the meth-

ods of the classes that make up the program because one very important programming goal is to

produce an error free program. To improve the chances of attaining this goal, the development

process begins by dividing a large program into smaller classes, and each class is divided into a

collection of small methods because the solution to small problems tends to be less error prone.

Then, each method is written and enters an iterative testing process aimed at exposing and elimi-

nating the errors in the method’s algorithm and its implementation. (Recall that the programming

development process was explained in Chapter 1, and Figure 1.28 illustrates this process.)

Unfortunately, a successful completion of this process does not guarantee that a method will

never produce a runtime error or an incorrect result because an unanticipated event could occur

during its execution. For example, the user might input a zero divisor into a method that divides

two inputs, or the user could direct the method to read data from a file that does not exist. To avoid

these failure modes, during the design process we should identify the events that will result in a

runtime error or an erroneous result and incorporate code into the method that recognizes them

when they occur. For example, before a divisor is used, we should always make sure it is not zero,

and we should check for the existence of a file before we attempt to read from the file.

Assuming that this error or failure mode recognition process is properly incorporated into the

design of a method’s algorithm, we are now faced with the task of deciding what actions to take

when these anticipated events occur and incorporating these actions into the method’s algorithm.

When the method is part of a class that will be imported into someone else’s program, this becomes

an impossible task because the author of the method does not know what action the user of the class

wants to take: terminate the program with an informative error message, give the user an opportu-

nity to correct an erroneous input, or some other course of action.

To solve this dilemma, Java and other programming languages use the concept of exceptions.

The name of this concept comes from the analogy of someone asking you to do something you can-

not or should not do and you respond, “I take exception to your asking me to do that.” A method

that has determined it is being asked to divide by zero should take exception to that, and a method

that has determined that it is being directed to read data from a disk file that does not exist should

take exception to that.

The concept of exceptions is based on the idea that a method’s algorithm should identify the

occurrence of a problem and inform the invoker that it occurred. The burden of what is to be done

after the problem occurs is passed on to the invoker. This allows for a recovery from the error

that is appropriate to, and implemented by, each application that imports the method’s class. For

example, one application that received a divide-by-zero exception from a method it invoked could

simply inform the program user that division by zero is not possible and terminate, while another

application invoking the same method can give the user an opportunity to reenter the divisor.

Exception Terminology: A Baseball Analogy

As mentioned in Chapter 4, the terminology of exceptions comes from a communication anal-

ogy between two persons that involves a baseball. One person wraps a message around the ball

 Chapter 10· Except ions: A Second Look ■ 451

and then throws the ball to the other person who catches it, unwraps the message, and reads it.

Applying the analogy to the communication of error messages, when a method’s algorithm detects

a problem, it wraps an error message around an exception object and throws the object to the code

block that invoked it. The code block can catch the thrown exception object, unwrap the error mes-

sage, and process it.

To extend the analogy a bit further, if a person chooses not to catch a thrown ball, some other

ordered collection of people can elect to catch it. The runtime environment maintains a history, or

the order of a method’s invocation sequence. For example, if the method main invoked method A,

and method A invoked method B, and method B invoked method C, then C’s invocation sequence

would be main, A, B. Invocation sequences are stored in a structure called the runtime stack. If

method C invoked method D during its execution, then C would be added to, or pushed onto, the

runtime stack before D’s execution began. The runtime stack would then contain the invocation

sequence main, A, B, C.

To return to our analogy, if C chooses not to catch an exception that is thrown by the method it

invoked during its execution, D, then each of the methods on the runtime stack are given a chance

to catch it in the reverse order in which they were invoked (last in, first out). In our original ex-

ample, B would be given a first chance to catch the thrown exception object, then A, and then main.

We say that the exception object propagates up the runtime stack. If none of the methods on the

runtime stack catch the exception, the Java Runtime environment catches and processes it.

NOTE All uncaught exception objects are caught by the Java Runtime environment.

After catching an exception, the Java Runtime environment outputs an error to the System

console that includes the unwrapped message and then terminates the program. This commonly

occurs during the development process when a coding error results in a method being invoked that

uses a reference variable that contains a null value or an array index is generated that is beyond

the bounds of the array. The console outputs, produced by the Java Runtime environment when

these two errors occur, are familiar to most of us:

� exception in thread “main” java.lang.NullPointerException

� exception in thread “main” Java.lang.ArrayIndexOutOfBoundsException: -23

Using the techniques discussed in Chapter 4, which are expanded in this chapter, we can catch

thrown exceptions and then either continue the program’s execution after exceptions are caught or

bring the program to a more informative “soft-landing” termination.

 10.210.2 JAVA’S EXCEPTION CLASSES AND EXCEPTION OBJECTS JAVA’S EXCEPTION CLASSES AND EXCEPTION OBJECTS

Figure 10.1 shows some of the API classes that are direct or indirect subclasses of the class

Throwable. Instances of all of these classes are considered Java exception objects that can be

thrown and caught by try-catch blocks. Error messages can be wrapped around these objects

before they are thrown and unwrapped and processed when they are caught.

452 ■ Programming Fundamentals Using Java

NOTE
In Java, an exception object is an instance of the API class Throwable or an in-

stance of a class that is a direct or indirect subclass of it.

Checked and Unchecked Exceptions Classes

As shown at the top of Figure 10.1, the classes Exception and Error are the two direct sub-

classes of Throwable. The class Error and all of its descendants are unchecked exception classes.

Conversely, the class Throwable and the class Exception are checked exception classes. All

direct and indirect subclasses of the class Exception are also checked exception classes except

for the class RunTimeException and its descendants.

Error

unchecked

EOFException

(checked)

AnnotationFormatError

(unchecked)

VirtualMachineError

(unchecked)

……

IOException

(checked)

RunTimeException

(unchecked)

…

IndexOutOfBoundsException

(unchecked)

ArithmeticException

(unchecked)

NullPointerException

(unchecked)

 Throwable

(checked: instances need to be caught or thrown)

Exception

checked

…

……… …

Figure 10.1

A subset of the exception classes included in the Java API and their inheritance chains.

When we invoke a method whose algorithm uses an instance of a checked exception to commu-

nicate to its invoker that an error has occurred, the invoking method must catch the object or include

a throws clause in its heading to inform the translator that it is intentionally going to ignore the error

detected by the method it invoked. The syntax of a throws clause is the keyword throws followed

by one or more exception class names separated by commas. The exception object classes coded in

the clause must be the type of the ignored checked exception or a direct or indirect super class of it.

As shown in Figure 10.1, the class IOException is a checked exception class. Instances of this

class and its descendants are thrown by the methods discussed in Chapter 4 that perform disk I/O.

That is why the two disk I/O programs shown in Figures 4.20 and 4.23 had to include a throws

clause at the end of the main method’s signature (line 6 of Figure 4.20) or perform the disk I/O from

 Chapter 10· Except ions: A Second Look ■ 453

within a try-catch construct (lines 39–66 of Figure 4.23) that could catch the thrown checked

exception object. If the disk I/O methods threw instances of unchecked exceptions, not including

either a throws clause or the try-catch construct in the method that invoked them would be

syntactically correct.

NOTE
Thrown checked exceptions must be caught, or the signature of the invoking method

must include a throws clause.

Errors that cause instances of the class Error or its descendants to be thrown are considered

abnormal conditions; they should normally not occur. They are not caused by programming er-

rors, an I/O error, or something that can be dealt with within an application. When they do occur,

they are best processed by the Java Runtime environment, the catcher of all uncaught exceptions.

Runtime errors that generate checked exceptions are considered to be situations that can be dealt

with by a method within an application and are serious enough that the translator requires that

they either are dealt with or that the method indicates that it is intentionally ignoring the error via

a throws clause.

Errors that cause instances of the class RunTimeError or its descendants to be thrown are

considered errors that will be eliminated during the testing phase of the application’s development,

and therefore, the translator does not require that the application process these errors or indicate

that they are intentionally being ignored via a throws clause. In situations where the programmer

feels that erroneous input or other non-programming error-related events could cause these un-

checked exception objects to be thrown, a try-catch construct should be included in the portions

of the application where these events could occur.

 10.310.3 PROCESSING THROWN EXCEPTIONS PROCESSING THROWN EXCEPTIONS

Exceptions are processed using a try-catch construct. The construct consists of a try clause

that is immediately followed by a catch clause. The statements associated with each of these

clauses are always enclosed in a set of brackets, even if there is only one statement associated with

them. For this reason, they are commonly referred to as try and catch blocks.

The try block is used to detect thrown exceptions, and the catch block is used to process the

errors that produced the exceptions. As illustrated in Figure 10.2, one try block can be followed

by multiple catch blocks, and the catch blocks must immediately follow the try block. Coding

statements in between any of the blocks is a syntax error. In the absence of a finally block, which

will be discussed later in this chapter, at least one catch block must be included in the construct.

try

{

 //try to execute the statements in this statement block

}

catch(ExceptionClass1 thrownObject1)

{

 //statements to execute when an ExceptionClass1 object is thrown

}

454 ■ Programming Fundamentals Using Java

catch(ExceptionClass2 thrownObject2)

{

 //statements to execute when an ExceptionClass2 object is thrown

}

 :

 :

catch(ExceptionClassN thrownObjectN)

{

 //statements to execute when an ExceptionClassN object is thrown
}

Figure 10.2

Syntax of the try-catch construct.

The first line of each catch block includes a single parameter that is a reference to an excep-

tion object. Its type must be Throwable or a descendent of that class. When multiple catch blocks

are included in the construct, each block must contain a different parameter type.

The execution path of the try-catch construct is shown in Figure 10.3. The statements in the

try block are executed until one of them causes an exception, at which point the execution of the

n = 1

Exception

thrown?

try block

finished?

n = n + 1

Execute the statements in the catch block whose

parameter is the type of the thrown exception object

Statements that follow the catch blocks

 try blocks

catch

blocks

yes

yes

no

Execute the nth try

block statement

no

Figure 10.3

The execution path of the try-catch construct.

 Chapter 10· Except ions: A Second Look ■ 455

try block statement terminates, and the statements in the catch block whose parameter matches

the type of the thrown exception object begins execution.

NOTE
A thrown exception object can be caught by a catch block whose parameter type

is a direct or indirect super class of the thrown exception type.

After the statements in the catch block complete their execution, the statements that follow

the catch blocks begin execution. If the type of the thrown exception object does not match any

of the parameter types in the catch blocks, and it is an unchecked exception, the statements that

follow the catch blocks are executed. If an uncaught exception is a checked exception, the method

terminates.

Figure 10.4 presents the application ProcessingExceptions that calculates the quotient and

remainder of two input numbers and gives the user three opportunities to correct the erroneous

input of a zero divisor. The for loop that begins on line 18 provides the three attempts to perform

the division. Its statement block (line 19–42) includes the calculations, the error detection of a zero

divisor, and the error processing.

Line 22 performs the division of the two numbers initially input and parsed on lines 12–16.

Java’s divide operator, used on line 22, throws an ArithmeticException object whenever the

operation’s divisor is zero. Because the statement is inside the try block that begins on line 20,

whose catch block processes this type of exception (line 26), when the error occurs, the if-else

statement that begins on line 28 executes. If three attempts to perform the division have not been

made, the if statement’s code block accepts another value of the divisor (Figure 10.5a), and the

next iteration of the loop begins. After the third failed attempt to perform the division, the else

clause’s code block executes (lines 35–40) outputting an error message (Figure 10.5b), and line 39

terminates the program.

When the division performed on line 22 is successful, the try block completes its execution,

and lines 43–45 output the result of the division (Figure 10.5c). The break statement at the end

of the try block (line 24) should not be interpreted as breaking out of the try-catch construct;

rather, its action is to terminate the for loop. The process of exiting a try-catch construct, il-

lustrated in Figure 10.3, does not involve a break statement; this statement is used to terminate

a switch or loop construct. If the try-catch construct were not coded inside the for loop that

begins on line 18, the break statement on line 24 would have produced a translation error.

1 import javax.swing.*;

2

3 public class ProcessingExceptions

4 {

5 public static void main(String[] args)

6 {

7 String s;

8 int a, b;

9 int quotient = 0;

10 int remainder = 0;

456 ■ Programming Fundamentals Using Java

11

12 s = JOptionPane.showInputDialog("This program calculates a / b " +

13 "\nEnter the value of a");

14 a = Integer.parseInt(s);

15 s = JOptionPane.showInputDialog("Enter the value of b");

16 b = Integer.parseInt(s);

17

18 for(int i=1; i<=3; i++) //three attempts to divide a and b

19 {

20 try

21 {

22 quotient = a / b; //throws an ArithmeticException

23 remainder = a % b;

24 break; //ends the for loop and Line 43 executes next

25 }

26 catch(ArithmeticException e)

27 {

28 if(i != 3) //three attempts to divide have not been made

29 {

30 s = JOptionPane.showInputDialog("A divisor cannot be zero." +

31 "\nPlease re-enter it");

32 b = Integer.parseInt(s);

33 }

34 else

35 {

36 JOptionPane.showMessageDialog(null, "Division by zero " +

37 "is undefined \n" +

38 "The program is ending");

39 System.exit(0); //terminate the program

40 }

41 } //end of the try-catch construct

42 }//end of for loop

43 JOptionPane.showMessageDialog(null, a + " / " + b + " = " +

44 quotient + ", with a " +

45 "remainder of " + remainder);

46 }

47 }

Figure 10.4

The application ProcessingExceptions.

 Chapter 10· Except ions: A Second Look ■ 457

 (a) (b)

 (c)

Figure 10.5

Outputs produced by the application ProcessingExceptions.

While it is true that the error checking performed with the try-catch construct used in the

application shown in Figure 10.4 could be performed using an if-else statement, in most cases,

the use of exceptions make our code more readable and simpler to code when more than one error

can occur within in a code block.

The application MultipleCatchBlocks presented in Figure 10.6 is a modified version of the

application presented in Figure 10.4. This version of the program uses a second catch block to

verify that the two user inputs are integers, and, in the interest of brevity, ends after it processes

this or the divide-by-zero error. Determining if the input string is an integer is a relatively simple

thing to do because the Integer class’s parseInt method throws a NumberFormatException

object when the string passed to it contains any character other than a digit or a leading plus or

minus sign. (The API online documentation of every method included in the API identifies the

exceptions each method’s throws.)

To take advantage of this fact, the parsing of the inputs has been moved into the program’s

try block (lines 17 and 19 in Figure 10.6), and the program’s second catch block (lines 30–36)

processes a NumberFormatException object. As shown in Figure 10.2, there is no limit to the

number of catch blocks that can be associated with one try block.

Figure 10.7a shows an erroneous (non-integer) user input, which terminates the try block on

line 7. Figure 10.7b shows the resulting error-message output by lines 32–34 before the program is

terminated by line 35.

458 ■ Programming Fundamentals Using Java

1 import javax.swing.*;

2

3 public class MultipleCatchBlocks

4 {

5 public static void main(String[] args)

6 {

7 String sa, sb;

8 int a = 0;

9 int b = 0;

10 int quotient = 0;

11 int remainder = 0;

12

13 try

14 {

15 sa = JOptionPane.showInputDialog("This program calculates " +

16 "a / b\nEnter the value of a");

17 a = Integer.parseInt(sa); //throws a NumberFormatException

18 sb = JOptionPane.showInputDialog("Enter the value of b");

19 b = Integer.parseInt(sb); //throws a NumberFormatException

20 quotient = a / b;

21 remainder = a % b;

22 } //end of the try block

23 catch(ArithmeticException e) //process divide by zero

24 {

25 JOptionPane.showMessageDialog(null, "Division by zero " +

26 "is undefined. \n" +

27 "\nThe program is ending");

28 System.exit(0);

29 } //end of the first catch block

30 catch(NumberFormatException e) //process non-integer input

31 {

32 JOptionPane.showMessageDialog(null, "Enter only digits " +

33 "for the operands." +

34 "\nThe program is ending");

35 System.exit(0);

36 } //end of the second catch block

37 JOptionPane.showMessageDialog(null, a + " / " + b + " = " +

38 quotient + ", with a " +

39 "remainder of " + remainder);

40 }

41 }

Figure 10.6

The application MultipleCatchBlocks.

 Chapter 10· Except ions: A Second Look ■ 459

 (a) (b)

Figure 10.7

Outputs produced by the application MultipleCatchBlocks.

Unwrapping Error Messages

The Throwable class’s getMessage method can be used to unwrap an error message. The

method returns a string containing the message that was “wrapped around” the exception object

that invoked it. The following code fragment outputs the message contained in the object caught

by the catch statement:

 catch (RuntimeException e)

 {

 System.out.println(e.getMessage());

 }

 10.3.110.3.1 Non-error Checking Use of Exceptions Non-error Checking Use of Exceptions

There are times when it is advantageous to use a try-catch construct not to detect and

process errors but to efficiently identify and process data. Consider the case when an input string

contains a mix of characters and numerics, and we want to process just the numerics. For example,

add up the numbers in the string:

Please add up 3.4 plus 5 plus -2 OK?

After isolating the tokens (entities separated by white space) in the input string, we can avoid

processing (totaling) the non-numeric tokens by using the NumberFormatException thrown by

the Double class’s parseDouble method to bypass the totaling algorithm. We are effectively

using exceptions to identify the numeric tokens in the string. Normally, the catch block in this

type of application is empty and is only included in the application to make it syntactically correct.

The application ParsingNumerics, shown in Figure 10.8, accepts an input string and outputs

the sum of the numerics contained in the string. A typical input and output is shown in Figure 10.9.

Line 14 of the application uses the String class’s split method to place the tokens of the

string, input on line 12, into the elements of the String array tokens. The right side of the total-

ing algorithm on line 19 uses the loop variable of the for loop (that begins on line 15) to attempt

to parse each token into a double. Because line 19 is inside a try block (lines 17–21), when the

460 ■ Programming Fundamentals Using Java

token is nonnumeric, the parseDouble method invoked on that line throws a NumberFormatEx-

ception object, and line 19 does not complete its execution. The exception is caught by the catch

statement (line 22), and the next iteration of the for loop begins.

When the parsed token is a numeric, line 19 completes its execution by adding the parsed token

to the current total. Then, the token and a plus sign are concatenated into the string numerics.

When the loop ends, line 27 replaces the rightmost plus sign in the string numerics with an equal

sign. Then, the string and the total of the numeric values are output to a message box on line 28.

1 import javax.swing.*;

2

3 public class ParsingNumerics

4 {

5 public static void main(String[] args)

6 {

7 String input;

8 String[] tokens;

9 double sum = 0;

10 String numerics = "";

11

12 input = JOptionPane.showInputDialog("Enter a String containing " +

13 "numerics");

14 tokens = input.split(" +");

15 for(int i = 0; i<tokens.length; i++)

16 {

17 try

18 {

19 sum = sum + Double.parseDouble(tokens[i]); //only numeric added

20 numerics = numerics + tokens[i] + " + "; //build output string

21 }

22 catch(NumberFormatException e) //non-numeric

23 {

24 //prevents termination of application when exception is thrown

25 }

26 } //replace the last plus sign with an equals and produce the output

27 numerics = numerics.substring(0, numerics.length() - 2) + "= ";

28 JOptionPane.showMessageDialog(null, numerics + sum);

29 }

30 }

Figure 10.8

The application ParsingNumerics.

 Chapter 10· Except ions: A Second Look ■ 461

 (a) (b)

Figure 10.9

An input to the application ParsingNumerics and the resulting output.

 10.3.2 10.3.2 The finally ClauseThe finally Clause

A try-catch construct can include a finally clause. When it does, as shown in Figure

10.10, the finally clause must immediately follow the last catch clause. Statements cannot be

coded between the last catch clause and the finally clause. It is similar to the other two clauses

in that it must contain a code block that could be empty or contain one or more statements.

try

{

 //try to execute the statements in this statement block

}

catch(ExceptionClass1 thrownObject1)

{

 //statements to execute when an ExceptionClass1 object is thrown

}

catch(ExceptionClass2 thrownObject2)

{

 //statements to execute when an ExceptionClass2 object is thrown

}

 :

 :

catch(ExceptionClassN thrownObjectN)

{

 //statements to execute when an ExceptionClassN object is thrown

}

finally

{

 //code executed after one of the above blocks completes execution

}

Figure 10.10

Syntax of the try-catch-finally construct.

The finally block’s function is to implement the tasks associated with the construct that

should be performed after the try block or one of the catch blocks completes its execution. The

462 ■ Programming Fundamentals Using Java

finally block always executes. Figure 10.11 shows the execution path of the try-catch-fi-

nally construct.

n = 1

Execute the nth try

block statement

Exception

thrown?

try block

finished?

n = n + 1

Execute the statements in the catch block whose

parameter is the type of the thrown exception object

Statements that follow the finally block

try blocks

no

Execute the statements in the finally block

no

yes

yes

finally

block

catch

blocks

Figure 10.11

The execution path of the try-catch-finally construct.

The most common use of the finally clause is to close out the processing of the construct.

Because the clause always executes, this processing includes the tasks that are common to, and

would otherwise be implemented at, the end of the try block and all of the catch blocks. A proper

understanding of the use of the finally block is that if it is not included in the construct, its code

would have to be pasted into the end of the try block and into the end of all of the catch blocks.

A good example of its use is to close all of the files that were opened during the execution of the

other portions of the construct.

Java supports a try-finally construct. It is an error-detection and processing construct that

does not contain a catch clause. The finally clause must immediately follow the try clause;

statements cannot be coded in between them. After the try block completes its execution, the

 Chapter 10· Except ions: A Second Look ■ 463

finally block executes, whether or not an exception is generated during the execution of the try

block. When the finally block completes its execution, if an exception was not generated dur-

ing the execution of the try block, the statements in the method that follow the finally block

execute. If an exception was generated during the execution of the try block, the method of which

it is a part terminates after the finally block completes execution. The statements that follow the

finally block do not execute because the thrown exception was not caught. If the exception is a

checked exception, the method’s signature must contain a throws clause, or it will not translate.

The try-finally construct is used when the thrown exception is to be propagated up the run-

time stack. The finally clause’s code block can be empty, or it can contain the residual processing

to be performed before the construct completes execution. For example, files being written to in the

try block are closed or an output is performed. The exception thrown during the execution of the

try block is not propagated up the runtime stack until the finally block completes its execution.

The application TryFinally, presented in Figure 10.12, contains a method named append-

DataItem (lines 20–35), which is invoked on line 11, to write the string data to a disk file. The

method uses a try-finally construct (lines 24–33) to make sure that the disk file to which it

writes is closed when it ends execution. The signature of the method (lines 20 and 21) contains two

string parameters; the first is the name of the file, and the second is the data item to be written to

the file. The method does not contain a catch clause because it defers the decision as to what to do

when a file output error occurs to its invoker. As a result, its signature contains a throws clause.

Line 28 writes to the file, and line 32 closes the file. Because the file is closed inside the fi-

nally block, it is executed whether or not an error occurs. Line 34 informs the user that the disk

write was successful. It only executes if an exception is not thrown in the try block because the

method does not include a catch clause. The console output shown at the bottom of Figure 10.12

was produced by line 34 after a successful disk write.

If the disk write is unsuccessful, the method ends after the finally block completes its execu-

tion. The thrown exception propagates up the runtime stack to the method main, where it is caught

by line 13; then line 15 perform its output, and the program is terminated (line 16).

The declaration of the variable fileOut, which is assigned the address of a PrintWriter

object on line 27, has to be coded outside of the try block (line 23). Otherwise, it would not be

visible to and could not be used by line 32 to close the file.

1 import java.io.*;

2 import javax.swing.*;

3

4 public class TryFinally

5 {

6 public static void main(String[] args)

7 {

8 String data = JOptionPane.showInputDialog("Enter a data item");

9 try

10 {

464 ■ Programming Fundamentals Using Java

 10.4 10.4 THE THROW STATEMENT AND ERROR MESSAGES THE THROW STATEMENT AND ERROR MESSAGES

When designing an algorithm for a method, we should always consider what could go wrong

and include a strategy in the algorithm to detect the error. Even the design of a game piece’s set

method could include the ability to detect when the value passed to it is outside a valid range. For

example, the setX method in a game piece’s class could include an if statement to make sure the

game piece’s new x coordinate is within the boundaries of the game board: minX ≤ newX ≤ maxX,

as shown below.

 public void setX(int newX)

 {

 if(newX < minx || newX > maxX)

 {

 // Take some action

 }

11 appendDataItem("dataFile.txt", data);

12 }

13 catch(IOException e)

14 {

15 System.out.println("There were problems writing to the file");

16 System.exit(0);

17 }

18 }

19

20 public static void appendDataItem(String fileName,

21 String dataItem) throws IOException

22 {

23 PrintWriter fileOut = null;

24 try

25 {

26 FileWriter fileWriterObj = new FileWriter(fileName, true);

27 fileOut = new PrintWriter(fileWriterObj);

28 fileOut.println(dataItem);

29 }

30 finally

31 {

32 fileOut.close();

33 }

34 System.out.println("The data was written to the file");

35 }

36 }

Program output:

The data was written to the file

Figure 10.12

The application TryFinally and the output it produces.

 Chapter 10· Except ions: A Second Look ■ 465

 else

 (

 x = newX;

 }

 }

To complete the algorithm, we must decide what action to take when the error is detected; that

becomes the code of the if statement’s code block. One strategy may be to set the x coordinate to

a value that is within the bounds of the game board. However, this strategy may not be acceptable

to all applications that use, or will use, this type of game piece. Even if one strategy can be found,

such as asking the game player to re-enter the location of the game piece, one application may re-

quire a mouse click on the game board to identify the correct location and another may ask that the

new location be entered via a dialog box.

When it is the case that one strategy may not suit the requirements for all applications that use

instances of the game piece, the best strategy is for the method to throw an exception object whose

message provides as much information as possible about the cause of the error. Then, each applica-

tion can catch the object, examine the error message, and implement a recovery strategy that best

suits the application.

The throw Statement

A method uses a throw statement to throw an exception. The statement begins with the key-

word throw, which is followed by a reference to an exception object:

throw exceptionObject;

An exception object is an instance of an exception class, which is the API class Throwable or any

of its direct or indirect subclasses. Referring to Figure 10.1, if we want the thrown exception to be

an unchecked exception, the object thrown should be an instance of the class RunTimeException

or one of its descendants. Checked exception objects are instances of the class Exception or one

of its descendants other than RunTimeException.

NOTE

When a method throws a checked exception object, its signature must include a

throws clause containing the name of the object’s class or one of its ancestor

classes.

Once a decision has been made as to whether the exception will be checked or not, it is good

programming practice to declare the exception object to be an instance of an exception class whose

name best describes the error that was detected. This makes our programs more readable. For

example, if a null reference was detected, the NullPointerException class would normally be

chosen.

NOTE
A throws clause begins with the keyword throws followed by the name of one or

more exception classes separated by commas.

466 ■ Programming Fundamentals Using Java

Creating Error Messages

An error message is created by passing a string containing the message to an exception class’s

one-parameter constructor when an exception object is created. The error is wrapped around, or

contained in, the object when it is created. The setX method, shown in Figure 10.13, uses this ap-

proach on lines 5 and 9 to communicate which game board edge of a 500-pixel-wide board would

have been breached by a 40-pixel-wide game piece. Exception object messages can be accessed

using the Throwable class’s getMessage method.

1 public void setX(int newX)

2 {

3 if(newX > 460) //beyond game board’s right edge

4 {

5 throw new RuntimeException("Beyond the board's RIGHT edge");

6 }

7 if(newX < 6) //beyond game board’s left edge

8 {

9 throw new RuntimeException("Beyond the board's LEFT edge");

10 }

11 x = newX;

12 }

Figure 10.13

A game piece’s setX method that throws an exception containing a descriptive message.

The signature of the method shown in Figure 10.13 does not include a throws clause because a

RuntimeException is an unchecked exception class. An alternative to the nameless objects cre-

ated on lines 5 and 9 would be to use named exception objects, but the nameless-object approach

used in the figure tends to be more readable.

// named exception object alternative to Line 5 of Figure 10.13

RuntimeException e = new RuntimeException("Beyond the board's RIGHT");

throw e;

NOTE
When a string is not passed to an API Exception class’s constructor a default error

message is used.

Execution Path of the throw Statement

After a throw statement is executed within a method, the execution of the method ends, and

the exception object propagates up the invocation sequence stored in the runtime stack. If the

method is a non-void method, a value is not returned from the method.

On the client side, if the method was invoked inside a try block, the try block’s execution

ends, and the execution sequence of the catch and finally blocks begins. If the exception is not

caught by the invoking method, it continues up the invocation sequence stored in the runtime stack

until it is caught. If the Java Runtime environment catches the exception object, the error message

is displayed to the system console, and the application is terminated.

 Chapter 10· Except ions: A Second Look ■ 467

The class BoxedSnowman2 is shown in Figure 10.14. Its set methods that begin on lines 37

and 53 throw a RunTimeException object when the value passed to them locates a portion of a

snowman beyond the boundaries of the game board. The if statements on lines 39 and 43 of the

setX method detect that an erroneous value of the snowman’s x coordinate was passed into the

method’s parameter newX. When this is the case, lines 41 and 45 throw a nameless RunTimeEx-

ception object containing appropriate error messages.

The throwing of the exception objects terminates the execution of the setX method, leaving

the x data member unchanged. If an erroneous value is not detected, line 47 performs the normal

function of a setX method: setting the value passed to the method into the object’s x data member.

Similar modifications have been made to the standard coding of the class’s setY method (lines

53–64).

The class’s three-parameter constructor (lines 9–19) has also been modified to only create

snowmen that are completely on the game board. In the interest of brevity, this is accomplished by

invoking the class’s setX and setY methods (lines 12 and 13) to store the object’s location in its x

and y data members. If either of these method invocations, coded inside the try block that begins

on line 11, produces a thrown exception (because the intialX or intialY value passed to the

constructor is invalid), the constructor does not complete its execution, and it does not return the

address of a newly created snowman. Because the constructor does not contain a catch clause, a

thrown exception propagates its way up the invocation sequence stored in the runtime stack. The

empty finally clause, lines 15-17, is included to make the use of the try clause syntactically

correct.

1 import java.awt.*;

2

3 public class BoxedSnowman2

4 {

5 private int x = 8;

6 private int y = 30;

7 private Color hatColor = Color.BLACK;

8

9 public BoxedSnowman2(int intialX, int intialY, Color hatColor)

10 {

11 try

12 { setX(intialX); //x = intialX;

13 setY(intialY); //y = intialY;

14 }

15 finally

16 {

17 }

18 this.hatColor = hatColor;

19 }

20 public void show(Graphics g) //g is the game board object

21 {

22 g.setColor(hatColor);

468 ■ Programming Fundamentals Using Java

23 g.fillRect(x + 15, y, 10, 15); //hat

24 g.fillRect(x + 10, y + 15, 20, 2); //brim

25 g.setColor(Color.WHITE);

26 g.fillOval(x + 10, y + 17, 20, 20); //head

27 g.fillOval(x, y + 37, 40, 40); //body

28 g.setColor(Color.RED);

29 g.fillOval(x + 19, y + 53, 4, 4); //button

30 g.setColor(Color.BLACK);

31 g.drawRect(x, y, 40, 77); //inscribing rectangle

32 }

33 public int getX()

34 {

35 return x;

36 }

37 public void setX(int newX)

38 {

39 if(newX > 460)

40 {

41 throw new RuntimeException("x is beyond the board's RIGHT");

42 }

43 if(newX < 6)

44 {

45 throw new RuntimeException("x is beyond the board's LEFT");

46 }

47 x = newX;

48 }

49 public int getY()

50 {

51 return y;

52 }

53 public void setY(int newY)

54 {

55 if(newY < 30)

56 {

57 throw new RuntimeException("y is beyond the board's TOP");

58 }

59 if(newY > 423)

60 {

61 throw new RuntimeException("y is beyond the board's BOTTOM");

62 }

63 y = newY;

64 }

65 }

Figure 10.14

The class BoxedSnowman2.

The application ThrowingExceptions, shown in Figure 10.15, displays a BoxedSnowman2

object on the game board at a user specified location, which can be moved around the game board

using the keyboard cursor control keys. The application uses try-catch constructs on lines 24–32

 Chapter 10· Except ions: A Second Look ■ 469

and lines 50–82, to ensure that both the initial and subsequent game board locations of the snow-

man are within the boundaries of the board.

The loop that begins on line 16 and ends on line 33 asks the user for the initial location of the

snowman and creates a snowman at that location. It continues to execute until the user enters a

valid initial (x, y) BoxedSnowman location: one that would position the entire snowman on the

game board. The user-specified x and y coordinates, input and parsed on lines 17–22, are passed

to the BoxedSnowman2 class’s three-parameter constructor on line 26. Because line 26 is inside

of a try block (that begins on line 24), if the setX or setY methods in the BoxedSnowman2 class

invoked by its constructor throws an exception, line 26 will not complete its execution. As a result,

the snowman is not created.

The thrown exception is caught on line 29; line 31 outputs the exception message, and the next

loop iteration begins. An erroneous user input and the corresponding output are shown at the top of

Figure 10.16. When the user enters a valid location for the snowman, line 26 places the address of

the newly created snowman in the variable s1, and the truth value of the Boolean variable correc-

tXY used on line 16 is set to true (line 27), which terminates the loop. Line 35 causes the draw

call back method to execute, and line 43 displays the snowman on the game board (Figure 10.16c).

Lines 46–83 implement the game environment’s keyStruck call back method, which is used

to move the snowman around the game board. Inside of its switch statement that begins on line

52, lines 57, 63, 69, and 75 invoke the BoxedSnowman2 class’s set methods to move the snowman

when one of the cursor control keys is struck. If these methods determine that the new x or y co-

ordinate passed to them is invalid, they do not change the snowman’s location and terminate after

throwing a RuntimeException object.

Because the set method invocations are coded inside a try-catch construct (lines 50–82),

the thrown exception is caught on line 79. Its message is unwrapped and placed in the String ob-

ject message (line 81). When the keyStruck method ends, the draw call back method executes,

and line 42 outputs the thrown error message to the top of the game board (Figure 10.16d). The

next time a key is struck, the object message is set to the empty string on line 48, which causes the

draw call back method to eliminate the message after a valid snowman motion.

1 import edu.sjcny.gpv1.*;

2 import java.awt.*;

3 import javax.swing.*;

4

5 public class ThrowingExceptions extends DrawableAdapter

6 { static ThrowingExceptions ge = new ThrowingExceptions();

7 static Game board gb = new Game board(ge, "THROWING EXCEPTIONS");

8 static BoxedSnowman2 s1;

9 static String message = "";

10

11 public static void main(String[] args)

12 { String s;

13 boolean correctXY = false;

14 int x, y;

15

470 ■ Programming Fundamentals Using Java

16 while(correctXY == false) //x or y is not valid

17 { s = JOptionPane.showInputDialog("enter the snowman's " +

18 "X coordinate");

19 x = Integer.parseInt(s);

20 s = JOptionPane.showInputDialog("enter the snowman's " +

21 "Y coordinate");

22 y = Integer.parseInt(s);

23

24 try

25 {

26 s1 = new BoxedSnowman2(x, y, Color.BLUE);//exception produced?

27 correctXY = true;

28 } //end try

29 catch(RuntimeException e)

30 {

31 JOptionPane.showMessageDialog(null, e.getMessage());

32 } //end catch

33 } //end while

34

35 showGame board(gb);

36 }

37

38 public void draw(Graphics g)

39 {

40 g.setColor(Color.BLACK);

41 g.setFont(new Font("Arial", Font.BOLD, 18));

42 g.drawString(message, 120, 50);

43 s1.show(g);

44 }

45

46 public void keyStruck(char key)

47 { int newX, newY;

48 message = "";

49

50 try

51 {

52 switch (key)

53 {

54 case 'L':

55 {

56 newX = s1.getX() - 2;

57 s1.setX(newX); //could cause an exception

58 break;

59 }

60 case 'R':

61 {

62 newX = s1.getX() + 2;

63 s1.setX(newX); //could cause an exception

64 break;

 Chapter 10· Except ions: A Second Look ■ 471

65 }

66 case 'U':

67 {

68 newY = s1.getY() - 2;

69 s1.setY(newY); //could cause an exception

70 break;

71 }

72 case 'D':

73 {

74 newY = s1.getY() + 2;

75 s1.setY(newY); //could cause an exception

76 }

77 }

78 } //end try

79 catch(RuntimeException e)

80 {

81 message = e.getMessage();

82 } //end catch

83 }

84 }

Figure 10.15

The application ThrowingExceptions.

 (a) (b)

(c)

472 ■ Programming Fundamentals Using Java

 (d)

Figure 10.16

Output produced by the application ThrowingExceptions.

 10.5 10.5 DEFINING EXCEPTION CLASSESDEFINING EXCEPTION CLASSES

A new exception class can be defined by extending an existing exception class. Defining and

using new exception classes in our programs makes them more readable and easier to understand

because the names we give to them can be more representative of the error that caused the excep-

tion to be thrown. For example, if we defined an exception class named OffBoardException and

used it on line 41 of Figure 10.14 and line 29 of Figure 10.15, the reason for throwing and catching

the exception would be self-evident.

The concepts involved in and the syntax used to extend exception classes are the same con-

cepts and syntax that apply to extending non-exception classes discussed in Chapter 8. The child

class inherits all of the methods and data members in its inheritance chain, which includes the

getMessage method defined in the class Throwable.

NOTE
The child of a checked exception class is always a checked exception class.

The child of an unchecked exception class is always an unchecked exception class.

Figure 10.17 presents the definition of the exception class OffBoardException, which is

an exception class because it extends RuntimeException and is an unchecked exception class

because RuntimeException is an unchecked exception class. The brevity of its code is typical of

most non-API exception classes and can be used as a template for defining other exception classes.

Both of its constructors simply invoke the RuntimeException class’s constructor. The message

passed to the class’s one-parameter constructor (line 7) is passed to its parent’s constructor, which

wraps it around the object it creates. The inherited default message is the null string. This class

could be used everywhere the RuntimeException class is used in Figures 10.14 and 10.15.

 Chapter 10· Except ions: A Second Look ■ 473

1 public class OffBoardException extends RuntimeException

2 {

3 public OffBoardException()

4 {

5 super();

6 }

7 public OffBoardException(String message)

8 {

9 super(message);

10 }
11 }

Figure 10.17

The non-API exception class OffBoardException.

Catch Block Ordering

The application DefinedExceptionClass, shown in Figure 10.18, demonstrates the order in

which exception objects in the same inheritance chain must be caught, whether they are API class-

es or defined exception classes. The catch clause that catches an OffBoardException object

(line 13) is coded before the clause that catches its parent class’s RuntimeException object (line

19), which is coded before the clause that catches its parent class’s Exception object (line 25).

The correct ordering of the catch blocks is up the inheritance chain of the exception objects

from child to ancestors. This implies that when one of the catch blocks in a try-catch construct

catches a Throwable exception object, that catch clause must be coded last. The ordering is a

consequence of the polymorphic feature of inheritance. Because a parent type parameter can point

to (reference) a child, a catch clause that catches an instance of a super class will also catch an

exception object in a class that inherits directly or indirectly from it. Coding the catch blocks of

a try-catch construct in any other order produces a translation error because the catch blocks

that catch the child class exceptions have been rendered unreachable.

The method test, coded on lines 32–48 of Figure 10.18, throws exception objects when it is

passed the value 1, 2, or 3. It is invoked on line 11 inside a try block that begins on line 9 and is

passed the loop variable of the for loop that begins on line 7. This causes it to throw one of three

different types of exceptions. Because one of the exceptions is a checked exception (an instance of

the class Exception on line 36), the method’s signature (line 32) contains a throws clause.

The order of the catch clauses coded on lines 13–29 is consistent with the inheritance chain

of the exception classes OffBoardException (Figure 10.17), which inherits from the class Run-

timeException, which inherits from the class Exception (Figure 10.1). These catch clauses

output the message attached to the objects they catch, proceeded by annotation particular to each

catch clause (Figure 10.19). The messages are created on lines 36, 40, and 45.

474 ■ Programming Fundamentals Using Java

1 import java.io.IOException;

2

3 public class DefinedExceptionClass

4 {

5 public static void main(String[] args)

6 {

7 for(int i=1; i<=3; i++)

8 {

9 try

10 {

11 test(i);

12 }

13 catch(OffBoardException e) //a child of RuntimeException

14 {

15 System.out.print("Caught by the OffBoardException " +

16 "catch block: ");

17 System.out.println(e.getMessage());

18 }

19 catch(RuntimeException e) //a child of Exception

20 {

21 System.out.print("Caught by the RuntimeException " +

22 "catch block: ");

23 System.out.println(e.getMessage());

24 }

25 catch(Exception e) //a child of throwable

26 {

27 System.out.print("Caught by the Exception catch block: ");

28 System.out.println(e.getMessage());

29 }

30 }

31 }

32 public static void test(int path) throws Exception

33 {

34 if(path == 1) //throw an Exception object

35 {

36 throw new Exception("a message attached to an Exception object");

37 }

38 if(path == 2) //throw a RuntimeException object

39 {

40 throw new RuntimeException("a message attached to a " +

41 "RuntimeException object");

42 }

43 if(path == 3) //throw an OffBoardException object

 Chapter 10· Except ions: A Second Look ■ 475

44 {

45 throw new OffBoardException("a message attached to an " +

46 "OffBoardException object");

47 }

48 }

49 }

Figure 10.18

The application DefinedExceptionClass.

Caught by the Exception catch block: a message attached to an Exception object

Caught by the RuntimeException catch block: a message attached to a RuntimeException object

Caught by the OffBoardException catch block: a message attached to an OffBoardException object

Figure 10.19

The output produced by the application DefinedExceptionClass.

 10.6 10.6 CHAPTER SUMMARYCHAPTER SUMMARY

One very important programming goal is to produce reusable methods, and the concept of

exceptions helps us achieve this goal. It gives us the ability to defer the decision as to what to do

when an error occurs during the execution of a method to the invoker of the method. This extends

the reusability of a method because the action to take when an error occurs is usually application

dependent. One application may choose to terminate the program, while another application may

re-invoke the method after giving the user a chance to correct an erroneous input.

Under Java’s implementation of exceptions, the invocation of a method that could detect an

error is coded inside the try clause of a try-catch construct, and the clause is immediately fol-

lowed by one or more catch clauses. Each catch clause has a parameter list with one parameter

whose type is the API class Throwable or one of its descendants. The type used in each parameter

list must be different.

When the method detects an error, it executes a throw statement, which terminates the execu-

tion of the method and the invoker’s try clause. The throw statement includes an exception object

in the class Throwable, or one of its descendants, that contains information about the error. This

object is passed to the catch clause that contains a parameter in the exception object’s class or one

of its ancestors. The code block of that, and only that, catch clause then executes to perform the

application-dependent processing associated with this type of error.

Instances of the class Throwable and each of its subclasses contain default error informa-

tion, which can be overwritten when these exception objects are created by passing a string to the

classes’ constructors. The code within the catch clauses can invoke the getMessage method on

the exception object passed to them to fetch the string containing the exception error information.

The API classes Exception and Error are the two direct subclasses of Throwable. The

class Error and all of its descendants are unchecked exception classes, while the Throwable and

476 ■ Programming Fundamentals Using Java

Exception classes are checked exception classes. Conditions that cause instances of the Error

class or its descendants to be thrown are considered abnormal and are best processed by the Java

Runtime Environment. The method that contains the try-catch construct must catch a thrown

checked exception, or the method must inform the translator that it will intentionally ignore the er-

ror via a throws clause added to its signature. If a thrown checked exception is not caught within

an application, the runtime environment terminates the program and outputs the exception object’s

error information.

A finally clause can be used to implement tasks that should be performed after a try-

catch block is completed. It is coded immediately after the last catch block, and it always ex-

ecutes. It must be coded after the try clause when there are no catch clauses associated with the

try clause.

When designing an algorithm for a method, we should always consider what could go wrong

and include a strategy in the algorithm to detect the error. Usually, the Boolean condition of an

if statement is used to detect an error, and the if statement’s code block creates and throws an

exception object. A new exception class can be defined by extending an existing exception class.

Defining and using new exception classes in our programs makes them more readable and easier

to understand because the name we give to the class can be more representative of the error that

caused the exception to be thrown. All of these design issues contribute to the development of read-

able, more reusable and maintainable software.

Knowledge ExercisesKnowledge Exercises

 1. True or false:

 a) An important programming design goal is to produce an error-free program.

 b) Dividing a large program into smaller classes and testing each class guarantees that errors

will not occur at runtime.

 c) All uncaught exception objects are caught and handled by the Java Runtime environment.

 d) The class Throwable has one direct subclass: Exception.

 e) Abnormal conditions that cause an instance of the class Error to be thrown are best

processed by the Java Runtime environment.

 f) The class Exception is an unchecked exception class, and the class Error is a checked

exception class.

 g) An exception object is an instance of the class Throwable or one of its subclasses.

 h) The API exception classes cannot be extended.

 i) Any method that throws a checked exception must include a throws clause in its

signature.

 j) If a method throws an exception, the method invoking it must contain a try-catch block.

 k) The code block of a finally clause always executes.

 l) If the methods invoked inside a try block do not throw an exception, the program skips

the catch block(s).

 m) A try-catch construct can also be used to identify and process data as well as to detect

errors.

 Chapter 10· Except ions: A Second Look ■ 477

 n) The child of an unchecked exception class is always an unchecked exception class.

 o) Some methods in the API classes throw exceptions.

 2. Mention at least three things that might cause a runtime error or an exception in a program.

 3. When would you choose to throw a checked rather than an unchecked exception?

 4. Name a class you would extend to create an unchecked exception class.

 5. Name a class you would extend to create a checked exception class.

 6. Explain in some detail what happens when an error, such as division by zero, occurs in a Java

program.

 7. Tell whether each of these exceptions or errors is checked or unchecked:

 a) IOException

 b) RunTimeException

 c) EOFException

 d) ArithmeticException

 e) NullPointerException

 f) AnnotationFormatError

 g) IndexOutOfBoundsException

 h) VirtualMachineError

 8. Explain the difference between the throws clause and the throw statement. Give an example

of how each one is used.

 9. Explain how you would fetch the string containing a caught exception object’s error information.

Programming ExercisesProgramming Exercises

 1. Write a program that creates a three-element array and asks the user which element of the

array should be output. Use a try-catch block to recover from an attempt to output an array

element whose index is not 0, 1, or 2. Inform the user that an erroneous input was made,

output the exception object’s error information, and give the user an unlimited number of

opportunities to correct the error. Do not use an if statement in this program.

 2. Repeat Exercise 1 and include a separate method that is passed the array and the input index

and performs the output. This method should use an if statement to detect an erroneous index

and throw an unchecked exception containing the message: The range of the index must be

between 0 and 2.

 3. Repeat Exercise 2, modifying the method so it throws a checked exception in a new exception

class named InvalidIndexException.

 4. Repeat Exercise 2, modifying the method so it throws a checked exception in a new exception

class named IndexTooLowException when the array index passed to the method is too low,

and throws a checked exception in a new exception class named IndexTooHighException

when the array index passed to the method is too high.

478 ■ Programming Fundamentals Using Java

 5. Write a program to output the number of operators contained within a valid arithmetic

expression input by the program user. Use a try-catch construct to count the operators. Hint:

the parseDouble method throws an exception when it is passed anything other than a string

that represents a valid real number or a valid integer.

 6. Write a static method named inputInt within a class named ValidNumericInput that

displays the prompt passed to it in an input dialog box, accepts an integer input from the user,

and returns the parsed integer. If the user does not enter a valid integer, or if the user clicks

OK or Cancel without making an entry, the method throws an exception in the programmer-

defined exception class BadIntegerEntry. The thrown exception object will contain a

message indicating which event caused the exception: no entry or non-integer entry. Use the

method in an application that gives the user an unlimited number of opportunities to enter two

valid integers by invoking the method inside a try-catch construct coded inside a loop. Each

time an erroneous input is made, the application will output the thrown exception object’s error

message before re-invoking the method. Note: a no-entry Cancel click returns null, and a

no-entry OK click returns the empty string "″.

 7. Write a program to accept a sentence from the keyboard terminated by a new line. Use the

Integer class’s parseInt method to locate all the integers. Then, write them to the disk file

numbers.txt (don’t specify a path) one number per line in the order in which they appear in

the sentence. After storing the integers in the disk file, ask the user which of the numbers to

delete from the file via an invocation of the inputInt method described in Exercise 6. When

the method throws an exception, the application should tell the program user which mistake

(no-entry or non-integer entry) occurred and ask for another entry. Before terminating, the

application should read the modified contents from the file and output them to the system

console.

EnrichmentEnrichment

 1. Read the API documentation on the class Throwable and its two direct subclasses.

 2. Investigate how to determine from the API online documentation if an API method throws and

exception and what exception it throws.

 3. Investigate how the language C++ implements the concept of exceptions.

■ ■ ■ ■ ■

In this chapter

In this chapter, we will learn how to create more user-friendly and informative dialog boxes

and how to build and incorporate graphical user interfaces (GUIs) into our programs. The

use of these point-and-click interfaces makes interacting with a program more user friendly.

Java provides two packages, the Abstract Window Toolkit (AWT) and Swing, to facilitate the

development of dialog boxes and GUIs.

Principles for designing a GUI interface will be explained and illustrated as will the use of a GUI-

builder worker class to create a window, add the GUI components to the window, and perform the pro-

cessing associated with the user’s interaction with its components. These components include panels,

buttons, text fields, labels, and tool tips. Various layout managers, used to organize the components,

will be compared.

Methods called event handlers will be discussed. These methods are invoked by the Java Runtime

Environment (JRETM) when an event, such as a mouse click or a mouse drag, is performed on the GUI.

We will learn how to write these event handler methods and how to register the methods with the Run-

time Environment. The use of paint event handler methods to draw two-dimensional graphical objects

on a GUI component will also be discussed.

Finally, these graphical concepts will be applied to Web-based programs called applets. We will

discuss how to write applets, the basics of HTML code used to download and launch an applet in a Web

browser, and some security issues associated with applets.

After successfully completing this chapter you should:

� Be able to create and use dialog boxes that are more informative and user friendly

11CHAPTERCHAPTER

11.1 Overview. .480

11.2 Enhancing Dialog Boxes .482

11.3 Creating a Graphical User Interface

for an Application. .487

11.4 Event Processing .500

11.5 Layout Managers . 522

11.6 Applets. 531

11.7 Chapter Summary .544

GRAPHICAL USER INTERFACESGRAPHICAL USER INTERFACES

480 ■ Programming Fundamentals Using Java

� Know how to design and implement GUIs that contain panels, text fields, buttons,

labels, and tool tips using Java’s AWT and Swing packages

� Be familiar with top-level containers, containers, and atomic GUI components and their

role in graphical interfaces

� Understand the advantages of using a GUI-builder worker class to construct a graphical

interface and how to implement these classes

� Know the three (or sometimes four) step process for adding components to a container

� Understand how to write event handler methods to process mouse, keyboard, timer, and

paint events that occur on a GUI

� Know how to register event handler methods with the Java Runtime Environment so

they are invoked when the specific events occur

� Be able to distinguish between applications and applets and be able to implement an

applet and launch it in a Web browser

Understand security issues associated with applets and Java’s role in these issues

11.1 11.1 OVERVIEW OVERVIEW

A graphical user interface is a means of interacting with a program. Most often referred

to using the acronym GUI (pronounced “goo-ee”), its design goal is to make the use of a program

self-evident. GUIs are a much more user friendly than the original command-based interaction

scheme in which a program would issue a text-based prompt that generically amounted to “what

would you like to do?” and the user responded by typing a command such as “tax program.”

Developed during the late 1970s, graphical interfaces were initially used to communicate with

the operating system, but their power and ease of use was quickly adopted into all of the applica-

tions run on a system. Wherever possible, text-based prompts are replaced with icons, and key-

board input is replaced with mouse clicks, audio commands, and touch screen/pad input.

Just as graphical road signs succinctly communicate information to motorists, GUI objects,

called components, permit us to quickly navigate our way through a program. The features of

each of these components, which include clickable buttons, check boxes, radio buttons, scroll bars,

sliders, and menu bars, to name a few, facilitate particular I/O functions that are common to most

programs. Figure 11.1 shows some of the more commonly used components.

While the use of GUIs has reduced the time and effort required to interact with a program, in-

corporating a GUI into a program can significantly increase the time and effort required to develop

it. In reaction to this, many integrated development environments provide a GUI-builder feature

that allows the programmer to rapidly develop the interface. It is built by selecting commonly used

GUI components from a graphical display, dragging them to a position on a panel that will become

the user interface, and then setting features associated with them such as their color, size, text type,

and visibility. As the programmer builds the interface, the IDE adds the code to the program that

creates and displays the components and adds empty methods to the program that will execute

when the user interacts with the components. The programmer then adds the code to perform the

processing associated with the components to these methods.

 Chapter 11· Graphical User Interfaces ■ 481

The AWT and Swing Packages

The Java code generated by these GUI builders relies heavily on the classes that are part of the

API AWT and Swing packages. Both of these packages are part of the Java Foundation Classes

(JFC), a set of classes that support the development of graphical interfaces. The AWT package was

part of the API before the Swing package was added to it. The Swing package both duplicated and

extended the range of the types of GUI components available in the AWT package to include file

and color-chooser dialog boxes and provided additional features such as tool tips and the ability to

interact with the GUI in a drag-and-drop mode. All Swing components are designed to be 100%

cross-platform compatible.

Java applications that use components in the Swing package are less dependent on the graph-

ical features of the platform’s operating system on which the application is run. For example,

minor differences in the components’ appearance (or look) and the change in their appearance

when the user interacts with them (their feel) that are platform dependent can be eliminated, or

the look and feel of the components can be made to emulate the platform on which the applica-

tion is running.

In addition, Swing component classes are written in Java and do not contain any platform-

specific code. For that reason, they are referred to as lightweight components, to distinguish them

from the subset of heavyweight components that are “weighed down” by (i.e., contain) platform-

specific code, and always emulate the look and feel of the platform on which they are running.

Most applications use GUI components that are instances of classes in the API Swing (javax.

swing)package.

Figure 11.1

Commonly used GUI components.

482 ■ Programming Fundamentals Using Java

 11.2 11.2 ENHANCING DIALOG BOXES ENHANCING DIALOG BOXES

Input and message dialog boxes are graphical user interfaces used to perform I/O with the

program user. In addition to the versions of the showInputDialog and showMessageDialog

methods discussed in Chapter 2, the JOptionPane class provides several overloaded versions of

these methods and other methods that can be used to provide more informative and user-friendly

dialog boxes. The default icon and title displayed in the dialog boxes can be changed, the dialog

boxes can be displayed in the middle of a specified window such as the game board’s window, and

a default input or a set of input selections can be displayed in an input dialog box.

Table 11.1 presents a summary of the overloaded versions of the showInputDialog and

showMessageDialog methods, with their signatures given in its left column. The check marks

Table 11.1

Options for Displaying Input and Message Dialog Boxes

Method

Feature(s) Incorporated into the Method

Default

Input

Specify

Window Title Icon

Input

Choices

Input Dialog Boxes

showInputDialog(Object prompt)

showInputDialog(Object prompt,

Object defaultInput)
√

showInputDialog(Component window,

Object prompt)
√

showInputDialog(Component window,

Object prompt,

Object defaultInput)

√ √

showInputDialog(Component window,

Object prompt, String

title, int messageIcon)

√ √ √

showInputDialog(Component window,

Object prompt, String

title, int messageIcon,

Icon icon, Object[]

selectionValues, Object

initialSelectionValue)

√ √ √ √ √

Message Dialog Boxes

showMessageDialog(Component window,

Object message)
√

showMessageDialog(Component window,

Object message,

String title,

int messageIcon)

√ √ √

 Chapter 11· Graphical User Interfaces ■ 483

in the columns to the right identify the features of each version of the methods. The top section of

the table presents the input dialog methods, and the message dialog methods are presented in the

bottom section. The signatures of the methods that have been used up to this point in the textbook

are shown at the beginning of the two sections of the table. All of the input dialog box methods

return a reference to a String object except for the last one shown in the top portion of the table,

which returns an Object reference.

The parameter window in the signatures of the message-box methods and last four input-box

methods could be passed a reference to a GUI component such as a window. When it is, the dialog

box is displayed in the center of the component. If the parameter is passed a null value, the dialog

box is displayed in the center of the program window that invoked the method. To display it in

the center of the game board window, the method would be passed the GameBoard object gb as

shown on line 12 of the application CenterMsgBox, shown in Figure 11.2. The output it produces

is shown in Figure 11.3.

Normally, the prompt and defaultInput parameter used in the input dialog method signa-

tures shown in the Table 11.1 are passed a String object. The defaultInput is displayed in the

text area of the input box when it appears on the monitor. It can be changed (overtyped) by the pro-

gram user. The argument passed to the parameter title (used in fifth and last rows of the table) is

displayed in the title bar at the top of the dialog box. The parameter message in the message dialog

method signatures is normally passed a String object or any object that contains a toString

method. The parameter icon in the sixth row of the table is used to pass a programmer-defined

instance of the Icon class to the method.

1 import edu.sjcny.gpv1.*;

2 import javax.swing.JOptionPane;

3

4 public class CenteredMsgBox extends DrawableAdapter

5 {

6 static CenteredMsgBox ge = new CenteredMsgBox();

7 static GameBoard gb = new GameBoard(ge, "My Game");

8

9 public static void main(String args[])

10 {

11 showGameBoard(gb);

12 JOptionPane.showMessageDialog(gb, "A Messages Box Centered " +

13 "in the Game Board Window");

14 showGameBoard(gb);

15 }

16 }

Figure 11.2

The application CenterMsgBox.

484 ■ Programming Fundamentals Using Java

Figure 11.3

The output produced by the application CenterMsgBox.

The methods in Table 11.1 whose signatures contain the parameter messageIcon can be

passed any of five static constants defined in the class JOptionPane. This parameter is used

to specify which one of five predefined icons will be displayed on the left side of a dialog box.

Table 11.2 gives the names of the constants, their integer value, and the icons that are associated

with each of them. The methods in Table 11.1 whose signatures do not contain the parameter mes-

sageIcon always display the default icons identified parenthetically in the rightmost column of

the table. An integer literal between -1 and 3 inclusive (one of the five constants’ values) can alter-

nately be passed to this parameter.

Table 11.2

The JOptionPane Class’s Predefined Dialog Box Icon Constants and Icons

Constant Name Value Icon Common Icon Use

PLAIN_MESSAGE -1
none Other defined icons are inappropriate:

no icon is displayed

ERROR_MESSAGE 0

An error or problem has occurred

INFORMATION_MESSAGE 1

For your information

(message dialog box default)

WARNING_MESSAGE 2

Consider possible ramifications

QUESTION_MESSAGE 3

A reply to the prompt is requested

(input dialog box default)

 Chapter 11· Graphical User Interfaces ■ 485

The last method shown in the input portion of the Table 11.3 implements all the features pre-

sented in that table. In this version of the method the default input is actually designated to be one

of a valid set of inputs contained in an array passed to the method’s selectionValues parameter.

The designation of the default value is performed by passing one of the elements of the array to

the parameter initialSelectionValue. The elements of the array can be String objects, in-

stances of a class that contains a toString method, or several other options that will be discussed

later in this chapter. If a null value is passed to the parameter selectionValues, the user can

overstrike the displayed default value; otherwise, the user can only select one of the objects in the

array which are displayed in a drop-down box.

The application EnhancedDialogBoxes presented in Figure 11.4 demonstrates the use of all

of the features implemented by the overloaded dialog box methods presented in Table 11.1, except

centering the dialog box in a GUI component (which was demonstrated in the application presented

in Figure 11.2). The dialog box outputs produced by the program are shown in Figure 11.5.

The word ERROR passed to the second parameter of the method invoked on line 12 of Figure

11.4 appears in the title area of the message box it outputs (Figure 11.5a). This message box also

contains the non-default Error icon, whose number (0) is passed to the method’s third parameter

using the static constant JOptionPane.ERROR _ MESSAGE.

Line 15 displays an input dialog box containing the default input, Sophomore, as shown in

Figure 11.5b. The default value is passed to its second parameter on line 16.

The method invoked on line 19 displays the input dialog box that is shown in Figure 11.5c. The

box contains the title Standing passed to the method’s third parameter on line 21 and the Question

icon because the numeric literal 3 is passed to its fourth parameter. The default input Junior is also

displayed in the text area of the input box because the third element of the array, defined on lines

7 and 8, is passed to the method’s last parameter on line 24. The null value passed to the method

on line 22 indicates that a user programmer-defined icon is not passed to the method.

Figure 11.5d shows the input box displayed to its left after the user clicks the box’s down arrow

to display the valid input choices passed to the method on line 23. The coercion on line 19 is neces-

sary because the method invoked on that line returns an Object reference variable that contains

the address of the user-selected object contained in the array passed to it on line 23.

1 import javax.swing.JOptionPane;

2

3 public class EnhancedDialogBoxes

4 {

5 public static void main(String[] args)

6 {

7 String[] inputOptions = {"Freshman", "Sophomore",

8 "Junior", "Senior" };

9 String s1, s2;

10

11 // Titled message box with an error icon

486 ■ Programming Fundamentals Using Java

12 JOptionPane.showMessageDialog(null, "The Disk I/O Failed", "ERROR",

13 JOptionPane.ERROR_MESSAGE);

14 // Input box with a default input

15 s1 = JOptionPane.showInputDialog("Enter your Class Standing",

16 "Sophomore");

17

18 // A Non-default icon titled Input box, a valid set of inputs

19 s2 = (String) JOptionPane.showInputDialog(null, "Select your " +

20 "class standing",

21 "Standing", 3,

22 null,

23 inputOptions,

24 inputOptions[2]);

25

26 System.out.println(s1 + " " + s2);

27 }

28 }

Figure 11.4

The application EnhancedDialogBoxes.

 (a) (b)

 (c) (d)

Figure 11.5

The output produced by the application EnhancedDialogBoxes.

 Chapter 11· Graphical User Interfaces ■ 487

 11.3 11.3 CREATING A GRAPHICAL USER CREATING A GRAPHICAL USER
INTERFACE FOR AN APPLICATIONINTERFACE FOR AN APPLICATION

Graphical user interfaces are created by declaring an instance of a top-level container class

and then adding GUI components to it. Top-level container classes in the Swing package include

JWindow, JFrame, JApplet, and JDialog. The class JFrame extends the capabilities of its par-

ent class JWindow by adding a title bar that contains the window management icons (minimize,

resize, and close), an optional title, and the ability to drag the window. Figure 11.6 shows the inheri-

tance chain of the Swing top-level containers.

