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Preface

This book explores a single topic: the creation of new forms of ‘‘machinic

life’’ in cybernetics, artificial life (ALife), and artificial intelligence (AI).

By machinic life I mean the forms of nascent life that have been made to

emerge in and through technical interactions in human-constructed envi-

ronments. Thus the webs of connection that sustain machinic life are

material (or virtual) but not directly of the natural world. Although au-

tomata such as the eighteenth-century clockwork dolls and other figures

can be seen as precursors, the first forms of machinic life appeared in the

‘‘lifelike’’ machines of the cyberneticists and in the early programs and

robots of AI. Machinic life, unlike earlier mechanical forms, has a capac-

ity to alter itself and to respond dynamically to changing situations.

More sophisticated forms of machinic life appear in the late 1980s and

1990s, with computer simulations of evolving digital organisms and the

construction of mobile, autonomous robots. The emergence of ALife as

a scientific discipline—which o‰cially dates from the conference on ‘‘the

synthesis and simulation of living systems’’ in 1987 organized by Christo-

pher Langton—and the growing body of theoretical writings and new

research initiatives devoted to autonomous agents, computer immune

systems, artificial protocells, evolutionary robotics, and swarm systems

have given the development of machinic life further momentum, solidity,

and variety. These developments make it increasingly clear that while

machinic life may have begun in the mimicking of the forms and pro-

cesses of natural organic life, it has achieved a complexity and autonomy

worthy of study in its own right. Indeed, this is my chief argument.

While excellent books and articles devoted to these topics abound,

there has been no attempt to consider them within a single, overarching

theoretical framework. The challenge is to do so while respecting the

very significant historical, conceptual, scientific, and technical di¤erences

in this material and the diverse perspectives they give rise to. To meet this



challenge I have tried to establish an inclusive vantage point that can be

shared by specialized and general readers alike. At first view, there are

obvious relations of precedence and influence in the distinctive histories

of cybernetics, AI, and ALife. Without the groundbreaking discoveries

and theoretical orientation of cybernetics, the sciences of AI and ALife

would simply not have arisen and developed as they have. In both, more-

over, the digital computer was an essential condition of possibility. Yet

the development of the stored-program electronic computer was also con-

temporary with the birth of cybernetics and played multiple roles of

instigation, example, and relay for many of its most important conceptu-

alizations. Thus the centrality of the computer results in a complicated

nexus of historical and conceptual relationships among these three fields

of research.

But while the computer has been essential to the development of all

three fields, its role in each has been di¤erent. For the cyberneticists the

computer was first and foremost a physical device used primarily for cal-

culation and control; yet because it could exist in a nearly infinite number

of states, it also exhibited a new kind of complexity. Early AI would de-

marcate itself from cybernetics precisely in its highly abstract understand-

ing of the computer as a symbol processor, whereas ALife would in turn

distinguish itself from AI in the ways in which it would understand the

role and function of computation. In contrast to the top-down compu-

tational hierarchy posited by AI in its e¤ort to produce an intelligent

machine or program, ALife started with a highly distributed population

of computational machines, from which complex, lifelike behaviors could

emerge.

These di¤erent understandings and uses of the computer demand a pre-

cise conceptualization. Accordingly, my concept of computational assem-

blage provides a means of pinpointing underlying di¤erences of form and

function. In this framework, every computational machine is conceived of

as a material assemblage (a physical device) conjoined with a unique dis-

course that explains and justifies the machine’s operation and purpose.

More simply, a computational assemblage is comprised of both a ma-

chine and its associated discourse, which together determine how and

why this machine does what it does. The concept of computational as-

semblage thus functions as a di¤erentiator within a large set of family

resemblances, in contrast to the general term computer, which is too

vague for my purposes. As with my concept of machinic life, these family

resemblances must be spelled out in detail. If computational assemblages

comprise a larger unity, or indeed if forms of machinic life can be said to
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possess a larger unity, then in both cases they are unities-in-di¤erence,

which do not derive from any preestablished essence or ideal form. To

the contrary, in actualizing new forms of computation and life, the

machines and programs I describe constitute novel ramifications of an

idea, not further doublings or repetitions of a prior essence.

This book is organized into three parts, which sketch conceptual his-

tories of the three sciences. Since I am primarily concerned with how

these sciences are both unified and di¤erentiated in their productions of

machinic life, my presentation is not strictly chronological. As I demon-

strate, machinic life is fully comprehensible only in relation to new and

developing notions of complexity, information processing, and dynamical

systems theory, as well as theories of emergence and evolution; it thus

necessarily crosses historical and disciplinary borderlines. The introduc-

tion traces my larger theoretical trajectory, focusing on key terms and

the wider cultural context. Readers of N. Katherine Hayles, Manual

DeLanda, Ansel Pearson, Paul Edwards, and Richard Doyle as well as

books about Deleuzian philosophy, the posthuman, cyborgs, and cyber-

culture more generally will find that this trajectory passes over familiar

ground. However, my perspective and purpose are distinctly di¤erent.

For me, what remains uppermost is staying close to the objects at

hand—the machines, programs, and processes that constitute machinic

life. Before speculating about the cultural implications of these new kinds

of life and intelligence, we need to know precisely how they come about

and operate as well as how they are already changing.

In part I, I consider the cybernetic movement from three perspectives.

Chapter 1 makes a case for the fundamental complexity of cybernetic

machines as a new species of automata, existing both ‘‘in the metal and

in the flesh,’’ to use Norbert Wiener’s expression, as built and theorized

by Claude Shannon, Ross Ashby, John von Neumann, Grey Walter,

Heinz von Foerster, and Valentino Braitenberg. Chapter 2 examines the

‘‘cybernetic subject’’ through the lens of French psychoanalyst Jacques

Lacan and his participation (along with others, such as Noam Chomsky)

in a new discourse network inaugurated by the confluence of cybernetics,

information theory, and automata theory. The chapter concludes with a

double view of the chess match between Gary Kasparov and Deep Blue,

which suggests both the power and limits of classic AI. Chapter 3 extends

the cybernetic perspective to what I call machinic philosophy, evident in

Deleuze and Guattari’s concept of the assemblage and its intersections

with nonlinear dynamical systems (i.e., ‘‘chaos’’) theory. Here I develop

more fully the concept of the computational assemblage, specifically in
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relation to Robert Shaw’s ‘‘dripping faucet as a model chaotic system’’

and Jim Crutchfield’s �-machine (re)construction.

Part II focuses on the new science of ALife, beginning with John von

Neumann’s theory of self-reproducing automata and Christopher Lang-

ton’s self-reproducing digital loops. Langton’s theory of ALife as a new

science based on computer simulations whose theoretical underpinnings

combine information theory with dynamical systems theory is contrasted

with Francisco Varela and Humberto Maturana’s theory of autopoiesis,

which leads to a consideration of both natural and artificial immune

systems and computer viruses. Chapter 5 charts the history of ALife

after Langton in relation to theories of evolution, emergence, and com-

plex adaptive systems by examining a series of experiments carried out

on various software platforms, including Thomas Ray’s Tierra, John

Holland’s Echo, Christoph Adami’s Avida, Andrew Pargellis’s Amoeba,

Tim Taylor’s Cosmos, and Larry Yaeger’s PolyWorld. The chapter con-

cludes by considering the limits of the first phase of ALife research and

the new research initiatives represented by ‘‘living computation’’ and

attempts to create an artificial protocell.

Part III takes up the history of AI as a series of unfolding conceptual

conflicts rather than a chronological narrative of achievements and fail-

ures. I first sketch out AI’s familiar three-stage development, from sym-

bolic AI as exemplified in Newel and Simon’s physical symbol system

hypothesis to the rebirth of the neural net approach in connectionism

and parallel distributed processing and to the rejection of both by a

‘‘new AI’’ strongly influenced by ALife but concentrating on building

autonomous mobile robots in the noisy physical world. At each of AI’s

historical stages, I suggest, there is a circling back to reclaim ground or a

perspective rejected earlier—the biologically oriented neural net approach

at stage two, cybernetics and embodiment at stage three. The decodings

and recodings of the first two stages lead inevitably to philosophical

clashes over AI’s image of thought—symbol manipulation versus a sto-

chastically emergent mentality—and the possibility of robotic conscious-

ness. On the other hand, the behavior-based, subsumption-style approach

to robotics that characterizes the new AI eventually has to renege on its

earlier rejection of simulation when it commits to artificial evolution as a

necessary method of development. Finally, in the concluding chapter, I

indicate why further success in the building of intelligent machines will

most likely be tied to progress in our understanding of how the human

brain actually works, and describe recent examples of robotic self-

modeling and communication.
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Introduction

The electric things have their lives, too.

—Philip K. Dick, Do Androids Dream of Electric Sheep?

Liminal Machines

In the early era of cybernetics and information theory following the Sec-

ond World War, two distinctively new types of machine appeared. The

first, the computer, was initially associated with war and death—breaking

secret codes and calculating artillery trajectories and the forces required

to trigger atomic bombs. But the second type, a new kind of liminal ma-

chine, was associated with life, inasmuch as it exhibited many of the

behaviors that characterize living entities—homeostasis, self-directed

action, adaptability, and reproduction. Neither fully alive nor at all inan-

imate, these liminal machines exhibited what I call machinic life, mirror-

ing in purposeful action the behavior associated with organic life while

also suggesting an altogether di¤erent form of ‘‘life,’’ an ‘‘artificial’’ alter-

native, or parallel, not fully answerable to the ontological priority and

sovereign prerogatives of the organic, biological realm. First produced

under the aegis of cybernetics and proliferating in ALife research and

contemporary robotics, the growing list of these machines would include

John von Neumann’s self-reproducing automata, Claude Shannon’s

maze-solving mouse, W. Ross Ashby’s self-organizing homeostat, W.

Grey Walter’s artificial tortoises, the digital organisms that spawn and

mutate in ALife virtual worlds, smart software agents, and many autono-

mous mobile robots. In strong theories of ALife these machines are

understood not simply to simulate life but to realize it, by instantiating

and actualizing its fundamental principles in another medium or material

substrate. Consequently, these machines can be said to inhabit, or ‘‘live,’’ in

a strange, newly animated realm, where the biosphere and artifacts from



the human world touch and pass into each other, in e¤ect constituting

a ‘‘machinic phylum.’’1 The increasing number and variety of forms of

machinic life suggest, moreover, that this new realm is steadily expanding

and that we are poised on the brink of a new era in which nature and

technology will no longer be distinctly opposed.

Conjoining an eerie and sometimes disturbing abstractness with lifelike

activity, these liminal machines are intrinsically alluring. Yet they also re-

veal conceptual ambitions and tensions that drive some of the most inno-

vative sectors of contemporary science. For as we shall see, these forms of

machinic life are characterized not by any exact imitation of natural life

but by complexity of behavior.2 Perhaps it is no longer surprising that

many human creations—including an increasing numbers of machines

and smart systems—exhibit an order of complexity arguably equal to or

approaching that of the simplest natural organisms. The conceptual re-

orientation this requires—that is, thinking in terms of the complexity of

automata, whether natural or artificial, rather than in terms of a natural

biological hierarchy—is part of the legacy of cybernetics. More specifi-

cally, in the progression from the cybernetic machines of von Neumann,

Ross Ashby, and Grey Walter to the computer-generated digital organ-

isms in ALife research and the autonomous mobile robots of the 1990s,

we witness a developmental trajectory impelled by an interest in how

interactions among simple, low-level elements produce the kinds of com-

plex behavior we associate with living systems. As the first theorist of

complexity in this sense, von Neumann believed that a self-reproducing

automaton capable of evolution would inevitably lead to the breaking of

the ‘‘complexity barrier.’’ For Ashby, complexity resulted from coupling

a simple constructed dynamical system to the environment, thereby creat-

ing a larger, more complex system. For Walter, the complex behavior

of his mobile electromechanical tortoises followed from a central design

decision to make simple elements and networks of connections serve

multiple purposes. For Christopher Langton, Thomas Ray, Chris Adami,

and many others who have used computers to generate virtual worlds in

which digital organisms replicate, mutate, and evolve, complexity emerges

from the bottom up, in the form of unpredictable global behaviors result-

ing from the simultaneous interactions of many highly distributed local

agents or ‘‘computational primitives.’’3 Relayed by the successes of

ALife, the ‘‘new AI’’ achieves complexity by embedding the lessons of

ALife simulations in autonomous machines that move about and do

unexpected things in the noisy material world. More recently, several

initiatives in the building of intelligent machines have reoriented their
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approach to emulate more exactly the complex circuits of information

processing in the brain.

For the most part, discussion of these liminal machines has been

defined and limited by the specific scientific and technological contexts in

which they were constructed. Yet even when discussion expands into the

wider orbits of cultural and philosophical analysis, all too often it remains

bound by the ligatures of a di¤use and seldom questioned anthropomor-

phism. In practice this means that questions about the functionality and

meaning of these machines are always framed in mimetic, representa-

tional terms. In other words, they are usually directed toward ‘‘life’’ as

the ultimate reference and final arbiter: how well do these machines

model or simulate life and thereby help us to understand its (usually

assumed) inimitable singularity? Thus if a mobile robot can move around

and avoid obstacles, or a digital organism replicate and evolve, these

activities and the value of the machinic life in question are usually gauged

in relation to what their natural organic counterparts can do in what phe-

nomenologists refer to as the lifeworld. Yet life turns out to be very di‰-

cult to define, and rigid oppositions like organic versus nonorganic are

noticeably giving way to sliding scales based on complexity of organiza-

tion and adaptability. While contemporary biologists have reached no

consensus on a definition of life, there is wide agreement that two basic

processes are involved: some kind of metabolism by which energy is

extracted from the environment, and reproduction with a hereditary

mechanism that will evolve adaptations for survival.4 In approaches to

the synthesis of life, however, the principal avenues are distinguished by

the means employed: hardware (robotics), software (replicating and

evolving computer programs), and wetware (replicating and evolving ar-

tificial protocells).

By abstracting and reinscribing the logic of life in a medium other than

the organic medium of carbon-chain chemistry, the new ‘‘sciences of the

artificial’’ have been able to produce, in various ways I explore, a com-

pletely new kind of entity.5 As a consequence these new sciences neces-

sarily find themselves positioned between two perspectives, or semantic

zones, of overlapping complexity: the metaphysics of life and the history

of technical objects. Paradoxically, the new sciences thus open a new

physical and conceptual space between realms usually assumed to be sep-

arate but that now appear to reciprocally codetermine each other. Just as

it doesn’t seem farfetched in an age of cloning and genetic engineering to

claim that current definitions of life are determined in large part by the

state of contemporary technology, so it would also seem plausible that
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the very di¤erences that allow and support the opposition between life

and technical objects—the organic and inorganic (or fluid and flexible

versus rigid and mechanical), reproduction and replication, phusis and

technē—are being redefined and redistributed in a biotechnical matrix

out of which machinic life is visibly emerging.6 This redistribution col-

lapses boundaries and performs a double inversion: nonorganic machines

become self-reproducing, and biological organisms are reconceived as

autopoietic machines. Yet it is not only a burgeoning fecundity of

machinic life that issues from this matrix, but a groundbreaking expan-

sion of the theoretical terrain on which the interactions and relations

among computation (or information processing), nonlinear dynamical

systems, and evolution can be addressed. Indeed, that artificial life oper-

ates as both relay for and privileged instance of new theoretical orienta-

tions like complexity theory and complex adaptive systems is precisely

what makes it significant in the eyes of many scientists.

As with anything truly new, the advent of machinic life has been

accompanied by a slew of narratives and contextualizations that attempt

to determine how it is to be received and understood. The simplest narra-

tive, no doubt, amounts to a denial that artificial life can really exist or be

anything more than a toy world artifact or peripheral tool in the armoire

of theoretical biology, software engineering, or robotics. Proceeding from

unquestioned and thoroughly conventionalized assumptions about life,

this narrative can only hunker down and reassert age-old boundaries,

rebuilding fallen barriers like so many worker ants frenetically shoring

up the sides of a crumbling ant hill. The message is always the same: arti-

ficial life is not real life. All is safe. There is no need to rethink categories

and build new conceptual sca¤oldings. Yet it was not so long ago that

Michel Foucault, writing about the conditions of possibility for the sci-

ence of biology, reminded us that ‘‘life itself did not exist’’ before the end

of the eighteenth century; instead, there were only living beings, under-

stood as such because of ‘‘the grid of knowledge constituted by natural

history.’’7 As Foucault makes clear, life could only emerge as a unifying

concept by becoming invisible as a process, a secret force at work within

the body’s depths. To go very quickly, this notion of life followed from

a more precise understanding of death, as revealed by a new mode of

clinical perception made possible by anatomical dissection.8 Indeed, for

Xavier Bichat, whose Treatise on Membranes (1807) included the first

analysis of pathological tissue, life was simply ‘‘the sum of the functions

that oppose death.’’ One of the first modern cultural narratives about
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artificial life, Mary Shelley’s Frankenstein (1819), was deeply influenced

by the controversies this new perspective provoked.9

At its inception, molecular biology attempted to expunge its remaining

ties to a vestigial vitalism—life’s secret force invisibly at work—by reduc-

ing itself to analysis of genetic programming and the machinery of cell

reproduction and growth. But reproduction only perpetuates life in its

unity; it does not create it. Molecular biology remains metaphysical, how-

ever, insofar as it disavows the conditions of its own possibility, namely,

its complete dependence on information technology or bioinformatics.10

The Human Genome Project emblazons this slide from science to meta-

physics in its very name, systematically inscribing ‘‘the human’’ in the

space of the genetic code that defines the anthropos. In La technique et le

temps, Bernard Stiegler focuses on this disavowal, drawing attention to a

performative dimension of scientific discourse usually rendered invisible

by the e‰cacy of science itself.11 Stiegler cites a passage from François

Jacob’s The Logic of Life: A History of Heredity, in which Jacob, con-

trasting the variations of human mental memory with the invariance of

genetic memory, emphasizes that the genetic code prevents any changes

in its ‘‘program’’ in response to either its own actions or any e¤ects in

the environment. Since only random mutation can bring about change,

‘‘the programme does not learn from experience’’ (quoted in Stiegler,

176). Explicitly, for Jacob, it is the autonomy and inflexibility of the

DNA code, not the contingencies of cultural memory, that ensure the

continued identity of the human. Jacob’s position, given considerable

weight by the stunning successes of molecular biology—including Jacob’s

own Nobel Prize–winning research with Jacques Monod and André

Lwo¤ on the genetic mechanisms of E. coli—soon became the new ortho-

doxy. Yet, as Stiegler points out, within eight years of Jacob’s 1970 pro-

nouncement the invention of gene-splicing suspended this very axiom.

(Jacob’s view of the DNA code is axiomatic because it serves as a foun-

dation for molecular biology and generates a specific set of experimental

procedures.) Thus since 1978 molecular biology has proceeded with its

most fundamental axiom held to be true in theory even while being vio-

lated in practice.12

A great deal of more recent research, however, has challenged this

orthodoxy, both in terms of the ‘‘invariance’’ of the genome and the way

in which the genome works as a ‘‘program.’’ And in both cases these

challenges parallel and resonate with ALife research. In regard to the

supposed invariance, Lynn Helena Caporale has presented compelling
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evidence against the view that the genome is rigidly fixed except for

chance mutations. Species’ survival, she argues, depends more on diversity

in the genome than inflexibility. In this sense the genome itself is a com-

plex adaptive system that can anticipate and respond to change. Caporale

finds that certain areas of the genome, like those that encode immune re-

sponse, are in fact ‘‘creative sites of focused mutation,’’ whereas other

sites, like those where genetic variation is most likely to prove damaging,

tend to be much less volatile.13 With regard to the genetic program, the-

oretical biologist Stuart Kau¤man has suggested that thinking of the de-

velopment of an organism as a program consisting of serial algorithms is

limiting and that a ‘‘better image of the genetic program—as a parallel

distributed regulatory network—leads to a more useful theory.’’14 Kau¤-

man’s alternative view—that the genetic program works by means of a

parallel and highly distributed rather than serial and centrally controlled

computational mechanism—echoes the observation made by Christopher

Langton that computation in nature is accomplished by large numbers of

simple processors that are only locally connected.15 The neurons in the

brain, for example, are natural processors that work concurrently and

without any centralized, global control. The immune system similarly

operates as a highly evolved complex adaptive system that functions by

means of highly distributed computations without any central control

structure. Langton saw that this alternative form of computation—later

called ‘‘emergent computation’’—provided the key to understanding

how artificial life was possible, and the concept quickly became the basis

of ALife’s computer simulations.

I stated earlier that artificial life is necessarily positioned in the space it

opens between molecular biology—as the most contemporary form of the

science of life—and the history of technical objects. And I have begun to

suggest that a new, nonstandard theory of computation provides the con-

ceptual bridge that allows us to discuss all three within the same frame-

work. At this point there is no need to return to Stiegler’s analysis of

Jacob in order to understand that life as defined by molecular biology is

neither untouched by metaphysics nor monolithic; for the most part, in

fact, molecular biology simply leaves detailed definitions of life in abey-

ance in order to attack specific problems, like protein synthesis and the

regulatory role of enzymes. Stiegler’s two-volume La technique et le temps

becomes useful, however, when we consider this other side of artificial

life, namely, its place and significance in relation to the history and

mode of being of technical objects. Specifically, his discussion of the ‘‘dy-

namic of the technical system’’ following the rise of industrialism provides
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valuable historical background for theorizing the advent of machinic self-

reproduction and self-organization in cybernetics and artificial life.16

Very generally, a technical system forms when a technical evolution

stabilizes around a point of equilibrium concretized by a particular tech-

nology. Tracking the concept from its origins in the writings of Bertrand

Gille and development in those of André Leroi-Gourhan and Gilbert

Simondon, Stiegler shows that what is at stake is the extent to which the

biological concept of evolution can be applied to the technical system.

