
Software
Testing

Software-Testing_Final.indb 1 31-01-2018 14:55:51

LICENSE, DISCLAIMER OF LIABILITY, AND LIMITED WARRANTY
By purchasing or using this book (the “Work”), you agree that this license grants
permission to use the contents contained herein, but does not give you the
right of ownership to any of the textual content in the book or ownership to
any of the information or products contained in it. This license does not permit
uploading of the Work onto the Internet or on a network (of any kind) without
the written consent of the Publisher. Duplication or dissemination of any text,
code, simulations, images, etc. contained herein is limited to and subject to
licensing terms for the respective products, and permission must be obtained
from the Publisher or the owner of the content, etc., in order to reproduce or
network any portion of the textual material (in any media) that is contained in
the Work.

Mercury Learning and Information (“MLI” or “the Publisher”) and anyone
involved in the creation, writing, or production of the companion disc, accom-
panying algorithms, code, or computer programs (“the software”), and any
accompanying Web site or software of the Work, cannot and do not warrant
the performance or results that might be obtained by using the contents of the
Work. The author, developers, and the Publisher have used their best efforts
to insure the accuracy and functionality of the textual material and/or programs
contained in this package; we, however, make no warranty of any kind, express
or implied, regarding the performance of these contents or programs. The
Work is sold “as is” without warranty (except for defective materials used in
manufacturing the book or due to faulty workmanship).

The author, developers, and the publisher of any accompanying content, and
anyone involved in the composition, production, and manufacturing of this
work will not be liable for damages of any kind arising out of the use of (or the
inability to use) the algorithms, source code, computer programs, or textual
material contained in this publication. This includes, but is not limited to, loss
of revenue or profit, or other incidental, physical, or consequential damages
arising out of the use of this Work.

The sole remedy in the event of a claim of any kind is expressly limited to
replacement of the book, and only at the discretion of the Publisher. The use of
“implied warranty” and certain “exclusions” vary from state to state, and might
not apply to the purchaser of this product.

Software-Testing_Final.indb 2 31-01-2018 14:55:51

Software
Testing

A Self-Teaching Introduction

RAJIV CHOPRA, PhD

MERCURY LEARNING AND INFORMATION
Dulles, Virginia

Boston, Massachusetts
New Delhi

Software-Testing_Final.indb 3 31-01-2018 14:55:52

Copyright ©2018 by Mercury Learning and Information LLC. All rights reserved.

Original Title and Copyright: Software Testing, 4/e. © 2014 by S.K. Kataria & Sons.

This publication, portions of it, or any accompanying software may not be reproduced in any
way, stored in a retrieval system of any type, or transmitted by any means, media, electronic dis-
play or mechanical display, including, but not limited to, photocopy, recording, Internet postings,
or scanning, without prior permission in writing from the publisher.

Publisher: David Pallai
Mercury Learning and Information

22841 Quicksilver Drive
Dulles, VA 20166
info@merclearning.com
www.merclearning.com
(800) 232-0223

R. Chopra. Software Testing: A Self-Teaching Introduction.
ISBN: 978-1-683921-66-0

The publisher recognizes and respects all marks used by companies, manufacturers, and develop-
ers as a means to distinguish their products. All brand names and product names mentioned in
this book are trademarks or service marks of their respective companies. Any omission or misuse
(of any kind) of service marks or trademarks, etc. is not an attempt to infringe on the property
of others.

Library of Congress Control Number: 2017960714
181920321  This book is printed on acid-free paper in the United States of America

Our titles are available for adoption, license, or bulk purchase by institutions, corporations, etc.
For additional information, please contact the Customer Service Dept. at 800-232-0223(toll free).

All of our titles are available in digital format at authorcloudware.com and other digital vendors.
The sole obligation of Mercury Learning and Information to the purchaser is to replace the
book, based on defective materials or faulty workmanship, but not based on the operation or
functionality of the product.

Software-Testing_Final.indb 4 31-01-2018 14:55:52

CONTENTS

Chapter 1: Introduction to Software Testing	 1
1.0.	 Introduction	 1
1.1.	 The Testing Process	 2
1.2.	 What is Software Testing?	 2
1.3.	 Why Should We Test? What is the Purpose?	 6
1.4.	 Who Should do Testing?	 9
1.5.	 How Much Should We Test?	 9
1.6.	 Selection of Good Test Cases	 9
1.7.	 Measurement of Testing	 10
1.8.	 Incremental Testing Approach	 10
1.9.	 Basic Terminology Related to Software Testing	 11

1.10.	 Testing Life Cycle	 17
1.11.	 When to Stop Testing?	 18
1.12.	 Principles of Testing	 18
1.13.	 Limitations of Testing	 19
1.14.	 Available Testing Tools, Techniques, and Metrics	 20
Summary		 20
Multiple Choice Questions	 21
Answers		 22
Conceptual Short Questions With Answers	 22
Review Questions	 26

Software-Testing_Final.indb 5 31-01-2018 14:55:52

Chapter 2: Software Verification and Validation	 29
2.0.	 Introduction	 29
2.1.	 Differences between Verification and Validation	 30
2.2.	 Differences between QA And QC?	 31
2.3.	 Evolving Nature of Area	 31
2.4.	 V&V Limitations	 32
2.5.	 Categorizing V&V Techniques	 33
2.6.	 Role of V&V in SDLC—Tabular Form [IEEE std. 1012]	 33
2.7.	 Proof of Correctness (Formal Verification)	 37
2.8.	 Simulation and Prototyping	 38
2.9.	 Requirements Tracing	 38

2.10.	 Software V&V Planning (SVVP)	 39
2.11.	 Software Technical Reviews (STRs)	 43
	 2.11.1.	 Rationale for STRs	 43
	 2.11.2.	 Types of STRs	 45
	 2.11.3.	 Review Methodologies	 46
2.12.	 Independent V&V Contractor (IV&V)	 47
2.13.	 Positive and Negative Effects of Software V&V on Projects	 48
2.14.	 Standard for Software Test Documentation (IEEE829)	 50
Summary� 57
Multiple Choice Questions	 58
Answers� 59
Conceptual Short Questions With Answers	 59
Review Questions	 62

Chapter 3: Black-Box (or Functional) Testing Techniques	 65
3.0.	 Introduction to Black-Box (or Functional Testing)	 65
3.1.	 Boundary Value Analysis (BVA)	 66
	 3.1.1.	 What is BVA?	 66
	 3.1.2.	 Limitations of BVA	 67
	 3.1.3.	 Robustness Testing	 67
	 3.1.4.	 Worst-Case Testing	 68
	 3.1.5.	 Examples with Their Problem Domain	 69
	 3.1.6.	 Guidelines for BVA	 74

vi • Contents

Software-Testing_Final.indb 6 31-01-2018 14:55:52

3.2.	 Equivalence Class Testing	 74
	 3.2.1.	 Weak Normal Equivalence Class Testing	 75
	 3.2.2.	 Strong Normal Equivalence Class Testing	 76
	 3.2.3.	 Weak Robust Equivalence Class Testing	 76
	 3.2.4.	 Strong Robust Equivalence Class Testing	 77
	 3.2.5.	 Solved Examples	 78
	 3.2.6.	 Guidelines for Equivalence Class Testing	 85
3.3.	 Decision Table Based Testing	 86
	 3.3.1.	 What are Decision Tables?	 86
	 3.3.2.	� Advantages, Disadvantage, and Applications of

Decision Tables� 87
	 3.3.3.	 Examples	 90
	 3.3.4.	 Guidelines for Decision Table Based Testing	 96
3.4.	 Cause-Effect Graphing Technique	 97
	 3.4.1.	 Causes and Effects	 97
	 3.4.2.	 Test Cases for the Triangle Problem	 98
	 3.4.3.	 Test Cases for Payroll Problem	 100
	 3.4.4.	� Guidelines for the Cause-Effect Functional

Testing Technique� 101
3.5.	� Comparison on Black-Box (or Functional)

Testing Techniques� 102
	 3.5.1.	 Testing Effort	 102
	 3.5.2.	 Testing Efficiency	 104
	 3.5.3.	 Testing Effectiveness	 104
	 3.5.4.	 Guidelines for Functional Testing	 105
3.6.	 Kiviat Charts	 105
	 3.6.1.	 The Concept of Balance	 107
Summary		 115
Multiple Choice Questions	 115
Answers		 117
Conceptual Short Questions With Answers	 117
Review Questions	 127

Contents • vii

Software-Testing_Final.indb 7 31-01-2018 14:55:52

viii • Contents

Chapter 4: White-Box (or Structural) Testing Techniques	 133
4.0.	� Introduction to White-Box Testing or Structural

Testing or Clear-Box or Glass-Box or Open-Box Testing� 133
4.1.	 Static versus Dynamic White-Box Testing	 134
4.2.	 Dynamic White-Box Testing Techniques	 135
	 4.2.1.	 Unit/Code Functional Testing	 135
	 4.2.2.	 Code Coverage Testing	 136
	 4.2.3.	 Code Complexity Testing	 141
4.3.	� Mutation Testing Versus Error Seeding—Differences

in Tabular Form� 186
4.4.	� Comparison of Black-Box and White-Box Testing in

Tabular Form� 188
4.5.	 Practical Challenges in White-Box Testing	 190
4.6.	 Comparison on Various White-Box Testing Techniques	 190
4.7.	 Advantages of White-Box Testing	 191
Summary		 192
Multiple Choice Questions	 192
Answers		 194
Conceptual Short Questions With Answers	 194
Review Questions	 200

Chapter 5: Gray-Box Testing	 207
5.0.	 Introduction to Gray-Box Testing	 207
5.1.	 What is Gray-Box Testing?	 208
5.2.	 Various Other Definitions of Gray-Box Testing	 208
5.3.	� Comparison of White-Box , Black-Box, and

Gray-Box Testing Approaches in Tabular Form� 209
Summary		 211
Multiple Choice Questions	 211
Answers		 212
Conceptual Short Questions With Answers	 212
Review Questions	 213

Software-Testing_Final.indb 8 31-01-2018 14:55:52

Contents • ix

Chapter 6: Reducing the Number of Test Cases	 215
6.0.	 Prioritization Guidelines	 215
6.1.	 Priority Category Scheme	 216
6.2.	 Risk Analysis	 217
6.3.	 Regression Testing—Overview	 220
	 6.3.1.	� Differences between Regression and

Normal Testing� 220
	 6.3.2.	 Types of Regression Testing	 221
6.4.	 Prioritization of Test Cases for Regression Testing	 224
6.5.	 Regression Testing Technique—A Case Study	 225
6.6.	 Slice-Based Testing	 226
Summary		 228
Multiple Choice Questions	 228
Answers		 230
Conceptual Short Questions With Answers	 231
Review Questions	 233

Chapter 7: Levels of Testing	 235
7.0.	 Introduction	 235
7.1.	� Unit, Integration, System, and Acceptance

Testing Relationship� 236
7.2.	 Integration Testing	 237
	 7.2.1.	 Classification of Integration Testing	 238
	 7.2.2.	 Decomposition-Based Integration	 238
	 7.2.3.	 Call Graph-Based Integration	 241
	 7.2.4.	 Path-Based Integration with its Pros and Cons	 243
	 7.2.5.	 System Testing	 246
Summary� 291
Multiple Choice Questions	 292
Answers� 293
Conceptual Short Questions With Answers	 293
Review Questions	 298

Software-Testing_Final.indb 9 31-01-2018 14:55:52

x • Contents

Chapter 8: Object-Oriented Testing	 301
8.0.	 Basic Unit for Testing, Inheritance, and Testing	 302
8.1.	 Basic Concepts of State Machines	 310
8.2.	 Testing Object-Oriented Systems	 333

	 8.2.1.	� Implementation-Based Class Testing/
White-Box or Structural Testing� 333

	 8.2.2.	� Responsibility-Based Class Testing/
Black-Box/Functional Specification-Based
Testing of Classes� 345

8.3.	 Heuristics for Class Testing	 356
8.4.	 Levels of Object-Oriented Testing	 363
8.5.	 Unit Testing a Class	 364
8.6.	 Integration Testing of Classes	 367
8.7.	 System Testing (With Case Study)	 371
8.8.	 Regression and Acceptance Testing	 381
8.9.	 Managing the Test Process	 383

8.10.	 Design for Testability (DFT)	 387
8.11.	 GUI Testing	 390
8.12.	 Comparison of Conventional and Object-Oriented Testing	 390
8.13.	 Testing using Orthogonal Arrays	 392
8.14.	 Test Execution Issues	 394
8.15.	 Case Study—Currency Converter Application	 394
Summary		 403
Multiple Choice Questions	 404
Answers		 405
Conceptual Short Questions With Answers	 406
Review Questions	 408

Chapter 9: Automated Testing	 409
9.0.	 Automated Testing	 409
9.1.	 Consideration during Automated Testing	 410
9.2.	 Types of Testing Tools-Static V/s Dynamic	 411
9.3.	 Problems with Manual Testing	 413

Software-Testing_Final.indb 10 31-01-2018 14:55:52

Contents • xi

9.4.	 Benefits of Automated Testing	 414
9.5.	 Disadvantages of Automated Testing	 415
9.6.	 Skills Needed for Using Automated Tools	 416
9.7.	 Test Automation: “No Silver Bullet”	 417
9.8.	 Debugging	 418
9.9.	 Criteria for Selection of Test Tools	 422

9.10.	 Steps for Tool Selection	 424
9.11.	 Characteristics of Modern Testing Tools	 425
9.12.	� Case Study on Automated Tools, Namely,

Rational Robot, Win Runner, Silk Test, and Load Runner� 425
Summary		 428
Multiple Choice Questions	 429
Answers		 430
Conceptual Short Questions With Answers	 431
Review Questions	 432

Chapter 10: Test Point Analysis (TPA)	 435
10.0.	 Introduction	 435
10.1.	 Methodology	 436
	 10.1.1.	 TPA Philosophy	 436
	 10.1.2.	 TPA Model	 437
10.2.	 Case Study	 449
10.3.	 TPA for Case Study	 450
10.4.	 Phase Wise Breakup Over Testing Life Cycle	 453
10.5.	 Path Analysis	 453
10.6.	 Path Analysis Process	 454
Summary		 474
Multiple Choice Questions	 478
Answers		 479
Conceptual Short Questions With Answers	 479
Review Questions	 480

Software-Testing_Final.indb 11 31-01-2018 14:55:52

xii • Contents

Chapter 11: �Testing Your Websites—Functional and
Non-Functional Testing	 481

11.0.	 Abstract	 481
11.1.	 Introduction	 482
11.2.	 Methodology	 486
	 11.2.1.	 Non-Functional Testing (or White-Box Testing)	 486
	 11.2.2.	 Functional Testing (or Black-Box Testing)	 489
Summary		 490
Multiple Choice Questions	 490
Answers		 490
Conceptual Short Questions With Answers	 491
Review Questions	 492

Chapter 12: Regression Testing of a Relational Database	 493
12.0.	 Introduction	 493
12.1.	 Why Test an RDBMS?	 494
12.2.	 What Should We Test?	 495
12.3.	 When Should We Test?	 496
12.4.	 How Should We Test?	 497
12.5.	 Who Should Test?	 500
Summary		 501
Multiple Choice Questions	 501
Answers		 502
Conceptual Short Questions With Answers	 502
Review Questions	 503

Chapter 13: �A Case Study on Testing of E-Learning
Management Systems	 505

1	 Introduction	 506
2	 Software Requirement Specifications	 507
2.1.	 Introduction	 507
	 2.1.1.	 Purpose	 507
	 2.1.2.	 Scope	 507

Software-Testing_Final.indb 12 31-01-2018 14:55:52

Contents • xiii

	 2.1.3.	 Definitions, Acronyms, and Abbreviations	 508
	 2.1.4.	 References Books	 508
	 2.1.5.	 Overview	 509
2.2.	 Overall Descriptions	 509
	 2.2.1.	 Product Perspective	 509
	 2.2.2.	 Product Functions	 510
	 2.2.3.	 User Characteristics	 511
	 2.2.4.	 Constraints	 511
	 2.2.5.	 Assumptions and Dependencies	 511
	 2.2.6.	 Apportioning of Requirements	 511
2.3.	 Specific Requirements	 512
	 2.3.1.	 User Interfaces and Validations	 512
	 2.3.2.	 Functions	 521
	 2.3.3.	 Modules	 521
	 2.3.4.	 Performance Requirements	 522
	 2.3.5.	 Logical Database Requirements	 522
	 2.3.6.	 Design Constraints	 522
	 2.3.7.	 Software System Attributes	 522
2.4.	 Change Management Process	 523
2.5.	 Document Approval	 523
2.6.	 Supporting Information	 523
3	 System Design	 524
4	 Reports And Testing	 525
4.1.	 Test Report	 525
4.2.	 Testing		 525
	 4.2.1.	 Types of Testing	 525
	 4.2.2.	 Levels of Testing	 526
5	 Test Cases	 528
5.1.	 Return Filed Report	 528
5.2.	 Monthly/Quarterly Tax Paid Form	 544
5.3.	 Monthly/Quarterly Tax Paid Form	 546

Software-Testing_Final.indb 13 31-01-2018 14:55:53

xiv • Contents

5.4.	 Monthly /Quarterly Tax Paid Form	 550
5.5.	 Service Wise Report (Admin Report)	 552
5.6.	 STRPs Wise Report (Admin Report)	 556
Conclusion		 557

Chapter 14: The Game Testing Process	 559
14.1.	 “Black-Box” Testing	 560
14.2.	 “White-Box” Testing	 562
14.3.	 The Life Cycle of a Build	 563
14.4.	 On Writing Bugs Well	 573
Exercises		 580

Chapter 15: Basic Test Plan Template	 583

Appendix A: Quality Assurance and Testing Tools	 591

Appendix B: Suggested Projects	 599

Appendix C: Glossary	 611

Appendix D: Sample Project Description	 647

Appendix E: Bibliography	 653

Index� 655

Software-Testing_Final.indb 14 31-01-2018 14:55:53

C H A P T E R1
Inside this Chapter:

	 1.0.	 Introduction
	 1.1.	 The Testing Process
	 1.2.	 What is Software Testing?
	 1.3.	 Why Should We Test? What is the Purpose?
	 1.4.	 Who Should Do Testing?
	 1.5.	 What Should We Test?
	 1.6.	 Selection of Good Test Cases
	 1.7.	 Measurement of the Progress of Testing
	 1.8.	 Incremental Testing Approach
	 1.9.	 Basic Terminology Related to Software Testing
1.10.	 Testing Life Cycle
1.11.	 When to Stop Testing?
1.12.	 Principles of Testing
1.13.	 Limitations of Testing
1.14.	 Available Testing Tools, Techniques, and Metrics

Introduction to Software
Testing

1.0.  INTRODUCTION

Testing is the process of executing the program with the intent of finding
faults. Who should do this testing and when should it start are very important
questions that are answered in this text. As we know software testing is the

Software-Testing_Final.indb 1 31-01-2018 14:55:53

2 • Software Testing

fourth phase of the software development life cycle (SDLC). About 70% of
development time is spent on testing. We explore this and many other inter-
esting concepts in this chapter.

1.1.  THE TESTING PROCESS

Testing is different from debugging. Removing errors from your programs
is known as debugging but testing aims to locate as yet undiscovered errors.
We test our programs with both valid and invalid inputs and then compare
our expected outputs as well as the observed outputs (after execution of soft-
ware). Please note that testing starts from the requirements analysis phase
only and goes until the last maintenance phase. During requirement analy-
sis and designing we do static testing wherein the SRS is tested to check
whether it is as per user requirements or not. We use techniques of code
reviews, code inspections, walkthroughs, and software technical reviews
(STRs) to do static testing. Dynamic testing starts when the code is ready
or even a unit (or module) is ready. It is dynamic testing as now the code is
tested. We use various techniques for dynamic testing like black-box, gray-
box, and white-box testing. We will be studying these in the subsequent
chapters.

1.2.  WHAT IS SOFTWARE TESTING?

The concept of software testing has evolved from simple program “check-
out” to a broad set of activities that cover the entire software life-cycle.

There are five distinct levels of testing that are given below:

a.		Debug: It is defined as the successful correction of a failure.

b.		� Demonstrate: The process of showing that major features work
with typical input.

c.		� Verify: The process of finding as many faults in the application under
test (AUT) as possible.

d.		� Validate: The process of finding as many faults in requirements,
design, and AUT.

e.		� Prevent: To avoid errors in development of requirements, design,
and implementation by self-checking techniques, including “test
before design.”

Software-Testing_Final.indb 2 31-01-2018 14:55:53

Introduction to Software Testing • 3

There are various definitions of testing that are given below:

“Testing is the process of exercising or evaluating a system or system
component by manual or automated means to verify that it satisfies
specified requirements.”

[IEEE 83a]

OR

“Software testing is the process of executing a program or system
with the intent of finding errors.”

[Myers]

OR

“It involves any activity aimed at evaluating an attribute or capabil-
ity of a program or system and determining that it meets its required
results.”

[Hetzel]

Testing is NOT:

a.		The process of demonstrating that errors are not present.

b.		� The process of showing that a program performs its intended func-
tions correctly.

c.		� The process of establishing confidence that a program does what it is
supposed to do.

So, all these definitions are incorrect. Because, with these as guidelines,
one would tend to operate the system in a normal manner to see if it works.
One would unconsciously choose such normal/correct test data as would
prevent the system from failing. Besides, it is not possible to certify that a
system has no errors—simply because it is almost impossible to detect all
errors.

So, simply stated: “Testing is basically a task of locating errors.”
It may be:

a.		�Positive testing: Operate the application as it should be operated.
Does it behave normally? Use a proper variety of legal test data,
including data values at the boundaries to test if it fails. Check actual
test results with the expected. Are results correct? Does the applica-
tion function correctly?

Software-Testing_Final.indb 3 31-01-2018 14:55:53

4 • Software Testing

b.		�Negative testing: Test for abnormal operations. Does the system
fail/crash? Test with illegal or abnormal data. Intentionally attempt
to make things go wrong and to discover/detect—“Does the pro-
gram do what it should not do? Does it fail to do what it should?”

c.		�Positive view of negative testing: The job of testing is to dis-
cover errors before the user does. A good tester is one who is suc-
cessful in making the system fail. Mentality of the tester has to be
destructive—opposite to that of the creator/author, which should be
constructive.

One very popular equation of software testing is:

Software Testing = Software Verification + Software Validation

As per IEEE definition(s):

Software verification: “It is the process of evaluating a system or
component to determine whether the products of a given develop-
ment phase satisfy the conditions imposed at the start of that phase.”
OR
“It is the process of evaluating, reviewing, inspecting and doing desk
checks of work products such as requirement specifications, design
specifications and code.”
OR
“It is a human testing activity as it involves looking at the documents
on paper.”

Whereas software validation: “It is defined as the process of eval-
uating a system or component during or at the end of development
process to determine whether it satisfies the specified requirements.
It involves executing the actual software. It is a computer based test-
ing process.”

Both verification and validation (V&V) are complementary to each other.
As mentioned earlier, good testing expects more than just running

a program. We consider a leap-year function working on MS SQL (server data
base):

CREATE FUNCTION  f_is_leap_year (@ ai_year small int)
RETURNS small int
AS
BEGIN

--if year is illegal (null or –ve), return –1
IF (@ ai_year IS NULL) or

Software-Testing_Final.indb 4 31-01-2018 14:55:53

Introduction to Software Testing • 5

(@ ai_year <= 0) RETURN –1
IF ((�(@ ai_year % 4) = 0) AND

((@ ai_year % 100)< > 0)) OR
((@ ai_year % 400) = 0)
RETURN 1 — leap year

RETURN 0 --Not a leap year
END

We execute above program with number of inputs:

TABLE 1.1  Database Table: Test_leap_year

Serial
no.

Year
(year to test)

Expected
result

Observed
result

Match

1. –1 –1 –1 Yes
2. –400 –1 –1 Yes
3. 100 0 0 Yes
4. 1000 0 0 Yes
5. 1800 0 0 Yes
6. 1900 0 0 Yes
7. 2010 0 0 Yes
8. 400 1 1 Yes
9. 1600 1 1 Yes

10. 2000 1 1 Yes
11. 2400 1 1 Yes
12. 4 1 1 Yes
13. 1204 1 1 Yes
14. 1996 1 1 Yes
15. 2004 1 1 Yes

In this database table given above there are 15 test cases. But these are
not sufficient as we have not tried with all possible inputs. We have not con-
sidered the trouble spots like:

	 i.  �Removing statement (@ ai_year % 400 = 0) would result in Y2K
problem.

	 ii.	 Entering year in float format like 2010.11.

	 iii.	 Entering year as a character or as a string.

	 iv.	 Entering year as NULL or zero (0).

Software-Testing_Final.indb 5 31-01-2018 14:55:53

6 • Software Testing

This list can also grow further. These are our trouble spots or critical areas.
We wish to locate these areas and fix these problems before our customer
does.

1.3.  WHY SHOULD WE TEST? WHAT IS THE PURPOSE?

Testing is necessary. Why?

1.	 The Technical Case:

a.	 Competent developers are not inflallible.

b.	 The implications of requirements are not always forseeable.

c.	 �The behavior of a system is not necessarily predictable from its
components.

d.	 �Languages, databases, user interfaces, and operating systems
have bugs that can cause application failures.

e.	 Reusable classes and objects must be trustworthy.

2.	 The Business Case:

a.	 If you don’t find bugs your customers or users will.

b.	 �Post-release debugging is the most expensive form of
development.

c.	 Buggy software hurts operations, sales, and reputation.

d.	 Buggy software can be hazardous to life and property.

3.	 The Professional Case:

a.	 Test case design is a challenging and rewarding task.

b.	 Good testing allows confidence in your work.

c.	 Systematic testing allows you to be most effective.

d.	 Your credibility is increased and you have pride in your efforts.

4.	 The Economics Case: Practically speaking, defects get introduced
in every phase of SDLC. Pressman has described a defect amplifica-
tion model wherein he says that errors get amplified by a certain fac-
tor if that error is not removed in that phase only. This may increase
the cost of defect removal. This principle of detecting errors as close
to their point of introduction as possible is known as phase contain-
ment of errors.

Software-Testing_Final.indb 6 31-01-2018 14:55:53

Introduction to Software Testing • 7

5.	 To Improve Quality: As computers and software are used in critical
applications, the outcome of a bug can be severe. Bugs can cause huge
losses. Bugs in critical systems have caused airplane crashes, allowed
space shuttle systems to go awry, and halted trading on the stock mar-
ket. Bugs can kill. Bugs can cause disasters.

	 In a computerized embedded world, the quality and reliability of
software is a matter of life and death. This can be achieved only if
thorough testing is done.

6.	 For Verification and Validation (V&V): Testing can serve as metrics.
It is heavily used as a tool in the V&V process. We can compare the
quality among different products under the same specification based
on results from the same test.

	 Good testing can provide measures for all relevant quality factors.

7.	 For Reliability Estimation: Software reliability has important
relationships with many aspects of software, including the structure
and the amount of testing done to the software. Based on an opera-
tional profile (an estimate of the relative frequency of use) of vari-
ous inputs to the program, testing can serve as a statistical sampling
method to gain failure data for reliability estimation.

1. Requirements Analysis; 2. Design;

3. Implementa�on; 4. Tes�ng; 5. Maintenance

FIGURE 1.1  Efforts During SDLC.

Software-Testing_Final.indb 7 31-01-2018 14:55:56

8 • Software Testing

Recent Software Failures

a.		� May 31st, 2012, HT reports the failure of air traffic management soft-
ware, Auto Trac-III, at Delhi Airport. The system is unreliable. This
ATC software was installed in 2010 as Auto Trac-II (its older ver-
sion). Since then it has faced many problems due to inadequate test-
ing. Some of the snags were:

1.	 May 28, 2011, snag hits radar system of ATC.

2.	� Feb. 22, 2011, ATC goes blind for 10 minutes with no data about
arriving or departing flights.

3.	� July 28, 2010, radar screens at ATC go blank for 25 minutes after
system displaying flight data crashes.

4.	 Feb. 10, 2010, one of the radar scopes stops working at ATC.

5.	� Jan. 27, 2010, a screen goes blank at ATC due to a technical glitch.

6.	� Jan. 15, 2010, radar system collapses due to software glitch. ATC
officials manually handle the aircraft.

b.		� The case of a 2010 Toyota Prius that had a software bug that caused
braking problems on bumpy roads.

c.		In another case of Therac-25, 6 cancer patients were given overdose.

d.		� A breach on play station network caused a loss of $170 million to Sony
Corp.

Why it happened?

As we know software testing constitutes about 40% of overall effort and
25% of the overall software budget. Software defects are introduced during
SDLC due to poor quality requirements, design, and code. Sometimes due
to the lack of time and inadequate testing, some of the defects are left behind,
only to be found later by users. Software is a ubiquitous product; 90% of
people use software in their everyday life. Software has high failure rates due
to the poor qualify of the software.

Smaller companies that don’t have deep pockets can get wiped out
because they did not pay enough attention to software quality and conduct
the right amount of testing.

Software-Testing_Final.indb 8 31-01-2018 14:55:56

Introduction to Software Testing • 9

1.4.  WHO SHOULD DO TESTING?

As mentioned earlier, testing starts right from the very beginning. This
implies that testing is everyone’s responsibility. By “everyone,” we mean all
project team members. So, we cannot rely on one person only. Naturally, it
is a team effort. We cannot only designate the tester responsible. Even the
developers are responsible. They build the code but do not indicate any
errors as they have written their own code.

1.5.  HOW MUCH SHOULD WE TEST?

Consider that there is a while_loop that has three paths. If this loop is
executed twice, we have (3 × 3) paths and so on. So, the total number of
paths through such code will be:

= 1 + 3 + (3 × 3) + (3 × 3 × 3) + ...
= 1 + ∑3n� (where n > 0)

This means an infinite number of test cases. Thus, testing is not 100%
exhaustive.

1.6.  SELECTION OF GOOD TEST CASES

Designing a good test case is a complex art. It is complex because:

a.		� Different types of test cases are needed for different classes of infor-
mation.

b.		� All test cases within a test suite will not be good. Test cases may be good
in variety of ways.

c.		� People create test cases according to certain testing styles like
domain testing or risk-based testing. And good domain tests are
different from good risk-based tests.

Brian Marick coined a new term to a lightly documented test case—the
test idea. According to Brian, “A test idea is a brief statement of something
that should be tested.” For example, if we are testing a square-root function,
one test idea would be—“test a number less than zero.” The idea here is
again to check if the code handles an error case.

Software-Testing_Final.indb 9 31-01-2018 14:55:56

10 • Software Testing

Cem Kaner said—“The best test cases are the ones that find bugs.” Our
efforts should be on the test cases that finds issues. Do broad or deep cover-
age testing on the trouble spots.

A test case is a question that you ask of the program. The point of run-
ning the test is to gain information like whether the program will pass or fail
the test.

1.7.  MEASUREMENT OF TESTING

There is no single scale that is available to measure the testing progress.
A good project manager (PM) wants worse conditions to occur in the very
beginning of the project instead of in the later phases. If errors are large in
numbers, we can say either testing was not done thoroughly or it was done so
thoroughly that all errors were covered. So there is no standard way to meas-
ure our testing process. But metrics can be computed at the organizational,
process, project, and product levels. Each set of these measurements has its
value in monitoring, planning, and control.

Metrics is assisted by four core components—schedule quality, resources,
and size.

1.8.  INCREMENTAL TESTING APPROACH

To be effective, a software tester should be knowledgeable in two key areas:

1.	 Software testing techniques

2.	 The application under test (AUT)

For each new testing assignment, a tester must invest time in learning
about the application. A tester with no experience must also learn testing
techniques, including general testing concepts and how to define test cases.
Our goal is to define a suitable list of tests to perform within a tight deadline.
There are 8 stages for this approach:

Stage 1: Exploration
Purpose: To gain familiarity with the application
Stage 2: Baseline test
Purpose: To devise and execute a simple test case
Stage 3: Trends analysis

NOTE

Software-Testing_Final.indb 10 31-01-2018 14:55:56

Introduction to Software Testing • 11

Purpose: To evaluate whether the application performs as expected
when actual output cannot be predetermined

Stage 4: Inventory
Purpose: To identify the different categories of data and create a test

for each category item
Stage 5: Inventory combinations
Purpose: To combine different input data
Stage 6: Push the boundaries
Purpose: To evaluate application behavior at data boundaries
Stage 7: Devious data
Purpose: To evaluate system response when specifying bad data
Stage 8: Stress the environment
Purpose: To attempt to break the system

The schedule is tight, so we may not be able to perform all of the stages.
The time permitted by the delivery schedule determines how many stages
one person can perform. After executing the baseline test, later stages could
be performed in parallel if more testers are available.

1.9. � BASIC TERMINOLOGY RELATED TO SOFTWARE
TESTING

We must define the following terminologies one by one:

1.	 Error (or mistake or bugs): People make errors. When people make mis-
takes while coding, we call these mistakes bugs. Errors tend to propagate.
A requirements error may be magnified during design and still amplified
during coding. So, an error is a mistake during SDLC.

2.	 Fault (or defect): A missing or incorrect statement in a program result-
ing from an error is a fault. So, a fault is the representation of an error.
Representation here means the mode of expression, such as a narrative
text, data flow diagrams, hierarchy charts, etc. Defect is a good synonym
for fault. Faults can be elusive. They requires fixes.

3.	 Failure: A failure occurs when a fault executes. The manifested inability
of a system or component to perform a required function within speci-
fied limits is known as a failure. A failure is evidenced by incorrect out-
put, abnormal termination, or unmet time and space constraints. It is a
dynamic process.

Software-Testing_Final.indb 11 31-01-2018 14:55:56

12 • Software Testing

So, Error (or mistake or bug) Fault (or defect) Failure.
For example,

�Error (e.g., * replaced by /) Defect (e.g., C = A/B) (e.g.,
C = 2 instead of 8)

4.	 Incident: When a failure occurs, it may or may not be readily apparent to
the user. An incident is the symptom associated with a failure that alerts
the user to the occurrence of a failure. It is an unexpected occurrence
that requires further investigation. It may not need to be fixed.

5.	 Test: Testing is concerned with errors, faults, failures, and incidents. A
test is the act of exercising software with test cases. A test has two distinct
goals—to find failures or to demonstrate correct execution.

6.	 Test case: A test case has an identity and is associated with program
behavior. A test case also has a set of inputs and a list of expected outputs.
The essence of software testing is to determine a set of test cases for the
item to be tested.

The test case template is shown below.

Test Case ID
Purpose
Preconditions
Inputs
Expected Outputs
Postconditions
Execution History
Date     Result     Version      Run By

FIGURE 1.2  Test Case Template.

There are 2 types of inputs:

a.	Preconditions: Circumstances that hold prior to test case execution.

b.	Actual inputs: That were identified by some testing method.

Expected outputs are also of two types:

a.	Post conditions	

b.	Actual outputs

Software-Testing_Final.indb 12 31-01-2018 14:55:56

Introduction to Software Testing • 13

Test
case ID

Test case
name

Test case
description

Test steps Test
status
(P/F)

Test
priorityStep Expected

result
Actual
result

Session
01

Verify
Card

To verify
whether the
system reads
a customer’s
ATM card.

Insert a
readable
card

Card is accepted;
System asks for
entry of PIN

High

Insert an
unreadable
card

Card is ejected;
System displays
an error screen;
System is ready
to start a new
session

High

Validate
PIN

To verify
whether
the system
accepts
customer’s
PIN

Enter valid
PIN

System displays
a menu of trans-
action types

High

Enter
invalid PIN

Customer is
asked to re-enter
PIN

High

The act of testing entails establishing the necessary preconditions, pro-
viding the test case inputs, observing the outputs, and then comparing these
with the expected outputs to determine whether the test passed.

The remaining information in a test case primarily supports testing team.
Test cases should have an identity and a reason for being. It is also useful to
record the execution history of a test case, including when and by whom it
was run, the pass/fail result of each execution, and the version of the soft-
ware on which it was run. This makes it clear that test cases are valuable, at
least as valuable as source code. Test cases need to be developed, reviewed,
used, managed, and saved. So, we can say that test cases occupy a central
position in testing.

Test cases for ATM:

Preconditions: System is started.

(Continued)

Software-Testing_Final.indb 13 31-01-2018 14:55:56

14 • Software Testing

Test
case ID

Test case
name

Test case
description

Test steps Test
status
(P/F)

Test
priorityStep Expected

result
Actual
result

Enter
incorrect
PIN the first
time, then
correct PIN
the second
time

System displays
a menu of
transaction types.

High

Enter
incorrect
PIN the first
time and
second time,
then correct
PIN the
third time

System displays
a menu of
transaction types.

High

Enter
incorrect
PIN three
times

An appropriate
message is
displayed;
Card is retained
by machine;
Session is
terminated

High

Session
02

Validate
User
Session

To verify
whether
the system
allows
customer to
perform a
transaction

Perform a
transaction

System asks
whether
customer
wants another
transaction

High

To verify
whether
the system
allows multi-
ple transac-
tions in one
session

When
system asks
for another
transaction,
answer is
yes

System displays
a menu of
transaction types

High

(Continued)

Software-Testing_Final.indb 14 31-01-2018 14:55:56

Introduction to Software Testing • 15

Test
case ID

Test case
name

Test case
description

Test steps Test
status
(P/F)

Test
priorityStep Expected

result
Actual
result

When
system asks
for another
transaction,
answer is no

System ejects
card and is ready
to start a new
session

High

Verify
Transac-
tions

To verify
whether
the system
allows to
withdraw

Choose
withdrawal
transaction

System displays
a menu of pos-
sible withdrawal
amounts

High

To verify
whether
system
performs
a legal
withdrawal
transaction
properly

Choose an
amount that
the system
currently
has and
which is not
greater than
the account
balance

System dispenses
this amount of
cash;
System prints
a correct
receipt show-
ing amount and
correct updated
balance

High

Choose an
amount
greater than
what the
system
currently
has

System displays
an appropriate
message and
asks customer
to choose a
different
amount

High

Press
“Cancel”
key

System
displays an
appropriate
message and
offers the
customer
the option of
choosing another
transaction

Medium

(Continued)

Software-Testing_Final.indb 15 31-01-2018 14:55:56

16 • Software Testing

Test
case ID

Test case
name

Test case
description

Test steps Test
status
(P/F)

Test
priorityStep Expected

result
Actual
result

Deposit
01

Verify
Deposit
Transac-

tion

To verify
whether
system
allows a
deposit

Choose
deposit

transaction

System displays
a request for the
customer to type

the amount

High

To verify
whether

the system
performs a

legal deposit
transaction

properly

Enter a
legitimate
amount

System displays
entered amount High

Receipt System prints a
correct receipt

showing the
amount and

correct updated
balance

High

Press “Can-
cel” key

System displays
an appropriate
message and

offers the
customer the

option of
choosing another

transaction

Medium

  7. � Test suite: A collection of test scripts or test cases that is used for validat-
ing bug fixes (or finding new bugs) within a logical or physical area of a
product. For example, an acceptance test suite contains all of the test
cases that were used to verify that the software has met certain prede-
fined acceptance criteria.

  8.  �Test script: The step-by-step instructions that describe how a test case is
to be executed. It may contain one or more test cases.

Software-Testing_Final.indb 16 31-01-2018 14:55:56

Introduction to Software Testing • 17

  9.  �Test ware: It includes all of testing documentation created during the
testing process. For example, test specification, test scripts, test cases,
test data, the environment specification.

10.  Test oracle: Any means used to predict the outcome of a test.

11.  �Test log: A chronological record of all relevant details about the execu-
tion of a test.

12. � Test report: A document describing the conduct and results of testing
carried out for a system.

1.10.  TESTING LIFE CYCLE

FIGURE 1.3  A Testing Life Cycle.

In the development phase, three opportunities arise for errors to be
made resulting in faults that propagate through the remainder of the devel-
opment process. The first three phases are putting bugs IN, the testing phase
is finding bugs, and the last three phases are getting bugs OUT. The fault
resolution step is another opportunity for errors and new faults. When a fix
causes formerly correct software to misbehave, the fix is deficient.

Software-Testing_Final.indb 17 31-01-2018 14:55:57

18 • Software Testing

1.11.  WHEN TO STOP TESTING?

Testing is potentially endless. We cannot test until all defects are unearthed
and removed. It is simply impossible. At some point, we have to stop testing
and ship the software. The question is when?

Realistically, testing is a trade-off between budget, time, and quality. It
is driven by profit models.

The pessimistic approach is to stop testing whenever some or any of the
allocated resources—time, budget, or test cases—are exhausted.

The optimistic stopping rule is to stop testing when either reliability
meets the requirement, or the benefit from continuing testing cannot justify
the testing cost.� [Yang]

1.12.  PRINCIPLES OF TESTING

To make software testing effective and efficient we follow certain
principles. These principles are stated below.

1.	 �Testing should be based on user requirements: This is in order to
uncover any defects that might cause the program or system to fail
to meet the client’s requirements.

2.	 �Testing time and resources are limited: Avoid redundant tests.

3.	 �Exhaustive testing is impossible: As stated by Myer, it is impossible
to test everything due to huge data space and the large number of
paths that a program flow might take.

4.	 �Use effective resources to test: This represents the most suitable
tools, procedures, and individuals to conduct the tests. The test
team should use tools like:

a.	 �Deja Gnu: It is a testing frame work for interactive or batch-
oriented applications. It is designed for regression and
embedded system testing. It runs on UNIX platform. It is a
cross-platform operating system.

5.	 �Test planning should be done early: This is because test planning
can begin independently of coding and as soon as the client require-
ments are set.

Software-Testing_Final.indb 18 31-01-2018 14:55:58

Introduction to Software Testing • 19

6.	 �Testing should begin “in small” and progress toward testing “in
large”: The smallest programming units (or modules) should be
tested first and then expanded to other parts of the system.

7.	 �Testing should be conducted by an independent third party.

8.	 �All tests should be traceable to customer requirements.

9.	 �Assign best people for testing. Avoid programmers.

10.	 �Test should be planned to show software defects and not their
absence.

11.	 �Prepare test reports including test cases and test results to summa-
rize the results of testing.

12.	 �Advance test planning is a must and should be updated in a timely
manner.

1.13.  LIMITATIONS OF TESTING

1.	 Testing can show the presence of errors—not their absence.

2.	 �No matter how hard you try, you will never find the last bug in an
application.

3.	 The domain of possible inputs is too large to test.

4.	 There are too many possible paths through the program to test.

5.	 �In short, maximum coverage through minimum test-cases. That is
the challenge of testing.

6.	 �Various testing techniques are complementary in nature and it is
only through their combined use that one can hope to detect most
errors.

To see some of the most popular testing tools of 2017, visit the following
site: https://www.guru99.com/testing-tools.htmlNOTE

Software-Testing_Final.indb 19 31-01-2018 14:55:58

20 • Software Testing

1.14. � AVAILABLE TESTING TOOLS, TECHNIQUES, AND
METRICS

There are an abundance of software testing tools that exist. Some of the early
tools are listed below:

a.	 �Mothora: It is an automated mutation testing tool-set devel-
oped at Purdue University. Using Mothora, the tester can cre-
ate and execute test cases, measure test case adequacy, determine
input-output correctness, locate and remove faults or bugs, and
control and document the test.

b.	 �NuMega’s Bounds Checker, Rational’s Purify: They are run-
time checking and debugging aids. They can both check and pro-
tect against memory leaks and pointer problems.

c.	 �Ballista COTS Software Robustness Testing Harness [Bal-
lista]: It is a full-scale automated robustness testing tool. It gives
quantitative measures of robustness comparisons across operat-
ing systems. The goal is to automatically test and harden commer-
cial off-the-shelf (COTS) software against robustness failures.

SUMMARY

1.	 Software testing is an art. Most of the testing methods and practices
are not very different from 20 years ago. It is nowhere near maturity,
although there are many tools and techniques available to use. Good
testing also requires a tester’s creativity, experience, and intuition,
together with proper techniques.

2.	 Testing is more than just debugging. It is not only used to locate
errors and correct them. It is also used in validation, verification pro-
cess, and reliability measurement.

3.	 Testing is expensive. Automation is a good way to cut down cost and
time. Testing efficiency and effectiveness is the criteria for coverage
based testing techniques.

4.	 Complete testing is infeasible. Complexity is the root of the prob-
lem.

5.	 Testing may not be the most effective method to improve software
quality.

Software-Testing_Final.indb 20 31-01-2018 14:55:58

Introduction to Software Testing • 21

MULTIPLE CHOICE QUESTIONS

1.	 Software testing is the process of

a.	 Demonstrating that errors are not present

b.	 Executing the program with the intent of finding errors

c.	 Executing the program to show that it executes as per SRS

d.	 All of the above.

2.	 Programmers make mistakes during coding. These mistakes are
known as

a.	 Failures b.	 Defects

c.	 Bugs d.	 Errors

	 3.	 Software testing is nothing else but

a.	 Verification only

b.	 Validation only

c.	 Both verification and validation

d.	 None of the above.

	 4.	 Test suite is a

a.	 Set of test cases b.	 Set of inputs

c.	 Set of outputs d.	 None of the above.

5.	 Which one is not the verification activity?

a.	 Reviews b.	 Path testing

c.	 Walkthroughs d.	 Acceptance testing

	 6.	 A break in the working of a system is called a(n)

a.	 Defect b.	 Failure

c.	 Fault d.	 Error

	 7.	 One fault may lead to

a.	 One failure b.	 No failure

c.	 Many failures d.	 All of the above.

Software-Testing_Final.indb 21 31-01-2018 14:55:58

22 • Software Testing

	 8.	 Verification is

a.	 Checking product with respect to customer’s expectations

b.	 Checking product with respect to SRS

c.	 Checking product with respect to the constraints of the project

d.	 All of the above.

	 9.	 Validation is

a.	 Checking the product with respect to customer’s expectations

b.	 Checking the product with respect to specification

c.	 Checking the product with respect to constraints of the project

d.	 All of the above.

	 10.	 Which one of the following is not a testing tool?

a.	 Deja Gnu b.	 TestLink

c.	 TestRail d.	 SOLARIS

ANSWERS

1.	 b. 2.	 c. 3.	 c. 4.	 a.

5.	 d. 6.	 b. 7.	 d. 8.	 b.

9.	 a. 10.	 d.

CONCEPTUAL SHORT QUESTIONS WITH ANSWERS

Q. 1.	 Are there some myths associated to software testing?
Ans.	 Some myths related to software testing are as follows:

1.	 Testing is a structured waterfall idea: Testing may be purely inde-
pendent, incremental, and iterative activity. Its nature depends
upon the context and adapted strategy.

2.	 Testing is trivial: Adequate testing means a complete under-
standing of application under test (AUT) and appreciating testing
techniques.

Software-Testing_Final.indb 22 31-01-2018 14:55:58

Introduction to Software Testing • 23

3.	 Testing is not necessary: One can minimize the programming
errors but cannot eliminate them. So, testing is necessary.

4.	 Testing is time consuming and expensive: We remember a say-
ing—“Pay me now or pay me much more later” and this is true
in the case of software testing as well. It is better to apply testing
strategies now or else defects may appear in the final product
which is more expensive.

5.	 Testing is destructive process: Testing a software is a diagnostic
and creative activity which promotes quality.

Q. 2.	 Give one example of

a.	 Interface specification bugs

b.	 Algorithmic bugs

c.	 Mechanical bugs

Ans.	 a.  Examples of interface specification bugs are:

i.	 Mismatch between what the client needs and what the server
offers.

ii.	 Mismatch between requirements and implementation.

	 b.	 Examples of algorithmic bugs are:

i.	 Missing initialization.

ii.	 Branching errors.

c.	 Examples of mechanical bugs are:

i.	 Documentation not matching with the operating procedures.

Q. 3.	 Why are developers not good testers?
Ans.	 �A person checking his own work using his own documentation has

some disadvantages:

i.	 Misunderstandings will not be detected. This is because the
checker will assume that what the other individual heard from
him was correct.

ii.	 Whether the development process is being followed properly or
not cannot be detected.

Software-Testing_Final.indb 23 31-01-2018 14:55:58

24 • Software Testing

iii.	 The individual may be “blinded” into accepting erroneous system
specifications and coding because he falls into the same trap dur-
ing testing that led to the introduction of the defect in the first
place.

iv.	 It may result in underestimation of the need for extensive testing.

v.	 It discourages the need for allocation of time and effort for testing.

Q. 4.	 Are there any constraints on testing?
Ans.	 The following are the constraints on testing:

i.	 Budget and schedule constraints

ii.	 Changes in technology

iii.	 Limited tester’s skills

iv.	 Software risks

Q. 5.	 What are test matrices?
Ans.	 �A test matrix shows the inter-relationship between functional events

and tests. A complete test matrix defines the conditions that must be
tested during the test process.

	 	� The left side of the matrix shows the functional events and the top
identifies the tests that occur in those events. Within the matrix,
cells are the process that needs to be tested. We can even cascade
these test matrices.

Q. 6.	 What is a process?
Ans.	 �It is defined as a set of activities that represent the way work is per-

formed. The outcome of a process is usually a product or service.
For example,

Examples of IT processes Outcomes
1.  Analyze business needs
2.  Run job
3.  UNIT test

Needs statement
Executed job
Defect-free unit

Q. 7.	 Explain PDCA view of a process?
Ans.	 �A PDCA cycle is a conceptual view of a process. It is shown in

Figure 1.4.

Software-Testing_Final.indb 24 31-01-2018 14:55:58

Introduction to Software Testing • 25

	 It has four components:

FIGURE 1.4

i.	 P-Devise a plan: Define your objective and find the condi-
tions and methods required to achieve your objective. Express a
specific objective numerically.

ii.	 D-Execute (or Do) the plan: Create the conditions and
perform the necessary teaching and training to execute the plan.
Make sure everyone thoroughly understands the objectives and
the plan. Teach workers all of the procedures and skills they need
to fulfill the plan and a thorough understanding of job is needed.
Then they can perform the work according to these procedures.

iii.	 C-Check the results: Check to determine whether work is
progressing according to the plan and that the expected results
are obtained. Also, compare the results of the work with the
objectives.

iv.	 A-Take necessary action: If a check finds out an abnormality,
i.e., if the actual value differs from the target value then search
for its cause and try to mitigate the cause. This will prevent the
recurrence of the defect.

Q. 8.	 Explain the V-model of testing?
Ans.	 �According to the waterfall model, testing is a post-development activ-

ity. The spiral model took one step further by breaking the product
into increments each of which can be tested separately. However,
V-model brings in a new perspective that different types of testing
apply at different levels. The V-model splits testing into two parts—
design and execution. Please note that the test design is done early

Software-Testing_Final.indb 25 31-01-2018 14:55:59

26 • Software Testing

while the test execution is done in the end. This early design of tests
reduces overall delay by increasing parallelism between develop-
ment and testing. It enables better and more timely validation of
individual phases. The V-model is shown in Figure 1.5.

FIGURE 1.5

	 	� The levels of testing echo the levels of abstractions found in the
waterfall model of SDLC. Please note here, especially in terms of
functional testing, that the three levels of definition, i.e., specifica-
tion, initial design, and detailed design; correspond directly to three
levels of testing—unit, integration, and system testing.

	 	� A practical relationship exists between the levels of testing versus
black- and white-box testing. Most practitioners say that structural
testing is most appropriate at the unit level while functional testing
is most appropriate at the system level.

REVIEW QUESTIONS

1.	 What is software testing?

2.	 Distinguish between positive and negative testing?

Software-Testing_Final.indb 26 31-01-2018 14:56:01

Introduction to Software Testing • 27

3.	 Software testing is software verification plus software validation.
Discuss.

4.	 What is the need of testing?

5.	 Who should do testing? Discuss various people and their roles dur-
ing development and testing.

6.	 What should we test?

7.	 What criteria should we follow to select test cases?

8.	 Can we measure the progress of testing?

9.	 “Software testing is an incremental process.” Justify the statement.

10.	 Define the following terms:

a.	 Error b.	 Fault

c.	 Failure d.	 Incident

e.	 Test f.	 Test case

g.	 Test suite h.	 Test script

i.	 Testware

	 11.	 Explain the testing life cycle?

	 12.	 When should we stop testing? Discuss pessimistic and optimistic
approaches.

	 13.	 Discuss the principles of testing.

	 14.	 What are the limitations of testing?

	 15.	 a.  What is debugging?

		 b.  Why exhaustive testing is not possible?

	 16.	 What are modern testing tools?

	 17.	 Write a template for a typical test case.

	 18.	 Differentiate between error and fault.

	 19.	 What is software testing? How is it different from debugging?

	 20.	 Differentiate between verification and validation?

	 21.	 Explain the concept of a test case and test plan.

Software-Testing_Final.indb 27 31-01-2018 14:56:01

28 • Software Testing

	 22.	 a.  Differentiate between positive testing and negative testing.

		 b. � Why is 100% testing not possible through either black-box or
white-box testing techniques?

		 c.  Name two testing tools used for functional testing.

		 d. � What is static testing? Name two techniques to perform static
testing.

	 23.	 “Software testing is an incremental process.” Justify the statement.

	 24.	 a.  Why are developers not good testers?

		 b.  Which approach should be followed to step testing?

	 25.	 a. � Discuss the role of software testing during the software life cycle
and why it is so difficult?

		 b. � What should we test? Comment on this statement. Illustrate the
importance of testing.

		 c. � Will exhaustive testing (even if possible for very small programs)
guarantee that the program is 100% correct?

		 d. � Define the following terms:

i.	 Test suite

ii.	 Bug

iii.	 Mistake

iv.	 Software failure

Software-Testing_Final.indb 28 31-01-2018 14:56:01

C H A P T E R2
Inside this Chapter:

	 2.0.	 Introduction

	 2.1.	 Differences Between Verification and Validation

	 2.2.	 Differences Between QA and QC

	 2.3.	 Evolving Nature of Area

	 2.4.	 V&V Limitations

	 2.5.	 Categorizing V&V Techniques

	 2.6.	 Role of V&V in SDLC—Tabular Form

	 2.7.	 Proof of Correctness (Formal Verification)

	 2.8.	 Simulation and Prototyping

	 2.9.	 Requirements Tracing

2.10.	 Software V&V Planning (SVVP)

2.11.	 Software Technical Reviews (STRs)

2.12.	 Independent V&V (IV&V) Contractor

2.13.	 Positive and Negative Effects of Software V&V on Projects

2.14.	 Standard for Software Test Documentation (IEEE829)

Software Verification and
Validation

2.0.  INTRODUCTION

Software that satisfies its user expectations is a necessary goal of a success-
ful software development organization. To achieve this goal, software engi-
neering practices must be applied throughout the evolution of the software

Software-Testing_Final.indb 29 31-01-2018 14:56:01

30 • Software Testing

product. Most of these practices attempt to create and modify software in
a manner that maximizes the probability of satisfying its user expectations.

2.1. � DIFFERENCES BETWEEN VERIFICATION
AND VALIDATION

Software verification and validation (V&V) is a technical discipline of sys-
tems engineering. According to Stauffer and Fuji (1986), software V&V is
“a systems engineering process employing a rigorous methodology for evalu-
ating the correctness and quality of software product through the software
life cycle.”

According to Dr. Berry Boehm (1981), software V&V is performed in
parallel with the software development and not at the conclusion of the soft-
ware development. However, verification and validation are different. Table
shows the differences between them.

Verification Validation

1.	 It is a static process of verifying
documents, design, and code.

1.	 It is a dynamic process of validating/
testing the actual product.

2.	 It does not involve executing the
code.

2.	 It involves executing the code.

3.	 It is human based checking of
documents/files.

3.	 It is the computer-based execution
of program.

4.	 Target is requirements specification,
application architecture, high level
and detailed design, and database
design.

4.	 Target is actual product—a unit, a
module, a set of integrated modules,
and the final product.

5.	 It uses methods like inspections,
walk throughs, desk-checking, etc.

5.	 It uses methods like black-box,
gray-box, and white-box testing.

6.	 It, generally, comes first—before
validation.

6.	 It generally follows verification.

7.	 It answers the question—Are we
building the product right?

7.	 It answers the question—Are we
building the right product?

8.	 It can catch errors that validation
cannot catch.

8.	 It can catch errors that verification
cannot catch.

Software-Testing_Final.indb 30 31-01-2018 14:56:01

Software Verification and Validation • 31

Both of these are essential and complementary. Each provides its own
sets of error filters.

Each has its own way of finding the errors in the software.

2.2.  DIFFERENCES BETWEEN QA AND QC?

Quality assurance: The planned and systematic activities implemented in a
quality system so that quality requirements for a product or service will be
fulfilled is known as quality assurance.

Quality control: The observation techniques and activities used to fulfill
requirements for quality is known as quality control.

Both are, however, different to each other. We tabulate The differences
between them are shown below.

Quality Assurance (QA) Quality Control (QC)

1.	 It is process related. 1.	 It is product related.
2.	 It focuses on the process used to

develop a product.
2.	 It focuses on testing of a product

developed or a product under
development.

3.	 It involves the quality of the
processes.

3.	 It involves the quality of the
products.

4.	 It is a preventive control. 4.	 It is a detective control.
5.	 Allegiance is to development. 5.	 Allegiance is not to development.

2.3.  EVOLVING NATURE OF AREA

As the complexity and diversity of software products continue to increase,
the challenge to develop new and more effective V&V strategies continues.
The V&V approaches that were reasonably effective on small batch-oriented
products are not sufficient for concurrent, distributed, or embedded prod-
ucts. Thus, this area will continue to evolve as new research results emerge
in response to new V&V challenges.

Software-Testing_Final.indb 31 31-01-2018 14:56:01

32 • Software Testing

2.4.  V&V LIMITATIONS

The overall objective of software V&V approaches is to ensure that the prod-
uct is free from failures and meets its user’s expectations. There are several
theoretical and practical limitations that make this objective impossible to
obtain for many products. They are discussed below:

1.  Theoretical Foundations

Howden claims the most important theoretical result in program testing and
analysis is that no general purpose testing or analysis procedure can be used
to prove program correctness.

2.  Impracticality of Testing All Data

For most programs, it is impractical to attempt to test the program with all
possible inputs due to a combinational explosion. For those inputs selected,
a testing oracle is needed to determine the correctness of the output for a
particular test input.

3.  Impracticality of Testing All Paths

For most programs, it is impractical to attempt to test all execution paths
through the product due to a combinational explosion. It is also not possible
to develop an algorithm for generating test data for paths in an arbitrary
product due to the mobility to determine path feasibility.

4.  No Absolute Proof of Correctness

Howden claims that there is no such thing as an absolute proof of cor-
rectness. Instead, he suggests that there are proofs of equivalency, i.e.,
proofs that one description of a product is equivalent to another descrip-
tion. Hence, unless a formal specification can be shown to be correct and,
indeed, reflects exactly the user’s expectations, no claims of product cor-
rectness can be made.

Software-Testing_Final.indb 32 31-01-2018 14:56:01

Software Verification and Validation • 33

2.5.  CATEGORIZING V&V TECHNIQUES

Various V&V techniques are categorized below:

Guessing

FIGURE 2.1  Types of V&V Techniques.

The static methods of V&V involves the review processes. Whereas
dynamic methods like black-box testing can be applied at all levels, even at
the system level. While the principle of white-box testing is that it checks for
interface errors at the module level, black-box testing can also be done at
the module level by testing boundary conditions and low-level functions like
correctly displaying error messages.

2.6. � ROLE OF V&V IN SDLC—TABULAR FORM
[IEEE STD. 1012]

Traceability Analysis

It traces each software requirement back to the system requirements
established in the concept activity. This is to ensure that each requirement

Software-Testing_Final.indb 33 31-01-2018 14:56:03

34 • Software Testing

correctly satisfies the system requirements and that no extraneous software
requirements are added. In this technique, we also determine whether any
derived requirements are consistent with the original objectives, physical
laws, and the technologies described in system document.

Interface Analysis

It is the detailed examination of the interface requirements specifications.
The evaluation criteria is the same as that for requirements specification.
The main focus is on the interfaces between software, hardware, user, and
external software.

Criticality Analysis

Criticality is assigned to each software requirement. When requirements are
combined into functions, the combined criticality of requirements form the
criticality for the aggregate function. Criticality analysis is updated periodi-
cally as requirement changes are introduced. This is because such changes
can cause an increase or decrease in a functions criticality which depends on
how the revised requirement impacts system criticality.

Criticality analysis is a method used to locate and reduce high-risk
problems and is performed at the beginning of the project. It identifies
the functions and modules that are required to implement critical program
functions or quality requirements like safety, security, etc.

Criticality analysis involves the following steps:

Step 1: �Construct a block diagram or control flow diagram (CFD) of the
system and its elements. Each block will represent one software
function (or module) only.

Step 2: �Trace each critical function or quality requirement through
CFD.

Step 3: Classify all traced software functions as critical to:
a.	 Proper execution of critical software functions.
b.	 Proper execution of critical quality requirements.

Step 4: �Focus additional analysis on these traced critical software
functions.

Step 5: �Repeat criticality analysis for each life cycle process to deter-
mine whether the implementation details shift the emphasis of
the criticality.

Software-Testing_Final.indb 34 31-01-2018 14:56:03

Software Verification and Validation • 35

Hazard and Risk Analysis

It is done during the requirements definition activity. Now hazards or risks
are identified by further refining the system requirements into detailed soft-
ware requirements. These risks are assessed for their impact on the system.
A summary of these activities is given below:

V&V Activity V&V Tasks Key Issues

1.	 Requirements
V&V

�� Traceability analysis
�� Software requirements

evaluation
�� Interface analysis
�� Criticality analysis
�� System V&V test plan

generation
�� Acceptance V&V test plan

generation
�� Configuration management

assessment
�� Hazard analysis
�� Risk analysis

�� Evaluates the
correctness,
completeness,
accuracy,
consistency, testabil-
ity, and readability
of software
requirements.

�� Evaluates the
software interfaces.

�� Identifies the
criticality of each
software function.

�� Initiates the V&V
test planning for the
V&V system test.

�� Initiates the V&V
test planning for the
V&V acceptance
test.

�� Ensures complete-
ness and adequacy
of the SCM process.

�� Identifies potential
hazards based on
the product data
during the speci-
fied development
activity.

�� Identifies potential
risks based on the
product data during
the specified devel-
opment activity.

(Continued)

Software-Testing_Final.indb 35 31-01-2018 14:56:03

36 • Software Testing

2.	 Design V&V �� Traceability analysis
�� Software design evaluation
�� Interface analysis
�� Criticality analysis
�� Component V&V test plan

generation and verification
�� Integration V&V test plan

generation and verification
�� Hazard analysis
�� Risk analysis

�� Evaluates software
design modules for
correctness, com-
pleteness, accuracy,
consistency, testabil-
ity, and readability.

�� Initiates the V&V
test planning for the
V&V component
test.

�� Initiates the V&V
test planning for the
V&V integration
test.

3.	 Implementation
V&V

�� Traceability analysis
�� Source code and source code

documentation evaluation
�� Interface analysis
�� Criticality analysis
�� V&V test case generation and

verification
�� V&V test procedure

generation and verification
�� Component V&V test

execution and verification
�� Hazard analysis
�� Risk analysis

�� Verifies the
correctness,
completeness,
consistency,
accuracy, testability,
and readability of
source code.

4.	 Test V&V �� Traceability analysis
�� Acceptance V&V test

procedure generation and
verification

�� Integration V&V test
execution and verification

�� System V&V test execution
and verification

�� Acceptance V&V test
execution and verification

Software-Testing_Final.indb 36 31-01-2018 14:56:03

Software Verification and Validation • 37

5.	 Maintenance
V&V

�� SVVP (software verification
and validation plan) revision

�� Proposed change assessment
�� Anomaly evaluation
�� Criticality analysis
�� Migration assessment
�� Retirement assessment
�� Hazard analysis
�� Risk analysis

�� Modifies the SVVP.
�� Evaluates the effect

on software of the
operation anomalies.

�� Verifies the
correctness of
software when
migrated to a
different operational
environment.

�� Ensures that the
existing system
continues to
function correctly
when specific
software elements
are retired.

2.7. � PROOF OF CORRECTNESS (FORMAL VERIFICATION)

A proof of correctness is a mathematical proof that a computer program or
a part thereof will, when executed, yield correct results, i.e., results fulfilling
specific requirements. Before proving a program correct, the theorem to be
proved must, of course, be formulated.

Hypothesis: The hypothesis of such a correctness theorem is typically a con-
dition that the relevant program variables must satisfy immediately “before”
the program is executed. This condition is called the precondition.

Thesis: The thesis of the correctness theorem is typically a condition that the
relevant program variables must satisfy immediately “after” execution of the
program. This latter condition is called the postcondition.

So, the correctness theorem is stated as follows:

“If the condition, V, is true before execution of the program, S, then the
condition, P, will be true after execution of S.”

where V is precondition and P is postcondition.
Notation: Such a correctness theorem is usually written as {V} S {P},

where V, S, and P have been explained above.

Software-Testing_Final.indb 37 31-01-2018 14:56:03

38 • Software Testing

By program variable we broadly include input and output data, e.g., data
entered via a keyboard, displayed on a screen, or printed on paper. Any
externally observable aspect of the program’s execution may be covered by
the precondition and postcondition.

2.8.  SIMULATION AND PROTOTYPING

Simulation and prototying are techniques for analyzing the expected behav-
ior of a product. There are many approaches to constructing simulations and
prototypes that are well documented in literature.

For V&V purposes, simulations and prototypes are normally used to
analyze requirements and specifications to ensure that they reflect the user’s
needs. Because they are executable, they offer additional insight into the
completeness and correctness of these documents.

Simulations and prototypes can also be used to analyze predicted prod-
uct performance, especially for candidate product designs, to ensure that
they conform to the requirements.

It is important to note that the utilization of simulation and prototyping
as a V&V technique requires that the simulations and prototypes themselves
be correct. Thus, the utilization of these techniques requires an additional
level of V&V activity.

2.9.  REQUIREMENTS TRACING

“It is a technique for ensuring that the product, as well as the testing of the
product, addresses each of its requirements.” The usual approach to performing
requirements tracing uses matrices.

a.	 �One type of matrix maps requirements to software modules. Construction
and analysis of this matrix can help ensure that all requirements are
properly addressed by the product and that the product does not have
any superfluous capabilities. System verification diagrams are another
way of analyzing requirements/modules traceability.

b.	 �Another type of matrix maps requirements to test cases. Construction
and analysis of this matrix can help ensure that all requirements are
properly tested.

Software-Testing_Final.indb 38 31-01-2018 14:56:03

Software Verification and Validation • 39

c.	 �A third type of matrix maps requirements to their evaluation approach.
The evaluation approaches may consist of various levels of testing,
reviews, simulations, etc.

The requirements/evaluation matrix ensures that all requirements will
undergo some form of V&V. Requirements tracing can be applied for all the
products of the software evolution process.

2.10.  SOFTWARE V&V PLANNING (SVVP)

The development of a comprehensive V&V plan is essential to the success
of a project. This plan must be developed early in the project. Depending
on the development approach followed, multiple levels of test plans may be
developed corresponding to various levels of V&V activities. IEEE 83b has
documented the guidelines for the contents of system, software, build, and
module test plans.

The following steps for SVVP are listed below:

Step 1: Identification of V&V Goals

V&V goals must be identified from the requirements and specifications.
These goals must address those attributes of the product that correspond
to its user expectations. These goals must be achievable taking into account
both theoretical and practical limitations.

Step 2: Selection of V&V Techniques

Once Step 1 (above) is finished, we must select specific techniques for each
of the products that evolves during SDLC. These are given below:

a.	 During the Requirements Phase: The applicable techniques for
accomplishing the V&V objectives for requirements are—technical
reviews, prototyping, and simulations. The review process is often
called a system requirement review (SRR).

b.	 During the Specifications Phase: The applicable techniques for this
phase are technical reviews, requirements tracing, prototyping, and
simulations. The requirements must be traced to the specifications.

c.	 During the Design Phase: The techniques for accomplishing the
V&V objectives for designs are technical reviews, requirements tracing,

Software-Testing_Final.indb 39 31-01-2018 14:56:03

40 • Software Testing

prototyping, simulation, and proof of correctness. We can go for two
types of design reviews:

i.	 High-level designs that correspond to an architectural view of
the product are often reviewed in a preliminary design review
(PDR).

ii.	 Detailed designs are addressed by a critical design review
(CDR).

d.	 During the Implementation Phase: The applicable techniques
for accomplishing V&V objectives for implementation are technical
reviews, requirements tracing, testing, and proof of correctness. Various
code review techniques such as walk throughs and inspections exist.

	 At the source-code level, several static analysis techniques are available
for detecting implementation errors. The requirements tracing activity
is concerned with tracing requirements to source-code modules. The
bulk of the V&V activity for source code consists of testing. Multiple
levels of testing are usually performed. At the module-level, proof-of-
correctness techniques may be applied, if applicable.

e.	 During the Maintenance Phase: Because changes describe
modifications to products, the same techniques used for V&V during
development may be applied during modification. Changes to
implementation require regression testing.

Step 3: Organizational Responsibilities

The organizational structure of a project is a key planning consideration for
project managers. An important aspect of this structure is the delegation of
V&V activities to various organizations.

This decision is based upon the size, complexity, and criticality of the
product. Four types of organizations are addressed. These organizations
reflect typical strategies for partitioning tasks to achieve V&V goals for the
product. These are:

a.	 Developmental Organization: This type of organization has the
following responsibilities:

1.	 To participate in technical reviews for all of the evolution products.

2.	 To construct prototypes and simulations.

3.	 To prepare and execute test plans for unit and integration levels of
testing. This is called preliminary qualification testing (PQT).

4.	 To construct any applicable proofs of correctness at the module level.

Software-Testing_Final.indb 40 31-01-2018 14:56:03

Software Verification and Validation • 41

b.	 Independent Test Organization (ITO): This type of organization has
the following responsibilities:

1.	 It enables test activities to occur in parallel with those of development.

2.	 It participates in all of the product’s technical reviews and monitors
PQT effort.

3.	 The primary responsibility of the ITO is the preparation and execution
of the product’s system test plan. This is sometimes referred to as the
formal qualification test (FQT).

	 The plan for this must contain the equivalent of a requirements/
evaluation matrix that defines the V&V approach to be applied for
each requirement.

4.	 If the product must be integrated with other products, this integration
activity is normally the responsibility of the ITO.

c.	 Software Quality Assurance (SQA) Organizations: The intent here
is to identify some activities for ensuring software quality. Evaluations
are the primary avenue for ensuring software quality. Some evaluation
types are given below:

i.	 Internal consistency of product

ii.	 Understandability of product

iii.	 Traceability to indicated documents

iv.	 Consistency with indicated documents

v.	 Appropriate allocation of sizing, timing, and resources

vi.	 Adequate test coverage of requirements

vii.	 Completeness of testing

viii.	 Completeness of regression testing

d.	 Independent V&V Contractor: An independent contractor may be
selected to do V&V. The scope of activities of this organization varies
from that of an ITO (discussed above) and SQA organization.

Step 4: Integrating V&V Approaches

Once a set of V&V objectives has been identified, an overall integrated
V&V approach must be determined. This approach involves the integration
of techniques applicable to various life cycle phases as well as the delega-
tion of these tasks among the project’s organizations. The planning of this

Software-Testing_Final.indb 41 31-01-2018 14:56:03

42 • Software Testing

integrated V&V approach is very dependent upon the nature of the product
and the process used to develop it. Earlier the waterfall approach for testing
was used and now incremental approach is used. Regardless of the approach
selected, V&V progress must be tracked. Requirements/ evaluation matrices
play a key role in this tracking by providing a means of insuring that each
requirement of the product is addressed.

Step 5: Problem Tracking

i.	 It involves documenting the problems encountered during the V&V
effort.

ii.	 Routing these problems to appropriate persons for correctness.

iii.	 Ensuring that corrections have been done.

iv.	 Typical information to be collected includes:

a.	 When the problem occurred

b.	 Where the problem occurred

c.	 State of the system before occurrence

d.	 Evidence of the problem

e.	 Priority for solving problem

This fifth step is very important when we go with OS testing.

Step 6: Tracking Test Activities

SVVP must provide a mechanism for tracking testing effort, testing cost, and
testing quality. To do this the following data is collected:

a.	 Number of tests executed

b.	 Number of tests remaining

c.	 Time used

d.	 Resources used

e.	 Number of problems found

These data can be used to compare actual test progress against scheduled
progress.

NOTE

Software-Testing_Final.indb 42 31-01-2018 14:56:03

Software Verification and Validation • 43

Step 7: Assessment

It is important that the software V&V plan provide for the ability to collect
data that can be used to assess both the product and the techniques used to
develop it. This involves careful collection of error and failure data, as well
as analysis and classification of these data.

2.11.  SOFTWARE TECHNICAL REVIEWS (STRs)

A review process can be defined as a critical evaluation of an object. It
includes techniques such as walk-throughs, inspections, and audits. Most of
these approaches involve a group meeting to assess a work product.

Software technical reviews can be used to examine all of the products of
the software evolution process. In particular, they are especially applicable
and necessary for those products not yet in machine-processable form, such
as requirements or specifications written in natural language.

2.11.1.  Rationale for STRs

The main rationale behind STRs are as follows:

a.	 Error-Prone Software Development and Maintenance Process:
The complexity and error-prone nature of developing and maintaining
software should be demonstrated with statistics depicting error
frequencies for intermediate software products. These statistics must
also convey the message that errors occur throughout the development
process and that the later these errors are detected, the higher the cost
for their repair.

Summary:

i.	 Complexity of software development and maintenance processes.

ii.	 Error frequencies for software work products.

iii.	 Error distribution throughout development phases.

iv.	 Increasing costs for error removal throughout the life cycle.

b.	 Inability to Test All Software: It is not possible to test all software.
Clearly exhaustive testing of code is impractical. Current technology

Software-Testing_Final.indb 43 31-01-2018 14:56:03

44 • Software Testing

also does not exist for testing a specification or high level design. The
idea of testing a software test plan is also bewildering. Testing also does
not address quality issues or adherence to standards which are possible
with review processes.

Summary:

i.	 Exhaustive testing is impossible.

ii.	 Intermediate software products are largely untestable.

c.	 Reviews are a Form of Testing: The degree of formalism, scheduling,
and generally positive attitude afforded to testing must exist for software
technical reviews if quality products are to be produced.

Summary:

i.	 Objectives

ii.	 Human based versus machine based

iii.	 Attitudes and norms

d.	 Reviews are a Way of Tracking a Project: Through identification
of deliverables with well defined entry and exit criteria and successful
review of these deliverables, progress on a project can be followed and
managed more easily [Fagan]. In essence, review processes provide
milestones with teeth. This tracking is very beneficial for both project
management and customers.

Summary:

i.	 Individual developer tracking

ii.	 Management tracking

iii.	 Customer tracking

e.	 Reviews Provide Feedback: The instructor should discuss and
provide examples about the value of review processes for providing
feedback about software and its development process.

Summary:

i.	 Product ii.	 Process

Software-Testing_Final.indb 44 31-01-2018 14:56:03

Software Verification and Validation • 45

f.	 Educational Aspects of Reviews: It includes benefits like a better
understanding of the software by the review participants that can be
obtained by reading the documentation as well as the opportunity of
acquiring additional technical skills by observing the work of others.

Summary:

i.	 Project understanding ii.	 Technical skills

2.11.2.  Types of STRs

A variety of STRs are possible on a project depending upon the developmen-
tal model followed, the type of software product being produced, and the
standards which must be adhered to. These developmental modes may be

i.	 Waterfall model

ii.	 Rapid prototyping

iii.	 Iterative enhancement

iv.	 Maintenance activity modeling

And the current standards may be

i.	 Military standards

ii.	 IEEE standards

iii.	 NBS standards

Reviews are classified as formal and Informal reviews. We tabulate the
differences between them in tabular form.

Informal reviews Formal reviews

	 i.	 It is a type of review that typically
occurs spontaneously among peers.

	 i.	 It is a planned meeting.

	 ii.	 Reviewers have no responsibility. 	 ii.	 Reviewers are held accountable
for their participation in the
review.

	iii.	 No review reports are generated. 	iii.	 Review reports containing action
items are generated and acted
upon.

Software-Testing_Final.indb 45 31-01-2018 14:56:03

46 • Software Testing

2.11.3.  Review Methodologies

There are three approaches to reviews

a.	 Walkthrough (or presentation reviews)

b.	 Inspection (or work product reviews)

c.	 Audits

a.	 Walkthroughs (or Presentation Reviews) Walkthroughs are well
defined by Yourdon. Walkthroughs can be viewed as presentation
reviews in which a review participant, usually the developer of the
software being reviewed, narrates a description of the software
and the remainder of the review group provides their feedback
throughout the presentation.

	 They are also known as presentation reviews because the bulk of
the feedback usually occurs for the material actually presented
at the level it is presented. Thus, advance preparation on the
part of reviewers is often not detectable during a walkthrough.
Walkthroughs suffer from these limitations as well as the fact that
they may lead to disorganized and uncontrolled reviews.

	 Walkthroughs may also be stressful if the developer of the software
is conducting the walkthrough. This has lead to many variations
such as having someone other than the developer perform the
walkthrough. It is also possible to combine multiple reviews into a
single review such as a combined design and code walkthrough.

b.	 Inspections (or Walk Product Reviews): It is a formal approach.
Inspections were first performed by Fagan at IBM. They require
a high degree of preparation for the review participants but the
benefits include a more systematic review of the software and a
more controlled and less stressed meeting.

	 There are many variations of inspections, but all include some
form of a checklist or agenda that guides the preparation of the
review participants and serves to organize the review meeting
itself. Inspections are also characterized by rigorous entry and exit
requirements for the work products being inspected.

	 An inspection process involves the collection of data that can be
used for feedback on the quality of the development and review

Software-Testing_Final.indb 46 31-01-2018 14:56:03

Software Verification and Validation • 47

processes as well as to influence future validation techniques on the
software itself.

Inspections Walkthroughs

1.	 It is a five-step process that is
well formalized.

1.	 It has fewer steps than
inspections and is a less formal
process.

2.	 It uses checklists for locating
errors.

2.	 It does not use a checklist.

3.	 It is used to analyze the quality
of the process.

3.	 It is used to improve the quality
of the product.

4.	 This process takes a longer time. 4.	 It is a shorter process.
5.	 It focuses on training of junior

staff.
5.	 It focuses on finding defects.

c.	 Audits: Audits should also be described as an external type of
review process. Audits serve to ensure that the software is properly
validated and that the process is producing its intended results.

2.12.  INDEPENDENT V&V CONTRACTOR (IV&V)

An independent V&V contractor may sometimes be used to ensure inde-
pendent objectivity and evaluation for the customer.

The use of a different organization, other than the software develop-
ment group, for software V&V is called independent verification and valida-
tion (IV&V). Three types of independence are usually required:

i.	 Technical Independence: It requires that members of the IV&V
team (organization or group) may not be personnel involved in the
development of the software. This team must have some knowledge
about the system design or some engineering background enabling
them to understand the system. The IV&V team must not be influenced
by the development team when the IV&V team is learning about the
system requirements, proposed solutions for building the system,
and problems encountered. Technical independence is crucial in the

Software-Testing_Final.indb 47 31-01-2018 14:56:03

48 • Software Testing

team’s ability to detect the subtle software requirements, software
design, and coding errors that escape detection by development
testing and SQA reviews.

		 The technical IV&V team may need to share tools from the computer
support environment (e.g., compilers, assemblers, utilities) but
should execute qualification tests on these tools to ensure that the
common tools themselves do not mask errors in the software being
analyzed and tested. The IV&V team uses or develops its own set of
test and analysis tools separate from the developer’s tools whenever
possible.

	 ii.	 Managerial Independence: It means that the responsibility for
IV&V belongs to an organization outside the contractor and program
organizations that develop the software. While assurance objectives
may be decided by regulations and project requirements, the IV&V
team independently decides the areas of the software/system to
analyze and test, techniques to conduct the IV&V, schedule of tasks,
and technical issues to act on. The IV&V team provides its findings in
a timely manner simultaneously to both the development team and
the systems management.

	 iii.	 Financial Independence: It means that control of the IV&V budget
is retained in an organization outside the contractor and program
organization that develop the software. This independence protects
against diversion of funds or adverse financial pressures or influences
that may cause delay or stopping of IV&V analysis and test tasks and
timely reporting of results.

2.13. � POSITIVE AND NEGATIVE EFFECTS OF SOFTWARE
V&V ON PROJECTS

Software V&V has some positive effects on a software project. The following
are given below:

1.	 Better quality of software. This includes factors like completeness,
consistency, readability, and testablity of the software.

2.	 More stable requirements.

3.	 More rigorous development planning, at least to interface with the
software V&V organization.

Software-Testing_Final.indb 48 31-01-2018 14:56:03

Software Verification and Validation • 49

4.	 Better adherence by the development organization to programming
language and development standards and configuration management
practices.

5.	 Early error detection and reduced false starts.

6.	 Better schedule compliance and progress monitoring.

7.	 Greater project management visibility into interim technical quality and
progress.

8.	 Better criteria and results for decision making at formal reviews and
audits.

Some negative effects of software V&V on a software development project
include:

1.	 Additional project cost of software V&V (10–30% extra).

2.	 Additional interface involving the development team, user, and software
V&V organization. For example, attendance at software V&V status
meetings, anomaly resolution meetings.

3.	 Additional documentation requirement beyond the deliverable products,
if software V&V is receiving incremental program and documentation
releases.

4.	 Need to share computing facilities with and access to classified data for
the software V&V organization.

5.	 Lower development staff productivity if programmers and engineers
spend time explaining the system to software V&V analysts, especially if
explanations are not documented.

6.	 Increased paperwork to provide written responses to software V&V
error reports and other V&V data requirements. For example, notices of
formal review and audit meetings, updates to software release schedule,
and response to anomaly reports.

7.	 Productivity of development staff affected adversely in resolving invalid
anomaly reports.

Some steps can be taken to minimize the negative effects and to max-
imize the positive effects of software V&V. To recover much of the costs,
software V&V is started early in the software requirements phase. The inter-
face activities for documentation, data, and software deliveries between
developer and software V&V groups should be considered as an inherently
necessary step required to evaluate intermediate development products.

Software-Testing_Final.indb 49 31-01-2018 14:56:03

50 • Software Testing

To offset unnecessary costs, software V&V must organize its activities
to focus on critical areas of the software so that it uncovers critical errors
for the development group and thereby results in significant cost savings
to the development process. To do this, software V&V must use its criti-
cality analysis to identify critical areas. It must scrutinize each discrepancy
before release to ensure that no false or inaccurate information is released
to prevent the development group from wasting time on inaccurate or trivial
reports.

To eliminate the need to have development personnel train the software
V&V staff, it is imperative that software V&V select personnel who are expe-
rienced and knowledgeable about the software and its engineering appli-
cation. When software V&V engineers and computer scientists reconstruct
the specific details and idiosyncrasies of the software as a method of recon-
firming the correctness of engineering and programming assumptions, they
often find subtle errors. They gain detailed insight into the development
process and an ability to spot critical errors early. The cost of the develop-
ment interface is minimal, and at times nonexistent, when the software V&V
assessment is independent.

Finally, the discrepancies detected in software and the improvement
in documentation quality resulting from error correction suggests that
software V&V costs are offset by having more reliable and maintainable
software. Many companies rely on their software systems for their daily
operations. Failure of the system, loss of data, and release of or tamper-
ing with sensitive information may cause serious work disruptions and
serious financial impact. The costs of software V&V are offset in many
application areas by increased reliability during operation and reduced
costs of maintenance.

2.14. � STANDARD FOR SOFTWARE TEST DOCUMENTATION
(IEEE829)

�� The IEEE829 standard for software test documentation describes a set
of basic software test documents. It defines the content and form of each
test document.

�� In this addendum, we give a summary of the structure of the most impor-
tant IEEE829 defined test documents.

Software-Testing_Final.indb 50 31-01-2018 14:56:03

Software Verification and Validation • 51

�� This addendum is based on the course materials by Jukka Paakki (and
the IEEE829 standard).

Test Plan

1.	 Test-plan Identifier: Specifies the unique identifier assigned to the test
plan.

2.	 Introduction: Summarizes the software items and features to be tested,
provides references to the documents relevant for testing (for example,
overall project plan, quality assurance plan, configuration management
plan, applicable standards, etc.).

3.	 Test Items: Identifies the items to be tested including their version/
revision level, provides references to the relevant item documentation
(for example, requirements specification, design specification, user’s
guide, operations guide, installation guide, etc.), and identifies items
which are specifically excluded from testing.

4.	 Features to be Tested: Identifies all software features and their
combinations to be tested, identifies the test-design specification
associated with each feature and each combination of features.

5.	 Features not to be Tested: Identifies all features and significant
combinations of features which will not be tested, and the reasons for
this.

6.	 Approach: Describes the overall approach to testing (the testing activities
and techniques applied, the testing of non functional requirements
such as performance and security, the tools used in testing); specifies
completion criteria (for example, error frequency or code coverage);
identifies significant constraints such as testing-resource availability and
strict deadlines; serves for estimating the testing efforts.

7.	 Item Pass/Fail Criteria: Specifies the criteria to be used to determine
whether each test item has passed or failed testing.

8.	 Suspension Criteria and Resumption: Specifies the criteria used to
suspend all or a portion of the testing activity on the test items (for
example, at the end of working day, due to hardware failure or other
external exception, etc.), specifies the testing activities which must be
repeated when testing is resumed.

Software-Testing_Final.indb 51 31-01-2018 14:56:03

52 • Software Testing

9.	 Test Deliverables: Identifies the deliverable documents, typically
test-design specifications, test-case specifications, test-procedure
specifications, test-item transmittal reports, test logs, test-incident
reports, description of test-input data and test-output data, and
description of test tools.

10.	 Testing Tasks: Identifies the set of tasks necessary to prepare and
perform testing (for example, description of the main phases in the
testing process, design of verification mechanisms, plan for maintenance
of the testing environment, etc.).

11.	 Environmental Needs: Specifies both the necessary and desired properties
of the test environment (for example, hardware, communications and
systems software, software libraries, test support tools, level of security
for the test facilities, drivers and stubs to be implemented, office or
laboratory space, etc.).

12.	 Responsibilities: Identifies the groups of persons responsible for
managing, designing, preparing, executing, witnessing, checking,
and resolving the testing process; identifies the groups responsible
for providing the test items (Section 3) and the environmental needs
(Section 11).

13.	 Staffing and Training Needs: Specifies the number of testers by skill
level, and identifies training options for providing necessary skills.

14.	 Schedule: Includes test milestones (those defined in the overall project
plan as well as those identified as internal ones in the testing process),
estimates the time required to do each testing task, identifies the
temporal dependencies between testing tasks, specifies the schedule
over calendar time for each task and milestone.

15.	 Risks and Contingencies: Identifies the high-risk assumptions of the
test plan (lack of skilled personnel, possible technical problems, etc.),
specifies contingency plans for each risk (for example, employment
of additional testers, increase of night shift, exclusion of some tests of
minor importance, etc.).

16.	 Approvals: Specifies the persons who must approve this plan.

Software-Testing_Final.indb 52 31-01-2018 14:56:03

Software Verification and Validation • 53

Test-Case Specification

1.	 Test-case Specification Identifier: Specifies the unique identifier
assigned to this test-case specification.

2.	 Test Items: Identifies and briefly describes the items and features to
be exercised by this test case, supplies references to the relevant
item documentation (for example, requirements specification, design
specification, user’s guide, operations guide, installation guide, etc.).

3.	 Input Specifications: Specifies each input required to execute the test
case (by value with tolerance or by name); identifies all appropriate
databases, files, terminal messages, memory resident areas, and external
values passed by the operating system; specifies all required relationships
between inputs (for example, timing).

4.	 Output Specifications: Specifies all of the outputs and features (for
example, response time) required of the test items, provides the exact
value (with tolerances where appropriate) for each required output or
feature.

5.	 Environmental Needs: Specifies the hardware and software configuration
needed to execute this test case, as well as other requirements (such as
specially trained operators or testers).

6.	 Special Procedural Requirements: Describes any special constraints on
the test procedures which execute this test case (for example, special set-
up, operator intervention, etc.).

7.	 Intercase Dependencies: Lists the identifiers of test cases which must be
executed prior to this test case, describes the nature of the dependencies.

Test-Incident Report (Bug Report)

1.	 Bug-Report Identifier: Specifies the unique identifier assigned to this
report.

2.	 Summary: Summarizes the (bug) incident by identifying the test items
involved (with version/revision level) and by referencing the relevant
documents (for example, test-procedure specification, test-case
specification, test log).

3.	 Bug Description: Provides a description of the incident, so as to correct
the bug, repeat the incident, or analyze it offline.

Software-Testing_Final.indb 53 31-01-2018 14:56:03

54 • Software Testing

�� Inputs
�� Expected results
�� Actual results
�� Date and time
�� Test-procedure step
�� Environment
�� Repeatability (whether repeated; whether occurring always, occa-

sionally, or just once).
�� Testers
�� Other observers
�� Additional information that may help to isolate and correct the cause

of the incident; for example, the sequence of operational steps or his-
tory of user-interface commands that lead to the (bug) incident.

4.	 Impact: Priority of solving the incident/correcting the bug (urgent, high,
medium, low).

Test-Summary Report

1.	 Test-Summary-Report Identifier: Specifies the unique identifier assigned
to this report.

2.	 Summary: Summarizes the evaluation of the test items, identifies
the items tested (including their version/revision level), indicates
the environment in which the testing activities took place, supplies
references to the documentation over the testing process (for example,
test plan, test-design specifications, test-procedure specifications, test-
item transmittal reports, test logs, test-incident reports, etc.).

3.	 Variances: Reports any variances/deviations of the test items from
their design specifications, indicates any variances of the actual testing
process from the test plan or test procedures, specifies the reason for
each variance.

4.	 Comprehensiveness Assessment: Evaluates the comprehensiveness of
the actual testing process against the criteria specified in the test plan,
identifies features or feature combinations which were not sufficiently
tested and explains the reasons for omission.

5.	 Summary of Results: Summarizes the success of testing (such as
coverage), identifies all resolved and unresolved incidents.

Software-Testing_Final.indb 54 31-01-2018 14:56:03

Software Verification and Validation • 55

6.	 Evaluation: Provides an overall evaluation of each test item including
its limitations (based upon the test results and the item-level pass/fail
criteria).

7.	 Summary of Activities: Summarizes the major testing activities and
events, summarizes resource consumption (for example, total staffing
level, total person-hours, total machine time, and total elapsed time used
for each of the major testing activities).

8.	 Approvals: Specifies the persons who must approve this report (and the
whole testing phase).

Inspection Checklist for Test Plans

1.	 Have all materials required for a test plan inspection been received?

2.	 Are all materials in the proper physical format?

3.	 Have all test plan standards been followed?

4.	 Has the testing environment been completely specified?

5.	 Have all resources been considered, both human and hardware/software?

6.	 Have all testing dependencies been addressed (driver function,
hardware, etc.)?

7.	 Is the test plan complete, i.e., does it verify all of the requirements? (For
unit testing: does the plan test all functional and structural variations
from the high-level and detailed design?)

8.	 Is each script detailed and specific enough to provide the basis for test
case generation?

9.	 Are all test entrance and exit criteria sufficient and realistic?

10.	 Are invalid as well as valid input conditions tested?

11.	 Have all pass/fail criteria been defined?

12.	 Does the test plan outline the levels of acceptability for pass/fail and exit
criteria (e.g., defect tolerance)?

13.	 Have all suspension criteria and resumption requirements been
identified?

14.	 Are all items excluded from testing documented as such?

Software-Testing_Final.indb 55 31-01-2018 14:56:03

56 • Software Testing

15.	 Have all test deliverables been defined?

16.	 Will software development changes invalidate the plan? (Relevant for
unit test plans only).

17.	 Is the intent of the test plan to show the presence of failures and not
merely the absence of failures?

18.	 Is the test plan complete, correct, and unambiguous?

19.	 Are there holes in the plan or is there overlap in the plan?

20.	 Does the test plan offer a measure of test completeness and test reliability
to be sought?

21.	 Are the test strategy and philosophy feasible?

Inspection Checklist for Test Cases

1.	 Have all materials required for a test case inspection been received?

2.	 Are all materials in the proper physical format?

3.	 Have all test case standards been followed?

4.	 Are the functional variations exercised by each test case required by the
test plan? (Relevant for unit test case documents only.)

5.	 Are the functional variations exercised by each test case clearly
documented in the test case description? (Relevant for unit test case
documents only.)

6.	 Does each test case include a complete description of the expected input
and output or result?

7.	 Have all testing execution procedures been defined and documented?

8.	 Have all testing dependencies been addressed (driver function,
hardware, etc.)?

9.	 Do the test cases accurately implement the test plan?

10.	 Are all data set definitions and setup requirements complete and
accurate?

11.	 Are operator instructions and status indicators complete, accurate, and
simple?

Software-Testing_Final.indb 56 31-01-2018 14:56:03

Software Verification and Validation • 57

12.	 Have all intercase dependencies been identified and described?

13.	 Is each condition tested once and only once?

14.	 Have all test entrance and exit criteria been observed?

15.	 Are the test cases designed to show the presence of failure and not
merely the absence of failure?

16.	 Are the test cases designed to show omissions and extensions?

17.	 Are the test cases complete, correct, and unambiguous?

18.	 Are the test cases realistic?

19.	 Are the test cases documented so as to be 100% reproducible?

20.	 Has the entire testing environment been documented?

21.	 Has configuration management been set up, directories established, and
have case data and tools been loaded?

SUMMARY

1.	 Software engineering technology has matured sufficiently to be addressed
in approved and draft software engineering standards and guidelines.

2.	 Business, industries, and government agencies spend billions annually
on computer software for many of their functions:

�� To manufacture their products.
�� To provide their services.
�� To administer their daily activities.
�� To perform their short- and long-term management functions.

3.	 As with other products, industries and businesses are discovering that
their increasing dependence on computer technology to perform these
functions, emphasizes the need for safe, secure, reliable computer
systems. They are recognizing that software quality and reliability
are vital to their ability to maintain their competitiveness and high
technology posture in the market place. Software V&V is one of several
methodologies that can be used for building vital quality software.

Software-Testing_Final.indb 57 31-01-2018 14:56:03

58 • Software Testing

MULTIPLE CHOICE QUESTIONS

1.	 Which one of the following is product related?

a.	 Quality control b.	 Quality assurance

c.	 Both (a) and (b) d.	 None of the above.

2.	 Howden claims that

a.	 �No general purpose testing can be used to prove program correctness.

b.	 There is no such thing as an absolute proof of correctness.

c.	 Both (a) and (b)

d.	 None of the above.

3.	 Static testing involves

a.	 Symbolic execution b.	 Code walkthrough

c.	 Inspections d.	 All of the above.

4.	 The role of V&V in SDLC is given in which of the following standards

a.	 IEEE std. 1012 b.	 IEEE std. 9012

c.	 IEEE std. 83b d.	 None of the above.

5.	 Detailed designs are addressed by a

a.	 Preliminary design review b.	 Critical design review

c.	 Both (a) and (b) d.	 None of the above.

6.	 A planned meeting is also known as a

a.	 Informal review b.	 Formal review

c.	 Technical review d.	 Dynamic review

7.	 Structured walkthrough is a

a.	 Dynamic testing technique

b.	 Formal static testing technique

c.	 Informal static testing

d.	 Acceptance testing technique

Software-Testing_Final.indb 58 31-01-2018 14:56:04

Software Verification and Validation • 59

8.	 Which of the following is not a validation activity?

a.	 Unit testing b.	 System testing

c.	 Acceptance testing d.	 Walkthroughs

9.	 Which of the following is not a verification activity?

a.	 Acceptance testing b.	 Inspections

c.	 Walkthroughs d.	 Buddy check

	 10.	 During validation

a.	 Process is checked.

b.	 Product is checked.

c.	 Developer’s performance is evaluated.

d.	 The customer checks the product.

ANSWERS

1.	 a. 2.	 c. 3.	 d. 4.	 a.

5.	 b. 6.	 b. 7.	 c. 8.	 d.

9.	 a. 10.	 d.

CONCEPTUAL SHORT QUESTIONS WITH ANSWERS

Q. 1.	 What sort of errors are covered by regression testing?
Ans.	 Regression testing includes mainly four types of errors:

i.	 Data Corruption Errors: Due to sharing of data, these errors
result in side effects.

ii.	 Inappropriate Control Sequencing Errors: Due to the changes
in the execution sequences, these errors result in side effects.

		 For example, an attempt to remove an item from a queue before
it is placed into the queue.

iii.	 Resource Contention: Potential bottlenecks and deadlocks are
some examples of these types of errors.

iv.	 Performance Deficiencies: Timing errors and storage utilization
errors are some examples of these types of errors.

Software-Testing_Final.indb 59 31-01-2018 14:56:04

60 • Software Testing

Q. 2.	 What is criticality analysis?
Ans.	 �It is a method to locate and reduce high-risk problems. It is per-

formed at the beginning of the project. It identifies the functions
and modules that are required to implement critical program func-
tions or quality requirements like safety, security, etc.

	 	 The steps of analysis are as follows:
	 	� Step 1: Develop a block diagram or control flow diagram of the

system and its software elements. Each block or control flow box
represents a system or software function (module).

	 	� Step 2: Trace each critical function or quality requirements through
the block or control flow diagram.

	 	� Step 3: Classify all traced software functions (modules) as critical
to either the proper execution of critical software functions or the
quality requirements.

	 	� Step 4: Focus additional analysis on these traced critical software
functions (modules).

	 	� Step 5: Repeat criticality analysis for each life-cycle process/activity
to determine whether the implementation details shift the emphasis
of the criticality.

Q. 3.	 What is traceability analysis?
Ans.	 �Traceability analysis traces each software requirement back to the

system requirements. This is done to ensure that each requirement
correctly satisfies the system requirements. This analysis will also
determine whether any derived software requirements are consis-
tent with the original objectives, physical laws, and technologies
described in the system document.

Q. 4.	 What is interface analysis?
Ans.	 �It is a detailed examination of the interface requirements specifica-

tions. The evaluation criteria here is on the interfaces between the
software and other hardware, user, and external software. Critical-
ity analysis is continued and updated for the software. Criticality
is assigned to each software requirement. When requirements are
combined into functions, the combined criticality of requirements
form the criticality for the aggregate function. The criticality anal-
ysis is updated periodically as requirement changes are introduced

Software-Testing_Final.indb 60 31-01-2018 14:56:04

Software Verification and Validation • 61

as such changes can cause a functions criticality to increase or
decrease depending on how the revised requirements impact
system criticality.

Q. 5.	 Explain the tool support for review processes.
Ans.	 �As tools become available to perform some of the tasks previously

done by humans, the cost effectiveness of review processes increases.

	 	� For example, utilization of a compiler to detect syntax errors in code
and thus alleviating this task for the reviewers.

	 	� Another example is the design and specification consistency
checkers.

Q. 6.	 Suggest some techniques to find different types of errors.
Ans.	 Some of the techniques are discussed below:

i.	 Algorithm Analysis: It examines the logic and accuracy of
the software requirements by translating algorithms into some
language or structured format. The analysis involves rederiving
equations or evaluating the suitability of specific numerical
techniques. Algorithm analysis examines the correctness of the
equations and numerical techniques, truncation and sounding
effects, numerical precision of word storage and variables, and
data typing influences.

ii.	 Analytic Modeling: It provides performance evaluation and
capacity planning information on software design. It represents
the program logic and processing of some kind of model and
analyzes it for efficiency.

iii.	 Control Flow Analysis: It is used to show the hierarchy of main
routines and their subfunctions. It checks that the proposed
control flow is free of problems like unreachable or incorrect
code.

iv.	 Database Analysis: It ensures that the database structure and
access methods are compatible with the logical design. It is done
on programs with significant data storage to ensure that common
data and variable regions are used consistently between all calling
routines, that data integrity is enforced and no data or variable
can be accidentally overwritten by overflowing data tables, and
that data typing and use are consistent throughout the program.

Software-Testing_Final.indb 61 31-01-2018 14:56:04

62 • Software Testing

Q. 7.	 What is desk checking?
Ans.	 �It involves the examination of the software design or code by an indi-

vidual. It includes:
�� Looking over the code for defects.
�� Checking for correct procedure interfaces.
�� Reading the comments and comparing it to external specifications

and software design.
Q. 8.	 What are Petri-nets?
Ans.	 �Petri-nets model system to ensure software design adequacy for cat-

astrophic failure. The system is modeled using conditions and events
represented by STDs. They can be executed to see how the software
design will actually work under certain conditions.

Q. 9.	 What is program slicing?
Ans.	 �Slicing is a program decomposition technique used to trace an out-

put variable back through the code to identify all code statements
relevant to a computation in the program.

Q. 10.	 What is test certification?
Ans.	 �It ensures that the reported test results are the actual finding of the

tests. Test related tools, media, and documentation are certified to
ensure maintainability and repeatability of tests. This technique is
also used to show that the delivered software product is identical to
the software product that was subjected to V&V. It is used in critical
software systems to verify that the required tests have been executed
and that the delivered software product is identical to the product
subjected to software V&V.

REVIEW QUESTIONS

1.	 a. � Discuss briefly the V&V activities during the design phase of the
software development process.

		 b.  Discuss the different forms of IV&V.

	 2.	 a. � What is the importance of technical reviews in software development
and maintenance life cycle?

		 b.  Briefly discuss how walkthroughs help in technical reviews.

	 3.	 a. � Explain why validation is more difficult than verification.

		 b. � Explain validation testing.

Software-Testing_Final.indb 62 31-01-2018 14:56:04

Software Verification and Validation • 63

	 4.	 Explain the following with the help of an example: ‘Verification and
Validation.’

	 5.	 Write short notes on V&V standards.

	 6.	 Write short notes on ‘Independent V&V contractor.’

	 7.	 What is an independent test organization? Why is it necessary?

	 8.	 Discuss the role of verification and validation in software evolution.
What are verification and validation objective standards?

	 9.	 What is the difference between verification and validation?

	 10.	 Discuss V&V approaches, standards, and objectives.

	 11.	 What is formal testing?

	 12.	 a. � What is a software audit?

		 b. � Explain code walkthrough.

	 13.	 What are the different V&V activities performed at the coding phase of
the software development process?

	 14.	 Discuss in brief software verification and validation plan.

	 15.	 a. � Why are technical reviews conducted?

		 b. � Discuss a formal method for conducting technical reviews.

	 16.	 Discuss one testing technique used during the design phase of SDLC.

	 17.	 Explain all the phases through which we can approach testing using a
sample software testing problem. Comment on difficulty of testing.

	 18.	 Briefly explain code walkthrough and inspection.

	 19.	 During code review you detect errors whereas during code testing you
detect failures. Justify.

	 20.	 a. � What are the testing activities performed during requirement analysis
phase of SDLC.

		 b. � Briefly describe formal proof of correctness.

	 21.	 What is a requirements traceability matrix? Give its importance.

Software-Testing_Final.indb 63 31-01-2018 14:56:04

Software-Testing_Final.indb 64 31-01-2018 14:56:04

C H A P T E R3
Inside this Chapter:

	 3.0.	 Introduction to Black-Box (or Functional Testing)

	 3.1.	 Boundary Value Analysis (BVA)

	 3.2.	 Equivalence Class Testing

	 3.3.	 Decision Table Based Testing

	 3.4.	 Cause-Effect Graphing Technique

	 3.5.	 Comparison on Black-Box (or Functional) Testing Techniques

	 3.6.	 Kiviat Charts

Black-Box (or Functional)
Testing Techniques

3.0. � INTRODUCTION TO BLACK-BOX (OR FUNCTIONAL
TESTING)

The term Black-Box refers to the software which is treated as a black-box.
By treating it as a black-box, we mean that the system or source code is not
checked at all. It is done from the customer’s viewpoint. The test engineer
engaged in black-box testing only knows the set of inputs and expected
outputs and is unaware of how those inputs are transformed into outputs
by the software. We will now discuss various techniques of performing
black‑box testing.

Software-Testing_Final.indb 65 31-01-2018 14:56:04

66 • Software Testing

3.1.  BOUNDARY VALUE ANALYSIS (BVA)

It is a black-box testing technique that believes and extends the concept that
the density of defect is more towards the boundaries. This is done for the
following reasons:

i.	 Programmers usually are not able to decide whether they have to use
<= operator or < operator when trying to make comparisons.

ii.	 Different terminating conditions of for-loops, while loops, and repeat
loops may cause defects to move around the boundary conditions.

iii.	 The requirements themselves may not be clearly understood,
especially around the boundaries, thus causing even the correctly
coded program to not perform the correct way.

Strongly typed languages such as Ada and Pascal permit explicit defini-
tion of variable ranges. Other languages such as COBOL, FORTRAN, and
C are not strongly typed, so boundary value testing is more appropriate for
programs coded in such languages.

3.1.1.  What Is BVA?

The basic idea of BVA is to use input variable values at their minimum,
just above the minimum, a nominal value, just below their maximum, and
at their maximum. That is, {min, min+, nom, max–, max}. This is shown in
Figure 3.1.

BVA is based upon a critical assumption that is known as single fault
assumption theory. According to this assumption, we derive the test cases on
the basis of the fact that failures are not due to a simultaneous occurrence

FIGURE 3.1  BVA Test Cases.

Software-Testing_Final.indb 66 31-01-2018 14:56:05

Black-Box (or Functional) Testing Techniques • 67

of two (or more) faults. So we derive test cases by holding the values of all
but one variable at their nominal values and letting that variable assume its
extreme values.

If we have a function of n-variables, we hold all but one at the nominal
values and let the remaining variable assume the min, min+, nom, max–,
and max values, repeating this for each variable. Thus, for a function of n
variables, BVA yields (4n + 1) test cases.

3.1.2.  Limitations of BVA

1.	 Boolean and logical variables present a problem for boundary value
analysis.

2.	 BVA assumes the variables to be truly independent which is not always
possible.

3.	 BVA test cases have been found to be rudimentary because they are
obtained with very little insight and imagination.

3.1.3.  Robustness Testing

Another variant to BVA is robustness testing. In BVA, we are within the
legitimate boundary of our range. That is, we consider the following values
for testing:

{min, min+, nom, max–, max} whereas in robustness testing, we try to
cross these legitimate boundaries also. So, now we consider these values for
testing:

{min–, min, min+, nom, max–, max, max+}
Again, with robustness testing, we can focus on exception handling.

With strongly typed languages, robustness testing may be very awkward. For
example, in PASCAL, if a variable is defined to be within a certain range,
values outside that range result in run-time errors that abort normal execu-
tion.

For a program with n-variables, robustness testing will yield (6n + 1)
test-cases. So, we can draw a graph now. (Figure 3.2)

Software-Testing_Final.indb 67 31-01-2018 14:56:05

68 • Software Testing

Each dot represents a test value at which the program is to be tested.
In robustness testing, we cross the legitimate boundaries of input domain.
In the graph of Figure 3.2, we show this by dots that are outside the range
[a, b] of variable x1. Similarly, for variable x2, we have crossed its legitimate
boundary of [c, d] of variable x2.

This type of testing is quite common in electric and electronic circuits.
Furthermore, this type of testing also works on single fault assumption

theory.

3.1.4.	Worst-Case Testing

If we reject our basic assumption of single fault assumption theory and focus
on what happens when we reject this theory—it simply means that we want
to see what happens when more than one variable has an extreme value.
This is multiple path assumption theory. In electronic circuit analysis, this is
called as “worst-case analysis.” We use this idea here to generate worst-case
test cases.

For each variable, we start with the five- element set that contains the
min, min+, nom, max–, and max values. We then take the Cartesian product
of these sets to generate test cases. This is shown in Figure 3.3.

For a program with n-variables, 5n test cases are generated.

Robust worst-case testing yields 7n test cases.NOTE

FIGURE 3.2  Robustness Test Cases.

Software-Testing_Final.indb 68 31-01-2018 14:56:07

Black-Box (or Functional) Testing Techniques • 69

3.1.5. E xamples with Their Problem Domain

3.1.5.1.  Test-Cases for the Triangle Problem

Before we generate the test cases, first we need to give the problem domain:

Problem Domain: “The triangle program accepts three integers, a, b, and
c, as input. These are taken to be the sides of a triangle. The integers a, b,
and c must satisfy the following conditions:

C1: 1 ≤ a ≤ 200	 C4: a < b + c
C2: 1 ≤ b ≤ 200	 C5: b < a + c
C3: 1 ≤ c ≤ 200	 C6: c < a + b

The output of the program may be: Equilateral, Isosceles, Scalene, or
“NOT-A-TRIANGLE.”

How to Generate BVA Test Cases?

We know that our range is [1, 200] where 1 is the lower bound and 200 is the
upper bound. Also, we find that this program has three inputs—a, b, and c.
So, for our case

n = 3

 BVA yields (4n + 1) test cases, so we can say that the total number of
test cases will be (4 × 3 + 1) = 12 + 1 = 13.

Table 3.1 shows those 13 test cases.

FIGURE 3.3  Worst-Case Test Cases.

Software-Testing_Final.indb 69 31-01-2018 14:56:08

70 • Software Testing

TABLE 3.1  BVA test cases for triangle problem.

Case ID a b c Expected output

1. 100 100 1 Isosceles

2. 100 100 2 Isosceles

3. 100 100 100 Equilateral

4. 100 100 199 Isosceles

5. 100 100 200 Not a triangle

6. 100 1 100 Isosceles

7. 100 2 100 Isosceles

8. 100 100 100 Equilateral

9. 100 199 100 Isosceles

10. 100 200 100 Not a triangle

11. 1 100 100 Isosceles

12. 2 100 100 Isosceles

13. 100 100 100 Equilateral

14. 199 100 100 Isosceles

15. 200 100 100 Not a triangle

Please note that we explained above that we can have 13 test cases
(4n + 1) for this problem. But instead of 13, now we have 15 test cases. Also,
test case ID number 8 and 13 are redundant. So, we ignore them. However,
we do not ignore test case ID number 3 as we must consider at least one test
case out of these three. Obviously, it is mechanical work!

We can say that these 13 test cases are sufficient to test this program
using BVA technique.

Question for Practice

1.	 Applying the robustness testing technique, how would you generate the
test cases for the triangle problem given above?

Software-Testing_Final.indb 70 31-01-2018 14:56:08

Black-Box (or Functional) Testing Techniques • 71

3.1.5.2.  Test Cases for Next Date Function

Before we generate the test cases for the Next Date function, we must know
the problem domain of this program:

Problem Domain Next Date is a function of three variables: month, date,
and year. It returns the date of next day as output. It reads current date as
input date. The conditions are:

C1: 1 ≤ month ≤ 12
C2: 1 ≤ day ≤ 31
C3: 1900 ≤ year ≤ 2025

If any of conditions C1, C2, or C3 fails, then this function produces an
output “value of month not in the range 1...12.”

Because many combinations of dates exist this function just displays one
message: “Invalid Input Date.”

Complexities in Next Date Function

A very common and popular problem occurs if the year is a leap year. We
have taken into consideration that there are 31 days in a month. But what
happens if a month has 30 days or even 29 or 28 days? A year is called as a
leap year if it is divisible by 4, unless it is a century year. Century years are
leap years only if they are multiples of 400. So, 1992, 1996, and 2000 are leap
years while 1900 is not a leap year.

Furthermore, in this Next Date problem, we find examples of Zipf’s law
also, which states that “80% of the activity occurs in 20% of the space.” Here
also, much of the source-code of the Next Date function is devoted to the
leap year considerations.

How to Generate BVA Test Cases for This Problem?

The Next Date program takes date as input and checks it for validity. If valid,
it returns the next date as its output.

As we know, with single fault assumption theory, (4n + 1) test cases
can be designed. Here, also n = 3. So, the total number of test cases are (4 ×
3 + 1) = 12 + 1 = 13.

The boundary value test cases are

Software-Testing_Final.indb 71 31-01-2018 14:56:08

72 • Software Testing

Case
ID

Month
(mm)

Day
(dd)

Year
(yyyy) Expected Output

1. 6 15 1900 16 June, 1900
2. 6 15 1901 16 June, 1901
3. 6 15 1962 16 June, 1962
4. 6 15 2024 16 June, 2024
5. 6 15 2025 16 June, 2025
6. 6 1 1962 2 June, 1962
7. 6 2 1962 1 June, 1962
8. 6 30 1962 1 July, 1962
9. 6 31 1962 Invalid date as June has 30 days.

10. 1 15 1962 16 January, 1962
11. 2 15 1962 16 February, 1962
12. 11 15 1962 16 November, 1962
13. 12 15 1962 16 December, 1962

So, we have applied BVA on our Next Date problem.

Question for Practice

1.	 Applying robustness testing, how would you generate the test cases for
the Next Date function given above.

3.1.5.3.  Test Cases for the Commission Problem

Before we generate the test cases, we must formulate the problem statement
or domain for commission problem.

Problem Domain: A rifle salesperson sold rifle locks, stocks, and barrels
that were made by a gunsmith. Locks cost $45, stocks cost $30, and barrels
cost $25. This salesperson had to sell at least one complete rifle per month,
and the production limits were such that the most the salesperson could sell
in a month was 70 locks, 80 stocks, and 90 barrels. The salesperson used to
send the details of sold items to the gunsmith. The gunsmith then computed
the salesperson’s commission as follows:

a.	 10% on sales up to and including $1000

b.	 15% of the next $800

c.	 20% on any sales in excess of $1800

Software-Testing_Final.indb 72 31-01-2018 14:56:08

Black-Box (or Functional) Testing Techniques • 73

The commission program produced a monthly sales report that gave the total
number of locks, stocks, and barrels sold, the salesperson’s total dollar sales
and finally, the commission.