Non-Web based GUI applications use JFrame as their top-level GUI container because it has

the look and feel of a program window. Web based applications, referred to as applets, use JAp-

plet as their top-level container. The class JDialog is used as the top-level container for GUI

components that are to be part of a sub-window. Input and message dialog boxes are instances of

this class. All top-level containers have a content pane, which is the area of the window that will

contain the GUI components particular to an application.

Object

Component

Container

Window

Frame Dialog

JDialog JFrame JWindowJApplet

Panel

AWT

Swing

Figure 11.6

The inheritance chain of the top-level swing containers.

488 ■ Programming Fundamentals Using Java

 11.3.111.3.1 The Content Pane The Content Pane

Figure 11.7 shows two JFrame instances, one with a menu bar (left window) and one without

a menu bar (right window). The content panes are the yellow portions of the windows. When a

JFrame window is created, its outer width and height (in pixels) is specified. Within these outer

dimensions, there is a rectangular border that is, by default, 4 pixels wide. A 26-pixel-high title

bar is positioned directly below the top portion of the border, and a 23-pixel-high menu bar can be

added to the window directly below the title bar. The remaining area of the window determines the

width and height of the content pane, which are the window’s dimensions minus the surrounding

boarders, title bar, and menu bar.

 (a) (b)

Figure 11.7

Two JFrame windows 408 pixels wide and 257 pixels high.

For example, the windows in Figure 11.7 are both 408 pixels wide and 257 pixels high. The

left window’s content pane is 400 pixels wide (408 minus the left and right border widths) and 200

pixels high (257 minus the top border, title bar, menu bar, and bottom border heights). The right

window’s content pane is 223 pixels high because the height of the menu bar (23 pixels) in the win-

dow to its left is now part of the content pane.

The origin of the coordinate system used to position components added to the content pane

is located at the upper-left corner of the content pane. The positive x direction is to the right, and

the positive y direction is downward. The text shown on the two content panes in Figure 11.7 was

added at the same (x, y) locations. Because the origin of the content pane in the window without the

menu bar is higher in the window, the text appears closer to the top of the window.

 11.3.2 11.3.2 Creating and Displaying a Program Window Creating and Displaying a Program Window

The one-parameter constructor of the JFrame class is used to create a program window. The

string parameter passed to it is displayed on the left side of the window’s title bar. Alternately, the

default (no-parameter) constructor can be used to create a window with no title. Once created, the

size of the window must be specified, and then the window must be made visible. The following

code fragment creates the 708 x 434 pixel window shown in Figure 11.8, which is displayed with

its upper left corner at the default location (0, 0) on the monitor.

 Chapter 11· Graphical User Interfaces ■ 489

 JFrame appWindow = new JFrame("A GUI Window");

 appWindow.setSize(708, 434); //content pane is 700 x 400

 appWindow.setVisible(true);

Figure 11.8

A program window.

Normally, three additional methods are invoked when a window is created. One method is used

to reposition the upper left corner of the window from its default (0, 0) monitor location, and the

second method is used to change the color of the content pane (which defaults to light gray). The

third method is used to direct the Runtime Environment to terminate the program when the user

closes the window. The default is to continue the program’s execution.

The signatures of these three methods, the JFrame constructors, and the methods setSize

and setVisible, and one additional method are shown in Table 11.3. All of the methods in the

table are non-static methods, and all but the last one are members of the JFrame class. The last

method is a member of the class Component.

Table 11.3

Methods Used to Create and Display a Window

Method Signature Function

JFrame(); Construct a window with no title

JFrame(String windowTitle) Construct a window with the title windowTitle

setSize(int width, int height)
Sets the width of the window to width pixels and

the height of the window to height pixels

setVisible(boolean isVisible)
Displays the window on the monitor when

isVisible is true

(Contd.)

490 ■ Programming Fundamentals Using Java

Method Signature Function

setLocation(int x, int y)
Positions the upper left corner of the window to

pixel location (x, y) of the monitor

setDefaultCloseOperation(int action)
Specifies the action to be taken when the window is

closed action: 3 terminates the program

getContentPane()
Returns a Container reference to the window’s

content pane

setBackground(Color paneColor);
Sets the color of the window’s content pane to

paneColor, a Component class method

The application GUIWindow shown in Figure 11.9 creates and displays the window shown in

Figure 11.10. Line 10 positions the upper left corner of the window 100 pixels below and to the

right of the upper left corner of the monitor. Line 11 sets the color of the content pane to pink by

invoking the setBackground method on the content-pane object whose address is returned from

the getContentPane method. The JFrame class inherits this method from the Component class.

The argument passed to the setDefaultCloseOperation invoked on line 12 is a static

constant defined in the JFrame class used to specify the action to be taken when the window

is closed. When used in this context, the application is terminated when its window, referenced

by appWindow, is closed. Although the value of the constant (three) could have been coded as a

numeric literal, the use of the constant (EXIT _ ON _ CLOSE) makes the line more readable and is

considered good programming practice.

If line 12 were eliminated from the program, the Java Runtime Environment would still con-

sider the program active, even though the window has been closed and the main method has ended.

One result of this would be that the IDE used to execute the program would still consider the

program to be running. We will learn more about this in Chapter 14 when we study the concept of

threads.

1 import javax.swing.*;

2 import java.awt.Color;

3

4 public class GUIWindow

5 {

6 public static void main(String[] args)

7 {

8 JFrame appWindow = new JFrame("A GUI Window");

9 appWindow.setSize(708, 434);

10 appWindow.setLocation(100, 100);

11 appWindow.getContentPane().setBackground(Color.PINK);

 Chapter 11· Graphical User Interfaces ■ 491

12 appWindow.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

13 appWindow.setVisible(true);

14 }

15 }

Figure 11.9

The application GUIWindow.

Figure 11.10

The window produced by the application GUIWindow.

GUI-Builder Worker Classes

Consistent with the concept of divide-and-conquer, most often the building of the user inter-

face is not performed in the main method, but rather, it is relegated to one or more worker classes.

This is particularly useful when the application will contain one or more windows because each

window can be built by a separate worker class. For this reason, it is the approach taken by IDE’s

that contain drag-and-drop GUI builders.

Line 5 of the application GUIWindowBuilder, shown in Figure 11.11, creates the same window

as the application shown in Figure 11.9, but this time, the window is an instance of the worker class

WindowBuilder shown in Figure 11.12. The worker class extends the class JFrame, but it does not

add any data members or methods. It simply contains a constructor: lines 6–15 of Figure 11.12.

Line 8 of the worker class invokes JFrame’s one-parameter constructor to construct the win-

dow, passing it the string to be displayed in the window’s title bar, then lines 10–15 set the window’s

size, location, color, close action, and visibility. This is the identical code used on lines 9–13 of the

492 ■ Programming Fundamentals Using Java

application shown in Figure 11.9, except that the methods are invoked on the window created on

line 8 of the constructor. The invocation on lines 10–14 of Figure 11.12 could have been preceded

by the keyword this followed by a dot to more clearly indicate that they were being invoked on

this object that was created on line 8, but the coding shown in the figure is more commonly used.

1 public class GUIWindowBuilder

2 {

3 public static void main(String[] args)

4 {

5 WindowBuilder appWindow = new WindowBuilder("A GUI Window");

6 }

7 }

Figure 11.11

The application GUIWindowBuilder.

1 import javax.swing.*;

2 import java.awt.*;

3

4 public class WindowBuilder extends JFrame

5 {

6 public WindowBuilder(String title)

7 {

8 super(title);

9

10 setSize(708, 434);

11 setLocation(100, 100);

12 getContentPane().setBackground(Color.PINK);

13 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

14 setVisible(true);

15 }

16 }

Figure 11.12

The class WindowBuilder.

Depending on the application, the GUI-builder worker class may include one or more overload-

ed constructors to allow the client to specify not only the window’s title, but also its size, location,

color, close action and visibility.

The coding style of relegating the task of creating a GUI window to a separate worker class that

extends JFrame will be used in the remainder of this chapter.

 11.3.3 11.3.3 Adding GUI Components to a Window Adding GUI Components to a Window

The Swing package contains a rich assortment of GUI components, some of which are shown

in Figure 11.1, that can be added to a window. While there is some overlap in the roles that they

play in the I/O process, each component has been designed to facilitate a particular I/O function.

 Chapter 11· Graphical User Interfaces ■ 493

For example, the functionality of radio buttons makes them the best components to use to acquire

one choice from a small set of mutually exclusive choices.

The most common components used in GUI interfaces are buttons, text fields, labels, check

boxes, radio buttons, and combo boxes. Table 11.4 lists the constructor methods used to create

these components grouped by their intended functionality and gives a brief description of the I/O

function they were designed to facilitate.

Table 11.4

Commonly Used Java Swing GUI Components

Component Constructors Targeted Use

Input Components

JCheckBox(String text)

JCheckBox(String text,

boolean selected)

Select one or more inputs from a group of

suggested inputs by clicking a box

JRadioButton(String text)

JRadioButton(String text,

boolean selected)

Select one input from a group of suggested

inputs by clicking a button

JComboBox(E[] items)
Select one input from a group of suggested

inputs by clicking an item

Input or Output Component

JTextField(String text) Keyboard input, String output

Annotation or Output Component

JLabel(String text)
Annotate a window including placing prompts

at text boxes; String output to the window

Initiate Processing Component

JButton(String text)
Execute instructions associated with the click

of the button

Collect Other Related Components and 2D Graphics Components

JPanel()

JPanel(LayoutManager layout)
Group other related components and draw 2D

shapes

The names of all of the Swing component class names begin with a capital J. They are all

direct or indirect descendants of the class JComponent, whose inheritance chain is shown in

Figure 11.13. The only exceptions to this are the top-level component classes, previously discussed

in this chapter, whose inheritance chains are shown in Figure 11.6.

Just as the top-level components can contain other components, some non-top-level compo-

nents can also contain other components. A JPanel is an example of this type of component, while

buttons and text fields are designed to be atomic components.

494 ■ Programming Fundamentals Using Java

Definition

Atomic components are GUI components that cannot contain other components.

Object

Component

Container

JComponent

AWT

Swing

Figure 11.13

The JComponent class’s inheritance chain.

Designing the Interface

Before adding a GUI component to a window, it is very useful to make a quick sketch of the in-

terface that includes all of the components to be added and their position in the window. The choice

of which components to add is based on the I/O requirements of the program and the component’s

targeted use listed in Table 11.4. As noted in the table, the JTtextField component can be used

for both input and output.

If the program involves a series of inputs that should be entered in a particular order, adding

input components to the window from left to right and top to bottom in order of entry enhances

the friendliness of the interface. A sketch of an adding machine GUI is shown in Figure 11.14. Its

level of detail is typical of that contained in a design sketch.

=+

Compute Clear

a

xxxx.xx

JTextFields JLabels

JButtons

JLabels

Computes a + b

b

Figure 11.14

The GUI design for an adding machine.

 Chapter 11· Graphical User Interfaces ■ 495

Adding the Components

When an IDE is being used that has a GUI-builder feature, the program’s window appears in

the GUI builder. The components are added to the window by simply selecting them from a list

of components, and then dragging them to their position in the window. Their size is typically

adjusted by dragging resizing handles, and properties such as font color, font size, and initial vis-

ibility are specified via a menu of properties appropriate to each component.

While the particulars of GUI builders vary from one IDE to another, they all provide a rapid

way of selecting, positioning, locating, and sizing an application’s GUI components. Perhaps more

importantly, while this process is being performed, the GUI builder adds the code to the applica-

tion that creates, locates, and displays the components. It also adds templates for the code that

responds to the runtime interaction with the components. These features greatly reduce the time

to develop an application’s GUI, which is the reason an IDE with a GUI builder should always be

used when developing an application that has a graphical user interface.

Java also provides several layout managers that can facilitate the tedious process of locating

components in a window when an IDE with a GUI builder is not available, but their use is limited

to the development of simple IDEs. We will discuss layout managers in Section 11.5.

In the remainder of this section, we will become familiar with the methods used to construct,

locate, size, and add components to a window and some of the methods used to adjust their proper-

ties. Invocations to these methods are added to our application when the interface is created with an

IDE GUI builder. Even when the invocations are generated by the IDE, knowledge of these meth-

ods and their use is essential to altering the generated code and to completing the code templates

added to the application.

A three or (for radio buttons) four step coding process is used to add a component to a window

or to other non-atomic containers such as a JPanel object:

 1. Create the component object

 2. Specify the component’s properties such as size, location, font style, tool tip, and visibility

 3. Add mutually exclusive radio buttons to a common button group

 4. Add the component to the window or non-atomic container

The more commonly used constructors used in step 1 of this process to create the components

described in Table 11.4 are given in that table. The string passed to these constructors and the array

passed to the combo box’s constructor become the annotation that will appear on, within, or next

to the component. For example, the following statement creates a button with the text Click Me

displayed on it, and a text field with the text Hamburger displayed in it. The component’s size must

be wide enough to accommodate the width of the text, or the text will not be displayed:

 JButton aButton = new JButton("Click Me");

 JTextField entree = new JTextField ("Hamburger");

Table 11.5 gives the methods used in steps 2 and 4 of the process to specify a compo-

nent’s properties and add the component to a window or some other non-atomic container. The

496 ■ Programming Fundamentals Using Java

techniques and methods used in step 3 to group mutually exclusive radio buttons will be discussed

in Chapter 12, as will the development of interfaces that contain check boxes and radio buttons.

The Component and Container classes contain get methods for each of their set methods

presented in the Table 11.5. All JComponents are visible by default.

Table 11.5

Methods Used to Specify a Component’s Properties and Add it to a Container

Method Signature Description

JComponent and Component Class Methods Invoked on Components

setToolTipText(String tip) Adds the tool tip tip to the component, displayed when

the mouse pointer hovers over it

setBounds(int x, int y,

int width, int height)
Sets the component’s location to (x, y) and its width and

height to width and height

setLocation(int x, int y) Sets the component’s location to (x, y)

setSize(int width, int height) Sets the component’s width and height to width and

height

setText(String newText) Changes the text displayed on the component to newText

setVisible(boolean visible) The component is visible when visible is passed the

value true, invisible when passed false

setFont(Font fontStyle) Sets the font style of the container or component that in-

voked the method to fontStyle

Container Class Methods

setLayout(LayoutManager layout); Sets the container’s layout to layout, to specify location/

size of components: layout = null

add(Component theComponent) Adds theComponent to the container or component that

invoked the method

When coded inside the constructor of a GUI-builder worker class, such as the one shown in

Figure 11.12, the following code fragment adds a 300-pixel-wide by 30-pixel-high JLabel to

the GUI that contains the text Computes a + b. The upper left corner of the text is located on the

window’s content pane at (120, 0), and the font type, style, and size of the displayed text is Sherif,

bold, 24 point.

 setLayout(null);

 JLabel description = new JLabel("Computes a + b");

 description.setBounds(120, 0, 300, 30);

 description.setFont(new Font("Sherif", Font.BOLD, 24));

 add(description);

The null value passed to the invocation of the setLayout method permits the use of the

setBounds method to size and locate a component. Once invoked, all components subsequently

added to the window can be positioned and sized using the setBounds or setLocation and

setSize methods. The use of a non-atomic component’s layout manager to size and position com-

ponents added to it will be discussed in Section 11.5.

 Chapter 11· Graphical User Interfaces ■ 497

The following code fragment, when coded inside the constructor of a GUI-builder worker

class, adds a 90-pixel-wide by 25-pixel-high JButton to the GUI. The button contains the text

Clear and contains a tool tip. The upper left corner of the button is located at (235, 110). The frag-

ment assumes that the setLayout method has been invoked and passed a null value before the

code it executes.

 JButton clear = new JButton("Clear");

 clear.setLocation(235, 110);

 clear.setsize(90, 25);

 clear.setToolTipText("Clears a, b and the sum");

 add(clear);

The setLocation and setSize methods were used to locate and size the button simply to

demonstrate the use of these methods. When both the location and the size of a component are be-

ing set, one invocation of the setBounds method is the preferred programming style.

The worker class AddingMachineGUI, shown in Figure 11.15, builds the graphical user in-

terface, shown in Figure 11.16, whose design is shown in Figure 11.14. The application Adding-

Machine, shown in Figure 11.17, creates an instance of this interface on line 8, sets its default

close operation on line 9, and makes the interface visible on line 10. The last two tasks could have

been performed by the GUI-builder class as they were in the class presented in Figure 11.12. The

removal of these window initialization tasks from the GUI-builder class is often employed when

more than one GUI is used in a program.

The code of the class AddingMachineGUI (Figure 11.15) follows the four-step process (with-

out step 3 because the GUI does not contain radio buttons) discussed in this section to add the GUI

components to the window it creates. The coding style used performs a step of the process on all

of the components before moving on to the next step. Step 1 for all components is performed on

lines 18–27, step 2 for all components is performed on lines 30–46, and step 4 is performed on

lines 49–58.

Within each step, the components are processed in the order in which they appear in the GUI

design, starting at the top and moving from left to right. Consistent with this approach, line 18

constructs the descriptive label that appears at the top of the GUI design, line 19 constructs the

text field that is below it and to its left, line 20 constructs the label that contains the plus sign to the

right of this text box, etc.

This coding style makes the program more readable and facilitates the coding process by re-

ducing the number of iterations used to properly locate the components in the window. In addition,

it is consistent with the requirements of one of the layout managers discussed later in this chapter

and is the coding style often used in the code generated by an IDE’s drag-and-drop GUI builder.

The class extends JFrame on line 4 of Figure 11.15 because it is going to create a window with

a title bar containing a title and window management icons. All of the code to create the window

and add the components to it is written inside the constructor. Line 12 constructs the window by

invoking JFrame’s one-parameter constructor and passing it the parameter title declared on line

10. As the comments at the end of the lines 12 and 13 state, all subsequent invocations of methods

on unnamed objects operate on the window created on line 12.

498 ■ Programming Fundamentals Using Java

Lines 13 and 14 specify the size of the window and the location of the upper left corner of the

window when it is displayed on a monitor. Line 15 permits the programmer to take control of the

sizing and positioning of the GUI components away from the JFrame’s default layout manager.

The remaining three sections of code create the GUI components, specify their properties, and add

them to the JFrame window. The variables that reference the components are declared as class-

level variables on lines 6–8 to allow methods that will be added to the class in the next section of

this chapter to access the components.

1 import javax.swing.*;

2 import java.awt.*;

3

4 public class AddingMachineGUI extends JFrame

5 {

6 JLabel description, plus, equals, sum, a, b;

7 JTextField aValue, bValue;

8 JButton compute, clear;

9

10 public AddingMachineGUI(String title)

11 {

12 super(title); //Creates the window. All subsequent invocations

13 setSize(500, 250); //on an unnamed object operate on this window.

14 setLocation(200, 100);

15 setLayout(null);

16

17 //Step 1 create the components

18 description = new JLabel("Computes a + b");

19 aValue = new JTextField();

20 plus = new JLabel("+");

21 bValue = new JTextField();

22 equals = new JLabel("=");

23 sum = new JLabel("x,xxx.xx");

24 a = new JLabel("a");

25 b = new JLabel("b");

26 compute = new JButton("Compute");

27 clear = new JButton("Clear");

28

29 //Step 2 specify the component’s properties

30 description.setBounds(120, 0, 300, 30);

31 description.setFont(new Font("Sherif", Font.BOLD, 24));

32 aValue.setBounds(60, 50, 100, 30);

33 plus.setBounds(190, 50, 20, 30);

34 plus.setFont(new Font("Sherif", Font.BOLD, 20));

35 bValue.setBounds(230, 50, 100, 30);

36 equals.setBounds(350, 50, 20, 30);

37 equals.setFont(new Font("Sherif", Font.BOLD, 20));

38 sum.setBounds(380, 50, 100, 30);

39 sum.setFont(new Font("Sherif", Font.BOLD, 20));

40 a.setBounds(105, 75, 20, 30);

41 a.setFont(new Font("Sherif", Font.BOLD, 20));

 Chapter 11· Graphical User Interfaces ■ 499

42 b.setBounds(275, 75, 20, 30);

43 b.setFont(new Font("Sherif", Font.BOLD, 20));

44 compute.setBounds(65, 110, 90, 25);

45 clear.setBounds(235, 110, 90, 25);

46 clear.setToolTipText("Clears a, b and the sum");

47

48 //Step 4 add the component to the container (Step 3 not relevant)

49 add(description);

50 add(aValue);

51 add(plus);

52 add(bValue);

53 add(equals);

54 add(sum);

55 add(a);

56 add(b);

57 add(compute);

58 add(clear);

59 }

60 }

Figure 11.15

The class AddingMachineGUI.

Figure 11.16

The graphical user interface created by the class AddingMachineGUI.

1 import javax.swing.*;

2 import java.awt.*;

3

4 public class AddingMachine

5 {

6 public static void main(String[] args)

7 {

8 AddingMachineGUI calculator = new AddingMachineGUI("Calculator");

9 calculator.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

10 calculator.setVisible(true);

11 }

12 }

Figure 11.17

The application AddingMachine.

500 ■ Programming Fundamentals Using Java

 11.4 11.4 EVENT PROCESSING EVENT PROCESSING

After the graphical interface is built, the next step in the GUI programming process is to iden-

tify the components in the interface that require application-dependent processing to be performed

when the user interacts with them. For our adding machine, these would be the Compute and Clear

buttons. When the compute button is clicked, the two text field entries are added, and the result is

output. A click of the Clear button should clear the text boxes and the output sum.

In GUI jargon, when the user interacts with a component on the interface, we say that an action

has been performed on the interface, or that an event has occurred. A click on one of our buttons is

an example of an event. Other examples include the completion of an entry into a text box denoted

by the striking of the Enter key, the movement of the mouse pointer over the window, or simply a

click into a text box.

GUI events are detected by the Java Runtime Environment and some of them are dealt with,

or processed, with no effort on the programmer’s part. For example, when the user of a program’s

GUI interface clicks into one of its text fields, the insertion point cursor (caret) appears in the text

field. This event is processed, or handled, by the code of API methods associated with the text

field. When the click event occurs, the Runtime Environment executes a process to notify these

methods that the event has occurred. After being notified of the event, they execute and display the

insertion caret in the text field. Other sections of code associated with the text field subsequently

handle keystroke events by displaying a typed character in the text field, and moving the caret to

the right.

Events such as a click into a text box can be handled by the API methods because the action

to be taken (display the caret at the position of the click) when the event occurs are part of the

predefined look and feel of the GUI component. These application-independent GUI events are al-

ways processed by API methods. Other GUI events that occur on an application’s interface, such as

the clicking of the Compute button on our adding machine’s interface, require the application pro-

grammer to process the event because the action to be taken is unique to this particular application.

More accurately, the application programmer partially processes these types of events be-

cause most often some processing that is part of the look and feel of the component also needs to

be performed. For example, when the user clicks the Compute button of our adding machine, the

API responds to the event by executing code that makes the button appear to have been depressed

because this is part of a predefined look and feel of a button. Then, the application performs the

processing particular to it: add two numbers together and display the result.

To initiate application-dependent processing when a GUI event occurs, the Java event-han-

dling process permits the application programmer to add methods written as part of the application

to the list of methods notified, or more accurately, executed, when the event occurs. We say that

the programmer can add to the list of methods that are listening for the event to occur, and these

methods are generically referred to as event handlers. Figure 11.18 illustrates this concept and the

event processing execution path it produces.

 Chapter 11· Graphical User Interfaces ■ 501

The button's event

listener list

Event handler methods

for this button

...

...

A click of the

button

event

handler

code

event

handler

code

event

handler

code

event

handler

code

Execution path

Figure 11.18

Java’s event-processing process.

The process can be thought of as the execution of a switch statement, without any break state-

ments, that executes all of its cases. Adding a method to a GUI component’s event listener list

would then be analogous to adding a case clause to the switch statement that invokes a method (the

event handler method) to perform the processing for that case.

NOTE Each component object added to the interface has its own event listener list.

 11.4.111.4.1 Implementing Event Handler Methods Implementing Event Handler Methods

Because the application-dependent event handler methods we code are invoked within API

methods that are part of each GUI object added to the interface, the signatures of the methods

have to be defined within the API implementation. The set of API interfaces whose names end in

Listener defines the signatures of the application-dependent event handler methods invoked when

a GUI event occurs.

Table 11.6 presents the names of some of the more commonly used listener interfaces and the

names and parameter lists of the event handler methods they define. They are all void methods,

and in most cases, the names of the methods imply the events that they handle. The most obvious

exception to this is the signature of the actionPerformed method at the top of the table. The

events it handles, as well as those handled by the other methods presented in the table, are sum-

marized in the middle column. The check mark in the rightmost column of the table indicates that

the interface on that row has an adapter class associated with it. Adapter classes will be discussed

in Section 11.4.4.

502 ■ Programming Fundamentals Using Java

Table 11.6

Several API Listener Interfaces and Commonly Used Event Handler Methods they Define

Event Handler Interfaces and

Their Void Method(s)
Events Handled

Adapter

Class

ActionListener Interface Method

actionPerformed(ActionEvent e)
A button click, a timer time out, or Enter

key strike into a text field

FocusListener Interface Methods

focusGained(FocusEvent e)
A clickable component (e.g., a button or a

text box) is clicked

focusLost(FocusEvent e) Another clickable component is clicked

KeyListener Interface Methods √
keyPressed(KeyEvent e) A key is pressed

keyReleased(KeyEvent e) A key is released

keyTyped(KeyEvent e) A key is typed (pressed and released)

MouseListener and MouseMotionListener Methods √
mouseClicked(MouseEvent e) A mouse click on a GUI component

mousePressed(MouseEvent e)
A mouse button is pressed down on a GUI

component

mouseDragged(MouseEvent e)
Left mouse button is held down and the

mouse is moved on a component

mouseReleased(MouseEvent e) A mouse button is released

The application-dependent processing to be performed when a particular event occurs is coded

inside an implementation of the event handler method that handles that event. The name, signa-

ture, and interface of the method can be determined be searching the middle column of Table 11.6

for the event to be handled. For example, to perform some processing whenever a key is typed,

the processing would be coded inside the keyTyped method whose signature is defined in the

KeyListener interface. The following code fragment counts the number of times the mouse is

clicked.

public static int numOfClicks = 0;

public void mouseClicked(MouseEvent e)

{

 numOfClicks++;

}

The heading of a class that contains the implementation of an event handler method must

contain an implements clause indicating that it implements the method’s interface. This class is

usually coded as an inner class of the class that declared the GUI component, although the method

can be coded in same class that declared the GUI component.

It is good programming practice that the name of the inner class implies the component and the

event its method handles or listens for. Consistent with this practice, its name usually ends with the

 Chapter 11· Graphical User Interfaces ■ 503

word Handler or Listener. For example: ComputeClickHandler or ComputeClickListener

would be good names for an inner class that contained an event handler that performs the process-

ing associated with a click event on a button object named compute.

 11.4.211.4.2 Registering the Event Handler Registering the Event Handler

To complete the process of implementing an event handler, the event handler method must be

added to, or registered with, the list of methods invoked when the event occurs. As indicated in

Figure 11.18, the list is called a listener list, and each GUI component added to an application’s

interface maintains its own listener list.

To add an event handler method to the listener list maintained in a particular GUI component

object, a method is invoked whose name begins with add followed by the name of the interface that

defined the signature of the method: for example, addMouseListener or addActionListener.

The method is invoked on the GUI component object and passed an instance of the class that con-

tains the code of the event handler method. This invocation is said to register the event handler in

the component’s listener list.

The following code fragment adds (registers) the actionPerformed method coded in

the inner class ComputeClickHandler in the listener list of the JButton object named

compute:

 ComputeClickHandler click = new ComputeClickHandler();

 compute.addActionListener(click);

This two-step process of registering an event handler method with a GUI component is summa-

rized below:

 1. Create an instance of the inner class that implements the event handler method

 2. Invoke the method addNameOfTheInterface on the GUI component passing it the

object created in step 1

A more concise coding of this two-step process uses an anonymous object to register the event

handler method, as shown in the following code fragment:

 compute.addActionListener(new ComputeClickHandler());

When the event handler method is not coded inside an inner class, the event handler method is

registered by passing the keyword this to the method invoked in step 2, as shown in the following

code fragment:

 compute.addActionListener(this);

Summary of the Process to Implement an Event Handler

The following four step process is used to implement an event handler method.

 1. Use the middle column of Table 11.6 to determine the API method that handles the event

504 ■ Programming Fundamentals Using Java

 2. Add that method to an inner class that implements the method’s interface, which is
identified above the method in Table 11.6

 3. Add the instructions to perform the event handling processing to the method

 4. Add the method to (register it with) the listener list of the GUI component on
which the event will occur: guiComponent.addInterfaceName(innerClassObject);

NOTE
All of the interface’s methods must be implemented in the class. Some of the imple-

mentations can contain an empty code block.

Having gained an understanding of events and event handler methods, we will conclude

this section with incorporating the event process into our adding machine GUI builder

worker class (Figure 11.15), and a discussion of the getSource method.

Completion of the Adding Machine Application

The class AddingMachineGUI2, shown in Figure 11.19, adds two button click event handler

methods to the class AddingMachineGUI shown in Figure 11.15 and registers them with the

GUI’s button objects. One method adds two inputs and outputs the sum with two digits of preci-

sion, and the other method clears the inputs and the computed sum. The program’s window after

the user enters two inputs and clicks the Compute button is shown in Figure 11.20a, and Figure

11.20b shows the window after a subsequent click of the Clear button.

The inner classes ComputeClickHandler and ClearClickHandler (lines 67–82 and

83–91, respectively) are the two event handler classes. Each class implements the API interface

ActionListener (lines 67 and 83) because they will handle a button click event. The middle

column of Table 11.6 was used to determine that the inner classes would have to implement the

interface ActionListener to handle the user button click events, and to determine that the name

of the event handler methods would have to be actionPerformed.

ComputeClickHandler’s implementation of the interface’s actionPerformed method

(lines 69–81) computes and displays the sum of the user inputs when the compute button is clicked

because it is added to (registered with) that object’s listener list on line 51. This registration is per-

formed on line 51 by passing an anonymous instance of the event handler’s class ComputeClick-

Handler to the addActionListener method invoked on the compute object.

Similarly, line 52 adds the implementation of the actionPerformed method coded on lines

85–90 to the listener list of the clear button object by passing an anonymous instance of its class,

ClearClickHandler, to the addActionListener method invoked on the clear object. Line

4 imports the event interfaces and classes used in the GUI builder class.

The revised code of the application AddingMachine, which is named AddingMachineV2,

is shown in Figure 11.21. The program window declared on line 8 of the application is now an in-

stance of the class AddingMachineGUIV2.

 Chapter 11· Graphical User Interfaces ■ 505

1 import javax.swing.*;

2 import java.awt.*;

3 import java.text.DecimalFormat;

4 import java.awt.event.*;

5

6 public class AddingMachineGUIV2 extends JFrame

7 {

8 JLabel description, plus, equals, sum, a, b;

9 JTextField aValue, bValue;

10 JButton compute, clear;

11

12 public AddingMachineGUIV2(String title)

13 {

14 super(title); //Creates the window. All subsequent invocations

15 setSize(500, 250); //on unnamed object operate on this window.

16 setLocation(200, 100);

17 setLayout(null);

18

19 //Step 1 create the components

20 description = new JLabel("Computes a + b");

21 aValue = new JTextField();

22 plus = new JLabel("+");

23 bValue = new JTextField();

24 equals = new JLabel("=");

25 sum = new JLabel("x,xxx.xx");

26 a = new JLabel("a");

27 b = new JLabel("b");

28 compute = new JButton("Compute");

29 clear = new JButton("Clear");

30

31 //Step 2: specify the component’s properties

32 description.setBounds(120, 0, 300, 30);

33 description.setFont(new Font("Sherif", Font.BOLD, 24));

34 aValue.setBounds(60, 50, 100, 30);

35 plus.setBounds(190, 50, 20, 30);

36 plus.setFont(new Font("Sherif", Font.BOLD, 20));

37 bValue.setBounds(230, 50, 100, 30);

38 equals.setBounds(350, 50, 20, 30);

39 equals.setFont(new Font("Sherif", Font.BOLD, 20));

40 sum.setBounds(380, 50, 100, 30);

41 sum.setFont(new Font("Sherif", Font.BOLD, 20));

42 a.setBounds(105, 75, 20, 30);

43 a.setFont(new Font("Sherif", Font.BOLD, 20));

44 b.setBounds(275, 75, 20, 30);

45 b.setFont(new Font("Sherif", Font.BOLD, 20));

46 compute.setBounds(65, 110, 90, 25);

47 clear.setBounds(235, 110, 90, 25);

48 clear.setToolTipText("Clears a, b and the sum");

506 ■ Programming Fundamentals Using Java

49

50 // Register the event handler methods

51 compute.addActionListener(new ComputeClickHandler());

52 clear.addActionListener(new ClearClickHandler());

53

54 //Step 4: add the component to the container

55 add(description);

56 add(aValue);

57 add(plus);

58 add(bValue);

59 add(equals);

60 add(sum);

61 add(a);

62 add(b);

63 add(compute);

64 add(clear);

65 }

66 //Event handler inner classes and methods

67 public class ComputeClickHandler implements ActionListener

68 {

69 public void actionPerformed(ActionEvent e)

70 {

71 String s;

72 double a, b, result;

73 DecimalFormat f = new DecimalFormat("#,##0.00");

74

75 s = aValue.getText();

76 a = Double.parseDouble(s);

77 s = bValue.getText();

78 b = Double.parseDouble(s);

79 result = a + b;

80 sum.setText(f.format(result));

81 }

82 }

83 public class ClearClickHandler implements ActionListener

84 {

85 public void actionPerformed(ActionEvent e)

86 {

87 aValue.setText("");

88 bValue.setText("");

89 sum.setText("x,xxx.xx");

90 }

91 }

92 }

Figure 11.19

The class AddingMachineGUIV2.

 Chapter 11· Graphical User Interfaces ■ 507

1 import javax.swing.*;

2 import java.awt.*;

3

4 public class AddingMachineV2

5 {

6 public static void main(String[] args)

7 {

8 AddingMachineGUIV2 calculator = new AddingMachineGUIV2("Calculator");

9 calculator.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

10 calculator.setVisible(true);

11 }

12 }

Figure 11.21

The application AddingMachineV2.

The getSource Method

When an event handler method is invoked, the argument passed to it contains information

about the event, which includes the address of the GUI object involved in the event. For example,

when the event handler that begins on line 69 of Figure 11.19 is invoked, the information passed to

its parameter e contains the address of the object compute, declared on line 28 of the figure. This

is the only object that could have been involved in the event because the object clear (declared on

line 29) added the other implementation of the actionPerformed event handler to its listener list

(line 52). As a result, the information passed to the parameter e was not used.

When an alternative coding style is used to implement the event handler, the information

passed to the parameter e plays an essential role in the coding of the event handler. In this alter-

native approach, only one implementation of the event handler is coded, and all of the objects on

which this event could occur register that implementation into their listener list. Assuming the

inner class containing the one event handler method implementation is named ButtonClickHan-

dler, lines 51 and 52 of Figure 11.19 would become:

51 compute.addActionListener(new ButtonClickHandler());

52 clear.addActionListener(new ButtonClickHandler());

 (a) (b)

Figure 11.20

Output generated by the class AddingMachineGUIV2’s Compute and Clear button.

508 ■ Programming Fundamentals Using Java

To discern which of the two buttons, compute or clear, was involved in a button click event,

the GUI component object address contained in the information passed to the parameter e is com-

pared to the addresses stored in the variables compute and clear. The method getSource in

the EventObject class is used to fetch the address from the information passed to e. Figure 11.22

presents the code that would replace lines 67–82 and lines 83–92 of Figure 11.19 when this alterna-

tive implementation style is used. It presupposes that the previously discussed recoding of lines 51

and 52 has been performed.

The name of the (one) inner class whose heading is on line 67 of Figure 11.22 is now the ge-

neric name ButtonClickHandler, and the Boolean condition of the if-else clauses that begin

on lines 75 and 84 use the getSource method to determine the object involved in the event. If the

GUI contained more than two buttons, additional nested if-else clauses would be added to the

method to process their click events.

67 public class ButtonClickHandler implements ActionListener

68 {

69 public void actionPerformed(ActionEvent e)

70 {

71 String s;

72 double a, b, result;

73 DecimalFormat f = new DecimalFormat("#,##0.00");

74

75 if(e.getSource() == compute)

76 {

77 s = aValue.getText();

78 a = Double.parseDouble(s);

79 s = bValue.getText();

80 b = Double.parseDouble(s);

81 result = a + b;

82 sum.setText(f.format(result));

83 }

84 else if(e.getSource() == clear)

85 {

86 aValue.setText("");

87 bValue.setText("");

88 sum.setText("x,xxx.xx");

89 }

90 }

91 }

92 }

Figure 11.22

An alternative coding style of the event handlers that begin on line 67 of Figure 11.19.

 Chapter 11· Graphical User Interfaces ■ 509

 11.4.311.4.3 Paint Events, JPanels, and Two-Dimensional Graphics Paint Events, JPanels, and Two-Dimensional Graphics

A paint event is a generic term for any event that causes a graphical object to be drawn or

redrawn. The most obvious paint events are the initial display of an application’s GUI window

and maximizing a window after it has been minimized. A more subtle paint event is continuously

redrawing a window as it is dragged across the monitor.

To display a window on the monitor, the window (JFrame) object and all of the components

added to it (JButton objects, JTextFields objects, etc.) have to be drawn, as do any two-di-

mensional (2D) shapes that were drawn in the window by the application using the methods in

the Graphics class. To accomplish this, each component has a paint event handler, or call back

method, that is invoked when a paint event occurs. The names of these event handlers typically

begin with the word paint, for example paintComponents, paintComponent, and paint.

When they are invoked, these methods are passed a Graphics object, which they use to render

(draw) the component. The Graphics object passed to the JPanel class’s paintComponent call

back method can be used to draw 2D graphics shapes defined in the Graphics class on a JPanel

object. To accomplish this, we simply add a class to our application that extends JPanel and over-

rides its paintComponent method. Then, the panel is added to the application’s window. The

drawing of the 2D graphics is done inside the overridden version of the paintComponent method.

For example, the following code fragment would be added to a class that extends JPanel to

draw a filled red rectangle 70 pixels wide by 30 pixels high, whose upper left corner is at (300,

200). The parent (JPanel) class’s overridden method should always be invoked as the first line

child’s version of the method.

 public void paintComponent(Graphics g)

 {

 super.paintComponent(g);

 g.setColor(Color.RED);

 g.fillRect(300, 200, 70, 30);

 }

The class BoxedSnowmanV3, shown in Figure 11.23, extends the class JPanel and over-

rides its paintComponent method on lines 19–34. The overridden version of the method uses

the Graphics object g passed to it to invoke the drawing methods of the Graphic class on lines

22–33.

The application Graphics2D shown in Figure 11.24 produces the output shown in Figure

11.25. The application does not import the game environment to perform the graphics displayed in

its window. Instead it declares an instance of the class BoxedSnowmanV3, shown in Figure 11.24

on line 10, named s1 and adds this extended JPanel GUI component (line 11) to the JFrame

window created on line 8. Every time the JFrame window is drawn or redrawn, the Java Runtime

Environment invokes the JPanel component’s paintComponent method to redraw component

s1, just as it would do for any other GUI component that is added to a JFrame. Because the method

is overridden, the 2D shapes are drawn or redrawn.

510 ■ Programming Fundamentals Using Java

NOTE
When one component is added to a JFrame, by default, it occupies JFrame’s entire

content pane.

The paintComponent method begins by invoking JPanel’s overridden version of the method

on line 21. As previously mentioned, this should always be the first line of the overridden version

of the method. Lines 22–31 draw a snowman with a rectangle around it, and lines 32–33 change the

font from its default value and draw the string shown at the top of the application’s window.

The difference between this graphical output and the graphical outputs produced by programs

that use the game environment is that the method that performs the 2D graphics (lines 19–34 of

Figure 11.23) is invoked by the Java Runtime Environment rather than the game environment.

There is also a subtle but very important difference between the BoxedSnowmanV3 class

shown in Figure 11.23 and the BoxedSnowman class shown in Figure 4.4, which was part of an

application that imported the game environment. The names of the set and get methods on lines

35–50 of Figure 11.23 have been changed from the names setX, getX, setY, and getY used

in Figure 4.4. The get method names were changed because the BoxedSnowman class inherits

methods named getX and getY from the JPanel class. Because these methods could be invoked

by the Runtime Environment to determine the location of the JPanel when a paint event occurs,

they should not be overridden. The names of the snowman’s set and get methods were changed

to setXS, getXS, setYS, and getYS for consistency and readability.

1 import java.awt.*;

2 import javax.swing.*;

3

4 public class BoxedSnowmanV3 extends JPanel

5 {

6 private int x = 8;

7 private int y = 30;

8 private Color hatColor = Color.BLACK;

9 private int dx = 0;

10 private int dy = 0;

11 private int time = 0;

12

13 public BoxedSnowmanV3(int initalX, int initalY, Color hatColor)

14 {

15 x = initalX;

16 y = initalY;

17 this.hatColor = hatColor;

18 }

19 public void paintComponent(Graphics g)

20 {

21 super.paintComponent(g);

22 g.setColor(hatColor);

23 g.fillRect(x + 15, y, 10, 15); //hat

24 g.fillRect(x + 10, y + 15, 20, 2); //brim

25 g.setColor(Color.WHITE);

 Chapter 11· Graphical User Interfaces ■ 511

26 g.fillOval(x + 10, y + 17, 20, 20); //head

27 g.fillOval(x, y + 37, 40, 40); //body

28 g.setColor(Color.RED);

29 g.fillOval(x + 19, y + 53, 4, 4); //button

30 g.setColor(Color.BLACK);

31 g.drawRect(x, y, 40, 77); //inscribing rectangle

32 g.setFont(new Font("Sherif", Font.BOLD, 20)); //time format

33 g.drawString("Time: " + time, 300, 50); //time

34 }

35 public int getXS()

36 {

37 return x;

38 }

39 public void setXS(int newX)

40 {

41 x = newX;

42 }

43 public int getYS()

44 {

45 return y;

46 }

47 public void setYS(int newY)

48 {

49 y = newY;

50 }

51 }

Figure 11.23

The class BoxedSnowmanV3.

1 import javax.swing.*;

2 import java.awt.*;

3

4 public class Graphics2D extends JFrame

5 {

6 public static void main(String[] args)

7 {

8 JFrame window = new JFrame("Graphics");

9 window.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

10 BoxedSnowmanV3 s1 = new BoxedSnowmanV3(315, 165, Color.BLUE);

11 window.add(s1);

12 window.setSize(708, 434);

13 window.setVisible(true);

14 }

15 }

Figure 11.24

The application Graphics2D.

512 ■ Programming Fundamentals Using Java

Figure 11.25

The output produced by the application Graphics2D.

 11.4.4 11.4.4 Mouse, Keyboard, and Timer Events Mouse, Keyboard, and Timer Events

Many of the GUI components included in the API respond to mouse-click events and keyboard

events such as the pressing or typing of a key. The most obvious examples of this are radio-button

event handlers and check-box event handlers that change the appearance of these components when

they are clicked. Another example is the appearance of the caret in a text field when it is clicked,

and the subsequent display of typed characters in the text field to the left of the caret. The GUI

support in the API includes implementations of these non-application-dependent event handlers

and their registrations.

Just as GUI components respond to these events to maintain their look and feel, there is often

the need for an application to respond to a mouse or keyboard event in an application-dependent

manner. Application-dependent processing of a JButton click event has already been discussed

in this chapter. Other mouse events, such as the dragging of the mouse or clicking on a portion of

the application’s window that does not contain a GUI atomic component may be an important event

in a particular application. For example, a mouse-drag event could be used to move the snowman

shown in Figure 11.25 to another location in the program window, or a key-typed event such as

typing the cursor control (arrow) keys could be used to move the snowman around the window.

Similarly, a timer-tick event is certainly an important event to many applications that are time

dependent.

In this section, we will learn how to incorporate mouse, keyboard, and timer events into any

Java application. Although we have reacted to some of these events in our game programs, the

details of the timer, keyboard, and mouse event handler implementations and their registration was

performed by the game environment. Essentially, in the remainder of this section, we will gain

insights into how this was accomplished by the game environment, so we can process these events

in any application we write.

 Chapter 11· Graphical User Interfaces ■ 513

Keyboard and mouse events are processed within an application using the techniques dis-

cussed in Sections 11.4.1 and 11.4.2. An event handler method, whose signature is defined in an

API interface, is implemented, and the method is added to (registered in) a list of methods invoked

when the event occurs. The application-specific processing to be performed when the event occurs

is coded into the event handler method. Timer events are processed in a similar way, but the syntax

of registering the event handler is slightly different from that discussed in Section 11.4.2.

Mouse Events

There are eight mouse events associated with event handler methods whose signatures are

defined in the API interfaces MouseListener, MouseMotionListener, and MouseWheelLis-

tener. The signatures of the eight methods and the interfaces that define them are given below,

and four of the more commonly used methods are also described in Table 11.6.

void mouseClicked(MouseEvent e) //defined in MouseListener

void mouseEntered(MouseEvent e) // “ “ “

void mouseExited(MouseEvent e) // “ “ “

void mousePressed(MouseEvent e) // “ “ “

void mouseReleased(MouseEvent e) // “ “ “

void mouseDragged(MouseEvent e) //defined in MouseMotionListener

void mouseMoved(MouseEvent e) // “ “ “

void MouseWheelMoved(MouseEvent e) //defined in MouseWheelListener

The names of the methods are representative of the mouse events they handle (the events that

cause them to be invoked). The mouseEntered and mouseExited methods are invoked when the

mouse cursor enters and exits the perimeter of a GUI component on which the event is registered.

To perform application-dependent processing when a mouse event occurs, the worker class

that defines the GUI implements the relevant mouse event handler method and registers it using the

addMouseListener, addMouseMotionListener, or addMouseWheelListener methods.

The application-dependent processing is coded inside the method’s code block. If the API inter-

face that defines the method’s signature contains multiple signature definitions, as the interfaces

MouseListener and MouseMotionListener do, all the methods defined in the interface must

be implemented in the worker class or within one of its inner classes. These additional implementa-

tions can contain empty code blocks. To avoid coding the additional methods and their empty code

blocks, the class can extend the API MouseAdapter class instead of implementing one of the three

mouse listener interfaces.

Event Handler Adapter Classes

An adapter class is a class that implements all the methods defined in one or more interfaces

and provides empty implementations of the methods defined in the interface(s). The advantage of

this is that their child classes inherit the empty implementations and can then simply implement,

or more accurately, override the methods that handle the events of interest to them. For example, if

only mouse-released events were to be processed by a GUI class, it would only have to override the

mouseReleased method if it extended the API adapter class MouseAdapter, instead of imple-

menting the MouseListener interface.

514 ■ Programming Fundamentals Using Java

NOTE
It is good programming style to end the name of an adapter class with the word

adapter.

Many of the API interfaces that define multiple method signatures have adapter classes as-

sociated with them. The class mouseAdapter implements all eight mouse event handler methods.

Because a class can only inherit from one class, most often the extension of an adapter class is

performed by an inner class, and the relevant event handler methods are overridden within it.

The code fragment shown below registers an implementation of a mouse-entered event handler

that outputs the message Button b1 was Entered every time the mouse pointer enters the boundar-

ies of the JButton object b1.

 JButton b1 = new JButton("Enter Test");

 b1.addMouseListener(new MouseHandler()); //register the event handler

 public class MouseHandler extends MouseAdapter

 {

 public void mouseEntered(MouseEvent e) //only method implemented

 {

 System.out.println("Button b1 was Entered");

 }

 }

The argument passed to the mouse event handler method’s parameter e is the address of a

MouseEvent object. All eight of the mouse event handler methods are passed a reference to an

instance of this class. The class contains several methods that can be used to obtain information

related to the mouse event. For example the (x, y) position of the mouse when the event occurred

can be determined by invoking the class’s getX and getY methods on the object e references.

The button on the mouse that was pressed can be determined from the integer returned from the

method getButton(), and the number of mouse clicks performed on an GUI component can be

determined from the integer returned from the method getClickCount(). The GUI component

object on which the mouse event occurred can be determined by invoking MouseEvent’s inherited

method getSource().

The following code fragment outputs the location at which the mouse cursor entered the

boundaries of the JButton object b1:

 JButton b1 = new JButton("Enter Test");

 b1.addMouseListener(new MouseHandler()); //register the event handler

 public class MouseHandler extends MouseAdapter

 {

 public void mouseEntered(MouseEvent e) //only method implemented

 {

 System.out.println("Button b1 was Entered at pixel location (" +

 e.getX() + ", " + e.getY() + ")");

 }

 }

 Chapter 11· Graphical User Interfaces ■ 515

Keyboard Events

There are three keyboard events associated with event handler methods whose signatures are

defined in the API interface KeyListener. These signatures are presented in Table 11.6 and de-

scribed below:

 void keyPressed(KeyEvent e)

 void keyReleased(KeyEvent e)

 void keyTyped(KeyEvent e)

The keyPressed event handler method is invoked whenever a key is struck, and the keyRe-

leased method is invoked when the key is released. In addition, the KeyTyped method is invoked

whenever a non-action key is struck (i.e., a key-typed event does not occur when an action key is

struck). The action keys include the Shift, Num Lock, End, Home, Caps Lock, function keys, ar-

row keys, etc.

Whenever a non-action key is held down, it repeatedly generates a key-pressed event followed

by a key-typed event. If the key held down is an action key, only key-pressed events are generated.

In either case, when the key is released, a single key-released event occurs.

A class that services a key event must implement all three methods defined in the API interface

KeyListener or extend the adapter class KeyAdapter. Key event handler methods are registered

using the addKeyListener method. The argument passed to the parameter of the three mouse

event handler methods is the address of a KeyEvent object. This object’s class contains several

methods that can be used to determine the key that caused the keyboard event. The method get-

KeyChar() returns the character generated by the non-action keys (lower and upper case). The

returned character can be used to determine which non-action key has been struck. The following

key event handler performs its output when the key P is typed:

 public void keyTyped(KeyEvent e)

 {

 if(e.getKeyChar == 'P' || e.getKeyChar == 'p')

 {

 System.out.println("The P key was struck");

 }

 }

When action keys are struck, they can be identified using the getKeyCode method in the

class KeyEvent. It returns the integer key code of the key struck. This integer can be passed to

the class’s static getKeyText method, which returns a string that describes the key’s code: e.g.,

“Right” for the right arrow key. The strings associated with each of the action keys can be easily

identified by including the following statement inside an implementation of a keyPressed event

handler method, assuming the variable e is the name of the method’s parameter:

 System.out.println(KeyEvent.getKeyText(e.getKeyCode()));

The game environment passes the first character of the strings associated with the action keys

to its call back method keyStruck (e.g., ‘R’ when the right arrow key is struck).

516 ■ Programming Fundamentals Using Java

Keyboard Focus

For a component to respond to a keyboard event, it must have the keyboard’s focus, which can

be thought of as assigning (or attaching) the keyboard to a GUI component. Generally speaking,

only one component in an application can have the keyboard’s focus at any given time. When a

component has the keyboard’s focus, the key event handler methods registered in the component’s

event listener list will be executed when a key event occurs.

The requestFocusInWindow method, inherited from the JComponent class, is invoked

on a Swing component to transfer the application’s input focus to the component in a platform-

independent way. For the transfer to take place, the component must have already been added to

the application (i.e., has been rendered, is visible, etc.). To ensure that this has taken place when the

keyboard focus is requested, the invocation should be made from within an overwritten version of

the addNotify method, which is invoked when a component is added to an application. Swing

components inherit this method from the JComponent class.

The code fragment shown in Figure 11.26 would be added to the BoxedSnowmanV3 class

shown in Figure 11.23 to register an implementation of a key event handler that outputs Key Pressed

to the system console followed by the text generated by the key whenever a key is pressed.

addKeyListener(new KeyHandler()); //add keyPressed to listener list

public void addNotify()//invoked when component is added to application

{

 super.addNotify(); //invokes JComponent’s addNotify method

 requestFocusInWindow(); //obtains the keyboard’s focus

}

public class KeyHandler extends KeyAdapter

{

 public void keyPressed(KeyEvent e)

 {

 System.out.println("Key Pressed");

 System.out.println(KeyEvent.getKeyText(e.getKeyCode()));

 }

}

Figure 11.26

Code to add a key-pressed event handler to a GUI component class.

Timer Events

A timer event is an event produced by an object in the class API class Timer. It can be likened

to the bell sounding on an egg timer after its time interval has expired. The time interval of a Tim-

er object is the first argument passed to the constructor when the object is created. This integer

value specifies the time interval in milliseconds (e.g., 1000 for a one-second interval). The con-

structor’s second parameter is used to register the timer event handler method, which must be an

 Chapter 11· Graphical User Interfaces ■ 517

instance of a class that implements the method actionPerformed. The signature of this method

is defined in the ActionListener interface and given at the top of Table 11.6. A Timer object’s

interval begins with an invocation of the class’s start method, and the timer generates an action

event at the end of subsequent timer intervals (ticks).

The code fragment shown in Figure 11.27 simulates a three-minute egg timer that outputs

The egg is cooked to the system console after three minutes have elapsed from the time when the

start method is invoked on the timer object eggTimer.

int interval = 1000 * 60 * 3; //3 minutes (1,000 ms * 60 sec * 3 min)

Timer eggTimer = new Timer(interval, new EggTimerHandler());

eggTimer.start(); //the eggTimer’s time interval begins

public class EggTimerHandler implements ActionListener

{

 public void actionPerformed(ActionEvent e) //Timer’s event handler

 {

 System.out.println("The egg is cooked");

 }

}

Figure 11.27

Implementing a timer object and processing its timer event.

The code fragment shown in Figure 11.27 produces a line of output every three minutes

because, by default when a timer’s time interval expires, it is restarted. To stop this process, the

Timer class’s stop method is invoked. For example, to cook one egg, the following line of code

would be added to the end of the actionPerformed method’s code block shown in Figure 11.27:

 eggTimer.stop(); //stops eggTimer from generating timer events

Alternately, the Timer class’s setRepeats method can be passed the value false before the

timer is started to prevent the timer from generating more than one timer event. The setDelay

method in the Timer class can be used to delay the restarting of a running timer after a time event

has occurred.

The class BoxedSnowmanV4 shown in Figure 11.28 demonstrates the processing of timer,

mouse, and keyboard events. It adds a timer event handler, a key event handler, and five mouse

event handlers to the BoxedSnowmanV3 class shown in Figure 11.23. These event handlers are

coded as lines 57–61 and 67–106 in Figure 11.28. Lines 1–56 of that figure are the original version

of the class with six (highlighted) lines added to it. The application MouseKeyboardAndTimer-

Events shown in Figure 11.29 creates an instance of a boxed snowman on line 10 and adds the

object (line 11) to the JFrame window it creates on line 8. Finally, it displays the window (line 13),

which is shown in Figure 11.30a.

The number of seconds since the program has been launched is displayed at the top of the win-

dow. The program user can reposition the snowman in the window by dragging it to a new location

518 ■ Programming Fundamentals Using Java

(Figure 11.30b), clicking its new window position (Figure 11.30c), or moving it right by pressing

the keyboard’s right arrow action key (Figure 11.30d).

The event handler actionPerformed, coded on lines 57–61 of the class shown in Figure

11.28, processes the timer events generated by the timer declared on line 13 and started on line 23.

The timer’s increment, passed to the constructor on line 13, is 1000 milliseconds (1 second) and

the keyword this, passed to the constructor’s second parameter, registers the actionPerformed

method coded in this class as the timer’s event handler. The class’s heading (line 5) indicates that

it implements the ActionListener interface.

After each timer event which is separated by one second, line 59 of the timer event handler

increments the variable time and line 39 outputs the elapsed time to the top of the application’s

window (Figure 11.30b). The invocations of the repaint method on lines 60, 75, 85, and 96 have

been added to the event handler methods to force a repainting of the class’s JPanel at the end of

their execution. These invocations cause the overridden version of the paintComponent method

(lines 25–40) to execute.

All the mouse event handlers are coded inside the inner class MouseHandler that begins on

line 79, and they are registered in the JPanel’s listener list on lines 20 and 21 using an anonymous

instance of the inner class. When the left mouse button is pressed to initiate the dragging of the

snowman to a new position, the mousePressed event handler coded on lines 87–91 executes. It

computes the x and y separation (dx and dy) between the snowman’s upper left corner (xS, yS) and

the mouse pointer’s current location returned from the invocations e.getX() and e.getY().

As the mouse is dragged, the mouseDragged event handler, coded on lines 81 to 86, is con-

tinually invoked. It subtracts the x and y separations (dx and dy) from the current position of the

mouse pointer to determine the new location of the snowman’s upper left corner. This gives the

appearance that the snowman is being dragged by the mouse pointer. Figure 11.30b shows the

snowman’s position ten seconds after the game began and after the mouse was dragged to the upper

left portion of the window.

When the mouse is clicked, the mouseClicked event handler, coded on lines 92–97, executes.

It sets the location of the upper left corner of the snowman to the location of the mouse pointer

on lines 94–95. This gives the appearance that the snowman has jumped to the clicked location.

Figure 11.30c shows the snowman’s position 15 seconds after the game began and after the mouse

was clicked in the lower right portion of the window.

Whenever the mouse pointer enters or exits the boundaries of the BoxedSnowmanV4 JPanel,

which was added to the application’s window (line 11 of Figure 11.29) and occupies its entire

content pane, the mouseEntered or mouseExited event handler methods (Figure 11.28, lines

98–105) execute. Lines 100 and 104 then produce the output Entered or Exited on the system con-

sole. The system console output, shown at the bottom of Figure 11.30, was produced by moving

the mouse cursor on to the window’s content pane after the program was launched, then moving it

off the pane.

The addNotify method that begins on line 62 in Figure 11.28 is invoked when the application

adds the BoxedSnowmanV4 object s1 to the program’s window. Line 65 transfers the application’s

 Chapter 11· Graphical User Interfaces ■ 519

input focus to the object’s JPanel. Subsequent key-pressed events then invoke the event key han-

dler KeyPressed (lines 69–77), which is coded inside the inner class KeyHandler (lines 67-78).

The event handler is registered with the JPanel’s listener list on line 22. The method uses the

string returned from the KeyEvent class’s getKeyText method, invoked on line 71, to determine

if the right arrow action key has been pressed (line 72). When the key is pressed, the code on line 74

moves the snowman three pixels to the right. The lower portion of Figure 11.30 shows the position

of the snowman 15 seconds after the game began (Figure 11.30c) and after the right arrow action

key has been held down for one second (Figure 11.30d).

1 import java.awt.*;

2 import javax.swing.*;

3 import java.awt.event.*;

4

5 public class BoxedSnowmanV4 extends JPanel implements ActionListener

6 {

7 private int xS = 8;

8 private int yS = 30;

9 private Color hatColor = Color.BLACK;

10 private int dx = 0;

11 private int dy = 0;

12 private int time = 0;

13 private Timer aTimer = new Timer(1000, this);

14

15 public BoxedSnowmanV4(int initalX, int initalY, Color hatColor)

16 {

17 xS = initalX;

18 yS = initalY;

19 this.hatColor = hatColor;

20 addMouseListener(new MouseHandler());

21 addMouseMotionListener(new MouseHandler());

22 addKeyListener(new KeyHandler());

23 aTimer.start();

24 }

25 public void paintComponent(Graphics g)

26 {

27 super.paintComponent(g);

28 g.setColor(hatColor);

29 g.fillRect(xS + 15, yS, 10, 15); // hat

30 g.fillRect(xS + 10, yS + 15, 20, 2); // brim

31 g.setColor(Color.WHITE);

32 g.fillOval(xS + 10, yS + 17, 20, 20); // head

33 g.fillOval(xS, yS + 37, 40, 40); // body

34 g.setColor(Color.RED);

35 g.fillOval(xS + 19, yS + 53, 4, 4); //button

36 g.setColor(Color.BLACK);

37 g.drawRect(xS, yS, 40, 77); // inscribing rectangle

38 g.setFont(new Font("Sherif", Font.BOLD, 20));

520 ■ Programming Fundamentals Using Java

39 g.drawString("Time: " + time, 300, 50);

40 }

41 public int getXS()

42 {

43 return xS;

44 }

45 public void setXS(int newX)

46 {

47 xS = newX;

48 }

49 public int getYS()

50 {

51 return yS;

52 }

53 public void setYS(int newY)

54 {

55 yS = newY;

56 }

57 public void actionPerformed(ActionEvent e)

58 {

59 time++;

60 repaint();

61 }

62 public void addNotify()

63 {

64 super.addNotify();

65 requestFocusInWindow();

66 }

67 public class KeyHandler extends KeyAdapter

68 {

69 public void keyPressed(KeyEvent e)

70 {

71 String key = KeyEvent.getKeyText(e.getKeyCode());

72 if(key.equals("Right"))

73 {

74 xS = xS + 3;

75 repaint();

76 }

77 }

78 }

79 public class MouseHandler extends MouseAdapter

80 {

81 public void mouseDragged(MouseEvent e)

82 {

83 xS = e.getX() - dx;

84 yS = e.getY() - dy;

85 repaint();

86 }

87 public void mousePressed(MouseEvent e)

 Chapter 11· Graphical User Interfaces ■ 521

88 {

89 dx = e.getX() - xS;

90 dy = e.getY() - yS;

91 }

92 public void mouseClicked(MouseEvent e)

93 {

94 xS = e.getX();

95 yS = e.getY();

96 repaint();

97 }

98 public void mouseEntered(MouseEvent e)

99 {

100 System.out.println("Entered");

101 }

102 public void mouseExited(MouseEvent e)

103 {

104 System.out.println("Exited");

105 }

106 }

107 }

Figure 11.28

The class BoxedSnowmanV4.