For example, in Du mode d’existence des objets techniques (1958), Simon-

don argues that with the Industrial Revolution a new kind of technical

object, distinguished by a quasi-biological dynamic, is born. Strongly

influenced by cybernetics, Simondon understands this ‘‘becoming-

organic’’ of the technical object as a tendency among the systems and

subsystems that comprise it toward a unity and constant adaptation to it-

self and to the changing conditions it brings about. Meanwhile, the hu-

man role in this process devolves from that of an active subject whose

intentionality directs this dynamic to that of an operator who functions

as part of a larger system. In this perspective, experiments with machinic

life appear less as an esoteric scientific project on the periphery of the

postindustrial landscape than as a manifestation in science of an essential

tendency of the contemporary technical system as a whole. This tendency,

I think, can best be described not as a becoming-organic, as Simondon

puts it, but as a becoming-machinic, since it involves a transformation of

our conception of the natural world as well. As I suggest below (and fur-

ther elaborate in the book), our understanding of this becoming-machinic

involves changes in our understanding of the nature and scope of compu-

tation in relation to dynamical systems and evolutionary processes.

The Computational Assemblage

The contemporary technical system, it is hardly necessary to point out,

centers on the new technology of the computer; indeed, the computer’s

transformative power has left almost no sector of the Western world—

in industry, communications, the sciences, medical and military technol-

ogy, art, the entertainment industry, and consumer society—untouched.

Cybernetics, artificial life, and robotics also develop within—in fact, owe

their condition of possibility to—this new technical system. What sets

them apart and makes them distinct is how they both instantiate and

provoke reflection on various ways in which the computer, far from being

a mere tool, functions as a new type of abstract machine that can be
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actualized in a number of di¤erent computational assemblages, a concept

I develop to designate a particular conjunction of a computational mech-

anism and a correlated discourse. A computational assemblage thus com-

prises a material computational device set up or programmed to process

information in specific ways together with a specific discourse that ex-

plains and evaluates its function, purpose, and significance. Thus the dis-

course of the computational assemblage consists not only of the technical

codes and instructions for running computations on a specific material

device or machine but also of any and all statements that embed these

computations in a meaningful context. The abacus no less than the

Turing machine (the conceptual forerunner of the modern computer) has

its associated discourse.

Consider, for example, the discourse of early AI research, which in the

late 1950s began to construct a top-down model of human intelligence

based on the computer. Alan Turing inaugurated this approach when he

worked out how human mental computations could be broken down into

a sequence of steps that could be mechanically emulated.17 This discourse

was soon correlated with the operations of a specific type of digital com-

puter, with a single one-step-at-a-time processor, separate memory, and

control functions—in short, a von Neumann architecture.18 Thinking,

or cognition, was understood to be the manipulation of symbols con-

catenated according to specifiable syntactical rules, that is, a computer

program. In these terms classic AI constituted a specific type of computa-

tional assemblage. Later its chief rival, artificial neural nets, which were

modeled on the biological brain’s networks of neurons—the behavior of

which was partly nondeterministic and therefore probabilistic—would

constitute a di¤erent type.19 In fact, real and artificial neural nets, as

well as other connectionist models, the immune system, and ALife pro-

grams constitute a group of related types that all rely on a similar compu-

tational mechanism—bottom-up, highly distributed parallel processing.

Yet their respective discourses are directed toward di¤erent ends, making

each one part of a distinctly di¤erent computational assemblage, to be

analyzed and explored as such. This book is thus concerned with a family

of related computational assemblages.

In their very plurality, computational assemblages give rise to new ways

of thinking about the relationship between physical processes (most impor-

tantly, life processes) and computation, or information processing. For

example, W. Ross Ashby, one of the foremost theorists of the cybernetic

movement, understood the importance of the computer in relation to ‘‘life’’

and the complexity of dynamical systems in strikingly radical terms:
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In the past, when a writer discussed the topic [of the origin of life], he usually

assumed that the generation of life was rare and peculiar, and he then tried to dis-

play some way that would enable this rare and peculiar event to occur. So he tried

to display that there is some route from, say, carbon dioxide to amino acid, and

thence to the protein, and so, through natural selection and evolution, to intelli-

gent beings. I say that this looking for special conditions is quite wrong. The truth

is the opposite—every dynamic system generates its own form of intelligent life, is

self-organizing in this sense. . . . Why we have failed to recognize this fact is that

until recently we have had no experience of systems of medium complexity; either

they have been like the watch and the pendulum, and we have found their proper-

ties few and trivial, or they have been like the dog and the human being, and we

have found their properties so rich and remarkable that we have thought them su-

pernatural. Only in the last few years has the general-purpose computer given us a

system rich enough to be interesting yet still simple enough to be understandable.

With this machine as tutor we can now begin to think about systems that are sim-

ple enough to be comprehensible in detail yet also rich enough to be suggestive.

With their aid we can see the truth of the statement that every isolated determinate

dynamic system obeying unchanging laws will develop ‘‘organisms’’ that are adapted

to their ‘‘environments.’’20

Although Ashby’s statement may not have been fully intelligible to his

colleagues, within about twenty years it would make a new kind of sense

when several strands of innovative research began to consider computa-

tional theory and dynamical systems together.

The most important strand focused on the behavior of cellular autom-

ata (CA).21 Very roughly, a cellular automaton is a checkerboard-like

grid of cells that uniformly change their states in a series of discrete time

steps. In the simplest case, each cell is either on or o¤, following the ap-

plication of a simple set of preestablished rules. Each cell is a little com-

puter: to determine its next state it takes its own present state and the

states of its neighboring cells as input, applies rules, and computes its

next state as output. What makes CA interesting is the unpredictable

and often complex behavior that results from even the simplest rule set.

Originally considered a rather uninteresting type of discrete mathematical

system, in the 1980s CA began to be explored as complex (because non-

linear) dynamical systems. Since CA instantiate not simply a new type of

computational assemblage but one of fundamental importance to the

concerns of this book, it is worth dwelling for a moment on this historic

turning point.22

The first important use of CA occurred in the late 1940s when, at the

suggestion of the mathematician Stanley Ulam, John von Neumann de-

cided to implement the logic of self-reproduction on a cellular automaton.

However, CA research mostly languished in obscurity until the early
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1980s, the province of a subfield of mathematics. The sole exception was

John Conway’s invention in the late 1960s of the Game of Life, which

soon became the best known example of a CA. Because the game o¤ers

direct visual evidence of how simple rules can generate complex patterns,

it sparked intense interest among scientists and computer programmers

alike, and it continues to amuse and amaze. Indeed, certain of its config-

urations were soon proven to be computationally universal (the equiva-

lent of Turing machines), meaning that they could be used to implement

any finite algorithm and evaluate any computable function. The turning

point in CA research came in the early 1980s. In a groundbreaking article

published in 1983, Stephen Wolfram provided a theoretical foundation

for the scientific (not just mathematical) study of CA as dynamical sys-

tems.23 In the same year, Doyne Farmer, Tommaso To¤oli, and Wolf-

ram organized the first interdisciplinary workshop on cellular automata,

which turned out to be a landmark event in terms of the fertility and im-

portance of the ideas discussed.24 Wolfram presented a seminal demon-

stration of how the dynamic behavior of CA falls into four distinct

universality classes. Norman Margolus took up the problem of reversible,

information-preserving CA, and pointed to the possibility of a deep and

underlying relationship between the laws of nature and computation.

Gerard Vichniac explored analogies between CA and various physical

systems and suggested ways in which the former could simulate the latter.

To¤oli showed that CA simulations could provide an alternative to di¤er-

ential equations in the modeling of physics problems. Furthermore, in a

second paper, To¤oli summarized his work on Cellular Automata Ma-

chine (CAM), a high-performance computer he had designed expressly

for running CA. As he observes, ‘‘In CAM, one can actually watch, in

real time, the evolution of a system under study.’’25 Developing ideas

based on CA, Danny Hillis also sketched a new architecture for a mas-

sively parallel-processing computer he called the Connection Machine.

And, in a foundational paper for what would soon become known as

ALife, Langton presented a cellular automaton much simpler than von

Neumann’s, in which informational structures or blocks of code could re-

produce themselves in the form of colonies of digital loops.

The discovery that CA could serve as the basis for several new kinds of

computational assemblage accounts for their contemporary importance

and fecundity. For a CA is more than a parallel-processing device that

simply provides an alternative to the concept of computation on which

the von Neumann architecture is built. It is at once a collection or aggre-

gate of information processors and a complex dynamical system. Al-
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though completely deterministic, its complex behavior results from many

simple but simultaneous computations. In fact, it is not even computa-

tional in the common meaning of the term since it does not produce a nu-

merical solution to a problem and then halt. On the contrary, it is meant

to run continuously, thus producing ongoing dynamic behavior. Nor do

its computations always and forever produce the same result. Conway’s

Game of Life made this plainly visible: although the individual cells uni-

formly apply the same simple set of rules to compute their next state, the

global results seldom occur in the same sequence of configurations and

are usually quite unpredictable. The states, therefore, cannot be com-

puted in advance—one can only ‘‘run’’ the system and see what patterns

of behavior emerge. Indeed, it was this capacity to generate unpredictable

complexity on the basis of simple, deterministic rules that made the game

seem ‘‘lifelike.’’ But as Wolfram demonstrated, there are actually four dif-

ferent computational/dynamic regimes: one that halts after a reasonable

number of computations, one that falls into a repetitive loop or periodic

cycle, one that generates a chaotic, random mess, and one (the most com-

plex) that produces persistent patterns that interact across the local spaces

of the grid. Langton theorized that this last regime, which constitutes a

phase transition located ‘‘at the edge of chaos,’’ instantiates the most like-

ly conditions in which information processing can take control over en-

ergy exchanges and thus in which life can gain a foothold and flourish.26

Narratives of Machinic Life

The example of cellular automata clearly demonstrates why it is much

more useful to focus on specific computational assemblages—both the

machines themselves and their constituent discourses—than simply to dis-

cuss the computer as a new technology that automates and transforms

what existed before. While it is self-evident that the computer lies at the

heart of the contemporary technical system, the latter actually consists of

a multiplicity of di¤erent computational assemblages, each of which must

be described and analyzed in its material and discursive specificity. At the

same time, we should not ignore certain transformations and rearticula-

tions that occur at the general level of the technical system. Specifically,

the advent of the computer and the birth of machinic life mark a thresh-

old in which the technical system is no longer solely engaged with the

production of the means to sustain and enrich life but is increasingly

directed toward its own autonomization and cybernetic reproduction.

This seemingly inevitable tendency toward a form of technogenesis was
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first anticipated by Samuel Butler in his fictional narrative Erewhon

(1872). Influenced by Darwin and acutely aware of the increasing pace

of technological transformation, Butler explored the sense in which the

human subject, beyond serving as the eyes and ears of machines, also

functioned as their ‘‘reproductive machinery.’’27 According to this seem-

ingly inevitable logic, our human capacity as toolmakers (homo faber) has

also made us the vehicle and means of realization for new forms of

machinic life.

This strand of thinking has given rise to two conflicting cultural narra-

tives, the adversarial and the symbiotic. According to the first, human

beings will completely lose control of the technical system, as silicon life

in the form of computing machines performs what Hans Moravec calls a

‘‘genetic take-over’’ from carbon life, thanks to the tremendous advan-

tage the former possesses in information storage, processing speed, and

turnover time in artificial evolution.28 Since silicon-based machines will

eventually increase their memory and intelligence and hence their com-

plexity to scales far beyond the human, their human makers will inevita-

bly find themselves surpassed by their own inventions. According to the

second narrative, human beings will gradually merge with the technical

system that defines and shapes the environment in a transformative sym-

biosis that will bring about and characterize the advent of the posthu-

man.29 Just as ‘‘life’’ now appears to be an emergent property that arises

from distributed and communicating networks rather than a singular

property of certain stand-alone entities, so ‘‘the human’’ may come to be

understood less as the defining property of a species or individual and

more as an e¤ect and value distributed throughout human-constructed

environments, technologies, institutions, and social collectivities. The pro-

liferation of machinic life, of course, can be marshaled as evidence sup-

porting either of these two narratives.

Rather than engage directly with these two cultural narratives, this

book focuses on their scientific and technological condition of possibility,

that is, on the specific scientific achievements that underlie them. As I

have already suggested, central to the book’s subject matter is the dra-

matic unfolding of a new space, or relationship, between the metaphysics

of natural or biological life and the relatively recent appearance of a new

kind of technical object—the liminally lifelike machine or system. This

space, however, is not defined by opposition and negation ( phusis versus

technē). Although the methods deployed in the technical field involve

a mimicking of the natural, what results is not a duality of nature and
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artifice but the movement of evolution and becoming, relay and reso-

nance, codefinition and codetermination of processes and singularities

that constitute something di¤erent from both: the machinic phylum. To

be sure, the unfolding of this new realm or space entails boundary break-

downs and transformations of age-old oppositions, events that spawn a

multiplicity of overlapping and contradictory perspectives in a heady

mix of scientific, cultural, and explicitly science fictional narratives. In

other words, as machinic life emerges from within a biotechnical matrix

seldom discussed as such, it is so entwined with other often contradic-

tory narratives that its own singularity may not be fully discernible and

comprehensible.

Consider the example of ALife, whose very possibility of scientific au-

tonomy reflects this betweenness. On one side, in scientific publications

and conference presentations (and especially grant applications), ALife

is compelled to justify itself in relation to the knowledge claims of theo-

retical biology, to which it is in danger of becoming a mere adjunct; on

the other, its experiments in simulated evolution are often seen as merely

useful new computational strategies in the field of machine learning or

as new software and/or methods in the development of evolutionary

programming.30 Inscribed in neither of these flanking discourses is the

possibility of a potentially more powerful intrinsic narrative, to wit, that

artificial life is actually producing a new kind of entity—at once technical

object and simulated collective subject. Constituted of elements or agents

that operate collectively as an emergent, self-organizing system, this new

entity is not simply a prime instance of the theory of emergence, as its

strictly scientific context suggests. It is also a form of artificial life that

raises the possibility that terms like subject and object, phusis and technē,

the natural and the artificial, are now obsolete. What counts instead is the

mechanism of emergence itself, whatever the provenance of its constitu-

tive agents. More specifically, the real questions are how global properties

and behaviors emerge in a system from the interactions of computational

‘‘primitives’’ that behave according to simple rules and how these systems

are enchained in dynamic hierarchies that allow complexity to build on

complexity. Darwinian evolutionary theory necessarily enters the picture,

but natural selection from this new perspective is understood to operate on

entities already structured by self-organizing tendencies. In fact, in the

wake of Kau¤man’s and Langton’s work, evolution is seen as the mecha-

nism that holds a system near the ‘‘edge of chaos,’’ where it is most able

to take advantage of or further benefit from varying combinations of
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both structure and near chaotic fluidity.31 With this new understanding of

Darwinian evolutionary theory before us, the lineaments of an underlying

narrative begin to loom into view.

Revised in the light of the dynamics of self-organization and emer-

gence, Darwinian theory assumes a role of fundamental importance in

the study of complex adaptive systems—a new theoretical category desig-

nating emergent, self-organizing dynamical systems that evolve and adapt

over time. Examples include natural ecologies, economies, brains, the im-

mune system, many artificial life virtual worlds, and possibly the Internet.

While evolutionary biology is divided by debate over whether or not

evolution by natural selection is the primary factor in the increase of bio-

logical complexity (Stephen Jay Gould, for example, has argued that con-

tingency and accident are more important),32 many systems provide

direct evidence that, in the words of John Holland, ‘‘adaptation builds

complexity.’’ Holland describes New York City as a complex adaptive

system because, in and through a multiplicity of interacting agents and

material flows, it ‘‘retains both a short-term and long-term coherence, de-

spite diversity, change, and lack of central direction.’’33 Much of Hol-

land’s recent work is devoted to understanding the special dynamics of

such systems. In Echo, his model of a complex adaptive system, agents

migrate from site to site in a simulated landscape, taking in resources

and interacting in three basic ways (combat, trade, and mating) according

to the values inscribed in their ‘‘tag’’ and ‘‘condition’’ chromosomes.

When agents mate, new mixes of these chromosomes are passed to o¤-

spring, and ‘‘fitter’’ agents evolve. Amazingly, highly beneficial collective

or aggregate behaviors emerge that are not programmed into the indi-

vidual agents. These behaviors include ‘‘arms races,’’ the formation of

‘‘metazoans’’ (connected communities of agents), and the specialization

of functions within a group.34 The occurrence of such highly adaptive be-

havior in the natural world is common of course; but that it should also

occur in an artificial world with artificial agents should be cause for new

thinking.

The computer simulation of such agent-based systems has been one of

the signal achievements of contemporary science. Yet the deeper theoret-

ical significance of complex adaptive systems stems not simply from the

novel simulations deployed to study them but from the fact that these sys-

tems are found on both sides of the nature/culture divide, thus suggesting

that this age-old boundary may actually prevent us from perceiving cer-

tain fundamental patterns of organized being. Indeed, a primary intention

of artificial life is not simply to problematize such boundaries and con-
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ventional conceptual frames but to discover such patterns from new van-

tage points by multiplying the examples of life. Even so, one significant

current in ALife research asserts that complexity (or complex adaptive

systems) rather than ‘‘life’’ (and thus the opposition to nonlife) is the con-

ceptually more fruitful framework. In this vein Thomas Ray explicitly

reverses the modeling relationship: ‘‘The objective is not to create a digi-

tal model of organic life, but rather to use organic life as a model on

which to base our better design of digital evolution.’’35 Similarly Mark

Bedau defines life as a property of an evolving ‘‘supplely adaptive sys-

tem’’ as a whole rather than as what distinguishes a particular individual

entity.36 This definition follows from and extends Langton’s contention

that life should not be defined by the material medium in which it is

instantiated but by the dynamics of its behavior.

Meanwhile, artificial life experiments continue to respond to the chal-

lenge that true, open-ended evolution of the biosphere may not be possi-

ble in artificial (specifically, computer-generated) systems. Whereas all

of the components of biological life-forms interact and are susceptible

to mutation, change, and reorganization, in computer simulations the

underlying hardware and most of the time the code are unalterably set

by the experimenter, who thus limits in advance the kind and amount of

change that can occur in the system. Although current research is deter-

mined to overcome this limit, we may be witnessing the end of a first

phase in o‰cial ALife research, which thus far has been based primarily

on small-scale, computer-generated ‘‘closed-world’’ systems. In any event,

the need to develop other approaches is clearly evident. Thomas Ray cre-

ated one such closed system (Tierra) and set up a second, more ambitious

version on the Internet. In another example, which amounts to an inver-

sion of the o‰cial ALife agenda established by Langton, David Ackley is

attempting to build a computer or ‘‘living computational system’’ follow-

ing principles characteristic of living systems. And on yet another re-

search track, e¤orts to create artificial protocells, and thus a viable form

of ‘‘wetlife,’’ have recently made astonishing strides.

Almost from its inception, ALife research has had a cross-fertilizing in-

fluence on contemporary robotics. That influence is also apparent in the

closely related fields of animats (the construction of artificial animals)

and the development of autonomous software agents.37 Complicating

this story was the appearance (almost simultaneously with ALife) of

what was called the new AI, which generally meant a wholesale rejec-

tion of classic symbolic AI and the full embrace of a dynamical systems

perspective. The central figure in the new AI is Rodney Brooks, who
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inaugurated a new approach to constructing autonomous mobile robots

from the bottom-up, based on what he called subsumption architecture.

But while following a bottom-up approach similar to that of ALife, con-

temporary robotics distrusted simulation and believed that the deficien-

cies of ALife could be overcome by building autonomous robots that

can successfully operate in the noisy physical world. At the same time,

the development of the neural net controllers needed to make these robots

function came to depend on simulation and the deployment of evolution-

ary programming techniques. Thus, on all fronts, the further development

of artificial life-forms (including mobile robots and autonomous software

agents) continues to require computational assemblages that can simulate

Darwinian evolution and provide an environment in which artificial evo-

lution can occur. A remarkable success in this regard was achieved by

Karl Sims with his computer-generated ‘‘virtual creatures’’ environment,

in which (as in nature but not yet in physical robotics) neural net control-

lers (i.e., a nervous system) and creature morphology were made to evolve

together.38 In fact, the attempt to use evolutionary programming tech-

niques to evolve both controllers and robot morphologies for physical

robots now defines the new field of evolutionary robotics, which is consid-

ered in chapter 7.

Lamarckian Evolution or Becoming Machinic

Perhaps not surprisingly, the current renovation of Darwinian theory—

some would argue it is more a deepening than a revision—has been

accompanied by a revival of interest in Lamarck’s theory that acquired

traits are passed down to subsequent generations through hereditary

mechanisms.39 Indeed, at first glance a Lamarckian model would seem

to be more directly applicable to the evolutionary tendencies of machines

and technical systems. As John Ziman frames it, the transformation of

an evocative metaphor like ‘‘technological evolution’’ into a well-formed

model requires several steps.40 The first is to address the problem posed

by several ‘‘disanalogies,’’ foremost among which is that technological

innovation exhibits certain Lamarckian features normally forbidden in

modern biology. For Ziman, however, the real question is not Darwin or

Lamarck but whether or not modern technology as a process guided by

design and explicit human intention can be reconciled with evolution,

‘‘which both Darwin and Lamarck explained as a process through which

complex adaptive systems emerge in the absence of design.’’ ‘‘We may
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well agree that technological change is driven by variation and selection,’’

he continues, ‘‘but these are clearly not ‘blind’ or ‘natural.’ ’’41

Yet despite these reservations, Ziman believes that an evolutionary

model can incorporate the factors of human intentionality, since human

cognition is itself the product of natural selection and takes place, as he

puts it, ‘‘in lower level neural events whose causes might as well be con-

sidered random for all that we can find out about them’’ (7). Thus the

process as a whole can be said to operate blindly. Actually, the process

need not even be blind in the way that mutations or recombinations of

molecules in DNA are blind; rather, all that is required is that ‘‘there

should be a stochastic element in what is actually produced, chosen and

put to the test of use’’ (7). Given that there are no universally agreed

upon criteria that determine which technological innovations are selected

and that ‘‘artifacts with similar purposes may be designed to very dif-

ferent specifications and chosen for very di¤erent reasons,’’ Ziman

concludes that ‘‘there is usually enough diversity and relatively blind

variation in a population of technological entities to sustain an evolution-

ary process’’ (7). Finally, in a not altogether unanticipated move, he sug-

gests that instead of lumping technology and biology together we should

treat them as ‘‘distinct entities of a larger genus of complex systems.’’ Es-

sentially this means that instead of worrying about whether evolutionary

processes conform to strictly Darwinian or neo-Darwinian principles, we

should be exploring the properties of ‘‘a more general selectionist para-

digm’’ (11). The most compelling exemplification of selectionism in

action, Ziman finds, is ALife.42

The question of whether the evolution of artificial life should be consid-

ered in Lamarckian rather than Darwinian terms was raised early in

ALife research, most notably by J. Doyne Farmer and Alletta d’A. Belin

in ‘‘Artificial Life: The Coming Evolution,’’ a speculative essay directed

toward the future of artificial life.43 Actually, Herbert Spencer’s concept

of evolution rather than Darwin’s frames the discussion. As Farmer and

Belin explain, for Spencer ‘‘evolution is a process giving rise to increasing

di¤erentiation (specialization of functions) and integration (mutual inter-

dependence and coordination of function of the structurally di¤erentiated

parts)’’ (832). It is thus the dominant force driving ‘‘the spontaneous for-

mation of structure in the universe,’’ from rocks and stars to biological

species and social organization. In these terms evolution entails a theory of

organization that opposes it to disorder or entropy while also anticipat-

ing contemporary theories of self-organization. Given the fundamental
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importance of self-organization to much of contemporary science, it has

become essential ‘‘to understand why nature has an inexorable tendency

to organize itself, and to discover the laws under which this process oper-

ates’’ (833).