How to Generate BVA Test Cases for this Problem?

We have 3 inputs in this program. So, we need (4n + 1) = 4 * 3 + 1 = 12 +
1 = 13 test cases to test this program.

The boundary value test cases are listed below in Table. We can also find
that the monthly sales are limited as follows:

1 ≤ locks ≤ 70
1 ≤ stocks ≤ 80
1 ≤ barrels ≤ 90

Case ID Locks Stocks Barrels Sales

1. 35 40 1 2800

2. 35 40 2 2825

3. 35 40 45 3900

4. 35 40 89 5000

5. 35 40 90 5025

6. 35 1 45 2730

7. 35 2 45 2760

8. 35 40 45 3900

9. 35 79 45 5070

10. 35 80 45 5100

11. 1 40 45 2370

12. 2 40 45 2415

13. 35 40 45 3900

14. 69 40 45 5430

15. 70 40 45 5475

Out of these 15 test cases, 2 are redundant. So, 13 test cases are sufficient
to test this program.

Software-Testing_Final.indb 73 31-01-2018 14:56:09

74 • Software Testing

3.1.6. G uidelines for BVA

1.	 The normal versus robust values and the single-fault versus the multiple-
fault assumption theory result in better testing. These methods can be
applied to both input and output domain of any program.

2.	 Robustness testing is a good choice for testing internal variables.

3.	 Keep in mind that you can create extreme boundary results from non-
extreme input values.

3.2.  EQUIVALENCE CLASS TESTING

The use of equivalence classes as the basis for functional testing has two
motivations:

a.	 We want exhaustive testing

b.	 We want to avoid redundancy

This is not handled by the BVA technique as we can see massive redun-
dancy in the tables of test cases.

FIGURE 3.4  Equivalence Class Partitioning.

In this technique, the input and the output domain is divided into a
finite number of equivalence classes. Then, we select one representative of
each class and test our program against it. It is assumed by the tester that
if one representative from a class is able to detect error then why should
he consider other cases. Furthermore, if this single representative test case
did not detect any error then we assume that no other test case of this class
can detect error. In this method, we consider both valid and invalid input
domains. The system is still treated as a black-box meaning that we are not
bothered about its internal logic.

The idea of equivalence class testing is to identify test cases by using one
element from each equivalence class. If the equivalence classes are chosen
wisely, the potential redundancy among test cases can be reduced.

Software-Testing_Final.indb 74 31-01-2018 14:56:10

Black-Box (or Functional) Testing Techniques • 75

For example, in our triangle problem, we would certainly have a test
case for an equilateral triangle and we might pick the triple (10, 10, 10) as
inputs for a test case. If this is so then it is obvious that there is no sense in
testing for inputs like (8, 8, 8) and (100, 100, 100). Our intuition tells us that
these would be “treated the same” as the first test case. Thus, they would be
redundant. The key and the craftsmanship lies in the choice of the equiva-
lence relation that determines the classes.

Four types of equivalence class testing are discussed below:

1.	 Weak normal equivalence class testing

2.	 Strong normal equivalence class testing

3.	 Weak robust equivalence class testing

4.	 Strong robust equivalence class testing

We will discuss these one by one.

3.2.1.	Weak Normal Equivalence Class Testing

The word “weak” means single fault assumption. This type of testing is
accomplished by using one variable from each equivalence class in a test
case. We would, thus, end up with the weak equivalence class test cases as
shown in Figure 3.5.

Each dot in Figure 3.5 indicates a test data. From each class we have one
dot meaning that there is one representative element of each test case.

FIGURE 3.5  Weak Normal Equivalence Class Test Cases.

Software-Testing_Final.indb 75 31-01-2018 14:56:12

76 • Software Testing

In fact, we will have, always, the same number of weak equivalence class test
cases as the classes in the partition.

3.2.2. S trong Normal Equivalence Class Testing

This type of testing is based on the multiple fault assumption theory. So,
now we need test cases from each element of the Cartesian product of
the equivalence classes, as shown in Figure 3.6.

FIGURE 3.6  Strong Normal Equivalence Class Test Cases.

Just like we have truth tables in digital logic, we have similarities between
these truth tables and our pattern of test cases. The Cartesian product guar-
antees that we have a notion of “completeness” in two ways:

a.	 We cover all equivalence classes.

b.	 We have one of each possible combination of inputs.

3.2.3.  Weak Robust Equivalence Class Testing

The name for this form of testing is counter intuitive and oxymoronic. The
word “weak” means single fault assumption theory and the word “robust”
refers to invalid values. The test cases resulting from this strategy are shown
in Figure 3.7.

Two problems occur with robust equivalence testing. They are listed
below:

1.	 Very often the specification does not define what the expected output for
an invalid test case should be. Thus, testers spend a lot of time defining
expected outputs for these cases.

Software-Testing_Final.indb 76 31-01-2018 14:56:13

Black-Box (or Functional) Testing Techniques • 77

2.	 Also, strongly typed languages like Pascal and Ada, eliminate the need
for the consideration of invalid inputs. Traditional equivalence testing
is a product of the time when languages such as FORTRAN, C, and
COBOL were dominant. Thus, this type of error was common.

FIGURE 3.7  Weak Robust Equivalence Class Test Cases.

3.2.4. S trong Robust Equivalence Class Testing

This form of equivalence class testing is neither counter intuitive nor oxymo-
ronic but is redundant. As explained earlier “robust” means consideration of
invalid values and “strong” means multiple fault assumption. We obtain the
test cases from each element of the Cartesian product of all the equivalence
classes. This is shown in Figure 3.8.

We find here that we have 8 robust (invalid) test cases and 12 strong or
valid inputs. Each is represented with a dot. So, totally we have 20 test cases
(represented as 20 dots) using this technique.

FIGURE 3.8  Strong Robust Equivalence Class Test Cases.

Software-Testing_Final.indb 77 31-01-2018 14:56:16

78 • Software Testing

3.2.5. S olved Examples

3.2.5.1. E quivalence Class Test Cases for the Triangle Problem

As stated in the problem definition earlier, we note that in our triangle prob-
lem four possible outputs can occur:

a.	 NOT-A-TRIANGLE

b.	 Scalene

c.	 Isosceles

d.	 Equilateral

We can use these to identify output (range) equivalence classes as
follows:

01 = {<a, b, c>: the triangle is equilateral}
02 = {<a, b, c>: the triangle is isosceles}
03 = {<a, b, c>: the triangle is scalene}
04 = {<a, b, c>: sides a, b, and c do not form a triangle}

Now, we apply these four techniques of equivalence class partitioning
one by one to this problem.

a.	 The four weak normal equivalence class test cases are:

Case ID a b c Expected output

WN1 5 5 5 Equilateral
WN2 2 2 3 Isosceles
WN3 3 4 5 Scalene
WN4 4 1 2 Not a triangle

b.	 Because no valid subintervals of variables a, b, and c exist, so the strong
normal equivalence class test cases are identical to the weak normal
equivalence class test cases.

c.	 Considering the invalid values for a, b, and c yields the following
additional weak robust equivalence class test cases:

Software-Testing_Final.indb 78 31-01-2018 14:56:16

Black-Box (or Functional) Testing Techniques • 79

Case ID a b c Expected output

WR1 –1 5 5 Invalid value of a

WR2 5 –1 5 Invalid value of b
WR3 5 5 –1 Invalid value of c
WR4 201 5 5 Out of range value of a
WR5 5 201 5 Out of range value of b
WR6 5 5 201 Out of range value of c

d.	 While strong robust equivalance class test cases are:

Case ID a b c Expected output

SR1 –1 5 5 Invalid value of a
SR2 5 –1 5 Invalid value of b
SR3 5 5 –1 Invalid value of c
SR4 –1 –1 5 Invalid values of a and b
SR5 5 –1 –1 Invalid values of b and c
SR6 –1 5 –1 Invalid values of a and c
SR7 –1 –1 –1 Invalid values of a, b, and c

Please note that the expected outputs describe the invalid input values
thoroughly.

3.2.5.2. E quivalence Class Test Cases for Next Date Function

The actual craft of choosing the test cases lies in this example. Recall that
Next Date is a function of three variables— month (mm), day (dd), and year
(yyyy). Assume that their ranges are

1 ≤ month ≤ 12
1 ≤ day ≤ 31
1812 ≤ year ≤ 2012

So, based on valid values, the equivalence classes are:

	M1 = {month: 1 ≤ month ≤ 12}
	D1 = {day: 1 ≤ day ≤ 31}
	 Y1 = {year: 1812 ≤ year ≤ 2012}

Software-Testing_Final.indb 79 31-01-2018 14:56:16

80 • Software Testing

And the invalid equivalence classes are:

	M2 = {month: month < 1}
	M3 = {month: month > 12}
	D2 = {day: day < 1}
	D3 = {day: day > 31}
	Y2 = {year: year < 1812}
	Y3 = {year: year > 2012}

a. & b. � Because the number of valid classes equals the number of
independent variables, only one weak normal equivalence class test
case occurs and it is identical to the strong normal equivalence class
test case:

Case ID Month Day Year Expected output

WN1, SN1 6 15 1912 6/16/1912

So, we get this test case on the basis of valid classes – M1, D1, and Y1

above.

c.	 Weak robust test cases are given below:

Case ID Month Day Year Expected output

WR1 6 15 1912 6/16/1912
WR2 –1 15 1912 Invalid value of month as

month cannot be –ve.
WR3 13 15 1912 Invalid value of month as

month <12, always.
WR4 6 –1 1912 Invalid value of day as day

cannot be –ve.
WR5 6 32 1912 Invalid value of day as we

cannot have 32 days in any
month.

WR6 6 15 1811 Invalid value of year as its range
is 1812 to 2012 only.

WR7 6 15 2013 Invalid value of year.

Software-Testing_Final.indb 80 31-01-2018 14:56:16

Black-Box (or Functional) Testing Techniques • 81

So, we get 7 test cases based on the valid and invalid classes of the input
domain.

d.	 Strong robust equivalence class test cases are given below:

Case ID Month Day Year Expected output

SR1 –1 15 1912 Invalid value of month as
month cannot be –ve.

SR2 6 –1 1912 Invalid value of day as day
is –ve.

SR3 6 15 1811 Invalid value of year.
SR4 –1 –1 1912 Invalid month and day.
SR5 6 –1 1811 Invalid day and year.
SR6 –1 15 1811 Invalid month and year.
SR7 –1 –1 1811 Invalid month, day, and

year.

Modified Equivalence Class for this Problem

We need the modified classes as we know that at the end of a month, the next
day is 1 and the month is incremented. At the end of a year, both the day
and the month are reset to 1 and the year is also incremented. Finally, the
problem of leap year makes determining the last day of a month interesting.
With all this in mind, we postulate the following equivalence classes:

	 M1 = {month: month has 30 days}
	 M2 = {month: month has 31 days}
	 M3 = {month: month is February}
	 D1 = {day: 1 ≤ day ≤ 28}
	 D2 = {day: day = 29}
	 D3 = {day: day = 30}
	 D4 = {day: day = 31}
	 Y1 = {year: year = 2000}
	 Y2 = {year: year is a leap year}
	 Y3 = {year: year is a common year}

So, now what will be the weak equivalence class test cases?

Software-Testing_Final.indb 81 31-01-2018 14:56:16

82 • Software Testing

As done earlier, the inputs are mechanically selected from the approxi-
mate middle of the corresponding class:

Case ID Month Day Year Expected output

WN1 6 14 2000 6/15/2000
WN2 7 29 1996 7/30/1996
WN3 2 30 2002 2/31/2002 (Impossible)
WN4 6 31 2000 7/1/2000 (Impossible)

This mechanical selection of input values makes no consideration of our
domain knowledge and thus, we have two impossible dates. This will always
be a problem with “automatic” test case generation because all of our domain
knowledge is not captured in the choice of equivalence classes.

The strong normal equivalence class test cases for the revised classes are:

Case ID Month Day Year Expected output

SN1 6 14 2000 6/15/2000

SN2 6 14 1996 6/15/1996

SN3 6 14 2002 6/15/2002

SN4 6 29 2000 6/30/2000

SN5 6 29 1996 6/30/1996

SN6 6 29 2002 6/30/2002

SN7 6 30 2000 6/31/2000 (Impossible date)

SN8 6 30 1996 6/31/1996 (Impossible date)

SN9 6 30 2002 6/31/2002 (Impossible date)

SN10 6 31 2000 7/1/2000 (Invalid input)

SN11 6 31 1996 7/1/1996 (Invalid input)

SN12 6 31 2002 7/1/2002 (Invalid input)

SN13 7 14 2000 7/15/2000

SN14 7 14 1996 7/15/1996

SN15 7 14 2002 7/15/2002

Software-Testing_Final.indb 82 31-01-2018 14:56:16

Black-Box (or Functional) Testing Techniques • 83

Case ID Month Day Year Expected output

SN16 7 29 2000 7/30/2000

SN17 7 29 1990 7/30/1990

SN18 7 29 2002 7/30/2002

SN19 7 30 2000 7/31/2000

SN20 7 30 1996 7/31/1996

SN21 7 30 2002 7/31/2002

SN22 7 31 2000 8/1/2000

SN23 7 31 1996 8/1/1996

SN24 7 31 2002 8/1/2002

SN25 2 14 2000 2/15/2000

SN26 2 14 1996 2/15/1996

SN27 2 14 2002 2/15/2002

SN28 2 29 2000 3/1/2000 (Invalid input)

SN29 2 29 1996 3/1/1996

SN30 2 29 2002 3/1/2002 (Impossible date)

SN31 2 30 2000 3/1/2000 (Impossible date)

SN32 2 30 1996 3/1/1996 (Impossible date)

SN33 2 30 2002 3/1/2002 (Impossible date)

SN34 6 31 2000 7/1/2000 (Impossible date)

SN35 6 31 1996 7/1/1996 (Impossible date)

SN36 6 31 2002 7/1/2002 (Impossible date)

So, three month classes, four day classes, and three year classes results
in 3 × 4 × 3 = 36 strong normal equivalence class test cases. Furthermore,
adding two invalid classes for each variable will result in 150 strong robust
equivalence class test cases.

It is difficult to show these 150 classes here.

Software-Testing_Final.indb 83 31-01-2018 14:56:16

84 • Software Testing

3.2.5.3. E quivalence Class Test Cases for the Commission Problem

The valid classes of the input variables are as follows:

	 L1 = {locks: 1 ≤ locks ≤ 70}
	 L2 = {locks = –1}
	 S1 = {stocks: 1 ≤ stocks ≤ 80}
	 B1 = {barrels: 1 ≤ barrels ≤ 90}

The corresponding invalid classes of the input variables are as follows:

	 L3 = {locks: locks = 0 or locks < –1}
	 L4 = {locks: locks > 70}
	 S2 = {stocks: stocks < 1}
	 S3 = {stocks: stocks > 80}
	 B2 = {barrels: barrels < 1}
	 B3 = {barrels: barrels > 90}

a.	 & b.  As the number of valid classes is equal to the number of
independent variables, so we have exactly one weak normal equivalence
class test case and again, it is identical to the strong normal equivalence
class test case. It is given in the following table.

Case ID Locks Stocks Barrels Expected output

WN1, SN1 35 40 45 3900

c.	 Also, we have seven weak robust test cases as given below:

Case ID Locks Stocks Barrels Expected output

WR1 35 40 45 3900

WR2 0 40 45 Invalid input

WR3 71 40 45 Invalid input

WR4 35 0 45 Invalid input

WR5 35 81 45 Invalid input

WR6 35 40 0 Invalid input

WR7 35 40 91 Invalid input

Software-Testing_Final.indb 84 31-01-2018 14:56:17

Black-Box (or Functional) Testing Techniques • 85

d.	 And finally, the strong robust equivalence class test cases are as follows:

Case ID Locks Stocks Barrels Expected output

SR1 –1 40 45 Value of locks not in the range 1–70.

SR2 35 –1 45 Value of stocks not in the range 1–80.
SR3 35 40 –1 Value of barrels not in the range 1–90.
SR4 –1 –1 45 Values of locks and stocks are not in their

ranges.
SR5 –1 40 –1 Values of locks and barrels are not in

their ranges.
SR6 35 –1 –1 Values of stocks and barrels are not in

their ranges.
SR7 –1 –1 –1 Values of locks, stocks, and barrels are not

in their ranges.

3.2.6. G uidelines for Equivalence Class Testing

The following are guidelines for equivalence class testing:

1.	 The weak forms of equivalence class testing (normal or robust) are not
as comprehensive as the corresponding strong forms.

2.	 If the implementation language is strongly typed and invalid values cause
run-time errors then it makes no sense to use the robust form.

3.	 If error conditions are a high priority, the robust forms are appropriate.

4.	 Equivalence class testing is approximate when input data is defined in
terms of intervals and sets of discrete values. This is certainly the case
when system malfunctions can occur for out-of-limit variable values.

5.	 Equivalence class testing is strengthened by a hybrid approach with
boundary value testing (BVA).

6.	 Equivalence class testing is used when the program function is complex.
In such cases, the complexity of the function can help identify useful
equivalence classes, as in the next date problem.

7.	 Strong equivalence class testing makes a presumption that the variables
are independent and the corresponding multiplication of test cases
raises issues of redundancy. If any dependencies occur, they will often
generate “error” test cases, as shown in the next date function.

Software-Testing_Final.indb 85 31-01-2018 14:56:17

86 • Software Testing

8.	 Several tries may be needed before the “right” equivalence relation is
established.

9.	 The difference between the strong and weak forms of equivalence class
testing is helpful in the distinction between progression and regression
testing.

3.3.  DECISION TABLE BASED TESTING

Of all the functional testing methods, those based on decision tables are the
most rigorous because decision tables enforce logical rigor.

3.3.1.  What Are Decision Tables?

Decision tables are a precise and compact way to model complicated logic.
They are ideal for describing situations in which a number of combinations
of actions are taken under varying sets of conditions.

FIGURE 3.9  Structure of Decision Table.

It is another popular black-box testing technique. A decision table
has four portions:

a.	 Stub portion b.	 Entry portion

c.	 Condition portion d.	 Action portion

A column in the entry portion is a rule. Rules indicate which actions are
taken for the conditional circumstances indicated in the condition portion of
the rule. Decision tables in which all conditions are binary are called limited
entry decision tables. If conditions are allowed to have several values, the
resulting tables are called extended entry decision tables.

To identify test cases with decision tables, we follow certain steps:

Step 1. �For a module identify input conditions (causes) and action
(effect).

Step 2. Develop a cause-effect graph.

Software-Testing_Final.indb 86 31-01-2018 14:56:18

Black-Box (or Functional) Testing Techniques • 87

Step 3. �Transform this cause-effect graph, so obtained in step 2 to a
decision table.

Step 4. �Convert decision table rules to test cases. Each column of the
decision table represents a test case. That is,

Number of Test Cases = Number of Rules

For a limited entry decision table, if n conditions exist, there must be 2
n

rules.

3.3.2. A dvantages, Disadvantage, and Applications of Decision Tables

Advantages of Decision Tables

1.	 This type of testing also works iteratively. The table that is drawn in the
first iteration acts as a stepping stone to derive new decision table(s) if
the initial table is unsatisfactory.

2.	 These tables guranatee that we consider every possible combination
of condition values. This is known as its “completeness property.” This
property promises a form of complete testing as compared to other
techniques.

3.	 Decision tables are declarative. There is no particular order for conditions
and actions to occur.

Disadvantages of Decision Tables

Decision tables do not scale up well. We need to “factor” large tables into
smaller ones to remove redundancy.

Applications of Decision Tables

This technique is useful for applications characterized by any of the following:

a.	 Prominent if-then-else logic.

b.	 Logical relationships among input variables.

c.	 Calculations involving subsets of the input variables.

d.	 Cause-and-effect relationships between inputs and outputs.

e.	 High cyclomatic complexity.

Software-Testing_Final.indb 87 31-01-2018 14:56:18

88 • Software Testing

Technique: To identify test cases with decision tables, we interpret condi-
tions as inputs and actions as output. The rules are interpreted as test cases.
Because the decision table can mechanically be forced to be complete, we
know we have a comprehensive set of test cases.

Example of a Decision Table: The triangle problem

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11

C1: a < b + c? F T T T T T T T T T T
C2: b < a + c? — F T T T T T T T T T
C3: c < a + b? — — F T T T T T T T T
C4: c = b? — — — T T T T F F F F
C5: a = c? — — — T T F F T T F F
C6: b = c? — — — T F T F T F T F
a1: Not a triangle × × ×
a2: Scalene ×
a3: Isosceles × × ×
a4: Equilateral ×
a5: Impossible × × ×

FIGURE 3.10  Example of Decision Table.

Each “-” (hyphen) in the decision table represents a “don’t care” entry.
Use of such entries has a subtle effect on the way in which complete decision
tables are recognized. For limited entry decision tables, if n conditions exist,
there must be 2n rules. When don’t care entries indicate that the condition is
irrelevant, we can develop a rule count as follows:

Rule 1. � Rules in which no “don’t care” entries occur count as one rule.

Note that each column of a decision table represents a rule and the
number of rules is equal to the number of test cases.

Rule 2.  Each “don’t care” entry in a rule doubles the count of that rule.

Note that in this decision table we have 6 conditions (C1—C6). Therefore,

n = 6

Also, we can have 2n entries, i.e., 26 = 64 entries. Now we establish the
rule and the rule count for the above decision table.

Software-Testing_Final.indb 88 31-01-2018 14:56:18

Black-Box (or Functional) Testing Techniques • 89

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11

C1: a < b + c? F T T T T T T T T T T

C2: b < a + c? — F T T T T T T T T T
C3: c < a + b? — — F T T T T T T T T
C4: a = b? — — — T T T T F F F F
C5: a = c? — — — T T F F T T F F
C6: b = c? — — — T F T F T F T F
Rule Count 32 16 8 1 1 1 1 1 1 1 1 = 64
a1: Not a triangle × × ×
a2: Scalene ×
a3: Isosceles × × ×
a4: Equilateral ×
a5: Impossible × × ×

FIGURE 3.11  Decision Table With Rule Counts.

From the previous table we find that the rule count is 64. And we have
already said that 2n = 26 = 64. So, both are 64.

The question, however, is to find out why the rule count is 32 for the
Rule-1 (or column-1)?

We find that there are 5 don’t cares in Rule-1 (or column-1) and hence
2n = 25 = 32. Hence, the rule count for Rule-1 is 32. Similarly, for Rule-2, it
is 24 = 16 and 23 = 8 for Rule-3. However, from Rule-4 through Rule-11, the
number of don’t care entries is 0 (zero). So rule count is 20 = 1 for all these
columns. Summing the rule count of all columns (or R1-R11) we get a total
of 64 rule count.

Many times some problems arise with these decision tables. Let us
see how.

Consider the following example of a redundant decision table:

Conditions 1–4 5 6 7 8 9

C1

C2

C3

T
—
—

F
T
T

F
T
F

F
F
T

F
F
F

T
F
F

a1

 a2

 a3

×
—
×

×
×
—

×
×
×

—
×
×

—
—
×

—
×
×

FIGURE 3.12  Redundant Decision Table.

Software-Testing_Final.indb 89 31-01-2018 14:56:18

90 • Software Testing

Please note that the action entries in Rule-9 and Rules 1–4 are NOT
identical. It means that if the decision table were to process a transaction in
which C1 is true and both C2 and C3 are false, both rules 4 and 9 apply. We
observe two things

1.	 Rules 4 and 9 are in-consistent because the action sets are different.

2.	 The whole table is non-deterministic because there is no way to decide
whether to apply Rule-4 or Rule-9.

Also note carefully that there is a bottom line for testers now. They
should take care when don’t care entries are being used in a decision table.

3.3.3. E xamples

3.3.3.1. � Test Cases for the Triangle Problem Using Decision Table Based
Testing Technique

We have already studied the problem domain for the famous triangle prob-
lem in previous chapters. Next we apply the decision table based technique
on the triangle problem. The following are the test cases:

Case ID a b c Expected output

D1 4 1 2 Not a triangle
D2 1 4 2 Not a triangle
D3 1 2 4 Not a triangle
D4 5 5 5 Equilateral
D5 ? ? ? Impossible
D6 ? ? ? Impossible
D7 2 2 3 Isosceles
D8 ? ? ? Impossible
D9 2 3 2 Isosceles
D10 3 2 2 Isosceles
D11 3 4 5 Scalene

FIGURE 3.13  Test Cases For Triangle Problem.

So, we get a total of 11 functional test cases out of which three are
impossible cases, three fail to satisfy the triangle property, one satisfies the
equilateral triangle property, one satisfies the scalene triangle property, and
three ways to get an isoceles triangle.

Software-Testing_Final.indb 90 31-01-2018 14:56:18

Black-Box (or Functional) Testing Techniques • 91

3.3.3.2.  Test Cases for Next Date Function

In the previous technique of equivalence partitioning we found that cer-
tain logical dependencies exist among variables in the input domain. These
dependencies are lost in a Cartesian product. The decision table format allows
us to use the notion of “impossible action” to denote impossible combinations
of conditions. Thus, such dependencies are easily shown in decision tables.

From the problem domain for the next date function, we know that there
are some critical situations like the treatment of leap years, special treatment
to year 2000 (Y2K), and special treatment to December month and a 28 day
month is also to be given. So, we go for 3 tries before we derive its test cases.

First try: Special treatment to leap years.
Second try: Special treatment to year = 2000.
Third try: Special treatment to December month and days = 28.

First try: Special treatment to leap years.

The art of testing and the actual craftsmanship lies in identifying appropriate
conditions and actions. Considering the following equivalence classes again:

	 M1 = {Month: Month has 30 days}
	 M2 = {Month: Month has 31 days}
	 M3 = {Month: Month is February}
	 D1 = {day: 1 ≤ day ≤ 28}
	 D2 = {day: day = 29}
	 D3 = {day: day = 30}
	 D4 = {day: day = 31}
	 Y1 = {year: year is a leap year}
	 Y2 = {year: year is not a leap year}

Based on these classes, we draw the decision table:

Conditions
C1: month in M1

C2: month in M2

C3: month in M3

C4: day in D1

C5: day in D2

C6: day in D3

C7: day in D4

C8: year in y1

T
T

T

:
:

: : :

a1: Impossible
a2: Next date

: : : : : : : :

FIGURE 3.14  First Try Decision Table.

Software-Testing_Final.indb 91 31-01-2018 14:56:18

92 • Software Testing

Herein, we have 3 × 4 × 2 = 24 elements and 2n = 28 = 256 entries. Many
of the rules would be impossible (note that the classes Y1 and Y2 collapse into
one condition C8). Some of these rules are impossible because

a.	 there are too many days in a month.

b.	 they cannot happen in a non-leap year.

c.	 they compute the next date.

Second try: Special treatment given to year 2000.

As we know, the year 2000 is a leap year. Hence, we must give special treat-
ment to this year by creating a new class-Y1 as follows:

	 M1 = {month: month has 30 days}
	 M2 = {month: month has 31 days}
	 M3 = {month: month is February}
	 D1 = {day: 1 ≤ day ≤ 28}
	 D2 = {day: day = 29}
	 D3 = {day: day = 30}
	 D4 = {day: day = 31}
	 Y1 = {year: year = 2000}
	 Y2 = {year: year is a leap year}
	 Y3 = {year: year is a common year}

This results in 3 × 4 × 3 = 36 rules that represents the Cartesian product
of 3 month classes (M1.... M3), 4 day classes (D1....D4), and 3 year classes.

So, after second try, our decision table is
Why is the rule count value 3 in column 1?
In column 1 or Rule 1 of this decision table, we have 3 possibilities with

don’t care:
{M1, D1, Y1}
{M1, D1, Y2}
{M1, D1, Y3}

i.e., with “–” or don’t care we have either Y1 or Y2 or Y3.
Also note that in Rule 8, we have three impossible conditions, shown

as “?” (question mark). Also, we find that this table has certain problems with
December month. We will fix these next in the third try.

Third try: Special treatment to December month and to number of
days = 28.

Software-Testing_Final.indb 92 31-01-2018 14:56:19

R
ul

es
 →

C
on

di
ti

on
s

↓
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16

C
1:

 m
on

th
 in

C
2:

 d
ay

 in

C
3:

 y
ea

r
in

M
1

D
1 –

M
1

D
2 –

M
1

D
3 –

M
1

D
4 –

M
2

D
1 –

M
2

D
2 –

M
2

D
3 –

M
2

D
4 –

M
3

D
1

Y1

M
3

D
1

Y2

M
3

D
1

Y3

M
3

D
2

Y1

M
3

D
2

Y2

M
3

D
2

Y3

M
3

D
3 –

M
3

D
4 –

R
ul

e
co

un
t

3
3

3
3

3
3

3
3

1
1

1
1

1
1

3
3

36
 r

ul
e

co
un

t

A
ct

io
ns

a1
: i

m
po

ss
ib

le
×

×
×

×
×

a2
: �i

nc
re

m
en

t
da

y
×

×
×

×
×

×

a3
: r

es
et

 d
ay

×
×

×
×

×

a4
: �i

nc
re

m
en

t
m

on
th

×
?

×
×

×

a5
: r

es
et

 m
on

th
?

a6
: �i

nc
re

m
en

t
ye

ar
?

FI
G

U
R

E
3.

15
 S

ec
on

d
Tr

y
D

ec
is

io
n

Ta
bl

e
W

ith
 3

6
R

ul
e

C
ou

nt
.

Software-Testing_Final.indb 93 31-01-2018 14:56:19

94 • Software Testing

Because we know that we have serious problems with the last day of
last month, i.e., December. We have to change month from 12 to 1. So, we
modify our classes as follows:

	 M1 = {month: month has 30 days}
	 M2 = {month: month has 31 days except December}
	 M3 = {month: month is December}
	 D1 = {day: 1 ≤ day ≤ 27}
	 D2 = {day: day = 28}
	 D3 = {day: day = 29}
	 D4 = {day: day = 30}
	 D5 = {day: day = 31}
	 Y1 = {year: year is a leap year}
	 Y2 = {year is a common year}

The Cartesian product of these contain 40 elements. Here, we have a
22-rule decision table. This table gives a clearer picture of the Next Date
function than does the 36-rule decision table and is given below:

In this table, the first five rules deal with 30-day months. Notice that the
leap year considerations are irrelevant. Rules (6 – 10) and (11 – 15) deal with
31-day months where the first five with months other than December and
the second five deal with December. No impossible rules are listed in this
portion of the decision table.

Still there is some redundancy in this table. Eight of the ten rules simply
increment the day. Do we really require eight separate test cases for this
sub-function? No, but note the type of observation we get from the decision
table.

Finally, the last seven rules focus on February and leap year. This deci-
sion table analysis could have been done during the detailed design of the
Next Date function.

Further simplification of this decision table can also be done. If the
action sets of two rules in a decision table are identical, there must be at least
one condition that allows two rules to be combined with a don’t care entry.
In a sense, we are identifying equivalence classes of these rules. For exam-
ple, rules 1, 2, and 3 involve day classes as D1, D2, and D3 (30 day classes).
These can be combined together as the action taken by them is the same.
Similarly, for other rules other combinations can be done. The correspond-
ing test cases are shown in the table as in Figure 3.17.

Software-Testing_Final.indb 94 31-01-2018 14:56:19

R
ul

es
 →

C

on
di

ti
on

s
↓

1
2

3
4

5
6

7
8

9
10

11

12

13

14

15
16

17

18

19

20

21

22

C
1:

 m
on

th
 in

C

2:
 d

ay
 in

C

3:
 y

ea
r

in

M
1

D
1

–

M
1

D
2

–

M
1

D
3

–

M
1

D
4

 –

M
1

D
5

–

M
2

D
1

–

M
2

D
2

–

M
2

D
3

–

M
2

D
4

–

M
2

D
5

–

M
3

D
1

–

M
3

D
2

–

M
3

D
3

–

M
3

D
4

–

M
3

D
5

–

M
4

D
1

–

M
4

D
2

Y1

M
4

D
2

Y2

M
4

D
3

Y1

M
4

D
3

Y2

M
4

D
4

–

M
4

D
5

–

A
ct

io
ns

a1
: i

m
po

ss
ib

le

×
×

×
×

a2
: �i

nc
re

m
en

t
da

y
×

×
×

×
×

×
×

×
×

×
×

×
×

×

a3
: r

es
et

 d
ay

×

×
×

×
×

a4
: �i

nc
re

m
en

t
m

on
th

×

×
×

×

a5
: r

es
et

 m
on

th

×

a6
: �i

nc
re

m
en

t
ye

ar

×

FI
G

U
R

E
3.

16
 D

ec
is

io
n

Ta
bl

e
fo

r
th

e
N

ex
t D

at
e

F
un

ct
io

n.

Software-Testing_Final.indb 95 31-01-2018 14:56:19

96 • Software Testing

Case ID Month Day Year Expected output

1–3 April 15 2001 April 16, 2001
4 April 30 2001 May 1, 2001
5 April 31 2001 Impossible

6–9 January 15 2001 January 16, 2001
10 January 31 2001 February 1, 2001

11–14 December 15 2001 December 16, 2001
15 December 31 2001 January 1, 2002
16 February 15 2001 February 16, 2001
17 February 28 2004 February 29, 2004
18 February 28 2001 March 1, 2001
19 February 29 2004 March 1, 2004
20 February 29 2001 Impossible

21–22 February 30 2001 Impossible

FIGURE 3.17  �Test Cases for Next Date Problem Using Decision Table Based Testing.

Because, we have 22 rules there are 22 test cases that are listed above.

3.3.3.3. Test Cases for the Commission Problem

The commission problem is not suitable to be solved using this technique of
decision table analysis because very little decisional logic is used in the prob-
lem. The variables in the equivalence classes are truly independent, there-
fore no impossible rules will occur in a decision table in which conditions
correspond to the equivalence classes. Thus, we will have the same test cases
as we did for equivalence class testing.

3.3.4.	Guidelines for Decision Table Based Testing

The following guidelines have been found after studying the previous
examples:

1.	 This technique works well where lot of decision making takes place such
as the triangle problem and next date problem.

2.	 The decision table technique is indicated for applications characterized
by any of the following:

�� Prominant if-then-else logic.
�� Logical relationships among input variables.
�� Calculations involving subsets of the input variables.
�� Cause-and-effect relationships between inputs and outputs.
�� High cyclomatic complexity.

Software-Testing_Final.indb 96 31-01-2018 14:56:19

Black-Box (or Functional) Testing Techniques • 97

3.	 Decision tables do not scale up well. We need to “factor” large tables
into smaller ones to remove redundancy.

4.	 It works iteratively meaning that the table drawn in the first iteration,
and acts as a stepping stone to design new decision tables, if the initial
table is unsatisfactory.

3.4.  CAUSE-EFFECT GRAPHING TECHNIQUE

Cause-effect graphing is basically a hardware testing technique adapted
to software testing. It is a black-box method. It considers only the desired
external behavior of a system. This is a testing technique that aids in select-
ing test cases that logically relate causes (inputs) to effects (outputs) to pro-
duce test cases.

3.4.1.	Causes and Effects

A “cause” represents a distinct input condition that brings about an internal
change in the system. An “effect” represents an output condition, a system
transformation, or a state resulting from a combination of causes.

Myer suggests the following steps to derive test cases:

Step 1. �For a module, identify the input conditions (causes) and actions
(effect).

Step 2. Develop a cause-effect graph.
Step 3. Transform the cause-effect graph into a decision table.
Step 4. �Convert decision table rules to test cases. Each column of the

decision table represents a test case.

Basic cause-effect graph symbols used are given below:

Software-Testing_Final.indb 97 31-01-2018 14:56:21

98 • Software Testing

Consider each node as having the value 0 or 1 where 0 represents the
“absent state” and 1 represents the “present state.” Then the identity func-
tion states that if c1 is 1, e1 is 1, or we can say if c1 is 0, e1 is 0.

The NOT function states that if C1 is 1, e1 is 0 and vice versa. Similarly,
the OR function states that if C1 or C2 or C3 is 1, e1 is 1 else e1 is 0. The AND
function states that if both C1 and C2 are 1, e1 is 1; else e1 is 0. The AND and
OR functions are allowed to have any number of inputs.

3.4.2. T est Cases for the Triangle Problem

We follow the steps listed in Section 3.4.1 to design the test cases for our
triangle problem:

Step 1. First, we must identify the causes and its effects. The causes are:

C1: Side x is less than sum of y and z
C2: Side y is less than sum of x and z
C3: Side z is less than sum of x and y
C4: Side x is equal to side y
C5: Side x is equal to side z
C6: Side y is equal to side z

The effects are:

e1: Not a triangle
e2: Scalene triangle
e3: Isosceles triangle
e4: Equilateral triangle
e5: Impossible

Step 2. Its cause-effect graph
is shown in Figure 3.18.

Step 3. We transform it into a
decision table: FIGURE 3.18  Cause Effect Graph for

Triangle Problem.

Software-Testing_Final.indb 98 31-01-2018 14:56:22

Black-Box (or Functional) Testing Techniques • 99

Conditions R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11

C1: x < y + z? 0 1 1 1 1 1 1 1 1 1 1

C2: y < x + z? × 0 1 1 1 1 1 1 1 1 1

C3: z < x + y? × × 0 1 1 1 1 1 1 1 1

C3: x = y? × × × 1 1 1 1 0 0 0 0

C4: x = z? × × × 1 1 0 0 1 1 0 0

C5: x = z? × × × 1 1 0 0 1 1 0 0

C6: y = z? × × × 1 0 1 0 1 0 1 0

e1: Not a triangle 1 1 1

e2: Scalene 1

e3: Isosceles 1 1 1

e4: Equilateral 1

e5: Impossible 1 1 1

Step 4. Because there are 11 rules, we get 11 test cases and they are:

Test case x y z Expected output

1 4 1 2 Not a triangle
2 1 4 2 Not a triangle
3 1 2 4 Not a triangle
4 5 5 5 Equilateral
5 ? ? ? Impossible
6 ? ? ? Impossible
7 2 2 3 Isosceles
8 ? ? ? Impossible
9 2 3 2 Isosceles

10 3 2 2 Isosceles
11 3 4 5 Scalene

Software-Testing_Final.indb 99 31-01-2018 14:56:22

100 • Software Testing

3.4.3. T est Cases for Payroll Problem

Problem 1. Consider the payroll system of a person.

a.	 If the salary of a person is less than $70,000 and expenses do not exceed
$30,000, then a 10% tax is charged by the IT department.

b.	 If the salary is greater than $60,000 and less than or equal to $3000 and
expenses don’t exceed $40,000, then a 20% tax is charged by the IT
department.

c.	 For a salary greater than $3000, a 5% additional surcharge is also charged.

d.	 If expenses are greater than $40,000, the surcharge is 9%.

	 Design test-cases using decision table based testing technique.

Solution. See the following steps:

Step 1. All causes and their effects are identified:

Causes Effects

C1: Salary < = 70,000
C2: Salary > 60,000 and Salary < = 3000
C3: Salary > 3000
C4: Expenses < = 30,000
C5: Expenses < = 40,000
C6: Expenses > 40,000

E1: 10% tax is charged.
E2: 20% tax is charged.
E3: (20% tax) + (5% surcharge) is
charged.
E4: (20% tax) + (9% surcharge) is
charged.

Step 2. It’s cause-effect graph is drawn.

FIGURE 3.19  Cause Effects Graph.

Software-Testing_Final.indb 100 31-01-2018 14:56:24

Black-Box (or Functional) Testing Techniques • 101

Step 3. We transform this cause-effect graph into a decision table. Please
note that these “causes” and “effects” are nothing else but “conditions” and
“actions” of our decision table. So, we get:

1 2 3 4

Conditions
(or Causes)

C1 1 0 0 0
C2 0 1 0 0
C3 0 0 1 1
C4 1 0 0 0
C5 0 1 1 0
C6 0 0 0 1

Actions
(or Effects)

E1 × — — —
E2 — × — —
E3 — — × —
E4 — — — ×

FIGURE 3.20  Decision Table.

That is, if C1 and C4 are 1 (or true) then the effect (or action) is E1. Simi-
larly, if C2 and C5 is 1 (or true), action to be taken is E2, and so on.

Step 4. Because there are 4 rules in our decision table above, we must have
at least 4 test cases to test this system using this technique.

These test cases can be:

1.	 Salary = 20,000, Expenses = 2000

2.	 Salary = 100,000, Expenses = 10,000

3.	 Salary = 300,000, Expenses = 20,000

4.	 Salary = 300,000, Expenses = 50,000

So we can say that a decision table is used to derive the test cases which
can also take into account the boundary values.

3.4.4. G uidelines for the Cause-Effect Functional Testing Technique

1.	 If the variables refer to physical quantities, domain testing and
equivalence class testing are indicated.

Software-Testing_Final.indb 101 31-01-2018 14:56:24

102 • Software Testing

2.	 If the variables are independent, domain testing and equivalence class
testing are indicated.

3.	 If the variables are dependent, decision table testing is indicated.

4.	 If the single-fault assumption is warranted, boundary value analysis
(BVA) and robustness testing are indicated.

5.	 If the multiple-fault assumption is warranted, worst-case testing, robust
worst-case testing, and decision table testing are identical.

6.	 If the program contains significant exception handling, robustness
testing and decision table testing are indicated.

7.	 If the variables refer to logical quantities, equivalence class testing and
decision table testing are indicated.

3.5. � COMPARISON ON BLACK-BOX (OR FUNCTIONAL)
TESTING TECHNIQUES

3.5.1. T esting Effort

The functional methods that we have studied so far vary both in terms of the
number of test cases generated and the effort to develop these test cases.
To compare the three techniques, namely, boundary value analysis (BVA),
equivalence class partitioning, and decision table based technique, we con-
sider the following curve shown in Figure 3.21.

FIGURE 3.21  Test Cases as Per the Testing Method.

Software-Testing_Final.indb 102 31-01-2018 14:56:26

Black-Box (or Functional) Testing Techniques • 103

The domain-based techniques have no recognition of data or logical
dependencies. They are very mechanical in the way they generate test cases.
Because of this, they are also easy to automate. The techniques like equiv-
alence class testing focus on data dependencies and thus we need to show
our craft. The thinking goes into the identification of the equivalence classes
and after that, the process is mechanical. Also note that from the graph, the
decision table based technique is the most sophisticated because it requires
the tester to consider both data and logical dependencies. As we have seen in
our example of the next date function, we had to go three times but once we
get a good and healthy set of conditions, the resulting test cases are complete
and minimal.

Now, consider another graph to show the effort required to identify the
test cases versus its sophistication.

FIGURE 3.22  Test Case Identification Effort as per Testing Method.

We can say that the effort required to identify test cases is the lowest in
BVA and the highest in decision tables. The end result is a trade-off between
the test case effort identification and test case execution effort. If we shift
our effort toward more sophisticated testing methods, we reduce our test
execution time. This is very important as tests are usually executed several
times. Also note that, judging testing quality in terms of the sheer number
of test cases has drawbacks similar to judging programming productivity in
terms of lines of code.

The examples that we have discussed so far show these trends.

Software-Testing_Final.indb 103 31-01-2018 14:56:27

104 • Software Testing

3.5.2. T esting Efficiency

What we found in all of these functional testing strategies is that either the
functionality is untested or the test cases are redundant. So, gaps do occur in
functional test cases and these gaps are reduced by using more sophisticated
techniques.

We can develop various ratios of the total number of test cases generated
by method-A to those generated by method-B or even ratios on a test case
basis. This is more difficult but sometimes management demands numbers
even when they have little meaning. When we see several test cases with the
same purpose, sense redundancy, detecting the gaps is quite difficult. If we
use only functional testing, the best we can do is compare the test cases that
result from two methods. In general, the more sophisticated method will
help us recognize gaps but nothing is guaranteed.

3.5.3. T esting Effectiveness

How can we find out the effectiveness of the testing techniques?

a.	 By being dogmatic, we can select a method, use it to generate test
cases, and then run the test cases. We can improve on this by not
being dogmatic and allowing the tester to choose the most appropriate
method. We can gain another incremental improvement by devising
appropriate hybrid methods.

b.	 The second choice can be the structural testing techniques for the test
effectiveness. This will be discussed in subsequent chapters.

Note, however, that the best interpretation for testing effectiveness is
most difficult. We would like to know how effective a set of test cases is for
finding faults present in a program. This is problematic for two reasons.

1.	 It presumes we know all the faults in a program.

2.	 Proving that a program is fault free is equivalent to the famous halting
problem of computer science, which is known to be impossible.

Software-Testing_Final.indb 104 31-01-2018 14:56:27

Black-Box (or Functional) Testing Techniques • 105

What Is the Best Solution?

The best solution is to work backward from fault types. Given a particular
kind of fault, we can choose testing methods (functional and structural) that
are likely to reveal faults of that type. If we couple this with knowledge of
the most likely kinds of faults, we end up with a pragamatic approach to test-
ing effectiveness. This is improved if we track the kinds of faults and their
frequencies in the software we develop.

3.5.4. G uidelines for Functional Testing

1.	 If the variables refer to physical quantities then domain testing and
equivalence class testing are used.

2.	 If the variables are independent then domain testing and equivalence
class testing are used.

3.	 If the variables are dependent, decision table testing is indicated.

4.	 If the single-fault assumption is warranted then BVA and robustness
testing are used.

5.	 If the multiple-fault assumption is warranted then worst case testing,
robust worst case testing, and decision table based testing are indicated.

6.	 If the program has significant exception handling, robustness testing and
decision table based testing are identical.

7.	 If the variable refers to logical quantities, equivalence class testing and
decision table testing are indicated.

3.6. KIVIAT CHARTS

A kiviat chart visually displays a set of metrics that provides easy viewing of
multiple metrics against minimum and maximum thresholds. Each radial of
a Kiviat chart is a metric. All metrics are scaled so that all maximums are on
a common circle and all minimums are on a common circle.

In the charts below, the circle is the maximum threshold and the band is
the minimum threshold. The band between the two is the acceptable range.

Software-Testing_Final.indb 105 31-01-2018 14:56:27

106 • Software Testing

The chart on the left shows that all metrics are well within the acceptable
range. The chart on the right shows an example where all metrics are above
maximum limits.

FIGURE 3.23  �DevCodeMetricsWeb screen shot with Kiviat:
http://devcodemetrics.sourceforge.net/

The best graphical or visual representation of complex concepts and data
can be communicated through Kiviat charts. In addition, Kiviat charts pro-
vide a quick focus on the areas that are in most need of attention and can
be customized to use different scales to represent various problems. This
deliverable will help you get smart on what a Kiviat chart is and how to use
it properly.

Software-Testing_Final.indb 106 31-01-2018 14:56:29

Black-Box (or Functional) Testing Techniques • 107

For an update on Kiviat charts using R! visit: http://metrico.statanything.
com/diagramas-kiviat-spider-charts-em-r/

3.6.1. T he Concept of Balance

Why Is It Needed?

The problem – multiple dimensions:

�� Computer: processor
•• printer
•• disks
•• CDROM
•• modem

�� Software
�� Personnel

All these together create multiple dimensions and hence the concept of bal-
ance is needed.

Kiviat Charts: The Method

The following steps are usually followed to draw Kiviat charts:

Step 1: Choose factors to be measured.
Step 2: �Define factors so that for half the optimum utilization is 1 and

the other half is 0.
Step 3: �Mark the factors around the chart so that axes with an optimum

of 0 alternate with those with an optimum of 1.
Step 4: Mark the values on the factor axes.
Step 5: Join the marks to form a “star.”
Step 6: �Evaluate the result.

We shall now consider four different cases to draw Kiviat charts.

Case 1: Kiviat charts—A perfectly balanced system.

Consider a sample data given below. Its Kiviat chart is also shown below:

NOTE

Software-Testing_Final.indb 107 31-01-2018 14:56:29

108 • Software Testing

FIGURE 3.24

Case 2: Kiviat charts—A well-balanced system.

Consider another sample data for a well-balanced system. Using the steps
listed earlier, we draw its kiviat chart.

FIGURE 3.25

Software-Testing_Final.indb 108 31-01-2018 14:56:32

Black-Box (or Functional) Testing Techniques • 109

Case 3: Kiviat charts—A poorly balanced system.

Now consider a poorly balanced system. Its kiviat chart is shown below:

FIGURE 3.26

Case 4: Kiviat charts—A perfectly balanced system.

Consider another set of sample data. We draw its kiviat chart.

FIGURE 3.27

Software-Testing_Final.indb 109 31-01-2018 14:56:35

110 • Software Testing

Kiviat Charts—A Different Example (CASE STUDY)

Problem:	 Comparing Internet diffusion in countries.
Measures:	 pervasiveness

	 geographic dispersion
	 sectoral absorption
	 connectivity infrastructure
	 organizational infrastructure
	 sophistication of use

Countries compared:
	 Finland
	 Jordan
	 Israel

Internet Dimensions Compared

Dimensions Jordan Israel Finland

Pervasiveness 3 4 4
Geographic dispersion 1 4 3
Sectoral absorption 2 3 3
Connectivity infrastructure 1 2 3
Organizational infrastructure 2 4 4
Sophistication of use 1 3 4

Internet Dimensions Compared in the Form of a Kiviat Chart

FIGURE 3.28

Software-Testing_Final.indb 110 31-01-2018 14:56:36

Black-Box (or Functional) Testing Techniques • 111

Problem with Kiviat Charts

The Cost/Utilization Method
�� The problem with Kiviat charts - how to develop a metric for multi-

dimensional data?
�� The solution: express everything in terms of a common measure -

cost.
�� There are then two dimensions - utilization and cost - which when

multiplied yield a cost/ utilization factor for each system component.

Illustrative Cost/Utilization Histograms

FIGURE 3.29

FIGURE 3.31

FIGURE 3.30

FIGURE 3.32

Software-Testing_Final.indb 111 31-01-2018 14:56:42

112 • Software Testing

FIGURE 3.33 FIGURE 3.34

Cost/Utilization—The Method

The following steps are shown below:

1.	 Choose factors to be measured.

2.	 Determine the cost of each factor as a percent of total system cost.

3.	 Determine the utilization of each factor.

4.	 Prepare a chart showing the cost and utilization of each factor.

5.	 Compute the measure of cost/utilization, F.

6.	 Compute the measure of balance, B.

7.	 Evaluate the resulting chart and measures.

Cost/Utilization—The Measures

Cost/Utilization:	 F = ∑uipl

where:	 ui = percent utilization of factor i

	 pi = cost contribution of factor i

Balance:	 B = 1− 2 √ ∑(F − ui)
2 × pi

i

Software-Testing_Final.indb 112 31-01-2018 14:56:45

Black-Box (or Functional) Testing Techniques • 113

FIGURE 3.35  �Cost/Utilization—
The Measures.

FIGURE 3.36  �Cost/Utilization—
The Measures.

FIGURE 3.37  �Cost/Utilization—
Interpretation.

FIGURE 3.38  �Cost/Utilization—
Interpretation.

FIGURE 3.39  Cost/Utilization—Interpretation.

Software-Testing_Final.indb 113 31-01-2018 14:56:53

114 • Software Testing

FIGURE 3.40  Trace of Cost/Utilization Criteria.

FIGURE 3.41  �Composite Cost/Utilization Histogram for Two Real Linked
Systems.

Software-Testing_Final.indb 114 31-01-2018 14:56:56

Black-Box (or Functional) Testing Techniques • 115

Conclusions

It is essential to maintain balance between system components in order to:
�� reduce costs.
�� maintain smooth functioning with no bottlenecks.
�� attain effectiveness AND efficiency.

SUMMARY

We summarize the scenarios under which each of these techniques will be
useful:

When we want to test scenarios
that have

The most effective black-
box testing technique to use

1.	 Output values dictated by certain conditions
depending on values of input variables.

Decision tables

2.	 Input values in ranges, with each range
showing a particular functionality.

Boundary Value Analysis
(BVA)

3.	 Input values divided into classes. Equivalence partitioning
4.	 Checking for expected and unexpected input

values.
Positive and negative testing

5.	 Workflows, process flows, or language
processors.

Graph based testing

6.	 To ensure that requirements are tested and
met properly.

Requirements based testing

7.	 To test the domain expertise rather than
product specification.

Domain testing

8.	 To ensure that the documentation is consistent
with the product.

Documentation testing

MULTIPLE CHOICE QUESTIONS

1.	 Which is not a functional testing technique?

a.	 BVA b.	 Decision table

c.	 Regression testing d.	 None of the above.

Software-Testing_Final.indb 115 31-01-2018 14:56:56

116 • Software Testing

2.	 One weakness of BVA and equivalence partitioning is

a.	 They are not effective.

b.	 They do not explore combinations of input circumstances.

c.	 They explore combinations of input circumstances.

d.	 None of the above.

3.	 Decision tables are useful in a situation where

a.	 An action is taken under varying sets of corditions.

b.	 �A number of combinations of actions are taken under varying sets of
conditions.

c.	 No action is taken under varying sets of conditions.

d.	 None of the above.

4.	 “Causes” and “Effects” are related to

a.	 Input and output b.	 Output and input

c.	 Destination and source d.	 None of the above.

5.	 Functionality of a software is tested by

a.	 White-box testing. b.	 Black-box testing.

c.	 Regression testing. d.	 None of the above.

6.	 If n represents the number of variables in a program then BVA yields
how many test cases?

a.	 4n + 2 b.	 4n + 1

c.	 n + 2 d.	 n + 1

7.	 For a function of n variables, the robustness testing will yield

a.	 6n + 1 test cases. b.	 6n + 2 test cases.

c.	 6n + 4 test cases. d.	 None of the above.

8.	 Worst case testing yields

a.	 5n test cases. b.	 5n + 1.

c.	 5n. d.	 None of the above.

9.	 BVA is based upon

a.	 Single fault assumption theory.	 c.	 Both of the above.

b.	 Multiple fault assumption theory.	 d.	 None of the above.

Software-Testing_Final.indb 116 31-01-2018 14:56:56

Black-Box (or Functional) Testing Techniques • 117

	 10.	 In decision tables, which of the following is true?

a.	 Number of test cases is equal to number of rules (or columns)

b.	 Number of test cases is not equal to number of rules (or columns)

c.	 Both (a) and (b)

d.	 None of the above.

ANSWERS

1.	 c. 2.	 b. 3.	 b. 4.	 a.

5.	 b. 6.	 b. 7.	 a. 8.	 c.

9.	 a. 10.	 a.

CONCEPTUAL SHORT QUESTIONS WITH ANSWERS

Q. 1.	 Why we need to perform both types of testing?
Ans.	 �A functional (Black-box) test case might be taken from the

documentation description of how to perform a certain function.
For example, accepting the bar code input.

	 	� On the other hand, a structural test case might be taken from a tech-
nical documentation manual.

	 	� Both methods together validate the entire system and is shown in
Table.

Test Phase Performed by Verification Validation

Requirements
Review

Developers, Users ×

Unit Testing Developers ×
Integrated Testing Developers ×
System Testing Developers, Users ×

Software-Testing_Final.indb 117 31-01-2018 14:56:56

118 • Software Testing

Q. 2.	 What is the source of knowledge for functional testing?
Ans.	 �The following items are the knowledge source of functional (or

black-box) testing:

a.	 Requirements document

b.	 Specifications

c.	 Domain knowledge

d.	 Defect analysis data

Q. 3.	 What is special value testing?
Ans.	 �It is a sort of functional testing technique. It is most intuitive and

least uniform. Special value testing occurs when a tester uses his or
her domain knowledge, experience with similar programs, and infor-
mation about soft-spots (i.e., critical areas) to device test cases. It is
also known as adhoc testing. It is dependent on the tester’s ability.
Even though special value/adhoc testing is highly subjective, it often
results in a set of test cases that is more effective in revealing faults
than the test cases generated by other methods.

Q. 4.	 What is random testing?
Ans.	 �A testing technique in which instead of always choosing the min,

min+, nom, max–, and max values of a bounded variable, we use a
random number generator to pick test case values. This will reduce
bias during testing.

Q. 5.	 Write down the differences between static and dynamic testing?
Ans.	 �The differences between static and dynamic testing are shown

below:

Static testing Dynamic testing

1.	 It talks about preven-
tion.

It talks about cure.

2.	 It is more cost
effective.

It is less cost effective.

3.	 It may achieve 100%
statement coverage.

It may achieve less than 50%
statement coverage as it finds the
errors only in the part of codes that
are actually executed.

4.	 It is not time
consuming.

It is time consuming as it may
involve running several test cases.

5.	 It can be done before
compilation.

It can be done only after executables
are ready.

Software-Testing_Final.indb 118 31-01-2018 14:56:56

Black-Box (or Functional) Testing Techniques • 119

Q. 6.	 Give some advantages and disadvantages of functional test cases?
Ans.	 Functional test cases have two main advantages:

i.	 They are independent of how the software is implemented. So,
even if the implementation changes, the test cases are still useful.

ii.	 Test case development can occur in parallel with the
implementation, thereby reducing overall project development
internal.

	 	 Functional test cases have two main disadvantages:

i.	 Some unavoidable redundancies may exist among test cases.

ii.	 There exists a possibility of gaps of untesting software.

	 	� Both of these problems can be solved if we combine the test cases,
so obtained from both functional and structural testing.

Q. 7.	 Differentiate between positive and negative testing?	
Ans.	 Let us tabulate the differences between the two:

Positive Testing Negative Testing

1. Positive testing tries to prove that
a given product does what it is
supposed to do.

Negative testing is done to show that the
product does not fail when an unex-
pected input is given.

2. A positive test case is one that
verifies the requirements of the
product with a set of expected
output.

A negative test case will have the
input values that may not have been
represented in the SRS. These are
unknown conditions for the product.

3. The purpose of positive testing is
to prove that the product works as
per the user specifications.

The purpose of negative testing is to try
and break the system.

4. Positive testing checks the
product’s behavior.

Negative testing covers scenarios for
which the product is not designed and
coded.

5. Positive testing is done to verify
the known test conditions.

Negative testing is done to break the
product with unknown test conditions,
i.e., test conditions that lie outside SRS.

(Continued)

Software-Testing_Final.indb 119 31-01-2018 14:56:56

120 • Software Testing

6. If all documented requirements
and test conditions are covered
then it gives 100% coverage.

There is no end to negative testing and
100% coverage is impractical here.

For example: A product
delivering an error when it is
expected to give error.

For example: A product not delivering
an error when it should or delivering an
error when it should not.

Q. 8.	 What is domain testing?
 Ans.	 �Domain testing is a sort of testing strategy wherein we do not look

even at SRS of a software product but test purely on the basis of
domain knowledge and expertise in the domain of application.

	 	� For example, in a banking software, knowing the account opening,
closing, etc. processes, enables a tester to test that functionality
better.

Q. 9.	 What is documentation testing?
Ans.	 �A testing done to ensure that the documentation is consistent with

the product.
Q. 10.	 What are the characteristics of a good test?
Ans.	 i.	 A good test has a high probability of finding an error.

	 ii.	 A good test is not redundant.

	 iii.	 A good test is the “best of breed.”

	 iv.	 A good test should be neither too simple nor too complex.

Q. 11.	 �Consider the above use case diagram for coffee maker. Find at least
ten acceptance test cases and black-box test cases and document it.

Ans.	 Test cases for coffee maker.
	 	 Preconditions: Run coffee maker by switching on power supply.

Software-Testing_Final.indb 120 31-01-2018 14:56:57

Te
st

ca

se
 i

d
Te

st
 c

as
e

na
m

e
Te

st
 c

as
e

de

sc
ri

pt
io

n
Te

st
 s

te
ps

A
ct

ua
l

re
su

lt
Te

st
 s

ta
tu

s
(P

/F
)

St
ep

E
xp

ec
te

d
re

su
lt

A
cc

01
W

ai
tin

g
st

at
e

W
he

n
th

e
co

ff
ee

m

ak
er

 is
 n

ot
 in

 u
se

,
it

w
ai

ts
 fo

r
us

er

in
pu

t.

Sy
st

em
 d

is
pl

ay
s

m
en

u
as

fo

llo
w

s:
1.

	A
dd

 r
ec

ip
e

2.
	D

el
et

e
re

ci
pe

3.
	E

di
t a

 r
ec

ip
e

4.
	A

dd
 in

ve
nt

or
y

5.
	C

he
ck

 in
ve

nt
or

y
6.

	P
ur

ch
as

e
be

ve
ra

ge
A

cc
02

A
dd

 a

re
ci

pe
O

nl
y

th
re

e
re

ci
pe

s
m

ay
 b

e
ad

de
d

to
 th

e
co

ff
ee

 m
ak

er
.

A
dd

 th
e

re
ci

pe
.

A
 r

ec
ip

e
co

ns
is

ts

of
 a

 n
am

e,
 p

ri
ce

,
un

its
 o

f c
of

fe
e,

un

its
 o

f d
ai

ry

cr
ea

m
er

, u
ni

ts
 o

f
ch

oc
ol

at
e,

 w
at

er
.

E
ac

h
re

ci
pe

 n
am

e
m

us
t

be
 u

ni
qu

e
in

 th
e

re
ci

pe

lis
t.

A
cc

03
D

el
et

e
a

re
ci

pe
A

 r
ec

ip
e

m
ay

 b
e

de
le

te
d

fr
om

 th
e

co
ff

ee
m

ak
er

 if
 it

ex

is
ts

 in
 th

e
lis

t o
f

re
ci

pe
s

in
 th

e
co

ff
ee

m

ak
er

.

C
ho

os
e

th
e

re
c-

ip
e

to
 b

e
de

le
te

d
by

 it
s

na
m

e.

A
 s

ta
tu

s
m

es
sa

ge
 is

pr

in
te

d
an

d
th

e
co

ff
ee

m

ak
er

 is
 r

et
ur

ne
d

to
 th

e
w

ai
tin

g
st

at
e.

Software-Testing_Final.indb 121 31-01-2018 14:56:58

Te
st

ca

se
 i

d
Te

st
 c

as
e

na
m

e
Te

st
 c

as
e

de

sc
ri

pt
io

n
Te

st
 s

te
ps

A
ct

ua
l

re
su

lt
Te

st
 s

ta
tu

s
(P

/F
)

St
ep

E
xp

ec
te

d
re

su
lt

A
cc

04
E

di
t a

re

ci
pe

T
he

 u
se

r
w

ill
 b

e
pr

om
pt

ed
 fo

r
th

e
re

ci
pe

 n
am

e
th

ey

w
is

h
to

 e
di

t.

E
nt

er
 t

he

re
ci

pe
 n

am
e

al
on

g
w

it
h

va
ri

-
ou

s
un

it
s.

U
po

n
co

m
pl

et
io

n,
 a

st

at
us

 m
es

sa
ge

 is
 p

ri
nt

ed

an
d

th
e

co
ff

ee
 m

ak
er

 is

re
tu

rn
ed

 to
 th

e
w

ai
tin

g
st

at
e.

A
cc

05
A

dd

in
ve

nt
or

y
In

ve
nt

or
y

m
ay

be

 a
dd

ed
 to

 th
e

m
ac

hi
ne

 a
t a

ny

tim
e.

 (I
nv

en
to

ry
 is

m

ea
su

re
d

in
 in

te
ge

r
un

its
.)

Ty
pe

 t
he

 i
nv

en
-

to
ry

:
co

ff
ee

,
da

ir
y

cr
ea

m
er

,
w

at
er

.

In
ve

nt
or

y
is

 a
dd

ed
 to

th

e
m

ac
hi

ne
 a

nd
 a

 s
ta

tu
s

m
es

sa
ge

 is
 p

ri
nt

ed
.

A
cc

06
C

he
ck

in

ve
nt

or
y

In
ve

nt
or

y
m

ay
 b

e
ch

ec
ke

d
at

 a
ny

 ti
m

e.
E

nt
er

 th
e

un
it

s
of

 e
ac

h
ite

m
.

Sy
st

em
 d

is
pl

ay
s

th
e

in
ve

nt
or

y.
A

cc
07

Pu
rc

ha
se

be

ve
ra

ge
T

he
 u

se
r

w
ill

 n
ot

 b
e

ab
le

 to
 p

ur
ch

as
e

a
be

ve
ra

ge
 if

 th
ey

 d
o

no
t d

ep
os

it
en

ou
gh

m

on
ey

.

E
nt

er
 th

e
un

its

an
d

am
ou

nt
.

1.
	S

ys
te

m
 d

is
pe

ns
ed

 th
e

ch
an

ge
, i

f u
se

r
pa

id

m
or

e
th

an
 th

e
pr

ic
e

of

th
e

be
ve

ra
ge

.
2.

	S
ys

te
m

 r
et

ur
ns

 u
se

r’s

m
on

ey
 if

 th
er

e
is

 n
ot

en

ou
gh

 in
ve

nt
or

y.

Software-Testing_Final.indb 122 31-01-2018 14:56:58

Te
st

 ID
D

es
cr

ip
ti

on
/s

te
ps

Ex
pe

ct
ed

 r
es

ul
ts

A
ct

ua
l r

es
ul

ts
Te

st
 s

ta
tu

s
(P

/F
)

ch
ec

kO
pt

io
ns

P
re

co
nd

iti
on

: R
un

 C
of

fe
eM

ak
er

E
nt

er
: 0

P
ro

gr
am

 e
xi

ts
E

nt
er

: 1
A

dd
 r

ec
ip

e
fu

nc
ti

on
al

it
y

E
nt

er
: 2

D
el

et
e

re
ci

pe
 fu

nc
tio

na
lit

y
E

nt
er

: 3
E

di
t r

ec
ip

e
fu

nc
ti

on
al

it
y

E
nt

er
: 4

A
dd

 in
ve

nt
or

y
fu

nc
ti

on
al

it
y

E
nt

er
: 5

In
ve

nt
or

y
di

sp
la

ys
E

nt
er

: 6
M

ak
e

co
ff

ee
 f

un
ct

io
na

lit
y

ad
dR

ec
ip

e1
P

re
co

nd
iti

on
: R

un
 C

of
fe

eM
ak

er
E

nt
er

: 1

N
am

e:
 C

of
fe

e
P

ri
ce

:
10

C
of

fe
e:

 3
D

ai
ry

 c
re

am
er

:
1

C
ho

co
la

te
: 0

C
of

fe
e

su
cc

es
sf

ul
ly

 a
dd

ed
.

R
et

ur
n

to
 m

ai
n

m
en

u.

ad
dR

ec
ip

e2
P

re
co

nd
iti

on
: R

un
 C

of
fe

eM
ak

er

E
nt

er
: 1

N
am

e:
 C

of
fe

e
P

ri
ce

:1
0

C
of

fe
e:

 3
D

ai
ry

 c
re

am
er

:
1

C
ho

co
la

te
: 0

C
of

fe
e

co
ul

d
no

t
be

ad

de
d.

 (
R

ec
ip

e
na

m
e

m
us

t
be

 u
ni

qu
e

in
 t

he

re
ci

pe
 l

is
t.)

R
et

ur
n

to
 m

ai
n

m
en

u.

(C
on

ti
nu

ed
)

Software-Testing_Final.indb 123 31-01-2018 14:56:58

Te
st

 ID
D

es
cr

ip
ti

on
/s

te
ps

Ex
pe

ct
ed

 r
es

ul
ts

A
ct

ua
l r

es
ul

ts
Te

st
 s

ta
tu

s
(P

/F
)

ad
dR

ec
ip

e3
P

re
co

nd
iti

on
: R

un
 C

of
fe

eM
ak

er

E
nt

er
: 1

N
am

e:
 M

oc
ha

P

ri
ce

: –
50

M
oc

ha
 c

ou
ld

 n
ot

 b
e

ad
de

d.
 P

ri
ce

 c
an

 n
ot

 b
e

ne
ga

ti
ve

.
R

et
ur

n
to

 m
ai

n
m

en
u.

ad
dR

ec
ip

e4
P

re
co

nd
iti

on
: R

un
 C

of
fe

eM
ak

er

E
nt

er
: 1

N
am

e:
 M

oc
ha

P

ri
ce

:
60

C
of

fe
e:

 –
3

M
oc

ha
 c

ou
ld

 n
ot

 b
e

ad
de

d.
 U

ni
ts

 o
f

co
f-

fe
e

ca
n

no
t

be
 n

eg
at

iv
e.

R

et
ur

n
to

 m
ai

n
m

en
u.

ad
dR

ec
ip

e5
P

re
co

nd
iti

on
: R

un
 C

of
fe

eM
ak

er

E
nt

er
: 1

N
am

e:
 M

oc
ha

P

ri
ce

:
20

C
of

fe
e:

 –
3

D
ai

ry
 c

re
am

er
:

–2

M
oc

ha
 c

ou
ld

 n
ot

 b
e

ad
de

d.
 U

ni
ts

 o
f

da
ir

y
cr

ea
m

er
 c

an
 n

ot
 b

e
ne

ga
-

ti
ve

.
R

et
ur

n
to

 m
ai

n
m

en
u.

ad
dR

ec
ip

e6
P

re
co

nd
iti

on
: R

un
 C

of
fe

eM
ak

er

E
nt

er
: 1

N
am

e:
 M

oc
ha

P

ri
ce

:
20

C
of

fe
e:

 3
D

ai
ry

 c
re

am
er

:
2

C
ho

co
la

te
: –

3

M
oc

ha
 c

ou
ld

 n
ot

 b
e

ad
de

d.
 U

ni
ts

 o
f

ch
oc

o-
la

te
 c

an
 n

ot
 b

e
ne

ga
tiv

e.

R
et

ur
n

to
 m

ai
n

m
en

u.

ad
dR

ec
ip

e7
Pr

ec
on

di
tio

n:
 R

un
 C

of
fe

eM
ak

er

E
nt

er
: 1

N
am

e:
 M

oc
ha

Pr

ic
e:

 a

Pl
ea

se
 in

pu
t a

n
in

te
ge

r.
R

et
ur

n
to

 m
ai

n
m

en
u.

Software-Testing_Final.indb 124 31-01-2018 14:56:58

(C
on

ti
nu

ed
)

Te
st

 ID
D

es
cr

ip
ti

on
/s

te
ps

Ex
pe

ct
ed

 r
es

ul
ts

A
ct

ua
l r

es
ul

ts
Te

st
 s

ta
tu

s
(P

/F
)

ad
dR

ec
ip

e8
Pr

ec
on

di
tio

n:
 R

un
 C

of
fe

eM
ak

er

E
nt

er
: 1

N
am

e:
 M

oc
ha

Pr

ic
e:

 2
0

C
of

fe
e:

 a

Pl
ea

se
 in

pu
t a

n
in

te
ge

r.
R

et
ur

n
to

 m
ai

n
m

en
u.

ad
dR

ec
ip

e9
Pr

ec
on

di
tio

n:
 R

un
 C

of
fe

eM
ak

er

E
nt

er
: 1

N
am

e:
 M

oc
ha

Pr

ic
e:

 2
0

C
of

fe
e:

 3
D

ai
ry

 c
re

am
er

: 2

C
ho

co
la

te
: a

Pl
ea

se
 in

pu
t a

n
in

te
ge

r.
R

et
ur

n
to

 m
ai

n
m

en
u.

ad
dR

ec
ip

e1
0

Pr
ec

on
di

tio
n:

 R
un

 C
of

fe
eM

ak
er

E

nt
er

: 1
N

am
e:

 H
ot

 c
ho

co
la

te

Pr
ic

e:
 2

0
C

of
fe

e:
 3

D
ai

ry
 c

re
am

er
: 2

C
ho

co
la

te
: 3

C
of

fe
e

su
cc

es
sf

ul
ly

 a
dd

ed
.

R
et

ur
n

to
 m

ai
n

m
en

u.

de
le

te
R

ec
ip

e1
Pr

ec
on

di
tio

n:
 a

dd
R

ec
ip

e1
 h

as
 r

un

su
cc

es
sf

ul
ly

E
nt

er
: 2

E
nt

er
: 3

Su
cc

es
sf

ul
ly

 d
el

et
ed

.
R

et
ur

n
to

 m
ai

n
m

en
u.

Software-Testing_Final.indb 125 31-01-2018 14:56:58

Te
st

 ID
D

es
cr

ip
ti

on
/s

te
ps

Ex
pe

ct
ed

 r
es

ul
ts

A
ct

ua
l r

es
ul

ts
Te

st
 s

ta
tu

s
(P

/F
)

de
le

te
R

ec
ip

e2
Pr

ec
on

di
tio

n:
 R

un
 C

of
fe

eM
ak

er

E
nt

er
: 2

T
he

re
 a

re
 n

o
re

ci
pe

s
to

de

le
te

.
R

et
ur

n
to

 m
ai

n
m

en
u.

ed
itR

ec
ip

e1
Pr

ec
on

di
tio

n:
 a

dd
R

ec
ip

e1
 h

as
 r

un

su
cc

es
sf

ul
ly

E
nt

er
: 3

N

am
e:

 C
of

fe
e

Pr
ic

e:
 1

0
C

of
fe

e:
 3

D
ai

ry
 c

re
am

er
: 1

C
ho

co
la

te
: 0

C
of

fe
e

su
cc

es
sf

ul
ly

 e
di

te
d.

R

et
ur

n
to

 m
ai

n
m

en
u.

ed
itR

ec
ip

e2
Pr

ec
on

di
tio

n:
 a

dd
R

ec
ip

e1
 h

as
 r

un

su
cc

es
sf

ul
ly

E
nt

er
: 3

N

am
e:

 C
of

fe
e

Pr
ic

e:
 1

0
C

of
fe

e:
 5

D
ai

ry
 c

re
am

er
: 4

C
ho

co
la

te
: 0

C
of

fe
e

su
cc

es
sf

ul
ly

 e
di

te
d.

R

et
ur

n
to

 m
ai

n
m

en
u.

ed
itR

ec
ip

e3
Pr

ec
on

di
tio

n:
 a

dd
R

ec
ip

e1
 h

as
 r

un

su
cc

es
sf

ul
ly

E
nt

er
: 3

N

am
e:

 M
oc

ha

Pr
ic

e:
 2

0

M
oc

ha
 c

ou
ld

 n
ot

 b
e

ad
de

d.

Pr
ic

e
ca

n
no

t b
e

ne
ga

tiv
e.

R
E

V
IE

W
 Q

U
E

ST
IO

N
S

Software-Testing_Final.indb 126 31-01-2018 14:56:58

Black-Box (or Functional) Testing Techniques • 127

REVIEW QUESTIONS

1.	 Perform the following:

a.	 Write a program to find the largest number.

b.	 Design a test case for program at 2(a) using a decision table.

c.	 Design equivalence class test cases.

2.	 Explain any five symbols used in the cause-effect graphing technique?

3.	 How do you measure:

a.	 Test effectiveness?

b.	 Test efficiency?	

4.	 Write a short paragraph:

a.	 Equivalence testing.

5.	 Explain the significance of boundary value analysis. What is the purpose
of worst case testing?

6.	 Describe cause-effect graphing technique with the help of an example.

7.	 a.  �Discuss different types of equivalence class tests cases.

b.	 �Consider a program to classify a triangle. Its input is a triple of the
integers (day x, y, z) and date types or input parameters ensure that
they will be integers greater than zero and less than or equal to 200.
The program output may be any of the following words: scalene,
isosceles, equilateral, right angle triangle, not a triangle. Design the
equivalence class test cases.

8.	 How can we measure and evaluate test effectiveness? Explain with the
help of 11 step S/W testing process.	

9.	 What is the difference between:

Equivalence partitioning and boundary value analysis methods?

	 10.	 Consider the previous date function and design test cases using the
following techniques:

	 a.	 Boundary value analysis.

	 b.	 Equivalence class partitioning.

	 The function takes current date as an input and returns the previous
date of the day as the output.

Software-Testing_Final.indb 127 31-01-2018 14:56:58

128 • Software Testing

		 All variables have integer values subject to conditions as follows:

		 C1: 1 ≤ month ≤ 2

		 C2: 1 ≤ day ≤ 31

		 C3: 1920 ≤ year ≤ 2000.	

	 11.	 Compare the single/multiple fault assumption theory with boundary
value and equivalence class testing.	

	 12.	 Explain the cause-effect graphing technique in detail. Why is it different
from other functional testing techniques?	

	 13.	 Differentiate between positive and negative functional testing.	

	 14.	 What is domain testing? Illustrate through a suitable example.

	 15.	 a. �“Software testing is an incremental process.” Justify the statement.

b.	� What do we mean by functional analysis? Discuss in brief any method
to perform functional analysis.

c.	 Consider a program to determine whether a number is “odd” or
“even” and print the message “Number is Even” or “Number is Odd.”
The number may be any valid integer. Design boundary value and
equivalence class test cases.

	 16	 a.	� Consider a program that calculates the roots of a quadratic equation
with a, b, and c in range [1, 100]. Design test cases using boundary
value and robustness testing.

b.	 What is decision table testing?	

	 17.	 Write a short paragraph on cause-effect graphing.

	 18.	 Discuss any two model-based black-box testing approaches?

	 19.	 A program computes the grade of each student based on the average
of marks obtained by them in physics, chemistry, and math. Maximum
marks in each subject is 60. Grades are awarded as follows:

Marks Range Grade

60 A+
59–60 A
49–40 B
39–30 C
29–30 D
19–0 F

Software-Testing_Final.indb 128 31-01-2018 14:56:58

Black-Box (or Functional) Testing Techniques • 129

		 Design robust test cases and identify equivalence class test cases for
output and input domains for this problem.	

	 20.	 What is the difference between weak normal and strong normal
equivalence class testing?

	 21.	 Consider a program for the determination of previous date. Its input is a
triple of day, month, and year with the values in the range:

	 	 1 ≤ month ≤ 12

	 	 1 ≤ day ≤ 31

	 	 1900 ≤ year ≤ 2025

		 The possible outputs are “Previous date” and “Invalid date.” Design a
decision table and equivalence classes for input domain.

	 22.	 Consider a program given below for the selection of the largest of
numbers.

main ()
 {
float A, B, C;
printf (“Enter 3 values:”);
scanf (“%d%d%d”, &A, &B, &C);
printf (“Largest value is”);
if (A > B)
 {
 if (A > C)
 printf (“%d\n”, A);
 else
 printf (“%d\n”, C);
 }
 else
 {
 if (C > B)
 printf (“%d”, C);
 else
 printf (“%f”, B);
 }
}

Software-Testing_Final.indb 129 31-01-2018 14:56:58

130 • Software Testing

a.	 �Design the set of test cases using BVA technique and equivalence
class testing technique.

b.	 Select a set of test cases that will provide 100% statement coverage.

c.	 Develop a decision table for this program.

23.	Consider the above program and show that why is it practically impossible
to do exhaustive testing?	

24.	a. �Consider the following point-based evaluation system for a trainee
salesman of an organization:

Points earned Management action

0–20 Thank you
21–40 Extend probation
41–60 Confirmation
61–80 Promotion
81–100 Promotion with a letter of recommendation

	 Generate the test cases using equivalence class testing.

b.	 Explain functional testing.

25.	Design test cases using the functional testing taking any example
program? Explain how and why complete testing is not possible by
highlighting some cases of the example given.

26.	Let us consider an example of grading the students in an academic
institution. The grading is done according to the following rules:

Marks obtained Grade

80–100 Distinction
60–79 First division
50–59 Second division
40–49 Third division
0–39 Fail

	 Generate test cases using the equivalence class testing technique.

Software-Testing_Final.indb 130 31-01-2018 14:56:58

Black-Box (or Functional) Testing Techniques • 131

27.	Consider the following point-based evaluation system for a salesman of
an organization.

Points earned Grade Management action

80–100 A+ Raise of $10,000
75–80 A– Raise of $5,000
70–75 A Raise of $3000
65–70 B+ Raise of $1000
60–65 B No increment
50–60 C Warning

	 Generate the test cases using equivalence class testing.

28.	Consider a program for the determination of previous date. Its input is a
triple of day, year, month with values in range:

	 1 ≤ month ≤ 12

	 1 ≤ day ≤ 31

	 1912 ≤ year ≤ 2020

	 Design a decision table for the given scenario.

29.	Consider the program for the determination of next date in a calender.
Its input is a triple of day, month, and year with the following range:

	 1 ≤ month ≤ 12

	 1 ≤ day ≤ 31

	 1900 ≤ year ≤ 2025

	 The possible outputs would be next date or invalid date. Design boundary
value, robust, and worst test cases for this program.	

30.	a. � Explain cause-effect graphing technique in detail. Why is it different
from other functional techniques?

b.	� Design test cases using functional testing taking any example program.
Explain how and why complete testing is not possible by highlighting
some cases of the example given.

Software-Testing_Final.indb 131 31-01-2018 14:56:58

132 • Software Testing

31.	Consider an example of grading a student in a university. The grading is
done as below:

Average marks Grade

90–100 A+
75–89 A
60–74 B
50–59 C

Below 50 Fail

	 The marks of any three subjects are considered for the calculation of
average marks. Scholarships of $1000 and $500 are given to students
securing more than 90% and 85% marks, respectively. Develop a
decision table, cause effect graph, and generate test cases for the above
scenario.

Software-Testing_Final.indb 132 31-01-2018 14:56:58

C H A P T E R4
Inside this Chapter:

	 4.0.	� Introduction to White-Box Testing or Structural Testing or
Clear-Box or Glass-Box or Open-Box Testing

	 4.1.	 Static Versus Dynamic White-Box Testing

	 4.2.	 Dynamic White-Box Testing Techniques

	 4.3.	� Mutation Testing Versus Error Seeding—Differences in Tabular
Form

	 4.4.	� Comparison of Black-Box and White-Box Testing in Tabular
Form

	 4.5.	 Practical Challenges in White-Box Testing

	 4.6.	 Comparison on Various White-Box Testing Techniques

	 4.7.	 Advantages of White-Box Testing

White-Box (or Structural)
Testing Techniques

4.0. � INTRODUCTION TO WHITE-BOX TESTING
OR STRUCTURAL TESTING OR CLEAR-BOX OR
GLASS-BOX OR OPEN-BOX TESTING

White-box testing is a way of testing the external functionality of the code
by examining and testing the program code that realizes the external func-
tionality. It is a methodology to design the test cases that uses the control

Software-Testing_Final.indb 133 31-01-2018 14:56:58

134 • Software Testing

structure of the application to design test cases. White-box testing is used to
test the program code, code structure, and the internal design flow.

4.1.  STATIC VERSUS DYNAMIC WHITE-BOX TESTING

A number of defects get amplified because of incorrect translation of
requirements and design into program code. We shall now study different
techniques of white-box testing. As shown in Figure 4.1, white-box texting is
classified as static and dynamic.

FIGURE 4.1  Classification of White-Box Testing.

As already discussed in Chapter 2, static testing is a type of testing in
which the program source code is tested without running it (not the binaries
or executable). We only need to examine and review the code. It means that
we need not execute the code. We need to find out whether

�� The code works according to the functional requirements.
�� The code has been written in accordance with the design developed ear-

lier in the project life cycle.
�� The code for any functionality has been missed.
�� The code handles errors properly.

Software-Testing_Final.indb 134 31-01-2018 14:57:00

White-Box (or Structural) Testing Techniques • 135

Static testing can be done by humans or with the help of specialized
tools. So, static white-box testing is the process of carefully and methodically
reviewing the software design, architecture, or code for bugs without execut-
ing it. It is sometimes referred to as structural analysis [PATT01].

We next discuss some of the dynamic white-box testing techniques one
by one.

4.2.  DYNAMIC WHITE-BOX TESTING TECHNIQUES

In dynamic testing, we test a running program. So, now binaries and
executables are desired. We try to test the internal logic of the program now.
It entails running the actual product against some pre-designed test cases to
exercise as much of the code as possible.

4.2.1. U nit/Code Functional Testing

It is the process of testing in which the developer performs some quick
checks prior to subjecting the code to more extensive code coverage testing
or code complexity testing. It can be performed in many ways:

1.	 At the initial stages, the developer or tester can perform certain tests
based on the input variables and the corresponding expected output
variables. This can be a quick test. If we repeat these tests for multiple
values of input variables then the confidence level of the developer to go
to the next level increases.

2.	 For complex modules, the tester can insert some print statements
in between to check whether the program control passes through all
statements and loops. It is important to remove the intermediate print
statements after the defects are fixed.

3.	 Another method is to run the product under a debugger or an integrated
development environment (IDE). These tools involve single stepping of
instructions and setting break points at any function or instruction.

All of these initial tests actually fall under “debugging” category rather
than under “testing” category of activities. We put them under “white-box
testing” head as all are related to the knowledge of code structure.

Software-Testing_Final.indb 135 31-01-2018 14:57:00

136 • Software Testing

4.2.2.  Code Coverage Testing

Code coverage testing involves designing and executing test cases and find-
ing out the percentage of code that is covered by testing. The percentage of
code covered by a test is found by adopting a technique called the instru-
mentation of code. These tools rebuild the code, do product linking with a
set of libraries provided by the tool, monitor the portions of code covered,
and report on the portions of the code that are covered frequently, so that
the critical or most used portions of code can be identified. We will next dis-
cuss some basic testing techniques based on code coverage.

4.2.2.1. S tatement Coverage

In most of the programming languages, the program construct may be a
sequential control flow, a two-way decision statement like if-then-else, a
multi-way decision statement like switch, or even loops like while, do, repeat
until and for.

Statement coverage refers to writing test cases that execute each of the
program statements. We assume that the more the code is covered, the bet-
ter the testing of the functionality.

For a set of sequential statements (i.e., with no conditional branches),
test cases can be designed to run through from top to bottom. However, this
may not always be true in two cases:

1.	 If there are asynchronous exceptions in the code, like divide by zero,
then even if we start a test case at the beginning of a section, the test case
may not cover all the statements in that section. Thus, even in the case of
sequential statements, coverage for all statements may not be achieved.

2.	 A section of code may be entered from multiple points.

In case of an if-then-else statement, if we want to cover all the state-
ments then we should also cover the “then” and “else” parts of the if state-
ment. This means that we should have, for each if-then-else, at least one test
case to test the “then” part and at least one test case to test the “else” part.

The multi-way, switch statement can be reduced to multiple two-way if
statements. Thus, to cover all possible switch cases, there would be multiple
test cases.

Software-Testing_Final.indb 136 31-01-2018 14:57:00

White-Box (or Structural) Testing Techniques • 137

A good percentage of the defects in programs come about because of
loops that do not function properly. More often, loops fail in what are called
“boundary conditions.” So, we must have test cases that

1.	 Skip the loop completely so that the situation of the termination condition
being true before starting the loop is tested.

2.	 Check the loop for n = 1.

3.	 Try covering the loop at the boundary values of n, i.e., just below n and
just above n.

The statement coverage for a program, which is an indication of the per-
centage of statements actually executed in a set of tests, can be calculated
as follows:

Statement Coverage �= f
Total Statements Exercised

Total Number of Executable Statements in Programg
	 × 100

For example, if the total number of statements exercised = 08
Total number of executable statements in program = 10

∴	 Statement coverage = 08
10

 × 100 = 80%

Please note from the above discussion that as the type of statement pro-
gresses from a simple sequential statement to if-then-else and through loops,
the number of test cases required to achieve statement coverage increases. As
we have already seen, exhaustive testing (100%) is not possible, so exhaus-
tive coverage of all statements in a program will be impossible for practical
purposes.

Even if we get a high level of the statement coverage, it does not mean
that the program is defect free.

Consider a program that implements wrong requirements and, if such
a code is fully tested with say, 100% coverage, it is still a wrong program.
Hence 100% code coverage does not mean anything. Consider another
example.

Software-Testing_Final.indb 137 31-01-2018 14:57:00

138 • Software Testing

 i = 0 ;
if (code = = “y”)

{
statement –1 ;
statement–2 ;
:
:
statement – n ;

}
else

result = {marks/ i} * 100 ;

In this program, when we test with code = “y,” we will get 80% code
coverage. But if the data distribution in the real world is such that 90% of the
time the value of code is not = “y,” then the program will fail 90% of the time
because of the exception-divide by zero. Thus, even with a code coverage of
80%, we are left with a defect that hits the users 90% of the time. The path
coverage technique, discussed next, overcomes this problem.

4.2.2.2.  Path Coverage

In the path coverage technique, we split a program into a number of distinct
paths. A program or a part of a program can start from the beginning and
take any of the paths to its completion. The path coverage of a program may
be calculated based on the following formula:

Path Coverage = f
Total Path Exercised

Total Number of paths in Program g × 100

For example, if the total path exercised = 07

Total number of paths in program = 10

∴	 Path coverage = 07
10

 × 100 = 70%

Consider the following flow graph in Figure 4.2.

There are different paths in this particular flow graph.

Software-Testing_Final.indb 138 31-01-2018 14:57:00

White-Box (or Structural) Testing Techniques • 139

FIGURE 4.2  Flow Graph Example.

Some of the paths are:

Path – 1:	 1 → 2 → 6
Path – 2:	 1 → 3 → 5 → 6
Path – 3:	 1 → 3 → 4 → 5 → 6
Path – 4:	 1 → 3 → 4 → 2 → 6

Regardless of the number of statements in each of these paths, if we can
execute these paths, then we would have covered most of the typical sce-
narios.

Path coverage provides a stronger condition of coverage than statement
coverage as it relates to the various logical paths in the program rather than
just program statements.

4.2.2.3.  Condition Coverage

In the above example, even if we have covered all the paths possible, it does
not mean that the program is fully tested. Path testing is not sufficient as it
does not exercise each part of the Boolean expressions, relational expres-
sions, and so on. This technique of condition coverage or predicate monitors
whether every operand in a complex logical expression has taken on every
TRUE/FALSE value. Obviously, this will mean more test cases and the num-
ber of test cases will rise exponentially with the number of conditions and
Boolean expressions. For example, in if-then-else, there are 22 or 4 possible

Software-Testing_Final.indb 139 31-01-2018 14:57:01

140 • Software Testing

true/false conditions. The condition coverage which indicates the percent-
age of conditions covered by a set of test cases is defined by the formula:

Condition Coverage = f
Total Decisions Exercised

Total Number of Decisions in Programg × 100

Please note that this technique of condition coverage is much stronger
criteria than path coverage, which in turn is much stronger criteria than
statement coverage.

4.2.2.4. F unction Coverage

In this white-box testing technique, we try to identify how many program
functions are covered by test cases. So, while providing function coverage,
test cases can be written so as to exercise each of different functions in the
code.
The following are the advantages of this technique:

1.	 Functions (like functions in C) are easier to identify in a program and,
hence, it is easier to write test cases to provide function coverage.

2.	 Because functions are at a higher level of abstraction than code, it is
easier to achieve 100% function coverage.

3.	 It is easier to prioritize the functions for testing.

4.	 Function coverage provides a way of testing traceability, that is, tracing
requirements through design, coding, and testing phases.

5.	 Function coverage provides a natural transition to black-box testing.

Function coverage can help in improving the performance as well as
the quality of the product. For example, if in a networking software, we find
that the function that assembles and disassembles the data packets is being
used most often, it is appropriate to spend extra effort in improving the qual-
ity and performance of that function. Thus, function coverage can help in
improving the performance as well as the quality of the product.

Better code coverage is the result of better code flow understanding and
writing effective test cases. Code coverage up to 40–50% is usually achiev-
able. Code coverage of more than 80% requires an enormous amount of
effort and understanding of the code.

The multiple code coverage techniques discussed so far are not mutu-
ally exclusive. They supplement and augment one another. While statement
coverage can provide a basic comfort factor, path, decision, and function
coverage provide more confidence by exercising various logical paths and
functions.

Software-Testing_Final.indb 140 31-01-2018 14:57:01

White-Box (or Structural) Testing Techniques • 141

4.2.3.  Code Complexity Testing

Two questions that come to mind are:

1.	 Which of the paths are independent? If two paths are not independent,
then we may be able to minimize the number of tests.

2.	 Is there any limit to the number of tests that must be run to ensure that
all the statements have been executed at least once?

The answer to the above questions is a metric that quantifies the com-
plexity of a program and is known as cyclomatic complexity. It is also known
as structural complexity because it gives the internal view of the code. It is
a number which provides us with an upper bound for the number of tests
that must be conducted to ensure that all statements have been executed at
least once.

4.2.3.1. � Cyclomatic Complexity, Its Properties and Its Meaning
in Tabular Form

McCabe IQ covers about 146 different counts and measures. These met-
rices are grouped according to six main “collections” each of which provides
a different level of granularity and information about the code being ana-
lyzed. The collections are given below:

i.	 McCabe metrics based on cyclomatic complexity, V(G).

ii.	 Execution coverage metrics based on any of branch, path, or Boolean
coverage.

iii.	 Code grammar metrics based around line counts and code structure
counts such as nesting.

iv.	 OO metrics based on the work of Chidamber and Kemerer.

v.	 Derived metrics based on abstract concepts such as understability,
maintainability, comprehension, and testability.

vi.	 Custom metrics imported from third-party software/systems, e.g.,
defect count.

McCabe IQ provides for about 100 individual metrics at the method,
procedure, function, control, and section/paragraph level. Also, there are 40
metrices at the class/file and program level.

Software-Testing_Final.indb 141 31-01-2018 14:57:01

142 • Software Testing

Categories of Metrics

There are three categories of metrics:

1.	 McCabe metrics

2.	 OO metrics

3.	 Grammar metrics

Please remember that when collecting metrics, we rely upon subordinates
who need to “buy into” the metrics program. Hence, it is important to only
collect what you intend to use.

We should keep in mind, the Hawthorne Effect which states that when
you collect metrics on people, the people being measured will change their
behavior. Either of these practices will destroy the efficiency of any metrics
program.

The three metrics categories are explained below.

I.  McCabe metrics

a.	 Cyclomatic complexity, V(G): It is the measure of the amount of
logic in a code module of 3rd and 4th generation languages. If V(G) is
excessively high then it leads to impenetrable code, i.e., a code that is
at a higher risk due to difficulty in testing. The threshold value is 10.
When V(G) > 10, then the likelihood of code being unreliable is much
higher. Please remember that a high V(G) shows a decreased quality
in the code resulting in higher defects that become costly to fix.

b.	 Essential complexity: It is a measure of the degree to which a code
module contains unstructured constructs. If the essential complexity
is excessively high, it leads to impenetrable code, i.e., a code that is
at higher risk due to difficulty in testing. Furthermore, the higher
value will lead to increased cost due to the need to refactor, or worse,
reengineer the code. The threshold value is 4. When the essential
complexity is more than 4 then the likelihood of the code being
unmaintainable is much higher. Please note that a high essential
complexity indicates increased maintenance costs with decreased
code quality. Some organizations have used the essential density
metric (EDM) defined as:

EDM = Essential Complexity
Cyclomatic Complexity

Software-Testing_Final.indb 142 31-01-2018 14:57:01

White-Box (or Structural) Testing Techniques • 143

c.	 Integration complexity: It is a measure of the interaction between
the modules of code within a program. Say, S0 and S1 are two
derivatives of this complexity.

where	 S0  — � Provides an overall measure of size and complexity
of a program’s design. It will not reflect the inter-
nal calculations of each module. It is the sum of all
the integration complexity in a program (∑iv(g)).

and	 S1  =  (S0 – Number of methods + 1).

This is primarily used to determine the number of tests for the
“some test” that is designed to ensure that the application would exe-
cute without issues in module interaction.

d.	 Cyclomatic density (CD): It is a measure of the amount of logic in
the code. It is expressed as follows:

CD = Decisions Made
Lines of Executable Code

By eliminating the size factor, this metric reduces complexity
strictly to modules that have unusually dense decision logic. Please
note that the higher the CD value, the denser the logic.

The CD metric should be in the range of 0.14 to 0.42 for the code to
be simple and comprehensible.

e.	 Pathological complexity: It represents an extremely unstructured
code which shows a poor design and hence a suggestion for code’s
reengineering. A value greater than one indicates poor coding
practices like branching into a loop or into a decision. Please note
that these conditions are not easy to replicate with modern post 3GL
languages.

f.	 Branch coverage: It is a measure of how many branches or decisions
in a module have been executed during testing.

If the branch coverage is <95% for new code or 75% for code under
maintenance then the test scripts require review and enhancement.

g.	 Basis path coverage: A measure of how many of the basis (cyclomatic,
V(G)) paths in a module have been executed. Path coverage is the
most fundamental of McCabe design. It indicates how much logic
in the code is covered or not covered. This technique requires more
thorough testing than branch coverage.

Software-Testing_Final.indb 143 31-01-2018 14:57:01

144 • Software Testing

If the path coverage is < 90% for new code or 70% for code under
maintenance then the test scripts require review and enhancement.

h.	 Boolean coverage: A technique used to establish that each condition
within a decision is shown by execution to independently and correctly
affect the outcome of the decision.

The major application of this technique is in safety critical sys-
tems and projects.

i.	 Combining McCabe metrics: Cyclomatic complexity is the basic
indicator for determining the complexity of logic in a unit of code. It
can be combined with other metrics.

1. Code review candidate

If V(G) > 10 and essential complexity/essential density exceeds 4, then the
unit needs a review.

2. Code refactoring

If V(G) > 10 and the condition

V(G) – EV(g) ≤ V(g) is true

Then, the code is a candidate for refactoring.

3. Inadequate comment content

If the graph between V(G) against comment % (in terms of LOC) does not
show a linear increase then the comment content need to be reviewed.

4. Test coverage

If the graph between V(G) against path coverage does not show a linear
increase then the test scripts need to be reviewed.

II. OO Metrics

a.	 Average V(G) for a class: If average V(G) > 10 then this metric
indicates a high level of logic in the methods of the class which in turn
indicates a possible dilution of the original object model. If the average
is high, then the class should be reviewed for possible refactoring.

b.	 Average essential complexity for a class: If the average is greater
than one then it may indicate a dilution of the original object model.

Software-Testing_Final.indb 144 31-01-2018 14:57:01

White-Box (or Structural) Testing Techniques • 145

If the average is high, then the class should be reviewed for possible
refactoring.

c.	 Number of parents: If the number of parents for a class is greater
than one then it indicates a potentially overly complex inheritance
tree.

d.	 Response for class (RFC): RFC is the count of all methods within
a class plus the number of methods accessible to an object of this
class due to implementation. Please note that the larger the number
of methods that can be invoked in response to a message, the greater
the difficulty in comprehension and testing of the class. Also, note
that low values indicate greater specialization. If the RFC is high then
making changes to this class will be increasingly difficult due to the
extended impact to other classes (or methods).

e.	 Weighted methods for class (WMC): WMC is the count of
methods implemented in a class. It is a strong recommendation that
WMC does not exceed the value of 14. This metric is used to show
the effort required to rewrite or modify the class. The aim is to keep
this metric low.

f.	 Coupling between objects (CBO): It indicates the number of non-
inherited classes this class depends on. It shows the degree to which
this class can be reused.

For dynamic link libraries (DLLs) this measure is high as the soft-
ware is deployed as a complete entity.

For executables (.exe), it is low as here reuse is to be encouraged.
Please remember this point:

Strong coupling increases the difficulty in comprehending
and testing a class. The objective is to keep it less than 6.

g.	 Class hierarchy level: It shows the degree of inheritance used. If it
is greater than 6, the increased depth increases the testing effort. If it
is less than 2 then the value shows a poor exploitation of OO. So, one
should aim for 2 and 3 levels only in our OO-code.

h.	 Number of methods (n): If number of methods (n) > 40 then it
shows that the class has too much functionality. So, it can be split into
several smaller classes. Please note that ideally one should aim for no
more than 20 methods in a class.

Software-Testing_Final.indb 145 31-01-2018 14:57:01

146 • Software Testing

i.	 Lack of cohesion between methods (LOCM): It is a metric used
to measure the dissimilarity of methods on a class by an instance
variable or attribute.

What is to be done?

The percentages of methods in a class using an attribute are averaged
and subtracted from 100. This measure is expressed in percentage.
Two cases arise:

	 i.	 If % is low, it means simplicity and high reusability.

	 ii.	 If % is high, it means a class is a candidate for refactoring and
could be split into two or more subclasses with low cohesion.

j.	 Combined OO metrics: V(G) can also be used to evaluate OO
systems. It is used with OO metrics to find out the suitable candidates
for refactoring.

By refactoring, we mean making a small change to the code which
improves its design without changing its semantics.

Rules for refactoring:

i.	 If avg. V(G) > 10 (high) and the number of methods (n) is < 10
(low) then the class requires refactoring.

ii.	 If avg. V(G) is low and the lack of cohesion is high then the class is a
suitable candidate for refactoring into two or more classes.

iii.	 If avg. V(G) is high and CBO is high then the class is a candidate
for refactoring.

iv.	 If CBO is high and lack of cohesion is high then the class is a
candidate for refactoring.

III.  Grammar Metrics

a.	 Line count: It is a size indicator. It is used in—

i.	 Estimation techniques like COCOMO2.

ii.	 Measuring defects = Number of defects
1000 LOC

b.	 Nesting levels: Nesting of IF statements, switch, and loop constructs
can indicate unnecessarily complex conditions which makes future

Software-Testing_Final.indb 146 31-01-2018 14:57:02

White-Box (or Structural) Testing Techniques • 147

modifications quite difficult. So, refactoring may be done. Typical
industry standards are 4, 2, and 2 for IF, switch, and loop constructs
respectively.

c.	 Counts of decision types: It is used to show single outcome (IF
and loop) and multiple outcome decision statements. When used
in conjunction with V(G), then its value can determine if a method/
procedure/control/section is over complex and, hence, a suitable
candidate for refactoring.

d.	 Maximum number of predicates: This measure shows overly
complex decision statements which are candidates for refactoring.

e.	 Comment lines: It indicates the level of comments in a unit of code.
It shows:

Documentation Level (within the code) = Comment Lines
LOC

	 = Comment Lines
V(G)

Historically, a ratio of 15–25% of comments is adequate to enable any
user to understand the code.

4.2.3.2. � Cyclomatic Complexity, Its Properties and Its Meaning
in Tabular Form

McCabe’s cyclomatic metric, V(G) of a graph G with n vertices and e edges
is given by the formula:

V(G) = e – n + 2

Given a program, we associate it with a directed graph that has unique
entry and exit nodes. Each node in the graph, G, corresponds to a block of
statements in the program where flow is sequential and the arcs correspond
to branches taken in the program. This graph is known as a flow graph.

The cyclomatic complexity, V(G) provides us two things:

1.	 To find the number of independent paths through the program.

2.	 To provide an upper bound for the number of test cases that must
be executed in order to test the program thoroughly. The complexity
measure is defined in terms of independent paths. It is defined as

Software-Testing_Final.indb 147 31-01-2018 14:57:02

148 • Software Testing

any path through the program that introduces at least one new set of
processing statements or a new condition. See the following steps:

Step 1. Construction of flow graph from the source code or flow charts.
Step 2. Identification of independent paths.
Step 3. Computation of cyclomatic complexity.
Step 4. Test cases are designed.

Using the flow graph, an independent path can be defined as a path in
the flow graph that has at least one edge that has not been traversed before
in other paths. A set of independent paths that cover all the edges is a basis
set. Once the basis set is formed, test cases should be written to execute all
the paths in the basis set.

Properties of Cyclomatic Complexity

The following are the properties of cyclomatic complexity represented as
V(G):

1.	 V(G) ≥ 1.

2.	 V(G) is the maximum number of independent paths in graph, G.

3.	 Inserting and deleting functional statements to G does not
affect V(G).

4.	 G has only one path if and only if V(G) = 1. Consider this
example Here, V(G) = 1 and that graph, G, has only one path.

5.	 Inserting a new row in G, increases V(G) by unity.

Meaning of V(G) in Tabular Form

For small programs cyclomatic complexity can be calculated manually, but
automated tools are essential as several thousand of lines of code are possible
in each program in a project. It will be very difficult to manually create flow
graphs for large programs. There are several tools that are available in the
market which can compute cyclomatic complexity. Note that calculating the
complexity of a module after it has been built and tested may be too late. It
may not be possible to redesign a complex module after it has been tested.
Thus, some basic complexity checks must be performed on the modules
before embarking upon the testing (or even coding) phase. Based on the
complexity number that emerges from using the tool, one can conclude what
actions need to be taken for complexity measure using the table given below:

Software-Testing_Final.indb 148 31-01-2018 14:57:03

White-Box (or Structural) Testing Techniques • 149

TABLE 4.1  What V(G) Means?

Complexity What it means?

1–10 Well-written code, testability is high, cost/effort to maintain is
low.

10–20 Moderately complex, testability is medium, cost/effort to
maintain is medium.

20–40 Very complex, testability is low, cost/effort to maintain is high.
> 40 Not testable, any amount of money/effort to maintain may not

be enough.

4.2.3.3. B asis Path Testing with Solved Examples

Basis path testing helps a tester to compute logical complexity measure,
V(G), of the code. This value of V(G), defines the maximum number of test
cases to be designed by identifying basis set of execution paths to ensure that
all statements are executed at least once. See the following steps:

1.	 Construct the flow graph from the source code or flow charts.

2.	 Identify independent paths.

3.	 Calculate cyclomatic complexity, V(G).

4.	 Design the test cases.

A program is represented in the form of a flow graph. A flow graph
consists of nodes and edges. Using the flow graph, an independent path can
be defined as a path in the flow graph that has at least one edge that has not
been traversed before in other paths. A set of independent paths that cover
all edges is a basis set. Once that basis set is formed, test cases should be
written to execute all the paths in the basis set.

Flow Graph Testing

The control flow of a program can be represented using a graphical rep-
resentation known as a “flow graph.” The flow graph is a directed graph
in which nodes are either entire statements or fragments of a statement.
Edges represent the flow of control. If u and v are nodes in the program
graph, there is an edge from node u to node v if the statement (fragment)

Software-Testing_Final.indb 149 31-01-2018 14:57:03

150 • Software Testing

corresponding to node v can be executed immediately after the statement
(fragment) corresponding to node u,

i.e., .

We next show the basic notations that are used to draw a flow graph:

FIGURE 4.3  Notations for Flow Graph.

Software-Testing_Final.indb 150 31-01-2018 14:57:06

White-Box (or Structural) Testing Techniques • 151

SOLVED EXAMPLES

EXAMPLE 4.1. Consider the following code:

 void foo (float y, float a *, int n)
 {
 float x = sin (y) ;
 if (x > 0.01)
 z = tan (x) ;
 else
 z = cos (x) ;
 for (int i = 0 ; i < x ; + + i) {
 a[i] = a[i] * z ;
 Cout < < a [i] ;
 }
Draw its flow graph, find its cyclomatic complexity, V(G), and the independ-
ent paths.

SOLUTION. First, we try to number the nodes, as follows:

1.  void foo (float y, float a *, int n)
{
 float x = sin (y) ;
 if (x > 0.01)

2.  z = tan (x) ;
else

3.  z = cos (x) ;

4.  for (int i = 0; i < n; ++ i)

5.  {

6.  a[i] = a[i] * z ;
cout < < a [i] ‘
}

7. 
cout < < i ;

}

Software-Testing_Final.indb 151 31-01-2018 14:57:06

152 • Software Testing

So, its flow graph is shown in Figure 4.4. Next, we try to find V(G) by
three methods:

FIGURE 4.4  Flow Graph for Example 4.1.

a.	 	 V(G) = e – n + 2	 (e – edges, n – nodes)

	 = 8 – 7 + 2 = 3
b.	 	 V(G) = P + 1	 (P- predicate nodes without degree = 2)

	 	 = 2 + 1 = 3.	 (Nodes 1 and 5 are predicate nodes)

c.	 	 V(G) = Number of enclosed regions + 1

	 = 2 + 1 = 3
∴ V(G) = 3 and is same by all the three methods.
By V(G) = 3 we mean that it is a well written code, its testability is high, and
cost/effort to maintain is low.

Also, it means that there are 3 paths in this program which are indepen-
dent paths and they form a basis-set. These paths are given below:

	 Path 1: 1 – 2 – 4 – 5 – 7
	 Path 2: 1 – 3 – 4 – 5 – 7
	 Path 3: 1 – 3 – 4 – 5 – 6 – 7

Another basis-set can also be formed:

	 Path 1: 1 – 2 – 4 – 5 – 7
	 Path 2: 1 – 3 – 4 – 5 – 7
	 Path 3: 1 – 2 – 4 – 5 – 6 – 7

Software-Testing_Final.indb 152 31-01-2018 14:57:08

White-Box (or Structural) Testing Techniques • 153

This means that we must execute these paths at least once in order to
test the program thoroughly. So, test cases can be designed.

EXAMPLE 4.2. Consider the following program that inputs the marks of five
subjects of 40 students and outputs average marks and the pass/fail message.

 # include <stdio.h>
a.	 (1)   main () {

(2)   int num_student, marks, subject, total;
b.	 (3)   float average ;

(4)   num_student = 1;
e.	 (5)   while (num_student < = 40) {
f.	 (6)   total = 0 ;

(7)   subject = 1;
(8)   while (subject < = 5) }
(9)   Scanf (“Enter marks: % d”, & marks);
(10) total = total + marks ;
(11) subject ++;
(12) }

g.	 (13) average = total/5 ;
(14) if (average > = 50)

h.	 (15) �printf (“Pass... Average marks = % f”,
average);

(16) else
i.	 (17) �print (“FAIL ... Average marks are % f”,

average);
j.	 (18) num_student ++;

(19) }
c.	 (20) printf (“end of program”);
d.	 (21) }

Draw its flow graph and compute its V(G). Also identify the independent
paths.

SOLUTION. The process of constructing the flow graph starts with dividing
the program into parts where flow of control has a single entry and exit point.
In this program, line numbers 2 to 4 are grouped as one node (marked as
“a”) only. This is because it consists of declaration and initialization of varia-

h
h

h
h

h
h
h

h

h

h

h

Software-Testing_Final.indb 153 31-01-2018 14:57:08

154 • Software Testing

bles. The second part comprises of a while loop-outer one, from lines 5 to 19
and the third part is a single printf statement at line number 20.

Note that the second part is again divided into four parts—statements
of lines 6 and 7, lines 8 to 12, line 13, and lines 14–17, i.e., if-then-else
structure using the flow graph
notation, we get this flow graph
in Figure 4.5.
Here, “∗” indicates that the node
is a predicate node, i.e., it has an
outdegree of 2.

The statements corre-
sponding to various nodes are
given below:

Nodes
Statement
Numbers

a 2–4
b 5
e 6–7
f 8
z 9–12
g 13–14
h 15
i 17
j 18
c 19
d 20

Next, we compute its cyclomatic complexity, V(G):

a.	 	V(G) = e – n + 2

	 = 14 – 11 + 2 = 3 + 2 = 5
b.	 	V(G) = Number of predicate nodes (P) + 1

	 = 4 + 1 = 5
[Nodes b, f, g, and c are predicate nodes with two outgoing edges]

FIGURE 4.5  Flow Graph for Example 4.2.

Software-Testing_Final.indb 154 31-01-2018 14:57:09

White-Box (or Structural) Testing Techniques • 155

c.	 	V(G) = Number of enclosed regions + 1

	 = 4 + 1 = 5
[R1 – R4 are 4 enclosed regions and 1 corresponds to one outer region]

∴ V(G) = 5 by all three methods. Next, we identify a basis-set with five paths:

	 Path 1: a – b – d – e
	 Path 2: a – b – d – f – n – b – d – e
	 Path 3: a – b – c – g – j – k – m – n – b – d – e
	 Path 4: a – b – c – g – j – l – m – n – b – d – e
	 Path 5: a – b – c – g – h – i – n – b – d – e

Each of these paths consist of at least one new edge. Please remember
that this basis set of paths is NOT unique. Finally, test cases can be designed
for the independent path execution that have been identified above. This is
to ensure that all statements are executed at least once.

EXAMPLE 4.3. (Quadratic Equation Problem). This program reads a,
b, and c as the three coefficients of a quadratic equation ax2 + bx + c = 0. It
determines the nature of the roots of this equation. Draw its flow graph and
calculate its cyclomatic complexity.

SOLUTION. First, we write its procedure:

proc roots
1 int a, b, c;
2 D = b * b – 4 * a * c;
3 if (D < 0)
 4 real = –b/2 * a ;// imaginary roots
 D = – D;
 num = pow ((double) D, (double) 0.5);
 image = num/(2 * a);
5 else if (D = = 0)
 6 root 1 = –b/(2 * a)
 root 2 = root 1;
7 else if (D > 0)
 8 root 1 = (–b + sqrt (d)/2 * a)
 root 2 = (–b – sqrt(d)/2 * a)
9 end

Software-Testing_Final.indb 155 31-01-2018 14:57:09

156 • Software Testing

FIGURE 4.6  Flow Graph of Quadratic Equation Problem.

Now, we draw its flow graph as shown in Figure 4.6.

∴	 V(G) = P + 1
	 = 3 + 1 = 4	 [Node 3, 5, and 7 are predicate nodes]
	 V(G) = Number of regions + 1
	 = 3 + 1 = 4
Also,	 V(G) = e – n + 2 = 11 – 9 + 2 = 4

∴ We have 4 independent paths and they are:

Path 1: 1 – 2 – 3 – 4 – 9
Path 2: 1 – 2 – 3 – 5 – 6 – 9
Path 3: 1 – 2 – 3 – 5 – 7 – 8 – 9
Path 4: 1 – 2 – 3 – 5 – 7 – 1 – 2

So, the test cases for each of the path are as follows:

Path 1:	 test case 1
	 a, b, c: valid input
	 expected results: D < 0, imaginary roots

Path 2:	 test case 2
	 a, b, c: valid input
	 expected results: D = 0, equal roots

Software-Testing_Final.indb 156 31-01-2018 14:57:11

White-Box (or Structural) Testing Techniques • 157

Path 3:	 test case 3
	 a, b, c: valid input
	 expected results: D > 0, root 1 and root 2 are real

Path 4:	 test case 4
	 a, b, c: valid input
	 expected results: D is not > 0, read a, b, c again

EXAMPLE 4.4. (Triangle Problem): This program reads a, b, c as the three
sides of a triangle and determines whether they form an isosceles, equilat-
eral, or scalene triangle. Draw its flow graph and calculate its V(G).