1 import javax.swing.*;

2 import java.awt.*;

3

4 public class MouseKeyboardAndTimerEvents extends JFrame

5 {

6 public static void main(String[] args)

7 {

8 JFrame window = new JFrame("MOUSE, KEYBOARD, AND TIMER EVENTS");

9 window.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

10 BoxedSnowmanV4 s1 = new BoxedSnowmanV4(315, 165, Color.BLUE);

11 window.add(s1);

12 window.setSize(708, 434);

13 window.setVisible(true);

14 }

15 }

Figure 11.29

The application MouseKeyboardAndTimerEvents.

522 ■ Programming Fundamentals Using Java

 11.5 11.5 LAYOUT MANAGERS LAYOUT MANAGERS

Java provides three layout managers that can facilitate the tedious process of locating compo-

nents in a window when an IDE with a GUI builder is not available. By default they manage the

placement and sizing of the components added to a JPanel or JFrame container. Their names

are border layout, flow layout, and grid layout. Each layout manager uses a different approach to

position and size the components added to a container.

Components are added to the container using the Container class’s add method discussed in

Section 11.3.3. The method is overloaded, and the version of the method used depends on the layout

manager being used to position and size the components. The following code fragment uses the

one-parameter version of the method to add the string annotation Computes a + b to a GUI that is

using its default border layout manager to position and size components:

 (a) (b)

 (c) (d)

Console output:

Entered

Exited

Figure 11.30

The window and console output produced by the application MouseKeyboardAndTimerEvents.

 Chapter 11· Graphical User Interfaces ■ 523

 JLabel description = new JLabel("Computes a + b");

 add(description);

When layout managers are used to build a graphical interface, most often the GUI’s atomic

components are added to JPanels, and the layout manager is used to position the panels which

in the interface. This greatly extends the usefulness of the layout managers. In addition, because

atomic components are centered in panels, the use of panels makes the interface visually appeal-

ing. The following code fragment adds a JLabel containing the string annotation Computes a +

b to a JPanel named panel1, and then panel1 is added to the GUI interface:

 // Add a JLabel to a JPanel, and the JPanel to a GUI

 JPanel panel1 = new JPanel();

 JLabel description = new JLabel("Computes a + b");

 panel1.add(description); //add the JLabel to the JPanel panel1

 add(panel1); //add panel1 to the GUI

The positioning and sizing processes performed by the layout managers are implemented in

the API classes BorderLayout, FlowLayout, and GridLayout. JPanels and JFrame objects

store a reference to an object in one of these classes whose methods are used by the layout manager

to size and locate the components added to them.

 11.5.1 11.5.1 Designating the Layout Manager Designating the Layout Manager

By default, a JPanel uses flow layout and a JFrame uses border layout. These defaults can be

overridden, or grid layout can be selected by invoking the Container class’s setLayout method

on a JPanel or JFrame object and passing it an instance of the layout manager class to be used

to position the components added to the container. For example, the following code fragment sets

the layout manager of a JPanel to border layout, overriding its default flow layout. Normally, a

nameless object is passed to the method.

 JPanel myPanel = new JPanel();

 myPanel.setLayout(new BorderLayout()); //use border layout

To take control of the positioning and sizing of components within a container, a null value is

passed to setLayout’s parameter. When this is done, the components added to the container are

positioned and sized using invocations to the setBounds, setsize, and setLocation methods,

as discussed in Section 11.3.3.

 // Programmer will specify the atomic components’ size/location

 JPanel myPanel = new JPanel();

 myPanel.setLayout(null);

NOTE
A null or a non-default layout manager must be designated before components are

added to an interface.

While the use of a layout manager can facilitate the building of some GUI interfaces, it limits

the programmer’s ability to position and size the GUI components that make up the interface.

524 ■ Programming Fundamentals Using Java

Table 11.7 summarizes the number of components, size, and positioning limitations imposed by the

layout manager classes.

Table 11.7

Component Capacity, Size and Positioning Restrictions of the Layout Managers

Maximum Number

of Components
Component Size Positioning of Components

Border Layout (default layout manager for JFrames and applets: see Section 11.6)

Five

The height and/or width

of each component are

adjusted to fit the region to

which they are assigned

Components are placed in one of five regions;

the region assigned to each component is speci-

fied by the programmer, one component per

region.

Flow Layout (default layout manager for JPanels)

Unlimited No restriction

Components are placed in rows in the order they

are added to the container, beginning at the top

left of the container. The row height is set to the

largest component in the row.

Grid Layout

Implied as the grid’s

rows × columns

All components are sized

to the size of the maxi-

mum-sized component

Components are placed in rows that contain

cells, in the order they are added to the container,

beginning with the top left cell, one item per cell.

The number of rows and columns in the grid is

specified by the programmer.

 11.5.211.5.2 Border Layout Border Layout

When the border layout is assigned to a container, it is divided into five regions named

north, south, east, west, and center. The positioning of these regions in the container is shown in

Figure 11.31. The font size of the text displayed in the south region of the figure was set larger than

that of the text displayed in the other regions.

Figure 11.31

The positioning and sizing of the five border layout regions.

 Chapter 11· Graphical User Interfaces ■ 525

The height and width of the five components added to a container are adjusted in the fol-

lowing sequence, regardless of the order in which the program adds the components to the regions:

 1. A component added to the north or south region maintains its height, and its width is the

width of the container to which it is added

 2. A component added to the east or west region maintains its width, and its height is set to

the height between the north and south regions

 3. The height and width of the component added to the center region is resized to fit between

the other four regions

NOTE

When using BorderLayout:

1. The width of the north and south regions are always equal

2. The height of the east, west, and center regions are always equal

The class AddingMachineGUI3 shown in Figure 11.32 builds the GUI interface of the adding

machine discussed in Section 11.3.3 using the border layout manager. The application Border-

Layout shown in Figure 11.33 declares an instance of this class on line 8 of the figure and displays

the graphical object on line 10. The application’s GUI, built by the class AddingMachineGUI3,

is shown in Figure 11.34. Although it is not identical to the GUI shown in Figure 11.16, which was

built by the class AddingMachineGUI shown in Figure 11.15, the use of the border layout manager

greatly facilitated the implementation of this GUI.

Because the atomic components of the GUI shown in Figure 11.34 are positioned in the upper,

center, and lower areas of the interface, the border layout’s north, center, and south regions were

used in its implementation. In addition, because the center and lower areas contain multiple atomic

components, JPanels were included in the design to collect each region’s components.

The three JPanels used to collect the atomic components are declared on lines 9–11 of Figure

11.32, and line 18 designates that the border layout manager will be used to position them in the in-

terface. Because the class extends JFrame (line 4), whose default layout manager is BorderLay-

out, this line is not necessary; it is included as an example of how to specify the layout manager.

The atomic components are added to the three panels on lines 43–53, and the panels are added to

the border layout’s north, center, and south regions (lines 54–56).

Before the atomic components are added to the panels, the components are constructed (lines

21–31), and their properties are set (lines 34–40). Lines 23 and 26 use the one-parameter construc-

tor of the JTextField class to specify the width of the text fields. The JLabel created on line 30

is added to the panel3 on line 52, in between the compute and clear buttons, to provide some

additional separation between them.

1 import javax.swing.*;

2 import java.awt.*;

3

4 public class AddingMachineGUI3 extends JFrame

5 {

6 JLabel description, a, plus, b, equals, sum, centerSpace;

526 ■ Programming Fundamentals Using Java

7 JTextField aValue, bValue;

8 JButton compute, clear;

9 JPanel panel1 = new JPanel();

10 JPanel panel2 = new JPanel();

11 JPanel panel3 = new JPanel();

12

13 public AddingMachineGUI3(String title)

14 {

15 super(title);

16 setSize(475, 150);

17 setLocation(200, 100);

18 setLayout(new BorderLayout());

19

20 //create the atomic components

21 description = new JLabel("Computes a + b");

22 a = new JLabel("a");

23 aValue = new JTextField(5);

24 plus = new JLabel(" + ");

25 b = new JLabel("b");

26 bValue = new JTextField(5);

27 equals = new JLabel(" = ");

28 sum = new JLabel("x,xxx.xx");

29 compute = new JButton("Compute");

30 centerSpace = new JLabel(" ");

31 clear = new JButton(" Clear ");

32

33 //specify the component’s properties

34 description.setFont(new Font("Sherif", Font.BOLD, 24));

35 plus.setFont(new Font("Sherif", Font.BOLD, 20));

36 equals.setFont(new Font("Sherif", Font.BOLD, 20));

37 sum.setFont(new Font("Sherif", Font.BOLD, 20));

38 a.setFont(new Font("Sherif", Font.BOLD, 20));

39 b.setFont(new Font("Sherif", Font.BOLD, 20));

40 clear.setToolTipText("Clears a, b and the sum");

41

42 //add the components to the window or non-atomic container

43 panel1.add(description);

44 panel2.add(a);

45 panel2.add(aValue);

46 panel2.add(plus);

47 panel2.add(b);

48 panel2.add(bValue);

49 panel2.add(equals);

50 panel2.add(sum);

51 panel3.add(compute);

52 panel3.add(centerSpace);

53 panel3.add(clear);

54 add(panel1, BorderLayout.NORTH);

 Chapter 11· Graphical User Interfaces ■ 527

55 add(panel2, BorderLayout.CENTER);

56 add(panel3, BorderLayout.SOUTH);

57 }

58 }

Figure 11.32

The class AddingMachineGUI3 that uses the BorderLayout manager.

1 import javax.swing.*;

2 import java.awt.*;

3

4 public class BorderLayout

5 {

6 public static void main(String[] args)

7 {

8 AddingMachineGUI3 calculator = new AddingMachineGUI3("BORDER LAYOUT");

9 calculator.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

10 calculator.setVisible(true);

11 }

12 }

Figure 11.33

The application BorderLayout.

Figure 11.34

The application BorderLayout’s graphical user interface.

 11.5.311.5.3 Flow Layout Flow Layout

When flow layout is assigned to a container, it is divided into rows, with all rows being the

width of the window’s content pane. Each row’s height is set to the height of the tallest component

in the row. Figure 11.35 shows a GUI built using the flow layout. Five components were added to it

after setting its layout manager to FlowLayout:

 setLayout(new FlowLayout());

Beginning with the top row, components are positioned in the rows from left to right in the

order in which they are added to the container. The row height is adjusted to the height of the tall-

est component in it, and the components are centered within the row. When a row fills up, the next

component is added to the row below it. If the window height cannot accommodate all the rows

necessary to display the components, they are not shown or are partially shown. If a single compo-

nent is too wide for a row, it is only partially displayed.

528 ■ Programming Fundamentals Using Java

Figure 11.35

A GUI built using the FlowLayout manager.

The class FlowLayoutGUI, shown in Figure 11.36, builds the graphical interface shown in

Figure 11.35 using the flow layout manager. Line 15 is needed to change the container’s layout

manager to flow layout because the class extends JFrame whose default manager is BorderLay-

out.

Following our GUI-building coding process, the atomic components are constructed in Figure

11.35 (lines 18–24), their properties are set (lines 27–29), and then they are added to the JFrame

(lines 32–36). The application FlowLayout shown in Figure 11.37 declares an instance of this class

on line 8 and displays the window on the monitor (line 10).

1 import javax.swing.*;

2 import java.awt.*;

3

4 public class FlowLayoutGUI extends JFrame

5 {

6 JButton first, second, third;

7 JLabel fourth;

8 JTextField fifth;

9

10 public FlowLayoutGUI(String title)

11 {

12 super(title);

13 setSize(650, 180);

14 setLocation(200, 100);

15 setLayout(new FlowLayout()); //Override the default BorderLayout

16

17 //Step 1 create the components

18 first = new JButton("Added First");

19 second = new JButton("Added Second, Large Font Sets Row's Height");

20 third = new JButton("Added Third, Could Not Fit on Row 1");

21 fourth = new JLabel("Added Fourth, Component's Width Forces " +

22 "Fifth Component to the Next Row");

23 fifth = new JTextField("Added Fifth, Components are Centered " +

24 "in the Rows");

25

26 //Step 2 specify the component’s properties

27 second.setFont(new Font("Sherif", Font.BOLD, 22));

 Chapter 11· Graphical User Interfaces ■ 529

28 fourth.setFont(new Font("Sherif", Font.BOLD, 16));

29 fifth.setFont(new Font("Sherif", Font.BOLD, 14));

30

31 //Step 4 add the components to the container (Step 3 is skipped)

32 add(first);

33 add(second);

34 add(third);

35 add(fourth);

36 add(fifth);

37 }

38 }

Figure 11.36

The class FlowLayoutGUI.

1 import javax.swing.*;

2 import java.awt.*;

3

4 public class FlowLayout

5 {

6 public static void main(String[] args)

7 {

8 FlowLayoutGUI flowWindow = new FlowLayoutGUI("FLOW LAYOUT");

9 flowWindow.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

10 flowWindow.setVisible(true);

11 }

12}

Figure 11.37

The application FlowLayout.

 11.5.411.5.4 Grid Layout Grid Layout

The grid layout manager establishes a grid of cells arranged in rows and columns within a

container. The number of rows and columns are specified by arguments passed to the GridLayout

class’s two–parameter constructor when the layout manager is specified:

 setLayout(new GridLayout(4, 2)); //4 rows, 2 columns: eight cells

Every cell has the same height and width, which is set by the layout manager. The grid of cells

always fills up the container, and the height and width of the cells are set to accommodate this. For

example, a 4 x 2 grid would result in a cell height of one-quarter of the container height and a cell

width of one-half the container width.

Components are added to the grid beginning with the cell in the upper left corner of the grid

proceeding across a row before moving to the next row. If a component added to the grid is too

large to fit into a cell, it is only partially displayed. Unused cells appear in the background color of

the container.

530 ■ Programming Fundamentals Using Java

Figure 11.38 shows a GUI interface built using a 4 x 2 grid layout. Five components were added

to the JFrame container. The three buttons were added first, followed by a label and a text field.

The label’s size is larger than the size of the cells because of its large font size and the length of

its text. As a result, the bottom of its text is truncated, and an ellipsis is shown to indicate that the

remainder of its text could not be displayed. The cell in the lower-right corner of the grid was not

used.

Figure 11.38

A GUI built using the GridLayout manager.

The class GridLayoutGUI shown in Figure 11.39 builds the graphical interface shown in

Figure 11.38 using the grid layout manager. Line 15 changes the container’s layout manager to

GridLayout because the class extends JFrame, whose default manager is BorderLayout. Line

15 also specified the number of rows (three) and the number of columns (two) in the grid. The

application GridLayout shown in Figure 11.40 declares an instance of this class on line 8 and

displays the window on the monitor (line 10).

1 import javax.swing.*;

2 import java.awt.*;

3

4 public class GridLayoutGUI extends JFrame

5 {

6 JButton first, second, third;

7 JLabel fourth;

8 JTextField fifth;

9

10 public GridLayoutGUI(String title)

11 {

12 super(title);

13 setSize(650, 100);

14 setLocation(200, 100);

15 setLayout(new GridLayout(3, 2));

16

17 //Step 1 create the components

18 first = new JButton("Added First");

19 second = new JButton("Added Second");

20 third = new JButton("Added Third");

21 fourth = new JLabel("Added Fourth, too large");

 Chapter 11· Graphical User Interfaces ■ 531

22 fifth = new JTextField("Added Fifth, a JTextField");

23

24 //Step 2 specify the component’s properties

25 second.setFont(new Font("Sherif", Font.BOLD, 16));

26 fourth.setFont(new Font("Sherif", Font.BOLD, 30));

27 fifth.setFont(new Font("Sherif", Font.BOLD, 14));

28

29 //Step 4 add the components to the container

30 add(first);

31 add(second);

32 add(third);

33 add(fourth);

34 add(fifth);

35 }

36 }

Figure 11.39

The class GridLayoutGUI.

1 import javax.swing.*;

2 import java.awt.*;

3

4 public class GridLayout

5 {

6 public static void main(String[] args)

7 {

8 GridLayoutGUI gridWindow = new GridLayoutGUI ("GRID LAYOUT");

9 gridWindow.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

10 gridWindow.setVisible(true);

11 }

12 }

Figure 11.40

The application GridLayout.

 11.6 11.6 APPLETS APPLETS

The programs we have written up to this point in the textbook are called applications. Applica-

tions are intended to run from your desktop, and once launched, they run autonomously, that is,

outside the scope of another program. Another type of Java program is an applet, which is a pro-

gram intended to run from within another program called an applet container. Typically, the applet

container program is a Java-enabled Web browser because Java applets are intended to perform

tasks associated with Web pages that are beyond the capabilities of the language used to define

Web page content: HyperText Markup Language (HTML). These tasks include handling mouse

events, displaying GUI components, and performing calculations.

532 ■ Programming Fundamentals Using Java

NOTE
HTML is a scripting language used to create Web pages and launch applets within

a Web browser.

The Java Development Kit (JDK) contains an applet container program referred to as the ap-

plet viewer, which can also be used to run applets. It was included in the JDK to facilitate the

testing of applets during their development. Applets, like applications, are developed using an inte-

grated development environment, and most IDEs run applets from inside the JDK’s applet viewer.

When we use a browser to visit a Website, the HTML document associated with the Website

is downloaded to our computer from the Website’s server. The browser interprets the text of the

document to build and display the Web page. If the HTML document contains a reference to a Java

applet, the translated bytecodes of the applet are downloaded from the Web server’s disk, and then

they are executed on our computer.

To prevent an executing applet from performing malicious activities, such as writing to its

hard drive, on the computer on which it is running, the designers of Java restricted the range of

the Java instruction set that can be included in an applet program. An attempt to execute restricted

instructions contained in an applet results in a runtime error, whether is being run from within a

Web browser or the applet viewer. During the development of an applet, restricted instructions that

were unintentionally included in it are identified and removed during the testing phase. This Java-

enforced level of security imposed on applets makes them safe to download and run from within

a Web browser.

NOTE Web browsers will download Java applets but not Java applications.

 11.6.1 11.6.1 Developing an Applet Developing an Applet

To create an applet, we write an applet class and an HTML document that contains a reference

to the class. When the applet container (i.e., a Web browser or the applet viewer) processes the

HTML document, it creates an instance of the applet class and initiates its execution by invoking

several of its methods.

Applet containers can only create instances of classes that extend the class Applet or its child

class JApplet, which means that all applet classes that we code must extend one of these classes.

Unlike application programs that begin their execution with the first executable statement in the

method main, applet programs begin their execution with the first executable statement in a meth-

od named init. When an applet is launched, the applet container invokes this method, followed

by the method start, and then the method paint. The method paint is reinvoked whenever the

applet needs to be redisplayed.

Applets usually perform some of their processing inside overridden versions of these three

inherited methods. Applets, like JPanels, are containers. They can be used to add a GUI interface

to a Web page using the techniques previously discussed in this chapter or to add graphics to a Web

page using the same drawing techniques used to add graphics to an application.

 Chapter 11· Graphical User Interfaces ■ 533

Figure 11.41 contains the code of the applet class CH11HelloWebWorld that produces the

window, shown in Figure 11.42, when launched within the applet viewer container. The HTML

document processed by the applet viewer is shown in Figure 11.43.

The class CH11HelloWebWorld is an applet because it extends the class Applet on line 4. It

overrides its inherited paint method on lines 6–13. The applet container invokes this method to

draw the applet, passing it a Graphics object in the same way as the paintComponent method

discussed in Section 11.4.3 is invoked to draw a JPanel. Line 8 invokes the parent’s version of the

method, passing it the Graphics object g. This should always be the first executable statement in

the overridden version of the method. The object g, passed to the method by the applet container,

is used on lines 9–12 to perform the applet’s graphical output.

1 import java.awt.*;

2 import java.applet.*;

3

4 public class CH11HelloWebWorld extends Applet

5 {

6 public void paint(Graphics g)

7 {

8 super.paint(g);

9 g.setFont(new Font("Sherif", Font.BOLD, 16));

10 g.drawString("Hello Web World", 170, 130);

11 g.setColor(Color.BLUE);

12 g.fillOval(200, 140, 70, 70);

13 }

14 }

Figure 11.41

The applet CH11HelloWebWorld.

Figure 11.42

The output produced by the applet CH11HelloWebWorld running in the applet viewer.

534 ■ Programming Fundamentals Using Java

1 <html>

2 <title>

3 Hello Applet

4 </title>

5 <body>

6 <applet code = "CH11HelloWebWorld.class"

7 width = "500"

8 height = "300">

9 </applet>

10 </body>

11 </html>

Figure 11.43

The HTML document that launches the applet CH11HelloWebWorld.

 11.6.2 11.6.2 HTML Document Basics HTML Document Basics

The HTML document shown in Figure 11.43 would be used by an applet container to download

and launch the applet shown in Figure 11.41. Like all HTML documents, it consists of instructions,

called elements, describing how to display a Web page. The elements are enclosed within tags,

which are enclosed in angle brackets and come in pairs. Pairs end with the same characters, which

are part of the HTML scripting language. The second tag in a pair begins with a forward slash

indicating the end of an instruction or section; the first tag in a pair does not begin with a slash. For

example, the tags <html> and </html> that appear on lines 1 and 11 of Figure 11.43 are a pair.

All HTML documents begin with the first tag of this pair and end with the pair’s second tag. The

remainder of the document in Figure 11.43 consists of a title element (lines 2–4) followed by a body

element (lines 5–10) that contains an applet element (lines 6–9).

The title element contains the text of the Web page’s title that will be displayed in a Web

browser’s window, in this case, Hello Applet. When the applet is launched from the applet viewer,

the title is not displayed. The body element is meant to contain text and other HTML elements that

will be displayed on the Web page. The body of the document shown in Figure 11.43 simply con-

tains an applet element that references the class of our applet and sets the size of the applet when it

is displayed by an applet container.

 The first tag of the applet element contains the name of the applet’s bytecode file and its

extension. This is followed by the designation of the width and height of the applet: 500 and 300 on

lines 7 and 8. The closing angle bracket for the first tag of the applet element is at the end of line 8.

If the path name is not specified in front of the applet’s file name, the file is assumed to be in the

same folder as the HTML document. The tag on line 9 ends the applet element.

The generalized format of an applet element is shown below. The highlighted portions of it are

application dependent:

<applet code = "CH11HelloWebWorld.class" width = "500" height = "300">

</applet>

 Chapter 11· Graphical User Interfaces ■ 535

The applet can be centered within the Web page by placing it inside center tags:

 <body>

 <center>

 <applet code = "CH11HelloWebWorld.class"

 width = "500"

 height = "300">

 </applet>

 </center>

 </body>

The use of indentation and new lines in the HTML documents is simply to improve the document’s

readability.

In addition to the applet element, text to be can displayed on the Web page by including it in

the body element. There are several HTML tags that can be embedded in the text to control its

formatting (e.g., its size, position, font style) the details of which are beyond the scope of this book.

 11.6.311.6.3 The Applet Execution Path The Applet Execution Path

The execution path of an applet is dictated by a protocol that is used by applet containers to

launch, redisplay, and close an applet. The progression of steps contained in this protocol is often

referred to as an applet’s life cycle. The protocol includes a definition of the signatures of an ap-

plet’s init, start, paint, stop, and destroy methods in the Java API classes Applet and

Container, and a definition of when the applet container will invoke these methods. Table 11.8

shows the signature of these methods and their role in the life cycle of an applet. Overriding these

methods within an applet class, to perform processing consistent with their intended use, produces

a properly functioning applet.

Table 11.8

Methods Invoked by Applet Containers

When Invoked by the Applet Container Intended Use

public void init()

Invoked once: when the applet is launched

Perform initialization tasks normally relegated to a

constructor, such as declaring and initializing class

level variables, building the applet’s GUI, registering

event handlers, and creating threads (see Chapter 14)

public void start()

Invoked after the init method and each time the

Web page is revisited

Perform tasks that are associated with revisiting the

Web page containing the applet, such as starting/

restarting animation timers

(Contd.)

536 ■ Programming Fundamentals Using Java

When Invoked by the Applet Container Intended Use

public void paint()

Invoked after the init and start methods and

whenever the applet needs to be redisplayed, for

example, when the applet container is minimized

and then maximized

Repaint the applet; perform 2D graphics in applet

classes that extend the class Applet

public void stop()

Invoked when the Web page is left and before

the destroy method is invoked

Perform tasks that are associated with leaving the

Web page containing the applet, such as stopping

animation timers

public void destroy()

Invoked once when the applet is removed from

memory, e.g., closed
Deallocate resources allocated to the applet

 11.6.411.6.4 Incorporating GUIs and Two-Dimensional Graphics into Applets Incorporating GUIs and Two-Dimensional Graphics into Applets

Applets are containers. The Applet and JApplet classes both have the class Container in

their inheritance chain. This gives them the ability to contain GUI components, process events,

and draw 2D shapes on GUI interfaces using the same techniques and syntax discussed previously

in this chapter to incorporate these features into JPanels and JFrames. An applet’s default lay-

out manager is BorderLayout.

Two-Dimensional Graphics in a JApplet

In Figure 11.41, we coded an applet to draw graphical text and a 2D shape (a filled oval) on a

Web page. The applet’s class extended the class Applet and performed its drawing inside an over-

ridden version of the paint method. If the class extended the class JApplet, another approach

to performing 2D graphics would be taken. The drawing would be performed inside a class that

extends JPanel using an overridden version of the paintComponent method, and an instance of

that class would be added to the applet. If this is not done, the graphics are not redrawn as part of

the redrawing of the Web page.

The applet HelloWebWorldV2, shown in Figure 11.44, presents a revised version of the Hel-

loWebWorld applet shown in Figure 11.41. This version of the applet extends the class JApplet

and performs its 2D graphics by declaring an instance of the class GraphicsPanel (lines 6 and

10), shown in Figure 11.45, and adding it to the applet (line 11 in Figure 11.44). The Graphics-

Panel class extends JPanel, overrides its PaintComponent method on lines 6–13, and performs

the drawing inside of it.

The HTML document processed by the applet container to generate the Web page shown in

Figure 11.46 is the same as the document shown in Figure 11.43, except that line 3 would been

probably be changed to Hello Applet V2, and line 6 has to be changed to:

 <applet code = "CH11HelloWebWorldV2.class"

 Chapter 11· Graphical User Interfaces ■ 537

As indicated in Table 11.8, the overridden version of the init method shown in Figure 11.44

performs tasks normally relegated to constructors in application programs.

1 import java.awt.*;

2 import javax.swing.*;

3

4 public class CH11HelloWebWorldV2 extends JApplet

5 {

6 GraphicsPanel aPanel;

7

8 public void init()

9 {

10 aPanel = new GraphicsPanel();

11 add(aPanel);

12 }

13 }

Figure 11.44

The applet CH11HelloWebWorldV2.

1 import java.awt.*;

2 import javax.swing.*;

3

4 public class GraphicsPanel extends JPanel

5 {

6 public void paintComponent(Graphics g)

7 {

8 super.paintComponent(g);

9 g.setFont(new Font("Sherif", Font.BOLD, 16));

10 g.drawString("Hello Web World", 170, 130);

11 g.setColor(Color.BLUE);

12 g.fillOval(200, 140, 70, 70);

13 }

14 }

Figure 11.45

The class GraphicsPanel.

Figure 11.46

The Web page containing the applet HelloWebWorldV2.

538 ■ Programming Fundamentals Using Java

GUI Components and Event Handling

A GUI interface for a Web page is built using the same techniques used to build a GUI in-

terface for an application, which were previously discussed in this chapter, with one exception.

Instead of building the interface and coding and registering the event handlers inside of a class that

extends JPanel or JFrame, this processing is done in an applet class that becomes an element in

the Web page’s HTML document.

Tasks that would have been performed by a constructor when implementing a GUI class for

an application, such as declaring GUI components, adding them to the interface, registering event

handler methods, and specifying a layout manager are performed inside the applet’s init method.

GUI components can be positioned in the interface using the applet’s default layout manager Bor-

derLayout, or the layout manager can be changed using the setLayout method to FlowLayout,

GridLayout, or set to null to use the sizeSize, setLocation, and setBounds methods to

position the components. As is the case with applications, event handlers are coded as methods reg-

istered in listener lists, but now their code is placed inside the applet class or within inner classes

added to it.

An example of building a graphical interface for a Web page is illustrated in Figure 11.47; it

presents the applet GuessingGame, which builds the interface and implements the game. When

the applet is launched its interface, shown in Figure 11.48, appears on the Web page.

Initially, the numbers 1 through 8 are displayed on a pair of buttons randomly selected from

the 16-button grid positioned at the top of the applet’s GUI. After studying the arrangement of the

numbers, the player clicks the Begin button, and the numbers are hidden. The object of the game

is to reveal all of the number pairs with a minimum number of clicks. To accomplish this, the

player repeatedly attempts to click a pair of buttons whose numbers match. When a correct match

is clicked, the number pair remains visible. When an incorrect match is clicked, the number pair

remains visible for two seconds, an error count is incremented, and then numbers are hidden. The

game continues until all the pairs of numbers have been revealed.

The applet consists of four major sections: the class-level variable declarations (lines 9–22),

the init method (lines 24–55), three worker methods (lines 57–93), and the event handlers (lines

96–169).

The init method (lines 24–55), invoked by the applet container program to launch the applet,

is used to build the GUI and initialize the game. A two-second (2,000 millisecond) timer is de-

clared on line 22, and its second argument adds the timer event handler coded on lines 158–169 to

its listener list. Line 28 changes the applet’s default BorderLayout to a five-row by four-column

GridLayout. Lines 17 and 26 create a JButton array named cell. Each time through the for loop

that begins on line 40, a new button is created (line 42), the click event handler method defined

on lines 114–156 is added to its listener list (line 44), and the button is added to a cell of the GIU’s

grid (line 45).

Lines 49–52 build the bottom row of the grid by adding two buttons, begin and reset, and

two labels, errors and nunberOfErrors. The actionPerformed event handler method de-

 Chapter 11· Graphical User Interfaces ■ 539

fined on lines 98–111 is added to these buttons’ listener lists on lines 36–37. Line 31 invokes the

setHorizontalAlignment method passing it the static constant RIGHT to position the errors

and numberOfErrors labels, which were added to the bottom row of the grid, next to each other.

Finally, line 54 of the init method invokes the worker method intializeGame (lines 57–67),

to generate (line 59) and display (line 64) a randomly placed set of numbers on the 16 button grid.

The generateNumbers method, invoked on line 59 of the intializeGame method and on

line 109 when the Reset button is clicked, generates and places the eight number pairs into the array

values (lines 76–79), and then they are randomly swapped within the array (lines 80–84). The

loop that begins on line 62 of the intializeGame method sets each button’s text to one of these 16

randomized values by passing their setText method the string version of an element of the array

(line 64). Line 64 uses the arrays cell and values as parallel arrays, as do the loops that process

a pair of button clicks (lines 122 and 137).

1 import java.awt.*;

2 import java.applet.*;

3 import javax.swing.*;

4 import java.util.Random;

5 import java.awt.event.*;

6

7 public class GuessingGame extends JApplet implements ActionListener

8 {

9 boolean firstClick = true;

10 int firstClickValue = 0;

11 int firstClickIndex = 0;

12 int secondClickIndex = 0;

13 int errorCount = 0;

14 boolean correct = false;

15 int[] values = new int[16];

16 JButton b = new JButton();

17 JButton[]cell;

18 JLabel errors = new JLabel("Errors: ");

19 JLabel numberOfErrors = new JLabel("0");

20 JButton begin = new JButton("Begin");

21 JButton reset = new JButton("Reset");

22 Timer timer1 = new Timer(2000, new TimerHandler());

23

24 public void init()

25 {

26 cell = new JButton[16]; //the number buttons

27

28 setLayout(new GridLayout(5, 4)); //override default BorderLayout

29

30 //set properties of GUI compoments

31 errors.setHorizontalAlignment(JLabel.RIGHT);

32 errors.setFont(new Font("Serif", Font.BOLD, 30));

33 numberOfErrors.setFont(new Font("Serif", Font.BOLD, 30));

34

540 ■ Programming Fundamentals Using Java

35 //add event handlers to listener lists

36 begin.addActionListener(new BeginResetHandler());

37 reset.addActionListener(new BeginResetHandler());

38

39 //create number buttons, set properties, register event handlers

40 for(int i = 0; i < 16; i++)

41 {

42 cell[i] = new JButton("0");

43 cell[i].setFont(new Font("Serif", Font.BOLD, 40));

44 cell[i].addActionListener(this);

45 add(cell[i]);

46 }

47

48 //add the lower buttons and labels

49 add(begin);

50 add(errors);

51 add(numberOfErrors);

52 add(reset);

53

54 intializeGame();

55 }

56

57 public void intializeGame()

58 {

59 generateNumbers();

60 numberOfErrors.setText("0");

61 errorCount = 0;

62 for(int i = 0; i < 16; i++)

63 {

64 cell[i].setText(Integer.toString(values[i]));

65 cell[i].setForeground(Color.BLACK);

66 }

67 }

68

69 public void generateNumbers() //generate buttons’ numbers

70 {

71 Random rn = new Random();

72 int number = 0;

73 int cellNumber = 0;

74 boolean done;

75

76 for(int i = 1; i <= 16; i++) //all number buttons

77 {

78 values[i-1] = i % 8 + 1; //place numbers 1->8 twice

79 }

80 for(int i = 0; i < 16; i++) //all number buttons

81 {

82 number = rn.nextInt(15);

83 swap(values, i, number); //swap button value with a random button

 Chapter 11· Graphical User Interfaces ■ 541

84 }

85 }

86

87 public void swap(int[] array, int indx1, int indx2)

88 {

89 int temp;

90 temp = array[indx1];

91 array[indx1] = array[indx2];

92 array[indx2] = temp;

93 }

94

95 //event handlers ***************************************

96 public class BeginResetHandler implements ActionListener

97 {

98 public void actionPerformed(ActionEvent e)

99 {

100 if(e.getSource() == begin) // start the game

101 {

102 for(int i = 0; i < 16; i++)

103 {

104 cell[i].setText(" "); //hide the numbers

105 }

106 }

107 else //generate and a new game

108 {

109 intializeGame();

110 }

111 }

112 }

113

114 public void actionPerformed(ActionEvent e) //number buttons’ handler

115 {

116 if(firstClick) //show the number

117 {

118 for(int i = 0; i<16; i++) //all number buttons

119 {

120 if(e.getSource() == cell[i]) //button clicked found

121 {

122 cell[i].setText(Integer.toString(values[i]));

123 firstClick = false;

124 firstClickValue = values[i];

125 firstClickIndex = i;

126 break;

127 }

128 }

129 }

130 else //second click processing

131 {

542 ■ Programming Fundamentals Using Java

132 timer1.start(); //two seconds

133 for(int i = 0; i<16; i++) //all number buttons

134 {

135 if(e.getSource() == cell[i]) //button clicked found

136 {

137 cell[i].setText(Integer.toString(values[i]));

138 firstClick = true;

139 secondClickIndex = i;

140 if(firstClickValue == values[i]) //correct match

141 {

142 correct = true;

143 cell[firstClickIndex].setForeground(Color.BLUE);

144 cell[secondClickIndex].setForeground(Color.BLUE);

145 }

146 else //incorrect match

147 {

148 correct = false;

149 errorCount++;

150 numberOfErrors.setText(Integer.toString(errorCount));

151 }

152 break;

153 } // end if

154 } // end for

155 } // end else

156 }

157

158 public class TimerHandler implements ActionListener

159 {

160 public void actionPerformed(ActionEvent e) //Timer’s event handler

161 {

162 if(correct == false) //no match

163 {

164 timer1.stop(); //after a two second pause

165 cell[firstClickIndex].setText(" "); //hide the numbers

166 cell[secondClickIndex].setText(" ");

167 }

168 }

169 }

170 }

Figure 11.47

The applet GuessingGame.

 Chapter 11· Graphical User Interfaces ■ 543

Figure 11.48

The GUI produced by the applet GuessingGame.

 11.6.5 11.6.5 Portability and Security IssuesPortability and Security Issues

When designing a GUI interface for an applet, the highest level of portability across Web

browsers is achieved when AWT components, rather than Swing components, are used in the in-

terface. Alternately, the portability of Swing-based GUI applets can be extended across the range

of available browsers by installing a Java plugin on the computer on which the browser is running.

The plugin is freely available and is part of the JDK.

Although AWT GUI components used in applets offer more browser portability, Swing pro-

vides a richer complement of components. The more commonly used Swing components, such as

labels, buttons, text fields, and check boxes do have AWT counterparts, but several Swing compo-

nents (e.g., radio buttons) do not have an AWT counterpart. The AWT component class names do

not include the leading J used in the Swing class names. For example, the name of the AWT button

class is Button, and the name of the AWT label class is Label (Swing’s class names are JButton

and JLabel).

In addition to the difference in the names of the component classes, the names of some of the

Swing and AWT methods used to perform common operations on GUI components are also differ-

ent. For example, the Swing methods setText and getText can be used to change and fetch the

annotation on a JButton. Their AWT counterparts are the methods setLabel and getLabel.

The applet shown in Figure 11.47 extends the class JApplet on line 7, and its graphical inter-

face is built entirely with Swing components. The applet’s portability can be extended by making it

a child of the Applet class (extending Applet instead of JApplet), eliminating the J that begins

all of the GUI component class names used in the applet, and changing the setText method invo-

cations (e.g., on line 64) to invocations of the AWT Button class’s setLabel method.

Often, it is desirable to allow an applet to perform certain operations that are beyond the range

of those performed by the default Java instruction subset that can be included in an applet, such

544 ■ Programming Fundamentals Using Java

as installing Web-based software updates to a program stored on in a computer’s hard drive. To

accomplish this, applet developers obtain a digital security certificate from a certificate authority

organization, which is attached to the applet. Before a certified applet is run inside a Web browser,

information about the applet’s developer and the restricted operation it will perform is announced

to the user, and the user is asked if the developer is a trusted source. An acknowledgement of trust

in the developer permits the applet to run and gain access to various resources of the user’s com-

puter, such as its hard drive, that would normally be restricted.

 11.7 11.7 CHAPTER SUMMARY CHAPTER SUMMARY

The overloaded versions of the showInputDialog and showMessageDialog methods in the

JOptionPane class can be used to display more informative and user-friendly dialog boxes then

those versions used in previous chapters. A dialog box’s default icon can be replaced with one of

four other selections, its default title can be changed, and the window within which it is centered

can be specified. In addition, a default input or a set of valid inputs from which to choose can be

displayed in an input dialog box.

User-friendly graphical interfaces are incorporated into a program by adding a worker class

that contains the code to build the interface. The program declares an instance of the class and

makes it visible. Ordinarily, the worker class either extends JFrame for non-Web-based programs

or the JApplet for Web-based programs. These API classes are referred to as top-level contain-

ers. The worker class contains code to create and add instances of JButton, JTextField, and

JLabels to a container after setting their visibility, annotation, color, font, and size properties and

their location within the container. An instance of the class Timer can be added to a container.

Its time interval is set when it is created, and it is initiated by invoking the start method on the

timer object.

A flow layout manager can be used to facilitate the positioning and sizing of components

within a container. A container’s default FlowLayout manager can be changed by invoking the

setLayout method on the container or nullified by passing the method a null value. Some inte-

grated development environments have a GUI-builder feature that generates the worker class as the

programmer drags and drops GUI components onto a container and selects their properties from

lists and dialog boxes.

The GUI-builder worker class also contains code to perform processing as the user interacts

with the interface or when a timer’s interval expires. These interactions are called events, and

the code is placed inside call back methods referred to as event handlers. The signatures of these

methods are defined in a group of API interfaces, three of which are named ActionListener,

KeyListener, and MouseMotionListener. The methods defined in these three interfaces are

invoked when a button is clicked, a key is typed, the mouse is clicked or dragged, or a time interval

expires.

Event handler methods are associated with particular components in the GUI by registering

them with the component via an invocation of methods such as addActionListener, addKey-

Listener, and addMouseMotionListener passing them an instance of the class in which the

 Chapter 11· Graphical User Interfaces ■ 545

event handler method is coded. In the case of a Timer object, the instance of the event handler’s

class is passed to the Timer object’s constructor when it is created. The event handlers can be part

of the GUI-builder worker class or an inner class defined within it. The heading of a class that

contains the implementation of the event handler method must contain an implements clause

indicating that it implements the method’s interface. Alternately, the class can extend one of the

API adapter classes that provide empty implementations of some of the API listener interfaces. The

component on which an event occurred can be identified by invoking the getSource method on

the argument passed to the event handler method, or the key struck on a keyboard can be deter-

mined by invoking the getKeyCode method on the argument.

A paint event is any event that causes a graphical object to be drawn or redrawn, such as maxi-

mizing a window after it has been minimized. When these events occur, a call back method is in-

voked by the Java Runtime Environment, which can be overridden to draw shapes on a GUI. These

method names begin with the word “paint” (for example, paintComponent) and are ordinarily

overridden in a separate drawing worker class. Then, an instance of the class is declared within

the program (e.g., the method main), and the add method is invoked on the program’s GUI-builder

object (its window) to add the instance

In addition to application programs, Java also supports applets, which run from within another

program, such as a Web browser or applet viewer. Applet containers create instances of classes

that extend the class Applet or its child class JApplet. Unlike application programs that begin

their execution with the first executable statement in the method main, applet programs begin

their execution with the first executable statement in a method named init. The applet container

invokes this method when it launches the applet, followed by invocations of the methods start

and paint. It invokes the method stop to suspend the applet and destroy to terminate the applet.

Applets like JPanels are containers, and they can be used to add a GUI interface or 2D shapes to

a Web page using the same techniques used to add a GUI and shapes to applications.

Applets are considered to be both portable and secure. The highest level of portability across

Web browsers is achieved when AWT components, rather than Swing components are used. Se-

curity is provided for Java applets by restricting some of the functions they can perform and by

attaching a digital security certificate to the applet.

Knowledge ExercisesKnowledge Exercises

 1. True or false:

 a) GUI stands for Grand Unified Interaction.

 b) Although they take longer to develop, GUIs reduce the time and effort needed to interact

with a program.

 c) To create a graphical user interface, declare an instance of a top-level container class

object and add the GUI components to it.

 d) A paint event causes a graphical object to be drawn or redrawn.

 e) Check boxes permit multiple selections to be made.

 f) Multiple components in an application can have the keyboard’s focus at the same time.

546 ■ Programming Fundamentals Using Java

 g) Java applications and applets both begin executing in their main method.

 h) An enhanced dialog box can be used to display several valid inputs from which a user can

choose.

 i) The default layout manager for JFrames is the grid layout manager.

 j) The border layout manager specifies five regions for the components.

 k) The north and south regions of the border layout are always the width of the window.

 l) All the cells of the grid layout have the same height and width.

 m) Java applets are considered to be both portable and secure.

 2. Give a statement that asks a person for his or her age using a dialog box containing an

information message icon and the title Happy Birthday.

 3. Name at least three GUI components and explain their usual uses.

 4. Give the code to:

 a) Make the JButton b1 disappear

 b) Relocate JButton b2 to location (200, 400)

 c) Change the text displayed in JTextBox tb1 to Correct

 d) Create a JButton named b3 whose annotation is Click Here

 e) Change the text of JLabel lb1 to The Answer is Yes

 f) Add the JButton b4 to the JPanel p1

 g) Make the size of JTextBox tb2 100 pixels wide and 50 pixels high

 h) Attach the tool tip Click After Entering a Number to JButton b5

 5. Name the five regions of the border layout and describe their location, height and width.

 6. Name and describe the three layout managers that Java provides.

 7. Give the code to:

 a) Allow components to be positioned and sized in the JPanel p1 using the setBounds

method

 b) Change a JPanel p2’s layout manager to BorderLayout

 8. Sketch the position of five components (c1, c2, c3, c4, and c5) as each layout manager would

present them after they were added to a container in the order c1 through c5. Clearly state your

assumptions, where necessary, regarding the width and placement of the components.

 9. Give the code to display a 600 x 800-pixel red window from within the method main without

the use of a GUI-builder worker class.

 10. What is the result of omitting the setDefaultCloseOperation when creating a window?

 11. Explain the purpose of event handlers.

 12. Give the name of the event handler that processes a click on a JButton object.

 13. Three JButton objects named b1, b2, and b3 are registered with the same event handler. Give

the code in the event handler method to output Button 2 when b2 is clicked.

 Chapter 11· Graphical User Interfaces ■ 547

 14. What are the three keyboard hander methods defined in the API KeyListener interface, and

what events do they handle?

 15. What are adapter classes, and what is the advantage of a class extending them?

 16. What does it mean to say that a component must have the keyboard’s focus?

 17. How can a component get the keyboard’s focus?

 18. What are some of the differences between the AWT and Swing GUI packages?

 19. State one advantage of using the classes in the AWT package over the classes in the Swing

package, and vice versa.

 20. Discuss the major difference between Java applications and applets.

 21. How do Java applets provide security and portability?

Programming ExercisesProgramming Exercises

 1. Write a program with a GUI that allows the user to input the length and width of a rectangle.

The GUI will have three buttons. When one of the buttons is clicked, the area of the rectangle

is displayed in square feet. When the second button is clicked, the perimeter of the rectangle is

displayed. When the third button is clicked, the GUI is restored to the condition it was in when

the program was launched. Each button will have its own event handler.

 2. Modify the program in Exercise 1 so one event handler performs the calculations, and the

restoration for the GUI to its launch condition is performed by a second event handler.

 3. Modify the program in Exercise 2 to include an additional input for the cost of carpet per

square foot and a fourth button to calculate and display the cost of the carpet.

 4. Write a GUI application whose window’s title is Favorite Color and is initially blue. When a

button on the interface is clicked, an enhanced dialog box is displayed from which the user can

choose a color from among eight colors. When the OK button on the dialog box is clicked, the

background of the window should change to the selected color.

 5. Create a program to display a GUI window with the following features: its size is 400 x 450

pixels, and its location is 100, 100. The window title is Surprise! The window should contain a

button labeled Press Here. When the button is pressed, the background color should change to

your favorite color and a circle (or a smiley face) should appear.

 6. Write a program using a GUI with three buttons, labeled RED, YELLOW and BLUE, which

cause a filled rectangle to be drawn in the appropriate color when pressed.

 7. Write a GUI application that will react to a mouse-click event by displaying the x and y

coordinates of the position in the window where the mouse was clicked.

 8. Create a GUI window with a mouse and a piece of cheese drawn on it, each at a random

location. The keyboard directional arrow keys can be used to move the mouse to the piece of

cheese.

548 ■ Programming Fundamentals Using Java

 9. Expand the application described in Exercise 8 so the cheese can be dragged around the

window to the mouse.

 10. Write a GUI application called StopWatch that displays the minutes and seconds that have

elapsed since the interface’s Start button was clicked. When the interface’s Reset button is

clicked, the elapsed time should return to zero, and the timer should stop. Each button should

have its own event handler.

 11. Design and implement a four-function GUI calculator with buttons for the digits from 0 to 9

and the arithmetic operations +, -, *, and /. The button for = should cause the operation to be

performed and the result to be displayed in a text field. Also, include a Clear button to clear the

calculator so another operation can be performed.

 12. Write an applet named Know Your Shapes that displays a colorful circle, square, rectangle,

and ellipse, each with a text field below it. After the user types the names of each shape in the

text boxes and clicks the Done button, display Correct in the text fields in which the typed

names are correct and the correct name of the shape in the text boxes in which the typed name

is incorrect. After five seconds have elapsed, clear the text boxes and output Try again to the

GUI.

 EnrichmentEnrichment

Use Java’s Timer object to create animation for a graphical object on a GUI interface.

ReferencesReferences

Boese, Elizabeth Sugar. An Introduction to Programming with Java Applets. 3rd Ed. Sudbury, MA: Jones
and Bartlett Publishers, 2010.

■ ■ ■ ■ ■

In this chapter

In Chapter 11, we became familiar with the techniques used to create a GUI application’s

program window and add labels, buttons, and text fields to it, and how to respond to the

user’s interaction with these components via key strokes or mouse clicks and drags. In this

chapter, we expand our knowledge of the other GUI component classes available in the API

Swing package. Check boxes, radio buttons, combo boxes, and lists allow a user to select

one or more inputs from a set of valid inputs. The procedure for adding a component to a

window is expanded to include the grouping of radio buttons and the placement of titled

borders around GUI components.

Menus are a common component of GUIs, and both drop-down and pop-up menus are discussed in

this chapter, as are submenus and hot keys. In addition, the file-chooser and color-chooser dialog boxes

used to facilitate disk I/O and color selection are presented in this chapter.

After successfully completing this chapter, you should:

� Be able to create and position check boxes, radio buttons, combo boxes, and lists and perform

processing when the user selects inputs associated with these components

� Know how to enclose GUI components within titled borders and how to change the color,

style, and thickness of borders

� Understand how to add scroll bars to combo boxes and lists

� Be able to assign hot keys to GUI components and perform processing in response to hot-key strokes

� Understand how to implement drop-down and pop-up menus and submenus and perform

processing in response to menu selections

� Know how to use API defined dialog boxes to facilitate the input of file I/O paths, file

names, and color selection

12CHAPTERCHAPTER

12.1 Borders Checkboxes and Radio Buttons550

12.2 Combo Boxes and Lists .563

12.3 Menus . 572

12.4 File Chooser and Color Chooser Dialog Boxes585

12.5 Chapter Summary .590

GRAPHICAL USER INTERFACES:GRAPHICAL USER INTERFACES:

A SECOND LOOKA SECOND LOOK

550 ■ Programming Fundamentals Using Java

 12.1 12.1 BORDERS CHECKBOXES AND RADIO BUTTONS BORDERS CHECKBOXES AND RADIO BUTTONS

The GUI components check box and radio button are shown in the upper center and upper right

portion of Figure 12.1. Groupings of check boxes and radio buttons are used to facilitate the selec-

tion of one or more inputs from a small set of valid inputs. When the user can select several of the

inputs from the set, check boxes are used in the GUI. When the inputs are mutually exclusive, that

is, only one of the valid inputs can be selected, radio buttons are used.

Figure 12.1

GUI components.

Ordinarily, a set of check boxes or a set of radio buttons is added to an instance of a JPanel, and

then the panel is added to the window’s content pane. This makes the check box set or radio button set

easier to reposition in the window because only the panel’s location needs to be changed, rather than

changing the position of each of the boxes or buttons individually. In addition, the panel’s border can

be made visible to give the visual impression that the check boxes or buttons are part of a set, and a

title can be added to the panel’s border to provide additional information about the box or button set.

This is the approach that was taken when the GUI illustrated in Figure 12.1 was built.

 12.1.1 12.1.1 Borders Borders

A border can be placed around any component that extends the class JComponent, although

most often, the use of a border is associated with JPanel and JLabel components. This is done

by invoking the setBorder method on the component and passing it the object returned from an

invocation of one of the static methods in the BorderFactory class. These static methods create

most of the borders available in the API Swing package. The following code fragment was used

to place the border containing the title Basics around the JPanel component p1 that contains the

label, text field, and button on the top left side of Figure 12.1.

 //Default light blue line border with a title

 p1 = new JPanel();

 p1.setBorder(BorderFactory.createTitledBorder("Basics"));

 Chapter 12· Graphical User Interfaces: A Second Look ■ 551

This one-parameter version of the createTitledBorder method creates a border drawn as

a thin light blue line with the title displayed in the default position (i.e., the upper left corner of the

border). The static method createTitledBorder is overloaded. All of the other versions of the

method contain a Border type parameter, which is used to change the thickness, style, and color

of the border, and some versions of the method contain parameters to change the title’s vertical

position, horizontal justification, and its font color and style.

In addition to the createTitledBorder method, the BorderFactory class contains static

methods used to construct different styles of borders and specify the thickness and color of the

border. These methods construct and return a Border object that describes the border, which is

then passed to the overloaded versions of the createTitledBorder method. The following code

fragment was used to create and place the thick red-colored line border around the JPanel that

encloses the check boxes in Figure 12.1. The integer argument, 2, passed to the BorderFactory

class’s method createLineBorder changes the border thickness from the default value of 1 to 2:

//Double thick red colored line border with a title

p2 = new JPanel();

Border aBorder = BorderFactory.createLineBorder(Color.RED, 2);

p2.setBorder(BorderFactory.createTitledBorder(aBorder, "Check Boxes"));

Other border styles include an etched style, a beveled style, and a soft-beveled style. The Border-

Factory class’s createBevelBorder is used to change the style of the border from a line to a

beveled appearance. The following code fragment was used to place the beveled border around

the JPanel that encloses the radio buttons in Figure 13.1. The integer argument (0) passed to the

createBevelBorder method specifies the type of bevel to use, in this case, raised:

//Raised beveled border with a title

p3 = new JPanel();

aBorder = BorderFactory.createBevelBorder(0);

p3.setBorder(BorderFactory.createTitledBorder(aBorder, "Radio Buttons"));

Borders can be created without titles by only passing the setBorder method a Border object

returned from one of the BorderFactory class’s static methods. The following code fragment

places a raised beveled border with no embedded title around a JPanel:

//Double thick red colored line border, no title

p4 = new JPanel();

p4.setLayout(null);

p4.setBorder(BorderFactory.createBevelBorder(0););

 12.1.212.1.2 Check Boxes Check Boxes

A grouping of check boxes is used on a GUI to facilitate the selection of one or more inputs

from a small set of valid inputs. When the user clicks a check box, a check either appears in the

check box or is removed from it. Using the techniques discussed in this section, check boxes are

created, added to, and positioned in GUI containers. Processing is initiated based on their checked

or unchecked status.

552 ■ Programming Fundamentals Using Java

Creating Check Boxes

Check boxes are instances of the API class JCheckBox and can be created using the class’s one

(String) parameter constructor or the class’s default constructor. The text that appears beside the

check box when it is displayed is the string passed to the one-parameter constructor or the string

passed to the class’s setText method. The following code fragment creates the first two check

boxes shown in the top center of Figure 12.1:

 //Create check boxes and initialize their text.

 JCheckBox cb1 = new JCheckBox("This choice");

 JCheckBox cb2 = new JCheckBox();

 ch2.setText(("And / Or this choice");

The setText method sets the text property of most GUI components that display text, and it can

be used to initially set or to change the text associated with a component. As discussed in Chapter

11, the properties of atomic components and containers can be set and fetched using the methods

shown in Table 11.5, which is recreated as Table 12.1 for convenience.

Table 12.1

Methods Used to Specify a Component’s Properties and Add it to a Container

Method Signature Description

JComponent and Component Class Methods Invoked on Components

setToolTipText(String tip)
Adds the tool tip tip to the component, displayed

 when the mouse pointer hovers over it

setBounds(int x, int y,

 int width, int height)

Sets the component’s location to (x, y) and its

 width and height to width and height

setLocation(int x, int y) Sets the component’s location to (x, y)

setSize(int width, int height)
Sets the component’s width and height to width

 and height

setText(String newText)
Changes the text displayed on the component to

 newText

setVisible(boolean visible)
The component is visible when visible is passed the

value true, invisible when passed false

setFont(Font fontStyle)
Sets the font style of the container or component

 that invoked the method to fontStyle

Container Class Methods

setLayout(LayoutManager layout);
Sets the container’s layout to layout, to specify

 location/size of components: layout = null

add(Component theComponent)
Adds theComponent to the container or

 component that invoked the method

 Chapter 12· Graphical User Interfaces: A Second Look ■ 553

By default, a check box is initially displayed unchecked (without a check mark). An additional

Boolean argument can be passed to the JCheckBox class’s one-parameter constructor to specify

that the box will contain a check mark when it is initially displayed:

 //Display a check in a check box

 JCheckBox cb1 = new JCheckBox("Check box is checked", true);

Adding Check Boxes to Containers and Positioning Them

Check boxes are added to a GUI container using the add method, which is described at the bot-

tom of Table 12.1. The following code fragment adds two check boxes to the JPanel container p1:

 //Add two check boxes to a JPanel container

 p1 = new JPanel();

 JCheckBox cb1 = new JCheckBox("Hamburger");

 JCheckBox cb2 = new JCheckBox("Taco");

 p1.add(cb1);

 p1.add(cb2)

Check boxes, like other components added to a container, are positioned within it using the

techniques discussed in Chapter 11 (Section 11.3.3 when a layout manager is not used and Section

11.5 when a layout manager is used). When a layout manager is used, the check boxes will be po-

sitioned by the manager in the order in which they are added to the container.

If the container’s layout manager has been set to null, the setBounds method described in

Table 12.1 can be used to position and set the height and width of the component. The height and

width passed to the method includes the box and its associated text. Alternately, the setLocation

and setSize methods can be used to position a check box in the container and to specify its size.

The following code fragment was used to create the three check boxes shown in Figure 12.1

and the panel that contains them. The panel does not use a layout manager to position its compo-

nents because the panel’s setLayout method is passed a null value. This permits the use of the

setBounds method to position and size the components added to it. The (x, y) position specified

by the first two arguments sent to the method setBounds is relative to the upper left corner of the

container (to which a component has been added).

// Position and size check boxes without using a layout manager

p2 = new JPanel();

p2.setLayout(null); //the default border manager is not used

Border aBorder = BorderFactory.createLineBorder(Color.RED, 2);

p2.setBorder(BorderFactory.createTitledBorder(aBorder, "Check Boxes"));

JCheckBox cb1 = new JCheckBox("This choice"); //initially unchecked

JCheckBox cb2 = new JCheckBox("And / Or this choice", true); //checked

JCheckBox cb3 = new JCheckBox("And / Or this choice", true); //checked

// Position and size the check boxes and their titles

cb1.setBounds(10, 30, 140, 20); //x, y, width, height

cb2.setBounds(10, 60, 140, 20);

cb3.setBounds(10, 90, 140, 20);

554 ■ Programming Fundamentals Using Java

//Add them to the JPanel, p2

p2.add(cb1);

p2.add(cb2);

p2.add(cb3);

Determining a Check Box’s Status

The status of a check box, checked or unchecked, can be determined by invoking the isSlect-

ed method on it. The method returns the Boolean value true if the box is checked when the

method is invoked, otherwise, it returns false. The following code fragment outputs true to the

system console because check box cb2 was created with a check in it:

 //Determine if a check box is checked (its status)

 JCheckBox cb2 = new JCheckBox("And / Or this choice", true);

 if(cb2.isSelected() == true) //cb2 is checked

 {

 System.out.println("true");

 }

Check Box Events

In most applications that use check boxes, the interface contains a button that is clicked af-

ter the user checks one or more of the check boxes, and then the processing associated with the

checked boxes is performed from within the button’s event handler method, actionPerformed.

When this is the case, the status of the check boxes is determined by invoking the isSelected

method within the event handler method actionPerformed. The coding of this method and the

techniques used to register it in the button’s event handler list are those discussed in Section 11.4.

In applications where it is important to perform some processing immediately after a check box

is checked, a check box event handler is implemented and registered with the check box’s listener

list. When the user checks or unchecks a check box, an item event occurs. The application can im-

mediately perform some processing in response to this event by implementing the event handler

method itemStateChanged inside the class that declared the check boxes or inside an inner

class. In either case, the class’s heading must indicate that it implements the interface ItemLis-

tener. The event handler’s signature, which is given below, is the only signature defined within

the interface ItemListener:

 public void itemStateChanged(ItemEvent e)

The itemStateChanged method is added to the check box’s event listener list by invoking

the addItemListener method on the check box object and passing it the keyword this. When

the method is implemented within an inner class, an instance of the inner class is declared and

passed to the method.

The code fragment shown in Figure 12.2 outputs Hamburger Selected or Hamburger Unselect-

ed when the check box cb1, declared on line 9, is selected (checked) or unselected (unchecked).

The code assumes that the event handler method itemStateChanged (lines 12–25) is written as

shown (not coded inside of an inner class); which is why the keyword this is passed to the method

 Chapter 12· Graphical User Interfaces: A Second Look ■ 555

invoked on line 10 to add the event handler method to cb1’s event listener list. As indicated at the

top of the figure, two imports must be included in the class’s source file, and the class’s heading

must indicate that it implements the interface ItemListener.

1 //Two imports needed and an implements clause in the class’ heading

2 import javax.swing.*;

3 import java.awt.event.*;

4

5 //Class heading and implements clause would be here

6 JCheckBox cb1; //class level variable

7

8 //coded in the class’ constructor

9 cb1 = new JCheckBox("Hamburger");

10 cb1.addItemListener(this); //add event handler to cb1’s list

11

12 public void itemStateChanged(ItemEvent e) //event handler method

13 {

14 if(e.getSource() == cb1) //cb1’s box was clicked

15 {

16 if(cb1.isSelected() == true)

17 {

18 System.out.println("Hamburger Selected");

19 }

20 else

21 {

22 System.out.println("Hamburger Un-selected");

23 }

24 }

25 }

Figure 12.2

A code fragment that illustrates check box event handling without the use of an inner class.

 12.1.3 12.1.3 Radio Buttons Radio Buttons

Ordinarily, a radio button is grouped with other radio buttons into a mutually exclusive group-

ing because their most common use in GUIs is to facilitate the selection of one input from a small

set of valid inputs. When the user clicks a radio button, a dot either appears on the button or is re-

moved from it. Using the techniques discussed in this section, radio buttons can be created, added

to, and positioned in GUI containers and made mutually exclusive. Processing is then initiated

based on their selected or unselected status.

Creating Radio Buttons

A radio button is an instance of the API class JRadioButton and can be created using the

class’s one-parameter constructor or its default constructor. The text that appears beside the radio

button when it is displayed is the string passed to the one-parameter constructor or the string

556 ■ Programming Fundamentals Using Java

passed to the class’s setText method. The following code fragment creates the first two radio

buttons shown in the top-right portion of Figure 12.1:

 //Create radio buttons and initialize their text.

 JRadioButton rb1 = new JRadioButton("This choice");

 JRadioButton rb2 = new JRadioButton();

 rb2.setText("Or this choice");

The setText method sets the text property of most GUI components that display text, and

it can be used to initially set or to change the text associated with a component. The properties of

radio buttons can be set and fetched using the methods shown in Table 12.1.

By default, a radio button is initially displayed unselected, without a center dot on it. A Bool-

ean argument can be passed to the JButton class’s two-parameter constructor to specify that the

button will contain a dot (be selected) when the radio button is initially displayed.