Within this larger framework artificial life signals a momentous change

in the way evolution takes place. Following the spontaneous formation

of structure through processes of self-organization (which leads to the

origins of life), biological reproduction becomes the means by which in-

formation and patterns from the past are communicated to the future.

Moreover, with Darwinian evolution (random mutations and natural se-

lection), incremental changes are introduced that produce structures of

greater variety and adaptability. With the advent of human culture a

great speed-up occurs through Lamarckian evolution, since changes in

the form of ‘‘acquired characteristics’’ can now be transmitted directly

to the future rather than only through genetic information. The invention

of the computer is another benchmark, since it allows a much more e‰-

cient storing of information and the performing of certain cognitive func-

tions that heretofore only humans could perform. But with artificial life

it becomes possible ‘‘for Lamarckian evolution to act on the material

composition of the organisms themselves’’ (834). More specifically, with

computer-generated life-forms the genome can be manipulated directly,

thus making possible not only the genetic engineering of humans by

humans but a ‘‘symbiotic Lamarckian evolution, in which one species

modifies the genome of another, genetically engineering it for the mutual

advantage of both’’ (835). Finally, it will be possible to render or transfer

this control of the genome to the products of human technology, produc-

ing self-modifying, autonomous tools with increasingly higher levels of

intelligence. (As shown in chapter 7, this tendency is already evident in

contemporary robotics.) ‘‘Assuming that artificial life forms become dom-

inant in the far future,’’ Farmer and Belin conclude, ‘‘this transition to

Lamarckian evolution of hardware will enact another major change in

the global rate of evolution. . . . The distinction between the artificial and

the natural will disappear’’ (835).

Presented in these broad and sweeping terms, Farmer and Belin’s nar-

rative resonates with several familiar cosmological narratives. Examples

include Henri Bergson’s Creative Evolution (1907) and Pierre Teilhard de

Chardin’s The Phenomenon of Man (1955), where ‘‘life’’ and ‘‘intelli-

gence’’ respectively are understood to be forces for creative change that

bring about the adaptation of the universe itself as they continually

spread outward. Human beings are simply one vehicle by means of which
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they disseminate and proliferate. A recent version of this narrative can

be seen in Harold J. Morowitz’s The Emergence of Everything, which

sketches in twenty-eight instances of emergence the origin of the physical

universe, the origin of life, and the origin of human mind.44 Yet none of

these narratives of ‘‘becoming’’ envision the extension of life and intelli-

gence through the propagation of human-constructed machines that rep-

licate and evolve in complexity. In order to pursue this scenario, and in

particular to pose the question of how nature itself could be caught up in

a ‘‘becoming machinic,’’ I turn to Gilles Deleuze and Félix Guattari’s

theory of becoming, which despite its philosophical rather than scientific

impetus exhibits notable similarities to Farmer and Belin’s narrative of a

symbiotic Lamarckian evolution.

Initially the theory seems directly opposed to evolution, at least to evo-

lution by descent and filiation.45 Although Deleuze and Guattari mention

the relationship of the orchid and the bee, certain supposed ‘‘alliances’’

with viruses, and ‘‘transversal communications between heterogeneous

populations,’’ the biological realm remains largely outside their concerns

precisely because of its very capacity to reproduce and self-propagate

‘‘naturally,’’ that is, along lines of family descent and filiation. Against

the natural mode of propagation they extol alliance, monstrous cou-

plings, symbiosis, ‘‘side-communication’’ and ‘‘contagion,’’ and above all

those doubly deterritorializing relays they call ‘‘becomings.’’ A primary

example comes from mythic tales of sorcerers and shamans who enter

into strange and unholy relationships with animals in order to acquire

their powers, but as Deleuze and Guattari emphasize, these instances of

becoming-animal do not involve playing or imitating the animal. Either

to imitate the other or remain what you are, they say, is a false alterna-

tive. What is involved, rather, is the formation of a ‘‘block’’—hence they

speak of ‘‘blocks of becoming’’—constituted by alliance, communication,

relay, and symbiosis. Since the block ‘‘runs its own line ‘between’ the

terms in play and beneath assignable relations,’’ the outcome cannot be

reduced to familiar oppositions like ‘‘appearing’’ versus ‘‘being’’ and

‘‘mirroring’’ versus ‘‘producing.’’ More to the point, a becoming-animal

‘‘always involves a pack, a band, a population, a peopling, in short, a

multiplicity’’ (A Thousand Plateaus, 239). Thus to enter into a block of

becoming is to enter a decentered network of communication and relay

that will lead to becoming someone or something other than who you

are, though not through imitation or identification. In fact, Deleuze

and Guattari speak of ‘‘a-parallel evolution,’’ where two or more previ-

ously distinct entities relay one another into an unknown future in which
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neither will remain the same nor the two become more alike. In certain

respects, this dynamic process resembles that of biological coevolution,

in which distinct species or populations are pulled into either an escalat-

ing arms race or a symbiosis. Or, to take a more pertinent example, there

are some species known to survive as a cloud, or quasi, species when

exposed to a high mutation rate.46 No single organism contains the entire

genome for the species; rather, a range of genomes exists in what ALife

scientist Chris Adami has described as a ‘‘mutational cloud.’’47 This is

neither the evolution nor the disintegration of a species, but appears to

be an instance of a becoming-symbiotic.

For Deleuze and Guattari, the act of imitation serves only as a mask or

cover, behind which something more subtle and secret (i.e., impercepti-

ble) can happen. If we follow their idea that becoming-animal is not a

mimicking of an animal but an entering into a dynamic relationship of

relay and aparallel evolution with certain animal traits, it becomes possi-

ble to theorize how becoming-machinic is a force or vector that, under the

guise of imitation, is directing and shaping not only ALife experiments

and contemporary robotics but much of the new technology transforming

contemporary life. The rapid innovation and evolution of computer tech-

nology and the changes brought about as a result—what the popular me-

dia refer to as ‘‘the digital tidal wave’’—are part of this larger movement.

These developments, and the constellation of dynamic processes driving

them, cannot be understood simply as the fabrication and widespread

usage of a new set of tools. Unlike the telescope and microscope, which

extended a natural human capacity, the computer is a machinic assem-

blage of an altogether di¤erent order, one that transforms the very terms

of human communication and conceptualization. In Heideggerian terms,

it sets into motion a new and di¤erent ‘‘worlding of the world,’’ one that

has brought forth a machinic reconception of nature itself.

The assumption that physical processes are rule-governed and there-

fore simply or complexly computational is a central aspect of this new

worlding.48 Computationalism, as this assumption may be loosely called,

includes the metaphorical version as well: all physical processes can be

viewed or understood as computations. One widely accepted example is

the view that evolution itself is simply a vast computational process, a

slow but never-ending search through a constantly changing ‘‘real’’ fitness

landscape for better-adapted forms. No doubt the most extreme ver-

sion of computationalism has been advanced by Edward Fredkin, who

believes that all physical processes are programs running on a cosmic cel-

lular automaton; nature itself, in short, is a computer. Fredkin argues
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that subatomic behavior is well described, but not explained, by quantum

mechanics and that a more fundamental science, which he calls digital

mechanics, based on computational mechanisms, will one day supply a

deeper and more complete account.49 A comparable version of computa-

tionalism centered on a notion of ‘‘computational equivalence’’ across a

diverse range of phenomena has been advanced by Stephen Wolfram in

A New Kind of Science.50 Whether warranted or not, this conceptualiza-

tion of computation as a process that generates nature itself is a strong—

perhaps ultimate—expression of the becoming-machinic of the world.

More than anything else, our acculturated reliance on relationships

of mimesis and representation still makes it di‰cult to comprehend

becoming-machinic in its own terms. The example of ALife is again illus-

trative. Because ALife appears to abstract from and mimic living systems,

we tend to understand its meaning and function in terms of a model,

representation, or simulation of life. In this perspective the experimenter

simply constructs a particular kind of complex object that reduces and

objectifies a natural process in a simulacrum. From a Deleuzian perspec-

tive, on the other hand, the human subject appears not in the image of a

godlike creator but as a participant in a larger process of becoming-

machinic. This process is not fully explicable anthropomorphically, either

as a natural process of growth or as a human process of construction.

Rather, it is a dynamic self-assembly that draws both the human and the

natural into new forms of interaction and relay among a multiplicity of

material, historical, and evolutionary forces. As a result, the human envi-

ronment is becoming a field in which an increasingly self-determined and

self-generating technology continues natural evolution by other means.

As participants in a block of becoming composed of both natural and

artificial life forms and traits, human subjects do not thereby become

more machinelike; nor do artificial life-forms become more human. In-

stead, as new relays and networks of transversal communications begin

to cohere, boundaries rupture and are newly articulated, energy and im-

age are redistributed, and new assemblages form in which human being is

redefined. As human cognitive capacities increasingly function within and

by means of environmentally distributed technologies and networks, these

capacities will necessarily be further augmented by new relationships with

information machines. However, by creating conditions and methods

by which machines themselves can become autonomous, self-organizing,

and self-reproducing, human beings change not only the environment but

the way they constitute and enact themselves, thus reshaping their own

self-image.
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In certain respects this narrative of becoming-machinic does not di¤er

much from Farmer and Belin’s narrative of Lamarckian symbiosis. But

whereas the latter focuses almost exclusively on the alteration of the

genome in both humans and artificial life forms and the great speedup in

the ‘‘global rate of evolution,’’ becoming-machinic leaves open the ques-

tion of exactly what new kinds of assemblages human beings will enter

into and become part of.51 To be sure, at this level of generalization it

may not be possible or feasible to gauge the di¤erences between directed

evolution (with all its unforeseen consequences) and a becoming-machinic

guided by a logic of relay and coevolution. Yet both demand that we

think beyond the protocols of mimesis and representation toward new

and hybrid forms of self-organized being. It is often said that biological

entities evolve ‘‘on their own,’’ whereas the evolution of intelligent

machines requires human intervention. But this may be only an initial

stage; once intelligent machines are both fully autonomous and self-

reproducing they will be subject to the full force of the evolutionary dy-

namic as commonly understood. Within this larger trajectory what will

become paramount is how both evolutionary change and the ongoing

experiments of artificial life will produce and instantiate new learning

algorithms. The latter will involve not only pattern recognition, adapt-

ability, and the augmentation of information-processing capabilities but

also new search spaces created by new forms of machinic intelligence, as

the natural and social environment is increasingly pervaded by machinic

forms. Thus far the computer has been one of many means by which new

learning algorithms are developed and implemented. However, if the next

step beyond artificial evolution within computers (ALife) and by means

of computers (contemporary robotics) is to be computers that can evolve

by themselves, then the new learning algorithms will have to be instanti-

ated in the computer’s very structure. In other words, a new kind of com-

putational assemblage will have to be built to fit the learning algorithms,

rather than the other way around.52 In e¤ect, the computer itself will

have to become a complex adaptive system, able to learn and adapt be-

cause it can change the rules of its operating system not only for di¤erent

computational tasks but as the environment itself changes. This would

bring to its fullest realization the project first adumbrated in the cyber-

netic vision of a new kind of complex machine.

22 Introduction



I FROM CYBERNETICS TO MACHINIC PHILOSOPHY





1 Cybernetics and the New Complexity of Machines

Cybernetics is not merely another branch of science. It is an Intellectual Revolution

that rivals in importance the earlier Industrial Revolution.

—Isaac Asimov

Before the mid-twentieth century, the very idea that human beings might

be able to construct machines more complex than themselves could only

be regarded as a dream or cultural fantasy. This changed in the 1940s and

’50s, when many scientists and mathematicians began to think in inno-

vative ways about what makes behavior complex, whether in humans,

animals, or machines. One of the scientists, John von Neumann, often

referred to what he called the ‘‘complexity barrier,’’ which prevented cur-

rent machines or automata from following the path of evolution toward

the self-reproduction of ever more complex machines. Others, more com-

monly, thought of complexity in relation to the highly adaptive behavior

of living organisms. Many of these scientists were directly involved in

the advent of cybernetics and information theory, a moment that should

now be considered essential to the history of our present, rather than a

merely interesting episode in the history of technology and science. For,

contrary to widespread belief, cybernetics was not simply a short-lived,

neomechanist attempt to explain all purposeful behavior—whether that of

humans, animals, or machines—as the sending and receiving of messages

in a feedback circuit. Rather, it formed the historical nexus out of which

the information networks and computational assemblages that constitute

the infrastructure of the postindustrial world first developed, spawning

new technologies and intellectual disciplines we now take for granted.

Equally important, it laid the grounds for some of the most advanced

and novel research in science today.

Historically, cybernetics originated in a synthesis of control theory and

statistical information theory in the aftermath of the Second World War,



its primary objective being to understand intelligent behavior in both ani-

mals and machines. The movement’s launching pad was a series of inter-

disciplinary meetings called the Macy Conferences, to which a diverse

assortment of scientists, mathematicians, engineers, psychiatrists, anthro-

pologists, and social scientists were invited to discuss ‘‘the Feedback

Mechanisms and Circular Causal Systems in Biology and the Social

Sciences.’’ In all, ten conferences were held in New York City from 1946

to 1953. (Unfortunately, only the transactions of Conferences 6–10 were

published.) The movement’s chief spokesman, Norbert Wiener, explains

that the term ‘‘cybernetics’’ (from the Greek kybernetes, for steersman)

was introduced in 1947 ‘‘by the group of scientists about Dr. Rosenblueth

and myself ’’ to designate a new field centered on problems in ‘‘communi-

cation, control, and statistical mechanics, whether in the machine or in

living tissue.’’1 The new science of cybernetics, he continues, extends to

‘‘computing machines and the nervous system’’ as well as to the brain

as a ‘‘self-organizing system.’’ After the publication of Wiener’s book,

Cybernetics; or, Control and Communication in the Animal and Machine

(1948), Macy Conference participants decided to incorporate the term

into the title of the sixth and all subsequent conferences.

Producing not only new theories but new kinds of machines, cybernet-

ics was not simply or solely an intellectual movement. During the war

many of those who would later form the movement’s core worked on

new weapons systems, radar, and the rapid calculating machines that

would eventually lead to the electronic, stored-program computer.2 But

just as significantly, many others were trained in neurophysiology and

the behavior of living organisms, which gave the movement a double per-

spective and strong interdisciplinary flavor. The movement’s conceptual

center, however, was defined by a new way of thinking about machines.

The machines, or automata, that most interested the cyberneticists were

those that were self-regulating and that maintained their stability and

autonomy through feedback loops with the environment. Since living

organisms characteristically exhibit this capacity, a conjoint study of their

behavior was both necessary and inevitable.

In several luminous pages in Cybernetics, Wiener signals a critical shift

in how science understands the living organism. In the nineteenth century

it was understood above all as ‘‘a heat engine, burning glucose or glyco-

gen or starch, fats, and proteins into carbon dioxide, water and urea’’

(41). Wiener and his contemporaries realized, however, that ‘‘the [organ-

ism’s] body is very far from a conservative system, and that its compo-

nent parts work in an environment where the available power is much
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less limited than we have taken it to be.’’ In fact, the nervous system and

organs responsible for the body’s regulation require very little energy. As

Wiener puts it, ‘‘The bookkeeping which is most essential to describe

their function is not one of energy.’’ This ‘‘bookkeeping,’’ rather, is ac-

complished by regulating the passage of information, like a vacuum tube

does in an electronic circuit, from the body’s sense organs to e¤ectors that

perform actions in the environment. Accordingly, ‘‘the newer study of

automata, whether in the metal or in the flesh, is a branch of communica-

tion engineering, and its cardinal notions are those of message, amount of

disturbance or ‘noise’—a term taken over from the telephone engineer—

quantity of information, coding technique, and so on’’ (42). As a conse-

quence, the ‘‘theory of sensitive automata,’’ by which Wiener means

automata that receive sensory stimulation from the environment and

transfer that information through the equivalent of a nervous system to

e¤ectors that perform actions, must be a statistical one:

We are scarcely ever interested in the performance of a communication-

engineering machine for a single input. To function adequately, it must give a sat-

isfactory performance for a whole class of inputs, and this means a statistically

satisfactory performance for the class of input which it is statistically expected to

receive. Thus its theory belongs to the Gibbsian statistical mechanics rather than

to the classical Newtonian mechanics. (44)

From this last point Wiener concludes that ‘‘the modern automaton exists

in the same sort of Bergsonian time as the living organism.’’ The state-

ment is more far-reaching than perhaps Wiener intended, for Bergsonian

time is also the time of becoming and ‘‘creative evolution.’’ In any event,

while the vitalist-mechanist controversy that Bergson attempted to re-

solve might have had a certain validity for an earlier, less technologically

developed period, from Wiener’s cybernetic point of view it had already

been relegated ‘‘to the limbo of badly posed questions’’ (44).

Wiener’s valorization of information feedback circuits was reinforced

by Claude Shannon’s quantitative theory of information, published in

the same year as Wiener’s Cybernetics.3 Though intended to overcome

engineering problems in electronic communications—specifically to reduce

noise in telephone lines—Shannon’s was a formal theory that could be

applied to the communication of information in any medium. LikeWiener,

Shannon defined information in statistical terms; his formula for comput-

ing information, in fact, was based directly on Ludwig Boltzmann’s

famous formula for computing the entropy, or amount of randomness,

of a thermodynamic system. Given the uncertainty of molecular states,

Boltzmann proposed a measure based on their statistical distribution and
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even thought of our incomplete knowledge of these states as ‘‘missing

information.’’ For Shannon, the uncertainty of a message stems from

the freedom of choice in the selection of a particular message (or set of

symbols constituting a message). The greater the number of possible mes-

sages, the greater the uncertainty and hence the greater the information

value of a single selected message or symbol. But whereas for Shannon

information measures this uncertainty, or entropy, for Wiener it measures

a gain in certainty; information, therefore, he considered to be a measure

of negative entropy, or ‘‘negentropy.’’4 Wiener’s positive definition, as

well as his emphasis on continuous (analog) rather than discrete (digital)

modes of information transfer, may have reflected his greater interest in

living organisms. In The Human Use of Human Beings: Cybernetics and

Society, a popular version of his theory, he explains how the process of

cybernetic feedback made possible systems and forms of organization

that ran counter to nature’s statistical tendency to disorder and increasing

entropy.5 Only in these pockets of negentropy, he argued, could some-

thing like biological life arise.

Yet Shannon was certainly not indi¤erent to the cybernetic interest in

making machines that could model or instantiate the behavior of living

organisms. At the 8th Macy Conference in 1951 he presented an electro-

mechanical ‘‘mouse’’ that could learn to find its way through a maze.6

The mouse would first explore the maze, and then, after one complete

exploration, run through it perfectly. The maze consisted of twenty-five

squares separated by moveable partitions; the goal was a pin that could

be inserted into a jack in any square. The mouse was a small vehicle

with two motors enabling it to move in any of four directions (north,

south, east, west). The motors were wired to a ‘‘sensing finger’’ and set

of relays that allowed the mouse to ‘‘explore’’ the maze and to ‘‘remem-

ber’’ its path through it. From a starting point it would enter a square

and then move forward. If it bumped into a wall, it would move back to

the center and move forward in a second direction (counterclockwise by

ninety degrees from the first) until it passed to another square. It would

then visit each square systematically, doing the same until it arrived at

the goal. A set of relays would lock into memory each of the successful

directions. When the mouse arrived at the goal a bell would ring and a

light turn on, but it would also switch from ‘‘exploratory strategy’’ to

‘‘goal strategy.’’ When repositioned at the starting point or at any square

it had visited, the mouse would now go directly to the goal; if placed in a

square it had not visited, it would explore until it found one, then move

directly to the goal. In short, it had learned the maze.
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While no one could or did confuse the behavior of the ‘‘maze-solving

machine’’ with that of a real mouse, the similarities between the two

were uncanny. In fact, most of the machines built by the cyberneticists

exhibited behavior that, if witnessed in living organisms, would be

deemed intelligent, adaptive, or illustrative of learning. Hence discussion

at the Macy Conferences often revolved around questions of whether

these machines were models or mere simulations, in the pejorative sense

of giving only the appearance of something.7 And yet, hovering in the

air was a tacit or groping sense that it was really a matter of a new kind

of machine that transcended this opposition, just as the opposition be-

tween causal and teleological behavior is transcended in the cybernetic

notion of circular causality. Indeed, a seminal paper instigating the

Macy Conferences had made this very argument. In ‘‘Behavior, Purpose,

and Teleology,’’ Arthur Rosenblueth, Norbert Wiener, and J. Bigelow

proposed a classification of behavior based on how an entity (whether ob-

ject or organism) produces changes in the environment.8 One of the cate-

gories includes entities (both animals and machines) able to engage in

goal-directed actions through feedback mechanisms. Traditionally, such

actions had been considered outside the bounds of scientific study, since

to explain an action in relation to a goal meant explaining it in terms of

an event that had not yet happened, as if the cause could somehow come

after the e¤ect. The authors, therefore, proposed a di¤erent kind of

model, one that substitutes a type of ‘‘circular causality’’ based on feed-

back for the usual cause-and-e¤ect relationship, or that of stimulus fol-

lowed by response. According to the new model, part of the output for

an action taken by the entity is returned to the entity as input for the

next action in a continuous circuit of auto-regulation, hence transcending

the supposed opposition between causal and teleological explanation.