SOLUTION. We draw its flow chart first.

FIGURE 4.7  Flow Chart for Example 4.4.

Software-Testing_Final.indb 157 31-01-2018 14:57:12

158 • Software Testing

FIGURE 4.8  Flow Graph for the Triangle Problem.

So, we draw its flow graph shown in Figure 4.8.
∴ Its cyclomatic complexity, V(G) by all three methods is

a.	 V(G) = e – n + 2 = 10 – 8 + 2 = 4

b.	 V(G) = P + 1 = 3 + 1 = 4	 [Nodes 2, 4, 6 are predicate nodes]

c.	 V(G) = Number of enclosed regions + 1 = 3 + 1 = 4.

∴ 4-test cases need to be designed. They are given below:

Path 1: test case 1
 a, b, c: valid input
 Expected �results: if a = b or b = c or a = c

then message ‘isosceles triangle’ is
displayed.

Path 2: test case 2
 a, b, c: valid input
 �Expected results: if a ≠ b ≠ c then message

‘scalene triangle’ is displayed.

Path 3: test case 3
 a, b, c: valid input
 �Expected results: if a = b = c then message

‘equilateral triangle’ is displayed.

Software-Testing_Final.indb 158 31-01-2018 14:57:14

White-Box (or Structural) Testing Techniques • 159

Path 4: test case 4
 �a, b, c: valid float inputs and if a > 0 and b > 0

and c > 0 Expected results: proper inputs—a, b and c
and proper results.

EXAMPLE 4.5. Consider the following code snippet to search a number
using binary search:

void search (int key, int n, int a[])
{
 int mid;
1. int bottom = 0;
2. int top = n – 1;
3. while (bottom <= top)
 {
4. mid = (top + bottom)/2;
5. if (a[mid]==key)
 {
6. printf (“\n element is found”);
7. return;
 }
 else
 {
8. if (a[mid] < key)
9. bottom = mid + 1;
 else
10. top = mid – 1;
 }
 }
11. }

a.	 Draw its flow graph

b.	 Find V(G) by all 3 methods

c.	 Derive test cases

Software-Testing_Final.indb 159 31-01-2018 14:57:14

160 • Software Testing

SOLUTION. Flow graph is shown in Figure 4.9.

FIGURE 4.9

∴	 V(G) = [Total number of enclosed regions (R1, R2, R3)
		 + 1 outer region where this graph is enclosed]
	 = 3 + 1 = 4

or	 V(G) = e – n + 2 = 13 – 11 + 2 = 2 + 2 = 4
or	� V(G) = P + 1 = 3 + 1 = 4 [Nodes 3, 5, and 8 are predicate
	 nodes with outdegree as 2]
Basis set of paths is

Path 1: 1, 2, 3, 4, 5, 6, 7, 11
Path 2: 1, 2, 3, 11
Path 3: 1, 2, 3, 4, 5, 8, 9, 3, …
Path 4: 1, 2, 3, 4, 5, 8, 10, 3, …

	 V(G) = 4
⇒  Paths are also 4 as given above.
⇒ � These 4 paths must be executed at least once in order to test this pro-

gram thoroughly.
∴  Test cases are:

Software-Testing_Final.indb 160 31-01-2018 14:57:15

Te
st

ca

se
 id

Te
st

 c
as

e

de
sc

rip
tio

n
St

ep
Ex

pe
ct

ed
 r

es
ul

ts
A

ct
ua

l
Te

st
 c

as
e

st
ud

ie
s

Te
st

 s
ta

tu
s

(P
/F

)

1.
C

he
ck

in
g

bo
tt

om

an
d

to
p

va
lu

es
 o

f
ou

r
lis

t

Se
t b

ot
to

m
 =

 0

to
p

=
n

–
1

ch

ec
k

if
bo

tt
om

<=

 to
p

by
 w

hi
le

lo

op

In
iti

al
ly

 b
ot

to
m

 <
=

to
p

is
 tr

ue
.

tr
ue

. L
is

ts
 le

ng
th

ge

ts
 r

ed
uc

ed
 a

ft
er

ev

er
y

ite
ra

tio
n

If

bo
tt

om
 >

=
to

p
is

re

ac
he

d
th

en
 r

et
ur

n
to

 m
ai

n

D
es

ig
n

2.
C

he
ck

in
g

if
m

id
dl

e
el

em
en

t o
f a

rr
ay

 is

eq
ua

l t
o

ke
y

va
lu

e

se
t m

id
 =

 (t
op

+
bo

tt
om

)/
2

th
en

co

m
pa

re
 if

 a
[m

id
]

=
ke

y

If
 a

[m
id

] =
 k

ey

va
lu

e
th

en
 p

ri
nt

m

es
sa

ge
 “

ev
en

fo

un
d”

 a
nd

 r
et

ur
n

to
 m

ai
n

D
es

ig
n

3.
If

 a
[m

id
] <

 k
ey

va

lu
e

se
t b

ot
to

m
 =

 m
id

+

1
an

d
th

en
 g

ot
o

w
hi

le

se
ar

ch
 r

ig
ht

 s
ub

lis
t

fo
r

ke
y

el
em

en
t

D
es

ig
n

4.
If

 a
[m

id
] >

 k
ey

va

lu
e

se
t t

op
 =

 m
id

 +

1
an

d
go

 b
ac

k
to

w

hi
le

-lo
op

se
ar

ch
 le

ft
 s

ub
lis

t
fo

r
ke

y
el

em
en

t
D

es
ig

n

Software-Testing_Final.indb 161 31-01-2018 14:57:15

162 • Software Testing

EXAMPLE 4.6. Consider the following
recursive code to find GCD of two num-
bers.

 GCD (x, y)
 {
0 if x = y
1 ret x;
2 else if x > y
3 GCD (x – y, y);
4 else
5 GCD (x, y – x)
6 }

Draw its flowgraph, find V(G), and basis
path set. Derive test cases also.

SOLUTION. The flowgraph for the GCD program is shown in Figure 4.10.

∴	 V(G) = Enclosed regions + 1 = 2 + 1 = 3
	 V(G) = e – n + 2 = 7 – 6 + 2 = 1 + 2 = 3
	 = P + 1 = 2 + 1 = 3	 (Nodes 1 and 3 are predicate nodes)

 Three independent paths are
1–3–4–6
1–3–5–6
1–2–6

 Three test cases are:

Test
case id

Test case
description Step Expected results

Actual
result

Test case
status

1. x = y Read 2 nos. such
that x = y

GCD = x

2. x > y Read 2 nos. such
that x > y

Call recursive
routine
GCD (x – y, y)

3. x < y Read 2 nos. such
that x < y

Call recursive
routine
GCD (x, y – x)

FIGURE 4.10

Software-Testing_Final.indb 162 31-01-2018 14:57:17

White-Box (or Structural) Testing Techniques • 163

1.	� In test case id–2, we call GCD function recursively with x = x – y and y
as it is.

2.	� In test case id–3, we call GCD function recursively with y = y – x and x
as it is.

EXAMPLE 4.7. What is a cyclomatic complexity? Find the following related
to given:

if(c1){
f1();
}else{
f2();
}
if(c2){
f3();
}else{
f4();
}

i.	 What is a cyclomatic number?

ii.	 How many test cases are required to achieve complete branch
average?

iii.	 How many test cases are required for complete path coverage?

SOLUTION.

�� Cyclomatic complexity is a software metric that provides a quantitative
measure of the logical complexity of a program.

�� Cyclomatic complexity has a foundation in graph theory and is computed
in one of the three ways:
i.	 The number of regions corresponds to the cyclomatic complexity.

ii.	 Cyclomatic complexity: E – N + 2 (E is the number of edges, and
N is number of nodes).

iii.	 Cyclomatic complexity: P + 1 (P is the number of predicate nodes).

Referring to the flow graph, the cyclomatic number is:

1.	 The flow graph has three regions.

2.	 Complexity = 8 edges – 7 nodes + 2 = 3

3.	 Complexity = 2 predicate nodes + 1 = 3 (Predicate nodes = C1, C2)

NOTES

Software-Testing_Final.indb 163 31-01-2018 14:57:17

164 • Software Testing

FIGURE 4.11

Two test cases are required for complete branch coverage and four test cases
are required for complete path coverage.

Assumptions:

c1; if(i%2==0)
f1: EVEN()
f2: ODD()
c2: if(j > 0)
f3: POSITIVE()
f4: NEGATIVE()
i.e.
if(i%2==0){
EVEN();
}else{
ODD();
}
if(j < 0){
POSITIVE();
}else{
NEGATIVE();
}

Test cases that satisfy the branch coverage criteria, i.e., <c2, f1, c2, f3> and
<c1, f2, c2, f4>.

Sr. No. Test case: Value of i, j Decision or Branch Value of predicate

1. 10, 10
c1 if (i % 2 == 0) True

c2 if (j > 0) True

2. 5, –8
c1 if (i % 2 == 0) False

c2 if (j < 0) False

Software-Testing_Final.indb 164 31-01-2018 14:57:19

White-Box (or Structural) Testing Techniques • 165

Test cases that satisfies the path coverage criteria, i.e.,
<c1, f1, c2, f3>
<c1, f2, c2, f4>
<c1, f1, c2, f4>
<c1, f2, c2, f3>

Sr.
No.

Test case: Value
of i, j Decision or Branch Value of predicate

1. 10, 10 c1 True
c2 True

2. 7, –8 c1 False
c2 False

3. 10, –8 c1 True

c2 False
4. 7, 20 c1 False

c2 True

4.2.3.4.  DD Path Testing with Solved Examples

From a given flow graph, we can easily draw another graph that is known as
a decision-to-decision (DD) path graph. Our main concentration now is on
the decision nodes only. The nodes of the flow graph are combined into a
single node if they are in sequence.

EXAMPLE 4.8. Consider the following pseudo code:

0 Premium (age, sex, married)
1 {
2 premium = 500;
3 �if ((age < 25) and (sex==male) and (not

married))
4 premium = premium + 1500;
5 else {
6 if (married or (sex==female))
7 premium = premium–200;
8 if ((age > 45) and (age < 65))
9 premium = premium – 100;
10 }
11 }

Software-Testing_Final.indb 165 31-01-2018 14:57:19

166 • Software Testing

a.	 Design its program graph b.	 Design its DD path graph

c.	 List all DD-paths

SOLUTION.

a.	 Its program graph is as follows:	 b.	 Its DD-path graph is as follows:

	

FIGURE 4.12	 FIGURE 4.13

c.	 The DD-paths are as follows:

Path–1: A–B–C–J
Path–2: A–B–D–E–G–I–J
Path–3: A–B–D–E–F–G–H–I–J
Path–4: A–B–D–E–G–H–I–J

EXAMPLE 4.9. Consider the following code snippet:

1 begin
2 float x, y, z = 0.0;
3 int count;
4 input (x, y, count);
5 do {

Nodes Lines

A 0, 1, 2
B, C, D 3, 4, 5

E 6
F 7

G, H, I 8, 9, 10
J 11

Software-Testing_Final.indb 166 31-01-2018 14:57:22

White-Box (or Structural) Testing Techniques • 167

6 if (x ≤ 0) {
7 if(y ≥ 0){
8 z = y*z + 1;
9 }
10 }
11 else {
12 z = 1/x;
13 }
14 y = x * y + z
15 count = count – 1
16 while (count > 0)
17 output (z);
18 end

Draw its data-flow graph. Find out whether paths (1, 2, 5, 6) and (6, 2, 5, 6)
are def-clear or not. Find all def-use pairs?

SOLUTION. We draw its data flow graph (DD-path graph) first.

	
FIGURE 4.14

Now, path (1, 2, 5, 6) is definition clear (def-clear) with respect to defi-
nition of x at node-1, i.e., d1(x).

So, d1(x) is live at node 6, i.e., x is being used at node-6 again. But path
(1, 2, 5, 6) is not def-clear with respect to d1(z) because of d5(z).

Nodes Lines

1 1, 2, 3, 4
2 5, 6
3 7
4 8, 9, 10
5 11, 12, 13
6 14, 15, 16
7 17, 18

where

Software-Testing_Final.indb 167 31-01-2018 14:57:23

168 • Software Testing

Now, consider path (6, 2, 5, 6). It is def-clear with respect to d6 (count).
Variables y and z are used at node 4. Please note that we can easily check for
definitions d1(y), d6(y), d1(z), and d5(z) that they are live at node 4.

What about def-use pairs?

We have 2 types of def-use pairs:

1.	 That correspond to a definition and its c-use, (dcu). (“c” stands for
computational.)

2.	 That correspond to a definition and its p-use, (dpu). (“p” stands for
predicate condition.)

Let us then compute dcu (x, 1), i.e., the set of all c-uses associated with
the definition of x at node-1. Also note that there is a c-use of x at node-5 and
a def-clear path (1, 2, 5) from node-1 to node-5. So, node-5 is included in
dcu (x, 1). Similarly, we can include node-6 also in this set. So, we get:

dcu (x, 1) = {5, 6}

What is dpu (x, 1)?

As shown in program, there is a p-use of x at node-2 with outgoing edges
(2, 3) and (2, 5). The existence of def-clear paths from node-1 to each of these
two edges is easily seen in DD-path graph. There is no other p-use of x. So,

dpu (x, 1) = {(2, 3), (2, 5)}

We can now compute for all other variables as shown below:

Variable Defined at node (n) dcu (v, n) dpu (v, n)

x 1 {5, 6} {(2, 3), (2, 5)}
y 1 {4, 6} {(3, 4), (3, 6)}
y 6 {4, 6} {(3, 4), (3, 6)}
z 1 {4, 6, 7} { }
z 4 {4, 6, 7} { }
z 5 {4, 6, 7} { }

count 1 {6} {(6, 2), (6, 7)}
count 6 {6} {(6, 2), (6, 7)}

The spots that are not def-clear are trouble spots.

Software-Testing_Final.indb 168 31-01-2018 14:57:23

White-Box (or Structural) Testing Techniques • 169

4.2.3.5. G raph Matrices Technique with Solved Examples

In graph matrix based testing, we convert our flow graph into a square matrix
with one row and one column for every node in the graph. The objective
is to trace all links of the graph at least once. The aim is again to find cyclo-
matic complexity, V(G) and, hence, the independent paths. If the size of graph
increases, it becomes difficult to do path tracing manually.

For example, Consider the	 Its graph-matrix is:
following flow graph:

	
4

3

2

1

1 2 3 4

a c

b

d

FIGURE 4.15  Flow Graph Example.	 FIGURE 4.16  Graph Matrix.

Now, consider another flow graph:	 ∴ Its graph matrix is:

	
3

2

1

1 2 3

a

c

b+e

d

FIGURE 4.17  Flow Graph Example.	 FIGURE 4.18  Graph Matrix.

Note that if there are several links between two nodes then “+” sign denotes a
parallel link.

This is, however, not very useful. So, we assign a weight to each entry
of the graph matrix. We use “1” to denote that the edge is present and “0”
to show its absence. Such a matrix is known as a connection matrix. For the
Figure above, we will have the following connection matrix:

Software-Testing_Final.indb 169 31-01-2018 14:57:30

170 • Software Testing

4

3

2

1

1 2 3 4

1 1

1

1
	
FIGURE 4.19   Connection Matrix.	 FIGURE 4.20

Now, we want to compute its V(G). For this, we draw the matrix again,
i.e., we sum each row of the above matrix. Then, we subtract 1 from each
row. We, then, add this result or column of result and add 1 to it. This gives
us V(G). For the above matrix, V(G) = 2.

EXAMPLE 4.10. Consider the following flow graph:

FIGURE 4.21

Draw its graph and connection matrix and find V(G).

SOLUTION.

First, we draw its graph matrix:	 Now, its connection matrix is:

	
FIGURE 4.22	 FIGURE 4.23

4

3

2

1

1 2 3 4

1 1

1

1

2 – 1 = 1

1 – 1 = 0

1 – 1 = 0
1 + 1 = 2 = V(G)

Software-Testing_Final.indb 170 31-01-2018 14:57:37

White-Box (or Structural) Testing Techniques • 171

Similarly, we can find two link or three link path matrices, i.e., A2, A3, ...
An – 1. These operations are easy to program and can be used as a testing tool.

4.2.3.6.  Data Flow Testing with Examples

Data flow testing uses the sequence of variable access to select paths from
a control graph. The main focus of this structural or white-box testing tech-
nique is on the usage of variables. With a program data definition faults are
nearly as frequent (22% of all faults) as control flow faults (24 percent). Some
common data related faults include:

�� Using an undefined or uninitialized variable.
�� Unreachable code segments.
�� Assigning a value to a variable more than once without an intermediate

reference.
�� Deallocating or re-initializing a variable before its last use.

It is another form of white-box testing. Here the focal point is on the
usage of variables. Because data variables and data structures are an import-
ant part of any software, so we must check for variables— which have not
been defined but used or variables which are defined but not used or a vari-
able that is defined twice. These may be the main culprits or sources of
errors in our program. We need to identify them and remove the problems
associated with them.

Some terminology used during data flow testing is given below:

1.	 Defining node: A defining node, n, of the variable, v, if the value of the
variable, v, is defined at this node, n.

For example,	 a = b + c
	 ↑

This is defining node for “a.”

2.	 Usage node: A usage node, n, of the variable, v, if the value of the
variable, v, is used at this node, n.

For example,	 a = b + c
	 ↑

This is the usage node for “b” and “c.”

3.	 Definition use path (du-path): The path from a node, m, to node, n,
where the variable, v, is initially defined to the point where it is used in
the program is called as du-path.

Software-Testing_Final.indb 171 31-01-2018 14:57:38

172 • Software Testing

4.	 Definition clear path (dc-path): The path from node, m, to node, n,
such that there is no other node in this path that redefines the variable, v.

Please note that our objective is to find all du-paths and then iden-
tify those du-paths which are not dc-paths. We generate test cases for
du-paths that are not dc-paths.
Steps followed for data flow testing are given below:

Step 1:  Draw the program flow graph.
Step 2: � Prepare a table for define/use status of all variables used in your

program.
Step 3:  Find all du-paths.
Step 4:  Identify du-paths that are not dc-paths.

This is data flow testing.

EXAMPLE 4.11. For the following C-like program, give the

1.	 flow graph.

2.	 def/use graph.

 scanf(x, y);
 if (y < 0)
 pow = 0 – y;
 else
 pow = y;
 z = 1.0;
 while (pow!=0)
 {
 z = z * x;
 pow = pow-1;
 }
 if (y < 0)
 z = 1.0/z;
 printf(z);

SOLUTION.

Let us rewrite the program again for easy drawing of its flow graph.

1 scanf(x, y); if (y < 0)
2 pow = 0 – y;
3 else pow = y;
4 z = 1.0;
5 while (pow! = 0)

Software-Testing_Final.indb 172 31-01-2018 14:57:38

White-Box (or Structural) Testing Techniques • 173

6 {z = z*x; pow = pow – 1;}
7 if (y < 0)
8 z = 1.0/z;
9 printf (z);

i.	 The flow graph of a given program is
as follows:

ii.	 The def/use graph for this
program is as follows:

	
FIGURE 4.24	 FIGURE 4.25

Now, let us find its dcu and dpu. We draw a table again as follows:

(Node, var) dcu dpu

(1, x) {6} φ
(1, y) {2, 3} {(1, 2), (1, 3), (7, 8), (7, 9)}

(2, pow) {6} {(5, 6), (5, 7)}
(3, pow) {6} {(5, 6), (5, 7)}

(4, z) {6, 8, 9} φ
(6, z) {6, 8, 9} φ

(6, pow) {6} {(5, 6), (5, 7)}
(8, z) {9} φ

Software-Testing_Final.indb 173 31-01-2018 14:57:41

174 • Software Testing

EXAMPLE 4.12. (The Commission Problem). Consider again the
commission problem. The problem domain has already been discussed in
Chapter 2. Write its program, draw its flow graph and DD-path graph. Find
its V(G) and, hence, independent paths. Also, perform its data flow testing.

SOLUTION. We develop its program first:

1 Program commission (Input, Output)
2 Dim locks, stocks, barrels As Integer
3 �Dim lockprice, stockprice, barrel price

As real
4 �Dim totallocks, totalstocks, total barrels

As integer
5 �Dim locksales, stocksales, barrelsales As

real
6 Dim sales, commission As real
7 lockprice = 45.0
8 Stockprice = 30.0
9 barrelprice = 25.0
10 totallocks = 0
11 totalstocks = 0
12 total barrels = 0
13 Input (locks)
14 while NOT clocks = –1)
15 Input (stock, barrels)
16 totallocks = totallocks + locks
17 totalstocks = totalstocks + stocks
18 totalbarrels = totalbarrels + barrels
19 Input (locks)
20 Endwhile
21 Output (“Locks sold:”, total locks)
22 �Output (“Stocks sold:”, total stocks)
23 �Output (“Berrels sold:”, total

barrels)
24 locksales = lockprice * totallocks
25 stocksales = stockprice * totalstocks
26 �barrelsales = barrelprice *

totalbarrels
27 �sales = locksales + stocksales +

barrelsales
28 �Output (“Total sales:”, sales)
29 If (sales > 1800.0)

Software-Testing_Final.indb 174 31-01-2018 14:57:41

White-Box (or Structural) Testing Techniques • 175

30 Then
31 commission = 0.10 * 1000.0
32 �commission = commission + 0.15 *

800
33 �commission = commission + 0.20 *

(sales – 1800)
34 Else if (sales > 100.0)
35 then
36 commission = 0.10 * 1000.0
37 �commission = commission + 0.15 *

(sales – 1000.0)
38 else commission = 0.10 * sales
39 Endif
40 Endif
41 �Output (“Commission is $”,

commission)
42 End commission

Now, we draw its flow graph first:

FIGURE 4.26  Flow Graph of Commission Problem.

Software-Testing_Final.indb 175 31-01-2018 14:57:42

176 • Software Testing

Next, we draw its DD path graph:
Note that more compression exists in this

DD-path graph because of the increased compu-
tation in the commission problem.

The table below details the statement frag-
ments associated with DD-paths.

DD-path Nodes

A
B
C
D
E
F
G
H
I
J
K
L

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13
14
15, 16, 17, 18, 19
20, 21, 22, 23, 24, 25, 26, 27, 28
29
30, 31, 32, 33
34
35, 36, 37
38
39
40
41, 42

∴ We now compute its V(G):

a.	 V(G) = Number of enclosed regions + 1 = 3 + 1 = 4

b.	 V(G) = e – n + 2 = 14 – 12 + 2 = 2 + 2 = 4

c.	 V(G) = P + 1 = 3 + 1 = 4 [Nodes B, E, and G are predicate nodes]

∴ There must exist four independent paths. They are given below.

Path 1: A – B – C – B – ...
Path 2: A – B – D – E – F – K – L
Path 3: A – B – D – E – G – H – J – K – L
Path 4: A – B – D – E – G – I – J – K – L

Next, we prepare the define/use nodes for variables in the commission
problem.

FIGURE 4.27  DD Path Graph.

Software-Testing_Final.indb 176 31-01-2018 14:57:44

White-Box (or Structural) Testing Techniques • 177

Variables Defined at node Used at node

lockprice 7 24
stockprice 8 25
barrelprice 9 26
total locks 10, 16 16, 21, 24
total stocks 11, 17 17, 22, 25
total barrels 12, 18 18, 23, 26
locks 13, 19 14, 16
stocks 15 17
barrels 15 18
lock sales 24 27
stock sales 25 27
barrel sales 26 27
sales 27 28, 29, 33, 34, 37, 38
commission 31, 32, 33, 36, 37, 38 32, 33, 37, 41

Next, to find du-paths, we prepare the table:

Variable Path (beginning, end) nodes Definition clear

lockprice 7, 24 yes
stockprice 8, 25 yes
barrelprice 9, 26 yes
total stocks 11, 17 yes
total stocks 11, 22 no
total stocks 17, 25 no
total stocks 17, 17 yes
total stocks 17, 22 no
total stocks 17, 25 no
locks 13, 14 yes
locks 19,14 yes
locks 13, 16 yes
locks 19, 16 yes

(Continued)

Software-Testing_Final.indb 177 31-01-2018 14:57:44

178 • Software Testing

Variable Path (beginning, end) nodes Definition clear

sales 27, 28 yes
sales 27, 29 yes
sales 27, 33 yes
sales 27, 34 yes
sales 27, 37 yes
sales 27, 38 yes
commission 31, 32 yes
commission 31, 33 no
commission 31, 37 not possible
commission 31, 41 no
commission 32, 32 yes
commission 32, 33 yes
commission 32, 37 not possible
commission 32, 41 no
commission 33, 32 not possible
commission 33, 33 yes
commission 33, 37 not possible
commission 33, 41 yes
commission 36, 32 not possible
commission 36, 33 not possible
commission 36, 37 yes
commission 36, 41 no
commission 37, 32 not possible
commission 37, 33 not possible
commission 37, 37 yes
commission 37, 41 yes
commission 38, 32 not possible
commission 38, 33 not possible
commission 38, 37 not possible
commission 38, 41 yes

Software-Testing_Final.indb 178 31-01-2018 14:57:44

White-Box (or Structural) Testing Techniques • 179

The initial value definition for the variable, “titalstocks” occurs at node-
11 and it is first used at node-17. Thus, the path (11, 17) which consists of the
node sequence <11, 12, 13, 14, 15, 16, 17>, is definition clear.

The path (11, 22), which consists of the node sequence <11, 12, 13, 14,
15, 16, 17, 18, 19, 20> * & <21, 22> is not definition clear because the values
of total stocks are defined at node-11 and at node-17. The asterisk, *, is used
to denote zero or more repetitions.

Thus, out of 43 du-paths, 8-paths, namely, (11, 22), (17, 25), (17, 22),
(17, 25), (31, 33), (31, 41), (32, 41), and (36, 41), are not definition clear.
These 8-paths are the main culprits and thus the cause of the error.

Problem for Practice

1.	 Consider the problem of finding out the roots of a given quadratic
equation, ax2 + bx + c = 0.

Write its program in C and perform the following:

a.	 Draw the flow graph.

b.	 Draw the DD path graph.

c.	 Find V(G) by the three methods.

d.	 Perform its data flow testing and find all du- and dc-paths.

How to Develop Data Flow Test Cases?

The steps that are usually followed to develop data flow test cases are as fol-
lows:

1.	 Layout a control graph for the program.

2.	 For each variable, note the defined (d), used (u), and killed (k) actions
by node.

3.	 Trace all possible du- and dk-paths for each variable.

4.	 Merge the paths.

5.	 Test/check each path for testability.

6.	 Select test data for feasible paths.

Software-Testing_Final.indb 179 31-01-2018 14:57:44

180 • Software Testing

We shall now apply these steps to the following code:

1. void MyClass :: xyz (int x, int y, int z)
 {
 if (x>=10) {
2. x = x + 2;
 y = y – 4;
 if (x > z) {
3. y = x – z;
 else
4. y = 7;
 }
 else {
5. y = z + x;
 }
6. while (x > y) {
7. y = y + 1;
 z = z – y;
 }
8. if (x > z)
9. cout << x<<z;

10. cout << x<<y;
 }

Step 1: Its flow graph is:

FIGURE 4.28  Flow Graph for Example.

Software-Testing_Final.indb 180 31-01-2018 14:57:45

White-Box (or Structural) Testing Techniques • 181

Step 2: �Next, we tabulate data actions. The D and U actions in xyz-class can
be read from the code.

Block Source code x y z

1. MyClass:: xyz
(int x; int y; int z) {
if (x >= 10) {

D
U

D D

2. x = x + 2;
y = y – 4;
if (x > z) {

UD

U
UD

U
3. y = x – z;

else
U D U

4. y = 7;
}
else

D

5. y = z + x;
}

U D U

6. while (x > y) { U U
7. y = y + 1;

z = z – y;
}

UD
U UD

8. if (x > z) U U
9. cout << x, z; U U

10. cout << x, y; } U U

Step 3: Trace data flow for X

There will be a set of paths for each d. Mark the d nodes for the variable on
the graph and trace the paths. The baseline trace method can be adapted for
this tracing. Tabulate the paths as you trace them. So, define/use paths for
“x” are shown in Figure 4.29.

Note that the variable-x has d actions at nodes-1 and -2.
∴ Paths from node-1:

1–5–6–8–9–10	 DU–
1–5–6–8–10	 DU–
1–2	 DUD

Software-Testing_Final.indb 181 31-01-2018 14:57:45

182 • Software Testing

 = Define
 = Use

FIGURE 4.29  Trace Data Flow Graph for “X.”

And paths from node-2:
2–3–6–8–9–10	 DU–
2–4–6–8–9–10	 DU–
2–3–6–8–10	 DU–

Similarly, trace data flow for y is as follows: Define/Use paths for y are
shown in Figure 4.30. Variable “y” has d actions are nodes 1, 2, 3, 4, 5, 7.

Paths from node-1:

where
 = Define
 = Use

FIGURE 4.30  Trace Data Flow for “y.”

Software-Testing_Final.indb 182 31-01-2018 14:57:49

White-Box (or Structural) Testing Techniques • 183

1–5	 DUD
1–2	 DUD

Paths from node-2:
2–3	 DD
2–4	 DD

Paths from node-3:
3–6–7	 DUD
3–6–8–10	 DU–

Paths from node-4:
4–6–7	 DUD
4–6–8–10	 DU–

Paths from node-5:
5–6–7	 DUD
5–6–8–10	 DU–

Paths from node-7:
5–6–7	 DUD
5–6–8–10	 DU–

Similarly, the trace data flow for “Z” is as
follows: Define/Use Paths for Z are shown
in Figure 4.31. The variable Z has d actions
at nodes-1 and-7.
∴ Paths from node-1 are:

1–5–6–7	 DUD
1–5–6–8–9	 DU–
1–5–6–8	 DU–
1–2–3–6–7	 DUD
1–2–4–6–7	 DUD
1–2–3–6–8–9	 DU–
1–2–3–6–8	 DU–

Paths from node-7:
7–6–8–9	 DU–
7–6–7	 DU–
7–6–8	 DU–

Step 4: Merge the paths

a.	 Drop sub-paths: Many of the tabulated paths are sub-paths. For
example,

{1 2 3 6 8} is a sub-path of {1 2 3 6 8 9}.

So, we drop the sub-path.

where
 = Define
 = Use

FIGURE 4.31  �Trace Data Flow
for “Z.”

Software-Testing_Final.indb 183 31-01-2018 14:57:50

184 • Software Testing

b.	 Connect linkable paths: Paths that end and start on the same node
can be linked. For example,

	 {1 5} {5 6 8 10}
becomes	 {1 5 6 8 10}

We cannot merge paths with mutually exclusive decisions. For example,

{1 5 6 8 9} and {1 2 3 6 7}

cannot be merged because they represent the predicate branches from
node-1.
So, merging all the traced paths provides the following set of paths:

Path Nodes visited

1 1–5–6–8–10
2 1–5–6–8–9–10
3 1–5–6 (7 6)* 8 10
4 1–5–6 (7 6)* 8 9 10
5 1–2–3–6–8–10
6 1–2–3–6–8–9–10
7 1–2–3–6 (7 6)* 8–10
8 1–2–3–6 (7 6)* 8–9–10
9 1–2–4–6–8–10

10 1–2–4–6–8–9–10
11 1–2–4–6 (7 6)* 8–10
12 1–2–4–6 (7 6)* 8–9–10

The (7 6)* means that path 7–6 (the loop) can be iterated. We require that a
loop is iterated at least twice.

Step 5: Check testability

We need to check path feasibility.
Try path 1: {1–5–6–8–10}

Condition Comment

1.  x ≤ 10
2.  y′ = z + x
3.  x ≤ z + x
4.  x ≤ z

Force branch to node-5
Calculation on node-5
Skip node-7, proceed to node-8
Skip node-9, proceed to node-10

Software-Testing_Final.indb 184 31-01-2018 14:57:50

White-Box (or Structural) Testing Techniques • 185

The values that satisfy all these constraints can be found by trial and error,
graphing, or solving the resulting system of linear inequalities.

The set x = 0, y = 0, z = 0 works, so this path is feasible.
Try path 5: {1–2–3–6–8–10}

Condition Comment
1.  x > 10 Force branch to node-2
2.  x′ = x + 2 Calculation on node-2
3.  y′ = y – 4 Calculation on node-2
4.  x′ > z Force branch to node-3
5.  x′ ≤ y′ Skip node-7, proceed to node-8
6.  x′ ≤ z Skip node-9, proceed to node-10

By inspection, conditions 4 and 6 cannot both be true, so path 5 is dropped.

Step 6: Select test data

Path feasibility analysis also provides domain information for each path. This
can be used in conjunction with other domain constraints (from require-
ments, for example) to develop test data for each path.

Test Data

Path Nodes visited
Input test data Output

x y z B9 B10
1. 1–5–6–8–10 0 0 0 – 0

9 0 9 – 18
2. 1–5–6–8–9–10 9 0 8 17 25

9 0 0 9 18
3. 1–5–6–(7 6)* 8–10 –1 0 –1 – –2
4. 1–5–6–(7–6)* 8–9–10 0 0 1 –1 –1

9 0 –1 –1 18
7. 1–2–3–6–(7–6)* 8–10 10 0 62 – 24
8. 1–2–3–4–(7–6)*8–9–10 10 0 12 –26 24

10 0 61 23 24
10. 1–2–3–6–8–9–10 10 0 0 12 24
12. 1–2–3–6–(7–6)*–8–9–10 10 0 1 1 24

Software-Testing_Final.indb 185 31-01-2018 14:57:50

186 • Software Testing

4.3. � MUTATION TESTING VERSUS ERROR SEEDING —
DIFFERENCES IN TABULAR FORM

In the error-seeding technique, a predefined number of artificially gener-
ated errors is “sown” in the program code. After that, test runs are used to
detect errors and to examine the ratio between actual and artificial errors
based on the total number of detected errors. The artificially generated
errors are not known to the testers. Error seeding and mutation testing are
both error-oriented techniques and are generally, applicable to all levels of
testing. We shall now tabulate the differences between these two techniques
of white-box testing. They are as follows:

Error seeding Mutation testing

1. No mutants are present
here.

1. Mutants are developed for
testing.

2. Here source code is tested
within itself.

2. Here mutants are combined,
compared for testing to find
errors introduced.

3. Errors are introduced
directly.

3. Special techniques are used to
introduce errors.

4. Test cases which detect
errors are used for testing.

4. Here, test cases which kill
mutants are used for testing.

5. It is a less efficient error test-
ing technique.

5. It is more efficient than error
seeding.

6. It requires less time. 6. It is more time consuming.
7. It is economical to perform. 7. It is expensive to perform.
8. It is a better method for big-

ger problems.
8. It is a better method for small

size programs.

This mutation testing scheme was proposed by DeMillo in 1978. In this
testing technique, we mutate (change) certain statements in the source code
and check if the test code is able to find the errors. It is a technique that is
used to assess the quality of the test cases, i.e., whether they can reveal cer-
tain types of faults.

Software-Testing_Final.indb 186 31-01-2018 14:57:50

White-Box (or Structural) Testing Techniques • 187

For example, SDLC is viewed as a “root-finding” procedure. That is, a
designer submits an initial guess which is then iteratively tested for validity
until a correct solution is obtained. This is the principle of meta-induction.

These mutants are run with an input data from a given test set. If a test
set can distinguish a mutant from the original program, i.e., it produces a
different execution result, the mutant is said to be killed. Otherwise, the
mutant is called as a live mutant. Please note that a mutant remains live
because it is equivalent to the original program, i.e., it is functionally identi-
cal to the original program or the test data is inadequate to kill the mutant.
If a test data is inadequate, it can be improved by adding test cases to kill the
live mutant. A test set which can kill all non equivalent mutants is said to be
adequate (mutation score). Now, the adequacy of a test set is measured as
follows:

Adequacy of Test Set = No. of Killed Mutants
No. of Non equivalent Mutants

Advantages of Mutation Testing

1.	 It can show the ambiguities in code.

2.	 It leads to a more reliable product.

3.	 A comprehensive testing can be done.

Disadvantages of Mutation Testing

1.	 It is difficult to identify and kill equivalent mutants.

2.	 Stubborn mutants are difficult to kill.

3.	 It is a time consuming technique, so automated tools are required.

4.	 Each mutation will have the same size as that of the original program.
So, a large number of mutant programs may need to be tested against
the candidate test suite.

Software-Testing_Final.indb 187 31-01-2018 14:57:50

188 • Software Testing

4.4. � COMPARISON OF BLACK-BOX AND WHITE-BOX
TESTING IN TABULAR FORM

Functional or black-box
testing

Structural or white-box
testing or glass-box testing

1.	 This method focus on functional
requirements of the software, i.e.,
it enables the software engineer
to derive sets of input conditions
that will fully exercise all functional
requirements for a program.

1.	 This method focuses on procedural
details, i.e., internal logic of a pro-
gram.

2.	 It is NOT an alternative approach
to white-box technique rather is a
complementary approach that is
likely to uncover a different class of
errors.

2.	 It concentrates on internal logic,
mainly.

3.	 Black-box testing is applied during
later stages of testing.

3.	 Whereas, white-box testing is per-
formed early in the testing process.

4.	 It attempts to find errors in the fol-
lowing categories:
a.	 Incorrect or missing functions
b.	 Interface errors
c.	 Errors in data structures or

external database access
d.	 Performance errors
e.	 Initialization and termination

errors

4.	 Whereas, white-box testing attempts
errors in following cases:
a.	 Internal logic of your program
b.	 Status of program

5.	 It disregards control structure of
procedural design (i.e., what is the
control structure of our program, we
do not consider here).

5.	 It uses control structure of the pro-
cedural design to derive test cases.

Software-Testing_Final.indb 188 31-01-2018 14:57:50

White-Box (or Structural) Testing Techniques • 189

Functional or black-box
testing

Structural or white-box
testing or glass-box testing

  6. � Black-box testing broadens our
focus on the information domain
and might be called as “testing
in the large,” i.e., testing bigger
monolithic programs.

  6. � White-box testing, as described
by Hetzel is “testing in small,” i.e.,
testing small program components
(e.g., modules or small group of
modules).

  7. � Using black-box testing
techniques, we derive a set of test
cases that satisfy following criteria:
a.	 Test cases that reduce (by a

count that is greater than 1) the
number of additional test cases
that must be designed to achieve
reasonable testing.

b.	 Test cases that tell us something
about the presence or absence
of classes of errors rather than
an error associated only with the
specific tests at hand.

  7. � Using white-box testing, the
software engineer can desire test
cases that:
a.	 guarantee that all independent

paths within a module have
been exercised at least once.

b.	 exercise all logical decisions on
their true and false sides.

c.	 execute all loops at their
boundaries and within their
operational bounds.

d.	 exercise internal data structures
to ensure their validity.

  8. � It includes the tests that are con-
ducted at the software interface.

  8. � A close examination of procedural
detail is done.

  9.  Are used to uncover errors.   9. � Logical paths through the software
are tested by providing test cases,
that exercise specific sets of condi-
tions or loops.

10. � To demonstrate that software
functions are operational, i.e.,
input is properly accepted and
output is correctly produced.
Also, the integrity of external
information (e.g., a data base) is
maintained.

10. � A limited set of logical paths be
examined.

Software-Testing_Final.indb 189 31-01-2018 14:57:50

190 • Software Testing

4.5.  PRACTICAL CHALLENGES IN WHITE-BOX TESTING

The major challenges that we face during white-box testing are as follows:

1.	 Difficult for Software Developer to Pin-Point Defects From His Own
Creations: As discussed earlier, no one would like to point out errors
from their own creations. So, does a developer. So, usually we select a
different test team.

2.	 Even a Completely Tested Code May Not Satisfy Real Customer
Requirements: Developers do not have a full appreciation and favor
to external customer’s requirements or the domain knowledge. This
means that even after thorough verification and validation, common user
scenarios may get left out. So, we must address such scenarios.

4.6. � COMPARISON ON VARIOUS WHITE-BOX TESTING
TECHNIQUES

Functional testing techniques always result in a set of test cases and structural
metrics are always expressed in terms of something countable like the num-
ber of program paths, the number of decision-to-decision paths (DD-paths),
and so on.

FIGURE 4.32  Shows Trends of Test Coverage Item(s).

Software-Testing_Final.indb 190 31-01-2018 14:57:52

White-Box (or Structural) Testing Techniques • 191

FIGURE 4.33  Shows Trend of Test Method Effort.

Figures 4.32 and 4.33 show the trends for the number of test cover-
age items and the effort to identify them as functions of structural testing
methods, respectively. These graphs illustrate the importance of choosing an
appropriate structural coverage metric.

4.7.  ADVANTAGES OF WHITE-BOX TESTING

1.	 White-box testing helps us to identify memory leaks. When we allocate
memory using malloc() in C, we should explicitly release that memory
also. If this is not done then over time there would be no memory
available for allocating memory on requests. This can be done using
debuggers that can also tally allocated and freed memory.

2.	 Performance analysis: Code coverage tests can identify the areas of a
code that are executed most frequently. Extra efforts can then be made
to check these sections of code. To do further performance improvement
techniques like caching, coprocessing or even parallel processing can be
considered.

3.	 Coverage tests with instrumented code is one of the best means of
identifying any violations of such concurrency constraints through
critical sections.

4.	 White-box testing is useful in identifying bottlenecks in resource usage.
For example, if a particular resource like RAM or ROM or even network

Software-Testing_Final.indb 191 31-01-2018 14:57:53

192 • Software Testing

is perceived as a bottleneck then instrumented code can help identify
where the bottlenecks are and point towards possible solutions.

5.	 White-box testing can help identify security holes in dynamically
generated code. For example, in case of Java, some intermediate code
may also be generated. Testing this intermediate code requires code
knowledge. This is done by white-box testing only.

SUMMARY

1.	 White-box testing can cover the following issues:

a.	 Memory leaks

b.	 Uninitialized memory

c.	 Garbage collection issues (in JAVA)

2.	 We must know about white-box testing tools also. They are listed below:

a.	 Purify by Rational Software Corporation

b.	 Insure++ by ParaSoft Corporation

c.	 Quantify by Rational Software Corporation

d.	 Expeditor by OneRealm Inc.

MULTIPLE CHOICE QUESTIONS

1.	 A testing which checks the internal logic of the program is

a.	 Black-box testing. b.	 White-box testing.

c.	 Both (a) and (b) d.	 None of the above.

2.	 The cyclomatic complexity, V(G) was developed by:

a.	 Howard b.	 McCabe

c.	 Boehm d.	 None of the above.

3.	 A node with indegree = 0 and outdegree ≠ 0 is called

a.	 Source node. b.	 Destination node.

c.	 Transfer node. d.	 None of the above.

Software-Testing_Final.indb 192 31-01-2018 14:57:54

White-Box (or Structural) Testing Techniques • 193

4.	 A node with indegree ≠ 0 and outdegree = 0 is called

a.	 Source node.

b.	 Destination node.

c.	 Predicate node.

d.	 None of the above.

5.	 V(G) is given by which formula?

a.	 V(G) = e – n + 2

b.	 V(G) = e – 2n + P

c.	 V(G) = e – 2n

d.	 None of the above.

6.	 A predicate node is one which has

a.	 Two outgoing edges.

b.	 No outgoing edges.

c.	 Three or more outgoing edges.

d.	 None of the above.

7.	 An independent path is one

a.	 That is a complete path from source to destination node.

b.	 �That is a path which introduces at least one new set of processing
statements.

c.	 �That is a path which introduces at most one new set of processing
statements.

d.	 None of the above.

8.	 The size of the graph matrix is the

a.	 Number of edges in the flow graph.

b.	 Number of nodes in the flow graph.

c.	 Number of paths in the flow graph.

d.	 Number of independent paths.

Software-Testing_Final.indb 193 31-01-2018 14:57:54

194 • Software Testing

9.	 In data flow testing, the objective is to find

a.	 All dc-paths that are not du-paths.

b.	 All du-paths.

c.	 All du-paths that are not dc-paths.

d.	 All dc-paths.

	 10.	 Mutation testing is related to

a.	 Fault seeding.

b.	 Functional testing.

c.	 Fault checking.

d.	 None of the above.

ANSWERS

1.	 b. 2.	 b. 3.	 a. 4.	 b.

5.	 a. 6.	 a. 7.	 b. 8.	 b.

9.	 c. 10.	 a.

CONCEPTUAL SHORT QUESTIONS WITH ANSWERS

Q. 1.	 Write a short paragraph on test coverage analyzers?
Ans.	 �Coverage analyzers are a class of test tools that offer automated sup-

port for this approach to testing management. With this tool, the tes-
ter runs a set of test cases on a program that has been instrumented
by the coverage analyzer. The analyzer then uses the information
produced by the instrumentation code to generate a coverage report.
For example, in case of DD-path coverage, it identifies and labels all
DD-paths in the original program. When the instrumented program
is executed with test cases, the analyzer tabulates the DD-paths tra-
versed by each test case. So, a tester can experiment with different
sets of test cases to determine the coverage of each set.

Q. 2.	 What is slice-based testing?
Ans.	 �A program slice is a set of program statements that contribute to or

affect a value for a variable at some point in the program. This is an
informal definition.

Software-Testing_Final.indb 194 31-01-2018 14:57:54

White-Box (or Structural) Testing Techniques • 195

	 	 Let us see more formal definitions of a program slice.

	 	� “Given a program, P and a set of V of variables in P, a slice on the
variable set V at statement n, written as S(V, n), is the set of all state-
ments in P that contribute to the values of variables in V.”

	 	� Note: Listing elements in a slice S(V, n) will be cumbersome because
the elements are the program statement fragments.

	 	 We can further refine the definition of a program slice.

		� “Given a program P and a program graph G(P) in which statements
and statement fragments are numbered and a set V of variables in
P, the slice on the variable set V at statement fragment n, written as
S(V, n), is the set of node numbers of all statement fragments in P
prior to n that contribute to the values of variables in V at statement
fragment n.”

	 	� The basic idea is to separate a program into components (slices) that
have some useful/functional meaning.

	 	� Please note that we have used the words “prior to” (in the 2nd defi-
nition) in the dynamic sense. So, a slice captures the execution time
behavior of a program with respect to the variables in the slice. This
develops a lattice, or a directed, acyclic graph of slices in which
nodes are slices and edges correspond to the subset relationship.

	 	� We have also used a word, “contribute,” which means that data
declaration statements have an effect on the value of a variable. We
simply exclude all non-executable statements.

	 	 We have five forms of usages:

	 	 1.  P-use	 —	 used in a predicate (decision)
	 	 2.  C-use	 —	 used in computation
	 	 3.  O-use	 —	 used for output
	 	 4.  L-use	 —	 used for location (pointers, subscripts)
	 	 5.  I-use	 —	 used for iterations (counters, loops)

	 	 We also identify two forms of definitions nodes:

	 	 1.  I-def: defined by input
	 	 2.  A-def: defined by assignment

	 	� Now assume that the slice S(v, n) is a slice on one variable, i.e., the
set V consists of a single variable, v. If the statement fragment “n”
is a defining node for v, then n is included in the slice. Also, if the

Software-Testing_Final.indb 195 31-01-2018 14:57:54

196 • Software Testing

statement fragment “n” is a usage node for v, then n is not included
in the slice. P-uses and C-uses of other variables, i.e., not the v in the
slice set V, are included to the extent that their execution affects the
value of variable, v.

	 	� Tip: If the value of v is the same whether a statement fragment is
included or excluded, then exclude the statement fragment.

	 	� Also, O-use, L-use, and I-use nodes are excluded from the slices
as L-use and I-use variables are typically invisible outside their
modules.

Q. 3.	 What is slice splicing?
Ans.	 �If we decide to develop a program in terms of compatible slices then

we could code a slice and immediately test it. We can then code and
test other slices and merge them into a fair solid program. This is
known as slice splicing.

Q. 4.	 �What are the different sources of knowledge for white-box testing?
Ans.	 �The following are the knowledge sources for white-box or structural

testing:

	 	 a.	 High-level design
		 b.	 Detailed design
	 	 c.	 Control flow graphs

Q. 5.	 What is stress testing?
Ans.	 �Stress testing is a testing technique used to determine if the system

can function when subjected to large volumes of data. It includes
areas like

	 	 a.	 Input transactions
	 	 b.	 Internal tables
	 	 c.	 Disk space
	 	 d.	 Output
	 	 e.	 Communications
	 	 f.	 Computer capacity
	 	 g.	 Interaction with users

	 	� If the application functions properly with stressed data then it is
assumed that it will function properly with normal volumes of work.

	 	� Objectives of stress testing: To simulate a production environ-
ment for determining that

	 	 a.	� Normal or above-normal volumes of transactions can be pro-
cessed through the transaction within the available time frame.

Software-Testing_Final.indb 196 31-01-2018 14:57:54

White-Box (or Structural) Testing Techniques • 197

	 	 b.	� The system is able to process large volumes of data.
	 	 c.	� Enough system capacity is available.
	 	 d.	� Users can perform their assigned tasks.

Q. 6.	 How to use stress testing?
Ans.	 �Online systems should be stress tested by allowing people to enter

transactions of a normal or above normal pace.
	 	� Batch systems can be stress tested with large input batches. Please

note that the error conditions should be included in tested transac-
tions. Transactions that are used in stress testing can be obtained
from test data generators, test transactions created by the test
group, or the transactions previously processed in the production
environment.

	 	� In stress testing, the system should be run as it would in the pro-
duction environment. Operators should use standard documenta-
tion and the people entering transactions or working with the system
should be the clerical personnel that will use the system.

	 	 Examples of stress testing:

	 	 i. � Enter transactions that determine that sufficient disk space has
been allocated to the application.

	 	 ii. � Overloading the communication network with transactions.
	 	 iii. � Testing system overflow conditions by entering more transac-

tions that can be accommodated by tables, queues, and internal
storage facilities, etc.

Q. 7.	 What is execution testing? Give some examples.
Ans.	 �Execution testing is used to determine whether the system can meet

the specific performance criteria. It includes the following:

	 	 a. � Verifying the optimum use of hardware and software.
	 	 b. � Determining the response time to online user requests.
	 	 c. � Determining transaction processing turnaround time.

	 	� Execution testing can be done in any phase of SDLC. It can evaluate
a single aspect of the system like a critical routine in the system. We
can use hardware and software monitors or create quick and dirty
programs to evaluate the approximate performance of a completed
system. This testing may be executed onsite or offsite for the perfor-
mance of the test. Please note that the earlier the technique is used,
the higher is the assurance that the completed application will meet
the performance criteria.

Software-Testing_Final.indb 197 31-01-2018 14:57:54

198 • Software Testing

Q. 8.	 What is recovery testing? Give some examples.
Ans.	 �Recovery testing is used to ensure that operations can be continued

even after a disaster.
	 	� It not only verifies the recovery process but also the effectiveness of

the component parts of that process. Its objectives are:

	 	 a. � Document recovery procedures
	 	 b. � Preserve adequate backup data
	 	 c. � Training recovery personnel

	 	 Examples of recovery testing:

	 	 i.	� Inducing failures into one of the application system programs
during processing.

	 	 ii.	� Recovery could be conducted from a known point of integrity to
ensure that the available backup data was adequate for the recov-
ery process.

Q. 9.	 What is operations testing? Give some examples.
Ans.	 �Operations testing is designed to determine whether the system is

executable during normal system operations. It evaluates both the
process and the execution of the process. During different phases of
SDLC, it can be used as follows:

	 	 Phase 1: Requirements Phase
	 	� During this phase, operational requirements can be evaluated to

determine the reasonableness and completeness of these require-
ments.

	 	 Phase 2: Design Phase
	 	� During this phase, the operating procedures should be designed and

thus can be evaluated.

	 	 Examples of operations testing:

	 	 i.	� Verifying that the file labeling and protection procedures func-
tion properly.

	 	 ii.	� Determining that the OS supports features and performs the
predetermined tasks.

Q. 10.	 What is security testing?
Ans.	 �A testing used to identify defects that are very difficult to identify. It

involves determining that adequate attention is devoted to identify-
ing security risks and determining that sufficient expertise exists to
perform adequate security testing.

Software-Testing_Final.indb 198 31-01-2018 14:57:54

White-Box (or Structural) Testing Techniques • 199

	 	 Examples of security testing:

	 	 i.	� Determining that the resources being protected are identified.
	 	 ii.	� Unauthorized access on online systems to ensure that the system

can identify such accesses.

Q. 11.	 Draw a flowchart to show overall mutation testing process.
Ans.	

FIGURE 4.34

Q. 12.	 How is FTR different from the management review?
Ans.	 We tabulate the differences between the two.

Software-Testing_Final.indb 199 31-01-2018 14:57:55

200 • Software Testing

FTR Management review

1.	 It is done to examine the product. 1.	 It is done to evaluate a project plan.

2.	 Its purpose is to evaluate
the software elements like
requirements and design.

2.	 Its purpose is to ensure adequacy
and completeness of each plan-
ning document for meeting project
requirements.

3.	 It is done to ensure conformity to
specifications.

3.	 It is done to ensure that project
activities are progressing per the
planning documents.

4.	 The results of FTRs are given in
technical review reports (TRR).

4.	 The results of the management
reviews are summarized in a
management review report (MRR).

5.	 It is done to ensure the
integrity of changes to the
software elements.

5.	 The purpose here is to ensure proper
allocation of resources.

REVIEW QUESTIONS

1.	 White-box testing is complementary to black-box testing, not alternative.
Why? Give an example to prove this statement.

2.	 a. � What is a flow graph and what it is used for?

b.	 Explain the type of testing done using flow graph?

3.	 Perform the following:

a.	 Write a program to determine whether a number is even or odd.

b.	 Draw the paths graph and flow graph for the above problem.

c.	 Determine the independent path for the above.

4.	 Why is exhaustive testing not possible?

5.	 a. � Draw the flow graph of a binary search routine and find its independent
paths.

Software-Testing_Final.indb 200 31-01-2018 14:57:55

White-Box (or Structural) Testing Techniques • 201

b.	 How do you measure

1.	 Test effectiveness?

2.	 Test efficiency?

6.	 Write short paragraphs on:

a.	 Mutation testing.

b.	 Error-oriented testing.

7.	 Differentiate between structural and functional testing in detail.

8.	 Will exhaustive testing guarantee that the program is 100% correct?

9.	 a. � What is cyclomatic complexity? How can we relate this to independent
paths?

b.	 Explain the usefulness of error guessing-testing technique.

10.	 Differentiate between functional and structural testing.

11.	 Discuss the limitations of structural testing. Why do we say that complete
testing is impossible?

12.	 Explain define/use testing. Consider any example and show du-paths.
Also identify those du-paths that are not dc-paths.

13.	 Find the cyclomatic complexity of the graph given below:

FIGURE 4.35

		 Find all independent paths.

Software-Testing_Final.indb 201 31-01-2018 14:57:57

202 • Software Testing

14.	 What is data flow testing? Explain du-paths. Identify du- and dc-paths of
any example of your choice. Show those du-paths that are not dc-paths.

15.	 Write a short paragraph on data flow testing.

16.	 Explain the usefulness of error guessing testing technique.

17.	 Discuss the pros and cons of structural testing.

18.	 a. � What are the problems faced during path testing? How they can be
minimized?

b.	 Given the source code below:

void foo (int a, b, c, d, e) {
 if (a = = 0) {
 return;
 }
 int x = 0;
 if ((a = = b)	 or (c = = d)) {
 x = 1;
 }
 e = 1/x;
 }

		 List the test cases for statement coverage, branch coverage, and condition
coverage.

19.	 Why is error seeding performed? How it is different from mutation
testing?

20.	 a. � Describe all methods to calculate the cyclomatic complexity.

b.	 What is the use of graph matrices?

21.	 Write a program to calculate the average of 10 numbers. Using data flow
testing design all du- paths and dc-paths in this program.

22.	 Write a short paragraph on mutation testing.

23.	 Write a C/C++ program to multiply two matrices. Try to take care of as
many valid and invalid conditions are possible. Identify the test data.
Justify.

Software-Testing_Final.indb 202 31-01-2018 14:57:57

White-Box (or Structural) Testing Techniques • 203

24.	 Discuss the negative effects of the following constructs from the white-
box testing point of view:

a.	 GO TO statements

b.	 Global variables

25.	 Write a C/C++ program to count the number of characters, blanks, and
tabs in a line. Perform the following:

a.	 Draw its flow graph.

b.	 Draw its DD-paths graph.

c.	 Find its V(G).

d.	 Identify du-paths.

e.	 Identify dc-paths.

26.	 Write the independent paths in the following DD-path graph.
Also calculate mathematically. Also name the decision nodes shown in
Figure 4.36.

27.	 What are the properties of cyclomatic complexity?

FIGURE 4.36

Software-Testing_Final.indb 203 31-01-2018 14:57:58

204 • Software Testing

28.	 Explain in detail the process to ensure the correctness of data flow in a
given fragment of code.

main
{
 int K = 35, Z;
 Z = check (K);
 printf (“\n%d”, Z);
 }
check (m)
 {
 int m;
 if (m > 40)
 return (1);
 else
 return (0);
 }

29.	 Write a C program for finding the maximum and minimum out of three
numbers and compute its cyclomatic complexity using all possible
methods.

30.	 Consider the following program segment:

void sort (int a[], int n)
 {
 int i, j;
for (i = 1; i < n; i++)
for (j = i + 1, j < n; j++)
 if (a[i] > a[j])
 {
 temp = a[i];
 a[i] = a[j];
 a[j] = temp;
 }

i.	Draw the control flow graph for this program segment.

ii.	� Determine the cyclomatic complexity for this program (give all
intermediate steps).

iii.	How is cyclomatic complexity metric useful?

Software-Testing_Final.indb 204 31-01-2018 14:57:58

White-Box (or Structural) Testing Techniques • 205

31.	 Explain data flow testing. Consider an example and show all “du” paths.
Also identify those “du” paths that are not “dc” paths.

32.	 Consider a program to find the roots of a quadratic equation. Its input is
a triplet of three positive integers (say a, b, c) from the interval [1, 100].
The output may be one of the following words—real roots, equal roots,
imaginary roots. Find all du-paths and those that are dc-paths. Develop
data flow test cases.

33.	 If the pseudocode below were a programming language, list the test
cases (separately) required to achieve 100% statement coverage and
path coverage.

1. If x = 3 then
2. Display_message x;
3. If y = 2 then
4. Display_message y;
5. Else
6. Display_message z;
7. Else
8. Display_message z;

34.	 Consider a program to classify a triangle. Draw its flow graph and DD-
path graph.

Software-Testing_Final.indb 205 31-01-2018 14:57:58

Software-Testing_Final.indb 206 31-01-2018 14:57:58

C H A P T E R5
Inside this Chapter:

	 5.0.	 Introduction to Gray-Box Testing
	 5.1.	 What Is Gray-Box Testing?
	 5.2.	 Various Other Definitions of Gray-Box Testing
	 5.3.	 �Comparison of White-Box, Black-Box, and Gray-Box Testing

Approaches in Tabular Form

Gray-Box Testing

5.0.  INTRODUCTION TO GRAY-BOX TESTING

Code coverage testing involves “dynamic testing” methods of executing the
product with pre-written test cases and finding out how much of the code
has been covered. If a better coverage of the code is desired, several itera-
tions of testing may be required. For each iteration, one has to write a new
set of test cases for covering those portions of code that were not covered
by earlier test cases. To do such types of testing, not only does one need to
understand the code and logic but one also needs to understand how to write
effective test cases that can cover good portions of the code. Understand-
ing of code and logic means white-box or structural testing whereas writing
effective test cases means black-box testing. So, we need a combination of
white-box and black-box techniques for test effectiveness. This type of test-
ing is known as “gray-box testing.” We must then understand that:

WHITE + BLACK = GRAY

Software-Testing_Final.indb 207 31-01-2018 14:57:58

208 • Software Testing

5.1.  WHAT IS GRAY-BOX TESTING?

Black-box testing focuses on software’s external attributes and behavior.
Such testing looks at an application’s expected behavior from the user’s point
of view. White-box testing/glass-box testing, however, tests software with
knowledge of internal data structures, physical logic flow, and architecutre at
the source code level. White-box testing looks at testing from the developer’s
point of view. Both black-box and white-box testing are critically important
complements of a complete testing effort. Individually, they do not allow
for balanced testing. Black-box testing can be less effective at uncovering
certain error types such as data-flow errors or boundary condition errors at
the source level. White-box testing does not readily highlight macro-level
quality risks in operating environment, compatibility, time-related errors,
and usability.

5.2. � VARIOUS OTHER DEFINITIONS OF
GRAY-BOX TESTING

Gray-box testing incorporates the elements of both black-box and white-box
testing. It considers the outcome on the user end, system-specific technical
knowledge, and the operating environment. It evaluates the application
design in the context of the inter-operability of system components. The
gray-box testing approach is integral to the effective testing of web appli-
cations that comprise numerous components, both software and hardware.
These components must be tested in the context of system design to evaluate
their functionality and compatibility. Listed below are some more definitions
of gray-box testing:

“Gray-box testing consists of methods and tools derived from the knowledge
of the application internals and the environment with which it interacts,
that can be applied in black-box testing to enhance testing productivity, bug
finding and bug analyzing efficiency.”

—Nguyen H.Q.
OR

“Gray-box testing is using inferred or incomplete structural or design
information to expand or focus black-box testing.”

—Dick Bender
OR

Software-Testing_Final.indb 208 31-01-2018 14:57:58

Gray-Box Testing • 209

“Gray-box testing is designing of the test cases based on the knowledge of
algorithms, interval states, architectures or other high level descriptions of
program behavior.”

—Dong Hoffman
OR

“Gray-box testing involves inputs and outputs, but test design is educated by
information about the code or the program operation of a kind that would
normally be out of scope of view of the tester.”

—Cem Kaner

Gray-box testing is well suited for web application testing because it factors
in high level design environment and the inter-operability conditions. It will
serve problems that are not as easily considered by a black-box or white-box
analysis, especially problems of end-to-end information flow and distributed
hardware/software system configuration and compatibility. Context-specific
errors that are germane to web systems are commonly uncovered in this
process.

5.3. � COMPARISON OF WHITE-BOX, BLACK-BOX, AND
GRAY-BOX TESTING APPROACHES IN TABULAR FORM

Before tabulating the differences between black-box, gray-box, and white-
box testing techniques, we must first understand that when we say test
granularity, we mean the level of details. And when we say the highest, it
means that all internals are known.

FIGURE 5.1  Comparison of Black-Box, Gray-Box, and White-Box Techniques.

Software-Testing_Final.indb 209 31-01-2018 14:58:00

210 • Software Testing

Next, we tabulate the points of differences between them.

Black-box testing Gray-box testing White-box testing

   1.  Low granularity Medium granularity High granularity

   2.  Internals NOT known Internals partially known Internals fully known

   3. � Internals not required
to be known

Internals relevant to testing
are known

Internal code of the application and
database known

   4. � Also known as
• Opaque-box testing
• Closed-box testing
• Input-output testing
• Data-driven testing
• Behavioral
• Functional testing

Also known as translucent-
box testing

Also known as
• Glass-box testing
• Clear-box testing
• Design-based testing
• Logic-based testing
• Structural testing
• Code-based testing.

   5. � It is done by end-
users (user acceptance
testing). Also done by
tester, developers.

It is done by end-users (user
acceptance testing). Also
done by testers, developers.

Normally done by testers and
developers.

   6. � Testing method where
• �System is viewed as a

black-box
• �Internal behavior

of the program is
ignored

• �Testing is based upon
external specifications

Here, internals partly
known (gray), but not fully
known (white). Test design
is based on the knowledge
of algorithm, interval states,
architecture, or other high
level descriptions of the
program behavior.

Internals fully known

   7. � It is likely to be least
exhaustive of the three.

It is somewhere in between. Potentially most exhaustive of the
three.

   8.� � Requirements based.
Test cases based
on the functional
specifications, as
internals not known.

Better variety/depth in test
cases on account of high level
knowledge of internals.

Ability to exercise code with
relevant variety of data.

   9. � Being specification
based if would not
suffer from the
deficiency as described
for white-box testing.

It would also not suffer from
the deficiency as described
for white-box testing.

Because test cases are written based
on the code, specifications missed in
coding would not be revealed.

10. � It is suited for
functional/ business
domain testing.

It is suited for functional/
business domain testing bit
in depth.

It is suited for all.

(continued)

Software-Testing_Final.indb 210 31-01-2018 14:58:00

Gray-Box Testing • 211

Black-box testing Gray-box testing White-box testing

11. � Not suited to algorithm
testing.

Not suited to algorithm
testing.

Appropriate for algorithm testing.

12. � It is concerned with
validating outputs
for given inputs, the
application being
treated as a black-box.

Here in, we have a better
variety of inputs and the
ability to extract test results
from database for comparison
with expected results.

It facilitates structural testing. It
enables logic coverage, coverage of
statements, decisions, conditions,
path, and control flow within the
code.

13. � It can test only by trial
and error data domains,
internal boundaries, and
overflow.

It can test data domains,
internal boundaries, and
overflow, if known.

It can determine and therefore
test better: data domains, internal
boundaries, and overflow.

SUMMARY

1.	 As testers, we get ideas for test cases from a wide range of knowl-
edge areas. This is partially because testing is much more effective
when we know what types of bugs we are looking for. As testers of
complex systems, we should strive to attain a broad balance in our
knowledge, learning enough about many aspects of the software and
systems being tested to create a battery of tests that can challenge
the software as deeply as it will be challenged in the rough and tum-
ble day-to-day use.

2.	 Every tester in a test team need not be a gray-box tester. More is the
mix of different types of testers in a team, better is the success.

MULTIPLE CHOICE QUESTIONS

1.	 When both black-box and white-box testing strategies are required
to test a software then we can apply

a.	 Gray-box testing.

b.	 Mutation testing.

c.	 Regression testing.

d.	 None of the above.

Software-Testing_Final.indb 211 31-01-2018 14:58:00

212 • Software Testing

2.	 Which of the following is true?

a.	 There is no such testing named gray-box testing.

b.	 Gray-box testing is well suited for web applications.

c.	 Gray-box is same as white-box only.

d.	 None of the above.

3.	 Gray-box testing is also known as

a.	 Opaque-box testing. b.	 Clear-box testing.

c.	 Translucent testing. d.	 None of the above.

4.	 Gray-box testing involves

a.	 Low granularity. b.	 Medium granularity.

c.	 High granularity. d.	 None of the above.

5.	 Gray-box testing is done by

a.	 End users. b.	 Testers and developers.

c.	 Both (a) and (b) d.	 None of the above.

ANSWERS

1.  a.    2.  b.    3.  c.    4.  b.    5.  c.

CONCEPTUAL SHORT QUESTIONS WITH ANSWERS

Q. 1.	 �Gray-box testing is based on requirement-based test case generation.
Explain.

Ans.	 �Gray-box testing uses assertion methods to preset all the conditions
required, prior to a program being tested. Formal testing is one of
the commonly used techniques for ensuring that a core program is
correct to a very large degree. If the requirement specification lan-
guage is being used to specify the requirement, it would be easy to
execute the requirement stated and verify its correctness. Gray-box
testing will use the predicate and verifications defined in require-
ment specification language as inputs to the requirements based test
case generation phase.

Software-Testing_Final.indb 212 31-01-2018 14:58:00

Gray-Box Testing • 213

Q. 2.	 �Why is gray-box testing especially useful for web and Internet
applications?

Ans.	 �It is useful because the Internet is built around loosely integrated
components that connected via relatively well-defined interfaces.
It factors in high-level design, environment and inter-operability
conditions. It reveals problems of end-to-end information flow
and distributed hardware/software system configuration and com-
patibility. Please note that context specific errors are germane to
web systems and it is our gray-box testing only that uncovers these
errors.

Q. 3.	 �Can we have only gray-box testers?
Ans.	 �No, because a high level of success lies in the fact that we can have

a mix of different types of testers with different skill sets—like data-
base expert, security expert, test automation expert, etc.

Q. 4.	 �What is the gray-box assumption for object-oriented software?
Ans.	 �Typically, a reference state model for SUT is assumed. The testing

problem is to identify failure to conform to the reference model.
The tester must determine which state is actually obtained by
applying a distinguishing sequence and observing the resulting
output. This increases the number of tests by a large amount. With
object-oriented software, we assume that the internal state can be
determined by

a.	 A method of activation state where activation is equated with state.

b.	 State reporting capability in the class-under-test (CUT).

c.	 Built-in test reporting in the CUT.

This is the Gray-Box assumption.

REVIEW QUESTIONS

1.	 Define “gray-box testing.”

2.	 Give various other definitions of gray-box testing.

3.	 Compare white-box, black-box and gray-box testing approaches?

4.	 How is gray-box testing related to white- and black-box testing?

Software-Testing_Final.indb 213 31-01-2018 14:58:00

214 • Software Testing

5.	 Gray-box testing is well suited for web applications testing. Why?

6.	 Assume that you have to build the real-time large database
connectivity system software. Then what kinds of testing do you
think are suitable? Give a brief outline and justification for any four
kinds of testing.

Software-Testing_Final.indb 214 31-01-2018 14:58:00

C H A P T E R6
Inside this Chapter:

	 6.0.	 Prioritization Guidelines
	 6.1.	 Priority Category Scheme
	 6.2.	 Risk Analysis
	 6.3.	 Regression Testing—Overview
	 6.4.	 Prioritization of Test Cases for Regression Testing
	 6.5.	 Regression Testing Technique—A Case Study
	 6.6.	 Slice Based Testing

Reducing the Number of
Test Cases

6.0.  PRIORITIZATION GUIDELINES

The goal of prioritization of test cases is to reduce the set of test cases based
on some rational, non-arbitrary, criteria, while aiming to select the most
appropriate tests. If we prioritize the test cases, we run the risk that some of
the application features will not be tested at all.

The prioritization schemes basically address these key concepts:

a.		What features must be tested?

b.		What are the consequences if some features are not tested?

The main guide for selecting test cases is to assess the risk first. At the end of
the test case prioritization exercise, the tester and the project authority must
feel confident with the tests that have been selected for execution. If some-
one is distressed about the omitted tests, then re-evaluate the list and apply
another prioritization scheme to analyze the application from another point
of view. Ideally, the project authority and possibly other project members,
must buy-in—and sign off—to the prioritized set of tests.

Software-Testing_Final.indb 215 31-01-2018 14:58:00

216 • Software Testing

There are four schemes that are used for prioritizing the existing set test
cases. These reduction schemes are as follows:

1.	 Priority category scheme

2.	 Risk analysis

3.	 Interviewing to find out problematic areas

4.	 Combination schemes

All of these reduction methods are independent. No one method is bet-
ter than the other. One method may be used in conjunction with another
one. It raises confidence when different prioritization schemes yield similar
conclusions.

We will discuss these techniques now.

6.1.  PRIORITY CATEGORY SCHEME

The simplest scheme for categorizing tests is to assign a priority code directly
to each test description. One possible scheme is a three-level priority catego-
rization scheme. It is given below:

Priority 1: This test must be executed.
Priority 2: If time permits, execute this test.
Priority 3: If this test is not executed, the team won’t be upset.

So, assigning a priority code is as simple as writing a number adjacent
to each test description. Once priority codes have been assigned, the tester
estimates the amount of time required to execute the tests selected in each
category. If the time estimate falls within the allotted schedule, then the
partitioning exercise is completed and you have identified the tests to use.
Otherwise, further partitioning is required.

The second scheme can be a new five-level scale to further classify the
tests. This scheme is given below:

Priority 1a: This test must pass or the delivery will be out of date.
Priority 2a: Before final delivery, this test must be executed.
Priority 3a: If time permits, execute this test.
Priority 4a: This test can wait after the delivery date.
Priority 5a: We will probably never execute this test.

We try to divide the tests. For example, say tests from priority 2 are now
divided between priorities 3a, 4a, and 5a, we can downgrade or upgrade any
test in the similar fashion.

Software-Testing_Final.indb 216 31-01-2018 14:58:00

Reducing the Number of Test Cases • 217

6.2.  RISK ANALYSIS

All software projects benefit from risk analysis. Even non-critical software,
using risk analysis at the beginning of a project highlights the potential prob-
lem areas. This helps developers and managers to mitigate the risks. The
tester uses the results of risk analysis to select the most crucial tests.

How Risk Analysis Is Done?

Risk analysis is a well-defined process that prioritizes modules for testing.
A risk contains three components:

1.	 The risk, ri, associated with a project (i ← 1 to n).

2.	 The probability of occurrence of a risk, (li).

3.	 The impact of the risk, (xi).

Risk analysis consists of first listing the potential problems and then
assigning a probability and severity value for each identified problem. By
ranking the results, the tester can identify the potential problems most in
need of immediate attention and select test cases to address those needs.
During risk analysis we draw a table as shown below:

Problem
ID Potential problem (ri)

Probability of
occurrence (li)

Impact of
risk (xi)

Risk
exposure
= li * xi

A Loss of power 1 10 10
B Corrupt file header 2 1 2
C Unauthorized access 6 8 48
D Databases not

synchronized
3 5 15

E Unclear user
documentation

9 1 9

F Lost sales 1 8 8
G Slow throughput 5 3 15
: : : : :
: : : : :
: : : : :

FIGURE 6.1  Risk Analysis Table (RAT).

Software-Testing_Final.indb 217 31-01-2018 14:58:00

218 • Software Testing

Here, in Figure 6.1,

Problem ID. It is a unique identifier associated with a risk.
Potential problem. It is a brief description of the problem.
Probability of occurrence, (li). It is a probability value on a scale of 1 (low)
to 10 (high).
Severity of impact, (xi). It is a severity value on a scale of 1 (low) to 10 (high).
Risk exposure. It is defined as the product of li and xi.

In this table, the values of li and xi range from 1 to 10. Multiplying the
probability and severity values yields the risk exposure. “The higher the
risk exposure product, the more important it is to test for that condition.”
Applying this rule to Figure 6.1, we will get the following rankings of the
potential risk problems based on the product of risk-exposure. The order of
preference is:

C—D—G—A—E—F—B

Although problems D and G have the same risk exposure, they differ by
their probability and severity values.

For some organizations, this method may produce enough information.
Others may wish to do risk-matrix analysis also. We will now discuss risk
matrix analysis.

What Is a Risk Matrix?

A risk matrix allows the tester to evaluate and rank potential problems by
giving more weight to the probability or severity value as necessary. The soft-
ware tester uses the risk matrix to assign thresholds that classify the potential
problems into priority categories.

There are four main methods of forming risk matrices:

�Method I: Typically, the risk matrix contains four quadrants, as shown in
Figure 6.2.

Each quadrant in Figure 6.2 represents a priority class defined as
follows:

Priority 1: High severity and high probability
Priority 2: High severity and low probability
Priority 3: Low severity and high probability
Priority 4: Low severity and low probability

Software-Testing_Final.indb 218 31-01-2018 14:58:00

Reducing the Number of Test Cases • 219

We can see from the graph of Figure 6.2 that a risk with high severity is
deemed more important than a problem with high probability. Thus, all risks
mapped in the upper-left quadrant fall into priority 2.

For example, the risk-e which has a high probability of occurrence but a
low severity of impact is put under priority 3.

Method II: For an entirely different application, we may swap the defini-
tions of priorities 2 and 3, as shown in Figure 6.3.

An organization favoring Figure 6.3 seeks to minimize the total number
of defects by focusing on problems with a high probability of occurrence.

Dividing a risk matrix into quadrants is most common, testers can deter-
mine the thresholds using different types of boundaries based on application
specific needs.

Method III: Diagonal band prioritiza-
tion scheme.

If severity and probability tend to
be equal weight, i.e., if li = xi, then diag-
onal band prioritization scheme may
be more appropriate. This is shown in
Figure 6.4.

This threshold pattern is a com-
promise for those who have difficulty
in selecting between priority-2 and
priority-3 in the quadrant scheme.

FIGURE 6.2  Method I. FIGURE 6.3  Method II.

FIGURE 6.4  Method III.

Software-Testing_Final.indb 219 31-01-2018 14:58:05

220 • Software Testing

Method IV: The problems with
high severity must be given the top
priority, irrespective of the value of
probability. This problem is solved
with method-IV and is shown in
Figure 6.5. The remainder of the
risk matrix is partitioned into sev-
eral lower priorities, either as
quadrants (Method-I and -II) or as
diagonal bands (Method-III).

6.3.  REGRESSION TESTING—OVERVIEW

Regression testing is done to ensure that enhancements or defect fixes made
to the software works properly and does not affect the existing functionality.
It is usually done during maintenance phase.

As a software system ages, the cost of maintaining the software dom-
inates the overall cost of developing the software. Regression testing is a
testing process that is used to determine if a modified program still meets its
specifications or if new errors have been introduced. Improvements in the
regression testing process would help reduce the cost of software.

6.3.1.  Differences between Regression and Normal Testing

Let us now compare normal and regression testing in the below Table.

Normal testing Regression testing

1. It is usually done during fourth phase
of SDLC.

1. It is done during the maintenance
phase.

2. It is basically software’s verification
and validation.

2. It is also called program
revalidation.

3. New test suites are used to test our
code.

3. Both old and new test cases can be
used for testing.

4. It is done on the original software. 4. It is done on modified software.
5. It is cheaper. 5. It is a costlier test plan.

FIGURE 6.5  Method IV.

Software-Testing_Final.indb 220 31-01-2018 14:58:06

Reducing the Number of Test Cases • 221

6.3.2. T ypes of Regression Testing

Four types of regression testing techniques are discussed one-by-one. They are

1.	 Corrective regression testing

2.	 Progressive regression testing

3.	 Retest-all regression testing

4.	 Selective regression testing

6.3.2.1.  Corrective regression testing

Corrective regression testing applies when specifications are unmodified
and test cases can be reused.

6.3.2.2.  Progressive regression testing

Progressive regression testing applies when specifications are modified and
new test cases must be designed.

6.3.2.3.  The retest-all strategy

The retest-all strategy reuses all tests, but this strategy may waste time and
resources due to the execution of unnecessary tests. When the change to a
system is minor, this strategy would be wasteful.

6.3.2.4.  The selective strategy

The selective strategy uses a subset of the existing test cases to reduce the
retesting cost. In this strategy, a test unit must be rerun if and only if any of the
program entities, e.g., functions, variables etc., it covers have been changed.
The challenge is to identify the dependencies between a test case and the
program entities it covers. Rothermel and Harrold specified a typical selective
regression testing process. In general, the process includes the following steps:

Step 1. � Identify affected software components after program, P, has been
modified to P′.

Step 2. � Select a subset of test cases, T′, from an existing test suite, T, that
covers the software components that are affected by the modifica-
tion.

Step 3. � Test modified program P′ with T′ to establish the correctness of P′
with respect to T′.

Software-Testing_Final.indb 221 31-01-2018 14:58:06

222 • Software Testing

Step 4.  Examine test results to identify failures.
Step 5. � Identify and correct the fault(s) that caused a failure.
Step 6.  Update the test suite and test history for P′.

From these steps, we can observe the following characteristics of selective
regression testing:

1.	 Identifying the program components that must be retested and find-
ing those existing tests that must be rerun are essential.

2.	 When selected test cases satisfy retest criterion, new test cases are
not needed.

3.	 Once regression testing is done, it is necessary to update and store
the test information for reuse at a later time.

Regression testing is one kind of testing that is applied at all three levels
of testing. White suggested applying specification based (system) testing
before structure based (unit) testing to get more test case reuse because
system testing cases could be reused in unit testing but the converse is
not true. McCarthy suggested applying regression unit testing first to find
faults early.

6.3.2.5. R egression testing at unit level

Unit testing is the process of testing each software module to ensure that
its performance meets its specifications. Yau and Kishimoto developed a
method based on the input partition strategy. McCarthy provided a way to
automate unit regression testing.

Gupta, Harrold, and Soffa proposed an approach to data flow based
regression testing.

6.3.2.6. R egression testing at integration level

Integration testing is the testing applied when individual modules are
combined to form larger working units until the entire program is cre-
ated. Integration testing detects failures that were not discovered during
unit testing. Integration testing is important because approximately 40% of
software errors can be traced to module integration problems discovered
during integration testing.

Leung and White introduced the firewall concept to regression testing at
the integration level. A firewall is used to separate the set of modules affected

Software-Testing_Final.indb 222 31-01-2018 14:58:06

Reducing the Number of Test Cases • 223

by program changes from the rest of the code. The modules enclosed in the
firewall could be those that interact with the modified modules or those that
are direct ancestors or direct descendants of the modified modules.

The firewall concept is simple and easy to use, especially when the
change to a program is small. By retesting only the modules and interfaces
inside the firewall, the cost of regression integration testing can be reduced.

6.3.2.7. R egression testing at system level

System testing is testing of the entire software system against the system
specifications. It must verify that all system elements have been properly
integrated and perform allocated functions. It can be performed without the
knowledge of the software implementation at all.

Test Tube is a system developed at AT&T Bell laboratories to perform
system level regression testing. Test Tube is an example of a selective retest-
ing technique. Test Tube partitions a software system into basic code enti-
ties, then monitors the execution of a test case, analyzes its relationship with
the system under test, and determines which subset of the code entities the
test covers. There are plans to extend Test Tube to non-deterministic sys-
tems such as real-time telecommunications software.

6.3.2.8. R egression testing of global variables

A global variable is an output parameter in a module where the variable is
defined and an input parameter for a module that uses the variable. The
global variables can be retested at the unit level by running the test that exer-
cise the changed code and the instruction referencing the global variable.

A global variable can be retested at the integration level. If any of its defining
modules have been changed then all of its using modules must be retested. The
regression testing of global variables is very time consuming and, therefore, costly.

6.3.2.9.  Comparison of various regression testing techniques

There are four criteria that form a framework for evaluation of different
selective regression testing techniques. They are discussed below:

1.	 Inclusiveness: It measures the extent to which a technique chooses
tests that will expose faults caused by program changes.

2.	 Precision: It measures the ability of a technique to avoid choosing
tests that will not reveal the faults caused by the changes.

Software-Testing_Final.indb 223 31-01-2018 14:58:06

224 • Software Testing

3.	 Efficiency: It measures the computational cost of a technique.

4.	 Generality: It measures the ability of a technique to handle different
language constructs and testing applications.

6.3.2.10. R egression testing in object-oriented software

Object-oriented concepts such as inheritance and polymorphism present
unique problems in maintenance and, thus, regression testing of object-
oriented programs. Several regression testing techniques have been extended
to retesting of object-oriented software.

Rothermal and Harrold extended the concept of selective regression
testing to object-oriented environments. Their algorithm constructs pro-
gram or class dependence graphs and uses them to determine which test
cases to select. To test a graph, driver programs are developed to invoke the
methods in a class in different sequences. The class dependence graph links
all these driver programs together by selecting one driver as the root of the
graph and adding edges from it to the public methods in the class. Now the
methods can be invoked in different sequences.

Abdullah and White extended the firewall concept to retesting object-
oriented software. A firewall is an imaginary boundary that encloses the
entities that must be retested in a modified program. Unlike the firewall in
a procedure-based program, the firewall in an object-oriented program is
constructed in terms of classes and objects. When a change is made to a class
or an object, the other classes or objects that interact with this changed class
or object must be enclosed in the firewall. Because the relations between
classes and objects are different, there should be different ways to construct
the firewalls for classes and objects.

6.4. � PRIORITIZATION OF TEST CASES FOR
REGRESSION TESTING

Prioritization of tests requires a suitable cost criterion. Please understand
that tests with lower costs are placed at the top while those with higher costs
at the bottom.

What Cost Criterion to Use?

We could use multiple criteria to prioritize tests. Also, note that the tests
being prioritized are the ones selected using some test selection technique.
Thus, each test is expected to traverse at some modified portion of P′.

Software-Testing_Final.indb 224 31-01-2018 14:58:06

Reducing the Number of Test Cases • 225

Prioritization of regression tests offers a tester an opportunity to decide
how many and which tests to run under time constraints. When all tests
cannot be run, one needs to find some criteria to decide when to stop testing.
This decision could depend on a variety of factors such as:

a.		Time constraints

b.		Test criticality

c.		Customer requirements

6.5.  REGRESSION TESTING TECHNIQUE—A CASE STUDY

Regression testing is used to confirm that fixed bugs have been fixed and
that new bugs have not been introduced. How many cycles of regression
testing are required will depend upon the project size. Cycles of regression
testing may be performed once per milestone or once per build. Regression
tests can be automated.

The Regression–Test Process

The regression-test process is shown in Figure 6.6.

FIGURE 6.6

This process assumes that P′ (modified is program) available for regres-
sion testing. There is a long series of tasks that lead to P′ from P.

Test minimization ignores redundant tests. For example, if both t1
and t2, test function, f in P, then one might decide to reject t2 in favor of t1.
The purpose of minimization is to reduce the number of tests to execute for
regression testing.

Test prioritization means prioritizing tests based on some criteria.
A set of prioritized tests becomes useful when only a subset of tests can

Software-Testing_Final.indb 225 31-01-2018 14:58:08

226 • Software Testing

be executed due to resource constraints. Test selection can be achieved by
selecting a few tests from a prioritized list. The possible sequence to execute
these tasks is:

Test setup means the process by which AUT (application under test) is
placed in its intended or simulated environment and is ready to receive data
and output the required information. Test setup becomes more challenging
when we test embedded software like in ATMs, printers, mobiles, etc.

The sequence in which tests are input to an application is an important
issue. Test sequencing is very important for applications that have an inter-
nal state and runs continuously. For example, an online-banking software.

We then execute the test cases. Each test needs verification. This can
also be done automatically with the help of CASE tools. These tools com-
pare the expected and observed outputs. Some of the tools are:

a.		� Test Tube (by AT&T Bell Labs.) in 1994: This tool can do
selective retesting of functions. It supports C.

b.		� Echelon (by Microsoft) in 2002: No selective retesting but does
test prioritization. It uses basic blocks to test. It supports C and
binary languages.

c.		� ATACLx Suds (by Telcordia Technologies) in 1992: It does
selective retesting. It allows test prioritization and minimization. It
does control/data flow average. It also supports C.

6.6.  SLICE-BASED TESTING

Static slicing may lead to an unduly large program slice. So, Korel and Laski
proposed a method for obtaining dynamic slices from program executions.
They used a method to extract executable and smaller slices and to allow

Software-Testing_Final.indb 226 31-01-2018 14:58:11

Reducing the Number of Test Cases • 227

more precise handling of arrays and other structures. So, we discuss dynamic
slicing.

Let “P” be the program under test and “t” be a test case against which P
has been executed. Let “l” be a location in P where variable v is used. Now,
the dynamic slice of P with respect to “t” and “v” is the set of statements in P
that lie in trace (t) and did effect the value of “v” at “l.” So, the dynamic slice
is empty if location “l” was not traversed during this execution. Please note
that the notion of a dynamic slice grew out of that of a static slice based on
program “P” and not on its execution.

Let us solve an example now.

EXAMPLE 6.1. Consider the following program:

1.	 main () {
2.	 int p, q, r, z;
3.	 z = 0;
4.	 read (p, q, r);
5.	 if (p < q)
6.	 z = 1; //modified z
7.	 if (r < 1)
8.	 x = 2
9.	 output (z);
10.	end
11.	}

Test case (t1): <p = 1, q = 3, r = 2>. What will be
the dynamic slice of P with respect to variable “z” at line
9? What will be its static slice? What can you infer? If
t2: <p = 1, q = 0, r = 0> then what will be dynamic and
static slices?

SOLUTION. Let us draw its flow graph first shown in Figure 6.7.

\ Dynamic slice (P) with respect to variable z at line 9 is td = <4, 5, 7, 8>
Static slice, ts = <3, 4, 5, 6, 7, 8>

Dynamic slice for any variable is generally smaller than the corresponding
static slice.

Now, t2: <p = 1, q = 0, r = 0>
\ Its dynamic slice is statements (3, 4, 5) while the static slice does not
change.

NOTE

FIGURE 6.7

Software-Testing_Final.indb 227 31-01-2018 14:58:13

228 • Software Testing

Dynamic slice contains all statements in trace (t) that had an effect on
program output.

Inferences mode:

1.	 A dynamic slice can be constructed based on any program variable
that is used at some location in P, the program that is being modified.

2.	 Some programs may have several locations and variables of interest at
which to compute the dynamic slice, then we need to compute slices
of all such variables at their corresponding locations and then take
union of all slices to create a combined dynamic slice. This approach
is useful for regression testing of relatively small components.

3.	 If a program is large then a tester needs to find out the critical loca-
tions that contain one or more variables of interest. Then, we can
build dynamic slices on these variables.

SUMMARY

Regression testing is used to confirm that fixed bugs have, in fact, been fixed
and that new bugs have not been introduced in the process and that features
that were proven correctly functional are intact. Depending on the size of a
project, cycles of regression testing may be performed once per milestone
or once per build. Some bug regression testing may also be performed dur-
ing each acceptance test cycle, focusing on only the most important bugs.
Regression tests can be automated.

MULTIPLE CHOICE QUESTIONS

1.	 The main guide for selecting test cases is

a.	 To assess risks.

b.	 To assess quality.

c.	 Both (a) and (b)

d.	 None of the above.

NOTE

Software-Testing_Final.indb 228 31-01-2018 14:58:13

Reducing the Number of Test Cases • 229

2.	 Which of the following is not a risk reduction scheme?

a.	 Priority category scheme

b.	 Risk analysis

c.	 Interviewing

d.	 None of the above.

3.	 The potential problems are identified and their probabilities and
impacts are given weights in which technique.

a.	 Priority categorization scheme

b.	 Risk analysis

c.	 Interviews

d.	 None of the above.

4.	 Risk exposure is given by which formula.

a.	 It is the product of probability of occurrence of risk and its impact

b.	 It is the sum of probability of its occurrence and its impact

c.	 It is the standard deviation of the sum of its probability and its
impact

d.	 None of the above.

5.	 A risk matrix

a.	 Allows the testers to evaluate and rank potential problems by
giving weights to proabability or severity value as necessary.

b.	 Allows testers to assign thresholds that classify the potential
problems into priority categories.

c.	 Both (a) and (b).

d.	 None of the above.

6.	 In diagonal band prioritization scheme

a.	 Severity equals probability.

b.	 Severity is never equal to probability.

c.	 Either (a) or (b).

d.	 Both (a) and (b).

Software-Testing_Final.indb 229 31-01-2018 14:58:13

230 • Software Testing

7.	 Some managers found out that

a.	 Probability of risk to occur is very important.

b.	 Problems with high severity must be given top priority.

c.	 Severity of risk is not at all important.

d.	 None of the above.

8.	 Which one of the following is NOT a regression testing strategy?

a.	 Correction regression testing

b.	 Retest-all strategy

c.	 Combinational explosion

d.	 None of the above.

9.	 Which of the following testing strategy is applicable at all three
levels of testing?

a.	 White-box testing

b.	 Mutation testing

c.	 Regression testing

d.	 None of the above.

10.	 What is used to separate a set of modules affected by program
changes from the rest of the code?

a.	 Firewall

b.	 NIC

c.	 Emulator

d.	 None of the above.

ANSWERS

1.  a.   2.  d. 3.  b. 4.  a.

5.  c.   6.  a. 7.  b. 8.  c.

9.  c. 10.  a.

Software-Testing_Final.indb 230 31-01-2018 14:58:13

Reducing the Number of Test Cases • 231

CONCEPTUAL SHORT QUESTIONS WITH ANSWERS

Q. 1.	 Explain the risk reduction method?
Ans.	 �The formula for quantifying risk also explains how to control or

minimize risk. The formula is as follows:

	 	

Loss Due to Risk = �Frequency of Occurrence ×
Loss Per Occurrence

	 	� For example, say ten users a day terminated their business website.
The average customer places $80 orders and thus,

	 	 Loss due to unfriendly website is = 10 * $80 = $800
	 	� Therefore, once the variables and the loss expectation formula have

been defined, controls can then be identified to minimize that risk.
Q. 2.	 �Can you list the most common risk factors for various project types

given below:

a.	 MIT
b.	 Commercial Software Sectors

Ans.	 a.  For MIS Projects
	 	 Risk Factors	 % of Projects at Risk
	 	 1.  Creeping user requirements	 80%
	 	 2.  Excessive schedule pressure	 65%
	 	 3.  Low quality	 60%
	 	 4.  Cost overruns	 55%
	 	 5.  Inadequate configuration control	 50%

	 	 b.  For Commercial Software Sectors
	 	 Risk Factors	 % of Projects at Risk
	 	 1.  Inadequate user documentation	 70%
	 	 2.  Low-user satisfaction	 55%
	 	 3.  Excessive time to market	 50%
	 	 4.  Harmful competitive actions	 45%
	 	 5.  Litigation expense	 30%
Q. 3.	 What is SEI-SRE service?
Ans.	 �The Software Engineering Institute (SEI) defines a Software Risk

Evaluation (SRE) service.
	 	� SRE is a diagnostic and decision-making tool that enables the iden-

tification, analysis, tracking, mitigation, and communications of risks
in software-intensive programs. It is used to identify and categorize

Software-Testing_Final.indb 231 31-01-2018 14:58:13

232 • Software Testing

specific program risks arising from product, process, management,
resources, and constraints.

	 	 An SRE can be used for:

a.	 Preparing for a critical milestone.
b.	 Recovery from crisis.

	 	� An SRE is conducted by a trained SEI-program team. By imple-
menting SRE, the management improves its ability to ensure success
through the creation of a proactive risk management methodology.

Q. 4.	 Why is smoke testing done?
Ans.	 �Smoke testing is an integration testing approach that constructs and

tests software on a daily basis. It consists of:

a.	 Finding out the basic functionality that a product must satisfy.

b.	 Designing test cases to ensure that the basic functionality work
and combining these test cases into a smoke test suite.

c.	 To ensure that everytime a product is built, this suite is run first.

d.	 If this suite fails then escalate to the developers to find out the
changes or to roll back the changes to a state where the smoke
test suite succeeds.

Q. 5.	 �How can regression testing be done at the module level and at the
product level?

Ans.	 a. � At a module level, it may involve retesting module-execution-
paths (MEPs) traversing the modification.

	 b.	 At a product level, this activity may involve retesting functions
that execute the modified area.

	 	� The effectiveness of these strategies is highly dependent on the
utilization of test matrices, which enable identification of coverage
provided by particular test cases.

Software-Testing_Final.indb 232 31-01-2018 14:58:13

Reducing the Number of Test Cases • 233

REVIEW QUESTIONS

1.	 What do you mean by regression testing? Discuss the different types
of regression testing.

2.	 Define and discuss the following:

a.	 Regression testing and how regression test selection is done.

b.	 Selective retest and coverage techniques.

c.	 Minimization and safe techniques.

3.	 Write a short paragraph on regression testing.

4.	 What is regression testing? Discuss the regression test selection
problem.

5.	 What is the importance of regression testing?

6.	 Explain how risks are prioritized.

7.	 How can we reduce the number of test cases?

8.	 See the following priority scheme for test cases:

Priority 0: Test cases that check basic functionality are run for
accepting the build for further testing, and are run when the prod-
uct undergoes a major change. These test cases deliver a very high
project value to development teams and customers.
Priority 1: Uses the basic and normal setup and these test cases
deliver high project value to both development teams and customers.
Priority 2: These test cases deliver moderate project value. They
are executed as part of the testing cycle and selected for regression
testing on a need basis.

Using this scheme of prioritization, prioritize the following test cases
as P0 or P1 or P2:

a.	 A test case for DBMS software that tests all options of a select
query.

b.	 A test case for a file system that checks for deallocation of free
space.

Software-Testing_Final.indb 233 31-01-2018 14:58:13

234 • Software Testing

c.	 A test case that checks the functionality of a router/bridge.

d.	 A test case that tests the 0S boot strap process with normal
parameters.

e.	 A test case that checks a login form of a website.

9.	 Explain in brief the reduction schemes on prioritizing the test cases
to reduce required testing effort? As a tester, how do you evaluate
and rank potential problems? Suggest some guidelines of your own
approach to reduce the number of test cases.

10.	 Explain how risk matrix can be used to prioritize the test cases.
Explain giving an example. Why do we need to prioritize the test
cases?

11.	 a. � What are prioritization categories and guidelines for test case
reduction?

	 b.	What is the need for regression testing? How it is done?

12.	 Suppose your company is about to roll out an e-commerce applica-
tion. It is not possible to test the application on all types of browsers
on all platforms and operating systems. What steps would you take
in the testing environment to reduce the testing process and all pos-
sible risks?

13.	 List and explain prioritization guidelines.

14.	 What is regression testing and the explain different types of regres-
sion testing? Compare various regression testing techniques.

15.	 a. � What is the role of risk matrix for the reduction of test cases?

	 b.	How is risk analysis used in testing? Explain the role of the risk
analysis table in testing.

Software-Testing_Final.indb 234 31-01-2018 14:58:13

C H A P T E R7
Inside this Chapter:

	 7.0.	 Introduction

	 7.1.	 Unit, Integration, System, and Acceptance Testing Relationship

	 7.2.	 Integration Testing

Levels of Testing

7.0.  INTRODUCTION

When we talk of levels of testing, we are actually talking of three levels of testing:
1.	 Unit testing
2.	 Integration testing
3.	 System testing

The three levels of testing are shown in Figure 7.1.

FIGURE 7.1  Levels of Testing.

Generally, system testing is functional rather than structural testing.
We will now study these testing techniques one-by-one.

Software-Testing_Final.indb 235 31-01-2018 14:58:14

236 • Software Testing

7.1. � UNIT, INTEGRATION, SYSTEM, AND ACCEPTANCE
TESTING RELATIONSHIP

We can categorize testing as follows:

FIGURE 7.2

We will explain unit or
module testing next. Consider the
following diagram of unit testing as
shown in Figure 7.3.

Unit (or module) testing “is
the process of taking a module (an
atomic unit) and running it in iso-
lation from the rest of the software
product by using prepared test
cases and comparing the actual
results with the results predicted by the specification and design module.” It
is a white-box testing technique.

Importance of unit testing:
1.	 Because modules are being tested individually, testing becomes

easier.
2.	 It is more exhaustive.
3.	 Interface errors are eliminated.

FIGURE 7.3  Unit Testing.

Software-Testing_Final.indb 236 31-01-2018 14:58:17

Levels of Testing • 237

TEST is one of the CASE tools for unit testing (Parasoft) that automati-
cally tests classes written in MS.NET framework. The tester need not write
a single test or a stub. There are tools which help to organize and execute
test suites at command line, API, or protocol level. Some examples of such
tools are:

S. No. Kind of tool Software description Platforms

1. Deja Gnu testing
framework for
interactive or batch-
oriented applications.

Framework designed
for regression testing
and embedded system
testing.

UNIX machines

2. E-SIM-Embedded
software simulation
and testing
environment.

E-SIM is a native
simulator for
embedded software.

Win 32, Solaris 5,
and LINUX

3. SMARTS-
Automated Test
Management Tool.

It is the software
maintenance and
regression test system.
SMARTs automates
and simplifies testing
process.

Sun OS, Solaris,
MS WINDOWS
95/98/NT/ 2000

7.2.  INTEGRATION TESTING

A system is composed of multiple components or modules that comprise
hardware and software. Integration is defined as the set of interactions
among components. Testing the interaction between the modules and inter-
action with other systems externally is called integration testing.

It is both a type of testing and a phase of testing. The architecture and
design can give the details of interactions within systems; however, testing
the interactions between one system and another system requires a detailed
understanding of how they work together. This knowledge of integration
depends on many modules and systems. These diverse modules could have
different ways of working when integrated with other systems. This intro-
duces complexity in procedures and in what needs to be done recognizing
this complexity, a phase in testing is dedicated to test their interactions,
resulting in the evolution of a process. This ensuing phase is called the
integration testing phase.

Software-Testing_Final.indb 237 31-01-2018 14:58:17

238 • Software Testing

7.2.1.  Classification of Integration Testing

As shown in Figure 7.4 integration testing is classified as follows:

- - -

FIGURE 7.4

We will discuss each of these techniques in the following sections.

7.2.2.  Decomposition-Based Integration

When we talk of decomposition-based integration testing techniques, we
usually talk of the functional decomposition of the system to be tested which
is represented as a tree or in textual form. It is further classified as top-down,
bottom-up, sandwich, and big bang integration strategies. All these integra-
tion orders presume that the units have been separately tested, thus, the goal
of decomposition-based integration is to test the interfaces among separately
tested units.

7.2.2.1. � Types of decomposition-based techniques top-down
integration approach

It begins with the main program, i.e., the root of the tree. Any lower-level
unit that is called by the main program appears as a “stub.” A stub is a piece
of throw-away code that emulates a called unit. Generally, testers have to
develop the stubs and some imagination is required. So, we draw.

Where “M” is the main program and “S”
represents a stub from the figure, we find out
that:

Number of Stubs Required =
(Number of Nodes – 1)

Once all of the stubs for the main
program have been provided, we test the main
program as if it were a standalone unit. FIGURE 7.5  Stubs.

Software-Testing_Final.indb 238 31-01-2018 14:58:20

Levels of Testing • 239

We could apply any of the appropriate functional and structural techniques
and look for faults. When we are convinced that the main program logic
is correct, we gradually replace the stubs with the actual code. Top‑down
integration follows a breadth-first traversal (bfs) of the functional
decomposition tree.

7.2.2.2. B ottom-up integration approach

It is a mirror image to the top-down order with the difference that stubs are
replaced by driver modules that emulate units at the next level up in the
tree. In bottom-up integration, we start with the leaves of the decomposition
tree and test them with specially coded drivers. Less throw-away code exists
in drivers than there is in stubs. Recall that there is one stub for each child
node in the decomposition tree.

Most systems have a fairly high fan-out
near the leaves, so in the bottom-up integra-
tion order, we will not have as many drivers.
This is partially offset by the fact that the
driver modules will be more complicated.
See Figure 7.6

where “D” represents a driver module
and “M” represents other modules.
Number of drivers required = (No. of nodes – No. of leaf nodes)
For Figure 7.6, drivers required = 5 – 4 = 1,
i.e., 1 driver module (D) is required.

7.2.2.3. S andwich integration approach

It is a combination of top-down and bottom-up integration. There will be
less stub and driver development effort. But the problem is in the difficulty
of fault isolation that is a consequence of big bang integration.

Because this technique is the combination of the top-down and
bottom-up integration approaches, it is also called bidirectional integration.
It is performed initially with the use of stubs and drivers. Drivers are used to
provide upstream connectivity while stubs provide downstream connectivity.
A driver is a function which redirects the request to some other component
and stubs simulate the behavior of a missing component. After the function-
ality of these integrated components are tested, the drivers and stubs are
discarded. This technique then focuses on those components which need
focus and are new. This approach is called as sandwich integration.

FIGURE 7.6  Drivers.

Software-Testing_Final.indb 239 31-01-2018 14:58:22

240 • Software Testing

In the product development phase when a transition happens from
two-tier architecture to three-tier architecture, the middle tier gets created as
a set of new components from the code taken from bottom-level applications
and top-level services.

7.2.2.4. B ig-bang integration

Instead of integrating component by component and testing, this approach
waits until all the components arrive and one round of integration testing is
done. This is known as big-bang integration. It reduces testing effort and
removes duplication in testing for the multi-step component integrations.
Big-bang integration is ideal for a product where the interfaces are stable
with fewer number of defects.

7.2.2.5.  Pros and cons of decomposition-based techniques

The decomposition-based approaches are clear (except big-bang integra-
tion). They are built with tested components. Whenever a failure is observed,
the most recently added unit is suspected. Integration testing progress is
easily tracked against the decomposition tree. The top-down and bottom-up
terms suggest breadth-first traversals of the decomposition tree but this is
not mandatory.

One common problem to functional decomposition is that they are
artificial and serve the needs of project management more than the need of
software developers. This holds true also for decomposition-based testing.
The whole mechanism is that units are integrated with respect to structure.
This presumes that correct behavior follows from individually correct units
and correct interfaces.

The development effort for stubs and drivers is another drawback to
these approaches and this is compounded by the retesting effort. We try to
compute the number of integration test sessions for a given decomposition
tree. A test session is defined as one set of tests for a specific configuration
actual code and stubs. Mathematically,

Sessions = Nodes – Leaves + Edges

For example, if a system has 42 integration testing sessions then it means
42 separate sets of integration test cases, which is too high.

Software-Testing_Final.indb 240 31-01-2018 14:58:22

Levels of Testing • 241

7.2.2.6. G uidelines to choose integration method and conclusions

S. No. Factors Suggested method

1. Clear requirements and design. Top-down approach.
2. Dynamically changing requirements,

design, and architecture.
Bottom-up approach.

3. Changing architecture and stable
design.

Sandwich (or bi-directional)
approach.

4. Limited changes to existing
architecture with less impact.

Big-bang method.

5. Combination of above. Select any one after proper analysis.

7.2.3.  Call Graph-Based Integration

One of the drawbacks of decomposition-based integration is that the basis
is the functional decomposition tree. But if we use the call graph-based
technique instead, we can remove this problem. Also, we will move in the
direction of structural testing. Because call graph is a directed graph thus,
we can use it as a program graph also. This leads us to two new approaches
to integration testing which are discussed next.

7.2.3.1.  Pairwise integration

The main idea behind pairwise integration is to eliminate the stub/driver
development effort. Instead of developing stubs and drivers, why not use the
actual code? At first, this sounds like big-bang integration but we restrict a
session to only a pair of units in the call graph. The end result is that we have
one integration test ses-
sion for each edge in the
call graph. This is not
much of a reduction in
sessions from either top-
down or bottom-up but
it is a drastic reduction
in stub/driver develop-
ment. Four pairwise
integration sessions are
shown in Figure 7.7. FIGURE 7.7  Pairwise Integration.

Software-Testing_Final.indb 241 31-01-2018 14:58:24

242 • Software Testing

7.2.3.2. N eighborhood Integration

The neighborhood of a node in a graph is the set of nodes that are one edge
away from the given node. In a directed graph, this includes all of the imme-
diate predecessor nodes and all of the immediate successor nodes. Please
note that these correspond to the set of stubs and drivers of the node.

For example, for node-16, neighborhood nodes are 9, 10, and 12 nodes
as successors and node-1 as predecessor node.

We can always compute the number of neighbors for a given call graph.
Each interior node will have one neighborhood plus one extra in case leaf
nodes are connected directly to the root node.

An interior node has a non-zero in-degree and a non-zero out-degree.

So, we have the following formulas:
1.	 Interior nodes = Nodes – (Source

Nodes + Sink Nodes)
2.	 Neighborhoods = Interior Nodes +

Source Nodes
Substituting 1st equation in 2nd

equation above, we get:

Neighborhoods = Nodes – Sink Nodes

Neighborhood integration yields a
drastic reduction in the number of inte-
gration test sessions. It avoids stub and
driver development. The end result is
that the neighborhoods are essentially the
sandwiches that we slipped past in the
previous section.

7.2.3.3.  Pros and cons

The call graph-based integration techniques move away from a purely
structural basis toward a behavioral basis. These techniques also elimi-
nate the stub/driver development effort. This technique matches well with
the developments characterized by builds. For example, sequences of the
neighborhood can be used to define builds.

NOTE

FIGURE 7.8  �Neighborhood
Integration.

Neighbors of
Node-16

Software-Testing_Final.indb 242 31-01-2018 14:58:25

Levels of Testing • 243

The biggest drawback to call graph-based integration testing is the
fault isolation problem, especially for large neighborhoods. Another prob-
lem occurs when a fault is found in a node (unit) that appears in several
neighborhoods. Obviously, we resolve the fault but this means changing the
unit’s code in some way, which in turn means that all the previously tested
neighborhoods that contain the changed node need to be retested.

7.2.4. P ath-Based Integration with its Pros and Cons

We already know that the combination of structural and functional testing is
highly desirable at the unit level and it would be nice to have a similar capa-
bility for integration and system testing. Our goal for integration testing is:
“Instead of testing interfaces among separately developed and tested units,
we focus on interactions among these units.” Here, cofunctioning might be a
good term. Interfaces are structural whereas interaction is behavioral.

We now discuss some basic terminologies that are used in this technique.

1.	 Statement fragment. It is a complete statement. These are the
nodes in the program graph.

2.	 Source node. A source node in a program is a statement fragment
at which program execution begins or resumes. The first executable
statement in a unit is clearly a source node. Source nodes also occur
immediately after nodes that transfer control to other units.

3.	 Sink node. It is a statement fragment in a unit at which program
execution terminates. The final executable statement in a program
is clearly a sink node, so are the statements that transfer control to
other units.

4.	 Module execution path (MEP). It is a sequence of statements
that begins with a source node and ends with a sink node with no
intervening sink nodes.

5.	 Message. A message is a programming language mechanism by
which one unit transfers control to another unit. Depending on the
programming language, messages can be interpreted as subroutine
invocations, procedure calls, and function references. We follow the
convention that the unit that receives a message always eventually
returns control to the message source. Messages can pass data to
other units.

Software-Testing_Final.indb 243 31-01-2018 14:58:25

244 • Software Testing

6.	 Module-to-module path (MM-path). An MM-path is an inter-
leaved sequence of module execution paths (MEPs) and messages.

7.	 Module-to-module path graph (MM-path graph). Given a set
of units, their MM-path graph is the directed graph in which nodes
are module execution paths and edges correspond to messages and
returns from one unit to another. The effect of these definitions is
that program graphs now have multiple source and sink nodes. This
would increase the complexity of unit testing but the integration
testing presumes unit testing is complete. Also, now our goal is to
have an integration testing analog of DD-paths, as done earlier.

The basic idea of an MM-path is that we can now describe sequences
of module execution paths that include transfers of control among separate
units. These transfers are by messages, therefore, MM-paths always repre-
sent feasible execution paths and these paths cross unit boundaries. We can
find MM-paths in an extended program graph in which nodes are module
execution paths and edges are messages.

Consider a hypothetical example as shown in Figure 7.9.
Herein, module-A calls module-B, which in turn calls module-C. Note

from Figure 7.9 that MM-path begins with and ends in the main program
only. This is true for traditional (or procedural) software.

FIGURE 7.9  MM-Path Across Three Units (A, B, and C).

In module-A, nodes 1 and 5 are source nodes and nodes 4 and 6 are sink
nodes. Similarly, in module-B, nodes 1 and 3 are source nodes and nodes 2

Software-Testing_Final.indb 244 31-01-2018 14:58:27

Levels of Testing • 245

and 4 are sink nodes. Module-C has a single source node 1 and a single sink
node, 5. This can be shown as follows:

Module Source-node Sink-node

A 1, 5 4, 6
B 1, 3 2, 4
C 1 5

So, the seven module execution paths are as follows:

MEP (A, 1) = <1, 2, 3, 6>
MEP (A, 2) = <1, 2, 4>
MEP (A, 3) = <5, 6>
MEP (B, 1) = <1, 2>
MEP (B, 2) = <3, 4>
MEP (C, 1) = <1, 2, 4, 5>
MEP (C, 2) = <1, 3, 4, 5>

These are the module execu-
tion paths. We can now define an
integration testing analog of the
DD-path graph that serves unit
testing so effectively.

Now, its MM-path graph is shown in Figure 7.10.
Herein, the solid arrows indicate messages and the dotted arrows

represent returns.
Also, note that a program path is a sequence of DD-paths and an

MM-path is a sequence of module execution paths.

What Are the Endpoints on MM-Paths?

Two criteria that are observed and are behavioral put endpoints on MM-paths:
1.	 Message quiescence
2.	 Data quiescence
Message quiescence occurs when a unit that sends no messages is

reached. For example, module-C in Figure 7.9.
Data quiescence occurs when a sequence of processing culminates

in the creation of stored data that is not immediately used. This happens
in a data flow diagram. Points of quiescence are natural endpoints for an
MM-path.

FIGURE 7.10  �MM-Path Graph Derived
from Figure 7.9.

Software-Testing_Final.indb 245 31-01-2018 14:58:28

246 • Software Testing

Pros and Cons

1.	 MM-paths are a hybrid of functional (black-box) and structural
(white-box) testing. They are functional because they represent
actions with inputs and outputs. As such, all the functional testing
techniques are potentially applicable. The structural side comes
from how they are identified, particularly the MM-path graph.
The net result is that the cross-check of the functional and struc-
tural approaches is consolidated into the constructs for path-based
integration testing. We therefore avoid the pitfall of structural test-
ing and, at the same time, integration testing gains a fairly seamless
junction with system testing. Path-based integration testing works
equally well for software developed in the traditional waterfall
process or with one of the composition-based alternative life-cycle
models. Later, we will also show that the concepts are equally appli-
cable to object-oriented software testing.

2.	 The most important advantage of path-based integration testing is
that it is closely coupled with the actual system behavior, instead
of the structural motivations of decomposition and call graph-based
integration.

3.	 The disadvantage of this technique is that more effort is needed to
identify the MM-paths. This effort is probably offset by the elimina-
tion of stub and driver development.

7.2.5. S ystem Testing

System testing focuses on a complete, integrated system to evaluate compli-
ance with specified requirements. Tests are made on characteristics that are
only present when the entire system is run.

7.2.5.1. W hat is system testing?

The testing that is conducted on the complete integrated products and
solutions to evaluate system compliance with specified requirements on
functional and non functional aspects is called system testing. It is done after
unit, component, and integration testing phases.

Software-Testing_Final.indb 246 31-01-2018 14:58:28

Levels of Testing • 247

As we already know, a system is defined as a set of hardware, soft-
ware, and other parts that together provide product features and solutions.
In order to test the entire system, it is necessary to understand the product’s
behavior as a whole. System testing brings out issues that are fundamental to
the design, architecture, and code of the whole product.