 //Display a dot in a radio button

 JRadioButton rb3 = new JRadioButton("Button is selected", true);

Making Radio Buttons Mutually Exclusive

By default, a set of radio buttons are not mutually exclusive: one, several, or all of them could

be selected at the same time. Because they are ordinarily used to choose one input from a set of

mutually exclusive inputs, a set of radio buttons is designated to be mutually exclusive. When this

designation is made, after one button in the set is selected, the previously selected button in the set

is simultaneously deselected.

To designate a set of radio buttons to be mutually exclusive, the buttons are added to an in-

stance of the class ButtonGroup. The following code fragment creates a mutually exclusive set of

three radio buttons:

 // Designate a set of radio buttons to be mutually exclusive

 JRadioButton rb1 = new JRadioButton("This choice", true);

 JRadioButton rb2 = new JRadioButton("Or this choice);

 JRadioButton rb3 = new JRadioButton("Or this Choice");

 // Create a radio button grouping

 ButtonGroup bg1 = new ButtonGroup();

 // Add buttons to the grouping bg1

 bg1.add(rb1);

 bg1.add(rb2);

 bg1.add(rb3);

If several of the buttons in a mutually exclusive grouping were declared to be selected by

passing the two-parameter constructor the value true when they are created, only the first button

created will be selected when the group is initially displayed. A set of radio buttons can be made

mutually exclusive using this same technique: create a ButtonGroup object and then add the radio

buttons to the object. This is usually not done because it is contrary to the common inclusive use

of radio buttons in graphical interfaces.

 Chapter 12· Graphical User Interfaces: A Second Look ■ 557

Adding Radio Buttons to Containers and Positioning Them

Radio buttons are added to a GUI container using the add method, which is described at the

bottom of Table 12.1. The following code fragment adds two mutually exclusive radio buttons to a

JPanel container:

 //Add two mutually exclusive radio buttons to a JPanel container

 p1 = new JPanel();

 JRadioButton rb1 = new JRadioButton("Hamburger");

 JRadioButton rb2 = new JRadioButton("Taco");

 ButtonGroup bg1 = new ButtonGroup();

 bg1.add(rb1);

 bg1.add(rb2);

 p1.add(rb1);

 p1.add(rb2);

Radio buttons, like other components added to a container, are positioned within it using the tech-

niques discussed in Chapter 11 (Section 11.3.3 without a layout manager and Section 11.5 using a

layout manager). When a layout manager is used, the radio buttons are positioned in the container

by the manager in the order in which they are added to the container.

If the container’s layout manager has been set to null, the setBounds method described in

Table 12.1 can be used to position and set the height and width of the component and its associated

text. Alternately, the setLocation and setSize methods, can be used to position a radio button

in the container and to specify the height and width of the button and its associated text.

The following code fragment was used to create the three radio buttons shown in Figure 12.1,

and the panel in which they are contained. The panel does not use a layout manager to position

its components because the panel’s setLayout method is passed a null value. This permits the

use of the setBounds method to position and size the components added to it. The (x, y) position

specified by the first two arguments sent to the method setBounds is relative to the upper left

corner of the container to which a component has been added.

// Position and size radio buttons without using a layout manager

p3 = new JPanel();

p3.setLayout(null); //no border manager used

aBorder = BorderFactory.createBevelBorder(0);

p3.setBorder(BorderFactory.createTitledBorder(aBorder, "Radio Buttons"));

JRadioButton rb1 = new JRadioButton ("This choice");

JRadioButton rb2 = new JRadioButton ("Or this choice);

JRadioButton rb3 = new JRadioButton ("Or this choice", true");

ButtonGroup bg1 = new ButtonGroup();

bg1.add(rb1);

bg1.add(rb2);

bg1.add(rb3);

// Position and size the check boxes and their titles

rb1.setBounds(10, 30, 140, 20); //x, y, width, height

558 ■ Programming Fundamentals Using Java

rb2.setBounds(10, 60, 140, 20);

rb3.setBounds(10, 90, 140, 20);

//Add them to the JPanel, p3

p3.add(rb1);

p3.add(rb2);

p3.add(rb3);

Determining a Radio Button’s Status

The status of a radio button, selected or not selected, can be determined by invoking its

isSlected method. The method returns the Boolean value true if the button is selected when

the method is invoked, otherwise, it returns false. The following code fragment outputs true

to the system console because the two-parameter constructor is passed the value true when the

button is created:

 //Determine if a radio button is selected

 JRadioButton rb1 = new JRadioButton ("Radio button selected", true);

 if(rb1.isSelected() == true) //rb1 is selected

 {

 System.out.println("true");

 }

Radio Buttons Events

In most applications that use radio buttons, the interface contains a JButton that is clicked

after the user selects one of the radio buttons, and then the processing associated with the selection

is performed from within the JButton’s event handler method, actionPerformed. When this

is the case, the determination of which radio button in a group was selected is made by invoking

the isSelected method on each of the buttons from within the actionPerformed method. The

coding of this method and the techniques used to register it in the JButton’s event handler list

were discussed in Section 11.4.

In applications where it is important to perform processing immediately after a radio button is

selected, an event handler is implemented and registered with the radio button’s listener list. The

selection of a radio button generates an action event, which means the techniques used to perform

processing when a radio button is selected are the same techniques used to perform processing

when a JButton is clicked (discussed in Chapter 11). The application implements the event han-

dler method actionPerformed inside the class that declared the radio button or within an inner

class. In either case, the class’s heading must indicate that it implements the interface ActionLis-

tener. The actionPerformed method’s signature, which is given below, is the only signature

defined within the interface ActionListener:

 public void actionPerformed(ActionEvent e)

The method is added to the radio button’s event listener list by invoking the addActionLis-

tener method on the radio button object and passing it the keyword this. When the method is im-

plemented within an inner class, an instance of the inner class is declared and passed to the method.

The code fragment shown in Figure 12.3 outputs Hamburger Selected when the radio but-

ton rb1, declared on line 10, is selected, and it outputs Taco Selected when the radio button rb2,

 Chapter 12· Graphical User Interfaces: A Second Look ■ 559

declared on line 12, is selected. The code assumes that the event handler method actionPer-

formed (lines 15–25) is not coded inside of an inner class; the keyword this is passed to the

method invoked on lines 11 and 13 to add the event handler method to the buttons’ event listener

lists. As indicated at the top of the figure, two imports must be included in the class’s source file,

and the class’s heading must indicate that it implements the interface ActionListener.

1 //Need two imports and an implements clause in the class’ heading

2 import javax.swing.*;

3 import java.awt.event*;

4

5 //Class heading and implements clause would be here

6 JRadioButton rb1; //class level variables

7 JRadioButton rb2;

8

9 //coded in the class’ constructor

10 rb1 = new JRadioButton("Hamburger");

11 rb1.addItemListener(this); //add event handler method to rb1’s list

12 rb2 = new JRadioButton("Taco");

13 rb2.addItemListener(this); //add event handler method to rb2’s list

14

15 public void actionPerformed(ActionEvent e)

16 {

17 if(rb1.isSelected() == true) //or e.getSource() == rb1 can be used

18 {

19 System.out.println("Hamburger Selected");

20 }

21 if(e.getSource() == rb2) //or rb2.isSelected() == true can be used

22 {

23 System.out.println("Taco Selected");

24 }

25 }

Figure 12.3

A code fragment that illustrates radio button event handling without the use of an inner class.

The GUI application DollarMeal, shown in Figure 12.4, illustrates the use of check boxes

and radio buttons in a GUI application. It declares (on line 7) and displays (on line 9) an instance of

the class GUI-builder worker class MealMenu shown in Figure 12.5. This class’s constructor (lines

11–65) builds the GUI, shown in Figure 12.6a, which the user can use to order a meal. A typical

order is shown in Figure 12.6b. A summary of the order is output to the system console (bottom of

Figure 12.6) when the Place Order button is clicked at the bottom of the GUI.

The class MenuMeal extends JFrame and adds two panels (named p1 and p2, declared on

lines 18 and 41) and a JButton (named placeOrder, defined on line 58) to the frame’s content

pane on lines 62–64. The layout managers of the content pane and the panels are set to null (lines

14, 19, and 42) to allow the panels and JButton to be positioned in the frame (lines 21, 44, and 59)

and the panels’ contents (check boxes and radio buttons) to be positioned inside of them using the

setBounds method. The radio buttons and check boxes are created, located, and sized and then

560 ■ Programming Fundamentals Using Java

added to the panels on lines 23–38 and lines 46–56, respectively. The radio buttons are also added

to a ButtonGroup to make then mutually exclusive (lines 31–34.).

The string order (declared on line 71) is output to the console on line 104 of the JButton’s event

handler actionPerformed (lines 68–105), which is added to the button’s listener list on line 60. The

method builds the output string using the check boxes’ and radio buttons’ isSelected method in a

series of if-else and if statements to determine which of them have been selected (lines 73–103).

1 import javax.swing.*;

2

3 public class DollarMeal

4 {

5 public static void main(String[] args)

6 {

7 MealMenu window = new MealMenu();

8 window.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

9 window.setVisible(true);

10 }

11 }

Figure 12.4

The application DollarMeal.

1 import javax.swing.*;

2 import java.awt.event.*;

3

4 public class MealMenu extends JFrame implements ActionListener

5 {

6 JPanel p1, p2;

7 JRadioButton hamburger, taco, blt;

8 JCheckBox cheese, ketchup, napkins;

9 JButton placeOrder;

10

11 public MealMenu()

12 {

13 super("Dollar Meals");

14 setLayout(null);

15 setSize(303, 200);

16

17 //Build the radio button entree panel

18 p1 = new JPanel(); //declare the panel

19 p1.setLayout(null);

20 p1.setBorder(BorderFactory.createTitledBorder("Entree"));

21 p1.setBounds(5, 10, 140, 110); //locate and size the panel

22

23 hamburger = new JRadioButton("Hamburger", true); //declare buttons

24 taco = new JRadioButton("Taco");

25 blt = new JRadioButton("BLT Sandwich");

26

27 hamburger.setBounds(10, 20, 120, 20); //locate and size the buttons

 Chapter 12· Graphical User Interfaces: A Second Look ■ 561

28 taco.setBounds(10, 50, 120, 20);

29 blt.setBounds(10, 80, 120, 20);

30

31 ButtonGroup bg1 = new ButtonGroup(); //group the buttons

32 bg1.add(hamburger);

33 bg1.add(taco);

34 bg1.add(blt);

35

36 p1.add(hamburger); //add the buttons to the panel

37 p1.add(taco);

38 p1.add(blt);

39

40 //Build the check box extras panel

41 p2 = new JPanel(); //declare the panel

42 p2.setLayout(null);

43 p2.setBorder(BorderFactory.createTitledBorder("Extras"));

44 p2.setBounds(150, 10, 140, 110); //locate and size the panel

45

46 cheese = new JCheckBox("Cheese"); //declare the check boxes

47 ketchup = new JCheckBox("Ketchup");

48 napkins = new JCheckBox("Napkins");

49

50 cheese.setBounds(10, 20, 120, 20); //locate and size the check boxes

51 ketchup.setBounds(10, 50, 120, 20);

52 napkins.setBounds(10, 80, 120, 20);

53

54 p2.add(cheese); //add the check boxes to the panel

55 p2.add(ketchup);

56 p2.add(napkins);

57

58 placeOrder = new JButton("Place Order"); //declare the JButton

59 placeOrder.setBounds(80, 130, 120, 30); //locate and size it

60 placeOrder.addActionListener(this); //register the event handler

61

62 add(p1); //add the panels and the JButton to the content pane

63 add(p2);

64 add(placeOrder);

65 }

66

67 //Place order button handler

68 public void actionPerformed(ActionEvent e)

69 {

70 int extras = 0;

71 String order = "";

72

73 if(hamburger.isSelected() == true)

74 {

75 order = order + "Hamburger ";

76 }

562 ■ Programming Fundamentals Using Java

77 else if(taco.isSelected() == true)

78 {

79 order = order + "Taco ";

80 }

81 else if(blt.isSelected() == true)

82 {

83 order = order + "BLT sandwich ";

84 }

85 if(cheese.isSelected() == true)

86 {

87 order = order + " and cheese";

88 extras++;

89 }

90 if(ketchup.isSelected() == true)

91 {

92 order = order + " and ketchup";

93 extras++;

94 }

95 if (napkins.isSelected() == true)

96 {

97 order = order + " and napkins";

98 extras++;

99 }

100 if(extras == 0)

101 {

102 order = order + " no extras";

103 }

104 System.out.println(order);

105 }

106 }

Figure 12.5

The class MealMenu.

 (a) (b)

Console output:

Taco and cheese and napkins

Figure 12.6

The GUI of the application DollarMeal, a user input, and the corresponding console output.

 Chapter 12· Graphical User Interfaces: A Second Look ■ 563

 12.212.2 COMBO BOXES AND LISTS COMBO BOXES AND LISTS

The GUI components combo boxes and lists are shown in the lower left and lower center por-

tion of Figure 12.1. These components are similar to a set of radio buttons and a set of check boxes

in that they are used to facilitate the selection of one or more inputs from a set of valid inputs. When

the number of elements in the set is small, most GUI designers use radio buttons and check boxes to

present the selection alternatives. When the set contains a large number of elements, combo boxes

and lists are the preferred components because they can include a scroll bar to permit the user to view

the alternative selections without taking up a large portion of the program’s window. Table 12.2 sum-

marizes the terminology, features, and common uses of the GUI components combo boxes and lists.

Table 12.2

Terminology and Features of Combo Boxes and Lists

Combo Box List

Element name

An item A value

Most Common Use

Select one item from a set of valid items Select one or more values from a set of valid values

Elements specifi ed as

An array containing the items An array containing the values

Elements can be changed from their initial values during the program’s execution

No Yes

Instance of

JComboBox class JList class

Scrollable

Yes Yes

User selection technique

Click an item
Click an item, Control-Click for multiple items, or

Shift-Click for an interval of items

User could type an input that is not an element

Yes No

The elements displayed in a combo box are called items, and those displayed in a list are called

values. Only one item can be selected from a combo box, which makes it the component of choice

for selecting one item from a large set of mutually exclusive items. A list is normally used when

one or more values can be selected. The ability to select one or more values from a list is its default

mode, but this can be restricted to a sequential set of values or only one value.

564 ■ Programming Fundamentals Using Java

A single element in a combo box or list is selected by clicking it, which causes the previously

selected item (or items, in the case of a list) to be simultaneously deselected. Multiple non-sequential

values in a list can be selected by clicking them while holding down the Ctrl (control) key on the key-

board. Multiple sequential values in a list can be selected by clicking the first value in the sequence

then holding down the Shift key and clicking the last value in the sequence. Table 12.3 summarizes

the methods used to create and operate on combo boxes and lists and to service click events on them.

Table 12.3

Methods That Perform Common Combo Box and List Operations

Combo Box Named aBox List Named aList

Creation

JComboBox aBox;

aBox = new JComboBox(itemArray);

JList aList;

aList = new JList(valueArray);

Fetch the index selected or the fi rst value in sequential order selected

int i = aBox.getSelectedIndex();

Object item=aBox.getSelectedItem();

int i = aList.getSelectedIndex();

Object value = aList.getSelectedValue();

Fetch all selections

Not applicable
int[] i = aList.getSelectedIndices();

Object[] value = getSelectedValues();

Add a scroll bar

aBox.setMaximumRowCount(aLowCount);
aList.setVisibleRowCount(aLowCount);

JScrollPane sp= new JScrollPane(aList);

Change displayed elements

Not permitted aList.setListData(newValueArray);

Permit User to type a new element

aBox.setEditable(true); Not permitted

Event handling

Interface: ActionListener

Event handler:

 actionPerformed(ActionEvent e)

Register event handler using:

 addActionListener

Interface: ListSelectionListener

Event handler:

 valueChanged(ListSelectionEvent e)

Register event handler using:

 addListSelectionListener

Creating Combo Boxes and Lists

A combo box is an instance of the class JComboBox, and a list is an instance of the class

JList. The elements displayed in both types of instances are placed in an array passed to their

class’s one-parameter constructor when they are created. They maintain the index that was

 Chapter 12· Graphical User Interfaces: A Second Look ■ 565

associated with them in the array passed to the JComboBox and JList constructors and are dis-

played in ascending index order. The following code sequence creates a combo box and a list that

displays the days of the week beginning with Sunday. The list will display all seven days, the

combo box will display the seven days when the arrow at the top of it is clicked.

 //Create a Combo Box and a List that display the days of the week

 String days = {"Sunday", "Monday", "Tuesday", "Wednesday",

 "Thursday", "Friday", "Saturday"};

 JComboBox aBox = new JComboBox(days);

 JList aList = new JList(days);

Fetching the Selected Item and Value(s)

The index of the item selected in a combo box, or the lowest index of the values selected in a

list, can be fetched by invoking the components’ getSelectedIndex method. Alternately, the

item selected in a combo box or the value with the lowest index selected in a list can be fetched

using the getSelectedItem and the getSelectedValue methods, respectively. Both of these

methods return a reference to an object, which must be cast into the type of the reference variable

to which it is assigned. Assuming the program user selected Wednesday in the combo box and

selected Monday and Thursday in the list, the following code sequence would output two lines to

the system console containing 3 Wednesday followed by 1 Monday:

 //Fetch the item and first value selected in a combo box and list

 String days = {"Sunday", "Monday", "Tuesday", "Wednesday",

 "Thursday", "Friday", "Saturday"};

 int comboIndex, listIndex;

 String item, value;

 JComboBox aBox = new JComboBox(days);

 JList aList = new JList(days);

 //After the user makes selections, the following code is executed

 comboIndex = aBox.getSelectedIndex();

 item = (String) aBox.getSelectedItem();

 listIndex = aList.getSelectedIndex();

 value = (String) aList.getSelectedValue();

 System.outprintln(comboIndex + " " + item);

 System.outprintln(listIndex + " " + value);

The indices of all of the values selected in a list can be fetched by invoking the getSelect-

edIndices method on the component object. All of the selected values can be fetched by invok-

ing the getSelectedValues method on the component object. Both methods return the address

of an array. The indices are returned in an integer array, and the values are returned in an array

of Object references. Assuming the program user selected Monday and Thursday in the list, the

following code sequence would output two lines to the system console: 1 Monday followed by 4

Wednesday. The output would not depend on the order in which the user made the selections.

566 ■ Programming Fundamentals Using Java

 //Fetch all indices and values selected from a list

 String days = {"Sunday", "Monday", "Tuesday", "Wednesday",

 "Thursday", "Friday", "Saturday"};

 int[] listIndices;

 String[] values;

 JList aList = new JList(days);

 //After the user makes selections, the following code is executed

 listIndices = aList.getSelectedIndices();

 values = (String) aList.getSelectedValues();

 for(int i = 0; i < values.length; i++)

 {

 System.outprintln(listIndices[i] + " " + values[i]);

 }

Adding a Vertical Scroll Bar

A combo box can be, and a list is normally, displayed with a vertical scroll bar on their right

side, which is used to scroll through the set of valid inputs. The techniques used to select and fetch

elements from these components do not change when scroll bars are incorporated into them.

The setMaximumRowCount method is invoked on a combo box object to set the number of

items displayed at one time and to add a scroll bar to its right side. This one invocation is all that is

required to add a scroll bar to a combo box, as shown in following code fragment, which creates a

combo box with a scroll bar that displays four days of the week at a time:

//Add a scroll bar to a combo box

String days = {"Sunday", "Monday", "Tuesday", "Wednesday",

 "Thursday", "Friday", "Saturday"};

JComboBox aBox = new JComboBox(days);

aBox.setMaximumRowCount(4); //four sequential items displayed at a time

When the component is a list, two steps are required. The setVisibleRowCount method is

invoked on the list object and passed the number of items to be displayed at one time in the com-

ponent. Then, an instance of a JScrollPane is created, and the list object is passed to the class’s

one-parameter constructor. The JScrollPane object, not the list (JList) object, is subsequently

added to the GUI container. The following code fragment creates a list with a scroll bar that dis-

plays four days of the week at a time:

 String days = {"Sunday", "Monday", "Tuesday", "Wednesday",

 "Thursday", "Friday", "Saturday"};

 JList aList = new JList(days);

 JPanel aPanel = new JPanel();

 aList.setVisibleCount(4); //four sequential items displayed at a time

 JScrollPane aScrollableList = new JScrollPane(aList);

 aPanel.add(aScrollableList);

 Chapter 12· Graphical User Interfaces: A Second Look ■ 567

If a layout manager is not used to position the scroll pane in the container (e.g., the JPanel’s

layout manager is set to null), the setVisibleCount method is not invoked to set the number of

items displayed at one time. Instead, the height of the JScrollPane object, required to display the

desired number of rows, is passed to the invocation of the setBounds method used to position and

size the scroll pane object within the container, as shown below:

 //Position and size the scroll pane object

 String days = {"Sunday", "Monday", "Tuesday", "Wednesday",

 "Thursday", "Friday", "Saturday"};

 JList aList = new JList(days);

 JPanel aPanel = new JPanel();

 aPanel. setLayout(null);

 JScrollPane aScrollableList = new JScrollPane(aList);

 aScrollableList.setBounds(10, 20, 120, 80); //80 displays 4 values

 aPanel.add(aScrollableList);

The application ExpandedDollarMeal, shown in Figure 12.7, is a modified version of the

application DollarMeal presented in Figure 12.4. It declares (line 8) and displays (line 10) an

instance of the class ExpandedMealMenu shown in Figure 12.8. This class’s constructor (lines

17–52) builds the GUI shown on the left side of Figure 12.9. A typical meal order is shown on the

right side of the figure. When the button at the bottom of the interface is clicked, a summary of the

order is output to the system console (bottom of Figure 12.9).

In a similar way to the class MealMenu shown in Figure 12.5, the ExtendedMealMenu class

extends JFrame and adds two panels (named p1 and p2, declared on lines 24 and 35) and a JBut-

ton (named placeOrder, defined on line 45) to the frame’s content pane on lines 49–51. The

layout managers of the content pane and the panels are set to null (lines 20, 25, and 36) to allow

the panels to be positioned in the frame (lines 27 and 38) and the panels’ contents (a combo box and

a list) to be positioned inside of them using the setBounds method.

The class ExtendedMealMenu uses a combo box with a scroll bar to display the expanded

number of entrees (seven), defined on lines 7–9, and a list with a scroll bar to display and the ex-

panded number of extras (nine), defined on lines 10–12. These arrays are passed to the constructors

used to create the combo box entree on line 29 and list extrasList on line 40; then the combo

box and the list are located, sized, and added to the panels on lines 30–32 and lines 41–43, respec-

tively. Line 30 adds a scroll bar to the combo box that scrolls through four items at a time. Line 41

adds the list to a JScrollPane object. The location and size of the scroll pane is set on line 42.

The last argument, 80, sent to the invocation of the setBounds method on this line, is a height suf-

ficient to display four values in the now-scrollable list, which is added to the panel (p2) on line 43.

The console output is produced on lines 59–66 of the JButton’s event handler actionPer-

formed (lines 55–67), which is added to the button’s listener list on line 47.

Lines 59 and 60 use the combo box’s getSelectedIndex and getSelectedItem methods

to output the selected entrée’s index and name. The array of selected extras returned from the

JList class’s getSelectedValues method on line 62 is output to system console inside the for

568 ■ Programming Fundamentals Using Java

loop that begins on line 63. The array reference variable extrasOrderedArray is declared on

line 57 to be an array of Object references, because the getSelectedValues method returns a

reference to an array of objects.

1 import javax.swing.*;

2

3 public class ExpandedDollarMeal

4 {

5 public static void main(String[] args)

6 {

7 String title = "Expanded Dollar Meal";

8 ExpandedMealMenu window = new ExpandedMealMenu(title);

9 window.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

10 window.setVisible(true);

11 }

12 }

Figure 12.7

The application ExpandedDollarMeal.

1 import javax.swing.*;

2 import java.awt.event.*;

3

4 public class ExpandedMealMenu extends JFrame implements ActionListener

5 {

6 JPanel p1, p2;

7 String[] entreeItems = {"Hamburger", "Taco", "BLT Sandwich",

8 "Nachos", "Chicken Soup", "Hot Chili",

9 "Salad"};

10 String[] extrasValues = {"Cheese", "Ketchup", "Napkins", "Mustard",

11 "Mayonnaise", "Salsa", "Paper Plate",

12 "Utensils", "Water"};

13 JComboBox entree;

14 JList extrasList;

15 JButton placeOrder;

16

17 public ExpandedMealMenu(String title)

18 {

19 super(title);

20 setLayout(null);

21 setSize(303, 200);

22

23 //Build the entree panel

24 p1 = new JPanel(); //declare the panel

25 p1.setLayout(null);

26 p1.setBorder(BorderFactory.createTitledBorder("Entree"));

 Chapter 12· Graphical User Interfaces: A Second Look ■ 569

27 p1.setBounds(5, 10, 140, 110); //locate and size the entree panel

28

29 entree = new JComboBox(entreeItems);

30 entree.setMaximumRowCount(4);

31 entree.setBounds(10, 20, 120, 20);

32 p1.add(entree);

33

34 //Build extras panel

35 p2 = new JPanel(); //declare the panel

36 p2.setLayout(null);

37 p2.setBorder(BorderFactory.createTitledBorder("Extras"));

38 p2.setBounds(150, 10, 140, 110); //locate and size the extras panel

39

40 extrasList = new JList(extrasValues);

41 JScrollPane aScrollableList = new JScrollPane(extrasList);

42 aScrollableList.setBounds(10, 20, 120, 80); //80 displays 4 values

43 p2.add(aScrollableList);

44

45 placeOrder = new JButton("Place Order"); //declare the JButton

46 placeOrder.setBounds(80, 130, 120, 30); //locate and size it

47 placeOrder.addActionListener(this); //register its event handler

48

49 add(p1); //add the panels and the JButton to the content pane

50 add(p2);

51 add(placeOrder);

52 }

53

54 //Place order button handler

55 public void actionPerformed(ActionEvent e)

56 {

57 Object[] extrasOrderedArray;

58

59 System.out.print("\nEntree Number " + entree.getSelectedIndex() +

60 ": " + entree.getSelectedItem());

61

62 extrasOrderedArray = extrasList.getSelectedValues();

63 for(int i = 0; i < extrasOrderedArray.length; i++)

64 {

65 System.out.print(", " + extrasOrderedArray[i]);

66 }

67 }

68 }

Figure 12.8

The class ExpandedMealMenu.

570 ■ Programming Fundamentals Using Java

 (a) (b)

Console Output:

Entree Number 5: Hot Chili, Salsa, Utensils, Water

Figure 12.9

The GUI of the application ExpandedDollarMeal, a user input, and the corresponding console output.

The values initially displayed in a JList object, which are passed to the class’s constructor

when the list is created, can be changed. To do this, the method setListData is invoked on the

JList object and passed an array containing the list’s new values. The following line of code dis-

plays the objects contained in the array newValueArray in the JList object aList:

 aList.setListData(newValueArray);

An Editable Combo Box

Each JComboBox object has a Boolean data member isEditable whose default value is

false. When the data member’s value is set to true using the class’s setEditable method, a

text box is displayed at the top of the combo box, as shown in Figure 12.10a. This now-editable

combo box retains all the functionality of the un-editable version discussed in this section, and it

also allows the user to type an item into the text box. The item typed does not have to be one of the

items passed to the one-parameter constructor when the combo box was created.

For example, if the user were to type Ham Sandwich into the text box, the combo box would

appear as shown in Figure 12.10b. The item typed in the text box would be returned from the next

invocation of the box’s getSelectedItem method, unless one of the other items in the combo box

is selected before it is invoked.

The window shown in Figure 12.10a was produced by the application ExpandedDollarMeal

(Figure 12.7) after the following line of code was added to the class ExpandedMealMenu

(Figure 12.8) just before line 32:

 entree.setEditable(true);

 Chapter 12· Graphical User Interfaces: A Second Look ■ 571

 (a) (b)

Console Output

Entree Number -1: Ham Sandwich, Mustard

Figure 12.10

The GUI of the application ExpandedDollarMeal with an editable combo box added to it.

The console output at the bottom of Figure 12.10 was produced after the user typed Ham Sandwich

in the text box and clicked “Mustard” and the Place Order button in the window on the right side of

the figure. Because Ham Sandwich is not one of the items in the array entreeItems (lines 7–9 of

Figure 12.8) passed to JComboBox’s one-parameter constructor when the combo box was created, the

index returned from the method getItemSelected is -1 (as shown at the bottom of Figure 12.10).

Combo Box and List Event Handling

When an item is selected in a combo box, an action event occurs; when a value is selected in a

list, a list selection event occurs. In most applications, we do not respond to either of these events

individually because the GUI usually contains a JButton object that is clicked after the user has

interacted with all of the other input components on the interface. That was the case in the applica-

tion ExpandedValueMeal, in which the user clicked the Place Order button after the meal selec-

tion was made. Until that button was clicked, the user could change the selections made in both the

combo box and the list. The servicing of the button-click action event was performed by the event

handler coded on lines 55–67 of the ExpandedMealMenu class presented in Figure 12.8, and this

event handler was registered in the button’s listener list on line 47 of that class.

To service either a combo-box item selection or a list value selection at the time the selection

is made, we implement event handlers and register them with the components’ listener lists. The

techniques used to perform this are the same techniques used in Figure 12.8, which were discussed

in Section 11.4:

 1. Implement the event handler’s interface by coding the event handler method whose signa-

ture is defined in the interface

 2. Register the method with the components’ event listener list.

572 ■ Programming Fundamentals Using Java

In the case of a combo box action event, the interface and the method used to register the event

are the same as those used to service a JButton click action event:

 1. The interface is ActionListener;

 2. The signature of the event handler is actionPerformed(ActionEvent e)

 3. The method used to register the event is addActionListener, which is invoked on the

JComboBox object and passed an instance of the class in which the event handler is coded

In the case of a list selection event, the interface and methods use to service the event are:

 1. The interface is ListSelectionListener;

 2. The signature of the event handler is valueChanged(ListSelectionEvent e);

 3. The method used to register the event is addListSelectionListener, which is in-

voked on the JList object and passed an instance of the class in which the event handler

is coded

The names of these interfaces and methods are summarized at the bottom of Table 12.3. The

methods previously discussed to fetch the index or element selected, which are also summarized

in Table 12.3, are used inside the combo box and list event handler methods to identify and process

the selection.

 12.312.3 MENUS MENUS

A menu is a GUI component used to obtain one of several valid inputs from the program user.

In this way, menus are similar to combo boxes. The advantage menus have over combo boxes and

the other GUI components we have discussed is that they can be used to present a wide variety

of valid inputs while occupying a relatively small portion of the program’s window. In addition,

because their placement in the window does not vary from one application to another, they present

an input interface that is more familiar to the user.

The Java API supports two types of menus: drop-down menus and pop-up menus. Drop-down

menus are positioned in a menu bar whose location in the window is platform dependent, and

pop-up menus remain invisible until the user performs a platform-dependent mouse action or key

action. The most common position for a menu bar is just below the window’s title bar, and the most

common mouse action to expose a pop-up menu is a right-button mouse click. We will begin our

discussion of menus with drop-down menus contained in a menu bar.

 12.3.1 12.3.1 Drop-Down Menus Drop-Down Menus

The program widow in Figure 12.11a was generated on a platform that places the menu bar just

below the window’s title bar. The menu-bar object contains one drop-down menu object on its left

side that has the string “A Menu” associated with it. The user has clicked this menu object to expose

the menu’s four drop-down objects and then clicked the last of these objects to expose another drop-

down menu containing three more objects. Figure 12.11b gives the API classes of the objects that

 Chapter 12· Graphical User Interfaces: A Second Look ■ 573

make up the program’s menu, displayed in Figure 12.11a. These classes are JMenuBar, JMenu, and

JMenuItem. The two submenu objects shown in Figure 12.11a are instances of the class JMenu.

 (a) (b)

Figure 12.11

Drop-down menu components and their API classes.

The JMenuItem objects within a drop-down menu are the terminal components of the menu.

These items are the set of valid inputs. The user selects one of these inputs by clicking it, which ini-

tiates an action event just as clicking a JButton object generates an action event. The processing

associated with the selected menu item is performed within the actionPerformed event handler

method whose signature is defined in the interface ActionListener.

Building a Drop-Down Menu System

Generally speaking, a drop-down menu system consisting of a menu bar containing one or

more drop-down menus is added to an instance of a JFrame using the following four step process.

The code fragments used to illustrate each step of the process were used to create the menu sys-

tem shown in Figure 12.12. These fragments would be added to the constructor of a GUI-builder

worker class that extends the class JFrame.

 1. Create a menu bar object, which is an instance of JMenuBar, and add it to the JFrame

instance using the JFrame class’s method setJMenuBar

 //Add the menu bar

 JMenuBar aMenuBar = new JMenuBar(); //create the menu bar

 setJMenuBar(menuBar); //add the menu bar to the JFrame

 2. Create drop-down menu objects, which are instances of JMenu, and add them to the menu

bar object by invoking the add method on them; the drop-down menu’s string annota-

tion, which is passed to JMenu’s constructor, appears on the menu bar from left to right

in the order in which the menus are added to the menu bar

 //Add two drop down menus to the menu bar

 JMenu dropDownMenu1 = new JMenu("Dollar"); //create menu

 JMenu dropDownMenu2 = new JMenu("Deluxe"); //create menu

 aMenuBar.add(dropDownMenu1); //add a menu to the menu bar

 aMenuBar.add(dropDownMenu2); //add a menu to the menu bar

574 ■ Programming Fundamentals Using Java

 3. For each drop-down menu added to the menu bar, repeatedly create and add either an in-

stance of

a) A clickable terminal menu item, which is an instance of the class JMenuItem;

 JMenuItem saladItem = new JMenuItem("Salad"); //create items

 JMenuItem soupItem = new JMenuItem("Chicken Soup");

 dropDownMenu1.add(saladItem);

 dropDownMenu1.add(soupItem);

or

b) A submenu, which is an instance of the class JMenu

 JMenu subMenu1 = new JMenu("Sandwich"); //create submenu

 JMenu subMenu2 = new JMenu("Mexican"); //create submenu

 dropDownMenu1.add(subMenu1); //add the 1st submenu to the menu

 dropDownMenu1.add(subMenu2); //add the 2nd submenu to the menu

 The menu items and submenus appear from top to bottom on the drop-down menu in the

order in which they are added.

 4. Repeat Step 3 for all the submenus; ordinarily, only a set of terminal items are added to

the submenus

JMenuItem subItem1 = new JMenuItem("Hamburger"); //create item

JMenuItem subItem2 = new JMenuItem("BLT"); //create item

subMenu1.add(subItem1);

subMenu1.add(subItem2);

Figure 12.12

A drop-down menu system that contains two submenus.

Menu Separator Bars

Separator bars are added to a drop-down menu to visually group related elements. There are

two separator bars in the drop-down menu shown in Figure 12.12: one above the Sandwich sub-

menu and one below it. The JMenu method addSeparator is invoked on a drop-down JMenu

menu object to add a separator bar to the menu. Menu items, menu separators, and submenus ap-

pear from top to bottom within the drop-down menu in the order in which they are added. The two

 Chapter 12· Graphical User Interfaces: A Second Look ■ 575

menu separators in Figure 12.12 were added to the drop-down menu dropDownMenu1 using the

following code fragment:

 //Add menu separator bars

 dropDownMenu1.add(saladItem); //add to the menu as 1st item

 dropDownMenu1.add(soupItem); //add to the menu as 2nd item

 dropDownMenu1.addSeparator();

 JMenu subMenu1 = new JMenu("Sandwich"); //create submenu

 dropDownMenu1.add(subMenu1); //add the submenu to the menu

 dropDownMenu1.addSeparator();

Menu Mnemonics

A mnemonic is a keyboard event that is designated to be equivalent to the user clicking a GUI

component such as a menu item or a button. Other names for mnemonics are shortcut keys or hot

keys. The designation is made by invoking the setMnemonic method on the component. The

method is overloaded and can be passed either a single character or one of the keyboard key codes

defined in the class KeyEvent as a static integer constant. Every key on the keyboard, and its

shifted version, has a unique key-code constant associated with it. For example, the constant static

VK_2 is associated with an unshifted 2 key keystroke, and the constant VK_AT is associated with

a shifted @ key keystroke. (VK stands for virtual key.)

When a hot key is designated to be equivalent to clicking a GUI component, striking it when

the component is visible is equivalent to clicking the component. In addition, the first occurrence

of the key’s character in the string associated with the component (the string passed to the con-

structor when the component is created) is underlined on the menu. The following code fragment

designates the S and C keys to be hot keys for the Salad and Chicken Soup menu items displayed

in Figure 12.12:

 //Designate Hot Keys

 JMenuItem saladItem = new JMenuItem("Salad");

 JMenuItem soupItem = new JMenuItem("Chicken Soup");

 dropDownMenu1.add(saladItem);

 dropDownMenu1.add(soupItem);

 saladItem.setMnemonic('S');

 soupItem.setMnemonic('C');

JMenuItem Object Action Events

When the user clicks a JMenuItem object or presses a hot key associated with the object, an

action event occurs. The processing to be performed when this event occurs is coded in the event

handler method actionPerformed whose signature is defined in the interface ActionListen-

er. The event handler method is added to the JMenuItem object’s listener list by invoking the

method addActionListener on the object and passing the method an instance of the class in

which the event handler is coded.

The application Menus, shown in Figure 12.13, declares (line 8) and displays (line 10) an in-

stance of the class MenuBarBuilder shown in Figure 12.14. This class extends JFrame, adds a

menu bar to the frame (lines 21–22), and then adds the drop-down menu shown on the top left and

576 ■ Programming Fundamentals Using Java

right sides of Figure 12.15 to the menu bar (lines 25–26). The console output shown at the bottom

of the figure was produced by the application after the user selected Nachos from the menu, as

shown in Figure 12.15b.

The drop-down menu is created by the method buildDollarMenu (lines 30–82 of Figure

12.14) that returns a reference to an instance of a JMenu. This method is invoked on line 25 of

the class’s constructor, and the returned drop-down menu is added to the menu bar on line 26. It

is good coding practice to build each drop-down menu added to a menu bar in a separate method

because it makes our code more readable and easier to maintain.

Line 33 declares the JMenu object dollarMenu that will be returned by the method on line

81. Lines 36–47 create the drop-down menu’s two items and two submenus (lines 36–39) and adds

these four objects and two separators to the dollarMenu object (lines 42–47). The code on lines

50–54 creates five submenu items and then adds these five objects to the two submenu objects

(lines 57–61).

Lines 64–70 designate hot keys for each of the menu’s seven menu selections (JMenuItem in-

stances). Lines 73–79 register an action event handler method into each of these instances’ listener

lists by invoking the addActionListener method on each instance and passing it an instance of

the inner class dollarMenuListener.

The event handler method actionPerformed (lines 86–98) is coded within the inner class

(lines 84–99). It invokes the getSource method on the ActionEvent object passed to the method

(lines 90–96) to determine which menu item the user selected in Figure 12.15b. In the interest of

brevity, a series of one-line if statements are used to make the determination and set the selection

into the string entree declared on line 88. This string is output on line 97 of the event handler

method.

1 import javax.swing.*;

2

3 public class Menus

4 {

5 public static void main(String[] args)

6 {

7 String title = "Expanded Dollar Meal Menu";

8 MenuBarBuilder window = new MenuBarBuilder(title);

9 window.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

10 window.setVisible(true);

11 }

12 }

Figure 12.13

The application Menus.

 Chapter 12· Graphical User Interfaces: A Second Look ■ 577

1 import javax.swing.*;

2 import java.awt.event.*;

3

4 public class MenuBarBuilder extends JFrame

5 {

6 //Menu item references

7 private JMenuItem saladItem;

8 private JMenuItem chickenSoupItem;

9 private JMenuItem bLTSubItem;

10 private JMenuItem hamburgerSubItem;

11 private JMenuItem tacoSubItem;

12 private JMenuItem nachosSubItem;

13 private JMenuItem chiliSubItem;

14

15 public MenuBarBuilder(String title)

16 {

17 super(title);

18 setSize(303, 200);

19

20 //Step 1: Create and add the menu bar to the JFrame

21 JMenuBar menuBar = new JMenuBar();

22 setJMenuBar(menuBar);

23

24 //Step 2: Create and add the menus to the menu bar

25 JMenu dropDownMenu = buildDollarMenu();

26 menuBar.add(dropDownMenu);

27 }

28

29 //Step 3: Create and add the items and the submenus to the menu

30 public JMenu buildDollarMenu() //Builds and returns the dollar menu

31 {

32 //Create the drop down menu

33 JMenu dollarMenu = new JMenu("Dollar");

34

35 //Create the menu items and submenus

36 saladItem = new JMenuItem("Salad");

37 chickenSoupItem = new JMenuItem("Chicken Soup");

38 JMenu sandwichSubMenu = new JMenu("Sandwich");

39 JMenu mexicanSubMenu = new JMenu("Mexican");

40

41 //Add the menu items, submenus, and separators to the menu

42 dollarMenu.add(saladItem);

43 dollarMenu.add(chickenSoupItem);

44 dollarMenu.addSeparator();

45 dollarMenu.add(sandwichSubMenu);

46 dollarMenu.addSeparator();

47 dollarMenu.add(mexicanSubMenu);

48

49 //Create submenu items

578 ■ Programming Fundamentals Using Java

50 bLTSubItem = new JMenuItem("BLT");

51 hamburgerSubItem = new JMenuItem("Hamburger");

52 tacoSubItem = new JMenuItem("Taco");

53 nachosSubItem = new JMenuItem("Nachos");

54 chiliSubItem = new JMenuItem("Chili");

55

56 //Add the submenu items to the submenus

57 sandwichSubMenu.add(hamburgerSubItem);

58 sandwichSubMenu.add(bLTSubItem);

59 mexicanSubMenu.add(tacoSubItem);

60 mexicanSubMenu.add(nachosSubItem);

61 mexicanSubMenu.add(chiliSubItem);

62

63 //Assign mnemonics to the menu items

64 saladItem.setMnemonic('S');

65 chickenSoupItem.setMnemonic('C');

66 bLTSubItem.setMnemonic('B');

67 hamburgerSubItem.setMnemonic('H');

68 tacoSubItem.setMnemonic('T');

69 nachosSubItem.setMnemonic('N');

70 chiliSubItem.setMnemonic('L');

71

72 //Register event handlers

73 saladItem.addActionListener(new dollarMenuListener());

74 chickenSoupItem.addActionListener(new dollarMenuListener());

75 bLTSubItem.addActionListener(new dollarMenuListener());

76 hamburgerSubItem.addActionListener(new dollarMenuListener());

77 tacoSubItem.addActionListener(new dollarMenuListener());

78 nachosSubItem.addActionListener(new dollarMenuListener());

79 chiliSubItem.addActionListener(new dollarMenuListener());

80

81 return dollarMenu;

82 }

83

84 public class dollarMenuListener implements ActionListener

85 {

86 public void actionPerformed(ActionEvent e)

87 {

88 String entree = "";

89

90 if(e.getSource() == saladItem) entree = "Salad";

91 if(e.getSource() == chickenSoupItem) entree = "Chicken Soup";

92 if(e.getSource() == bLTSubItem) entree = "BLT Sandwich";

93 if(e.getSource() == hamburgerSubItem) entree = "Hamburger";

94 if(e.getSource() == tacoSubItem) entree = "Taco";

95 if(e.getSource() == nachosSubItem) entree = "Nachos";

96 if(e.getSource() == chiliSubItem) entree = "Chili";

97 System.out.println("Dollar Meal Entree: " + entree);

 Chapter 12· Graphical User Interfaces: A Second Look ■ 579

98 }

99 }

100 }

Figure 12.14

The class MenuBarBuilder.

 (a) (b)

Console Output:

Dollar Meal Entree: Nachos

Figure 12.15

The GUI menu and output produced by the application Menus.

Menu Radio Button and Check Box Items

In addition to JMenuItem objects, check boxes and radio buttons can be added to drop-down

menus and selected from the menu by the program user. These menu items are instances of the

JCheckBoxMenuItem and JRadioButtonMenuItem classes, respectively. Figure 12.16 shows a

drop-down menu that contains four check boxes and four mutually exclusive radio buttons.

Figure 12.16

A GUI menu containing check boxes and radio buttons.

580 ■ Programming Fundamentals Using Java

Once created, radio-button and check-box menu items are added to JMenu objects using the

same techniques used to add JMenuItem objects to drop-down menus and submenus. The tech-

niques used to perform the processing associated with their selection are also the same as the

techniques used to process JMenuItem selections because radio-buttons and check-boxes added

to menus generate action events when they are selected. Their event handler method is action-

Performed whose signature is defined in the interface ActionListener, and the event handler

method is registered by invoking the method addActionListener on the menu item.

The following code fragment, when added to the end of the constructor of the class shown in

Figure 12.14, creates the drop-down menu shown in Figure 12.16 and adds it to the menu bar cre-

ated on line 21 of Figure 12.14. It invokes the menu-builder method buildExtrasMenu shown in

Figure 12.17, which builds the drop-down menu and returns its address.

 JMenu extras = buildExtrasMenu();

 menuBar.add(extras);

The method buildExtrasMenu would be included as a member method of the class Me-

nuBarBuilder shown in Figure 12.14, as would an inner class named ExtrasMenuListener

that implements the ActionListener interface. This inner class would contain the event handler

actionPerformed registered with the radio buttons and check boxes on lines 35–42 of Figure

12.17. The declarations of the reference variables on lines 7–14 of that figure would be added to the

class menuBarBuilder as class-level variables to make them accessible to the radio button and

check box event handler.

1 public JMenu buildExtrasMenu() //Builds and returns the extras menu

2 {

3 //Create the menu object

4 JMenu extrasMenu = new JMenu("Extras");

5

6 //Create the menu items and submenus

7 cheeseItem = new JCheckBoxMenuItem("Cheese");

8 waterItem = new JCheckBoxMenuItem("Water");

9 paperPlateItem = new JCheckBoxMenuItem("Paper plate");

10 utensilItem = new JCheckBoxMenuItem("Utensils");

11 mustardItem = new JRadioButtonMenuItem("Mustard");

12 mayonnaiseItem = new JRadioButtonMenuItem("Mayonnaise");

13 katchupItem = new JRadioButtonMenuItem("Katchup");

14 salsaItem = new JRadioButtonMenuItem("Salsa");

15

16 //Create button group

17 ButtonGroup bg = new ButtonGroup();

18 bg.add(mustardItem);

19 bg.add(mayonnaiseItem);

20 bg.add(katchupItem);

21 bg.add(salsaItem);

22

23 //Add the menu items to the menu

24 extrasMenu.add(cheeseItem);

 Chapter 12· Graphical User Interfaces: A Second Look ■ 581

25 extrasMenu.add(waterItem);

26 extrasMenu.add(paperPlateItem);

27 extrasMenu.add(utensilItem);

28 extrasMenu.addSeparator();

29 extrasMenu.add(mustardItem);

30 extrasMenu.add(mayonnaiseItem);

31 extrasMenu.add(katchupItem);

32 extrasMenu.add(salsaItem);

33

34 //Register event handlers

35 cheeseItem.addActionListener(new ExtrasMenuListener());

36 waterItem.addActionListener(new ExtrasMenuListener());

37 paperPlateItem.addActionListener(new ExtrasMenuListener());

38 utensilItem.addActionListener(new ExtrasMenuListener());

39 mustardItem.addActionListener(new ExtrasMenuListener());

40 mayonnaiseItem.addActionListener(new ExtrasMenuListener());

41 katchupItem.addActionListener(new ExtrasMenuListener());

42 salsaItem.addActionListener(new ExtrasMenuListener());

43

44 return extrasMenu;

45 }

Figure 12.17

The method buildExtrasMenu.

 12.3.212.3.2 Pop-Up Menus Pop-Up Menus

A pop-up menu is a space-saving alternative to a menu-bar-based drop-down menu. Unlike

drop-down menus, pop-up menus are associated with a particular component in a graphical inter-

face, and they remain invisible until the user performs a platform-dependent mouse or keyboard

action on the GUI component. The most common action on the component is a right mouse click.

Pop-up menus are instances of the class JPopupMenu and can be created using the class’s

default constructor:

 //Create a pop-up menu object

 JPopupMenu aMenu = new JPopupMenu();

The techniques discussed in the previous section used to add menu items, submenus, separa-

tors, and hot keys to drop-down menus are the same techniques used to add these elements to pop-

up menus. Menu items, separators, and submenus are added to the pop-up menu object using the

JPopupMenu class’s add method, and hot keys are added using the class’s setMnemonic method.

The following code fragment creates the pop-up menu shown in Figure 12.18a:

 //Create a pop-up menu and add three menu items to it

 JPopupMenu aMenu = new JPopupMenu();

 JMenuItem blue = new JMenuItem("Blue"); //create the menu items

 JMenuItem red = new JMenuItem("Red");

 JMenuItem green = new JMenuItem("Green");

582 ■ Programming Fundamentals Using Java

 aMenu.add(blue); //add the menu items to the pop-up menu

 aMenu.add(red);

 aMenu.add(green);

 blue.setMnemonic('B'); //designate the hot keys

 red.setMnemonic('R');

 green.setMnemonic('G');

 (a) (b)

Figure 12.18

Windows produced by the application PopUpMenu.

To associate a pop-up menu with a GUI component, the setComponentPopupMenu method

is invoked on the GUI component, and the pop-up menu object is passed to the method. When the

user performs the platform-dependent action on the component (e.g., right clicking the component),

the menu becomes visible. The last line of the following code fragment was used to associate the

menu shown in Figure 12.18a with the JLabel displayed at the top of the window:

 //Associate a pop-up menu with a GUI component

 JPopupMenu aMenu = new JPopupMenu();

 JMenuItem blue = new JMenuItem("Blue");

 JMenuItem red = new JMenuItem("Red");

 JMenuItem green = new JMenuItem("Green");

 aMenu.add(blue);

 aMenu.add(red);

 aMenu.add(green);

 blue.setMnemonic('B');

 red.setMnemonic('R');

 green.setMnemonic('G');

 //Associate the pop-up menu with a JLabel object

 JLabel aLabel = new JLabel("Right click this text to change its color");

 aLabel.setComponentPopupMenu(aMenu);

 Chapter 12· Graphical User Interfaces: A Second Look ■ 583

Selecting a menu item from a pop-up menu generates an action event, just as selecting an

item from a drop-down menu does. As previously discussed, action events are serviced by imple-

menting the event handler method actionPerformed whose signature is defined in the interface

ActionListener. The event handler method is registered with a menu item’s listener list by in-

voking the addActionListener method on the menu item object. Assuming the event handler

actionPerformed was implemented in the class that defined the menu item blue, the following

code fragment would add the event handler to the item’s listener list:

 //Register a drop-down menu item selection event handler

 JMenuItem blue = new JMenuItem("Blue");

 blue.addActionListener(this);

The application shown in Figure 12.19 uses a pop-up menu to change the color of the text

displayed at the top of its window. The Figure 12.18a shows the window after the application is

launched and the user has right clicked the text. Figure 12.18b shows the program’s window after

the user has selected Red from the pop-up menu, either by clicking the word Red or striking its hot

key, R. These actions change the color of the text to red.

The application’s window (Line 8 of Figure 12.19) is an instance of the class PopUpMenuWin-

dow, shown in Figure 12.20, which extends JFrame. The class’s constructor builds the pop-up

menu and adds it to the JFrame. The pop-up menu (aMenu) and its three menu items (blue, red,

and green), are created on lines 9–12 of the figure. The menu items are added to the menu (lines

20–22), their hot keys are designated (lines 24–26), and the event handler method coded on lines

37–42 is registered with their listener lists on lines 28–30. Line 32 associates the pop-up menu

aMenu with the JLabel created on line 7. Finally, line 33 adds the label to the JPanel created on

line 19, and then line 34 adds the panel to the JFrame.

When the program user right clicks the text at the top of the program window and clicks a

selection in the pop-up menu, lines 39–41 of the action event handler method actionPerformed

changes the color of the displayed text.

1 import javax.swing.*;

2

3 public class PopUpMenu

4 {

5 public static void main(String[] args)

6 {

7 String title = "Pop Up Menus";

8 PopUpMenuWindow window = new PopUpMenuWindow(title);

9 window.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

10 window.setVisible(true);

11 }

12 }

Figure 12.19

The application PopUpMenu.

584 ■ Programming Fundamentals Using Java

1 import javax.swing.*;

2 import java.awt.event.*;

3 import java.awt.Color;

4

5 public class PopUpMenuWindow extends JFrame implements ActionListener

6 {

7 JLabel aLabel = new JLabel("Right click this text to change its color");

8

9 JPopupMenu aMenu = new JPopupMenu();

10 JMenuItem blue = new JMenuItem("Blue");

11 JMenuItem red = new JMenuItem("Red");

12 JMenuItem green = new JMenuItem("Green");

13

14 public PopUpMenuWindow(String title)

15 {

16 super(title);

17 setSize(400, 300);

18

19 JPanel aPanel = new JPanel();

20 aMenu.add(blue);

21 aMenu.add(red);

22 aMenu.add(green);

23

24 blue.setMnemonic('B');

25 red.setMnemonic('R');

26 green.setMnemonic('G');

27

28 blue.addActionListener(this);

29 red.addActionListener(this);

30 green.addActionListener(this);

31

32 aLabel.setComponentPopupMenu(aMenu);

33 aPanel.add(aLabel);

34 add(aPanel);

35 }

36

37 public void actionPerformed(ActionEvent e)

38 {

39 if(e.getSource() == blue) aLabel.setForeground(Color.BLUE);

40 if(e.getSource() == red) aLabel.setForeground(Color.RED);

41 if(e.getSource() == green) aLabel.setForeground(Color.GREEN);

42 }

43 }

Figure 12.20

The class PopUpMenuWindow.

 Chapter 12· Graphical User Interfaces: A Second Look ■ 585

 12.4 12.4 FILE CHOOSER AND COLOR CHOOSER DIALOG BOXES FILE CHOOSER AND COLOR CHOOSER DIALOG BOXES

The API Swing package provides three dialog boxes that can be used to facilitate commonly

performed user tasks: specifying the path to a file to be opened or saved and specifying a color to

be used in a graphics application. The JFileChooser class contains the methods that display file-

open and file-save dialog boxes. The JColorChooser class contains the method that displays a

dialog box containing a predefined palette of colors from which to choose and provides the ability

to define a custom color.

 12.4.112.4.1 File-Chooser Dialog Box File-Chooser Dialog Box

Figure 12.21a shows an Open file-chooser dialog box, and Figure 12.21b shows the Save file-

chooser dialog box. Both dialog boxes are displayed by the application, FileChoosers, shown in

Figure 12.22. The Open dialog box is displayed by line 15, which invokes the showOpenDialog

method on the JFileChooser object fc created on line 14. Line 15 of the application does not

complete execution until the user clicks the dialog box’s Open or Cancel buttons or closes the dia-

log box. Until one of these events occurs, the user can browse the system’s file structure to locate

and select a file to be opened, or enter the name of the file into the File Name text field.

When a folder is selected by double clicking its name, the folder name appears in the Look In

text field of the dialog box, and its subfolders are displayed. When a file is selected by clicking its

name, the file name is displayed in the dialog box’s File Name text field. After the Open or Cancel

button is clicked, or the dialog box is closed, the showOpenDialog method returns an integer

whose value is dependent upon which of these three events occurred. Line 15 of Figure 12.22

stores the returned integer in the variable cancelApproveError.

 (a) (b)

Figure 12.21

File-chooser Open and Save dialog boxes.

Lines 16 and 23 compare this integer to two static integer constants APPROVE _ OPTION and

CANCEL _ OPTION (defined in the JFileChooser class) to determine if the user clicked Open

(line 16) or Cancel (line 23). When the user clicks the Cancel button, line 25 reports a record of

586 ■ Programming Fundamentals Using Java

that click to the system console. When neither button is clicked, line 29 reports that an error has

occurred.

When the user clicks the Open button, line 19 places the address of the string returned from the

File class’s getPath method in the String variable path. This string, which contains the path to

the file the user selected and the file’s name, is output to the system console (lines 20–21) preceded

by a line of annotation (the first two lines of output shown in Figure 12.23). Normally, the string

path would be used to attach a Scanner object to the selected input file, as shown in the follow-

ing code fragment:

 File fileObject = new File(path);

 Scanner fileIn = new Scanner(fileObject);

Lines 33–49 use a similar sequence of code to fetch a path and file name from the user in which

to save information generated by the program. The only differences are that line 34 invokes the

showSaveDialog method on the JFileChooser object fc to display the Save dialog box shown

in Figure 12.21b, and the string referenced by the variable path on line 38 would be used to attach

a PrintWriter object to the specified output file, as shown in the following code fragment:

 FileWriter fileWriterObject = new FileWriter(path);

 PrintWriter fileOut = new PrintWriter(fileWriterObject, false);

The last two lines of output shown in Figure 12.23 were produced by lines 39–40, after the user

typed Class Notes CS 210 in the text field of the dialog box shown in Figure 12.21b and clicked the

Save button.

NOTE
The default folder, shown in the Look In and Save In text fields of the Open and

Save dialog boxes when they are initially displayed, is platform dependent.

1 import javax.swing.*;

2 import java.io.*;

3

4 public class FileChoosers

5 {

6 public static void main(String[] args)

7 {

8 JFileChooser fc;

9 String path;

10 int cancelApproveError;

11 File file;

12

13 //Demonstrate the ***OPEN*** file dialog box

14 fc = new JFileChooser();

15 cancelApproveError = fc.showOpenDialog(null);

16 if(cancelApproveError == JFileChooser.APPROVE_OPTION) //Open clicked

17 {

18 file = fc.getSelectedFile(); //fetches file information

19 path = file.getPath(); //returns the path and file name

 Chapter 12· Graphical User Interfaces: A Second Look ■ 587

20 System.out.println("The path to the file to be opened is:\n" +

21 path);

22 }

23 else if(cancelApproveError == JFileChooser.CANCEL_OPTION) //canceled

24 {

25 System.out.println("The user canceled the file open operation");

26 }

27 else //an error

28 {

29 System.out.println("An error has occurred");

30 }

31

32 //Demonstrate the ***SAVE*** file dialog box

33 fc = new JFileChooser();

34 cancelApproveError = fc.showSaveDialog(null);

35 if(cancelApproveError == JFileChooser.APPROVE_OPTION) //open clicked

36 {

37 file = fc.getSelectedFile();

38 path = file.getPath();

39 System.out.println("The path to the file to be written is:\n" +

40 path);

41 }

42 else if(cancelApproveError == JFileChooser.CANCEL_OPTION) //canceled

43 {

44 System.out.println("The user canceled the file save operation");

45 }

46 else //an error

47 {

48 System.out.println("An error has occurred");

49 }

50 }

51 }

Figure 12.22

The application FileChoosers.

Console Output:

The path to the file to be opened is:

C:\Users\Bill\Documents\Class Notes CS 101.docx

The path to the file to be written is:

C:\Users\Bill\Documents\Class Notes CS 210

Figure 12.23

The output produced by the application FileChoosers.

 12.4.2 12.4.2 Color-Chooser Dialog Box Color-Chooser Dialog Box

The JColorChooser class’s static method showDialog is used to display a color-chooser

dialog box like the one shown in Figure 12.24a. The following code fragment was used to display

588 ■ Programming Fundamentals Using Java

it and to designate the color black as a default color choice. The second argument passed to the

method is displayed at the top of the dialog box and is usually used as a user prompt.

 //Display a color chooser dialog box.

 Color aColor;

 aColor = JColorChooser.showDialog(null, "Choose the Window's color",

 Color.BLACK);

The user has overridden the default color choice passed to the method’s third parameter by

selecting the pink swatch in the middle of the box’s top row of color swatches. This selection is

displayed in the grid labeled Recent in Figure 12.24a.

The Figure 12.24b shows the window of the application ColorChooser whose code is shown

in Figure 12.25, after the user selected the color pink from the color-chooser dialog box it displays

(a)

(b)

Figure 12.24

A JFileChooser dialog box and the ColorChooser application’s program window.

 Chapter 12· Graphical User Interfaces: A Second Look ■ 589

and clicked OK. This application creates its window, which is an instance of a ColorChooser-

Window, on line 8 of Figure 12.25 and makes it visible on line 10.

The constructor of the ColorChooserWindow class (lines 6–19 of Figure 12.26) displays a

color-chooser dialog box (lines 15–16) and stores the address of the returned Color object that de-

scribes the color selected by the user (pink, in this case) in the variable aColor declared on line 12.

Then, line 17 sets the background color of the JPanel (declared on line 11) to this color. Finally,

line 18 adds the panel to the JFrame.

1 import javax.swing.*;

2

3 public class ColorChooser

4 {

5 public static void main(String[] args)

6 {

7 String title = "File and Color Chooser Dialogs";

8 ColorChooserWindow window = new ColorChooserWindow(title);

9 window.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

10 window.setVisible(true);

11 }

12 }

Figure 12.25

The application ColorChooser.

1 import javax.swing.*;

2 import java.awt.Color;

3

4 public class ColorChooserWindow extends JFrame

5 {

6 public ColorChooserWindow(String title)

7 {

8 super(title);

9 setSize(400, 300);

10

11 JPanel aPanel = new JPanel();

12 Color aColor;

13

14 //Obtain the background color of the window

15 aColor = JColorChooser.showDialog(null, "Choose the Window's color",

16 Color.BLACK);

17 aPanel.setBackground(aColor);

18 add(aPanel);

19 }

20 }

Figure 12.26

The class ColorChooserWindow.

590 ■ Programming Fundamentals Using Java

 12.5 12.5 CHAPTER SUMMARY CHAPTER SUMMARY

The GUI components check box, radio button, combo box, and list are used to select one or

more inputs from a set of valid inputs. These components are instances of the classes JCheckBox,

JRadioButton, JComboBox, and JList, respectively. Ordinarily, either a set of radio buttons or

a combo box is used when the choices are mutually exclusive, and a set of check boxes or a list is

used when this is not the case. Radio buttons are made mutually exclusive by adding them to an

instance of the ButtonGroup class using the class’s add method.

When the set of input choices is large, a combo box and a list are preferred over radio buttons

and check boxes because the number of items they display at one time can be specified using the

methods setMaxRowCount for a combo box and setVisibleCount for a list. The method set-

MaxRowCount adds a scroll bar to a combo box, and a scroll bar can be incorporated into a list

object by passing it to the constructor of a JScrollPane object when the scroll pane is created.