Cybernetic discourse, moreover, tended to speak of machines in terms

of living organisms and living organisms in terms of machines. There was

in fact an assumed or implicit agreement that the two di¤ered only in the

complexity of their respective organization. The unspoken—and perhaps

unspeakable—objective directly follows: to bridge the gap between the

organic and the inorganic, the natural and the artificial. The cyberneti-

cists’ use of the word automaton—or, more often, the plural automata—

also points in this direction. Conventionally, of course, the term desig-

nates a self-moving machine, often a mechanical figure or contrivance

meant to convey the illusion of autonomy. The cyberneticists, however,

speak of natural or artificial automata, of automata ‘‘in the metal or

in the flesh,’’ as Wiener puts it in the passage quoted above. Does this
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transgressive breaching of natural boundaries confirm J.-C. Beaune’s

thesis that the modern automaton is the philosophical machine par excel-

lence, concretizing in its fundamental ambiguity the fear and anguish just

under the surface of the industrial era’s belief in a progressive rational-

ity?9 The di‰culty here is that the terms no longer seem applicable, for

cybernetics makes the modern automaton central not only to its own

development but to sciences yet to be born, within which the automaton’s

fuller realization will transform (or abolish) the oppositions to which it

owes its existence.

Conceptualizing the New Machine

In considering Wiener and Shannon, we have only broached the familiar

part of cybernetics, understood as a theory of control and self-regulation

achieved through the sending and receiving of information in feedback

circuits. Note that feedback and self-regulation, though implicated from

the outset with purposeful, intelligent, adaptive behavior—and later with

memory and learning—are always understood by the cyberneticists in

terms of pure physical embodiment and performance, not symbol mak-

ing and representation.10 This understanding is particularly evident in

W. Ross Ashby’s rigorous reframing of cybernetics, which begins with the

question, What are all the possible behaviors of any given machine? As a

consequence, the terms of his approach are dictated not by information

theory but by dynamical systems theory. Indeed, within this wider frame,

cybernetics becomes a more ambitious undertaking: it is not simply about

feedback but constitutes a theory of machines, as Ashby states at the be-

ginning of his Introduction to Cybernetics:

Cybernetics . . . is a ‘‘theory of machines,’’ but it treats, not things but ways of

behaving. It does not ask ‘‘what is this thing?’’ but ‘‘what does it do?’’ . . . It takes

as its subject-matter the domain of ‘‘all possible machines,’’ and is only second-

arily interested if informed that some of them have not yet been made, either by

Man or by Nature. What cybernetics o¤ers is the framework on which all individ-

ual machines may be ordered, related and understood.11

Yet Ashby, no less than Wiener, was also interested in how machines

can model and thereby help us understand the behavior of living organ-

isms. Indeed, his ‘‘homeostat machine’’ (discussed below) was inspired

by the question of how an organism adapts to its environment. However,

in Design for a Brain, as in all his published research, Ashby proceeds

from the assumption that the organism is—or must be treated as—a ma-

chine.12 At the outset he notes that the brain resembles a machine ‘‘in its
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dependence on chemical reactions, in its dependence on the integrity of

anatomical paths, and in the precision and determinateness with which

its component parts act on one another.’’ Yet psychologists and biologists

have confirmed ‘‘with full objectivity the layman’s conviction that the liv-

ing organism behaves typically in a purposeful and adaptive way’’ (1).

Ashby’s objective is to reconcile these apparently opposed perspectives,

essentially by demonstrating exactly how a machine can be adaptive. To

do this, he will make ‘‘extensive use of a method hitherto little used in

machines’’ (10)—by which he obviously means feedback—and will define

the organism and environment as a coupled dynamical system. Thus he

defines the environment as ‘‘those variables whose changes a¤ect the or-

ganism, and those variables which are changed by the organism’s behavior’’

(36, author’s emphasis). His homeostat machine allowed him to experi-

ment precisely with this coupling of two distinct systems.

Although Ashby takes the radical view that every self-organizing

dynamical system or machine generates a form of ‘‘life’’ adapted to its

environment, his approach is entirely consistent with the cybernetic pro-

gram more generally. Essentially, cybernetics proposed not only a new

conceptualization of the machine in terms of information theory and

dynamical systems theory but also an understanding of ‘‘life,’’ or living

organisms, as a more complex instance of this conceptualization rather

than as a di¤erent order of being or ontology. Hence the complexity of

life is not attributed to some ine¤able, mystical force, as in vitalism, nor

is it reduced to a determinate mechanical linkage of cause and e¤ect, as in

Descartes’s understanding of animals as complicated machines. Rather,

what we usually find in actual cybernetic research is the assumption that

some aspect of a living organism’s behavior can be accounted for by a

mechanism or mechanisms that can be modeled by a machine. For exam-

ple, in An Introduction to Cybernetics, Ashby shows first how the some-

what unpredictable behavior of an insect that lives in and about a

shallow pond, hopping to and fro among water, bank, and pebble, can

illustrate a machine in which the state transitions correspond to those of

a stochastic transformation (165). But then he shows how this same ma-

chine, which he now calls a ‘‘Markovian machine,’’ is capable of great

complexity (225–235).13 And this is typical: a machine that serves as the

model often turns out to be capable, under certain conditions, of exceed-

ingly complex behavior. Finally, this complex behavior, which often illu-

minates the actual behavior of living organisms, becomes interesting

in and of itself, even though the early cyberneticists lacked a coherent

framework for discussing it in these terms.
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Before turning to specific examples, it may be instructive to illustrate

Ashby’s relatively abstract (because generalized) approach to machines.

As he defines it, a ‘‘machine is that which behaves in a machinelike way,

namely, that its internal state, and the state of its surroundings, defines

uniquely the next state it will go to’’ (An Introduction to Cybernetics, 25).

Consider a simple example—a ‘‘processor’’ P.14 Figure 1.1 summarizes

all of P’s possible behaviors, given a specific input A and a specific state

of the environment E.

Thus (following the downward arrow), if the input A has the value 1

and the environment E is in a state indicated by the number 1, then the

machine moves to a state indicated by the number 2; alternatively, if the

environment is in the state indicated by the number 2, then the machine

will remain in its initial state. If the input A has the value 2 (again reading

downward from the arrow), then the machine will remain in its initial

state regardless of whether the environment is in state 1 or 2. This simple

mapping of all the machine’s possible states as a function of its input and

the environmental state tells us two things. First, we don’t need to know

what internal mechanism brings about P’s change of state (it is treated as

a ‘‘black box’’). All that matters is how its behavior changes as a conse-

quence of changes in two variables, its input and the state of the environ-

ment. (This also means that P’s behavior can be easily expressed as a

mathematical function.) Second, P does not operate in isolation; its be-

havior only makes sense in relation to the input it receives and the envi-

ronment to which it is ‘‘coupled.’’

We could easily make P’s behavior more complicated simply by

increasing the number of variables. But we could also make its behavior

more complex. Let us connect a large number of Ps in a gridlike array,

such that the output of one is connected to the input of two others, and

Figure 1.1
Processor P.
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so on throughout the array. Of course, the environmental state E would

also have to be redefined. One possibility would be to make its value a

summation of the neighboring P states for all Ps within a ‘‘certain neigh-

borhood’’ (e.g., not more than one P away in any direction). This would

mean that the state-transition table (for this is what the table above is

called) would be more complicated, but not unmanageably so. Let us

make one further modification. Whenever a P moves to a state 2, a small

light turns on, and it remains on as long as P remains in that state. What

would be the result of this new setup? First, as soon as an initial input

stimulus is given to the array, lights would begin to flash on and o¤ ran-

domly. Eventually, a stable pattern of lights might appear, indicating that

the array as a whole had found a stable configuration. Next, we try a sec-

ond initial input, di¤erent from the first. Would we see a repetition of the

results of the first stimulus? In fact, there is no way to know in advance;

we would simply have to try it and see. This means that we now have

a machine—we could call it a P-array—whose behavior is completely

deterministic (since the state of every individual P is still determined by

two variables, input and environmental state) but is completely unpredict-

able. It is unpredictable simply because the changing variables in all the

‘‘P-neighborhoods’’ are now influencing one another in such a tangle of

nonlinear feedback circuits that there is no way to compute the outcome

in real time.

Aside from its illustrative value, does the P-array have any use in the

world, or is it just an interesting artifact? As a machine, it can always be

connected to another machine. Let’s assume that the P-array exhibits a

number of stable patterns. Each stable pattern could be made to trigger

a specific actuator that accomplishes something. We would now have as

many di¤erent actuators as there are stable patterns, making the P-array

a very flexible switchboard. It is flexible because a pattern, rather than a

digital on-o¤ switch, triggers an actuator. Thus its reliability does not de-

pend upon the perfect functioning of every P. Since there are many Ps,

the array as a whole possesses a built-in redundancy. It is also flexible in

that similar or even partially incomplete patterns may evoke the same re-

sponse (triggering a single actuator), or multiple patterns may evoke mul-

tiple simultaneous responses (triggering multiple actuators). These flexible

capacities begin to make the P-array resemble a brain, or at least a mech-

anism for producing intelligent, purposeful behavior. And the P-array

also raises a number of fruitful questions: What are the precise dynamics

that lead it to stabilize, or self-organize into specific patterns? What if it

never stabilizes? Could a mechanism be added that would automatically
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change the individual P settings until it did? If a specific input leads to an

action that damages or destroys the P-array, could another mechanism

inhibit the execution of this action? Are there other mechanisms that

would enable the P-array to learn and adapt to changes in its environ-

ment? These are the kinds of questions that the cyberneticists would typi-

cally ask.

The most fruitful aspect of the cybernetic heritage was thus to have

created a conceptual space in which a new theory of machines could be

elaborated, often in relation to or involving a fresh examination of the

behavior of living organisms. This encouraged new reciprocal under-

standings of the realms of the artificial and the natural in a series of relays

and reversals of perspective. As a consequence, and with irreversible

force, the boundary lines soon began to dissolve, and humanity eventu-

ally found itself in the present era of the posthuman cyborg and the pro-

liferation of what I call machinic life. Before proceeding to show how

several ‘‘species’’ of this new form of life arose in tandem and relay with

e¤orts to break the complexity barrier—this will be the central subject

of later chapters—I want to examine the theories and machine construc-

tions set forth by three of the original cyberneticists: John von Neumann,

W. Ross Ashby, and W. Grey Walter. These specific examples will lead

to a discussion of the concept of self-organization in Ashby and Heinz

von Foerster and thus to the end of the first phase of cybernetics as an

historical movement. I conclude the chapter with a reflection on the imag-

inary constructions of Valentino Braitenberg, whom I (somewhat play-

fully) consider the last cyberneticist. While each of these instances

exhibits a particular aspect of complexity, when taken together they pro-

vide a historical backdrop for developments I take up in subsequent

chapters.

Von Neumann’s Self-Reproducing Automata

John von Neumann is the first theoretician of complexity in the sense that

will be developed here. Those familiar with his scientific contributions—

to the mathematics of quantum physics, to game theory and economics,

to the implosion device for triggering the first atomic bomb, and to the

architecture of the first all-purpose electronic computer—won’t be sur-

prised to learn that from the late 1940s to the end of his life in 1957 von

Neumann devoted enormous attention to automata theory. In fact, be-

fore von Neumann’s work, automata theory as such could hardly be

said to have existed. Specifically, before a formal theory of computation
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was initiated in the 1930s by the mathematicians Alan Turing, Alonso

Church, and Stephen Kleene and the new ‘‘thinking machines’’ began

to be built in the 1940s and ’50s, the construction of automata had been

a distinctly marginal concern, a playful sideline activity associated

more with toys than scientific models. One thinks, for example, of Jacques

Vaucanson’s mechanical duck and other wind-up devices that enchanted

the European courts of the eighteenth century, or the Swiss cuckoo

clocks that amused the middle class. As was typical of von Neumann, his

interest in automata was predicated not simply on their new importance,

now that extremely fast computing machines were the order of the day,

but more centrally on the their lack of a theory as such, a general and

logical theory, as he put it. Indeed, from the theoretical point of view

that von Neumann envisioned, automata theory o¤ered the possibility of

giving a rigorous and fertile formulation to questions that cybernetics

and information theory made it possible to ask for the first time. How,

for example, can the di¤erences that underlie the logic of organiza-

tion in biological as opposed to artificial entities be used to build

more reliable machines? More specifically, how can unreliable compo-

nents be organized to become highly reliable for a machine or automa-

ton as a whole? And what are the conditions that would enable simple

automata—understood as information-processing machines that exhibit

self-regulation in interaction with the environment—to produce more

complex automata?

In providing a framework within which these and similar questions

could be addressed, von Neumann established the intellectual value and

usefulness of a general theory.15 Here I consider only a few singular

details, and mostly in reference to von Neumann’s preferred two exam-

ples: the human brain, or nervous system, and the computer, which repre-

sented the most interesting examples of natural and artificial automata,

respectively. Far from considering them separately, von Neumann made

frequent comparisons. At the outset of ‘‘The General and Logical Theory

of Automata’’ he states that ‘‘some regularities which we observe in the

organization of the former may be quite instructive in our thinking and

planning of the latter; and conversely, a good deal of our experiences

and di‰culties with artificial automata can be to some extent projected

on our interpretations of natural organisms.’’16 But while often noting

di¤erences in computational speed, number of processing units, material

composition, and so forth, he was mostly concerned with the ‘‘logic’’ un-

derlying the organization of these two kinds of automata. In his short

book The Computer and the Brain (published posthumously), he suggests
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that the human brain, like most biological organisms, is a ‘‘mixed’’ ma-

chine, both logical and statistical, which functions according to both

digital and analog mechanisms.17 He emphasizes not only that the

‘‘message-system used in the nervous system [is] of an essentially statisti-

cal character’’ (79) but also that the ‘‘language of the brain [is] not the

language of mathematics’’ (80). He concludes, therefore, that ‘‘when we

talk mathematics, we may be discussing a secondary language, built on

the primary language truly used by the nervous systems’’ (82). This sensi-

tivity to the limits of specific languages—in particular, that of formal

logic—becomes critical when confronting complexity.

Von Neumann knew from Warren McCulloch and Walter Pitts’s path-

breaking essay, ‘‘A Logical Calculus of the Ideas Immanent in Nervous

Activity,’’ that neurons, or nerve cells, are always connected with other

neurons in ‘‘neural nets.’’18 Assuming that individual neurons function

as digital on-o¤ switches for ‘‘nervous [i.e., electrical] impulses,’’ McCul-

loch and Pitts show that these neural nets can be understood as switching

networks that perform logical and arithmetic calculations, and that in-

deed these natural ‘‘logic machines’’ are equivalent to Turing machines

(35), hence computationally universal.19 In this way the authors pinpoint

the underlying neurophysiological mechanism that makes logic and calcu-

lation possible. Methodologically, however, McCulloch and Pitts treat

the neuron as a black box and simply axiomatize its functioning. While

highly appreciative of this axiomatization, von Neumann was skeptical

nonetheless that it reflected the way the brain actually works. A brain

built according to these principles which could carry out all the required

functions ‘‘would turn out to be much larger than the one that we actu-

ally possess’’ and may even ‘‘prove to be too large to fit into the physical

universe,’’ he asserted (‘‘General and Logical Theory,’’ 33–34). In short,

while granting that McCulloch and Pitts had proved logically that any

behavior unambiguously describable in words could be computed or

emulated by a neural net, he also believed, somewhat disconcertingly,

that the type of ‘‘logic’’ these nets deployed was too limited to account

for the behavior exhibited by more complex automata.

The explanation von Neumann brought into play centered on a very

specific notion of complexity. For simple automata, he thought, it is

easier to describe the behavior itself than exactly how this behavior is pro-

duced or e¤ectuated. Take, for example, Vaucanson’s duck. Any observer

could describe its behavior and attest that it was capable of doing things

like waddle around and take food into its bill. Yet it would be very di‰-

cult for that same observer to describe the complicated structure—the
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mechanical interactions of specific gears and springs—by means of which

these activities were accomplished. Even so, von Neumann postulated

that above a certain threshold of complexity the description of the struc-

ture would be simpler than a description of the behavior. In discussing

McCulloch and Pitts’s theory, he gives the example of seeing visual anal-

ogies. Given the number and kind of visual analogies that are perceptible,

the task of describing them seems endless. The feeling thus arises that it

may be ‘‘futile to look for a precise logical concept, that is, for a precise

verbal description of ‘visual analogy.’ ’’ It is therefore possible, he con-

cludes, that ‘‘the connection pattern of the visual brain itself is the

simplest logical expression of this principle’’ (‘‘General and Logical

Theory,’’ 24). The application to McCulloch and Pitts’s theory is clear:

there is an equivalence between the logical principles and their embodi-

ment in a neural network. In simpler cases this means that the principles

would supply a simplified expression of the network. However, in cases

of ‘‘extreme complexity’’ the reverse might be true: the network itself

would be the simplest expression (or source) of an indescribably complex

behavior.20

Reasoning in this manner, von Neumann came to believe that the

theory of automata demanded a new type of logic, essentially di¤erent

from the formal, combinatorial logic of mathematics. In his introduction

to von Neumann’s book, Theory of Self-Reproducing Automata, Arthur

Burks enumerates several of its general features, and points to areas

where von Neumann expected to find it. First, the logic of automata

would have to be continuous rather than discrete, analytical rather than

combinatorial. Second, it would have to be a ‘‘probabilistic logic which

would handle component malfunction as an essential and integral part of

automata operation.’’21 And third, it would most likely have to draw on

the resources of thermodynamics and information theory. Von Neumann

himself had arrived at a first formulation of these features:

In fact, there are numerous indications to make us believe that this new system of

formal logic will move closer to another discipline which has been little linked

in the past with logic. This is thermodynamics, primarily in the form it was re-

ceived in Boltzmann, and is that part of theoretical physics which comes nearest

in some of its aspects to manipulating and measuring information. Its techniques

are indeed much more analytical than combinatorial. (‘‘General and Logical

Theory,’’ 17)

Not surprisingly, it was the ever-present example of natural automata

that pushed von Neumann in this direction. This is most directly evi-

dent in his concern with ‘‘reliability’’ in computing devices. By his own
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calculations, the neurons in the brain are some 5,000 times slower than

the vacuum tubes used as switching devices in the first electronic calcula-

tors, yet they are far more reliable. This is simply because they are far

more numerous, and their connections more complicated. Although large

numbers of neurons die daily, except in extraordinary conditions our ner-

vous system continues to function normally. Obviously there is a high re-

dundancy, but the system also evinces a high degree of organization.

Quite reasonably, von Neumann believed that the ‘‘logic’’ of this organi-

zation would throw light on the problem of how to enhance the reliability

of computer components, and he broached the problem in many of his

lectures and published writings. In Theory of Self-Reproducing Automata,

for example, he notes that there is a high degree of error tolerance in nat-

ural organisms. This flexibility, he speculates, probably requires an ‘‘abil-

ity of the automaton to watch itself and reorganize itself.’’ It is this high

degree of autonomy of parts that allows for a system in which ‘‘several

organs [are] each capable of taking control in an emergency’’ (73).

A long paper entitled ‘‘Probabilistic Logics and the Synthesis of Reli-

able Organisms from Unreliable Components’’ contains von Neumann’s

most sustained attempt to consider the technical details of the problem of

reliability.22 He begins by defining the automaton as a black box with a

finite number of inputs and outputs but restricts the brunt of his consider-

ations to the operational logic of a single-output automaton. Although he

refers—somewhat curiously—to these automata as ‘‘organs,’’ much of

what he says now seems recognizably close to neural net theory. For ex-

ample, the multiple input lines can have either inhibitory or excitatory

values and thus define a threshold ‘‘firing’’ function. He then shows that

any single output organ can be replaced by a network built up from

organs providing three logical operations (a and b, a or b, a and not-b),

or from ‘‘majority organs’’ built on a di¤erent set of logical primitives:

(a and b) or (a and c) or (b and c). From these majority organs automata

can be constructed that exhibit simple memory, simple scaling (counting

by twos), and simple learning (stimulus a is always followed by stimulus

b). Turning to the problem of error, he introduces the idea of ‘‘multiplex-

ing,’’ that is, of carrying a single message simultaneously on multiple

lines, and demonstrates statistically that by using large bundles of lines

any degree of reliability for a circuit can be insured. Summarily, what

von Neumann outlines here represents a groping attempt to develop an

artificial version of the kind of parallel information processing found in

natural automata like the brain and thus an alternative to the serial,
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one-step-at-a-time kind of processing that he himself had proposed for

the computing machine EDVAC and that is still referred to as a von Neu-

mann architecture.

His work on automata culminates in the Theory of Self-Reproducing

Automata, a collection of lectures, notes, and construction plans for a

self-reproducing automaton that Von Neumann never completed in his

lifetime. These construction plans are described in chapter 4. Here it

need only be noted that complexity is considered in relation to biological

evolution. In the ‘‘Fifth Lecture’’ von Neumann notes that living organ-

isms are so inherently complicated and improbable that it is a miracle

that they appeared at all. The only thing mitigating the e¤ect of this mir-

acle is that they reproduce themselves. But he quickly adds that this pro-

cess is ‘‘actually one better than self-reproduction, for organisms appear

to have gotten more elaborate in the course of time’’ (78). Thus, con-

sidered phylogenetically, organisms must be said to have the ability to

produce something more complicated than themselves. However, in the

case of artificial automata, we are led, at least initially, to the opposite

conclusion. An automaton A that can produce automaton B would need

a complete description of B in addition to detailed instructions for its con-

struction. Automaton A, therefore, will necessarily be more complicated

than B, which will appear degenerative by comparison. There is, he

believes, a way around this dilemma (later described in his theory of self-

reproduction). The issue of degeneration, nevertheless, leads him to posit

a threshold: ‘‘There is a minimum number of parts below which compli-

cation is degenerative, in the sense that if one automaton makes another

the second is less complex than the first, but above which it is possible for

an automaton to construct other automata of equal or higher complex-

ity’’ (80). The exact number depends on how the parts are defined, and

von Neumann wisely suggests that it probably cannot be determined in

the absence of ‘‘some critical examples’’ (he provides two, discussed in

chapter 4). He is certain, however, that

there is . . . this completely decisive property of complexity, that there exists a crit-

ical size below which the process of synthesis is degenerative, but above which the

phenomenon of synthesis, if properly arranged, can become explosive, in other

words, where syntheses of automata can proceed in such a manner that each au-

tomaton will produce other automata which are more complex and of higher

potentialities than itself. (80)

Although this ‘‘explosive’’ process has yet to be fully achieved, it now

informs the agenda of the new science of ALife.
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Ross Ashby’s Homeostat

Among the participants in the cybernetic movement, W. Ross Ashby was

perhaps closest to von Neumann in appreciating the fundamental impor-

tance of complexity. An English psychiatrist turned cyberneticist, Ashby

has been unjustly represented as a peripheral latecomer, no doubt because

he participated only in the next-to-last, 9th Macy Conference, held in

March 1952.23 On this occasion, however, he made two presentations.