System-level tests consist of batteries of tests that are designed to fully
exercise a program as a whole and check that all elements of the integrated
system function properly. System-level test suites also validate the useful-
ness of a program and compare end results against requirements.

System testing is the only testing phase that tests both functional and
non functional aspects of the product.

On the functional side, system testing focuses on real-life customer
usage of the product and solutions. It simulates customer deployments. For
a general-purpose product, system testing also means testing it for different
business verticals and applicable domains such as insurance, banking, asset
management, and so on.

On the non-functional side, it brings into consideration different testing
types which are also called quality factors.

7.2.5.2. W hy is system testing done?

System testing is done to:
1.	 Provide independent perspective in testing as the team becomes

more quality centric.
2.	 Bring in customer perspective in testing.
3.	 Provide a “fresh pair of eyes” to discover defects not found earlier

by testing.
4.	 Test product behavior in a holistic, complete, and realistic

environment.
5.	 Test both functional and non functional aspects of the product.
6.	 Build confidence in the product.
7.	 Analyze and reduce the risk of releasing the product.
8.	 Ensure all requirements are met and ready the product for accept-

ance testing.
Explanation: An independent test team normally does system

testing. This independent test team is different from the team that does

Software-Testing_Final.indb 247 31-01-2018 14:58:28

248 • Software Testing

the component and integration testing. The system test team generally
reports to a manager other than the product-manager to avoid conflicts
and to provide freedom to individuals during system testing. Testing the
product with an independent perspective and combining that with the
perspective of the customer makes system testing unique, different, and
effective.

The behavior of the complete product is verified during system testing.
Tests that refer to multiple modules, programs, and functionality are included
in system testing. This task is critical as it is wrong to believe that individually
tested components will work together when they are put together.

System testing is the last chance for the test team to find any leftover
defects before the product is handed over to the customer.

System testing strives to always achieve a balance between the objective
of finding defects and the objective of building confidence in the product
prior to release.

The analysis of defects and their classification into various categories
(called as impact analysis) also gives an idea about the kind of defects that
will be found by the customer after release. If the risk of the customers
getting exposed to the defects is high, then the defects are fixed before the
release or else the product is released as such. This information helps in
planning some activities such as providing workarounds, documentation on
alternative approaches, and so on. Hence, system testing helps in reducing
the risk of releasing a product.

System testing is highly complementary to other phases of testing. The
component and integration test phases are conducted taking inputs from
functional specification and design. The main focus during these testing
phases are technology and product implementation. On the other hand, cus-
tomer scenarios and usage patterns serve as the basis for system testing.

7.2.5.3. F unctional versus non functional system testing (in tabular form)

We are now in a position to state an equation:

System testing = Functional testing + Non functional testing

We first tabulate the differences between functional and non functional
testing in a tabular form.

Software-Testing_Final.indb 248 31-01-2018 14:58:28

Levels of Testing • 249

Functional testing Non functional testing

1. � It involves the product’s
functionality.

1. � It involves the product’s quality
factors.

2. � Failures, here, occur due to code. 2. � Failures occur due to either archi-
tecture, design, or due to code.

3. � It is done during unit, component,
integration, and system testing
phase.

3. � It is done in our system testing
phase.

4. � To do this type of testing only
domain of the product is required.

4. � To do this type of testing, we need
domain, design, architecture, and
product’s knowledge.

5. � Configuration remains same for a
test suite.

5. � Test configuration is different for
each test suite.

Thus, functional testing helps in verifying what the system is supposed
to do. It aids in testing the product’s features or functionality. It has only two
results—requirements met or not met. It should have very clear expected
results documented in terms of the behavior of the product. It has simple
methods and steps to execute the test cases. Functional testing results nor-
mally depend on the product and not on the environment. It uses a pre-
determined set of resources. It requires in-depth customer, product, and
domain knowledge to develop different test cases and find critical defects. It
is performed in all phases of testing, i.e., unit, component, integration, and
system testing.

Non functional testing is performed to verify the quality factors such
as reliability, scalability, etc. These quality factors are also called non
functional requirements. It requires the expected results to be documented
in qualitative and quantifiable terms. It requires a large amount of resources
and the results are different for different configurations and resources. It
is a very complex method as a large amount of data needs to be collected
and analyzed. The focus point is to qualify the product. It is not a defect
finding exercise. Test cases for non functional testing includes a clear pass/
fail criteria.

However, test results are concluded both on pass/fail definitions and on
the experiences encountered in running the tests. Non functional test results
are also determined by the amount of effort involved in executing them and
any problems faced during execution. For example, if a performance test
met the pass/fail criteria after 10 iterations, then the experience is bad and

Software-Testing_Final.indb 249 31-01-2018 14:58:28

250 • Software Testing

the test result cannot be taken as pass. Either the product or the non func-
tional testing process needs to be fixed here.

Non functional testing requires understanding the product behavior,
design, architecture, and also knowing what the competition provides. It also
requires analytical and statistical skills as the large amount of data generated
requires careful analysis. Failures in non functional testing affect the design
and architecture much more than the product code. Because non functional
testing is not repetitive in nature and requires a stable product, it is per-
formed in the system testing phase.

The differences listed in the table above are just the guidelines and not
the dogmatic rules.

Because both functional and non functional aspects are being tested in
the system testing phase so the question that arises is—what is the ratio of
the test-cases or effort required for the mix of these two types of testing? The
answer is here: Because functional testing is a focus area starting from the
unit testing phase while non functional aspects get tested only in the system
testing phase, it is a good idea that a majority of system testing effort be
focused on the non functional aspects. A 70%–30% ratio between non func-
tional and functional testing can be considered good and 50%–50% ratio is
a good starting point. However, this is only a guideline and the right ratio
depends more on the context, type of release, requirements, and products.

7.2.5.4. F unctional system testing techniques

As functional testing is performed at various testing phases, there are two
problems that arise. They are:

1.	 Duplication: It refers to the same tests being performed multiple
times.

2.	 Gray area: It refers to certain tests being missed out in all the
phases.

A small percentage of duplication across phases cannot be avoided as
different teams are involved performing cross-reviews (i.e., involving teams
from earlier phases of testing) and looking at the test cases of the previous
phase before writing system test cases can help in minimizing the duplica-
tion. However, a small percentage of duplication is advisable as then differ-
ent test teams will test the features with different perspectives thus yielding
new defects.

Gray-areas in testing happens due to a lack of product knowledge, lack
of knowledge of customer usage, and lack of coordination across test teams.
These areas (missing of tests) arise when a test team assumes that a particular

Software-Testing_Final.indb 250 31-01-2018 14:58:28

Levels of Testing • 251

test may be performed in the next phase. So, the guideline is—“A test case
moved from a later phase to an earlier phase is a better option than delaying
a test case from an earlier phase to a later phase, as the purpose of testing is
to find defects as early as possible.” This has to be done after completing all
tests meant for the current phase, without diluting the tests of the current
phase.

We are now in a position to discuss various functional system testing
techniques in detail. They are discussed one by one.

7.2.5.4.1.  Design/Architecture verification

We can compare functional testing with integration testing. They are given
in table below:

S. No. Integration testing System testing

1. The test cases are created by
looking at interfaces.

The test cases are created first
and verified with design and
architecture.

2. The integration test cases focus
on interactions between mod-
ules or components.

The functional system test
focuses on the behavior of the
complete product.

In this method of system testing, the test cases are developed and
checked against the design and architecture to see whether they are actual
product-level test cases. This technique helps in validating the product
features that are written based on customer scenarios and verifying them
using product implementation.

If there is a test case that is a customer scenario but failed validation
using this technique, then it is moved to the component or integration test-
ing phase. Because functional testing is performed at various test phases, it is
important to reject the test cases and move them to an earlier phase to catch
defects early and avoid any major surprise at later phases.

We now list certain guidelines that are used to reject test cases for system
functional testing. They are:

1.	 Is this test case focusing on code logic, data structures, and unit of
the product?
If yes, then it belongs to unit testing.

2.	 Is this specified in the functional specification of any component?
If yes, then it belongs to component testing.

Software-Testing_Final.indb 251 31-01-2018 14:58:28

252 • Software Testing

3.	 Is this specified in design and architecture specification for integra-
tion testing?
If yes, then it belongs to integration testing.

4.	 Is it focusing on product implementation but not visible to customers?
If yes, then it is focusing on implementation to be covered in unit/
component/integration testing.

5.	 Is it the right mix of customer usage and product implementation?
If yes, then it belongs to system testing.

7.2.5.4.2.  Business vertical testing (BVT)

Using and testing the product for different business verticals such as bank-
ing, insurance, asset management, etc. and verifying the business operations
and usage is called as business vertical testing. In this type of testing, the
procedure in the product is altered to suit the process in the business. For
example, in personal loan processing, the loan is approved first by the senior
officer and then sent to a clerk. User objects such as a clerk and officer are
created by the product and associated with the operations. This is one way of
customizing the product to suit the business. Some operations that can only
be done by some user objects is called a role-based operation. BVT involves
three aspects. They are:

1.	 Customization
2.	 Terminology
3.	 Syndication

Customization: It is important that the product understands the business
processes and includes customization as a feature so that different business
verticals can use the product. With the help of this feature, a general work-
flow of a system is altered to suit specific business verticals.

Terminology: To explain this concept, we consider a common example of
e-mail. When an e-mail is sent in a loan processing system than it is called
a loan application. An e-mail sent in the insurance context may be called a
claim and so on. The users would be familiar with this terminology rather
than the generic terminology of “e-mail.” So, the user interface should reflect
these terminologies rather than use generic terminology e-mails, which may
dilute the purpose and may not be understood clearly by the users. An e-mail
sent to a blood bank cannot take the same priority as an internal e-mail sent
to an employee by another employee. These differentiations need to be
made. Some e-mails need to be tracked. For example, an e-mail to a blood

Software-Testing_Final.indb 252 31-01-2018 14:58:28

Levels of Testing • 253

bank service needs a prompt reply. Some mail can be given automated mail
replies also. Hence, the terminology feature of the product should call the
e-mail appropriately as a claim or a transaction and also associate the profile
and properties in a way a particular business vertical works.

Syndication: Not all the work needed for business verticals is done by prod-
uct development organizations only. Even the solution integrators, service
providers pay a license fee to a product organization and sell the products
and solutions using their name and image. In this case, the product name,
company name, technology names, and copyrights may belong to the latter
parties or associations and the former would like to change the names in
the product. A product should provide features for those syndications in the
product and they are tested as a part of BVT.

How BVT Can Be Done?

BVT can be done in two ways:

1.	 Simulation
2.	 Replication

Simulation: In simulation of a vertical test, the customer or the tester
assumes requirements and the business flow is tested.

Replication: In replication, customer data and process is obtained and the
product is completely customized, tested, and the customized product as it
was tested is released to the customer.

Business verticals are tested through scenarios. Scenario testing is only a
method to evolve scenarios and ideas and is not meant to be exhaustive.
It is done from interfaces point of view. Having some business vertical
scenarios created by integration testing ensures quick progress in system
testing. In the system testing phase, the business verticals are completely
tested in real-life customer environment using the aspects such as
customization, terminology, and syndication as described above.

7.2.5.4.3.  Deployment testing

System testing is the final phase before the product is delivered to the
customer. The success or failure of a particular product release is assured
on the basis of the how well the customer requirements are met. This type
of deployment (simulated) testing that happens in a product development

NOTES

Software-Testing_Final.indb 253 31-01-2018 14:58:28

254 • Software Testing

company to ensure that customer deployment requirements are met is
called as offsite deployment. Deployment testing is also conducted after
the release of the product by utilizing the resources and setup available in
customer’s locations. This is a combined effort by the product development
organization and the organization trying to use the product. This is called
onsite deployment. Although onsite deployment is not conducted in the
system testing phase, it is the system testing team that completes this test.
Onsite deployment testing is considered to be a part of acceptance testing.

We will now discuss, onsite deployment testing in detail. It is done in
two stages:

	 I.	 The first stage (stage-1)

	 II.	 The second stage (stage-2)

In the first stage (stage-1), the actual data from the live system is
taken and similar machines and configurations are mirrored and the oper-
ations from the user are rerun on the mirrored deployment machine (see
Figure 7.11).

This gives an idea whether the enhanced or similar product can perform
the existing functionality without affecting the user. This also reduces the
risk of a product not being able to satisfy existing functionality, as deploying
the product without adequate testing can cause major business loss to an
organization. Some deployments use “intelligent- recorders” to record the
transactions that happen on a live system and commit these operations on a
mirrored system and then compare the results against the live system. The
objective of the recorder is to help in keeping the mirrored and live system
identical with respect to business transactions.

In the second stage (stage-2) after a successful first stage, the mirrored
system is made a live system that runs the new product (see Figure 7.12).

Regular backups are taken and alternative methods are used to record
the incremental transactions from the time the mirrored system became
alive. The recorder that was used in the first stage can also be used here. In
this stage, the live system that was used earlier and the recorded transactions
from the time mirrored system became live, are preserved to enable going
back to the old system if any major failures are observed at this stage. If no
failures are observed in this (second) stage of deployment for an extended
period (say, 1 month) then the onsite deployment is considered successful
and the old live system is replaced by the new system.

Software-Testing_Final.indb 254 31-01-2018 14:58:28

Levels of Testing • 255

FIGURE 7.11  �Stage-1 of Onsite
Deployment.

FIGURE 7.12  �Stage-2 of the Onsite
Deployment.

Please note that in stage-1, the recorder intercepts the user and the
live system to record all transactions. All the recorded transactions from the
live system are then played back on the product under test under the super-
vision of the test engineer (as shown by dotted lines). In stage-2, the test
engineer records all transactions using a recorder and other methods and
plays back on the old live system (as shown again by dotted lines). So, the
overall stages are:

Live system → Mirrored system → Live system

7.2.5.4.4.  Beta testing

Any project involves a significant amount of effort and time. Customer
dissatisfaction and time slippages are very common.

If a customer rejects a project then it means a huge loss to the
organization. Several reasons have been found for customer dissatisfaction.
Some of them are as follows:

1.	 Implicit requirements like ease of use. If not found in a software
then it may mean rejection by the customer.

2.	 Customer’s requirements keep changing constantly. Require-
ments given at the beginning of the project may become obsolete. A
failure to reflect changes in the product makes it obsolete.

3.	 Finding ambiguous requirements and not resolving them with
the customer results in rejection of the product.

Software-Testing_Final.indb 255 31-01-2018 14:58:32

256 • Software Testing

4.	 Even if understanding of requirements may be correct but their
implementation could be wrong. So, design and code need to be
reworked. If this is not done in time, it results in product rejection.

5.	 Poor documentation and difficulty in using of the product may also
result in rejection.

To reduce risks, which is the objective of system testing, periodic
feedback is obtained on the product. This type of testing in which the
product is sent to the customers to test it and receive the feedback is known
as beta testing.

During beta program (various activities that are planned and executed
according to a specific schedule), some of the activities involved are as
follows:

1.	 Collecting the list of customers and their beta testing requirements
alongwith their expectations on the product.

2.	 Working out a beta program schedule and informing the customers.
3.	 Sending some documents for reading in advance and training the

customer on product usage.
4.	 Testing the product to ensure that it meets “beta testing entry crite-

ria” which is prepared by customers and management groups of the
vendor.

5.	 Sending beta program to the customer and enable them to carry out
their own testing.

6.	 Collecting the feedback periodically from the customers and prior-
itizing the defects for fixing.

7.	 Responding to customer’s feedback with product fixes or documenta-
tion changes and closing the communication loop with the custom-
ers in a timely fashion.

8.	 Analyzing and concluding whether the beta program met the exit
criteria.

9.	 Communicate the progress and action items to customers and for-
mally closing the beta program.

10.	Incorporating the appropriate changes in the product.

Deciding the timing of beta test poses several conflicts. Sending the
product too early, with inadequate internal testing will make the customers
unhappy and may create a bad impression on the quality of the product.

Software-Testing_Final.indb 256 31-01-2018 14:58:32

Levels of Testing • 257

Sending the product too late may mean too little a time for beta defect fixes
and this one defeats the purpose of beta testing. So, late integration testing
phase and early system testing phase is the ideal time for starting a beta
program.

We send the defect fixes to the customers as soon as problems are
reported and all necessary care has to be taken to ensure the fixes meets the
requirements of the customer.

How many beta customers should be chosen?
If the number chosen are too few, then the product may not get a suffi-

cient diversity of test scenarios and test cases.
If too many beta customers are chosen, then the engineering organiza-

tion may not be able to cope with fixing the reported defects in time. Thus,
the number of beta customers should be a delicate balance between pro-
viding a diversity of product usage scenarios and the manageability of being
able to handle their reported defects effectively.

Finally, the success of a beta program depends heavily on the willingness
of the beta customers to exercise the product in various ways.

7.2.5.4.5.  Certification, standards, and testing for compliance

A product needs to be certified with the popular hardware, operating system
(OS), database, and other infrastructure pieces. This is called certification
testing. A product that doesn’t work with any of the popular hardware or
software may be unsuitable for current and future use. The sale of the prod-
uct depends on whether it was certified with the popular systems or not.
Not only should the product co-exist and run with the current versions of
these popular systems, but the product organization should also document
a commitment to continue to work with the future versions of the popular
systems. This is one type of testing where there is equal interest from the
product development organization, the customer, and certification agencies
to certify the product. The certification agencies produce automated test
suites to help the product development organization.

There are many standards for each technology area and the product may
need to conform to those standards. Standards can be like IPv6 in network-
ing and 3G in mobile technology. Tools associated with those open standards
can be used cost free to verify the standard’s implementation. Testing the
product to ensure that these standards are properly implemented is called
testing for standards. Once the product is tested for a set of standards, they
are published in the release documentation for the customer’s information
so that they know what standards are implemented in the product.

Software-Testing_Final.indb 257 31-01-2018 14:58:32

258 • Software Testing

There are many contractual and legal requirements for a product. Failing
to meet these may result in business loss and bring legal action against the
organization and its senior management.

The terms certification, standards, and compliance testing are used
interchangeably. There is nothing wrong in the usage of terms as long as
the objective of testing is met. For example, a certifying agency helping an
organization meet standards can be called both certification testing and stan-
dards testing.

7.2.5.5. N on functional testing techniques

Non functional testing differs from the functional testing in terms of
complexity, knowledge requirement, effort needed, and the number of times
the test cases are repeated. Because repeating non functional test cases
involves more time, effort, and resources, the process for non functional
testing has to be stronger than functional testing to minimize the need for
repetition. This is achieved by having more stringent entry/exit criteria and
better planning.

7.2.5.5.1.  Setting up the configuration

Due to the varied types of customers, resources availability, time involved in
getting the exact setup, and so on setting up a scenario that is exactly real life
is difficult. Due to several complexities involved, simulated setup is used for
non functional testing where actual configuration is difficult to get.

In order to create a “near real-life” environment, the details regarding
customer’s hardware setup, deployment information, and test data are col-
lected in advance. Test data is built based on the sample data given. If it
is a new product then information regarding similar or related products is
collected. These inputs help in setting up the test environment close to the
customer’s so that the various quality characteristics of the system can be
verified more accurately.

7.2.5.5.2.  Coming up with entry/exit criteria

Meeting the entry criteria is the responsibility of the previous test phase,
i.e., integration testing phase or it could be the objective of dry-run tests
performed by the system testing team, before accepting the product for
system testing. The table below gives some examples of how entry/exit

Software-Testing_Final.indb 258 31-01-2018 14:58:32

Levels of Testing • 259

criteria can be developed for a set of parameters and for various types of non
functional tests.

Types of test Parameters Sample entry criteria Sample exit criteria

1. � Scalability Maximum limits Product should scale
up to one million
records or 1000 users.

Product should scale
up to 10 million
records or 5000 users.

2. � Performance
test

� � Response time
� � Throughput
� � Latency

Query for 1000
records should have
a response time less
than 3 seconds.

Query for 10,000
records should have
response time less
than 3 seconds.

3. � Stress System when
stressed beyond
the limits.

25 clients login
should be possible
in a configuration
that can take only
20 clients.

Product should be
able to withstand
100 clients logic
simultaneously.

7.2.5.5.3.  Managing key resources

There are four key resources:

	�	 CPU

	 �	 Disk

	 �	 Memory

	 �	 Network

We need to completely understand their relationship to implement the
non functional testing technique. These four resources need to be judiciously
balanced to enhance the quality factors of the product. All these resources
are interdependent. For example, if the memory requirements in the sys-
tem are addressed, the need for the CPU may become more intensive. The
demand for the resources tends to grow when a new release of the product is
produced as software becomes more and more complex. Software is meant
not only for computers but also for equipment such as cell phones; hence
upgrading the resources is not easy anymore.

Usually, the customers are perplexed when they are told to increase
the number of CPUs, memory, and the network bandwidth for better

FIGURE 7.13

Software-Testing_Final.indb 259 31-01-2018 14:58:33

260 • Software Testing

performance, scalability, and other non functional aspects. When we
ask customers to upgrade the resources one important aspect, i.e., ROI
(return-on-investment), needs to be justified clearly.

Before conducting non functional testing, some assumptions are vali-
dated by the development team and customers. Some of them are given
below:

1.	 When a higher priority job comes in, the CPU must be freed.
2.	 Until a new job requires memory, the available memory can be

completely used.
3.	 If we can justify the benefits for each new resource that is added

then the resources can be added easily to get better performance.
4.	 The product can generate many network packets as long as the net-

work bandwidth and latency is available. Now, most of the packets
generated are for LAN and not for WAN—an assumption. In case
of WAN or routes involving multiple hops, the packets generated by
the product need to be reduced.

5.	 More disk space or the complete I/O bandwidth can be used for
the product as long as they are available while disk costs are getting
cheaper, I/O bandwidth is not.

6.	 The customer gets the maximum return on investment (ROI) only if
the resources such as CPU, disk, memory, and network are optimally
used. So, there is intelligence needed in the software to understand
the server configuration and its usage.

Without these assumptions being validated, there cannot be any good
conclusion that can be made out of non functional testing.

7.2.5.5.4.  Scalability testing

This type of testing is done when stakeholders like business owners and
operations departments want to know whether a system not only meets its
efficiency requirements now but will continue to do so in future.

Please understand that both scalability problems and now scalability
requirements typically arise once a system has become operative. So, it is
done on systems that are in production. Both technical test analyst and test
manager ensure that scalability requirements are captured.

The primary objective is the evaluation of resources like the usage of
memory space, disk capacity, and network bandwidth. For interconnected
systems, it means testing the network’s capacity to handle high data volumes.

Software-Testing_Final.indb 260 31-01-2018 14:58:33

Levels of Testing • 261

For example, a test to find out how many client-nodes can simulta-
neously log into the server. Failures during scalability test includes the
system not responding or system crashing. A product not able to respond
to 100 concurrent users while it is supposed to serve 200 users simultane-
ously is a failure. For a given configuration, the following template may
be used:

Given configuration: RAM (512 MB)
Cache (200 MB)
No. of users: 100
Scalable parameter

No. of
records

Start
time

End
time

Disk
used

CPU
used Memory

Average time
to add record

Server
details

0–10
thousand
records

10–100
thousand
records

This data is collected for several configurations in these templates and
analyzed.

In the above template, if disk utilization approaches 100% then another
server is set up or a new disk is added. If successful, then repeat tests for a
higher number of users but the aim is to find the maximum limit for that
configuration. Increasing resources is not a
silver bullet to achieve better scalability.

During scalability testing, the resources
demand grows exponentially when the
scalability parameter is increased. This
scalability reaches a saturation point beyond
which it cannot be improved. This is called
as the maximum capability of a scalability
parameter.

FIGURE 7.14

Software-Testing_Final.indb 261 31-01-2018 14:58:35

262 • Software Testing

Guidelines for Scalability Testing:
1.	 Scalability should increase by 50% when the number of CPUs is

doubled. This test is applicable for a CPU-intensive product.
2.	 Scalability should increase by 40% when memory is doubled. This

test is applicable for memory intensive product.
3.	 Scalability should increase by 30%. When the number of NIC

(network interface cards) are doubled. This task is useful for
network-intensive products.

4.	 Scalability should increase by 50% when the I/O bandwidth is
doubled. This test is useful for I/O intensive products.

We get a very important deliverable from this scalability testing, i.e., a
sizing guide. It is a document containing timing parameters like OS parame-
ters, other product parameters like number of open files, number of product
threads, etc.

But it is expensive process.

7.2.5.5.5.  Reliability testing

Reliability testing is done to find out if the software will work in the expected
environment for an acceptable amount of time without degradation.

Executing reliability tests involves repeating the test cases for the defined
operational profiles. The tests are executed when specific events occur like:

a.	 Major software releases

b.	 Completion of a time-box (time range)

c.	 At regular time intervals (say, weekly)

The test cases may already be fully specified or the required test data
may be generated dynamically prior to execution. Please understand that
the conditions for the test like test environment and test data should remain
constant during the test. This is done to enable subsequent comparisons
between execution cycles to be made. The achieved levels of reliability are
reported after each test cycle. Tests relating to reliability growth can benefit
from the following tools:

a.	 Tools for test data generation.

b.	 Test execution tools.

c.	 Code coverage tools for fault tolerance testing.

Software-Testing_Final.indb 262 31-01-2018 14:58:35

Levels of Testing • 263

These tools help identify the areas of code not yet exercised after performing
functional tests.

Reliability Testing for our Websites Involves:

	 i. � Establish operational profiles for causal browsers and select
50 functional test cases each from an existing test case database.

	 ii. � Choose 30 test cases at random from this database.

Probability Testing for Robustness Involves:

	 i. � Perform software technical reviews (STRs) of code.

	 ii. � Design negative tests with the help of test analysts.

	 iii. � After delivery of each software release, do exploratory testing, i.e.,
to find defects in handling incorrect or unexpected inputs from the
users.

	 iv.  Memory leak and log-in and log-out operations are tested here.

Reliability Testing for Backup and Recovery Involves:

	 i. � Verifying that a full backup can be restored within one hour of
failure.

	 ii. � Partial backup can be restored with in 30 minutes.

	 iii. � Execute test case and verify that all data inconsistencies can be
fully determined.

It is done to evaluate the product’s ability to perform its required
functions under stated conditions for a specified period of time or for a large
number of iterations. For example, querying a database continuously for
48 hours and performing logic operations 10,000 times.

The reliability of a product should not be confused with reliability testing.

7.2.5.5.6.  Stress testing

Stress testing is done to evaluate a system beyond the limits of specified
requirements or resources to ensure that system does not break. It is done
to find out if the product’s behavior degrades under extreme conditions
and, when it is desired, the necessary resources. The product is over-loaded

NOTE

NOTE

Software-Testing_Final.indb 263 31-01-2018 14:58:35

264 • Software Testing

deliberately to simulate the resource crunch and to find out its behavior. It is
expected to gracefully degrade on increasing the load but the system is not
expected to crash at any point of time during stress testing.

It helps in understanding how the system can behave under extreme and
realistic situations like insufficient memory, inadequate hardware, etc. Sys-
tem resources upon being exhausted may cause such situations. This helps to
know the conditions under which these tests fail so that the maximum limits,
in terms of simultaneous users, search criteria, large number of transactions,
and so on can be known.

Stress testing is a combination of several types of tests like capacity or
volume testing, reliability and stability testing, error handling, and so on.

Spike testing is a special sort of stress testing where an extreme load is
suddenly placed on the system. If spikes are repeated with periods of low
usage then it forms a bounce test. This is shown in Figure 7.15.

Both spike and bounce tests determines how well the system behaves when
sudden changes of loads occur.

Two spikes together form a bounce test scenario. Then, the load increases
into the stress area to find the system limits. These load spikes occur sud-
denly on recovery from a system failure.

There are differences between reliability and stress testing. Reliability
testing is performed by keeping a constant load condition until the test case
is completed. The load is increased only in the next iteration to the test case.

In stress testing, the load is generally increased through various means
such as increasing the number of clients, users, and transactions until and
beyond the resources are completely utilized. When the load keeps on
increasing, the product reaches a stress point when some of the transactions
start failing due to resources not being available. The failure rate may go up
beyond this point. To continue the stress testing, the load is slightly reduced
below this stress point to see whether the product recovers and whether the
failure rate decreases appropriately. This exercise of increasing/decreasing
the load is performed two or three times to check for consistency in behavior
and expectations (see Figure 7.15).

TIPS

NOTE

Software-Testing_Final.indb 264 31-01-2018 14:58:35

Levels of Testing • 265

FIGURE 7.15

Sometimes, the product may not recover immediately when the load is
decreased. There are several reasons for this. Some of the reasons are

1.	 Some transactions may be in the wait queue, delaying the recovery.
2.	 Some rejected transactions may need to be purged, delaying the

recovery.
3.	 Due to failures, some clean-up operations may be needed by the

product, delaying the recovery.
4.	 Certain data structures may have gotten corrupted and may perma-

nently prevent recovery from stress point.
We can show stress testing with variable load in Figure 7.15.
Another factor that differentiates stress testing from reliability testing is

mixed operations/tests. Numerous tests of various types run on the system in
stress testing. However, the tests that are run on the system to create stress
points need to be closer to real-life scenarios.

How to Select Test Cases for Stress Testing?

The following are the guidelines:
1.	 Execute repeated tests to ensure that at all times the code works as

expected.
2.	 The operations that are used by multiple users are selected and per-

formed concurrently for stress testing.

Software-Testing_Final.indb 265 31-01-2018 14:58:36

266 • Software Testing

3.	 The operations that generate the amount of load needed are planned
and executed for stress testing.

4.	 Tests that stress the system with random inputs (like number of
users, size of data, etc.) at random instances and random magnitude
are selected and executed as part of stress testing.

Defects that emerge from stress testing are usually not found from any
other testing. Defects like memory leaks are easy to detect but difficult
to analyze due to varying load and different types/ mix of tests executed.
Hence, stress tests are normally performed after reliability testing. To detect
stress-related errors, tests need to be repeated many times so that resource
usage is maximized and significant errors can be noticed. This testing helps
in finding out concurrency and synchronization issues like deadlocks, thread
leaks, and other synchronization problems.

7.2.5.5.7. Interoperability testing

This type of testing is done to verify if SUT will function correctly in all the
intended target environments. It includes:

a.	 Hardware

b.	 Software

c.	 Middle ware

d.	 OS

e.	 Network configurations

Any software is said to be good interoperable if it can be integrated easily
with other systems without requiring major changes.

The numbers and types of changes required to work in different environ-
ments determines the degree of interoperability of any software.

The degree of interoperability is determined by the use of industry
standards like XML. Please understand that the higher the degree of man-
ual effort required to run on a different supported configuration, the lower
is the interoperability of the software. Also, note that the so-called plug-
and-play devices are good examples of highly interoperable software. This
type of testing is done at the integration level of testing. Effective interop-
erability testing requires effective planning of the test lab, equipment, and

TIPS

Software-Testing_Final.indb 266 31-01-2018 14:58:36

Levels of Testing • 267

configurations. Once the configurations to be tested have been found, some
companies use shot gunning technique. A method to distribute their test
cases across the different configurations.

Select those test cases that provide end-to-end functionality and run them.

Can We Do Test Automations Here?

It is not easy in a multi-configuration environment but it can be done. We
need a good test management system that can easily track the environment
configuration used for test case execution. Let us solve an example now.

Example: The following testings are to be performed. Name the testing
techniques that would be most appropriate for them. They are as follows:

a.	 Testing interfaces between product modules.

b.	 �Testing information exchange between front-end (say, VB 6.0) and
back-end (say, SQL server).

c.	 �Testing product with other infrastructural pieces like OS, database,
network.

d.	 Testing whether the API interfaces work properly.

Answers: These testings belong to:

a.	 Integration testing

b.	 Interoperability testing

c.	 Compatibility testing

d.	 Integration testing

Some guidelines to improve interoperability testing are as follows:

1.	 Consistent information flow across systems.
2.	 �Appropriate messages should be given which the user must be

aware of.
3.	 It is a collective responsibility.
4.	 It should be restricted to qualify the information exchange rather

than finding defects and fixing them one by one.

TIPS

Software-Testing_Final.indb 267 31-01-2018 14:58:36

268 • Software Testing

7.2.5.6. A cceptance testing

It is a phase after system testing that is done by the customers. The customer
defines a set of test cases that will be executed to qualify and accept the
product. These test cases are executed by the customers are normally small
in number. They are not written with the intention of finding defects. Test-
ing in detail is already over in the component, integration, and system test-
ing phases prior to product delivery to the customer. Acceptance test cases
are developed by both customers and the product organization. Acceptance
test cases are black-box type of tests cases. They are written to execute near
real-life scenarios. They are used to verify the functional and non functional
aspects of the system as well. If a product fails the acceptance test then it
may cause the product to be rejected and may mean financial loss or may
mean rework of product involving effort and time.

A user acceptance test is:

	 •	 A chance to complete test software.

	 •	 A chance to completely test business processes.

	 •	 A condensed version of a system.

	 •	 A comparison of actual test results against expected results.

	 •	 A discussion forum to evaluate the process.

The main objectives are as follows:

	 •	 Validate system set-up for transactions and user access.

	 •	 Confirm the use of the system in performing business process.

	 •	 Verify performance on business critical functions.

	 •	 Confirm integrity of converted and additional data.

The project team will be responsible for coordinating the preparation
of all test cases and the acceptance test group will be responsible for the
execution of all test cases.

Software-Testing_Final.indb 268 31-01-2018 14:58:36

Levels of Testing • 269

Next, we discuss the acceptance test checklist. It is shown in the table
below.

Tester Component test
Test complete

(pass/fail)

Tester #1 List browser/platform to use
End-to-end transaction
Verify billing
Verify log files on server
Etc.

Tester #2 List browser/platform to use
End-to-end transaction
Help file
Remove book from shopping cart
Verify that high priority problems found during
prior testing have been properly fixed

Tester #n List browser/platform to be used
Etc.

7.2.5.6.1.  Selecting test cases

The test cases for acceptance testing are selected from the existing set of test
cases from different phases of testing.

Guidelines to Select Test Cases for Acceptance Testing

1.	 Test cases that include the end-to-end functionality of the product
are taken up for acceptance testing. This ensures that all the busi-
ness transactions are completed successfully. Real-life test scenarios
are tested when the product is tested end-to-end.

2.	 Because acceptance tests focus on business scenarios, the product
domain tests are included. Test cases that reflect business domain
knowledge are included.

3.	 Acceptance tests reflect the real-life user scenario verification. As a
result, test cases that portray them are included.

Software-Testing_Final.indb 269 31-01-2018 14:58:36

270 • Software Testing

4.	 Tests that verify the basic existing behavior of the product are
included.

5.	 When the product undergoes modifications or changes, the accept-
ance test cases focus on verifying the new features.

6.	 Some non functional tests are included and executed as part of
acceptance testing.

7.	 Tests that are written to check if the product complies with certain
legal obligations are included in the acceptance test criteria.

8.	 Test cases that make use of customer real-life data are included for
acceptance testing.

7.2.5.6.2.  Executing test cases

Acceptance testing is done by the customer or by the representative of
the customer to check whether the product is ready for use in the real-life
environment.

An acceptance test team usually comprises members who are involved
in the day-to-day activities of the product usage or are familiar with such
scenarios. The product management, support, and consulting teams
contribute to acceptance testing definition and execution. A test team may
be formed with 90% of them possessing the required business process
knowledge of the product and 10% being representatives of the technical
testing team.

Acceptance test team members are not aware of testing. Hence, before
acceptance testing, appropriate training on the product and the process
needs to be provided to the team. The acceptance test team may get the help
of team members who developed/tested the software to obtain the required
product knowledge. Test team members help the acceptance members to
get the required test data, select and identify test cases, and analyze the
acceptance test results. Test teams help the acceptance test team report
defects. If major defects are identified during acceptance testing, then there
is a risk of missing the release date.

All resolution of those defects and the unresolved defects are discussed
with the acceptance test team and their approval is obtained for concluding
the completion of acceptance testing.

Software-Testing_Final.indb 270 31-01-2018 14:58:36

Levels of Testing • 271

7.2.5.6.3.  Types of acceptance testing

There are two types of acceptance tests. They are as follows:

FIGURE 7.16

We shall discuss each of these tests one by one.

I.  Development Acceptance Test

(a)  Release acceptance test (RAT): It is also known as a build accept-
ance or smoke test. It is run on each development release to check that each
build is stable enough for further testing. Typically, this test suite consists of
entrance and exit test cases plus test cases that check mainstream functions
of the program with mainstream data. Copies of RAT can be distributed to
developers so that they can run the tests before submitting builds to the
testing group. If a build does not pass a RAT test, it is reasonable to do the
following:

	 •	� Suspend testing on the new build and resume testing on the prior
build until another build is received.

	 •	 Report the failing criteria to the development team.

	 •	 Request a new build.

(b)  Functional acceptance simple test (FAST): It is run on each devel-
opment release to check that key features of the program are appropriately
accessible and functioning properly on at least one test configuration (pref-
erably minimum or common configuration). This test suite consists of simple
test cases that check the lowest level of functionality for each command—to
ensure that task-oriented functional tests (TOFTs) can be performed on the
program. The objective is to decompose the functionality of a program down

Software-Testing_Final.indb 271 31-01-2018 14:58:38

272 • Software Testing

to the command level and then apply test cases to check that each command
words as intended. No attention is paid to the combination of these basic
commands, the context of the feature that is formed by these combined
commands, or the end result of the overall feature. For example, FAST for
a File/SaveAs menu command checks that the SaveAs dialog box displays.
However, it does not validate that the overall file-saving feature works nor
does it validate the integrity of saved files.

Typically, errors encountered during the execution of FAST are
reported through the standard issue-tracking process. Suspending testing
during FAST is not recommended. Note that it depends on the organization
for which you work. Each might have different rules in terms of which test
cases should belong to RAT versus FAST and when to suspend testing or to
reject a build.

II.  Deployment Acceptance Test

The configurations on which the web system will be deployed will often be
much different from develop-and-test configurations. Testing efforts must
consider this in the preparation and writing of test cases for installation time
acceptance tests. This type of test usually includes the full installation of
the applications to the targeted environment or configurations. Then, FASTs
and TOFTs are executed to validate the system functionality.

7.2.5.6.4.  Acceptance testing for critical applications

In case of critical applications where a current system is going to be replaced
by a new system, it may be prudent to do acceptance testing in three phases:

1.	 Acceptance testing: The usual testing for acceptance.
2.	 Parallel testing: Both the old and the new system are run concur-

rently, i.e., the old one as the main, live system and new one as
the parallel offline system and the results of the two are compared
each day. Once these operations are found to be satisfactory for
a predetermined period of time, switch over is done to the third
phase, i.e., reverse parallel.

3.	 Reverse parallel: We switch the roles in parallel testing. Make the
new system the main, live system and the old system the offline
system. Feed data in both. Compare results each day. When the
results are found to be satisfactory for a predetermined period of
time, discontinue the old system.

Software-Testing_Final.indb 272 31-01-2018 14:58:38

Levels of Testing • 273

7.2.5.7.  Performance testing

The primary goal of performance testing is to develop effective enhance-
ment strategies for mantaining acceptable system performance. It is an
information gathering and analyzing process in which measurement data are
collected to predict when load levels will exhaust system resources.

Performance tests use actual or simulated workload to exhaust system
resources and other related problematic areas, including:

a.	 Memory (physical, virtual, storage, heap, and stack space)

b.	 CPU time

c.	 TCP/IP addresses

d.	 Network bandwidth

e.	 File handles

These tests can also identify system errors, such as:

a.	 Software failures caused by hardware interrupts

b.	 Memory runtime errors like leakage, overwrite, and pointer errors

c.	 Database deadlocks

d.	 Multithreading problems

7.2.5.7.1.  Introduction

In this internet era, when more and more of business is transacted online,
there is a big and understandable expectation that all applications will run as
fast as possible. When applications run fast, a system can fulfill the business
requirements quickly and put it in a position to expand its business. A system
or product that is not able to service business transactions due to its slow
performance is a big loss for the product organization, its customers, and its
customer’s customer. For example, it is estimated that 40% of online mar-
keting for consumer goods in the US happens in November and December.
Slowness or lack of response during this period may result in losses of several
million dollars to organizations.

In another example, when examination results are published on the
Internet, several hundreds of thousands of people access the educational
websites within a very short period. If a given website takes a long time to
complete the request or takes more time to display the pages, it may mean a

Software-Testing_Final.indb 273 31-01-2018 14:58:38

274 • Software Testing

lost business opportunity, as the people may go to other websites to find the
results. Hence, performance is a basic requirement for any product and is
fast becoming a subject of great interest in the testing community.

Performance testing involves an extensive planning effort for the defi-
nition and simulation of workload. It also involves the analysis of collected
data throughout the execution phase. Performance testing considers such
key concerns as:

	 �	� Will the system be able to handle increases in web traffic with-
out compromising system response time, security, reliability, and
accuracy?

	 �	� At what point will the performance degrade and which components
will be responsible for the degradation?

	 �	� What impact will performance degradation have on company sales
and technical support costs?

Each of these preceding concerns requires that measurements be
applied to a model of the system under test. System attributes, such as
response time, can be evaluated as various workload scenarios are applied
to the model. Conclusions can be drawn based on the collected data. For
example, when the number of concurrent users reaches X, the response time
equals Y. Therefore, the system cannot support more than X number of con-
current users. However, the complication is that even when the X number
of concurrent users does not change, the Y value may vary due to differing
user activities. For example, 1000 concurrent users requesting a 2K HTML
page will result in a limited range of response times whereas response times
may vary dramatically if the same 1000 concurrent users simultaneously
submit purchase transactions that require significant server-side processing.
Designing a valid workload model that accurately reflects such real-world
usage is no simple task.

7.2.5.7.2.  Factors governing performance testing

The testing performed to evaluate the response time, throughput, and
utilization of the system, to execute its required functions in comparison
with different versions of the same product(s) or different competitive
product(s) is called performance testing. There are many factors that govern
performance testing:

1.	 Throughput
2.	 Response time

Software-Testing_Final.indb 274 31-01-2018 14:58:38

Levels of Testing • 275

3.	 Latency
4.	 Tuning
5.	 Benchmarking
6.	 Capacity planning

We shall discuss these factors one by one.

1.	 Throughput. The capability of the system or the product in handling
multiple transactions is determined by a factor called throughput.

It represents the number of requests/ business transactions pro-
cessed by the product in a specified time duration. It is very import-
ant to understand that the throughput, i.e., the number of transactions
serviced by the product per unit time varies according to the load the
product is put under. This is shown in Figure 7.17.

FIGURE 7.17  Throughput of a System at Various Loads.

From this graph, it is clear that the load to the product can be
increased by increasing the number of users or by increasing the num-
ber of concurrent operations of the product. Please note that initially
the throughput keeps increasing as the user load increases. This is the
ideal situation for any product and indicates that the product is capable
of delivering more when there are more users trying to use the product.
Beyond certain user load conditions (after the bend), the throughput
comes down. This is the period when the users of the system notice a
lack of satisfactory response and the system starts taking more time to
complete business transactions. The “optimum throughput” is repre-
sented by the saturation point and is one that represents the maximum
throughput for the product.

2.	 Response time. It is defined as the delay between the point of request
and the first response from the product. In a typical client-server

Software-Testing_Final.indb 275 31-01-2018 14:58:39

276 • Software Testing

environment, throughput represents the number of transactions that
can be handled by the server and response time represents the delay
between the request and response.

Also, note that it was mentioned earlier that customers might go
to a different website or application if a particular request takes more
time on this website or application. Hence, measuring response time
becomes an important activity of performance testing.

3.	 Latency. It is defined as the delay caused by the application, operating
system, and by the environment that are calculated separately. In reality,
not all the delay that happens between the request and the response is
caused by the product. In the networking scenario, the network or other
products which are sharing the network resources can cause the delays.
Hence, it is important to know what delay the product causes and what
delay the environment causes.

FIGURE 7.18  Latencies in 3-Tier Architecture.

To understand the latency, let us consider an example of a web
application providing a service by talking to a web server and a database
server connected in the network.

In this case, the latency can be calculated for the product that
is running on the client and for the network that represents the

Software-Testing_Final.indb 276 31-01-2018 14:58:41

Levels of Testing • 277

infrastructure available for the product. Thus, from the figure above,
we can compute both the latency and the response time as follows:

	 Network latency = (N1 + N2 + N3 + N4)
	 Product latency = (A1 + A2 + A3)
	 Actual response time = (Network latency + Product latency)

The discussion about the latency in performance is very important, as
any improvement that is done in the product can only reduce the response
time by the improvements made in A1, A2, and A3. If the network latency
is more relative to the product latency and, if that is affecting the response
time, then there is no point in improving the product performance. In
such a case, it will be worthwhile to improve the network infrastructure.
In those cases where network latency is too large or cannot be improved,
the product can use intelligent approaches of caching and sending multi-
ple requests in one packet and receiving responses as a bunch.

4.	 Tuning. Tuning is procedure by which the product performance is
enhanced by setting different values to the parameters (variables) of
the product, operating system, and other components. Tuning improves
the product performance without having to touch the source code of
the product. Each product may have certain parameters or variables
that can be set at run time to gain optimum performance. The default
values that are assumed by such product parameters may not always give
optimum performance for a particular deployment. This necessitates
the need for changing the values of parameters or variables to suit the
deployment or a particular configuration. During performance testing,
tuning of the parameters is an important activity that needs to be done
before collecting numbers.

5.	 Benchmarking. It is defined as the process of comparing the throughput
and response time of the product to those of the competitive products.
No two products are the same in features, cost, and functionality. Hence,
it is not easy to decide which parameters must be compared across two
products. A careful analysis is needed to chalk out the list of transactions
to be compared across products. This produces meaniningful analysis to
improve the performance of the product with respect to competition.

6.	 Capacity planning. The most important factor that affects performance
testing is the availability of resources. A right kind of hardware and
software configuration is needed to derive the best results from

Software-Testing_Final.indb 277 31-01-2018 14:58:41

278 • Software Testing

performance testing and for deployments. This exercise of finding out
what resources and configurations are needed is called capacity planning.
The purpose of capacity planning is to help customers plan for the set of
hardware and software resources prior to installation or upgrade of the
product. This exercise also sets the expectations on what performance
the customer will get with the available hardware and software resources.

Summary: Performance testing is done to ensure that a product:
1.	 processes the required number of transactions in any given interval

(throughput).
2.	 is available and running under different load conditions (availability).
3.	 responds fast enough for different load conditions (response time).
4.	 delivers worth while ROI for resources—hardware and software.

Also decides what kind of resources are needed for the product for
different load conditions (i.e., capacity planning).

5.	 is comparable to and better than that of the competitors for different
parameters (competitive analysis and benchmarking).

We next consider a simple example to understand how increased traffic
load and consequently, increased response time can result in lost company
revenue.

EXAMPLE 7.1. Suppose your e-commerce site currently handles 300,000
transactions per day. How many transactions are being done per second?
How can performance testing be done?

SOLUTION.	 Transactions per day = 300,000

   \	 Transactions per second = 300,000
24.60.60

	 = 3.47 transactions per second

After conducting a marketing survey, the findings show that:

a.	 �The transaction response time is of an acceptable level as long as it
does not exceed 4 seconds.

b.	 �If the transaction response time is greater than 4 but less than 9 sec-
onds, 30% of users cancel their transactions.

c.	 �If the transaction response time is greater than 8 but less than
10 seconds, 60% of users cancel their transactions.

Software-Testing_Final.indb 278 31-01-2018 14:58:41

Levels of Testing • 279

d.	 �If the transaction response time increases to over 10 seconds, over
90% of users cancel their transactions.

FIGURE 7.19

Suppose in the next 6 months, the number of transactions is expected
to rise between 25% and 75% from the current level and the potential
revenue for each transaction is $1. Management would like to learn how the
performance would impact company revenue as the number of transactions
per day increases.

Refer to Figure 7.19 for detailed analysis of traffic, percentage, and dol-
lar amounts.

A performance test is conducted and the findings show that the sys-
tem cannot handle such increases in traffic without increasing response
time, user transaction cancellations, and/or failure results. If the number of
transactions increases as expected, the company will face a potential revenue
loss of between $112,500 and $472,500 per day.

It takes time, effort, and commitment to plan for and execute perfor-
mance testing. Performance testing involves individuals from many differ-
ent departments. A well planned testing program requires the coordinated
efforts of members of the product team, upper management, marketing,
development, information technology (IT), and testing. Management’s main
objective in performance testing should be to avoid financial losses due to
lost sales, technical support issues, and customer dissatisfaction.

7.2.5.7.3.  Steps of performance testing

A methodology for performance testing involves the following steps:

Step 1. Collecting requirements.
Step 2. Writing test cases.
Step 3. Automating performance test cases.

Software-Testing_Final.indb 279 31-01-2018 14:58:43

280 • Software Testing

Step 4. Executing performance test cases.
Step 5. Analyzing performance test results.
Step 6. Performance tuning.
Step 7. Performance benchmarking.
Step 8. Capacity planning.

We will explain each of these steps one by one.

(I)  Collecting Requirements

Performance testing generally needs elaborate documentation and environ-
ment setup and the expected results may not be well known in advance.

Challenges of Performance Testing

a.	 �A performance testing requirement should be testable. All features/
functionality cannot be performance tested.
For example, a feature involving a manual intervention cannot be
performance tested as the results depend on how fast a user responds
with inputs to the product.

b.	 �A performance testing requirement needs to clearly state what
factors need to be measured and improved.

c.	 �A performance testing requirement needs to be associated with the
actual number or percentage of improvement that is desired.

There are two types of requirements that performance testing focuses on:
1.	 Generic requirements.
2.	 Specific requirements.

1. � Generic requirements are those that are common across all
products in the product domain area. All products in that area are
expected to meet those performance expectations.

Examples are time taken to load a page, initial response when a
mouse is clicked, and time taken to navigate between screens.

Specific requirements are those that depend on implementation
for a particular product and differ from one product to another in a
given domain.

An example is the time taken to withdraw cash from an ATM.
During performance testing both generic and specific require-

ments need to be tested.
See Table in next page for examples of performance test

requirements.

Software-Testing_Final.indb 280 31-01-2018 14:58:43

Levels of Testing • 281

Transaction
Expected

response time
Loading pattern or

throughput
Machine

configuration

1. � ATM cash
withdrawal

2 sec Up to 10,000 simultaneous
access by users

P-IV/512 MB RAM/
broadband network

2. � ATM cash
withdrawal

40 sec Up to 10,000 simultaneous
access by users

P-IV/512 MB RAM/
dial-up network

3. � ATM cash
withdrawal

4 sec More than 10,000 but
below 20,000 simultane-
ous access by users

P-IV/512 MB RAM/
broadband network

A performance test conducted for a product needs to validate this grace-
ful degradation as one of the requirement.

(II)  Writing Test Cases

A test case for performance testing should have the following details defined:
1.	 List of operations or business transactions to be tested.
2.	 Steps for executing those operations/transactions.
3.	 List of product, OS parameters that impact the performance testing

and their values.
4.	 Loading pattern.
5.	 Resources and their configurations (network, hardware, software

configurations).
6.	 The expected results, i.e., expected response time, throughput,

latency.
7.	 The product versions/competitive products to be compared with

related information such as their corresponding fields (Steps 2-6 in
the above list).

Performance test cases are repetitive in nature. These test cases are
normally executed repeatedly for different values of parameters, different
load conditions, different configurations, and so on. Hence, the details of
what tests are to be repeated for what values should be part of the test case
documentation.

While testing the product for different load patterns, it is important to
increase the load or scalability gradually to avoid any unnecessary effort in
case of failures.

For example, if an ATM withdrawal fails for ten concurrent operations,
there is no point in trying it for 10,000 operations. The effort involved in

Software-Testing_Final.indb 281 31-01-2018 14:58:43

282 • Software Testing

testing for 10 concurrent operations may be less than that of testing for
10,000 operations by several times. Hence, a methodical approach is to
gradually improve the concurrent operations by say 10, 100, 1000, 10,000,
and so on rather than trying to attempt 10,000 concurrent operations in the
first iteration itself. The test case documentation should clearly reflect this
approach.

Performance testing is a tedious process involving time and effort. All
test cases of performance testing are assigned different priorities. Higher
priority test cases are to be executed first. Priority may be absolute (given by
customers) or may be relative (given by test team). While executing the test
cases, the absolute and relative priorities are looked at and the test cases are
sequenced accordingly.

(III)  Automating Performance Test Cases

Automation is required for performance testing due to the following char-
acteristics:

1.	 Performance testing is repetitive in nature.
2.	 Performance test cases cannot be effective without automation.
3.	 The results of performance testing need to be accurate. Accuracy will

be less if response-time, throughput, etc. are calculated manually.
4.	 Performance testing involves several factors and their permutations

and combinations. It is not easy to remember all of these and use
them manually during testing.

5.	 Performance testing collects various details like resource utilization,
log files, trace files, and so on at regular intervals. It is not possible to
do book keeping of all this related information manually.

There should not be any hard coded data in automated scripts for
performance testing as it affects the repeatability nature of test cases.

The set up required for the test cases, setting different values to param-
eters, creating different load conditions, setting up and executing the steps
for operations/transactions of competitive products, and so on have to be
included as the part of the automation script.

While automating performance test cases, it is important to use standard
tools and practices. Some of the performance test cases involve comparisons
with the competitive product, so the results need to be consistent, repeatable,
and accurate.

Software-Testing_Final.indb 282 31-01-2018 14:58:43

Levels of Testing • 283

(IV)  Executing Performance Test Cases

Performance testing involves less effort for execution but more effort for
planning, data collection, and analysis. As explained earlier, 100% end-to-
end automation is desirable for performance testing.

During the execution of performance testing, the following data needs
to be collected:

1.	 Start and end time of test case execution.
2.	 Log and trace (or audit) files of the product and OS.
3.	 Utilization of resources like CPU, memory, disk, and network on a

periodic basis.
4.	 Configuration of hardware and software envionmental factors.
5.	 The response time, throughput, latency, etc., as specified in the test

case documentation at regular intervals.
Scenario testing is also done here. A scenario means a set of transac-

tion operations that are usually performed by the user. It is done to ensure
whether the mix of operations/transactions concurrently by different users/
machines meets the performance criteria.

Configuration performance testing is also done to ensure that the
performance of the product is compatible with different hardware. The tests
need to be repeated for different configurations. For a given configuration,
the product has to give the best possible performance and if the configu-
ration is better, it has to get even better. For example, we show a sample
configuration performance test.

TABLE 7.1  Sample Configuration Performance Test.

Transaction No. of users Test environment

Querying ATM account
balance

20 RAM 512 MB, P-IV dual processor,
WIN-NT server (OS)

ATM cash withdrawal 20 RAM 128 MB, P-IV dual processor,
WIN-98 (OS)

ATM user profile query 40 RAM 256 MB, P-IV quad processor,
WIN-2000 (OS)

The performance test case is repeated for each row in this table and
factors such as the response time and throughput are recorded and analyzed.

Software-Testing_Final.indb 283 31-01-2018 14:58:43

284 • Software Testing

After the execution of performance test cases, various data points are
collected and the graphs are plotted. For example, the response time graph
is shown below:

FIGURE 7.20(A)  Response Time.

Similarly, for throughput, we can draw:

FIGURE 7.20(B)  Throughput.

Plotting the data helps in making an easy and quick analysis which is
difficult with only raw data.

(V)  Analyzing the Performance Test Results

It is a multi-dimensional thinking part of performance testing. The product
knowledge, analytical thinking, and statistical background are all absolutely
essential.

Before data analysis, some calculations of data and its organization are
required. They are:

1.	 Calculating the mean of the performance test result data.
2.	 Calculating the standard deviation.

Software-Testing_Final.indb 284 31-01-2018 14:58:46

Levels of Testing • 285

3.	 Removing noise and replotting and recalculating the mean and
standard deviation.
They are explained below:

The performance numbers are to be reproducible for the customers.
To ensure that all performance tests are repeated multiple times,
the average or mean of those values are taken. Thus, the probabil-
ity of performance data for reproducibility at a customer site also
increases for the same configuration and load condition.

The standard deviation represents how much the data varies
from the mean. For example, if the average response time of
100 people withdrawing money from an ATM is 100 seconds and
the standard deviation is 2, then there as a greater chance that this
performance data is repeatable than in a case where the standard
deviation is 30. A standard deviation close to zero means the product
performance is highly repeatable and performance values are con-
sistent. The higher the standard deviation, the more the variability
of the product performance.

When a set of values is plotted on a chart, one or two values that are
out of range may cause the graph to be cluttered and prevent mean-
ingful analysis. Such values can be ignored to produce a smooth
curve/graph. The process of removing some unwanted values in a set is
called noise removal. Because some values are removed from the set,
the mean and standard deviation need to be re-calculated.

Also, note that the majority of client server, Internet, and data-
base applications store data in a local high-speed buffer when a
query is made. This is called caching. The performance data need to
be differentiated according to where the result is coming from—the
server or the cache. So, the data points can be kept as two different
sets—one for the cache and one from the server. This helps in the
extrapolation of performance data. For example, let us assume that
data in a cache can produce a response time of 100 µs and a server
access takes 2 µs and 80% of the time a request is satisfied by the
cache. Then, the average response time is given by

	 = (0.8) * 100 + 0.2 * 2
	 = 80 + 0.4 µs = 80.4 µs

Then, the mean response time is computed as a weighted average rather
than a simple mean.

Other factors such as garbage collection/defragmentation in the memory
of an OS or compiler also affect the performance data.

Software-Testing_Final.indb 285 31-01-2018 14:58:46

286 • Software Testing

(VI)  Performance Tuning

Once the parameters that affect performance testing are minimized, we
can repeat performance test cases to further analyze their effect in getting
better performance. This exercise is known as performance tuning and it
requires skills in identifying such parameters and their contribution to per-
formance and the relationship among these parameters is equally important
for performance tuning.

There are two steps involved here:

Step 1. Tuning the product parameters.
Step 2. Tuning the operating system and parameters.

The first step involves a set of parameters associated with the product
where users of the product can set different values to obtain optimum per-
formance. Some of the factors are:

a.	 Providing a number of forked processes for parallel transactions.

b.	 Caching.

c.	 Disabling low-priority operations.

d.	 Creating background activities.

e.	 Deferring routine checks to a later point of time.

f.	 Changing the sequence or clubbing a set of operations and so on.

Setting different values to these parameters enhances the product
performance.

Some do’s are listed below:
1.	 Repeat the performance tests for different values of each parameter

that impact performance.
2.	 Repeat the performance tests for a group of parameters and their

different values.
3.	 Repeat the performance tests for the default values of all param-

eters. This is called factory settings tests.
4.	 Repeat the performance tests for low and high values of each param-

eter and combinations.
Please note that performance tuning provides better results only for a

particular configuration and for certain transactions. Therefore, tuning may

Software-Testing_Final.indb 286 31-01-2018 14:58:46

Levels of Testing • 287

be counter productive to other situations or scenarios. This side effect of
tuning product parameters needs to be analyzed.

The second step involves the tuning of OS parameters. These parame-
ters can be:

1.	 File system-related parameters like the number of open files allowed.
2.	 Disk management parameters like simultaneous disk reads/writes.
3.	 Memory management parameters like virtual memory page size and

number of pages.
4.	 Processor management parameters like enabling/disabling proces-

sors in a multiprocessor environment.
5.	 Network parameters like setting TCP/IP time out.

Please note that the OS parameters need to be tuned only when the
complete impact is known to all applications running in the machine. They
should be tuned only if they are absolutely necessary.

The results of the performance tuning are published in the form of a
guide called the performance tuning guide for customers so that they can
benefit from this exercise. It explains in detail the effect of each product
and OS parameter on performance. It also gives a set of guideline values for
the combination of parameters and what parameter must be tuned in and in
which situation.

(VII)  Performance Benchmarking

Performance benchmarking is the process of comparing the performance of
product transactions to that of the competitors. No two products can have
the same architecture, design, functionality, and code. Hence, it will be very
difficult to compare two products on those aspects. End-user transactions/
scenarios could be one approach for comparison.

In general, an independent test team or an independent organization
not related to the organizations of the products being compared does per-
formance benchmarking.

The steps involved in performance benchmaking are:
1.	 Identify the transactions/scenarios and the test configuration.
2.	 Compare the performance of different products.
3.	 Tune the parameters.
4.	 Publish the results of performance benchmarking.

Generally, the test cases for all products being compared are executed
in the same test bed. Next step is to compare the results. A well-tuned

Software-Testing_Final.indb 287 31-01-2018 14:58:46

288 • Software Testing

product, X, may be compared with a product B with no parameter tuning to
prove that product A performs better than B. It is important in performance
benchmarking that all products should be tuned to the same degree.

There could be three outcomes from performance benchmarking.
1.	 Positive outcome. A set of transactions/scenarios out-perform with

respect to competition.
2.	 Neutral outcome. A set of transactions are comparable with those

of the competition.
3.	 Negative outcome. A set of transactions under-perform compared

to those of the competition.
Tuning can be repeated for all situations of positive, neutral, and nega-

tive results to derive the best performance results.
The results of performance benchmaking are published. Two types of

publications are involved. They are:

a.	 An internal, confidential publication to product teams containing all
three outcomes given above and the recommended set of actions.

b.	 The positive outcomes are normally published as marketing collateral—
which helps as a sales tool for the product.

Also benchmarks conducted by the independent organizations are pub-
lished as audited benchmarks.

(VIII)  Capacity Planning

The planning of load generation capacity does not stop with the specifica-
tion of required hardware. We should also consider our network’s capacity
to transport a large number of transactions and a huge amount of data. Both
our hardware and network bandwidth must be sufficient. This can cost a
bit more. It is the process in which the performance requirements and the
performance results are taken as input requirements and the configuration
needed to satisfy that set of requirements are derived. Thus, capacity plan-
ning is the reverse process.

It necessitates a clear understanding of the resource requirement for
transactions/scenarios.

Some transactions of the product associated with certain load conditions
could be

a.	 Disk intensive b.	 CPU intensive

c.	 Network intensive d.	 Memory intensive

Software-Testing_Final.indb 288 31-01-2018 14:58:46

Levels of Testing • 289

Some transactions may require a combination of these resources for per-
forming better. This understanding of what resources are needed for each
transaction is a prerequisite for capacity planning.

It is critical to consider some requirements during capacity planning.
The load can be

a.	 Short term, i.e., actual requirements of the customer for immediate
need.

b.	 Medium term, i.e., requirements for the next few months.

c.	 Long-term, i.e., requirements for the next few years.

Capacity planning corresponding to short-, medium-, and long-term
requirements are called

1.	 Minimum required configuration
2.	 Typical configuration
3.	 Special configuration

A minimum-required configuration denotes that with anything less than
this configuration, the product may not even work. Thus, configurations
below the minimum-required configuration are usually not supported.

A typical configuration denotes that under that configuration the product
will work fine for meeting the performance requirements of the required
load pattern and can also handle a slight increase in the load pattern.

A special configuration denotes that capacity planning was done consid-
ering all future requirements.

There are two techniques that play a vital role in capacity planning. They
are as follows:

a.	 Load balancing

b.	 High availability

Load balancing ensures that the multiple machines available are used
equally to service the transactions. This ensures that by adding more
machines more load can be handled by the product. Machine clusters are
used to ensure availability. In a cluster, there are multiple machines with
shared data so that in case one machine goes down, the transactions can be
handled by another machine in the cluster.

Capacity planning is based on the performance test data generated in the
test lab which is only a simulated environment. In real-life deployment, there
could be several other parameters that may impact product performance.

Software-Testing_Final.indb 289 31-01-2018 14:58:46

290 • Software Testing

7.2.5.7.4.  Tools for performance testing

There are two types of tools.

FIGURE 7.21

Functional performance tools help in recording and playing back
the transactions and obtaining performance numbers. This test generally
involves very few machines.

Load testing tools simulate the load condition for performance testing
without having to keep that many users or machines. These tools simplify
the complexities involved in creating the load. This is only a simulated load
and real-life experience may vary from the simulation. Some popular perfor-
mance tools are:

I. � Functional performance tools
•  Win Runner (Mercury-Vendor)
•  QA partner (Compuware-Vendor)
• � Silk Test from Segue.

II. � Load testing tools
•  Load Runner (Mercury-Vender)
•  QA load (Compuware-Vendor)
•  Silk Performer (segue)

These tools can help in getting performance numbers only. The utilization
of resources is an important parameter that needs to be collected. For
example, “windows task manager” and “top in linux” are such tools. Network
performance monitoring tools are available with almost all OS today to collect
network data.

7.2.5.7.5.  Performance testing challenges

1.	 The availability of required skills is one of the major problems facing
performance testing.

2.	 The comparison of functional performance numbers with load
testing numbers becomes difficult as the build used and time-lines
are also different as they were performed in two different phases.

Software-Testing_Final.indb 290 31-01-2018 14:58:47

Levels of Testing • 291

3.	 Performance testing requires a large number and amount of
resources such as hardware, software, effort, time, tools, and people.
This is another challenge.

4.	 It needs to reflect real-life environment and expectations. Adequate
care to create a test bed as close to a customer deployment is another
expectation for performance tests.

5.	 Selecting the right tool for the performance testing is another chal-
lenge. These tools are expensive. They also expect the test engineers
to learn additional meta-languages and scripts.

6.	 Interfacing with different teams that include a set of customers is
another challenge.

7.	 Lack of seriousness on performance tests by the management and
development team is another challenge.

SUMMARY

We can say that we start with unit or module testing. Then we go in for inte-
gration testing, which is then followed by system testing. Then we go in for
acceptance testing and regression testing. Acceptance testing may involve
alpha and beta testing while regression testing is done during maintenance.

System testing can comprise of “n” different tests. That is it could
mean:

1.	 End-to-end integration testing
2.	 User interface testing
3.	 Load testing in terms of

a.	 Volume/size

b.	 Number of simultaneous users

c.	 Transactions per minute/second (TPM/TPS)

4.	 Stress testing
5.	 Testing of availability (24 × 7)

Performance testing is a type of testing that is easy to understand but
difficult to perform due to the amount of information and effort needed.

Software-Testing_Final.indb 291 31-01-2018 14:58:47

292 • Software Testing

MULTIPLE CHOICE QUESTIONS

1.	 Alpha testing involves

a.	 Customers b.	 Testers

c.	 Developers d.	 All of the above.

2.	 Site for alpha testing is

a.	 Software development company

b.	 Installation site

c.	 Anywhere

d.	 None of the above.

3.	 Site of beta testing is

a.	 Software organization b.	 Customer’s site

c.	 Anywhere d.	 All of the above.

4.	 Acceptance testing is done by

a.	 Developers b.	 Customers

c.	 Testers d.	 All of the above.

5.	 Integration testing techniques are

a.	 Top down b.	 Bottom up

c.	 Sandwich d.	 All of the above.

6.	 Top-down approach is used for

a.	 Development b.	 Identification of faults

c.	 Validation d.	 Functional testing

7.	 Which of the following validation activities belong to low-level testing:

a.	 Unit testing b.	 Integration testing

c.	 System testing d.	 Both (a) and (b).

8.	 Testing done to ensure that the software bundles the required volume of
data is called

a.	 Load testing b.	 Volume testing

c.	 Performance testing d.	 Stress testing

Software-Testing_Final.indb 292 31-01-2018 14:58:48

Levels of Testing • 293

9.	 Number of sessions for integration testing is given by

a.	 Sessions = nodes + leaves – edges

b.	 Sessions = nodes – leaves – edges

c.	 Sessions = nodes – leaves + edges

d.	 None of the above.

	 10.	 An MM-path graph refers to

a.	 Module-to-module path graph

b.	 Manager-to-manager path graph

c.	 Many-module path graph

d.	 None of the above.

ANSWERS

1.	 a. 2.	 a. 3.	 b. 4.	 b.

5.	 d. 6.	 b. 7.	 d. 8.	 b.

9.	 c. 10.	 a.

CONCEPTUAL SHORT QUESTIONS WITH ANSWERS

Q. 1.	 �Some scenarios have a low probability but a high potential impact.
How to tackle such scenarios?

Ans.	 �This can be accomplished by adding a weight to each scenario as
follows:

Weight Meaning

+2
+1
+0

Must test, mission/safety critical
Essential functionality, necessary for robust operation
All other scenarios

Software-Testing_Final.indb 293 31-01-2018 14:58:48

294 • Software Testing

Q. 2.	 �How will the operational profile maximize system reliability for a
given testing budget?

Ans.	 �Testing driven by an operational profile is very efficient because
it identifies failures on average, in order of how often they occur.
This approach rapidly increases reliability—reduces failure inten-
sity per unit of execution time because the failures that occur most
frequently are caused by the faulty operations used most frequently.
According to J.D. Musa, users will also detect failures in order of
their frequency, if they have not already been found in the test.

Q. 3.	 What are three general software performance measurements?
Ans.	 �The three general software performance measurements are as follows:

a.	 �Throughput: The number of tasks completed per unit time.
It indicates how much of work has been done in an interval.
It does not indicate what is happening to a single task.

	 	 Example: Transactions per second.

b.	 �Response time: The time elapsed between input arrival and
output delivery. Here, average and worst-case values are of
interest.

	 	 Example: Click to display delay.

c.	 �Utilization: The percentage of time a component is busy. It can
be applied to processor resources like CPU, channels, storage,
or software resources like file-server, transaction dispatcher, etc.

	 	 Example: Server utilization.

Q. 4.	 What do you understand by system testing coverage?
Ans.	 �System testing is requirements driven. The TC coverage metric

reflects the impact of requirements. [IEEE 89a]

FIGURE 7.22

\	 TC =  
Implemented capabilities

Required capabilities
  ×  

Total components tested
Total no. of components

  × 100

Software-Testing_Final.indb 294 31-01-2018 14:58:49

Levels of Testing • 295

Q. 5.	 What sort of verifications are required during system testing?
Ans.	 The following tests are suggested:

a.	 �Conformity test: One of the major tasks during system testing
is to cover all requirements to ensure that all types of system
requirements are exercised to ascertain their conformity.

b.	 �Data coverage test: In this test, we select test data that cover a broad
range of usages. It employs important data values like valid and invalid
data and boundary values to test the requirements in the first step.

Q. 6.	 Compare unit and integration testing in a tabular form.
Ans.    Unit testing Integration testing

1.	 It starts from the module
specification.

2.	 It tests the visibility of code
in detail.

3.	 It requires complex
scaffolding.

4.	 It checks the behavior of
single modules.

1.	 It starts from the interface
specification.

2.	 It tests the visibility of the
integration structure.

3.	 It requires some
scaffolding.

4.	 It checks the integration
among modules.

Q. 7.	 Compare integration and system testing in a tabular form.
Ans.    Integration testing System testing

1.	 It starts from the interface
specification.

2.	 It tests the visibility of the
integration structure.

3.	 It requires some
scaffolding.

4.	 It checks the integration
among modules.

1.	 It starts from the
requirements specification.

2.	 It does not test the visibility
of code.

3.	 It does not require any
scaffolding.

4.	 It checks the system
functionality.

Q. 8.	 �Consider hypothetical “online railway reservation system.” Write
suitable scope statement for the system. Write all assumptions and
identify two test cases for each of the following:

i.	Acceptance testing ii.	GUI testing

iii.	�Usability and
accessibility testing

iv.	�Ad hoc testing

	 	 Document test cases.

Software-Testing_Final.indb 295 31-01-2018 14:58:49

296 • Software Testing

Ans.	 Test cases for online railway reservation system:
	 	� Preconditions: Open web browser and enter URL in the address

bar. Homepage must be displayed.

Test case
ID

Test case
name

Test case
description

Test steps
Actual
result

Test
status
(P/F)Step Expected result

AccTest01 Seat
Availability

Verify
whether the
seats are
available or
not

Enter:
• � Train number

0340
• � Date of journey:

July 11, 2009
• � Source code:

MUM
• � Destination

code; DEL
•  Class: Sleeper
•  Quota: General

Should display
accommodation
availability
enquiry

Enter:
• � Train number: a

@1%
• � Date of journey:

July 11, 2009
• � Source code:

MUM
• � Destination

code: DEL
•  Class: Sleeper
•  Quota: General

Displays the
message: Invalid
train number

Get Fare
details

Verify the
working of
Get Fare

Click on Get Fare
option

System displays
a table of fare
stating base
fare, reservation
charges with class

AccTest0 Reservation Verify
reservation
procedure

If seats are
available click on
Get Availability

System displays
reservation form

Enter passenger
details and train
details

System accepts
the valid details
and displays the
confirmation form

(Continued)

Software-Testing_Final.indb 296 31-01-2018 14:58:49

Levels of Testing • 297

Test case
ID

Test case
name

Test case
description

Test steps
Actual
result

Test
status
(P/F)Step Expected result

GUI01 Verify
aesthetic
conditions

Is the general
screen
background
the correct
color?

Open the browser
and type URL of
the site

Background color
is proper making
foreground
information
visible

Is the screen
resizable and
minimizable?

Open the site,
resize and minimize
the same

System gets
resized and
minimized

GUI02 Verify
validation
condition

Does a failure
of validation
of every
field cause
a sensible
user error
message?

Open Fare Enquiry
for a Train and feed
following details:
Train no. asd

System displays
error message:
Invalid train
number!
Try again!

Usability_
accessibil-

ity01

Verify
Usability

Does the
homepage
load quickly?

Open the browser
and type URL of
the site

System displays
a homepage
quickly

Interactivity To verify
whether
interaction
mechanisms
(pull-down
menus) are
easy to use

Open Fare Enquiry
for a Train and
check different
categories of train
class

Class pull-
down menu
displays various
categories of
class

Usability_
accessibil-

ity01

Navigation Does each
hyperlink
work on each
page?

Open the
homepage and try
the navigations for:
•  Train schedule
•  Trains
•  Fare
•  Seat Availability

System redirects
to respective
pages

Adhoc01 Verify the
functionality

Functionality
of Train
schedule

Open the train
schedule page and
type train number

System displays
the proper
train route
from source to
destination along
with arrival and
departure time

(Continued)

Software-Testing_Final.indb 297 31-01-2018 14:58:49

298 • Software Testing

Test case
ID

Test case
name

Test case
description

Test steps
Actual
result

Test
status
(P/F)Step Expected result

Open the train
schedule page and
type train number
and change in the
train name

System does not
allow the user to
change the train
name

Adhoc02 Navigation Is a
nagivational
bar and link
to home
present
on every
screen?

Open the
homepage and
navigate the system

Navigational bar
and home link is
present on every
screen

Are fonts
too large or
small?

Load the homepage Fonts are proper

REVIEW QUESTIONS

1.	 Differentiate between alpha and beta testing?	

2.	 Explain the following: Unit and Integration testing?

3.	 a. � What would be the test objective for unit testing? What are the quality
measurements to ensure that unit testing is complete?

b.	 Put the following in order and explain in brief:

i.	 System testing

ii.	 Acceptance testing

iii.	 Unit testing

iv.	 Integration testing

4.	 Explain integration and system testing.

5.	 Write a short paragraph on levels of software testing.

Software-Testing_Final.indb 298 31-01-2018 14:58:49

Levels of Testing • 299

6.	 a. � Why is threaded integration considered an incremental testing
technique?

b.	 Given the module order in call graph:
	 A → B, C
	 B → D, E, F
	 C → F, G
	 F → H

		 Give the integration testing order for bottom-up testing.

7.	 Describe all methods of integration testing.	

8.	 What do you mean by “big bang” integration strategy?

9.	 What do you mean by unit testing? Discuss how you would perform unit
testing of a module that implements bounded stack of 100 integers that
you have designed and coded. Assume that the stack functions supported
are push and pop.

10.	 What do you understand by the term integration testing? What are its
different methods? Compare the relative merits and demerits of these
different integration testing strategies.

11.	 What are drivers and stubs? Why are they required?

12.	 Consider a piece of an embedded software that is part of a TV. Which of
the types of system testing discussed would you choose to apply and at
what times?

13.	 Each product has different tuning parameters. For each of the following
cases, identify the important tuning parameters:

a.	 OS (e.g., windows XP)

b.	 Database (e.g., oracle 11i)

c.	 A network card (e.g., a wireless LAN card)

14.	 What are the differences in the requirements gathering for performance
testing and for functional testing like black-box testing? Discuss on the
basis of sources used, methods used, tools used, and skill sets required.

15.	 “Staffing people for performance testing is most difficult.” Justify.

Software-Testing_Final.indb 299 31-01-2018 14:58:49

300 • Software Testing

16.	 a. � Explain how you test the integration of two fragment codes with
suitable examples.

b.	 �What are the various kinds of tests we apply in system testing?
Explain.

17.	 Assume that you have to build the real-time multiperson computer
game. What kinds of testing do you suggest or think are suitable. Give a
brief outline and justification for any four kinds of tests.

18.	 Discuss some methods of integration testing with examples.

19.	 a. � What is the objective of unit and integration testing? Discuss with an
example code fragment.

b.	 �You are a tester for testing a large system. The system data model is
very large with many attributes and there are many interdependencies
within the fields. What steps would you use to test the system and
what are the effects of the steps you have taken on the test plan?

20.	 What is the importance of stubs? Give an example.

21.	 a. � Explain BVT technique.

b.	 �Define MM-path graph. Explain through an example.

c.	 �Give the integration order of a given call graph for bottom-up testing.

d.	 ��Who performs offline deployment testing? At which level of testing it
is done?

e.	 �What is the importance of drivers? Explain through an example.

22.	 Which node is known as the transfer node of a graph?

23.	 a. � Describe all methods of integration testing.

b.	 �Explain different types of acceptance testing.

24.	 Differentiate between integration testing and system testing.

25.	 a. � What are the pros and cons of decomposition based techniques?

b.	 �Explain call graph and path-based integration testing. Write
advantages and disadvantages of them.

c. � Define acceptance testing.

d. � Write a short paragraph on system testing.

Software-Testing_Final.indb 300 31-01-2018 14:58:49

C H A P T E R8
Inside this Chapter:

	 8.0.	 Basic Unit for Testing, Inheritance, and Testing

	 8.1.	 Basic Concepts of State Machines

	 8.2.	 Testing Object-Oriented Systems

	 8.3.	 Heuristics for Class Testing

	 8.4.	 Levels of Object-Oriented Testing

	 8.5.	 Unit Testing a Class

	 8.6.	 Integration Testing of Classes

	 8.7.	 System Testing (with Case Study)

	 8.8.	 Regression and Acceptance Testing

	 8.9.	 Managing the Test Process

8.10.	 Design for Testability (DFT)

8.11.	 GUI Testing

8.12.	 Comparison of Conventional and Object-Oriented Testing

8.13.	 Testing Using Orthogonal Arrays

8.14.	 Test Execution Issues

8.15.	 Case Study—Currency Converter Application

Object-Oriented Testing

The techniques used for testing object-oriented systems are quite similar
to those that have been discussed in previous chapters. The goal is to
provide some test design paradigms that help us to perform Object-Oriented
Testing (OOT).

Software-Testing_Final.indb 301 31-01-2018 14:58:49

302 • Software Testing

Object-oriented software centers on a class (the basic unit) and the
inheritance and encapsulation that affect a class. However, procedural
programming controls the flow between software functions. Testing these
object-oriented features call for new strategies.

8.0. � BASIC UNIT FOR TESTING, INHERITANCE, AND
TESTING

The class is the smallest unit for testing. This is due to the following reasons

a.	 Methods are meaningless apart from their class.

b.	 We can design method tests only if we take a class into consideration.

c.	 Class behavior should be verified before a class is reused or promoted
to a library.

The class clusters are the practical unit for testing. This is due to the follow-
ing reasons:

a.	 It is typically impossible to test a class in total isolation.

b.	 It is not cost effective to develop a complete set of drivers and stubs for
every class.

c.	 A smaller testing budget usually means larger clusters.

We have different types of classes such as application specific, gener-
al-purpose, abstract or parameterized (template) classes. Therefore we need
different test requirements for each class.

What About the Objects?

Testing a class instance (an object) can verify a class in isolation. However,
when untested objects of tested classes are used to create an application
system, the entire system must be tested before these objects can be consid-
ered to be verified.

The major problems that we face during object-oriented testing are:

a.	 Dynamic (or late) binding requires a separate test.

b.	 Complex inheritance structures.

Software-Testing_Final.indb 302 31-01-2018 14:58:49

Object-Oriented Testing • 303

c.	 Interface errors because OO programs typically have many small
components and, therefore, more interfaces.

d.	 Objects preserve state but the state control, i.e., the acceptable sequence
of events, is typically distributed over an entire program. This leads to
state control errors.

e.	 Encapsulation is not a source of errors but may be an obstacle to testing.

So we conclude that we now require developing testable state models
and state-based test suites.

What About Inheritance and Testing?

Weyuker gave some testing axioms that establishes limits on the reusability
of test cases. These axioms are discussed below.

Axiom-1: Antiextensionality. The same function may be computed many
ways, so test cases that cover method A do not necessarily cover method B,
even if A and B are functionally equivalent.
Axiom-2: Antidecomposition. Test cases that cover a client class do not nec-
essarily result in coverage of its server objects.
Axiom-3: Anticomposition. Tests that are individually adequate for each
method in a class are not collectively adequate for the class. The individual
test suites do not guarantee that all the class interactions will be tested.
Axiom-4: General multiple change. Even when two methods have the same
structure (flow graph), test cases that cover method A do not necessarily
cover B.

Let us now consider what these axioms indicate for testing under
inheritance.

Case I: Extension

Suppose we change some methods in class A. Clearly,

�� We need to retest the changed methods.
�� We need to retest interaction among changed and unchanged methods.
�� We need to retest unchanged methods, if data flow exists between state-

ments, in changed and unchanged methods.

But, what about unchanged subclass B, which inherits from A? By anti-
composition:

“The changed methods from A also need to be exercised in the unique context
of the subclass.”

Software-Testing_Final.indb 303 31-01-2018 14:58:49

304 • Software Testing

Now, suppose we add or modify subclass B, without any change to
superclass A. By antidecomposition and anticomposition:

“We need to retest inherited methods, even if they weren’t changed.” For
example, say we develop a class acct, test it and add it to our class library.

FIGURE 8.1  Extension Case.

Here, we will not find the error unless we retest both number (DC) and
the inherited, previously tested, init balance() member functions.

Case II: Overriding

Suppose we add a subclass method B-1 which now overrides superclass
method A-1. The new method should be tested.

Would the superclass test cases for A-1 necessarily provide the same
coverage for the method B-1? The answer is:

a.	 No (by antiextensionality).

b.	 If the data domains and the control paths are only slightly different, the
superclass test cases will probably not provide the same coverage.

This means that additional test cases are needed at each level of the
inheritance hierarchy.

For example, suppose we develop a classes account and cert of deposit,
test them, and then add both to our class library.

Software-Testing_Final.indb 304 31-01-2018 14:58:51

Object-Oriented Testing • 305

FIGURE 8.2

Later, we specialize cert of deposit to have its own rollover (). That is,

FIGURE 8.3  Overriding Case.

It is likely that both the specification and implementation of the new
method will be different, so reusing the test cases for account : : rollover ()
won’t give us the coverage we need.

Software-Testing_Final.indb 305 31-01-2018 14:58:54

306 • Software Testing

SOLVED EXAMPLES

EXAMPLE 8.1. Consider the following code for the shape class hierarchy.

Class Shape {
 private :
 Point reference_point;
 public :
 void put_reference_point (Point);
 point get_reference_point ();
 void move_to (point);
 void erase ();
 virtual void draw () = 0;
 virtual float area ();
 shape (point);
 shape ();
 }
Class triangle : public shape {
 private :
 point vertex 2;
 point vertex 3;
 public :
 point get_vertex1 ();
 point get_vertex2 ();
 point get_vertex3 ();
 void set_vertex1 (point);
 void set_vertex2 (point);
 void set_vertex3 (point);
 void draw ();
 float area ();
 Triangle ();
 Triangle (point, point, point);
}
Class Equi Triangle : Public Triangle
 {
 public
 float area ();

Software-Testing_Final.indb 306 31-01-2018 14:58:54

Object-Oriented Testing • 307

 equi triangle ();
 equi triangle (point, point, point);
 }

What kind of testing is required for this class hierarchy?

SOLUTION. We can use method-specific retesting and test case reuse for
the shape class hierarchy.

Let	 D	=	 denote, develop, and execute test suite
	 R	 =	 Reuse and execute superclass test suite
	 E	 =	 Extend and execute superclass test suite
	 S	 =	 Skip, super’s test adequate
	 N	 =	 Not testable

Then, we get the following table that tells which type of testing is to be
performed.

Method-Specific Test Reuse

The method-specific retesting and test case reuse for the shape class
hierarchy is shown below.

Flattened class
interface

Method type Super Method testing strategy

Shape

put_reference_point Base D

get reference_point Base D

move_to Base D

erase Base D

draw Abstract Base N

area Abstract Base N

Shape () Constructor D

Shape (....) Constructor D

Triangle

put_reference_point Inherited Shape S

get_reference_point Inherited Shape S

(Continued)

Software-Testing_Final.indb 307 31-01-2018 14:58:54

308 • Software Testing

Flattened class
interface

Method type Super Method testing strategy

move_to Inherited Shape S

erase Inherited Shape S

draw Overriding D

area Overriding D

get_vertex1 Specialized D

get_vertex2 Specialized D

get_vertex3 Specialized D

set_vertex1 Specialized D

set_vertex2 Specialized D

set_vertex3 Specialized D

Triangle Constructor D

Triangle (....) Constructor D

Equi-Triangle

put_reference_point Inherited Shape S

get_reference_point Inherited Shape S

move_to Inherited Shape S

erase Inherited Shape S

draw Inherited Triangle R

area Overriding E

get_vertex1 Inherited Triangle S

get_vertex2 Inherited Triangle S

get_vertex3 Inherited Triangle S

set_vertex1 Inherited Triangle S

set_vertex2 Inherited Triangle S

set_vertex3 Inherited Triangle S

Equi-Triangle Constructor D

Equi-Triangle (....) Constructor D

D Develop and execute test suite.	 S Skip, super’s tests adequate.
R Reuse and execute superclass test suite.	 N Not testable.
E Extend and execute superclass test suite.

Software-Testing_Final.indb 308 31-01-2018 14:58:54

Object-Oriented Testing • 309

Method-Specific Test Reuse

Each kind of derivation calls for a different method-specific test strategy.

Pure
extension (5)

Extension Overriding Specialization

Extent of subclass testing None Minimal (2) Full (1) Full
Source of
black-box
tests

Reuse
superclass
method tests?

NA Yes Maybe (4) NA

Develop
new subclass
method tests?

NA Maybe (3) Yes Yes

Source of
white-
box tests

Reuse
superclass
method tests?

NA Yes No NA

Develop
new subclass
method tests?

NA Maybe (3) Yes Yes

NA = Not Applicable

1.	 By antiextensionality (different implementation of the same function
requires different tests).

2.	 By anticomposition (individual method test cases are not sufficient to
test method interactions).

3.	 New test cases are needed when inherited features use any locally
defined features.

4.	 Superclass test cases are reusable only to the extent that the super and
subclass have the same pre- and post-conditions.

5.	 A pure extension subclass is an exception.

�� The subclass consists of entirely new features.
�� There are no interactions between the new and inherited features.

Software-Testing_Final.indb 309 31-01-2018 14:58:54

310 • Software Testing

8.1.  BASIC CONCEPTS OF STATE MACHINES

A state machine is an abstract, formal model of sequential computation.
It is defined as a system whose output is determined by both current and
past input. Although most classes retain some representation of previous
messages, only certain classes are sensitive to the sequence of past message.
A state machine can model the behavior of such classes. They are also called
sequential machines.

State models have many uses in software engineering when sequence is
important. Classes (objects) are readily modeled by state machines. It is the
state of an object that may limit the messages it accepts. It typically deter-
mines its response to messages. The state determined message response pat-
terns are called the behavior of an object. We can easily produce powerful
test suites for behavior verification from a state model of class.

A system is said to exhibit state-based behavior when identical inputs are
not always accepted and when they are accepted may produce different out-
puts. State machines are an engineering application of mathematical models
known as finite automata.

State-Based Behavior

A state machine accepts only certain sequences of input and rejects all
others. Each accepted input/state pair results in a specific output. State-
based behavior means that the same input is not necessarily always accepted
and when accepted, does not necessarily produce the same output.

This simple mechanism can perform very complex control tasks.
Examples of sequentially constrained behavior include:

a.	 GUI interface control in MS-Windows

b.	 Modem controller

c.	 Device drivers with retry, restart, or recovery

d.	 Command syntax parser

e.	 Long-lived database transactions

f.	 Anything designed by a state model

The central idea is that sequence matters. Object behavior can be readily
modeled by a state machine.

A state machine is a model that describes behavior of the system under
test in terms of events (inputs), states, and actions (outputs).

Software-Testing_Final.indb 310 31-01-2018 14:58:54

Object-Oriented Testing • 311

FIGURE 8.4

A state machine has four building blocks:

1.	 State: An abstraction which summarizes the information concerning
past inputs that is needed to determine the behavior of the system on
subsequent inputs.

2.	 Transition: Any allowable change from one state to another.

3.	 Event: An input, an interval of time, or other condition that causes a
transition.

4.	 Action: The result or output that follows a transition.

Its graphic representation is shown in Figure 8.5.

FIGURE 8.5  State Transition Diagrams.

�� A transition takes the system from one state to another state.
�� A transition has a pair of states, the accepting state and the resultant

state.
�� A machine may be in one state at a time.
�� The current state refers to the active state.

Software-Testing_Final.indb 311 31-01-2018 14:58:57

312 • Software Testing

A mechanism of a state machine has several steps. They are as follows:

Step 1.  The machine begins in the initial state.
Step 2.  The machine waits for an event for an indefinite interval.
Step 3.  An event presents itself to the machine.
Step 4.  If the event is not accepted in the current state, it is ignored.
Step 5. � If the event is accepted in the current state, the designated transi-

tion is said to fire. The associated output action (if any) is produced
and the state designated as the resultant state becomes the current
state. The current and the resultant state may be the same.

Step 6. � The cycle is repeated from Step 2 unless the resultant state is the
final state.

UML notations of state-transition diagram (STD) is given next.

It is a graphic representation of a state machine.

�� Nodes represent states.
�� Arrows represent transitions.
�� The annotations on the edge represent events and actions.

FIGURE 8.6  STD of Water Tank System.

A Water-Tank Example—STD

We draw STD of a water tank system with a valve. This valve can be in one
of the two states—shut or open. So, we have the following:

State Tables/State Transition Table

A state to state table shows current state (rows) by next state (columns).
Cells with an event/action pair define transactions. State-transition diagrams
(STDs) are useful with a relatively small number of states (up to 20 states).
For more states, state transition tables are compact and ease systematic
examination.

Software-Testing_Final.indb 312 31-01-2018 14:58:59

Object-Oriented Testing • 313

Properties of Finite State Automata

Some properties of finite automata have practical implications for testing.
They are as follows:

1.	 Any two states are equivalent if all possible event sequences applied to
these states result in identical output action sequences. That is, if we
start in either state and apply all possible combination of events up to
and including those that result in a final state, we cannot tell from which
state we started by comparing output actions.

	 A minimal state machine has no equivalent states. A model with equivalent
states is at best redundant and probably incorrect or incomplete in some
more serious way.

2.	 A state, Si, is reachable from another state, Sj, when a legal event
sequence takes the machine from Si to Sj.

	 When some state is said to be reached without specifying a starting state,
the initial state is assumed.

	 Reachability analysis is concerned with determining which states are
reachable.

	 Non reachable states arise for several reasons:

a.	 Dead state: No other state is reachable from it.

b.	 Dead loop: No state outside of the loop may be reached.

c.	 Magic state: It has no inbound transition but provides transition to
other states. It is an extra initial state.

3.	 A dead state/loop is appropriate in some rare cases but generally is an
error.

4.	 A magic state is always an error.

Mealy/Moore Machines

There are two main variants of state models (named for their developers).

Moore Machine:

�� Transitions do not have output.
�� An output action is associated with each state. States are active.

Software-Testing_Final.indb 313 31-01-2018 14:58:59

314 • Software Testing

Mealy Machine:

�� Transitions have output.
�� No output action is associated with state. States are passive.
�� In software engineering models, the output action often represents the

activation of a process, program, method, or module.

Although the Mealy and Moore models are mathematically equivalent,
the Mealy type is preferred for software engineering.

A passive state can be precisely defined by its variables. When the same
output action is associated with several transitions, the Mealy machine pro-
vides a more compact representation.

Conditional/Guarded Transitions

Basic state models do not represent conditional transitions. This is remedied
by allowing a Boolean conditions on event or state variables.

Consider a state model for stack class. It has three states: empty, loaded,
and full.

We first draw the state machine model for a STACK class, without
guarded transitions. The initial state is “Empty.”

What is a guard? It is a predicate expression associated with an event.
Now, we draw another state machine model for STACK class, with guarded
transitions.

FIGURE 8.7  State Model of a Stack Without Guards.

Software-Testing_Final.indb 314 31-01-2018 14:59:00

Object-Oriented Testing • 315

FIGURE 8.8  State Machine Model of Stack With Guards.

Conditions/guards are Boolean expressions on:

a.	 Variables of the class under test.

b.	 Parameters of the messages sent to the class under test.

There are two kinds of conditions:

a.	 Acceptance conditions specify the conditions under which a message is
accepted.

b.	 Resultant conditions specify the conditions under which one of the
several possible states may result from the same message.

EXAMPLE 8.2. Draw a state model of a two-player volley ball game.

SOLUTION.

�� The game starts.
�� The player who presses the start button first gets the first serve. The

button press is modeled as the player-1 start and player-2 start events.
�� The current player serves and a volley follows. One of three things end

the volley.
�� If the server misses the ball, the server’s opponent becomes the server.
�� If the server’s opponent misses the ball, the server’s score is incremented

and gets another chance.
�� If the server’s opponent misses the ball and the server’s score is at the

game point, the server is declared winner.

Software-Testing_Final.indb 315 31-01-2018 14:59:02

316 • Software Testing

FIGURE 8.9

Here, 20 is the game point, so a score of 21 wins.

Design Guidelines–Basic Requirements

1.	 One state must be designated as the initial state.

2.	 At least, one state must be designated as the final state. If not, assumptions
about termination should be made explicit.

3.	 There are no equivalent states. (Equivalent states produce exactly the
same response for all events visible to the machine in question.)

4.	 Every defined event and every defined action must appear in at least one
transition.

5.	 There should be an explicit definition of the mechanism to handle events
which are implicitly rejected.

Limitations of the Basic State Models

1.	 State diagrams can be easily drawn or read up to 20 states. Tabular
representation helps but is not suitable for large states.

2.	 Concurrency cannot be modeled. Only a single state may be active, so the
basic model cannot accommodate two or more simultaneous transition
processes. Only one state may be designated as the current state. For
example, tasks running on separate computers in a client/server systems.

Software-Testing_Final.indb 316 31-01-2018 14:59:03

Object-Oriented Testing • 317

3.	 With even a moderately large number of states, a state diagram becomes
a spaghetti ball.

4.	 Basic models do not offer any mechanisms for partitioning or hierarchic
abstraction.

Statecharts extend the basic model to remove these deficiencies.

What Are Statecharts?

Statecharts use a graphic shorthand to avoid enumeration of all states. They
overcome the basic machine’s scalability and concurrency limitations.

Properties of Statecharts

1.	 They use two types of state: group and basic.

2.	 Hierarchy is based on a set-theoretic for malism (hypergraphs).

3.	 Easy to represent concurrent or parallel states and processes.

Therefore, we can say that:

Statecharts = State diagram
	 +
	 Depth
	 +
	 Orthogonality
	 +
	 Broadcast Communication

A basic state model and its equivalent statechart are shown below:

(a () b)

FIGURE 8.10

Software-Testing_Final.indb 317 31-01-2018 14:59:06

318 • Software Testing

We have already discussed the STD. We now discuss its equivalent, statechart.
In the Figure 8.10(b), we observe the following:

1.	 State D is a super state. It groups states A and C because they share
common transitions.

2.	 State A is the initial state.

3.	 Event f fires the transition AB or CB, depending on which state is active.

4.	 Event g fires AC but only if C is true (a conditional event).

5.	 Event h fires BC because C is marked as the default state.

6.	 The unlabelled transition inside of state D indicates that C is the default
state of D.

Statecharts can represent hierarchies of single-thread or concurrent state
machines.

�� Any state may contain substates.
�� The substate diagram may be shown on a separate sheet.
�� Decomposition rules are similar to those used for data flow diagrams

(DFD). Orthogonal superstates can represent several situations.
�� The interaction among states of separate classes (objects).
�� The non interaction among states of separate processes which

proceed independently. For example, “concurrent,” “parallel,”
“multi-thread,” or “asynchronous” execution.

Statecharts have been adapted for use in many OOA/OOD methodologies
including:

�� Booch OOD
�� Object modelling technique (OMT)
�� Object behavior analysis (OBA)
�� Fusion
�� Real-time object-oriented modeling (ROOM)

EXAMPLE 8.3. Consider a traffic light control system. The traffic light has
five states—red, yellow, green, flashing red, and OFF. The event, “power
on,” starts the system but does not turn on a light. The system does a self test
and if no faults are recognized, the no fault condition becomes true. When a
reset event occurs and the no fault condition holds, the red on event is gen-
erated. If a fault is raised in any state, the system raises a “Fault” event and
returns to the off state. Draw its

a.	 State transition diagram.

b.	 State chart.

Software-Testing_Final.indb 318 31-01-2018 14:59:06

Object-Oriented Testing • 319

SOLUTION. (a) We first draw its state transition diagram (STD) shown in
Figure 8.11.

The unlabeled transition inside the cycling state shows that red is the
default state of cycling.

An aggregration of states is a superstate and the model within an aggre-
gation is a process. The entire model is also a process, corresponding to the
entire system under study.

The traffic light model has three processes: the traffic light system, the
on process, and the cycling process.

The state enclosed in the undivided box are mutually exclusive indicat-
ing that the system may be in exactly one of these states at a time. This is
called XOR decomposition.

The two superstates “on” and “cycling” show how transitions are
simplified.

FIGURE 8.11  STD for Traffic Light.

�� Superstate “on” means the system is either cycling or flashing red.
�� Superstate cycling groups are the state red, yellow, and green because

they share common transitions.
�� Off is the initial state, reached by the power on event.
�� The event flashing red on fires the transition red-flashing red on, yellow-

flashing red on, or green-flashing red on depending on which state is
active.

�� The event reset fires off-on, but only if no fault is true. This is a guarded
transition.

Software-Testing_Final.indb 319 31-01-2018 14:59:07

320 • Software Testing

�� The event reset fires off-red on because red on is marked as the only
default state with both superstates on and cycling.

�� In a state chart, a state may be an aggregate of other states (a superstate)
or an atomic state.

�� In the basic state model, one transition arrow must exist for each transi-
tion having the same event, the same resultant state but different accept-
ing states. This may be represented in a statechart with a single transition
from a superstate.

Figure 8.12 shows the statechart for the traffic light system.

FIGURE 8.12  Statechart for the Traffic Light.

Concurrent states are represented by divided superstates. This is called
AND decomposition. That is, one state or superstate in each partition is
active.

EXAMPLE 8.4. Consider the behavior of two automotive control systems:
Crusive control and antilock brake control. These systems share a common
event (brake applied) but are otherwise independent. Draw its statechart.

Software-Testing_Final.indb 320 31-01-2018 14:59:09

Object-Oriented Testing • 321

SOLUTION. Please note the following points here.

�� To be in the moving state means that both substates cruise control and
antilock brake control are active.

�� The substates of cruise control (off, suspended, and active) are mutually
exclusive as are the substates of antilock brake control (free wheeling,
braking, and modulating).

Multiple transitions are used to model constructor behavior. Subclass con-
structors typically percolate up the hierarchy so a complete flattened model
must show the chain of events that happens upon construction of a subclass.

Concatenation

Concatenation involves the formation of a subclass that has no locally defined
features other than the minimum requirement of a class definition.

State Space

A subclass state space results from the two factors:

FIGURE 8.13

a.	 The superclass state space is inherited to the extent that superclass
instance variables are visible.

b.	 The subclass adds state space dimensions to the extent that it defines or
overrides instance variables.

Software-Testing_Final.indb 321 31-01-2018 14:59:10

322 • Software Testing

For a subclass to be well-formed and testable:

a.	 Orthogonal composition: Each subclass inherits all of the non private
(public) superclass features without redefinition and redefines some new
local features. Subclass extensions must be orthogonal. The inherited
state space must not be spindled, folded, or mutilated by the extensions.

b.	 The inherited state space must be the same or smaller. The subclass
should not redefine inherited instance variables in any other way.

c.	 Superclass private variables must be orthogonal in the state space
formed by inheritable variables. In other words, the effect of superclass
private variables on the superclass state space must be additive.

Class hierarchies that do not meet these conditions are very likely to be
buggy.

How State Machines Fail?

i.	 State machines fail due to control faults like:

a.	 A missing or incorrect transition (the resultant state is incorrect).

b.	 A missing or incorrect event (a valid message is ignored).

c.	 A missing or incorrect action.

d.	 An extra, missing, or corrupt state (behavior becomes
unpredicatable).

e.	 A sneak path (a message is accepted when it should not be).

f.	 An illegal message failure (an unexpected message causes a
failure).

g.	 A trap door (the implementation accepts undefined messages).

Missing transition:

FIGURE 8.14

Player-2 loses the volley but continues as server.

TIPS

Software-Testing_Final.indb 322 31-01-2018 14:59:12

Object-Oriented Testing • 323

Incorrect transition/resultant state: After player-2 missed, the game
resets.

FIGURE 8.15

Missing action:

FIGURE 8.16

No volley is generated. System will wait indefinitely.

ii.	 State machines fail due to an incorrect actions like:

a.	 Sneak path

b.	 Corrupt state

c.	 Illegal message failure

d.	 Trap doors

Sneak path: The implementation accepts an event that is illegal or
unspecified for a state. For example, when player-2 is serving, player-2 can
win if his or her start button is pressed.

Software-Testing_Final.indb 323 31-01-2018 14:59:15

324 • Software Testing

Corrupt state: The implementation computes a state that is not valid.
Player-1 is serving at game point and player-2 misses, the game crashes

and cannot be restarted.

FIGURE 8.17

Illegal message failure: The implementation fails to handle an illegal
message correctly. Incorrect output is produced, the state is computed or
both.

For example, if player-1 presses the player select button after serving,
the game crashes and can’t be restarted.

Trap door: The implementation accepts an event that is not defined in
the specification. For example, when player-1 is serving, player-1 can win
any time by pressing the scroll lock key. A trapdoor can result from:

1.	 Obsolete features that were not removed when a class was revised.

2.	 Inherited features that are inconsistent with the requirements of a
subclass.

3.	 Undocumented features added by the developer for debugging purposes.

EXAMPLE 8.5. Consider a class TwoPlayerGame. This class acts as a base
class. The class ThreePlayerGame is derived from this class. Draw its class
hierarchy and statecharts at class scope. Also, draw its flattened transition
diagram for ThreePlayerGame.

SOLUTION. We draw its class hierarchy first. This diagram is known as a
class diagram. Both of them are shown in Figure 8.18. Its flattened diagram
is shown in Figure 8.19.

Software-Testing_Final.indb 324 31-01-2018 14:59:16

Object-Oriented Testing • 325

FIGURE 8.18  ThreePlayerGame Class Hierarchy and Statecharts at Class Scope.

Software-Testing_Final.indb 325 31-01-2018 14:59:18

326 • Software Testing

FIGURE 8.19  Flattened Transition Diagram, Three Player Game.

EXAMPLE 8.6. Write an algorithm that produces a transition tree from a
state transition diagram (STD). Draw a transition tree for three player game.

SOLUTION.

1.	 The intial state is the root node of the tree.

2.	 Examine the state that corresponds to each non terminal leaf node in the
three and each outbound transition on this state. At least one new edge
will be drawn for each transition. Each new edge and node represents an
event and resultant state reached by an outbound transition.

a.	 If the transition is unguarded, draw one new branch.

b.	 If the transition guard is a simple predicate or a complex predicate
composed of only AND operators, draw one new branch.

c.	 If the transition guard is a complex predicate using one or more OR
operators, draw a new branch for each truth value combination that
is sufficient to make the guard TRUE.

Software-Testing_Final.indb 326 31-01-2018 14:59:19

Object-Oriented Testing • 327

3.	 For each edge and node drawn in Step 2:

a.	 Note the corresponding transition event, guard, and action on the
new branch.

b.	 If the state that the new node represents is already represented by
another node (anywhere in the diagram) or is a final state, mark this
node as terminal because no more transitions are drawn from this node.

4.	 Repeat Steps 2 and 3 until all leaf nodes are marked terminal.

FIGURE 8.20  Transition Tree for ThreePlayerGame.

Software-Testing_Final.indb 327 31-01-2018 14:59:21

328 • Software Testing

EXAMPLE 8.7. For a three player game, what conformance test suite will
you form? Derive the test cases.

SOLUTION.

TABLE 8.1  Conformance Test Suite for Three Player Game.

TCID
Test case input Expected result

Event Test condition Active State
1.1 Three Player

Game
Game Started

1.2 p1_start simulateVolley Player 1 Served
1.3 p2_WinsVolley simulateVolley Player 2 Served
2.1 Three Player

Game
Game Started

2.2 p1_start simulateVolley Player 1 Served
2.3 p3_WinsVolley simulateVolley Player 3 Served
3.1 Three Player

Game
Game Started

3.2 p1_start simulateVolley Player 1 Served
3.3 Player 1 Served
3.4 p1_WinsVolley p1_Score = = 20 Player 1 Won
3.5 dtor omega
4.1 Three Player

Game
Game Started

4.2 p1_start simulateVolley Player 1 Served
4.3 Player 1 Served
4.4 p1_WinsVolley p1_Score = = 20 Player 1 Won
4.5 p1_IsWinner return TRUE Player 1 Won
5.1 Three Player

Game
Game Started

5.2 p1_start simulateVolley Player 1 Served
5.3 Player 1 Served
5.4 p1_WinsVolley p1_Score = = 19 simulateVolley Player 1 Served
6.1 Three Player

Game
Game Started

(Continued)

Software-Testing_Final.indb 328 31-01-2018 14:59:21

Object-Oriented Testing • 329

TCID
Test case input Expected result

Event Test condition Active State
6.2 p2_start simulateVolley Player 2 Served
6.3 Player 2 Served
6.4 p2_WinsVolley p2_Score = = 19 simulateVolley Player 2 Served
7.1 Three Player

Game
Game Started

7.2 p2_start simulateVolley Player 2 Served
7.3 p3_WinsVolley simulateVolley Player 3 Served
8.1 Three Player

Game
Game Started

8.2 p2_start simulateVolley Player 2 Served
8.3 Player 2 Served
8.4 p2_WinsVolley p2_Score = = 20 Player 2 Won
8.5 dtor omega
9.1 Three Player

Game
Game Started

9.2 p2_start simulateVolley Player 2 Served
9.3 Player 2 Served
9.4 p2_WinsVolley p2_Score = = 20 Player 2 Won
9.5 p2_IsWinner return TRUE Player 2 Won
10.1 Three Player

Game
Game Started

10.2 p2_start simulateVolley Player 2 Served
10.3 p2_WinsVolley simulateVolley Player 1 Served
11.1 Three Player

Game
Player 3 Served

11.2 p3_start simulateVolley Player 3 Served
11.4 p3_WinsVolley p3_Score = = 19 simulateVolley Player 3 Served
12.1 Three Player

Game
Game Started

12.2 p3_start simulateVolley Player 3 Served
12.3 Player 3 Served

(Continued)

Software-Testing_Final.indb 329 31-01-2018 14:59:21

330 • Software Testing

TCID
Test case input Expected result

Event Test condition Active State
12.4 p3_WinsVolley p3_Score = = 20 Player 3 Won
12.5 dtor omega
13.1 Three Player

Game
Game Started

13.2 p3_start simulateVolley Player 3 Served
13.3 Player 3 Served
13.4 p3_WinsVolley p3_Score = = 20 Player 3 Won
13.5 p3_IsWinner return TRUE Player 3 Won
14.1 Three Player

Game
Game Started

14.2 p3_start simulateVolley Player 3 Served
14.3 p2_WinsVolley simulateVolley Player 2 Served
15.1 Three Player

Game
Game Started

15.2 p3_start simulateVolley Player 3 Served
15.3 p1_WinsVolley simulateVolley Player 1 Served

EXAMPLE 8.8. For a three player game, what sneak path test suite will you
form? Derive the test cases.

SOLUTION.

TABLE 8.2  Sneak Path Test Suite for Three Player Game.

Test case Expected result

TCID Setup sequence Test state Test event Code Action

16.0 Three Player
Game

Game
Started

Three Player
Game

6 Abend

17.0 Three Player
Game

Game
Started

p1_WinsVolley 4 Illegal Event
Exception

18.0 Three Player
Game

Game
Started

p2_WinsVolley 4 Illegal Event
Exception

19.0 Three Player
Game

Game
Started

p3_WinsVolley 4 Illegal Event
Exception

(Continued)

Software-Testing_Final.indb 330 31-01-2018 14:59:21

Object-Oriented Testing • 331

Test case Expected result

TCID Setup sequence Test state Test event Code Action

20.0 10.0 Player 1
Served

Three Player
Game

6 Abend

21.0 5.0 Player 1
Served

p1_start 4 Illegal Event
Exception

22.0 10.0 Player 1
Served

p2_start 4 Illegal Event
Exception

23.0 5.0 Player 1
Served

p3_start 4 Illegal Event
Exception

24.0 1.0 Player 2
Served

Three Player
Game

6 Abend

25.0 6.0 Player 2
Served

p1_start 4 Illegal Event
Exception

26.0 1.0 Player 2
Served

p2_start 4 Illegal Event
Exception

27.0 6.0 Player 2
Served

p3_start 4 Illegal Event
Exception

28.0 7.0 Player 3
Served

Three Player
Game

6 Abend

29.0 2.0 Player 3
Served

p1_start 4 Illegal Event
Exception

30.0 7.0 Player 1
Served

p2_start 4 Illegal Event
Exception

31.0 2.0 Player 2
Served

p3_start 4 Illegal Event
Exception

32.0 4.0 Player 1
Won

Three Player
Game

6 Abend

33.0 4.0 Player 1
Won

p1_start 4 Illegal Event
Exception

34.0 4.0 Player 1
Won

p2_start 4 Illegal Event
Exception

35.0 4.0 Player 1
Won

p3_start 4 Illegal Event
Exception

36.0 4.0 Player 1
Won

p1_WinsVolley 4 Illegal Event
Exception

(Continued)

Software-Testing_Final.indb 331 31-01-2018 14:59:21

332 • Software Testing

Test case Expected result

TCID Setup sequence Test state Test event Code Action

37.0 4.0 Player 1
Won

p2_WinsVolley 4 Illegal Event
Exception

38.0 4.0 Player 1
Won

p3_WinsVolley 4 Illegal Event
Exception

39.0 9.0 Player 2
Won

Three Player
Game

4 Illegal Event
Exception

40.0 9.0 Player 1
Won

p1_start 4 Illegal Event
Exception

41.0 9.0 Player p2_start 4 Illegal Event
Exception

42.0 9.0 Player p3_start 4 Illegal Event
Exception

43.0 9.0 Player 2
Won

p1_WinsVolley 4 Illegal Event
Exception

44.0 9.0 Player 2
Won

p2_WinsVolley 4 Illegal Event
Exception

45.0 9.0 Player 2
Won

p3_WinsVolley 4 Illegal Event
Exception

46.0 13.0 Player 3
Won

Three Player
Game

6 Abend

47.0 13.0 Player 3
Won

p1_start 4 Illegal Event
Exception

48.0 13.0 Player 3
Won

p2_start 4 Illegal Event
Exception

49.0 13.0 Player 3
Won

p3_start 4 Illegal Event
Exception

50.0 13.0 Player 3
Won

p1_WinsVolley 4 Illegal Event
Exception

51.0 13.0 Player 3
Won

p2_WinsVolley 4 Illegal Event
Exception

52.0 13.0 Player 3
Won

p3_WinsVolley 4 Illegal Event
Exception

53.0 12.0 omega any 6 Abend

Software-Testing_Final.indb 332 31-01-2018 14:59:21

Object-Oriented Testing • 333

8.2.  TESTING OBJECT-ORIENTED SYSTEMS

Conventional test case designs are based on the process they are to test and
its inputs and outputs. Object-oriented test cases need to concentrate on
the state of a class. To examine the different states, the cases have to follow
the appropriate sequence of operations in the class. Class becomes the main
target of 00 testing. Operations of a class can be tested using the conven-
tional white-box methods and techniques (basis path, loop, data flow) but
there is some notion to apply these at the class level instead.

8.2.1. � Implementation-Based Class Testing/White-Box or
Structural Testing

Implementation-based tests are developed by analyzing how a class meets its
responsibilities. Implementation-based tests are developed by analyzing source
code. This is also called structural, white-box, clear-box, or glass-box testing.

The main approaches to implementation-based testing are:

�� Control flow testing
�� Path coverage
�� Data flow testing

These techniques are further classified as follows:

FIGURE 8.21  Types of White-Box Testing Techniques.

We will discuss these techniques one by one.

Software-Testing_Final.indb 333 31-01-2018 14:59:23

334 • Software Testing

(I) Control Flow Testing

What Is Coverage Coverage is a key concept. It is a measure of test com-
pleteness. It is denoted by Cx. It is the percent of test cases identified by
technique x that were actually run. So,

Cx =
Total Components Tested

Total Number of Components
 × 100

Following are some basis coverage metrics:

C1 or Statement Coverage

�� 100 percent statement coverage means every statement has been exe-
cuted by a test at least once.