This permits the user to view a large number of selection choices within a small space on the pro-

gram’s window.

The annotation to be displayed next to a radio button or a check box is passed to the construc-

tor invoked to create these objects. The elements, displayed in combo boxes and lists, are placed in

an array that is passed to their class’s one-parameter constructor when they are created. Multiple

non-sequential values in a list can be selected by clicking them while holding down the Control key

(Ctrl) on the keyboard. Multiple sequential values in a list can be selected by clicking the first value

in the sequence, holding down the Shift key, and clicking the last value in the sequence. The ability

to select one or more values from a list is its default mode, but this can be restricted to a sequential

set of values or only one value.

Normally, a set of check boxes, a set of radio buttons, a combo box, or a list is added to an

instance of a JPanel, and the panel is then added to the window’s content pane. This makes the

components easier to position in the window, and the panel’s border can be made visible to give the

impression that the boxes or buttons it contains are part of a set. The panel’s setBorder method

and the static methods of the BorderFactory class can be used to display and customize a panel’s

border and add an informative title. A border can be placed around any component that extends the

class JComponent, although it is most often used to put a border around a JPanel or a JLabel

object.

When it is important to perform processing immediately after a check box or radio button is

selected/unselected, the event handler method itemStateChanged (for a check box defined in

the interface ItemListener) and actionPerformed (for a radio button defined in the inter-

face ActionListener) is implemented and registered in the component’s listener list. The event

handler can invoke the getSource method on the argument passed to the method’s parameter to

determine which component was selected/unselected, and the isSelected method can then be

invoked on the component to determine its status (selected returns true). The selection made in

a combo box or all the selections made in a list can be determined using the methods presented in

Table 12.3, which also presents a method to change the values displayed in a list (setListData)

and to make a combo box editable (setEditable).

 Chapter 12· Graphical User Interfaces: A Second Look ■ 591

The Java API supports two types of menus, drop-down menus (JMenu instances) and pop-up

menus (JPopupMenu instances), which are used to construct a user friendly interface that pres-

ents a group of valid input items (JMenuItem, JCheckBoxMenuItem, and JRadioButtonItem

instances) in a relatively small portion of the program’s window. The annotation associated with

these components is passed to their class’s one-parameter constructor when they are created.

Drop-down menus are added to a menu bar (JMenuBar instance) whose location in the win-

dow is platform dependent. Pop-up menus are associated with other GUI components and remain

invisible until the user performs a platform-dependent action (e.g., a right mouse click) on the as-

sociated component. The add method is invoked on a drop-down or pop-up menu object to add a

menu item or a drop-down (sub) menu to them, and the addSeparator method is invoked on these

menu objects to visually group their related elements. Hot keys can be added to menu items by

invoking the setMnemonic method on them. When the user selects a menu item, an action event

occurs. The event is serviced using the same techniques used to service action events on JRa-

dioButton objects and JButton objects. The event handler is the method actionPerformed

defined in the interface ActionListener.

In addition to these GUI components, the API Swing package also provides three dialog boxes

that can be used to facilitate commonly performed user tasks: specifying the path to a file to be

opened or saved and specifying a color to be used in a graphics application. The JFileChooser

class in the Swing package provides methods to display file open and save dialog boxes, and the

JColorChooser class provides a method to display a dialog box that contains a predefined palette

of colors from which to choose a color and also provides the ability to define a custom color.

Knowledge ExercisesKnowledge Exercises

 1. True or false:

 a) Radio buttons are commonly used to select one or more inputs from a set of valid inputs.

 b) Adding check boxes or radio buttons to a panel makes them easier to reposition.

 c) Combo boxes are used to make multiple selections from a set of valid inputs.

 d) Combo boxes or lists are used when the number of input choices is large.

 e) A scroll bar can be associated with a list to keep the size of the component small.

 f) A scroll bar cannot be associated with a combo box.

 g) Elements in a list are called items, elements in a combo box are called values.

 h) Multiple values can be selected from a list component at one time.

 i) Multiple items can be selected from a combo box at one time.

 j) The elements displayed in a list and or combo box are defined as an array of objects.

 k) GUI components can be made invisible.

 l) Combo boxes can be edited, allowing a user to type a choice into a text field.

 m) Lists can be edited, allowing a user to type a choice into a text field.

 n) Java supports drop-down but not pop-up menus.

 o) Hot keys or shortcut keys can be assigned using the setMnemonic method.

 p) Radio buttons and check boxes can be added to a menu.

592 ■ Programming Fundamentals Using Java

 2. Give examples of when you would use a group of check boxes and when you would use a group

of radio buttons.

 3. State when you would use a combo box and when you would use a list.

 4. Explain how:

 a) Radio buttons can be grouped together to make them mutually exclusive

 b) A border is added to a GUI component such as a JPanel

 c) A border’s color and style can be changed from its default color and style

 5. Compare and contrast the features of combo boxes and lists.

 6. Explain one difference in the way that scroll bars are added to combo boxes and lists.

 7. Discuss the differences between drop-down and pop-up menus.

 8. What are two advantages of including menus in your applications?

 9. What are mnemonics? Give an example of one.

 10. Briefly explain the function of a JFileChooser object.

 11. Briefly explain the function of a JColorChooser object.

 12. Place the letter A, B, or C next to each of the components given below to designate the interface

that defines the component’s event handler method. The designations are:

 A: ItemListener

 B: ListSelectionListener

 C: ActionListener

 a) Check box b) Radio button

 c) Combo box d) List

 e) Menu item

 13. Place the letter A, B, or C next to each of the components given below to designate the

component’s event handler method. The designations are:

 A: actionPerformed

 B: itemStateChanged

 C: valueChanged

 a) Check box b) Radio button

 c) Combo box d) List

 e) Menu item

 14. Give the method used to:

 a) Determine if a check box is selected

 b) Determine if a radio button is selected

 c) Get the item selected in a combo box

 d) Get the index of the item selected in a combo box

 e) Get the indices of the all the values selected in a list

 Chapter 12· Graphical User Interfaces: A Second Look ■ 593

 f) Get the first value selected in a list

 g) Get all the values selected in a list

 15. Give the class of each of the following components:

 a) Check box b) Radio button

 c) Combo box d) List

 e) Drop-down menu f) Pop-up menu

 g) Menu item h) Menu check box

 i) Menu radio button

 16. Give the name of the method used to:

 a) Add a component to a JPanel object b) Add a menu bar to a JFrame object

 c) Add a drop-down menu to a menu bar d) Associate a pop-up menu to a component

 e) Add a hot key to a menu item f) Add a check box to a menu

 g) Add a radio button to a menu h) Display a file-save dialog box

 i) Display a choose-color dialog box

Programming ExercisesProgramming Exercises

 1. Design, write, and test a GUI application for the Speedy Cable Service. Include a menu to offer

the user any combination of the following service options: basic, movie, sports, premium, and

learning. When a user clicks the calculate button, the monthly charge for all of the services

selected should be computed and output in a dialog box. (The costs are as follows: basic is $30,

movie is $15, sports is $20, premium is $30, and learning is $12). Customers can also select

high or regular definition for a fee of $10 or $5 respectively.

 2. Using a GUI design, write and test an application for a bank that offers the user the following

choices: make a deposit, make a withdrawal, and check the balance of an account from a drop

down menu. Dialog boxes should be used for user input and output.

 3. Colorful Sports Inc. just hired you to write a pop-up menu GUI application that their customers

will use to order winter clothing from a selection of three custom-colored items they sell:

shirts for $30, parkas for $150, and gloves for $15. The customer can select any or all of the

items and can specify the size (small, medium, large, or extra large) for each item selected.

Each item should have a hot key associated with it. When an item is selected, present the user

with a dialog box from which he or she can select the color of the item. Provide a Place Order

button that calculates and outputs the total cost to the GUI, including an 8% sales tax, the items

ordered, and a swatch of the color of each item to the GUI. Include a Reset button on the GUI

that clears the output and all of the selections that were made. Design the GUI.

 4. Write the code and test the application described in Exercise 3.

 5. Design a GUI for Sam’s Sub Shop to allow users to place orders for heroes or subs. The

selections should include (but are not limited to) the following items: the choice of bread (Italian,

wheat, rye), one or more fillings (ham, cheese, turkey, tuna, lettuce, tomato, mayonnaise, and

mustard), and one or more beverages (soda, water, and coffee). After the selections are made,

594 ■ Programming Fundamentals Using Java

allow the user to click a button and view his or her order in a dialog box. Provide a Reset button

that clears the output and all of the selections that were made.

 6. Write a program to implement the design for Sam’s Sub Shop in Exercise 5.

 7. Design a GUI for the Tanya’s Tour Trips travel agency that her customers can use to select

the year, month, and day of the trip, the number of people traveling (up to four people), and a

group of cities to be visited from a list of 30 cities. When the Book It button is clicked, the date

of travel (mm/dd/yy) is output to the GUI along with a scrollable list of the cities to be visited.

The GUI should also provide a Reset button that clears the output and all of the selections.

 8. Write a program to implement the design for Tanya’s Tour Trips in Exercise 7.

EnrichmentEnrichment

Investigate other GUI components, such as sliders, that are provided by the Java API.

■ ■ ■ ■ ■

In this chapter

In this chapter, we extend our knowledge of methods and classes by incorporating the feature

of generics into them. This will make the methods and classes we write more reusable and

less error prone. A generic method can be passed arguments of different types, and the types

of the data members of a generic class can be specified when an instance in the class is

created. These powerful features can be used to write classes called data structures that can

store, fetch, and process a set of any type of objects. Data structures such as lists, queues,

stacks, sets, and hash maps will be discussed.

A set of highly reusable generic methods, interfaces, and classes make up the Java Collection

Framework. The methods implement classic computer algorithms, and the classes implement com-

monly used techniques for efficiently processing large data sets. We will learn the functionality of

these methods and classes and how to incorporate them into the programs we write. In addition, we

will discuss two groupings of classes included in the framework and the advantages of the Map group-

ing that can be used to efficiently locate a particular object in a large data set by simply specifying a

key value that has been associated with the object.

After successfully completing this chapter, you should:

� Know how generic classes and methods extend reusability and reduce runtime errors

� Understand the difference between a value parameter list and a type parameter list

� Be able to write generic classes and methods and use generic interfaces

� Know how to invoke generic methods and how to declare instances of generic classes

� Understand and be able to write and use overloaded generic methods

13CHAPTERCHAPTER

13.1 Overview. .596

13.2 Generic Methods .596

13.3 Generic Classes . 611

13.4 The API Collections Framework. 621

13.5 Chapter Summary .637

GENERICS AND THE API GENERICS AND THE API

COLLECTION COLLECTION FRAMEWORKFRAMEWORK

596 ■ Programming Fundamentals Using Java

� Be able to use the methods in the Java Collection Framework in the programs you

write, including the methods defined in the Collections class

� Understand the generic interface hierarchy defined in the Java Collection framework

� Create applications that use the generic data structures classes implemented in the

framework

� Understand the differences between Lists, Sets, Queues and Priority Queues, and Maps

and their implementations in the framework

 13.1 13.1 OVERVIEW OVERVIEW

A feature of programming languages that extends the reusability of methods and classes is

called generics. It provides reusability by permitting the type of a method’s parameters and re-

turned value to be specified by the method’s invoker and by permitting the type of a class’s data

members to be specified when an instance of the class is created. Thus, the use of generics makes

it possible to write one sort method that can sort an array of any type of object passed to the method

and to write one class that can store, fetch, delete, and process a set of objects of any type. In addi-

tion, the use of generics can also move certain type-checking errors from runtime to compile time,

where they are easier to detect and eliminate.

Java supports generics and provides a syntax that can be used to implement methods and

classes in a generic way. Using this powerful feature of the language, we can pass any type of ar-

gument into a generic method’s parameter and specify the type of a generic class’s data members

and its methods’ parameters. In addition, the Java API provides generic implementations of many

of the classic algorithms used to efficiently process and store large data sets containing data of any

type. These generic implementations are known as collections, and they comprise the Java collec-

tions framework.

In the first part of this chapter, we will become familiar with Java’s implementation of gener-

ics, how to write generic methods and classes, and how to invoke generic methods and declare

instances of generic classes. This will facilitate our understanding of the second part of the chapter

in which we will become familiar with many of the methods, interfaces, and classes in Java’s Col-

lection Framework, all of which are implemented using generics.

 13.2 13.2 GENERIC METHODS GENERIC METHODS

When any method with a non-empty parameter list is invoked, values are passed into each

of its parameters. These values are usually different for each invocation of the method, and they

can be either primitive values or the address of an object (reference values). The parameter list,

enclosed in parentheses at the end of the method’s signature, can be thought of as a list of values

that will be passed to the method or a value parameter list. This list contains the name of each pa-

rameter and the type of the value that will be passed to it. When the value passed to the method is

a primitive value, the type is a primitive type. When the value passed to the method is a reference

value, the address of an object, the type is a class name.

 Chapter 13· Generics and the API Collect ion Framework ■ 597

Generic methods are passed values just like non-generic methods. What makes them different

from non-generic methods is that at least one of the parameters in their value parameter list can be

passed a reference to an instance of any class. A specific class name is not coded for this parameter.

Instead, a type placeholder is coded in the value parameter list as the parameter’s class name, and

the placeholder is included in a type parameter list section of the method’s signature.

 public static <T> void outputAnyObject(T theObject)

Type parameter lists are coded just to the left of the method’s returned type. They are a list

of the type placeholders used in the method’s parameter list, separated by commas, and the list is

enclosed in angle brackets. For example: <T> or <T1, T2>. Good coding style dictates that place-

holder names begin with a capital letter and be as brief as possible. All of the type placeholders

used in a method’s value parameter list must be included in the method’s type parameter list.

For example, the first signature shown below could be used for a generic method that outputs

an instance of any class, and the second signature could be used for a method that outputs two

instances of any class:

 public static <T> void outputAnyObject(T theObject)

 public static <T> void outputAnyTwoObjects(T object1, T object2)

The type placeholders that appear in a method’s signature can be used within the code body of the

method. Often, they are used to declare local reference variables within the methods that can refer-

ence instances of the class of the parameter of which they are a part.

The signatures of generic methods can also include non-generic types. For example, the fol-

lowing signature could be used for a generic method that outputs an instance of any class a given

number of times (i.e., nTimes):

 public static <T> void outputNTimes(T theObject, int nTimes)

The following signature could be used for a method that outputs two objects, possibly of two dif-

ferent classes, a given number of times:

 public static <T1, T2> void outputNTimes2(T1 obj1, T2 obj2, int nTimes)

NOTE
The primitive types (int, double, char, etc.) cannot be passed to generic param-

eter types.

Only object references can be passed to generic parameter types. To pass a primitive value to a

parameter whose type is a generic placeholder, it must be wrapped inside an instance of a primitive

wrapper class (e.g., Integer, Double, Char, etc.). As we will see, this can be performed by the

autoboxing feature of Java.

Generic Returned Types

In a non-void generic method, one of the type placeholders can be used to designate the re-

turned type. For example:

 public static <T1, T2> T2 output2Objects(T1 object1, T2 Object1)

598 ■ Programming Fundamentals Using Java

In this case, T2 is the returned type, and the method would have to return the address of an object

whose class is the same as the class of the second argument passed to it. To return an object that is

the same type as the first parameter, the returned type would be changed to T1. Generic methods

can return primitive values and non-generic reference variable types, just as non-generic methods

can, by coding their specific type as the method’s return type.

The application GenericParameters shown in Figure 13.1 contains a generic method out-

put2Objects (lines 18–24) that outputs two objects of any type sent to it and returns the object

passed to its second parameter. The method is invoked twice within the application. In the first

invocation of the method (line 12), the arguments are two primitive variables, amount and price,

declared on lines 5 and 6. Because primitives cannot be passed to generic parameters, these two

arguments are autoboxed, and then the address of the Integer and Double objects are passed to

the method’s parameters.

NOTE
Primitive arguments are autoboxed into wrapper objects before they are passed to

generic parameters.

Similar autoboxing is performed on the first argument of the second invocation (line 13),

which is a primitive char variable declared on line 7. The second argument in this invocation is

an instance of the class Student, shown in Figure 13.2, which is declared on line 8. Before the

application ends, lines 14 and 15 of Figure 13.1 output the generic method’s returned values. The

program’s output is shown in Figure 13.3.

The declarations on lines 5–7 of the application could have declared amount, price, and

initial to be three wrapper objects and initialized them using the wrapper classes’s constructors

as shown below. Although the coding of the invocation statements would not change, this would

eliminate the need for the autoboxing. The declarations on lines 5–7 are considered to be better

programming style.

 Integer amount = new Integer(45);

 Double price = new Double(567.89);

 Character initial = new Character('P");

The type parameter list in the signature of the generic method output2Objects (line 18) in-

cludes two generic placeholders: T1 and T2. These placeholders are used in the method’s param-

eter list as the types of the objects passed to it. The placeholder T2 is also used as the method’s

returned type because that is the generic type of the method’s second parameter that is returned

on line 23.

Lines 20 and 21 output the objects passed to the method to the system console using implicit

invocations of the toString method. During the first invocation of the generic method (line 12),

the toString methods of the Integer and Double classes are invoked because this invocation

passes these autoboxed types into the method’s type placeholders. Similarly, during the second

invocation of the method (line 13), the toString methods of the Character class and Student

class (lines 12–16 of Figure 13.2) are invoked. If the Student class did not contain a toString

method, the toString method inherited from the class object would have been invoked.

 Chapter 13· Generics and the API Collect ion Framework ■ 599

The object returned on line 12 of Figure 13.1 is an instance of the wrapper class Double. Its

assignment to the primitive double variable returnedPrice declared on line 9 is valid because

Java’s autounboxing feature unwraps the value stored inside the object before the assignment is made.

1 public class GenericParameters

2 {

3 public static void main(String[] args)

4 {

5 int amount = 45;

6 double price = 567.89;

7 char initial = 'P';

8 Student s1 = new Student(19, "Sam Jones");

9 double returnedPrice;

10 Student returnedStudent;

11

12 returnedPrice = output2Objects(amount, price);

13 returnedStudent = output2Objects(initial, s1);

14 System.out.println(returnedPrice);

15 System.out.println(returnedStudent);

16 }

17

18 public static <T1, T2> T2 output2Objects(T1 object1, T2 object2)

19 {

20 System.out.println(object1);

21 System.out.println(object2 + "\n");

22

23 return object2;

24 }

25 }

Figure 13.1

The application GenericParameters.

1 public class Student

2 {

3 int age;

4 String name;

5

6 public Student(int age, String name)

7 {

8 this.age = age;

9 this.name = name;

10 }

11

12 public String toString()

13 {

600 ■ Programming Fundamentals Using Java

14 String s;

15 return s = "age " + age + " name " + name;

16 }

17 }

Figure 13.2

The class Student.

45

567.89

P

age 19 name Sam Jones

567.89

age 19 name Sam Jones

Figure 13.3

The output produced by the application GenericParameters.

 13.2.113.2.1 Overloading Generic Methods Overloading Generic Methods

As discussed in Chapter 3, overloaded methods are a set of methods defined in a class that have

the same name and different parameter lists. When the translator encounters an invocation of an

overloaded method in a set of non-generic methods, it seeks a version of that method whose param-

eters match the invocation’s arguments. This version of the method is invoked when the program

executes the invocation statement. If a match cannot be found, a translation error is generated.

NOTE Generic methods can be included in a set of overloaded methods.

Generic methods can overload non-generic methods and other generic methods. When generic

methods are included in a set of overloaded methods, the translator seeks a version of the method

that best fits the argument list in the method invocation statement. To determine a best fit, the

translator follows a set of protocols. The protocols do not take into consideration the order in which

the overloaded methods are coded. If a best fit cannot be found that is consistent with the protocols,

a translation error is generated.

The methods shown in Figure 13.4 can be used to illustrate three of these best-fit protocols.

The figure contains four overloaded versions of the method IdentifyYourself, each of which

has two parameters. Version 1, shown at the top of the figure, is non-generic. The other three ver-

sions are generic. As we will discover, the best-fit protocols do not permit all four of these methods

to be included in a set of overloaded methods.

When the method IdentifyYourself is invoked and passed two integer primitive argu-

ments, Version1 could be executed because it has two integer parameters. The other three versions

of the method could also be executed because one argument (in the case of Version 2) or both of

 Chapter 13· Generics and the API Collect ion Framework ■ 601

the arguments (in the case of Versions 3a and 3b) could be autoboxed and the Integer wrapper

object(s) could then be passed to the methods’ parameters. The best-fit protocol in this case results

in Version 1’s execution because the types in its parameter list (int) are an exact match with the

two integer arguments passed to it.

When the method is invoked and the first argument passed to it is an object and the second is

an integer primitive value, Version 2 could be invoked. Version 3a could also be invoked because

the second argument could be autoboxed, and the resulting Integer wrapper object could then be

passed to the method’s second parameter. It turns out that Version 3b could also be invoked, even

though its parameter list implies that the two objects passed to it must be of the same type, T. The

best-fit protocol in this case results in Version 2’s execution because the type of its second param-

eter, int, is an exact match for the second argument passed to the method.

// Version 1

public static void IdentifyYourself(int a, int b)

{

 System.out.println("Version 1 was invoked");

}

// Version 2

public static <T> void IdentifyYourself (T a, int b)

{

 System.out.println("Version 2 was invoked");

}

// Version 3a

public static <T1, T2> void IdentifyYourself (T1 a, T2 b)

{

 System.out.println("Version 3a was invoked");

}

// Version 3b

public static <T> void IdentifyYourself (T a, T b)

{

 System.out.println("Version 3b was invoked");

}

Figure 13.4

A set of overloaded methods.

Best-fit protocols do not allow Versions 3a and 3b to be in the same class because both can

accept two object instances of the same type or different types. When coded in the same class, an

attempt to invoke IdentifyYourself and pass it two objects results in a translation error, indi-

cating that the invocation is ambiguous (could be serviced by either version of the method). The

coding of Version 3a is preferred over Version 3b.

The application GenericOverloading, shown in Figure 13.5, includes the first three over-

loaded versions of IdentifyYourself presented in Figure 13.4. The invocations of the method

602 ■ Programming Fundamentals Using Java

on lines 5–8 and the output produced by the program (Figure 13.6) demonstrate the translator’s

best-fit selection protocols. The coding order of the methods has been reversed to demonstrate that

the best-fit protocols do not consider the order in which the methods appear in the class.

In the interest of brevity, lines 6–8 pass the method nameless instances of the classes Integer

and Double, and the Student class (shown in Figure 13.2).

1 public class GenericOverloading

2 {

3 public static void main(String[] args)

4 {

5 IdentifyYourself(1, 2); //int, int: Version 1

6 IdentifyYourself(new Integer(10), 2); //object, int: Version 2

7 IdentifyYourself(2, new Double(20.3)); //int, object: Version 3a

8 IdentifyYourself(new Integer(10), new Student(19, "Evie")); //V3a

9 }

10

11 // Version 3a

12 public static <T1, T2> void IdentifyYourself(T1 a, T2 b)

13 {

14 System.out.println("Version 3a was invoked");

15 }

16

17 // Version 2

18 public static <T> void IdentifyYourself(T a, int b)

19 {

20 System.out.println("Version 2 was invoked");

21 }

22

23 // Version 1

24 public static void IdentifyYourself(int a, int b)

25 {

26 System.out.println("Version 1 was invoked");

27 }

28 }

Figure 13.5

The application GenericOverloading.

Version 1 was invoked

Version 2 was invoked

Version 3a was invoked

Version 3a was invoked

Figure 13.6

The output produced by the application GenericOverloading.

 Chapter 13· Generics and the API Collect ion Framework ■ 603

 13.2.2 13.2.2 Arrays as Generic Parameters and Returned Values Arrays as Generic Parameters and Returned Values

As is the case for non-generic methods, any parameter in a generic method’s parameter list

can be a reference to an array object. By specifying the parameter’s type to be one of the generic

placeholders included in the method’s type parameter list followed by an open and closed brace,

the address of any array of objects can be passed to the parameter. The following generic method

signature could be used for a method that outputs the contents of a non-primitive type array and

returns one of its elements.

 public static <T> T outputArray(T[] anArray)

The pair of brackets that follow the placeholder in the method’s signature indicate that the address

of an array will be passed to the method’s parameter.

The application GenericsArrayParameters, shown in Figure 13.7, contains a generic meth-

od named outputArray (lines 24–33) that outputs the contents of the array of objects passed to it

to the system console. The method also returns one element of the array whose index is specified

by the invoker. Any array to be output can be passed to the method’s first parameter, except for an

array of primitive values. (As previously mentioned, the Java autoboxing feature will not convert

an array of primitives passed to the method to an array of wrapper class objects.) The output pro-

duced by the program is shown in Figure 13.8.

The method’s signature (line 24) contains two parameters, anArray and elementReturned,

and includes one generic placeholder, T, in its type parameter list. This placeholder is used as the

type of the method’s first parameter. It is also used as the method’s generic returned type because

an element of the array will be returned by the method. The method’s for loop (lines 26–29) out-

puts all of the array elements using an implicit invocation of the toString method, and line 32

returns the array element whose index is passed to the method’s second parameter. The application

invokes the method three times, passing it a different array each time.

The first two invocations pass the method the array of wrapped integer values (line 15) and

an array of wrapped real numbers (line 16), declared and initialized on lines 5 and 6 respectively.

These arrays cannot be declared as arrays of primitive values because Java will not autobox an ar-

ray of primitive values before passing it to a generic array parameter. The values contained in the

returned Integer and Double objects are autounwrapped and assigned to the primitive variables

intReturned and doubleReturned.

An array of Student objects, whose class is defined in Figure 13.2, is passed to the method

on line 17. The address of the student object returned from this invocation is assigned to the refer-

ence variable studentReturned declared on line 10. Lines 19–21 produce the last three outputs,

which are the contents of the two returned wrapper objects and the returned Student object.

1 public class GenericsArrayParameters

2 {

3 public static void main(String[] args)

4 {

5 Integer[] intArray = {10, 20, 30, 40, 50};

604 ■ Programming Fundamentals Using Java

6 Double[] doubleArray = {11.1, 22.2, 33.3, 44.4};

7 Student[] studentArray = new Student[2];

8 int intReturned;

9 double doubleReturned;

10 Student studentReturned;

11

12 studentArray[0] = new Student(19, "Sam Jones");

13 studentArray[1] = new Student(20, "Nora King");

14

15 intReturned = outputArray(intArray, 3); //autounbox the returned

16 doubleReturned = outputArray(doubleArray, 2); //int and double

17 studentReturned = outputArray(studentArray, 1);

18

19 System.out.println(intReturned);

20 System.out.println(doubleReturned);

21 System.out.println(studentReturned);

22 }

23

24 public static <T> T outputArray(T[] anArray, int elementReturned)

25 {

26 for(int i = 0; i < anArray.length; i++)

27 {

28 System.out.println(anArray[i]);

29 }

30 System.out.println();

31

32 return anArray[elementReturned];

33 }

34 }

Figure 13.7

The application GenericArrayParameters.

10

20

30

40

50

11.1

22.2

33.3

44.4

 Chapter 13· Generics and the API Collect ion Framework ■ 605

age 19 name Sam Jones

age 20 name Nora King

40

33.3

age 20 name Nora King

Figure 13.8

The output produced by the application GenericArrayParameters.

Returning Generic Arrays

As discussed in Chapter 6, when a non-generic array is returned from a method the type of the

array followed by a set of brackets (e.g., Student[]) replaces the keyword void in the method’s

signature, and a return statement that includes the array’s name is coded in the method.

The same syntax is used to return a generic array from a generic method, except that the type

of the array is replaced with one of the generic placeholders used in the method’s signature. For

example, the following method signature could be used in a method that returns a generic array

whose type was the same as the first argument passed to the method:

public static <T1, T2> T1[] returnArray(T1[] anArray, T2 anObject)

The array returned would be the one whose name is included in a return statement executed within

the method.

The generic method shown in Figure 13.9 swaps the first two elements of the array passed to

it and returns the modified array to the invoker. As previously mentioned, the array passed to the

method cannot be an array of primitive values. Line 3 of the method creates a generic local vari-

able named temp whose type is the type placeholder used to specify the type of the array passed

to the method.

1 public static <T> T[] swap0and1(T[] anArray)

2 {

3 T temp;

4

5 temp = anArray[0];

6 anArray[0] = anArray[1];

7 anArray[1] = temp;

8

9 return anArray;

10 }

Figure 13.9

A generic method that returns an array.

606 ■ Programming Fundamentals Using Java

 13.2.3 13.2.3 Copying a Generic Array Copying a Generic Array

Although local generic variables can be declared inside a generic method, limits are imposed

on the creation of generic arrays inside a generic method. The syntax used to create a non-generic

array inside a method, which could be used to hold a copy of another non-generic array, cannot be

used to create a generic array. The following declaration produces a compile time generic array

creation error if T is a generic placeholder:

 T[] copy = new T[100]; //not allowed

The good news is that a copy of a generic array can be created within a generic method us-

ing the Arrays class’s copyOf method that was discussed in Chapter 6, and the copy can then

be modified and returned from the method. Another alternative is that an array-like instance of

the class ArrayList can be created, modified, and returned from a generic method. The Array-

sList class will be discussed later in this chapter (Section 13.3.1), as will the correct syntax for

creating a generic array that is not a copy of another generic array.

Lines 29–39 of the application ReturningGenericArrays, shown in Figure 13.10, is a ge-

neric method named invertArray that copies any type of array passed to it and then returns a

modified version of the array to the method’s invoker. The returned array contains the elements

of the array passed to the method with their order reversed (first to last becomes last to first). The

output produced by the program is shown in Figure 13.11.

Line 31 of the method declares a generic array reference variable named copy using the place-

holder T that appears in the method’s signature (line 29). The Arrays class’s copyOf method is

used on line 33 to create a duplicate of the array passed to the method and assign its address to the

variable copy. The code of the for loop that begins on line 34 then copies the object references

from the original array (anArray) into the newly created array (copy) in reverse order. Line 38

returns the array created inside the method to the invoker.

The first time the method is invoked (line 14), it is passed the Integer wrapper array declared

on line 7. The second invocation (line 15) passes the method the array of objects declared on lines

9–12. This array is created by initializing it to three nameless Student objects whose class is

shown in Figure 13.2.

The arrays returned from the method invocations are output inside the two for loops that

begin on lines 17 and 23. The first of these loops outputs the contents of the original and reverse

order Integer arrays, iArray and iArrayReturned, side by side (top part of Figure 13.11). The

second loop repeats this process for the Student arrays sArray and sArrayReturned (bottom

part of Figure 13.11).

1 import java.util.Arrays;

2

3 public class ReturningGenericArrays

4 {

5 public static void main(String[] args)

6 {

7 Integer[] iArray= {1,2,3,4};

 Chapter 13· Generics and the API Collect ion Framework ■ 607

8 Integer[] iArrayReturned;

9 Student[] sArray = {new Student(17, "Robert"),

10 new Student(20, "Carol"),

11 new Student(16, "Maggie")};

12 Student[] sArrayReturned;

13

14 iArrayReturned = invertArray(iArray);

15 sArrayReturned = invertArray(sArray);

16

17 for(int i = 0; i < iArray.length; i++) //all the Integer Objects

18 {

19 System.out.println(iArray[i] + "\t" + iArrayReturned[i]);

20 }

21 System.out.println();

22

23 for(int i = 0; i < sArray.length; i++) //all the Student Objects

24 {

25 System.out.println(sArray[i] + "\t" + sArrayReturned[i]);

26 }

27 }

28

29 public static <T1> T1[] invertArray(T1[] anArray)

30 {

31 T1[] copy;

32

33 copy = Arrays.copyOf(anArray, anArray.length);

34 for(int i = 0; i < copy.length; i++)

35 {

36 copy[i] = anArray[copy.length - 1 - i];

37 }

38 return copy;

39 }

40 }

Figure 13.10

The application ReturningGenericArray.

1 4

2 3

3 2

4 1

age 17 name Robert age 16 name Maggie

age 20 name Carol age 20 name Carol

age 16 name Maggie age 17 name Robert

Figure 13.11

The output produced by the application ReturningGenericArrays.

608 ■ Programming Fundamentals Using Java

 13.2.4 13.2.4 Operating on Generic Objects Operating on Generic Objects

As we have already seen, one way to perform processing on an object is to invoke a worker

method. For example, to fetch the private integer data member named x of an instance of a Snow-

man object named s1, we could invoke the class’s getX method on the object to perform the work

of fetching the variable’s contents:

 Snowman s1 = new Snowman();

 int x = s1.getX();

When the translator processes this invocation, it searches the object’s class and its inheritance

chain for a method named getX that has an empty parameter list and returns an integer. If it finds

a method with this signature, the translation continues. Otherwise, the translation ends in a cannot

find symbol method getX() error.

Now consider the case when the s1 is a generic parameter in the signature of a generic method,

and the invocation of the getX method is issued from within the generic method, as shown in this

code fragment:

 public static <T> boolean collision(T s1, T s2)

 {

 int x1 = s1.getX()

 :

 }

In this case, the translation of the method will end in a cannot find symbol method getX() transla-

tion error, even if the class of the argument passed to s1 contains a getX method. The object s1’s

class is specified to be the generic type placeholder T in the method’s parameter list, so now there is

no relationship between the parameter s1 and the Snowman class, or any other class. The translator

cannot look into T to locate the method getX; it is simply a generic placeholder.

To remedy this problem, the author of the generic method collision would include an ex-

tends clause inside the type parameter list of the generic method’s signature that included the

name of an interface that defines the getX method’s signature. Assuming the name of the interface

is Detectable, the modified signature of the generic method would be:

public static < T extends Detectable <T> > boolean collision(T s1, T s1)

The extends clause added to the method’s signature directs the translator to look into the inter-

face Detectable to verify the getX method’s signature, and only objects whose classes imple-

ment this interface can be passed to this method.

NOTE
The keyword extends is always used in a type parameter list to identify an inter-

face. The keyword implements is not used.

The class of any object passed to the method would have to implement the interface Detect-

able(i.e., include an implements clause in its heading, and an implementation of a getX method

whose signature is defined in that interface). If it did not implement the interface, the translator

would issue the error message. In the case when two Snowman objects were passed to the method,

the error message would indicate that the method could not be applied to (Snowman, Snowman).

 Chapter 13· Generics and the API Collect ion Framework ■ 609

The application OperatingOnGenericObjects shown in Figure 13.12 contains a generic

method named min (lines 15–26) that returns the address of the smallest object in an array of

objects passed to it. The work of comparing two elements of the array is performed by a worker

method named compareTo, which is invoked on an element of the generic array (line 20) and

passed a reference (defined on line 17) to an element of the array. An extends clause involving

the array’s generic placeholder T has been added to the method’s signature (line 15) to permit the

translator to look into an interface named Comparable to verify the signature of the compareTo

method invoked on line 20. The syntax <T> that follows the name of the interface specifies that an

object in the class T will be passed to the compareTo method. The result is that only objects whose

classes implement this interface can be passed to the method min, and the object passed to the

compareTo method on line 12 must be a reference to the type of object passed to the method min.

Several API classes including the String class and the primitive wrapper classes, which in-

clude the Integer class, implement the interface Comparable. It is left up to the implementer of

the interface to decide what it means for an object in the implementing class to be equal to, greater

than, or less than another instance of the class. As would be expected, the Integer class compares

two Integer objects numerically.

The class StudentV2 (shown in Figure 13.13) also implements the interface Comparable.

The inclusion of <StudentV2> at the end of the implements clause in the class’s heading desig-

nates that its version of the compareTo method must be passed a StudentV2 instance. Line 20

effectively compares the ages of two instances of the class numerically.

The method min, invoked on line 11 of Figure 13.12, is passed the array of Integer objects

declared on line 5, and the returned minimum object is then output to the system console (Figure

13.14). During this invocation of the method, the Integer class’s implementation of compareTo

is invoked on line 20 because the type of anArray is Integer. In the second invocation of the

method min (line 12), the method is passed the StudentV2 array, defined on lines 6–9 of Figure

13.12, which causes line 20 to invoke the compareTo method on lines 18–21 of Figure 13.13. The

returned minimum StudentV2 object returned from min is then output to the system console

(Figure 13.14).

1 public class OperatingOnGenericObjects

2 {

3 public static void main(String[] args)

4 {

5 Integer[] iArray= {110, 36, 78, 43, 23, 83, 34, 24};

6 StudentV2[] sArray = {new StudentV2(18, "Sam"),

7 new StudentV2(32, "Carol"),

8 new StudentV2(16, "Maggie"),

9 new StudentV2(25, "James")};

10

11 System.out.println("iArray minimum is: " + min(iArray));

12 System.out.println("sArray minimum is: " + min(sArray));

13 }

14

610 ■ Programming Fundamentals Using Java

15 public static <T extends Comparable<T>> T min(T[] anArray)

16 {

17 T minimum = anArray[0];

18 for(int i = 1; i < anArray.length; i++)

19 {

20 if(anArray[i].compareTo(minimum) < 0)

21 {

22 minimum = anArray[i];

23 }

24 }

25 return minimum;

26 }

27 }

Figure 13.12

The application OperatingOnGenericObjects.

1 public class StudentV2 implements Comparable<StudentV2>

2 {

3 private int age;

4 private String name;

5

6 public StudentV2(int age, String name)

7 {

8 this.age = age;

9 this.name = name;

10 }

11

12 public String toString()

13 {

14 String s;

15 return s = "age " + age + " name " + name;

16 }

17

18 public int compareTo(StudentV2 s1)

19 {

20 return age - s1.age;

21 }

22 }

Figure 13.13

The class StudentV2.

iArray minimum is: 23

sArray minimum is: age 16 name Maggie

Figure 13.14

The output from the application OperatingOnGenericObjects.

 Chapter 13· Generics and the API Collect ion Framework ■ 611

 13.3 13.3 GENERIC CLASSES GENERIC CLASSES

A generic class is a class whose heading contains a type parameter list, which is used to specify

the type of one or more of its data members. They are widely used in the implementation of data

structures. The class can contain both non-generic and generic methods that use the type place-

holders included in the class’s type parameter list. The type parameter list is coded immediately

after the class’s name. For example:

 public class AGenericClass <T1, T2, T3>

If a generic class extends another class and/or implements an interface, the extends and

implements clauses are added to the method’s heading after its type parameter list. For example,

the heading of a generic class named Employee that was a subclass of Person could be:

 public class Employee <T> extends Person implements Comparable<Employee>

The following statement declares an instance of this class using its two parameter constructor:

 Employee s1 = new Employee <Integer> (45323, "Ryan");

The <Integer> included in the declaration is called a type argument list. A type argument list is

enclosed in angle brackets and consists of a list of one or more class names separated by commas

(e.g., <Integer, String, Integer>). It is coded immediately before the arguments passed to the

class’s constructor. The type argument list must include one class name for each type parameter

included in the class’s heading.

When an instance of a generic class is declared, the class names in the type argument list of

the declaration are matched with the type parameters in the class’s heading, one for one in the or-

der in which they appear. These class names are effectively substituted for the type placeholders

wherever they are used in the class’s code. For example, when the object s1 is declared on line 3

of the main method shown at the top of Figure 13.15, the class String is effectively substituted

for the placeholder T on lines 3 and 6 of the class AStudentV3 shown in the bottom portion of the

figure. As a result, s1’s data member id is a reference to a String object, and the first parameter

passed to the class’s constructor on line 3 of the main method must be a String (CS103 on line 3

of main).

Similar substitutions are made when the object s2 is declared on line 4 of the main method.

Because the type argument list on that line contains the class Integer, s2’s data member age will

be a reference to an Integer object, and the first argument passed to the class’s constructor on line

4 of the main method must be an instance of an Integer. In this case, it is the nameless Integer

wrapper containing a 10. The integer literal 10 could be substituted for the nameless object passed

to the constructor on line 4, because it would be autoboxed before it was passed to the constructor’s

first parameter.

612 ■ Programming Fundamentals Using Java

1 public static void main(String[] args)

2 {

3 AStudentV3 s1 = new AStudentV3 <String>("CS103", "Tom");

4 AStudentV3 s2 = new AStudentV3 <Integer>(new Integer(10), "Ryan");

5 }

1 public class AStudentV3 <T>

2 {

3 private T id;

4 private String name;

5

6 public StudentV3(T id, String name)

7 {

8 this.id = id;

9 this.name = name;

10 }

11 }

Figure 13.15

A generic class and a main method that declares two instances of the class.

When an instance of a generic class is declared, a type argument list should always be included

in the declaration immediately before the arguments passed to the class’s constructor, as shown on

lines 3 and 4 of the main method in Figure 13.15. Its inclusion provides Java type checking and is

considered good programming practice.

The type argument list can also be included between the class name and the variable name on

the left side of an object declaration statement. When used, this list must match the argument list

that appears on the right side of the declaration. For example, lines 3 and 4 of the main method

shown in Figure 13.15 would become:

AStudentV3 <String> s1 = new AStudentV3 <String>("CS103", "Tom");

AStudentV3 <Integer> s2 = new AStudentV3 <Integer>(new Integer(10),"Ryan");

The inclusion of the argument list in front of the variable names effectively extends the type

checking Java performs. A subsequent attempt to assign the reference variable s1, whose id data

member was specified to be a string, to s2, whose id data member is an instance of an Integer

(e.g., s2 = s1), results in an incompatible types translation error. This level of translation-time

type checking is usually desirable. Although the following two declarations are also syntactically

correct, they are considered unsafe from a type-checking viewpoint.

 //******** Unsafe generic object declarations *********//

 AStudentV3 <String> s1 = new AStudentV3("CS103", "Tom");

 AStudentV3 s1 = new AStudentV3("CS103", "Tom");

The application GenericClasses, shown in Figure 13.16, declares four type-safe instances of

the generic class StudentV3 shown in Figure 13.17. The output produced by the program is shown

in Figure 13.18. Each StudentV3 object has an identification (ID) number and a name. The type

of the ID is declared to be generic on line 3 of Figure 13.17 by coding the placeholder T, included

 Chapter 13· Generics and the API Collect ion Framework ■ 613

in the class’s heading, as the type of the data member id. The class’s constructor also uses the type

parameter T as the type placeholder for its first parameter.

The three object declarations on lines 6–8 of Figure 13.16 use the preferred type-safe two-

argument list syntax to declare one object with a String type ID (line 6), and two Integer type

ID objects (lines 7 and 8). A fourth object is declared on line 9 using the type-safe one-argument

list syntax. The types of the first argument passed to the constructors invoked on lines 6–9 are

consistent with the class names these lines pass to the StudentV3 class’s type parameter list (when

autoboxing is considered). The four objects are output on lines 13–16 using an implicit invocation

of the generic class’s toString method (lines 11–15 of Figure 13.17). When lines 14–16 of Figure

13.16 execute, the Integer class’s toString method is invoked implicitly on line 14 of Figure

13.17 to add the IDs of objects s2, s3, and s4 to the string s.

The reference variable s5 declared in line 10 of Figure 13.16 can only reference a StudentV3

object whose id data member is a string because its declaration includes a String type parameter.

The reference variable s5 declared on line 11 can reference any StudentV3 object because it does

not include a type parameter list. Type-safe assignments are performed on these variables on lines

18 and 19, and then the objects they reference are output on lines 20 and 21.

Line 23 of Figure 3.16 invokes the StudentV3 class’s compareTo method to compare the ob-

ject s5 references to the object s6 references. This method (lines 16–19 of Figure 13.16) compares

the name data members of two StudentV3 instances: the object that invoked it and the object

passed to its parameter. To make the comparison, the method invokes a compareTo method on

line 18. Because the name data members used in the invocation are strings, the String class’s

compareTo method is invoked. The returned value is seven because the first letter in s5’s name

(the T in Tom) is seven characters beyond the first letter of s6’s name (the M in Maggie). This re-

tuned value is the last output shown in Figure 13.17.

1 public class GenericClasses

2 {

3 public static void main(String[] args)

4 {

5 Integer id = new Integer(1672);

6 StudentV3 <String> s1 = new StudentV3 <String>("Sci103", "Tom");

7 StudentV3 <Integer> s2 = new StudentV3 <Integer>(1672,"Maggie");

8 StudentV3 <Integer> s3 = new StudentV3 <Integer>(45323, "Ryan");

9 StudentV3 s4 = new StudentV3 <Integer>(53812, "Logan");

10 StudentV3 <String> s5 = null;

11 StudentV3 s6 = null;

12

13 System.out.println(s1);

14 System.out.println(s2);

15 System.out.println(s3);

16 System.out.println(s4 + "\n");

17

18 s5 = s1; //Safe

614 ■ Programming Fundamentals Using Java

1 public class StudentV3 <T> implements Comparable<StudentV3>

2 {

3 private T id;

4 private String name;

5

6 public StudentV3(T id, String name)

7 {

8 this.id = id;

9 this.name = name;

10 }

11 public String toString()

12 {

13 String s;

14 return s = "ID: " + id + "; Name: " + name;

15 }

16 public int compareTo(StudentV3 s)

17 {

18 return name.compareTo(s.name);

19 }

20 }

Figure 13.17

The class StudentV3.

ID: Sci103; Name: Tom

ID: 1672; Name: Maggie

ID: 45323; Name: Ryan

ID: 53812; Name: Logan

ID: Sci103; Name: Tom

ID: 1672; Name: Maggie

7

Figure 13.18

The output produced by the application GenericClasses.

19 s6 = s2; //Safe

20 System.out.println(s5);

21 System.out.println(s6);

22

23 System.out.println(s5.compareTo(s6));

24 }

25 }

Figure 13.16

The application GenericClasses.

 Chapter 13· Generics and the API Collect ion Framework ■ 615

 13.3.1 13.3.1 Generic Data Structure Classes Generic Data Structure Classes

A data structure is an object that can store a larger set of objects, such as 10,000 Student ob-

jects, in a way that facilitates the operations that will be performed on them. Common operations

are fetching and updating an object. An array is a data structure that is part of every programming

language, and we have used this data structure to store objects such as Snowmen and strings. Other

common data structures are stacks, queues, linked lists, trees, and hashed structures. These data

structures are usually implemented as generic classes so that, like an array, they can be used to

store a set of any type of object. In this section, we use the data structure queue to illustrate the

nuances of implementing a generic data structure class.

A queue can be thought of as a fair waiting line that has a front or head and rear or tail end.

When an object is added to a queue, it is added at the end, or rear, of the queue. When an object is

fetched from the queue, the object at the front of the queue is fetched and deleted from the queue.

This process of adding and fetching objects is referred to as a First In First Out (FIFO) process:

the first object added to the data structure is the first object fetched (and deleted) from the data

structure. The add operation is called enqueue (enter the queue), and the fetch/delete operation is

called dequeue (depart from the queue).

Queues are used by applications that process objects, once and only once, in the order they are

received. Print requests to a shared printer are stored in a queue, as is information about airplane

objects waiting for their turn to land on a busy runway, as are processes waiting to be run by an

operating system.

A Non-generic Queue

The class Queue shown in Figure 13.19 is a non-generic array-based implementation of a queue

that can only store StudentV4 objects whose class is shown in Figure 13.20. The class Queue con-

tains a constructor (lines 11–15), an enQueue method (lines 17–30), and a deQueue method (lines

32–46). The implementation of these methods make the class a circular queue because lines 27

and 42 reposition the front and rear of the queue back to zero to prevent them from exceeding the

bounds of the array. The application NonGenericQueueApp, shown in Figure 13.21, declares a

Queue object (line 5) and then adds (enqueue), fetches/deletes (dequeue), and outputs several Stu-

dentV4 objects. The output produced by the program is shown in Figure 13.22.

The queue implementation shown in Figure 13.19 is array based. It stores the object passed to

the enqueue method on line 17 in an array of StudentV4 objects named data, declared on lines

9 and 14. The dequeue method returns an element of this array on line 44.

The size of the array is passed to the class’s constructor (line 11) and stored in the data member

size (line 13). The enqueue method returns false (line 21) when the queue is full, as deter-

mined by line 19, and the dequeue method returns null (line 37) when the queue is empty, as

determined by line 35. The remaining implementation details are not relevant to our discussion and

are typically discussed in a data structures textbook.

The application shown in Figure 13.21 creates an instance of a Queue on line 5 that can store

a maximum of four StudentV4 objects. Then it creates four objects and invokes the enqueue

616 ■ Programming Fundamentals Using Java

method to store them in the queue (lines 8–15). An attempt to store a fifth object in the queue (lines

16–18) returns false (the first output shown in Figure 13.22, produced by lines 17–18). The other

five outputs shown in Figure 13.22 are produced by the five invocations of the dequeue method

inside the for loop that begins on line 20 of Figure 13.21. The fifth invocation returns null be-

cause the queue is empty.

1 // A Non-Generic Queue. It can only queue StudentV4 Objects

2

3 public class Queue

4 {

5 private int size;

6 private int numOfNodes = 0;

7 private int front = 0;

8 private int rear = 0;

9 private StudentV4[] data;

10

11 public Queue(int n)

12 {

13 size = n;

14 data = new StudentV4[n];

15 }

16

17 public boolean enQueue(StudentV4 newItem) //add a StudentV4 object

18 {

19 if(numOfNodes == size) //the queue is full

20 {

21 return false;

22 }

23 else //add the object to the structure

24 {

25 numOfNodes = numOfNodes + 1;

26 data[rear] = newItem;

27 rear = (rear + 1) % size;

28 return true;

29 }

30 }

31

32 public StudentV4 deQueue() //fetch and delete a StudentV4 object

33 {

34 int frontLocation;

35 if(numOfNodes == 0) //the queue is empty

36 {

37 return null;

38 }

39 else //return an object from the structure

40 {

41 frontLocation = front;

42 front = (front + 1) % size;

 Chapter 13· Generics and the API Collect ion Framework ■ 617

43 numOfNodes = numOfNodes - 1;

44 return data[frontLocation];

45 }

46 }

47 }

Figure 13.19

The class Queue.

1 public class StudentV4 implements Comparable <StudentV4>

2 {

3 private int id;

4 private String name;

5

6 public StudentV4(int id, String name)

7 {

8 this.id = id;

9 this.name = name;

10 }

11

12 public String toString()

13 {

14 String s;

15 return s = "ID: " + id + "; Name: " + name;

16 }

17

18 public int compareTo(StudentV4 s)

19 {

20 return name.compareTo(s.name);

21 }

22 }

Figure 13.20

The class StudentV4.

1 public class NonGenericQueueApp

2 {

3 public static void main(String[] args)

4 {

5 Queue aQueue = new Queue(4);

6 StudentV4 aStudent;

7

8 aStudent = new StudentV4(1, "Nora");

9 aQueue.enQueue(aStudent);

10 aStudent = new StudentV4(2, "Logan");

11 aQueue.enQueue(aStudent);

12 aStudent = new StudentV4(3, "Evie");

13 aQueue.enQueue(aStudent);

14 aStudent = new StudentV4(4, "Ryan");

618 ■ Programming Fundamentals Using Java

15 aQueue.enQueue(aStudent);

16 aStudent = new StudentV4(5, "Skyler"); //queue already full

17 System.out.println("Fifth enqueue successful? " +

18 aQueue.enQueue(aStudent));

19

20 for(int i=1; i <= 5; i++) //one more than the queue’s capacity

21 {

22 System.out.println(aQueue.deQueue());

23 }

24 }

25 }

Figure 13.21

The application NonGenericQueueApp.

Fifth enqueue successful? false

ID: 1; Name: Nora

ID: 2; Name: Logan

ID: 3; Name: Evie

ID: 4; Name: Ryan

null

Figure 13.22

The output produced by the application NonGenericQueueApp.

A Generic Queue Implementation

When implementing a generic data structure, one that can store objects of any class, it’s a good

idea to implement it as a non-generic version of the structure, such as the implementation shown

in Figure 13.19, then, after it is tested and verified, convert it to a generic implementation. This

approach is consistent with the concept of divide and conquer.

The class GenericQueue, shown in Figure 13.23, is the generic version of the class Queue

shown in Figure 13.19. The code in the two figures can be compared line by line to find the changes

made to produce the generic version, indicated by the yellow highlights in Figure 13.23. The first

step in this conversion process is to add a generic parameter list <T> to the generic version’s head-

ing (line 3 of Figure 13.19) and then use this as a placeholder to eliminate the occurrences of the

class name StudentV4 from the class. This class name appears on lines 9, 14, 17, and 32 of the non-

generic version. The new versions of lines 17 and 32 in Figure 13.23 simply substitute the generic

placeholder T for the class name.

Lines 9 and 14 allocate the array data in the non-generic version. There are two options here,

neither of which is as obvious as the changes made on to lines 17 and 32. The complication stems

from the fact that Java does not permit the declaration of a generic array.

The most obvious change to the two lines, which is shown below, is not valid because Java does

not support the use of a generic placeholder in the creation of an array. The new version of line 14

produces a generic array creation translation error.

 Chapter 13· Generics and the API Collect ion Framework ■ 619

9 private T[] data;

14 data = new T[n] //generic array creation is not allowed

Because all Java classes inherit from the class Object and since polymorphism allows parents

to point to children, the following innovative change to line 14 eliminates the generic array cre-

ation translation error:

9 private T[] data;

14 data = (T[]) new Object[n] //object can point to any class instance

The coercion on line 14 is necessary because line 9 declares data as a reference to an array of type

T. We could proceed in this way and complete the conversion with the following change to line 26,

but the changes made to line 14 are considered type-unsafe:

 26 data[rear] = (T) newItem;

The better type-safe approach is to substitute an instance in the API generic class ArrayList

for the array declared on lines 9 and 14. Taking this approach, the new versions of these lines are

shown on lines 9 and 14 of Figure 13.23. Because the variable data now references an ArrayL-

ist object, the invocations of this class’s add and get methods replace the array element accesses

on lines 26 and 44 of the non-generic version of the queue in the type-safe conversion of the class

shown in Figure 13.23. These two changes complete the generic conversion of the class Queue.

1 import java.util.ArrayList;

2

3 public class GenericQueue <T>

4 {

5 private int size;

6 private int numOfNodes = 0;

7 private int front = 0;

8 private int rear = 0;

9 private ArrayList <T> data;

10

11 public GenericQueue(int n)

12 {

13 size = n;

14 data = new ArrayList <T> (size);

15 }

16

17 public boolean enQueue(T newItem)

18 {

19 if(numOfNodes == size) //the queue is full

20 {

21 return false;

22 }

23 else //add the object to the structure

24 {

25 numOfNodes = numOfNodes + 1;

620 ■ Programming Fundamentals Using Java

26 data.add(rear, newItem);

27 rear = (rear + 1) % size;

28 return true;

29 }

30 }

31

32 public T deQueue() //fetch and delete an object

33 {

34 int frontLocation;

35 if(numOfNodes == 0) //the queue is empty

36 {

37 return null;

38 }

39 else

40 {

41 frontLocation = front;

42 front = (front + 1) % size;

43 numOfNodes = numOfNodes - 1;

44 return data.get(frontLocation);

45 }

46 }

47 }

Figure 13.23

The class GenericQueue.

The application GenericQueueApp shown in Figure 13.24 is the same application presented

in Figure 13.21, except that it declares a generic queue object on line 5. Both of these applications

produce the same output, which is shown in Figure 13.22. The use of the type argument list at the

end of the declaration on line 5 of Figure 13.23 ensures that only StudentV4 instances will be

stored in the queue. An attempt to enqueue another type object into the queue, aQueue, declared

on that line, will result in a cannot find symbol method enqueue translation error.

Because the class GenericQueue is generic, the application could have declared a second

instance of this class to queue 100 Snowman objects using the following declaration:

GenericQueue <Snowman> snowmanQueue = new GenericQueue <Snowman> (100);

1 public class GenericQueueApp

2 {

3 public static void main(String[] args)

4 {

5 GenericQueue <StudentV4> aQueue = new GenericQueue <StudentV4> (4);

6 StudentV4 aStudent;

7

8 aStudent = new StudentV4(1, "Nora");

9 aQueue.enQueue(aStudent);

10 aStudent = new StudentV4(2, "Logan");

 Chapter 13· Generics and the API Collect ion Framework ■ 621

11 aQueue.enQueue(aStudent);

12 aStudent = new StudentV4(3, "Evie");

13 aQueue.enQueue(aStudent);

14 aStudent = new StudentV4(4, "Ryan");

15 aQueue.enQueue(aStudent);

16 aStudent = new StudentV4(5, "Skyler"); //queue already full

17 System.out.println("Fifth enqueue successful? " +

18 aQueue.enQueue(aStudent));

19

20 for(int i=1; i <= 5; i++) //one more that the queue’s capacity

21 {

22 System.out.println(aQueue.deQueue());

23 }

24 }

25 }

Figure 13.24

The application GenericQueueApp.

 13.4 13.4 THE API COLLECTIONS FRAMEWORK THE API COLLECTIONS FRAMEWORK

Programs often process information that is comprised of a collection of instances of one class.

For example, a process that stores the maintenance work orders for an apartment complex, stores

transcripts of all of the students at a college, or searches employee personnel records for a particular

employee’s phone number. To facilitate the storage and processing of information groups such as

these (i.e., work orders, transcripts, and personnel records), the Java API provides collection classes.

A single instance of one of these classes, a collection object, can store an entire information group.

The class GenericQueue, shown in Figure 13.23, is an example of a generic collection class.

One instance of this class could store all of the maintenance work orders for an apartment complex,

a second instance could store the transcripts of all of the students at a college, and a third instance

could be used to store a company’s employee records. Like our GenericQueue class, the API col-

lection classes are generic, and they are therefore highly reusable.

While a queue collection object would be a perfect choice for storing work requests because of

its first-in-first-out characteristic, this same characteristic (especially the deletion associated with

first-out) makes a queue instance a poor choice for a transcript collection or an employee record

collection. In recognition of the fact that any one collection class is not ideally suited for all applica-

tions, the Java API implements a variety of the most useful types of collection classes. This variety

includes a set, priority queue, linked list, hash map, and several other collection-class implemen-

tations. These classes are part of the API Collections Framework. The framework also includes:

� A set of interfaces that define the generic signatures of methods common to groups of

collection classes, such as the methods add and remove that add an item to and delete

an item from a collection

� A set of static generic methods contained in the class Collections that implement

algorithms that efficiently perform common operations on collections such as sort,

binarySearch, min, and max whose names imply their functionality

622 ■ Programming Fundamentals Using Java

 13.4.1 13.4.1 Framework Interfaces Framework Interfaces

There are eight core collection interfaces, shown in blue in Figure 13.25, that are divided into

two groups: those that extend the interface Map and those that extend the interface Collection.

The core interface Map is not a sub-interface; it does not extend another interface. The other seven

core interfaces are sub-interfaces; they directly extend an interface.

The significance of the inheritance chains shown in the figure is that a class that implements

one of the core interfaces must implement all of the methods whose signatures are contained in it

and in its parent interfaces. In addition, any method that can operate on an instance of a class that

implements a parent interface can also operate on an instance of a class that implements one of the

parent’s child interfaces.

All of the core interfaces are generic. As shown next to their names in Figure 13.25, they

include one or two type parameters in their type parameter lists to represent the type of the infor-

mation stored in the collection. The type parameter list of the interface Collection, and all of

its sub-interfaces, contains one type parameter. An object stored in the API collection classes that

implement these interfaces is called an element. The type parameter lists of the interfaces Map and

SortedMap include two parameter types. The object pairs stored in a collection class that imple-

ments Map or SortedMap are called a key and a value.

List<E> Queue<E> Set<E>

Iterable

Collection<E> Map<K, V>

SortedMap<K, V>

Deque<E> SortedSet<E>

Figure 13.25

The core interfaces of the Java collections framework (shown in blue).

NOTE Classes that implement the core framework interfaces are called collection classes

13.4.213.4.2 Framework Algorithms: The Framework Algorithms: The CollectionsCollections Class Class

The Collections class implements algorithms that efficiently perform common operations

on the objects contained in a collection. The class contains 52 static methods, most of which are

passed an instance of a class that implements a specific framework core interface or an extension of

one of these interfaces. Some of the frequently used methods are shown in Table 13.1. The methods

in the top portion of the table can only be invoked on objects whose class implements the inter-

face List. The methods in the bottom portion of the table can be invoked on objects whose class

implements the interface Collection. The use of these methods will be demonstrated within the

applications and classes presented in the remainder of this chapter.

 Chapter 13· Generics and the API Collect ion Framework ■ 623

Table 13.1

Collections Class Methods

Method Description

Operate on collection objects whose class implements List

binarySearch Returns the index of a specified element

copy Copies one list’s elements into another

indexOfSubList Returns the index of the first occurrence of a specified sublist of elements

replaceAll Replaces all occurrences of a specified element with a specified element

sort Sorts the list’s elements using their overridden compareTo method

swap Swaps the position of two elements whose indices are specified

Operate on a collection object whose class implements Collection

addAll Adds all specified elements, or all elements of an array, to a collection

disjoint Determines if two collections contain at least one element in common

frequency Determines the number of occurrences of a specified element

max Returns the smallest of the elements using their overridden compareTo method

min Returns the largest of the elements using their overridden compareTo method

 13.4.3 13.4.3 The The LinkedListLinkedList and and ArrayListArrayList Classes Classes

The API Framework classes LinkedList and ArrayList implement the List interface. An

instance of a class that implements this interface can contain duplicate objects in its collection. In

addition, the objects in the collection have a sequential ordering imposed upon them from zero

to one less than the number of elements in the collection. As a result, objects stored in a class that

implements the interface List can easily be processed sequentially based on their location in the

list. The ArrayList and LinkedList classes implement many of the same interfaces, so they

share many of the same methods, including the ability to be operated upon by the methods in the

Collections class.

Objects are added to a collection class that implements the interface List by passing them to

the add method defined in the interface. The one-parameter version of the method appends the

object to the collection. The two-parameter version of the method is passed an object and an integer

(index), which becomes the new element’s location in the collection. The location of the element

previously at that position, and the locations of all of the elements beyond it, are increased by one.

The add method effectively inserts the new element in between two existing elements. Instances of

the ArrayList class and the LinkedList class expand to accommodate the number of elements

added to the collection, and elements are not deleted when they are fetched.