The first, a discussion of his homeostat machine, deeply engaged the other

participants and immediately validated his reputation as an important

theorist. The second, a short exchange on whether or not a mechanical

chess player could be taught to outplay its human designer, was of obvi-

ous theoretical significance for the yet-to-be-established discipline of arti-

ficial intelligence. In both presentations we see the earmarks of his typical

approach—to consider the machine, whether existing or not, as a set of

specific actions in relation to or as a function of a field of possible actions.

This approach, rigorously elaborated in Design for a Brain and An Intro-

duction to Cybernetics, substantiates his understanding of cybernetics as a

comprehensive theory of the machine, one that ‘‘envisages a set of possi-

bilities much wider than the actual, and then asks us why the particular

case should conform to its usual particular restriction’’ (An Introduction,

3). In these terms Shannon’s information theory (which always deals with

a set of possibilities) is introduced, which will also enable cybernetics to

treat complex systems (4–6). Eventually this approach leads Ashby to

define the concept of self-organization, making him, according to most

accounts, one of the initiators of the second phase of the cybernetic

movement.24

In Ashby’s writings we encounter something of a paradox. Design for a

Brain, for example, is resolutely mechanistic and deterministic in its ap-

proach to adaptive behavior, which is understood as a problem in dynam-

ical systems theory. Yet Ashby always displays resourceful ingenuity in

his specific explanations. This is mostly due to his uncanny understand-

ing of how dynamical systems actually work, as when he shows how a

complex system like the brain forms a larger, coupled system with the

environment. Indeed, as discussed in chapter 7, this application of a

dynamical systems perspective has been ‘‘rediscovered’’ and deployed by

contemporary roboticists. For Ashby, the ‘‘joining’’ of brain and environ-

ment provides the key to adaptive behavior, which turns out to mean the

maintenance of stability by keeping the variables of the organism as ma-

chine within acceptable limits. In a not quite tongue-in-cheek example, he
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reminds us that ‘‘civilized behavior’’ depends first on keeping the air tem-

perature in an enclosed space within acceptable limits.

The problem Ashby addresses in his first Macy Conference presenta-

tion is ‘‘how the organism manages to establish homeostasis in the larger

sense, how the learning organism manages to organize its cerebral neu-

ronic equipment so that, however unusual a new environment may be, it

can learn to take appropriate action.’’25 In other words, when changes in

the environment occur, an organism must adapt itself to the new condi-

tions in order to survive. If the temperature drops below a certain level,

for example, a rabbit must find shelter and hibernate, or it will freeze to

death. In actuality, when we consider both organism and environment as

two interacting parts of a larger system, it is not possible or even neces-

sary to include all the variables of their possible interaction, only those

that directly e¤ect the stability of the organism. Thus if the organism

remains stable throughout a wide range of values of an environmental

variable, the latter need not be considered. Ashby calls such a variable a

null-function; he also distinguishes among a full-function, which varies all

the time, a part-function, which except for certain time intervals remains

constant, and a step-function, which, like a relay, changes dramatically

when a certain threshold is reached. If fluctuations of an environmental

variable produce changes in the organism, the variable will obviously

have to be considered as an essential part of the system. When the system

becomes unstable, the organism for its part must adapt by some mecha-

nism of corrective feedback and reestablish stability—meaning that the

values of the variables must be returned to within an acceptable range.

What interests Ashby is not so much the mechanism by which this adap-

tation is achieved (presumably it is some kind of neural network) as how

this mechanism can be modeled by a machine.

At the beginning of the presentation, before Ashby has gone very far,

discussion erupts with questions about how the variables of the environ-

ment and the organism are to be modeled. There is, nevertheless, general

agreement that the environment consists of di¤erent kinds of variables,

some of which (alone or in combination) produce an observable e¤ect on

the animal or organism that it must somehow counter or adjust to. In

Ashby’s approach, the environment—designated as E—is also a trans-

ducer, or operator, in the sense that ‘‘it converts whatever action comes

from the organism into some e¤ect that goes back to the organism’’ (74).

The brain of the organism must therefore act as an inverse operator E�1

capable of reacting in such a way that the environmental disturbance is

followed by an action that returns the organism to the proper values of
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its own variables. What kind of mechanism can do this? Although he

never says so, Ashby is clearly looking for a way to go beyond a fixed

repertoire of stimulus-response reactions, that is, beyond the resources of

behavioral psychology:

The fundamental problem is one of organization, of finding the appropriate

switching pattern. Clearly, the instructions for what is appropriate must come, ul-

timately, from the environment, for what is right for one environment may be

wrong for another. The problem is how the information from the environment

can be used to adjust the switching pattern. What the organism needs is a system

or method, which, if followed blindly, will almost always result in the switching

pattern changing from ‘‘inappropriate’’ to ‘‘appropriate.’’ I have given reasons

for thinking that there is only one way in which this can be done.26 The switching

must be arranged, at first, at random, and then there must be corrective feedback

from the essential variables into the main network, such that if any essential vari-

able goes outside its proper limits, a random, disruptive e¤ect is to be thrown into

the network. I believe that this method is practical with biological material and is

also e¤ective, in the sense that it will always tend automatically to find an inverse

operator, an E�1. (76)

In order to explore these issues experimentally, Ashby built a machine

he called the homeostat, described in his presentation (see fig. 1.2). The

machine consists of four units connected to one another. Each unit con-

tains an electromagnetic circuit connected to a needle that indicates a

Figure 1.2
The homeostat. W. Ross Ashby, Design for a Brain (London: Chapman & Hall, 1972; orig.
pub. 1952), 101.
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range of deviations from the vertical (zero) position. A feedback circuit

attempts to keep the unit within a normal operating range, defined as a

needle position of plus or minus forty-five degrees. If a disturbance pushes

the needle past forty-five degrees, it trips a relay that causes a device

called the ‘‘uniselector’’ to reconfigure the unit’s entire circuit according

to a completely di¤erent set of values, both in terms of the polarity of

the voltage and the resistances of the circuit. These new values are taken

from a table of random numbers; if a particular unit goes unstable, its en-

tire configuration of settings are randomly changed. Moreover, since the

output from each unit is connected to every other unit, the e¤ect of this

change is propagated to the other units and thus throughout the entire

system. As Ashby notes, multiple connections among the unit give the

machine as a whole over three hundred thousand combinatorial possibil-

ities (95). In many or even most cases the new setting causes one or more

of the other units to go unstable, thus causing it or them to jump ran-

domly to another configuration. The process repeats itself in all four units

until the overall system finds a stable configuration.

Ashby points out that if the uniselectors in some of the units are

‘‘locked,’’ they can be regarded as the environment, while the remaining

units can be regarded as the ‘‘brain’’ struggling to control changes in the

environment by searching randomly for a stable combination of the con-

figurations in all the units, that is, for the system as a whole. Not surpris-

ingly, many of the conference participants voiced di‰culties in seeing

how this randomized mechanism models the organism’s adaptation to

changing variables in the environment. As Julian Bigelow remarks, ‘‘It

may be a beautiful replica of something, but heaven only knows what’’

(95). Before considering what it is exactly that the homeostat does

model, an essential feature of the machine must be described in more de-

tail, since it underlies what may be the most important aspect of Ashby’s

presentation.

In response to Bigelow’s questions about the machine’s feedback loops,

Ashby explains that the homeostat ‘‘is really a machine within a ma-

chine.’’ This is necessary because it must deal with two kinds of variables.

First, there is the ‘‘continuously fluctuating type’’ to which the machine

responds with small corrective movements. These corrections of devia-

tions from the normal state Ashby compares to the small movements

made by an airplane’s automatic pilot, or to ‘‘the trip made by a rat in a

cage when, being thirsty, it goes to the water bottle and has a drink’’ (96).

These actions entail no learning, and no change from one form of behav-

ior to another occurs. However, such a change would indeed occur if the
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design of the automatic pilot were altered. This is what the homeostat

actually does, since it is capable of making both kinds of changes:

What happens is that the resistances on the uniselectors are fixed and constant,

temporarily. On this basis, the feedbacks can show, by the movement of the nee-

dles, whether the whole is stable or unstable. The changes at this stage are contin-

uous and correspond to the continuous fluctuations of the automatic pilot. Then

comes, perhaps, the other change; if the resistances make the feedbacks wrong,

making the whole unstable, the uniselector moves to a new position and stops

there. (This would correspond to making a change in the design of the pilot.)

Then the continuous changes occur again, testing whether the new pattern of feed-

backs is satisfactory. It is clearly essential, in principle, that the resistances that

determine the feedbacks should change as step-functions; they must change

sharply, and then they must stay constant while the small fluctuations test whether

the feedbacks they provide are satisfactory. All design of machinery must go in

stages: make a model, test it, change the design, test again, make a further change,

test again, and so on. The homeostat does just that. (96)

As Ashby emphasizes, the homeostat thus performs two activities. On the

one hand it behaves like a ‘‘properly connected thermostat,’’ reacting to

disturbances and by negative feedback restoring itself to its optimal posi-

tion. On the other hand, when it is unable to restore itself, it changes from

one set of feedbacks, which it has found to be unstable, to another set.

This second type of change is of a di¤erent order than the first and di¤ers

also in the means by which the machine ‘‘converts itself from an unstable

system to a stable system’’ (98). In Design for a Brain (chapter 7) Ashby

calls such a system an ‘‘ultrastable system.’’

In the exchanges among the conference participants the question of

what the homeostat can be said to model remains uppermost. In retro-

spect, what is valuable about this discussion is how it hints at an incipient

forking in what we might call the dominant discursive framework, for it is

apparent that most of the interlocutors simply assume that the value of

the machine resides in its capacity as a model. Julian Bigelow expresses

this position most directly: ‘‘Sir, in what way do you think of the random

discovery of an equilibrium by this machine as comparable to a learning

process?’’ To which Ashby responds, ‘‘I don’t think it matters. Your opin-

ion is as good as mine.’’ Why Ashby should say this is not apparent, al-

though he quickly adds that, as the machine’s inventor, he is not ‘‘going

to stick up for it and say I think it is homologous’’ (103). We might take

these statements to suggest that for Ashby two things are involved: first,

the fact that the machine’s capacity to model a particular natural process

does not exhaust its interest; and second, with no evident or agreed upon

understanding of how the process of learning works and what it entails,
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the group is not yet equipped to assess the machine’s value in these terms

(i.e., it is still a matter of opinion).

As expected, the discussion evolves along the second track, and with

fruitful results. Specifically, as the group moves toward a more precise

conception of learning, Ashby admits that his machine possesses a ‘‘seri-

ous fault’’: ‘‘If you disconnect the environment and give it a second envi-

ronment, and then bring the first environment back again, its memory of

the first environment is totally lost’’ (104). Ralph W. Gerard remarks that

this makes the homeostat very similar to the electromechanical mouse

that Shannon had presented at the 8th Macy Conference—after one com-

plete exploration of a maze, the mouse would run through it perfectly.

While all were agreed that this ability made it a learning device, Warren

McCulloch confirms Gerard’s point: if put into a second maze, the mouse

would quickly learn it, but at the same time forget the first maze. In both

cases, these machines with limited memory thus raise questions about

learning and how it should be defined. The session concludes with an

unresolved discussion of the virtues and limitations of what Walter

Pitts calls ‘‘random machines’’ in comparison with the behavior of real

animals.

To pursue another way of thinking about Ashby’s machine, let us re-

turn to his assertion that ‘‘all design of machinery must go in stages:

make a model, test it, change the design, test again, make a further

change, test again, and so on. The homeostat does just that’’ (96). Viewed

in terms of what it does, the homeostat is simply a machine that adapts to

changing environmental conditions by repeatedly changing and testing its

own design until it reaches a state of equilibrium. This is the action it per-

forms as a material device. Curiously, its capacity for what Ashby calls,

in Design for a Brain, ‘‘self-reorganization’’ (107) is what enables it both

to realize its purpose and to remain utterly unpredictable from one mo-

ment to the next. Thus although we might know what it does and how it

does it, the behavior of this automaton would continually surprise us.

Since there were very few if any machines that could do anything like

this at the time, we may well wonder why the participants could not ap-

preciate the machine in these terms. Why did they have to look for its jus-

tification in a model? The simple answer, of course, is that the assumption

of a model is explicit in Ashby’s presentation, and operative in Design for

a Brain as well. Even so, a careful examination of what Ashby actually

says reveals an almost systematic reluctance to press the analogy. Indeed,

one could argue that for Ashby there is no analogy: the brain, like the

homeostat, is simply a material switching device, connected through
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sensors and e¤ectuators with the forces of the environment. It does not

‘‘represent’’ the world but provides a complex, dynamic way of engaging

it. What Ashby insists upon more than anything in the presentation is

what the homeostat actually does and is capable of doing. At the same

time, we certainly cannot say that the other participants were wrong in

trying to understand the homeostat’s behavior in relation to a living

organism’s capacity to adapt. How then should we understand these di-

vergent ways of characterizing Ashby’s machine?

In several essays that extend to the early phase of cybernetics the argu-

ment of his book, The Mangle of Practice: Time, Agency, and Science

(1995), Andrew Pickering suggests an intriguing framework for under-

standing this divergence and conflict of views. He observes that ‘‘tradi-

tionally, science studies has operated in what I called the representational

idiom, meaning that it has taken for granted that science is, above all,

about representing the world, mapping it, producing articulated knowl-

edge of it.’’27 Thus science studies is essentially ‘‘a venture in epistemol-

ogy.’’ Pickering finds, however, that this approach is inadequate to the

‘‘analysis of [scientific] practice’’ and argues therefore that ‘‘we need

to move towards ontology and what I call the performative idiom—a

decentred perspective that is concerned with agency—doing things in the

world—and with the emergent interplay of human and material agency’’

(1). Cybernetics, and particularly the work of the English cyberneticists,

Pickering now realizes, ‘‘is all about this shift from epistemology to ontol-

ogy, from representation to performativity, agency and emergence, not in

the analysis of science but within the body of science itself ’’ (2). In these

terms, the ambiguity in Ashby’s discourse and the confusion among the

Macy participants makes perfect sense: both Ashby and his interlocutors

are caught up in a moment of transition from one discursive framework

to another, contradictorily viewing the homeostat both as a model ac-

cording to the representational idiom and, according to the performative

idiom, an ontologically new kind of a machine capable of surprisingly

complex behavior. As Pickering notes, in relation to industrial machines

typical of its day the homeostat can be said to possess ‘‘a kind of

agency—it did things in the world that sprang, as it were, from inside it-

self, rather than having to be fully specified from outside in advance’’ (4).

It is precisely this new form of agency that makes comparisons between

the new cybernetic machines and living organisms inevitable, while also

obscuring the singular ontology of these new machines.

In later chapters I explicitly characterize ALife, contemporary robotics,

and even artificial intelligence in performative terms, arguing that in dif-
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ferent ways—both conceptually and technologically—they instantiate a

new kind of science that produces the very objects that they are (purport-

edly) only studying. However, it did not occur to me while writing these

chapters that this shift could be said to have occurred earlier, in the

machines constructed by the first cyberneticists. But rather than pursue

this important argument here, in the terms Pickering adumbrates, I want

to consider another instance of a cybernetic machine, the mobile tortoises

constructed by W. Grey Walter.28 Like his compatriot Ashby, Grey Wal-

ter has generally been considered a marginal figure in the early cybernet-

ics movement. And, as in the case of Ashby, this neglect is entirely

unjustified. Indeed, in so far as these cybernetic tortoises exhibited a new

kind of machinic complexity, the rehabilitation of Grey Walter’s role in

the movement is necessary if there is to be a proper assessment of the

complexity and richness of cybernetics itself.

Grey Walter’s Tortoises

Even if Grey Walter had never involved himself in cybernetics, he would

still deserve a notable place in biomedical engineering for his pioneering

achievements in the development of electroencephalography (EEG) and

in modern technology for his work on radar. Both before and after the

Second World War he made many important discoveries in how to mea-

sure and interpret the oscillating electrical fields generated by the brain:

he located the source of the alpha rhythm (8–12 Hz) in the occipital

lobe; he discovered delta waves (1–2 Hz) and developed a method of

using them to locate brain tumors and foci of brain damage; and he built

the first device—basically an ink-writing oscillograph—used to register

the frequency of an EEG trace. He also developed a method of measuring

what is called the readiness potential in human subjects, which permits an

observer to predict a subject’s response about a half to one second before

the subject is aware of any intention to act. As Walter J. Freeman notes,

this cerebral phenomenon can be interpreted as evidence ‘‘that intentional

actions are initiated before awareness of such actions emerges, and that

consciousness is involved in judging the values of actions rather than in

the execution of them.’’29 Another device Walter constructed, which he

called the ‘‘toposcope,’’ allowed him to observe the amplitude and phase

di¤erences of alpha rhythms as they change over time, providing a means

of doing time series analysis of alpha activity. Using what Freeman beau-

tifully describes as ‘‘cinemas of an array of 22 oscilloscopes,’’ the topo-

scope ‘‘visualized the spread of alpha waves across the surface of the
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brain in ways resembling the ebb and flow of tidal waves around the

earth’’ (2). Walter’s hypothesis, which remains controversial though not

yet superseded, is that alpha activity, which is only observed when the

subject is at rest with his or her eyes closed and disappears with the onset

of any focused activity, is actually a ‘‘scanning’’ by the brain in search of

local centers of activity: once it locates a ‘‘target’’ in the cortex, it stops.

During the war, Walter also made a crucially important contribution to

the development of radar technology by helping to develop a scanning

mechanism known as the ‘‘plan position indicator.’’ We are all familiar

with this type of radar screen, which is still commonly used on ships, sub-

marines, and in air tra‰c control towers: on the screen an electron beam

shaped like the spoke of a wheel sweeps counterclockwise at the screen’s

refresh rate. With each sweep the ‘‘target’’ appears as a bright spot of

light, its position and direction of movement clearly displayed.

Given these interests and accomplishments, it is hardly surprising that

in the years after the war Grey Walter should turn his attention to the

construction of devices that imitate or model goal-seeking and scanning

activities. As he recalls in his book The Living Brain, the war coupled

these two activities in the form of guided missiles and radar detection.30

The combination of goal-seeking and scanning, he reasoned, would yield

‘‘the essential mechanical conception of a working model that would be-

have like a very simple animal.’’ This conception, moreover, would test

his theory that it is not so much the ‘‘multiplicity of units [that] is . . .

responsible for the elaboration of cerebral functions as the richness of

their interconnections’’ (125). In two articles published in Scientific Amer-

ican he calls his constructions a new genus of ‘‘mechanical tortoises,’’ and

provides not only details of their construction but analysis of their com-

plex behavior. In the first, ‘‘An Imitation of Life,’’ he describes Elmer and

Elsie, two examples of the genus Machina speculatrix, and in the second,

‘‘A Machine That Learns,’’ a new species, Machina docilis, formed by

‘‘grafting’’ an electronic circuit called the Conditioned Reflex Analogue

(CORA) onto M. speculatrix. This added device allows M. docilis to learn

new behaviors (docilis means ‘‘easily taught’’), as well as to forget them if

they are not reinforced.31

These creatures were simply constructed, with three wheels in a tricycle

arrangement, two motors for steering and motive power, a light and

bump censor, an electronic circuit and two batteries (see fig. 1.3). A plas-

tic shell fit over the chassis—hence their resemblance to tortoises. Amaz-

ingly, Grey Walter discovered how to connect these simple elements in

ways that produced e‰cient but complex and unpredictable behavior. Be-
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cause the light censor was connected to the steering mechanism, the tor-

toise would move out into the environment in cycloid spirals scanning for

a ‘‘target’’ light; when a light source was located, the steering mechanism

was altered so that the tortoise could home in on it more directly. When

the tortoise arrived at a short distance from the light, or when the light

reached a specific intensity, a feedback circuit would cause the tortoise to

back away rapidly. If there were a second light source, the tortoise would

scurry back and forth between the two. When its batteries weakened be-

low a certain level, it would respond to light in yet another way, returning

to its ‘‘hutch’’ to recharge its batteries. This more complex behavior was

accomplished by means of an indicator light on its shell that turned on or

o¤ depending on whether its motor was running. A connection with

another part of the circuit caused it to plug into or be released from the

battery recharger in the hutch. This indicator light in turn resulted in

more complex behavior. If the tortoise encountered a mirror, its indicator

light would flash on and o¤ as its motor turned on and o¤, causing it

to ‘‘flicker and jig at its reflection,’’ as Walter put it, in a manner

suggesting a capacity for self-recognition. Moreover, if it encountered

Figure 1.3
Grey Walter’s tortoise. Owen Holland, ‘‘Grey Walter: The Pioneer of Real Artificial Life,’’
in Artificial Life V (Cambridge, Mass.: MIT Press, 1997), 36. Photograph courtesy of Owen
Holland.
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another tortoise, as when Elmer and Elsie would meet, both tortoises

would enter into a complicated dance of ‘‘mutual oscillation, leading

finally to a stately retreat.’’ If it encountered any obstacle during these

various activities, a ring bump censor would trigger an amplifier and

several relays that blocked the light censor circuit and transformed the

tortoise’s gait ‘‘into a succession of butts, withdrawals and sidesteps until

the interference is either pushed aside or circumvented’’ (‘‘An Imitation of

Life,’’ 45). Since these oscillations persisted for a full second, the tortoise

could free itself and move clear of the obstacle.