�� C1 coverage (i.e., 100% statement coverage) is the minimum required
by IEEE standard 1008, the standard for software unit testing. It has
been IBM’s corporate standard for nearly 30 years.

�� C1 coverage is the absolute minimum for responsible testing. It is the
weakest possible coverage.

C2 or Decision Coverage

�� 100% decision coverage means that every path from a predicate has
been executed at least once by a test.

�� For structured programs, C1 and C2 are equivalent. That is, you will
cover all statements in a structured program if you cover all branches.

Control Graphs: Control flow faults account for 24% of all conven-
tional software faults. For example,

Correct code	 Fault
a = myobject.get ()	 a = myobject.get ()
if (a = = b)	 if (a = b)

Structured programming and small methods decrease the opportunity
for these kinds of faults but do not eliminate them. Implementation-based
testing can reveal subtle faults in control flow, and provides a basis for cover-
age analysis.

Consider the following C++ code snippet:

1 Void abx (int a, int b, int x)
 {
 if (a > 1) && (b = = 0)
2 x = x/a;

Software-Testing_Final.indb 334 31-01-2018 14:59:23

Object-Oriented Testing • 335

3 if (a = = 2) | | (x > 1)
4 x = x + 1;
5 cout < < x;
 }

We draw its control graph as it is our main tool for test case identification
shown in Figure 8.22.

FIGURE 8.22  Flowgraph for C++ Code.

Statement coverage for this C++ code: It simply requires that a test
suite cause every statement to be executed at least once.

We can get 100% C1 coverage for the abx method with one test case.

Test
case

Path Test values

a b x x′
SI.1 1-2-3-4-5 2 0 2 2

C1 is not sufficient to discover common errors in logic and iteration control.

�� Suppose the condition in node-3 is incorrect and should have seen
x > 0

There are many C1 test sets that would miss this error.

�� Suppose path 1-3-5 has a fault (x is not touched on this path). There are
many C1 test sets that would miss this fault.

Statement coverage is a very weak criterion. However, on average, adhoc
testing covers only half of the statements.

Software-Testing_Final.indb 335 31-01-2018 14:59:25

336 • Software Testing

Predicate Testing

A predicate is the condition in a control statement: if, case, do while, do
until, or for. The evaluation of a predicate selects a segment of code to be
executed.

There are four levels of predicate average [Myers]:

�� Decision coverage
�� Condition coverage
�� Decision/condition coverage
�� Multiple condition coverage

Each of these subsumes C1 and provides greater fault detecting power.
There are some situations where predicate coverage does not subsume state-
ment coverage:

�� Methods with no decisions.
�� Methods with built-in exception handlers, for example, C++ try/throw/

catch.

Decision Coverage

We can improve on statement coverage by requiring that each decision
branch be taken at least once (at least one true and one false evaluation).
Either of the test suites below provides decision (C2) coverage for the abx
() method.

TABLE 8.3  Test Suite for Decision Coverage of abx () Method (function).

Test
suite

Test
case Path

Test values

a b x x′
TS1 D1.1 1-2-3-4-5 4 0 8 3

D1.2 1-3-5 0 0 0 0
TS2 D2.1 1-2-3-5 3 0 3 1

D2.2 1-3-4-5 2 1 1 2

However, C2 is not sufficient to discover common errors in logic and
iteration control. For example, we can meet C2 without testing the path
where x is untouched (1-3-5) as test suite D2 shows. Suppose condition-4 in
statement number 3 is incorrectly typed as x < 1 then neither of the C2 test
suites would detect this fault.

Software-Testing_Final.indb 336 31-01-2018 14:59:25

Object-Oriented Testing • 337

Decision Coverage

It does not require testing all possible outcomes of each condition. It
improves on this by requiring that each condition be evaluated as true or
false at least once. There are four conditions in the abx () method.

Condition True domain False domain

a > 1 a > 1 a ≤ 1
b = 0 b = 0 b ≠ 0
a = 2 a = 2 a ≠
x > 1 x > 1 x ≤ 1

Either of the following test suites will force at least one evaluation of
every condition. They are given below:

Test
suite

Test
case Path

Test values

a b x x′
TS1 C1.1 1-2-3-4-5 2 0 4 3

C1.2 1-3-5 1 1 1 1
TS2 C2.1 1-3-4-5 1 0 3 4

C2.2 1-3-4-5 2 1 1 2

However, this is not sufficient to discover common errors in logic and
iteration control. For example, it is possible to skip a branch and still cover
the conditions. This is shown by test suite C2. Because condition coverage
can miss nodes, it can miss faults.

Decision/Condition Coverage

Condition coverage does not require testing all possible branches. Decision/
condition coverage could improve on this by requiring that each condition be
evaluated as true or false at least once and each branch be taken at least once.

However, this may be infeasible due to a short-circuit Boolean evaluation.
Most programming languages evaluate compound predicates from left

to right, branching as soon as a sufficient Boolean result is obtained. This
allows statements like

if (a = 0) or (b/a > c) then

to handle a = 0 without causing a “divide-by-zero” exception. This can
prevent execution of compound conditions.

Software-Testing_Final.indb 337 31-01-2018 14:59:25

338 • Software Testing

We are now in a position to have decision/condition coverage for the
abx () method with two test cases.

Test case Path

Test values

a b x x′
DC1.1 1-2-3-4-5 2 0 4 3
DC1.2 1-3-5 1 1 1 1

But due to short-circuit evaluation, the false domains of
b ≠ 0 and x ≤ 1 are not checked.

Multiple Condition Coverage

The preceding problems occur because we have not exercised all possible
outcomes of each condition for each decision.

Multiple condition coverage requires test cases that will force all com-
binations of simple conditions to be evaluated. If there are n simple condi-
tions, there will be, at most, 2n combinations. Multiple condition coverage
subsumes all lower levels of predicate coverage.

We now derive the test cases based on multiple condition coverage for
the abx () method. They are given below.

TABLE 8.4  Test Cases for abx () Method/Function.

Test case Path
Test values

a b x x′
M1.1 1-2-3-4-5 2 0 4 3
M1.2 1-3-4-5 2 1 1 2
M1.3 1-3-4-5 1 0 2 3
M1.4 1-3-5 1 1 1 1

Please note the following observations:

a.	 We usually don’t need 2n test cases for multiple condition coverage.

b.	 Multiple condition coverage does not guarantee path coverage. For
example, path 1-2-3-5 is not exercised.

c.	 If a variable is changed and then used in a predicate, reverse data flow
tracing may be needed to establish test cases values. This is called path
sensitization.

Software-Testing_Final.indb 338 31-01-2018 14:59:25

Object-Oriented Testing • 339

The following table shows how each condition is covered by the M test
suite (for the abx () method).

a b x Test Case

> 1 = 0 dc M1.1
≠ 0 dc M1.2

≤ 1 = 0 dc M1.3
Impossible due to short circuit

≠ 0 dc M1.4
Impossible due to short circuit

= 2 dc > 1 M1.1
dc ≤ 1 M1.2

≠ 2 dc > 1 M1.3
dc ≤ 1 M1.4

So, there are 8 possible conditional variants. And we are able to exercise
all 8 with only 4 test cases.

Impossible Conditions and Paths

Some predicate domains or programming structures may render a path
impossible. There are at least four causes of impossible conditions and paths.

1.	 Boolean short circuits, as discussed earlier.

2.	 Contradictory or constraining domains.

Given:

if (x > 2) && (x < 10) then

Only three conditions can be obtained. x cannot be simultaneously less
than 3 and greater than 9, so the false-false case is impossible.

3.	 Redundant Predicates.

if (x) <A>
else
endif
if not (x) <C>
else <D>
endif

Software-Testing_Final.indb 339 31-01-2018 14:59:25

340 • Software Testing

For the same value of x, paths <A> <C> and <D> are not possible.

Because the predicates could be merged, you may have found a fault or
at least a questionable piece of code.

4.	 Unstructured Code.

�� Acceptable: Exception handling, break.
�� Not acceptable: Anything else.

Consideration for Loops

Loops also pose some unique test problems. Loops may be simple loops,
nested loops, serial loops, and spaghetti loops. We shall discuss each one by
one.

a.	 Simple loops: All loops should get at least two iterations. This is the
minimum needed to detect data initialization/use faults. We focus on
boundary conditions because they are a frequent source of loop control
faults.

�A simple loop is either a do, while, or repeat-until form with a single
entry and a single exit. A complete test suite will exercise the domain
boundary of the loop control variable such as (minimum-1), minimum
(possibly zero), (minimum +1), typical, (maximum –1), maximum,
(maximum +1), and so on.

b.	 Nested loops: A nested loop is a simple loop contained in another
simple loop. Multiplicative testing is overkill. For example, if we use
the five basic loop test cases then:

i.	 We would have 25 test cases for a doubly nested loop.

ii.	 We would have 125 test cases for a triply nested loop.

Beizer suggests that we should start with the innermost loop first and
then go to the outer loops to test nested loops.

Beizer suggests the following procedure:

Step 1. Test the inner loop first, and the outer loop last.
Step 2. Run the five basic tests on the inner loop:

a.	 Min, min +1, typical, max –1, max

b.	 Set all outer loop controls to minimum values

c.	 Add excluded and out of range checks, if needed

Software-Testing_Final.indb 340 31-01-2018 14:59:25

Object-Oriented Testing • 341

Step 3. For the next loop out:

�� Run min, min +1, typical, max –1, max.
�� Set the inner and outer loop controls to typical values.
�� Add excluded and out of range checks, if needed.

Step 4. Repeat Step-3 for each inner loop.
�Step 5. When all loops check out individually, set all values at max and
test all loops together. With two-level loops, this requires 12 test cases,
16 with three-level, and 19 with four-level.

c.	 Serial loops: Two or more loops on the same control path are serial
loops. To test them

�� If there are any define/use data relationships between the loops,
treat them as if they were nested.

�� Use data flow analysis to determine test cases.
�� If there is no define/use relationship between the loops, they can be

tested in isolation.

d.	 Spaghetti loops: It is a loop which has more than one entry or exit point.
Such loops, if nested, can result in very complex control flow paths.

To test them, we can follow one of the following methods:

a.	 Reject such loops and return the code to the developer for correction.

b.	 Design another equivalent single-entry/single-exit loop. Develop
your test cases from this design, then add test data for every wired
path you can think of.

(II)  Path Coverage Testing

The number of unique independent paths through a non directed graph is
given by graph theory. The number of independent paths is called the cyclo-
matic complexity of the graph, denoted by V(G). They are called basis paths
because they correspond to the basis vector in a matrix representation of an
undirected graph.

This number is not defined for directed (e.g., control flow) graphs. How-
ever, it has become a popular metric for the complexity and test coverage.

There are three methods to compute V(G). They are as follows:

a.	 V(G) = e – n + 2 (e = edges, n = nodes)

b.	 V(G) = Number of enclosed regions +1

c.	 V(G) = Number of predicate nodes +1

Software-Testing_Final.indb 341 31-01-2018 14:59:25

342 • Software Testing

These expressions hold for single-entry, single-exit program complexity, C.

Basis Paths. Consider the following function foo ().

 1 Void foo (float y, float a*, int n)
 {
 float x = sin (y);
 if (x > 0.01)
 2 z = tan (x);
 else
 3 z = cos (x);
 4 for (int i = 0; i < x ; ++i) {
 6 a[i] = a[i] * z;
 cout << a[i];
 }
 7 cout << i;
 }

Its flowgraph is shown in Figure 8.23.

Here,	 Number of edges (e) = 8
	 Number of nodes (n) = 7
∴	 V(G) = e – n + 2 = 8 – 7 + 2 = 3.

This indicates there are at least 3 entry/exit
paths in this graph:

	 Path 1: 1-2-4-5-7
	 Path 2: 1-3-4-5-7
	 Path 3: 1-3-4-5-6-7

or they can be:

	 Path 1: 1-2-4-5-7
	 Path 2: 1-3-4-5-7
	 Path 3: 1-2-4-5-6-7

These are called basis paths.
This technique has already been discussed in

previous chapters.

(III)  Data Flow Testing

We have already discussed this technique in earlier chapters.

FIGURE 8.23

Software-Testing_Final.indb 342 31-01-2018 14:59:26

Object-Oriented Testing • 343

(IV)  Intra Class Coverage

It further involves two techniques:

a.	 The FREE flow model

b.	 The C* metric (or V*(G) metric).

We shall discuss these techniques one by one.

a.	 The FREE flow graph: We have seen several ways to identify paths for
single-entry, single-exit code. However, a class typically contains many
single-entry, single-exit (SESE) code segments. In C++, each member
function is a SESE segment. The methods in a class access the same
instance variables and must cooperate for the correct execution under
all possible activation sequences. What is the control and data flow for
the entire class? To answer such questions, we need:

a.	 A state model for the class under test.

b.	 A control flow graph for each method.

We will use the FREE state model.

�� State is the result of method activation.
�� A single state may be computed by one or several methods.
�� We use a concrete, aggregate model of state.

Events are either:

�� Method activation.
�� Interrupts that change the state of an instance variable, i.e., we are

testing an actor class.

Action are either:

�� Message response (values returned to the client).
�� Messages sent to servers or other interfaces.

The FREE flow graph is based on the following observation:

�� Methods compute state.
�� A single transition edge may be replaced by the flow graph of the

method which causes the transition.

A FREE flow graph is constructed in two steps:

1.	 Method graphs are substituted for transitions.

2.	 Edges are added to link the state exit/method entry and method
exit/state entry nodes.

Software-Testing_Final.indb 343 31-01-2018 14:59:26

344 • Software Testing

Test case derivation: We now have a graph model of the entire class.
We can identify all intra-class control paths. We can identify all intra-
class du paths for instance variables. We can apply all the preceding test
case techniques at the class level.

b.	 The C* metric: We know that V(G) or C of a graph, G, is given by
e – n + 2. Similarly, for the FREE flow graph the class complexity is
represented by C* or V*(G). It is the minimum number of intra-class
control paths.

∴	 C* = E – N + 2
	 E = em + 2m
	 N = nm + ns

where	 em = Total edges in all inserted subgraphs
	 m = Number of inserted subgraphs
	 nm = Total nodes in all inserted subgraphs
	 ns = Nodes in state graph (states)

Thus, we have
C * = em + 2m − nm − ns + 2

Limitations of Implementation-Based Testing/White-Box
Testing of Classes

It provides many useful approaches to develop and evaluate unit test cases.
The limitations are as follows:

1.	 Exhaustive path testing is impossible.

2.	 Implementation-based testing requires code analysis skills and
knowledge of test case design techniques.

3.	 Without automated support, it is hard to scale up.

4.	 Available testing tools are useful but not ideal.

5.	 Coverage metrics are guidelines not absolutes.

6.	 Even a high coverage test suite cannot prove the absence of faults,
validate requirements, or test missing functions.

7.	 Each code-based coverage approach has “blind spots” and is sensitive to
the particular test values selected.

8.	 Code-based testing is tautological.

Software-Testing_Final.indb 344 31-01-2018 14:59:26

Object-Oriented Testing • 345

8.2.2. � Responsibility-Based Class Testing/Black-Box/Functional
Specification-Based Testing of Classes

Responsibility-based class testing is the process of devising tests to see that a
class correctly fulfills its responsibilities. These tests are derived from specifi-
cations and requirements. They are not derived from implementation details.
This is also called black-box, functional, or specification-based testing.

We categorize this type of testing as follows:

FIGURE 8.24

We need to consider three main facets of a class and its methods to
develop responsibility test cases. They are:

i.	 Functional Analysis

�� What kind of function is used to transform method inputs into
outputs?

�� Are inputs externally or internally determined?

ii.	 Domain Analysis

�� What are valid and invalid message inputs, states, and message
outputs?

�� What values should we select for test cases?

iii.	 Behavior Analysis

�� Does the sequence of method activation matter or not?
�� When sequence matters, how can we select efficient testing

sequence?

We will discuss each of these one by one.

Software-Testing_Final.indb 345 31-01-2018 14:59:27

346 • Software Testing

Overview of the Approach

Responsibility-based testing has four main steps:

Step 1. �Select a functional model for each method: numerical, combina-
tional, or compound.

a.	 Model numerical functions with an equation.

b.	 Model combinatorial functions with a decision table.

c.	 Develop heuristic tests for compound functions.

Step 2. �Identify test case data for each method test case using domain
analysis.

Step 3. �Select an activation model for the method and the class. Develop an
sequential activation plan.

Step 4. Interleave functional test cases with the activation plan.

Function types. A method computes a result. In this sense, it is like a
mathematical function. For testing purposes, it is useful to consider three
kinds of functions. They are as follows:

Numerical: A numerical function is specified or can be modeled by a
mathematical formula.

Combinational: A combinational function is specified or can be modeled
by a decision table, Boolean equations, or equivalent conditions, rules or
logic.

General: A general function has responsibilities that are not easily
modeled as numerical or combinational functions.

A Testable Function

�� Must be independently invocable and observable.
�� Is typically a single responsibility and the collaborations necessary to

carry it out.
�� Often corresponds to a specific user command or menu action.

Testable functions should be organized into a hierarchy

�� Follow the existing design.
�� Develop a test function hierarchy.
�� Testable functions should be small, “atomic” units of work.

A method is a typically testable function for a class-level test. A use case
is a typically testable function for a cluster-level or system test.

Software-Testing_Final.indb 346 31-01-2018 14:59:27

Object-Oriented Testing • 347

For numerical functions, how many test cases do we need?

�� At least two.
�� If there are n variables, we need (n + 1) test cases.

What values should we use?

�� Each value in the test suite must be unique.
�� Do not use 1 (1.0) or 0 (0.0) for input values.
�� Select values that are expected to produce a non-zero result.
�� If a variable is returned by a message, the message must be forced to

provide a non-result.

This test will reveal all errors in which one or more coefficients is incorrect.

Test cases are defined in two steps:

Step 1. �Prepare a matrix with one more column than there are variables.
This extra column is filled with “1,” which is used to check the deter-
minant but not as part of the test case.

Variable 1 Variable 2 Variable n

Test Case 1 1
Test Case 2 1
… … 1
Test Case n + 1 1

Step 2. �Find values for the variable matrix such that the determinant of the
entire matrix is not zero. This requires that

�� No row or column consists entirely of zeros.
�� No row or column is identical.
�� No row or column is an exact multiple of any other.

So, for F = (10 * x) – (x + y) ^ 3, we have

Test case x y Expected result

1 3 7 –970
2 5 11 –4046
3(n + 1) 7 13 –7930

Software-Testing_Final.indb 347 31-01-2018 14:59:27

348 • Software Testing

To select test values for variables

�� Use prime numbers for integer variables.
�� For rational-valued variables, select values which meet the above matrix

constraints by inspection. If the matrix is too large to check by inspection,
then compute the determinant.

�� If the variables are bounded (e.g., 100 < x < 1000) then develop additional
tests for boundary values.

Alternatively, we can select output values and solve for the test points. We
must:

�� Test cases for inequalities in n-variables and should have at least (n + 2)
tests. The function should be exercised at least one on-point and one
off-point.

�� Test cases for non-linear functions should have points falling on either
side of the points of inflexion.

�� Boolean functions (i.e., variables with a {0/1} or {true/false} domain
should be validated by combinational analysis).

�� The expected results must be established by an oracle or a trustworthy
source of correct values.

�� Inspections and acceptance testing are the only way to detect design
errors.

What About the Combinational Functions?

A combinational function is one where:

a.	 Output is determined by current input.

b.	 Previous inputs do not change the output.

c.	 This is like a simple spin lock which will open when the correct number
is dialed in regardless of the dialing order.

We model combinational functions with a decision table. A decision
table has conditions and actions. When all of the individual conditions on
one line are true, the corresponding action is taken. There can be many
conditions for each action. A condition must resolve to a Boolean variable.

Cells irrelevant for a rule are labelled DC, for “don’t care.” Rules can be
given in either rows or columns.

For example, we have already drawn a decision table for some problems
in previous chapters. Now, let us see how to find combinational faults.

Although combinational functions should ignore prior inputs and give
the same results regardless of input sequence, try varying the order of the

Software-Testing_Final.indb 348 31-01-2018 14:59:27

Object-Oriented Testing • 349

input variables. The evaluation of the conditions is typically hard-coded in a
case or switch construct which may have assumed a particular order of input.

A decision table with n conditions can have 2n actions, however

�� It is not unusual to see fewer than 2n actions.
�� This often results from “don’t care” (DC) or “impossible” conditions.
�� DCs should be implemented by default processing by which they are

treated as an error or ignored without causing a failure.
�� As a practical matter, DCs often result in failures.

So, we must not ignore DCs. We must expand the DC conditions to the
full 2n set. We test each of this expanded condition in the same way we would
test regular conditions.

(II)  Domain Analysis

Test case data is identified by domain analysis. For each testable function,
we must:

a.	 Identify all parameters, arguments, variables, database conditions, set
points, toggles, etc.

b.	 Identify equivalence classes or partitions for each variables of interest.

c.	 Identify boundary values for the partition.

Domain analysis can reveal design faults. It is good at revealing missing
logic faults—holes in the specification or the implementation.

Domains–Input v/s Output

A domain is a set defined over a method’s arguments or instance variables. A
typical input domain is astronomically large. For a method that accepts a 10
character (8-bit) input string, there are

28 × 28 × 28 × 28 × 28 × 28 × 28 × 28 × 28 × 28 = 280

possible input combinations.
Even if you were very fast and could run and check 1000 tests per sec-

ond and work 24 hours a day, non stop, you would need about twice the
current estimated age of the universe to complete the tests. Remember that
exhaustive testing is impossible.

Because we can’t test all values, which ones should we test? The answer
may be an equivalence class test. But before discussing these techniques we
must know the differences between the input and output domain.

Software-Testing_Final.indb 349 31-01-2018 14:59:27

350 • Software Testing

An input domain and domain values are relatively easy to define. So, we have

a.	 Any input domain is the entire range of valid values for all external and
internal inputs to the method under test.

b.	 Private instance variables should be treated as input variables.

c.	 The domain must be modeled as a combinational function if there are
dependencies among several input variables.

An output domain may be more difficult to identify. So, we have

a.	 The output domain of an arithmetic function is the entire range of
values that can be computed by the function.

b.	 Output domains can be discontinuous–they may have “holes” or “cliffs.”

c.	 The output domain of a combination function is the entire range of
values for each action stub.

Next, we discuss a technique under domain analysis which is a type of
responsibility-based/ black-box testing method. This technique is popularly
known as equivalence class partitioning.

An equivalence class is a group of input values which require the same
response. A test case is written for members of each group and for non-
members. The test case designates the expected response.

When speaking of an equivalence class, class is used in the mathematical
sense and not as a source code construct.

Equivalence class testing is based on the assumption that if a method
fails for one member of a equivalence class, it is likely to fail for all mem-
bers of that class. This reduces the size of the input space to manageable
proportions.

How are Equivalence Classes Identified?

We have already discussed this issue in previous chapters. System require-
ments are the source of domains, equivalence classes, and boundary values.
There is no algorithm for exactly determining “good” and “bad” partitions.
Any available information can be used. As quoted by Hamlet—

“The goal is to make the resulting classes so narrow that each aspect of the
program, of the specification, of development, each programmer concern etc.
is separated into a unique class.”

NOTE

Software-Testing_Final.indb 350 31-01-2018 14:59:27

Object-Oriented Testing • 351

The steps are:

1.	 Define valid and invalid partitions for each input variable.

2.	 Further subdivide the valid partition.

At least one separately executable test case is written for each equiv-
alence class. The second technique is known as boundary value analysis
(BVA). As with equivalence classes, there is no general algorithm for exactly
determining boundary values. The domain boundary depends on what the
variable represents and its constraints.

For a range of (n, m), the boundaries may lie

�� Inside upper and lower edges, n, n + 1, m – 1, m.
�� Outside upper and lower edges, n – 1, m + 1.

For counters, boundaries are often related to capacity limits. Say, we can
store from 1 to 255 objects.

�� We would have boundary values at 0, 1, 255, and 256.

For ordered collections, boundaries occur at the start, end, etc. Like
first, last, empty, full top, bottom, etc.

For output variables, boundaries can suggest some tests.

�� Try tests that produce exactly the minimum and maximum output values.
�� Try tests that exceed the minimum and maximum output values by the

smallest increment permitted by the data type.

It is the type of function that suggests boundary values.

For a numeral with floating-point arguments

�� Try test cases that should cause over flow and under flow.
�� Try tests to check the finest resolution. For example, with floating-point

operations, [(1.0/ 10.0) * 10.0] never really equals 1.

For combinational functions, we identify all combinations of on-points.
A test case may be prepared for each on-point set.

Another technique is state space analysis. The number of corners in a
state space depends upon the state variable constraints. A state space bound-
ary may be defined by:

�� Complex but well-formed mathematical relations (sphere, torus,
polyhedra, etc.).

�� Arbitrarily complex and irregular constraints.

Software-Testing_Final.indb 351 31-01-2018 14:59:27

352 • Software Testing

�� Research which indicates that a test set consisting of (n + 2) points with
least one off-point and one on-point is needed to probe a non linear
boundary.

To probe a state space, we adapt the nested loop approach to select
points. With two state variables this produces 15 test points, 22 for three,
and 29 with four.

(III)  Behavior Analysis

Behavior is a specified or observed sequence of accepted messages and
responses. There are three behavior patterns of interest for testing.

a.	 Independent: The method output is totally independent of
previous activation. We can use domain, numerical, or combinational
techniques.

b.	 Sequential: The method output depends on specific prior sequences
of activations and can be modeled by a finite state machine.

c.	 Recursive: Method output depends on previous activations but
there are no constraints on order of activation.

It is of three types:

a.	 Sequential behavior testing

b.	 Conditional and sneak path testing

c.	 Recursive behavior testing

Now, we shall discuss these techniques one by one.

a.	 Sequential behavior testing: To develop test cases for sequential
behavior:

�� Develop a state model.
�� Messages are modeled as transition events.
�� Outbound messages are modeled transition actions.
�� Generate the state path tree.
�� Tabulate events and actions along each path to form test cases.
�� Develop test data for the path by domain analysis on events and

actions.

Consider a simple state model of a STACK.

What kinds of sequential behavior faults can occur?

Software-Testing_Final.indb 352 31-01-2018 14:59:27

Object-Oriented Testing • 353

The faults that can occur are:

a.	 Missing or incorrect transition.

b.	 Missing or incorrect event.

c.	 Missing or incorrect action.

d.	 Extra, missing, or corrupt state.

We have already discussed this type of testing in Section 8.1 of this chap-
ter. In the table below we list various state control faults for the 2 player
game already discussed.

FIGURE 8.25

Event Action Resultant state Error description

OK OK OK
Wrong Extra

Normal Transition
Incorrect State
Corrupted State

Reject Legal OK OK
Wrong Extra

Missing Transition

Accept Illegal Wrong OK
Wrong Extra

Sneak Path
Sneak path to corrupt state

Accept
Undefined

Undefined OK
Wrong Extra

Trap door with incorrect output.
Trap door with incorrect output to
corrupt state

Software-Testing_Final.indb 353 31-01-2018 14:59:28

354 • Software Testing

b.	 Conditional transition tests: With conditional transitions, we need to
be sure that all conditional transition outcomes have been exercised.

�� During conformance testing, we want a conditional transition to fire
when we send a message which meets its condition.

�� For each conditional transition, we need to develop a truth table for
the variables in the condition.

�� An additional test case is developed for each entry in the truth table
which is not exercised by the conformance tests.

�� This test is added to the transition tree.

Event Path Sensitization

�� Values (or states) necessary for conditional expression must be
determined by analysis.

�� We can use the same approach taken to identify path conditions for
source code.

But this testing is not complete. We also need to do sneak path testing.

What Is a Sneak Path?

�� An illegal transition is present when the class-under-test (CUT), in
some valid state, accepts a message which is not explicitly specified
for that state.

�� An illegal message is an otherwise valid message which should not
be accepted given the current state of the class; if accepted, an
illegal transition results.

�� A sneak path is the bug in the CUT which allows an illegal transition.

We test for sneak paths by sending illegal messages. For each specified state,
a sneak path is possible for each message not accepted in that state.

The expected response to a sneak path is usually:

�� The message should be rejected in an appropriate manner.
�� The state of the object should be unchanged after rejecting the

illegal event.

Strict black-box state-based testing approaches assume that only exter-
nally visible I/O sequences are available to the tester. The tester must deter-
mine which state is actually obtained by applying a distinguishing sequence
and observing the resulting output. This increases the number of tests by a
large amount.

Software-Testing_Final.indb 354 31-01-2018 14:59:28

Object-Oriented Testing • 355

With object-oriented software, we assume an internal state can be
determined by

a.	 A method activation trace (activation is equated with state).

b.	 State reporting capability in the CUT.

c.	 Built-in reporting in the CUT.

This is a gray-box assumption.

And last but not the least, another testing technique is recursive behav-
ior testing. We will discuss it following.

c.	 Recursive behavior testing: Some classes are purposely designed to
respond to all methods in any state. This is often true of “framework”
or “foundation” classes. Classes that represent the application domain
typically have sequential constraints.

The recursive behavior test strategy uses paired sequences of methods
on instances of the same class [Doong]. In this type of testing—

a.	 Each sequence is picked to yield the same results.

b.	 Each member of the pair is executed.

c.	 The results are compared.

d.	 If the results are not equivalent, the test has succeeded in revealing
a fault.

For example, in the table below, test cases 1 and 2 run a pair of sequences
on stack objects A and B, which should yield the same result in all four
sequences, that is, 5 on the top. So, we have

Test Test sequence

1. � Stack A
Stack B

2. � Stack A
Stack B

Create, push (5), push (6), pop
Create, push (5)
Create, push (5), push (6), pop, top
Create, push (5), top

Software-Testing_Final.indb 355 31-01-2018 14:59:28

356 • Software Testing

8.3.  HEURISTICS FOR CLASS TESTING

An abstract class is typically not directly instantiated. Instead, subclasses
specialize or provide an implementation. A strategy for testing C++ abstract
classes can be given below:

1.	 Develop specification-based tests from abstract class specification.

2.	 Test all member functions that don’t call pure virtual methods.

3.	 Test all member functions that do call pure virtual methods. This may
require stubs for the derived class implementation.

4.	 Do state/sequential tests of new and inherited methods.

Like abstract classes, the templates cannot be directly instantiated
or tested. Once instantiated, all other basis testing techniques apply. The
strategy for testing template classes is given below:

1.	 Prepare test cases, and test at least one instantiation.

�� A single test suite can be reused to test each type with the necessary
changes per type and additional special tests per type.

�� Does any possible type suggest special or different test cases?
�� Do any pre- or post-conditions change due to any possible type?

2.	 Select a type that exercises all class features. If you can’t then this is
probably a poorly designed template.

3.	 Decide on how these additional types may be tested. Testing one type
may be sufficient if

�� Only =, = =, and ! = operators are used.
�� There are no parameters of T* or T& in the public interface of the

template class.
�� This means no polymorphic bindings can be made.

If either of the above conditions is not present, then each possible type
should be instantiated and tested.

A collection class houses a group of individual objects of the same type,
for example, a list, stack, queue, array, table, etc. The responsibility of this
class is to manage the collection according to some scheme. The test strategy
must be based on this scheme.

There are several patterns useful for testing collections. They are
discussed below.

Software-Testing_Final.indb 356 31-01-2018 14:59:28

Object-Oriented Testing • 357

Sequential Collection Test Pattern

A sequential collection contains a variable number of items. Items are added
to the “end,” e.g., strings, buffers, ASCII files, etc. You must “walk” the
entire collection in sequence to access a particular element. For a sequential
collection like a stack or queue, we have the test suite given below.

Collection
operation Input size Collection state Expected result

1.	 Add Single element empty added

Single element not empty added
Single element capacity-1 added
Single element full reject
Several elements,
sufficient to overflow

not empty reject

Several elements capacity-1 reject
Null element empty no action
Null element not empty no action

2.	 Update/
Replace

Several elements,
sufficient to overflow
by 1

not empty reject

Several elements,
sufficient to reach
capacity

not empty accept

Several elements,
sufficient to reach
capacity

not empty accept

Several elements,
sufficient to reach
capacity-1

not empty accept

Several elements,
fewer than in
updated collection

not empty accept, check clean-up

Software-Testing_Final.indb 357 31-01-2018 14:59:28

358 • Software Testing

Ordered Collection Test Pattern

In an ordered collection, elements are added, accessed, and removed using
some ordering scheme—stack, queue, tree, list, etc. All of the sequential test
patterns can be applied with the necessary changes in expected results. The
following test patterns verify position-dependent behavior.

Collection
operation Input

Element
position Collection state Expected result

All operations Single item
Single item

First
Last

Not empty
Not empty

Added
Added

Delete/
Remove

Single item
Single item

dc
dc

Single element
Empty

Deleted
Reject

Pairwise Operand Test Pattern

Operations may be defined that use collections as operands. Suppose there
are two collections, A and B. Then,

�� A and B should be individually verified first.
�� A and B are populated before running the test.

The following test patterns verify size-dependent operation processing
and not the semantics of the operation—

Collection operation Size of A Size of B Expected result

All operations 0 (empty)
0 (empty)

N

0 (empty)
N
M

Operation specific
Operation specific
Accept

All operations requiring
same size A and B

N
N

N + 1

N
N + 1

1

Accept
Reject
Reject

where N > 1 and N ≠ M.

What About Arrays and Pointers?

Try the following as inputs to the pointer calculation

�� A negative, zero, or very large value
�� The lower-bound value –1
�� The lower-bound value

Software-Testing_Final.indb 358 31-01-2018 14:59:29

Object-Oriented Testing • 359

�� A normal value
�� The upper-bound
�� The upper-bound +1

Try formula verification tests with array elements initialized to unusual
data patterns.

�� All elements zero or null
�� All elements one
�� All elements same value
�� All elements maximum value, all bits on, etc.
�� All elements except one are zero, one, or max

We treat each sub-structure with a special role (header, pointer vector,
etc.), as a separate data structure.

The pair-wise operand test pattern may also be applied to operators with
array operands.

Relationship test patterns: Collection classes may implement relation-
ships (mapping) between two or more classes. We have various ways of
showing relationships. For example

Entity-relationship model:

FIGURE 8.26

Coad-Yourdon diagram for the above case is

FIGURE 8.27

While its Booch class diagram is

FIGURE 8.28

Software-Testing_Final.indb 359 31-01-2018 14:59:33

360 • Software Testing

We can now model valid instances of relations with combinational analysis.

Person Owns Dog Result

1 0 DC Okay
1 0 Error

1 Okay
* Okay
M Okay

Relationships can be tested by considering likely scenarios:

�� Person buys dog
�� Dogs runs away
�� Person sells dog
�� Dog dies

We can use the relationship’s cardinality parameters to systematically
identify test cases that verify correct implementation of relationships.

Keyed Collection Test Patterns

Some collections (e.g., Dictionary in Smalltalk) provide a unique identifier
for each member of a collection.

Application classes that provide file or database wrappers may also rely
on keyed access. The basic test patterns for keyed collections follow.

Collection operation Key value Item state Expected result

Create Any Not present Accept
Read Any Not present Reject
Update Any Not present Reject
Delete Any Not present Reject
Create Any Present Reject
Read Any Present Accept
Update Any Present Accept
Delete Any Present Accept

Keyed collections must provide a wide range of paired operations. Item-
to-item processing is often faulty.

Collection classes are well-suited to sequential constraint or recursive
equivalence test patterns on operations.

Software-Testing_Final.indb 360 31-01-2018 14:59:33

Object-Oriented Testing • 361

Exception Testing

Exception handling (like Ada exceptions, C++ try/throw/catch) add implicit
paths. It is harder to write cases to activate these paths. However, exception
handling is often crucial for reliable operations and should be tested. Test
cases are needed to force exceptions.

�� File errors (empty, overflow, missing)
�� I/O errors (device not ready, parity check)
�� Arithmetic over/under flows
�� Memory allocation
�� Task communication/creation

How can this testing be done?

1.	 Use patches and breakpoints: Zap the code or data to fake an error.

2.	 Use selective compilation: Insert exception-forcing code (e.g., divide-
by-zero) under control of conditional assembly, macro definition, etc.

3.	 Mistune: Cut down the available storage, disk space, etc. to 10% of
normal, for example, saturate the system with compute bound tasks.
This can force resource related exceptions.

4.	 Cripple: Remove, rename, disable, delete, or unplug necessary
resources.

5.	 Pollute: Selectively corrupt input data, files, or signals using a data zap
tool.

Suspicion Testing

There are many situations that indicate additional testing may be valuable
[Hamlet]. Some of those situations are given below:

1.	 A module written by the least experienced programmer.

2.	 A module with a high failure rate in either the field or in development.

3.	 A module that failed an inspection and needed big changes at the last
minute.

4.	 A module that was subject to a late or large change order after most of
the coding was done.

5.	 A module about which a designer or programmer feels uneasy.

These situations don’t point to specific faults. They may mean more
extensive testing is warranted. For example if n-tests are needed for branch
coverage, use 5n instead to test.

Software-Testing_Final.indb 361 31-01-2018 14:59:33

362 • Software Testing

Error Guessing

Experience, hunches, or educated guesses can suggest good test cases.
There is no systematic procedure for guessing errors. According to Beizer,
“logic errors and fuzzy thinking are inversely proportional to the probability
of a path’s execution.”

For example, for a program that sorts a list, we could try:

�� An empty input list.
�� An input list with only one item.
�� A list where all entries have the same value.
�� A list that is already sorted.

We can try for weird paths:

�� Try to find the most tortuous, longest, strongest path from entry to exit.
�� Try “impossible” paths, and so on.

The idea is to find special cases that may have been overlooked by more
systematic techniques.

Historical Analysis

Metrics from past projects or previous releases may suggest possible trouble
spots. We have already noted that C metric was a good predictor of faults.
Coupling and cohesion are also good fault predictors. Modules with high
coupling and low cohesion are 7 times more likely to have defects compared
to modules with low coupling and high cohesion.

Class Testing Summary

The main steps to test class methods are given below:

Step 1.  Instantiate a test object of the class-under-test (CUT).
Step 2. � Set the object-under-test (OUT) and supplier objects to the state

specified by the test case.
Step 3. � Set the parameters of the method-under-test (MUT) to the values

specified by the test case.
Step 4.  Send the test message to the MUT.
Step 5.  Check for compliance with the expected results of the test case:

a.	 The returned values of the MUT.
b.	 The resultant state of the OUT.
c.	 The state of the message parameters.
d.	 Exceptions (if any) thrown or raised.
e.	 Message sent to other objects (or stubs) are correct in sequence and content.

Software-Testing_Final.indb 362 31-01-2018 14:59:33

Object-Oriented Testing • 363

Six Principles of Effective Testing

Brain Marick offers six principles of effective testing. They are as follows:

Principle 1: � Most errors are not very creative. Because errors tend to
follow patterns, methodical checklist testing has a high payoff.

Principle 2: � Faults of omission activated by unanticipated special cases
are the most difficult to find and should therefore get greater
attention.

Principle 3: � Specification faults, especially omissions, are more dangerous
and harder to find than code faults.

Principle 4: � At every stage of testing, mistakes are inevitable. Later stages
should compensate for this.

Principle 5: � Code coverage is a good approximation of test quality. Because
it is an approximation, coverage should be viewed as a useful
indicator, not a guarantee.

Principle 6:  Good tests emphasize variety and complexity. So,

�� Use the same test case patterns in different ways and in different contexts.
�� Try to combine test cases in random, unusual, strange, or weird ways. This

increases the chance of revealing a sneak path, a surprise, or an omission.

8.4.  LEVELS OF OBJECT-ORIENTED TESTING

Three or four levels of object-oriented testing are used depending on the
choice of what constitutes a unit. If individual operations or methods are
considered to be units, we have four levels: operation/method, class, integra-
tion, and system testing.

1.	 With this choice, operation/method testing is identical to unit testing of
procedural software.

2.	 Class and integration testing can be renamed as intraclass and interclass
testing. The second level then, consists of testing interactions among
previously tested operations/methods.

3.	 Integration testing is the major issue of object-oriented testing and
must be concerned with testing interactions among previously tested
classes.

4.	 System testing is conducted at the port event level and is identical to
system testing of traditional software. The only difference is where
system level test cases originate.

Software-Testing_Final.indb 363 31-01-2018 14:59:33

364 • Software Testing

8.5.  UNIT TESTING A CLASS

Classes are the building blocks for an entire object-oriented system. Just as
the building blocks of a procedure-oriented system have to be unit tested
individually before being put together, so the classes have to be unit tested.
This is due to several reasons. Some of them are given below:

1.	 Reusability of the code is the focal point of the object-oriented system.
A class is also reused many times. A residual defect in a class can,
therefore, potentially affect every instance of reuse.

2.	 Many defects get introduced at the time a class gets defined. If these
defects are not caught in time then they may go into the clients of these
classes. Thus, the fix for the defect would have to be reflected in multiple
places giving rise to inconsistencies.

3.	 A class may have different features. Different clients of the class may
pick up different pieces of the class. No one single client may use all the
pieces of the class. Thus, unless the class is tested as a unit first, there
may be pieces of a class that may never get tested.

4.	 A class encapsulates data and functions. If the data and functions do not
work in synchronization at a unit test level, it may cause defects that are
potentially very difficult to narrow down later.

5.	 Because object-oriented systems support inheritance, the building
blocks are thoroughly tested stand alone, defects arising out of these
context may surface magnified many times later in the cycle.

The question is now whether we can apply conventional methods to
test our classes? Yes, some of the methods for unit testing apply directly to
testing classes. For example:

1.	 Every class has certain variables. The techniques of BVA and equivalence
class partitioning discussed earlier in black-box testing can be applied
to make sure that the most effective test data is used to find as many
defects as possible.

2.	 Not all member-functions in C++ or methods in JAVA are exercised by
all the clients. The methods of function coverage that were discussed in
white-box testing can be used to ensure that every method (function) is
exercised.

3.	 Every class will have functions/methods that have some procedural
logic. So, the techniques of condition coverage, branch coverage, code

Software-Testing_Final.indb 364 31-01-2018 14:59:33

Object-Oriented Testing • 365

complexity, and so on that we discussed during white-box testing can be
used to make sure that branch coverage is complete and to increase the
software maintainability.

4.	 Because a class is meant to be instantiated multiple times by different
clients, the various techniques of stress testing and system and acceptance
testing can be performed for early detection of stress-related problems
such as memory leaks.

Also note that we have already discussed state-based testing in Section
8.2.2 of this chapter. This technique is useful for black-box testing of classes.
Because a class is a combination of data and methods that operate on the
data, in some cases, it can be visualized as an object going through different
states. The messages that are passed to the class act as inputs to trigger the
state transition. It is useful to capture this view of a class during the design
phase so that testing can be more natural.

How to Test Classes?

In order to test an instantiated object, messages have to be passed to various
methods. In what sequence does one pass the messages to the objects? One
of the methods that is effective for this purpose is the alpha-omega method.

Principles of the Alpha-Omega Method

The alpha-omega method works on the following principles:

1.	 Test the object through its life cycle from birth to death, that is, from
instantiation to destruction. An instance gets instantiated by a constructor
method; then the variables are initialized. These values may get modified
also. Finally, destructors are used to destroy objects.

2.	 Test simple methods first and then more complex methods. This is
because object-oriented programming languages support inheritance
and thus more complex methods will be built upon the simpler methods.

3.	 Test the methods from private through public methods. The private
access specifier reduces the dependencies in testing and gets the building
blocks in a more robust state before they are used by clients.

4.	 Send a message to every method at least once. This ensures that every
method is tested at least once.

Software-Testing_Final.indb 365 31-01-2018 14:59:33

366 • Software Testing

The following steps are followed during the alpha-omega method:

Step 1. � Test the constructor methods first. When multiple constructors are
used, all should be tested individually.

Step 2. � Test the get methods or access or methods (methods that retrieve
the values of variables in an object for use by the calling programs).
This ensures that the variables in the class definition are accessible
by the appropriate methods.

Step 3. � Test the methods that modify the object variables. There are
methods that test the contents of variables, methods that set/update
the contents of variables, and methods that loop through various
variables.

Step 4. � Finally, the object has to be destroyed and when the object is
destroyed, no further accidental access should be possible. Also, all
the resources used by the object instantiation should be released.
These tests conclude the lifetime of an instantiated object.

Which Unit to Select—Method or Class?

Let us consider this one by one as two separate cases.
Case 1: Methods as units: Superficially, this choice reduces object-

oriented unit testing to traditional (procedural) unit testing. A method is
nearly equivalent to a procedure so all the traditional functional and struc-
tural testing techniques should apply. Unit testing of procedural code
requires stubs and a driver test program to supply test cases and record the
results. Similarly, if we consider methods as 0-0 units, we must provide stub
classes that can be instantiated and a “main program” class that acts as a
driver to provide and analyze test cases. Also, it is found that nearly as much
effort will be made to create the proper stubs as in identifying test cases.
Another important consequence is that much of the burden is shifted to
integration testing. In fact, we can identify two levels of integration testing:
intraclass and interclass integration.

Case 2: Classes as units: Testing a class as a unit solves the intraclass
integration problem but it creates other problems. One has to do with var-
ious views of a class. In the static view, a class exists as source code. This is
fine if all we do is code reading. The problem with the static view is that
inheritance is ignored but we can fix this by using fully flattened classes.
We might call the second view, the compile-time view, because this is when
the inheritance actually “occurs.” The third view is the execution-time view,
when objects of classes are instantiated.

Software-Testing_Final.indb 366 31-01-2018 14:59:33

Object-Oriented Testing • 367

Testing really occurs with the third view but we still have some problems.
For example, we cannot test abstract classes because they cannot be instanti-
ated. Also, if we are using fully flattened classes, we will need to “unflatten”
them to their original form when our unit testing is complete. If we do not
use fully flattened classes, in order to compile a class, we will need all of the
other classes above it in the inheritance tree. One can imagine the software
configuration management (SCM) implications of this requirement.

The class as a unit makes the most sense when little inheritance occurs
and classes have what we might call internal control complexity. The class
itself should have an “interesting” state-chart and there should be a fair
amount of internal messaging.

8.6.  INTEGRATION TESTING OF CLASSES

Of the three main levels of software testing, integration testing is the least
understood. This is true for both traditional and object-oriented software.
As with traditional procedural software, object-oriented integration testing
presumes complete unit-level testing.

Both unit choices have implications for object-oriented integration
testing. If the operation/ method choice is taken, two levels of integration
are required:

1.	 One to integrate operations into a full class.

2.	 One to integrate the class with other classes.

This should not be dismissed. The whole reason for the operation-as-unit
choice is that the classes are very large and several designers were involved.

Assuming that a class is the basic unit choice, once the unit testing is
complete two steps must occur:

1.	 If flattened classes were used, the original class hierarchy must be
restored.

2.	 If test methods were added, they must be removed.

Once we have our “integration test bed” we need to identify what
needs to be tested. As with our traditional software integration, static and
dynamic choices can be made. We can address the complexities introduced
by polymorphism in a purely static way: test messages with respect to each
polymorphic context. The dynamic view of object-oriented integration test-
ing is more interesting.

Software-Testing_Final.indb 367 31-01-2018 14:59:33

368 • Software Testing

In addition to addressing excapsulation and polymorphism in object-
oriented testing, another question that arises is what order do we put the
classes together for testing? The various methods of integration like top-
down, bottom up, big bang, and so on can all be applicable here. Please note
the following points about object-oriented systems.

1.	 Object-oriented systems are inherently meant to be built out of small,
resuable components. Hence, integration testing will be even more
critical for object-oriented systems.

2.	 There is typically more parallelism in the development of the underlying
components of object-oriented systems, thus the need for frequent
integration is higher.

3.	 Given the parallelism in development, the sequence of availability of
the classes will have to be taken into consideration while performing
integration testing. This would also require the design of stubs and
harnesses to simulate the function of yet-unavailable classes.

There are four basic strategies for integration:

1.	 Client/Supplier: The structure of class/supplier classes can be used to
guide integration.

2.	 Thread based: The thread of messages activated to service a single user
input or external event studied to decide the order of integration.

3.	 Configuration based: The thread of messages activated to service a single
user input or external event studied to decide the order of integration.

4.	 Hybrid strategy: A mix of top-down, bottom-up, or big-bang integration
can be used.

Before we discuss these methods, we must define some terminology
used during integration testing. It is useful to distinguish several kinds of
objects—

a.	 Actor: An object that changes state or uses other objects without
receiving a message from another application object. An actor is never
a recipient of a message from another object.

b.	 Agent: An object that accepts and sends object messages. An agent
typically causes other objects to be created and used.

c.	 Server: An object that accepts messages from other objects but does
not send messages.

We will now discuss these techniques one by one.

Software-Testing_Final.indb 368 31-01-2018 14:59:33

Object-Oriented Testing • 369

1.  Client/Supplier Integration

This integration is done by “users.” The following steps are followed:

Step 1. � We first integrate all servers, that is, those objects that do not
send messages to other application objects.

Step 2. � Next we integrate agents, i.e., those objects that send and
receive messages. This first integration build consists of the
immediate clients of the application servers.

Step 3.  There may be several agent builds.
Step 4. � Finally, we integrate all actors, i.e., application objects that

send messages but do not receive them.

This technique is called client/supplier integration and is shown in
Figure 8.29.

FIGURE 8.29  Client/Supplier Integration.

Software-Testing_Final.indb 369 31-01-2018 14:59:35

370 • Software Testing

2.  Thread Integration

Thread integration is integration by end-to-end paths. A use case contains at
least one, possibly several threads.

Threaded integration is an incremental technique. Each processing func-
tion is called a thread. A collection of related threads is often called a build.
Builds may serve as a basis for test management. The addition of new threads
for the product undergoing integration proceeds incrementally in a planned
fashion. System verification diagrams are used for “threading” the requirements.

3.  Configuration Integration

In systems where there are many unique target environment configurations,
it may be useful to try to build each configuration. For example, in a dis-
tributed system, this could be all or part of the application allocated to a
particular node or processor. In this situation, servers and actors are likely to
encapsulate the physical interface to other nodes, processors, channels, etc.
It may be useful to build actor simulators to drive the physical subsystem in
an controllable and repeatable manner.

Configuration integration has three main steps:

1.	 Identify the component for a physical configuration.

2.	 Use message-path or thread-based integration for this subsystem.

3.	 Integrate the stabilized subsystems using a thread-based approach.

4.  Hybrid Strategy

A general hybrid strategy is shown in the following steps:

a.	 Do complete class testing on actors and servers. Perform limited
bottom-up integration.

b.	 Do top-down development and integration of the high-level control
modules. This provides a harness for subsequent integration.

c.	 Big-bang the minimum software infrastructure: OS configuration,
database initialization, etc.

d.	 Achieve a high coverage for infrastructure by functional and structural
testing.

e.	 Big-bang the infrastructure and high-level control.

f.	 Use several message path builds or thread builds to integrate the
application agents.

Software-Testing_Final.indb 370 31-01-2018 14:59:35

Object-Oriented Testing • 371

Integration Test Checklist

The completion of the following checklist will reveal many interface faults
and establish the basis for effective system testing.

1.  Set up infrastructure:

1.1 � Configure environment.
1.2 � Create/Initialize files.
1.3 � Connect I/O devices, establish minimal handshaking.
1.4 � �Compile, link, build, make, or assemble the entire system from a

single library under SCM control.

2.  Verify executability:

2.1 � Run all batch job streams to completion with minimal input.
2.2 � �Bring up all tasks in an online system. Navigate all menu paths and

perform normal shut down.
2.3 � �Bring up all tasks in an embedded system. Accept normal signal

inputs, produce all output at nominal values. Perform normal shut
down.

3.  Verify minimal cooperative functionality:

3.1 � Run through primary end-to-end threads: All event-response paths.
3.2 � �Run through all cycles: on/off, polling loop, hourly, daily, weekly,

monthly, etc.

Integration testing should not try for extensive coverage as this is the
goal of unit and system test. Do good unit testing or make unit tests an
explicit and separate part of your integration strategy. Don’t stress the sys-
tem. Do just enough thread and cycle testing to reveal interface and inte-
gration faults. Focus on stabilizing the system so that you can do efficient
system testing.

8.7.  SYSTEM TESTING (WITH CASE STUDY)

According to Myer, if you do not have written objectives for your product, or
if your objectives are unmeasurable, then you cannot perform a system test.

Object-oriented systems are by design meant to be built using smaller
sensable components (i.e., the classes). Due to this heavy reusability of

Software-Testing_Final.indb 371 31-01-2018 14:59:35

372 • Software Testing

components, system testing becomes even important for object-oriented
systems. This is due to the following reasons:

1.	 A class may have different parts not all of which are used at the same
time. When different clients start using a class, they may be using
different parts of a class and this may introduce defects at a later (system
testing) phase.

2.	 Different classes may be combined together by a client and this
combination may lead to new defects that are uncovered.

3.	 An instantiated object may not free all of its allocated resources, thus
causing memory leaks and such related problems, which will show up
only in the system testing phase.

Please note that proper entry and exit criteria should be set for the var-
ious test phases before system testing so as to maximize the effectiveness of
system testing.

We describe four types of system testing.

1.	 Functional testing: A requirement is a capability, a feature, or function
that the system must provide. Every explicitly stated requirement must
be tested. We must, however, take care of the following:

�� Traceability from requirements to test cases is necessary.
�� Each test case, at all levels, should indicate which requirement (if

any) it implements.
�� The test is simple: can you meet the requirement?

Well-written, testable line-item requirements are a necessity. We must
take care of the following:

�� If you don’t have line-item requirements, use the primitives in your
requirements model like PDLs.

�� If you don’t have line-item requirements, extract a list of require-
ments from any and all available system documentation like user
manuals, contracts, marketing literature, etc.

2.	 Scenario-based system testing: The notion of the “average” user or
usage scenario can be misleading or too vague to construct useful tests.
We need to define specific scenarios to explore dynamic behavior. For
example:

�� Customer/user oriented definition.
�� Revalidates the product.

Software-Testing_Final.indb 372 31-01-2018 14:59:35

Object-Oriented Testing • 373

�� Focuses development on customer requirements.
�� Early customer involvement can build relationships.
�� Real-world orientation.

A scenario is—who, what, when, where, how, and why scenarios have
three dimensions—the users (system for embedded applications), the tasks
they perform, and the environment for different tasks and users.

Who, how, and why?

�� Define the significant types, classes, and categories of users.

What and when?

�� Define from the user’s point of view the tasks that use the system.
�� A user task must have specific time characteristics (when): interval,

cycle, duration, frequency, etc.

Where and how?

�� Define all the variations for context of tasks and users.

Users

The following questions can help to identify user categories:

Who?

�� Who are the users?
�� Can you find any dichotomies?

—	 Big company versus small
—	 Novice versus experienced
—	 Infrequent versus heavy user

�� Experience: Education, culture, language, training, work with simi-
lar systems, etc.

Why?

�� What are their goals in performing the task—what do they want?
�� What do they produce with the system?

How?

�� What other things are necessary to perform the task?
—	 Information, other systems, time, money, materials, energy, etc.

�� What methods or procedures do they use?

Software-Testing_Final.indb 373 31-01-2018 14:59:35

374 • Software Testing

Environment

The user/task environment (as well as the OS or computer) may span a wide
range of conditions.

Consider any system embedded in a vehicle. Anywhere the vehicle can
be taken is a possible environment.

What external factors are relevant to the user? To the system’s ability to
perform? For example, buildings, weather, electromagnetic interference, etc.

What internal factors are relevant to the user? To the system’s ability to
perform? For example, platform resources like speed, memory, ports, etc.,
AC power system loading, multitasking.

With scenarios categories in hand, we can focus on specific test cases.
This is called an operational profile.

An activity is a specific discrete interaction with the system. Ideally, an
activity closely corresponds to an event-response pair. It could be a subjec-
tive definition but must have a start/stop cycle. We can refine each activity
into a test by specifying:

�� Probability of occurrence.
�� Data values derived by partitioning.
�� Equivalence classes are scenario-oriented.

Scenarios are a powerful technique but have limitations and require a
concentrated effort. So, we have the following suggestions:

�� User/customer cooperation will probably be needed to identify realistic
scenarios.

�� Scenarios should be validated with user/customer or a focus group.
�� Test development and evaluation requires people with a high level of

product expertise who are typically in short supply.
�� Generate a large number of test cases.
�� Well-defined housekeeping procedures and automated support is

needed if the scenarios will be used over a long period of time by many
people.

Next we consider a case study of ACME Widget Co.
We will illustrate the operational profile (or specific test cases) with the

ACME Widget Co. order system.

Users

�� There are 1000 users of the ACME Widget order system.
�� Their usage patterns differ according to how often they use the system.

Of the total group, 300 are experienced, and about 500 will use the sys-
tem on a monthly or quarterly basis. The balance will use the system less
than once every six months.

Software-Testing_Final.indb 374 31-01-2018 14:59:35

Object-Oriented Testing • 375

Environment

�� Several locations have significantly different usage patterns.
�� Plant, office, customer site, and hand-held access.
�� Some locations are only visited by certain users. For example, only

experienced users go to customer sites.

Usage

�� The main user-activities are order entry, order inquiry, order update,
printing a shipping ticket, and producing periodic reports.

�� After studying the usage patterns, we find proportions vary by user type
and location.

�� For example, the infrequent user will never print a shipping ticket but is
likely to request periodic reports.
Some scenarios are shown in Table 8.5.

TABLE 8.5  Showing Scenario Probability (p).

User type p1 Location p2 Activity p3

Scenario
probability (p)

Experienced 0.3 Plant 0.80 Inquiry 0.05 0.0120
0.3 Plant 0.80 Update 0.05 0.0120
0.3 Plant 0.80 Print Ticket 0.90 0.2160
0.3 Office 0.10 Order Entry 0.70 0.0210
0.3 Office 0.10 Update 0.20 0.0060
0.3 Office 0.10 Inquiry 0.10 0.0030
0.3 Customer Site 0.10 Order Entry 0.10 0.0030
0.3 Customer Site 0.10 Update 0.20 0.0060
0.3 Customer Site 0.10 Inquiry 0.70 0.0210

Cyclical 0.5 Plant 0.10 Inquiry 0.05 0.0025
0.5 Plant 0.10 Update 0.05 0.0025
0.5 Plant 0.50 Print Ticket 0.90 0.0450
0.5 Office 0.50 Order Entry 0.30 0.0025
0.5 Office 0.50 Update 0.20 0.0450
0.5 Office 0.50 Inquiry 0.50 0.0750
0.5 Hand Held 0.40 Order Entry 0.95 0.1900
0.5 Hand Held 0.40 Update 0.02 0.0040
0.5 Hand Held 0.40 Inquiry 0.03 0.0060

(Continued)

Software-Testing_Final.indb 375 31-01-2018 14:59:35

376 • Software Testing

User type p1 Location p2 Activity p3

Scenario
probability (p)

Infrequent 0.2 Plant 0.05 Report 0.75 0.0075
0.2 Plant 0.05 Update 0.15 0.0015
0.2 Plant 0.05 Inquiry 0.10 0.0010
0.2 Office 0.95 Inquiry 0.60 0.1140
0.2 Office 0.95 Update 0.10 0.0190
0.2 Office 0.95 Report 0.30 0.0570

1.0000

There are two main parts in an operational profile: usage scenarios and
scenario probabilities or:

Operational Profile = Scenarios + Probabilities

The factor proportions are multiplied to get scenario probability (p).
That is,

	 p = p1 × p2 × p3� (from the above table)

For example, looking at the first factor—user type experienced in
column-1 of Table 8.5, we observe that

a.	 About 30% are experienced users.

b.	 The second factor (location) shows that 80% of the experienced group
uses the system in the plant.

c.	 Nine times in 10 an experienced user in the plant will use the system to
print a shipping ticket.

The column on the far right gives the probability of this scenario. Out of
all users of the system, about 22% will be by experienced users in the plant
to print a shipping ticket.

The individual scenario probabilities must add to 1.0.

If we sort the table in probability order, we have a prioritized test system
strategy; we sort it in descending order of the scenario probability, p. Thus,
we get Table 8.6.

NOTE

Software-Testing_Final.indb 376 31-01-2018 14:59:35

Object-Oriented Testing • 377

TABLE 8.6  Sorted Scenario Probability (p) for Prioritization.

User type p1 Location p2 Activity p3

Scenario
probability (p)

Experienced 0.3 Plant 0.80 Print Ticket 0.90 0.2160
Cyclical 0.5 Hand Held 0.40 Order Entry 0.95 0.1900
Cyclical 0.5 Office 0.50 Inquiry 0.50 0.1250
Infrequent 0.2 Office 0.95 Inquiry 0.60 0.1140
Cyclical 0.5 Office 0.50 Order Entry 0.30 0.0750
Infrequent 0.2 Office 0.95 Report 0.30 0.0570
Cyclical 0.5 Office 0.50 Update 0.20 0.0500
Cyclical 0.5 Plant 0.10 Print Ticket 0.90 0.0450
Experienced 0.3 Office 0.10 Order Entry 0.70 0.0210
Experienced 0.3 Customer

Site
0.10 Inquiry 0.70 0.0210

Infrequent 0.2 Office 0.95 Update 0.10 0.0190
Experienced 0.3 Plant 0.80 Update 0.05 0.0120
Experienced 0.3 Plant 0.80 Inquiry 0.05 0.0120
Infrequent 0.2 Plant 0.05 Report 0.75 0.0075
Cyclical 0.5 Hand Held 0.40 Inquiry 0.03 0.0060
Experienced 0.3 Customer

Site
0.10 Update 0.20 0.0060

Experienced 0.3 Office 0.10 Update 0.20 0.0060
Cyclical 0.5 Hand Held 0.40 Update 0.20 0.0060
Experienced 0.3 Customer

Site
0.10 Order Entry 0.10 0.0030

Experienced 0.3 Office 0.10 Inquiry 0.10 0.0030
Cyclical 0.5 Plant 0.10 Inquiry 0.05 0.0025
Cyclical 0.5 Plant 0.10 Update 0.05 0.0025
Infrequent 0.2 Plant 0.05 Update 0.15 0.0015
Infrequent 0.2 Plant 0.05 Inquiry 0.10 0.0010

1.0000

Software-Testing_Final.indb 377 31-01-2018 14:59:35

378 • Software Testing

The operational profile is a framework for a complete test plan. For each sce-
nario, we need to determine which functions of the system under test will be used.

An activity often involves several system functions; these are called “runs.”
Each run is a thread. It has an identifiable input and produces a distinct output.

For example, the experienced/plant/ticket scenario might be composed
of several runs.

�� Display pending shipments.
�� Display scheduled pickups.
�� Assign carrier to shipment.
�� Enter carrier landing information.
�� Print shipment labels.
�� Enter on-truck timestamp.

Some scenarios may be low probability but have high potential impact.
For example, suppose ACME Widget is promoting order entry at the cus-
tomer site as a key selling feature. So, even though this accounts for only 3
in a thousand uses, it should be tested as if it was a high-priority scenario.

This can be accomplished by adding a weight to each scanario:

Weights Scenario

+2 Must test, mission/safety critical
+1 Essential functionality, necessary for robust operation
+0 All other scenarios

The operational profile maximizes system reliability for a given testing
budget. According to J.D. Musa, “testing driven by an operational profile
is very efficient because it identifies failures on average, in order of how
often they occur. This approach rapidly increases reliability— reduces fail-
ure intensity—per unit of execution time because the failures that occur most
frequently are caused by the faulty operations used most frequently.

User will also detect failures in order of their frequency, if they have not
already been in test.”

3.	 Performance testing: Performance is the behavior of the system with
respect to goals for time, space, cost, and reliability.

Performance testing requires:

�� Clear, objective test criterion
�� Controlled, well-instrumented test-bed
�� Data reduction support
�� Automated test drivers

Software-Testing_Final.indb 378 31-01-2018 14:59:35

Object-Oriented Testing • 379

We will look at two aspects of performance test:

1.	 Performance objectives.

2.	 Considerations for running performance tests.

Software performance measurement parameters are throughput,
response time, and utilization. We will discuss their benefits, definitions,
and examples in the table below:

Objective Benefit Definition Example

1.  Throughput Productivity Number of tasks accomplished
per unit time.

Transactions
per second

2. � Response
time

Responsiveness Time elapsed between input
arrival and delivery of output
at sink.

Check to
display delay

3.  Utilization Component
availability

Ratio of time busy/available
for a component over a fixed
interval.

Server
utilization

The following example shows the difference between throughput,
response time, and utilization. The same tasks are run on similar processors
but executed in a different order. Tasks arrive at the same time.

Time and
space cost

Processor–A Processor–B

Task time Response time Task time Response time

1 1 5 5
2 3 4 9
3 6 3 12
4 10 2 14
5 15 1 15

Totals 15 35 15 55
Average
response

7 11

Worst case
response

15 15

Throughput 5 5
Utilization 100% 100%

Software-Testing_Final.indb 379 31-01-2018 14:59:35

380 • Software Testing

Service-level objectives target performance features visible to users
under various operational scenarios:

�� Peak load performance.
�� Average load performance.
�� Worst-case performance.
�� Availability profile.

Average or worst-case tolerance depends on the application. Worst-case
performance is relevant for mission critical systems like air traffic control.
Average performance is often the focus of data processing systems.

Performance objectives specify unambiguous, quantifiable targets for
system behavior. A system performance requirement can be stated in terms
of response time, throughput, or utilization.

This objective must be translated into a constraint on software execution
time or resource use. Response time is the dominant performance issue for
many applications. Response time constraints are of the form:

Elapsed Execution Time < Response Time Objective

There are several variations of performance testing. They are given
below one by one.

a.	 Volume test: This is simple quantity saturation. Lots of input, with no
constraint on time under normal system loading.

b.	 Background test: This is an attempt to find faults related to concurrent,
parallel, or multitasking. We try to get several things going concurrently
to see if we can force:

�� Resource contention resolution faults.
�� Scheduling and deadlock faults.
�� Race conditions.

We try to sample loading levels without stressing the system. This is
good at detecting:

�� Basic timing problems.
�� Faults with re-entrant code.
�� Data integrity faults.

This sets the stage for stress testing.

c.	 Stress test: The idea of a stress test is to “break” the system. That is, we
want to see what happens when the system is pushed beyond design
limits.

Software-Testing_Final.indb 380 31-01-2018 14:59:35

Object-Oriented Testing • 381

4.	 Configuration testing: Some system products are intended for use in a
wide range of platform installations.
For example, consider a typical PC package. It must run on several com-

puter makes and models, OS versions, and support every printer and mon-
itor sold.

Configuration testing should be done when everything else is stable.
Test cases are a matter of selecting a subset of configuration permutations:

a.	 Identify all possible configuration variables and domains, requirements,
and marketing.

b.	 Select a subset using domain analysis.

c.	 Pay attention to “special” or “custom” configurations promised to
specific customers or users.

At a minimum, the test suite should cover a normal duty cycle for the
devices in configuration:

�� Start-up/run/shut down
�� Start-up/device failure/recovery/run/shut down

The system testing approaches that we have discussed can be used to
investigate other relevant categories also. Some of them are listed below:

�� Security
�� Restart and recovery
�� Parallel
�� Reliability
�� Installation
�� User documentation
�� Operator procedures

8.8.  REGRESSION AND ACCEPTANCE TESTING

As we know reusability of code is the focal point of object-oriented program-
ming. So changes to any one component could have potentially unintended
side-effects on the clients that use the component. Also, because of cascaded
effects of changes resulting from properties like inheritance, it makes sense
to catch the defects as early as possible.

Software-Testing_Final.indb 381 31-01-2018 14:59:35

382 • Software Testing

What Is Regression Testing?

It is defined as the selective retesting of system or component after changes
have been made.

Or

It is defined as the process to verify absence of unintended effects.

Or

It is defined as the process of verifying compliance with all old and new
requirements.

Approach used

�� Reveal faults in new or modified modules. This requires running new
test cases and typically reusing old test cases.

�� Reveal faults in unchanged modules. This requires re-running old test
cases.

�� Requires reusable library of test suites.

Scope of regression test

�� Regression test suite with functional or interface subsets.
�� Run entire test suite periodically.
�� Run subset on every new integration.

The selection of subset and frequency requires evaluation of time/cost
effectiveness trade offs.

When to do?

�� Periodically, every three months.
�� After every integration of fixes and enhancements.
�� Frequency, volume, and impact must be considered.

What to test?

�� Changes result from new requirements or fixes.
�� Analysis of the requirements hierarchy may suggest which subset to

select.
�� If new modules have been added, you should redetermine the call paths

required for CI coverage.

Software-Testing_Final.indb 382 31-01-2018 14:59:35

Object-Oriented Testing • 383

Possible test suites

�� Maximal: Test changed component, all ancestors, and descendants.
�� Minimal: Test changed component and immediate ancestors.
�� Old test cases may need to be revised.

Acceptance Testing

On completion of the developer administered system test, three additional
forms of system testing may be appropriate.

a.	 Alpha test: Its main features are:

1.	 It is generally done “in-house” by an independent test organization.

2.	 The focus is on simulating real-world usage.

3.	 Scenario-based tests are emphasized.

b.	 Beta test: It’s main features are:

1.	 It is done by representative groups of users or customers with
prerelease system installed in an actual target environment.

2.	 Customer attempts routine usage under typical operating conditions.

3.	 Testing is completed when failure rate stabilizes.

c.	 Acceptance test: Its main features are:

1.	 Customer runs test to determine whether or not to accept the system.

2.	 Requires meeting of the minds on acceptance criterion and
acceptance test plan.

8.9.  MANAGING THE TEST PROCESS

A comprehensive test plan package is described in IEEE 83b, which is an
accepted industry standard for test planning. It recommends the following
main documents:

1.	 The test plan: It defines the features to be tested and excluded from
testing. It covers approach, deliverables, suspend/resume criteria,
environmental needs, responsibilities, staffing and training, schedule,
risks and contingencies, and approvals.

Software-Testing_Final.indb 383 31-01-2018 14:59:35

384 • Software Testing

2.	 The test design: It defines the features/functions to test and the pass fail
criterion. It designates all test cases to be used for each feature/functions.

3.	 The test cases: It defines the items to be tested and provides traceability
to SRS, SDD. User operations or installation guides. It specifies the
input, output, environment, procedures, intercase dependencies of each
test case.

4.	 Test procedures: It describes and defines the procedures necessary to
perform each test.

Each item, section, and sub-section should have an identifying number
and designate date prepared and revised, authors, and approvals.

How should we go about testing a module, program, or system? What
activities and deliverables are necessary? A general approach is described in
IEEE 87a, an accepted industry standard for unit testing. It recommends
four main steps:

Step 1. � Prepare a testing plan: Document the approach, the necessary
resources, and the exit criterion.

Step 2. � Design the test:
2.1  Develop an architecture for the test, organize by goals.
2.2  Develop a procedure for each test case.
2.3  Prepare the test cases.
2.4  Package the plan per IEEE 82a.
2.5  Develop test data.

Step 3. � Test the components:
3.1  Run the test cases.
3.2  Check and classify the results of each test case:

	 3.2.1  Actual results meet expected results.
	 3.2.2  Failure observed:

�� Implementation fault.
�� Design fault.
�� Undetermined fault.

	 3.2.3  Unable to execute test case:
�� Fault in test specification or test data.
�� Fault in test procedure.
�� Fault in test environment.

Step 4. Prepare a test summary report: Identify the component,
document observed variances from specifications, summarize test case
results, evaluate component usability, summarize testing activities, and
obtain necessary approvals.

Software-Testing_Final.indb 384 31-01-2018 14:59:35

Object-Oriented Testing • 385

A Test Plan Schema

A detailed test case schema is presented in [Berard] is given below.
This schema is a tree. So, there will be typically many branches and leaves
for a single root (object test case). The template of a test plan schema is
given next.

Object Test Case
 Object Id
 Test case ID
 Purpose
 List of test case steps
 test case step
 list of states
 state transition
 expected state
 actual state
 list of messages or operations
 name and parameters
 message name
 input parameters
 name
 value
 position
 type
 output parameters
 expected value
 actual value
 name
 value
 position
 type
 list of exceptions raised
 expected exception
 actual exception

How much testing is enough?

Three general types of exit criteria have been proposed:

1.	 Sufficient coverage: Testing ceases when:

�� statement coverage is achieved
�� decision coverage is achieved

Software-Testing_Final.indb 385 31-01-2018 14:59:35

386 • Software Testing

�� path coverage is achieved
�� all du-path coverage is achieved
�� call path coverage is achieved

You will probably not be able to do 100% predicate coverage. 85% is
practical goal.

2.	 Failure rate stabilization: Testing ceases when:

�� the rate of failures versus CPU test time is low and steady.

3.	 Residual fault threshold: Testing ceases when:

�� the ratio of detected faults to the estimated number of total faults
becomes acceptable.

The economic, ethical, legal, and practical considerations for an
application to determine adequate testing. They are summarized below:

Type Example Appropriate testing

Life critical Avionics, medical, motion control Parallel development,
comparison tests

Mission critical Weapon control systems, secure
communications, process control

Independent V&V

Asset
management

Wire transfer, product inventory,
payables/receivables

Security testing

External market Communications, OS, GUI Alpha, beta
Internal users Order processing Formal and informal
One-shot project
tools

Test drivers, command files Informal

Personal use Tools, games Hack and go

Choice of Standards

The planning aspects are proactive measures that can have an across-the-
board influence on all testing projects.

Standards comprise an important part of planning in any organization.
Standards are of two types:

1.	 External standards

2.	 Internal standards

Software-Testing_Final.indb 386 31-01-2018 14:59:36

Object-Oriented Testing • 387

External standards are standards that a product should comply with,
are externally visible, and are usually stipulated by external consortia. From
a testing perspective, these standards include standard tests supplied by
external consortia and acceptance tests supplied by customers.

Internal standards are standards formulated by a testing organization
to bring in consistency and predictability. They standardize the processes
and methods of working within the organization. Some of the internal stan-
dards include

1.	 Naming and storage conventions for test artifacts

2.	 Document standards

3.	 Test coding standards

4.	 Test reporting standards

These standards provide a competitive edge to a testing organization. It
increases the confidence level one can have on the quality of the final prod-
uct. In addition, any anomalies can be brought to light in a timely manner.

Testing requires a robust infrastructure to be planned upfront. This
infrastructure is made up of three essential elements. They are as follows:

a.	 A test case database

b.	 A defect repository

c.	 SCM repository and tool

A test case database captures all of the relevant information about the
test cases in an organization.

A defect repository captures all of the relevant details of defects reported
for a product. It is an important vehicle of communication that influences
the work flow within a software organization.

A software configuration management (SCM) repository/CM repository
keeps track of change control and version control of all the files/entities that
make up a software product. A particular case of the files/entities is test files.

8.10.  DESIGN FOR TESTABILITY (DFT)

Design for testability (DFT) is a strategy to align the development process
for maximum effectiveness under either a reliability-driven or resource-
limited regime.

A reliability-driven process uses testing to produce evidence that a
pre-release reliability goal has been met.

Software-Testing_Final.indb 387 31-01-2018 14:59:36

388 • Software Testing

A resource-limited process views testing as a way to remove as many
rough edges from a system as time or money permits.

Testability is important in either case. It

�� Reduces cost in a reliability-driven process.
�� Increases reliability in a resource-limited process.

Object-oriented systems present some unique obstacles to testability as
well sharing many with conventional development.

This cost and difficulty can be reduced by following some basic design
principles and planning for test.

Broadly conceived, software testability is a result of many factors.
Some of them are:

a.	 Characteristics of the representation.

b.	 Characteristics of the implementation.

c.	 Built-in test capabilities.

d.	 The test-suite.

e.	 The test support environment.

f.	 The software process in which testing is conducted.

We will now discuss a fishbone chart to consider testability relationships.

FIGURE 8.30  Fishbone Chart.

1.	 Representation: The presence of a representation and its usefulness in
test development is a critical testability factor. This is because

a.	 Testing without a representation is simply experimental prototyping.

b.	 It cannot be decided that a test has passed or failed without an
explicit statement of expected result.

Software-Testing_Final.indb 388 31-01-2018 14:59:37

Object-Oriented Testing • 389

c.	 It may force production of a partial representation as part of test
plan.

There are many approaches to developing object-oriented represen-
tations, generically known as object-oriented analysis (OOA) and object-
oriented design (OOD).

2.	 Implementation: An object-oriented program that complies with
generally accepted principles of OOP poses the fewest obstacles to
testing.

Structural testability can be assessed by a few simple metrics. A metric
may indicate testability, scope of testing, or both.

For example, with high coupling among classes, it is typically more diffi-
cult to control the class-under-test (CUT), thus reducing testability.

The effect of all intrinsic testability metrics is same:

�� relatively high value = decreased testability
�� relatively low value = increased testability

Scope metrics indicate that the number of tests is proportional to the
value of the metric.

A good design always improves testability but some applications may be
inherently hard to test. Testability metrics provide information useful for
resolving design trade-offs. They do not represent some kind of score to be
maximized or minimized.

3.	 Built-in test:

FIGURE 8.31  Fish Bone Chart.

Software-Testing_Final.indb 389 31-01-2018 14:59:39

390 • Software Testing

Built-in test features are shown in Figure 8.31 and are summarized below:

1.	 Assertions automate basic checking and provide “set and forget” runtime
checking of basic conditions for correct execution.

2.	 Set/Reset provides controllability.

3.	 Reporters provide observability.

4.	 A test suite is a collection of test cases and plan to use them. IEEE
standard 829 defines the general contents of a test plan.

5.	 Test tools require automation. Without automationless testing, greater
costs will be incurred to achieve a given reliability goal. The absence of
tools inhibits testability.

6.	 Test process: The overall software process capability and maturity can
significantly facilitate or hinder testability. This model follows the key
process ability of the defined level for software product engineering.

8.11.  GUI TESTING

The main characteristics of any graphical user interface (GUI) application
is that it is event driven. Users can cause any of several events in any order.
Many GUIs have an event sequence that is not guided. One benefit of GUI
applications to testers is that there is little need for integration testing. Unit
testing is typically at the “button level”; that is, buttons have functions and
these can be tested in the usual unit-level sense. The essence of system-level
testing for GUI applications is to exercise the event-driven nature of the
application. Unfortunately, most of the models in UML are of little help with
event-driven systems. The main exception is behavioral models, specifically
statecharts and their simpler case, finite-state machines (FSMs).

8.12. � COMPARISON OF CONVENTIONAL AND
OBJECT-ORIENTED TESTING

Although there is basically no difference in the method of testing, whether
one is testing a non-object-oriented application or an object-oriented
application; still the following aspects applicable mostly for object-oriented

Software-Testing_Final.indb 390 31-01-2018 14:59:39

Object-Oriented Testing • 391

applications may be kept in mind and testing tactics accordingly devised.
The main points of comparisons are given below:

1.	 Object-oriented application development requires object-oriented
analysis (OOA) and object-oriented design (OOD) and very often
the code is generated from the design models-OOM (object-oriented
modelling). This overwhelming importance of OOAD (object-oriented
analysis and design) and OOM requires that testing lay special stress on
verifying analysis and models, that being critical.

2.	 Unit testing in OOT context would mean testing not an isolated method
or function or procedure, but a class as a whole.

3.	 In non-OOT, we independently test Module-X and Module-Y and then
under integration testing, integrate them together and test mainly for
the correctness of their interface. In OOT, however, Module-X and
Module-Y may share many components and may also have classes
inherited from common base class. One of the distingushing OOT
approaches would therefore be to do layered-testing. In layered-testing
we test base classes (bottom layer) first, followed by the next layer and
so on; that is, proceed from independent classes to dependent classes.

4.	 A properly designed OOApp (object-oriented application) is an excellent
candidate for black-box testing, as each component/class ought to behave
as a black-box with well defined sets of inputs and outputs.

5.	 Model base testing (MBT) that is a black-box testing strategy is greatly
facilitated by OOM.

6.	 For systematic testing, partition testing at the class level can be used.
Partition testing can be categorized under:

a.	 State-based partitioning: Operations that change the state of
the class (like credit, debit, etc.) and not those that merely fetch an
information (like date of maturity, balance, etc.).

b.	 Attribute-based partitioning: Class operations based on attributes,
that is operations, that use a given attribute (like balance, etc.).

c.	 Function-group based partitioning: Some examples of such
partitioning are open, close, transact, report, etc.

Software-Testing_Final.indb 391 31-01-2018 14:59:39

392 • Software Testing

8.13.  TESTING USING ORTHOGONAL ARRAYS

Although some applications have a small number of input values, listing all
of the possible combinations may increase the number of test cases. One
technique to reduce the number of test cases is to apply a combinational
method known as orthogonal array testing (OAT). This method can be used
for both normal software applications as well as object-oriented software.

To apply the technique, the software must have independent sets of
states. The goal is to pair each state (from one set) with every other state
(from another set) at least once. We need to identify unique pairs of states.

Let us consider an example of a bookstore application. Further assume
that there are three classes:

FIGURE 8.32  Classes and States in a Bookstore.

Each of these three classes have a finite number of possible states in an
object-oriented application. Whereas in a procedural application, if we have
three procedures, each will have arguments with a finite set of values.

Now, from the previous figure we find that two classes (book and
purchase) have three states each and one class has four states, so testing
every combination of states requires 3 × 3 × 4 = 36 test cases. Selecting a
state from each of the two classes (known as the pair-wise combinations)
only requires 12 test cases as shown in table below, thereby reducing the
number of possible test cases.

TABLE 8.7  An Orthogonal Array.

Test case Book Purchase Shipping

1. in-stock cash overnight
2. in-stock check economy
3. in-stock charge ground
4. in-stock cash pick-up

(Continued)

Software-Testing_Final.indb 392 31-01-2018 14:59:40

Object-Oriented Testing • 393

Test case Book Purchase Shipping

5. special-order check overnight
6. special-order check economy
7. special-order cash ground
8. special-order check pick-up
9. out-of-print charge overnight
10. out-of-print cash economy
11. out-of-print check ground
12. out-of-print charge pick-up

Test case 1 in the table above says to test the combination that has book
set to “in-stock,” purchase set to “cash,” and shipping set to “overnight.”

How to implement this test case?

In a procedural language, the test consists of passing the parameters “in-stock,”
“cash,” and “overnight” to the procedures order-book, purchase-book, and
ship-book, respectively. However, in object-oriented programming, this test
consists of having an object of class book, in state “in-stock,” sends a message
that passes an object of class purchase, in state “cash,” to an object of class
shipping in state “overnight.”

Test cases 9-12 have some improbable combinations. It shows “out-of-
print” state of the book. A user cannot purchase a book which is not of store/
print. A software tester may find this a non-feasible combination and may
remove it from the set of test cases. On the other hand, executing such a test
ensures that the application traps this condition and returns the proper error
message.

When reducing the number of test cases, the possibility of missing a
crucial combination always exists. One can use risk analysis to identify such
crucial tests and give them priorities.

Orthogonal array testing is a powerful technique to use any time a system
presents a small input domain with a large number of permutations.

Software-Testing_Final.indb 393 31-01-2018 14:59:40

394 • Software Testing

8.14.  TEST EXECUTION ISSUES

After defining the test cases, the next step is to formulate an environment
in which to execute the tests. This requires special test software, known as a
driver. It invokes the software-under-test (SUT). The typical driver consists
of the following features:

a.	 Packaging input and data

b.	 Invoking the software-under-test (SUT)

c.	 Capturing the resulting outcome

Creating a driver to test a class calls for additional considerations. The driver
must take care of encapsulation so as to control and observe a class’s internal
data and methods. There are several ways to achieve this, such as:

�� Providing a test case method for each class
�� Creating a parallel class, which appears identical to the original except

for the addition of code needed for testing
�� Creating a child class that inherits the methods to be tested

All of these methods, alter the class and thus modify the actual applica-
tion. Consequently the tested implementation may not be identical to the
released code. It is important that the testing environment be as close as
possible to the deployment environment, otherwise, you are not fully testing
the end product.

Drivers for testing classes can take on many forms. The testers must
analyze the trade offs when deciding on a driver scheme. Creating effective
and reusable test drivers takes significant planning and effort, even if com-
mercial tools are used.

8.15.  CASE STUDY—CURRENCY CONVERTER APPLICATION

Problem Statement: The currency converter application coverts
U.S. dollars to any of the four currencies: Brazilian real, Canadian dollars,
European euros, and Japanese yen. The user can revise inputs and perform
repeated currency conversion. This program is an event-driven program that
emphasizes code associated with a GUI. The GUI is shown in Figure 8.33.

The user selects the country whose currency equivalent is desired using
radio buttons which are mutually exclusive. When the compute button is

Software-Testing_Final.indb 394 31-01-2018 14:59:40

Object-Oriented Testing • 395

clicked, the result is displayed. The clear button will clear the screen. Click-
ing on the quit button ends the application.

Now, we will perform the following on this GUI application:

FIGURE 8.33

1.	 GUI testing of this application: To test a GUI application, we begin
by identifying all of the user input events and all of the system output
events. Some of them are given below:

Input events Output events

inp1 Enter U.S. dollar amount op1 Display U.S. dollar amount
inp2 Click on a country button op2 Display currency name
inp2.1 Click on Brazil op2.1 Display Brazilian reals
inp2.2 Click on Canada op2.2 Display Canadian dollars
inp2.3 Click on Europe op2.3 Display European euros

op2.4 Display Japanese yen
inp2.4 Click on Japan op2.5 Display ellipsis
inp3 Click on compute button op3 Indicate selected country
inp4 Click on clear button op4 Reset selected country
inp5 Click on quit button op5 Display foreign currency value
inp6 Click on OK in error message op6 Must select a country : Error message

2.	 Unit testing of currency conversion program: The command buttons
(i.e., Compute, Clear, and Quit) on the form have an event-driven code
attached to them. Hence, they are sensible places to perform unit-level
testing. Unit testing of the compute button should also consider invalid
U.S. dollar amount entries such as non-numerical inputs, negative
inputs, and very large inputs.

Software-Testing_Final.indb 395 31-01-2018 14:59:42

396 • Software Testing

What are the best methods for performing unit-level testing?

One method is to run test cases from a specially coded driver that would
provide values for input data and check output values against expected
values.

A second method is to use the GUI as a test bed. This looks like
system-level unit testing, which seems oxymoronic, but it is workable. It is
system level in the sense that test case inputs are provided via system-level
user input events. And the test case result comparisons are based on
system-level output events. This works for small applications but it does beg
some serious questions such as the computation is correct but a fault occurs
in the output software. Another problem is that it will be harder to capture
test execution results. It also has some other problems like repeating a set of
test cases is time consuming.

Hence, unit testing with a test driver looks preferable.
Unit testing with the U.S. dollar amount text box can be done. It is lan-

guage dependent. If it is implemented in VB then there is little need to unit
test the test box. But if we use an OOP language then we would need to ver-
ify that the inputs observed by the keyboard handler are correctly displayed
on the GUI and are correctly stored in the object’s attributes.

3.	 Integration testing of currency conversion program: Whether
integration testing is suitable for this problem depends on how it is
implemented. Three main choices are available for the compute button.

First choice concentrates all logic in one place and simply uses the status
of the option buttons as in IF tests. Such IF tests would be thoroughly done
at the unit level. So, there is little need for integration testing.

The second and more object-oriented choice would have methods in
each option button object that send the exchange rate value for the corre-
sponding country in response to a click event. In this case, we notice that
as units, there is very little to test. That is why the choice of methods as
units depends on size. Everything of interest is at the integration level and
at that level we have two concerns—are the option/radio buttons sending
the right exchange rate values and is the equivalent amount calculation
correct?

The third choice is in the visual basic style. The code for VB includes a
global variable for the exchange rate. There are event procedures for each
option button. The result is very similar to the pure object-oriented version.
Unit testing could be replaced by simple code reading for the option button

Software-Testing_Final.indb 396 31-01-2018 14:59:42

Object-Oriented Testing • 397

event procedures and the testing of the command compute procedure is
similarly trivial.

Note that in all the three variations given previously there is little need
for integration testing. This is true for small GUI applications only. By
“small” we mean to say an application that is implemented by one person.

4.	 System testing for currency conversion program: As we have
already discussed, unit and integration testing are minimally needed for
small GUI applications. The onus therefore shifts to system testing.

System testing may be

a.	 UML-based system testing.

b.	 Statechart-based system testing.

In the first step, also called project inception, the customer/user
describes the application in very general terms. Three types of system func-
tions are identified—evident, hidden, and frill. Evident functions are the
obvious ones. Hidden functions might not be discovered immediately and
frills are the “bells and whistles” that so often occur. The table below lists the
system functions for the currency converter application.

Reference no. Function Category

R1 Start application Evident
R2 End application Evident
R3 Input U.S. dollar amount Evident
R4 Select country Evident
R5 Perform conversion calculation Evident
R6 Clear user inputs and program outputs Evident
R7 Maintain EX-OR relationship among countries Hidden
R8 Display country flag images Frill

We first discuss UML-based system testing.
Our formulation lets us be very specific about system-level testing. There

are four levels with corresponding coverage metrics for GUI applications.
Two of these are naturally dependent on the UML specification.

Software-Testing_Final.indb 397 31-01-2018 14:59:42

398 • Software Testing

First Level: To test the system functions by developing an incidence
matrix as shown below:

TABLE 8.8  Use Case Incidence with System Functions.

Expanded essential use cases R1 R2 R3 R4 R5 R6 R7

1 × — — — — — —
2 — × — — — — —
3 — — × × × — —
4 — — × × × — —
5 — — × × × — ×
6 — — × × — × ×
7 — — × — × — —
8 — — × — × — —
9 — — — — × — —

Examining the incidence matrix, we can see several possible ways to
cover the seven system functions. One way would be to derive test cases
from real-use cases that correspond to extended essential-use cases 1, 2,
5, and 6. These will need to be real-use cases as opposed to the expanded
essential-use cases. The difference is that specific countries and dollar values
are used, instead of the higher level statements such as “click on a country
button” and enter a dollar amount.

The process of deriving system test cases from real-use cases is
mechanical. The use case preconditions are the test-case preconditions
and the sequences of actor actions and system responses map directly into
sequences of user input events and system output events.

The set of extended essential-use cases 1, 2, 5, and 6 is a nice example
of a set of regression test cases because test-case 5 in the above table covers
four system functions and test-case 6 covers 3.

Second Level: To develop test cases from all of the real-use cases.
We can develop system level test cases from the real-use case based on
extended essential-use case. For example, this has been applied on real-use-
case-3 (RUC-3) that is obtained from extended essential-use-case-3. So, our
RUC-3 is

Software-Testing_Final.indb 398 31-01-2018 14:59:42

Object-Oriented Testing • 399

RU3 Normal usage
Actor(s) User
Preconditions txtDollar has focus
Type Primary
Description The user inputs a U.S. $10 and

selects the European option; the
application computes and displays
the equivalent: 9.30 euros

Sequence Actor action System response
1. User enters 10 from keyboard 2. 10 appears in txt Dollar
3. �User clicks on European button 4. Euros appears in IblEquiv
5. �User clicks cmd-compute button 6. 9.30 appears in IbIEq Amt

Alternative
reversed

Actions 1 and 3 can be reversed and consequently responses 4 and
6 will be sequence

Cross-
reference

R3, R4, R5

Post-
conditions

Cmd clear has focus

This is RUC-3. Based on this real-use case, we derive system-level test cases
also. They are given below.

SysTC3 Normal usage ($ amount entered)
Test operator Rajiv Chopra
Pre-conditions txtDollar has focus
Test operator Tester inputs Expected system response
sequence 1. Enters 10 from keyboard 2. �Observe 10 appears in

txtDollar
3. �Click on the European

button
4. �Observe euros appears in

lblEquiv
5. �Clicks cmdcompute button 6. �Observe 9.30 appears in Ibl

Eq. Amt
Post-conditions cmdclear has focus
Test Result Pass/Fail
Data Run September 6, 2007

Software-Testing_Final.indb 399 31-01-2018 14:59:42

400 • Software Testing

Third Level: To derive test cases from the finite state machines derived
from a finite state machine description of the external appearance of the
GUI. This is shown below:

FIGURE 8.34  GUI Finite State Machine.

A test case from this formulation is a circuit. A path in which the start
node is the end node is usually an idle state. Nine such test cases are shown
in the table below. The numbers in the table show the sequence in which
the states are traversed by the test case. The test cases, TC1 to TC9, are as
follows:

State TC1 TC2 TC3 TC4 TC5 TC6 TC7 TC8 TC9

Idle 1 1 1 1 1 1 1 1 1, 3

Missing country and dollar message 2 2

Country selected 2 2, 4 2 4, 6

U.S. dollar amount entered 2 2, 4 2

Missing U.S. dollar msg 3 5

Both inputs done 3 5 3 5 3 3 7

Missing country msg 3

Equivalent amount displayed 4 6 4 6

Idle 2 5 7 5 7 1 1 1 1

FIGURE 8.35  Test Cases Derived from FSM.

Note that these numbers in columns TC1-TC9 show the sequence in
which states are traversed by the test case. Many other cases exist but this
shows how to identify them.

Software-Testing_Final.indb 400 31-01-2018 14:59:43

Object-Oriented Testing • 401

Fourth Level: To derive test cases from state-based event tables. This
would have to be repeated for each state. We might call this the exhaustive
level because it exercises every possible event for each state. However, it
is not truly exhaustive because we have not tested all sequences of events
across states. The other problem is that it is an extremely detailed view of
system testing that is likely very redundant with integration and even unit-
level test cases.

Now, we will discuss statechart-based system testing.
Statecharts are a fine basis for system testing. The problem is that State

charts are prescribed to be at the class level in UML. There is no easy way
to compose Statecharts of several classes to get a system-level Statechart.
A possible solution is to translate each class-level Statechart into a set of
event-driven petri nets (EDPNs) to describe threads to be tested. Then the
atomic system functions (ASFs) and the data places are identified. Say, For
our GUI-application they are as follows:

Atomic system functions Sense click on Compute button

S1 : Store US dollar amount
S2 : Sense click on Brazil
S3 : Sense click on Canada
S4 : Sense click on Europe
S5 : Sense click on Japan
S6 : Sense click on Compute button

S7 : Sense click on Clear button
S8 : Sense click on Quit button
Data places are
d1 : US dollar amount entered
d2 : Country selected

FIGURE 8.36  ASFs and Data Places.

The next step in building an EDPN description of
the currency conversion GUI is to develop the EDPNs
for the individual atomic system functions. For example,

where p1 was “Enter US dollar amount” and d1 is
“US dollar amount entered.”

Then, system-level threads are built up by com-
posing atomic system functions into sequences. We are
finally in a position to describe various sets of system-level test cases for
the currency conversion GUI. The lowest level is to simply exercise every
atomic system function. This is a little artificial because many atomic system
functions (ASFs) have data outputs that are not visible system-level outputs.
Even worse, the possibility always exist that an ASF has no port outputs, like
with S1 : Store US dollar amount.

Software-Testing_Final.indb 401 31-01-2018 14:59:45

402 • Software Testing

FIGURE 8.37  Directed Graph of ASF Sequences.

At the system testing level, we cannot tell if an amount is correctly
stored, although we can look at the screen and see that the correct amount
has been entered.

The next level of system testing is to exercise a “suitable” set of threads.
By suitable we mean that we should exercise a set of threads that:

�� Uses every atomic system function.
�� Uses every port input.
�� Uses every port output.

Beyond this we can look at a directed graph of ASFs as shown in
Figure 8.37.

This is only a partial graph showing mainline behavior. The thread

<S1, S2, S6, S7>

is one of the 16 paths. Half of these end with the clear button clicked and the
other half end with the quit button.

Consider the set, T, of threads {T1, T2, T3, T4} where their ASF
sequences are given below:

T1 = <S1, S4, S6, S7>
T2 = <S1, S2, S6, S7>
T3 = <S1, S3, S6, S7>
T4 = <S1, S5, S7, S8>

The threads (T1-T4) given above, in set, T, have the following coverages:

�� Every ASF
�� Every port input
�� Every port output

As such, set T, constitutes a reasonable minimum level of system testing
for the currency conversion GUI. Similarly, we can go into more detail by
exploring some next-level user behavior.

Software-Testing_Final.indb 402 31-01-2018 14:59:46

Object-Oriented Testing • 403

SUMMARY

Various key object-oriented concepts can be tested using some testing
methods and tools. They are summarized below:

Key object-oriented concept Testing methods and tools
1.  Object orientation �� Tests need to integrate data and methods

more tightly.
2.  Unit testing of classes �� BVA, equivalence partitioning to test

variables.
�� Code coverage methods for methods of a

class.
�� Alpha-Omega method of exercising

methods.
�� State diagram to test states of a class.
�� Stress testing to detect memory leaks.

3.  Abstract classes �� Requires retesting for every new
implementation of the abstract class.

4. � Encapsulation and
inheritance

�� Requires unit testing at class level
and incremental class testing when
encapsulating.

�� Inheritance introduces extra context; each
combination of different contexts has to be
tested.

5.  Polymorphism �� Each of the different methods of the same
name should be tested separately.

�� Maintainability of code may suffer.
6.  Dynamic binding �� Conventional code coverage has to be

modified to be applicable for dynamic
binding

�� Possibility of unanticipated runtime defects
higher.

7. � Inter-object communication
via messages

�� Message sequencing.
�� Sequence diagrams.

8. � Object reuse and parallel
development of objects

�� Needs more frequent integration tests and
regression tests.

�� Integration testing and unit testing are
not as clearly separated as in the case of a
procedure-oriented language.

�� Errors in interfaces between objects likely
to be more common in object-oriented
systems and hence needs thorough
interface testing.

Software-Testing_Final.indb 403 31-01-2018 14:59:46

404 • Software Testing

MULTIPLE CHOICE QUESTIONS

1.	 UML stands for:

a.	 Unified modeling language

b.	 Universal modeling language

c.	 Uniform modeling language

d.	 None of the above.

2.	 A general purpose mechanism for organizing elements into groups in
UML is called

a.	 Package b.	 Class

c.	 Deployment d.	 None of the above.

3.	 Which one of the following is an example of call and return architecture?

a.	 Object-oriented architecture

b.	 Layered architecture

c.	 Both (a) and (b)

d.	 Agent architecture

4.	 A predicate expression associated with an event is known as

a.	 Transition b.	 Class

c.	 Guard d.	 None of the above.

5.	 Statecharts refers to

a.	 State diagrams + depth + orthogonality + broadcast communication

b.	 State diagrams only

c.	 State diagrams + depth

d.	 None of the above.

Software-Testing_Final.indb 404 31-01-2018 14:59:47

Object-Oriented Testing • 405

6.	 Which of the following is OOA/OOD method?

a.	 OMT b.	 ROOM

c.	 Fusion d.	 All of the above.

7.	 The formation of a subclass that has no locally defined features other
than the minimum requirement of a class definition is called

a.	 Concatenation b.	 Binding

c.	 Polymorphism d.	 None of the above.

8.	 Testing of nested loops was suggested by

a.	 Little wood b.	 Beizer

c.	 Boehm d.	 None of the above.

9.	 An accepted industry standard for unit testing is

a.	 IEEE 83b b.	 IEEE 87a

c.	 IEEE 9126 d.	 None of the above.

10.	 A powerful technique to use any time a system presents a small input
domain with a large number of permutations is known as

a.	 Regression testing

b.	 Object-oriented testing

c.	 Orthogonal array testing

d.	 None of the above.

ANSWERS

1.	 a. 2.	 a. 3.	 c. 4.	 c.

5.	 a. 6.	 d. 7.	 a. 8.	 b.

9.	 b. 10.	 c.

Software-Testing_Final.indb 405 31-01-2018 14:59:47

406 • Software Testing

CONCEPTUAL SHORT QUESTIONS WITH ANSWERS

Q. 1.	 �What is LCOM metric?
Ans.	 �The LCOM metric is defined as a count of the method pairs that do

not have common instance variable minus the count of method pairs
that do. Please note that the larger the number of similar methods,
the more cohesive is the class.

	 	� LCOM (fopr a class) = 0 if none of the methods of a class display
any instance behavior, i.e., do not use any instance variables. Low
cohesion increases complexity, thereby increasing the likelihood of
errors during the development process.

Q. 2.	 �How do we compute the component weightage (CW) of an
object-oriented software?

Ans.	 �We try to compute the CWs of individual design attributes like
encapsulation, inheritance, coupling, and cohesion to show the com-
plexity relationship with the design properties. That is,

	 	� Complexity = [0.16 * Encapsulation] + [2.78 * Inheritance] +
[1.57 * Coupling]

Q. 3.	 Explain the two main variants of state models?
Ans.	 (a) Moore Machine:

�� Transitions do not have output.
�� An output action is associated with each state.
�� States are active.

	 	 (b) Mealy Machine:
�� Transitions have output.
�� No output action is associated with state.
�� States are passive.

Q. 4.	 �The big bang is estimated to have occurred about 18 billion years ago.
	 	 Given:	 Paths/second = 1 × 103

	 		 Second/year = 3.154 × 107

	 	� If we start testing 103 paths/second at instant of the big bang, how
many paths could we test? At what loop value of x, would we run out
of time?

Ans.	 Given:	 18 billion years = 1.8 × 109 years
	 	 and 3.154 × 107 seconds/year

Software-Testing_Final.indb 406 31-01-2018 14:59:47

Object-Oriented Testing • 407

	 	 We have, 1.8 × 109 years * 3.154 × 107 seconds
	 		 = 5.6772 × 1016 seconds (since the big bang)
	 	 If we test 103 paths/second at the instant of big bang, we could test
	 		 = 5.6772 × 1016 × 103 paths
	 		 = 5.6772 × 1019 paths
Also,		 we find x = ?
Now,		 2x = 5.6772 × 1019

Taking log on both sides, we get:
			 log (2x) = log (5.6772 × 1019)
or			 x log 2 = 19 log (5.6772)
			 x(0.3010) = 19 × 0.754134
or			 x = 3.321928 × 19 × 0.754134
\			 x = 35.89559

Q. 5.	 What is pesticide paradox?
Ans.	 As defined by Beizer,

1.	 The purpose of a test process is to find faults.

2.	 An effective process will eventually find fewer faults.

3.	 By definition, this process becomes increasingly ineffective, i.e.,
its ability to find faults decreases because the initial fault sources
have been eliminated.

4.	 Generally, applications, platforms, and development tools
become more complex, creating new opportunities for errors.

	 	 This is called the pesticide paradox.

	 	� For example, a given pesticide (P1) kills 98% of the first generation
of bugs B1, having survivors S1. The 2% that survive are immune to
P1. You have helped the survivors by reducing their competition.
The survivors regenerate and become generation B2. P1 is useless
against the second generation, B2.

	 	� Moral: Process monitoring is important to identify both chronic and
emerging fault causes.

Software-Testing_Final.indb 407 31-01-2018 14:59:47

408 • Software Testing

REVIEW QUESTIONS

1.	 Object-oriented languages like JAVA do not support pointers. This
makes testing easier. Explain how.

2.	 Consider a nested class. Each class has one method. What kind of
problems will you encounter during testing of such nested classes? What
about their objects?

3.	 Explain the following:

		 a.  Unit and integration testing

		 b.  Object-oriented testing

4.	 Write and explain some common inheritance related bugs.

5.	 How is object-oriented testing different from procedural testing?
Explain with examples.

6.	 Describe all the methods for class testing.

7.	 Write a short paragraph on issues in object-oriented testing.

8.	 Explain briefly about object-oriented testing methods with examples.
Suggest how you test object-oriented systems by use-case approach.

9.	 Illustrate “how do you design interclass test cases.” What are the various
testing methods applicable at the class level?

10.	 a. � What are the implications of inheritance and polymorphism in object-
oriented testing?

		 b. � How does GUI testing differ from normal testing? How is GUI
testing done?

11.	 With the help of suitable examples, demonstrate how integration testing
and system testing is done for object-oriented systems?

12.	 How reusability features can be exploited by object-oriented testing
approach?

13.	 a. � Discuss the salient features of GUI testing. How is it different from
class testing?

		 b. � Explain the testing process for object-oriented programs (systems).

14.	 Draw a state machine model for a two-player game and also write all
possible control faults from the diagram.

Software-Testing_Final.indb 408 31-01-2018 14:59:47

C H A P T E R9
Inside this Chapter:

	 9.0.	 Automated Testing

	 9.1.	 Consideration During Automated Testing

	 9.2.	 Types of Testing Tools-Static V/s Dynamic

	 9.3.	 Problems with Manual Testing

	 9.4.	 Benefits of Automated Testing

	 9.5.	 Disadvantages of Automated Testing

	 9.6.	 Skills Needed for Using Automated Tools

	 9.7.	 Test Automation: “No Silver Bullet”

	 9.8.	 Debugging

	 9.9.	 Criteria for Selection of Test Tools

9.10.	 Steps for Tool Selection

9.11.	 Characteristics of Modern Tools

9.12.	� Case Study on Automated Tools, Namely, Rational Robot,
WinRunner, Silk Test, and Load Runner

Automated Testing

9.0.  AUTOMATED TESTING

Developing software to test the software is called test automation/automated
testing. In simple terms, automated testing is automating the manual testing
process. It is used to replace or supplement manual testing with a suite of
testing tools. Automated testing tools assist software testers to evaluate the
quality of the software by automating the mechanical aspects of the software

Software-Testing_Final.indb 409 31-01-2018 14:59:47

410 • Software Testing

testing task. Automated testing tools vary in their underlying approach, qual-
ity, and ease of use.

Manual testing is used to document tests, produce test guides based
on data queries, provide temporary structures to help run tests, and mea-
sure the results of the tests. Manual testing is considered to be costly and
time-consuming. Therefore, automated testing is used to cut down time and
cost.

9.1  CONSIDERATION DURING AUTOMATED TESTING

While performing testing with automated tools, the following points should
be noted:

1.	 Clear and reasonable expectations should be established in order to
know what can and what cannot be accomplished with automated testing
in the organization.

2.	 There should be a clear understanding of the requirements that should
be met in order to achieve successful automated testing. This requires
that the technical personnel should use the tools effectively.

3.	 The organization should have detailed, reusable test cases which
contain exact expected results and a stand alone test environment with a
restorable database.

4.	 The testing tool should be cost-effective. The tool must ensure that test
cases developed for manual testing are also useful for automated testing.

5.	 Select a tool that allows the implementation of automated testing in a
way that conforms to the specified long-term testing strategy.

Automated tools like Mothora are used to create and execute test cases,
measure test case adequacy, determine input-output correctness, locate and
remove faults or bugs, and control and document the test.

Similarly, Bug Trapper is used to perform white-box testing. This tool
traces the path of execution and captures the bug along with the path of exe-
cution and the different input values that resulted in the error.

We now list some commonly used automated test tools.
It may be any phase of software development life cycle (SDLC), auto-

mated tools are always there. Tools like MS Project are project management
tools. Design tools like object-modeling technique (OMT) and testing tools

Software-Testing_Final.indb 410 31-01-2018 14:59:47

Automated Testing • 411

like a flow graph generator are also available in the market. Regression test-
ing tools are finally used during the testing life cycle. These tools are often
known as computer aided software testing (CAST) tools.

See Table on next page for certain other tools used during testing and
their field of applications.

9.2. � TYPES OF TESTING TOOLS-STATIC V/S DYNAMIC

Because testing is of two types

a.	 Static testing

b.	 Dynamic testing

The tools used during testing are named

a.	 Static testing tools.

b.	 Dynamic testing tools.

Static testing tools seek to support the static testing process whereas dynamic
testing tools support the dynamic testing process. Note that static testing is

TABLE 9.1  Software Testing Tools and Their Vendors/Manufacturers.

S. no. Manufacturer Testing tools

1. Segue �� Silk Test
�� Silk Performer
�� Silk Central

2. IBM/Rational �� Requirements Pro
�� Robot
�� Clear Case

3. Mercury Interactive �� WinRunner
�� Load Runner
�� Test Director

4. Compuware �� Reconcile
�� QA Load
�� QA Run

Software-Testing_Final.indb 411 31-01-2018 14:59:47

412 • Software Testing

different from dynamic testing. We tabulate the differences between static
and dynamic testing before discussing its tools. See Table 9.2.

Software testing tools are frequently used to ensure consistency, thor-
oughness, and efficiency in testing software products and to fulfill the
requirements of planned testing activities. These tools may facilitate unit

S. no. Tool name Vendor Applications

1. SQA Manager Rational (IBM) Test management
2. Review Pro Software Development

Technologies (SDT)
Review management

3. Visual Quality McCabe and his
associates

Cyclomatic complexities of
source code

4. Java Scope Sun Microsystems Coverage analysis
5. Bounds Checker Compuware Memory testing
6. CA-Datamacs/II Computer Associates Database generators

TABLE 9.2  Static Testing V/s Dynamic Testing.

S. no. Static testing Dynamic testing

1. Static testing does not require
the actual execution of software.

Dynamic testing involves testing the
software by actually executing it.

2. It is more cost effective. It is less cost effective.
3. It may achieve 100% statement

coverage in relatively short time.
It achieves less than 50% statement
coverage because it finds bugs only
in part of the codes that are actually
executed.

4. It usually takes shorter time. It may involve running several test
cases, each of which may take longer
then compilation.

5. It may uncover a variety of bugs. It uncovers a limited type of bugs that
are explorable through execution.

6. It can be done before
compilation.

It can take place only after executables
are ready.

Software-Testing_Final.indb 412 31-01-2018 14:59:47

Automated Testing • 413

(module) testing and subsequent integration testing (e.g., drivers and stubs)
as well as commercial software testing tools. Testing tools can be classified
into one of the two categories listed below:

a.	 Static Test Tools: These tools do not involve actual input and output.
Rather, they take a symbolic approach to testing, i.e., they do not test
the actual execution of the software. These tools include the following:

a.	 Flow analyzers: They ensure consistency in data flow from input to
output.

b.	 Path tests: They find unused code and code with contradictions.

c.	 Coverage analyzers: It ensures that all logic paths are tested.

d.	 Interface analyzers: It examines the effects of passing variables and
data between modules.

b.	 Dynamic Test Tools: These tools test the software system with “live”
data. Dynamic test tools include the following:

a.	 Test driver: It inputs data into a module-under-test (MUT).

b.	 Test beds: It simultaneously displays source code along with the
program under execution.

c.	 Emulators: The response facilities are used to emulate parts of the
system not yet developed.

d.	 Mutation analyzers: The errors are deliberately “fed” into the code
in order to test fault tolerance of the system.

9.3.  PROBLEMS WITH MANUAL TESTING

The main problems with manual testing are listed below:

1.	 Not Reliable: Manual testing is not reliable as there is no yardstick
available to find out whether the actual and exepected results have been
compared. We just rely on the tester’s words.

2.	 High Risk: A manual testing process is subject to high risks of oversights
and mistakes. People get tired, they may be temporarily attentive, they
may have too many tasks on hand, they may be insufficiently trained,
and so on. Hence, unintentionally mistakes happen in entering data, in
setting parameters, in execution, and in comparisons.

Software-Testing_Final.indb 413 31-01-2018 14:59:47

414 • Software Testing

3.	 Incomplete Coverage: Testing is quite complex when we have a mix of
multiple platforms, OS servers, clients, channels, business processes, etc.
Testing is non exhaustive. Full manual regression testing is impractical.

4.	 Time Consuming: Limited test resources makes manual testing simply
too time consuming. As per a study done, 90% of all IT projects are
delivered late due to manual testing.

5.	 Fact and Fiction: The fiction is that manual testing is done while the
fact is only some manual testing is done depending upon the feasibility.

Please note that manual testing is used to document tests, produce test
guides based on data queries, provide temporary structures to help run tests,
and measure the results of the test. Manual testing is considered to be costly
and time-consuming; so we use automated testing to cut down time and cost.

9.4.  BENEFITS OF AUTOMATED TESTING

Automated testing is the process of automating the manual testing process. It
is used to replace or supplement manual testing with a suite of testing tools.
Automated testing tools assist software testers to evaluate the quality of the
software by automating the mechanical aspects of the software testing task.
The benefits of automation include increased software quality, improved
time to market, repeatable test procedures, and reduced testing costs. We
will now list some more benefits of test automation. They are given below:

1.	 Automated execution of test cases is faster than manual execution. This
saves time. This time can also be utilized to develop additional test cases,
thereby improving the coverage of testing.

2.	 Test automation can free test engineers from mundane tasks and make
them focus on more creative tasks.

3.	 Automated tests can be more reliable. This is because manually running
the tests may result in boredom and fatigue, more chances of human
error. While automated testing overcomes all these shortcomings.

4.	 Automation helps in immediate testing as it need not wait for the
availability of test engineers. In fact,

Automation = Lesser Person Dependence

Software-Testing_Final.indb 414 31-01-2018 14:59:47

Automated Testing • 415

5.	 Test cases for certain types of testing such as reliability testing, stress
testing, and load and performance testing cannot be executed without
automation. For example, if we want to study the behavior of a system
with millions of users logged in, there is no way one can perform these
tests without using automated tools.

6.	 Manual testing requires the presence of test engineers but automated
tests can be run around the clock, in a 24 × 7 environment.

7.	 Tests, once automated, take comparatively far less resources to execute.
A manual test suite requiring 10 persons to execute over 31 days, i.e.,
31 × 10 = 310 man-days, may take just 10 man-days for execution, if
automated. Thus, a ratio of 1: 31 is achieved.

8.	 Automation produces a repository of different tests which helps us to
train test engineers to increase their knowledge.

9.	 Automation does not end with developing programs for the test cases.
Automation includes many other activities like selecting the right
product build, generating the right test data, analyzing results, and so on.

Automation should have scripts that produce test data to maximize cov-
erage of permutations and combinations of input and expected output for
result comparison. They are called test data generators.