624 ■ Programming Fundamentals Using Java

Having already used the ArrayList class in the implementation of our generic queue at the

end of Section 13.3.1 (Figure 13.23), we will use an instance of LinkedList in the remainder of

this section to become more familiar with many of the methods these two classes share. The fol-

lowing code fragment adds three StudentV4 objects to the LinkedList instance underGrads:

 // Create a linked list and add the elements to it

 LinkedList <StudentV4> underGrads = new LinkedList<StudentV4>();

 StudentV4 s1 = new StudentV4(2071, "Dana");

 StudentV4 s2 = new StudentV4(8129, "Annie");

 StudentV4 s3 = new StudentV4(6142, "Nadia");

 undergrads.add(s1);

 undergrads.add(s2);

 undergrads.add(1, s3); //s3 is added in between s1 and s2

The get and remove methods are passed an integer, which is the location of the element to

be fetched or removed from the collection. When an element is removed, the locations of all of the

elements beyond it are decreased by one. An overloaded version of the remove method is passed

a reference to the object to be removed, and the getLast method returns a reference to the ele-

ment with the highest index. The last two lines of the following code fragment remove s3 from the

linked list underGrads and outputs object s2’s information twice.

// Delete and fetch elements of a linked list

LinkedList <StudentV4> underGrads = new LinkedList<StudentV4>();

StudentV4 s1 = new StudentV4(2071, "Dana");

StudentV4 s2 = new StudentV4(8129, "Annie");

StudentV4 s3 = new StudentV4(6142, "Nadia");

undergrads.add(s1);

undergrads.add(s2);

undergrads.add(1, s3); //s3 is added in between s1 and s2

undergrads.remove(1); //deletes s3 from the linked list

System.out.println(undergrads.get(1)); //fetches the element 1, now s2

System.out.println(undergrads.getLast()); //fetches the last element, s2

The application LinkedListApp, shown in Figure 13.26, demonstrates the use of a

LinkedList generic collection object to store and output student transcript objects. The tran-

scripts are instances of the class Transcripts shown in Figure 13.27. Each transcript contains

three data members: name, gpa, and creditsEarned, defined on lines 3–5 of that figure. The

application also demonstrates the use of many of the Collections class’s methods listed in Table

13.1 and the use of an iterator, which is a time-efficient way of sequentially processing all of the

elements in a LinkedList. The output produced by the program is shown in Figure 13.28.

Line 10 of the application shown in Figure 13.26 is a type-safe declaration of a genetic

LinkedList collection object named underGrads that can store a collection of Transcripts

objects. Any attempt to add anything other than a Transcript instance to this collection results

in a translation error. The objects created on lines 11–14 are added to the collection using the Lin-

kList class’s add method on lines 16–19. Because the overloaded version of the method that is

 Chapter 13· Generics and the API Collect ion Framework ■ 625

passed a specific location at which to insert the elements is not used, the new elements, t1, t2, t3,

and t4, occupy locations zero through three respectively.

Line 25 outputs the objects by invoking the LinkList class’s get method inside the for loop

that begins on line 23. The method is passed the loop variable, i, as the location of the element to

be fetched. The annotation produced by line 22, and the four lines of output produced by line 25,

are shown at the top of Figure 13.28. The LinkLink class’s size method is used in the for state-

ment on line 23 to terminate the loop.

Lines 28–57 use the Collections class’s static methods to process the elements of the list.

The elements of the collection of Transcript are sorted by invoking the Collections class’s

sort method on line 30 and passing it the collection object underGrads. The sort method orders

and relocates the elements within the collection object’s first four locations, then lines 31–34 output

them in element-location order (the second group of outputs shown in Figure 13.28). Examining

these lines, we see that the transcripts have been sorted in ascending order based on the value of

the students’ GPA.

The API documentation of the Collections class indicates that its sort methods sorts in

“ascending order, according to the natural ordering of its elements.” This is another way of stat-

ing that the sort method invokes the compareTo method defined in the interface Comparable

as part of its sorting algorithm, and it is left to the designer of the class of the list’s elements (in

our case, the class Transcripts) to decide what it means to say one element is less than another.

Once this decision has been made, the compareTo method is implemented in a way that reflects

the decision.

NOTE
The class of the objects being sorted using the Collections class’s sort method,

must implement the interface Comparable or a translation error is generated.

In this case, it was decided that one transcript is less than another if its GPA is lower, and the cod-

ing of the compareTo method on lines 21–27 of Figure 13.27 reflects that decision.

Consistent with the description of the compareTo method in the interface Comparable, the

method returns a negative number on line 26 if the object that invoked it is less than the object passed

to it, (otherwise it returns a positive number for greater than and zero for equal). The implements

clause included in the heading of the class indicates that the compareTo method will be passed a

reference to a Transcripts instance. Omitting the parameter list in the implements cause on line 1

of Figure 13.27 would result in a translation error on that line and line 30 of Figure 13.26.

Lines 38 and 39 of Figure 13.26 invoke the Collections class’s max and min methods that

return a reference to the maximum and minimum elements in the collection. These methods also

invoke the Transcripts class’s compareTo method to compare two elements, so they return

a reference to the elements in the collection with the highest and lowest GPA (the third group of

outputs in Figure 13.28).

Lines 42–48 of Figure 13.26 produce the fourth group of outputs shown in Figure 13.28. Be-

fore the output is performed, line 44 invokes the Collections class’s replaceAll method. The

626 ■ Programming Fundamentals Using Java

method is passed the LinkedList collection object underGrads and the two Transcript ob-

jects t1 and t2. This causes all occurrences of t1 in the collection to be replaced with t2 (in this

case, just one replacement is made).

Line 52 uses the Collections class’s binarySearch method to find and output the current

location of object t4, which at this point is the second element (location 1 in the collection). Line

57 invokes the swap method to swap the first (location 0) and the last (location 3) elements in the

collection. The collection is then output within the while loop that begins on line 59 that uses an

iterator to traverse and output the list.

1 import java.util.LinkedList;

2 import java.util.Collections;

3 import java.util.List;

4 import java.util.ListIterator;

5

6 public class LinkedListApp

7 {

8 public static void main(String[] args)

9 {

10 LinkedList <Transcripts> underGrads = new LinkedList<Transcripts>();

11 Transcripts t1 = new Transcripts("Dana", 3.5, 45);

12 Transcripts t2 = new Transcripts("Carol", 3.8, 45);

13 Transcripts t3 = new Transcripts("Alice", 1.7, 22);

14 Transcripts t4 = new Transcripts("Bob", 2.6, 120);

15

16 underGrads.add(t1); //Add the transcripts to the list

17 underGrads.add(t2);

18 underGrads.add(t3);

19 underGrads.add(t4);

20

21 //Output the transcripts sequentially

22 System.out.println("\nAll transcripts in order of entry");

23 for(int i = 0; i < underGrads.size(); i++)

24 {

25 System.out.println(underGrads.get(i));

26 }

27

28 //The Collections class’s sort method

29 System.out.println("\nAll transcripts in sorted order by GPA");

30 Collections.sort(underGrads);

31 for(int i = 0; i < underGrads.size(); i++)

32 {

33 System.out.println(underGrads.get(i));

34 }

35

36 //The Collections class’s min and max methods

37 System.out.println("\nHighest GPA is " +

38 Collections.max(underGrads));

 Chapter 13· Generics and the API Collect ion Framework ■ 627

39 System.out.println("Lowest GPA is " + Collections.min(underGrads));

40

41 //The Collection class’s replaceAll method

42 System.out.println("\nAll transcripts replacing "+

43 "Dana's transcript with Carol's transcript");

44 Collections.replaceAll(underGrads, t1, t2);

45 for(int i = 0; i < 4; i++)

46 {

47 System.out.println(underGrads.get(i));

48 }

49

50 //The Collections class’s binarySearch method

51 System.out.println("\nt4, Bob, is currently at location " +

52 Collections.binarySearch(underGrads, t4));

53

54 //Use of an iterator

55 System.out.println("\nAll transcripts output using an iterator " +

56 "after locations 0 and 3 were swapped");

57 Collections.swap(underGrads,0, 3);

58 ListIterator <Transcripts> anIterator = underGrads.listIterator(0);

59 while (anIterator.hasNext())

60 {

61 System.out.println(anIterator.next());

62 }

63 }

64 }

Figure 13.26

The application LinkedListApp.

1 public class Transcripts implements Comparable <Transcripts>

2 {

3 String name;

4 double gpa;

5 int creditsEarned;

6

7 public Transcripts(String name, double gpa, int creditsEarned)

8 {

9 this.name = name;

10 this.gpa = gpa;

11 this.creditsEarned = creditsEarned;

12 }

13

14 public String toString()

15 {

16 return "name: " + name +

17 "; gpa: " + gpa +

18 "; credits earned: " + creditsEarned;

628 ■ Programming Fundamentals Using Java

19 }

20

21 public int compareTo(Transcripts aTranscript)

22 {

23 //Defines the natural order of transcripts

24 int gpa1 = (int) (gpa * 100);

25 int gpa2 = (int) (aTranscript.gpa * 100);

26 return gpa1 - gpa2;

27 }

28 }

Figure 13.27

The class Transcripts.

All transcripts in order of entry

name: Dana; gpa: 3.5; credits earned: 45

name: Carol; gpa: 3.8; credits earned: 45

name: Alice; gpa: 1.7; credits earned: 22

name: Bob; gpa: 2.6; credits earned: 120

All transcripts in sorted order by GPA

name: Alice; gpa: 1.7; credits earned: 22

name: Bob; gpa: 2.6; credits earned: 120

name: Dana; gpa: 3.5; credits earned: 45

name: Carol; gpa: 3.8; credits earned: 45

Highest GPA is name: Carol; gpa: 3.8; credits earned: 45

Lowest GPA is name: Alice; gpa: 1.7; credits earned: 22

All transcripts replacing Dana’s transcript with Carol’s transcript

name: Alice; gpa: 1.7; credits earned: 22

name: Bob; gpa: 2.6; credits earned: 120

name: Carol; gpa: 3.8; credits earned: 45

name: Carol; gpa: 3.8; credits earned: 45

t4, Bob, is currently at location 1

All transcripts output using an iterator after locations 0 and 3 were swapped

name: Carol; gpa: 3.8; credits earned: 45

name: Bob; gpa: 2.6; credits earned: 120

name: Carol; gpa: 3.8; credits earned: 45

name: Alice; gpa: 1.7; credits earned: 22

Figure 13.28

The output produced by the application LinkedListApp.

 Chapter 13· Generics and the API Collect ion Framework ■ 629

Iterators

An iterator is an object that can be used to move through (traverse) an ordered list, usually in

a forward (increasing element location) direction or in a backward (decreasing element location)

direction. The iterator’s class ordinarily contains methods that can fetch, add, and remove the list

element just after or just before the iterator’s current location and determine if there is an element

just before and just after the iterator’s current location. The API class ListIterator provides all

of these methods.

An iterator’s current location is always either between two elements of a list, just before the

first element, or just after the last element. Figure 13.29 shows the five possible iterator positions

for a collection that contains four elements. The ListIterator class’s hasPrevious method

returns false when the iterator is positioned before the first element in the list, and its hasNext

method returns false when the iterator is positioned after the last element in the list. Otherwise,

they return true. The method next returns the element to the iterator’s right and then advances

the iterator one position to the right. The method previous returns the element to the iterator’s left

and then advances the iterator one position to the left.

 Five possible iterator locations in a four-element list

 element 1 element 0 element 2 element 3

hasNext()

returns false

hasPrevious()

returns false

Iterator

position 0 1 2 3 4

Figure 13.29

Positions of a list iterator.

Line 58 of Figure 13.26 invokes the LinkedList class’s listIterator method, which cre-

ates and returns an instance of the class ListIterator. The method is passed the iterator position

0, which, as shown in Figure 13.29, positions the iterator before the first element in the list. The

iterator object anIterator, declared and initialized on line 58, is used to invoke the hasNext

method in the Boolean condition of the while loop that begins on line 59. The output statement on

line 61 of the loop outputs all of the elements of the list by invoking the iterator’s next method in-

side the println method, which returns the address of the next element of the array and advances

the iterator.

The use of an iterator in a while loop is a more time-efficient way to traverse a list than the

other output traversals that use for loops in the application LinkedListApp (e.g., lines 45-48).

The reason it is more efficient is that the iterator maintains its position in the list after each iteration

of the loop, which means it only has to advance one element during the next iteration. In contrast

each iteration of the application’s for loops that do not use an iterator begins at the first element

of the list. As a result, the number of elements the for loops have to traverse to output the last

element in the list is the same number of elements traversed by the while loop to output all of the

elements in the list.

630 ■ Programming Fundamentals Using Java

13.4.4 13.4.4 The The HashSet,HashSet, TreeSet,TreeSet, and and LinkedSetLinkedSet Classes Classes

The framework collection classes HashSet, TreeSet, and LinkedSet implement the in-

terface Set. An instance of a class that implements Set cannot contain duplicate objects in its

collection, as determined by the implementation of the equals method in the objects’ class. For

example if the elements in the collection were the Major League Baseball teams, an attempt to use

the class’s add method to include a duplicate team object in the collection would result in a non-

operation, and the add method would return false.

These three classes do not contain a get method for fetching elements from the collection.

They do have a method named iterator that can be used to attach an iterator to an instance of

these classes, which is used in the following code fragment to fetch and output all of the elements

of the TreeSet object ts. An instance of a TreeSet maintains its elements in a sorted order, and

a traversal of it using an iterator returns the elements in ascending order. The following code frag-

ment outputs 4 7 22 to the system console:

 TreeSet <Integer> ts = new TreeSet<Integer>();

 ts.add(22); //Autoboxing

 ts.add(4);

 ts.add(7);

 Iterator anIterator = ts.iterator();

 while (anIterator.hasNext())

 {

 System.out.print(anIterator.next() + " ");

 }

Instances of the HashSet, TreeSet, and LinkedSet classes expand to accommodate the

number of elements added to the collection. Elements can be removed using the classes’s remove

method. Several of the Collections class’s methods, such as max, min, addAll, and disjoint

can be used to process elements in these three collection classes. The class LinkedSet extends

HashSet.

 13.4.513.4.5 The The ArrayDequeArrayDeque and and PriorityQueuePriorityQueue Classes Classes

The framework collection classes ArrayDeque and PriorityQueue implement the inter-

faces Deque and Queue, respectively. An instance of these classes can contain duplicate objects

in its collection. In addition, the objects in the collection have a first-in-first-out ordering imposed

upon them. As a result, the methods implemented in these classes to add and remove objects are

not passed an integer index to specify the new element’s location in the collection.

Instances of these classes would be good candidates for collecting the maintenance work or-

ders of an apartment complex. Ordinarily work orders, such as polishing doorknobs, rats running

around the kitchen, replacing a light, and toilets backing up, are added in the order in which they

are received. Obviously, some of these are more urgent than others.

 Chapter 13· Generics and the API Collect ion Framework ■ 631

Each class adds its own embellishment to the first-in-first-out ordering of a traditional queue

collection. The class ArrayDeque has a method named add that adds a new element to the end or

rear of the collection, and a method named remove that removes an element from the front of the

collection. When elements are added to the collection with the addFirst method and removed

with the remove method, the collection object emulates a last-in-first-out collection (called a

stack).

The PriorityQueue class’s first-in-first-out ordering would be more accurately described as

first in - with the highest priority - first out, in that the elements are maintained in a priority order-

ing. An element’s priority is determined by the natural ordering of the objects as defined by their

class’s implementation of the compareTo method specified in the interface Comparable. The

collection object uses the integer returned from the compareTo method as the element’s priority.

Normally, one of the element’s data members is used to designate the element’s priority and is then

used to determine the integer returned from the implementation of the compareTo method. The

element with the lowest natural ordering has the highest priority (e.g., a priority of 1 is higher than

a priority of 2).

The application Queues, shown in Figure 13.30, demonstrates the use of the ArrayDeque

and PriorityQueue classes to collect maintenance work orders that are objects in the class Wor-

kOrder (Figure 13.31). An instance of a WorkOrder contains three data members: an apartment

number, a description of the work to be performed, and a priority declared on lines 3–5 of the class.

The output produced by the application is shown in Figure 13.32.

The application Queues (Figure 13.30) declares an instance of ArrayDeque named tasks

on line 7, which specifies that all of the collection’s elements will be WorkOrder instances. Lines

10–13 uses the class’s add method to add four new work orders to the collection, which are then

dequeued using the remove method and output (line 18) inside the while loop that begins on line

28. The loop’s Boolean condition uses the ArrayDeque’s size method to determine when all of

the work orders have been removed from the queue. This method returns the number of elements

in the collection. As shown in the top of Figure 13.32, the work orders are fetched and output by

lines 16–19 in the chronological order in which the work orders were added to the collection tasks

on lines 10–13.

To remedy the fact that the use of the tasks collection has the maintenance man polishing

a door knob while rats are running around the apartment complex and toilets are backing up, the

PriorityQueue object ptasks is declared on line 8 of the application. The work orders are

added to this collection on lines 23–26 in the same chronological order in which they were added

to the tasks collection (lines 10–13). The work orders in the ptasks collection are fetched and

output on line 32 inside a while loop (line 30) that duplicates the loop used to output the tasks

collection (line 16).

This time, the output is prioritized by the value of the work orders’ data member priority.

The two highest priority work orders, given a priority of 1 on lines 24 and 26 when they were added

to the collection, are output before the two lower priority work orders. The Rats running around

the kitchen work order is placed in front of the Toilet backing up work order on the queue because

it was added to the queue chronologically before the toilet maintenance request. Even though the

632 ■ Programming Fundamentals Using Java

Polish doorknob work order was the first order added to the ptasks collection (line 23), it is

fetched by line 32 after the two priority 1 work orders and the priority 7 work order within the col-

lection because it has a lower priority: 10.

To define the natural ordering of WorkOrder objects, lines 20–23 of the WorkOrder class (Fig-

ure 13.31) implements the compareTo method. The integer returned from this method is used in the

manner described in the Comparable interface by a PriorityQueue collection object to determine

its elements’ priority ordering. The method is passed a WorkOrder object as designated in the imple-

ments clause in the class’s heading. The implements clause, which includes a type parameter list

consistent with the method’s parameter list on line 20, must be included in the class’s heading.

1 import java.util.*;

2

3 public class Queues

4 {

5 public static void main(String[] args)

6 {

7 ArrayDeque <WorkOrder> tasks = new ArrayDeque<WorkOrder>();

8 PriorityQueue <WorkOrder> ptasks = new PriorityQueue<WorkOrder>();

9

10 tasks.add(new WorkOrder("1C", "Polish door knob.", 10));

11 tasks.add(new WorkOrder("8A", "Rats running around kitchen.", 1));

12 tasks.add(new WorkOrder("8A", "Replace light bulb in hall.", 7));

13 tasks.add(new WorkOrder("12B", "Toilet backing up.", 1));

14

15 System.out.println("Work Orders Non-prioritized by an ArrayQueue");

16 while(tasks.size() != 0)

17 {

18 System.out.println(tasks.remove());

19 }

20

21 System.out.println();

22

23 ptasks.add(new WorkOrder("1C", "Polish door knob.", 10));

24 ptasks.add(new WorkOrder("8A", "Rats running around kitchen.", 1));

25 ptasks.add(new WorkOrder("8A", "Replace light bulb in hall.", 7));

26 ptasks.add(new WorkOrder("12B", "Toilet backing up.", 1));

27

28 System.out.println("Work Orders Prioritized by " +

29 "a PriorityQueue");

30 while(ptasks.size() != 0)

31 {

32 System.out.println(ptasks.remove());

33 }

34 }

35 }

Figure 13.30

The application Queues.

 Chapter 13· Generics and the API Collect ion Framework ■ 633

1 public class WorkOrder implements Comparable <WorkOrder>

2 {

3 String apartmentNumber;

4 String description;

5 int priority;

6

7 public WorkOrder(String location, String description, int priority)

8 {

9 apartmentNumber = location;

10 this.description = description;

11 this.priority = priority;

12 }

13

14 public String toString()

15 {

16 return "Apartment " + apartmentNumber +

17 ", " + description;

18 }

19

20 public int compareTo(WorkOrder aWorkOrder)

21 {

22 return priority - aWorkOrder.priority;

23 }

24 }

Figure 13.31

The class WorkOrder.

Work Orders Non-prioritized by an ArrayQueue

Apartment 1C, Polish doorknob.

Apartment 8A, Rats running around kitchen.

Apartment 8A, Replace light bulb in hall.

Apartment 12B, Toilet backing up.

Work Orders Prioritized by a PriorityQueue

Apartment 8A, Rats running around kitchen.

Apartment 12B, Toilet backing up.

Apartment 8A, Replace light bulb in hall.

Apartment 1C, Polish doorknob.

Figure 13.32

The output produced from the application Queues.

 13.4.613.4.6 The The HashMap,HashMap, TreeMap,TreeMap, and and LinkedHashMapLinkedHashMap Classes Classes

The framework collection classes HashMap and LinkedHashMap implement the interface

Map, and the TreeMap class implements the Map and SortedMap interfaces. Instances of these

classes store objects, called values, which are paired (associated) with another object called a key.

634 ■ Programming Fundamentals Using Java

Each value object must be associated with a unique key object. The values stored in these collection

classes are analogous to the elements stored in the collection classes previously discussed in this

chapter. They are instances of any class.

When a key and a value pair are added to the collection using the class’s put method, the key

and the associated value are passed to the method. This establishes the key and value association.

A value is fetched from the collection by invoking the class’s get method and passing it the key as-

sociated with the value to be fetched. The following code fragment declares a TreeMap collection

object named patientInfo whose keys are Strings and whose values are instances of the class

Patient shown in Figure 13.33. It adds the object value p1 and its associated string key Jones to

the collection and then outputs the value after it is fetched from the collection by passing the key

Jones to the TreeMap class’s get method.

 TreeMap<String, Patient> patientInfo = new TreeMap<String, Patient>();

 Patient p1 = new Patient("Tom Jones", "2/3/1989", "643 976-4545");

 //Save the key and value pair in the collection

 patientInfo.put("Jones", p1);

 //Fetch and output the value whose key is “Jones”

 System.out.println(patientInfo.get("Jones"));

The output produced by the code fragment’s implicit invocation of the Patient class’s toString

method (lines 13–16 of Figure 13.33) is shown below:

name Tom Jones, DOB: 2/3/1989, Cell Number: 643 976-4545

Fetching a value from a collection by specifying a key associated with the value is the most com-

monly used mode of accessing values stored in a collection and is a feature supported by the API

classes that implements the Map interface.

Instances of the classes HashMap, TreeMap, and LinkedHashMap expand beyond their ini-

tial default capacity to accommodate the number of values added to them. From a speed viewpoint,

a HashMap collection object affords the best performance, followed closely by TreeMap instances.

A TreeMap collection object imposes a sorted order on the values in the collection, and a Linked-

HashMap collection object maintains the order in which the values were added to collection. A

HashMap collection object imposes a pseudorandom order on the values. The class of keys associ-

ated with the values added to a TreeMap collection object must implement the interface Compa-

rable to define the natural ordering of the keys stored in the collection object.

1 public class Patient

2 {

3 String name;

4 String DOB;

5 String cellNumber;

6

7 public Patient(String name, String DOB, String cellNumber)

8 {

 Chapter 13· Generics and the API Collect ion Framework ■ 635

9 this.name = name;

10 this.DOB = DOB;

11 this.cellNumber = cellNumber;

12 }

13 public String toString()

14 {

15 return name + ", \tDOB: " + DOB + ", \tCell Number: " + cellNumber;

16 }

17 }

Figure 13.33

The class Patient.

The application TreeMapApp, shown in Figure 13.34, demonstrates the use of a TreeMap

collection object named patientInfo (declared on line 8) to store a collection of Patient object

values and the techniques used to fetch values from the collection and output the entire collection.

A set of inputs and the resulting outputs produced by the program are shown in shown in Figure

13.35. The class Patient is shown in Figure 13.33.

Lines 17–20 of Figure 13.34 add the objects declared on lines 10–13 to the collection object

patientInfo by passing its add method a string key and an associated value. The keys are the

last names of the patients. Although a value’s key need not be contained in the value’s object, in this

case, the value object does contain the last as well as the first name of the patient.

The sentinel loop that begins on line 26 and ends on line 41 is used to repeatedly fetch and dis-

play a patient’s information, given the patient’s last name. The user is prompted to enter a person’s

last name before the loop begins (lines 23–25) and at the end of every loop iteration (lines 38–40)

via an input dialog box (Figure 13.35a). If the user clicks Cancel in response to the prompt, the

showInputDialog method returns a null value, and the loop ends.

When the returned value is not null, the input string is passed to the collection object’s get

method on line 28. The get method returns the address of the value object in the collection associ-

ated with that string key or a null if the key is not associated with a value in the collection. When a

null is returned, lines 31–32 inform the user that the person is not in the database (the collection).

Otherwise, the person’s information is output to a message dialog box on line 36 using an implicit

invocation to the Patient class’s toString method. A typical output is shown in Figure 13.35b.

When the while loop ends, the enhanced for loop that begins on line 44 fetches and

outputs all of the value objects stored in the collection to the system console (shown in the bottom

portion of Figure 13.35). The keys passed to the get method invoked on line 46 are sequentially

accessed from the Set of keys returned from the collection object’s keySet method invoked on the

right side of line 44. The collection values are output in last-name sorted order because a TreeMap

collection object maintains the key set in sorted order, and the set returned from the ketSet

method reflects that ordering.

636 ■ Programming Fundamentals Using Java

1 import java.util.TreeMap;

2 import javax.swing.*;

3

4 public class TreeMapApp

5 {

6 public static void main(String[] args)

7 {

8 TreeMap<String, Patient>patientInfo = new TreeMap<String, Patient>();

9 String lastName;

10 Patient p1 = new Patient("Tom Jones", "2/3/1989", "643 976-4545");

11 Patient p2 = new Patient("Amy Adams", "8/5/1991", "643 531-2283");

12 Patient p3 = new Patient("Norm Baum", "5/9/1945", "541 386-2371");

13 Patient p4 = new Patient("Ray Rondo", "2/6/1998", "643 736-2949");

14 Patient aPatient;

15

16 //Save the key and value pairs in the collection

17 patientInfo.put("Jones", p1);

18 patientInfo.put("Adams", p2);

19 patientInfo.put("Baum", p3);

20 patientInfo.put("Rondo", p4);

21

22 //Fetch and output a patient’s value (object)

23 lastName = JOptionPane.showInputDialog("Enter a patient's last " +

24 "name \nClick Cancel " +

25 "to output all patients");

26 while(lastName != null) //not a Cancel click

27 {

28 aPatient = patientInfo.get(lastName);

29 if(aPatient == null) //key is not in collection

30 {

31 JOptionPane.showMessageDialog(null, "That person is not in" +

32 "our data base");

33 }

34 else //output the value

35 {

36 JOptionPane.showMessageDialog(null, aPatient);

37 }

38 lastName = JOptionPane.showInputDialog("Enter a patient's last " +

39 "name \nClick Cancel " +

40 "to output all patients");

41 }

42

43 //Output all patients

44 for (String key: patientInfo.keySet()) //all keys in the collection

 Chapter 13· Generics and the API Collect ion Framework ■ 637

45 {

46 aPatient = patientInfo.get(key);

47 System.out.println(aPatient);

48 }

49 }

50 }

Figure 13.34

The application TreeMapApp.

 (a) (b)

Console Output:

Amy Adams, DOB: 8/5/1991, Cell Number: 643 531-2283

Norm Baum, DOB: 5/9/1945, Cell Number: 541 386-2371

Tom Jones, DOB: 2/3/1989, Cell Number: 643 976-4545

Ray Rondo, DOB: 2/6/1998, Cell Number: 643 736-2949

Figure 13.35

An input and the outputs produced by the application TreeMapApp.

The following code fragment produces the same output as the enhanced for loop on lines

44–48 of Figure 13.34 when substituted for it. It uses an Iterator object to traverse the key set.

 // Use of an iterator to traverse a TreeMap instance (i.e, patientInfo)

 Set <String> keys = patientInfo.keySet();

 Iterator anIterator = keys.iterator();

 while (anIterator.hasNext())

 {

 String k = (String) anIterator.next();

 System.out.println(patientInfo.get(k));

 }

 13.5 13.5 CHAPTER SUMMARYCHAPTER SUMMARY

Generic implementations of methods and classes extend their reusability, thereby reducing the

time and cost required to develop a software product. A generic method is an implementation of

an algorithm that can process any type object passed to one or more of its parameters. Within the

638 ■ Programming Fundamentals Using Java

method’s parameter list, the names of the parameters are preceded by a generic type placeholder,

such as T or T1, instead of the name of a specific class. When a primitive value is passed to a pa-

rameter that uses a generic placeholder, it is autoboxed, and the address of the wrapper object is

passed to the method.

All of the placeholders used in the method’s parameter list must appear in a generic parameter

list included in the method’s signature just before its returned type: e.g., <T, T1>. One of these

placeholders can also take the place of a specific returned type within the method’s signature, and

the placeholders can be used within the method to declare reference variables that can reference the

type of objects passed the method’s generic parameters. When a wrapper class object is returned

from a generic method, it is unboxed before it is assigned to a primitive value. The copy method

in the Arrays’ class or an instance of an ArrayList is used to copy generic arrays passed to a

method because Java does not support the declaration of a generic array.

Using the syntax of generics, one method can be written that produces an annotated output

of an array of any type of object passed to it, but in this case, the class of the objects contained in

the array would have to include a toString method. The class of the objects passed to a generic

method must indicate that it implements an interface that defines the signature of the methods

invoked within the generic method to operate on the objects passed to it. Typically, they are API

interfaces such as Comparable and Cloneable. Like non-generic methods, generic methods can

be overridden and overloaded. The version of an invoked overloaded method is identified using a

best-fit protocol involving the argument and the method’s parameter types.

Generic classes can contain generic methods, and generic placeholders can be used to specify

the type of one or more of the class’s data members. All of the placeholders used in the class must

appear in a generic parameter list that is coded in the class’s heading just after its class name. To

maximize the type checking performed by the translator, the declaration of an instance of a generic

class should include a generic parameter list that specifies the type of each of the class’s placehold-

ers for the object being declared. If the class implements an interface whose method signatures are

generic, the class names passed to the type parameters of the class’s implementation of the method

should be included in its implements clause, for example:

 className implements Comparable<theArgumentsClassName>.

The API collections framework contains a group of generic classes that implement many

of the classic data structures used to efficiently store and process large data sets. These implemen-

tations include the classes LinkedList, ArrayList, ArrayDeque, PriorityQueue, and Ar-

rayBlockingQueue, whose items are sequentially accessed, and the classes HashMap, TreeMap,

and LinkedHashMap, whose values are accessed by specifying an object, called a key, that is

associated with an object when it is added to the data set. The LinkedList and LinkedHashMap

classes provide the poorest performance from a speed viewpoint. The collections framework also

includes several interfaces used by its generic classes and a class named Collections whose

methods can perform common operations on the items and values stored in instances of its collec-

tion classes such as sorting, searching, swapping, and locating maximums and minimums.

 Chapter 13· Generics and the API Collect ion Framework ■ 639

Knowledge ExercisesKnowledge Exercises

 1. True or False:

 a) Objects can be passed to parameters that use generic placeholders.

 b) Primitive values can be passed to generic parameters.

 c) The parameter lists of generic methods can include parameters of primitive types and/or

class names.

 d) The placeholder used as a method’s returned type must appear in the method’s type

parameter list.

 e) A type parameter list can include type placeholders that are not used in the method’s

parameter list.

 f) A generic method can declare a reference variable using one of its generic type

placeholders.

 g) An array of any type of object can be passed to a parameter of a generic method.

 h) A generic method can declare an array of one of its generic types.

 i) Generic methods can be overloaded.

 j) Generic methods can be overridden.

 k) The syntax of the invocation statement used to invoke a non-generic method is the same

syntax used to invoke a generic method.

 2. Give the signature of a generic method:

 a) Named output that has two generic parameters and does not return a value

 b) Named find that has one generic parameter and two integer parameters and returns an

integer

 c) Named clone that returns an instance of the object passed to its generic parameter

 d) Named min that is passed an array of any type of object and returns a reference to one of

the array’s elements

 3. Give the statement(s) to make a copy of an array passed to a parameter named values whose

generic placeholder is T1.

 4. Give the signature of a generic method with one parameter that operates on the object passed

to its parameter using a method with no parameters defined in the interface Addable.

 5. True or False:

 a) Generic classes can contain generic methods.

 b) Generic classes can contain non-generic methods.

 c) The heading of a generic class must contain a generic parameter list.

 d) The type specification of a generic class’s data members can be a generic placeholder.

 e) Generic classes can extend other classes.

 f) Generic classes can implement interfaces.

 6. Give the heading of a generic class named g6Class whose code uses two generic placeholders.

640 ■ Programming Fundamentals Using Java

 7. Give the heading of a generic class named g7Class that implements the compareTo method

defined by the interface Comparable to compare the object that invoked it to another g7Class

object.

 8. Give a type-safe declaration of an instance of the class ArrayList that will be used to store

200 String objects.

 9. Give a type-safe declaration of a reference variable that can reference the object declared in

Exercise 8.

 10. True or False:

 a) The collections framework is part of the API.

 b) The collections framework contains many generic classes that implement data structures

used to efficiently store large data sets.

 c) The items stored in an instance of the framework class LinkedList can be associated

with a key.

 d) The sort method in the Collections class can be used to sort the values of an instance

of the framework class HashMap.

 e) The values stored in an instance of the framework class TreeMap are maintained in sorted

order based on the keys with which they are associated.

 f) An iterator can be used to sequentially traverse through the elements stored in the

framework collection classes.

 11. Give the name of a frameworks class you could use to store a data set whose elements would

be fetched by specifying a value associated with a string such as Mary Smith.

 12. Give the name of a frameworks class you could use to store a data set whose elements would

be fetched on a first-in-first-out basis.

 13. Give a type-safe declaration statement to declare an object in the class identified in Exercise 12

that will store values that are objects in the class PhoneListing.

Programming ExercisesProgramming Exercises

 1. Write a generic method that outputs the three objects passed to it to the system console, each on

a separate line. Test it by passing it a String, Double, and Integer object. (Why are these

three classes used in this programming exercise?)

 2. Write an overloaded version of the method described in Programming Exercise 1 that adds an

integer primitive parameter to the method’s signature and outputs it, too. Test it by passing the

method an Integer, Double, and String object and an integer primitive value.

 3. Write a generic method that outputs the first of two different objects passed to it to the system

console and returns the second object passed to it. Test it by passing it a String and an

Integer object and then outputting the returned object.

 4. Write a generic method that returns the larger of two objects of the same type passed to it. Test

it by passing it two String objects and two Integer objects. Then output the returned objects

 Chapter 13· Generics and the API Collect ion Framework ■ 641

to the system console. (Why are the String and Integer classes used in this programming

exercise?)

 5. Write a generic method that sorts and outputs an array of objects passed to it to the system

console, each on a separate line. Test it by passing it an array of Integer objects.

 6. Expand the method described in Programming Exercise 5 so it also makes a copy of the sorted

array and returns it. Test your method by outputting the returned array.

 7. Write a generic data structure class named arrayDS that uses an ArrayList object to store

any type of object passed to its insert method and returns the object whose index is passed

to its fetch method. Test the class by declaring a type-safe instance of the class that can store

a set of salaries: Double objects. Then, accept a given number of salaries and insert them into

the data structure. When the input is complete, ask the user for the item number to fetch from

the data structure and output it to the system console.

 8. Expand Programming Exercise 7 to include two additional lines of output that contains the

maximum and minimum salaries in the data structure. Use the methods in the framework

Collections class to determine the salaries to be output.

 9. Declare a type-safe data structure instance of the framework class HashMap whose keys are

String objects (a person’s name) and whose value is a Double object (the person’s weight).

Then accept a given number of persons’ names and weights and insert them into the data

structure. Fetch back the weight of the person whose name is input by the user, and output it to

the system console. Finally, use an iterator to output the names and weights of all the objects in

the data structure, one person per line.

EnrichmentEnrichment

Investigate the new features of Java 8, especially the use of lambda expressions and ge-
nerics.

Investigate the differences between a deque and a queue.

ReferencesReferences

Horstmann, Cay. Java SE 8 for the Really Impatient. Upper Saddle River, NJ: Pearson, 2014.

■ ■ ■ ■ ■

In this chapter

In this chapter, we will learn the techniques used to divide a program into two or more

independent execution paths, called threads, and how to share information between

them. Using these techniques, one of a program’s threads can perform a time-consuming

calculation on a set of inputs while another thread is accepting the next set of inputs. We will

learn that modern operating systems can give the impression that threads are in concurrent

execution or actually execute them concurrently.

We will discuss the problems associated with threads sharing data, the techniques and Java con-

structs used to avoid these problems, and the meaning of the term thread safe used in the description

and implementation of several Java API classes such as the generic collection class ArrayBlocking-

Queue. We will learn how to write methods and classes that are thread safe using Java’s synchronized

method construct and its synchronized statement.

The Java syntax used to implement thread classes, create thread objects, and initiate and terminate

their execution will be presented. We will learn that threads have a lifetime, and that during this life-

time, a Java thread exists in one of six states. The restrictions imposed on a thread while in these states,

and the events that cause threads to transition from one state to another, will be discussed. During this

discussion, we will be introduced to methods such as wait, sleep, and notify, which a programmer

can use to transition a thread from one state to another.

After successfully completing this chapter, you should:

� Understand what threads are, how they are used, and how they can share information

� Know how to divide a program into one or more threads or execution paths

14CHAPTERCHAPTER

14.1 Overview. .644

14.2 Creating and Initiating Threads645

14.3 Thread States .649

14.4 The Producer-Consumer Problem 652

14.5 Solutions to the Producer Consumer Problem 660

14.6 The Synchronized Statement . 673

14.7 Chapter Summary .677

MULTITHREADING AND CONCURRENCYMULTITHREADING AND CONCURRENCY

644 ■ Programming Fundamentals Using Java

� Understand the six transition states of threads

� Be able to implement thread classes, create thread objects, and initiate and terminate

threads

� Understand the concepts of concurrency and synchronization and how to create thread

safe classes

� Be able to explain the Producer-Consumer synchronization problem connected with

threads and its solution

� Know how to use thread safe Java API classes within a multithreaded application

 14.1 14.1 OVERVIEW OVERVIEW

In computer science, concurrency is the concept of executing several programs, or several

parts of a program, at the same time or giving the user the impression that they are being executed

at the same time. For example, one program may be displaying and updating the time of day while

another program is playing a music video available on a Website. In addition, one part of the music

program could be downloading the video from the Website while another part of that program is

playing the part of the video already downloaded.

Concurrently executing programs, such as a time-of-day program and a program that plays

music videos are often referred to as processes. Concurrently executing parts of a process, such

as the two parts of a music video program that downloads and simultaneously plays the video, are

referred to as threads. Figure 14.1 shows two processes in concurrent execution. Even what appears

to be a single program running on a computer system could be a process with a set of simultane-

ously executing threads. In fact, when we consider the support every program receives from the

operating system and the Java Runtime Environment, every Java program is a process with mul-

tiple threads.

 Thread to determine and update the time of day

 Download thread

A Music Video Program

Time

A Clock Program

Music- and video-playing thread

Figure 14.1

A single-thread and a double-thread process.

A thread can be considered to be an execution path through a program, and the programs dis-

cussed up to this point in the text should be thought of as having one thread. This thread, called

 Chapter 14· Mult i threading and Concurrency ■ 645

the main thread, contains the code of the method main, and it is created and started by the Java

Runtime Environment when the program is launched. As we will see, the main thread can create

and start other threads. The creation and starting of threads, and the sharing of information and

system resources among them, are the topics of concurrent (multitasking) programming.

Actual and Perceived Concurrency

For a thread to be in execution, the address of one of its instructions must be stored in the in-

struction register of a CPU in order for the instruction to be interpreted (decoded) and executed by

the CPU’s data path. As a result, two or more threads can only execute concurrently if the system

they are running on has more than one CPU or the system’s CPU contains multiple data paths,

called cores. A system that has one CPU containing one data path can give the impression that

several threads are executing simultaneously by sharing the CPU’s processing time among threads.

Threads that share a CPU’s data path are each given a quantum (or “time slice”) of CPU time

based on a scheduling algorithm, which is platform or operating system dependent. Fortunately,

the speeds of modern computers permit a significant number of instructions, often in the mil-

lions, to execute during a time quantum. In addition, the time interval between the quanta is small

enough to give the system user the perception that all of the threads are being executed without

interruption. This is analogous to our perception that an incandescent light bulb does not blink

sixty times a second.

 14.2 14.2 CREATING AND INITIATING THREADS CREATING AND INITIATING THREADS

There are three ways to create and initiate the execution of a thread. All of them involve coding

a class that includes a method named run defined in the interface Runnable. When a thread is

allocated its first quantum of CPU time, its execution begins with the first executable statement in

the method run. This method is to a thread as the method main is to an application. The thread’s

algorithm is coded in this method.

Defining a Thread’s Class

A thread class’s heading must either indicate that it implements the interface Runnable or

extends the class Thread (which implements the interface Runnable). Figure 14.2 shows a thread

class named ExtendsThread that extends the class Thread, and Figure 14.3 shows a class named

ImplementsRunnable that implements the interface Runnable. As shown in Figure 14.2, the

first executable statement in the constructor of a class that extends Thread should be an invoca-

tion of its parent’s constructor. Both classes implement the method run, defined in the interface

Runnable, and contain the String data member name that is initialized to the string passed to

the class’s constructor.

646 ■ Programming Fundamentals Using Java

1 import javax.swing.*;

2

3 public class ExtendsThread extends Thread

4 {

5 private String name;

6

7 public ExtendsThread(String name)

8 {

9 super();

10 this.name = name;

11 }

12

13 public void run() //A thread’s entry point

14 {

15 System.out.println(name + " is executing");

16

17 String answer = JOptionPane.showInputDialog("What is 23 + 57 ?");

18 if(answer.equals("80"))

19 {

20 System.out.println("Correct, 23 + 57 = 80");

21 }

22 else

23 {

24 System.out.println("Incorrect, 23 + 57 = 80");

25 }

26 }

27 }

Figure 14.2

The class ExtendsThread that extends the class Thread.

1 public class ImplementsRunnable implements Runnable

2 {

3 private String name;

4 private int nLines;

5

6 public ImplementsRunnable(String name)

7 {

8 this.name = name;

9 }

10

11 public void run() //A thread’s entry point

12 {

13 System.out.println(name + “ is executing”);

14 }

15 }

Figure 14.3

The class ImplementsRunnable that implements the interface Runnable.

 Chapter 14· Mult i threading and Concurrency ■ 647

Initiating a Thread’s Execution

The code of the main method creates an object in the thread’s class. The next step is to initiate

this object’s execution from within the main method, which makes the thread eligible for a quan-

tum of CPU time. The way this is done depends on whether the thread class’s heading indicates that

it extends the class Thread or implements the interface Runnable.

If the class extends the class Thread and is named ExtendsThread (as in Figure 14.2),

the following code fragment would be used in the main method to create the Thread instance

thread1 and make the thread eligible for a quantum of CPU time:

 //Create and initiate a thread whose class extends Thread

 ExtendsThread thread1 = new ExtendsThread("thread1");

 thread1.start();

We will learn more about the Thread class’s start method in the next section. When any thread

is granted its first quantum of CPU computing time, its execution begins with the first executable

statement in its run method.

If the thread’s class implements the class Runnable (as in Figure 14.3), there are two alter-

native approaches to initiate the thread’s execution. Assuming the thread class is named Imple-

mentsRunnable, the following code fragment would be used in the main method to create the

Thread instance thread1 and make the thread eligible for a quantum of CPU time. It creates a

Runnable object and passes it to the one-parameter constructor of the Thread class.

 // Create and initiate a thread whose class implements Runnable

 ImplementsRunnable runnableObj = new ImplementsRunnable("thread2");

 Thread thread1 = new Thread(runnableObj);

 thread1.start();

The alternate technique when the thread class implements the interface Runnable is to not ex-

plicitly declare the Thread instance or initiate its execution. This approach uses the concept of an

executor service to create the thread and manage the initiation and execution of the thread. Using

this approach, we can reduce the amount of overhead associated with creating multiple threads

because an executor maintains an expandable pool of threads, each of which can be assigned or

reassigned to a Runnable object.

The following code fragment illustrates this approach. It invokes the Executors class’s static

method newCachedThreadPool to create an executor service referenced by threadLauncher.

This object maintains a thread pool and is capable of adding threads to the pool and assigning run-

nable objects to existing threads. Its execute method assigns the Runnable object passed to its

parameter (in our case, an instance of the class ImplementsRunnable) to one of the threads in

its pool and initiates its execution.

ImplementsRunnable runnableObj = new ImplementsRunnable("thread3");

ExecutorService threadLauncher = Executors.newCachedThreadPool();

threadLauncher.execute(runnableObj); //initiate thread1 as runnableObj

The application CreatingThreads, shown in Figure 14.4, creates and initiates three threads us-

ing the three techniques discussed in this section. The output produced by the threads is shown in

Figure 14.5.

648 ■ Programming Fundamentals Using Java

The first thread, created on line 8, is an instance of the class ExtendsThread shown in

Figure 14.2, which as its name implies, extends the class Thread. The second thread is created

on line 12 by passing the object created on line 11, runnableObj1, to Thread's one-parameter

constructor. The object runnableObj1 is an instance of the class ImplementsRunnable shown

in Figure 14.3, which implements the class Runnable. These two threads are initiated on lines 19

and 20 of Figure 14.4.

To initiate the third thread, another instance of the class ImplementsRunnable (Figure 14.3)

is created on line 15, the instance runnableObj2. Line 23 passes this object to the execute

method invoked on threadLauncher: the object created on line 16 that contains a thread pool.

The invocation of execute on line 23 causes a thread to be added to this thread pool, the object

runnableObj2 is associated with the thread, and the thread is initiated.

These three threads and the main thread will share CPU time during the program’s execution.

As soon as a thread receives a quantum of computing time, the first statement in its run method

(lines 15 and 13 of Figures 14.2 and 14.3, respectively) output the thread’s name data member to

the system console. The output sequence shown in the lower portion of Figure 14.5 indicates that

the main method ended before any of the threads were granted a quantum of computing time. The

output also indicates that thread1 was granted a quantum of computing time before thread2,

which was granted a quantum of computing time before the third thread. The last console output

shown at the bottom of the figure was generated after the user entered 80 in the input dialog box

displayed by thread1 (shown in the upper portion of the figure) and then clicked OK. At this

point, the other two threads had already completed their execution.

1 import java.util.concurrent.*;

2

3 public class CreatingThreads

4 {

5 public static void main(String[] args)

6 {

7 // create a thread

8 ExtendsThread thread1 = new ExtendsThread(“thread1”);

9

10 // create a runnable object and then a thread

11 ImplementsRunnable runnableObj1 = new ImplementsRunnable(“thread2”);

12 Thread thread2 = new Thread(runnableObj1); //creates a thread

13

14 // create a runnable object and a thread pool

15 ImplementsRunnable runnableObj2 = new ImplementsRunnable(“thread3”);

16 ExecutorService threadLauncher = Executors.newCachedThreadPool();

17

18 // initiate the threads

19 thread1.start(); //initiates thread 1

20 thread2.start(); //initiates thread 2

21

22 // assign a runnable object to a thread in the thread pool

 Chapter 14· Mult i threading and Concurrency ■ 649

23 threadLauncher.execute(runnableObj2);

24

25 threadLauncher.shutdown();

26

27 System.out.println(“main method has completed its execution”);

28 }

29 }

Figure 14.4

The application CreatingThreads.

Console Output:

main method has completed its execution

thread1 is executing

thread2 is executing

thread3 is executing

Correct 23 + 57 = 80

Figure 14.5

An input to the application CreatingThreads and the outputs generated by it.

 14.314.3 THREAD STATES THREAD STATES

The time from when a thread object is created until it no longer exists is called a thread’s

lifetime. During its lifetime, a thread is in one of six Java-defined states within the Java Virtual

Machine. The names of the six states are: new, runnable, blocked, waiting, timed waiting, and

terminated. Figure 14.6 shows these states and the possible transitions from one state to another

depicted by the arrows in the figure. The green arrows indicate that the thread is becoming more

likely to being granted a quantum of computing time.

 14.3.1 14.3.1 The New, Runnable, and Terminated States The New, Runnable, and Terminated States

As shown on the left side of Figure 14.6, when a thread is created, it enters the new state. It re-

mains there until it is initiated by the method start or the method execute (e.g., lines 19 and 23

of Figure 14.4, respectively). Once initiated, it enters the runnable state. Only threads that are in the

runnable state can be assigned a quantum of CPU computing time by the operating system. When

650 ■ Programming Fundamentals Using Java

the thread completes its execution, it enters the terminate state. All system resources allocated to

a task that is in this state are reclaimed, and the task ceases to exist (shown in the lower right side

of Figure 14.6).

Threads that are in the runnable state can be assigned a quantum of computing time by the

operating system. The algorithm used to select which of the threads in the runnable state receives

the next quantum of CPU time is platform dependent and is normally based on a priority assigned

to the thread. The higher the task’s priority, the more likely it is to receive a quantum of computing

time when it is in the runnable state. Round robin scheduling is a common algorithm used by op-

erating systems to assign a quantum of computing time to tasks of equal priority while they are in

the runnable state. Figure 14.7 shows this process for three tasks of equal priority named thread1,

thread2, and thread3.

thread1 thread2 thread3

Assignment of time quanta

Figure 14.7

Round robin scheduling of three threads in the runnable state.

By default, Java assigns the newly created thread the priority of the thread that created it.

When an application’s main method is created, its priority is set to the Thread class’s static integer

constant, NORM _ PRIORITY, which is midway between the class’s constants MAX _ PRIORIY and

MIN _ PRIORITY. This default priority value can be changed by invoking the Thread class’s set-

Priority method and passing it a new priority within the range of the static constants Thread.

MAX _ PRIORITY to Thread.MIN _ PRIORITY, inclusive.

new runnable

blocked

terminated

waiting timed waiting

Thread is

created

Thread’s

resources

reclaimed

Thread is

initiated
Thread is completes

its execution

Figure 14.6

Transitions among the six states of a thread during its life.

 Chapter 14· Mult i threading and Concurrency ■ 651

 14.3.2 14.3.2 The Blocked, Waiting, and Timed Waiting States The Blocked, Waiting, and Timed Waiting States

Most threads over their lifetime transfer between the runnable state into the waiting, timed

waiting, or blocked states several times. These transitions can be initiated by various events, such

as the thread performing I/O or by threads invoking methods that initiate the transfer.

The Blocked State

After a thread has issued a request for input (e.g., displayed an input prompt to the user and is

waiting for the completion of the input), it is moved from the runnable state into the blocked state

because it cannot continue its execution until the input is complete. This transfer from the runnable

state into the blocked state and back again, shown in the bottom center of Figure 14.8, is associated

with the initiation and completion of an input event.

A thread can also enter the blocked state if it contains a Java concurrency construct called a

synchronized code block, but it cannot enter the code block if a warning, called a lock, has been is-

sued indicating it is unsafe to execute the code. For example, if the task of a thread’s synchronized

code block was to increase the pressure inside a storage tank, another thread whose task was to

determine if the tank’s pressure sensor was functional could issue a lock until it determined that

the sensor was functional. Synchronized code blocks are also used to prevent one thread from

changing shared data while another thread is reading it.

The transition from the runnable state to the blocked state and back again, initiated by a locked

and then unlocked synchronized code block, is also depicted in the bottom center portion of Figure

14.8. We will learn more about synchronized code blocks and locks later in this chapter.

new runnable

blocked

terminated

waiting timed waiting

Thread is

created

Thread’s

resources

reclaimed

Thread is

initiated
Thread is completes

its execution
I/O pending, or

Synchronized statement’s

object lock is unavailable

I/O complete, or

Synchronized statement’s

lock becomes available

notify

notifyAll

wait

wait(t)

sleep(t)

time interval t expires

notify (tasks waiting)

notifyAll " "

Figure 14.8

Actions and events that transition a thread from the runnable state and back again.

The Waiting and Timed Waiting States

A thread moves from the runnable state to the waiting or timed waiting state when it, or an-

other thread, invokes the wait method on the thread. It can also enter the timed waiting state when

652 ■ Programming Fundamentals Using Java

the sleep method is invoked on it. These state transitions are shown in the top center portion of

Figure 14.8.

When a thread in the runnable state invokes the wait method and does not pass it an argument,

the thread enters the waiting state. A thread that does not have all the system resources it needs

to complete its algorithm, such as when a piece of data or a resource it needs is not yet available,

will enter the waiting state via an invocation of the no-parameter version of the method wait. The

thread will reenter the runnable state when another thread notifies it or notifies all of the threads

waiting for the data item or resource, that the data item or resource is available via an invocation

of the notify or notifyAll methods. This transition back to the runnable state is depicted at the

top-left portion of Figure 14.8.

When a thread in the runnable state invokes the wait method or the Thread class’s static

method sleep and passes it an integer argument, the thread enters the timed waiting state for that

number of milliseconds. When the time period expires, the thread returns to the runnable state, as

shown in the top right portion of Figure 14.8. A thread that cannot perform its task until a known

period of time passes can use either the sleep or the wait method to exit the runnable state. The

following code fragment would be used by a task to remove itself from the runnable state for one

second (i.e., 1000 milliseconds):

 Thread.sleep(1000);

Threads placed in the timed waiting state with an invocation to wait also exit the state when

an invocation to the notify or notifyAll method is made by some other thread. If a thread was

willing to wait for up to one minute for a piece of data that was not yet available, and then proceed

with or without the data item, it would do so using the following code fragment:

 int t = 1000 * 60; //one minute = 60,000 milliseconds

 wait(t); //in the timed waiting state

Concurrent algorithms that use the methods wait, sleep, notify, and notifyAll to perform

state transitions are quite common, however, an error-free implementation of these algorithms can

be rather elusive. As a result, Java provides several levels of support to facilitate their use. Armed

with an understanding of how to create threads, thread states, and the events and methods that

initiate transitions between states, we are now ready to expand our concurrency knowledge base

by implementing a classic concurrent algorithm: the Producer-Consumer algorithm, which if not

properly implemented results in the Producer-Consumer problem.

 14.414.4 THE PRODUCER-CONSUMER PROBLEM THE PRODUCER-CONSUMER PROBLEM

The Producer-Consumer problem is a classic concurrency synchronization problem that arises

when one thread is producing (i.e., generating) a resource that another task is consuming (i.e., us-

ing). For example, one thread is computing a data value that another thread outputs to the system

console after combining it with other data values. The word consumer is used in the name of the

problem because an assumption of the problem is that once the resource (e.g., a data item) is ob-

tained by the thread that uses it, the thread that produced it no longer needs to maintain a record of

it. (This situation was made famous by the Pac-Man game.)

 Chapter 14· Mult i threading and Concurrency ■ 653

In object oriented programming, data is shared between threads using an object whose address

is known to both the producer and consumer threads. The shared resource is typically a data mem-

ber of the object whose class implements a set method the producer method invokes and a get

method the consumer thread invokes. The object is referred to as a buffer object, or more simply a

buffer, because it is a holding area for the shared resource. A bounded buffer is a buffer object that

can hold a specified number of shared items. An object in the API class ArrayBlockingQueue,

which we will learn more about later in this chapter, can be used as a bounded buffer to safely share

data between producer and consumer tasks.

The class Buffer, shown in Figure 14.9, is an example that buffers an integer data item in its

data member sharedData, defined on line 3. The single thread application BufferDemo, shown

in Figure 14.10, uses the Buffer object aBuffer to store three integer data items it alternately

produces (stores in the buffer’s data member) on line 10 and then consumes (fetches) and outputs

on line 13. The output generated by the program is shown in Figure 14.11.

1 public class Buffer

2 {

3 private int sharedData;

4

5 public Buffer()

6 {

7

8 }

9

10 public void setData(int dataItem)

11 {

12 sharedData = dataItem;

13 }

14

15 public int getData()

16 {

17 return sharedData;

18 }

19 }

Figure 14.9

The class Buffer.

1 public class BufferDemo

2 {

3 public static void main(String[] args)

4 {

5 private Buffer aBuffer = new Buffer();

6 private int dataItem;

7

8 for(int i = 1; i <= 3; i++)

9 {

654 ■ Programming Fundamentals Using Java

10 aBuffer.setData(i); //produce a data item

11 System.out.println("Produced " + i);

12

13 dataItem = aBuffer.getData(); //consume a data item

14 System.out.println("Consumed " + dataItem);

15 }

16 }

17 }

Figure 14.10

The application BufferDemo.

Produced 1

Consumed 1

Produced 2

Consumed 2

Produced 3

Consumed 3

Figure 14.11

The output produced by the application BufferDemo.

Although the application Buffer does produce and consume integer data items stored in a

Buffer object, it does not illustrate the producer and consumer problem because the buffer is

not shared between two threads. The main thread is the only thread in the application. It does not

simulate a producer thread performing a second write to the buffer before a consumer thread is is-

sued a quantum of computing time to read the first item written to the buffer. In this single thread

example, once line 10 of Figure 14.10 executes, it cannot execute again until line 13 executes.

There is one case when this single thread producer-consumer application could degenerate into

a producer-consumer problem: if lines 10 and 11 of Figure 14.10 were switched with lines 13 and

14. In this case, the consumer would be consuming its first data item before the producer produced

it, and the last data item produced (3) would not be consumed. Figure 14.12 shows the application’s

output when lines 10–11 and lines 13–14 are switched. As shown in the figure, the first item con-

sumed is the default value of the buffer object’s integer data member sharedData, 0, which is not

a produced value, and the last data item consumed is 2. The data item 3 is not consumed.

Consumed 0

Produced 1

Consumed 1

Produced 2

Consumed 2

Produced 3

Figure 14.12

The output produced by the application BufferDemo when lines 10–11 are switched with lines 13–14.

 Chapter 14· Mult i threading and Concurrency ■ 655

While this error in the application would be easily discovered and rectified because the erro-

neous output is repeatable and the producer and consumer are in the same thread (main’s thread),

this type of problem is much more difficult to avoid, discover, and rectify when the producer and

consumer are in different threads or in entirely different applications. The complications include

the fact that the output becomes less repeatable or predictable in a multithreaded version of the ap-

plication, and the producer and/or consumer’s time quantum could expire before their invocations

of the set and get methods complete execution.

To illustrate these complications, the producer and consumer tasks, lines 10–11 and 13–15 of

Figure 14.10, have been transferred into two different classes named Producer and Consumer,

shown in Figures 14.13 and 14.14, respectively. These classes implement the interface Runnable,

so instances of these classes can be used to separate the producer and consumer tasks into two

separate threads.

When a Producer object is created, the class’s constructor (line 8 of Figure 14.13) is passed an

instance of the class Buffer whose code is shown in Figure 14.9. The address of the Buffer class

object is stored in the data member sharedData declared on line 5. The producer tasks coded as

lines 24 and 25 are inside a for loop (lines 15 –26) that executes ten times. The loop variable, i, is

passed to the shared Buffer object’s setData method on line 24. A producer object will produce

the values 1 to 10 in ascending order.

Line 19 invokes the Thread class’s static method sleep to move the Producer object into the

timed waiting state for a random time period of up to ten milliseconds. This is to simulate a random

number of time quanta expiring during the processing required to produce the shared data item,

i. The Random object delay used to generate the time increment passed to the sleep method

is declared on line 6. The sleep method can throw a checked InterruptedException object,

which is why it is coded inside a try-catch construct (lines 17–23).

The code block of the class Consumer, shown in Figure 14.14, is similar to that of the Produc-

er class’s code block. The most obvious difference is that producer tasks (lines 24–25 of Figure

14.13) have been replaced by the consumer tasks (lines 28 and 29 of Figure 14.14). In addition to

this change, before the consumers run method ends, it invokes the method outputConsumed-

Summary (line 35). This method outputs two lines of statistics that summarize the performance of

a Consumer thread. The two arrays it uses to store the statistics are declared on lines 6 and 7 and

updated each time through the run method’s for loop on lines 32 and 33.

1 import java.util.Random;

2

3 public class Producer implements Runnable

4 {

5 private Buffer sharedData;

6 private Random delay = new Random();

7

8 public Producer(Buffer sharedData)

9 {

656 ■ Programming Fundamentals Using Java

10 this.sharedData = sharedData;

11 }

12

13 public void run()

14 {

15 for(int i = 1; i <= 10; i++)

16 {

17 try

18 {

19 Thread.sleep(delay.nextInt(10) + 1); //simulate data processing

20 }

21 catch(InterruptedException e)

22 {

23 }

24 sharedData.setData(i);

25 System.out.println("Produced " + i);

26 }

27 }

28 }

Figure 14.13

The class Producer.

1 import java.util.Random;

2

3 public class Consumer implements Runnable

4 {

5 private Buffer sharedData;

6 private int[] timesConsumed = new int[10];

7 private boolean[] consumedData = new boolean[10];

8

9 public Consumer(Buffer sharedData)

10 {

11 this.sharedData = sharedData;

12 }

13

14 public void run()

15 {

16 Random delay = new Random();

17 int dataItem;

18

19 for(int i = 1; i <= 10; i++)

20 {

21 try

22 {

23 Thread.sleep(delay.nextInt(10) + 1); //simulate data fetch

24 }

 Chapter 14· Mult i threading and Concurrency ■ 657

25 catch(InterruptedException e)

26 {

27 }

28 dataItem = sharedData.getData();

29 System.out.println("Consumed " + dataItem + " <---");

30

31 //record consumed statistics

32 consumedData[dataItem - 1] = true;

33 timesConsumed[dataItem - 1]++;

34 }

35 outputConsumedSummary();

36 }

37

38 private void outputConsumedSummary() //outputs final statistics

39 {

40 try

41 {

42 Thread.sleep(5000);

43 }

44 catch(InterruptedException e)

45 {

46 }

47 System.out.print("Consumed data: ");

48 for(int i = 1; i <= 10; i++)

49 {

50 if(consumedData[i-1] == true)

51 {

52 System.out.print(" " + i);

53 }

54 }

55 System.out.print("\nTimes consumed:");

56 for(int i = 1; i <= 10; i++)

57 {

58 if(consumedData[i-1] == true)

59 {

60 System.out.print(" " + timesConsumed[i-1]);

61 }

62 }

63 }

64 }

Figure 14.14

The class Consumer.