Unexpectedly autonomous, self-regulating, and unpredictable, M. spec-

ulatrix was thus capable of ‘‘exploratory, speculative behavior,’’ as Grey

Walter intended its species name to suggest. When he added the CORA

circuit to M. speculatrix, the machine’s capacity to learn a conditioned re-

flex further increased its already remarkable behavioral repertoire, and a

second generation of tortoises, M. docilis, came into being. In one sense

this capacity was simply a mechanical equivalent of Pavlov’s famous ex-

periment: a dog salivates when food is placed before it; if a bell is also

rung at the same time, after a number of repetitions the dog will salivate

at the sound of the ringing bell, even in the absence of food. In the case of

M. docilis, these conditioned reflexes were accomplished with light, touch,

and sound censors, and of course the necessary additional feedback cir-

cuit (reproduced in ‘‘The Machine That Learns’’). In several experiments

a whistle sound was made to replace the stimulus to the light and touch

censors. As a result, if M. docilis approached an obstacle and ‘‘heard’’ a

warning whistle it would immediately stop and withdraw.

This conditioning led to several interesting complications. For exam-

ple, noise from the tortoise’s motors often interfered with its reception of

the whistle sound. One solution was to alter the circuit so that the sound

switched o¤ the motors momentarily, producing a ‘‘freezing’’ e¤ect anal-

ogous to the way some animals play possum when they hear a strange

noise. But this response interfered with the process of conditioned learn-

ing—in the instance, for example, where sound comes to ‘‘mean’’ light—

and had to be inhibited. Grey Walter saw here an example of how an

‘‘instinctive’’ e¤ect would have to be suppressed in order to bring about

a positive conditioning. Furthermore, by adding a second learning cir-

cuit, it became very easy to produce conflicts and interferences that

amounted to what Walter called ‘‘experimental neurosis.’’ In one in-

stance, when stimulated simultaneously with sound and light, a tortoise

became incapable of reentering its hutch when its batteries ran low. In

fact, experiments with multiple learning circuits led Walter to predict a
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weakness or limit in elaborate systems: ‘‘Extreme plasticity cannot be

gained without some loss of stability.’’ Specifically, the more learning

circuits or paths of association, the more unstable the system as a

whole. Generalizing to the human condition, Walter concludes that it is

‘‘no wonder that the incidence of neuropsychiatric complaints marches

with intellectual attainment and social complexity’’ (‘‘A Machine That

Learns,’’ 63).

In The Living Brain and his articles Grey Walter establishes his interest

in constructing machines that are lifelike in the basic sense of being pur-

poseful, independent, and spontaneous (‘‘A Machine That Learns,’’ 45).

M. speculatrix, he asserts, is ‘‘designed to illustrate . . . the uncertainty,

randomness, free will or independence so strikingly absent in most well-

designed machines’’ (44); and M. docilis ‘‘behaves astonishingly like an

animal’’ (The Living Brain, 179). What is most striking about this lifelike

behavior, however, is the extreme economy of means by which it is gener-

ated. Grey Walter himself was acutely aware of the relationship between

simplicity of means and complexity of results in his work. In fact, his ex-

planatory comments adumbrate a rudimentary principle of what might be

called a ‘‘behavioral design philosophy.’’ As already mentioned, con-

structing a mechanical device that combined goal seeking and scanning

‘‘held promise of demonstrating, or at least testing the validity of, the

theory that [a] multiplicity of units is not so much responsible for the

elaboration of cerebral functions, as the richness of their interconnection’’

(125). In ‘‘An Imitation of Life’’ he is more explicit:

The number of components in the device [M. speculatrix] was deliberately

restricted to two in order to discover what degree of complexity of behavior and

independence could be achieved with the smallest number of elements connected

in a system providing the greatest possible number of interconnections. From the

theoretical standpoint two elements equivalent to circuits in the nervous system

can exist in six modes; if one is called A and the other B, we can distinguish A,

B, Aþ B, A ! B, B ! A, A , B as possible dynamic forms. To indicate the va-

riety of behavior possible for even so simple a system as this, one need only men-

tion that six elements would be more than enough to form a system which would

provide a new pattern every tenth of a second for 280 years—four times the hu-

man lifetime of 70 years! It is unlikely that the number of perceptible functional

elements of the human brain is anything like the total number of nerve cells; it is

more likely to be of the order of 1,000. But even if it were only 10, this number of

elements could provide enough variety for a lifetime of experience for all the men

who ever lived or will be born if mankind survives a thousand million years. (44)

While the numbers may not seem exactly right, the basic idea is clear:

connecting simple elements in multiple ways generates complexity. As
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Grey Walter acknowledges, this approach allows him simply to black box

the daunting internal intricacy of the biological brain. But it also allows

him to construct tortoises that exhibit both purpose and unpredictability.

In retrospect, it appears that the tortoises were the first true autono-

mous robots as well as the first serious attempt to produce real artificial

life.32 No one can attest to the first part of the claim better than the

roboticist Rodney Brooks, who founded behavior-based robotics in the

late 1980s. Devoting several pages to Grey Walter’s constructions in his

recent book, Flesh and Machines: How Robots Will Change Us, Brooks

is most impressed by how often Walter’s robots exhibit emergent be-

havior, ‘‘where multiple behaviors couple with the environment to pro-

duce behaviors that are more than simple strings or suppositions of the

elementary behaviors.’’33 Brooks attributes this complexity to the ‘‘non-

linear coupling’’ of di¤erent elements with the environment, as when the

light and motor function together in one way under certain conditions

and in another way under others. Owen Holland points out a similar

instance when he observes that ‘‘Grey Walter’s architecture responded

to sensory input—the [tortoise] shell being touched—by changing the

pattern of interconnection between its neuron-level elements to pro-

duce a fundamentally di¤erent circuit—an oscillator rather than a two

stage amplifier’’ (‘‘Grey Walter,’’ 41). This ‘‘rich exploitation of inter-

connectivity’’ not only underlies the construction of the tortoise but is

also found in natural creatures. Holland notes, for example, that ‘‘in the

crustacean stomato-gastric system . . . stimuli external to the network

modulate connectivity to produce altered networks with radically dif-

ferent characteristics’’ (41). In this instance, however, Walter does not

imitate or model nature. One might say, rather, that Walter pursues his

design principle at the material level of the specific components and

mechanisms he works with, and that nature often does the same—hence

a parallelism rather than a form of biomimeticism.

While the focus thus far has been on how the theoretical work and

material constructions of von Neumann, Ashby, and Walter produce

complexity, it has also been apparent that in this body of work the

boundary line between nature and artificial machines—living and non-

living matter—is no longer well defined or rigidly fixed. How should we

understand this boundary loosening and complication? Andrew Pickering

argues that the nature-machine opposition is monstrously broached by

cybernetics and that we need to shift our perspective from a representa-

tional and mimetic understanding of these machines to a performative

one—to think about ontology rather than epistemology. But would this
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simply replace one dualism with another? Pickering claims that Grey

Walter himself ‘‘recognized that the tortoises could be seen as performa-

tive technological artifacts as well as models of the brain’’ (‘‘The Tortoise

against Modernity,’’ 9). As an adaptive system, the tortoise would thus

assume its place within the history of technology, specifically of servome-

chanisms and feedback devices, within which its technical innovations

would be assessed. And similarly for his theory of the brain. However,

Pickering’s summary description of this theory is made in wholly techni-

cal, artifactual terms:

The tortoise’s brain (the capacitors, relays and tubes), like the homeostat, was a

performative and embodied one, a brain continuous, as it were, with the tortoise’s

sensory and motor apparatus. The brain functioned as a switchboard between the

motors and sensors, and not, importantly, as a hierarchical controller running the

show from above. In the absence of the sensors or the motors, the tortoise’s brain

was just a handful of inert components, having no interesting properties in them-

selves. (‘‘The Tortoise against Modernity,’’ 6)

In Grey Walter’s model of the brain, in other words, agency is fully

embodied in a material set of parts and connections. Yet what is missing

from this account is the necessary emphasis on the complexity of these

connections. For it is precisely this complexity of connection that makes

‘‘a handful of inert components’’ yield behavior that is interesting in it-

self. In these terms, Pickering is surely correct: this isn’t simply another

dualism. But what exactly is it? We have adjectives and nouns (‘‘per-

formative,’’ ‘‘ontology,’’ ‘‘machine’’) but no name for this unifying view,

which combines strands of mechanics and materialism with a new and

still incomplete account of what makes the machine behave in a lifelike

manner. Perhaps the cyberneticists’ failure to name this new and innova-

tive relationship of machine to natural living systems explains the ease

with which the movement slipped out of view, despite its revolutionary

significance. In any event, it is tempting to think that the concept that

might have made the di¤erence is self-organization, which arose within

cybernetics but remained on its conceptual periphery.

Self-Organizing Machines

First introduced by Ross Ashby in a short article published in 1947, the

concept of self-organization has come to enjoy a rich provenance and

wide range of applications in contemporary science.34 In the absence of a

specific context, the term usually designates a system that spon-

taneously—that is, without external guidance or control—moves from
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a random, or less unorganized, state to one that exhibits a more orderly

pattern of behavior. In 1947 the concept had little or no e¤ect and Ashby

doesn’t bother to mention it in either of his subsequent books. However,

things had changed by the late 1950s, when the idea of self-organization

was taken up by Heinz von Foerster as a focus of theoretical activities at

the University of Illinois’s Biological Computer Laboratory, which von

Foerster founded and directed. Under his auspices self-organization be-

came the unifying theme of three conferences.35 From this point on, how-

ever, the term self-organizing becomes more di‰cult to track, as it begins

to appear in a number of distinct fields—physics, biology, general sys-

tems theory—where its various elaborations take on a life of their own

no longer unified under the common framework of cybernetics. Indeed,

by this point cybernetics itself could be said to have dissolved as a coher-

ent movement. It partially reformed at the Biological Computer Labora-

tory (Ashby himself was there from 1969 to 1970), albeit with fewer

participants and a less broadly conceived set of ideas. The new agenda,

which is often taken to mark the beginning of the cybernetic movement’s

second phase, focuses on self-organization, self-referential systems, and

the role of the observer.36

Ashby’s first paper on self-organization is simply a mathematical dem-

onstration that a self-organizing system or machine is possible. Doubts

arise from the apparent contradiction: how can the system be both ‘‘(a) a

strictly determinate physico-chemical system and (b) . . . undergo ‘self-

induced’ internal reorganizations resulting in changes of behavior’’

(‘‘Principles of the Self-Organizing Dynamic System,’’ 125). If the change

comes from within, then its organization cannot be described as a set of

states determined by functions that define this organization. Simply put,

you can’t have a function that both defines and is changed by the state

of the organization. If S defines a set of functions ( f1, f2, f3, etc.) but f3
can also change the organization of S, then S is a function of f3, which

renders the nomenclature illogical. On the other hand, if the change

comes from without, then the system is no longer self-organizing. Ashby’s

solution is really a logico-mathematical version of the ‘‘machine within a

machine’’ embodied in his homeostat. Basically, the system or machine

will have to contain two distinct organizations, ‘‘each of which is absolute

[i.e., completely determinate] if considered by itself ’’ (128). What con-

nects them is a single step-function of time with two values. Assuming

that there are finite intervals of time between the change from one value

to the other, then a spontaneous change of organization can occur. In

other words, during a first period of time the system has one organiza-
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tion, and during a second it has another. This implies—although Ashby

doesn’t consider this aspect—that inasmuch as time becomes an internal

determinant of the system’s organization, it is no longer a Newtonian ma-

chine but ‘‘lives’’ in Bergsonian time.

In his second paper, where the context is a rigorous and searching ex-

amination of the concept of organization itself, Ashby distinguishes two

meanings of the term ‘‘self-organizing system.’’37 First, a system can be

said to be self-organizing if it encompasses parts that are separate and in-

dependent and that then join. In a strict sense, however, this means that

the system is simply ‘‘changing from unorganized to organized.’’ Second,

the term means that the system is ‘‘changing from a bad organization to a

good one.’’ Deploying an argument similar to the one used in his first pa-

per, Ashby asserts that ‘‘no machine can be self-organizing in this sense’’

(267). How then does he account for the fact that ‘‘the homeostat re-

arranges its own wiring’’ and would therefore seem to be an instance of

a self-organizing system? Curiously, instead of repeating his earlier ‘‘ma-

chine within a machine’’ argument, he now separates the system into two

parts, S and aðtÞ, the latter being a function of time with two values, one

before and the other after the change in organization. In e¤ect, the notion

of ‘‘self ’’ is ‘‘enlarged to include this variable a’’ by making the latter a

separate machine coupled to S. As Ashby puts it, ‘‘Thus the appearance

of being ‘self-organizing’ can be given only by the machine S being

coupled to another machine (of one part). . . . Then the part S can be

‘self-organizing’ within the whole S þ a’’ (269). Paradoxically, then,

Ashby both argues for the logical impossibility of self-organization and

spells out the terms by which this impossibility can be overcome.

Commenting on Ashby’s essay, the physicist Cosma Shalizi remarks

that this is not what most people have in mind when they speak about

self-organization.38 Rather, he suggests, what Ashby is really getting at

is how there can be a ‘‘selection of states’’ by the organization of the sys-

tem. Shalizi then adds that ‘‘a system would be self-organizing if it takes a

flat, even distribution of states into a peaked, non-uniform one.’’ In other

words, the entropy of a self-organizing system would have to decrease.

Written over forty years after Ashby, Shalizi’s rephrasing of the prob-

lem in these terms now strikes us as self-evident. We may be surprised,

therefore, to discover that this is precisely the approach that Heinz von

Foerster takes in his essay, ‘‘On Self-Organizing Systems and Their Envi-

ronments.’’39 For von Foerster, a self-organizing system is one whose

‘‘internal order’’ increases over time. This immediately raises the double

problem of how this order is to be measured and how the boundary
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between the system and the environment is to be defined and located. The

second problem is provisionally solved by defining the boundary ‘‘at any

instant of time as being the envelope of that region in space which shows

the desired increase in order’’ (36). For measuring order, von Foerster

finds that Claude Shannon’s definition of ‘‘redundancy’’ in a communica-

tion system is ‘‘tailor-made.’’ In Shannon’s formula,

R ¼ 1�H=Hm;

where R is the measure of redundancy and H=Hm the ratio of the entropy

H of an information source to its maximum value Hm. Accordingly, if the

system is in a state of maximum disorder (i.e., H is equal to Hm), then R

is equal to zero—there is no redundancy and therefore no order. If, how-

ever, the elements in the system are arranged in a such a way that, ‘‘given

one element, the position of all other elements are determined’’ (37), then

the system’s entropy H (which is really the degree of uncertainty about

these elements) vanishes to zero. R then becomes unity, indicating perfect

order. Summarily, ‘‘Since the entropy of the system is dependent upon the

probability distribution of the elements to be found in certain distinguish-

able states, it is clear that [in a self-organizing system] this probability dis-

tribution must change such that H is reduced’’ (38).

The formula thus leads to a simple criterion: if the system is self-

organizing, then the rate of change of R should be positive (i.e.,

dR=dt > 0). To apply the formula, however, R must be computed for

both the system and the environment, since their respective entropies are

coupled. Since there are several di¤erent ways for the system’s entropy to

decrease in relation to the entropy of the environment, von Foerster refers

to the agent responsible for the changes in the former as the ‘‘internal de-

mon’’ and the agent responsible for changes in the latter as the ‘‘external

demon.’’ These two demons work interdependently, in terms of both their

e¤orts and results. For the system to be self-organizing, the criterion that

must be satisfied is now given by the formula shown in figure 1.4. This

criterion, von Foerster asserts, is not at all di‰cult to fulfill.

Reflecting further on self-organizing systems, von Foerster considers

Erwin Schrödinger’s observations about order in the latter’s book What

Is Life? (1944). Schrödinger is particularly struck by the high degree of or-

der exhibited by the genes, or what he calls the ‘‘hereditary code-scripts,’’

despite their exposure to the relatively high heat of ‘‘thermal agitation.’’

This leads him to remark that there are two mechanisms that produce or-

der: the first, a statistical mechanism producing ‘‘order from disorder,’’ is

‘‘the magnificent order of exact physical law coming forth from atomic
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and molecular disorder’’; the second, a less familiar mechanism that pro-

duces ‘‘order from order,’’ holds ‘‘the real clue to the understanding of

life,’’ since ‘‘what an organism feeds upon is negative entropy’’ (42–43).

In von Foerster’s view, however, self-organizing systems may also pro-

vide another clue. The principle he now proposes, though it may sound

like Schrödinger’s mechanism of ‘‘order from disorder,’’ is actually quite

di¤erent, and von Foerster calls it ‘‘the order from noise’’ principle. Thus

he states, ‘‘In my restaurant self-organizing systems feed not only upon

order, they also find noise on the menu.’’ He concludes with what he

describes as a ‘‘trivial . . . but amusing example’’ (43): if one repeatedly

shakes a box filled with cubes, each of which is magnetized on one of its

faces, instead of a series of random assemblages a highly intricate struc-

ture will eventually emerge.

Given the fruitfulness of the idea that a complex order can emerge

from a system’s exposure to ‘‘noise’’ or other disturbances, von Foerster’s

illustration can only seem disappointing.40 Or rather, viewed in the light

of the sea changes that the concept of self-organization would undergo

over the next twenty years, von Foerster’s proposal—and some would

say the same about Ashby’s theorizing—can have at most an anticipatory

value. These sea changes followed from the interaction and relay of two

series of developments. On the one hand, Ilya Prigogine (chemistry), Her-

mann Haken (physics), and Manfred Eigen (biology) made groundbreak-

ing empirical discoveries of self-organizing systems, in which instabilities

resulting from the amplification of positive feedback loops spontaneously

create more complex forms of organization. On the other hand, Steven

Smale, René Thom, Benoit Mandelbrot, and Mitchell Feigenbaum, to

Figure 1.4
Von Foerster’s formula. Heinz von Foerster, ‘‘On Self-Organizing Systems and Their Envi-
ronments,’’ in Observing Systems (Salinas, Calif.: Intersystems Publications, 1984), 13.
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name a few, made discoveries in topology and nonlinear mathematics

that led to a complete revamping of dynamical systems theory. This

story, which involves the discovery of how nonlinear factors can produce

deterministically chaotic systems, is now fairly familiar. One simple but

telling di¤erence this sea change has made in dynamical systems theory

is that the concept of the attractor has replaced notions like stability and

equilibrium. As a system moves toward increasing instability it may reach

a point where two sets of values for its variables—and hence two di¤erent

states—are equally viable. (In its phase portrait as a dynamical system

this is referred to as a bifurcation.) But which state will it ‘‘choose’’?

There is no way of knowing since the system’s behavior has become inde-

terminate at this point. The very presence of a bifurcation means that

the system is falling under the influence of a di¤erent attractor and thus

undergoing a dynamical change as a whole. These discoveries and the

conceptual tools developed to describe them will be discussed in greater

depth in chapter 3. The main point here is that they entirely transformed

the conceptual landscape on which cybernetics had arisen.

The Last Cyberneticist

Unfortunately, the sea change that eventually gave birth to chaos theory,

or more precisely, nonlinear dynamical systems theory, also tended to

eclipse recognition of the degree to which cybernetics functioned as a

kind of historical a priori, or condition of possibility, clearing the ground

and providing a necessary initial framework for future developments,

among which I would include AI and ALife, computer simulations of

complex adaptive systems, and subsumption architecture in contempo-

rary robotics. What then happened to cybernetics, and why is it not part

of the general curriculum in scientific training? Kevin Kelly has proposed

three theories.41 First, the birth of AI in 1956 drew away most of the

funding supplied by both the government and the university and thus

also the graduate students. Second, ‘‘cybernetics was a victim of batch-

mode computing’’ (453), and the cyberneticists never had easy, real-time

access to computers; unfortunately, the mainframes then available were

guarded by a priesthood not especially receptive to their new brand of

science. In fact, when relatively easy access did come (especially with

desktop computers in the late 1970s), the discoveries of chaos theory and

artificial life soon followed. Third, von Foerster shifted attention to

‘‘observing systems’’ and ‘‘the cybernetics of cybernetics.’’42 In Kelly’s

view, including the observer in the system as part of a larger metasystem
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proved useful for family therapy and sociologists interested in the e¤ects

of observing systems, but it also meant that the main constituency of cy-

bernetics came to consist of therapists, sociologists, and political scien-

tists. As a result, he concludes, cybernetics ‘‘died of dry rot’’ (454).

While the full story is of course more complicated, there is some truth

in Kelly’s first two theories,43 which are really two aspects of the same

theory. Because there was not yet a clear-cut separation between hard-

ware and software, the cyberneticists understood computers as self-

controlling computational devices made up of switching devices and

feedback circuits rather than multitasking machines capable of running

di¤erent programs. To be sure, they were fully cognizant of how the

mathematical and logical properties of these new machines made them

unlike previous machines. The work of von Neumann in particular was

essential for the development of this machine from a high-speed calcula-

tor to a stored-program computer and hence a universal symbol pro-

cessor.44 Yet on the whole the cyberneticists did not participate in the

shift in interest from machine to program that would characterize early

AI.