It is important for automation to relinquish the control back to test engi-
neers in situations where a further set of actions to be taken are not known.

As the objective of testing is to catch defects early, the automated tests
can be given to developers so that they can execute them as part of unit
testing.

9.5.  DISADVANTAGES OF AUTOMATED TESTING

Despite many benefits, the pace of test-automation is slow. Some of its dis-
advantages are given below:

1.	 An average automated test suite development is normally 3-5 times the
cost of a complete manual test cycle.

2.	 Automation is too cumbersome. Who would automate? Who would
train? Who would maintain? This complicates the matter.

Software-Testing_Final.indb 415 31-01-2018 14:59:47

416 • Software Testing

3.	 In many organizations, test automation is not even a discussion issue.

4.	 There are some organizations where there is practically no awareness or
only some awareness on test automation.

5.	 Automation is not a high priority item for management. It does not make
much difference to many organizations.

6.	 Automation would require additional trained staff. There is no staff for
the purpose of automation.

Automation actually allows testing professionals to concentrate on their
real profession of creating tests and test-cases rather than doing the mechan-
ical job of test execution.

9.6.  SKILLS NEEDED FOR USING AUTOMATED TOOLS

The skills required depends on what generation of automation the company
is in.

1.	 Capture/playback and test harness tools (first generation).

2.	 Data driven tools (second generation).

3.	 Action driven (third generation).

We discuss these three generations on which skills depends, one by one.

I.  Capture/Playback and Test Harness Tools

One of the most boring and time-consuming activities during testing life
cycle is to rerun manual tests a number of times. Here, capture/playback
tools are of great help to the testers. These tools do this by recording and
replaying the test input scripts. As a result, tests can be replayed without
attendent for long hours especially during regression testing. Also, these
recorded test scripts can be edited as per need, i.e., whenever changes are
made to the software. These tools can even capture human operations, e.g.,
mouse activity, keystrokes, etc.

A capture/playback tool can be either intrusive or non intrusive. Intru-
sive capture/playback tools are also called native tools as they along with
software-under-test (SUT) reside on the same machine.

Software-Testing_Final.indb 416 31-01-2018 14:59:47

Automated Testing • 417

Non intrusive capture/playback tools, on the other hand, reside on the
separate machine and is connected to the machine containing the software
to be tested using special hardware. One advantage of these tools is to cap-
ture errors that users frequently make and developers cannot reproduce.

Test harness tools are the category of capture/playback tools used for
capturing and replaying a sequence of tests. These tools enable running a
large volume of tests unattended and help in generating reports by using
comparators. These tools are very important at CMM level-2 and above.

II.  Data-driven Tools

This method helps in developing test scripts that generate the set of input
conditions and corresponding expected output. The approach takes as much
time and effort as the product. However, changes to the application does
not require the automated test cases to be changed as long as the input
conditions and expected output are still valid. This generation of automation
focuses on input and output conditions using the black-box testing approach.

III.  Action-driven Tools

This technique enables a layman to create automated tests. There are no
input and expected output conditions required for running the tests. All
actions that appear on the application are automatically tested, based on a
generic set of controls defined for automation.

From the above approaches/generations of automation, it is clear that
different levels of skills are needed based on the generation of automation
selected.

9.7.  TEST AUTOMATION: “NO SILVER BULLET”

Test automation is a partial solution and not a complete solution. One
does not go into automation because it is easy. It is a painful and resource-
consuming exercise but once it is done, it has numerous benefits. For exam-
ple, developing a software to automate inventory management may be a
time-consuming, painful, and costly, resource-intensive exercise but once
done, inventory-management becomes a breeze.

Of course, test-automation is “no silver bullet.” It is only one of the many
factors that determine software quality.

Software-Testing_Final.indb 417 31-01-2018 14:59:47

418 • Software Testing

9.8.  DEBUGGING

Debugging occurs as a consequence of successful testing. That is, when a test
case uncovers an error, debugging is the process that results in the removal
of the error. After testing, we begin an investigation to locate the error, i.e.,
to find out which module or interface is causing it. Then that section of the
code is to be studied to determine the cause of the problem. This process is
called debugging.

Debugging is an activity of locating and correcting errors. Debugging is
not testing but it always occurs as a consequence of testing. The debugging
process begins with the execution of a test case. The debugging process will
always have one of the two outcomes.

1.	 The cause will be found, corrected, and removed.

2.	 The cause will not be found.

During debugging, we encounter errors that range from mildly annoying to
catastrophic. Some guidelines that are followed while performing debugging
are:

1.	 Debugging is the process of solving a problem. Hence, individuals
involved in debugging should understand all of the causes of an error
before starting with debugging.

2.	 No experimentation should be done while performing debugging. The
experimental changes often increase the problem by adding new errors
in it.

3.	 When there is an error in one segment of a program, there is a high
possibility of the presence of another error in that program. So, the rest
of the program should be properly examined.

4.	 It is necessary to confirm that the new code added in a program to
fix errors is correct. And to ensure this, regression testing should be
performed.

The Debugging Process

During debugging, errors are encountered that range from less damag-
ing (like input of an incorrect function) to catastrophic (like system failure,
which leads to economic or physical damage). The various levels of errors
and their damaging effects are shown in Figure 9.1.

Software-Testing_Final.indb 418 31-01-2018 14:59:47

Automated Testing • 419

Note that in this graph, as the number of errors increases, the amount of
effort to find their causes also increases.

Once errors are identified in a software system, to debug the problem, a
number of steps are followed:

Step 1. Identify the errors.

Step 2. Design the error report.

Step 3. Analyze the errors.

Step 4. Debugging tools are used.

Step 5. Fix the errors.

Step 6. Retest the software.

After the corrections are made, the software is retested using regression
tests so that no new errors were introduced during debugging process.

Please note that debugging is an integral component of the software
testing process. Debugging occurs as a consequence of successful testing
and revealing the bugs from the software-under-test (SUT). When a test
case uncovers an error, debugging is the process that results in the removal
of the bugs. Also note that debugging is not testing, but it always occurs as a
consequence of testing. The debugging process begins with the execution of
a test case. This is shown in Figure 9.2.

FIGURE 9.1  Level of Error and its Effect.

Software-Testing_Final.indb 419 31-01-2018 14:59:49

420 • Software Testing

FIGURE 9.2  Overall Debugging Life Cycle.

S. no. Software testing Debugging

1. It is the process of executing
the program with the intent of
finding faults.

It is an activity of locating and correct-
ing errors.

2. It is a phase of the software
development life cycle (SDLC).

It occurs as a consequence of testing.

3. Once code is written, testing
commences.

The debugging process begins with
the execution of a test case.

4. It is further comprised of
validation and verification of
software.

It attempts to match symptom with
cause, thereby leading to error correc-
tion.

5. It uses unit-, integration-, and
system-level testing.

It checks the correctness and perfor-
mance of the software.

The debugging process attempts to match symptom with cause thereby
leading to error correction. The purpose of debugging is to locate and fix the
offending code responsible for a sympton violating a known specification.

Testing uses unit-, integration-, and system-level approaches for doing
fault detection. On the other hand, debugging checks the correctness and
the performance of software to do fault detection. The differences between
these two techniques are shown in Table.

Software-Testing_Final.indb 420 31-01-2018 14:59:50

Automated Testing • 421

Debugging Approaches

Several approaches have been discussed in literature for debugging
software-under-test (SUT). Some of them are discussed below.

1.	 Brute Force Method: This method is most common and least efficient
for isolating the cause of a software error. We apply this method when all
else fails. In this method, a printout of all registers and relevant memory
locations is obtained and studied. All dumps should be well documented
and retained for possible use on subsequent problems.

2.	 Back Tracking Method: It is a fairly common debugging approach that
can be used successfully in small programs. Beginning at the site where
a sympton has been uncovered, the source code is traced backward until
the site of the cause is found. Unfortunately, as the number of source
lines increases, the number of potential backward paths may become
unmanageably large.

3.	 Cause Elimination: The third approach to debugging, cause
elimination, is manifested by induction or deduction and introduces the
concept of binary partitioning. This approach is also called induction
and deduction. Data related to the error occurrence are organized to
isolate potential causes. A cause hypothesis is devised and the data
are used to prove or disprove the hypothesis. Alternatively, a list of all
possible causes is developed and tests are conducted to eliminate each.
If initial tests indicate that a particular cause hypothesis shows promise,
the data are refined in an attempt to isolate the bug.

Tools for Debugging: Each of the above debugging approaches can be
supplemented with debugging tools. For debugging we can apply a wide
variety of debugging tools such as debugging compilers, dynamic debugging
aids, automatic test case generators, memory dumps, and cross reference
maps. The following are the main debugging tools:

1.	 Turbo Debugger for Windows: The first debugger that comes to
mind when you think of a tool especially suited to debug your Delphi
code is Borland’s own Turbo Debugger for Windows.

2.	 Heap Trace: Heap Trace is a shareware heap debugger for Delphi 1·X
and 2·X applications that enables debugging of heap memory use. It helps
you to find memory leaks, dangling pointers, and memory overruns in
your programs. It also provides optional logging of all memory allocations,
de-allocations, and errors. Heap trace is optimized for speed, so there is

Software-Testing_Final.indb 421 31-01-2018 14:59:50

422 • Software Testing

only a small impact on performance even on larger applications. Heap
trace is configurable and you can also change the format and destination
of logging output, choose what to trace, etc. You can trace each allocation
and de-allocation and find out where each block of memory is being
created and freed. Heap trace can be used to simulate out of memory
condition to test your program in stress conditions.

3.	 MemMonD: MemMonD is another shareware memory monitor for
Delphi 1·X applications. It is a stand-alone utility for monitoring memory
and stack use. You don’t need to change your source code but only
need to compile with debug information included. MemMonD detects
memory leaks and deallocations with wrong size.

4.	 Re-Act: Re-Act is not really a debugger for Delphi but more a Delphi
component tester. However, this tool is a real pleasure to use. So we
could not resist including it in this list of debugging tools. Currently, the
reach is for Delphi 2 only, but a 16-bit version is in the works. Re-Act
version 2.0 is a really nice component. It can view and change properties
at run time with the built in component inspector, monitor events in
real time, set breakpoints, and log events visually and dynamically. You
can find elusive bugs, evaluate third-party components, and learn how
poorly documented components really work. If you build or purchase
components you need this tool. It’s totally integrated with Delphi 2.0
and the CDK 2.0.

9.9  CRITERIA FOR SELECTION OF TEST TOOLS

The main criteria for the selection of test tools are given below:

1.	 Meeting requirements

2.	 Technology expectations

3.	 Training/skills

4.	 Management aspects

We now discuss these criteria one by one.

1.	 Meeting Requirements

a.	 �There are many tools available in the market today but rarely do they
meet all the requirements of a given product or a given organization.
Evaluating different tools for different requirements involves lot of

Software-Testing_Final.indb 422 31-01-2018 14:59:50

Automated Testing • 423

effort, money, and time. A huge delay is involved in selecting and
implanting test tools.

b.	 �Test tools may not provide backward or forward compatibility with
the product-under-test (PUT).

c.	 �Test tools may not go through the same amount of evaluation for new
requirements. Some tools had Y2K-problems too.

d.	 �A number of test tools cannot distinguish between a product failure
and a test failure. This increases analysis time and manual testing. The
test tools may not provide the required amount of trouble-shooting/
debug/error messages to help in analysis. For example, in the case
of GUI testing, the test tools may determine the results based on
messages and screen coordinates at run-time. So, if the screen
elements of the product are changed, it requires the test suite to be
changed. The test tool must have some intelligence to proactively
find out the changes that happened in the product and accordingly
analyze the results.

2.	 Technology Expectations

a.	 �In general, test tools may not allow test developers to extend/modify
the functionality of the framework. It involves going back to the tool
vendor with additional cost and effort. Very few tools available in the
market provide source code for extending functionality or fixing some
problems. Extensibility and customization are important expectations
of a test tool.

b.	 �A good number of test tools require their libraries to be linked with
product binaries. When these libraries are linked with the source
code of the product, it is called the “instrumented code.” This causes
portions of testing to be repeated after those libraries are removed, as
the result of certain types of testing will be different and better when
those libraries are removed. For example, the instrumented code
has a major impact on performance testing because the test tools
introduce additional code and there could be a delay in executing the
additional code.

c.	 �Finally, test tools are not 100% cross-platform. They are supported
only on some OS platforms and the scripts generated from these
tools may not be compatible on other platforms. Moreover, many of
the test tools are capable of testing only the product, not the impact
of the product/test tool to the system or network. When there is an

Software-Testing_Final.indb 423 31-01-2018 14:59:50

424 • Software Testing

impact analysis of the product on the network or system, the first
suspect is the test tool and it is uninstalled when such analysis starts.

3.	 Training Skills

Test tools require plenty of training but very few vendors provide the train-
ing to the required level. Organization-level training is needed to deploy the
test tools, as the users of the test suite are not only the test team but also
the development team and other areas like SCM (software configuration
management). Test tools expect the users to learn new language/scripts and
may not use standard languages/scripts. This increases skill requirements for
automation and increases the need for a learning curve inside the organiza-
tion.

4.	 Management Aspects

A test tool increases the system requirement and requires the hardware and
software to be upgraded. This increases the cost of the already-expensive
test tool. When selecting the test tool, it is important to note the system
requirements and the cost involved in upgrading the software and hardware
needs to be included with the cost of the tool. Migrating from one test tool to
another may be difficult and requires a lot of effort. Not only is this difficult
as the test suite that is written cannot be used with other test tools but also
because of the cost involved. The tools are expensive and unless manage-
ment feels that the returns on investment (ROI) are justified, changing tools
are generally not permitted.

Deploying a test tool requires as much effort as deploying a product
in a company. However, due to project pressures, the test tools effort at
deploying gets diluted, not spent. Thus, later it becomes one of the reasons
for delay or for automation not meeting expectations. The support available
on the tool is another important point to be considered while selecting and
deploying the test tool.

9.10.  STEPS FOR TOOL SELECTION

There are seven steps to select and deploy a test tool in an organization.
These steps are:

Step 1. � Identify your test suite requirements among the generic require-
ments discussed. Add other requirements, if any.

Step 2. � Make sure experiences discussed in previous sections are taken
care of.

Software-Testing_Final.indb 424 31-01-2018 14:59:50

Automated Testing • 425

Step 3. � Collect the experiences of other organizations which used similar
test tools.

Step 4. � Keep a checklist of questions to ask the vendors on cost/effort/sup-
port.

Step 5. � Identify a list of tools that meet the above requirements and give
priority for the tool that is available with the source code.

Step 6. � Evaluate and shortlist one/set of tools and train all of the test devel-
opers on the tool.

Step 7. � Deploy the tool across test teams after training all of the potential
users of the tool.

9.11.  CHARACTERISTICS OF MODERN TESTING TOOLS

The modern testing tools available today have some salient features that are
discussed below:

i.	 It should use one or more testing strategy for performing testing on
host and target platforms.

ii.	 It should support GUI-based test preparation.

iii.	 It should provide complete code coverage and create test
documentation in various formats like .doc, .html, .rtf, etc.

iv.	 These tools should be able to adopt the underlying hardware.

v.	 It should be easy to use.

vi.	 It should provide a clear and correct report on test case, test case
status (PASS/FAIL), etc.

9.12. � CASE STUDY ON AUTOMATED TOOLS , NAMELY,
RATIONAL ROBOT, WIN RUNNER, SILK TEST, AND
LOAD RUNNER

Rational Robot: Its main features are:

1.	 Rational is for the name of the company, Rational Software Cooperation
(IBM). It is called “Robot” because like a robot it operates application
and does data-entry on screens.

Software-Testing_Final.indb 425 31-01-2018 14:59:50

426 • Software Testing

2.	 Rational Robot is highly useful and effective in automating screen-based
testing.

3.	 Operations on Windows/Web GUI, data entry on screens, and other
screen operations can be automatically captured by Robot into a script.

4.	 The recorded scripts can be played back.

5.	 Once the operations and data-entry are recorded, they can be
automatically played back anytime, dispensing with human intervention
and manual data-entry.

6.	 The scripts can be edited. Scripts are in SQA Basic. SQA Basic is a
powerful language providing many options. For example, instead of
recording/capturing data-entry, data can be read-in from a repository/
database and entered into target screens. One way would be to capture
screen operations and entry of just one record into a script through
Robot and then to suitably edit the script to provide for data-entry by
reading-in values from a repository/ database.

7.	 Rational Robot and SQA basic provide an excellent, user-friendly
development environment.

8.	 GUI applications such as VS.NET, VB6.0, Oracle Forms, HTML, and
JAVA can be tested through Robot.

9.	 Robot uses object-oriented recording technology (OORT). It identifies
objects by their internal object names and lets you generate scripts
automatically by simply running and using the application-under-test
(AUT).

10.	 There are many similar tools like Mercury Interactive’s WinRunner,
Seague’s Silk Test, etc.

WinRunner: Its main features are:

1.	 WinRunner is a recording and playback tool of Mercury Interactive.

2.	 WinRunner captures, verifies, and replays user GUI interactions
automatically.

3.	 Its DataDriver facilitates the process of preparing test data and scripts.
It examines and compares expected and actual results using multiple
verfications for text, GUI, bitmaps, URLs, and databases.

4.	 WinRunner enables the same test to be used to validate applications in
Internet Explorer, Netscape, etc.

Software-Testing_Final.indb 426 31-01-2018 14:59:50

Automated Testing • 427

5.	 It integrates with other testing solutions of Mercury like Load Runner
for load testing and Test Director for global test management.

6.	 WinRunner supports the Windows platform, Web browsers, and various
ERP/CRM applications.

7.	 Its recovery manager and exception handling mechanism automatically
troubleshoot unexpected events, errors, and application crashes to
ensure smooth test completion.

8.	 WinRunner has an interactive reporting tool, also. It generates reports
so that the results can be interpreted.

9.	 Testers need not modify multiple tests when the application’s screen
are modified over time. Instead, they can apply changes to the GUI
map, central repository of test-related information and WinRunner will
automatically propagate changes to relevant scripts.

10.	 WinRunner supports VB6, ActiveX, Oracle, C/C++, Java, Javascript,
JDK, Delphi, Centura, and Windows platform and Terminal Emulators
like VT 100.

Segue’s Silk Test: Its main features are

1.	 Silk Test is a recording and playback tool of Segue Software Inc.

2.	 It provides user simulation capabilities, driving the application exactly
how an end-user would.

3.	 Its recovery system allows tests to be run unattended. If unexpected
errors such as application crashes occur, the errors are logged, and the
application is restored to its original base state so that subsequent tests
can be run.

4.	 It’s 4 Test scripting language is an object-based fourth-generation
language (4GL).

5.	 Silk Test supports Internet Explorer, Netscape, Windows Platform, VB
6.0, Power Builder, etc.

LoadRunner: Its main features are:

1.	 LoadRunner is a load/performance testing tool of Mercury Interactive.

2.	 Using minimal hardware resources, it emulates hundreds to thousands
of concurrent users with real-life user loads, monitors performance of
servers and network, and helps identify performance bottle necks and
scalability issues before they impact end-users.

Software-Testing_Final.indb 427 31-01-2018 14:59:50

428 • Software Testing

3.	 It measures the response times of key business processes and
transactions, captures and displays performance data from every tier-
server and component.

4.	 Its analysis module allows drill down to specific source of bottlenecks
and generate reports.

5.	 It allows organizations to minimize testing cycles, optimise performance,
and reduce risks.

6.	 Its WAN emulation capability allows testing for network errors,
bandwidth, and latency.

7.	 It supports Citrix’s ICA for testing applications deployed with Citrix
Metaframe.

8.	 LoadRunner supports a very wide variety of platforms.

SUMMARY

Testing is an expensive and laborious phase of the software process. As a
result, testing tools were among the first software tools to be developed.
These tools now offer a range of facilities and their use. Significantly reduces
the cost of the testing process. Different testing tools may be integrated into
the testing workbench.

These tools are:

1.	 Test manager: It manages the running of program tests. It keeps track
of test data, expected results, and program facilities tested.

2.	 Test data generator: It generates test data for the program to be tested.
This may be accomplished by selecting data from a database.

3.	 Oracle: It generates predictions of expected test results.

4.	 File comparator: It compares the results of program tests with previous
test results and reports difference between them.

5.	 Report generator: It provides report definition and generation
facilities for test results.

6.	 Dynamic analyzer: It adds code to a program to count the number
of times each statement has been executed. After the tests have been
run, an execution profile is generated showing how often each program
statement has been executed.

Software-Testing_Final.indb 428 31-01-2018 14:59:50

Automated Testing • 429

Testing workbenches invariably have to be adapted to the test suite of
each system. A significant amount of effort and time is usually needed to
create a comprehensive testing workbench. Most testing work benches are
open systems because testing needs are organization specific.

Automation, however, makes life easier for testers but is not a
“Silver bullet.” It makes life easier for testers for better reproduction of
test results, coverage, and reduction in effort. With automation we can
produce better and more effective metrics that can help in understanding
the state of health of a product in a quantifiable way, thus taking us to the
next change.

MULTIPLE CHOICE QUESTIONS

1.	 Automated testing is

a.	 To automate the manual testing process

b.	 To ensure quality of software

c.	 To increase costs

d.	 None of the above.

2.	 Automated tools can be used during the

a.	 SRS phase

b.	 Design phase

c.	 Coding phase

d.	 Testing and maintenance phases

e.	 All of the above.

3.	 Testing system with live data is done using

a.	 Static test tools b.	 Dynamic test tools

c.	 Both (a) and (b) d.	 None of the above.

4.	 Tools used to record and replay the test input scripts are known as

a.	 Test harness tools b.	 Data driven tools

c.	 Action driven tools d.	 None of the above.

Software-Testing_Final.indb 429 31-01-2018 14:59:50

430 • Software Testing

5.	 Thread testing is used for testing

a.	 Real-time systems b.	 Object-oriented systems

c.	 Event-driven systems d.	 All of the above

6.	 Debugging is

a.	 An activity of locating and correcting errors

b.	 A process of testing

c.	 A process of regression testing

d.	 None of the above.

7.	 Which of the following is a debugging approach?

a.	 Brute-Force method b.	 Inheritance

c.	 Data flow diagrams d.	 None of the above.

8.	 Which of these is a debugging tool

a.	 Windows b.	 Heap-trace

c.	 SCM d.	 None of the above.

9.	 CASE stands for

a.	 Computer aided software engineering

b.	 Case aided system engineering

c.	 Computer aided system engineering

d.	 None of the above.

10.	 Which of these can be used for testing as a tool

a.	 Rational Robot b.	 Waterfall model

c.	 MS-WORD d.	 None of the above.

ANSWERS

1.	 a. 2.	 e. 3.	 b. 4.	 a.

5.	 d. 6.	 a. 7.	 a. 8.	 b.

9.	 a. 10.	 a.

Software-Testing_Final.indb 430 31-01-2018 14:59:50

Automated Testing • 431

CONCEPTUAL SHORT QUESTIONS WITH ANSWERS

Q. 1.	 �List one example of a test objective and two examples of a test
requirement.

Ans.	 Test objective example: Creating a new order with the system.
		 Test requirement example:

a.	 Verifying that the insertion done appears in the status bar of the
application’s window.

b.	 Verifying that an order number is displayed in the order number
box of the AUT (Application Under Test).

Q. 2.	 �What is the importance of learning AUT before creating automated
test scripts?

Ans.	 �You can record a basic test with the correct user actions in a short
amount of time.

Q. 3.	 �How can you estimate the total number of testers required for your
project?

Ans.	 We have a simple formula:

Total no. of testers =     Total testing hours
	 Total no. of weeks * Hours / week
	 If total testing hours	 =	 100
	 Total no. of weeks	 =	 4
	 Hours/week	 =	 25

Then,	 No. of testers required = 100
4 × 25

 = 25
25

 = 1 tester.

Q. 4.	 What should you do when you evaluate test automation?
Ans.	 When evaluating test automation, we should:

1.	 Look for the tests that take the most time.

2.	 Look for tests that could otherwise not be run like server tests.

3.	 Consider acceptance tests.

4.	 Look for stable application components.

Q. 5.	 Which is costlier—an automated test suite or a manual test suite?
Ans.	 �An average automated test suite development is normally 3-5 times

the cost of a complete manual test cycle.

Software-Testing_Final.indb 431 31-01-2018 14:59:50

432 • Software Testing

REVIEW QUESTIONS

1.	 Answer the following:

a.  What is debugging?

b.  What are different approaches to debugging?

c.  Why is exhaustive testing not possible?	

2.	 Explain the following:

a.  Modern testing tools.

3.	 a. � Differentiate between static and dynamic testing tools with examples
in detail?

	 b. � Will exhaustive testing guarantee that the program is 100% correct?

4.	 Compare testing with debugging.	

5.	 Differentiate between static and dynamic testing.	

6.	 Write a short paragraph on testing tools.	

7.	 Compare testing with debugging.	

8.	 Explain back tracking method for debugging.	

9.	 Differentiate between static and dynamic testing tools.

10.	 What are the benefits of automated testing tools over conventional
testing tools?

11.	 Discuss various debugging approaches with some examples.

	 12.	 a.  What is debugging? Describe various debugging approaches.

		 b.  Differentiate between static testing tools and dynamic testing tools.

	 13.	 Briefly discuss dynamic testing tools.

	 14.	 Write a short paragraph on any two:

		 a.  Static testing tools.

		 b.  Dynamic testing tools.

		 c.  Characteristics of modern tools.	

Software-Testing_Final.indb 432 31-01-2018 14:59:51

Automated Testing • 433

	 15.	 a. � Discuss in detail automated testing and tools. What are the advantages
and disadvantages?

		 b. � Explain in brief modern tools in the context of software development
and their advantages and disadvantages.

	 16.	 List and explain the characteristics of modern testing tools.

	 17.	 Explain modern testing tools.	

	 18.	 Write a short paragraph on static and dynamic testing tools.

Software-Testing_Final.indb 433 31-01-2018 14:59:51

Software-Testing_Final.indb 434 31-01-2018 14:59:51

C H A P T E R10
Inside this Chapter:

	 10.0.	 Introduction

	 10.1.	 Methodology

	 10.2.	 Case Study

	 10.3.	 TPA for Case Study

	 10.4.	 Phase Wise Breakup Over Testing Life Cycle

	 10.5.	 Path Analysis

	 10.6.	 Path Analysis Process

Test Point Analysis (TPA)

10.0.  INTRODUCTION

There are a number of accepted techniques for estimating the size of the
software. This chapter describes the test estimate preparation technique
known as test point analysis (TPA). TPA can be applied for estimating the
size of testing effort in black-box testing, i.e., system and acceptance testing.
The goal of this technique is to outline all the major factors that affect test-
ing projects and to ultimately do an accurate test effort estimation. On time
project delivery cannot be achieved without an accurate and reliable test
effort estimate.

Effective test effort estimation is one of the most challenging and import-
ant activity in software testing. There are many popular models for test effort
estimation in vogue today. One of the most popular methods is FPA. How-
ever, this technique can only be used for white-box testing. Organizations
specializing in niche areas need an estimation model that can accurately cal-
culate the testing effort of the application-under-test.

Software-Testing_Final.indb 435 31-01-2018 14:59:51

436 • Software Testing

TPA is one such method that can be applied for estimating test effort in
black-box testing. It is a 6-step approach to test estimation and planning. We
believe that our approach has a good potential for providing test estimation
for various projects. Our target audience for using this approach would be
anyone who would want to have a precise test effort estimation technique for
any given application-under-test (AUT).

Ineffective test effort estimation leads to schedule and cost overruns.
This is due to a lack of understanding of the development process and con-
straints faced in the process. But we believe that our approach overcomes all
these limitations.

To this end, the problem will be approached from a mathematical
perspective. We will be implementing the following testing metrics in
C++: static test points, dynamic test points, total number of test points, and
primary test hours.

We will be illustrating TPA using following case study.
DCM Data Systems Ltd. had a number of software products. One of the

newly developed products, vi editor, was installed locally and abroad.
Reports and surveys depicted that some of the program functionality

claimed did not adequately function. The management of the company
then handed over the project to an ISO certified CMM level 5 company,
KRV&V. KRV&V decided to use the TPA method to estimate black-box
testing effort.

10.1.  METHODOLOGY

10.1.1. TPA Philosophy

The effort estimation technique TPA is based on three fundamental ele-
ments:

�� Size of the information system to be tested
�� Test strategy
�� Productivity

Size denotes the size of the information system to be tested.
Test strategy implies the quality characteristics that are to be tested on

each subsystem.
Productivity is the amount of time needed to perform a given volume of

testing work.

Software-Testing_Final.indb 436 31-01-2018 14:59:51

Test Point Analysis (TPA) • 437

= Test Point (TP)
Mathematically, Prodructivity (measured in size/time)

Effort (E) �

10.1.2. TPA Model

FIGURE 10.2  Schematic Overview of TPA.

FIGURE 10.1  TPA Philosophy.

Software-Testing_Final.indb 437 31-01-2018 14:59:55

438 • Software Testing

The detailed procedure is as follows:

Step 1: Calculation of static test points (ST):

�� ST depends on the total FP of the information system (size) and the static
quality characteristics of the system.

�� ISO 9126 has listed the following quality characteristics as static:

a.	 Functionality
b.	 Usability
c.	 Efficiency
d.	 Portability
e.	 Maintainability
f.	 Reliability

�� Method of calculation of ST

	
i

T

(FP * Q)
S

500
=

�
(1)

where	 FP	 =	� total number of function points assigned to an information
system

	 Qi	 =	� weighing factor for statically measurable quality charac-
teristics

	 500	 =	 minimum number of FPs that can be calculated in a day

Method of Calculation of Qi: If a quality characteristic is tested by means
of a checklist that is the static testing factor, Qi gets the value 16. For each
subsequent quality characteristic to be included in a static test, another 16 is
added to Qi factor rating.

Step 2: Calculation of dynamic test points (DT):

�� Dynamic test point is assigned to each individual function of the system
to be tested.

Mathematically,

	 DT = FPf * Df * QD� (2)

where	 DT	 =	 Dynamic test points
	 FPf	 =	 Number of function points assigned to the function
	 Df	 =	 Weighing factor for function dependent factors
	 QD	 =	 Weighing factor for dynamic quality characteristics

Software-Testing_Final.indb 438 31-01-2018 14:59:57

Test Point Analysis (TPA) • 439

The details of each of these parameters is as follows:

a.	 FPf : It is determined during FPA. It indicates the size of each function.

b.	 Df : The function dependent factors (Df) are defined per function
and a weight will be assigned to each factor. One of the given weights
must be selected, intermediate weights are not allowed. If insufficient
information is available to enable the weight of a given factor, the
nominal weight should be assigned.

Various function dependent factors are described below:

i.	 User importance (Up): It implies how important the function is to the
users related to other system functions.

Rule: About 25% of functions should be placed in the high category,
50% in normal category, and 25% in low category.

Weights:

Weight Category Description

3 LOW The importance of function relative to
other functions is low.

6 NOMINAL The importance of function relative to
other functions is nominal.

12 HIGH The importance of function relative to
other functions is high.

ii.	 Usage intensity (Ui): It depicts how many users process a function and
how often.

Weights:

Weight Category Description

2 LOW The function is only used a few times
per day or per week.

4 NOMINAL The function is being used a great many
times per day.

12 HIGH The function is used continuously
throughout the day.

iii.	 Interfacing (I): It implies how much one function affects the other
parts of the system. The degree of interfacing is determined by first
ascertaining the logical data sets (LDSs) which the function in question

Software-Testing_Final.indb 439 31-01-2018 14:59:57

440 • Software Testing

can modify, then the other functions which access these LDSs. An
interface rating is assigned to a function by reference to a table in
which the number of LDSs affected by the function are arranged
vertically and the number of the other functions accessing LDSs
are arranged horizontally. When working out the number of “other
functions” affected, a given function may be counted several times if it
accesses several LDSs, all of which are maintained by the function for
which the calculation is being made.

TABLE 10.1  Complexity Interface Factor Table.

LDS/Functions 1 2-5 >5

1 L L A
2-5 L A H
>5 A H H

where	 L	 =	 Low interfacing
	 A	 =	 Average interfacing
	 H	 =	 High interfacing

If a function does not modify any of the LDSs, it is given a low interface rating.

Weights:

Weight Category Description

2 LOW The degree of interfacing associated with
the function is low.

4 NOMINAL The degree of interfacing associated with
the function is nominal.

8 HIGH The degree of interfacing associated with
the function is high.

iv.	 Complexity (C): The complexity of a function is determined on the
basis of its algorithm, i.e., how complex the algorithm is in a specific
function. The complexity rating of the function depends on the
number of conditions in the functions algorithm.

Conditions:

�� When counting the conditions, only the processing algorithm should be
considered.

Software-Testing_Final.indb 440 31-01-2018 14:59:57

Test Point Analysis (TPA) • 441

�� Conditions which are the results of database checks such as domain
validations or physical presence checks do not count because these are
implicitly included in FPA.

�� Composite conditions such as “IF a AND b, THEN” have C = 2 because
without the AND statement we would need 2 IF statements.

�� A CASE statement with “n” cases have complexity = (n – 1) because
the replacement of the CASE statement with n cases counts as (n – 1)
conditions.

�� Count only the simple conditions and not the operators for calculating
complexity (C).

Weights:

Weight Category Description

3 Simple 0-5 conditions
6 Medium 6-11 conditions
12 Complex More than 11 conditions

The sum of medium weights (ratings) for all factors is calculated. It comes
out to be 20.

v.	 Uniformity (U): It checks the reusability of the code. A uniformity
factor of 0.6 is assigned in case of the 2nd occurrence (reuse) of
unique, clone, and dummy functions. Otherwise in all cases a
uniformity factor 1 is assigned.

Method of calculation of Df: The Df factor is calculated by adding
together the ratings of first-four functions dependent variables, i.e., Up, Ui,
I, and C and then dividing it by 20 (sum of median/ nominal weights of these
factors).

The result is then multiplied by the uniformity factor (U). A Df factor is
calculated for each function.

	

+ + +é ù
= ê ú

ë û
p i

f

(U U I C)
Mathematically, D *U

20 �
(3)

where	 Up	 =	 User importance
	 Ui	 =	 Usage intensity
	 I	 =	 Interfacing
	 C	 =	 Complexity
	 U	 =	 Uniformity

Software-Testing_Final.indb 441 31-01-2018 14:59:59

442 • Software Testing

Df for some standard functions: For some of the standard functions
like the error report function, help screen function, and menu function, the
standard number of test points can be assigned, as shown in the Table 10.2.

TABLE 10.2  Test Points of Some Standard Functions.

Function FPs Up Ui I C U Df

Error message 4 6 8 4 3 1 1.05
Help screens 4 6 8 4 3 1 1.05
Menus 4 6 8 4 3 1 1.05

c.	 Dynamic quality characteristics (QD):

�� In the TPA process, the dynamic measurable quality characteristics
are taken into account for each function.

�� Four dynamically explicit measurable quality characteristics are
defined in TPA. They are:

i.	 Functionality/suitability: Characteristics relating to the
achievement of the basic purpose for which the software is
being engineered.

ii.	 Security: Ability to prevent unauthorized access.

iii.	 Usability: Characteristics relating to the effort needed for use
and on the individual assessment of such use by a set of users.

iv.	 Efficiency: Characteristics related to the relationship between
the level of performance of software and the amount of
resources used.

The importance of these characteristics is rated as follows:

Rate Importance level

0 Not important
3 Relatively unimportant
4 Medium importance
5 Very important
6 Extremely important

Software-Testing_Final.indb 442 31-01-2018 14:59:59

Test Point Analysis (TPA) • 443

Weights:

Quality characteristics Weight

Functionality/suitability 0.75
Security 0.05
Usability 0.10
Efficiency 0.10

�� The dynamic quality characteristics can also be measured implicitly. For
each dynamic quality characteristic that is tested implicitly a value 0.02
is added to DT.

Method of calculation of QD:

	

i
i

R
* W (0.02 * 4)

4

Explicit Implicit

Sé ù +ê úë û
Ý Ý

�

(4)

where number of explicit dynamic quality characteristics,

i ← 1 to 4

Ri denotes the rating for each dynamically explicit measurable quality
characteristic.

Wi is the weighing factor for each of them.

Step 3: Calculation of total number of test points (TP):

	 TP = ST + ΣDT� (5)

	

[] ()i
f f D

FP *Q
FP *D *Q

500
= + S

� (6) [from eqs. (1) and (2)]

where	 TP	 =	� Total number of test points assigned to the system as a
whole.

	 ST	 =	 Total number of static test points.

Software-Testing_Final.indb 443 31-01-2018 15:00:02

444 • Software Testing

	 ΣDT	=	� Total number of dynamic test points assigned to all func-
tions in the information system.

	 FP	 =	� Total number of function points assigned to an informa-
tion system (minimum value is 500).

	 Qi	 =	� Weighing factor for statically measurable quality charac-
teristics.

Step 4: Productivity factor (PF):

�� The productivity factor is defined as the number of test hours required
per test point.

Mathematically,

	

Number of test hours required
PF

Test point
=

�
(7)

�� PF is a measure of the experience, knowledge, and skill of the test team.
Less experience testers have less product knowledge and thus will take
more time to complete testing.

�� PF can vary from one organization to another organization. So, this fac-
tor can be called the organization dependent factor.

�� PF determination requires historical data of the projects.
�� PF values:

PF value Description

0.7
2.0

If test team is highly skilled
If test team has insufficient skills

Step 5: Environmental factor (EF):

�� The number of test hours required for each test point is not only influ-
enced by PF but also by the environmental factor.

�� EF includes a number of environmental variables.
�� The following EFs might affect the testing effort:

a.	 Test tools: It reflects the extent to which the testing is automated,
i.e., how much of the primary testing activities employ automatic
tools for testing.

Software-Testing_Final.indb 444 31-01-2018 15:00:03

Test Point Analysis (TPA) • 445

Rating:

Rate Description

1 Testing involves the use of SQL, record, and playback tool.
These tools are used for test specification and testing.

2 Testing involves the use of SQL only. No record and
playback tool is being used. Tools are used for test
specification and testing.

4 No testing tools are available.

b.	 Development testing: The development testing variable reflects the
quality ratings of earlier testing. The more thoroughly the preceding test
is done, the less likely one is to encounter time consuming problems.

Ratings:

Rate Description

2 A development testing plan is available and the testing team
is familiar with the actual test cases and results.

4 If development testing plan is available.
8 If no development testing plan is available.

c.	 Test basis: The test basis variable reflects the quality of documentation
upon which the test under consideration is based. This includes
documents like SRS, DFD, etc. The more detailed and higher quality
the documentation is, the less time is necessary to prepare for testing
(preparation and specification phases).

Ratings:

Rate Description

3 Documentation standards and documentation templates
are used, inspections are carried out.

6 Documentation standards and documentation templates
are used.

12 No documentation standards and templates are used.

Software-Testing_Final.indb 445 31-01-2018 15:00:03

446 • Software Testing

d.	 Development environment: It reflects the nature of the environment
within which the information system was realized, i.e., the environment
in which the code was developed. It also signifies the degree to which the
development environment will have prevented errors and inappropriate
working methods.

Ratings:

Rate Description

2 System was developed in 4GL programming language with
integrated DBMS.

4 System was developed using 4GL and 3GL programming
language.

8 System was developed using only 3GL programming language
such as COBOL and PASCAL.

e.	 Test environment: This variable depicts the extent to which the test
infrastructure in which the testing is to take place has been tried out.
Fewer problems and delays are likely during the execution phase in a
well tried and tested infrastructure.

Ratings:

Rate Description

1 Environment has been used for testing several times in the past.
2 Test environment is new but similar to earlier used environment.
4 Test environment is new and setup is experimental.

f.	 Testware: Testware variable reflects the extent to which the tests can
be conducted using existing testware where testware includes all of the
testing documentation created during the testing process, for example,
test specification, test scripts, test cases, test data, and environment
specification.

Ratings:

Rate Description

1 A usable, general initial data set and specified test cases are
available for test.

2 Usable, general initial data set available.
4 No usable testware is available.

Software-Testing_Final.indb 446 31-01-2018 15:00:03

Test Point Analysis (TPA) • 447

Method of calculation of EF: EF is calculated by adding together the
ratings for the various environmental variables, i.e, test tools, develop-
ment testing, test basis, development environment, test environment, and
testware, and then dividing the sum by 21 (the sum of nominal ratings).
Mathematically,

	
EF

Rating of environmental variables
=

=
∑ 211

6

i �
(8)

Step 6: Calculation of primary test hours (PT): The number of primary
test hours is obtained by multiplying the number of test points by the pro-
ductivity factor (PF) and environmental factor (EF).

	 Mathematically,	 PT = TP * PF * EF� (9)

where	 PT	 =	 Total number of primary test hours
	 TP	 =	 Total number of test points assigned to the system as a whole
	 PF	 =	 The productivity factor
	 EF	=	 The environmental factor

Step 7: Control factor (CF): The standard value of CF is 10%. The CF
value may be increased or decreased depending on the following 2 factors:

1.	 Team size (T)

2.	 Management tools (planning and control tools) (C)

Team Size (T): This factor reflects the number of people making up the team,
i.e., test manager, test controller, test contractors, and part-time testers. The
bigger the team, the more effort it will take to manage the project.

Ratings:

Rate Description

3 The team consists of up to 4 persons.
6 The team consists of up to 5 and 10 persons.
12 The team consists of more than 10 persons.

Management tools (planning and control tools) (C): This variable
reflects the extent to which automated resources are to be used for planning
and control. More is the number of tools used to automate management and
planning, less is the amount of effort required.

Software-Testing_Final.indb 447 31-01-2018 15:00:05

448 • Software Testing

Ratings:

Rate Description

2 Both an automated time registration system and automated
defect tracking system are available.

4 Either an automated time registration system or automated
defect tracking system is available.

8 No automated systems are available.

Method of calculation of CF: The planning and control management
percentage is obtained by adding together the ratings for the 2 influential
factors.

Team size and planning and control tools.
Mathematically,

	 CF(%) = (T + C)� (10)

This will help us in calculating:

i.	 The test allowance in hours (THA).

ii.	 The total test hours (TTH).

The “allowance” in hours is calculated by multiplying the primary test
hour count by this percentage.

	 Mathematically,    
PT *(T C)

THA
100

+= � (11)

Step 8: Calculation of total test hours (TTH): The “total number of
test hours” are obtained by adding primary test hours and the planning and
control allowance.

	 Mathematically,     TTH = PT + CF(%)� (12)

	

PT (T C)
100

+ +=

(from equation (10))� (13)

Software-Testing_Final.indb 448 31-01-2018 15:00:08

Test Point Analysis (TPA) • 449

Phasewise breakdown: If a structured testing approach is used, the testing
process can be divided into 5 life cycle phases:

Phase Estimate

	 I.	 Planning and control THA
	II.	 Preparation 10%
	III.	 Specification 40%
	IV.	 Execution 45%
	V.	 Completion 5%

The breakdown between phases can vary from one organization to
another or even from one organizational unit to another. Suitable phase per-
centages can be calculated by analyzing completed test projects. Therefore,
historical data on such projects is necessary for breaking down the total esti-
mate.

Experience with the TPA technique suggests that the percentages given
in the above Table are generally appropriate.

10.2.  CASE STUDY

Next, we apply the above stated methodology to our case study (given
earlier).

Step 1: System study by KRV&V Company: KRV&V requests a 2-day
systems and requirements study to understand the scope of testing work and
assessing the testing requirement to arrive at TP A estimate. This study and
discussions with DCM DATA Systems Ltd. reveal the following:

a.	 User importance: It was observed that 20% of the functionality of the
product is of low importance to user, 60% is of medium importance,
and 20% is of high importance.

b.	 Usage intensity of the functionality: 10% of functions are less used, 70%
are medium used, and 20% are extensively used.

c.	 Interfacing of functions with other functions: 50% of functions are
almost independent and do not interface with other functions. The
remaining 50% are highly dependent and interface with 50% of
independent functions.

Software-Testing_Final.indb 449 31-01-2018 15:00:08

450 • Software Testing

d.	 Complexity of functions: All of the functions are of medium complexity.

e.	 Structural uniformity (uniformity factor): 40% of test cases are
repetitive/dummy.

f.	 Quality characteristics:

�� Suitability- Medium importance
�� Security- Extremely important
�� Usability- Highly important
�� Efficiency- Medium importance

Step 2: Environmental assessment by KRV&V Company: KRV&V
carried out environmental assessment and noted the following:

�� KRV&V would use query language, records, and playback tools in testing.
(Rate = 1)

�� The development test plan is available from DCM DataSystems Ltd.
But the test team is not familiar with the earlier test cases executed and
results. (Rate = 4)

�� Documentation templates and documentation standards were used by
DCM but due to shortage of time for product release, no inspection of
documentation was carried out. (Rate = 6)

�� Product is developed in 4GL with integrated databases. (Rate = 2)
�� Test environment is new for KRV&V but is similar to earlier used test

environment. (Rate = 2)
�� Testware: DCM would make the existing testware available to KRV&V

but the testware consists of only general initial data set and not specific
test cases. (Rate = 2)

Step 3: Planning and control technique followed by KRV&V:

�� Use of 5-tester team for similar assignments. (Rate = 6)
�� Use of automated time registration and automated defect tracking tools

(Rate = 2).

10.3.  TPA FOR CASE STUDY

I.	 Dynamic test points (DT): From Eqn. (2), we have:

DT = FPf * Df * QD

where,	 FPf = Transaction FP = 600 (given)
Df = �Dependency factor = weighted rating on importance to user, usage

intensity, interfacing of functions, and complexity of functions.

Software-Testing_Final.indb 450 31-01-2018 15:00:08

Test Point Analysis (TPA) • 451

�� Rating on User Importance (Up):

	 Up = 3 * 20% + 6 * 60% + 12 * 20%�

	 = 0.6 + 3.6 + 2.4 = 6.6�

�� Rating on Usage Intensity (Ui):

	 Ui = 2 * 10% + 4 * 70% + 12 * 20%�

	 = 0.2 + 2.8 + 2.4 = 5.4�

�� Rating on Interfacing (I):

I = 2 * 50% + 8 * 50% = 5

�� Rating on Complexity (C):

	 C = 6 (nominal complexity) (from equation (3))�

So,
	

{ }+ + +
f

(6.6 5.4 5 6)
D *U

20
=

� (A)

where,	 U �= Uniformity factor = 60% * 1 + 40% * 0.6
= 0.6 + 0.24 = 0.84

putting the value of U in equation (A), we get:

	 Df = (23/20) * 0.84 = 1.15 * 0.84 = 0.97�

and QD (dynamic quality characteristic) = weighted score on the following
4 quality characteristics:

�� Suitability (weight = 0.75, medium importance – rate = 4)
�� Security (weight = 0.05, extremely important – rate = 6)
�� Usability (weight = 0.10, highly important – rate = 5)
�� Efficiency (weight = 0.10, medium importance – rate = 4)

So,	 weighted score = (0.75 * 4 +0.05 * 6 + 0.10 * 5 + 0.10 * 4)

	 = 3 + 0.3 + 0.5 + 0.4 = 4.2�

So,	 QD = 4.2�

Software-Testing_Final.indb 451 31-01-2018 15:00:09

452 • Software Testing

Hence, DT (total dynamic test points)

	 DT = FPf * Df * QD = 600 * 0.97 * 4.2 = 2444.4�

II.	 Static test points (ST):

	
i

T

Total FP * Q
S

500
=

�

Now,	 Total FP = Data FP + Transaction FP = 650 + 600 = 1250

So,
	

T

(1250 * 64)
S 160

500
= =

�

III.	 Total test points (TP):

	 TP = DT + ST = 2444.4 + 160 = 2604.4�

IV.	 Productivity:	 = 1.4 test hours per test point

V.	 Environmental	
=

 (Rating on 6 environmental factors)
	 factor :		 21

where

�� Rating on test tools = 1
�� Rating on development testing = 4
�� Rating on test basis = 6
�� Rating on development environment = 2
�� Rating on test environment = 2
�� Rating on testware = 2

So,
	

+ + + + +1 4 6 2 2 2
EF 0.81

21
= =

�

VI.	 Primary test hours:

	 = TP * PF * EF = 2604 * 1.4 * 0.81 = 2953�

VII.	 Planning and control allowance:

	 = Rating on team size factor + Rating on management tools factor�

	 = 6% + 2% = 8%�

VIII.	 Total test hours:

	 = Primary test hours+ 8% of Primary test hours�

	 = 2953 + 8% of 2953 = 3189 hours�

Software-Testing_Final.indb 452 31-01-2018 15:00:14

Test Point Analysis (TPA) • 453

10.4.  PHASE WISE BREAKUP OVER TESTING LIFE CYCLE

For this case study, the breakup is as follows:

Phases Time required (hours)

Plan (10%) 319
Development (40%) 1276
Execute (45%) 1435
Management (5%) 159

10.5.  PATH ANALYSIS

Path analysis is a process specially developed for turning use cases into test
cases. This is a tool for the testers who are required to test applications that have
use cases as requirements. Use case can be executed in many possible ways and
each thread of execution through a use case is called a path. Each use-case path
is derived from a possible combination of following use-case elements:

�� Basic courses
�� Alternate courses
�� Exception courses
�� Extends and uses relationships

Thus, any use case has multiple paths and each path through the use
case is a potential test case.

Path analysis is a scientific technique to identify all possible test cases
without relying on intuition and experience. It reduces the number of test
cases and the complexity and bulk of the test script by moving the non-path
related variability of test cases to test data. It simplifies the coupling of test
cases to test data. As an example, if we have a use case with 10 paths and
each path needs to be tested with 5 sets of data in traditional methodology
we would have written 10 × 5 = 50 test cases. Using path analysis we write
10 test cases (one per path) and 10 data tables (each with 5 columns). The
advantages can be summarized as

�� Better coverage through scientific analysis
�� Both positive and negative test cases can be easily identified through

path analysis
�� Easier coupling of path and data
�� Reduction of test cases
�� Better management of testing risks
�� Extremely effective in identifying and correcting use-case errors

Software-Testing_Final.indb 453 31-01-2018 15:00:14

454 • Software Testing

10.6.  PATH ANALYSIS PROCESS

The path analysis process consists of following four major steps:

1.	 Draw flow diagram for the use case

2.	 Determine all possible paths

3.	 Analyze and rank the paths

4.	 Decide which paths to use for testing

Step 1: Draw flow diagram for the use case:

Use case is a textual document and hence cannot be easily analyzed. The
first task is to convert this into a graphical format called a flow diagram. Let
us define some concepts.

�� Flow diagram: Graphical depiction of the use case.
�� Node: The point where flow deviates or converges.
�� Branch: Connection between two nodes. Each branch has a direction

attached to it. Node is also where more than one branch meets.

In order to illustrate this process, we will take the example of the use case
that is given in Figure A.

	 Symbol for Start      Symbol for Finish   �

Each use case has only one start and can have multiple end points. Using
UML terminology, the start is indicated by a plain circle and a circle with a
dot inside indicates the end.

In order to draw a diagram for the use case the following steps should
be followed:

1.	 Draw the basic flow.
Identify nodes
Combine sequential steps into one branch
Annotate the branches with the text summarizing the action in those branches
Connect the nodes indicating the direction of flow

2.	 Repeat the step above for each alternate and exception flow.
The complete step-by-step process is illustrated in the attached diagram
at Figure B. The use-case example of Figure A has been used to illustrate
the process. As explained above, the flow diagram is an excellent tool to
identify the use-case flow and other problems in the early stages. This
feature of the process can save lot of time and effort in the earlier stages

Software-Testing_Final.indb 454 31-01-2018 15:00:14

Test Point Analysis (TPA) • 455

of the software process. Figure 10.3 also covers how to identify use-case
problems and then correcting them early in the software process.

Step 2: Determine all possible paths:

As discussed earlier, use-case path is a single thread of execution through the
use case. The path determination process is basically very simple and can be
stated as “Beginning from the start each time, list all possible ways to reach
the end, keeping the direction of flow in mind.” As you can see from the dia-
gram, there could be a large number of paths through the use cases. In some
complex use cases, especially when there is a lot of feedback branches, there
could potentially be a very large number of paths through the use case. The
aim here is to list all these paths. However, if there are too many paths, it
may be necessary to use judgement at this stage itself. The process consists
of following steps:

Path ID designation: Each path should be suitably designated as P1, P2,
etc.

Path name: This is the sequence of branch numbers that comprises the
path. For the example given above, path ID P2 has a path name of 2,3,4,5.

Path description: This is a textual description of the complete sequence
of user actions and system responses taking place in that path. It is a
good practice to describe the path in good plain English that is meaning-
ful. The path description is ultimately nothing but a description of the
test case itself. All this information should be combined in a table called
Table of Paths.

Step 3: Analyze and rank the paths:

For simple use cases, which have about 10 separate paths, it is straightfor-
ward to select all of the paths for testing and hence, this step can be skipped.
However, for some complex use cases, the number of possible paths can
easily exceed 50, in which case it may be necessary to select only limited
paths for testing. Quite frequently testers may be able to use judgement
and experience to select those paths. However in lot of cases, we may need
some objectivity and subject matter expert’s (SME) guidance. Typically, the
SMEs are business users who have high stakes in the project. We define two
attributes for each path called:

�� Frequency: This attribute can have a value of 1 to 10, with 1 being least
frequent and 10 most frequent. This attribute states the likelihood of this
path being exercised by the user.

Software-Testing_Final.indb 455 31-01-2018 15:00:14

456 • Software Testing

�� Criticality: This attribute describes how critical the failure of this path
could be with 1 being least and 10 being most.

Having defined these attributes, we can compute a path factor which is
Frequency + Criticality. This is an equal weight path factor. However, we can
provide different weights to these attributes to arrive at a proper path factor.

Step 4: Selection of paths for testing:

In order to have adequate test coverage and minimize the risk of not test-
ing while balancing the resources, there is a need to follow some guidelines.
They are as follows:

�� Always select basic flow for testing as

•• It is a critical functionality.
•• If basic flow fails; there may not be much of a point in testing other

paths.
•• Basic flow should be included in sanity test suites and also in

acceptance testing.

�� Some other paths are too important to be ignored from a functionality
point of view. These are generally obvious from the table of paths.

�� The path factor should be used for selecting a path among several
possibilities that do not meet the above criteria.

The aim is to select a minimum set of paths which would adequately
test the critical functionality while ensuring that all branches have been
included in at least one path. The path selection process has been adequately
explained in the example at Figure B.

Step 5: Writing test cases from the table of paths:

The table of paths provides us with adequate information for testing a use
case. The path description is in fact a summary description of the test case
itself and even a tester with very little experience can write test cases from
that description. Before proceeding further, let me introduce one more con-
cept called test scenario. Any path with specific test data becomes a test
scenario. Each path is generally associated with a number of test scenarios
to adequately test the data width.

Let me take an example of use case called withdraw money from an
ATM. One of the paths in the use case that is a basic flow will have a path
description like this:

Software-Testing_Final.indb 456 31-01-2018 15:00:14

Test Point Analysis (TPA) • 457

“User inserts his card in the machine, system successfully validates the
card, and prompts for 4 digit pin. User enters a valid pin. System suc-
cessfully validates the pin and prompts for amount. User enters a valid
amount. System ejects user card and correct amount for collection by
the user.”

Now this is a happy day path but as we know there may be certain min-
imum and maximum amounts that a user can withdraw from the ATM. Let
us say it is $10 and $500, respectively. In order to adequately test this path
using boundary value analysis (BVA), we need to test this withdrawal for
$10, $500, and $200 (middle). Thus, we need to create 3 test scenarios for
the same path.

FIGURE 10.3  Relationship Between Path and Scenario.

The point to note here is that all three scenarios have the exact same
path through the use case. Why not test <$10 and >$500 withdrawal in the
same path? The reason we do not do it is that such tests belong to a different
path where a “user” tries to withdraw <$10 or >$500 and he gets an appro-
priate message and the user is prompted to reenter an acceptable amount.
The user reenters the correct amount and the system then lets the user with-
draw the money.

The following guidelines should be followed to create test cases:

1.	 Create one test case for each path that has been selected for testing. As
explained previously, the path description provides enough information
to write a proper test case.

2.	 Create multiple test scenarios within each test case. We recommend
using data tables that have data elements as rows and each column is a
data set and also a test scenario. See Appendix B where this is explained
with reference to the example.

3.	 Add GUI details in the steps, if necessary.

Software-Testing_Final.indb 457 31-01-2018 15:00:16

458 • Software Testing

Use Case: Add/Delete/Modify student information.
Purpose/Description: This use case describes the way the registrar can

maintain student information system which consists of adding, deleting, or
modifying students from the system.

Type: Concrete
Actors/Roles: Registrar

Preconditions:

1.	 The registrar must be logged on the system (Use Case: Login).

2.	 System offers registrar choices: Add, Delete, and Modify.

Basic Course:

1.	 Registrar chooses to add a student in the system.

Alternate Course: Delete Student
Alternate Course: Modify Student

2.	 Registrar enters the following information:

Name
DOB
SS#
Status
Graduation Date

3.	 Registrar confirms the information.

4.	 System returns an unique ID number for the student.

Post Conditions: System displays the list of students with the selection of
new student that have been added.

Alternate Courses:

Delete Student:

1.	 At basic course Step 1, instead of selecting to Add a student, registrar
selects to Delete a student.

2.	 System requests the student ID.

3.	 Registrar enters student ID. Alternate Course: Invalid Student ID.

4.	 System displays the student information.

5.	 System prompts the registrar to confirm the student deletion. Alternate
Course: Cancel Delete.

Software-Testing_Final.indb 458 31-01-2018 15:00:16

Test Point Analysis (TPA) • 459

6.	 Registrar verifies the decision to delete.

7.	 System deletes the student from the system.

Post Conditions: Student name and other data no longer displayed to the
user.

Modify Student:

1.	 At basic course Step 1, instead of selecting to Add a student, registrar
selects to Modify a student.

2.	 System requests the student ID.

3.	 Registrar enters student ID. Alternate Course: Invalid Student ID.

4.	 System displays the student information.

5.	 Registrar changes any of the student attributes. Alternate Course: Cancel
Modify.

6.	 Registrar confirms the modification.

7.	 System updates the student information.

Post Conditions: Student is not deleted from the system.

Cancel Modify:

1.	 At Step 5 of alternate course Modify, instead of confirming the deletion,
registrar decides not to modify the student.

2.	 System cancels the modify.

3.	 Return to Step 1 of basic course.

Post Condition: Student information is not modified.

Invalid ID:

1.	 At Step 3 of alternate courses (Delete/Modify), system determines that
the student ID is invalid. (Collaboration case validate student ID.)

2.	 System displays a message that the student ID is invalid.

3.	 Registrar chooses to reenter student ID.

4.	 Go to Step 1 of Modify/Delete course.

Post Condition: Student not deleted/student information is not modified.
We follow all the steps for the use case of Figure A above.

Software-Testing_Final.indb 459 31-01-2018 15:00:16

460 • Software Testing

Draw the Basic Flow

1.	 Draw start and end symbols.

�Mark start and end in the diagram
with UML symbols.

2.	 Connect with a vertical line. This is
your basic flow.

The basic flow steps lie on this line.

3.	 Identify nodes in the basic course.

�Node is a point where flow deviates.
In this case start is also a node. Why?
�If there is more than one node,
identify them.

4.	 Annotate the branches. Use text
description depending on the
contents of the steps.

�The branch is the line/action
between the nodes. It can have mul-
tiple steps.

5.	 Go to first identified node and start
with first alternate or exception
course.

6.	 Identify nodes within each
alternate course.

7.	 Connect the nodes within each
alternate course. Arrows should
show direction of the flow.

8.	 Annotate each branch of the
alternate course, depending on the
contents of the steps.

9.	 Go to each identified node in
the alternate course and draw its
alternate and exception course.

10.	 Connect the nodes within each
alternate course. Arrows should
show direction of the flow.

Software-Testing_Final.indb 460 31-01-2018 15:00:20

Test Point Analysis (TPA) • 461

11.	 Annotate branches as before.

12.	 Repeat Steps 5 to 10 for other alternate or exception courses.

Software-Testing_Final.indb 461 31-01-2018 15:00:23

462 • Software Testing

What Is Wrong With This Case?

�� Invalid ID should return to Step 3 rather than to Step 1.
�� Needs to have one more node.
�� Needs to divide each of these branches into 2 branches:

•• Select Delete and Enter ID.
•• Select Modify and Enter ID.

Software-Testing_Final.indb 462 31-01-2018 15:00:26

Test Point Analysis (TPA) • 463

Correct the use case and the flow diagram by showing two more
nodes. The node is also a point where two or more flows meet.

What Else Is Wrong With This Use Case?

Software-Testing_Final.indb 463 31-01-2018 15:00:29

464 • Software Testing

What Else Is Wrong With This Use Case?
Endless loops?

Raise an issue:
How to exit from an endless loop?

Software-Testing_Final.indb 464 31-01-2018 15:00:32

Test Point Analysis (TPA) • 465

What else could be wrong?
Where should Cancel Delete or Cancel Modify return to?

Number the branches:

Number basic course starting from 1.
Number each alternate course and their exceptions continuously.

Software-Testing_Final.indb 465 31-01-2018 15:00:35

466 • Software Testing

List all paths:

Identify the paths.

�� Begin from start.
�� Try to go to finish in all possible ways keeping the direction of flow in

mind.

Determine all Possible Paths

Begin from start and determine all possible ways to reach end keeping the
direction of flow in mind.

List all possible paths and for each path:

�� Designate path ID
�� Designate path name

•• Designate path description
•• Describe what is taking place in the path.
•• Use branch designations to come up with the description.
•• This description is a summary of what needs to be tested.

TABLE 10.3  Partial Table of Paths.

Critically Frequency Path ID Path name Path description

1 P1 1 Add a Student.

2 P2 2, 3, 4, 5 Delete a Student with
Valid ID.

3 P3 2, 3, 6, 3,
4, 5

Attempt to Delete a
Student with invalid ID.
Correct the invalid ID, and
then Delete.

4 P4 2, 3, 4, 7,
2, 3, 4, 5

Select Delete with Valid
ID, Cancel, and then
Delete with Valid ID.

5 P5 2, 3, 4, 7,
2, 3, 6, 3,
4, 5

Select Delete with Valid
ID, Cancel, and then
attempt to Delete a Student
with an invalid ID and then
Delete.

(Continued)

Software-Testing_Final.indb 466 31-01-2018 15:00:35

Test Point Analysis (TPA) • 467

Critically Frequency Path ID Path name Path description

6 P6 2, 3, 4, 7,
2, 3, 6, 3,
4, 7, 1

Select Delete with Valid
ID, Cancel, and then
attempt to Delete a Student
with invalid ID. Correct the
invalid ID, Cancel, then
Delete again, and then Add
a Student.

7 P7 2, 3, 6, 3,
6, 3, 6, 3,
4, 5

Attempt to Delete a
Student with invalid ID.
Repeat with 3 invalid IDs,
correct the invalid ID, and
then Delete, etc.

8 P8 8, 9, 10, 11 Modify a Student with Valid
ID.

9 P9 8, 9, 12, 9,
10, 11

Attempt to Modify a Student
with invalid ID. Correct the
invalid ID and then Modify.

10 P10 8, 9, 10,
13, 8, 9,
10, 11

Select Modify with Valid
ID, Cancel, and then
Modify with Valid ID

11 P11 8, 9, 10,
13, 9, 12,
9, 10, 11

Attempt to Modify a
Student with invalid ID.
Correct the invalid ID.
Correct the invalid ID and
then Modify.

12 P12 8, 9, 10,
13, 8, 9,
12, 9,
10, 13, 1

Select Modify with Valid
ID, Cancel and then
attempt to Modify a
Student with invliad ID.
Correct the invalid ID,
Cancel and Modify again
and then Add a Student.

13 P13 8, 9, 12, 9,
12, 9, 12,
9, 10, 11

Attempt to Modify a
Student with invalid ID.
Repeat with 3 invalid IDs.
Correct the invalid ID, and
then Modify.

Software-Testing_Final.indb 467 31-01-2018 15:00:35

468 • Software Testing

Analyze and Rank Paths

Three Stage Process
Add Attribute Values -> Consult Business Users

�� Criticality
�� Frequency

Compute Path Factor

Path Factor = Criticality + Frequency
(can use weighted attributes also)

Sort paths as per path factor in descending order (optional).

TABLE 10.4  Adding Attributes.

Critically Frequency Path ID Path name Path description

1 10 10 P1 1 Add a Student.
2 9 9 P2 2, 3, 4, 5 Delete a Student with

Valid ID.
3 7 5 P3 2, 3, 6, 3, 4, 5 Attempt to Delete a

Student with invalid ID.
Correct the Invalid ID
and then Delete.

4 6 6 P4 2, 3, 4, 7, 2, 3,
4, 5

Select Delete with Valid
ID, Cancel, and then
Delete with Valid ID.

5 8 2 P5 2, 3, 4, 7, 2, 3,
6, 3, 4, 5
(This includes
P3 and P4)

Select Delete with Valid
ID, Cancel, and then
attempt to Delete a
Student with invlaid ID.
Correct the invalid ID
and then Delete.

6 7 2 P6 2, 3, 4, 7, 2, 3,
6, 3, 4, 7, 1
(This includes
P3, P4, and
P1)

Select Delete with Valid
ID, Cancel, and then
attempt to Delete a
Student with invlaid ID.
Correct the invalid ID,
Cancel, Delete again and
then Add a Student.

(Continued)

Software-Testing_Final.indb 468 31-01-2018 15:00:35

Test Point Analysis (TPA) • 469

Critically Frequency Path ID Path name Path description

7 9 4 P7 2, 3, 6, 3, 6, 3,
6, 4, 5 (This
includes P3)

Attempt to Delete a
Student with invalid ID.
Repeat with 3 invalid IDs.
Correct the Invalid ID,
and then Delete.

etc.
8 9 9 P8 8, 9, 10, 11 Modify a Student with

Valid ID.
9 7 5 P9 8, 9, 12, 9,

10, 11
Attempt to Modify a
Student with invalid ID.
Correct the invalid ID
and then Modify.

10 6 6 P10 8, 9, 10, 13, 8,
9, 10, 11

Select Modify with Valid
ID, Cancel, and then
Modify with Valid ID.

11 8 2 P11 8, 9, 10, 13, 9,
12, 9, 10, 11
(This includes
P9 and P10)

Select Modify with Valid
ID, Cancel, and then
attempt to Modify a
Student with invalid ID.
Correct the invalid ID.
Correct the invalid ID
and then Modify.

12 7 2 P12 8, 9, 10, 13, 8,
9, 12, 9, 10,
13, 1 (This
includes P9,
P10, and P1)

Select Modify with
Valid ID, Cancel, and
then attempt to Modify
a Student with invalid
ID. Correct the invalid
ID, then Cancel Modify
again, and then Add a
Student.

13 9 4 P13 8, 9, 12, 9,
12, 9, 12, 9,
10, 11 (This
includes P9)

Attempt to Modify a
Student with invalid ID.
Repeat with 3 invalid IDs,
Correct the invalid ID
and then Modify.

Software-Testing_Final.indb 469 31-01-2018 15:00:35

470 • Software Testing

Selection of Paths for Testing

Guidelines for minimizing the risk and balancing the resources.
�� Always test the basic flow:

•• It is critical.
•• Failure of the basic flow may be a show stopper.
•• If the basic flow fails the test, there may be no need to test other

paths for that use case in this build.
•• Good tests for sanity checking and also for inclusion in acceptance

testing.

�� Although not basic flows, some other paths are too important to be
missed. Test them next.

�� Determine a set of paths that would:

•• Combine other paths in which case the path factor is cumulative.
•• Ensure that all the branches are tested at least once.

�� This set should test all the flows and vital combinations.
Example: Path Selection

How to Select Paths

Critically Frequency
Path
factor

Path
ID

Path
name Path description

1 10 10 20 P1 1 Add a Student.
2 9 9 18 P2 2, 3, 4, 5 Delete a Student with

Valid ID.
3 7 5 12 P3 2, 3, 6, 3,

4, 5
Attempt to Delete a
Student with invalid ID>
Correct the invalid ID
and then Delete.

4 6 6 12 P4 2, 3, 4, 7,
2, 3, 4, 5

Select Delete with Valid
ID, Cancel, and then
Delete with Valid ID.

5 8 2 10 P5 2, 3, 4, 7,
2, 3, 6, 3,
4, 5 (This
includes
P3 and
P4)

Select Delete with Valid
ID, Cancel, and then
attempt to Delete a
Student with invalid ID.
Correct the invalid ID
and then Delete.

(Continued)

Software-Testing_Final.indb 470 31-01-2018 15:00:35

Test Point Analysis (TPA) • 471

Critically Frequency
Path
factor

Path
ID

Path
name Path description

6 7 2 9 P6 2, 3, 4, 7,
2, 3, 6,
3, 4, 7,
1 (This
includes
P3, P4,
and P1)

Select Delete with Valid
ID, Cancel, and then
attempt to Delete a
Student with invalid ID.
Correct the invalid ID,
Cancel and Delete again
and then Add a Student.

7 9 4 13 P7 2, 3, 6, 3,
6, 3, 6, 4,
5 (This
includes
P3)

Attempt to Delete a
Student with invalid ID.
Repeat with 3 invalid IDs.
Correct the invalid ID
and then Delete.

etc.
8 9 9 18 P8 8, 9, 10,

11
Modify a Student with
Valid ID.

9 7 5 12 P9 8, 9, 12,
9, 10, 11

Attempt to Modify a
Student with invalid ID.
Correct the invalid ID
and then Modify.

10 6 6 12 P10 8, 9, 10,
13, 8, 9,
10, 11

Select Modify with Valid
ID, Cancel and then
Modify with Valid ID.

11 8 2 10 P11 8, 9, 10,
13, 9, 12,
9, 10,
11 (This
includes
P9 and
P10)

Select Modify with Valid
ID, Cancel and then
attempt to Modify a
Student with invalid ID.
Correct the invalid ID
and then Modify.

(Continued)

Software-Testing_Final.indb 471 31-01-2018 15:00:35

472 • Software Testing

Critically Frequency
Path
factor

Path
ID

Path
name Path description

12 7 2 9 P12 8, 9, 10,
13, 8, 9,
12, 9,
10, 13,
1 (This
includes
P9, P10,
and P1)

Select Modify with Valid
ID, Cancel and then
attempt to Modify a
Student with invalid ID.
Correct the invalid ID.
Cancel Modify again, and
then Add a Student.

13 9 4 13 P13 8, 9, 12,
9, 12, 9,
12, 9, 10,
11 (This
includes
P9)

Attempt to Modify a
Student with invalid ID.
Repeat with 3 invalid IDs.
Correct the invalid ID
and then Modify.

How to Select Paths

Path selected:

P1 Basic Flow
P5 or P6 : Choose one of them. I choose P6
P7 : Just to ensure testing of multiple invalid loops
P8
P11 or P12. Choose one of them. I choose P12
P13

What Did We Achieve?

�� By testing 6 paths out of 13 identified (may be many more) we have
almost tested everything worth testing in this use case.

�� Have we tested all the branches?

Path Selection

Note: In a large number of cases, you will probably be testing all use-case
paths. The prioritization process helps you in selecting critical or more
important paths for testing.

Software-Testing_Final.indb 472 31-01-2018 15:00:36

Test Point Analysis (TPA) • 473

Data Table Example 1
Data Table G (For Path P7)

Attribute name #1 #2 #3

ID VB4345680
V234569012
C4562P235
VB373890

VC245678
VB789134
VC340909
VB789032

VA121000
BV463219
AV453219
VA453219

Remarks I Valid and 3
Invalid IDs.
Correct Invalid Ids
by Valid ID.

I Valid and 3
Invalid IDs.
Correct Invalid IDs
by Valid ID.

I Valid and 3
Invalid IDs.
Correct Invalid IDs
by Valid ID.

Expected
Results

Student with
particulars as per
Table A1 will be
deleted

Student with
particulars as per
Table A2 will be
deleted

Student with
particulars as per
Table A3 will be
deleted

Note: Notice how we show valid and invalid data.

Data Table Example 2
Data Table A (For Path P1)

Attribute name #1 #2 #3

Name Victor Thomson John Smith Mary Bhokins
DOB 01/11/75 02/12/2000 10/11/1979
SS# 555 44 7777 222 11 7789 543 24 8907
Status Citizen Resident Alien Non Citizen
Graduation Date 02/20/2000 03/15/2001 09/15/2002
Expected Result System should

return a valid ID
System should
return a valid ID

System should
return a valid ID

Software-Testing_Final.indb 473 31-01-2018 15:00:36

474 • Software Testing

SUMMARY

In our opinion, one of the most difficult and critical activities in IT is the
estimation process. We believe that it occurs because when we say that one
project will be accomplished in a certain amount of time by a certain cost, it
must happen. If it does not happen, several things may follow: from peers’
comments and senior management’s warnings to being fired depending on
the reasons and seriousness of the failure.

Before even thinking of moving to systems test at our organization, we
always heard from the development group members that the estimations
made by the systems test group were too long and expensive. We tried to
understand the testing estimation process.

The testing estimation process in place was quite simple. The inputs for
the process provided by the development team were the size of the develop-
ment team and the number of working days needed for building a solution
before starting systems tests.

The testing estimation process said that the number of testing engineers
would be half of the number of development engineers and one-third of the
number of development working days.

A spreadsheet was created in order to find out the estimation and calculate
the duration of tests and testing costs. They are based on the following formulas:

Testing working days	 =	 (Development working days)/3
Testing engineers	 =	 (Development engineers)/2
Testing costs	 =	� Testing working days * Testing engineers * Person

daily costs

As the process was only playing with numbers, it was not necessary to regis-
ter anywhere how the estimation was obtained.

To show how the process worked, if one development team said that to
deliver a solution for systems testing it would need 4 engineers and 66 work-
ing days, then the systems test would need 2 engineers (half) and 21 working
days (one-third). So the solution would be ready for delivery to the customer
after 87 (66 + 21) working days.

Just to be clear, in testing time the time for developing the test cases
and preparing the testing environment was not included. Normally, it would
need an extra 10 days for the testing team.

Besides being simple, that process worked fine for different projects
and years. But, we were not happy with this approach and the development
group were not either. Metrics, project analogies, expertise, and require-
ments, were not being used to support the estimation process.

Software-Testing_Final.indb 474 31-01-2018 15:00:36

Test Point Analysis (TPA) • 475

We mentioned our thoughts to the testing group. We could not stand
the estimation process for very long. We were not convinced to support it
any more. Then some rules were implemented in order to establish a new
process.

Those rules are being shared below. We know that they are not com-
plete and it was not our intention for estimating but, for now, we have strong
arguments to discuss our estimation when someone doubts our numbers.

The Rules:

First Rule: Estimation should be always based on the software
requirements:

All estimation should be based on what would be tested, i.e., the software
requirements.

Normally, the software requirements were only established by the devel-
opment team without any or just a little participation from the testing team.
After the specifications have been established and the project costs and
duration have been estimated, the development team asks how long it would
take for testing the solution. The answer should be said almost right away.

Then the software requirements should be read and understood by the
testing team, too. Without the testing participation, no serious estimation
can be considered.

Second Rule: Estimation should be based on expert judgement:

Before estimating, the testing team classifies the requirements in the follow-
ing categories:

�� Critical: The development team has little knowledge in how to
implement it.

�� High: The development team has good knowledge in how to implement
it but it is not an easy task.

�� Normal: The development team has good knowledge in how to
implement.

The experts in each requirement should say how long it would take for test-
ing them. The categories would help the experts in estimating the effort for
testing the requirements.

Third Rule: Estimation should be based on previous projects:

All estimation should be based on previous projects. If a new project has
similar requirements from a previous one, the estimation is based on that
project.

Software-Testing_Final.indb 475 31-01-2018 15:00:36

476 • Software Testing

Fourth Rule: Estimation should be based on metrics:

Our organization has created an OPD (organization process database) where
the project metrics are recorded. We have recorded metrics from three years
ago obtained from dozens of projects.

The number of requirements is the basic information for estimating a
testing project. From it, our organization has metrics that guide us to esti-
mate a testing project. The table below shows the metrics used to estimate a
testing project. The team size is 01 testing engineer.

Metric Value

1. Number of testcases created for each requirement 4,53
2. Number of testcases developed by working day 14,47
3. Number of testcases executed by working day 10,20
4. Number of ARs for testcase 0,77
5. Number of ARs verified by working day 24,64

For instance, if we have a project with 70 functional requirements and a test-
ing team size of 2 engineers, we reach the following estimates:

Metric Value

Number of testcases – based on metric 1 31,710
Preparation phase – based on metric 2 11 working days
Execution phase – based on metric 3 16 working days
Number of ARs – based on metric 4 244 ARs
Regression phase – based on metric 5 6 working days

The testing duration is estimated in 22 (16 + 6) working days plus, 11 working
days for preparing it.

Fifth Rule: Estimation should never forget the past:

We have not sent away the past. The testing team continues using the old
process and the spreadsheet. After the estimation is done following the new
rules, the testing team estimates again using the old process in order to com-
pare both results.

Software-Testing_Final.indb 476 31-01-2018 15:00:36

Test Point Analysis (TPA) • 477

Normally, the results from the new estimate process are cheaper and
faster than the old one in about 20 to 25%. If the testing team gets a different
percentage, the testing team returns to the process in order to understand if
something was missed.

Sixth Rule: Estimation should be recorded:

All decisions should be recorded. It is very important because if require-
ments change for any reason, the records would help the testing team to
estimate again. The testing team would not need to return for all steps and
take the same decisions again. Sometimes, it is an opportunity to adjust the
estimation made earlier.

Seventh Rule: Estimation should be supported by tools:

A new spreadsheet has been created containing metrics that help to reach
the estimation quickly. The spreadsheet calculates automatically the costs
and duration for each testing phase.

There is also a letter template that contains some sections such as: cost
table, risks, and free notes to be filled out. This letter is sent to the customer.
It also shows the different options for testing that can help the customer
decide which kind of test he or she needs.

Eighth Rule: Estimation should always be verified:

Finally, all estimation should be verified. We’ve created another spreadsheet
for recording the estimations. The estimation is compared to the previous
ones recorded in a spreadsheet to see if they have similar trend. If the esti-
mation has any deviation from the recorded ones, then a re-estimation should
be made.

We can conclude from this chapter that the effort calculation can be
done even for black-box testing. It is indeed a challenging activity during
software testing. Test point analysis (TPA) is one such technique. Other
techniques like use case analysis, however, can also be used. It is also a very
powerful method to generate realistic test cases.

Software-Testing_Final.indb 477 31-01-2018 15:00:36

478 • Software Testing

MULTIPLE CHOICE QUESTIONS

1.	 TPA stands for

a.	 Total point analysis b.	 Test point analysis

c.	 Terminal point analysis d.	 None of the above.

2.	 TPA involves

a.	 2 steps b.	 4 steps

c.	 6 steps d.	 None of the above.

3.	 TPA is

a.	 An effort estimation technique during black-box testing.

b.	 A testing technique.

c.	 A design process.

d.	 None of the above.

4.	 TPA involves basically,

a.	 2 inputs b.	 3 inputs

c.	 4 inputs d.	 None of the above.

5.	 Total test points are given by

a.	 Sum of static and dynamic test points.

b.	 Product of static and dynamic test points.

c.	 Standard deviation of static and dynamic test points.

d.	 None of the above.

6.	 Use cases form the basis for:

a.	 Design b.	 Test cases

c.	 GUI design d.	 All of the above.

7.	 Use cases are of two types:

a.	 Concrete and abstract b.	 Concrete and rapid

c.	 Abstract and rapid d.	 None of the above.

Software-Testing_Final.indb 478 31-01-2018 15:00:36

Test Point Analysis (TPA) • 479

ANSWERS

1.	 b. 2.	 c. 3.	 a. 4.	 b.

5.	 a. 6.	 d. 7.	 a.

CONCEPTUAL SHORT QUESTIONS WITH ANSWERS

Q. 1.	 Define test points.
Ans.	 �Test points allow data to be inspected or modified at various points

in the system.

Q. 2.	 When are use cases written? How are they useful?
Ans.	 �Use cases have become an industry standard method of specifying

user interaction with the system. They have become the part of the
requirements analysis phase of SDLC. Use cases can be used for the
derivation of test cases. The technique is called use case path anal-
ysis. They are written using a case tool like Rational Rose. They are
usually written in MS-Word as it is easily available.

Q. 3.	 What is path analysis?
Ans.	 �Path analysis is a process specially developed for turning use cases

into test cases. It is a tool for testers. Use cases can be executed in
many possible ways. Each thread of execution through a use case is
called a path. Path analysis is a scientific technique to identify all pos-
sible test cases without relying on intuition and experience. It reduces
the number of test cases and the complexity and the bulk of the test
script by moving the non-path related variability of test cases to test
data. Note that it simplifies the coupling of test cases to test data.

Q. 4.	 �If we have a use case with 15 paths, each path needs to be tested
with 6 sets of data. How many test cases have we written with tradi-
tional methodology and with the path analysis technique?

Ans.	 Given that:
Number of paths = 15

Sets of data = 6
a.	 In traditional methodology, we have written 15 * 6 = 90 test

cases.

b.	 In the path analysis technique, we write 15 test cases (one per
path) and 10 data tables each with 9 columns.

Software-Testing_Final.indb 479 31-01-2018 15:00:36

480 • Software Testing

Q. 5.	 Give some advantages of the path analysis technique.
Ans.	 The advantages are as follows:

1.	 Better coverage through scientific analysis.

2.	 Both positive and negative test cases can be easily identified
through path analysis.

3.	 Easier coupling of path and data.

4.	 Test case(s) reduction.

5.	 Better management of testing risks.

6.	 Very effective in identifying and correcting use-case errors.

REVIEW QUESTIONS

1.	 What are the three main inputs to a TPA process? Explain.

2.	 With a flowchart explain the TPA model.

3.	 Explain the test points of some standard functions.

4.	 “The bigger the team, the more effort it will take to manage the project.”
Comment.

5.	 Write short paragraphs on:

a.	 Testware

b.	 Planning and control tools

Software-Testing_Final.indb 480 31-01-2018 15:00:36

C H A P T E R11

Inside this Chapter:

	 11.0.	 Abstract

	 11.1.	 Introduction

	 11.2.	 Methodology

Testing Your Websites—
Functional and
Non-Functional Testing

11.0. ABSTRACT

Today everyone depends on websites for business, education, and trading
purposes. Websites are related to the Internet. It is believed that no work
is possible without Internet today. There are many types of users connected
to websites who need different types of information. So, websites should
respond according to the user requirements. At the same time, the cor-
rect behavior of sites has become crucial to the success of businesses and
organizations and thus should be tested thoroughly and frequently. In this
chapter, we are presenting various methods (functional and non-functional)
to test a website. However, testing a website is not an easy job because we
have to test not only the client-side but also the server-side. We believe our
approach will help any website engineer to completely test a website with a
minimum number of errors.

Software-Testing_Final.indb 481 31-01-2018 15:00:36

482 • Software Testing

11.1  INTRODUCTION

The client end of the system is represented by a browser which connects to
the website server via the Internet. The centerpiece of all web applications
is a relational database which stores dynamic contents. A transaction server
controls the interactions between the database and other servers (often called
“application servers”). The administration function handles data updates and
database administration.

Web Application Architecture

It is clear from Figure 11.1 that we have to conduct the following tests:

�� What are the expected loads on the server and what kind of performance
is required under such loads? This may include web server response
time and database query response times.

�	 What kinds of browsers will be used? What kinds of connection speeds
will they have? Are they intra-organization (with high-connection speeds
and similar browsers) or Internet-wide (with a wide variety of connec-
tion speeds and browser types)?

FIGURE 11.1  Web Application Architecture.

�	 What kind of performance is expected on the client side (e.g., how fast
should pages appear, how fast should animations, applets, etc. load and
run)?

Software-Testing_Final.indb 482 31-01-2018 15:00:37

Testing Your Websites—Functional and Non-Functional Testing • 483

There are many possible terms for the web app development life cycle
including the spiral life cycle or some form of the iterative life cycle. A more
cynical way to describe the most commonly observed approach is to describe
it as the unstructured development similar to the early days of software
development before software engineering techniques were introduced. The
“maintenance phase” often fills the role of adding missed features and fixing
problems.

�	 Will down time for server and content maintenance/upgrades be
allowed? How much?

�	 What kinds of security (firewalls, encryptions, passwords, etc.) will be
required and what is it expected to do? How can it be tested?

�	 How reliable are the Internet connections? And how does that affect the
backup system or redundant connection requirements and testing?

�	 What processes will be required to manage updates to the website’s con-
tent, and what are the requirements for maintaining, tracking, and con-
trolling page content, graphics, links, etc.?

�	 Will there be any standards or requirements for page appearance and/or
graphics throughout a site or parts of a site?

�	 How will internal and external links be validated and updated? How
often?

�	 How many times will the user login and do they require testing?
�	 How are CGI programs, Applets, Javascripts, ActiveX components, etc.

to be maintained, tracked, controlled, and tested?

The table below shows the differences between testing a software proj-
ect that is not web based and testing a web application project.

Typical software project Web application project

1. Gathering user requirements:
What are we going to build? How
does it compare to products currently
available?
This is typically supported by a detailed
requirements specifications.

1. Gathering user requirements:
What services are we going to offer
our customers? What is the best user
interface and navigation to reach the
most important pages with a minimum
number of clicks? What are the current
trends and hot technologies?
This is typically based on discussions,
notes, and ideas.

(Continued)

Software-Testing_Final.indb 483 31-01-2018 15:00:37

484 • Software Testing

Typical software project Web application project

2. Planning:
How long will it take our available
resources to build this product?
How will we test this product?
Typically involves experience-
based estimation and planning.

2. Planning:
We need to get this product out now.
Purely driven by available time window
and resources.

3. Analysis and Design:
What technologies should we use?
Any design patterns we should follow?
What kind of architecture is most
suitable?
Mostly based on well-known
technologies and design methods.
Generally complete before
implementation starts.

3. Analysis and Design:
How should the site look? What kinds
of logos and graphics will we use?
How do we develop a “brand” for our
site? Who is our “typical” customer?
How can we make it usable? What
technologies will we use? Short,
iterative cycles of design in parallel with
implementation activities.

4. Implementation:
Let us decide on the sequence of
building blocks that will optimize
our integration of a series of builds.
Sequential development of design
components.

4. Implementation:
Let us put in the framework and hang
some of the key features. We can then
show it as a demo or pilot site to our
customers.
Iterative prototyping with transition of
prototype to a website.

5. Integration:
How does the product begin to take
shape, as the constituent pieces are
bolted together? Are we meeting our
requirements? Are we creating
what we set out to create in the first
place? Assembly of components to
build the specified system.

5. Integration:
This phase typically does not exist. It is
a point in time when prototyping stops
and the site goes live.

(Continued)

Software-Testing_Final.indb 484 31-01-2018 15:00:37

Testing Your Websites—Functional and Non-Functional Testing • 485

Typical software project Web application project

6. Testing:
Have we tested the product in a
reproducible and consistent manner?
Have we achieved complete test
coverage? Have all serious defects been
resolved in some manner
Systematic testing of functionality
against specifications.

6. Testing:
It’s just a website — the designer will
test it as (s)he develops it, right? How
do you test a website? Make sure the
links all work?

Testing of implied features based on a
general idea of desired functionality.

7. Release:
Have we met our acceptance criteria?
Is the product stable? Has QA
authorized the product for release?
Have we implemented version control
methods to ensure we can always
retrieve the source code for this
release?
Building a release candidate and
burning it to CD.

7. Release:
Go live NOW! We can always add the
rest of the features later!
Transfer of the development site to the
live server.

8. Maintenance:
What features can we add for a future
release? What bug fixes? How do we
deal with defects reported by the
end-user?

Periodic updates based on feature
enhancements and user feedback.
Average timeframe for the above:
One to three years

8. Maintenance:
We just publish new stuff when it’s
ready...we can make changes on the fly,
because there’s no installation required.
Any changes should be transparent to
our users...”
Integral part of the extended
development life cycle for web apps.
Average timeframe for the above:
4 months

Software-Testing_Final.indb 485 31-01-2018 15:00:38

486 • Software Testing

11.2.  METHODOLOGY

11.2.1. N on-Functional Testing (or White-Box Testing)

11.2.1.1.  Configuration testing

This type of test includes

�	 The operating system platforms used.
�	 The type of network connection.
�	 Internet service provider type.
�	 Browser used (including version).

The real work for this type of test is ensuring that the requirements and
assumptions are understood by the development team, and that test envi-
ronments with those choices are put in place to properly test it.

11.2.1.2. U sability testing

For usability testing, there are standards and guidelines that have been
established throughout the industry. The end-users can blindly accept these
sites because the standards are being followed. But the designer shouldn’t
completely rely on these standards. While following these standards and
guidelines during the making of the website, he or she should also consider
the learnability, understandability, and operability features so that the user
can easily use the website.

11.2.1.3.  Performance testing

Performance testing involves testing a program for timely responses.
The time needed to complete an action is usually benchmarked, or

compared, against either the time to perform a similar action in a previous
version of the same program or against the time to perform the identical
action in a similar program. The time to open a new file in one application
would be compared against the time to open a new file in previous versions
of that same application, as well as the time to open a new file in the
competing application. When conducting performance testing, also consider
the file size.

Software-Testing_Final.indb 486 31-01-2018 15:00:38

Testing Your Websites—Functional and Non-Functional Testing • 487

In this testing the designer should also consider the loading time of the
web page during more transactions. For example, a web page loads in less
than eight seconds, or can be as complex as requiring the system to handle
10,000 transactions per minute, while still being able to load a web page
within eight seconds.

Another variant of performance testing is load testing. Load testing for a
web application can be thought of as multi-user performance testing, where
you want to test for performance slow-downs that occur as additional users
use the application. The key difference in conducting performance testing
of a web application versus a desktop application is that the web application
has many physical points where slow-downs can occur. The bottlenecks may
be at the web server, the application server, or at the database server, and
pinpointing their root causes can be extremely difficult.

Typical steps to create performance test cases are as follows:

�	 Identify the software processes that directly influence the overall perfor-
mance of the system.

�	 For each of the identified processes, identify only the essential input
parameters that influence system performance.

�	 Create usage scenarios by determining realistic values for the param-
eters based on past use. Include both average and heavy workload sce-
narios. Determine the window of observation at this time.

�	 If there is no historical data to base the parameter values on use esti-
mates based on requirements, an earlier version, or similar systems.

�	 If there is a parameter where the estimated values form a range, select
values that are likely to reveal useful information about the performance
of the system. Each value should be made into a separate test case.

Performance testing can be done through the “window” of the browser, or
directly on the server. If done on the server some of the performance time
that the browser takes is not accounted for taken into consideration.

11.2.1.4. S calability testing

The term “scalability” can be defined as a web application’s ability to sustain
its required number of simultaneous users and/or transactions while main-
taining adequate response times to its end users.

When testing scalability, configuration of the server under test is critical.
All logging levels, server timeouts, etc. need to be configured. In an ideal
situation, all of the configuration files should be simply copied from test

Software-Testing_Final.indb 487 31-01-2018 15:00:38

488 • Software Testing

environment to the production environment with only minor changes to the
global variables.

In order to test scalability, the web traffic loads must be determined to
know what the threshold requirement for scalability should be. To do this,
use existing traffic levels if there is an existing website, or choose a represen-
tative algorithm (exponential, constant, Poisson) to simulate how the user
“load” enters the system.

11.2.1.5. S ecurity testing

Probably the most critical criterion for a web application is that of secu-
rity. The need to regulate access to information, to verify user identities,
and to encrypt confidential information is of paramount importance. Credit
card information, medical information, financial information, and corporate
information must be protected from persons ranging from the casual visitor
to the determined hacker. There are many layers of security from password-
based security to digital certificates, each of which has its pros and cons. The
test cases for security testing can be derived as follows:

�	 The web server should be setup so that unauthorized users cannot
browse directories and the log files in which all data from the website
stores.

�	 Early in the project, encourage developers to use the POST command
wherever possible because the POST command is used for large data.

�	 When testing, check URLs to ensure that there are no “information
leaks” due to sensitive information being placed in the URL while using
a GET command.

�	 A cookie is a text file that is placed on a website visitor’s system that iden-
tifies the user’s “identity.” The cookie is retrieved when the user revisits
the site at a later time. Cookies can be controlled by the user, regarding
whether they want to allow them or not. If the user does not accept cook-
ies, will the site still work?

�	 Is sensitive information in the cookie? If multiple people use a work-
station, the second person may be able to read the sensitive informa-
tion saved from the first person’s visit. Information in a cookie should be
encoded or encrypted.

11.2.1.6. R ecoverability testing

A website should have a backup or redundant server to which the traffic is
rerouted when the primary server fails. And the rerouting mechanism for

Software-Testing_Final.indb 488 31-01-2018 15:00:38

Testing Your Websites—Functional and Non-Functional Testing • 489

the data must be tested. If a user finds your service unavailable for an
excessive period of time, the user will switch over or browse the competi-
tor’s website. If the site can’t recover quickly then inform the user when
the site will be available and functional.

11.2.1.7. R eliability testing

Reliability testing is done to evaluate the product’s ability to perform its
required functions and give responses under stated conditions for a speci-
fied period of time.

For example, a web application is trusted by users who use an online
banking web application (service) to complete all of their banking transac-
tions. One would hope that the results are consistent and up to date and
according to the user’s requirements.

11.2.2. F unctional Testing (or Black-Box Testing)

11.2.2.1. W eb browser-page tests

This type of test covers the objects and code that executes within the
browser but does not execute the server-based components. For example,
JavaScript and VB Script code within HTML that does rollovers and other
special effects. This type of test also includes field validations that are done
at the HTML level. Additionally, browser-page tests include Java applets
that implement screen functionality or graphical output. The test cases for
web browser testing can be derived as follows:

�	 If all mandatory fields on the form are not filled in then it will display a
message on pressing a submit button.

�	 It will not show the complete information about sensitive data like full
credit card number, social security number (SSN), etc.

�	 Hidden passwords.
�	 Login by the user is a must for accessing the sensitive information.
�	 It should check the limits of all the fields given in the form.

11.2.2.2.  Transaction testing

In this testing, test cases are designed to confirm that information entered
by the user at the web page level makes it to the database, in the proper way,
and that when database calls are made from the web page, the proper data
is returned to the user.

Software-Testing_Final.indb 489 31-01-2018 15:00:38

490 • Software Testing

SUMMARY

It is clear from this chapter that for the failure-free operation of a website we
must follow both non-functional and functional testing methods. With these
methods one can test the performance, security, reliability, user interfaces,
etc. which are the critical issues related to the website. Web testing is a
challenging exercise and by following the methods described in this chapter,
some of those challenges may be mitigated.

MULTIPLE CHOICE QUESTIONS

1.	 Websites can be tested using

a.	 Black-box techniques b.	 White-box techniques

c.	 Both (a) and (b) d.	 None of the above.

2.	 Which of the following is a functional testing technique?

a.	 Transaction testing b.	 Web-browser page testing

c.	 Both (a) and (b) d.	 None of the above.

3.	 Maintenance of websites may involve

a.	 2 months (average) b.	 4 months (average)

c.	 6 months (average) d.	 None of the above.

4.	 Which type of testing involves testing a program for timely responses?

a.	 Usability testing b.	 Performance testing

c.	 Scalability testing d.	 None of the above.

5.	 User’s identity is identified by a

a.	 Cookie file b.	 EOF

c.	 Header files d.	 All of the above.

ANSWERS

1.  c.    2.  c.     3.  b.     4.  b.     5.  a.

Software-Testing_Final.indb 490 31-01-2018 15:00:38

Testing Your Websites—Functional and Non-Functional Testing • 491

CONCEPTUAL SHORT QUESTIONS WITH ANSWERS

Q. 1.	 �Consider a web server supporting 10,000 concurrent users who
request documents from a pool of 10 different HTML documents
(with an average size of 2K each) every 3.5 minutes. Calculate the
bandwidth requirement for handling this throughput?

Ans.	 Throughput =
10,000 × (2 × 1024 × 8)

(3.5 × 60)
 = 780,190 bps

	    or	 10,000 × (2 KB × 1024 bytes / KB × 8 bits / byte)
(3.5 min × sec / min)

	    ∴	 B.W. = 780,190 bps

Q. 2.	 Discuss any one load/performance testing tool.
Ans.	 Tool type: Web-load simulator and performance analysis
	 	 Input: Simulated user requests
	 	 Output: Various performance and analytical reports
	 	 Primary user: Tester
	 	 Secondary user: Developer
	 	� Technology principle: This tool enables us to simulate thousands

of users accessing the website, in addition to other e-commerce and
e-business activities. Virtual load can also simulate various versions
of web browsers and network bandwidth. The simulated load is
applied to the server whereas the performance data is collected and
plotted in several useful report formats for further analysis.

Q. 3.	 Distinguish between an inspection and a walkthrough.
Ans. 	 We tabulate the differences between the two:

Inspection Walkthrough

1.	 It is a five-step process that is well-
formalized.

1.	 It has fewer steps than inspection
and is a less formal process.

2.	 It uses checklists for locating errors. 2.	 It does not use a checklist.
3.	 It is used to analyze the quality of the

process.
3.	 It is used to improve the quality

of product.
4.	 This process takes a long time. 4.	 It does not take a long time.
5.	 It focuses on training of junior staff. 5.	 It focuses on finding defects.

Software-Testing_Final.indb 491 31-01-2018 15:00:38

492 • Software Testing

Q. 4.	 How may test cases be developed for website testing?
Ans.	 �Generated loads may be designed to interact with servers via a web

browser user interface (WBUI). Consideration must be given to the
types of requests that are sent to the server under test by the load
generator and the resources available to the load generator.

Q. 5.	 �A web-based project has various attributes to be used as metrics.
List some of them.

Ans.	 Some measurable attributes of web-based projects are:

a.	 Number of static web pages used in a web-project. By static, we
mean no databases.

b.	 Number of dynamic web pages used in a web-project. By
dynamic, we mean databases are also connected to the web-
pages.

c.	 Word count metric which counts the total number of words on
a page.

REVIEW QUESTIONS

1.	 How is website testing different from typical software testing?

2.	 Discuss various white-box testing techniques for websites.

3.	 Discuss various black-box testing techniques for websites.

4.	 Write short paragraphs on:

a.	 Scalability testing of websites.

b.	 Transaction testing of websites.

Software-Testing_Final.indb 492 31-01-2018 15:00:38

C H A P T E R12
Inside this Chapter:

	 12.0.	 Introduction

	 12.1.	 Why Test an RDBMS?

	 12.2.	 What Should We Test?

	 12.3.	 When Should We Test?

	 12.4.	 How Should We Test?

	 12.5.	 Who Should Test?

Regression Testing of a
Relational Database

12.0. INTRODUCTION

Relational databases are tabular databases that are used to store target related
data that can be easily reorganized and queried. They are used in many appli-
cations by millions of end users. Testing databases involves three aspects:

�� Testing of the actual data
�� Database integrity
�� Functionality testing of database application

These users may access, update, delete, or append to the database. The
modified database should be error free. To make the database error free and
to deliver the quality product, regression testing of the database must be
done. Regression testing involves retesting of the database again and again to
ensure that it is free of all errors. It is a relatively new idea in the data com-
munity. Agile software developers take this approach to the application code.

Software-Testing_Final.indb 493 31-01-2018 15:00:38

494 • Software Testing

In this chapter, we will focus on the following issues in regression testing:

�� Why test an RDBMS?
�� What should we test?
�� When should we test?
�� How should we test?
�� Who should test?

To this end, the problem will be approached from practical perspective.

12.1.  WHY TEST AN RDBMS?

Extensive testing of an RDBMS is done due to the following reasons:

1.	 Quality data is an important asset

Recently a survey was done by Scott W. Amber on the importance of qual-
ity data and he came out with the following conclusions:

95.7% of people believed that data is a corporate asset.
4.3% believed that data is not a corporate asset.
Of the 95.7%, 40.3% had a test suite for data validation.
31.6% discussed the importance of data.

2.	 Target related business functions are implemented in RDBMS

RDBMS should focus on mission-critical business functionality.

3.	 Present approaches of RDBMS testing are inefficient

Presently we develop a database by setting up database, writing code to
access the database, running code, and doing a SELECT operation to
find the query results. Although visual inspection is a good start, it may
help us to find problems but not prevent them.

4.	 Testing provides a concrete test suite to regression test an RDBMS

Database regression testing is the act of running the database test suite
on a regular basis. This includes testing of actual data, database integrity,
ensuring that database is not corrupted, and schemas are correct as well
as the functionality testing of database applications.

5.	 Verification of all modifications

Making changes to the database may result in some serious errors
like missing data and regression testing may help us in detecting such
missing data.

Software-Testing_Final.indb 494 31-01-2018 15:00:38

Regression Testing of a Relational Database • 495

12.2. WHAT SHOULD WE TEST?

We will be discussing both black-box and white-box testing approaches on
relational databases. Black-box testing will involve:

�� I/O validation: Regression testing will help us in validating incoming
data-values; outgoing data-values from queues, stored-functions, and
views.

�� Error handling: Regression testing of an RDBMS allows us to test
quasi-nulls that is, empty strings that are not allowed.

�� Table structure can be easily validated: We can validate the relation-
ships between the rows in different tables. This is known as referential
integrity. For example, if a row in an employee table references a row
within the position table then that row should actually exist.

�� Testing the interaction between SQL and other components such
as scripts: Regression testing allows testing of interfaces between SQL
and scripts by techniques such as parameter passing.

�� Testing of stored data: Data stored in the form of tables can be tested
extensively by regression testing.

�� Testing of modified data: Updating the tables might introduce new
errors which can be easily detected by regression testing.

White-box testing will involve:

i.	 Testing of the entire structure of stored procedures and
functions: Entire schema can be tested by regression testing. We
can refactor our database tables into structures which are more
performant. The process of refactoring here means a small change
to a database schema which improves its design without changing its
semantics. It is an evolutionary improvement of our database schema
which will support three things:

1.	 New needs of our customers.

2.	 Evolutionary software development.

3.	 Fix legacy database design problems.

ii.	 Testing various stimulations: Regression testing allows unit testing
of stored procedures, functions, and triggers. The idea is that the
test is automatically run via a test framework and success or failure is
indicated via a Boolean flag.

iii.	 Testing all views: Regression testing allows an extensive testing of
all three views viz, conceptual, logical and physical.

Software-Testing_Final.indb 495 31-01-2018 15:00:38

496 • Software Testing

iv.	 Testing of all data constraints: Regression testing allows testing of
all data constraints like null values, handling single quote in a string
field, handling comma in an integer field, handling wrong data types,
large size value, large size string, etc.

v.	 Improving the quality of data: Data quality may range from
syntactic mistakes to undetectable dirty data. Data quality involves
four C’s, i.e., correctness, completeness, comprehension, and
consistency.

Correctness: Regression testing provides a correct database by removing
the following errors:

�� Incorrect manipulation through the use of views.
�� Incorrect joins performed using non-key attributes.
�� Integrity constraints incorrectly used.
�� CHECK, UNIQUE, and NULL constraints which cause problems with

data insertion, updates, and deletions.

12.3.  WHEN SHOULD WE TEST?

Testing databases involves initial testing of database and database refactor-
ing. This strategy can be applied concurrently to both the application code
and the database schema. Testing of databases is done not only during the
release but also during the development.

FIGURE 12.1  Test-First Approach.

Software-Testing_Final.indb 496 31-01-2018 15:00:39

Regression Testing of a Relational Database • 497

New software developers follow the Test-First Approach wherein a test
case is first written and then the code is written which will fulfill this test.

The step-by-step approach is as follows:

Step 1:  A test is added for just enough code to fail.
Step 2: � Tests are then run to make sure that the new tests do in fact fail.
Step 3:  Functional code is then updated so that it passes the new tests.
Step 4:  Tests are run again.
Step 5:  If tests fail, update functional code again and retest.
Step 6:  Once the tests pass, the next step is start again.

Test First Approach: TFA is also known as initial testing of database.
Test Driven Development: TDD is a progressive approach. It com-

prises TFA and refactoring (regression testing). Thus, we express this in the
form of an equation:

TDD = TFA + Refactoring

12.4.  HOW SHOULD WE TEST?

a.	 Database testing involves the need of a copy of the databases called
sandboxes.

	 Functionality sandbox: In this we check the new functionality of the
database and refactor the existing functionality. Then we pass the tested
sandbox to the next stage which is the integrated sandbox.

	 Integrated sandbox: In this we integrate all of the sandboxes and then
test the system.

	 QA sandbox: After the system is tested, sandboxes are sent for
acceptance testing. This will ensure the quality of the database.

b.	 Development of test cases: The step-by-step procedure for the
development of test cases is:

Step 1: Setting up the test cases: Set up the database to a known state.
The sources of test data are

�� External test data
�� Test scripts
�� Test data with known values
�� Real-world data

Software-Testing_Final.indb 497 31-01-2018 15:00:39

498 • Software Testing

Step 2: Running the test cases: The test cases are run. The running of the
database test cases is analogous to usual development testing.

Traditional Approach

Test cases are executed on the browser side. Inputs are entered on web
input forms and data is submitted to the back-end database via the web
browser interface. The results sent back to the browser are then validated
against expected values.

Advantages: It is simple and no programming skill is required. It not
only addresses the functionality of stored procedures, rules, triggers, and
data integrity but also the functionality of the web application as a whole.

Disadvantages: Sometimes the results sent to the browser after test
case execution do not necessarily indicate that the data itself is properly writ-
ten to a record in the table. When erroneous results are sent back to the
browser after the execution of test cases, it doesn’t necessarily mean that the
error is a database error.

A crucial danger with database testing and with regression testing
specificly is coupling between tests. If we put the database in to a known
state, run several tests against that known state before setting it, then those
tests are potentially coupled to one another.

Advanced Approach

Preparation for Database Testing

Generate a list of database tables, stored procedures, triggers, defaults,
rules, and so on. This will help us have a good handle on the scope of testing
required for database testing. The points which we can follow are:

FIGURE 12.2  Types of Sand-Boxes and the Flow of Database Testing.

Software-Testing_Final.indb 498 31-01-2018 15:00:41

Regression Testing of a Relational Database • 499

1.	 Generate data schemata for tables. Analyzing the schema will help us
determine:

�� Can a certain field value be Null?
�� What are the allowed or disallowed values?
�� What are the constraints?
�� Is the value dependent upon values in another table?
�� Will the values of this field be in the look-up table?
�� What are user-defined data types?
�� What are primary key and foreign key relationships among tables?

2.	 At a high level, analyze how the stored procedures, triggers, defaults,
and rules work. This will help us determine:

�� What is the primary function of each stored procedure and trigger?
Does it read data and produce outputs, write data, or both?

�� What are the accepted parameters?
�� What are the return values?
�� When is the stored procedure called and by whom?
�� When is a trigger fired?

3.	 Determine what the configuration management process is. That is how
the new tables, stored procedures, triggers, and such are integrated.

Step 3: Checking the results: Actual database test results and expected
database test results are compared in this step as shown in the following
example:

CREATE FUNCTION f_is_leap_year (@ ai_year small int)
RETURNS small int
AS
BEGIN
 —if year is illegal (null or –ve), return -1
IF (@ ai_year IS NULL) or
 (@ ai_year <=0) RETURN -1
IF (((@ ai_year %) = 0) AND
 ((ai_year % 100) <> 0)) OR
 ((ai_year % 400) = 0)
 RETURN 1 —leap year
 RETURN 0 — Not a leap year
END

Software-Testing_Final.indb 499 31-01-2018 15:00:41

500 • Software Testing

The following test cases were derived for this code snippet:

Test_id Year (year to test) Expected result Observed result Match

1 –1 –1 –1 Yes
2 –400 –1 –1 Yes
3 100 0 0 Yes
4 1000 0 0 Yes
5 1800 0 0 Yes
6 1900 0 0 Yes
7 2010 0 0 Yes
8 400 1 1 Yes
9 1600 1 1 Yes
10 2000 1 1 Yes
11 2400 1 1 Yes
12 4 1 1 Yes
13 1204 1 1 Yes
14 1996 1 1 Yes
15 2004 1 1 Yes

12.5.  WHO SHOULD TEST?

The main people responsible for doing database testing are application devel-
opers and agile database administrators. They will typically pair together and
will perform pair testing which is an extension of pair programming. Pair
database testing has the following advantages. First, testing becomes a real-
time interaction. Secondly, discussions are involved throughout.

The database testers are also responsible for procuring database testing
tools for the organization. Some of the dataset testing CASE tools are:

Category of testing Meaning Examples

UNIT TESTING
TOOLS

Tools which enable you
to regression test your
database.

DBUnit, SQL Unit

LOAD TESTING
TOOLS

These tools will test
whether our system will
be able to stand high
conditions of load.

Mercury Interactive,
Rational Suite Test
Studio

TEST DATA
GENERATOR

They help to generate
large amounts of data for
stress and load testing.

Data Factory, Turbo
Data

Software-Testing_Final.indb 500 31-01-2018 15:00:41

Regression Testing of a Relational Database • 501

SUMMARY

In this chapter, we have studied the regression testing of relational data-
bases. We have also done the black-box testing of a database code example.

MULTIPLE CHOICE QUESTIONS

1.	 RDBMS should focus on:

a.	 Logic only

b.	 Mission critical business functionality

c.	 Both (a) and (b)

d.	 None of the above.

2.	 When can database regression testing be done?

a.	 Sometimes b.	 Not required

c.	 Regular basis d.	 None of the above.

3.	 A process of making a small change to a database schema which improves
its design without changing its semantics is known as:

a.	 Refactoring b.	 Regression testing

c.	 Unit testing d.	 None of the above.

4.	 Regression testing allows an extensive testing of:

a.	 Conceptual level

b.	 Logical level and physical level

c.	 Conceptual, logical, and physical level

d.	 None of the above.

5.	 Which of the following is true?

a.	 TDD = TFA + Refactoring b.	 TDD = TFA – Refactoring

c.	 TDD = TFA d.	 None of the above.

Software-Testing_Final.indb 501 31-01-2018 15:00:41

502 • Software Testing

6.	 The copy of a database is called as:

a.	 Instance b.	 Alias

c.	 Sandbox d.	 None of the above.

7.	 A load testing CASE TOOL is:

a.	 SQL Unit b.	 Rational Suite Test Studio

c.	 Turbo Data d.	 None of the above.

ANSWERS

1.	 b. 2.	 c. 3.	 a. 4.	 c.

5.	 a. 6.	 c. 7.	 b.

CONCEPTUAL SHORT QUESTIONS WITH ANSWERS

Q. 1.	 How can you unit test your databases?
Ans.	 �We can test stored procedures by executing SQL statements one at

a time against known results. Then the results can be validated with
expected results. This is similar to unit testing.

Q. 2.	 �What are certain points that are to be kept in mind during database
testing?

Ans.	 �There are four important points to be kept in mind. They are as
follows:

1.	 I/O validations and error handling must be done outside of the
stored procedures.

2.	 Do thorough analysis to design black-box test cases that produce
problematic inputs that would break the constraints.

3.	 Testing the interaction between SQL and other components like
scripts.

4.	 Understanding how to use database tools to execute SQL
statements can improve our ability to analyze web-based errors.
It helps us to determine whether an error is in the stored
procedure code, the data itself, or in the components outside of
the database.

Software-Testing_Final.indb 502 31-01-2018 15:00:41

Regression Testing of a Relational Database • 503

Q. 3.	 What sort of tests may be carried out during database testing?

Ans.	 �1.	� SQL databases may not be able to accept special characters
(e.g., $, @, &) as valid inputs.

2.	 Data sent to the database server may be corrupted due to packet
losses caused by slow connections.

3.	 Proper implementation of database rollback logic. Otherwise, it
causes data corruption. Design your test cases to exercise those
critical areas.

4.	 Check for complete loading of tables in the database.
5.	 Check for proper error handling.
6.	 Check that your server does not run out of disk space.

Q. 4.	 What are milestone tests?
Ans.	 �Milestone tests are performed prior to each development milestone.

They are scheduled according to the milestone plan.
Q. 5.	 �What sort of errors are handled at the client side and at the

server side?
Ans.	 �Simple errors such as invalid inputs should be handled at the client

side. Handling error conditions can be done at the server side.

REVIEW QUESTIONS

1.	 Why should an RDBMS be tested extensively?

2.	 How can you do black-box testing of a database?

3.	 What is refactoring? What are its three main objectives?

4.	 Explain with the help of a flowchart/an algorithm, the Test-First approach
used to test an RDBMS.

5.	 Comment on the flow of database testing.

6.	 Name some unit testing and load testing CASE tools and some test data
generators used during database testing.

Software-Testing_Final.indb 503 31-01-2018 15:00:41

Software-Testing_Final.indb 504 31-01-2018 15:00:41

C H A P T E R13
A Case Study on
Testing of E-Learning
Management Systems

Abstract

Software testing is the process of executing a program or system with the
intent of finding errors. It involves any activity aimed at evaluating an attrib-
ute or capability of a program or system and determining that it meets its
required results. To deliver successful software products, quality has to be
ensured in each and every phase of a development process. Whatever the
organizational structure may be, the most important point is that the output
of each phase should be of very high quality. The SQA team is responsible to
ensure that all the development team should follow the quality-oriented pro-
cess. Any modifications to the system should be thoroughly tested to ensure
that no new problems are introduced and that the operational performance
is not degraded due to the changes. The goal of testing is to determine and
ensure that the system functions properly beyond the expected maximum
workload. Additionally, testing evaluates the performance characteristics
like response times, transaction rates, and other time sensitive issues.