The application PCThreadProblems presented in Figure 14.15 declares an instance of a Pro-

ducer and a Consumer object on lines 10 and 11, passing their constructors the shared Buffer

object declared on line 8. Then, lines 13–15 associate these runnable objects with threads and initi-

ate them. The output produced by two successive executions of the application is shown on the left

and right sides of Figure 14.16. Line numbers were added to the figure to facilitate its discussion.

658 ■ Programming Fundamentals Using Java

If there were no producer-consumer problems, both columns of output would be the same as

the output shown in Figure 14.17, in which all of the values produced are immediately followed by

the value being consumed. Each value produced (the values 1 through 10) is consumed once and

only once, as indicated by the summary at the bottom of the figure. As the summary at the bottom

of each column of Figure 14.16 indicates, not all of the data produced by the two executions of the

application PCThreadProblems were consumed. On the left side of the figure, only the values

1, 3, 5, 6, and 7 were consumed, with 1 being consumed twice and 3 and 6 being consumed three

times each. Similar problems occurred during the second execution of the application, as shown on

the right side of the figure.

These problems occur in this producer-consumer multithreaded application because the pro-

ducer and consumer are not waiting for each other to complete their tasks. Whenever either thread

receives a quantum of computing time, it produces or consumes as many values as it can, without

any consideration of whether or not the other thread has consumed or produced a value. Refer-

ring to lines 13–15 of the left column of Figure 14.16, the consumer thread was able to consume

the same value (6) from the buffer three times before the producer thread could produce the value

7 (line 16). In some cases, the producer thread was able to produce several values before the con-

sumer thread was able to consume them, as shown on lines 7–9 of the right column in Figure 14.16.

The obvious remedy is for the producer to produce a value and not produce another value until

the consumer consumes the value. Similarly, once the consumer consumes a value, it should not

consume another value until the producer produces another value. This process is referred to as

synchronizing the producer and consumer tasks. Synchronizing these tasks assures that the pro-

ducer and consumer will alternate their access to the buffer, as depicted in Figure 14.17.

1 import java.util.concurrent.ExecutorService;

2 import java.util.concurrent.Executors;

3

4 public class PCThreadProblems

5 {

6 public static void main(String[] args)

7 {

8 Buffer aBuffer = new Buffer();

9

10 Producer producerThread = new Producer(aBuffer);

11 Consumer consumerThread = new Consumer(aBuffer);

12

13 ExecutorService launcher = Executors.newCachedThreadPool();

14 launcher.execute(producerThread);

15 launcher.execute(consumerThread);

16

17 launcher.shutdown();

18 }

19 }

Figure 14.15

The application PCThreadProblems.

 Chapter 14· Mult i threading and Concurrency ■ 659

1 Produced 1

2 Consumed 1 <---

3 Consumed 1 <---

4 Produced 2

5 Produced 3

6 Consumed 3 <---

7 Consumed 3 <---

8 Consumed 3 <---

9 Produced 4

10 Produced 5

11 Consumed 5 <---

12 Produced 6

13 Consumed 6 <---

14 Consumed 6 <---

15 Consumed 6 <---

16 Produced 7

17 Consumed 7 <---

18 Produced 8

19 Produced 9

20 Produced 10

21 Consumed data: 1 3 5 6 7

22 Times consumed: 2 3 1 3 1

 First Execution

Produced 1

Consumed 1 <---

Produced 2

Consumed 2 <---

Produced 3

Consumed 3 <---

Produced 4

Produced 5

Produced 6

Consumed 6 <---

Produced 7

Produced 8

Consumed 8 <---

Produced 9

Consumed 9 <---

Consumed 9 <---

Produced 10

Consumed 10 <---

Consumed 10 <---

Consumed 10 <---

Consumed data: 1 2 3 6 8 9 10

Times consumed: 1 1 1 1 1 2 3

Second Execution

Figure 14.16

The output produced by two successive executions of the application PCThreadProblems.

Produced 1

Consumed 1 <---

Produced 2

Consumed 2 <---

Produced 3

Consumed 3 <---

Produced 4

Consumed 4 <---

Produced 5

Consumed 5 <---

Produced 6

Consumed 6 <---

Produced 7

Consumed 7 <---

Produced 8

Consumed 8 <---

Produced 9

Consumed 9 <---

Produced 10

Consumed 10 <---

Consumed data: 1 2 3 4 5 6 7 8 9 10

Times consumed: 1 1 1 1 1 1 1 1 1 1

Figure 14.17

A problem-free producer-consumer output.

660 ■ Programming Fundamentals Using Java

 14.5 14.5 SOLUTIONS TO THE PRODUCER CONSUMER PROBLEM SOLUTIONS TO THE PRODUCER CONSUMER PROBLEM

One approach to solving producer-consumer problems revealed by the application shown in

Figure 14.15 is to replace the Buffer class instance declared on line 8 of Figure 14.15 with an

instance of a synchronized API collection class. These classes are said to be thread safe. API

collection classes that are thread safe do not allow a consumer to consume unless a producer has

produced and vice versa.

We will discuss this approach after we discuss and implement changes to the Buffer class

that would make it thread safe. In this thread safe buffer implementation, the wait and notify

methods and a Java lock are used to synchronize a producer’s and consumer’s access to the shared

data object. The changes we will make to the Buffer class are effectively what we would see if we

looked “under the hood” of the API’s implementations of its thread safe collection classes.

 14.5.1 14.5.1 Synchronizing a Buffer Class: Synchronized Methods Synchronizing a Buffer Class: Synchronized Methods

The changes we will make to the Buffer class to make it thread safe involve modifications to

the class’s setData and getData methods that are based on the following three synchronization

criteria:

� Its getData method should have a way of determining if a new data item has been

written to the buffer and only return a value when this is the case

� The setData method should have a way of determining if the data item currently in

the buffer has been consumed and only overwrite the data item when this is true

� When one method is in execution, the other method should not be allowed to begin

execution; that is, they should not be permitted to execute concurrently, they should be

mutually exclusive

The first two criteria will involve adding two Boolean data members to the Buffer class,

which we will name writeable and readable. These variables will be used by the setData

and getData methods to determine if they should write to, or read from, the buffer. The setData

method will write to the buffer when writeable is true, and the getData method will read from

the buffer when readable is true.

Before the methods end their execution, they will reverse the truth values of the two variables:

� setData will set readable to true to indicate to getData that it can read from the

buffer, and it will set writeable to false to remind itself that it cannot write to the

buffer

� getData will set writeable to true to indicate to setData that it can write to the

buffer, and it will set readable to false to remind itself that it cannot read from the

buffer

The code fragments shown in Figure 14.17 illustrate these ideas but should be considered

pseudocode. They will be modified when incorporated into the revised Buffer class because they

do not satisfy our third criteria: when one method is in execution, the other method should not be

allowed to begin execution.

 Chapter 14· Mult i threading and Concurrency ■ 661

setData method

1 if(writeable == true)

2 {

3 //write the buffer’s data member

4 writeable = false;

5 readable = true;

6 }

getData method

1 if(readable == true)

2 {

3 writeable = true;

4 readable = false;

5 //return buffer’s data member

6 }

Figure 14.18

Pseudocode of the first two producer-consumer synchronization criteria.

The need for the third criterion is more easily understood in the context of the first two criteria,

which are expressed in Figure 14.18. Consider the case when the code fragment of the getData

method shown on the right side of the figure has just completed line 3, setting writeable to true.

If at this point the setData method was allowed to execute, the Boolean condition on line 1 (on

the left side of figure) would evaluate to true, and line 3 would write a new value into the buffer.

Here’s the problem: line 5 of the getData method has not yet executed to return the value that was

just overwritten. Allowing this situation to occur results in a lost data item, i.e., a produced data

item that is not consumed. Other execution-sequence scenarios result in the other equally unac-

ceptable outcome: a data item is consumed twice. It is often critical that the execution of a portion

of a thread’s code not be interrupted once it begins. This section of code is referred to as a critical

section.

Java provides a remedy for this situation by allowing us to declare methods to be synchronized.

When two or more methods in a class are declared synchronized and one of the methods is in ex-

ecution, the other method(s) cannot begin execution. A thread that attempts to initiate the execution

of a second synchronized method enters the waiting state. Declaring the setData and getData

methods to be synchronized would solve the lost data item problem we cited previously. When the

methods are synchronized after the getData method sets writeable to true on line 3 (right side

Figure 14.18), the setData method cannot begin its execution until line 5 of the getData method

executes and returns the now non-overwritten data value to its invoker. The producer thread that

invoked the setData method would enter the waiting state.

There are two subtle, but remaining pieces to the puzzle that the following two questions ex-

pose:

� How does the producer thread that was moved to the waiting state when it invoked

setData while getData was in execution return to the runnable state?

� What if the getData method is invoked while readable is false, in which case its

return statement (line 5 of Figure 14.18) is unreachable? (The Java version of the

pseudocode would produce a translation error.)

The solution to the first remaining piece of the puzzle is that the getData method invokes

either the notify method (or notifyAll method) just before it ends. This moves one (or all) of

the threads that invoked methods synchronized to the getData method from the waiting state

to the runnable state. In our case, the setData method would then begin its execution when the

662 ■ Programming Fundamentals Using Java

operating system granted the thread that invoked it a CPU time quantum. A similar modification,

an invocation of the method notify or notifyAll, must be added to the setData method.

The solution to the second remaining piece of the puzzle (what if the getData method is in-

voked while readable is false, in which case its return statement is unreachable) also has to do

with a thread entering the waiting state. In this case, the thread that invoked the setData method

effectively places itself into the waiting state to pause its execution until readable becomes true.

It does this by invoking the wait method inside the getData method. The thread will return to the

runnable state when a thread that invoked the setData method issues an invocation to notify or

notifyAll. A similar modification has to be made to the thread that invokes the setData method.

Synchronizing the setData and getData methods also prevents another facet of the pro-

ducer-consumer problem from occurring: deadlock. Deadlock occurs when two or more threads,

which share resources, are all waiting for each other to complete and none of them can proceed.

The situation is analogous to north bound and east bound cars at the stop signs of an intersection

with their drivers waiting for each other to proceed, or north and south bound cars are waiting for

each other at a one lane bridge. To see when this would occur in non-synchronized methods, let

us once again consider the case when the code fragment of the getData method shown on the

right side of Figure 14.18 has just completed line 3, setting writeable to true. If at this point,

the setData method was allowed to execute and run to completion, line 4 of the method would

set writeable back to false. After the method ended, the getData method would continue its

execution at line 4, and readable would be set to false. Now both writeable and readable

are false and neither method can execute.

NOTE
When writeable data is being shared between two or more threads, the access to the

data must be synchronized.

Synchronized Methods

Methods are declared synchronized by including the keyword synchronized in their signa-

ture. The execution of a class’s synchronized methods is mutually exclusive, and a lock analogy is

used to explain the transfer of execution from one synchronized method to another.

One lock is shared by all of the synchronized methods, and initially it is available to all of the

synchronized methods. When a synchronized method is invoked by a thread, it must first acquire the

lock for it to begin execution. Once acquired, the lock effectively locks out all invocations of other

synchronized methods issued by threads. When an invocation is issued by a thread and the lock is not

available (i.e., another synchronized method has previously acquired the lock), the thread enters the

waiting state until the method in execution surrenders the lock. A method implicitly surrenders the

lock when it invokes the wait method, the notify method, or the notifyAll method.

The Synchronized Buffer Class SynchronizedBuffer

The class SynchronizedBuffer, shown in Figure 14.19, is the thread safe version of the class

Buffer presented in Figure 14.9. It uses synchronized methods and other concepts discussed in

 Chapter 14· Mult i threading and Concurrency ■ 663

this section to eliminate the producer-consumer problems resulting from the use of the Buffer

class by the application PCThreadProblems (Figure 14.15).

The SynchronizedBuffer’s revised setdata and getData methods begin on lines 12 and

31 of Figure 14.19, respectively. Their signatures include the keyword synchronized, which de-

clares them to be synchronized methods and making their executions mutually exclusive. Lines

25–27 of the setData method and lines 45–47 and line 49 of the getData method are analogous

to lines 3–5 on the left and right sides of Figure 14.18, respectively. This is the portion of the meth-

ods that access the shared buffer and reverse the truth values of the Boolean variables writeable

and readable declared on lines 4 and 5 of Figure 4.19.

The while statements at the beginning of these methods (lines 16 and 36), use the variables

writeable and readable in their Boolean conditions. When these variables are false, the

methods place themselves in the waiting state by invoking the wait method (lines 18 and 38). This

prevents the return statement on line 49 from being unreachable, and also surrenders the lock.

The variable readable is initialized to false on line 5. This guarantees that if a consumer

thread executes before a producer thread and the getData method acquires the lock, it will ex-

ecute the wait statement on line 38, surrender the lock, and enter the waiting state. Then, when

a producer thread executes and invokes the setData method, the method can acquire the lock.

Because writeable is initialized to true on line 4, the producer method’s execution proceeds to

completion (lines 25–28) producing a data item, reversing the truth values of the Boolean variables,

and finally invokes notifyAll to surrender the lock.

After notifyAll is invoked, the consumer task will reenter the runnable state, and its pend-

ing invocation of getData can reacquire the lock. Because the setData method set readable to

true, the getData proceeds to completion. Before it ends, it reverses the truth value values of the

Boolean conditions, invokes notifyAll, and returns the consumed data item its invoker.

Instead of the getData method returning the buffer’s data item sharedData on line 49, it

returns the contents of the local variable dataItem. This local variable was assigned shared-

Data's value on line 47. This is done because the invocation to notifyAll has to be coded before

the return statement on line 49, or it will be unreachable. Here's the problem: once notifyAll

is invoked, the producer thread could execute and invoke the setData method. Because write-

able has already been set to true (line 45) the setData method will execute to completion and

overwrite the contents of the variable sharedData before line 49 executes. If this happened and

line 49 returned the variable sharedData, the new data item written would be returned, and a data

item would be lost. By returning the variable dataItem, the getData method correctly returns

the potentially overwritten data item.

1 public class SynchronizedBuffer

2 {

3 int sharedData;

4 private boolean writeable = true;

5 private boolean readable = false;

6

664 ■ Programming Fundamentals Using Java

7 public SynchronizedBuffer()

8 {

9

10 }

11

12 public synchronized void setData(int dataItem)

13 {

14 try

15 {

16 while(writeable == false)

17 {

18 wait();

19 }

20 }

21 catch(InterruptedException e)

22 {

23 }

24

25 sharedData = dataItem;

26 writeable = false;

27 readable = true;

28 notifyAll();

29 }

30

31 public synchronized int getData()

32 {

33 int dataItem;

34 try

35 {

36 while(readable == false)

37 {

38 wait();

39 }

40 }

41 catch(InterruptedException e)

42 {

43 }

44

45 writeable = true;

46 readable = false;

47 dataItem = sharedData;

48 notifyAll();

49 return dataItem;

50 }

51 }

Figure 14.19

The class SynchronizedBuffer.

In the interest of completeness, the changes to the original Producer and Consumer classes

(presented in Figures 14.13 and 14.14) necessary for them to share data via an instance of the class

 Chapter 14· Mult i threading and Concurrency ■ 665

SynchronizedBuffer are given as highlighted lines of code in Figures 14.20 and 14.21. Aside

from their class names being changed to ProducerV2 and ConsumerV2, the only changes to

these classes are the substitutions of the SyncronizedBuffer class’s name for the Buffer class’s

name. One similar highlighted substitution was made on line 8 of the application PCThreadSync

presented in Figure 14.22, which is a modification of the application PCThreadProblems pre-

sented in Figure 14.15.

A typical output produced by the application PCThreadSync is given in Figure 14.23. As

shown in the two-line summary at the bottom portion of the figure, the synchronization techniques

incorporated into the shared buffer object have resulted in every produced data item (the integers

1 through 10) being consumed once and only once.

1 import java.util.Random;

2

3 public class ProducerV2 implements Runnable

4 {

5 private SynhronizedBuffer sharedData;

6 private Random delay = new Random();

7

8 public ProducerV2(SynhronizedBuffer sharedData)

9 {

10 this.sharedData = sharedData;

11 }

12

13 public void run()

14 {

15 for(int i = 1; i <= 10; i++)

16 {

17 try

18 { //simulate data processing

19 Thread.sleep(delay.nextInt(10) + 1);

20 }

21 catch(InterruptedException e)

22 {

23 }

24 sharedData.setData(i);

25 System.out.println("Produced " + i);

26 }

27 }

28 }

Figure 14.20

The class ProducerV2 using a SynchronizedBuffer object.

1 import java.util.Random;

2

3 public class ConsumerV2 implements Runnable

4 {

666 ■ Programming Fundamentals Using Java

5 private SynhronizedBuffer sharedData;

6 private int[] timesConsumed = new int[10];

7 private boolean[] consumedData = new boolean[10];

8

9 public ConsumerV2(SynhronizedBuffer sharedData)

10 {

11 this.sharedData = sharedData;

12 }

13

14 public void run()

15 {

16 Random delay = new Random();

17 int dataItem;

18

19 for(int i = 1; i <= 10; i++)

20 {

21 try

22 {

23 Thread.sleep(delay.nextInt(10) + 1); //simulate data fetch

24 }

25 catch(InterruptedException e)

26 {

27 }

28 dataItem = sharedData.getData();

29 System.out.println("Consumed " + dataItem + " <---");

30

31 //record consumed statistics

32 consumedData[dataItem - 1] = true;

33 timesConsumed[dataItem - 1]++;

34 }

35 outputConsumedSummary();

36 }

37

38 private void outputConsumedSummary() //output final statistics

39 {

40 try

41 {

42 Thread.sleep(5000);

43 }

44 catch(InterruptedException e)

45 {

46 }

47 System.out.print("Consumed data: ");

48 for(int i = 1; i <= 10; i++)

49 {

50 if(consumedData[i-1] == true)

51 {

52 System.out.print(" " + i);

53 }

 Chapter 14· Mult i threading and Concurrency ■ 667

54 }

55 System.out.print("\nTimes consumed:");

56 for(int i = 1; i <= 10; i++)

57 {

58 if(consumedData[i-1] == true)

59 {

60 System.out.print(" " + timesConsumed[i-1]);

61 }

62 }

63 }

64 }

Figure 14.21

The class ConsumerV2 using a SynchronizedBuffer object.

1 import java.util.concurrent.ExecutorService;

2 import java.util.concurrent.Executors;

3

4 public class PCThreadSync

5 {

6 public static void main(String[] args)

7 {

8 SynchronizedBuffer aBuffer = new SynchronizedBuffer();

9

10 ProducerV2 producerThread = new Producer V2(Buffer);

11 ConsumerV2 consumerThread = new Consumer V2(aBuffer);

12

13 ExecutorService launcher = Executors.newCachedThreadPool();

14 launcher.execute(producerThread);

15 launcher.execute(consumerThread);

16

17 launcher.shutdown();

18 }

19 }

Figure 14.22

The application PCThreadSync.

Produced 1

Consumed 1 <---

Consumed 2 <---

Produced 2

Consumed 3 <---

Produced 3

Produced 4

Consumed 4 <---

Produced 5

Consumed 5 <---

Produced 6

668 ■ Programming Fundamentals Using Java

Consumed 6 <---

Produced 7

Consumed 7 <---

Produced 8

Consumed 8 <---

Produced 9

Produced 10

Consumed 9 <---

Consumed 10 <---

Consumed data: 1 2 3 4 5 6 7 8 9 10

Times consumed: 1 1 1 1 1 1 1 1 1 1

Figure 14.23

The output produced by the application PCThreadSync.

One remaining issue concerning the output that is revealed in the first two highlighted lines

output at the top portion of the Figure 14.23 should be discussed. Based on these outputs, it appears

that data item 2 was consumed before it was produced. This was not the case.

What actually happened was that after data item 2 was produced by the producer thread’s sec-

ond invocation of the setData method (line 24 of Figure 14.20) and the setData method invoked

notifyAll on line 28 of Figure 4.19, the consumer thread was brought from the waiting state to

the runnable state. At that point, the producer thread’s time quantum must have expired before line

25 of Figure 14.20 could execute and produce its output: Produced 2.

The next time quantum must have been awarded to the consumer thread, and its invocation

of the getData method on line 28 of Figure 14.21 ran to completion consuming data item 2. The

consumer thread’s time quantum still had not expired, so line 29 of Figure 14.21 executed produc-

ing the puzzling output: Consumed 2.

When the producer thread was finally awarded a CPU time quantum, it continued where it

left off when its previous time quantum had expired and executed line 25 of Figure 14.20, produc-

ing the output Produced 2. It was not the process of consuming and producing that was reversed;

rather, it was the outputs that announce these events that were reversed. No data was lost. This

same set of events occurred after data item 3 was produced, as evidenced by the third and fourth

highlighted lines in Figure 14.23.

The remedy would be to perform the output inside of the synchronized methods setData

and getData. This was purposely not done in order to reinforce the point that tasks (such as these

output tasks) that need to be synchronized should be implemented inside synchronized methods

and to illustrate the uncertainty of two sequential instructions executing without interruption in a

multithreaded application.

 14.5.2 14.5.2 The API ArrayBlockingQueue Class The API ArrayBlockingQueue Class

The API generic class ArrayBlockingQueue can be used as a producer consumer buffer.

It is a synchronized thread safe implementation of a queue, which means that the solutions to the

producer-consumer problems discussed in this chapter have been incorporated into the class.

 Chapter 14· Mult i threading and Concurrency ■ 669

A queue is a collection whose elements are maintained in a first-in-first-out order, which

makes instances of this class well suited for use as a producer-consumer buffer. The first data item

added to the buffer is the first item returned (and removed) from the buffer. The buffer stores refer-

ences to objects because the class is a generic class. An instance of this class effectively performs

all of the synchronization functionality of instances of the class SynchronizedBuffer shown in

Figure 14.19.

The class’s constructor is passed an integer parameter, which is the maximum number of el-

ements that can be stored in the buffer at one time. The buffer is actually an array of reference

variables, and this array-based queue is implemented as a circular queue. When used as a producer-

consumer buffer, it is usually more efficient to increase the size of the buffer (the array) beyond one

element, especially when the time between productions and consumptions can vary by a signifi-

cant amount of time, because the producer and the consumer tasks do not have to alternate. That is,

the producer could produce several items while the consumer is processing the first item.

The class’s put method is invoked by the producer thread to add a data item, passed to it, to the

rear of the queue. When the put method is passed a primitive value, the value is autoboxed before

being added to the buffer. If the buffer is full when the put method is invoked, the method waits

until an element becomes available (i.e., an item is consumed), and then the new item is added to

the buffer.

The class’s take method is invoked by the consumer thread to fetch a data item's address from

the front of the queue and remove it from the buffer. If the buffer is empty when it is invoked, the

method waits until an object is added to the buffer (i.e., an item is produced), and then its address

is returned and deleted from the buffer.

The application PCThreadSyncAPI, shown in Figure 14.24, is a modified version of the syn-

chronized producer-consumer multithreaded application presented in Figure 14.22. This version

uses an instance of the API ArrayBlockingQueue as a data buffer. Figure 14.25 shows a typical

output produced by its producer and consumer threads, which are now instances of the classes

shown in Figures 14.26 and 14.27.

The changes to the application class shown in Figure 14.22 are highlighted in Figure 14.24.

They include the change to declaration of the shared buffer object on lines 9 and 10, and the

changes to the names of the producer and consumer classes on lines 11 and 12. The invocation of

the constructor on line 10 is passed an Integer type argument because the buffer will store au-

toboxed integers. It is also passed a buffer size of one to make the application consistent with the

application shown in Figure 14.22.

The producer and consumer classes shown in Figures 14.20 and 14.21 have been modified to

reflect the change in the class of the shared buffer object. The modified versions of these classes

are shown in Figures 14.26 and 14.27 and have been renamed ProducerV3 and ConsumerV3. The

type of the shared buffer object declared on line 6 of these classes has been changed to the Array-

BlockingQueue, as has the type of their constructors' parameter (lines 9 and 10 in Figures 14.26

and 14.27, respectively).

670 ■ Programming Fundamentals Using Java

Line 21 of the ProducerV3 class invokes the ArrayBlockingQueue class’s put method to

add a data item to the buffer, and line 25 of the ConsumerV3 class invokes the class’s take method

to fetch a data item from the buffer. The data item address returned from the take method is co-

erced into the Integer reference variable dataItem declared on line 18 of the consumer thread’s

class because the take method is generic and its returned type is Object.

The application does not include an implementation of a synchronized buffer class. That imple-

mentation was done for us by the author of the API ArrayBlockingQueue class.

1 import java.util.concurrent.ExecutorService;

2 import java.util.concurrent.Executors;

3 import java.util.concurrent.ArrayBlockingQueue;

4

5 public class PCThreadSyncAPI

6 {

7 public static void main(String[] args)

8 {

9 ArrayBlockingQueue <Integer> aBuffer;

10 aBuffer = new ArrayBlockingQueue <Integer> (1);

11 ProducerV3 producerThread = new ProducerV3(aBuffer);

12 ConsumerV3 consumerThread = new ConsumerV3(aBuffer);

13

14 ExecutorService launcher = Executors.newCachedThreadPool();

15 launcher.execute(producerThread);

16 launcher.execute(consumerThread);

17

18 launcher.shutdown();

19 }

20 }

Figure 14.24

The application PCThreadSyncAPI.

Produced 1

Consumed 1 <---

Produced 2

Consumed 2 <---

Consumed 3 <---

Produced 3

Produced 4

Consumed 4 <---

Produced 5

Consumed 5 <---

Produced 6

Consumed 6 <---

Produced 7

Consumed 7 <---

Produced 8

 Chapter 14· Mult i threading and Concurrency ■ 671

Consumed 8 <---

Consumed 9 <---

Produced 9

Produced 10

Consumed 10 <---

Consumed data: 1 2 3 4 5 6 7 8 9 10

Times consumed: 1 1 1 1 1 1 1 1 1 1

Figure 14.25

Output produced by the application PCThreadSyncAPI.

1 import java.util.Random;

2 import java.util.concurrent.ArrayBlockingQueue;

3

4 public class ProducerV3 implements Runnable

5 {

6 ArrayBlockingQueue <Integer> sharedData;

7 Random delay = new Random();

8

9 public ProducerV3(ArrayBlockingQueue <Integer> sharedData)

10 {

11 this.sharedData = sharedData;

12 }

13

14 public void run()

15 {

16 for(int i = 1; i <= 10; i++)

17 {

18 try

19 { //simulate data processing

20 Thread.sleep(delay.nextInt(10) + 1);

21 sharedData.put(i);

22 System.out.println("Produced " + i);

23 }

24 catch(InterruptedException e)

25 {

26 }

27 }

28 }

29 }

Figure 14.26

The class ProducerV3.

672 ■ Programming Fundamentals Using Java

1 import java.util.Random;

2 import java.util.concurrent.ArrayBlockingQueue;

3

4 public class ConsumerV3 implements Runnable

5 {

6 ArrayBlockingQueue <Integer> sharedData;

7 int[] timesConsumed = new int[10];

8 boolean[] consumedData = new boolean[10];

9

10 public ConsumerV3(ArrayBlockingQueue <Integer> sharedData)

11 {

12 this.sharedData = sharedData;

13 }

14

15 public void run()

16 {

17 Random delay = new Random();

18 Integer dataItem = 0;

19

20 for(int i = 1; i <= 10; i++)

21 {

22 try

23 {

24 Thread.sleep(delay.nextInt(10) + 1); //simulate data fetch

25 dataItem = (Integer) sharedData.take();

26 System.out.println("Consumed " + dataItem + " <---");

27 }

28 catch(InterruptedException e)

29 {

30 }

31

32 //record consumed statistics

33 consumedData[dataItem - 1] = true;

34 timesConsumed[dataItem - 1]++;

35 }

36 outputConsumedSummary();

37 }

38

39 private void outputConsumedSummary()

40 {

41 try

42 {

43 Thread.sleep(5000);

44 }

45 catch(InterruptedException e)

46 {

47 }

48 System.out.print("Consumed data: ");

49 for(int i = 1; i <= 10; i++)

 Chapter 14· Mult i threading and Concurrency ■ 673

50 {

51 if(consumedData[i-1] == true)

52 {

53 System.out.print(" " + i);

54 }

55 }

56 System.out.print("\nTimes consumed:");

57 for(int i = 1; i <= 10; i++)

58 {

59 if(consumedData[i-1] == true)

60 {

61 System.out.print(" " + timesConsumed[i-1]);

62 }

63 }

64 }

65 }

Figure 14.27

The class ConsumerV3.

 14.614.6 THE SYNCHRONIZED STATEMENT THE SYNCHRONIZED STATEMENT

The synchronized statement is an alternative way of synchronizing a thread’s access to a

shared data item, which in this case, must be an object. The statement begins with the keyword

synchronized, followed by a set of parentheses that enclose the thread’s name for the shared data

item, which is followed by a statement block as shown below:

 synchronized (sharedObject)

 {

 //one or more statements

 }

In order for a thread to execute the statements contained in the code block, it must acquire a lock

that Java associates with the shared object. If another thread has already acquired the lock, a thread

that unsuccessfully attempted to acquire the lock enters the blocked state, as shown in the lower

center portion of Figure 14.8. The lock is released when the synchronized statement block of the

thread with the lock completes its execution. At that point, all threads that entered the blocked state

because they could not acquire the shared object’s lock return to the runnable state.

A thread does not have to acquire the lock to execute the methods of the shared data object

when the invocation statement is not inside a synchronized statement’s code block. This implies

that the synchronized statement only restricts access to a shared data object’s methods when at least

two threads contain synchronized statements involving that object. In contrast, the synchronized-

method construct discussed in the previous section prohibits all threads from executing any of the

synchronized methods of an object until the threads acquire the object’s lock. An understanding

of this is fundamental to knowing how to use these two alternative synchronization features of the

Java language and the restrictions they impose.

674 ■ Programming Fundamentals Using Java

NOTE

Synchronized methods within a class cannot be executed concurrently, they are

mutually exclusive.

Similarly, a synchronized statement on a shared object prevents threads that con-

tain the same synchronized statement from concurrently executing the code block

associated with their statement. The code blocks are mutually exclusive.

The application SynchronizedStatement, shown in Figure 14.28, demonstrates the use of

the synchronized statement to produce an accurate count of the number of transactions made on

an ATM system that has two ATM locations. Each ATM machine’s transactions are processed by

a separate thread in this multithreaded application. When the total number of transactions made on

the ATM system reaches a maximum, which in the interest of brevity has been set to three, both

ATM machines on the system are shut down.

The two Runnable objects, created on lines 9 and 10 of the application, are instances of the

class AtmTransaction shown in Figure 14.29. When created, they are passed an instance of the

buffer class Counter (Figure 14.30) declared on line 8 of the application. The objects share the

Counter instance and use its methods to count the total number of transactions made on the ATM

system.

Figure 14.31 shows two sets of outputs produced by the program. The output on the left side

of the figure shows the two machines being shut down after three transactions have been made

on the system. The output on the right side of the figure exhibits a producer-consumer problem:

each ATM machine has performed three transactions for a total of six transactions. This output

was produced when the synchronized statement on line 18 of Figure 14.29 was eliminated from the

AtmTransactions class’s run method.

The loop that begins on line 14 of Figure 14.29 simulates the threads’ processing transactions

at the ATM machines with which they are associated. The synchronized code block that begins on

line 18 accomplishes the thread synchronization. When one of the ATM threads begins the code

block’s execution, the execution of the other thread in this class cannot proceed past line 18 until

the execution of the code block, which ends on line 28, is complete.

Lines 25–28 increments the transaction Counter object shared by the threads. Line 26 moves

the thread to the timed waiting state to simulate the thread’s time quantum expiring between the

fetching of the counter’s value (line 25) and the incrementing and setting of it (line 27). When the

thread’s wait time interval expires and it is granted another CPU time quantum, the current trans-

action count is incremented, set, and then output to the system console (lines 27 and 28). While

one ATM thread is in the timed waiting state, it still holds the lock on the shared data object, and

the other thread cannot enter the synchronized statement’s code block. This causes the sequence of

fetching, incrementing, and setting the shared data item to be uninterruptible. The code to actually

process a transaction (e.g., dispense funds) would replace the comment on line 34.

When the number of transactions performed on the ATM system reaches three, as determined

by the if statement on line 21, the break statement (line 23) ends the loop, and the shutdown

message is output by line 36. When the synchronized statement on line 19 is eliminated (i.e.,

 Chapter 14· Mult i threading and Concurrency ■ 675

commented out), the unsynchronized thread execution produces six transactions before the ATM

system is shut down, as shown on the right side of Figure 14.31. The line-by-line unsynchronized

execution sequence of the threads that produces the first two outputs (1 and 1) is shown in Figure

14.32. As the highlighted portions of the figure indicate, due to the simulated expiration of ATM

1’s time quantum (line 26 in the top-left portion of the figure), ATM 2’s thread is allowed to fetch

the counter’s value (line 25 in the top-right of the figure) before ATM 1’s thread can write the incre-

mented value to the shared counter (line 27 in the middle-left of the figure). The result is that each

ATM increments a count of 0 and outputs a 1 (middle-left and bottom-right portions of the figure).

1 import java.util.concurrent.ExecutorService;

2 import java.util.concurrent.Executors;

3

4 public class SynchronizedStatement

5 {

6 public static void main(String[] args)

7 {

8 Counter shared = new Counter();

9 AtmTransaction ATM1 = new AtmTransaction(shared);

10 AtmTransaction ATM2 = new AtmTransaction(shared);

11

12 ExecutorService launcher = Executors.newCachedThreadPool();

13

14 launcher.execute(ATM1);

15 launcher.execute(ATM2);

16

17 launcher.shutdown();

18 }

19 }

Figure 14.28

The application SynchronizedStatement.

1 public class AtmTransaction implements Runnable

2 {

3 private Counter shared;

4

5 public AtmTransaction(Counter shared)

6 {

7 this.shared = shared;

8 }

9

10 public void run()

11 {

12 int count;

13

14 while(true)

15 {

676 ■ Programming Fundamentals Using Java

16 //use of a synchronized statement

17 try

18 {

19 synchronized(shared) //increments the transaction counter

20 {

21 if(shared.getCounter >= 3) //reached transaction limit

22 {

23 break;

24 }

25 count = shared.getCounter();

26 Thread.sleep(10); //simulate end of time quantum

27 shared.setCounter(count + 1);

28 Counter.outputCounter();

29 }

30 }

31 catch(InterruptedException e)

32 {

33 }

34 //code to process a transaction would be coded here

35 }

36 System.out.println("An ATM is shutting down");

37 }

38 }

Figure 14.29

The class AtmTransaction.

1 public class Counter

2 {

3 private static int counter = 0;

4

5 public int getCounter()

6 {

7 return counter;

8 }

9

10 public void setCounter(int value)

11 {

12 counter = value;

13 }

14

15 public static void outputCounter()

16 {

17 System.out.println(counter);

18 }

19 }

Figure 14.30

The class Counter.

 Chapter 14· Mult i threading and Concurrency ■ 677

1

2

3

An ATM shutting down

An ATM shutting down

With Synchronization

1

1

2

2

3

An ATM shutting down

3

An ATM shutting down

Without Synchronization

Figure 14.31

Output produced by the application AtmTransaction.

ATM 1 Thread

Lines 15-21

Line 25 count = 0 = shared.getCounter();

Line 26 Entered timed waiting state

Line 27 shared.setCounter(0 + 1);

Lines 28 Output: 1

Lines 15-21

Line 25 count = 1 = shared.getCounter();

Line 26 Enter timed waiting state

ATM 2 Thread

Lines 15-21

Line 25 count = 0 = shared.getCounter();

Line 26 Entered Timed waiting state

Line 27 shared.setCounter(0 + 1);

Lines 28 Output: 1

Figure 14.32

SynchronizedStatement’s thread-execution sequence when the synchronized statement is eliminated from the

AtmTransaction class.

NOTE

Synchronized statements are used inside of classes that extend Runnable to syn-

chronize the invocations of a shared object’s methods.

Synchronized methods are used inside a shared object’s class to synchronize invo-

cations to the shared object’s methods.

 14.714.7 CHAPTER SUMMARY CHAPTER SUMMARY

Programs can be divided into a two or more independently executing parts called threads.

Threads are instances of a class that implements the interface Runnable or a class that extends

the class Thread (which implements the interface Runnable). These objects are typically created,

and their execution is initiated from within the program’s main method. Once initiated, their ex-

ecution begins with the first executable statement in their run method, whose signature is defined

678 ■ Programming Fundamentals Using Java

in the interface Runnable.

During the lifetime of a thread, which is the time between when the thread is created and when

it is terminated, it exists in one of six Java states named new, runnable, blocked, waiting, timed

waiting, and terminated. When a thread object is created, it enters the new state, and when it com-

pletes its execution, it enters the terminated state. The remainder of its lifecycle is spent in the other

four states. Threads that are in the runnable state can be assigned a quantum of execution time by

the operating system, and the algorithm used to assign threads in the runnable state a quantum

of commuting time is platform dependent. Events, such as performing input or output, can cause

threads to transition out of and back into the runnable state, as can invocations of the methods no-

tify, notifyAll, wait, and sleep.

Threads can share data and communicate with each other via the data members of an object,

which is referred to as a shared data buffer object. The address of the buffer object is passed to the

threads’ constructor when they are created, and the threads access the data using the buffer class’s

set and get methods or equivalent methods. When the shared data is writeable, such as in the

producer-consumer problem, a variety of problems can develop that do not occur in single threaded

applications. The Java synchronized method construct and Java’s synchronized statement can

be used to avoid these problems.

When the set and get methods are coded as synchronized methods, and a thread attempts

to initiate their execution before a previously initiated execution of them is completed, the thread

is removed from the runnable state and placed in the waiting state. The thread is returned to the

runnable state when the set or get method in execution issues an invocation to the notify or no-

tifyAll method at the end of its execution. When the synchronized statement is used, the threads

sharing the buffer object place their invocations of the set and get methods inside the synchro-

nized statement’s code block. When a thread’s execution path attempts to execute the statements

within the code block while another thread’s synchronized statement’s code block is in execution,

the thread is moved from the runnable state to the blocked state. It is returned to the runnable state

when the processing performed by the statements in the code block of the synchronized statement

in execution is completed.

An instance of an API class that is designated to be thread safe can be used as a data buffer

object to share data among threads in a safe, problem-free way. The generic class ArrayBlock-

ingQueue, which is part of the collections framework, is thread safe. When a buffer object in this

class is shared by two or more producer and consumer threads the producer threads are blocked

from overwriting objects in the buffer that have not been consumed, and the consumer threads are

blocked from fetching objects from the buffer that have not been produced or have been previously

consumed. In addition, the buffer can be specified to hold more than one item, which can improve

the performance of a producer-consumer application.

Knowledge ExercisesKnowledge Exercises

 1. True or False:

 a) All Java programs contain at least one thread.

 Chapter 14· Mult i threading and Concurrency ■ 679

 b) Programs with multiple threads must be run on a system that has more than one CPU.

 c) The scheduling algorithm used to assign a CPU to a thread is platform dependent.

 d) Two threads can never be in execution at the same time.

 e) A thread’s class must implement the Java API class Runnable.

 f) The method start can be used to initiate the execution of a thread.

 g) A thread’s class does not have to contain a method named run.

 h) Once a thread begins its execution, it always continues to execute until it completes its

execution.

 2. If you wanted a thread to output the message Thread1 is executing as soon as it begins

executing, where would you code the output statement?

 3. Give the states a Java thread can be in during its lifetime.

 4. In which state must a Java thread be for it to receive a quantum of execution time?

 5. Give the method(s) invoked to place a thread in the waiting state.

 6. Give the method(s) invoked to place a thread in the timed waiting state.

 7. Give two ways a thread could enter the waiting state.

 8. Give two ways a thread could enter the blocked state.

 9. True or false:

 a) A thread can place itself into the waiting state.

 b) A thread can remain in the waiting state indefinitely.

 c) When a thread leaves the blocked state, it enters the waiting state.

 d) A thread can be in two states at the same time.

 e) A thread in the terminated state can return to the runnable state.

 f) After a thread’s execution is initiated, it enters the new state.

 g) Once a thread leaves the runnable state, it cannot return to that state.

 h) The invocation wait(3) places a thread in the timed waiting state for three seconds.

 10. Give the code to:

 a) Create and initiate the execution of a thread whose class Output extends the class

Thread.

 b) Create and initiate the execution of a thread whose class Input implements the interface

Runnable.

 c) Accomplish Exercise 9c using an executor service.

 11. Explain the producer and consumer problem and some of the solutions to it.

 12. Define the term thread safe in the context in which it is used in the API documentation.

 13. Give the two features of Java that can be used to synchronize the access to a shared buffer

object.

680 ■ Programming Fundamentals Using Java

 14. True or false:

 a) A producer thread reads data from a shared buffer.

 b) If threads sharing a data item only fetch its value, there is no need to synchronize access to

it.

 c) All of the API classes are thread safe.

 d) The API class ArrayBlockingQueue is thread safe.

 e) When a class that is thread safe is used to share data among threads, deadlock cannot

occur.

Programming ExercisesProgramming Exercises

In the following exercises, do not use an API class to share data between threads unless explicitly

told to do so.

 1. Give a thread safe invocation of the getY method on the shared buffer object xyLocation that

is an instance of a non-thread safe class.

 2. A thread safe class can be used to share its string data member title among concurrent

threads. Give the code of the class’s setTitle method.

 3. Write a program that creates and launches a thread that outputs the string Happy Birthday

Nadia a given number of times to the system console, one output per line. The number of times

to perform the output will be input by the program user via a message dialog box and passed

to the thread class’s one-parameter constructor.

 4. Write a program that creates and launches two threads that output their names a given number

of times to the system console, one output per line. Their names and the number of times to

output their names will be input by the program user via a message dialog box and passed to

the thread class’s two-parameter constructor. The two threads should be instances of the same

class and launched after all the user I/O is complete. Use the program to demonstrate, via the

program’s output, that threads share a CPU’s computing time.

 5. Repeat Exercise 2, but this time, the threads should be instances of two different classes, and the

thread that produces the most output should complete its output before the other thread begins

its output, regardless of the order in which the threads are launched. Verify the correctness of

your program when one of the threads produces a large amount of output by reversing the order

in which the threads are launched.

 6. Write a program that computes and outputs two terms of the Fibonacci sequence whose term

numbers are input by the program user, each term being calculated concurrently by a separate

thread. After accepting the two inputs, the application will create and launch the threads.

The thread class should invoke the recursive method given below to perform the calculation.

Use the program to discover a set of inputs that causes the first thread launched to complete

its execution first and a set of inputs that causes the second thread launched to complete its

execution first.
 public static long fibonacci(long n)

 {

 if(n==1 || n==2)

 Chapter 14· Mult i threading and Concurrency ■ 681

 {

 return 1;

 }

 else

 {

 return(fib(n-1) + fib(n-2));

 }

 }

 7. Write a program that repeatedly asks the user to enter an integer via a message box and outputs

the integer to the system console, until the user enters -1. The input and output should be

performed by two separate threads. After each output, the output thread should enter the timed

waiting state for a random amount of time between 1 and 20 seconds. Examine the output to

be sure that every number input is output when you enter the inputs as rapidly as possible.

 8. Write a program that repeatedly computes and outputs the nth term of the Fibonacci sequence,

with the term number being input by the program’s user, until the user enters -1. The main

method will launch two threads: one that performs the input and another that calculates and

outputs the value of the term to the system console. Examine the output to make sure that there

is an output for every input when the term numbers are input as rapidly as possible and the term

numbers are in the range of 30–50. The calculation/output thread should invoke the method

given in Exercise 6 to compute the value of the Fibonacci term. Perform the synchronization

using synchronized methods in the buffer class.

 9. Repeat Exercise 8 using synchronized statements.

 10. Repeat Exercise 8 using an instance of the API ArrayBlockingQueue class as a shared data

buffer. The buffer should only hold one data item. Which approach is less work and therefore

more efficient?

 11. Repeat Exercise 10 using an instance of the API ArrayBlockingQueue class that can hold

four shared data items. Discover the range of Fibonacci term numbers for which this sized

buffer noticeably improves the program’s performance and explain why this is the case.

EnrichmentEnrichment

 1. Investigate classical synchronization problems such as the Dining Philosophers problem and

the Readers-Writers problem.

 2. Explore other thread synchronization techniques used in hardware or software.

 3. Find other examples of synchronization in everyday problems, such as accessing a shared

database.

 4. Look for other synchronization problems such as the Sleeping Barber problem and explain how

these are similar to problems presented in this chapter.

ReferencesReferences

Silberschatz, Abraham, et al. Operating System Concepts, 9th Ed. New York: John Wiley and Sons, 2013.

 A.1 A.1 OVERVIEW OF THE GAME ENVIRONMENT OVERVIEW OF THE GAME ENVIRONMENT

The game environment is comprised of the interface Drawable and the two classes Draw-

ableAdapter and GameBoard. To use the game environment in an application, the interface and

these two classes must be included as part of the application (see Appendix B).

Figure A.1 shows a Java application that displays the game environment’s window shown in Fig-

ure A.2. It assumes the game environment package edu.sjcny.gpv1 has been added to the system’s

CLASSPATH variable. If the alternate approach described in Appendix B and in the IDE Tools sub-

folder contained on the book’s DVD, which does not require a change in the system’s CLASSPATH

variable, was used to incorporate the game environment into the application’s project, the import state-

ment may not be necessary.

1 import edu.sjcny.gpv1.*; //May not be necessary

2 public class GameWindowDemo extends DrawableAdapter

3 {

4 static GameWindowDemo ga = new GameWindowDemo();

5 static GameBoard gb = new GameBoard(ga, "The Game's Title");

6

7 public static void main(String[] args)

8 {

9 showGameBoard(gb);

10 }

11 }

Figure A.1

The application GameWindowDemo that displays the game environment window.

As shown on line 2 of Figure A.1, game programs that use the game environment must extend

the class DrawableAdapter and declare a static class level in-

stance of the application’s class using the default (no-parameter)

constructor, as shown on line 4. Then, an instance of the class

GameBoard is declared, passing the constructor the class level

instance of the application’s class and the title of the game (line 5).

Finally, the showGameBoard method in the DrawableAdapter

class is invoked from within the main method (line 9) and passed

the GameBoard object declared on line 5. This method displays

the application’s window shown in Figure A.2.

AAPPENDIXAPPENDIX

DESCRIPTION OF THE DESCRIPTION OF THE

GAME ENVIRONMENTGAME ENVIRONMENT

Figure A.2

A game application’s window.

684 ■ Programming Fundamentals Using Java

The Game Window

As shown in Figure A.2, a game application’s window contains six buttons on its right side.

The large pink panel to the left of the buttons is called the game board. Game piece objects are dis-

played on the game board. The color of the game board can be changed by invoking the API Com-

ponent class’s setBackground method on the GameBoard object (declared on line 5 of Figure

A.1) and passing it the new board color (an instance of an API Color class object).

Timers and Timer Methods

In addition to the six buttons, a GameBoard object has three timers associated with it. These

begin ticking when the game’s player clicks the game window’s Start button, and they stop ticking

when the game window’s Stop button is clicked. The GameBoard class contains methods (subpro-

grams) that the programmer can invoke to stop and start a timer, and a method to change the rate

at which a timer ticks. These methods are invoked on the GameBoard object declared on line 5 of

Figure A.1. Section A.2.1 gives the signatures and a description of each of these methods. By de-

fault, the tick rates of the timers (named 1, 2, and 3) are once every second, once every half second,

and once every quarter second, respectively.

Each timer has a call back method, or subprogram, associated with it, which the game envi-

ronment invokes every time the timer ticks. The names of the methods, which are described in

Section A.2.3, are timer1, timer2, and timer3. The class DrawableAdapter contains empty

implementations of the methods. If the programmer includes (overrides) these methods in a game

program, the game environment will invoke (or “call back”) the programmer’s versions of the

methods after every tick of the timers. Java code placed inside of these methods can be used to

keep track of a game’s time and to animate objects on the game board.

Game Player Action Methods

There are eight other call back methods in the game environment, which are described in Sec-

tion A.2.3. Seven of these are invoked by the game environment when the game player performs

input actions common to most games. Four of these are associated with the game window’s left,

right, up, and down buttons, one is associated with the keyboard, and two are associated with

the mouse. Empty implementations of the methods are coded in the class DrawableAdapter. If

the programmer includes (overrides) these methods in a game program, the game environment

invokes (calls back) the programmer’s overridden version of the methods every time the game

player clicks a directional button, presses a keyboard key, or drags or clicks the mouse on the

game board.

The eighth call back method in this group of methods is associated with redrawing the game

window. It is called by the game environment every time the game window needs to be redrawn

(e.g., is minimized and then restored) and every time the seven game player input action call back

methods or the three timer call back methods complete their execution. An empty implementation

of this method is also included in DrawableAdapter class.

 Appendix A· Descript ion of the Game Environment ■ 685

Game Window Coordinate System

The game window has a Cartesian coordinate system associated with it as shown in Figure

A.3. The coordinate system’s origin is in the upper left corner of the game window, with the posi-

tive x direction to the right and the positive y direction downward. The height and width of the

top and left borders of the window place the upper left corner of the game board at (5, 30). The

game window can be sized by using the last two parameters of the game board’s four-parameter

constructor to specify the coordinates of the lower right corner of the game board, which defaults

to (500, 500).

a

x

y

x

y

x = 5
The coordinates of this point are used to
size the game board default is (500, 500)

y = 30

Start

Pause

/\

\/

< >

The Game's Title Is Displayed Here

(5, 30)

Figure A.3

The game environment coordinate system.

 A.2 A.2 DESCRIPTION OF THE GAME ENVIRONMENT’S DESCRIPTION OF THE GAME ENVIRONMENT’S
CLASS AND INTERFACECLASS AND INTERFACE

The game environment is comprised of two classes, named GameBoard and DrawableAdapt-

er, and one interface named Drawable.

 A.2.1A.2.1 The GameBoard Class The GameBoard Class

The class GameBoard contains two constructors. One creates a default-sized game board with

a programmer specified title, and the other adds the ability to create a game board and specify its

size. A game application must construct a static GameBoard object and pass it a static instance

of the application’s class (see lines 4 and 5 of Figure A.1). Assuming the static instance of the ap-

plication class was named ga, the following line of code creates the GameBoard instance gb with

a default game board size, 500 x 500 pixels:

 static GameBoard gb = new GameBoard(ga, "The Game's Title");

686 ■ Programming Fundamentals Using Java

The GameBoard object can be used within the game application class to invoke the class’s other

three methods that are used to set the time increment of any of the GameBoard object’s three tim-

ers and to start and stop these timers. The following invocation stops timer 2:

 gb.stopTimer(2);

Constructors

 public GameBoard(Object app, String windowTitle)

This method constructs a GameBoard object, defaulting to the coordinates of the lower right cor-

ner of the game board to (500, 500).

Parameters:

 app is an instance of the application’s class.

 windowTitle will be displayed as the title of the application’s window in its title bar.

 public GameBoard(Object app, String windowTitle,
 int xMaxValue, int yMaxValue)

 This method constructs a GameBoard object whose lower-right corner is specified by the last

two arguments passed to it.

Parameters:

app is an instance of the application’s class.

windowTitle will be displayed as the title of the application’s window in its title bar.

xMaxValue is the x-pixel coordinate of the lower-right corner of the game board.

yMaxValue is the y-pixel coordinate of the lower-right corner of the game board.

Methods

 public void setTimerInterval(int timerNumber, int interval)

 This method sets the interval of one of the game environment’s three timers. The default incre-

ments for the timers are 1000ms (1 second) for timer 1, 500ms (1/2 second) for timer 2, and

250 ms (1/4 second) for timer 3.

Parameters:

 timerNumber is the number of the timer (1, 2, or 3) whose interval is being set.

 interval is the time between ticks of the timer in milliseconds (e.g., 1000 = 1 second).

 public void startTimer(int timerNumber)

This method starts the timer whose number (1, 2, or 3) is passed to it. While the timer is tick-

ing, the timer’s call back method (timer1, timer2, or timer3) will be executed on each subse-

quent tick of the timer. Ticking is stopped when the game player clicks the game board’s Pause

button or when the GameBoard class’s stopTimer method is invoked. Ticking is restarted when

the Start button is clicked or this method is reinvoked.

 Appendix A· Descript ion of the Game Environment ■ 687

Parameters:

timerNumber designates the timer to be started: 1, 2, or 3.

 public void stopTimer(int timerNumber)

 This method stops the timer whose number (1, 2, or 3) is passed to it. After this method is

invoked, clicking the game board’s Start button will not restart the timer. The timer’s call back

method (timer1, timer2, or timer3) will not be executed until the timer is started again via

an invocation of the startTimer method, which will also reactivate the game board’s Start

button.

Parameters:

timerNumber designates the timer to be stopped: 1, 2, or 3.

 A.2.2A.2.2 The DrawableAdaper Class The DrawableAdaper Class

A game program’s class must extend the class DrawableAdaper (as on line 2 of Figure A.1).

It provides empty implementations of the eleven call back methods defined in the game package

interface Drawable. A description of these eleven methods is given in Section A.2.3. In addition,

it provides a method that displays an instance of a GameBoard object passed to it (line 9 of Figure

A.1).

Methods of the Class DrawableAdapter

 public static void showGameBoard(GameBoard gb)

 This method displays the game program’s window. Normally, it is invoked as the last statement

in the game program’s main method.

Parameters:

gb is the application’s GameBoard object.

 A.2.3A.2.3 The Interface Drawable The Interface Drawable

The interface Drawable defines eleven call back methods invoked by the game environment.

They are coded (as required) in the game application’s class (the class that contains the method

main). They are used to service various actions by the game’s player (e.g., a mouse click or drag,

a keystroke, or a button click), and to perform processing such as animation every time a game

environment’s timer ticks.

The call back method draw is invoked by the game environment when the game window has

to be redrawn (e.g., it is dragged to a new location) and after any of the other ten call back methods

complete their execution.

688 ■ Programming Fundamentals Using Java

Call Back Methods

public void draw(Graphics g)

 This method is invoked when the game application window is initially displayed or needs to

be redisplayed and each time one of the other ten call back methods complete their execution.

Parameters:

 g is an instance of the API class Graphics attached to the game board, which is passed into

this method when it is invoked by the game environment. It can be used to draw two-dimen-

sional shapes on the game board by invoking the methods in the Graphics class.

 public void timer1()

 This method is invoked every time timer 1 ticks. The timer ticking can be started or stopped

by invoking the GameBoard class’s startTimer and stopTimer methods, respectively. If

the timer is ticking, it is stopped whenever the Stop button in the game’s window is clicked and

restarted whenever the Start button in the game’s window is clicked.

 public void timer2()

 This method is invoked every time timer 2 ticks. The timer ticking can be started or stopped

by invoking the GameBoard class’s startTimer and stopTimer methods, respectively. If

the timer is ticking, it is stopped whenever the Stop button in the game’s window is clicked and

restarted whenever the Start button in the game’s window is clicked.

 public void timer3()

 This method is invoked every time timer 3 ticks. The timer ticking can be started or stopped

by invoking the GameBoard class’s startTimer and stopTimer methods, respectively. If

the timer is ticking, it is stopped whenever the Stop button in the game’s window is clicked and

restarted whenever the Start button in the game’s window is clicked.

 public void leftButton()

This method is invoked whenever the Left button in the game’s window is clicked.

 public void rightButton()

This method is invoked whenever the Right button in the game’s window is clicked.

 public void upButton()

This method is invoked whenever the Up button in the game’s window is clicked.

 public void downButton()

This method is invoked whenever the Down button in the game’s window is clicked.

 public void keyStruck(char key)

 This method is invoked whenever a key on the keyboard is struck. If the key is held down, the

method is continually invoked until the key is released.

 Appendix A· Descript ion of the Game Environment ■ 689

Parameters:

 key contains the upper case version of the character that was struck. The cursor control keys

return ‘L’, ‘R’, ‘U’ or ‘D’ when the left, right, up, or down arrows are struck.

 public void mouseClicked(int x, int y, int buttonPressed)

This method is invoked whenever a mouse button is clicked.

Parameters:

 x and y are the game board coordinates of the mouse cursor location at the time the mouse was

clicked.

 buttonPressed contains a 1 if the left mouse button was clicked or a 3 if the right mouse

button was clicked.

 public void mouseDragged(int x, int y)

This method is continually invoked while the mouse is being dragged.

Parameters

 x and y are the game board coordinates of the mouse cursor location at the time the method is

invoked.

The game environment can be easily used within the Eclipse, NetBeans, and JCreator IDEs with-

out changing the operating system’s CLASSPATH variable by following the IDE-specific directions

listed below. Alternately, the package edu.sjcny.gbv1, which is in the Package subfolder

of the Game Environment\Class, Package and JAR file folder on the DVD that

accompanies this text can be stored on your system and added to its CLASSPATH variable.

Then, the following import statement can be used to incorporate the game environment into

a game application:

 import edu.sjcny.gpv1.*;

NON-CLASSPATH ALTERING IDE-SPECIFIC INSTRUCTIONSNON-CLASSPATH ALTERING IDE-SPECIFIC INSTRUCTIONS

Eclipse IDE

Method 1: Import the Eclipse project template

 1. Create a folder and bring up Eclipse into that folder.

 2. Import the project EclipseGameTemplate7 into the folder.

 � Click File - Import – General - Existing Projects into Workspace – Next

 � Browse to the DVD folder:

 Game Environment\IDE Specific Tools\Eclipse\Workspace

 and click the EclipseGameTemplate7 template folder, then click OK

 � Check the box next to Copy Projects Into Workspace, then click Finish

 3. Open the project EclipseGameTemplate7 and add the program-specific code to it.

Method 2: Add the game environment JAR file or its classes to a new Eclipse project

Either the JAR file gameEnvironment.jar contained in the folder GameJAR or the

classes contained in the GameClasses folder can be added to any existing Eclipse project

and its build path. Both of these folders are in the Game Environment\IDE Specific

Tools\Eclipse subfolder on the DVD that accompanies this textbook. To add them to an

existing Eclipse project’s build path:

 1. Launch Eclipse in the existing project’s workspace

 2. Locate and copy the folder GameJAR or GameClasses

 3. Right click the project node in Eclipse’s Package Explorer view pane, then click Paste

 4. Right click the project node in the Package Explorer view pane, then click Properties - Java

Build Path - Libraries

 (a) To add the gameEnvironment.jar file, click “Add JAR’s…” and locate and check

the gameEnvironment.jar JAR file, click OK, click OK

BAPPENDIXAPPENDIX

USING THE GAME USING THE GAME

ENVIRONMENT PACKAGEENVIRONMENT PACKAGE

on the d
v
d

on the d
v
d

692 ■ Programming Fundamentals Using Java

 (b) To add the GameClasses folder, click “Add Class Folder” and locate and
check the GameClasses folder, click OK, click OK

NetBeans IDE

 1. Create a folder with a name relevant to the program being developed

 2. Copy the NetBeans project NBGameTemplate7 located in the Game Environment\IDE

Specific Tools\NetBeans subfolder on the DVD that accompanies this textbook

and paste it into the folder created in Step 1

 3. Open the project NBGameTemplate7 and add the program-specific code to it

JCreator IDE

Method 1

 1. Create a folder with a name relevant to the program being developed

 2. Copy the JCreator project JCGameTemplate7 located in the Game Environment\IDE

Tools\JCreator subfolder on the DVD that accompanies this textbook and paste it

into the folder created in Step 1

 3. Open the project JCGameTemplate7 and add the program-specific code to it

Method 2

 1. Create a JCreator project

 2. Copy and paste the folder edu (i.e., the package edu.sjcny.gpv1, contained in the

Game Environment\IDE Tools\JCreator subfolder on the DVD that accompanies

this book, into the project’s class folder

 3. Include the following import statement in the application:

 import edu.sjcny.gpv1.*;

Decimal Octal Hex Binary Char Description

000 000 000 00000000 NUL (null)

001 001 001 00000001 SOH (start of Heading)

002 002 002 00000010 STX (start of text)

003 003 003 00000011 ETX (end of text)

004 004 004 00000100 EOT (end of transmission)

005 005 005 00000101 ENQ (enquiry)

006 006 006 00000110 ACK (acknowledge)

007 007 007 00000111 BEL (audible bell)

008 010 008 00001000 BS (backspace)

009 011 009 00001001 HT (horizontal tab)

010 012 00A 00001010 LF (line feed, new line)

011 013 00B 00001011 VT (vertical tab)

012 014 00C 00001100 FF (form feed)

013 015 00D 00001101 CR (carriage return)

014 016 00E 00001110 SO (shift out)

015 017 00F 00001111 SI (shift in)

016 020 010 00010000 DLE (data link escape)

017 021 011 00010001 DC1 (device control 1)

018 022 012 00010010 DC2 (device control 2)

019 023 013 00010011 DC3 (device control 3)

020 024 014 00010100 DC4 (device control 4)

021 025 015 00010101 NAK (negative acknowledge)

022 026 016 00010110 SYN (synchronous idle)

023 027 017 00010111 ETB (end of trans. block)

024 030 018 00011000 CAN (cancel)

025 031 019 00011001 EM (end of medium)

026 032 01A 00011010 SUB (substitute)

027 033 01B 00011011 ESC (escape)

028 034 01C 00011100 FS (file separator)

029 035 01D 00011101 GS (group separator)

030 036 01E 00011110 RS (record separator)

031 037 01F 00011111 US (unit separator)

032 040 020 00100000 SP (space)

033 041 021 00100001 !

CAPPENDIXAPPENDIX

ASCII TABLEASCII TABLE

(Contd.)

694 ■ Programming Fundamentals Using Java

Decimal Octal Hex Binary Char Description

034 042 022 00100010 "

035 043 023 00100011 #

036 044 024 00100100 $

037 045 025 00100101 %

038 046 026 00100110 &

039 047 027 00100111 ‘

040 050 028 00101000 (

041 051 029 00101001)

042 052 02A 00101010 *

043 053 02B 00101011 +

044 054 02C 00101100 ,

045 055 02D 00101101 -

046 056 02E 00101110 .