Significantly, an early sign of this shift could be glimpsed at the confer-

ence on self-organizing systems at which von Foerster presented ‘‘On

Self-Organizing Systems and their Environments.’’ At this same confer-

ence, A. Newell, J. C. Shaw, and H. A. Simon presented ‘‘A Variety of

Intelligent Learning in a General Problem Solver.’’ The GPS, as it was

called, was a computer program that incorporated heuristic strategies

based on means-ends analysis to solve problems. It was a further develop-

ment of their earlier program, the Logic Theorist, which could generate

original proofs of theorems in symbolic logic. When first presented at

the Summer Dartmouth Conference in 1956, which is generally taken

to be the o‰cial founding moment of AI as a scientific discipline, the

Logic Theorist was perceived to be an undeniably persuasive exhibit of a

‘‘thinking machine.’’ Moreover, with their notions of information-

processing psychology and a ‘‘physical symbol system,’’ Newell and

Simon provided the theoretical foundations of early AI. Armed with the

belief that all cognitive processes could be simulated by a computer, they

dismissed cybernetic machines as irrelevant:

Although the tortoises [of Grey Walter] aroused considerable interest and have

been further developed by other investigators, they appear no longer to be in the

main line of evolution of psychological simulations. The interesting properties

they exhibited could be rather easily simulated by digital computers, and the digi-

tal simulation lent itself to greater elaboration than did the analogue devices.45
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Whether or not the emergent behavior of Walter’s tortoises could be so

easily simulated might be contested, but there is no doubt that Newell

and Simon’s claims for the proper approach to constructing artificial in-

telligence constituted a clear rupture and turning point. These claims will

be considered in detail in chapter 6; meanwhile, it is enough to note that

for the nascent field of AI, cybernetic machines were found wanting sim-

ply because they did not manipulate symbol structures in a computer pro-

gram. In other words, they did not control their own behavior by means

of abstract, ‘‘disembodied’’ representations. On the contrary, in the terms

that the contemporary roboticist Rodney Brooks later valorizes, these

cybernetic machines were fully embodied and situated in the world. Thus

those who pursued AI research from the late 1950s through the 1970s

would have found Claude Shannon’s design for a chess-playing program

and Arthur Samuel’s checker-playing program far more interesting.46

This point is especially important in the present cultural context. Par-

ticularly in the humanities, when cybernetics is spoken of at all, it is

asserted or simply assumed that as a historical movement cybernetics

is responsible for the view that information is somehow disembodied, in

the sense that it exists independently of any particular material substrate.

This view, I claim, is misleading, and will not survive an attentive consid-

eration of the constructions and published writings of the first-generation

cyberneticists. As we have seen, for at least three of the major participants

in the movement, information theory was neither central nor at all under-

stood in this sense. Thus the mischaracterization seems partly due to the

nearly exclusive attention usually given to Wiener and Shannon, whose

abstract mathematical models can easily be taken out of context.47 Even

so, Shannon makes it clear that information is a measurable, statistical

property of the symbols that make up a message. These symbols always

exist in a material medium, whether as ink on paper or voltage di¤erences

in an electronic circuit. To claim, therefore, that information is disem-

bodied makes no more sense than to say that the temperature of a gas is

disembodied. Both, rather, are abstracted from the entities they are meant

to measure, like all mathematical functions that refer to properties of ma-

terial elements. Because the measure of information transmitted by or

stored in a particular set of symbols is derived from a statistical correla-

tion between this set and all those symbols that might have been selected

instead does not mean that information exists independently of the mate-

rial nature of the symbols; it only means that its measurement is not a

function of the latter. Nor is the measurement of information a function

of the meaning of the symbols, an aspect of Shannon’s theory that leads
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Warren Weaver (in his introduction) to a somewhat defensive explana-

tion. Yet this is also something of a false problem. Lines and dots on

a piece of paper are meaningless until it is realized that they might be a

source of information because they could indicate where the treasure is

buried. While it is true that a random or meaningless concatenation of

symbols still contains a measurable amount of information, information

acquires its status and value as information only because there is an

assumed correlation between a message composed from a set of discrete

symbols and physical events and processes in the world (i.e., the symbols

in themselves are not meaningless). For some readers, nevertheless, the

abstract measure of these correlations seems to have been misunderstood

as the hypostatization of information itself.

As I have tried to show, this received view of cybernetics—that is, its

reduction to an abstract, disembodied understanding of information—is

easily countered by considering the new machines and rigorous theoreti-

cal approaches that von Neumann, Ashby, and Walter actually produced.

However, while it is not true that information is disembodied for the

cyberneticists, it is true that in early AI cognitive processes are disem-

bodied, in the specific sense that it was believed that these processes could

be modeled and understood independently of any material substrate. This

view is predicated on the realization that the computer is a new type of

abstract machine, defined by its form or organization and functionality

rather than by the substance out of which it is made. It is hardly sur-

prising then that the early practitioners of AI saw both the human

brain and the digital computer as roughly equivalent material instantia-

tions of information- or symbol-processing machines. More specifically,

in their claim that it is the symbol system—not the material substrate—

that really matters, Alan Newell and Herbert Simon essentially reduced

artificial intelligence to software and reinstalled a Cartesian duality that

cybernetics—at least at its best moments—had entirely transcended.

This new Cartesian dualism is not one of matter and mind but of matter

and psychology, now conceived of as symbol processing. Hence the birth

of early AI was also the birth of cognitive psychology.48

In order to convey a very di¤erent understanding of psychology—one

much closer to that of the original cyberneticists, I conclude this chapter

with a brief look at Valentino Braitenberg’s Vehicles: Experiments in Syn-

thetic Psychology. In the same whimsical but serious tone that animates

the book, Braitenberg himself may be thought of as ‘‘the last cyberneti-

cist.’’ What is the basis for this presumptive and perhaps ahistorical cate-

gorization? Like several of the original cyberneticists, Braitenberg is an
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accomplished neuroscientist with a creative interest in constructing mo-

bile machines. But since he comes several decades later, he can assume a

playful and self-conscious attitude toward the toy world that he invites

the reader to cocreate. Vehicles is thus really a thought experiment about

how simple machines can be fashioned to produce complex behavior and

how we will be tempted ‘‘to use psychological language in describing their

behavior.’’49 Starting with the simplest vehicle imaginable, we learn to

‘‘build’’ a series of increasingly more capable machines. At the same

time, the behavior of these machines cannot help but evoke certain a¤ec-

tive states, like fear, aggression, love, foresight, egotism, and optimism.

Since we know that these a¤ective states are not in the vehicles themselves

but only in our perception of their behavior, what Braitenberg initially

proposes is simply an ‘‘interesting educational game’’ (2). Yet things

are not quite so simple. After progressing through the imaginative con-

struction of fourteen of these vehicles, we are treated to eight complex

drawings of various kinds of machinic arrangements.50 But then, in an

extended section called ‘‘Biological Notes on the Vehicles,’’ Braitenberg

concludes by reconsidering many of the vehicles in light of current brain

research. However, even within this play of perspectives, what is most

striking (and important) is the autonomy Braitenberg grants these

machines. Because of what they can do, they are treated as interesting in

and of themselves, an approach unavailable to the early cyberneticists.

Let us dwell for a moment on these vehicles—all simple mechanical

constructions made of wheels, motors, sensors, wires, and threshold de-

vices. Consisting of only a single wheel, motor, and sensor, Vehicle 1

moves directly toward a source of stimulation (say, light) unless deflected

by friction. Vehicles 2, 3, and 4 are made by simply adding more motors,

wheels, and sensors and crossing the connecting wires, enabling move-

ment to be stimulated and/or inhibited in various ways. Vehicle 3, for ex-

ample, will approach a light source and then turn away at a certain

proximity. With the further addition of threshold devices, which can be

connected in series, parallel, or in networks, primitive ‘‘brain’’ functions

become possible. In Vehicle 5, for example, di¤erent devices (a red light

and a bell) can activate each other in a feedback circuit, providing a

kind of memory. With additional threshold devices (simple neural net-

works), subsequent vehicles acquire more complex cognitive functions,

such as the ability to recognize movement, shape, and bilateral symmetry

as well as a generalized response to color.

In Braitenberg’s presentation two basic ideas come into play. The first

is what he calls ‘‘the law of uphill analysis and downhill invention’’ (20).
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Essentially this means that building vehicles that work and do things—

especially things that are unplanned—is usually easier than analyzing

from external observation the internal structures that make this behavior

possible. This is because, as Braitenberg explains, induction is slow and

requires a search for solutions. However, from the present vantage point

it is clear that the actual complex behavior of his vehicles results from

their often unpredictable interactions with the environment. This behav-

ior is complex because it is emergent in the sense developed by contempo-

rary dynamical systems theory, to be explored in some detail in chapter 5.

Let it su‰ce here to observe that Braitenberg introduces a jump in com-

plexity simply by wiring threshold devices in feedback circuits that pro-

duce associative connections. Vehicle 12 is constructed in this manner,

and as a result Braitenberg claims that it exhibits ‘‘FREE WILL’’ (68,

author’s emphasis). What he means, simply, is that above a certain num-

ber of active elements and cross-connections in his vehicle’s brain, its

behavior becomes unpredictable to a human observer, even though that

behavior is completely determined. This unpredictability is also true for

individual human brains, Braitenberg adds, and serves as the basis for

our own pride in our assumed autonomy.

The second idea is captured in the chapter title for Vehicle 6: ‘‘Selec-

tion, the Impersonal Engineer.’’ Suppose, Braitenberg proposes, that we

put the entire collection of vehicles on a large table. From among the cir-

culating vehicles we begin to pick up one at a time and copy it, then put

both model and copy back on the table. Meanwhile some of the vehicles

will have fallen onto the floor, where they remain (they will not be

copied). Importantly, the copying will have to be done quickly, in order

to replace as soon as possible the faulty or inadequate or unlucky

vehicles. There won’t be enough time to test the copies or to make sure

the wiring is correct. Hence errors will creep into the copying process.

Some, perhaps most, will result in dysfunctional or barely functional

vehicles. But other errors will act as ‘‘germs for improvement,’’ particu-

larly when ‘‘we pick up one vehicle as a model for one part of the brain

and then by mistake pick up another vehicle as a model for another part

of the brain’’ (27). While improbable at first, in the long run the lucky

successes that arise from these mistakes will have a much greater chance

of being reproduced. They will also be more resistant to analysis: ‘‘The

wiring that produces their behavior may be so complicated and involved

that we will never be able to isolate a simple scheme’’ (28). In short,

Vehicle 6 is produced by ‘‘unconscious engineering,’’ which is clearly a

mimicking of the process of reproduction, copy errors, and selection we
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recognize as Darwinian evolution. Moreover, whereas analysis ‘‘will nec-

essarily produce the feeling of a mysterious supernatural hand guiding the

creation,’’ we ourselves will have seen how ‘‘this simple trick’’ can pro-

duce machines that are ‘‘beautiful, marvelous, and shrewd’’ (28).

Braitenberg’s Vehicles thus occupies a Janus-faced position: it both

looks back to the cybernetic tradition, particularly to the ideas and

machines of von Neumann, Ashby, and Walter, and anticipates the

bottom-up approach and emphasis on the dynamics of emergence that

will characterize ALife and behavior-based robotics in the 1980s and

’90s. Although Braitenberg makes no attempt to copy or reproduce be-

havior typical of organic life, in many ways these vehicles exhibit a life-

like complexity similar to that of the cybernetic machines examined

above. Not surprisingly, his design philosophy as well relies on a multi-

plicity of connections among simple mechanical elements. This too is a

vital part of the cybernetic heritage and accounts for the emphasis on

concrete embodiment and performativity rather than symbol processing

and representation (i.e., the symbol-based approach of early AI). Not

only is it appropriate to speak of his vehicles as autonomous agents, but

his seriously playful deployment of evolution as a strategy to produce

more complex vehicles anticipates the latest and perhaps most important

conceptual turn in contemporary robotics.
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2 The In-Mixing of Machines: Cybernetics and Psychoanalysis

Perhaps, really, what we are seeing is a gradual merging of the general nature of

human activity and function into the activity and function of what we humans have

built and surrounded ourselves with.

—Philip K. Dick, ‘‘The Android and the Human’’

Among the many debates that characterized the Macy Conferences,

which publicly launched the cybernetic movement, none were more

heated and acrimonious than those generated by psychoanalysis.

Although many of the participants were trained in psychiatry, neuro-

physiology, and psychology, only Lawrence Kubie was a practicing

psychoanalyst. Trained in neurophysiology, he had ‘‘converted’’ to psy-

choanalysis at midcareer. In 1930, during the first part of his career, he

had published a highly influential paper in Brain suggesting that the cen-

tral nervous system could be pictured ‘‘as a place in which, under certain

conditions and in certain areas, excitation waves move along pathways

which ultimately return them to their starting points.’’1 Later in the

1930s these reverberating circuits of neurons were experimentally verified

and studied by Lorente de Nó, another conference participant. This re-

search, in turn, informed the neural net theory of Warren McCulloch

and Walter Pitts, whose essay ‘‘A Logical Calculus of the Ideas Imma-

nent in Nervous Activity’’ was seminal to the formation of cybernetics.2

In 1941, in the second phase of his career, Kubie postulated a connection

between certain reverberating closed circuits in these nets and the compul-

sive behavior known in Freudian theory as Wiederholungszwang, or repe-

tition compulsion.3 By the time of the Macy Conferences, however,

Kubie had come to believe that these circular neuronal paths were the

physiological substrate of a behavior that could not be explained in these

terms alone. Having become an orthodox Freudian analyst, he under-

stood neurotic behavior to be the outward symbolic expression of uncon-

scious fears and desires.



It is hardly surprising, then, that at the Macy Conferences Kubie

assumed the mantle of representing the psychoanalytic point of view,

delivering papers entitled ‘‘Neurotic Potential and Human Adaptation,’’

‘‘The Relation of Symbolic Function in Language Formation and in

Neurosis,’’ and ‘‘The Place of Emotions in the Feedback Concept.’’

From the outset, however, Kubie’s presentations drew strong opposition,

and he was put on the defensive by hard-line experimentalists who

sneered at the unscientific status of the Freudian unconscious and relent-

lessly questioned the subjective tenor of psychoanalytic interpretation. In

a vitriolic attack on Freud circulated just before the 9th Macy Confer-

ence, Warren McCulloch argued that, rather than account for the data

collected in observations of human behavior, psychoanalysis creates its

own, self-justifying data.4 Despite Kubie’s patient and sustained e¤orts

to bring psychoanalysis into dialogue with the cybernetic perspective, the

overall result was a greater exposure of what Heims calls ‘‘the problem-

atic nature of psychoanalysis as science’’ (The Cybernetics Group, 125).

Yet this failure does not appear to have been a foregone conclusion. In-

deed, at the outset of the conferences the most powerful spokesperson for

the cybernetic point of view, Norbert Wiener, made it clear that he had

no essential objection to psychoanalysis but simply believed that it needed

to be rewritten in the language of information, communication, and feed-

back (126).

It can almost be said that this is what the French psychoanalyst Jac-

ques Lacan accomplishes in his second seminar. Among the most scintil-

lating intellectual events in Paris in the 1950s, Lacan’s yearly scheduled

seminars were the site of a methodical revolution in psychoanalytic

theory. Having devoted the first year’s seminar to Freud’s papers on tech-

nique, Lacan took up ‘‘The Ego in Freud’s Theory and in the Technique

of Psycho-analysis’’ in the second.5 The importance of this second semi-

nar stems from the fact that there Lacan developed the distinction be-

tween the imaginary and the symbolic registers of experience he had

proposed in his first seminar and that henceforth would be central not

only to his definition of the ego (le moi) but to the entire framework of

his thought. Yet what is most surprising about the seminar is the atten-

tion and significance Lacan granted to cybernetics and information

theory. Indeed, on June 22, 1955, a week before its last yearly meeting,

Lacan presented a paper to the Société française de psychanalyse entitled

‘‘Psychoanalysis and Cybernetics, or on the Nature of Language.’’ But

how do we account for this interest? And what does cybernetics have to

do with Freudian psychoanalysis and Lacan’s innovative transformations
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of it? As we’ll see, the cybernetic concept of the machine and the digital

language of information theory led Lacan to believe that the world of

the symbolic is the world of the machine. His encounter with cybernetics

thus produced a moment of crossing between two distinct discourse net-

works, with unexpected consequences that bear on the relationship be-

tween language and machines, the symbolic and the real. Moreover, and

of special importance here, Lacan understood the symbolic function as a

particular kind of computational assemblage that made human behavior

meaningful.

Machines and the Symbolic Order

It is not at all certain how much Lacan knew about the Macy Confer-

ences. He certainly knew about Kubie’s work as well as the follow-up re-

search done by John Z. Young.6 It is also likely that Lacan discussed

cybernetics and perhaps the conferences with Roman Jakobson, the

Russian-born linguist whom Lacan had met in 1950 and whose work

was a major influence.7 Jakobson taught at MIT, where both Norbert

Wiener and Claude Shannon were professors, attended the 5th Macy

Conference, and later published an article about information theory and

language. In addition to these direct connections, there was widespread

interest in cybernetics among French intellectuals after the war. In Paris,

a detailed and penetrating review of Wiener’s Cybernetics; or, Control and

Communication in the Animal and the Machine appeared in Le Monde on

December 28, 1948. Written by the Dominican friar Père Dubarle, the re-

view so impressed Wiener that he took up several of its arguments in The

Human Use of Human Beings, a popular version of his earlier book. In

1950, at the invitation of Benoit Mandelbrot, Wiener himself gave a

well-publicized lecture at the Collège de France. In 1953 Pierre de Latil’s

La pensée artificielle appeared, followed in 1954 by Raymond Ruyer’s La

cybernétique et l’origine de l’information, which Lacan disparages in his

seminar. This first wave of European reaction to cybernetics also included

Martin Heidegger’s wholesale dismissal of it as the latest form of calcula-

tive thinking. However, while revering Heidegger as the most important

contemporary philosopher in Europe, Lacan did not share Heidegger’s

belief that cybernetics was destined to ‘‘replace philosophy’’ and come to

‘‘determine and guide’’ the new sciences.8 Nor did Lacan view cybernetics

as a particularly American strain of thought. Rather, as he asserts in his

lecture ‘‘Psychoanalysis and Cybernetics,’’ cybernetics was a new kind of

‘‘conjectural science’’ that for the first time made it possible to understand
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the autonomy of symbolic processes.9 In these terms, the subjectivity that

so troubled the experimentalists at the Macy Conferences becomes in

Lacan a matter of subject position, of where the subject finds himself or

herself in a predetermined structure. However, this structure should not

be understood simply or exclusively as another instance of French struc-

turalism, for Lacan’s second seminar makes formal automata theory at

least equally pertinent. If the movement of a symbol dictates the correla-

tion between a place in a structure and a state of the subject, this is be-

cause the symbolic order itself operates as a machine—a new kind of

machine that cybernetics first brings to light.

Lacan’s second seminar of 1954–1955, as its title suggests, is overtly

concerned with how the ego in psychoanalytic theory should be defined

and understood. In proposing a new theory of the workings of the uncon-

scious and the determinations of desire, Freud had brought about a fun-

damental decentering of the subject in relation to the self, or ego, and

thus inaugurated a new stage in the history of Western subjectivity. It is

a new stage, Lacan insists, because the modern ego as theorized by Freud

did not exist for either Socrates or Descartes, although it is anticipated in

La Rochefoucauld’s notion of amour-propre (self-love). Yet the modern

sense of the ego brought about by Freud’s ‘‘Copernican revolution’’ was

by no means secure or well understood. Even in psychoanalytic theory,

Lacan argues, what Freud meant by the ego is often confused with con-

sciousness, or, more egregiously, the ego is sometimes made substantial

and even ‘‘autonomous’’ through a process Lacan calls entification. In

this context Lacan redefines the ego by distinguishing between the sym-

bolic and the imaginary orders and by introducing a notion of the uncon-

scious as the ‘‘discourse of the other.’’ While he claims only to ‘‘read’’

Freud, that is, to make explicit what Freud leaves implicit, it can be

argued that these innovations bring psychoanalytic theory to a more pre-

cise degree of conceptualization.

The term cybernetics, along with subsidiary notions like feedback, the

circuit, and the message as information, enters Lacan’s seminar rather

casually.10 What is most important, in the early stages of the seminar, is

the cybernetic concept of the machine, which will come to throw new

light on fundamental psychoanalytic concepts. Lacan introduces this

general idea when he begins to discuss the symbolic universe, to which,

he insists, the machine is closely related. At the same time, he continues

to use the term machine in several senses. He states, for example, that

‘‘the machine is much freer than the animal,’’ which is really a ‘‘jammed

machine,’’ where ‘‘certain parameters are no longer capable of variation.’’
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He continues: ‘‘It is inasmuch as, compared to the animal, we are

machines, that is to say something decomposed [décomposé], that we pos-

sess greater freedom, in the sense in which freedom means the multiplicity

of possible choices.’’ Most importantly, he states, ‘‘The meaning of the

machine is in the process of complete transformation, for us all, whether

or not you have opened a book on cybernetics’’ (31). But suppose we had

opened such a book: what new notion of the machine would we have

found there?

As we saw in the previous chapter, we would have discovered that the

cyberneticists were mainly interested in machines that exhibit feedback

and that, by means of internal control mechanisms like the thermostat

on the modern heater, regulate their own functioning. We would also

have noticed references to the mechanical automata that so fascinated

the courts of eighteenth-century Europe, like the Jaquet-Droz drawing

dolls and Jacques Vaucanson’s duck. By means of clocklike mechanisms,

for example, the latter could not only waddle but simulate eating. But

eventually we would have encountered a very di¤erent kind of machine,

one that existed initially only as a thought experiment. Or rather, because

it was a computational machine, the functioning of which did not depend

on any particular form of material embodiment, it could be said to exist

in a very singular way. This new and revolutionary concept of the ma-

chine first appears in Alan Turing’s foundational paper of 1936, in which

he addresses the problem of computability—whether a number or func-

tion can be computed—and thus the larger question of whether a mathe-

matical problem can be solved.11

Turing proposed that if the problem can be expressed as an algorithm,

or a precise set of formal instructions for arriving at the specified solution,

then it can be computed mechanically by a machine. The question then

becomes whether or not the machine will halt with a finite answer. This

machine, as described by Turing, came to be called a Turing machine.

It consists of three parts: a reading/writing ‘‘head,’’ an infinitely long

‘‘tape’’ divided into squares that passes through the head, and a table of

instructions that would tell the head what to do as a function of what it

reads on the tape and the machine’s current state. Specifically, the head

would scan the tape square by square; depending on the head’s current

state and whether a mark was present or absent in a particular square, it

would enter a mark, erase a mark, or leave the square blank, then move

to another square, either to the left or right. Since at any moment the

reading/writing head could only be in one of a finite number of internal

states defined by a table of instructions (now known as its state-transition
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table), it was considered to be a finite-state machine, or automaton. (A

familiar example of a finite-state automaton is a two-way tra‰c light set

to flash green, yellow, and red in a sequence that allows tra‰c to pass

safely at an intersection.) With this simple device two things could be ac-

complished. Data could be entered in the form of a string of symbols—

for example, binary numbers (one or zero) could be encoded as the

presence or absence of the mark; and operations could be performed

according to the table of instructions given to the head, as in: if no mark

and the machine is in state 1, enter a mark and move to the square on

the left and move to state 2; if a mark, move to the square on the right

and remain in state 1. These instructions and the memory constituted

by the tape allow the head to manipulate the marks or symbols in a

variety of ways, thereby performing mathematical operations. However,

what makes this finite-state machine a Turing machine is its auxiliary

memory—the infinite tape, which it can access in either direction—for it

is this memory capacity that enables it to perform a range of di¤erent

computations.12 A simple finite-state machine, for example, cannot mul-

tiply large numbers, because it has no way to store and bring forward the

results of previous stages of calculations as it advances. From this simple

fact we can grasp the importance of memory—not only how much but

from where (i.e., what state) it can be accessed—in defining a machine’s

computational capacity.