Software-Testing_Final.indb 505 31-01-2018 15:00:41

506 • Software Testing

Chapter One

Introduction

NIIT Technologies is a global IT and business process management services
provider with a footprint that spans 14 countries across the world. It has been
working with global corporations in the USA, Europe, Japan, Asia Pacific,
and India for over two decades. NIIT Technologies provides independent
validation and verification services for your high-performance applications.
Their testing services help organizations leverage their experience in testing
to significantly reduce or eliminate functional, performance, quality, and reli-
ability issues. NIIT Technologies helps enterprises and organizations make
their software development activities more successful and finish projects in
time and on budget by providing systematic software quality assurance.

The government of India Tax Return Preparers scheme to train unem-
ployed and partially employed persons to assist small and medium taxpay-
ers in preparing their returns of income has now entered its second phase.
During its launch year, on a pilot basis, close to 5,000 TRPs at 100 centers in
around 80 cities across the country were trained. 3737 TRPs were certified
by the Income Tax Department to act as Tax Return Preparers who assisted
various people in filing their IT returns. The government has now decided
to increase their area of operations by including training on TDS returns and
service tax returns to these TRPs. The quality assurance and testing team of
NIIT who constantly indulges in testing and maintaining the product qual-
ity have to test such online learning content management websites such as
www.trpscheme.com in the following manner:

�� Functional and regression testing
�� System testing: Load/stress testing, compatibility testing
�� Full life cycle testing

Software-Testing_Final.indb 506 31-01-2018 15:00:41

A Case Study on Testing of E-Learning Management Systems • 507

Chapter Two

Software Requirement Specifications

2.1.  INTRODUCTION

This document aims at defining the overall software requirements for “testing
of an online learning management system (www.trpscheme.com).” Efforts
have been made to define the requirements exhaustively and accurately.

2.1.1. P urpose

This document describes the functions and capabilities that will be pro-
vided by the website, www.trpscheme.com. Its purpose is that the resource
center will be responsible for the day-to-day administration of the scheme.
The functions of the resource center will include to specify the curriculum
and all other matters relating to the training of the Tax Return Preparers
and maintain the particulars relating to the Tax Return Preparers. Also,
any other function that is assigned to it by the Board for the purposes of
implementation of the scheme.

2.1.2. S cope

The testing of the resource center section for service tax is done manually
mainly using functional and regression testing. Other forms of testing may
also be used such as integration testing, load testing, installation testing, etc.

Inside this Chapter:

	 2.1.	 Introduction

	 2.2.	 Overall Descriptions

	 2.3.	 Specific Requirements

	 2.4.	 Change Management Process

	 2.5.	 Document Approval

	 2.6.	 Supporting Information

Software-Testing_Final.indb 507 31-01-2018 15:00:41

508 • Software Testing

2.1.3.  Definitions, Acronyms, and Abbreviations

Definitions:

1.	 Test plan: We write test plans for two very different purposes. Sometimes
the test plan is a product; sometimes it’s a tool. In software testing, a test
plan gives detailed testing information regarding an upcoming testing
effort.

2.	 Test case: A set of conditions or variables under which a tester will
determine if a requirement upon an application is partially or fully
satisfied. It may take many test cases to determine that a requirement is
fully satisfied.

3.	 Manual testing: The most popular method of software application
testing. It can be improved by using requirements traceability, test cases,
test plan, SQA and debugging, and testing techniques and checklist.

4.	 Test report: A management planning document that shows: Test Item
Transmittal Report, Test Log, Test Incident Report, and Test Summary
Report.

5.	 Staging server: A staging server is a web server used to test the various
components of, or changes to, a website before propagating them to a
production server.

Acronym and Abbreviation:

1.	 TRP–Tax Return Preparer

2.	 STRP–service tax return preparers scheme

3.	 QA–quality assurance

4.	 HTML–hyper text mark-up language

5.	 STC–service tax code

6.	 EAR File–enterprise archive file

7.	 VSS–visual source safe

8.	 STD–service tax department

2.1.4.	References Books

�� Chopra, R. 2017. Software testing and quality assurance: A practical
approach. S.K. Kataria & Sons, New Delhi.

Software-Testing_Final.indb 508 31-01-2018 15:00:41

A Case Study on Testing of E-Learning Management Systems • 509

�� Aggarwal. K. K. 2005. Software engineering. New Age International,
New Delhi.

Sites

�� http://en.wikipedia.org/Software_testing

2.1.5. O verview

The rest of the SRS document describes the various system requirements,
interfaces, features, and functionalities in detail.

2.2.  OVERALL DESCRIPTIONS

2.2.1. P roduct Perspective

The application will be self-contained.

FIGURE 2.1

2.2.1.1. S ystem interfaces

None.

2.2.1.2. U ser interfaces

The application will have a user-friendly and menu-based interface. The
login page will entertain both user and admin. The following forms and
pages will be included in the menu:

�� Login screen
�� Homepage
�� Return filed report
�� Return filed form
�� STRP wise report
�� Service wise report
�� Zone commissionerate wise report
�� STRP summary report

Software-Testing_Final.indb 509 31-01-2018 15:00:43

510 • Software Testing

2.2.1.3. H ardware interfaces

1.	 Processor: Intel Pentium (4) Processor

2.	 Ram: 512 MB and above

3.	 Storage Space: 5 GB and above

4.	 A LAN card for the Internet

2.2.1.4. S oftware interfaces

1.	 Language:	 Java, XML

2.	 Software:	 Bugzilla, Putty, Toad

3.	 Database:	 Oracle

4.	 Platform:	 Windows 2000 (Server) / Linux

2.2.1.5.  Communication interfaces

The application should support the following communication protocols:

1.	 Http

2.	 Proxy server: In computer networks, a proxy server is a server
(a computer system or an application program) that acts as a go-between
for requests from clients seeking resources from other servers.

2.2.1.6. M emory constraints

At least 512 MB RAM and 2 GB hard disk will be required.

2.2.1.7. S ite adaptation requirements

The terminals at the client site will have to support the hardware and soft-
ware interfaces specified in the above sections.

2.2.2. P roduct Functions

According to the customer use and needs the website function shall include:

i.	 To specify, with prior approval of the Board,

a.	 The number of persons to be enrolled during a financial year for
training to act as Tax Return Preparers;

Software-Testing_Final.indb 510 31-01-2018 15:00:43

A Case Study on Testing of E-Learning Management Systems • 511

b.	 The number of centers for training and their location where
training is to be imparted during a financial year;

c.	 The number of persons to be trained at each center for training
during a financial year;

ii.	 To specify the curriculum and all other matters relating to the training
of Tax Return Preparers;

iii.	 Maintain the particulars relating to the Tax Return Preparers;

iv.	 Any other function which is assigned to it by the Board for the
purposes of implementation of the scheme.

2.2.3. U ser Characteristics

�� Education level: The user be able to understand one of the languages
of the browser (English, Hindi, Telugu). The user must also have a basic
knowledge of tax return and payments rules and regulations.

�� Technical expertise: The user should be comfortable using general-
purpose applications on a computer.

2.2.4.  Constraints

�� Monitor sizes and ratios and color or black-and-white monitors render
it virtually impossible to design pages that look good on all device types.

�� Font sizes and colors need to be changeable to fit the requirements of
sight-impaired viewers.

2.2.5. A ssumptions and Dependencies

�� Some pages display wrong with some browsers.
�� Some web master along the way programmed in some browser-specific

codes.

2.2.6. A pportioning of Requirements

None.

Software-Testing_Final.indb 511 31-01-2018 15:00:43

512 • Software Testing

2.3.  SPECIFIC REQUIREMENTS

This section contains the software requirements to a level of detail sufficient
to enable designers to design the system and the testers to test the system.

2.3.1. U ser Interfaces and Validations

The following interfaces will be provided:

�� Login screen

Visit www.trpscheme.com. The following page appears:

When the STRPs click on the login button of resource center service tax
on TRPscheme.com, the following page will be displayed.

Software-Testing_Final.indb 512 31-01-2018 15:00:43

A Case Study on Testing of E-Learning Management Systems • 513

�� Homepage

When the STRP logs in by user id and password, the homepage is displayed.
The homepage has “Reported by STRP” menu on the left under which the
user will see two links, “Return Filed” and “Monthly/Quarterly Tax Paid
Form.” The user will also see two report links, “Return Filed” and “Monthly/
Quarterly Tax Paid Report” under the “Reports” menu. A message “This
is the Resource Center site. By using this site you can get information on
Resource Center Service Tax” also appears on the homepage.

Software-Testing_Final.indb 513 31-01-2018 15:00:44

514 • Software Testing

�� Monthly/Quarterly tax paid form

This form is used by the STRPs to fill out the Monthly/Quarterly Tax Paid
by the Assesses in order to capture the information so that the total tax paid
can be assessed. On this page STRP Details will be displayed and the fields
that need to be filled in for the completion of the Monthly/Quarterly Tax
Paid form. Filling out the “Monthly/Quarterly Tax Paid Form” is mandatory
before filling out the Return Filed form. This will not be applied when STRP
is filling return for the STC code first time.

Software-Testing_Final.indb 514 31-01-2018 15:00:45

A Case Study on Testing of E-Learning Management Systems • 515

Form validation: This form will require validation of the data such as
all of the mandatory fields cannot be left blank and “STC Code” must be
filled in otherwise the form will not be submitted. Fields such as “Amount
of Tax Payable,” “Amount of Tax Paid,” and “Interest Paid” will only be
numeric.

�� To complete a form, the user must fill out the following fields. All of the
fields are mandatory in this form.

•• Name of Assesses
•• STC Code
•• Period
•• Monthly/Quarterly
•• Month
•• Amount of Tax Payable
•• Amount of Tax Paid

�� Field format/length for STC Code will be as follows: [First 5 alphabetical]
[6-9 numeric] [10 alphabetical] [11-12 ST] [13-15 numeric]

�� “Month” drop-down list will be populated based on the “Period” and
“Monthly/Quarterly” selection. “Month” will be selected. If the user has
selected “Period” as April 1 though Sept 30 and 2009 and “Monthly” in
“Monthly/Quarterly” drop down then he or she will see April, May, June,
July, August, and September in the “Month” drop down. If the TRP has
selected “Quarterly” in “Monthly/Quarterly” drop down then the drop
down will show Apr_May_June and July_Aug_Sep.

�� The STRP can only fill in the details for the same STD code, period, and
month only once.

�� Report to view Monthly\Quarterly form data.

This report will allow STRPs to view Monthly\Quarterly Tax Paid form
data and will be able generate a report of the data. STRPs will generate
reports in HTML format and also be to able to export them into Excel
format.

�� To view the report data the STRP is required to provide the “Period” in
the given fields that are the mandatory fields.

�� The STRP can also use the other field STC code to generate.
�� The user must click on the “Generate Report” button to view the report

in HTML format or on “Export to Excel” if he or she wants to export the
data into Excel format.

Software-Testing_Final.indb 515 31-01-2018 15:00:45

516 • Software Testing

�� The “Cancel” button will take the user to the login page.
2.5 Service Wise Report (Admin Report)

Software-Testing_Final.indb 516 31-01-2018 15:00:45

A Case Study on Testing of E-Learning Management Systems • 517

This report will allow the admin to generate a Report Service Wise of STRPs.
This report will be generated in HTML format as well as in Excel format.

Validations:

�� This page should contain a “Service Type” drop down and “Date from”
and “To” textboxes.

�� To view the Service Wise Report data the admin can select multiple ser-
vices from the “Service Type” list box and the data for those services will
be populated. “Service Type” will be a mandatory field so the user has to
select at least one service to view the report data.

�� The user must click on the “Generate Report” button to view the report
in HTML format or on “Export to Excel” if he or she wants to export the
data them into Excel format.

�� The TRP id, TRP name, and service type will also be provided in the
Excel sheet.

�� The “Cancel” button will take the user to the login page.
�� The user needs to fill in both the “Date from” and “To” fields. “Date

from” and “To” will extract the data based on “Date of Filling Return.”
�� STRPs Wise Report (Admin Report)

Software-Testing_Final.indb 517 31-01-2018 15:00:45

518 • Software Testing

This report will allow the admin to search the data of the STRPs and will
be able to generate a report of the data. The admin will generate reports in
HTML format and also in Excel format.

�� To view the STRPs Wise Report data users have to give a “Period” because
its a mandatory field while the rest of the fields are non mandatory.

�� The user can also provide the date range if the user wants data from a
particular date range. If no date range is provided then all the data from
all of the STRPs will be populated for the given period.

�� The user needs to fill in both “Date from” and “To” fields. “Date from”
and “To” will extract the data based on “Date of Filling Return.”

�� The user must click on the “Generate Report” button to view the report
in HTML format or on “Export to Excel” if he or she wants to export the
data into Excel format.

�� The “TRP id” and “TRP name” will also be provided in the Excel sheet.
�� The “Cancel” button will take the user to the login page.
�� STRP Summary Report (Admin Report).

This report will allow the admin to generate a report for the top ten STRPs
based on the highest amount of tax paid for each return filled by the TRP.
This report will be generated in HTML format as well as in Excel format.

Software-Testing_Final.indb 518 31-01-2018 15:00:45

A Case Study on Testing of E-Learning Management Systems • 519

Validations:

�� To view this report the user will have to select a “Zone” as well as a
“Period.” These are mandatory filters.

�� There will be an option of “ALL” in the “Zone” drop down if the report
needs to be generated for all the zones.

�� The user must click on the “Generate Report” button to view the report
in HTML format or on “Export to Excel” if he or she wants to export the
data into Excel format.

�� The “Cancel” button will take the user to the login page.
�� The user needs to fill both “Date from” and “To” fields. “Date from” and

“To” will extract the data based on “Date of Filling Return.”

The user can either select the “Period” or “Date from” and “To” to gen-
erate the report. Both of the fields cannot be selected.

�� Zone/Commissionerate Wise Report (Admin Report)

This report will allow the admin to generate the report Zone/
Commissionerate Wise of STRPs. This report will be generated in HTML
format as well as in Excel format.

Software-Testing_Final.indb 519 31-01-2018 15:00:46

520 • Software Testing

Validations:

�� To view the Commissionerate Wise Report data the admin can provided
“Zone,” “Commissionerate,” and “Division” to view the data but if
no input is provided then the data will include the entire “Zone,” the
“Commissionerate,” and the “Division.” The user will have to select
“Zone” because it will be a mandatory field. There will be an option of
“ALL” in the “Zone” drop down if the report needs to be generated for
all of the “Zone.”

�� “Commissionerate” will be mapped to the “Zone” and “Division” will
be mapped to “Commissionerate,” i.e., if a user selects a “Zone” then
all the “Commissionerate” under that “Zone” will come in to the “Com-
missionerate” drop down and if a user selects a “Commissionerate” then
only those “Division” will be populated in the “Division” drop down that
are under that “Commissionerate.” If any LTU is selected in the “Zone”
drop down the no other field will be populated.

�� The user must click on the “Generate Report” button to view the report
in HTML format or on “Export to Excel” if he or she wants to export the
data into Excel format.

�� The “TRP id,” “TRP name,” “Commissionerate,” and “Division” will also
be provided in the Excel sheet.

�� The “Cancel” button will take the user to the login page.

Software-Testing_Final.indb 520 31-01-2018 15:00:46

A Case Study on Testing of E-Learning Management Systems • 521

2.3.2. F unctions

It defines the fundamental actions that must take place in the software in
accepting and processing the inputs and generating the outputs. The system
will perform the following:

VALIDITY CHECKS

�� The address should be correct.
�� An Internet connection should be present.

RESPONSES TO ABNORMAL SITUATIONS

�� An error message will be generated if the date format is wrong.
�� An error message will be generated if the STC code is entered incorrectly.
�� An error message will be generated if two users are assigned the same

STC code.

2.3.3. M odules

Test Plan

We write test plans for two very different purposes. Sometimes the test plan
is a product; sometimes it’s a tool. It’s too easy but also too expensive to
confuse these goals. In software testing, a test plan gives detailed testing
information regarding an upcoming testing effort including:

�� Scope of testing
�� Schedule
�� Test deliverables
�� Release criteria risks and contingencies
�� How the testing will be done?
�� Who will do it?
�� What will be tested?
�� How long it will take?
�� What the test coverage will be, i.e., what quality level is required?

Test Cases

A test case is a set of conditions or variables under which a tester will deter-
mine if a requirement upon an application is partially or fully satisfied. It
may take many test cases to determine that a requirement is fully satisfied. In
order to fully test that all of the requirements of an application are met, there
must be at least one test case for each requirement unless a requirement has

Software-Testing_Final.indb 521 31-01-2018 15:00:46

522 • Software Testing

sub requirements. In that situation, each sub requirement must have at least
one test case. There are different types of test cases.

�� Common test case
�� Functional test case
�� Invalid test case
�� Integration test case
�� Configuration test case
�� Compatibility test case

2.3.4. P erformance Requirements

Static numerical requirements are:

�� HTTP should be supported
�� HTML should be supported
�� Any number of users can be supported

Dynamic numerical requirements include the number of transactions
and tasks and the amount of data to be processed within certain time periods
for both normal and peak workload conditions depend upon the connection
speed of the user.

2.3.5.  Logical Database Requirements

The database must be updated and maintained on a regular basis by a
database administrator.

2.3.6.  Design Constraints

None.

2.3.7. S oftware System Attributes

Quality attributes that can serve as requirements:

�� Reliability: It supports the latest functions as per the user requirements.
�� Availability: It can be downloaded from the site.
�� Security: It supports the privacy mode.
�� Portability: It supports all operating systems.
�� Efficiency: Appropriate amount of computing resources and code.

Software-Testing_Final.indb 522 31-01-2018 15:00:46

A Case Study on Testing of E-Learning Management Systems • 523

2.4.  CHANGE MANAGEMENT PROCESS

Changes in project scope and requirements will be done if there is:

�� Software update
�� Change in technology (presence of any future OS)
�� Change in user requirements

2.5.  DOCUMENT APPROVAL

None.

2.6.  SUPPORTING INFORMATION

The table of contents is given.

Software-Testing_Final.indb 523 31-01-2018 15:00:46

524 • Software Testing

Chapter Three

System Design

Software-Testing_Final.indb 524 31-01-2018 15:00:48

A Case Study on Testing of E-Learning Management Systems • 525

Chapter Four

Reports And Testing

4.1.  TEST REPORT

A management planning document that shows the following:

�� Test Item Transmittal Report: Reporting on when tested software
components have progressed from one stage of testing to the next.

�� Test Log: Recording which test cases were run, who ran them, in what
order, and whether each test passed or failed.

�� Test Incident Report: Detailing for any test that failed, the actual
versus expected result, and other information intended to throw light on
why a test has failed.

�� Test Summary Report: A management report providing any impor-
tant information uncovered by the tests accomplished, and including
assessments of the quality of the testing effort, the quality of the soft-
ware system under test, and statistics derived from incident reports.
The report also records what testing was done and how long it took in
order to improve any future test planning. This final document is used
to indicate whether the software system under test is fit for its purpose
according to whether or not it has met acceptance criteria defined by
project stakeholders.

4.2.  TESTING

The importance of software testing and its implications with respect to soft-
ware quality cannot be overemphasized. Software testing is a critical ele-
ment of software quality assurance and represents the ultimate review of
specification, design, and code generation.

4.2.1. T ypes of Testing

White-Box Testing: This type of testing goes inside the program and check
all the loops, paths, and branches to verify the program’s intention.

Software-Testing_Final.indb 525 31-01-2018 15:00:48

526 • Software Testing

Black-Box Testing: This type of testing is done to identify whether the
output are the expected ones or not. This type of testing verifies that the
software generates the expected output with a given set of inputs.

Static Analysis: In this type of testing, code is examined rather than exer-
cised to verify its conformance to a set of criteria.

4.2.2.  Levels of Testing

Unit Testing: This is the first phase of testing. The unit test of the system
was performed using a unit test plan. The parameters that are required to be
tested during a unit testing are as follows:

Validation check: Validations are all being performed correctly. For this,
two kinds of data are entered for each entry going into the database—valid
data and invalid data.

Integrating Testing: It is a systematic technique for constructing the pro-
gram structure while at the same time conducting tests to uncover tests asso-
ciated with interfacing. The objective is to take unit tested components and
build a program structure that has been dictated by design.

In this testing we followed the bottom-up approach. This approach
implies construction and testing with atomic modules.

Stress Testing: The final test to be performed during unit testing in the
stress test. Here the program is put through extreme stress like all of the keys
of the keyboard being pressed or junk data being put through. The system
being tested should be able to handle that stress.

Functional Testing: Functional testing verifies that your system is ready for
release. The functional tests define your working system in a useful manner.
A maintained suite of functional tests:

�� Captures user requirements in a useful way.
�� Gives the team (users and developers) confidence that the system meets

those requirements.

Load Testing: Load testing generally refers to the practice of modeling the
expected usage of a software program by simulating multiple users accessing
the program’s services concurrently. As such, this testing is most relevant for
multi-user systems often one built using a client/server model, such as web
servers.

Software-Testing_Final.indb 526 31-01-2018 15:00:48

A Case Study on Testing of E-Learning Management Systems • 527

Regression Testing: Regression testing is initiated after the programmer
has attempted to fix a recognized problem or has added the source code to
a program that may have inadvertently introduced errors. It is a quality con-
trol measure to ensure that the newly modified code still complies with its
specified requirements and that unmodified code has not been affected by
the maintenance activity.

Installation Testing: Installation testing will check the installation and con-
figuration procedure as well as any missing dependencies. Installation tests
test the installation and configuration procedures. These tests are a set of
scripts that automatically download all necessary packages and install them.
To test that the installation was successful there is an edge-java-security-test
RPM which contains a simple script to test the SSL handshake with the
secure service.

Software-Testing_Final.indb 527 31-01-2018 15:00:48

528 • Software Testing

Chapter Five

Test Cases

5.1.  RETURN FILED REPORT

Test
case ID Objective Test steps Test data Expected results

Actual
results

Test
status
(Pass/
Fail) Bug ID

STRP_R
FR_301

To verify the
availability of
“Return Filed
Report” to
student role.

1. Login as student.
Homepage of the
user appears.

Loginid:
student01
password:
pass123

A quicklink “Return
Filed” appears on
the left hand side
of the screen under
“View Reports”

Same as
expected.

PASS

STRP_R
FR_302

To verify the
accessibility
of “Return
Filed”
button.

1. Login as student.
Homepage of the
user appears.
2. Click on the
quicklink “Return
Filed” under “View
Reports” heading.

Loginid:
student01
password:
pass123

Return “Filed
Report” page
appears.

Same as
expected.

PASS 118560

STRP_R
FR_306

To verify
the report
outputs in
an Excel
spreadsheet
and HTML
format.

1. Login as student.
Homepage of the
user appears.
2. Click on the
quicklink “Return
Filed,” “Return Filed
Report” page appears.
3. Fill in the
“Period” field.
4. Click on the
“Export to Excel”
button.
5. Next select the
same period and click
on the “Generate
Report” button.
6. Observe and
verify the values
under the respective
column headings in
HTML format with
the Excel spread-
sheet format.

Loginid:
student01
password:
pass123

The values under
the respective
columns in
HTML and Excel
spreadsheet should
match. The column
headings are as
follows:
Name
STC
Code
Period
Date of Filling
Return
Amount of Tax
Payable
Amount of Tax Paid
Interest Paid

Same as
expected.

(Continued)

Software-Testing_Final.indb 528 31-01-2018 15:00:48

A Case Study on Testing of E-Learning Management Systems • 529

Test
case ID Objective Test steps Test data Expected results

Actual
results

Test
status
(Pass/
Fail) Bug ID

STRP_R
FR_307

To verify the
functionality
of the
“Generate
Report”
button when
the “STC
Code” filed
is blank and
the “Period”
field is
selected.

1. Login as student.
Homepage of the
user appears.
2. Click on the
quicklink “Return
Filed,” “Return on
Filed Report” page
appears.
3. Fill all the
mandatory fields
except the “STC
Code.”
4. Click on the
“Generate Report”
button.

Loginid:
student01
password:
pass123

1. Report should
be generated for
selected period
showing correct
values under the
respective column
headings.
2. Message “No
Record Found”
should appear if no
record for selected
period exists.

Same as
expected.

PASS

STRP_R
FR_308

To verify the
functionality
of the
“Export
to Excel”
button when
the “STC
Code” field
is blank and
the “Period”
field is
selected.

1. Login as student.
Homepage of the
user appears.
2. Click on the
quicklink “Return
Filed,” “Return
Filed Report” page
appears.
3. Fill all the
mandatory fields
except the “STC
Code.”
4. Click on the
“Generate Report”
button.

Loginid:
student01
password:
pass123

1. “File Download”
dialog box appears
with options
“Open,” “Save,” and
“Cancel.”
2. Report should be
generated in Excel
for selected period
showing the correct
values under the
respective column
headings.
3. Message “No
Record Found”
should appear if no
record for selected
period exists.

Same as
expected.

PASS

STRP_R
FR_309

To verify the
functionality
of the
“Calendar”
button on
“Return
Filed
Report.”

1. Login as student.
Homepage of the
user appears.
2. Click on the
quicklink “Return
Filed,” “Return
Filed Report” page
appears.
3. Select a period in
the “Period” field.
4. Click on the
“Pick a date” button.

Loginid:
student01
password:
pass123

A Date Time Picker
Window should pop
up with the current
date selected in the
calendar.

Same as
expected.

PASS

(Continued)

Software-Testing_Final.indb 529 31-01-2018 15:00:48

530 • Software Testing

Test
case ID Objective Test steps Test data Expected results

Actual
results

Test
status
(Pass/
Fail) Bug ID

STRP_10
FR_310

To verify the
format of the
“STC Code”
textbox.

1. Login as student.
Homepage of the
user appears.
2. Click on the
quicklink “Return
Filed,” “Return Filed
Report” page appears.
3. Fill “STC Code”
in the following
template.
STC code length: 15
characters 1-5:
alphabetical 6-9:
numerical 10th:
alphabetical
11-12: ST
13-15: numerical
4. Fill all the other
Mandatory details.
5. Click on the
“Generate Report”
button.

The report should
be generated.

Same as
expected.

PASS

STRP_R
FR_311

To verify the
functionality
of the
“Generate
Report”
button when
length of the
“STC Code”
is less than 15
characters.

1. Login as student.
Homepage of the
user appears.
2. Click on the
quicklink “Return
Filed Report,”
“Return Filed Report”
page appears.
3. Fill in the
“STC Code” in the
following template.
STC code length: 14
characters 1-5:
alphabetical (In
Caps) 6-9:
numerical 10th:
alphabetical (In
Caps) 11-12: ST
13-14: numerical
4. Fill all the others
Mandatory details.
5. Click on the
“Generate Report”
button.

Loginid:
student01
password:
pass123
STC code:
ASZDF23
45GST87
Period:
April 1st -
Sept 30th;
2007-2008

1. An error message
should appear
stating “STC Code
is invalid.” with a
“Back” button.
2. By clicking on
the “Back” button,
“Return Filed
Report” page
appears.

Same as
expected.

PASS

(Continued)

Software-Testing_Final.indb 530 31-01-2018 15:00:48

A Case Study on Testing of E-Learning Management Systems • 531

Test
case ID Objective Test steps Test data Expected results

Actual
results

Test
status
(Pass/
Fail) Bug ID

STRP_R
FR_312

To verify the
functionality
of “Export
To Excel”
button when
the length
of the “STC
Code” is
less than 15
characters.

1. Login as student.
Homepage of the
user appears.
2. Click on the
quicklink “Return
Filed Report,”
“Return Filed Report”
page appears.
3. Fill in the “STC
Code” in the
following template.
STC code length:
14 characters.
1-5: alphabetical
(In Caps) 6-9:
numeral 10th:
alphabetical (In
Caps) 11-12: ST
13-14: numeral
4. Fill all the others
Mandatory details.
5. Click on the
“Export To Excel”
button.

Loginid:
student01
password:
pass123
STC Code:
ASZDF23
45GST87
Period:
April 1st -
Sept 30th;
2007-2008

1. An error message
should appear
stating
“STC Code is
invalid.” with a
“Back” button.
2. By clicking on
the “Back” button
“Return Filed
Report” page
appears.

Same as
expected.

PASS

STRP_R
FR_313

To verify the
functionality
of the
“Generate
Report”
button when
the letters
of the “STC
Code” are
written in
small letters.

1. Login as student.
Homepage of the
user appears.
2. Click on the
quicklink “Return
Filed Report,”
“Return Filed
Report” page
appears.
3. Fill in the “STC
Code” in the
following template.
STC code length:
15 characters. 1-5:
alphabetical (In
Small) 6-9: numeral
10th: Alphabet (In
Small) 11-12: ST
13-15: numeral
4. Select a period
the “Period” field.
5. Click on the
“Export To Excel”
button.

Loginid:
student01
password:
pass123
STC Code:
asdfg234
5gST87
Period:
April 1st -
Sept 30th;
2007-2008

An error message
should appear
stating “STC Code
is invalid.” With a
“Back” button.

Same as
expected.

(Continued)

Software-Testing_Final.indb 531 31-01-2018 15:00:48

532 • Software Testing

Test
case ID Objective Test steps Test data Expected results

Actual
results

Test
status
(Pass/
Fail) Bug ID

STRP_R
FR_317

To verify the
functionality
of the
“Generate
Report”
button when
all of the
characters
of the “STC
Code” are
alphabetical.

1. Login as student.
Homepage of the
user appears.
2. Click on the
quicklink “Return
Filed Report,”
“Return Filed
Report” page
appears.
3. Fill in the “STC
Code” in the
following template.
STC code length: 15
characters.
1-15: alphabetical
(In Caps)
4. Fill all the other
Mandatory details.
5. Click on the
“Generate Report”
button.

Loginid:
student01
password:
pass123
STC Code:
ASZDFJU
ILHGLO
YU
Period:
April 1st -
Sept 30th;
2007-2008

1. An error message
should appear
stating “STC Code
is invalid.” With a
“Back” button.
2. By clicking on
the “Back” button
“Return Filed
Report” page
appears.

Same as
expected.

PASS

STRP_R
FR_321

To verify the
functionality
of the
“Generate
Report”
button when
the date
format is
“dd/mm/
yyyy” in any
or both of
the “Date
from”
and “To”
textboxes.

1. Login as student.
Homepage of the
user appears.
2. Click on the
quicklink “Return
Filed,” “Return
Filed Report” page
appears.
3. Fill the “Date
from” and/or “To”
in “dd/mm/yyyy”
format.
4. Select a period in
the “Period” field.
5. Click on the
“Generate Report”
button.

Loginid:
student01
password:
pass123
Period:
April 1st -
Sept 30th;
2007-2008
Date from:
10/01/2007

The report should
be generated.

Same as
expected.

PASS

STRP_R
FR_322

To verify the
functionality
of the
“Export
To Excel”
button when

1. Login as student.
Homepage of the
user appears.
2. Click on the
quicklink “Return
Filed,” “Return
Filed Report” page
appears.

Loginid:
student01
password:
pass123
Period:
April 1st -
Sept 30th;
2007-2008

The report should
be generated.

Same as
expected.

(Continued)

Software-Testing_Final.indb 532 31-01-2018 15:00:49

A Case Study on Testing of E-Learning Management Systems • 533

Test
case ID Objective Test steps Test data Expected results

Actual
results

Test
status
(Pass/
Fail) Bug ID

date format
is “dd/
mm/yyyy”
in any or
both of the
“Date from”
and “To”
textboxes.

3. Fill the “Date
from the” in “dd/
mm/yyyy” format.
4. Select a period in
“Period” field.
5. Click on the
“Export To Excel”
button.

Date from:
01/10/2007

PASS

STRP_R
FR_323

To verify the
functionality
of the
“Generate
Report”
button when
the “Date
from” and
“To” fields
are filled.

1. Login as student.
Homepage of the
user appears.
2. Click on the
quicklink “Return
Filed,” “Return
Filed Report” page
appears.
3. Fill the “Date
from” and “To”
fields in “dd/mm/
yyyy” format.
4. Select a period in
the “Period” field.
5. Click on the
“Generate Report”
button.

Loginid:
student01
password:
pass123
Period:
April 1st -
Sept 30th;
2007-2008
“Date
from”:
01/10/2007
“To”:
30/09/2008

The report should
be generated if
records exist in that
period. Otherwise,
the message “No
Record Found.”
should display.

Same as
expected.

STRP_R
FR_324

To verify the
functionality
of the
“Export
To Excel”
button when
the “Date
from” and
“To” fields
are filled.

1. Login as student.
Homepage of the
user appears.
2. Click on the
quicklink “Return
Filed,” “Return
Filed Report” page
appears.
3. Fill in the “Date
from” and “To”
fields in “dd/mm/
yyyy” format.
4. Select a period in
the “Period” field.
5. Click on the
“Export To Excel”
button.

Loginid:
student01
password:
pass123
Period:
April 1st -
Sept 30th;
2007-2008
“Date
from”:
01/10/2007
“To”:
30/09/2008

The report should
be generated if the
records exist in that
period. Otherwise,
the message “No
Record Found.”
should display.

Same as
expected.

(Continued)

Software-Testing_Final.indb 533 31-01-2018 15:00:49

534 • Software Testing

Test
case ID Objective Test steps Test data Expected results

Actual
results

Test
status
(Pass/
Fail) Bug ID

STRP_R
FR_325

To verify the
functionality
of the
“Generate
Report”
button when
only the
“Date from”
field is filled
and the “To”
field is left
blank.

1. Login as student.
Homepage of the
user appears.
2. Click on the
quicklink “Return
Filed,” “Return Filed
Report” page appears.
3. Fill in the “Date
from” field in “dd/
mm/yyyy” format.
4. Select a period in
the “Period” field.
5. Click on the
“Generate Report”
button.

Loginid:
student01
password:
pass123
Period:
April 1st -
Sept 30th;
2007-2008
“Date
from”:
01/10/2007

The report should
be generated if the
records exist from
the date entered
in the “Date from”
field. Otherwise,
the message “No
Record Found.”
should display.

Same as
expected.

STRP_R
FR_326

To verify the
functionality
of the
“Export
To Excel”
button when
only the
“Date from”
field is filled
and the “To”
field is left
blank.

1. Login as student.
Homepage of the
user appears.
2. Click on the
quicklink “Return
Filed,” “Return Filed
Report” page appears.
3. Fill in the “Date
from” field in “dd/
mm/yyyy” format.
4. Select a period in
the “Period” field.
5. Click on the
“Export To Excel”
button.

Loginid:
student01
password:
pass123
Period:
April 1st -
Sept 30th;
2007-2008
“Date
from”:
01/10/2007

The report should
be generated if the
records exist from
the date entered
in the “Date from”
field. Otherwise,
the message “No
Record Found.”
should display.

Same as
expected.

STRP_R
FR_327

To verify the
functionality
of the
“Generate
Report”
button when
only the “To”
field is filled
in and the
“Date from”
field is left
blank.

1. Login as student.
Homepage of the
user appears.
2. Click on the
quicklink “Return
Filed,” “Return
Filed Report” page
appears.
3. Fill in the “To”
field in “dd/mm/
yyyy” format.
4. Select a period in
the “Period” field.
5. Click on the
“Generate Report”
button.

Loginid:
student01
password:
pass123
Period:
April 1st -
Sept 30th;
2007-2008
“To”:
30/09/2008

The report should
be generated if
the records exist
until the date
entered in the “To”
field. Otherwise,
the message “No
Record Found.”
should display.

Same as
expected.

(Continued)

Software-Testing_Final.indb 534 31-01-2018 15:00:49

A Case Study on Testing of E-Learning Management Systems • 535

Test
case ID Objective Test steps Test data Expected results

Actual
results

Test
status
(Pass/
Fail) Bug ID

STRP_R
FR_328

To verify the
functionality
of the
“Export
To Excel”
button when
only the “To”
field is filled
in and the
“Date from”
field is left
blank.

1. Login as student.
Homepage of the
user appears.
2. Click on the
quicklink “Return
Filed,” “Return Filed
Report” page appears.
3. Fill in the “To”
field in “dd/mm/
yyyy” format.
4. Select a period in
the “Period” field.
5. Click on the
“Export To Excel”
button.

Loginid:
student01
password:
pass123
Period:
April 1st -
Sept 30th;
2007-2008
“To”:
30/09/2008

The report should
be generated if
the records exist
untill the date
entered in the “To”
field. Otherwise,
the message “No
Record Found.”
should display.

Same as
expected.

STRP_R
FR_329

To verify the
functionality
of the
“Generate
Report”
button when
the “Date
from” is
greater than
the “To
Date.”

1. Login as student.
Homepage of the
user appears.
2. Click on the
quicklink “Return
Filed,” “Return Filed
Report” page appears.
3. Fill in the “Date
from” and “To” field
in “dd/mm/yyyy”
format.
4. Select a period in
the “Period” field.
5. Click on the
“Generate Report”
button.

Period:
April 1st -
Sept 30th;
2007-2008
“Date
from”:
01/10/2008
“To” date:
30/09/2008

An error message
should appear
saying, “From Date
can not be greater
than To Date.”

Same as
expected.

PASS 112387

STRP_R
FR_330

To verify the
functionality
of the
“Export
To Excel”
button when
the “Date
from” is
greater than
the “To”
Date.

1. Login as student.
Homepage of the
user appears.
2. Click on the
quicklink “Return
Filed,” “Return Filed
Report” page appears.
3. Fill in the “Date
from” and “To”
fields in “dd/mm/
yyyy” format.
4. Select a period in
the “Period” field.
5. Click on the
“Export To Excel”
button.

Period:
April 1st -
Sept 30th;
2007-2008
“Date
from”:
01/10/2008
“To” Date:
30/09/2008

An error message
should appear
saying “From Date
can not be greater
than To Date.”

Same as
expected.

PASS 11238

(Continued)

Software-Testing_Final.indb 535 31-01-2018 15:00:49

536 • Software Testing

Test
case ID Objective Test steps Test data Expected results

Actual
results

Test
status
(Pass/
Fail) Bug ID

STRP_R
FR_331

To verify the
Max Length
of the “Date
from” field.

1. Login as student.
Homepage of the
user appears.
2. Click on the
quicklink “Return
Filed,” “Return Filed
Report” page appears.
3. Enter more than
10 characters in the
“Date from” field.
4. Enter a valid date
in the “To” field.
5. Select a period in
the “Period” field.
6. Click on the
“Generate Report”
button.

Loginid:
student01
password:
pass123
Period:
April 1st -
Sept 30th;
2007-2008
“Date
from”:
01/10/2008

An error message
saying “Date
Format of Start
Date is not valid.”
should appear with
the “Back” button.
On clicking the
“Back” button,
the “Return Filed
Report” page should
appear.

Same as
expected.

PASS

STRP_R
FR_333

To verify the
functionality
of the
“Home”
button at
the “Return
Filed
Report”
page.

1. Login as student.
Homepage of the
user appears.
2. Click on the
quicklink “Return
Filed Report,”
“Return Filed Report”
page appears.
3. Fill all of the
mandatory fields
with valid data.
4. Click on the
“Home” quicklink.

NA Homepage of the
user appears.

Same as
expected.

PASS

STRP_R
FR_334

To verify the
functionality
of the
“Home”
button at
the error
message
page.

1. Login as student.
Homepage of the
user appears.
2. Click on the
quicklink “Return
Filed Report,”
“Return Filed Report”
page appears.
3. Leave the
“Period” field
unselected.
4. Click on the
“Generate Report”
button.
5. Click on the
“Home” quicklink.

NA Homepage of the
user appears.

Same as
expected.

PASS

(Continued)

Software-Testing_Final.indb 536 31-01-2018 15:00:49

A Case Study on Testing of E-Learning Management Systems • 537

Test
case ID Objective Test steps Test data Expected results

Actual
results

Test
status
(Pass/
Fail) Bug ID

STRP_R
FR_335

To verify the
functionality
of the
“Cancel”
button on the
“Return Filed
Report” page.

1. Login as student.
Homepage of the
user appears.
2. Click on the
quicklink “Return
Filed Report,”
“Return Filed
Report” page
appears.
3. Click on the
“Cancel” button.

NA Homepage of the
user appears.

Same as
expected.

PASS

STRP_R
FR_336

To verify
the values of
the “Period”
drop down.

1. Login as student.
Homepage of the
user appears.
2. Click on the
quicklink “Return
Filed Report,”
“Return Filed
Report” page
appears.
3. Click on the
“Period” drop down.

NA The “Period” drop
down should display
two values:
1. April 1st - Sept
30th
2. Oct 1st - March
31st

Same as
expected.

PASS

STRP_R
FR_337

To verify
whether the
fields are
retaining
values or
not after
the error
message
appears.

1. Login as student.
Homepage of the
user appears.
2. Click on the
quicklink “Return
Filed Report,”
“Return Filed
Report” page
appears.
3. Leave the
“Period” field
unselected.
4. Click on the
“Generate Report”
button.
5. An error message
appears.
6. Click on the
“Back” button.

Loginid:
student01
password:
pass!23
“Date
from”:
30/09/2008

When we click on
the “Back” button
the user comes back
to “Return Filed
Report” page and all
the previous filled
values remain intact.

Same as
expected.

PASS 118564

(Continued)

Software-Testing_Final.indb 537 31-01-2018 15:00:49

538 • Software Testing

Test
case ID Objective Test steps Test data Expected results

Actual
results

Test
status
(Pass/
Fail) Bug ID

STRP_R
FR_338

To verify the
pagination
on the report
output
section.

1. Login as student.
Homepage of the
user appears.
2. Click on the
quicklink “Return
Filed Report,”
“Return Filed
Report” page
appears.
3. Select a period in
the “Period” field.
4. Click on the
“Generate Report”
button.

Loginid:
student01
password:
pass123
Period:
April 1st -
Sept 30th;
2007-2008

If the report
output section
contains more than
10 records, the
pagination takes
place and the next
10 records will be
visible on the next
page.

Same as
expected.

PASS

STRP_R
FR_339

To verify the
pagination
on the report
output
section when
the number
of records
are less than
10.

1. Login as student.
Homepage of the
user appears.
2. Click on the
quicklink “Return
Filed Report,”
“Return Filed
Report” page
appears.
3. Select a period in
the “Period” field.
4. Click on the
“Generate Report”
button.

Loginid:
student01
password:
pass123
Period:
April 1st -
Sept 30th;
2007-2008

There will be only
one page of output
section and all of
the pagination links
are disabled.

Same as
expected.

PASS

STRP_R
FR_340

To verify the
pagination
on the report
output
section when
the records
are equal to
10.

1. Login as student.
Homepage of the
user appears.
2. Click on the
quicklink “Return
Filed Report,”
“Return Filed
Report” page
appears.
3. Select a period in
the “Period” field.
4. Click on the
“Generate Report”
button.

Loginid:
student01
password:
pass123
Period:
April 1st -
Sept 30th;
2007-2008

There will be only
one page of output
section and all of
the pagination links
are disabled.

Same as
expected.

PASS

(Continued)

Software-Testing_Final.indb 538 31-01-2018 15:00:49

A Case Study on Testing of E-Learning Management Systems • 539

Test
case ID Objective Test steps Test data Expected results

Actual
results

Test
status
(Pass/
Fail) Bug ID

STRP_R
FR_341

To verify the
pagination
on the report
output
section when
the records
are greater
than 10.

1. Login as student.
Homepage of the
user appears.
2. Click on the
quicklink “Return
Filed Report,”
“Return Filed
Report” page
appears.
3. Select a period in
the “Period” field.
4. Click on the
“Generate Report”
button.

Loginid:
student01
password:
pass123
Period:
April 1st -
Sept 30th;
2007-2008

The next 10 records
will be visible on the
next page and the
“Next” and “Last”
links are clickable.

Same as
expected.

PASS

STRP_R
FR_342

To verify the
number of
records on
each page in
the report
output
section.

1. Login as student.
Homepage of the
user appears.
2. Click on the
quicklink “Return
Filed Report,”
“Return Filed
Report” page
appears.
3. Select a period in
the “Period” field.
4. Click on the
“Generate Report”
button.

Loginid:
student01
password:
pass123
Period:
April 1st -
Sept 30th;
2007-2008

Every page of
the report output
section should
contain a maximum
of 10 records.

Same as
expected.

PASS

STRP_R
FR_343

To verify the
functionality
of the “Next”
button
on the
pagination.

1. Login as student.
Homepage of the
user appears.
2. Click on the
quicklink “Return
Filed Report,”
“Return Filed
Report” page
appears.
3. Select a period in
the “Period” field.
4. Click on the
“Generate Report”
button.

Loginid:
student01
password:
pass123
Period:
April 1st -
Sept 30th;
2007-2008

By clicking on the
“Next” button,
the next page of
the report output
section appears.

Same as
expected.

PASS

(Continued)

Software-Testing_Final.indb 539 31-01-2018 15:00:49

540 • Software Testing

Test
case ID Objective Test steps Test data Expected results

Actual
results

Test
status
(Pass/
Fail) Bug ID

STRP_R
FR_344

To verify the
functionality
of the “Last”
button on
pagination.

1. Login as student.
Homepage of the
user appears.
2. Click on the
quicklink “Return
Filed Report,”
“Return Filed
Report” page
appears.
3. Select a period in
the “Period” field.
4. Click on the
“Generate Report”
button.

Loginid:
student01
password:
pass123
Period:
April 1st -
Sept 30th;
2007-2008

By clicking on
the “Last” button,
the last page of
the report output
section appears.

Same as
expected.

PASS

STRP_R
FR_345

To verify the
functionality
of the “First”
button on
pagination.

1. Login as student.
Homepage of the
user appears.
2. Click on the
quicklink “Return
Filed Report,”
“Return Filed
Report” page
appears.
3. Select a period in
the “Period” field.
4. Click on the
“Generate Report”
button.

Loginid:
student01
password:
pass123
Period:
April 1st -
Sept 30th;
2007-2008

By clicking on the
“First” button,
the first page of
the report output
section appears.

Same as
expected.

PASS

STRP_R
FR_346

To verify the
functionality
of the “Prev”
button on
pagination.

1. Login as student.
Homepage of the
user appears.
2. Click on the
quicklink “Return
Filed Report,”
“Return Filed
Report” page
appears.
3. Select a period in
the “Period” field.
4. Click on the
“Generate Report”
button.

Loginid:
student01
password:
pass123
Period:
April 1st -
Sept 30th;
2007-2008

By clicking on the
“Prev” button, the
previous page of
the report output
section appears.

Same as
expected.

PASS

(Continued)

Software-Testing_Final.indb 540 31-01-2018 15:00:49

A Case Study on Testing of E-Learning Management Systems • 541

Test
case ID Objective Test steps Test data Expected results

Actual
results

Test
status
(Pass/
Fail) Bug ID

STRP_R
FR_347

To verify the
functionality
of the “Go”
button when
the user
enters a
page number
in text box.

1. Login as student.
Homepage of the
user appears.
2. Click on the
quicklink “Return
Filed,” “Return
Filed Report” page
appears.
3. Select a period in
the “Period” field.
4. Click on the
“Generate Report”
button.
5. Fill in a page
number in the “Go
to Page” textbox and
click on the “Go”
button.

Loginid:
student01
password:
pass123
Period:
April 1st -
Sept 30th;
2007-2008
Go to
Page: 2

The entered page
number will appear
and the text above
the “First Prev Next
Last” link will show
the current page.

Same as
expected.

PASS

STRP_R
FR_348

To verify the
functionality
of the “Go”
button when
the user
enters an
alphanumeric
value in the
text box.

1. Login as student.
Homepage of the
user appears.
2. Click on the
quicklink “Return
Filed,” “Return
Filed Report” page
appears.
3. Select a period in
the “Period” field.
4. Click on the
“Generate Report”
button.
5. Fill in an
alphabetical character
in the “Go to Page”
textbox and click on
the “Go” button.

Loginid:
student01
password:
pass123
Period:
April 1st -
Sept 30th;
2007-2008

Textbox does not
accept the value and
remains blank.

Same as
expected.

PASS

STRP_R
FR_349

To verify the
text of the
page number
details of the
pagination.

1. Login as student.
Homepage of the
user appears.
2. Click on the
quicklink “Return
Filed,” “Return
Filed Report” page
appears.
3. Select a period in
the “Period” field.

Loginid:
student01
password:
pass123
Period:
April 1st -
Sept 30th;
2007-2008

The page number
details of the
report output
section should
show the current
page number in
the format “Page
(current page)
of (Total pages)
Pages.”

Same as
expected.

PASS

(Continued)

Software-Testing_Final.indb 541 31-01-2018 15:00:49

542 • Software Testing

Test
case ID Objective Test steps Test data Expected results

Actual
results

Test
status
(Pass/
Fail) Bug ID

4. Click on the
“Generate Report”
button.
5. Fill in a page
number in the “Go
to Page” textbox and
click on the “Go”
button.

STRP_R
FR_350

To verify the
availability
of the “First”
and “Prev”
links on the
pagination.

1. Login as student.
Homepage of the
user appears.
2. Click on the
quicklink “Return
Filed,” “Return
Filed Report” page
appears.
3. Select a period in
the “Period” field.
4. Click on the
“Generate Report”
button.

Loginid:
student01
password:
pass123
Period:
April 1st -
Sept 30th;
2007-2008

If the report output
section contains
more than 10
records and the
user is at last page
of the pagination
then the “First” and
“Prev” links on the
pagination should
be enabled.

Same as
expected.

PASS

STRP_R
FR_351

To verify the
availability
of the “Next”
and “Last”
links on the
pagination.

1. Login as student.
Homepage of the
user appears.
2. Click on the
quicklink “Return
Filed,” “Return Filed
Report” page appears.
3. Select a period in
the “Period” field.
4. Click on the
“Generate Report”
button.

Loginid:
student01
password:
pass123
Period:
April 1st -
Sept 30th;
2007-2008

If the report output
section contains
more than 10
records and the
user is at first page
of the pagination
then the “Next” and
“Last” links on the
pagination will be
enabled.

Same as
expected.

PASS

STRP_R
FR_352

To verify the
availability of
the “First,”
“Prev,”
“Next,”
and “Last”
links on the
pagination.

1. Login as student.
Homepage of the
user appears.
2. Click on the
quicklink “Return
Filed,” the “Return
Filed Report” page
appears.

Loginid:
student01
password:
pass123
Period:
April 1st -
Sept 30th;
2007-2008

If the report output
section contains
more than 10
records and the
user is neither on
the first page nor
on the last page of
the pagination then
all four links on the
pagination page
should be enabled.

Same as
expected.

PASS

(Continued)

Software-Testing_Final.indb 542 31-01-2018 15:00:49

A Case Study on Testing of E-Learning Management Systems • 543

Test
case ID Objective Test steps Test data Expected results

Actual
results

Test
status
(Pass/
Fail) Bug ID

3. Select a period in
the “Period” field.
4. Click on the
“Generate Report”
button.

STRP_R
FR_353

To verify
the sorting
order of the
records in
the report
output
section page.

1. Login as student.
Homepage of the
user appears.
2. Click on the
quicklink “Return
Filed,” “Return
Filed Report” page
appears.
3. Select a period in
the “Period” field.
4. Click on the
“Generate Report”
button.

Loginid:
student01
password:
pass123
Period:
April 1st -
Sept 30th;
2007-2008

The output section
of the report should
be sorted on the
alphabetical order
of column “Name.”

Same as
expected.

PASS

STRP_R
FR_354

To verify the
functionality
of the
“Logout”
button on
the “Return
Filed
Report”
page.

1. Login as student.
Homepage of the
user appears.
2. Click on the
quicklink “Return
Filed,” “Return
Filed Report” page
appears.
3. Click on the
“Logout” button.

Loginid:
student01
password:
pass123

The Login page
of the website is
displayed.

Same as
expected.

PASS

STRP_R
FR_355

To verify the
functionality
of the
quicklinks on
left side on
the “Return
Filed
Report”
page.

1. Login as student.
Homepage of the
user appears.
2. Click on the
quicklink “Return
Filed,” “Return
Filed Report” page
appears.
3. Click on any of
the quicklinks on
left side of the page.

Loginid:
student01
password:
pass123

The quicklinks
should be clickable
and the respective
page should be
displayed.

Same as
expected.

PASS

Software-Testing_Final.indb 543 31-01-2018 15:00:49

544 • Software Testing

5.2.  MONTHLY/QUARTERLY TAX PAID FORM

Test case ID Objective Test steps Expected results
Test status
(Pass/Fail)

STRP_MQF_30
1

To verify the
availability of the
“Monthly/Quarterly
Tax Paid Form”
quicklinks to the
student role.

1. Login as student
role. Homepage of the
user appears.
2. Observe the
quicklinks appearing
under the “To Be
Reported By STRP”
section.

“Monthly/Quarterly
Tax Paid Form”
quicklink should
appear under the
“To Be Reported By
STRP” section.

PASS

STRP_MQF_30
2

To verify the
accessibility of the
“Monthly/Quarterly
Tax Paid Form.”

1. Login as student
role. Homepage of the
user appears.
2. Click the “Monthly/
Quarterly Tax Paid
Form” quicklink
appearing under the
“To Be Reported By
STRP” section in
quicklink.

The “Monthly/
Quarterly Tax Paid
Form” page should
appear.

PASS

STRP_MQF_30
4

To verify the “STRP
Details” at the
“Monthly/Quarterly
Tax Paid Form”
page.

1. Login as student.
Homepage of the user
appears.
2. Click on the
quicklink “Monthly/
Quarterly Tax Paid
Form,” the “Monthly/
Quarterly Tax Paid
Form” page appears.

1. The “STRP ID”
should show the login
ID of the logged in
user.
2. The “STRP Name”
should show the name
of the logged in user.
3. The “STRP PAN
Number” should show
the PAN No. of the
logged in user.

PASS

STRP_MQF_30
5

To verify the
functionality of the
“Submit” button
when no value
is entered in the
“Name of Assessee”
field.

1. Login as student
role. Homepage of the
user appears.
2. Click the “Monthly/
Quarterly Tax Paid
Form” quicklink
appearing under the
“To Be Reported By
STRP” section on the
homepage.
3. Do not enter any
value in the “Name of
Assessee” field.

1. The “Monthly/
Quarterly Tax Paid
Form” should not get
submitted.
2. The following
error message
should appear with
the “Back” button:
“Name of Assessee is
mandatory.”
3. Clicking the “Back”
button should take the
user to homepage.

PASS

(Continued)

Software-Testing_Final.indb 544 31-01-2018 15:00:49

A Case Study on Testing of E-Learning Management Systems • 545

Test case ID Objective Test steps Expected results
Test status
(Pass/Fail)

4. Enter valid values in
all mandatory fields.
5. Click the “Submit”
button.

STRP_MQF_30
6

To verify the
functionality of the
“Submit” button
when no value is
entered in the “STC
Code” field.

1. Login as student
role. Homepage of the
user appears.
2. Click the “Monthly/
Quarterly Tax Paid
Form” quicklink
appearing under the
“To Be Reported By
STRP” section on the
homepage.
3. Do not enter any
value in the “STC
Code” field.
4. Enter valid values
in all of the mandatory
fields.
5. Click the “Submit”
button.

1. The “Monthly/
Quarterly Tax Paid
Form” should not get
submitted.
2. The following
error message should
appear with the “Back”
button: “STC Code is
mandatory for valid
Return Filed.”
3. Clicking the “Back”
button should take the
user to the homepage.

PASS

STRP_MQF_30
8

To verify the
functionality of the
“Submit” button
when no value
is entered in the
“Amount of Tax
Payable” field.

1. Login as student
role. Homepage of the
user appears.
2. Click the “Monthly/
Quarterly Tax Paid
Form” quicklink
appearing under the
“To Be Reported By
STRP” section on the
homepage.
3. Do not enter any
value in the “Amount
of Tax Payable” field.
4. Enter valid values
in all of the mandatory
fields.
5. Click the “Submit”
button.

1. The “Monthly/
Quarterly Tax Paid
Form” should not get
submitted.
2. The following
error message should
come with the “Back”
button: “Amount of tax
payable is mandatory
for valid Return
Filed.”
3. Clicking the “Back”
button should take the
user to the homepage.

PASS

STRP_MQF_31
0

To verify the
functionality of the
“Submit” button
when the value in
the “STC Code”
field is entered

1. Login as student
role. Homepage of the
user appears.
2. Click the “Monthly/
Quarterly Tax Paid
Form” quicklink

The form should get
submitted successfully
and the following
confirmation message
should appear:
“Record has been
saved successfully.”

PASS

(Continued)

Software-Testing_Final.indb 545 31-01-2018 15:00:49

546 • Software Testing

Test case ID Objective Test steps Expected results
Test status
(Pass/Fail)

in the following
format:
STC code length:
15 characters.
1-5: alphabetical
6-9: numeral
10th: alphabetical
11-12: ST
13-15: numeral

�appearing under the
“To Be Reported By
STRP” section on the
homepage.
3. Enter a value of the
“STC Code” in the
following format:
STC code length: 15
characters.
1-5: alphabetical
6-9: numeral
10th: alphabetical
11-12: ST
13-15: numeral
4. Enter valid values
in all of the mandatory
fields.
5. Click the “Submit”
button.

STRP_MQF_31
1

To verify the max
length of the
“Amount of Tax
Paid” textbox.

Specification not
provided.

STRP_MQF_31
2

To verify the max
length of the
“Name of Assessee”
textbox.

Specification not
provided.

5.3.  MONTHLY/QUARTERLY TAX PAID FORM

Test case ID Objective Test steps Expected results
Test status
(Pass/Fail)

STRP_MQF_301 To verify the
availability of the
“Monthly/Quarterly
Tax Paid Form”
quicklinks to
student role.

1. Login as student
role. Homepage of the
user appears.
2. Observe quicklinks
appearing under the
“To Be Reported By
STRP” section.

“Monthly/Quarterly
Tax Paid Form”
quicklink should
appear under the
“To Be Reported By
STRP” section.

PASS

(Continued)

Software-Testing_Final.indb 546 31-01-2018 15:00:50

A Case Study on Testing of E-Learning Management Systems • 547

Test case ID Objective Test steps Expected results
Test status
(Pass/Fail)

STRP_MQF_302 To verify the
accessibility of the
“Monthly/Quarterly
Tax Paid Form.”

1. Login as student
role. Homepage of the
user appears.
2. Click the “Monthly/
Quarterly Tax Paid
Form” quicklink
appearing under the
“To Be Reported By
STRP” section in
quicklink.

“Monthly/Quarterly
Tax Paid Form” page
should appear.

PASS

STRP_MQF_304 To verify the “STRP
Details” at the
“Monthly/Quarterly
Tax Paid Form” page.

1. Login as student.
Homepage of the user
appears.
2. Click on the
quicklink “Monthly/
Quarterly Tax Paid
Form,” “Monthly/
Quarterly Tax Paid
Form” page appears.

1. The “STRP ID”
should show the login
ID of the logged in
user.
2. The “STRP
Name” should show
the name of the
logged in user.
3. The “STRP PAN
Number” should
show the PAN No.
of the logged in
user.

PASS

STRP_MQF_305 To verify the
functionality of the
“Submit” button
when no value is
entered in the “Name
of Assessee” field.

1. Login as student
role. Homepage of the
user appears.
2. Click the “Monthly/
Quarterly Tax Paid
Form” quicklink
appearing under the
“To Be Reported
By STRP” section
in quicklink on the
homepage.
3. Do not enter any
value in the “Name of
Assessee” field.
4. Enter valid values
in all of the mandatory
fields.
5. Click the “Submit”
button.

1. The “Monthly/
Quarterly Tax Paid
Form” should not get
submitted.
2. The following
error message
should come with
the “Back” button:
“Name of Assessee is
mandatory.”
3. Clicking the “Back”
button should take the
user to the homepage.

PASS

(Continued)

Software-Testing_Final.indb 547 31-01-2018 15:00:50

548 • Software Testing

Test case ID Objective Test steps Expected results
Test status
(Pass/Fail)

STRP_MQF_306 To verify the
functionality of the
“Submit” button
when no value is
entered in the “STC
Code” field.

1. Login as student
role. Homepage of the
user appears.
2. Click the “Monthly/
Quarterly Tax Paid
Form” quicklink
appearing under the
“To Be Reported By
STRP” section on the
homepage.
3. Do not enter any
value in the “STC
Code” field.
4. Enter valid values
in all of the mandatory
fields.
5. Click the “Submit”
button.

1. The “Monthly/
Quarterly Tax Paid
Form” should not get
submitted.
2. The following error
message should
�come with the “Back”
button: “STC Code is
mandatory for valid
Return Filed.”
3. Clicking the “Back”
button should take the
user to the homepage.

PASS

STRP_MQF_308 To verify the
functionality of the
“Submit” button
when no value
is entered in the
“Amount of Tax
Payable” field.

1. Login as student
role. Homepage of the
user appears.
2. Click the “Monthly/
Quarterly Tax Paid
Form” quicklink
appearing under the
“To Be Reported By
STRP” section on the
homepage.
3. Do not enter any
value in the “Amount
of Tax Payable” field.
4. Enter valid values
in all of the mandatory
fields.
5. Click the “Submit”
button.

1. The “Monthly/
Quarterly Tax Paid
Form” should not get
submitted.
2. The following
error message should
come with the “Back”
button: “Amount of tax
payable is mandatory
for valid Return
Filed.”
3. Clicking the “Back”
button should take the
user to the homepage.

PASS

STRP_MQF_310 To verify the
functionality of the
“Submit” button
when value in the

1. Login as student
role. Homepage of the
user appears.

The form should get
submitted successfully
and the following

PASS

(Continued)

Software-Testing_Final.indb 548 31-01-2018 15:00:50

A Case Study on Testing of E-Learning Management Systems • 549

Test case ID Objective Test steps Expected results
Test status
(Pass/Fail)

“STC Code” field
is entered in the
following format:
STC code length:
15 characters.
1-5: alphabetical
6-9: numeral
10th: alphabetical
11-12: ST
13-15: numeral

2. Click the “Monthly/
Quarterly Tax Paid
Form” quicklink
appearing under the
“To Be Reported By
STRP” section on the
homepage.
3. Enter the value of
the “STC Code” in the
following format:
�STC code length: 15
characters.
�1-5: alphabetical
�6-9: numeral
�10th: alphabetical
�11-12: ST
�13-15: numeral
4. Enter valid values
in all of the mandatory
fields.
5. Click the “Submit”
button.

confirmation message
should appear:
“Record has been
saved successfully.”

STRP_MQF_311 To verify the max
length of the
“Amount of Tax
Paid” textbox.

Specification not
provided.

STRP_MQF_312 To verify the max
length of the
“Name of Assessee”
textbox.

Specification not
provided.

DATABASE TEST CASE

Test case ID Objective Test steps Expected results

TRP_ST_
MQF_501

To verify the “STRP
Details” at the “Monthly/
Quarterly Tax Paid
Form” page.

Execute the below script:
select VC_LGN_CD,VC_
USR_F_NM,VC_ USR_L_
NM,VC_TRP_PN_
NMBR from UM_TB_USR
where VC_LGN_CD =
‘student01’

The “STRP Details” at the
“Monthly/Quarterly Tax
Paid Form” page and the
scripts output should exactly
match.

Software-Testing_Final.indb 549 31-01-2018 15:00:50

550 • Software Testing

5.4.  MONTHLY /QUARTERLY TAX PAID FORM

POSITIVE FUNCTIONAL TEST CASES

Test case ID Objective Test steps Expected results
Test status
(Pass/Fail)

STRP_
MQTR_301

To verify the
availability of the
“Monthly/Quarterly
Tax Paid” report to
student role.

1. Login as student
role. Homepage of the
user appears.
2. Observe the
quicklinks on left side
of the homepage.

The “Monthly/
Quarterly Tax Paid
Report” quicklink
should appear under
the “View Reports”
section.

PASS

STRP_
MQTR_302

To verify the
accessibility of the
“Monthly/Quarterly
Tax Paid” report
through quicklinks.

1. Login as student
role. Homepage of the
user appears.
2. On the homepage,
under the “View
Reports” click on the
“Monthly/Quarterly
Tax Paid” link.

The “Monthly/
Quarterly Tax Paid
Report” page should
appear.

PASS

STRP_
MQTR_304

To verify the
functionality of the
“Generate Report”
button when no
value is entered in
the “Period” field.

1. Login as student.
2. Go to “View
reports” and the
“Monthly/Quarterly
Tax Paid” quicklinks,
the “Monthly/
Quarterly Tax Paid
Report” page appears.
3. Do not enter any
value in the “Period”
field.
4. Select the “Date from”
and “To” fields from the
“Date” picker control.
5. Click the “Generate
Report” button.

Report should not
get generated and
the following error
message should come
with the “Back”
button: “Select The
Period.” Clicking the
“Back” button should
take the user to the
“Monthly/Quarterly
Tax Paid Report” page.
Note: This ensures
that the “Period”
field is mandatory.

PASS

STRP_
MQTR_305

To verify the
functionality of the
“Generate Report”
button when no
value is entered in
the “To” date field.

1. Login as student.
2. Go to “View
reports” and the
“Monthly/Quarterly
Tax Paid” quicklinks.
3. Select a period from
the “Period” drop down.
4. Do not enter any value
in the “To” date field.

1. The report should
get generated.
2. All of the records of
the user should appear
in the “Reports” output
section.

PASS

(Continued)

Software-Testing_Final.indb 550 31-01-2018 15:00:50

A Case Study on Testing of E-Learning Management Systems • 551

Test case ID Objective Test steps Expected results
Test status
(Pass/Fail)

5. Select a valid date
in the “Date from”
field from the Date
picker control.
6. Click the “Generate
Report” button.

STRP_
MQTR_306

To verify the
functionality of the
“Generate Report”
button when no
value is entered in
the “Date From”
field.

1. Login as student.
2. Go to “View
Reports” and the
“Monthly/Quarterly
Tax Paid” quicklinks.
3. Select a period from
the “Period” drop
down.
4. Do not enter any
value in the “Date
from” field.
5. Select a valid date
in the “To” date field
from the Date picker
control.
6. Click the “Generate
Report” button.

1. The report should
get generated.
2. All of the records of
the user should appear
in the “Reports”
output section.

PASS

STRP_
MQTR_310

To verify the values
appearing in the
“Assessment Year”
drop down.

1. Login as student.
2. Go to “View
Reports” and the
“Monthly/Quarterly
Tax Paid” quicklinks,
the “Monthly/
Quarterly Tax Paid
Report” page appears.
3. Click the “year”
drop down.

1. The “Assessment
Year” drop down
should have the
following values:
a. 2007-2008
b. 2008-2009
c. 2009-2010
2. These values should
be sorted by ascending
order.

PASS

NEGATIVE FUNCTIONAL TEST CASES

Objective Test steps Test data Expected results

To verify the
functionality of the
“Generate Report”
button when a
string of characters
is entered in the
“Date from” field.

1. Login as student.
2. Go to “View Reports”
and the “Monthly/
Quarterly Tax Paid”
quicklinks, the “Monthly/
Quarterly Tax Paid Report”
page appears.

UserID: student01
password: password
Period: April 1st -
Sept 30th; 2007-2008
“Date from:” yrtyryg
“To:” 31/07/2009

1. Report should not get
generated and the following
error message should come
with the “Back” button:
“Date Format of Start Date
is not valid.”

(Continued)

Software-Testing_Final.indb 551 31-01-2018 15:00:50

552 • Software Testing

Objective Test steps Test data Expected results

3. Enter a valid date in the
“To” date field.
4. Enter a string of characters
in the “Date from” field.
5. Select a period from the
“Period” drop down.
6. Select a valid assessment
year.
7. Click the “Generate
Report” button.

2. Clicking the “Back”
button should take the user
to the “Monthly/Quarterly
Tax Paid Report” page.

To verify the
functionality of the
“Generate Report”
button when a
string of characters
is entered in the
“To” date field.

1. Login as student.
2. Go to “View Reports”
and the “Monthly/Quarterly
Tax Paid” quicklinks,
“Monthly/Quarterly Tax
Paid Report” page appears.
3. Enter a valid date in the
“Date from” field.
4. Enter a string of characters
in the “To” date field.
5. Select a “period” from
the “Period” drop down.
6. Select a valid assessment
year.
7. Click the “Generate
Report” button.

UserID: student01
password: password
Period: April 1st - Sept
30th; 2007-2008
“Date from:” 12/12/2007
“To:” utufgh

1. Report should not get
generated and the following
error message should come
with the “Back” button:
“Date Format of End Date
is not valid.”
2. Clicking the “Back”
button should take the user
to the “Monthly/Quarterly
Tax Paid Report” page.

5.5.  SERVICE WISE REPORT (ADMIN REPORT)

POSITIVE FUNCTIONAL TEST CASE

Test case ID Objective Test steps Expected results
Test status
(Pass/Fail)

STRP_RFR_316 To verify the
functionality of the
“Generate Report”
button when the
“Date from” is
greater than the
“To” date.

1. Login as admin.
Homepage of the user
appears.
2. Click on the quicklink
“Service Wise Report,”
“Service Wise Report”
page appears.
3. Fill the “Date from”
and “To” fields in “dd/
mm/yyyy” format.
4. Select a service type
from the “Service Type”
drop down.
5. Click on the “Generate
Report” button.

An error message
should appear saying,
“From Date can not
be greater than To
Date.”

PASS

(Continued)

Software-Testing_Final.indb 552 31-01-2018 15:00:50

A Case Study on Testing of E-Learning Management Systems • 553

Test case ID Objective Test steps Expected results
Test status
(Pass/Fail)

STRP_RFR_317 To verify the
functionality of the
“Export to Excel”
button when the
“Date from” is
greater than the
“To” date.

1. Login as admin.
Homepage of the user
appears.
2. Click on the
quicklink “Service Wise
Report,” “Service Wise
Report” page appears.
3. Select a service
type from the “Service
Type” drop down.
4. Fill the “Date from”
and “To” fields in “dd/
mm/yyyy” format.
5. Click on the “Export
to Excel” button.

An error message
should appear saying,
“From Date can not
be greater than To
Date.”

PASS

STRP_RFR_318 To verify the Max
Length of the “Date
from” field.

1. Login as admin.
Homepage of the user
appears.
2. Click on the
quicklink “Service Wise
Report,” “Service Wise
Report” page appears.
3. Select a service
type from the “Service
Type” drop down.
4. Enter more than
10 characters in the
“Date from” field.
5. Enter a valid date in
the “To” field.
6. Click on the “Generate
Report” button.

An error message
saying, “Date Format
of Start Date is not
valid.” should appear
with the “Back”
button.
On clicking the “Back”
button the “Service
Wise Report” page
should appear.

PASS

STRP_RFR_319 To verify the Max
Length of the “To”
field.

1. Login as admin.
Homepage of the user
appears.
2. Click on the
quicklink “Service Wise
Report,” “Service Wise
Report” page appears.
3. Select a service
type from the “Service
Type” drop down.
4. Enter more than 10
characters in the “To”
field.
5. Enter a valid date in
the “Date from” field.
6. Click on the
“Generate Report”
button.

An error message
saying, “Date Format
of End Date is not
valid.” should appear
with the “Back”
button.
On clicking the “Back”
button the “Service
Wise Report” page
should appear.

PASS

Software-Testing_Final.indb 553 31-01-2018 15:00:50

554 • Software Testing

NEGATIVE FUNCTIONAL TEST CASE

Test case ID Objective Test steps Test data
Expected
results

TRP_ST_
MQF_401

To verify the
availability of the
“Service Wise
Report” to admin
role.

1. Login as student.
Homepage of the user
appears.

Loginid: student01
password: pass 123

A quicklink
“Service Wise
Report” will not
appear at the left
side of the screen.

TRP_ST_
MQF_402

To verify the
functionality of the
“Generate Report”
button when the
date format is
“nnm/dd/yyyy” in
any or both of the
“Date from” and
“To” textboxes.

1. Login as admin.
Homepage of the user
appears.
2. Click on the
quicklink “Service
Wise Report,” “Service
Wise Report” page
appears.
3. Select a service type
in the “Service Type”
field.
4. Fill in the “Date
from” in “mm/dd/yyyy”
format.
5. Click on the
“Generate Report”
button.

Loginid: admin
password: pass 123
Service Type:
Stock Broking
Date from:
10/15/2007
To: 31/10/2008

The report should
not be generated
and give the error
“Date Format
of Start Date is
not valid.” and/or
“Date Format of
End Date is not
valid.”

TRP_ST_
MQF_403

To verify the
functionality of the
“Generate Report”
button when the
date format is
“yyyy/mm/dd” in
any or both of the
“Date from” and
“To” textboxes.

1. Login as admin.
Homepage of the user
appears.
2. Click on the
quicklink “Service
Wise Report,” “Service
Wise Report” page
appears.
3. Select a service type
in the “Service Type”
field.
4. Fill in the “Date
from” field in “yyyy/
mm/dd” and “To”
field in “dd/mm/yyyy”
format.
5. Click on the
“Generate Report”
button.

Loginid: admin
password: pass 123
Service Type:
Stock Broking
Date from:
2007/10/01
To: 31/10/2008

The report should
not be generated
and give the error
“Date Format of
Start Date is not
valid.”

Software-Testing_Final.indb 554 31-01-2018 15:00:50

A Case Study on Testing of E-Learning Management Systems • 555

Test
case ID Objective Test steps Test data

Expected
results Actual results

Test status
(Pass/Fail)

STRP_
RFR_302

To verify the
accessibility
of the “STRP
Wise Report”
button.

1. Login as admin.
Homepage of the
user appears.
2. Click on the
quickink “STRP
Wise Report” under
the “View Reports”
heading.

Loginid:
admin
password:
pass123

“STRP Wise
Report” page
appears.

Same as
expected.

PASS

STRP_
RFR_322

To verify the
functionality
of the
“Export to
Excel” button
when a date
is entered
in the “Date
From” field
and “To”
field is left
blank.

1. Login as admin.
Homepage of the
user appears.
2. Click on the
quicklink “STRP
Wise Report,”
“STRP Wise Report”
page appears.
3. Select a period
from the “Period”
drop down.
4. Fill in the “Date
from” in “dd/mm/
yyyy” format.
5. Click on the
“Export to Excel”
button.

Period:
April 1st -
Sept 30th;
2007-2008
“Date
from:”
30/09/2006

Report should
be generated
for records
Where the
“Date of Filling
Return” is after
“30/09/2006.”

The message
“No Record
Found.” is
displayed even
if records
exist after the
“Date of Filling
Return” as
“30/09/2006.”

FAIL

STRP_
RFR_324

To verify the
functionality
of the
“Generate
Report”
button when
a date is
entered in
the “To”
field and the
“Date from”
field is left
blank.

1. Login as admin.
Homepage of the
user appears.
2. Click on the
quicklink “STRP
Wise Report,”
“STRP Wise
Report” page
appears.
3. Select a period
from the “Period”
drop down.
4. Fill in the “To”
in “dd/mm/yyyy”
format.
5. Click on the
“Generate Report”
button.

Period:
April 1st -
Sept 30th;
2007-2008
“To:”
26/06/2009

Report should
be generated for
records where
“Date of Filling
Return” is until
“26/06/2009.”

Message
“No Record
Found.” is
displayed even
if records
exist till ‘Date
of Filling
“Return” as
“26/06/2009.”

FAIL

(Continued)

Software-Testing_Final.indb 555 31-01-2018 15:00:50

556 • Software Testing

Test
case ID Objective Test steps Test data

Expected
results Actual results

Test status
(Pass/Fail)

STRP_
RFR_325

To verify the
functionality
of the
“Export to
Excel” button
when a date
is entered in
the “To” field
and “Date
from” field is
left blank.

1. Login as admin.
Homepage of the
user appears.
2. Click on the
quicklink “STRP
Wise Report,”
“STRP Wise
Report” page
appears.
3. Select a period
from the “Period”
drop down.
4. Fill the “To”
in “dd/mm/yyyy”
format.
5. Click on the
“Export to Excel”
button.

Period: April
1st - Sept
30th; 2007-
2008
“To:”
26/06/2009

Report should
be generated
for the records
where the
“Date of Filling
Return” is until
“26/06/2009.”

The message
“No Record
Found.” is
displayed even
if records
exist after the
“Date of Filling
Return” as
“26/06/2009.”

Fail

5.6.  STRPS WISE REPORT (ADMIN REPORT)

NEGATIVE FUNCTIONAL TEST CASES

Objective Test steps Test data Expected results

To verify the
functionality of
the“Generate
Report” button
when special
characters are
entered in the “To”
date field.

1. Login as student.
2. Go to “Reports” and
the “STRP Wise Report”
quicklinks, the “STRP Wise
Report” page appears.
3. Enter valid date in the
“Date From” field.
4. Enter special characters
in “Date From” field.
5. Select a period from the
“Period” drop down.
6. Select a valid assessment
year.
7. Click the “Export to
Excel” button.

UserID: admin
password: password
Period: April 1st - Sept
30th; 2007-2008
“Date from”: 12/12/2007
“To:” #$$@

1. Report should not get
generated and the following
error message should come
with the “Back” button:
“Date Format of End Date
is not valid.”
2. Clicking the “Back”
button should take the user
to the “STRP Wise Report”
page.

(Continued)

Software-Testing_Final.indb 556 31-01-2018 15:00:50

A Case Study on Testing of E-Learning Management Systems • 557

Objective Test steps Test data Expected results

To verify the
functionality of the
“Generate Report”
button when an “n”
digit numeric value
is entered in the
“Name” field.

Prequisite: User has
entered “n” number of
characters in the “Name”
field while submitting his or
her STRP Wise Report.
1. Login as student.
2. Go to “Reports” and
the “STRP Wise Report”
quicklinks, “STRP Wise
Report” page appears.
3. Select a period from the
“Period” drop down.
4. Click the “Submit”
button.

1. User record for the
selected period should
appear in the “Reports”
output section.
2. It should not break the
page.

CONCLUSION

a.  Advantages:

�� Delivery of a quality product and software met all quality requirements.
�� Website is developed within the time frame and budget.
�� A disciplined approach to software development.
�� Quality products lead to happy customers.
�� Software is developed within the time frame and budget.

b.  Limitations:

�� Quality is compromised to deliver the product on time and within budget.
�� It is a time consuming process.
�� It requires a large number of employees that leads to an increase in the

product cost.

Software-Testing_Final.indb 557 31-01-2018 15:00:50

Software-Testing_Final.indb 558 31-01-2018 15:00:50

C H A P T E R14
Inside this Chapter:

	 14.1.	 “Black-Box” Testing

	 14.2.	 “White-Box” Testing

	 14.3.	 The Life Cycle of a Build

	 14.4.	 On Writing Bugs Well

The Game Testing Process
1

Developers don’t fully test their own games. They don’t have time to, and
even if they did, it’s not a good idea. Back at the dawn of the video game
era, the programmer of a game was also its artist, designer, and tester. Even
though games were very small—the size of email— the programmer spent
most of his time designing and programming. Little of his time was spent
testing. If he did any testing, it was based on his own assumptions about how
players would play his game. The following sidebar illustrates the type of
problem these assumptions could create.

THE PLAYER WILL ALWAYS SURPRISE YOU

The programmer of Astrosmash, a space shooter released for the Intellivision®
system in 1981, made an assumption when he designed the game that no
player would ever score 10 million points. As a result, he didn’t write a check
for score overflowing. He read over his own code and—based on his own
assumptions—it seemed to work fine. It was a fun game—its graphics were

1 � This chapter appeared in Game Testing, Third Edition, C. Schultz and R. D. Bryant.
Copyright 2017 Mercury Learning and Information. All rights reserved.

Software-Testing_Final.indb 559 31-01-2018 15:00:50

560 • Software Testing

breathtaking (for the time) and the game went on to become one of the best
sellers on the Intellivision platform.

Weeks after the game was released, however, a handful of customers
began to call the game’s publisher, Mattel Electronics, with an odd com-
plaint: when they scored more than 9,999,999 points, the score displayed
negative numbers, letters, and symbol characters. This in spite of the prom-
ise of “unlimited scoring potential” in the game’s marketing materials. The
problem was exacerbated by the fact that the Intellivision console had a fea-
ture that allowed players to play the game in slow motion, making it much
easier to rack up high scores. John Sohl, the programmer, learned an early
lesson about video games: the player will always surprise you.

The sidebar story demonstrates why video game testing is best done by
testers who are: (a) professional, (b) objective, and (c) separated—either
physically or functionally—from the game’s development team. That remove
and objectivity allows testers to think independently of the developers, to
function as players, and to figure out new and interesting ways to break the
game. This chapter discusses how, like the gears of a watch, the game testing
process meshes into the game development process.

“BLACK-BOX” TESTING

Almost all game testing is black-box testing, testing done from outside the
application. No knowledge of, or access to, the source code is granted to the
tester. Game testers typically don’t find defects by reading the game code.
Rather, they try to find defects using the same input devices available to
the average player, be it a mouse, a keyboard, a console gamepad, a motion
sensor, or a plastic guitar. Black-box testing is the most cost-effective way to
test the extremely complex network of systems and modules that even the
simplest video game represents.

Figure 14.1 illustrates some of the various inputs you can provide to a
videogame and the outputs you can receive back. The most basic of inputs
are positional, and control data in the form of button presses and cursor
movements, or vector inputs from accelerometers, or even full-body cam-
eras. Audio input can come from microphones fitted in headsets or attached
to a game controller. Input from other players can come from a second con-
troller, a local network, or the Internet. Finally, stored data such as saved
games and options settings can be called up as input from memory cards or
a hard drive.

Software-Testing_Final.indb 560 31-01-2018 15:00:50

The Game Testing Process • 561

Once some or all of these types of input are received by the game,
it reacts in interesting ways and produces such output as video, audio,
vibration (via force feedback devices), and data saved to memory cards or
hard drives.

The input path of a video game is not
oneway, however. It is a feedback loop,
where the player and the game are constantly
reacting to each other. Players don’t receive
output from a game and stop playing. They
constantly alter and adjust their input “on the
fly,” based on what they see, feel, and hear
in the game. The game, in turn, makes sim-
ilar adjustments in its outputs based on the
inputs it receives from the player. Figure 14.2
illustrates this loop.

If the feedback received by the player were entirely predictable all
the time, the game would be no fun. Nor would it be fun if the feedback
received by the player were entirely random all the time. Instead, feed-
back from games should be just random enough to be unpredictable. It is
the unpredictability of the feedback loop that makes games fun. Because
the code is designed to surprise the player and the player will always sur-
prise the programmer, black-box testing allows testers to think and behave
like players.

GAME CODE
(THE “BLACK-BOX”)

INPUTS

Button Presses

Audio

Video

Packets

Video

Memory

Audio

Vibration

OUTPUTS

Memory

FIGURE 14.1  Black-box testing: planning inputs and examining outputs.

Inputs

The Player

Outputs

The Game

FIGURE 14.2  The player’s
feedback loop adjusts to the
game’s input, and vice versa.

Software-Testing_Final.indb 561 31-01-2018 15:00:54

562 • Software Testing

“WHITE-BOX” TESTING

In contrast to black-box testing, white-box testing gives the tester opportuni-
ties to exercise the source code directly in ways that no player ever could. It
can be a daunting challenge for the white-box tester to read a piece of game
code and predict every single interaction it will have with every other bit of
code, and whether the programmer has accounted for every combination
and order of inputs possible. Testing a game using only white-box methods
is also extremely difficult because it is nearly impossible to account for the
complexity of the player feedback loop. There are, however, situations in
which white-box testing is more practical and necessary than black-box test-
ing. These include the following:

�� Tests performed by developers prior to submitting new code for integra-
tion with the rest of the game

�� Testing code modules that will become part of a reusable library across
multiple games or platforms

�� Testing code methods or functions that are essential parts of a game
engine or middleware product

�� Testing code modules within your game that might be used by thirdparty
developers or “modders” who, by design, could expand or modify the
behavior of your game to their own liking

�� Testing low-level routines that your game uses to support specific functions
in the newest hardware devices, such as graphics cards or audio processors

In performing white-box tests, you execute specific modules and the
various paths that the code can follow when you use the module in various
ways. Test inputs are determined by the types and values of data that can be
passed to the code. Results are checked by examining values returned by the
module, global variables that are affected by the module, and local variables
as they are processed within the module. To get a taste of white-box testing,
consider the TeamName routine from Castle Wolfenstein: Enemy Territory:

const char *TeamName(int team) {
 if (team==TEAM_AXIS)
 return “RED”;
 else if (team==TEAM_ALLIES)
 return “BLUE”;
 else if (team==TEAM_SPECTATOR)
 return “SPECTATOR”;
 return “FREE”;
}

Software-Testing_Final.indb 562 31-01-2018 15:00:54

The Game Testing Process • 563

Four white-box tests are required for this module to test the proper
behavior of each line of code within the module. The first test would be
to call the TeamName function with the parameter TEAM_AXIS and then
check that the string “RED” is returned. Second, pass the value of TEAM_
ALLIES and check that “BLUE” is returned. Third, pass TEAM_SPECTATOR
and check that “SPECTATOR” is returned. Finally, pass some other value
such as TEAM_NONE, which makes sure that “FREE” is returned. Together
these tests not only exercise each line of code at least once, they also test the
behavior of both the “true” and “false” branches of each if statement.

This short exercise illustrates some of the key differences between a
white-box testing approach and a black-box approach:

�� Black-box testing should test all of the different ways you could choose
a test value from within the game, such as different menus and buttons.
White-box testing requires you to pass that value to the routine in one
form—its actual symbolic value within the code.

�� By looking into the module, white-box testing reveals all of the possi-
ble values that can be provided to and processed by the module being
tested. This information might not be obvious from the product require-
ments and feature descriptions that drive black-box testing.

�� Black-box testing relies on a consistent configuration of the game and its
operating environment in order to produce repeatable results. White-
box testing relies only on the interface to the module being tested and
is concerned only about external files when processing streams, file sys-
tems, or global variables.

THE LIFE CYCLE OF A BUILD

Game testers are often frustrated that, like players, they must wait (and
wait) for the work product of the development team before they can spring
into action. Players wait for game releases; testers wait for code releases,
or builds. The test results from each build is how all stakeholders in the
project—from QA to the project manager to the publisher—measure the
game’s progress toward release.

A basic game testing process consists of the following steps:

1.	 Plan and design the test. Although much of this is done early in the
planning phase, planning and design should be revisited with every
build. What has changed in the design spec since the last build? What
additional test cases have been added? What new configurations will

Software-Testing_Final.indb 563 31-01-2018 15:00:54

564 • Software Testing

the game support? What features have been cut? The scope of testing
should ensure that no new issues were introduced in the process of fixing
bugs prior to this release.

2.	 Prepare for testing. Code, tests, documents, and the test environment
are updated by their respective owners and aligned with one another. By
this time the development team should have marked the bugs fixed for
this build in the defect database so the QA team can subsequently verify
those fixes and close the bugs.

3.	 Perform the test. Run the test suites against the new build. If you find
a defect, test “around” the bug to make certain you have all the details
necessary to write as specific and concise a bug report as possible. The
more research you do in this step, the easier and more useful the bug
report will be.

4.	 Report the results. Log the completed test suite and report any defects
you found.

5.	 Repair the bug. The test team participates in this step by being available
to discuss the bug with the development team and to provide any directed
testing a programmer might require to track the defect down.

6.	 Return to Step 1 and re-test. With new bugs and new test results
comes a new build.

These steps not only apply to black-box testing, they also describe
white-box testing, configuration testing, compatibility testing, and any
other type of QA. These steps are identical no matter what their scale. If
you substitute the word “game” or “project” for the word “build” in the
preceding steps, you will see that they can also apply to the entire game, a
phase of development (Alpha, Beta, and so on), or an individual module or
feature within a build. In this manner, the software testing process can be
considered fractal—the smaller system is structurally identical to the larger
system, and vice versa.

As illustrated in Figure 14.3, the
testing process itself is a feedback
loop between the tester and devel-
oper. The tester plans and executes
tests on the code, then reports the
bugs to the developer, who fixes
them and compiles a new build,
which the tester plans and executes,
and so on.

Bugs

The Tester

Code

The Developer

FIGURE 14.3  The testing process
feedback loop.

Software-Testing_Final.indb 564 31-01-2018 15:00:55

The Game Testing Process • 565

A comfortable scale from which to examine this process is at the level of
testing an individual build. Even a relatively small game project could con-
sist of dozens of builds over its development cycle.

Test Cases and Test Suites

As discussed in the previous chapter, a single test performed to answer a
single question is a test case; a collection of test cases is a test suite. The lead
tester, primary tester, or any other tester tasked with test creation should
draft these documents prior to the distribution of the build. Each tester
will take his or her assigned test suites and perform them on the build.
Any anomalies not already present in the database should be written up as
new bugs.

In its simplest form, a test suite is a series of incremental steps that the
tester can perform sequentially. Subsequent chapters in this book discuss
in depth the skillful design of test cases and suites through such methods as
combinatorial tables and test flow diagrams. For the purposes of this discus-
sion, consider a short test suite you might execute on Minesweeper, a simple
game available with most versions of Microsoft Windows®. A portion of this
suite is shown in Figure 14.4.

Step
1.

CommentsPass Fail

2.
Launch Minesweeper

3.
Musical tone plays?

4.
Visible menu options are Game and Help?

5.
Right Number (time elapsed) displayed as 0?

6.
Left Number (bombs left) displayed is 10?

7.
8.

Game closes?
Click Game on the menu and choose Exit.

9.
Re-launch Minesweeper.

10.
Choose Game > Options > Custom

11.
Enter 0 in the Height box

12.
13.

0 accepted as input?
Click OK.

14.
Error message appears?

15.
Click OK again.

16.
Game grid 9 rows high?

17.
Game grid 9 columns wide (unchanged)?

18.
Choose Game > Options > Custom

19.
Enter 999 in the Height box

20.
21.

Click OK.
999 Accepted as input?

22.
Playing grid 24 rows high?
Playing grid 9 columns wide (unchanged)?

FIGURE 14.4  A portion of a test suite for Minesweeper.

Software-Testing_Final.indb 565 31-01-2018 15:00:57

566 • Software Testing

This is a very small portion of a very simple test suite for a very small
and simple game. The first section (steps one through seven) tests launching
the game, ensuring that the default display is correct, and exiting. Each step
either gives the tester one incremental instruction or asks the tester one
simple question. Ideally, these questions are binary and unambiguous. The
tester performs each test case and records the result.

Because the testers will inevitably observe results that the test designer
hadn’t planned for, the Comments field allows the tester to elaborate on a
Yes/No answer, if necessary. The lead or primary tester who receives the
completed test suite can then scan the Comments field and make adjust-
ments to the test suite as needed for the next build.

Where possible, the questions in the test suite should be written in such
a way that a “yes” answer indicates a “pass” condition—the software is work-
ing as designed and no defect is observed. “No” answers, in turn, should
indicate that there is a problem and a defect should be reported. There are
several reasons for this: it’s more intuitive, because we tend to group “yes”
and “pass” (both positives) together in our minds the same way we group
“no” and “fail.” Further, by grouping all passes in the same column, the com-
pleted test suite can be easily scanned by both the tester and test managers
to determine quickly whether there were any fails. A clean test suite will
have all the checks in the Pass column.

For example, consider a test case covering the display of a tool tip—a
small window with instructional text incorporated into many interfaces.
A fundamental test case would be to determine whether the tool tip text
contains any typographical errors. The most intuitive question to ask in the
test case is:

Does the text contain any typographical errors?

The problem with this question is that a pass (no typos, hence no bugs)
would be recorded as a “no.” It would be very easy for a hurried (or tired)
tester to mistakenly mark the Fail column. It is far better to express the
question so that a “yes” answer indicates a “pass” condition:

Is the text free of typographical errors?

As you can see, directed testing is very structured and methodical.
After the directed testing has concluded, or concurrently with directed
testing, a less structured, more intuitive form of testing, known as ad hoc
testing, takes place.

Software-Testing_Final.indb 566 31-01-2018 15:00:57

The Game Testing Process • 567

Entry Criteria

It’s advisable to require that any code release meets some criteria for being
fit to test before you risk wasting your time, or your team’s time, testing it.
This is similar to the checklists that astronauts and pilots use to evaluate the
fitness of their vehicle systems before attempting flight. Builds submitted to
testing that don’t meet the basic entry criteria are likely to waste the time of
both testers and programmers. The countdown to testing should stop until
the test “launch” criteria are met.

The following is a list of suggestions for entry criteria. Don’t keep these
a secret from the rest of the development team. Make the team aware of the
purpose—to prevent waste—and work with them to produce a set of criteria
that the whole team can commit to.

�� The game code should be built without compiler errors. Any new com-
piler warnings that occur are analyzed and discussed with the test team.

�� The code release notes should be complete and should provide the detail
that testers need to plan which tests to run or to re-run for this build.

�� Defect records for any bugs closed in the new release should be updated
so they can be used by testers to make decisions about how much to test
in the new build.

�� Tests and builds should be properly version-controlled, as described in
the sidebar, “Version Control: Not Just for Developers.”

�� When you are sufficiently close to the end of the project, you also want
to receive the game on the media on which it will ship. Check that the
media provided contains all of the files that would be provided to your
customer.

VERSION CONTROL: NOT JUST FOR DEVELOPERS

A fundamental principle of software development is that every build of an
application should be treated as a separate and discrete version. Inadvert-
ent blending of old code with new is one of the most common (and most
preventable) causes of software defects. The process of tracking builds and
ensuring that all members of a development team are checking current code
and assets into the current version is known as version control.

Test teams must practice their own form of version control. There are
few things more time wasting than for a test team to report a great number

Software-Testing_Final.indb 567 31-01-2018 15:00:57

568 • Software Testing

of bugs in an old build. This is not only a waste of time, but it can cause
panic on the part of the programmer and the project manager.

Proper version control for the test team includes the following steps:

1.	 Collect all prior physical (e.g., disk-based) builds from the test team
before distributing the new build. The prior versions should be staked
together and archived until the project is complete. (When testing digital
downloads, uninstall and delete or archive prior digital builds.)

2.	 Archive all paperwork. This includes not only any build notes you received
from the development team, but also any completed test suites, screen
shots, saved games, notes, video files, and any other material generated
during the course of testing a build. It is sometimes important to retrace
steps along the paper trail, whether to assist in isolating a new defect or
determining in what version an old bug was re-introduced.

3.	 Verify the build number with the developer prior to distributing it.

4.	 In cases where builds are transmitted electronically, verify the byte count,
file dates, and directory structure before building it. It is vital in situations
where builds are sent via FTP, email, Dropbox (www.dropbox.com) or other
digital means that the test team makes certain to test a version identical
to the version the developers uploaded. Confirm the integrity of the
transmitted build before distributing it to the testers.

5.	 Renumber all test suites and any other build-specific paperwork or
electronic forms with the current version number.

6.	 Distribute the new build for smoke testing.

Configuration Preparation

Before the test team can work with the new build, some housekeeping is in
order. The test equipment must be readied for a new round of testing. The
test lead must communicate the appropriate hardware configuration to each
tester for this build. Configurations typically change little over the course of
game testing. To test a single-player-only console game, you need the game
console, a controller, and a memory card or hard drive. That hardware con-
figuration typically will not change for the life of the project. If, however, the
new build is the first in which network play is enabled, or a new input device
or PC video card has been supported, you will perhaps need to augment the
hardware configuration to perform tests on that new code.

Software-Testing_Final.indb 568 31-01-2018 15:00:57

The Game Testing Process • 569

Perhaps the most important step in this preparation is to eliminate any
trace of the prior build from the hardware. “Wiping” the old build of a disk-
based game on a Nintendo Wii™ is simple, because the only recordable
media for that system is an SD card or its small internal flash memory drive.
All you have to do is remove and archive the saved game you created with
the hold build. More careful test leads will ask their testers to go the extra
step of reformatting the media, which completely erases it, to ensure that
not a trace of the old build’s data will carry forward during the testing of the
new build.

Save your saves! Always archive your old player-created data, including
game saves, options files, and custom characters, levels, or scenarios.

Not surprisingly, configuration preparation can be much more compli-
cated for PC games. The cleanest possible testing configuration for a PC
game is:

�� A fresh installation of the latest version of the operating system, includ-
ing any patches or security updates.

�� The latest drivers for all components of the computer. This not only
includes the obvious video card and sound card drivers, but also chipset
drivers, motherboard drivers, Ethernet card drivers, WiFi® firmware,
and so on.

�� The latest version of any “helper apps” or middleware the game requires
in order to run. These can range from Microsoft’s DirectX® multimedia
libraries to third-party multiplayer matchmaking software.

The only other software installed on the computer should be the new
build.

CHASING FALSE DEFECTS

We once walked into a QA lab that was testing a (then) very cutting-edge
3D PC game. Testing of the game had fallen behind, and we had been sent
from the publisher to investigate. We arrived just as the testers were break-
ing for lunch, and were appalled to see the testers exit the game they were
testing and fire up email, instant messenger clients, Web browsers, and file
sharing programs—a host of applications that were installed on their test

TIP

Software-Testing_Final.indb 569 31-01-2018 15:00:57

570 • Software Testing

computers. Some even jumped into a game of Unreal Tournament. We asked
the assistant test manager why he thought it was a good idea for the testers
to run these extraneous programs on their testing hardware. “It simulates
real-world conditions,” he shrugged, annoyed by our question.

As you perhaps have already guessed, this lab’s failure to wipe their test
computers clean before each build led to a great deal of wasted time chas-
ing false defects—symptoms testers thought were defects in the game, but
which were in fact problems brought about by, for example, email or file
sharing programs running in the background, taxing the system’s resources
and network bandwidth. This wasted tester time also meant a good amount
of wasted programmer time, as the development team tried to figure out
what in the game code might be causing such (false) defects.

The problem was solved by reformatting each test PC, freshly installing
the operating system and latest drivers, and then using a drive image backup
program to create a system restore file. From that point forward, testers
merely had to reformat their hard drive and copy the system restore file over
from a CD-ROM.

Testing takes place in the lab and labs should be clean. So should test
hardware. It’s difficult to be too fastidious or paranoid when preparing test
configurations. When you get a new build, reformat your PC rather than
merely uninstall the new build.

Delete your old builds! Reformat your test hardware—whether it’s a PC, a
tablet or a smartphone. If it’s a browser game, delete the cache.

Browser games should be purged from each browser’s cache and the
browser should be restarted before you open the new game build. In the
case of Flash® games, you can right-click on the old build and select “Global
Settings…” This will launch a separate browser process and will connect
you to the Flash Settings Manager. Choosing the “Website Storage Settings
panel” will launch a Flash applet. Click the “Delete all sites” button and
close all of your browser processes. Now you can open the new build of your
Flash game.

iOS™ games should be deleted both from the device and the iTunes®
client on the computer the device is synched to. When prompted by iTunes,
choose to delete the app entirely (this is the “Move to Recycle Bin” or “Move
to Trash” button). Now, synch your device and make certain the old build has
been removed both from iTunes and your device. Empty the Recycle Bin (or
the Trash), relaunch iTunes, copy the new build, and synch your device again.

TIP

Software-Testing_Final.indb 570 31-01-2018 15:00:57

The Game Testing Process • 571

Android™ games, like iOS games, should be deleted entirely from the
device and your computer. Always synch your device to double-check that
you have scrubbed the old build off before you install the new build.

Whatever protocol is established, config prep is crucial prior to the
distribution of a new build.

Smoke Testing

The next step after accepting a new build and preparing to test it is to cer-
tify that the build is worthwhile to submit to formal testing. This process is
sometimes called smoke testing, because it’s used to determine whether a
build “smokes” (malfunctions) when run. At a minimum, it should consisted
of a “load & launch,” that is, the lead or primary tester should launch the
game, enter each module from the main menu, and spend a minute or two
playing each module. If the game launches with no obvious performance
problems and each module implemented so far loads with no obvious prob-
lems, it is safe to certify the build, log it, and duplicate it for distribution to
the test team.

Now that the build is distributed, it’s time to test for new bugs, right?
Not just yet. Before testing can take a step forward, it must first take a step
backward and verify that the bugs the development team claims to have fixed
in this build are indeed fixed. This process is known as regression testing.

Regression Testing

Fix verification can be at once very satisfying and very frustrating. It gives
the test team a good sense of accomplishment to see the defects they report
disappear one by one. It can be very frustrating, however, when a fix of one
defect creates another defect elsewhere in the game, as can often happen.

The test suite for regression testing is the list of bugs the development
team claims to have fixed. This list, sometimes called a knockdown list, is
ideally communicated through the bug database. When the programmer or
artist fixes the defect, all they have to do is change the value of the Devel-
oper Status field to “Fixed.” This allows the project manager to track the
progress on a minute-to-minute basis. It also allows the lead tester to sort
the regression set (by bug author or by level, for example). At a minimum,
the knockdown list can take the form of a list of bug numbers sent from the
development team to the lead tester.

Don’t accept a build into test unless it is accompanied by a knockdown
list. It is a waste of the test team’s time to regress every open bug in the
database every time a new build enters test.

TIP

Software-Testing_Final.indb 571 31-01-2018 15:00:57

572 • Software Testing

Each tester will take the bugs they’ve been assigned and perform the
steps in the bug write-up to verify that the defect is indeed fixed. The fixes
for many defects are easily verified (typos, missing features, and so on).
Some defects, such as hard-to-reproduce crashes, could seem fixed, but the
lead tester might want to err on the side of caution before he closes the bug.
By flagging the defect as verify fix, the bug can remain in the regression set
(i.e., stay on the knockdown list) for the next build (or two), but out of the
set of open bugs that the development team is still working on. Once the
bug has been verified as fixed in two or three builds, the lead tester can then
close the bug with more confidence.

At the end of regression testing, the lead tester and project manager
can get a very good sense of how the project is progressing. A high fix rate
(number of bugs closed divided by the number of bugs claimed to have been
fixed) means the developers are working efficiently. A low fix rate could be
cause for concern. Are the programmers arbitrarily marking bugs as fixed
if they think they’ve implemented new code that might address the defect,
rather than troubleshooting the defect itself? Are the testers not writing
clear bugs? Is there a version control problem? Are the test systems config-
ured properly? While the lead tester and project manager mull over these
questions, it’s time for you to move on to the next step in the testing process:
performing structured tests and reporting the results.

Testing “Around” a Bug

The old saying in carpentry is “measure twice, cut once.” Good game testers
thoroughly investigate a defect before they write it up, anticipating any ques-
tions the development team might have.

Before you begin to write a defect report, ask yourself some questions:

1.	 Is this the only location or level where the bug occurs?

2.	 Does the bug occur while using other characters or units?

3.	 Does the bug occur in other game modes (for example, multiplayer as
well as single player, skirmish as well as campaign)?

4.	 Can I eliminate any steps along the path to reproducing the bug?

5.	 Does the bug occur across all platforms (for example, does it occur on
both the Xbox One and PlayStation 4 builds)?

6.	 Is the bug machine-specific (for example, does it occur only on PCs with
a certain hardware configuration)?

Software-Testing_Final.indb 572 31-01-2018 15:00:57

The Game Testing Process • 573

These are the types of questions you will be asked by the lead tester,
project manager, or developer. Try to develop the habit of second-guessing
such questions by performing some quick additional testing before you write
the bug. Test to see whether the defect occurs in other areas. Test to deter-
mine whether the bug happens when you choose a different character. Test
to check which other game modes contain the issue. This practice is known
as testing “around” the bug.

Once you are satisfied that you have anticipated any questions that the
development team might ask, and you have all your facts ready, you are
finally ready to write the bug report.

ON WRITING BUGS WELL

Good bug writing is one of the most important skills a tester must learn. A
defect can be fixed only if it is communicated clearly and effectively. One of
the oldest jokes in software development goes something like this:

Q: How many programmers does it take to screw in a light bulb?

A: None—it’s not dark where they’re sitting.

Good bug report writing gets the development team to “see the light” of
the bug. The developers are by no means the only people who will read your
bug, however. Your audience could include:

�� The lead tester or primary tester, who might wish to review the bug
before she gives it an “open” status in the bug database.

�� The project manager, who will read the bug and assign it to the appropri-
ate member of the development team.

�� Marketing and other business executives, who might be asked to weigh
in on the possible commercial impact of fixing (or not fixing) the bug.

�� Third parties, such as middleware developers, who could be asked to
review a bug that is possibly related to a project they supply to the project
team

�� Customer service representatives, who might be asked to devise work
arounds for the bug

�� Other testers, who will reproduce the steps if they are asked to verify a
fix during regression testing

Because you never know exactly who will be reading your bug report,
you must always write in as clear, objective, and dispassionate a manner as

Software-Testing_Final.indb 573 31-01-2018 15:00:57

574 • Software Testing

possible. You can’t assume that everyone reading your bug report will be as
familiar with the game as you are. Testers spend more time in the game—
exploring every hidden path, closely examining each asset—than almost any-
one else on the entire project team. A well-written bug will give a reader
who is not familiar with the game a good sense of the type and severity of the
defect it describes.

Just the Facts, Ma’am

The truth is that defects stress out development teams, especially during
“crunch time.” Each new bug added to the database means more work still
has to be done. An average-sized project can have hundreds or thousands of
defects reported before it is completed. Developers can feel overwhelmed
and might, in turn, get hostile if they feel their time is being wasted by frivo-
lous or arbitrary bugs. That’s why good bug writing is fact based and unbi-
ased.

The guard’s hat would look better if it was blue.

This is neither a defect nor a fact; it’s an unsolicited and arbitrary opin-
ion about design. There are forums for such opinions—discussions with the
lead tester, team meetings, play testing feedback—but the bug database isn’t
one of them.

A common complaint in many games is that the artificial intelligence, or
AI, is somehow lacking. (AI is a catch-all term that means any opponents or
NPCs controlled by the game code.)

The AI is weak.

This could indeed be a fact, but it is written in such a vague and gen-
eral way that it is likely to be considered an opinion. A much better way to
convey the same information is to isolate and describe a specific example of
AI behavior and write up that specific defect. By boiling issues down to spe-
cific facts, you can turn them into defects that have a good chance of being
addressed.

Before you begin to write a bug report, you have to be certain that you
have all your facts.TIP

Software-Testing_Final.indb 574 31-01-2018 15:00:57

The Game Testing Process • 575

Brief Description

Larger databases could contain two description fields: Brief Description (or
Summary) and Full Description (or Steps). The Brief Description field is
used as a quick reference to identify the bug. This should not be a cute nick-
name, but a one-sentence description that allows team members to identify
and discuss the defect without having to read the longer, full description
each time. Think of the brief description as the headline of the defect report.

Crash to desktop.

This is not a complete sentence, nor is it specific enough to be a brief
description. It could apply to one of dozens of defects in the database. The
brief description must be brief enough to be read easily and quickly, but long
enough to describe the bug.

The saving system is broken.

This is a complete sentence, but it is not specific enough. What did the
tester experience? Did the game not save? Did a saved game not load? Does
saving cause a crash?

Crash to desktop when choosing “Options” from Main Menu.

This is a complete sentence, and it is specific enough so that anyone
reading it will have some idea of the location and severity of the defect.

Game crashed after I killed all the guards and
doubled back through the level to get all the
pick-ups and killed the first re-spawned guard.

This is a run-on sentence that contains far too much detail. A good way
to boil it down might be

Game crashes after killing respawned guards.

The one-sentence program descriptions used by cable television guides
and download stores can provide excellent examples of brief description
writing—they boil an entire one-hour cop show or two-hour movie into one
sentence.

Write the full description first, and then write the brief description.
Spending some time polishing the full description will help you
understand the most important details to include in the brief description.

TIP

Software-Testing_Final.indb 575 31-01-2018 15:00:57

576 • Software Testing

Full Description

If the brief description is the headline of a bug report, the Full Description
field provides the gory details. Rather than a prose discussion of the defect,
the full description should be written as a series of brief instructions so that
anyone can follow the steps and reproduce the bug. Like a cooking recipe—
or computer code, for that matter—the steps should be written in second
person imperative, as though you were telling someone what to do. The last
step is a sentence (or two) describing the bad result.

1.	Launch the game.
2.	�Watch the animated logos. Do not press ESC to

skip through them.
--> �Notice the bad strobing effect at the end of

the Developer logo.

The fewer steps, the better; and the fewer words, the better. Remember
Brad Pitt’s warning to Matt Damon in Ocean’s Eleven: don’t use seven steps
when four will do. Time is a precious resource when developing a game. The
less time it takes a programmer to read, reproduce, and understand the bug,
the more time he has to fix it.

1.	Launch game.
2.	Choose multiplayer.
3.	Choose skirmish.
4.	Choose “Sorrowful Shoals” map.
5.	Choose two players.
6.	Start game.

These are very clear steps, but for the sake of brevity they can be boiled
down to

1.	�Start a two player skirmish game on “Sorrowful Shoals.”

Sometimes, however, you need several steps. The following bug
describes a problem with a power-up called “mugging,” which steals any
other power-up from any other unit.

1.	�Create a game against one human player. Choose
Serpent tribe.

2.	�Send a swordsman into a Thieves Guild to get the
Mugging power-up.

3.	�Have your opponent create any unit and give
that unit any power-up.

Software-Testing_Final.indb 576 31-01-2018 15:00:57

The Game Testing Process • 577

4.	�Have your Swordsman meet the other player’s
unit somewhere neutral on the map.

5.	�Activate the Mugging power-up.
6.	�Attack your opponent’s unit.
--> Crash to desktop as Swordsman strikes.

This might seem like many steps, but it is the quickest way to repro-
duce the bug. Every step is important to isolate the behavior of the mug-
ging code. Even small details, like meeting in a neutral place, are important,
because meeting in occupied territory might bring allied units from one side
or another into the fight, and the test might then be impossible to perform.

Good bug writing is precise yet concise.

Great Expectations

Oftentimes, the defect itself will not be obvious from the steps in the full
description. Because the steps produce a result that deviates from player
expectation, but does not produce a crash or other severe or obvious
symptom, it is sometimes necessary to add two additional lines to your full
description: Expected Result and Actual Result.

TIP

FIGURE 14.5  Fallout 4: One would expect player-placed structures to appear
grounded on the terrain rather than floating above it.

Software-Testing_Final.indb 577 31-01-2018 15:00:57

578 • Software Testing

Expected Result describes the behavior that a normal player would rea-
sonably expect from the game if the steps in the bug were followed. This
expectation is based on the tester’s knowledge of the design specification,
the target audience, and precedents set (or broken) in other games, espe-
cially games in the same genre.

Actual Result describes the defective behavior. Here’s an example.

1.	Create a multiplayer game.
2.	Click Game Settings.
3.	�Using your mouse, click any map on the map list.

Remember the map you clicked on.
4.	�Press up or down directional keys on your keyboard.
5.	�Notice the highlight changes. Highlight any other

map.
6.	Click Back.
7.	Click Start Game.
Expected Result: Game loads map you chose with the keyboard.
Actual Result: Game loads map you chose with the mouse.

Although the game loaded a map, it wasn’t the map the tester chose with
the keyboard (the last input device he used). That’s a bug, albeit a subtle
one. Years of precedent creates the expectation in the player’s mind that the
computer will execute a command based on the last input the player gave.
Because the map-choosing interface failed to conform to player expectation
and precedent, it could be confusing or annoying, so it should be written up
as a bug.

Use the Expected/Actual Result steps sparingly. Much of the time,
defects are obvious (see Figure 14.5) Here’s an example of “stating the obvi-
ous” in a crash bug.

4.	Choose “Next” to continue.
Expected Result: You continue.
Actual Result: Game locks up. You must reboot the console.

It is understood by all members of the project team that the game
shouldn’t crash. Don’t waste time and space stating that with an unnecessary
statement of Expected and Actual Results.

You should use these statements sparingly in your bug reports, but you
should use them when necessary. They can often make a difference when a
developer wants to close a bug in the database by declaring it “by design,”
“working as intended,” or “NAB” (Not a Bug).

Software-Testing_Final.indb 578 31-01-2018 15:00:58

The Game Testing Process • 579

INTERVIEW

More players are playing games than ever before. As any human population
grows—and the pool of game players has grown exponentially over the last
decade—that population becomes more diverse. Players are different from
each other, have different levels of experience with games, and play games
for a range of different reasons. Some players want a competitive experi-
ence, some an immersive experience, some want a gentle distraction.

The pool of game testers in any organization is always less diverse than
the player base of the game they are testing. Game testers are profession-
als, they have skills in manipulating software interfaces, they are generally
(but not necessarily) experienced game players. It’s likely that if your job is
creating games, that you’ve played video games—a lot of them. But not every
player is like you.

Brent Samul, QA Lead for developer Mobile Deluxe, put it this way: “The
biggest difference when testing for mobile is your audience. With mobile
you have such a broad spectrum of users. Having played games for so long
myself, it can sometimes be really easy to overlook things that someone who
doesn’t have so much experience in games would get stuck on or confused
about.”

It’s a big job. “With mobile, we have the ability to constantly update and
add or remove features from our games. There are always multiple things to
test for with all the different configurations of smartphones and tablets that
people have today,” Mr. Samul says.

Although testers should write bugs against the design specification, the
authors of that specification are not omniscient. As the games on every plat-
form become more and more complex, it’s the testers’ job to advocate for
the players—all players—in their bug writing. (Permission Brent Samul)

Habits to Avoid

For the sake of clarity, effective communication, and harmony among mem-
bers of the project team try to avoid two common bug writing pitfalls: humor
and jargon.

Although humor is often welcome in high-stress situations, it is not wel-
come in the bug database. Ever. There are too many chances for misinter-
pretation and confusion. During crunch time, tempers are short, skins are
thin, and nerves are frayed. The defect database could already be a point of
contention. Don’t make the problem worse with attempts at humor (even if

Software-Testing_Final.indb 579 31-01-2018 15:00:58

580 • Software Testing

you think your joke is hilarious). Finally, as the late William Safire warned,
you should “avoid clichés like the plague.”