047 057 02F 00101111 /

048 060 030 00110000 0

049 061 031 00110001 1

050 062 032 00110010 2

051 063 033 00110011 3

052 064 034 00110100 4

053 065 035 00110101 5

054 066 036 00110110 6

055 067 037 00110111 7

056 070 038 00111000 8

057 071 039 00111001 9

058 072 03A 00111010 :

059 073 03B 00111011 ;

060 074 03C 00111100 <

061 075 03D 00111101 =

062 076 03E 00111110 >

063 077 03F 00111111 ?

064 100 040 01000000 @

065 101 041 01000001 A

066 102 042 01000010 B

067 103 043 01000011 C

068 104 044 01000100 D

069 105 045 01000101 E

070 106 046 01000110 F

071 107 047 01000111 G

072 110 048 01001000 H

073 111 049 01001001 I

074 112 04A 01001010 J

 Appendix C· ASCII Table ■ 695

Decimal Octal Hex Binary Char Description

075 113 04B 01001011 K

076 114 04C 01001100 L

077 115 04D 01001101 M

078 116 04E 01001110 N

079 117 04F 01001111 O

080 120 050 01010000 P

081 121 051 01010001 Q

082 122 052 01010010 R

083 123 053 01010011 S

084 124 054 01010100 T

085 125 055 01010101 U

086 126 056 01010110 V

087 127 057 01010111 W

088 130 058 01011000 X

089 131 059 01011001 Y

090 132 05A 01011010 Z

091 133 05B 01011011 [

092 134 05C 01011100 \

093 135 05D 01011101]

094 136 05E 01011110 ^ (caret)

095 137 05F 01011111 _ (underscore)

096 140 060 01100000 `

097 141 061 01100001 a

098 142 062 01100010 b

099 143 063 01100011 c

100 144 064 01100100 d

101 145 065 01100101 e

102 146 066 01100110 f

103 147 067 01100111 g

104 150 068 01101000 h

105 151 069 01101001 i

106 152 06A 01101010 j

107 153 06B 01101011 k

108 154 06C 01101100 l

109 155 06D 01101101 m

110 156 06E 01101110 n

111 157 06F 01101111 o

112 160 070 01110000 p

113 161 071 01110001 q

114 162 072 01110010 r

115 163 073 01110011 s

(Contd.)

696 ■ Programming Fundamentals Using Java

Decimal Octal Hex Binary Char Description

116 164 074 01110100 t

117 165 075 01110101 u

118 166 076 01110110 v

119 167 077 01110111 w

120 170 078 01111000 x

121 171 079 01111001 y

122 172 07A 01111010 z

123 173 07B 01111011 {

124 174 07C 01111100 | (vertical bar)

125 175 07D 01111101 }

126 176 07E 01111110 ~ (tilde)

127 177 07F 01111111 DEL (delete)

Java Keywords

abstract default if private this

assert2 do implements protected throw

boolean double import public throws

break else instanceof return transient

byte enum3 int short try

case extends interface static void

catch final long strictfp1 volatile

char finally native super while

class float new switch

continue for package synchronized

1: added in version 1.2

2: added in version 1.4

3: added in version 5.0

DAPPENDIXAPPENDIX

JAVA KEY WORDSJAVA KEY WORDS

1 is highest precedence

Operator Description Precedence Operator Description Precedence

postfix operators 1 equality operators 7

++ postfix increment == is equal to

-- postfix decrement != is not equal to

unary operators 2 bitwise AND 8

++ prefix increment & bitwise AND

-- prefix decrement bitwise exclusive OR 9

+ leading plus ^ exclusive OR

- leading minus bitwise inclusive OR 10

! logical not | inclusive OR

~ Bitwise complement logical AND 11

multiplicative operators 3 && conditional AND

* multiplication logical OR 12

/ division || conditional OR

% remainder ternary 13

additive operators 4 ?: conditional

+ addition assignment 14

- subtraction = assignment

shift operators 5 += addition assignment

<< shift left -= subtraction assignment

>> shift right *= multiplication assignment

>>> unsigned shift right /= division assignment

relational operators 6 %= remainder assignment

< less than &= bitwise AND assignment

<= less than or equal to ^= bitwise exclusive OR assignment

> greater than |= bitwise inclusive OR assignment

>= greater than or equal to <<= bitwise left shift assignment

instanceof class comparator >>= bitwise right shift assignment

>>>= bitwise unsigned right shift assign

EAPPENDIXAPPENDIX

JAVA OPERATORS AND JAVA OPERATORS AND

THEIR RELATIVE THEIR RELATIVE PRECEDENCEPRECEDENCE

Abstract class A class that includes the keyword abstract in its signature and cannot be instantiated;

it is used during the design process to collect data members and methods common to several classes

Aggregated class A class that contains at least one data member that references an object

Aggregation The concept of referencing objects from a class’s data members

Algorithm A step-by-step solution to solving a problem or performing a task that a computer system

can execute

Applet A Java program that runs from within another program, which is typically a Web browser; it

has restrictions placed on its instruction set consistent with this execution mode’s need for enforced

security

Applet container program The program, typically a Web browser, within which an applet runs; the

container invokes the methods that are part of the applet’s lifecycle

Applet lifecycle The period of time that begins when an applet’s execution is initiated and ends when

it is terminated; during this time period, the applet’s container program invokes the applet methods

init, start, paint, stop, and destroy to manage its execution

Application Programming Interface (API) A collection of packages containing interfaces and im-

plementations of classes and data structures that can easily be incorporated into a Java program

Application software All non-operating system software, typically for use by human users

Argument A value passed to a method when it is invoked

Argument list A sequence of argument names separated by commas enclosed in a set of parentheses

Array An ordered collection of primitive or reference variables stored inside an object, which are

sequentially associated with an integer beginning with zero; arrays are an implementation of the

mathematical concept of subscripted variables

Array of objects An array of reference variables that contains the addresses of a set of instances of

the same class

ASCII Table A specific tabulation of characters and control characters and the bit patterns used to

represent them

Assignment The act of changing the contents of a variable

Atomic components Graphical user interface (GUI) components that cannot contain other compo-

nents, such as text fields and buttons; most of the program user’s interactions are with these com-

ponents

Autoboxing A context-sensitive feature of Java in which primitive literals or variables are replaced

with instances of wrapper classes that contain their values

Base case Part of the methodology of formulating recursive algorithms, which is a known or trivial

solution to the problem

Base class A class that is inherited from, also known as a parent or super class

Binary numbers A number system based on two, as opposed to the decimal system, which is based

on ten

FAPPENDIXAPPENDIX

USING THE GAME USING THE GAME

GLOSSARY OF PROGRAMMING TERMSGLOSSARY OF PROGRAMMING TERMS

702 ■ Programming Fundamentals Using Java

Bit A single unit of storage that can assume two states, which are referred to as off and on, or zero

and one or false and true

Boolean expression An expression involving relational and logic operators that evaluates to true

or false

Buffer Memory used to temporarily store data during program execution

Byte A set of eight contiguous (adjacent) bits, often used to represent a single character in the

Modern Latin (English) alphabet

Byte codes The translation of a program produced by the Java language translator into intermedi-

ate code

Central processing unit (CPU) Electronic circuitry that interprets and executes instructions; the

CPU can perform arithmetic and logic operations, has the ability to skip or re-execute instruc-

tions based on the truth value of a logic operation, and contains a limited amount of storage

called registers

Chain inheritance When the parent class of a class extends another class

Child class A class that inherits from (extends) another class; also known as a sub- or derived class

Class A collection of variables and methods; a blueprint for an object

Class-level variable A variable defined within a class but outside of a method’s code block

Cloning an object Creating a new instance of a class and (deep) copying the values of all of the

data members of an existing instance of the class into the new instance

Code block A set of instructions enclosed with a set of open and close braces, { }

Collection A data structure that is accessed without specifying a key

Collections Framework of the API Part of the API that contains generically implemented data

structures, methods that perform common operations on data elements, and a set of associated

interfaces

Computer system A set of electronic circuits, mechanical devices and enclosures, and instruc-

tions that these devices execute to perform a task

Concatenation The act of appending one string to another

Concurrency Executing several programs, or several parts of a program, at the same time

Constructor A method in a class that is used to create an instance of a class and return its address;

its name is the same as the class’s name

Consumer A process that expends data

Content pane The portion of a widow or other top-level container that holds the visible

components added to the container

Control of flow statement A statement that overrides the default sequential execution path of a

program, such as a decision statement, a repetition (loop) statement, or a subprogram invocation

Counting algorithm An algorithm that counts by adding an increment to, or subtracting a count-

ing increment from, the current value of a counter

Data members The variables defined within a class

Data structure An organization of data within memory to facilitate its processing from a speed

and memory requirements viewpoint

Deep comparison of two objects Comparing the values of one or more of the data members of an

object to the corresponding data members of another instance of the class

 Appendix F· Using the Game Glossary of Programming Terms ■ 703

Deep copy of an object Copying the values of one or more of the data members of an instance of

a class into the corresponding data members of another instance of the class

Derived class A class that inherits from (extends) another class; also known as a child or subclass.

Deserializing objects The act of reassembling objects after they are read from a disk file

Dialog box A predefined pop-up graphical interface used to pause a program’s execution until the

program user acknowledges a message or performs an input

Divide and conquer Expressing or defining a complicated entity as a set of less complicated

entities; for example, expressing the solution to a complex problem as the solutions to a set

of simpler problems, or defining the data members of a complex class to be instances of less

complicated classes

Dynamic binding Delaying the process of locating an invoked method until runtime

Dynamic programming A programming technique aimed at reducing execution time, which

avoids repetitive processing by saving and then reusing prior processing results

Element One of the variables contained in an array or one object contained in a data structure

Enumerated type A user defined type created within a Java program by specifying its type name

and allowable values within an enum statement

Event An asynchronous occurrence during a program’s execution that can be used to redirect the

execution path of a program

Event handler A method that is executed when an event occurs

Exception class The API class Throwable or a descendent of that class

Exception error message A string contained within an exception object that normally contains

descriptive error information

Exception object An instance of the API class Throwable, or one of its decedents, which can be

passed to a catch clause when an error is detected during the execution of a method

Exceptions A programming construct that promotes the reusability of methods by deferring the

decision as to what action to take when an error condition is detected to the invoker of the

method

Final class A class that cannot be a parent class; it cannot be extended

Flow chart A graphical representation of an algorithm

Fractal A mathematical or geometric object that has the property of self-similarity; that is, each

part of the object is a smaller or reduced copy of itself

General solution Part of the methodology of formulating recursive algorithms; it is a solution to

the original problem that uses the portion of the methodology known as the reduced problem

Generic class A class that contains generic methods and is coded in a way as to permit the type

of its data members to be specified when an instance of the class is created

Generic method A method that can perform its algorithm on any type of object passed to it

Generic parameter A parameter that can be passed an object of any type and whose type is speci-

fied using a type placeholder

Generic parameter list A list of the type placeholders, coded within a method’s signature, that

are used in the method’s parameter list

Generics A programming concept that promotes reusability by permitting the type of a method’s

parameters and returned value to be specified by the method’s invoker and permitting the type

of a class’s data members to be specified when an instance of the class is created

704 ■ Programming Fundamentals Using Java

Get method A method used to fetch the values of a class’s private data members

Graphical User Interface (GUI) A means of interacting with the program user via a point-and-

click mode, as opposed to a text-based mode, aimed at facilitating the I/O process

Hypertext Markup Language (HTML) A scripting language for writing instructions to be

downloaded and executed by a Web browser to build and display a Web page; the script can

contain instructions to download and execute a Java applet

Index The integer associated with a variable in an array

Inheritance A programming concept in which a new class can contain all of the data members

and methods of an existing class by simply including an extends clause in its heading

Inner class A class that is defined within another class

Input method A method normally named input that ordinarily permits the program user to input

the values of all of an object’s data members

Instance of a class A specific object in the class

Integrated Development Environment (IDE) A program used by a programmer to develop a

software product; it contains a collection of tools (e.g., a syntax checker, translator, editor, file-

management system) that facilitate the development process

Interface A Java construct used to specify the signatures of related methods that are implicitly

abstract and/or a declaration of public constants that are implicitly static and final

Iterator An object that can be used to perform time-efficient processing on all of the data ele-

ments contained in any data structure that imposes an ordering on its data elements

Java Development Kit (JDK) A set of tools used to develop Java programs; these tools include

the API classes, a debugger, a compiler, an interpreter, an applet viewer, a documentation gen-

erator, a disassembler, various linking, loading, and binding tools, and a runtime environment

Java Virtual Machine A virtual computer system whose programming language is Java byte codes

Key A value associated with a data element that can be used to refer to the element

Layout manager A predefined protocol for the sizing and positioning of components added to a

GUI container

Listener list An association of events and their event-handler methods that is part of a GUI com-

ponent object

Local variable A variable defined within a code block whose scope is limited to the instructions

within the code block

Loop A sequence of instruction that is repeated a specified number of times or until a Boolean

value becomes true or false

Map A set of data structures that associate a key with each data element stored in the structure;

the key can be used to specify the data element on which to operate

Menu mnemonic A menu shortcut key (hot key) associated with a terminal menu item

Methods The subprograms defined within a class, a sequence of instructions that perform a

particular task

Multidimensional array An array in which each variable of the array is associated with 2, 3, …

indices, for example an array of rows and columns

Multiple inheritance When a class inherits from more than one class; this is not supported in Java

Multitasking Executing several threads of an application at the same time or giving the impres-

sion that they are executing at the same time

 Appendix F· Using the Game Glossary of Programming Terms ■ 705

Nested loops Coding loops inside of loops

Nested statements Statements that are contained within another statement or another statement’s

statement block

Non-void method A method that returns a value, whose type is specified in the method’s signature

Object A particular occurrence of a class that contains all of the class’s non-static data members

Object oriented programming (OOP) An approach to programming (a programming paradigm)

aimed at facilitating the development of programs that deal with objects, such as starships,

people, or Web pages

One-dimensional array An array in which each variable of the array is associated with one index

Operating system software A program to manage the resources of a computer system and to

permit a user of the system to interact with it, usually via a point-and-click interface

Overloading methods The act of writing two or more methods in the same class that have the

same name but different parameter lists

Overriding a method Rewriting an inherited method using the exact same signature of the in-

herited method

Parallel arrays A use of multiple one-dimensional arrays in which the ith element of each array

is associated with the same entity; for example, if Mary’s age was stored in the second element

of one array, then the rest of Mary’s information would be stored in the second element of the

other arrays

Parameter A variable that can receive a value (an argument) passed to the method when it is

invoked

Parameter list A sequence of parameter names, each proceeded by its type, separated by com-

mas, and enclosed in a set of parentheses

Parent class A class that is inherited from, also known as a super or base class

Parsing The act of changing a string into a numeric; also the act of separating a string into its

component parts that are separated by a specified delimiter

Platform A particular CPU model and operating system

Platform independence The concept that the programmer’s translation of a program can be trans-

mitted to, and then run on, any computer system

Polymorphism The ability of one invocation to morph itself into an invocation of a parent’s ver-

sion of a method or any of its children’s versions of the method; rooted in the fact that a parent

reference variable can refer to an instance of a child class

Pop-up menu A space-saving alternative to a menu-bar-based drop-down menu that remains in-

visible until the user performs a platform-dependent mouse or keyboard action on a GUI com-

ponent

Precedence rules A specification of the order in which to perform a set of operations

Primitive variable A variable that can store a numeric value, a Boolean value, or one character;

the type used in its declaration is one of the primitive types

Primitive type The Java types byte, short int, long, float, double, char, and boolean

Priority queue A queue that associates a priority with each of its data elements; the elements as-

signed the highest priority are fetched and deleted (on a first-in-first-out basis) before those of

lower priority

706 ■ Programming Fundamentals Using Java

Private data member A data member of a class that cannot be directly accessed by methods that

are not part of the class; get and set methods are used to fetch and change their values

Producer A process that generates data

Pseudorandom numbers Apparent, but not truly, random numbers

Public data members Data members of a class that can be directly accessed by methods that are

not part of the class; they are accessed by coding their name preceded by either the name of an

instance of the class or the class name, followed by a dot

Queue A data structure in which the data elements are fetched and deleted on a first-in-first-out

basis

Random access memory (RAM) High-speed, high-cost storage physically located in close prox-

imity to the central processing unit

Recursion The act of defining something in terms of itself

Recursive method A method that invokes itself or initiates a sequence of method invocations that

eventually leads to an invocation of itself

Reduced problem Part of the methodology of formulating recursive algorithms, it is a problem

similar to the original problem, usually between the original problem and the base case, usu-

ally closer to the original problem, and (when progressively reduced) becomes the base case for

all versions of the original problem

Reference variable A variable that can store a memory address; the type used in its declaration

is the name of a class

Registering an event handler The act of associating an event-handler method with a particular

event that could be performed on a GUI component

Runtime the time during which the program is in execution

Scope of a variable or a method The range of a program’s instructions within which a variable

can be used or a method can be invoked

Sentinel loop A loop that ends on a particular value of the data it is processing or on a particular

user input; for example, a negative deposit

Serializing objects The act of disassembling objects before writing them to a disk file so they can

be recreated when they are read from the disk

Set methods Methods used to change the values of a class’s private data members

Shallow comparison Comparing the contents of one variable to the contents of another variable

using the equality (==) operator

Shallow copy Copying the contents of one variable into another using the assignment (=) operator

Shared buffer Memory used to temporarily share a data item among one or more threads

Show method A method named show that ordinarily outputs all of the data members of an object

or draws the object

Signature of a method The first line of a method’s code

Software engineer A computer professional that produces programs that are error free, within

budget, on schedule, and satisfy the customers’ current and future needs

States of a thread The six statuses a thread can assume from the time it is created to the time it

is terminated

Static data member A class’s data member that is designated to be shared by all instances of the

class by including the keyword static in its declaration

 Appendix F· Using the Game Glossary of Programming Terms ■ 707

Static method A method that is designated to be invoked by preceding the method name by the

method’s class name followed by a dot; they are intended to be methods that do not operate on

instances of the class

String A finite sequence of characters

Subclass A class that inherits from (extends) another class, also known as a derived or child class

Super class A class that is inherited from, also known as a parent or base class

Swapping algorithm An algorithm that swaps the values contained in two variables

Synchronized buffer A buffer whose access is managed in a way that imposes protocols of

proper access to the data on the threads that share the buffer

Syntax The rules for forming properly constructed program instructions; the grammar of a pro-

gramming language

Text file A file whose information is intended to be characters and is therefore interpreted using

the ASCII or Unicode tables; ordinarily the file extension .txt is appended to the file’s name

Thread An independent execution path through a program

Token A component part of a string that is terminated by a specified delimiter, for example, a

space

Tokenizing a string Extracting all of the tokens from a string

Top-level container The basic building block component of a graphical interface, which contains

the other GUI components that make up the interface

toString method A method named toString whose task is to return the string representation of

an object; ordinarily, the string contains the annotated values of all of an object’s data members

Totaling or summation algorithm An algorithm that computes the sum of a set of numeric val-

ues by repeatedly adding each value to the subtotal of the values in the set that preceded it

Type placeholder Any valid identifier that is not the name of a class used within the application

of which it is a part; a placeholder is used as a type of a generic parameter and can be used as

a returned type

Unboxing A context-sensitive feature of Java in which an instance of a wrapper class object is

replaced with the primitive value it contains

Unicode An expanded tabulation of characters and control characters and the bit patterns used to

represent them

Universal modeling language (UML) diagram A graphical representation of a class that speci-

fies the class’s name, data members, and the signatures of its methods; it is used to design a

class

Variable A named memory cell that can store a specific type of data item

Void method A method that does not return a value

Worker method A method that is invoked by another method to perform a specific task (work)

for it; for example, fetching the value of one of an object’s data members or drawing the object

Wrapper class An API class that contains non-static primitive data members of a particular type

The documentation of the Application Programing Interface (API) is available online. To access

it, you can Google: Java API documentation and click the link that begins with docs.oracle.com/

javase, such as the one shown below:

http://docs.oracle.com/javase/7/docs/api/

To quickly locate the documentation on a particular class, you can Google the class’s name and

then click the link to the class’s documentation. The following link was displayed after Googling Java

Math class:

http://docs.oracle.com/javase/7/docs/api/java/lang/Math.html

Clicking this link displays the information shown in Figure G.1, which is typical of the format of

the documentation for any class. As shown in the figure, the class name is at the top of the documenta-

tion. Below it is the package that is imported into a class to gain access to the API class and its methods.

This package name can be copied from the documentation and pasted into the class’s file just before its

class heading. It is preceded by the keyword import and followed by a semicolon.

Below the package name is the specification of the class’s access and inheritance details. In the

case of the Math class, this information indicates that the class’s access is public, the class is final

(which means it cannot be extended as a parent class), and its parent class is the class Object. Below

that is a general description of the class.

Below the general descriptive information is a Field Summary (Figure G.2), which is a tabulation

of the name and description of all of the data members contained in the class. This is followed by a

Method Summary, which is a tabulation of the names of each method in the class and their parameter

list followed a brief description of the method’s functionality.

To the left of each data member’s name in the Field Summary is its type, which may be preceded by

the key word static. Static data members are accessed by preceding their name with the name of the

class followed by a dot. To the left of each method’s name in the Method Summary is the method’s re-

turned type, which may be preceded by the key word static. Static methods are invoked by preceding

their name with the name of the class followed by a dot. Non-static methods are invoked by preceding

their name with the name of an instance of the class followed by a dot.

More detained documentation on a data member or a method can be displayed by clicking the name

of the data member in the Field Summary or the name of the method in the Method Summary. Figure

G.3 was displayed when the method name acos, shown at the bottom of Figure G.2, was clicked.

GAPPENDIXAPPENDIX

USING THE ONLINE API USING THE ONLINE API

DOCUMENTATIONDOCUMENTATION

710 ■ Programming Fundamentals Using Java

Class Name

Package to be imported

Class access and inheritance details General description

Figure G.1

The top portion of the online documentation of the Math class.

A data member followed by its description

The data member's type

and static designation

A method's name and parameter list

The method's returned type

and static designation

Figure G.2

The partial Field Summary and Method Summary of the API Math class.

 Appendix G· Using the Online API Documentat ion ■ 711

Figure G.3

Detailed documentation of the Math class’s acos method.

CHAPTER 1CHAPTER 1

 1. (b) The number of computers grew from 200 to 800 – a factor of 4

 3. Operating systems (such as: Windows. Linux or Apple OS X) are the instructions used by the computer system to

schedule tasks, to allocate memory and other system resources, to detect errors and to perform other computer system

functions. Application software is commonly used by the human user, while system software is used by the computer

system. Examples of application software include word processors, spreadsheets, mail readers, Web browsers, and

game programs.

 5. Both a and c are characteristics of secondary storage which is nonvolatile, has a very large capacity and is slower and

cheaper than RAM.

 7. (a) A device that is only used for output is a printer or a speaker.

 (c) Devices used for both input and output include touch screens, flash drives, floppy disks, and writable CDs, DVDs.

 9. The computer as we know it today was the work of many people over hundreds of years, beginning with the development

of early calculating machines: the abacus, the slide rule, Napier’s bones and the Pascaline. The modern computer was

based on the designs of Babbage, von Neumann, Mauchly, and Eckert. Lady Ada Lovelace and Grace Hopper were

pioneers in the field of programming languages. Metcalfe and Boggs, Cerf and Kahn and Berners-Lee connected

computers together into networks, the Internet and the World Wide Web, respectively.

 11. (b) loses its contents if power is interrupted.

 13. (c) chips, replacing the larger transistor circuits.

 15. (a) First programmer - Lady Ada Augusta Byron, the Countess of Lovelace

 (b) Inventor of the Java programming language – James Gosling

 17. Platform independence is the ability of software to run on any computer system or platform. Every manufacturer’s chipset

has its own unique machine language and therefore usually requires its own translating program to translate from source

code instructions to its machine language. Java achieves platform independence by compiling the source code instructions

into byte code, which is later translated on the end user’s computer into its own specific machine code.

 19. A class is a group of related data members and member methods. It is the template used to create an object. An object is

a particular instance of a class. From one class we can create an unlimited number of objects or instances of the class,

just as with a blueprint we can create many houses, or with a cookie cutter, we can create many batches of cookies.

 21. (a) CPU – central processing unit (c) I/O – input/output

 (e) JVM – Java virtual machine (g) GUI- graphical user interface

 23. (d) (5, 30) since it is 5 pixels to the left of the left boundary and 30 pixels below the top.

 25. (1) character data, (2) translated instructions, and (3) numeric data.

 27. (a) 01010011 = 83 in decimal (b) 00101111 = 47 in decimal

CHAPTER 2 CHAPTER 2

 1. (a) False, the contents of the variable may change but the data type does not

 (c) False (e) False

 3. A variable is a named memory cell that stores one data item that can change during program execution. Primitive

variables can store a single numeric data value, one character, or one Boolean truth value. Reference variables store

(RAM) memory addresses.

HAPPENDIXAPPENDIX

SOLUTIONS TO SELECTED ODD SOLUTIONS TO SELECTED ODD

KNOWLEDGE KNOWLEDGE EXERCISES EXERCISES

714 ■ Programming Fundamentals Using Java

 5. (a) boolean false (c) double 0.0

 7. Numeric literals, containing decimals such as 19.5, are assumed to be type double. If a numeric literal is to be

assigned to a float variable, the letter f for float, must be appended to the literal to inform the translator that a

loss of precision is acceptable, otherwise an error results. (This is a correct declaration float weight = 19.5f;)

 9. (a) System.out.println("Sara Larson");

 System.out.println("Smalltown, USA");

 (b) System.out.println("Sara Larson" + "\n"Smalltown, USA");

 11.

int distance = 675;

675

The String object at

memory address 1024

String myName = "Jane";

myName

"Jane"

distance 1024

 13. (a) 17 - 5 * 2 + 12 = 19 (c) (48 + 12) / 12 + 18 * 2 = 41

 (d) 21 - 9 + 18 + 4 * 3.7 = 44.8

 15. double average = ((double)(55 + 57 + 60)) / 3;

 17. (a) True (b) False, it is used for output

 (c) True (d) False, it would return the empty string ("")

 (e) True

 19. sBalance = JOptionPane.showInputDialog(" Type your current " + "checking account

balance");

 21. double deposit;

 deposit = Double.parseDouble(sDeposit);

CHAPTER 3CHAPTER 3

 1. (a) True (b) False, it is the method signature

 (c) False (d) False, this method returns a value

 3. (a) The signature of a method that does not operate on an object must contain the keyword static.

 (c) When we invoke a static method, we begin the invocation statement with the name of the class followed by a

dot.

 5. (a) True

 (c) False, the client method sends an argument into the worker method’s parameter

 (e) False, a method can only return a single value

 (g) False

 (h) False, value parameters

 7. The statement following the statement that invoked the method executes next.

 9. static double checkAmount;

 11. (a) drawRect (c) drawOval

 (e) fillOval, using the same value for the height and width

 13. (a) House is to object as blueprint is to class.

 (c) The name of the graphic used to specify a class is a UML diagram.

 (e) Member methods of a class are usually designated to have private access.

 15. (a) The address of the object joe

 Appendix H· Solut ions to Selected Odd Knowledge Exercises ■ 715

 (c)
45 joe

45

123 idNumb

age

21

Person joe = new Person();

 17. (a) public CoffeeCup(int size, double price)

 { this.size = size;

 this.price = price;

 }

 (b) CoffeeCup cup1 = new CoffeeCup(8, 3.85);

 (c) System.out.println(cup1);

 (d) System.out.println(cup1.tostring();

 (e) CoffeeCup@456af2 (the address, 456af2, will probably be different)

 (f) g.drawString(cup1.toString(), 200, 250);

 19. public void show(Graphics g)

 {

 g.drawString("size is: " + size, 250, 250);

 g.drawString("price is: " + price, 250, 280;

 }

20.

 5 5

18 x 9
 6 x 5

4

x

6

8 x 4

 21. This might be a typical response based on the model given in Exercise 20

Component Shape Shape’s X or

Line’s X
1

coordinate

Shape’s Y

Line’s

Y
1
 coordinate

Width Line’s

X
2
 coordinate

Height Line’s

Y
2
 coordinate

window rectangle x y 8 4

body rectangle x y 18 9

door rectangle x + 14 y + 2 4 6

cab rectangle x + 18 y + 4 6 5

rear tire circle x + 3 y + 8 5 5

front tire circle x + 11 y + 8 5 5

 23. (a) this.total = total * 2;

 (c) public void setTotal(int total)

 {

 this.total = total;

 }

716 ■ Programming Fundamentals Using Java

 (e) int currentTotal = myAccount.getTotal();

 myAccount.setTotal(currentTotal * 2);

 (g) public void toString()

 {

 System.out.println("The total is: " + total);

 }

 (i) private

 25. (a) static Starship largest(Starship ship1, Starship ship2);

 (b) ship1 = largest(ship1, ship2);

 (c) The new color.

 (d) public boolean sameModel(Starship ship1, Starship ship2);

 (e) isSame = sameModel(ship1, ship2);

CHAPTER 4CHAPTER 4

 1. (a) True (c) False (e) True

 3. Method invocations and control-of-flow (or control) statements, such as decision and loops, alter the execution

path.

 5. if (myBalance ==10.0)

 {

 System.out.println(myBalance);

 }

 else

 {

 System.out.println("my balance is not 10.0");

 }

 7. (a) True

 (c) True, although it can be empty

 (e) True

 (g) True

 9. (a) False, but it is good programming style to include a default statement

 (c) True

 (e) True

 (g) False, it can only be written as a switch statement if the selection statements are of the appropriate type

 11. if(item.equals("Hamburger"))

 {

 System.out.println("You ordered a Hamburger.");

 }

 else if(item.equals("Taco"))

 {

 System.out.println("You ordered a Taco.");

 }

 else if(item.equals("BLT"))

 {

 System.out.println("You ordered a BLT sandwich.");

 }

 else

 {

 System.out.println("You did not place a valid order.");

 }

 Appendix H· Solut ions to Selected Odd Knowledge Exercises ■ 717

 13. (a) Scanner consoleIn = new Scanner(System.in);

 System.out.println("Type the year of your birth: ");

 int birthYear;

 birthYear = consoleIn.nextInt();

 (b) Scanner consoleIn = new Scanner(System.in);

 String name;

 System.out.print("Enter your name: ");

 name = consoleIn.nextLine();

 15. (a) True (b) False (c) True

 17. (a) File fileObject = new File("e:/Dates.txt");

 Scanner fileIn = new Scanner(fileObject);

 int year;

 year = fileIn.nextInt();

 (b) File fileObject = new File("e:/Names.txt");

 Scanner fileIn = new Scanner(fileObject);

 String name;

 int age;

 age = fileIn.nextInt();

 fileIn.nextLine(); // to flush the buffer

 name = fileIn.nextLine();

 19. import java.io.*;

 public class DiskIO

 {

 public static void main(String[] args) throws IOException

 {

 double myBalance =2567.00;

 double yourBalance = 3876.25;

 new // if file exists it will be deleted

 FileWriter fileWriterObject = new FileWriter("c:/Balances.txt");

 PrintWriter fileOut = new PrintWriter(fileWriterObject, false);

 fileOut.println(myBalance + " " + yourBalance);

 fileOut.close();

 }

 }

21. inputfile.close();

CHAPTER 5CHAPTER 5

 1. (a) False, it is possible for a while loop body not to execute at all

 (c) True (e) False, it is a pretest loop

 (g) True (i) True

 (k) False, when the Boolean condition becomes false.

 (m) True, since the loop is never entered the loop control variable is not changed

 (o) True

 3. int n;

 int count =1;

 int sum =0;

 String instring;

 instring = JOptionPane.showInputDialog("Type a number: ");

718 ■ Programming Fundamentals Using Java

 n = Integer.ParseInt(instr);

 while(count <= n)

 {

 if (count % 2 ==0) //number is even

 {

 sum = sum + count;

 }

 count++;

 } //end while

 JoptionPane.showMessageDialog(null, "The sum of even integers " +

 "from 1 to " + n + " is " + sum);

 5. (a) The value of i is never equal to 20, so the loop never terminates.

 (b) Because the loop does not terminate the output statement after the loop is never reached and is not executed.

 7. (a) Output: 8, 5, 2, -1

 (b) for (int x = 8; x >= -1; x = x - 3)

 {

 System.out.println(x);

 }

 9. int trys = 0;

 int input;

 String sInput;

 do

 {

 trys++;

 sInput = JOptionPane.showInputDialog("Enter a number from 0 to 5");

 input = Integer.parseInt(sInput);

 if(input >= 0 && input <= 5)

 {

 JOptionPane.showInputDialog("Thanks for the valid input");

 break;

 }

 else

 {

 JOptionPane.showInputDialog("invalid input");

 }

 } while(trys < 3);

 11. (a) int randomNumber;

 Random randomObject = new Random(); // uses time of day

 for(int i=1; i<=20;, i++)

 {

 randomNumber = randomObject.nextInt(501));

 System.out.print(randomNumber);

 }

 (c) int randomNumber;

 int min =7;

 int max =500;

 Random randomObject = new Random(2468); // uses seed

 for(int i=1; i<=20;, i++)

 Appendix H· Solut ions to Selected Odd Knowledge Exercises ■ 719

 {

 randomNumber = min + randomObject.nextInt(500 – min + 1);

 System.out.print(randomNumber);

 }

CHAPTER 6CHAPTER 6

 1. (a) True (c) True

 (e) True (g) False, arrays can be multi-dimensional

 (i) True

 3. An array element is a reference variable, while a non-array element may be a primitive or a reference variable. An

array variable is able to store many elements, while a primitive variable only stores one. An array variable uses

square brackets ([]) and an index to indicate the position of an element in the array, while a non-array variable

does not.

 5. (a) True (c) False, gameScores[99]

 (e) False, 100 (g) System.out.println(gameScores[99]);

 (i) int total = 0;

 for(int i = 0; i < gameScores.length; i++)

 {

 total = total + gameScores[i];

 }

 System.out.println(total / gameScores.length);

 7. (a) 45 (c) 4

 (e) y[4] = y[4] + 20.5; (f) z = y[0] + y[1] +y[2];

 9. (a) String[] names = new String[50];

 double[] weights = new double[50];

 double[] targetWeights = new double[50];

 (c) for(int i = 0; i < names.length; i++)

 {

 if(names[i].equalsIgnoreCase("joe smith")

 {

 System.out.println(weight[i] + " " + targetWeight[i]);

 }

 }

CHAPTER 7CHAPTER 7

 1. (a) True (c) True

 (e) False, a deep copy (g) True

 3. A shallow comparison compares reference variables or the addresses of two objects to determine if they refer to

the same object or two different objects. A deep comparison compares the contents of the data members of two

objects to determine if they are the same.

 5. Explain the difference between a deep copy and a clone. A deep copy copies the values of the data members

of one object into the data members of another object, using the set method. When an object is cloned, a new

instance of the object’s class is created, and the values of all of an existing object’s data members are copied into

the corresponding data members of the new object. There are now two objects instead of one.

 7. if(s1 != s2)

 {

 System.out.println(" Two objects");

 }

720 ■ Programming Fundamentals Using Java

 9. (a) 6 (c) Hello everyone

 (e) Hello

 11. Aggregation is combining objects so that the instance of one class is a field in another class. It establishes a “has

a” relationship.

 13. Use the API BigInteger class to create a BigInteger object.

 BigInteger num1 = new BigInteger ("123456789101112133456789");

 15. Invoke the BigInteger multiply method on the BigInteger object. For example,

 BigInteger num1 = new BigInteger ("123456789101112133456789");

 BigInteger num2 = new BigInteger.valueOf(2);

 BigInteger largenum = num1.multiply(num2);

 17. (a) 2

 (b) CarColor favoriteColor = CarColor.BLUE;

 (c) System.out.println(CarColor.BLUE + " " + favoriteColor.ordinal());

 CHAPTER 8CHAPTER 8

 1. (a) False (c) True

 (e) False, constructors are not inherited (g) True

 (i) False, they are overloaded (k) True

 (m) False, all we need are the class’s byte codes

 3. Reduced coding time: a parent class can collect functionality and data members common to several classes into

one class so they need only be coded once in the parent class.

 Code reusability: A child can inherit all of the data members and methods of a previously developed class not

coded as part of its program, and then add methods and data members or overwrite methods that are not suited for

its applications.

 5. Public: Child classes and client code have direct access. Protected: Child classes have direct access but not client

code in a separate package. Private: Neither child classes nor client code have direct access.

 7. super.input();

 9. Declare the method to be final.

 11. When you wanted to expand its parameter list.

 13. An abstract class is used to collect all of the data members and methods that are common to two or more classes

that will make up a program. The classes simply extend it, and then add the data members and methods specific

to them to it.

 15. Transporter[] vehicles = new Transporter[200];

 17. An interface can contain the signatures of related methods that are implicitly abstract and/or declarations of public

constants that are implicitly static and final. An advantage of an interface is that any class that implements the

interface must implement all of the methods defined in the interface.

 19. Include the implements ManyMethods clause in the adapter class’s signature, and implement all 20 of the

methods defined in the interface with empty code blocks.

 CHAPTER 9 CHAPTER 9

 1. (a) True

 (c) False, usually the most difficult part is the discovery of the reduced problem

 (e) True, if the base case is not realized

 (g) False; typically they are slower than their loop base (iterative) counterparts because of the time required to

transfer execution to the recursive invocations they make

 Appendix H· Solut ions to Selected Odd Knowledge Exercises ■ 721

 3. The symbol with the number 5 to its left

 5. Iterative: f1 = 1; f2 = 1; f3 = 1 + 1 = 2; f4 = 1 + 2 = 3; f5 = 2 + 3 = 5; f6 = 3 + 5 = 8;

 f7 = 5 + 8 = 13; f8 = 8 + 13 = 21;

 Non-iterative: f8 = f7 + f6 = (f6 + f5) + (f5 + f4) =

 (f5 + f4) + (f4 + f3) + (f4 + f3) + (f3 + 1) =

 (f4 + f3) + (f3 + 1) + (f3 + 1) + (1 + 1) + (f3 + 1) + (1 + 1) (1 + 1) + 1 =

 (f3 + 1) + (1 + 1) + (1 + 1) + 1 + (1 + 1) + 1 + (1 + 1) + (1 + 1) + 1 +

 (1 + 1) (1 + 1) + 1 =

 (1 + 1) + 1 + (1 + 1) + (1 + 1) + 1 + (1 + 1) + 1 + (1 + 1) + (1 + 1) + 1 +

 (1 + 1) (1 + 1) + 1 =

 21

 7. Dynamic programming

 9. Base case: if(m == n) return n;

 Reduced problem: sum of the even integers from m-2 to n

 General Solution: m + the reduced problem

 11. Because that is the base case, which halts the recursive invocations.

 13. Combine the base case, reduced problem and general solution into a recursive algorithm, using a flow chart similar

to the one shown in Figure 9.6

 15. To move six rings: 26 1 For ten rings: 210 – 1 For n rings: 2n 1

 CHAPTER 10 CHAPTER 10

 1. (a) True (c) True

 (e) True (h) False

 (j) False, but if the exception is a checked exception the method’s signature must contain a throws clause

 (l) True (n) False

 3. When the error that caused the problem is a serious error, because the translator will then warn the programmer

that a catch block to deal with the problem was not included in the program that invoked the method.

 5. Exception

 7. (a) Checked (c) Checked

 (e) Unchecked (g) Unchecked

 9. Invoke the getMessage method on the exception object passed to the catch clause:

 String error = e.getMessage();

 CHAPTER 11 CHAPTER 11

 1. (a) False, it stands for Graphical User Interface

 (c) True

 (e) True

 (g) False, applets do not

 (i) False, their default layout manager is border layout

 (k) True

 3. Buttons are used to initiate processing; Radio buttons are used to select one item from a set of mutually exclusive

items; Check boxes are used select to one or more items from a set of items.

 5. North, west, center, east, and south

 7. (a) p1.setLayout(null); (b) p2.setLayout(new BorderLayout());

 9. JFrame aWindow = new JFrame("Exercise 9 Window Title");

 aWindow.setSize(600, 800);

722 ■ Programming Fundamentals Using Java

 aWindow.getContentPane().setBackground(Color.RED);

 aWindow.setDefaultCloseOperation(JFrame.EXIT _ ON _ CLOSE);

 aWindow.setVisible(true);

 11. Event handlers are overridden methods, whose signatures are predefined, and execute when a particular event they

are associated with occurs on a GUI component.

 13. Assuming e is the name of the parameter in the event handler’s signature, the statement would be:

 if(e.getSource() == b2) System.out.print("Button 2");

 15. An adapter class is a class that implements all of the methods whose signatures are defined in an interface. The

code blocks of the method implementations are usually empty. The advantage they offer is that a class that extends

them only needs to implement the interface’s methods that are relevant to its functionality.

 17. The requestFocusInWindow method, inherited from the JComponent class, is invoked on a Swing component.

The invocation is normally made from within an overwritten version of the addNotify method, which is invoked

when a component is added to an application.

 19. The highest level of portability across web browsers is achieved when AWT components are used. Swing classes

are 100% cross-platform compatible, and cross platform look and feel differences can be eliminated when they are

used.

 21. Java restricts the range of the instruction set that can be included in an applet program. For example disk I/O

instructions are not permitted.

 CHAPTER 12 CHAPTER 12

 1. (a) False, they are normally used to select one input from a set of mutually exclusive inputs

 (c) False, only one selection can be made (e) True

 (g) False, vice versa (i) False

 (k) True (m) False

 (o) True

 3. A combo box is used to select one item from a set of items; lists are used to select one or more values from a set of

values.

 5. Only one item can be selected from a combo box, one or more values can be selected from a list. The items in a

combo box are displayed when the arrow in its drop-down button is clicked. A list is displayed with a scroll bar by

default when the size of the list box is too small to display all of its values.

 7. Drop-down menus display their selections when the user clicks them. Pop-up menus display their selections when

the user performs a platform dependent mouse action or key action.

 9. A mnemonic is a keyboard event that is designated to be equivalent to the user clicking a GUI component such as

a menu item or a button. Other names for mnemonics are shortcut keys or hot keys.

 11. A JColorChooser object is an API defined dialog box that can be used to facilitate the choice or creation of a

color.

 13. (a) A: actionPerformed (b) A: actionPerformed

 (c) A: actionPerformed (d) C: valueChanged

 (e) A: actionPerformed

 15. (a) JCheckBox (c) JComboBox

 (e) JMenu (g) JMenuItem

 (i) JRadioButtonMenuItem

 CHAPTER 13 CHAPTER 13

 1. (a) True (c) False

 (e) False (g) True

 (i) True (k) True

 Appendix H· Solut ions to Selected Odd Knowledge Exercises ■ 723

 3. T1[] copy;

 copy = Arrays.copyOf(values, values.length);

 5. (a) True (c) True

 (f) True

 7. public class G7Class <T> implements Comparable<GClass>

 9. ArrayList <String> s2;

 11. HashMap, or TreeMap, or LinkedHashMap

 13. PriorityQueue <PhoneListing> pl = new PriorityQueue <PhoneListing>();

 CHAPTER 14 CHAPTER 14

 1. (a) True, until the program it is part of ends

 (c) True

 (e) True, or they can extend the class Thread (which implements the interface Runnable).

 (g) False

 3. New, runnable, waiting, timed waiting, blocked, and terminated

 5. The wait method

 7. The method invokes the wait method, or the method invokes the sleep method.

 9. (a) True (c) False

 (e) False (g) False

 11. The consumer task is using data generated by another task, the producer task. Two problems can occur. The

producer generates a data item and overwrites a previously generated data item not yet processed by the consumer

task, or the consumer reprocess a previously processed data item (or a data item containing a default value)

because the producer has not generated a new data item.

 13. Use synchronized methods or synchronized statements.

@Override directive, 366

A

Access, 111, 173

Private, 111

Public, 111

actionPerformed Method, 503, 504

Aggregation, 329–337

Concept of, 330

Algorithm, 5

American Standard Code for Information

Interchange (ASCII), 30

Extended, 31, 61

Table, 693–696

Android Development Tools (ADT), 25

API Graphics class, 89–93

Changing the Drawing Color, 89–90

Drawing Lines, Rectangles, Ovals, and

Circles, 90–93

Applet(s), 480, 531–544

Container, 531

Developing an, 532–534

Execution path, 535–536

HTML Document Basics, 534–535

Incorporating GUIs and Two-Dimensional

Graphics into, 536–543

GUI Components and Event Handling,

538–544

Two-Dimensional Graphics in a

JApplet, 536

Portability and Security Issues, 543–544

viewer, 532

Application Programming Interface

(API), 19

Application software, 3

Array(s), 236

Application programmer interface array

support, 278–283

arraycopy Method, 278–279

Arrays Class, 279–283

Common array algorithms, 265–277

Minimum or maximum value, 267–269

Searching, 266–267

Sorting, 269–277

Use of the Minimum Value

Algorithm, 277

Use of the Search Algorithm, 276–277

Use of the Selection Sort Algorithm, 277

Concept of, 236–238

Declaring, 238–241

Dynamic allocation of, 239–241

Deleting, modifying, and adding disk file

items, 286–290

Destination, 278

Loops and, 241–243

Multi-dimensional, 283–285

Two-Dimensional, 284–285

Initializing Two-Dimensional, 285

Objects, 243–250

Processing of an, 245–250

Origin of, 236

Parallel, 258–265

Passing arrays between methods, 250–258

Objects to a Worker Method, 253–257

Primitives to a Worker Method, 251–252

Returning an Array from a Worker Method,

257–258

Source, 278

ArrayBlockingQueue, 668

Artificial Intelligence, 8, 10

Atomic, 494

B

Babbage, Charles, 7

Backing-storage devices, 5

Berners-Lee, Tim, 12

INDEXINDEX

726 ■ Index

Boolean (logical) expression(s), 138–144

Comparing string objects, 143–144

compareTo, 143

compareToIgnoreCase, 143

equalsIgnoreCase, 143

Compound, 140–143

AND (&&) and OR (||) operators,

141–143

Simple, 139–140

Lexicographical or dictionary order, 139

Relational and Equality Operators, 139

Borders, 550–551

Break and continue statements, 221–222

Buffer, 653

bounded, 653

object, 653

Byte of storage, 31

C

Calculations, 50–58

Arithmetic Calculations and the Rules of

Precedence, 50–52

Mixed mode arithmetic, 51

Integer division, 51

Precedence Rules, 51

Promotion and Casting, 54–56

Mixed Mode Arithmetic Expressions, 55

The Assignment Operator and Assignment

Statements, 53–54

The Math Class, 56–58

Random numbers, 58

Call Back Methods, 688–689

Central Processing Unit (CPU), 4

Cerf, Vinton, 12

Check Boxes, 551

Adding to Containers and Positioning Them,

553–554

Check box event, 554

Creating, 552– 553

Determining a status, 554

Choice expression, 161

Class, 22, 94

Abstract super, 399

Adapter, 405

Aggregated, 329

Base, 355

Child, 354

Outer, 337

Parent, 354

Invoking a, 361

Invoking Child Class Methods, 372

Random, 224–227

Scanner, 169

Input methods used in, 169

Super, 355

Classes, 19

Abstract, 372–382

Adapter, 353

Adding methods to, 102–121

Constructors and the Keyword this,

107–109

Private Access and the set/get Methods,

109–116

The show Method, 103–106

The toString and input Methods, 116–121

Class Code Template, 95–96

Event Handler Adapter, 513

Final, 383

Inner, 337–340

Locale, 202

format, 202

getCurrencyInstance, 202

NumberFormat, 202

Code, 23

Block, 76

Driver, 24

Code-breaking machine, 8

Collections, 596

Color-Chooser Dialog Box, 587–589

JColorChooser, 587

Combo Boxes and Lists, 563–572

Adding a Vertical Scroll Bar, 566–570

Creating, 564–565

Editing a, 570–571

Event handling, 571–572

Fetching the Selected Item and Value(s),

565–566

Methods to perform operations, 564

Terminology and features of, 563

Common Business Oriented Language

(COBOL), 10

 Index ■ 727

compareTo Method, 609

Components, 480

Computer system, 2–5

Major component of a, 2

Concurrency, 644

Actual, 645

Perceived, 645

consoleIn Method, 169–172

Constructors, 97, 686

Invoking a Parent Class, 361

Overloading, 121–124

Control-of-flow or control statements, 138

Cost-effective approach, 18

Counting algorithm, 67–70

A Counting Application: Displaying a

Game’s Time, 68–70

Critical section, 661

D

Data members, 20, 95

Protected, 383–384

Debugging, 11

DecimalFormat class, 70

Deep Space Delivery game, 17

Default Locale, 203

Dequeue, 615

Dialog box output and input, 58–64

Input Dialog Boxes, 60

Message dialog boxes, 59–60

Parsing Strings into Numerics, 60–64

Numeric Wrapper Classes and, 61

Disk file I/O, 172–179

Appending Data to an Existing

Text File, 179

Deleting, Modifying, and Adding File Data

Items, 179

Determining the Existence of a

File, 175

Sequential Text File Input, 173–175

Sequential Text File Output, 175–178

do-while statement, 219–221

Syntax of the, 219–221

Common syntactical errors, 220

drawstring Method, 64–65

E

Eclipse, 22

Electronic Delay Storage Automatic Calculator

(EDSAC), 9

Electronic digital computer, 8

Electronic Discrete Variable Automatic

Computer (EDVAC), 8

Electronic Numerical Integrator and Computer

(ENIAC), 8

Element(s), 534, 622

End of File (EOF) character, 178

Enhanced for statement, 228–229

Enigma encoding Machine, 8

Enqueue, 615

Enumerated types, 343–345

Enumeration, 343

Syntax of, 345

Three objects of, 345

Ethernet, 11

Event processing, 500–522

Event handlers, 500

addActionListener, 503

addKey-Listener, 503

addMouseMotionListener, 503

GUI events, 500

Implementing Event Handler Methods,

501–503

Mouse, Keyboard, and Timer Events,

512–522

Keyboard Focus, 516

Paint Events, JPanels, and Two-Dimensional

Graphics, 509–512

Registering the Event Handler, 503–509

Completion of the Adding Machine

Application, 504

getSource Method, 507

listener list, 503

Exception(s), 179–185, 450–475

 An overview, 450–451

Terminology, 450–451

Classes and objects, 451–453

Checked and unchecked, 452–453

Creative error message, 466

Defining classes, 472–475

Catch Block Ordering, 473

728 ■ Index

Processing thrown, 453–464

Non-error Checking Use of, 459–461

Unwrapping Error Messages, 459

The finally Clause, 461–464

try-catch-finally construct, 461

Thrown checked, 453

Throw statement, 465

Execution Path of, 466

Execution,

path, 138

sequential, 192

F

Flash drives, 5

Fibonacci sequence, 436

File-Chooser Dialog Box, 585–587

JFileChooser, 585

Finally clause, 476

Formatting numeric output, 70

A first pass, 70–71

A second pass, 202–208

Currency Formatting, 202–203

The DecimalFormat Class: A Second

Look, 204–208

Formula Translation (FORTRAN), 10

for Statement, 193–202

A for Loop Application, 197–199

Common coding errors, 194–194

Syntax of the, 193–197

The Totaling and Averaging Algorithms,

200–202

Fractal(s), 437

Geometric, 437

Sierpinsky, 437

G

Game development environment, 26–30

Changing the Game Board’s Size, 29–30

Creating and Displaying a Game Window

and Its Title, 28–29

Installing and Incorporating the Game

Package into a Program, 28

The Game Board Coordinate System, 27–28

The Game Window, 26–27

Game environment, 683–689

Description, 685–689

DrawableAdaper Class, 687

GameBoard class, 685–687

interface Drawable, 687–689

Glossary of programming terms, 701–707

Overview, 683–685

Game Window, 684

Timers and Timer Methods, 684

Game Player Action Methods, 684

Game Window Coordinate System, 685

Using the package, 691–692

Game theory, 9

Gates, Bill, 11

Generic(s), 596–637

API collections framework, 621–637

ArrayDeque and PriorityQueue Classes,

630–633

Framework Algorithms: The Collections

Class, 622–623

Framework interfaces, 622

HashMap, TreeMap, and LinkedHashMap

Classes, 633–637

HashSet, TreeSet, and LinkedSet

Classes, 630

LinkedList and ArrayList Classes,

623–629

Classes, 611–621

Generic Queue Implementation, 618

Generic Data Structure, 615–621

Non-generic Queue, 615

Methods, 596–610

Arrays as Generic Parameters and

Returned Values, 603–610

Copying an array, 606

Operating on generic objects, 608–610

Overloading, 600–602

Returning arrays, 605

Overview, 596

getKeyCode method, 515

get method, 113

Gosling, James, 11

Graphical text output, 64–67

draw Call Back Method, 65–67

drawString Method, 65

setFont method, 67

 Index ■ 729

Graphical User Interface (GUI), 337, 480–544

Applets, 531–544

Creating application for, 487–499

Adding GUI Components to a Window,

492–499

Commonly Used Java Swing GUI

Components, 493

Creating and Displaying a Program

Window, 488–492

Designing the Interface, 494

GUI-Builder Worker Classes, 491–492

JWindow, JFrame, JApplet, and

JDialog, 487

The content pane, 488

Enhancing dialog boxes, 482–486

showInputDialog Method, 482

showMessageDialog Method, 482

Event processing, 500–522

Layout managers, 522–531

Overview, 480–481

Abstract Window Toolkit (AWT) and

swing packages, 481

H

Handler or Listener, 503

Hard drives, 5

Hardware, 2

hasnext method, 629

History of computing, 5–13

Computer generations, 9–10

Fifth-Generation (Present and

Beyond): Artificial

Intelligence, Parallel

Processing, Quantum

Computing, 10

First-Generation (1937–1946): Vacuum

Tubes, 9

Fourth-Generation (1971–present):

Microprocessors and VLSI, 10

Second-Generation (1947–1963):

Transistors, 9–10

Third-Generation (1964–1971):

Integrated Circuits (IC) or

“chips”, 10

Computers become a reality, 7–9

Early computer devices, 6

More Notable Contributions, 11–12

Smaller, Faster, Cheaper Computers,

12–13

Hollerith, Herman, 7

Hopper, Admiral Grace Murray, 11

I

if-else Statement, 150–158

Detecting Collisions: Use of the if and

else-if Statements, 154–158

If Statement, 144–150

Using the, 146–150

Index, 236

Information passing, 79–89

Class Level Variables, 85–89

Parameters and arguments, 79–82

Returned Values, 84–85

Scope and Side Effects of Value Parameters,

82–84

Inheritance, 353–385

Chain, 357

Concept of, 354–355

Design processing in, 372–385

Making a Class Inheritance Ready: Best

Practices, 384–385

Implementing, 357–372

Constructors and Inherited Method

Invocations, 361–368

Extending Inherited Data Members,

368–372

Overriding Methods, 364–368

Multiple, 357

UML diagrams and language of, 355–357

Establishing Parent-Child

Relationship, 356

Forms of, 357

Parent-Child Relationship, 355

Inherited Method Invocation Syntax, 368

InputDialogBox method, 60

Input Method, 117

Input/output (I/O) devices, 3

Institute for Advanced Study (IAS), 9

Integrated Development Environment (IDE),

22–28, 41

730 ■ Index

Mobile-Device Application Development

Environments, 25–28

Iterator(s), 629

Interface(s), 353, 398–406

Idiosyncrasies concerning, 399

When to Define and Use an, 400–405

International Business Machine Corporation

(IBM), 7

Items, 563

itemStateChanged, 554

J

Java, 11

Application program template, 40–41

Keywords, 697

Operators and their relative precedence, 699

Platform independence and, 17–20

Java Application Programmer Interface,

19–20

Java Development Kit (JDK), 532

Java Runtime Environment (JRE), 20

Java Virtual Machine (JVM), 18

JCheckBox Classes, 493, 552

JComboBox Class, 563

JList Class, 563

Jobs, Steve, 11

JOptionPane Method, 59, 84

JRadioButton, 493, 555

K

Kahn, Robert, 12

Key, 622

Knuth, Donald, 12

L

Layout manager(s), 522–531

Border Layout, 524–527

Designating the, 523–524

Component Capacity, Size and

Positioning Restrictions, 524

Flow Layout, 527–529

Grid Layout, 529–531

Leading zero, 204

Lifetime, 649

Lock, 651

Loop,

do-while, 220

post-test, 220

statements to use, 222–224

M

Member methods, 95

Memory storage schemes, 30–34

Representing Character Data, 30–31

Representing Numeric Data, 32–34

Representing Translated Instructions, 31–32

Menu(s), 572–584

Building a, 573–574

Drop-down, 572–573

JMenuItem Object Action Events, 575–579

Mnemonic, 575

Pop-up, 581–584

Radio Button and Check Box Items,

579–581

Separator bars, 574–575

Method(s), 20, 76–78

Abstract Parent, 382

Designing Parent Methods to Invoke Child,

382

Final, 367

Invoking a Parent’s Version of an

Overwritten, 365

Methods invoking methods within their

class, 301–303

Motivation for writing, 76

Private class, 302–303

Public or protected methods,

Syntax of a, 76–78

Method Search Path, 368

N

Nested for loops, 208–211

CheckerBoard, 211

Nested if statement, 158–160

NetBeans, 22

nextDouble methods, 171, 230

nextInt Method, 225

 Index ■ 731

New-line character, 178

Nonstatic void methods, 90

Notify Method, 660

notifyAll Method, 652

O

Object(s), 22

Collection, 621

Comparing, 303–306

Deep Comparisons, 305–306

Shallow Comparisons, 304–305

Copying and cloning, 306–318

Cloning objects, 309

Deep Copies and Clones, 308–318

Shallow copies, 307–308

Creating, 96–98

Constructor methods, 97–98

Designing a graphical, 100–102

Drawing an, 100–102

Displaying an, 98–100

Queue collection, 621

Object-oriented programming (OOP)

languages, 11, 21–22, 93–94

Class starship method, 21–22

Create, draw and move, 22

What Are Classes and Objects?, 93–94

Online API documentation, 709–711

Operating system software, 3

Overriding methods, 364–368

Common things, 368

Overloading methods vs, 367

P

Packages, 19

Pac-Man game, 652

Parallel processing, 10

Pascaline, 6

Passing by value, 80

Passing Objects to and from Worker methods,

125–128

Passing Objects to Worker

Methods, 125–127

Returning an Object from a

Worker Method, 127–128

Point-and-click interface, 337

pow method, 59, 79

Polymorphism, 353, 385–398

getClass and getName method and the

instanceof operator, 393–398

Parent and Child References, 385–387

Polymorphic array, 390–392

advantages of, 392

polymorphic invocation, 387–389

Role in Parameter Passing, 392–393

print Method, 59

println Method, 59

Processes, 644

Processing large numbers, 340–343

BigInteger Class, 341–343

BigDecimal Class, 343

Producer-Consumer problem (PCP), 652–673

Solutions to, 660–673

ArrayBlockingQueue, 668–673

Synchronizing a Buffer Class:

Synchronized Methods, 660–668

Pseudocode of the PCP, 661

Program specification, 13–17

Specifying a game program, 15–17

Q

Quantum computing, 10

R

Radio buttons, 555–562

Adding Buttons to Containers and

Positioning Them, 557–558

Creating, 555–556

Determining the status of, 558

Events, 558–562

Making Buttons Mutually Exclusive, 556

Random access memory (RAM) or main

memory, 3

Recursion, 418–444

formulating and implementing recursive

algorithms, 423–429

Base Case, Reduced Problem, and

General Solution, 423–425

Implementing Algorithms, 425–427

732 ■ Index

Practice problems, 428–429

non-recursive, 419

problems with, 435–444

Dynamic programming, 440–444

when to use, 437–440

Recursive, 418

Towers of Hanoi problem, 429–434

Base case, 430–431

General solution, 432–433

Implementation, 433–434

Reduced problem, 432

Statement of the Problem, 429–430

understanding a recursive method’s

execution path, 421–423

What is, 418–421

Run-time stack, 435

S

Scientific notation, 205

Sentinel value, 214

Serializing objects, 406–411

object deserialization, 407

object serialization, 407

Serialization, 353, 406

setBorder Method, 550

setColor Method, 89

setMaxRowCount Method, 590

set Method, 112

setTimerInterval Method, 686

setVisibleCount Method, 567

showGameBoard method, 66

showInputDialog method, 59, 84

showMessageDialog method, 59

Signature, 76

Sleep method, 652

Software, 3

engineer, 13

Software Development Kit (SDK), 25

Sqrt method, 64

Stack, 631

Static data members, 298–300

stopTimer Method, 687

String, 44

Class: A second look, 318–322

Converting Strings to Characters, 319

Creating Strings from Primitive Values,

318–319

Processing Strings, 319–322

Formatting, 204

Immutability, 112

Objects, 48–50

Subscriber identification module (SIM)

cards, 4

switch Statement, 160–168

break statement, 164–168

if-else statements and, 162

Synchronized code block, 651

Synchronized statement, 673–677

Syntax error, 23

System console output, 44–48

Escape sequence, 45–48

Comments and Blank Lines, 48

String output, 44

The Concatenation Operator and Annotated

Numeric Output, 44–45

T

Thread(s), 644–652

Creating and initiating, 645–649

Defining class, 645–646

Initiating the execution, 647–649

Main, 645

States, 649–652

Blocked, Waiting, and Timed Waiting,

651–652

New, Runnable, and Terminated,

649–650

Totaling or summation algorithm, 200

Trailing zero, 204

Transmission Control Protocol/Internet

Protocol (TCP/IP), 11

Text document (TEX) typesetting system, 12

toString Method, 116

Turing, Alan, 8

Type argument list, 611

 Index ■ 733

U

UNICODE table, 31

Unified modeling language (UML) diagram,

94–95, 355

Universal automatic computer

(UNIVAC 1), 10

V

Value parameters, 80

Value(s), 563, 622

Variables, 41–44

Class Level, 85–89

code block, 86

local variable, 86

swap methods, 87

Primitive, 42–44

Reference, 42, 48–50

Very-large-scale integration (VLSI), 10

void Method, 77, 117

von Neumann architecture, 9

W

wait Method, 651, 662

while Statement, 212–219

Common coding errors, 213

Detecting an End Of File, 217–219

sentinel loop, 214–216

Syntax of the, 212–213

World Wide Web Consortium (W3C), 12

Wrapper classes, 322–328

Autoboxing and Unboxing, 324–325

Characters, 326–328

Class objects, 322–324

Constants, 326

	Blank Page