It perhaps seems counterintuitive to want to avoid jargon in such a spe-
cialized form of technical writing as a bug report, but it is wise to do so.
Although some jargon is unavoidable, and each project team quickly devel-
ops it own nomenclature specific to the project they’re working on, testers
should avoid using (or misusing) too many obscure technical terms or acro-
nyms. Remember that your audience could range from programmers to
financial or marketing executives, so use plain language as much as possible.

Although testing build after build might seem repetitive, each new build
provides exciting new challenges with its own successes (fixed bugs and
passed tests) and shortfalls (new bugs and failed tests). The purpose of going
about the testing of each build in a structured manner is to reduce waste and
to get the most out of the game team. Each time around, you get new build
data that is used to re-plan test execution strategies and update or improve
your test suites. From there, you prepare the test environment and perform
a smoke test to ensure the build is functioning well enough to deploy to the
entire test team. Once the test team is set loose, your top priority is typically
regression testing to verify recent bug fixes. After that, you perform many
other types of testing in order to find new bugs and to check that old ones
have not re-emerged. New defects should be reported in a clear, concise,
and professional manner after an appropriate amount of investigation. Once
you complete this journey, you are rewarded with the opportunity to do it
all over again.

EXERCISES

1.	 Briefly describe the difference between the Expected Result and the
Actual Result in a bug write-up.

2.	 What’s the purpose of regression testing?

3.	 Briefly describe the steps in preparing a test configuration.

4.	 What is a “knockdown list”? Why is it important?

5.	 True or False: Black-box testing refers to examining the actual game
code.

6.	 True or False: The Brief Description field of a defect report should
include as much information as possible.

Software-Testing_Final.indb 580 31-01-2018 15:00:58

The Game Testing Process • 581

7.	 True or False: White-box testing describes the testing of gameplay.

8.	 True or False: Version control should be applied only to the developers’
code.

9.	 True or False: A “Verify Fix” status on a bug means it will remain on the
knockdown list for at least one more test cycle.

10.	 True or False: A tester should write as many steps as possible when
reporting a bug to ensure the bug can be reliably reproduced.

11.	 On a table next to a bed is a touch-tone landline telephone. Write step-by-
step instructions for using that phone to dial the following local number:
555-1234. Assume the person reading the instructions has never seen or
used a telephone before.

Software-Testing_Final.indb 581 31-01-2018 15:00:58

Software-Testing_Final.indb 582 31-01-2018 15:00:58

C H A P T E R15
Basic Test Plan Template

1

Game Name

1.	 Copyright Information

Table of Contents

SECTION I: QA TEAM (and areas of responsibility)

1.	 QA Lead

a.	 Office phone

b.	 Home phone

c.	 Mobile phone

d.	 Email / IM / VOIP addresses

2.	 Internal Testers

3.	 External Test Resources

SECTION II: TESTING PROCEDURES

1.	 General Approach

a.	 Basic Responsibilities of Test Team

i.	 Bugs

1.	 Detect them as soon as possible after they enter the build

2.	 Research them

1 � This chapter appeared in Game Testing, Third Edition, C. Schultz and R. D. Bryant.
Copyright 2017 Mercury Learning and Information. All rights reserved.

Software-Testing_Final.indb 583 31-01-2018 15:00:58

584 • Software Testing

3.	 Communicate them to the dev team

4.	 Help get them resolved

5.	 Track them

ii.	 Maintain the Daily Build

iii.	 Levels of Communication. There’s no point in testing unless
the results of the tests are communicated in some fashion.
There are a range of possible outputs from QA. In increasing
levels of formality, they are:

1.	 Conversation

2.	 ICQ/IM/Chat

3.	 Email to individual

4.	 Email to group

5.	 Daily Top Bugs list

6.	 Stats/Info Dump area on DevSite

7.	 Formal Entry into Bug Tracking System

2.	 Daily Activities

a.	 The Build

i.	 Generate a daily build.

ii.	 Run the daily regression tests, as described in “Daily Tests”
which follows.

iii.	 If everything is okay, post the build so everyone can get it.

iv.	 If there’s a problem, send an email message to the entire
dev team that the new build cannot be copied, and contact
whichever developers can fix the problem.

v.	 Decide whether a new build needs to be run that day.

b.	 Daily Tests

i.	 Run though a predetermined set of single-player levels,
performing a specified set of activities.

1.	 Level #1

a.	 Activity #1

b.	 Activity #2

Software-Testing_Final.indb 584 31-01-2018 15:00:58

Basic Test Plan Template • 585

c.	 Etc.

d.	 The final activity is usually to run an automated script
that reports the results of the various tests and posts
them in the QA portion of the internal Web site.

2.	 Level #2

3.	 Etc.

ii.	 Run though a predetermined set of multiplayer levels,
performing a specified set of activities.

1.	 Level #1

a.	 Activity #1

b.	 Activity #2

c.	 Etc.

d.	 The final activity is usually for each tester involved in
the multiplayer game to run an automated script that
reports the results of the various tests and posts them
in the QA portion of the internal Web site.

2.	 Level #2

3.	 Etc.

iii.	 Email showstopper crashes or critical errors to the entire
team.

iv.	 Post showstopper crashes or critical errors to the daily top
bugs list (if one is being maintained).

3.	 Daily Reports

a.	 Automated reports from the preceding daily tests are posted in the
QA portion of the internal Web site.

4.	 Weekly Activities

a.	 Weekly tests

i.	 Run though every level in the game (not just the preset ones
used in the daily test), performing a specified set of activities
and generating a predetermined set of tracking statistics. The
same machine should be used each week.

1.	 Level #1

Software-Testing_Final.indb 585 31-01-2018 15:00:58

586 • Software Testing

a.	 Activity #1

b.	 Activity #2

c.	 Etc.

2.	 Level #2

3.	 Etc.

ii.	 Weekly review of bugs in the Bug Tracking System

1.	 Verify that bugs marked “fixed” by the development team
really are fixed.

2.	 Check the appropriateness of bug rankings relative to
where the project is in the development.

3.	 Acquire a “feel” for the current state of the game, which
can be communicated in discussions to the producer and
department heads.

4.	 Generate a weekly report of closed-out bugs.

b.	 Weekly Reports

i.	 Tracking statistics, as generated in the weekly tests.

5.	 Ad Hoc Testing

a.	 Perform specialized tests as requested by the producer, tech lead, or
other development team members

b.	 Determine the appropriate level of communication to report the
results of those tests.

6.	 Integration of Reports from External Test Groups

a.	 If at all possible, ensure that all test groups are using the same bug
tracking system.

b.	 Determine which group is responsible for maintaining the master
list.

c.	 Determine how frequently to reconcile bug lists against each other.

d.	 Ensure that only one consolidated set of bugs is reported to the
development team.

Software-Testing_Final.indb 586 31-01-2018 15:00:58

Basic Test Plan Template • 587

7.	 Focus Testing (if applicable)

a.	 Recruitment methods

b.	 Testing location

c.	 Who observes them?

d.	 Who communicates with them?

e.	 How is their feedback recorded?

8.	 Compatibility Testing

a.	 Selection of external vendor

b.	 Evaluation of results

c.	 Method of integrating filtered results into bug tracking system

SECTION III: HOW TESTING REQUIREMENTS ARE GENERATED

1.	 Some requirements are generated by this plan.

2.	 Requirements can also be generated during project meetings, or other
formal meetings held to review current priorities (such as the set of
predetermined levels used in the daily tests).

3.	 Requirements can also result from changes in a bug’s status within the
bug tracking system. For example, when a bug is marked “fixed” by a
developer, a requirement is generated for someone to verify that it has
been truly killed and can be closed out. Other status changes include
“Need More Info” and “Can’t Duplicate,” each of which creates a
requirement for QA to investigate the bug further.

a.	 Some requirements are generated when a developer wants QA to
check a certain portion of the game (see “Ad Hoc Testing”).

SECTION IV: BUG TRACKING SOFTWARE

1.	 Package name

2.	 How many seats will be needed for the project?

3.	 Access instructions (Everyone on the team should have access to the
bug list)

4.	 “How to report a bug” instructions for using the system

Software-Testing_Final.indb 587 31-01-2018 15:00:58

588 • Software Testing

SECTION V: BUG CLASSIFICATIONS

1.	 “A” bugs and their definition

2.	 “B” bugs and their definition

3.	 “C” bugs and their definition

SECTION VI: BUG TRACKING

1.	 Who classifies the bug?

2.	 Who assigns the bug?

3.	 What happens when the bug is fixed?

4.	 What happens when the fix is verified?

SECTION VII: SCHEDULING AND LOADING

1.	 Rotation Plan. How testers will be brought on and off the project, so that
some testers stay on it throughout its life cycle while “fresh eyes” are
periodically brought in.

2.	 Loading Plan. Resource plan that shows how many testers will be needed
at various points in the life of the project.

SECTION VIII: EQUIPMENT BUDGET AND COSTS

1.	 QA Team Personnel with Hardware and Software Toolset

a.	 Team Member #1

i.	 Hardware

1.	 Testing PC

a.	 Specs

2.	 Console Debug Kit

a.	 Add-ons (TV, controllers, etc.)

Software-Testing_Final.indb 588 31-01-2018 15:00:58

Basic Test Plan Template • 589

3.	 Record/capture hardware or software (see “Capture/
Playback Testing”)

ii.	 Software Tools Needed

1.	 Bug tracking software

2.	 Other

b.	 Team Member #2

c.	 Etc.

2.	 Equipment Acquisition Schedule and Costs (summary of who needs
what, when they will need it, and how much it will cost)

Software-Testing_Final.indb 589 31-01-2018 15:00:58

Software-Testing_Final.indb 590 31-01-2018 15:00:58

A P P E N D I XA
Quality Assurance and
Testing Tools

IEEE/ANSI
Standard

Software Test
Process Purpose

829–1983 Software Test
Documentation

This standard covers the entire testing process.

1008–1987 Software Unit
Testing

This standard defines an integrated approach to
systematic and documented unit testing.

1012–1986 Software
Verification and
Validation Plans

This standard provides uniform and minimum
requirements for the format and content of
software verification and validation plans.

1028–1988 Software
Reviews and
Audits

This standard provides direction to the reviewer
or auditor on the conduct of evaluations.

730–1989 Software Quality
Assurance Plans

This standard establishes a required format and
a set of minimum contents for software quality
assurance plans.

828–1990 Software
Configuration
Management
Plans

This standard is similar to IEEE standard 730, but
deals with the more limited subject of software
configuration management. This standard identifies
requirements for configuration identification,
configuration control, configuration status
reporting, configuration audits and reviews.

1061–1992 Software
Quality Metrics
Methodology

This standard provides a methodology for
establishing quality requirements. It also deals
with identifying, implementing, analyzing and
validating the process of software quality metrics.

Software-Testing_Final.indb 591 31-01-2018 15:00:58

592 • Software Testing

Description Tools

Functional/Regression Testing WinRunner
Silkiest
Quick Test Pro (QTP)
Rational Robot
Visual Test
In-house Scripts

Load/Stress Testing (Performance) LoadRunner
Astra Load Test
Application Centre Test (ATC)
In-house Scripts
Web Application Stress Tool (WAS)

Test Case Management Test Director
Test Manager
In-house Test Case Management tools

Defect Tracking TestTrack Pro
Bugzilla
Element Tool
ClearQuest
TrackRecord
In-house Defect Tracking tools of clients

Unit/Integration Testing C++ Test
JUnit
NUnit
PhpUnit
Check
Cantata++

Software-Testing_Final.indb 592 31-01-2018 15:00:58

Quality Assurance and Testing Tools • 593

Software-Testing_Final.indb 593 31-01-2018 15:00:59

594 • Software Testing

Software-Testing_Final.indb 594 31-01-2018 15:01:01

Quality Assurance and Testing Tools • 595

Software-Testing_Final.indb 595 31-01-2018 15:01:03

596 • Software Testing

Software-Testing_Final.indb 596 31-01-2018 15:01:04

Quality Assurance and Testing Tools • 597

Software-Testing_Final.indb 597 31-01-2018 15:01:06

598 • Software Testing

Software-Testing_Final.indb 598 31-01-2018 15:01:08

A P P E N D I XB
Suggested Projects

1.  ONLINE CHATTING

Develop a Software package that will act as an online community, which you
can use to meet new friends using voice, video, and text. The community has
rooms for every interest, where people can communicate by using real-time
multi-point video, text, and voice in “calls.” The package should also have
video and voice instant Messages with different colors, fonts, and overlays to
choose from, or you can participate in a real-time text chat room.

Also incorporate broadcast, where one host shares his/her video, voice,
and text chat with up to ten other viewers. Everyone involved in the broad-
cast can communicate with text chat. Also add the option of profiles; wherein
each community member has the opportunity to post a picture and some
optional personal information that can be accessed from the directory by any
other community member.

2.  DESIGN AN ANSWERING MACHINE

Design a software package, which acts as an answering machine for your
voice modem. It features call monitoring and logging, Caller ID with
pop-ups and voice alerts, customisable and personalized greetings, and
conversation recording. The answering machine can send call notifications
to your pager and voice messages via email. It can also block certain types
of incoming calls, even without Caller ID information. The package also
provides integration with sound cards, doesn’t require an extra speaker
attached to the modem, and has the ability to compress voice messages to
be forwarded via email. Add the facility of remote message retrieval and
address book.

Software-Testing_Final.indb 599 31-01-2018 15:01:08

600 • Software Testing

3.  BROWSER

Design a fast, user-friendly, versatile Internet/intranet browser, Monkey,
that also includes a newsreader. The keyboard plays an integral role in
surfing, which can make moving around the Web easy and fast. You can run
multiple windows, even at start-up, and special features are included for
users with disabilities. Other options include the ability to design your own
look for the buttons in the program; file uploading support to be used with
forms and mail; an option to turn-off tables; advanced cookie filtering; and
a host of other powerful features, including an email client enhancement,
keyboard shortcuts. Ensure also integrated search and Instant Messaging,
email support and accessibility to different Web sites.

4.  WEB LOADER

Design a software package, named Web Loader, that enables you to download
Web sites quickly to your local drive and navigate offline. It uses project files
to store lists of sites and includes several project files ready to use. Web
Loader should include predefined filters to download a complete site, a
directory (and all subdirectories in it), a page. One may be able to define
ones own customised filter by levels, external links, directories, include/
exclude links, external images, wildcards, and so on. The tool should be able
to download up to 100 files simultaneously. It should also print an entire site
or only specific parts of it. The tool should offer support that allow to specify
an account name and password to access secure Web sites.

5.  WEB CATCHER

Design a multipurpose software package, Web Catcher, that allows you to
capture Web pages and store on the hard disk for offline viewing. The tool
should create photo albums, greeting cards, etc. Package any item created
or captured in a special format so that it can be emailed from within the
program using your personal email account Develop a drop-down menu
that records the addresses from any open browser window, allowing to easily
select which pages to download. Also specify the link depth of each capture.
The Web Catcher engine should be able to capture different file formats and
Web-based publishing languages.

Software-Testing_Final.indb 600 31-01-2018 15:01:08

Suggested Projects • 601

6.  WEATHER MATE

Develop a software package that receives up-to-date weather information on
your desktop from the Internet. Retrieve weather forecasts from hundreds
of major cities in countries around the world. You can also generate assorted
full-color weather maps. Configure Weather Mate to update weather
information at set intervals, and resides in the system tray. The system tray
icon changes to reflect the current weather. Also add the feature “Speak
Forecast” option using Microsoft Agent 2.0, which allows you to have your
local or extended forecast read to you.

7.  PARTY PLANNER

With Party Planner, you can create guest lists for parties, weddings, ban-
quets, reunions, and more. You can also assign meals and plan seating
arrangements. You can have up to 1,000 guests with 100 on a reserve list,
plan ten different meals, and arrange up to 99 tables (with upto 50 guests at
each). You can print several different reports for all of these lists.

8.  SMILING JOKER

Develop a software package, Smiling Joker, which uses text-to-speech and
voice recognition technology to make it fully interactive. It should be able
to tell you jokes, useless facts, and even sing to you. It also has a built in cal-
endar, which it uses to remind you of appointments, birthdays, due dates, or
anything else you want it to remind you about. It should also have the ability
to read aloud your email, Web page, or anything else you want it to read.

9.  MYTOOL

Prepare a project, named MyTool, which is an all-in-one desktop and system
utility program. Its features include an easy-to-use personal calendar that
helps you manage your daily events and can remind you of important events
in a timely manner. You can create quick notes on your desktop with the
embedded WordPad applet. Schedule events, shut down Windows, down
load software, and more, all automatically at intervals you set.

Software-Testing_Final.indb 601 31-01-2018 15:01:08

602 • Software Testing

10.  TIMETRAKER

Track the time using your computer. Set alarms for important appointments,
lunch, and so on. Sum the time spent on projects weekly, monthly, yearly,
and do much more.

11.  SPEAKING CALENDAR

Develop a software package, named Speaking Calendar, that announces and
speaks. It also speaks the date and appointments to you. You may set as many
appointments or alarms as you wish. You can also choose whether you want
to confirm the message and whether the message should be repeated every
hour, week, or month, or played only once. This tool also allow you to select
your favourite music or song to provide a wake-up tune for your morning
routine. Let it support various formats, such as MP3, WAV files, and all basic
CD formats for your musical selection. You may use Microsoft Speaking
Agent, if you like.

12.  DATA VIEWER

Design a software tool, called Data Viewer, which provides a common
interface to databases. You should be able to view tables and schemes in
a convenient tree view, execute queries and updates. Exhibit results in
table format. Results may be saved or viewed as HTML and also forwarded
as email.

13.  CLASS BROWSER

Design a tool, named, Class Browser, which allows developers to view
methods, fields, strings constants, referred classes, and referred methods
defined in the Java/C++ class file. Classes can be either locally stored or
downloaded from the Web site. This tool should allow users to browse into
any referred class.

Software-Testing_Final.indb 602 31-01-2018 15:01:08

Suggested Projects • 603

14.  CODE ANALYZER

Develop a tool, called Code Analyzer, that checks the Java/C++/C/Visual
Basic source code conforms to a set of coding convention rules.

15.  CODE COVERAGE

Design a software tool, named Code Coverage, which allows automatic location
of untested code in Java/C++/C/Visual Basic applications. It should tell exactly
what method, line and block of code in the program did or did not execute,
listed per class, file, and method. It should measure and track code execution.

16.  VERNACULAR WORD

Develop a word processor for Spanish. You should be able to send emails,
build Web sites and export the language text into a graphic software such as
Adobe PhotoShop.

17.  FEECHARGER

Translators, language professionals, and international writers charge based
upon the number of words, lines, and/or characters in the documents they
handle. They need to check the currency conversion rates very frequently.
They go online, find and calculate the current rate. Design a tool that does
all this.

18.  ENGLISH-SPANISH TRANSLATOR

Design a tool to translate words from English to Spanish by right clicking.
Select a word in any active window, then right-click; the translator will pop
up and show you the translation. Click on synonyms to find similar words.
A hierarchical display should show you the translation, organized by parts
of speech. If you want the adjective form of a noun, a click should show it.
Select the word you want, and it should be replaced in the active document.
You should be able to get conjugation, tense, and gender, as well as synonym
phrases and root words.

Software-Testing_Final.indb 603 31-01-2018 15:01:08

604 • Software Testing

19.  PROTECT PC

Develop a software tool, named Protect PC, which locks and hides desired
folders, files, data, and applications. The tool should provide a user-
friendly solution for security and privacy. It should have the security and
privacy of 128‑bit encryption. Also have the feature so that hackers cannot
find encrypted files. Also provide Network, FDD, and CD-ROM Locking
functions, and a Delete function for List of Recent Documents and Windows
Explorer.

20.  SECURE DEVICE

Design a software tool, named, Secure Device, which gives network
administrators control over which users can access what removable devices
(DVDs, etc.) on a local computer. It should control access to DVDs, or
any other device, depending on the time and date. Windows System
Administrators should have access control and be able to control removable
disk usage. It should protect network and local computers against viruses,
Trojans, and other malicious programs often introduced by removable disks.
Network administrators should be able to flush a storage device’s buffers.
Try to build remote control also, if possible.

21.  DATA ENCRYPTOR

Develop a software package, named Data Encryptor, which allows using five
well known, highly secure encryption algorithms. The tool should help to
encrypt single files, groups of files, or entire folders, including all subfolders,
quickly and easily. One should be able to work with encrypted folders as sim-
ply as with usual folders (except entering the unlocking password). The tool
should assess the efficiency of encryption and decryption algorithms also.

22.  INTERNET CONTROLLER

Parents, schools, libraries and anyone else can control access to the Internet.
It may also be desired to monitor which Websites users visit, what they type
(via keystroke logging), which programs they access, and the time they spend

Software-Testing_Final.indb 604 31-01-2018 15:01:08

Suggested Projects • 605

using the programs. You may also like to secure Windows so that users can-
not run unauthorized programs or modify Windows configurations such as
wallpaper and network settings. Develop a software tool to do all this with
additional features, such as screenshot capturing, enhanced keystroke cap-
turing (captures lowercase and special characters), ability to email log files
to a specific email address.

23.  WEB SPY

Design a software tool, named Web Spy, which automatically records every
screen that appears on your PC. It records the Websites visited, incoming and
outgoing email, chat conversations, passwords, and every open application
invisibly. Frames can be played back like a video recording, enabling you
to see what they have. Include the features—inactivity suspend, color,
password protection, single frame viewing, fast forward, rewind, save,
search, and print.

24.  FAXMATE

Design a software tool, FaxMate, which creates, sends, and receives faxes.
The incoming faxes should be announced by customizing the program with
sound file. Include a library of cover sheet templates, and provide a phone
number database for frequently used numbers. Use the latest fax technol-
ogy, including fax-modem autodetection.

25.  PROJECT TRAKER

Develop a software tool, Project Traker, which helps to manage software
development projects by tracking software bugs, action items, and change
requests with problem reports. Try to include the following features as far
as possible:

�� Records problem reports in a network database.
�� Supports simultaneous access to the database by multiple users.
�� Supports multiple projects.
�� Supports configuration of data collection for each project.

Software-Testing_Final.indb 605 31-01-2018 15:01:08

606 • Software Testing

�� Supports configuration of workflow for each project.
�� Redundant data storage for speed and backup.
�� Classifies problems according to priority, type, and other properties.
�� Supports sort and search operations on the database or problem reports.
�� Assign personnel to perform the tasks required to correct bugs.
�� Tracks the tasks of problem investigation, resolution, and verification.
�� Determines which testing methods are most effective in detecting bugs.
�� Helps estimate the time required to complete projects.
�� Estimates personnel work load.
�� Exports reports in HTML format.
�� Email notification.
�� Supports document attachment.

26.  SOURCE TRANSLATOR

Design a software tool that translates Visual basic program source code into
different languages. Include the following features:

�� Autosearching of strings (text lines) in source codes.
�� The ability to manually translate strings.
�� Functions with string lists, including search, delete, and so on.
�� The ability to import strings from a file.
�� The ability to automatically replace translated strings.

Allow at least five files to be translated.

27.  SOURCE LINE COUNTER

Develop a software tool, named Source Line Counter, which counts the
number of lines of code in a given software file or project of a source code
of any high level language, CC++/Java/Pascal/Visual Basic. In fact, this tool
should accurately count almost any language that uses comment line and
comment block delimiters SLC should also permit to recursively count files
in a directory based on a selected HLL, or automatically count all of the
known file types in a directory.

Software-Testing_Final.indb 606 31-01-2018 15:01:08

Suggested Projects • 607

28.  IMAGE VIEWER

Develop a software, named Image Viewer, which views and edits images
and supports all major graphic formats, including BMP, DIB, JPEG, GIF,
animated GIF, PNG, PCX, multipage TIFF, TGA, and others. It should
also have features such as drag-and-drop, directory viewing, TWAIN sup-
port, slide shows, batch conversions, and modifications such as color depth,
crop, blur, and sharpen. Incorporate thumbnail, print, batch, and view menu
options as well.

29.  MOVIEEDITOR

Develop a software tool, named MovieEditor, which can edit and animate
video clips, add titles and audio, or convert video formats. It should support
real-time preview and allow experimenting as well. Build Internet function-
ality such as Real Video, ASF, and Quicktime into this tool. The tool should
also have the capability so that all current video, graphic, and audio formats
can be imported into a video production, animated, and played back in dif-
ferent formats. The tool should convert all current image, video, and audio
files, and may be used as a multimedia browser for displaying, searching,
and organizing images, videos, and audio files. It should provide support for
both native DV and Fire Wire interfaces with integrated device control for
all current camcorders.

30.  TAXMASTER

Develop a software package, named TaxMaster, which helps to complete
income tax and sales tax returns. It should make available all the rules,
forms, schedules, worksheets and information available in the US scenario
to complete the tax forms. The tool should calculate returns for the user,
then review the return and send alert for possible errors. It should provide
the facility to file the return electronically or print a paper return, so your
tool should be available on the Web.

Software-Testing_Final.indb 607 31-01-2018 15:01:08

608 • Software Testing

31.  CALENDAR DESIGNER

Develop a software tool, named Calendar Designer, which creates person-
alised calendars, and has scheduling features as well. Build into it dialogs
and a wizard that guides you through the process of creating and modifying
event entries for your calendar. Have the preview feature for the calendar.
Create monthly printouts with font and color formatting with different color
combinations to make the calendar attractive. Include also the feature that
reminds you of upcoming events at system startup.

32.  DIGITAL CIRCUITS

Develop the graphical design tool, named Digital Circuits, which enables
you to construct digital logic circuits and to analyze their behavior. Circuits
can be composed of simple gates (AND, OR, NAND, NOR, XOR, XNOR,
NOT) and simple flip-flops (D, RS, and JK). You can also use tri-state logic
to construct systems with buses. Digital Circuits also provides mechanisms
for detecting race conditions and bus contention.

The package should have the feature to create macros, so that you can
convert a circuit into a logic element itself. The new logic element can be
used as a building block in the construction of more complex circuits. The
complex circuit can also be converted into a new logic element, and so on.

This would enable you to create a hierarchy of digital objects, with each
new level hiding the complexity of its implementation. Some examples of
macros are: counters, shift registers; data registers. You should be able to
create even integrated circuits e.g., a 74HC08.

33.  RANDOM TEST GENERATOR

Develop a package, named Random Test Generator, which will create tests
made up of randomly selected questions from test data banks that you cre-
ate. The tool should make a selection of questions as to how many questions
you want from different data banks. The program should not select the same
question twice for the same test. You should be able to create as many tests
as you need with a single each student can have a different test. Add Internet
testing capabilities with automatic HTML creation and a Test Item Analysis
feature to track every test question for purposes of analysis.

Software-Testing_Final.indb 608 31-01-2018 15:01:08

Suggested Projects • 609

34.  METRIC

Study and define metrics for any of the programming languages Java/C++/C/
Perl/Visual Basic. Develop a software tool, called Metric, which determines
the source code and McCabe metrics for these languages.

35.  FUNCTIONPTESTIMATOR

Study the function point method for size estimation for software projects.
Design a software package, named FunctionPtEstimator, which computes
the function points and the corresponding KLOC for a project. Your tool
should be able to prepare a comparative analysis for different programming
languages.

36.  RISK ANALYZER

Develop a software tool, named Risk Analyzer, which estimates and analyzes
risk involved in any software Project at the different stages of its develop-
ment, such as Requirement Specification and Analysis, Design, Coding,
Testing, and so on.

37.  WEB ANALYZER

Develop a front-end software tool, in Java, for Web log analysis providing the
following capabilities: different reports, customized reports, path analysis,
management of reports, auto scheduling of report generation, exporting data
to spreadsheets, support for proxy logs, intranet reports, and customizable
log format.

38.  CLASS VIEWER

Design a tool, named Class Viewer, in Java, which allows developers to view
methods, fields, string constants, referred classes and referred methods
defined in the Java class file. Classes can be either locally stored or down-
loaded from the Web site. Class Viewer should allow users to browse into
any referred class.

Software-Testing_Final.indb 609 31-01-2018 15:01:08

610 • Software Testing

39.  STRUCTURE TESTER

Develop a software tool, named Structure Tester, in Java, which analyzes
C/C++/Java source code. It should perform function coverage, that is,
whether each function is invoked, branch coverage, that is, whether each
branch point is followed in every possible direction; condition/decision cov-
erage (whether each condition within a decision is exercised), and multiple
condition coverage (whether all permutations of a condition is exercised).

40.  WORLDTIMER

Develop a software tool, named WorldTimer, which displays the date and
time of cities around the globe in 8 Clocks. It should provide information,
such as language, population, currency and telephone codes, of the capital
cities of all the countries. It should show the sunrise/sunset line in a world
map and the difference in time between any two cities.

Software-Testing_Final.indb 610 31-01-2018 15:01:08

A P P E N D I XC
Glossary

Abstract class: A class that cannot be instantiated, i.e., it cannot have any instances.
Abstract test case: See high-level test case.
Acceptance: See acceptance testing.
Acceptance criteria: The exit criteria that a component or system must satisfy in
order to be accepted by a user, customer, or other authorized entity. [IEEE 6.10]
Acceptance testing: It is done by the customer to check whether the product
is ready for use in the real-life environment. Formal testing with respect to user
needs, requirements, and business processes conducted to determine whether or
not a system satisfies the acceptance criteria and to enable the user, customers, or
other authorized entity to determine whether or not to accept the system. [After
IEEE 610]
Accessibility testing: Testing to determine the ease by which users with disabilities
can use a component or system. [Gerrard]
Accuracy: The capability of the software product to provide the right or agreed
results or effects with the needed degree of precision. [ISO 9126] See also
functionality testing.
Activity: A major unit of work to be completed in achieving the objectives of a
hardware/ software project.
Actor: An actor is a role played by a person, organization, or any other device which
interacts with the system.
Actual outcome: See actual result.
Actual result: The behavior produced/observed when a component or system is
tested.
Ad hoc review: See informal review.
Ad hoc testing: Testing carried out informally; no formal test preparation takes
place, no recognized test design technique is used, there are no expectations for
results and randomness guides the test execution activity.
Adaptability: The capability of the software product to be adapted for different
specified environments without applying actions or means other than those provided
for this purpose for the software considered. [ISO 9126] See also portability testing.

Software-Testing_Final.indb 611 31-01-2018 15:01:08

612 • Software Testing

Agile testing: Testing practice for a project using agile methodologies, such as
extreme programming (XP), treating development as the customer of testing and
emphasizing the test-first design paradigm.
Aggregation: Process of building up of complex objects out of existing objects.
Algorithm test [TMap]: See branch testing.
Alpha testing: Simulated or actual operational testing by potential users/customers
or an independent test team at the developers’ site, but outside the development
organization. Alpha testing is often employed as a form of internal acceptance testing.
Analyst: An individual who is trained and experienced in analyzing existing systems
to prepare SRS (software requirement specifications).
Analyzability: The capability of the software product to be diagnosed for
deficiencies or causes of failures in the software, or for the parts to be modified to
be identified. [ISO 9126] See also maintainability testing.
Analyzer: See static analyzer.
Anomaly: Any condition that deviates from expectation based on requirements
specifications, design documents, user documents, standards, etc. or from someone’s
perception or experience. Anomalies may be found during, but not limited to,
reviewing, testing, analysis, compilation, or use of software products or applicable
documentation. [IEEE 1044] See also defect, deviation, error, fault, failure, incident,
or problem.
Arc testing: See branch testing.
Atomicity: A property of a transaction that ensures it is completed entirely or not
at all.
Attractiveness: The capability of the software product to be attractive to the user.
[ISO 9126] See also usability testing.
Audit: An independent evaluation of software products or processes to ascertain
compliance to standards, guidelines, specifications, and/or procedures based on
objective criteria, including documents that specify: (1) the form or content of the
products to be produced, (2) the process by which the products shall be produced,
and (3) how compliance to standards or guidelines shall be measured. [IEEE 1028]
Audit trail: A path by which the original input to a process (e.g., data) can be
traced back through the process, taking the process output as a starting point. This
facilitates defect analysis and allows a process audit to be carried out. [After TMap]
Automated testware: Testware used in automated testing, such as tool scripts.
Availability: The degree to which a component or system is operational and
accessible when required for use. Often expressed as a percentage. [IEEE 610]
Back-to-back testing: Testing in which two or more variants of a component or
system are executed with the same inputs, the outputs compared, and analyzed in
cases of discrepancies. [IEEE 610]

Software-Testing_Final.indb 612 31-01-2018 15:01:08

Glossary • 613

Baseline: A specification or software product that has been formally reviewed or
agreed upon, that thereafter serves as the basis for further development, and that
can be changed only through a formal change control process. [After IEEE 610] A
hardware/software work product that has been formally reviewed and agreed upon,
which serves as the basis for further development.
Basic block: A sequence of one or more consecutive executable statements
containing no branches.
Basis test set: A set of test cases derived from the internal structure or specification
to ensure that 100% of a specified coverage criterion is achieved.
Bebugging: See error seeding. [Abbott]
Behavior: The response of a component or system to a set of input values and
preconditions.
Benchmark test: (1) A standard against which measurements or comparisons can
be made. (2) A test that is to be used to compare components or systems to each
other or to a standard as in (1). [After IEEE 610]
Bespoke software: Software developed specifically for a set of users or customers.
The opposite is off-the-shelf software.
Best practice: A superior method or innovative practice that contributes to the
improved performance of an organization under given context, usually recognized
as “best” by other peer organizations.
Beta testing: Operational testing by potential and/or existing users/customers at
an external site not otherwise involved with the developers, to determine whether
or not a component or system satisfies the user/customer needs and fits within the
business processes. Beta testing is often employed as a form of external acceptance
testing in order to acquire feedback from the market.
Big-bang testing: Testing all modules at once. A type of integration testing in
which software elements, hardware elements, or both are combined all at once into
a component or an overall system, rather than in stages. [After IEEE 610] See also
integration testing.
Black-box technique: See black-box test design technique.
Black-box test design technique: Documented procedure to derive and select test
cases based on an analysis of the specification, either functional or non-functional, of
a component or system without reference to its internal structure.
Black-box testing: Testing, either functional or non-functional, without reference
to the internal structure of the component or system.
Blocked test case: A test case that cannot be executed because the preconditions
for its execution are not fulfilled.
Bohr bug: A repeatable bug; one that manifests reliably under a possibly unknown
but well defined set of conditions.

Software-Testing_Final.indb 613 31-01-2018 15:01:08

614 • Software Testing

Bottom-up testing: An incremental approach to integration testing where the
lowest level components are tested first, and then used to facilitate the testing of
higher level components. This process is repeated until the component at the top of
the hierarchy is tested. See also integration testing.
Boundary value: An input value or output value which is on the edge of an
equivalence partition or at the smallest incremental distance on either side of an
edge, for example, the minimum or maximum value of a range.
Boundary value analysis: A black-box test design technique in which test cases
are designed based on boundary values.
Boundary value coverage: The percentage of boundary values that have been
exercised by a test suite.
Boundary value testing: See boundary value analysis.
Brainstorming: The process of obtaining ideas, opinions, and answers to a question
in groups. The members of the group are given the opportunity to contribute.
Branch: A basic block that can be selected for execution based on a program
construct in which one of two or more alternative program paths are available, e.g.,
case, jump, go to, ifthen-else.
Branch condition: See condition.
Branch condition combination coverage: See multiple condition coverage.
Branch condition combination testing: See multiple condition testing.
Branch condition coverage: See condition coverage.
Branch coverage: The percentage of branches that have been exercised by a
test suite. 100% branch coverage implies both 100% decision coverage and 100%
statement coverage.
Branch testing: A white-box test design technique in which test cases are designed
to execute branches.
Budget: A statement of management plans and expected results expressed in
numbers, quantitative, and monetary terms.
Bug: See defect.
Build: Builds are versions or redesigns of a project that is in development.
Business process-based testing: An approach to testing in which test cases are
designed based on descriptions and/or knowledge of business processes.
Capability maturity model (CMM): A five-level staged framework that describes
the key elements of an effective software process. The capability maturity model
covers practices for planning, engineering, and managing software development and
maintenance. [CMM]
Capability maturity model integration (CMMI): A framework that describes the
key elements of an effective product development and maintenance process. The
capability maturity model integration covers practices for planning, engineering,

Software-Testing_Final.indb 614 31-01-2018 15:01:08

Glossary • 615

and managing product development and maintenance. CMMI is the designated
successor of the CMM. [CMMI]
Capture/playback tool: A type of test execution tool where inputs are recorded
during manual testing in order to generate automated test scripts that can be
executed later (i.e., replayed). These tools are often used to support automated
regression testing.
Capture/replay tool: See capture/playback tool.
CASE: Acronym for Computer Aided Software Engineering.
CAST: Acronym for Computer Aided Software Testing. See also test automation.
Cause-effect analysis: See cause-effect graphing.
Cause-effect decision table: See decision table.
Cause-effect graph: A graphical representation of inputs and/or stimuli (causes)
with their associated outputs (effects) which can be used to design test cases.
Cause-effect graphing: A black-box test design technique in which test cases are
designed from cause-effect graphs. [BS 7925/2]
Certification: The process of confirming that a component, system, or person
complies with its specified requirements, e.g., by passing an exam.
Changeability: The capability of the software product to enable specified
modifications to be implemented. [ISO 9126] See also maintainability.
Checker: See reviewer.
Chow’s coverage metrics: See N-switch coverage. [Chow]
Class: It provides a blueprint for an object.
Class diagram: A diagram used to show the static view of the system in terms of
classes and their relationships.
Classification tree method: A black-box test design technique in which test cases,
described by means of a classification tree, are designed to execute combinations of
representatives of input and/or output domains. [Grochtmann]
Code analyzer: See static code analyzer.
Code coverage: An analysis method that determines which parts of the software
have been executed (covered) by the test suite and which parts have not been
executed, e.g., statement coverage, decision coverage, or condition coverage.
Code-based testing: See white-box testing.
Co-existence: The capability of the software product to co-exist with other
independent software in a common environment sharing common resources. [ISO
9126] See portability testing.
Collaboration diagram: A diagram that focuses on object interactions irrespective
of time.

Software-Testing_Final.indb 615 31-01-2018 15:01:08

616 • Software Testing

Commercial off-the-shelf (COTS) software: Hardware and software can be
purchased and placed in service without additional development cost for the system
or component. See off-the-shelf software.
Comparator: See test comparator.
Comparison/back-to-back testing: It detects test failures by comparing the
output of two or more programs complemented to the same specification.
Compatibility testing: See interoperability testing.
Complete testing: See exhaustive testing.
Completion criteria: See exit criteria.
Complexity: The degree to which a component or system has a design and/
or internal structure that is difficult to understand, maintain, and verify. See also
cyclomatic complexity.
Compliance: The capability of the software product to adhere to standards,
conventions, or regulations in laws and similar prescriptions. [ISO 9126]
Compliance testing: The process of testing to determine the compliance of a
component or system.
Component: A minimal software item that can be tested in isolation.
Component integration testing: Testing performed to expose defects in the
interfaces and interaction between integrated components.
Component specification: A description of a component’s function in terms of its
output values for specified input values under specified conditions, and required
non-functional behavior (e.g., resource-utilization).
Component testing: The testing of individual software components. [After IEEE
610]
Compound condition: Two or more single conditions joined by means of a logical
operator (AND, OR, or XOR), e.g., “A>B AND C>1000.”
Computer Aided Software Engineering (CASE): Are the automated tools
that help a software engineer to automatically perform some tasks which if done
manually, are very tedious and cumbersome.
Concrete test case: See low-level test case.
Concurrency testing: Testing to determine how the occurrence of two or more
activities within the same interval of time, achieved either by interleaving the
activities or by simultaneous execution, is handled by the component or system.
[After IEEE 610]
Condition: A logical expression that can be evaluated as True or False, e.g., A>B.
See also test condition.
Condition combination coverage: See multiple condition coverage.
Condition combination testing: See multiple condition testing.

Software-Testing_Final.indb 616 31-01-2018 15:01:08

Glossary • 617

Condition coverage: The percentage of condition outcomes that have been
exercised by a test suite. 100% condition coverage requires each single condition in
every decision statement to be tested as True and False.
Condition determination coverage: The percentage of all single condition
outcomes that independently affect a decision outcome that have been exercised
by a test case suite. 100% condition determination coverage implies 100% decision
condition coverage.
Condition determination testing: A white-box test design technique in which
test cases are designed to execute single condition outcomes that independently
affect a decision outcome.
Condition outcome: The evaluation of a condition to True or False.
Condition testing: A white-box test design technique in which test cases are
designed to execute condition outcomes.
Confidence test: See smoke test.
Configuration: The composition of a component or system as defined by the
number, nature, and interconnections of its constituent parts.
Configuration auditing: The function to check on the contents of libraries of
configuration items, e.g., for standards compliance. [IEEE 610]
Configuration control: An element of configuration management, consisting
of the evaluation, coordination, approval or disapproval, and implementation of
changes to configuration items after formal establishment of their configuration
identification. [IEEE 610]
Configuration identification: An element of configuration management,
consisting of selecting the configuration items for a system and recording their
functional and physical characteristics in technical documentation. [IEEE 610]
Configuration item: An aggregation of hardware, software, or both, that is
designated for configuration management and treated as a single entity in the
configuration management process. [IEEE 610]
Configuration management: A discipline applying technical and administrative
direction and surveillance to: identify and document the functional and physical
characteristics of a configuration item, control changes to those characteristics,
record and report change processing and implementation status, and verify
compliance with specified requirements. [IEEE 610]
Configuration testing: See portability testing.
Confirmation testing: See retesting.
Conformance testing: See compliance testing.
Consistency: The degree of uniformity, standardization, and freedom from
contradiction among the documents or parts of a component or system. [IEEE 610]

Software-Testing_Final.indb 617 31-01-2018 15:01:08

618 • Software Testing

Control flow: An abstract representation of all possible sequences of events (paths)
in the execution through a component or system.
Control flow graph: See control flow.
Control flow path: See path.
Conversion testing: Testing of software used to convert data from existing systems
for use in replacement systems.
Correctness: The extent to which software is free from faults.
Cost-benefit analysis: The process of deciding whether to do something by
evaluating the costs of doing it and the benefits of doing it.
COTS: Acronym for Commercial off-the-shelf software.
Coverage: The degree to which a software feature or characteristic is tested or
analyzed. A measure of test completeness. The degree, expressed as a percentage,
to which a specified coverage item has been exercised by a test suite.
Coverage analysis: Measurement of achieved coverage to a specified coverage
item during test execution referring to predetermined criteria to determine whether
additional testing is required and, if so, which test cases are needed.
Coverage item: An entity or property used as a basis for test coverage, e.g.,
equivalence partitions or code statements.
Coverage tool: A tool that provides objective measures of what structural elements,
e.g., statements and branches have been exercised by the test suite.
Critical path method (CPM): A method that shows the analysis of paths in an
activity graph among different milestones of the project.
Custom software: Software that is developed to meet the specific needs of a
particular customer. See bespoke software.
Cyclomatic complexity: The number of independent paths through a program.
Cyclomatic complexity is defined as: L – N + 2P, where – L = the number of
edges/links in a graph – N = the number of nodes in a graph – P = the number
of disconnected parts of the graph (e.g., a calling graph and a subroutine). [After
McCabe]
Cyclomatic number: See cyclomatic complexity.
Data definition: An executable statement where a variable is assigned a value.
Data driven testing: A scripting technique that stores test input and expected
results in a table or spreadsheet, so that a single control script can execute all of
the tests in the table. Data driven testing is often used to support the application of
test execution tools such as capture/playback tools. [Fewster and Graham] See also
keyword driven testing.
Data flow: An abstract representation of the sequence and possible changes of the
state of data objects, where the state of an object is a creation, usage, or destruction.
[Beizer]

Software-Testing_Final.indb 618 31-01-2018 15:01:08

Glossary • 619

Data flow analysis: A form of static analysis based on the definitions and usage of
variables.
Data flow coverage: The percentage of definition-use pairs that have been
exercised by a test case suite.
Data flow test: A white-box test design technique in which test cases are designed
to execute definitions and use pairs of variables.
Dead code: See unreachable code.
Debugger: See debugging tool.
Debugging: The process of finding, analyzing, and removing the causes of failures
in software.
Debugging tool: A tool used by programmers to reproduce failures, investigate
the state of programs, and find the corresponding defect. Debuggers enable
programmers to execute programs step by step to halt a program at any program
statement and to set and examine program variables.
Decision: A program point at which the control flow has two or more alternative
routes. A node with two or more links to separate branches.
Decision condition coverage: The percentage of all condition outcomes and
decision outcomes that have been exercised by a test suite. 100% decision condition
coverage implies both 100% condition coverage and 100% decision coverage.
Decision condition testing: A white-box test design technique in which test cases
are designed to execute condition outcomes and decision outcomes.
Decision coverage: The percentage of decision outcomes that have been exercised
by a test suite. 100% decision coverage implies both 100% branch coverage and
100% statement coverage.
Decision outcome: The result of a decision (which therefore determines the
branches to be taken).
Decision table: A table showing combinations of inputs and/or stimuli (causes)
with their associated outputs and/or actions (effects) which can be used to design
test cases. It lists various decision variables, the conditions assumed by each of the
decision variables, and the actions to take in each combination of conditions.
Decision table testing: A black-box test design technique in which test cases are
designed to execute the combinations of inputs and/or stimuli (causes) shown in a
decision table. [Veenendaal]
Decision testing: A white-box test design technique in which test cases are
designed to execute decision outcomes.
Defect: A flaw in a component or system that can cause the component or system to
fail to perform its required function, e.g., an incorrect statement or data definition.
A defect, if encountered during execution, may cause a failure of the component or
system.

Software-Testing_Final.indb 619 31-01-2018 15:01:08

620 • Software Testing

Defect bash: It is an adhoc testing, done by people performing different roles in
the same time duration during the integration testing phase.
Defect density: The number of defects identified in a component or system divided
by the size of the component or system (expressed in standard measurement terms,
e.g., lines-of code, number of classes, or function points).
Defect detection percentage (DDP): The number of defects found by a test
phase, divided by the number found by that test phase and any other means
afterwards.
Defect management: The process of recognizing, investigating, taking action, and
disposing of defects. It involves recording defects, classifying them, and identifying
the impact. [After IEEE 1044]
Defect management tool: See incident management tool.
Defect masking: An occurrence in which one defect prevents the detection of
another. [After IEEE 610]
Defect report: A document reporting on any flaw in a component or system that
can cause the component or system to fail to perform its required function. [After
IEEE 829]
Defect tracking tool: See incident management tool.
Definition-use pair: The association of the definition of a variable with the use of
that variable. Variable uses include computational (e.g., multiplication) or to direct
the execution of a path (“predicate” use).
Deliverable: Any (work) product that must be delivered to someone other than the
(work) product’s author.
Delphi technique: Several participants make their individual cost estimates and
then share them.
Design-based testing: An approach to testing in which test cases are designed
based on the architecture and/or detailed design of a component or system (e.g.,
tests of interfaces between components or systems).
Desk checking: Testing of software or specification by manual simulation of its
execution. A manual analysis of a work product to discover errors.
Development testing: Formal or informal testing conducted during the
implementation of a component or system, usually in the development environment
by developers. [After IEEE 610]
Deviation: See incident.
Deviation report: See incident report.
Dirty testing: See negative testing.
Divide-and-conquer (or Decomposition): The process of dividing something
large into smaller units (called modules) so as to simplify our tasks. It is appliciable
to cost estimation, design, and testing.

Software-Testing_Final.indb 620 31-01-2018 15:01:08

Glossary • 621

Documentation testing: To ensure that the documentation is consistent with the
product. Testing the quality of the documentation, e.g., user guide or installation
guide.
Domain: The set from which valid input and/or output values can be selected.
Domain testing: The execution of test cases developed by analysis of input data
relationships and constraints. Domain testing exploits the tester’s domain knowledge
to test the suitability of the product to what the users do on a typical day.
Driver: In bottom-up integration, we start with the leaves of the decomposition tree
and test them with specially coded drivers. Less throw-away code exists in drivers
than there is in stubs. A software component or test tool that replaces a component
that takes care of the control and/or the calling of a component or system. [After
TMap]
Duplex testing: A test bed where the test driver runs on a computer system
separate from the computer system where the system-under-test (SUT) runs.
Dynamic analysis: The process of evaluating behavior, e.g., memory performance,
CPU usage, of a system, or component during execution. [After IEEE 610]
Dynamic comparison: Comparison of actual and expected results, performed
while the software is being executed, for example, by a test execution tool.
Dynamic testing: Testing that involves the execution of the software of a component
or system.
Efficiency: The capability of the software product to provide appropriate
performance, relative to the amount of resources used under stated conditions.
[ISO 9126]
Efficiency testing: The process of testing to determine the efficiency of a software
product.
Elementary comparison testing: A black-box test design technique in which test
cases are designed to execute combinations of inputs using the concept of condition
determination coverage. [TMap]
Embedded software: A software to run in specific hardware devices. It is
embedded in ROM.
Emulator: A device, computer program, or system that accepts the same inputs and
produces the same outputs as a given system. [IEEE 610] See also simulator.
Encapsulation: The wrapping up of data and function into a single unit.
Entry criteria: The set of generic and specific conditions for permitting a process
to go forward with a defined task, e.g., test phase. The purpose of entry criteria is to
prevent a task from starting which would entail more (wasted) effort compared to
the effort needed to remove the failed entry criteria. [Gilb and Graham]
Entry point: The first executable statement within a component.
Equivalence class: See equivalence partition.

Software-Testing_Final.indb 621 31-01-2018 15:01:08

622 • Software Testing

Equivalence partition: A portion of an input or output domain for which the
behavior of a component or system is assumed to be the same, based on the
specification.
Equivalence partition coverage: The percentage of equivalence partitions that
have been exercised by a test suite.
Equivalence partitioning: A black-box test design technique in which test cases
are designed to execute representatives from equivalence partitions. In principle,
test cases are designed to cover each partition at least once.
Error: A human action that produces an incorrect result. [After IEEE 610]
Error guessing: A test design technique where the experience of the tester is used
to anticipate what defects might be present in the component or system-under-test
as a result of errors made, and to design tests specifically to expose them.
Error seeding: It determines whether a set of test cases is adequate by inserting
known error types into the program and executing it with test cases. The process
of intentionally adding known defects to those already in the component or system
for the purpose of monitoring the rate of detection and removal, and estimating the
number of remaining defects. [IEEE 610]
Error tolerance: The ability of a system or component to continue normal
operation despite the presence of erroneous inputs. [After IEEE 610]
Evaluation: See testing.
Event: Something that causes a system or object to change state.
Exception handling: Behavior of a component or system in response to erroneous
input, from either a human user or from another component or system, or to an
internal failure.
Executable statement: A statement which, when compiled, is translated into
object code, and which will be executed procedurally when the program is running
and may perform an action on data.
Exercised: A program element is said to be exercised by a test case when the input
value causes the execution of that element, such as a statement, decision, or other
structural element.
Exhaustive testing: A test approach in which the test suite comprises all
combinations of input values and preconditions.
Exit criteria: The set of generic and specific conditions, agreed upon with the
stakeholders, for permitting a process to be officially completed. The purpose of exit
criteria is to prevent a task from being considered completed when there are still
outstanding parts of the task which have not been finished. Exit criteria are used by
testing to report against and to plan when to stop testing. [After Gilb and Graham]
Exit point: The last executable statement within a component.

Software-Testing_Final.indb 622 31-01-2018 15:01:08

Glossary • 623

Expected outcome: See expected result.
Expected result: The behavior predicted by the specification, or another source, of
the component or system under specified conditions.
Exploratory testing: Testing where the tester actively controls the design of the
tests as those tests are performed and uses information gained while testing to
design new and better tests. [Bach]
Fail: A test is deemed to fail if its actual result does not match its expected result.
Failure: Actual deviation of the component or system from its expected delivery,
service, or result. [After Fenton]
Failure mode: The physical or functional manifestation of a failure. For example,
a system in failure mode may be characterized by slow operation, incorrect outputs,
or complete termination of execution.
Failure mode and effect analysis (FMEA): A systematic approach to risk
identification and analysis of identifying possible modes of failure and attempting to
prevent their occurrence.
Failure rate: The ratio of the number of failures of a given category to a given
unit of measure, e.g., failures per unit of time, failures per number of transactions,
failures per number of computer runs. [IEEE 610]
Fault: See defect.
Fault density: See defect density.
Fault detection percentage (FDP): See Defect detection percentage (DDP).
Fault masking: See defect masking.
Fault spawing: The introduction of new faults when a fault is removed.
Fault tolerance: The capability of the software product to maintain a specified
level of performance in cases of software faults (defects) or of infringement of its
specified interface. [ISO 9126] See also reliability.
Fault tree analysis: A method used to analyze the causes of faults (defects).
Feasible path: A path for which a set of input values and preconditions exists which
causes it to be executed.
Feature: An attribute of a component or system specified or implied by requirements
documentation (for example, reliability, usability, or design constraints). [After
IEEE 1008]
Field testing: See beta testing.
Finite state machine: A computational model consisting of a finite number of
states and transitions between those states, possibly with accompanying actions.
[IEEE 610]
Finite state testing: See state transition testing.

Software-Testing_Final.indb 623 31-01-2018 15:01:08

624 • Software Testing

Fork: A symbol in an activity diagram to show splitting of control into multiple
threads.
Formal language: A language that uses mathematics for the purpose of modelling.
Formal review: A review characterized by documented procedures and
requirements, e.g., inspection. Careful planned meetings, reviewers are responsible
and review reports are also generated and acted upon.
Formal testing: Testing conducted in accordance with test plans and procedures
that have been reviewed and approved by a customer, user, or designated level of
management.
Frozen test basis: A test basis document that can only be amended by a formal
change control process. See also baseline.
Function point analysis (FPA): Method aiming to measure the size of the
functionality of an information system. The measurement is independent of the
technology. This measurement may be used as a basis for the measurement of
productivity, the estimation of the needed resources, and project control.
Functional integration: An integration approach that combines the components
or systems for the purpose of getting a basic functionality working early. See also
integration testing.
Functional requirement: A requirement that specifies a function that a component
or system must perform. [IEEE 610]
Functional test design technique: Documented procedure to derive and select
test cases based on an analysis of the specification of the functionality of a component
or system without reference to its internal structure. See also black-box test design
technique.
Functional testing: Testing based on an analysis of the specification of the
functionality of a component or system. See also black-box testing.
Functionality: The capability of the software product to provide functions which
meet stated and implied needs when the software is used under specified conditions.
[ISO 9126]
Functionality testing: The process of testing to determine the functionality of a
software product.
Gantt chart: A diagram used to graphically represent the start and end dates of
each software engineering task. These charts can be drawn using MS-Project as a
CASE tool.
Generalization: It is a form of abstraction that specifies that 2 or more entities that
share common attributes can be generalized into a higher level entity type called a
super type or generic entity.
Generic software: Softwares that perform functions on general purpose computers.
Glass-box testing: See white-box testing.

Software-Testing_Final.indb 624 31-01-2018 15:01:09

Glossary • 625

Glue code: Code that is written to connect reused commercial off-the-shelf
applications.
Gold plating: Building a list of requirements that does more than needed.
Gray-box testing: A combined (or hybrid) approach of white- and black-box
techniques. Gray-box may involve 95% of white-box testing strategies and 5% of
black-box and vice versa is also true.
Guard condition: A condition that determines whether a certain transition will
occur in a state diagram when an event happens.
Heuristic evaluation: A static usability test technique to determine the compliance
of a user interface with recognized usability principles (the so-called “heuristics”).
High-level test case: A test case without concrete (implementation level) values
for input data and expected results.
Horizontal traceability: The tracing of requirements for a test level through
the layers of test documentation (e.g., test plan, test design specification, test case
specification, and test procedure specification).
Impact analysis: The assessment of change to the layers of development
documentation, test documentation, and components in order to implement a given
change to specified requirements.
Incident: Any event occurring during testing that requires investigation. [After
IEEE 1008]
Incident: It is the symptom associated with a failure that alerts the user to the
occurrence of a failure.
Incident management: The process of recognizing, investigating, taking action,
and disposing of incidents. It involves recording incidents, classifying them, and
identifying the impact. [After IEEE 1044]
Incident management tool: A tool that facilitates the recording and status tracking
of incidents found during testing. They often have workflow-oriented facilities to
track and control the allocation, correction, and re-testing of incidents and provide
reporting facilities.
Incident report: A document reporting on any event that occurs during the testing
which requires investigation. [After IEEE 829]
Incremental development model: A development life cycle where a project
is broken into a series of increments, each of which delivers a portion of the
functionality in the overall project requirements. The requirements are prioritized
and delivered in priority order in the appropriate increment. In some (but not all)
versions of this life cycle model, each subproject follows a “mini-model” with its own
design, coding, and testing phases.
Incremental testing: Testing where components or systems are integrated and
tested one or some at a time until all of the components or systems are integrated
and tested.

Software-Testing_Final.indb 625 31-01-2018 15:01:09

626 • Software Testing

Independence: Separation of responsibilities, which encourages the
accomplishment of objective testing. [After DO-178b]
Infeasible path: A path that cannot be exercised by any set of possible input values.
Informal review: No planned meetings, reviewers have no responsibility and they
do not produce a review reports. A review not based on a formal (documented)
procedure.
Informal testing: Testing conducted in accordance with test plans and procedures
that have not been reviewed and approved by a customer, user, or designated level
of management.
Input: A variable (whether stored within a component or outside) that is read by a
component.
Input domain: The set from which valid input values can be selected. See also
domain.
Input value: An instance of an input. See also input.
Inspection: A type of review that relies on visual examination of documents to
detect defects, e.g., violations of development standards and non-conformance
to higher level documentation. The most formal review technique and therefore
always based on a documented procedure. [After IEEE 610, IEEE 1028]
Inspection leader: See moderator.
Inspector: See reviewer.
Installability: The capability of the software product to be installed in a specified
environment. [ISO 9126] See also portability.
Installability testing: The process of testing the installability of a software product.
See also portability testing.
Installation guide: Supplied instructions on any suitable media which guides the
installer through the installation process. This may be a manual guide, step-by-step
procedure, installation wizard, or any other similar process description.
Installation wizard: Supplied software on any suitable media which leads the
installer through the installation process. It normally runs the installation process,
provides feedback on installation results, and prompts for options.
Instrumentation: The insertion of additional code into the program in order to
collect information about program behavior during execution.
Instrumenter: A software tool used to carry out instrumentation.
Intake test: A special instance of a smoke test to decide if the component or system
is ready for detailed and further testing. An intake test is typically carried out at the
start of the test execution phase.
Integration: The process of combining components or systems into larger
assemblies.

Software-Testing_Final.indb 626 31-01-2018 15:01:09

Glossary • 627

Integration testing: Testing performed to expose defects in the interfaces and in
the interactions between integrated components or systems. See also component
integration testing and system integration testing.
Integration testing in the large: See system integration testing.
Integration testing in the small: See component integration testing.
Interaction diagram: A sequence diagram or collaboration diagram used to model
the dynamic aspects of software.
Interface testing: An integration test type that is concerned with testing the
interfaces between components or systems.
Interoperability: The effort required to couple one system to another. The
capability of the software product to interact with one or more specified components
or systems. [After ISO 9126] See also functionality.
Interoperability testing: The process of testing to determine the interoperability
of a software product. See also functionality testing.
Invalid testing: Testing using input values that should be rejected by the component
or system. See also error tolerance.
Isolation testing: Testing of individual components in isolation from surrounding
components, with surrounding components being simulated by stubs and drivers, if
needed.
Item transmittal report: See release note.
Key performance indicator: See performance indicator.
Keyword driven testing: A scripting technique that uses data files to contain not
only test data and expected results, but also keywords related to the application
being tested. The keywords are interpreted by special supporting scripts that are
called by the control script for the test. See also data driven testing.
LCSAJ: A linear code sequence and jump, consisting of the following three items
(conventionally identified by line numbers in a source code listing): the start of the
linear sequence of executable statements, the end of the linear sequence, and the
target line to which control flow is transferred at the end of the linear sequence.
LCSAJ coverage: The percentage of LCSAJs of a component that have been
exercised by a test suite. 100% LCSAJ coverage implies 100% decision coverage.
LCSAJ testing: A white-box test design technique in which test cases are designed
to execute LCSAJs.
Learnability: The capability of the software product to enable the user to learn its
application. [ISO 9126] See also usability.
Limited entry decision tables: Decision tables in which all conditions are binary.
Link testing: See component integration testing.

Software-Testing_Final.indb 627 31-01-2018 15:01:09

628 • Software Testing

Load test: A test type concerned with measuring the behavior of a component
or system with increasing load, e.g., number of parallel users and/or numbers of
transactions to determine what load can be handled by the component or system.
Locale: An environment where the language, culture, laws, currency, and many
other factors may be different.
Locale testing: It focuses on testing the conventions for number, punctuations,
date and time, and currency formats.
Logic-coverage testing: See white-box testing. [Myers]
Logic-driven testing: See white-box testing.
Logical test case: See high-level test case.
Low-level test case: A test case with concrete (implementation level) values for
input data and expected results.
Maintainability: The ease with which a software product can be modified to correct
defects, modified to meet new requirements, modified to make future maintenance
easier, or adapted to a changed environment. [ISO 9126]
Maintainability testing: The process of testing to determine the maintainability
of a software product.
Maintenance: Modification of a software product after delivery to correct defects,
to improve performance or other attributes, or to adapt the product to a modified
environment. [IEEE 1219]
Maintenance testing: Testing the changes to an operational system or the impact
of a changed environment to an operational system.
Management review: A systematic evaluation of software acquisition, supply,
development, operation, or maintenance process, performed by or on behalf of
management that monitors progress, determines the status of plans and schedules,
confirms requirements and their system allocation, or evaluates the effectiveness
of management approaches to achieve fitness for purpose. [After IEEE 610, IEEE
1028]
Mandel bug: A bug whose underlying causes are so complex and obscure as to
make its behavior appear chaotic or even non-deterministic.
Master test plan: See project test plan.
Maturity: (1) The capability of an organization with respect to the effectiveness and
efficiency of its processes and work practices. See also capability maturity model and
test maturity model. (2) The capability of the software product to avoid failure as a
result of defects in the software. [ISO 9126] See also reliability.
Measure: The number or category assigned to an attribute of an entity by making
a measurement. [ISO 14598]
Measurement: The process of assigning a number or category to an entity to
describe an attribute of that entity. [ISO 14598]

Software-Testing_Final.indb 628 31-01-2018 15:01:09

Glossary • 629

Measurement scale: A scale that constrains the type of data analysis that can be
performed on it. [ISO 14598]
Memory leak: A situation in which a program requests memory but does not release
it when it is no longer needed. A defect in a program’s dynamic store allocation
logic that causes it to fail to reclaim memory after it has finished using it, eventually
causing the program to fail due to lack of memory.
Message: Message is a programming language mechanism by which one unit
transfers control to another unit.
Messages: It shows how objects communicate. Each message represents one object
making function call of another.
Metric: A measurement scale and the method used for measurement. [ISO 14598]
Migration testing: See conversion testing.
Milestone: A point in time in a project at which defined (intermediate) deliverables
and results should be ready.
Mistake: See error.
Moderator: The leader and main person responsible for an inspection or other
review process.
Modified condition decision coverage: See condition determination coverage.
Modified condition decision testing: See condition determination coverage
testing.
Modified multiple condition coverage: See condition determination coverage.
Modified multiple condition testing: See condition determination coverage
testing.
Module: Modules are parts, components, units, or areas that comprise a given
project. They are often thought of as units of software code. See also component.
Module testing: See component testing.
Monitor: A software tool or hardware device that runs concurrently with the
component or system under test and supervises, records, and/or analyzes the
behavior of the component or system. [After IEEE 610]
Monkey testing: Randomly test the product after all planned test cases are done.
Multiple condition: See compound condition.
Multiple condition coverage: The percentage of combinations of all single
condition outcomes within one statement that have been exercised by a test suite.
100% multiple condition coverage implies 100% condition determination coverage.
Multiple condition testing: A white-box test design technique in which test cases
are designed to execute combinations of single condition outcomes (within one
statement).
Multiplicity: Information placed at each end of an association indicating how many
instances of one class can be related to instances of the other class.

Software-Testing_Final.indb 629 31-01-2018 15:01:09

630 • Software Testing

Mutation analysis: A method to determine test suite thoroughness by measuring
the extent to which a test suite can discriminate the program from slight variants
(mutants) of the program.
N-switch coverage: The percentage of sequences of N+1 transitions that have
been exercised by a test suite. [Chow]
N-switch testing: A form of state transition testing in which test cases are designed
to execute all valid sequences of N+1 transitions. [Chow] See also state transition
testing.
Negative functional testing: Testing the software with invalid inputs.
Negative testing: Tests aimed at showing that a component or system does not
work. Negative testing is related to the testers’ attitude rather than a specific test
approach or test design technique. [After Beizer]
Nonconformity: Non fulfillment of a specified requirement. [ISO 9000]
Nonfunctional requirement: A requirement that does not relate to functionality,
but to attributes of such as reliability, efficiency, usability, maintainability, and
portability.
Nonfunctional testing: Testing the attributes of a component or system that do
not relate to functionality, e.g., reliability, efficiency, usability, maintainability, and
portability.
Nonfunctional test design techniques: Methods used to design or select tests for
nonfunctional testing.
Non-reentrant code: It is a piece of program that modifies itself.
Object: It encapsulates information and behavior. It represents a real-world thing,
e.g., ATM screen, card reader, etc.
Off point: A value outside of a domain.
Off-the-shelf software: A software product that is developed for the general
market, i.e., for a large number of customers, and that is delivered to many customers
in identical format.
Operability: The capability of the software product to enable the user to operate
and control it. [ISO 9126] See also usability.
Operational environment: Hardware and software products installed at users’
or customers’ sites where the component or system-under-test will be used. The
software may include operating systems, database management systems, and other
applications.
Operational profile testing: Statistical testing using a model of system operations
(short duration tasks) and their probability of typical use. [Musa]
Operational testing: Testing conducted to evaluate a component or system in its
operational environment. [IEEE 610]
Oracle: See test oracle.
Outcome: See result.

Software-Testing_Final.indb 630 31-01-2018 15:01:09

Glossary • 631

Output: A variable (whether stored within a component or outside) that is written
by a component.
Output domain: The set from which valid output values can be selected. See also
domain.
Output value: An instance of an output. See also output.
Pair programming: A software development approach whereby lines of code
(production and/ or test) of a component are written by two programmers sitting at a
single computer. This implicitly means ongoing real-time code reviews are performed.
Pair testing: Two testers work together to find defects. Typically, they share one
computer and trade control of it while testing.
Pareto Principle: A rule that states that 80% of the benefit can be obtained with
20% of the work. For example, 80% of CPU time is spent executing 20% of the
statements.
Partition testing: See equivalence partitioning. [Beizer]
Pass: A test is deemed to pass if its actual result matches its expected result.
Pass/fail criteria: Decision rules used to determine whether a test item (function)
or feature has passed or failed a test. [IEEE 829]
Path: A sequence of events, e.g., executable statements, of a component or system
from an entry point to an exit point.
Path coverage: The percentage of paths that have been exercised by a test suite.
100% path coverage implies 100% LCSAJ coverage.
Path sensitizing: Choosing a set of input values to force the execution of a given
path.
Path testing: A white-box test design technique in which test cases are designed to
execute paths.
Peer review: See technical review.
Performance: The degree to which a system or component accomplishes its
designated functions within given constraints regarding processing time and
throughput rate. [After IEEE 610] See efficiency.
Performance indicator: A high level metric of effectiveness and/or efficiency used
to guide and control progressive development, e.g., defect detection percentage
(DDP) for testing. [CMMI]
Performance testing: The process of testing to determine the performance of a
software product. See efficiency testing.
Performance testing tool: A tool to support performance testing and that usually
has two main facilities: load generation and test transaction measurement. Load
generation can simulate either multiple users or high volumes of input data. During
execution, response time measurements are taken from selected transactions and
these are logged. Performance testing tools normally provide reports based on test
logs and graphs of load against response times.

Software-Testing_Final.indb 631 31-01-2018 15:01:09

632 • Software Testing

Person-month: One person-month is the amount of work done by one person in
one month if they are working full time.
Phase test plan: A test plan that typically addresses one test level.
Polymorphism (poly = many, morphs = forms): Many forms of a same function is
polymorphism. The compiler resolves such issues based on either the total number
of parameters or their data types.
Portability: The ease with which the software product can be transferred from one
hardware or software environment to another. [ISO 9126]
Portability testing: The process of testing to determine the portability of a software
product.
Positive functional testing: Testing the software with valid inputs.
Post-execution comparison: Comparison of actual and expected results,
performed after the software has finished running.
Postcondition: Environmental and state conditions that must be fulfilled after the
execution of a test or test procedure.
Precondition: Environmental and state conditions that must be fulfilled before the
component or system can be executed with a particular test or test procedure.
Predicted outcome: See expected result.
Pretest: See intake test.
Priority: The level of (business) importance assigned to an item, e.g., defect.
Problem: See defect.
Problem management: See defect management.
Problem report: See defect report.
Process: A set of interrelated activities which transform inputs into outputs.
[ISO 12207]
Process cycle test: A black-box test design technique in which test cases are
designed to execute business procedures and processes. [TMap]
Production environment: It refers to the environment in which the final software
will run.
Program instrumenter: See instrumenter.
Program testing: See component testing.
Project: A project is a unique set of coordinated and controlled activities with
start and finish dates undertaken an objective conforming to specific requirements,
including the constraints of time, cost, and resources. [ISO 9000]
Project Evaluation Review Technique (PERT): It shows different project task
activities and their relationship with each other.
Project test plan: A test plan that typically addresses multiple test levels.

Software-Testing_Final.indb 632 31-01-2018 15:01:09

Glossary • 633

Proof of correctness: A formal technique to prove mathematically that a program
satisfies its specifications.
Prototyping: It helps to examine the probable results of implementing software
requirements.
Pseudo-random: A series which appears to be random but is in fact generated
according to some prearranged sequence.
Quality: The degree to which a component, system, or process meets specified
requirements and/or user/customer needs and expectations. [After IEEE 610]
Quality assurance: Part of quality management focused on providing confidence
that quality requirements will be fulfilled. [ISO 9000]
Quality attribute: A feature or characteristic that affects an item’s quality.
[IEEE 610]
Quality characteristic: See quality attribute.
Quality management: Coordinated activities to direct and control an organization
with regard to quality. Direction and control with regard to quality generally includes
the establishment of the quality policy and quality objectives, quality planning,
quality control, quality assurance, and quality improvement. [ISO 9000]
Random testing: A black-box test design technique where test cases are selected,
possibly using a pseudo-random generation algorithm, to match an operational
profile. This technique can be used for testing nonfunctional attributes such as
reliability and performance.
Rapid (or throwaway prototyping): This approach is to construct a “quick and
dirty” partial solution to the system prior to requirements stage.
Real-time software: Software in which we have strict time constraints.
Recorder: See scribe.
Record/playback tool: See capture/playback tool.
Recoverability: The capability of the software product to re-establish a specified
level of performance and recover the data directly affected in case of failure.
[ISO 9126] See also reliability.
Recoverability testing: The process of testing to determine the recoverability of a
software product. See also reliability testing.
Recovery testing: See recoverability testing.
Reentrant code: It is a piece of program that does not modify itself.
Regression testing: The process of retesting a system after changes have been
made to it. Testing of a previously tested program following modification to ensure
that defects have not been introduced or uncovered in unchanged areas of the
software, as a result of the changes made. It is performed when the software or its
environment is changed.

Software-Testing_Final.indb 633 31-01-2018 15:01:09

634 • Software Testing

Release (or golden master): The build that will eventually be shipped to the
customer, posted on the Web, or migrated to the live Web site.
Release note: A document identifying test items, their configuration, current
status, and other delivery information delivered by development to testing, and
possibly other stakeholders, at the start of a test execution phase. [After IEEE 829]
Reliability: Probability of failure free operation of software for a specified time
under specified operating conditions. The ability of the software product to perform
its required functions under stated conditions for a specified period of time, or for a
specified number of operations. [ISO 9126]
Reliability testing: The process of testing to determine the reliability of a software
product.
Replaceability: The capability of the software product to be used in place of
another specified software product for the same purpose in the same environment.
[ISO 9126] See also portability.
Requirement: A condition or capability needed by a user to solve a problem or
achieve an objective that must be met or possessed by a system or system component
to satisfy a contract, standard, specification, or other formally imposed document.
[After IEEE 610]
Requirements-based testing: An approach to testing in which test cases are
designed based on test objectives and test conditions derived from requirements,
e.g., tests that exercise specific functions or probe non functional attributes such as
reliability or usability.
Requirements management tool: A tool that supports the recording of
requirements, requirements attributes (e.g., priority, knowledge responsible)
and annotation, and facilitates traceability through layers of requirements and
requirements change management. Some requirements management tools also
provide facilities for static analysis, such as consistency checking and violations to
pre-defined requirements rules.
Requirements phase: The period of time in the software life cycle during which
the requirements for a software product are defined and documented. [IEEE 610]
Requirements tracing: It is a technique of ensuring that the product, as well as the
testing of the product, addresses each of its requirements.
Resource utilization: The capability of the software product to use appropriate
amounts and types of resources, for example, the amounts of main and secondary
memory used by the program and the sizes of required temporary or overflow files,
when the software performs its function under stated conditions. [After ISO 9126]
See also efficiency.
Resource utilization testing: The process of testing to determine the resource
utilization of a software product.

Software-Testing_Final.indb 634 31-01-2018 15:01:09

Glossary • 635

Result: The consequence/outcome of the execution of a test. It includes outputs to
screens, changes to data, reports, and communication messages sent out. See also
actual result and expected result.
Resumption criteria: The testing activities that must be repeated when testing is
restarted after a suspension. [After IEEE 829]
Retesting: Testing that runs test cases that failed the last time they were run, in
order to verify the success of corrective actions.
Review: An evaluation of a product or project status to ascertain discrepancies from
planned results and to recommend improvements. Examples include management
review, informal review, technical review, inspection, and walkthrough. [After
IEEE 1028]
Reviewer: The person involved in the review who shall identify and describe
anomalies in the product or project under review. Reviewers can be chosen to
represent different viewpoints and roles in the review process.
Risk: A factor that could result in future negative consequences; usually expressed
as impact and likelihood. The possibility of loss or injury; a problem that might
occur.
Risk analysis: The process of assessing identified risks to estimate their impact and
probability of occurrence (likelihood).
Risk-based testing: Testing oriented towards exploring and providing information
about product risks. [After Gerrard]
Risk control: The process through which decisions are reached and protective
measures are implemented for reducing risks to, or maintaining risks within,
specified levels.
Risk identification: The process of identifying risks using techniques such as
brainstorming, checklists, and failure history.
Risk management: Systematic application of procedures and practices to the tasks
of identifying, analyzing, prioritizing, and controlling risk.
Risk mitigation: See risk control.
Robustness: The degree to which a component or system can function correctly
in the presence of invalid inputs or stressful environmental conditions. [IEEE 610]
See also error tolerance and fault-tolerance.
Root cause: An underlying factor that caused a nonconformance and possibly
should be permanently eliminated through process improvement.
Root cause analysis: The process of determining the ultimate reason why a
software engineer made the error that introduced a defect.
Safety: The capability of the software product to achieve acceptable levels of risk
of harm to people, business, software, property, or the environment in a specified
context of use. [ISO 9126]

Software-Testing_Final.indb 635 31-01-2018 15:01:09

636 • Software Testing

Safety testing: The process of testing to determine the safety of a software product.
Sanity test: See smoke test.
Scalability: The capability of the software product to be upgraded to accommodate
increased loads. [After Gerrard]
Scalability testing: Testing to determine the scalability of the software product.
Scenario testing: See use-case testing.
Scribe: The person who has to record each defect mentioned and any suggestions
for improvement during a review meeting on a logging form. The scribe has to make
sure that the logging form is readable and understandable.
Scripting language: A programming language in which executable test scripts are
written, used by a test execution tool (e.g., a capture/replay tool).
Security: Attributes of software products that bear on its ability to prevent
unauthorized access, whether accidental or deliberate, to programs and data.
[ISO 9126]
Security testing: Testing to determine the security of the software product.
Serviceability testing: See maintainability testing.
Severity: The degree of impact that a defect has on the development or operation
of a component or system. [After IEEE 610]
Shelfware: Software that is not used.
Simulation: A technique that uses an executable model to examine the behavior
of the software. The representation of selected behavioral characteristics of one
physical or abstract system by another system. [ISO 2382/1]
Simulator: A device, computer program, or system used during testing, which
behaves or operates like a given system when provided with a set of controlled
inputs. [After IEEE 610, DO178b] See also emulator.
Sink node: It is a statement fragment at which program execution terminates.
Slicing: It is a program decomposition technique used to trace an output variable
back through the code to identify all code statements relevant to a computation in
the program.
Smoke test: It is a condensed version of a regression test suite. A subset of all
defined/planned test cases that cover the main functionality of a component or
system, to ascertaining that the most crucial functions of a program work, but not
bothering with finer details. A daily build and smoke test are among industry best
practices. See also intake test.
Software feature: See feature.
Software quality: The totality of functionality and features of a software product
that bear on its ability to satisfy stated or implied needs. [After ISO 9126]
Software quality characteristic: See quality attribute.

Software-Testing_Final.indb 636 31-01-2018 15:01:09

Glossary • 637

Software runaways: Large size projects failed due to lack of usage of systematic
techniques and tools.
Software test incident: See incident.
Software test incident report: See incident report.
Software Usability Measurement Inventory (SUMI): A questionnaire
based usability test technique to evaluate the usability, e.g., user-satisfaction, of a
component or system. [Veenendaal]
Source node: A source node in a program is a statement fragment at which program
execution begins or resumes.
Source statement: See statement.
Specialization: The process of taking subsets of a higher-level entity set to form
lower-level entity sets.
Specification: A document that specifies, ideally in a complete, precise, and
verifiable manner, the requirements, design, behavior, or other characteristics of
a component or system, and, often, the procedures for determining whether these
provisions have been satisfied. [After IEEE 610]
Specification-based test design technique: See black-box test design technique.
Specification-based testing: See black-box testing.
Specified input: An input for which the specification predicts a result.
Stability: The capability of the software product to avoid unexpected effects from
modifications in the software. [ISO 9126] See also maintainability.
Standard software: See off-the-shelf software.
Standards testing: See compliance testing.
State diagram: A diagram that depicts the states that a component or system can
assume, and shows the events or circumstances that cause and/or result from a
change from one state to another. [IEEE 610]
State table: A grid showing the resulting transitions for each state combined with
each possible event, showing both valid and invalid transitions.
State transition: A transition between two states of a component or system.
State transition testing: A black-box test design technique in which test cases are
designed to execute valid and invalid state transitions. See also N-switch testing.
Statement: An entity in a programming language, which is typically the smallest
indivisible unit of execution.
Statement coverage: The percentage of executable statements that have been
exercised by a test suite.
Statement testing: A white-box test design technique in which test cases are
designed to execute statements.

Software-Testing_Final.indb 637 31-01-2018 15:01:09

638 • Software Testing

Static analysis: Analysis of software artifacts, e.g., requirements or code, carried
out without execution of these software artifacts.
Static analyzer: A tool that carries out static analysis.
Static code analysis: Analysis of program source code carried out without execution
of that software.
Static code analyzer: A tool that carries out static code analysis. The tool checks
source code, for certain properties such as conformance to coding standards, quality
metrics, or data flow anomalies.
Static testing: Testing of a component or system at specification or implementation
level without execution of that software, e.g., reviews or static code analysis.
Statistical testing: A test design technique in which a model of the statistical
distribution of the input is used to construct representative test cases. See also
operational profile testing.
Status accounting: An element of configuration management, consisting of the
recording and reporting of information needed to manage a configuration effectively.
This information includes a listing of the approved configuration identification, the
status of proposed changes to the configuration, and the implementation status of
the approved changes. [IEEE 610]
Storage: See resource utilization.
Storage testing: See resource utilization testing.
Stress testing: Testing conducted to evaluate a system or component at or beyond
the limits of its specified requirements. [IEEE 610]
Structural coverage: Coverage measures based on the internal structure of the
component.
Structural test design technique: See white-box test design technique.
Structural testing: See white-box testing.
Structured walkthrough: See walkthrough.
Stub: A skeletal or special-purpose implementation of a software component, used
to develop or test a component that calls or is otherwise dependent on it. It replaces
a called component. [After IEEE 610]
Stubs: These are the dummy modules or pieces of throw-away code that emulate a
called unit. Top-down integration begins with the main program (root of the tree).
Any lower-level unit that is called by the main program appears as a stub.
Subpath: A sequence of executable statements within a component.
Suitability: The capability of the software product to provide an appropriate set of
functions for specified tasks and user objectives. [ISO 9126] See also functionality.
Suspension criteria: The criteria used to (temporarily) stop all or a portion of the
testing activities on the test items. [After IEEE 829]

Software-Testing_Final.indb 638 31-01-2018 15:01:09

Glossary • 639

Syntax testing: A black-box test design technique in which test cases are designed
based upon the definition of the input domain and/or output domain.
System: A collection of components organized to accomplish a specific function or
set of functions. [IEEE 610]
System integration testing: Testing the integration of systems and packages;
testing interfaces to external organizations (e.g., electronic data interchange,
Internet).
System testing: The process of testing an integrated system to verify that it meets
specified requirements. [Hetzel]
Technical review: A peer group discussion activity that focuses on achieving
consensus on the technical approach to be taken. A technical review is also known
as a peer review. [Gilb and Graham, IEEE 1028]
Technology transfer: The awareness, convincing, selling, motivating, collaboration,
and special effort required to encourage industry, organizations, and projects to
make good use of new technology products.
Test: A test is the act of exercising software with test cases. A set of one or more test
cases. [IEEE 829]
Test approach: The implementation of the test strategy for a specific project. It
typically includes the decisions made that follow based on the (test) project’s goal
and the risk assessment carried out, starting points regarding the test process, the
test design techniques to be applied, exit criteria, and test types to be performed.
Test automation: The use of software to perform or support test activities, e.g., test
management, test design, test execution, and results checking.
Test basis: All documents from which the requirements of a component or system
can be inferred. The documentation on which the test cases are based. If a document
can be amended only by way of formal amendment procedure, then the test basis is
called a frozen test basis. [After TMap]
Test bed: An environment containing the hardware, instrumentation, simulators,
software tools, and other support elements needed to conduct a test. See also test
environment.
Test case: A test that, ideally, executes a single well-defined test objective, i.e.,
a specific behavior of a feature under a specific condition. A set of input values,
execution preconditions, expected results and execution postconditions, developed
for a particular objective or test condition, such as to exercise a particular program
path or to verify compliance with a specific requirement. [After IEEE 610]
Test case design technique: See test design technique.
Test case specification: A document specifying a set of test cases (objective,
inputs, test actions, expected results, and execution preconditions) for a test item.
[After IEEE 829]

Software-Testing_Final.indb 639 31-01-2018 15:01:09

640 • Software Testing

Test case suite: See test suite.
Test charter: A statement of test objectives, and possibly test ideas. Test charters
are amongst others used in exploratory testing. See also exploratory testing.
Test comparator: A test tool to perform automated test comparison.
Test comparison: The process of identifying differences between the actual results
produced by the component or system under test and the expected results for a test.
Test comparison can be performed during test execution (dynamic comparison) or
after test execution.
Test completion criterion: See exit criteria.
Test condition: An item or event of a component or system that could be verified
by one or more test cases, e.g., a function, transaction, quality attribute, or structural
element.
Test coverage: See coverage.
Test data: Data that exists (for example, in a database) before a test is executed, and
that affects or is affected by the component or system under test.
Test data preparation tool: A type of test tool that enables data to be selected
from existing databases or created, generated, manipulated, and edited for use in
testing.
Test deliverables: List of test materials developed by the test group during the test
cycles that are to be delivered before the completion of the project.
Test design: See test design specification.
Test design specification: A document specifying the test conditions (coverage
items) for a test item, the detailed test approach, and identifying the associated high-
level test cases. [After IEEE 829]
Test design technique: A method used to derive or select test cases.
Test design tool: A tool that supports the test design activity by generating
test inputs from a specification that may be held in a CASE tool repository, e.g.,
requirements management tool, or from specified test conditions held in the tool
itself.
Test driver: It automates the execution of a test case. See also driver.
Test environment: An environment containing hardware, instrumentation,
simulators, software tools, and other support elements needed to conduct a test.
[After IEEE 610]
Test evaluation report: A document produced at the end of the test process
summarizing all testing activities and results. It also contains an evaluation of the
test process and lessons learned.
Test execution: The process of running a test by the component or system under
test, producing actual result(s).

Software-Testing_Final.indb 640 31-01-2018 15:01:09

Glossary • 641

Test execution automation: The use of software, e.g., capture/playback tools, to
control the execution of tests, the comparison of actual results to expected results,
the setting up of test preconditions, and other test control and reporting functions.
Test execution phase: The period of time in a software development life cycle
during which the components of a software product are executed, and the software
product is evaluated to determine whether or not requirements have been satisfied.
[IEEE 610]
Test execution schedule: A scheme for the execution of test procedures. The test
procedures are included in the test execution schedule in their context and in the
order in which they are to be executed.
Test execution technique: The method used to perform the actual test execution,
either manually or automated.
Test execution tool: A type of test tool that is able to execute other software using
an automated test script, e.g., capture/playback. [Fewster and Graham]
Test fail: See fail.
Test generator: See test data preparation tool.
Test harness: A tool that performs automated testing of the core components of a
program or system. It is the driver of test drivers. Tests under a central control. A
test environment comprised of stubs and drivers needed to conduct a test.
Test incident: See incident.
Test incident report: See incident report.
Test infrastructure: The organizational artifacts needed to perform testing,
consisting of test environments, test tools, office environment, and procedures.
Test item: The individual element to be tested. There usually is one test object and
many test items. See also test object.
Test item transmittal report: See release note.
Test level: A group of test activities that are organized and managed together.
A test level is linked to the responsibilities in a project. Examples of test levels are
component test, integration test, system test, and acceptance test. [After TMap]
Test log: A chronological record of relevant details about the execution of tests.
[IEEE 829]
Test logging: The process of recording information about tests executed into a
test log.
Test management: The planning, estimating, monitoring, and control of test
activities, typically carried out by a test manager.
Test manager: The person responsible for testing and evaluating a test object.
The individual, who directs, controls, administers plans, and regulates the evaluation
of a test object.

Software-Testing_Final.indb 641 31-01-2018 15:01:09

642 • Software Testing

Test maturity model (TMM): A five level staged framework for test process
improvement, related to the capability maturity model (CMM) that describes the
key elements of an effective test process.
Test object: The component or system to be tested. See also test item.
Test objective: A reason or purpose for designing and executing a test.
Test oracle: It is a mechanism, different from the program itself that can be used to
check the correctness of the output of the program for the test cases. It is a process in
which test cases are given to test oracles and the program under testing. The output
of the two is then compared to determine if the program behaved correctly for the
test cases. A source to determine expected results to compare with the actual result
of the software under test. An oracle may be the existing system (for a benchmark),
a user manual, or an individual’s specialized knowledge, but should not be the code.
[After Adrion]
Test outcome: See result.
Test pass: See pass.
Test performance indicator: A metric, in general high level, indicating to what
extent a certain target value or criterion is met. Often related to test process
improvement objectives, e.g., defect detection percentage (DDP).
Test phase: A distinct set of test activities collected into a manageable phase of a
project, e.g., the execution activities of a test level. [After Gerrard]
Test plan: A management document outlining risks, priorities, and schedules for
testing. A document describing the scope, approach, resources, and schedule of
intended test activities. It identifies amongst others test items, the features to be
tested, the testing tasks, who will do each task, degree of tester independence, the
test environment, the test design techniques and test measurement techniques to
be used, and the rationale for their choice, and any risks requiring contingency
planning. It is a record of the test planning process. [After IEEE 829]
Test planning: The activity of establishing or updating a test plan.
Test point analysis (TPA): A formula-based test estimation method based on
function point analysis. [TMap]
Test points: They allow data to be modified or inspected at various points in the
system.
Test policy: A high-level document describing the principles, approach, and major
objectives of the organization regarding testing.
Test procedure: See test procedure specification.
Test procedure specification: A document specifying a sequence of actions for the
execution of a test. Also known as test script or manual test script. [After IEEE 829]
Test process: The fundamental test process comprises planning, specification,
execution, recording, and checking for completion. [BS 7925/2]

Software-Testing_Final.indb 642 31-01-2018 15:01:09

Glossary • 643

Test process improvement (TPI): A continuous framework for test process
improvement that describes the key elements of an effective test process, especially
targeted at system testing and acceptance testing.
Test record: See test log.
Test recording: See test logging.
Test repeatability: An attribute of a test indicating whether the same results are
produced each time the test is executed.
Test report: See test summary report.
Test requirement: A document that describes items and features that are tested
under a required condition.
Test result: See result.
Test run: Execution of a test on a specific version of the test object.
Test run log: See test log.
Test script: Step-by-step instructions that describe how a test case is to be executed.
A test script may contain one or more test cases. Commonly used to refer to a test
procedure specification, especially an automated one.
Test session: One set of tests for a specific configuration actual code and stubs.
Test situation: See test condition.
Test specification: A set of test cases, input, and conditions that are used in
the testing of a particular feature or set of features. A test specification often
includes descriptions of expected results. A document that consists of a test design
specification, test case specification, and/or test procedure specification.
Test stage: See test level.
Test strategy: A high-level document defining the test levels to be performed and
the testing within those levels for a program (one or more projects).
Test stub: Dummy function/component to simulate a real component.
Test suite: A collection of test scripts or test cases that is used for validating bug
fixes or finding new bugs within a logical or physical area of a product. For example,
an acceptance test suite contains all of the test cases that are used to verify that
the software has met certain predefined acceptance criteria. On the other hand, a
regression suite contains all of the test cases that are used to verify that all previously
fixed bugs are still fixed. A set of several test cases for a component or system under
test, where the post condition of one test is often used as the precondition for the
next one.
Test summary report: A document summarizing testing activities and results.
It also contains an evaluation of the corresponding test items against exit criteria.
[After IEEE 829]
Test target: A set of exit criteria.

Software-Testing_Final.indb 643 31-01-2018 15:01:09

644 • Software Testing

Test tool: A software product that supports one or more test activities, such as
planning and control, specification, building initial files and data, test execution, and
test analysis. [TMap] See also CAST.
Test type: A group of test activities aimed at testing a component or system
regarding one or more interrelated quality attributes. A test type is focused on a
specific test objective, i.e., reliability test, usability test, regression test, etc., and may
take place on one or more test levels or test phases. [After TMap]
Testable requirements: The degree to which a requirement is stated in terms that
permit establishment of test designs (and subsequently test cases) and execution
of tests to determine whether the requirements have been met. [After IEEE 610]
Testability: The capability of the software product to enable modified software to
be tested. [ISO 9126] See also maintainability.
Testability looks: The code that is inserted into the program specifically to facilitate
testing.
Testability review: A detailed check of the test basis to determine whether the test
basis is at an adequate quality level to act as an input document for the test process.
[After TMap]
Tester: A technically skilled professional who is involved in the testing of a
component or system.
Testing: The process of executing the program with the intent of finding faults.
The process consisting of all life cycle activities, both static and dynamic, concerned
with planning, preparation, and evaluation of software products and related work
products to determine that they satisfy specified requirements, to demonstrate that
they are fit for purpose, and to detect defects.
Testing interface: A set of public properties and methods that you can use to
control a component from an external testing program.
Testware: Artifacts produced during the test process required to plan, design, and
execute tests, such as documentation, scripts, inputs, expected results, set-up and
clear-up procedures, files, databases, environment, and any additional software or
utilities used in testing. [After Fewster and Graham]
Thread testing: A version of component integration testing where the progressive
integration of components follows the implementation of subsets of the requirements,
as opposed to the integration of components by levels of a hierarchy.
Time behavior: See performance.
Top-down testing: An incremental approach to integration testing where the
component at the top of the component hierarchy is tested first, with lower level
components being simulated by stubs. Tested components are then used to test
lower level components. The process is repeated until the lowest level components
have been tested.

Software-Testing_Final.indb 644 31-01-2018 15:01:09

Glossary • 645

Traceability: The ability to identify related items in documentation and software,
such as requirements with associated tests. See also horizontal traceability and
vertical traceability.
Transaction: A unit of work seen from a system user’s point of view.
UML (unified modified language): A standard language used for developing
software blueprints using nine different diagrams.
Understandability: The capability of the software product to enable the user to
understand whether the software is suitable, and how it can be used for particular
tasks and conditions of use. [ISO 9126] See also usability.
Unit testing: See component testing.
Unreachable code: Code that cannot be reached and, therefore, is impossible to
execute.
Usability: The capability of the software to be understood, learned, used, and
attractive to the user when used under specified conditions. [ISO 9126]
Usability testing: The testing that validates the ease of use, speed, and aesthetics of
the product from the user’s point of view. Testing to determine the extent to which
the software product is understood, easy to learn, easy to operate, and attractive to
the users under specified conditions. [After ISO 9126]
Use-case testing: A black-box test design technique in which test cases are designed
to execute user scenarios.
User acceptance testing: See acceptance testing.
User scenario testing: See use-case testing.
User test: A test whereby real-life users are involved to evaluate the usability of a
component or system.
V-model: A framework to describe the software development life cycle activities
from requirements specification to maintenance. The V-model illustrates how
testing activities can be integrated into each phase of the software development
life cycle.
Validation: It is the process of evaluating a system or component during or at the
end of the development process to determine whether it satisfies the specified
requirements. It involves executing the actual software. It is “computer based
testing” process. Confirmation by examination and through provision of objective
evidence that the requirements for a specific intended use or application have been
fulfilled. [ISO 9000]
Variable: An element of storage in a computer that is accessible by a software
program by referring to it by a name.
Verification: It is the process of evaluating a system or component to determine
whether the products of a given development phase satisfy the conditions imposed at
the start of that phase. It is a “human testing” activity. Confirmation by examination
and through the provision of objective evidence that specified requirements have
been fulfilled. [ISO 9000]

Software-Testing_Final.indb 645 31-01-2018 15:01:09

646 • Software Testing

Vertical traceability: The tracing of requirements through the layers of
development documentation to components.
Volume testing: Testing where the system is subjected to large volumes of data.
See also resource-utilization testing.
Walkthrough: A step-by-step presentation by the author of a document in order
to gather information and to establish a common understanding of its content.
[Freedman and Weinberg, IEEE 1028]
White-box test design technique: Documented procedure to derive and select
test cases based on an analysis of the internal structure of a component or system.
White-box testing: Testing based on an analysis of the internal structure of the
component or system.
Wide band delphi: An expert-based test estimation technique that aims at making
an accurate estimation using the collective wisdom of the team members.
Widget: A synonym for user interface component and control.
Wizard: A user assistance device that guides users step by step through a procedure.
Work breakdown structure: A structure diagram that shows the project in terms
of phases.

Software-Testing_Final.indb 646 31-01-2018 15:01:09

A P P E N D I XD
Sample Project Description

[N.B.: Students may be encouraged to prepare descriptions of projects on
these lines and then develop the following deliverables]

1.  SRS Document    2.  Design Document    3.  Codes    4.  Test Oracles

Title of the Project

Development of a practical Online Help Desk (OHD) for the facilities in
the campus.

Abstract of the Project

This project is aimed at developing an Online Help Desk (OHD) for the
facilities in the campus. This is an Intranet-based application that can be
accessed throughout the campus. This system can be used to automate the
workflow of service requests for the various facilities in the campus. This is
one integrated system that covers different kinds of facilities like classrooms,
labs, hostels, mess, canteen, gymnasium, computer center, faculty club, etc.
Registered users (students, faculty, lab-assistants, and others) will be able to
log in a request for service for any of the supported facilities. These requests
will be sent to the concerned people, who are also valid users of the system, to
get them resolved. There are features like email notifications/reminders, the
addition of a new facility to the system, report generators, etc. in this system.

Keywords

Generic Technology Keywords: databases, network and middleware,
programming.

Specific Technology Keywords: MS-SQL server, HTML, Active Server Pages.

Project Type Keywords: analysis, design, implementation, testing, user interface.

Software-Testing_Final.indb 647 31-01-2018 15:01:09

648 • Software Testing

Functional Components of the Project

The following is a list of functionalities of the system. Other functionalities
that you find appropriate can be added to this list. Other facilities that are
appropriate to your college can be included in the system. And, in places
where the description of a functionality is not adequate, you can make
appropriate assumptions and proceed.

There are registered people in the system (students, faculty, lab-
assistants, and others). Some of them are responsible for maintaining the
facilities (for example, the lab-assistant is responsible for keeping the lab
ready with all the equipment in proper condition, the student council is
responsible for taking forward students’ complaints/requests to the faculty/
administration. etc.).

There are three kinds of users for this system:

1.	 Those who use the system to create a request (end-users).

2.	 Those who look at the created requests and assign them to the concerned
people (facility-heads).

3.	 Those who work on the assigned requests and update the status on the
system (assignees).

There is also an “Administrator” for doing the Admin-level functions
such as creating user accounts, adding new facilities to the system, etc.

1.	 A person should be able to —

•• login to the system through the first page of the application.
•• change the password after logging into the system.
•• see the status of the requests created by him/her (the status could be

one of unassigned/assigned/work in progress/closed/rejected).
•• see the list of requests (both open and closed) created by him/her in

the past.
•• create a new request by specifying the facility, the severity of the

request (there may be several levels of severity defined), and a brief
description of the request.

•• close a request created by him/her by giving an appropriate reason.
•• see the requests that are assigned to him/her by the facility-heads and

update the status of requests (after working on them).
•• view the incoming requests (if he/she is a facility-head) and assign

them to registered users of the system.
•• get help about the OHD system on how to use the different features

of the system.

Software-Testing_Final.indb 648 31-01-2018 15:01:09

Sample Project Description • 649

2.	 As soon as a request is created, an automatic email should be sent to the
person who created the request and the concerned facility-head. The
email should contain the request details.

3.	 Similarly, when any status-change occurs for a request (such as the
request getting completed etc.), an automatic email should be sent to
the person who created the request and the concerned facility-head.

4.	 A summary report on the requests that came in and requests that were
serviced should be sent to every facility-head periodically (say, once in
a month).

Steps to Start-off the Project

The following steps will be helpful to start-off the project.

1.	 Study and be comfortable with technologies such as Active Server Pages/
HTML and SQL server. Some links to these technologies are given in
the “Guidelines and References” section of this document.

2.	 Decide on the list of facilities that would be supported and define it
formally.

3.	 Make a database of different kinds of users (End-users, Facility-heads,
Assignees).

4.	 Assign a system-admin who will create mail-ids for the people in the
Intranet of your lab or in the Internet. These mail-ids will be used for
sending automatic notifications and reports. The system-admin will also
take care of assigning the logins to the users of the OHD system.

5.	 Create the front-page of the OHD system giving a brief description
about the system and a login box.

6.	 Create the help-pages of the system in the form of a Q&A. This will help
you also when implementing the system.

7.	 Create other subsystems like automatic notification, screens for various
functions (like create_new_request, view_open_requests, forward_
new_request_to_assignee, etc.).

Software-Testing_Final.indb 649 31-01-2018 15:01:09

650 • Software Testing

Requirements:

Hardware requirements:

Number Description
Alternatives
(if available)

1. PC with 2 GB hard-disk and 256 MB RAM Not-Applicable

2.

Software requirements:

Number Description
Alternatives
(if available)

1. Windows 95/98/XP with MS-Office Not-Applicable

2. MS-SQL server MS-Access

3.

Manpower requirements:

2-3 students can complete this in 4-6 months if they work full-time on it.

Milestones and timelines:

Number Milestone name Milestone description
Timeline week no.

from start of project Remarks

1. Requirements
specification

Complete the
specification of
the system (with
appropriate
assumptions) including
the facilities that
would be supported,
the services in each
facility that would
be supported,
selection of facility-
heads, assignees,
and administrator
constitutes this
milestone. A document
detailing the same
should be written and
a presentation on that
be made.

1-2 Attempt should
be made to add
some more relevant
functionalities other
than those that
are listed in this
document.

Attempt should
be made to clearly
formulate the work-
flow of each of the
services (for example,
who will take care
of replacing a faulty
bulb in the lab, who
will take care of
ordering a new book/
magazine for the
college library, etc.).

(Continued)

Software-Testing_Final.indb 650 31-01-2018 15:01:09

Sample Project Description • 651

Number Milestone name Milestone description
Timeline week no.

from start of project Remarks

2. Technology
familiarization

Understanding of the
technology needed to
implement the project.

3-4 The presentation
should be from
the point of view
of being able to
apply it to the
project, rather than
from a theoretical
perspective.

3. High-level and
detailed design

Listing all possible
scenarios (like request
creation, request
assignment, status
updates on a request
etc.) and then coming
up with flow-charts or
pseudo-code to handle
the scenario.

5-7 The scenarios
should map to
the requirement
specification (i.e., for
each requirement
that is specified,
a corresponding
scenario should be
there).

4. Implementation
of the front-end
of the system

Implementation
of the main screen
giving the login,
screen that follows the
login giving various
options, screens for
facility-head, screens
for the administrator
functions, etc.

7-9 During this
milestone period,
it would be a good
idea for the team
(or one person
from the team) to
start working on
a test-plan for the
entire system. This
test-plan can be
updated as and when
new scenarios come
to mind.

5. Integrating the
front-end with
the database

The front-end,
developed in the
earlier milestone will
now be able to update
the facilities database.
Other features like
mail notification, etc.
should be functional
at this stage. In short,
the system should be
ready for integration
testing.

10-12

(Continued)

Software-Testing_Final.indb 651 31-01-2018 15:01:09

652 • Software Testing

Number Milestone name Milestone description
Timeline week no.

from start of project Remarks

6. Integration
testing

The system should
be thoroughly tested
by running all the
test cases written
for the system (from
milestone 5).

13-14 Another 2 weeks
should be sufficient
to handle any issues
found during the
testing of the system.
After that, the
final demo can be
arranged.

7. Final review Issues found during
the previous milestone
are fixed and the
system is ready for the
final review.

15-16 During the final
review of the
project, it should
be checked that all
the requirements
specified during
milestone number
1 are fulfilled (or
appropriate reasons
given for not
fulfilling them).

Guidelines and References

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnasp/
html/asptutorial.asp (ASP tutorial)

http://www.functionx.com/sqlserver/ (SQL-server tutorial)

Software-Testing_Final.indb 652 31-01-2018 15:01:09

A P P E N D I XE
Bibliography

Special thanks to the great researchers without whose help this book would
not have been possible:

1.	 Jorgensen Paul, “Software Testing—A Practical Approach”, CRC Press,
2nd Edition 2007.

2.	 Srinivasan Desikan and Gopalaswamy Ramesh, “Software testing—
Principles and Practices”, Pearson Education Asia, 2002.

3.	 Tamres Louise, “Introduction to Software Testing”, Pearson Education
Asia, 2002.

4.	 Mustafa K., Khan R.A., “Software Testing—Concepts and Practices”,
Narosa Publishing, 2007.

5.	 Puranik Rajnikant, “The Art of Creative Destination”, Shroff Publishers,
First Reprint, 2005.

6.	 Agarwal K.K., Singh Yogesh, “Software Engineering”, New Age
Publishers, 2nd Edition, 2007.

7.	 Khurana Rohit, “Software Engineering—Principles and Practices”,
Vikas Publishing House, 1998.

8.	 Agarwal Vineet, Gupta Prabhakar, “Software Engineering”, Pragati
Prakashan, Meerut.

9.	 Sabharwal Sangeeta, “Software Engineering—Principles, Tools and
Techniques”, New Age Publishers, 1st Edition, 2002.

10.	 Mathew Sajan, “Software Engineering”, S. Chand and Company Ltd.,
2000.

11.	 Kaner, “Lessons Learned in Software Testing”, Wiley, 1999.
12.	 Rajani Renu, Oak Pradeep, “Software Testing”, Tata McGraw Hill, First

Edition, 2004.
13.	 Nguyen Hung Q., “Testing Applications on Web”, John Wiley, 2001.
14.	 “Testing Object-Oriented Systems—A Workshop Workbook”, by Quality

Assurance Institute (India) Ltd., 1994-95.

Software-Testing_Final.indb 653 31-01-2018 15:01:09

654 • Software Testing

15.	 Pressman Roger, “A Manager’s Guide to Software Engineering”, Tata
McGraw Hill, 2004.

16.	 Perry William E., “Effective Methods for Software Testing”, Wiley
Second Edition, 1995.

17.	 Cardoso Antonio, “The Test Estimation Process”, June 2000, Stickyminds.
com.

18.	 Erik P.W.M., Veenendall Van, Dekkers Ton, “Test Point Analysis;
A method for Test Estimation”.

19.	 Mathur P. Aditya, “Foundations of Software Testing”, Pearson Education
Asia, First Impression, 2008.

20.	 Black Rex, “Test Estimation”, 2002, Stque Magazine.com.
21.	 Nangia Rajan, “Software Testing”, Cyber Tech. Publications, First

Edition, 2008.
22.	 Stout A. Glenn, “Testing a Website: Best Practices”, “http://www.

stickyminds.com/ sitewide.asp/XUS893545file/.pdf
23.	 Kota Krishen, “Testing Your Web Application—A Quick 10–Step

Guide”, Stickyminds.com.
24.	 Intosh Mac, Strigel W., “The Living Creature”—Testing Web Applica-

tions, 2000, http://www.stickyminds.com/docs_index/XUS11472file/.pdf.
25.	 Binder Robert V., “Testing Object Oriented Systems—Models, Patterns

and Tools”, Addison Wesley, 1999.
26.	 Websites: www.stickyminds.com, www.testingcenter.com.

Software-Testing_Final.indb 654 31-01-2018 15:01:09

INDEX

A
Acceptance testing 268, 371

for critical applications 272
types of 271

Advantages of white box testing 191
Automated testing 409

disadvantages of 415
benefits of 414

Available testing tools, techniques and
metrics 20

B
Basic concepts of state machines 310
Basic terminology related to software

testing 11
Basic test plan template 583–589
Basic unit for testing, inheritance and

testing 302
Basis path testing 149
Benefits of automated testing 414
Beta testing 255
Big bang integration 240
Black box testing 489, 560

Black box (or functional) testing
techniques 65

Bottom-up integration approach 239
Boundary value analysis (BVA) 66

guidelines for 74
limitations of 67
robustness testing 67
worst-case testing 68

Business vertical testing (BVT) 252
BVA. See Boundary value analysis

C
Call graph based integration 241
Categorizing V&V techniques 33
Cause-effect graphing technique 97

causes and effects 97
guidelines for 101

Certification, standards and testing for
compliance 257

Characteristics of modern testing
tools 425

Chasing false defects 569
Classification of integration testing 238

Software-Testing_Final.indb 655 31-01-2018 15:01:10

656 • Index

Code complexity testing 141
Code coverage testing 136
Coming up with entry/exit criteria 258
Comparison of

black box and white box testing in
tabular form 188

conventional and object oriented
testing 390

various regression testing
techniques 223

white box, black box and gray box
testing approaches 209

Comparison on
black box (or functional) testing

techniques 102
various white box testing

techniques 190
Concept of balance 107
Condition coverage 139
Configuration testing 486
Consideration during automated

testing 410
Corrective regression testing 221
Coupling between objects (CBO) 145
Criteria for selection of test tools 422
Cyclomatic complexity

properties and meaning 141, 147
Cyclomatic density (CD) 143

D
Data flow testing 171
DD path testing 165
Debugging 418
Decision table based testing 86

guidelines for 96
Decision tables 87

advantages, disadvantages and
applications of 87

Decomposition-based integration 238

Deployment acceptance test 272
Deployment testing 253
Design for testability (DFT) 387
Design/architecture verification 251
Differences between QA and QC 31
Differences between regression and

normal testing 220
Differences between verification and

validation 30
Disadvantages of automated testing 415
Dynamic white box testing

techniques 135

E
Equivalence class test cases for next

date function 79
Equivalence class test cases for the

commission problem 84
Equivalence class test cases for the

triangle problem 78
Equivalence class testing 74

guidelines for 85
strong normal 76
strong robust 77
weak normal 75
weak robust 76

Essential density metric (EDM) 142
Evolving nature of area 31
Executing test cases 270

F
Factors governing performance

testing 274
Formal verification 37
Function coverage 140
Functional acceptance simple test

(FAST) 271
Functional system testing

techniques 250

Software-Testing_Final.indb 656 31-01-2018 15:01:10

Index • 657

Functional testing (or black box
testing) 489

guidelines for 105
techniques 65

Functional versus non-functional system
testing 248

G
Game testing process 559
Good bug writing 573
Graph matrices technique 169
Gray box testing 207

various other definitions of 208
Gui testing 390
Guidelines for

BVA 74
cause-effect functional testing

technique 101
choose integration method and
conclusions 241
decision table based testing 96
equivalence class testing 85
functional testing 105
scalability testing 262

H
Heuristics for class testing 356

I
Implementation-based class

testing/white box or structural
testing 333

Incremental testing approach 10
Independent V&V contractor

(IV&V) 49
Integration complexity 143
Integration testing of classes 367
Integration testing 237
Interoperability testing 266

K
Kiviat charts 105

L
Levels of object oriented testing 363
Levels of testing 235–291
Life cycle of a build 563
Limitations of BVA 67
Limitations of testing 19

M
Managing key resources 259
Managing the test process 383
Measurement of testing 10
Mutation testing versus error

seeding 186

N
Neighborhood integration 242
Non-functional testing (or white box

testing) 486
Non-functional testing techniques 258

O
Object oriented testing 301

levels of 363

P
Pairwise integration 241
Path analysis 453

process 454
coverage 138

Path-based integration with its pros and
cons 243

Pathological complexity 143
Performance testing 273, 486

challenges 280
factors governing 274
steps of 279
tools for 290

Software-Testing_Final.indb 657 31-01-2018 15:01:10

658 • Index

Phase wise breakup over testing life
cycle 453

Positive and negative effect of software
V&V on projects 48

Practical challenges in white box
testing 190

Principles of testing 18
Prioritization guidelines 215
Prioritization of test cases for regression

testing 224
Priority category scheme 216
Problems with manual testing 413
Progressive regression testing 221
Proof of correctness (formal

verification) 37
Pros and cons of decomposition-based

techniques 240
Pros and cons 242

R
Rationale for STRs 43
Recoverability testing 488
Regression and acceptance testing 381
Regression testing at integration

level 222
Regression testing at system level 223
Regression testing at unit level 222
Regression testing in object oriented

software 224
Regression testing of a relational

database 493–500
Regression testing of global

variables 223
Regression testing technique 225
Regression testing 220, 381, 571

types of 221
Release acceptance test (RAT) 271
Reliability testing 262, 489
Requirements tracing 38

Response for class (RFC) 145
Responsibility-based class testing/black-

box/functional specification-based
testing of classes 345

Retest-all strategy 221
Risk analysis 217
Robustness testing 67
Role of V&V in SDLC 33

S
Sandwich integration approach 239
Scalability testing 260, 487
Security testing 488
Selecting test cases 269
Selection of good test cases 9
Selective strategy 221
Setting up the configuration 258
Simulation and prototyping 38
Skills needed for using automated

tools 416
Slice based testing 226
Smoke testing 571
Software technical reviews 43

rationale for 43
review methodologies 4646
types of 45

Software testing 2
basic terminology related to 11

Software V&V planning (SVVP) 39
Software verification and

validation 29–57
Standard for software test

documentation (IEEE829) 50
State machines

basic concepts of 310
Statement coverage 136
Static versus dynamic white box

testing 134
Steps for tool selection 424

Software-Testing_Final.indb 658 31-01-2018 15:01:10

Index • 659

Steps of performance testing 279
Stress testing 263
Strong normal equivalence class

testing 76
Strong robust equivalence class

testing 77
System testing 246, 371

T
Test automation: “no silver bullet” 431
Test cases for commission problem

72, 96
Test cases for next date function 71, 91
Test cases for payroll problem 100
Test cases for the triangle problem 69,

90, 98
Test execution issues 394
Test point analysis (TPA) 435

for case study 450
methodology 436
model 437
philosophy 436

Testing
effectiveness 104
efficiency 104
effort 102
levels of 235–291
life cycle 17
measurement of 10
number of 9
object oriented systems 333
performance See Performance testing
principles of 18
purpose 6

Testing “around” a bug 572
Testing of e-learning management

systems 505–557
Testing process 2
Testing using orthogonal arrays 392

Tools for performance testing 290
TPA. See Test point analysis
Transaction testing 489
Types of

acceptance testing 271
decomposition based techniques

top-down 238
integration approach 238
RDBMS 494
regression testing 221
STRs 45
testing tools-static v/s dynamic 411

U
Unit testing a class 364
Unit, integration, system and

acceptance testing relationship 236
Unit/code functional testing 135
Usability testing 486

V
Version control 567
V&V limitations 32

W
Weak normal equivalence class testing 75
Weak robust equivalence class

testing 76
Web browser-page tests 489
Weighted methods for class (WMC) 145
When to stop testing 18
White box testing 486, 562. See also

Black box testing
advantages of 191
comparison of black box and 188
practical challenges in 190
static versus dynamic 134

White box (or structural) testing
techniques 133

Worst-case testing 68

Software-Testing_Final.indb 659 31-01-2018 15:01:10

Software-Testing_Final.indb 660 31-01-2018 15:01:10