Turing’s thesis, subsequently accepted by virtually all mathematicians,

states that every computation expressible as an algorithm or every de-

terminate procedure in a formal system has its equivalent in a Turing

machine. More important, Turing further postulated the existence of a

universal machine (now known as a universal Turing machine), which

could emulate the behavior of any specific Turing machine. A universal

computing machine would therefore be one that, given any table of

instructions that defined a Turing machine, could carry out those instruc-

tions; it would, in short, be programmable. Turing’s ultimate purpose, we

should recall, was to prove that there is no way to determine in advance

whether certain numbers are computable, that is, whether the machine

set up to compute them will ever halt. Invented as part of the proof, his

notion of the Turing machine would eventually provide a formal basis

for the modern computer, in which di¤erent sets of instructions, or

programs—for computation, data processing, sending and receiving data,

and so on—allow the same machine to do a variety of tasks. This capac-

ity makes the computer a fundamentally new type of machine, defined by

a logical and functional rather than a material structure. It is an abstract,
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second-order machine in which the logical form of many di¤erent kinds

of machines is abstracted and made equivalent to a set of algorithms. Al-

though today’s desktop computers are usually made of silicon and copper

wire encased in plastic and metal, in principle they could be constructed

out of a wide variety of materials. As abstract machines, their functions

are not defined by the specific behavior of the materials from which they

are constructed; rather, this behavior is used to physically instantiate a

symbol system with its own independent rules or syntax.

Although we might not have gleaned all of this from simply perusing

a book on cybernetics, we could not have missed the fact that the first

electronic computers—often called ‘‘thinking machines’’ in the popu-

lar press—were constructed in the years just preceding Lacan’s semi-

nar: ENIAC in 1945, followed by EDVAC, MANIAC, ILLIAC, and

JOHNIAC (after von Neumann), then SAGE in 1949, and the highly

popularized UNIVAC in 1951. What was striking about these ma-

chines, in addition to their capacity for rapid calculation, was that

they automated—that is, rendered in self-regulating mechanistic proce-

dures—the operations of formal systems in which arbitrarily chosen

symbols could be combined according to rules of composition—a syntax

—to produce more complex operations. Because these machines thus

automated the ‘‘laws of thought’’ in a series of logical and combina-

torial operations (heuristic search strategies and pattern recognition pro-

cedures would come later), these symbol-processing machines were unlike

any machines seen before.13 The only thing remotely comparable was

the clock, another autonomous machine that when widely introduced

into Europe completely restructured human behavior. And just as the

clock—or so we can imagine Lacan thinking—is a time-marking ma-

chine that can be found not only on our walls and wrists but also in our

bodies, institutions, and exchanges both economic and informational, so

too these logic machines must inhabit and traverse us in unnoticed ways,

giving structure and meaning to what we all too casually call life.

In his second seminar Lacan works his way toward a formulation of

precisely this import. Meanwhile, throughout the early sessions, he keeps

open the common understanding of the machine, while also alluding to

this new formal one. The results can sometimes be confusing, as when

he sets up an opposition between perceptual consciousness and the ego

and then opposes both to the realm of the symbolic and the world of

machines. Not long after the passage cited above, where Lacan refers to

both animals and humans as machines, he o¤ers a materialist definition

of consciousness, suggesting that it is simply a reflection, like a mountain
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on the surface of a lake, easily emulated by a camera and photoelectric

cell. Since consciousness is contingent on ‘‘the existence of our eyes and

ears’’ (48), it is ostensibly not a phenomenon of the ego. Moreover, the

reflections of consciousness occur in an inner space of phenomenal images

where things appear to be centered and that Lacan calls the imaginary or-

der. But there is another order, he asserts, one of play and exchange that

begins with the circulation of speech, a symbolic realm that ‘‘has nothing

to do with consciousness’’ (49) and where ‘‘man is de-centered.’’ Since it

is with ‘‘this same play, this same world that the machine is built’’ (47),

the world of the symbol is also the world of the machine:

Speech is first and foremost that object of exchange whereby we are recognized,

and because you have said the password, we don’t break each other’s necks, etc.

That is how the circulation of speech begins, and it swells to the point of constitut-

ing the world of the symbol which makes algebraic calculations possible. The ma-

chine is the structure detached from the activity of the subject. The symbolic

world is the world of the machine. Then we have the question as to what, in this

world, constitutes the being of the subject. (47)

This, in a nutshell, is the central question of the seminar as well as the

terms in which it will be addressed. To make fully intelligible his claim

that ‘‘the symbolic world is the world of the machine,’’ Lacan will define

the symbolic order as a new and fundamental concept, redefine the un-

conscious as the ‘‘discourse of the other,’’ and relegate the ego to the or-

der of the imaginary, all while claiming to remain true to Freud’s original

intent. Key to Lacan’s revision of Freud are the three di¤erential orders,

or registers, of experience that he calls the symbolic, the imaginary, and

the real. These three orders, moreover, are not simply oppositional but al-

ways ‘‘in-mixed’’ with one another. Indeed, it is precisely the in-mixing

[immixtion] of these di¤erent registers that generates both problems and

complexity for human beings.

From the outset Lacan associates the ego with the imaginary order. In

his earlier essay on the mirror stage (the gist of which he repeats in the

seminar), he explained how the ego is formed on the basis of a specular

image of the body. Before this stage the infant can only experience itself

in isolated fragments, as a morcelated body without clear boundaries

and who finds unity and wholeness only in the ‘‘other.’’ However, when

the infant beholds itself in the mirror, it realizes that that reflected other

is me. Yet it is an ambiguous experience—this mirrored ‘‘hey, that’s

me’’—since from then on the infant experiences itself as a unity, but a

unity that comes from without, that is, from an ‘‘other.’’ It is, Lacan
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says, an alienated unity. This (mis)recognition of one’s bounded and uni-

fied image is soon followed by other imperfect identifications. As a result,

Lacan jokingly puts it, the ‘‘ego is like the superimposition of various

coats borrowed from what I would call the bric-à-brac of its props de-

partment’’ (155).

For Lacan, then, this ego is not the subject. In relation to the subject

the ego is an imaginary construction, a specular object, or mirage. As

such, it serves a crucial function, as the support of imaginary identifica-

tion(s). But the ego is not consciousness either. The field of perceptual

consciousness does not provide a unity for the ego; rather, the ego is pre-

cisely what ‘‘the immediacy of sensation is in tension with’’ (50). Lacan

implies that while consciousness itself is a mere physical phenomenon, in

humans it brings about the illusion of an agent responsible for it: thus

there is not simply ‘‘a seeing’’ but an ‘‘I who sees’’ that remains constant.

Nevertheless, although an imaginary construct, the ego is the locus of no

less real libidinal investments. The relationship of one ego to another, for

example, is characterized as one of oppositional duality, necessarily

defined by aggressive conflict and rivalry. This relationship Lacan com-

pares to the encounter of two machines, each one jammed on the image

of the other.14 An unjamming can occur only through the intervention of

a legislating or mediating function, which can perform the service of a

‘‘symbolic regulation.’’ Tellingly, it will have to be another machine,

inserted into the first two, one that speaks ‘‘commandingly’’ but in ‘‘the

voice of no one.’’

We already know—Lacan has repeated it several times—that this

mediating function is served by the order of the symbolic. It is the order

that the anthropologist Claude Lévi-Strauss invokes when he describes

the ‘‘elementary structures of kinship’’; it is also what Freud was seeking

in Beyond the Pleasure Principle. Reading the latter, Lacan distinguishes

between two kinds of repetition. In the first, a restitution of an equilib-

rium is achieved by a homeostasis, or regulation, of energies coming

from the external world. It is the kind of mechanism that enables the grat-

ification of pleasure and that Lacan will later extend to adaptation and

instinct in animal behavior (pp. 86–87 and 322–323 in the seminar).

This kind of setup is usually modeled as a type of machine involving the

exchange of energy, and therefore subject to entropy and the laws of ther-

modynamics. But beyond this setup there is a compulsion to repeat that

is inexplicable in these terms and that Freud associated with the death

drive. Lacan now makes a daring move. If we consider cybernetics, he
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says, we find another kind of machine—a second type of mechanism—in

which the circulation of information works against entropy (and here

Lacan is simply paraphrasing Norbert Wiener). Lacan then asks:

What is a message inside a machine? Something which proceeds by opening and

not opening, the way an electronic lamp does, by yes and no. It’s something

articulated, of the same order as the fundamental oppositions of the symbolic or-

der. At any given moment, this something which turns has to, or doesn’t, come

back into play. It is always ready to give a reply, and be completed by this self-

same act of replying, that is to say by ceasing to function as an isolated and closed

circuit, by entering into the general run of things. Now this comes very close to

what we can conceive of as Zwang, the compulsion to repeat. (89)

Here, in the di¤erence between a mechanical or energy-driven machine

and the information machine, Lacan finds the means to clarify and fur-

ther conceptualize Freud’s distinction between restitution and repetition

in the subject’s psychic economy.

Let us consider this distinction more closely. For Lacan, the subject’s

compulsion to repeat is precisely how the unconscious reveals itself: as a

form of ‘‘insistence.’’ More specifically, the unconscious ‘‘insists’’ as the

‘‘discourse of the other’’:

This discourse of the other is not the discourse of the abstract other, of the other

in the dyad, of my correspondent, nor even of my slave, it is the discourse of the

circuit in which I am integrated. I am one of its links. It is the discourse of my fa-

ther for instance, in so far as my father made mistakes which I am condemned to

reproduce—that’s what we call the super-ego. I am condemned to reproduce them

because I am obliged to pick up again the discourse he bequeathed to me, not sim-

ply because I am his son, but because one can’t stop the chain of discourse, and it

is precisely my duty to transmit it in its aberrant form to someone else. (89)

Now, if the discourse of the other is the circuit in which I am integrated,

then the ego can only be a point of resistance, and Lacan will declare that

that is exactly what it is—an obstacle, interposition, or filter. If there were

no resistance from the ego, he states, ‘‘the e¤ects of communication at the

level of the unconscious would not be noticeable’’ (120). By way of anal-

ogy, he mentions the electronic tube, with its anode and cathode, between

which a third element (like the imaginary ego) regulates the passage of

electrical current.

But here it might be objected that this whole appeal to cybernetics, in-

formation machines, electronics, and so on, is merely one of analogy—all

the more so since during this part of the seminar Lacan also speaks of

Freud’s ‘‘two completely di¤erent structurations of human experience,’’

not in relation to machines but in relation to the distinction Søren Kier-
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kegaard makes between reminiscence and repetition in his short book

Repetition. It is along the paths of the lost object, never to be recovered

and for which the modern subject never ceases to generate substitutes,

Lacan says, that the modern subject’s experience is structured. Yet while

this theory of the lost object may account for the structuring of the object

world, the world of the symbolic must have a higher priority. This follows

from the fact that in order for the symbolic order to serve a mediating

function, it must exist at a higher logical level than the world of objects

and images. Early in the seminar Lacan emphasized the ‘‘autonomy of

the symbolic’’ (37), claiming that the symbolic order, while it ‘‘has its

beginnings elsewhere than in the human order . . . intervenes at every mo-

ment and at every stage of the [latter’s] existence’’ (29). But up to this

point he has only argued that this order manifests itself (‘‘insists’’) in the

subject’s compulsion to repeat and that it reveals itself in the circuit of

discourse in which the subject is integrated. He has yet to show exactly

how this order emerges and intervenes concretely in human reality. This

he accomplishes through a reading of Edgar Allan Poe’s short story,

‘‘The Purloined Letter.’’ It is also where he begins to make good on his

claim that the world of the symbolic is the world of the machine.

The Machination of the Subject

The importance Lacan attributed to his reading of Poe’s story is indicated

by the fact that he revised it and made it the portal to his Écrits.15 Al-

though Lacan’s reading has often been commented upon, what is rarely

acknowledged and has never been adequately discussed is the relationship

of his reading to information machines and cybernetic themes, a context

that is clear and unmistakable in the Seminar but not so evident in the

version published in Écrits. Simply to provide and underscore this context

will require a somewhat detailed elaboration, since it bears on the process

most fundamental to Lacan’s argument: the encoding of the real in the

symbolic order.

In chapter 15 of the seminar, ‘‘Odd or Even? Beyond Intersubjectiv-

ity,’’ Lacan asks his interlocutors to consider an anecdote within the Poe

story in which the detective Dupin tells the prefect of the police about a

certain eight-year-old boy he once knew who was a whiz at winning mar-

bles in the game of odd or even. In this simple game, one boy would hold

up his closed fist and the other would try to guess whether it held an

odd or even number of marbles; the winner would receive one of the

loser’s marbles. The point of the anecdote is that this particular boy was
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phenomenally successful because he had a strategy: to identify his own

thinking with that of his opponent in order to calculate the latter’s most

likely next move. But as Lacan shows, there are only two ‘‘moments’’ to

this strategy: in the first the opponent is naive, in a second as smart as the

boy himself. Beyond this position there is no third, except to play ran-

domly (‘‘like an idiot’’) (181), that is, to return to the first position. The

only way out of or ‘‘beyond’’ this dilemma is to play against a machine,

which o¤ers no possibility of (imaginary) intersubjective identification;

one is ‘‘from the start forced to take the path of language, of the possible

combinatory of the machine’’ (181). This path follows an emergent logi-

cal order, in contrast with the imaginary relation to the other, which is

predicated on an experience that necessarily ‘‘fades away.’’ Later we shall

consider an instance of what it is like to play against a machine, a very

sophisticated modern computer, but here let us follow Lacan’s develop-

ment of this di¤erence.16

Lacan begins by asking two of his interlocutors to play this game of

‘‘odd or even’’ and to record the wins as pluses and the losses as minuses.

He then makes two points: first, the game is only meaningful as a se-

quence (winning one game doesn’t mean anything) and therefore we

have to remember (i.e., record) the results; second, in the sequence of

wins and losses a theoretical distinction emerges. If one player begins to

win repeatedly he or she will appear to be unnaturally lucky, and the

odds against his/her continued winning will seem to increase. But this

means that we are ‘‘no longer in the domain of the real but in that of the

symbolic,’’ since in the domain of the real each player has an equal

chance of winning or losing for each game played, no matter what the

past results. Our subjective reaction is not merely an illusion, however,

since the introduction of a simple set of symbols like pluses and minuses

to record even a random sequence necessarily gives rise to an emergent

order. As Lacan puts it: ‘‘Anything from the real can always come out

[N’importe quoi de réel peut toujours sortir]. But once the symbolic chain

is constituted, as soon as you introduce a certain significant unity, in the

form of unities of succession, what comes out can no longer be just any-

thing’’ (193). In short, the very recording of random events gives rise to a

rudimentary form of order, since it allows the formation of units and

hence the emergence of a syntax governing their possible sequences of

succession.

To illustrate, Lacan sorts the pluses and minuses into three groups,

according to all of their possible combinations (fig. 2.1). With these

groupings, only certain sequences are possible. For example, a 1 (þþþ
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or ���) will never be able to follow directly after a 3 (þ�þ or �þ�),

because in the transition a 2 will appear (fig. 2.2). Lacan then notes that

other significant unities can be constituted from these ‘‘laws,’’ ‘‘represent-

ing the intervals between these groups’’ (193) (fig. 2.3).

Lacan provides similar but more elaborate illustrations in Écrits (41–

61), yet even these simple series of pluses and minuses, which initially

may be random, indicate how only certain orderings or sequences of inte-

grations are possible. Constituting a rudimentary syntax, they inscribe a

form of memory that operates with the force of a ‘‘law.’’

For Lacan, this demonstration establishes two things. First is the au-

tonomy and self-organization of the symbolic order: ‘‘From the start and

independently of any attachment to some supposedly causal bond,’’ he

Figure 2.1
Lacan’s pluses and minuses.

Figure 2.2
Plus and minus sequences. Image by Lucas Beeler.

Figure 2.3
Lacan’s group intervals.
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says, ‘‘the symbol already plays, and produces by itself, its necessities, its

structures, its organizations’’ (193). Second is the fact that within this play

of the symbol, the subject will always find his or her place:

By itself, the play of the symbol represents and organizes, independently of the

peculiarities of its human support, this something which is called a subject. The

human subject doesn’t foment this game, he takes his place in it, and plays

the role of the little pluses and minuses in it. He is himself an element in this chain

which, as soon as it is unwound, organizes itself in accordance with laws. Hence

the subject is always on several levels, caught up in crisscrossing networks. (192–

193)

From here Lacan proceeds to his reading of Poe’s ‘‘The Purloined Let-

ter,’’ which illustrates the operations of this symbolic order. Specifically,

he shows how the plot inscribes three subject positions, or positions that

subjects can come to occupy. They are marked and defined according to

a relative state of blindness regarding the presence or absence of a com-

promising letter that the queen receives (unbeknownst to the king)

and the minister purloins, by surreptitiously substituting for it another

letter. The king sees nothing, the queen sees this and takes advantage

of it, and the minister does the same to her in turn. After the police se-

cretly but futilely search the minister’s apartment, the detective Dupin is

brought in and recovers the letter by deploying the same strategy against

the minister that the latter had used against the queen. In this concatena-

tion, the story thus registers a redistribution or ‘‘step-wise displacement’’

(203) from a first sequence of three subject positions, occupied by the

king, queen, and minister, to a second, occupied by the police, minister,

and detective.17

What is at stake in this part of the seminar can now be summarized.

Lacan introduces the game of odd and even in order to illustrate the limit

of its play in the oscillation of intersubjective relations: in a first moment,

I (as ego) assume the position of the other in order to determine how he

or she will play; in a second moment, I realize that he or she (another

ego) is doing the same with me, that is, that I am an other for this (imag-

inary) other. The problem is how to pass ‘‘beyond’’ into ‘‘a completely

di¤erent register from that of imaginary subjectivity’’ (181), which cannot

be accessed by way of identification. As Lacan never tires of repeating,

this realm ‘‘beyond’’ is precisely the unconscious, ‘‘beyond the pleasure

principle, beyond relations, rational motivations, beyond feelings, beyond

anything to which we can [willingly] accede’’ (188).18 However, having

established that this realm beyond subjectivity is defined by the symbolic

order, Lacan has yet to explain how the symbolic order is also the world
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of the machine. To do this, he must show how the ‘‘symbolic emerges into

the real,’’ that is, how the symbolic order itself arises and functions as a

machine.

Briefly put, it is the symbolic order’s encoding of the real in numbers

(‘‘it ties the real to a sequence,’’ as Lacan later puts it), that allows the

recording and integration of data (which he calls memory, while caution-

ing us to distinguish between memory and remembering), which in turn

gives rise to a syntax of di¤erent combinatorial possibilities.19 The result-

ing ‘‘machine’’—it is actually a finite-state automaton—is not created by

human beings but appears to emerge spontaneously when discrete digital

marks are used for counting. This machine, moreover, does not require

the intervention of human consciousness in order to function. In Poe’s

story the circulation of the letter reveals the three positions a subject

may come to occupy in a determined field of social relations, but without

any explicit awareness of this structuration on the subject’s part. Each po-

sition corresponds to a specific prevailing ‘‘state’’—the minister’s ‘‘femini-

zation,’’ for example—regardless of his or her personal psychology or

individual disposition. As Lacan asserts in Écrits, ‘‘In its origin subjectiv-

ity has no relationship to the real, but [only] to a syntax that engenders in

it a signifying mark’’ (50). In Poe’s story the possession of or desire for

the letter is precisely the signifying mark, and the letter’s movement

reveals the syntax that engenders the subject positions that make subjec-

tivity a possibility. The story is thus appropriately read as a finite-state

diagram or transition-state table of the symbolic order’s functioning, in

terms of three positions and three corresponding states. Repetition of the

sequence (king, queen, minister; prefect of police, minister, detective) is

necessary in order to mark out and underscore these positions, as well as

the possible transitions from one position or state to another.

Computational Media: A New Discourse Network

Again the objection might be raised that we’ve heard Lacan’s definitions

before, as well as his interpretation of the Poe story, but without this

all-important emphasis on machines. Are they really necessary to his

argument, or are they just fashionable, provocative metaphors, even for

Lacan himself ? After all, Lacanian theory has pretty much ignored

Lacan’s interest in cybernetics, with no apparent loss of completeness or

intelligibility. So, even if we agree that ‘‘cybernetics clearly highlights . . .

the radical di¤erence between the symbolic and the imaginary orders’’

(306), as Lacan asserts, we may wonder to what extent his introduction

The In-Mixing of Machines 79



of machines is a handy illustration of his theory that doesn’t add anything

essential.

To my knowledge, only the German media theorist Friedrich Kittler

has addressed the question of the necessity of cybernetics to Lacan’s

theory. In Gramophone, Film, Typewriter, Kittler considers both Freud

and Lacan in relation to modern technical media and understands

Lacan’s methodological distinctions between the real, the imaginary, and

the symbolic as ‘‘the theory (or merely a historical e¤ect)’’ of the di¤eren-

tiations brought about by technical media around the beginning of the

twentieth century, when nature became a series of data flows that

‘‘stopped not writing themselves.’’20 In a later essay Kittler argues more

fully that the di¤erences between Freud’s psychoanalytic theory and

Lacan’s rewriting of it reflect the di¤erences in the operating standards

of information machines and technical media in their respective epochs.

In constructing his model of the psychic apparatus, ‘‘Freud’s materialism

reasoned only as far as the information machines of his epoch—no more,

no less.’’21 According to the scientific imperatives to which Freud will-

ingly bent himself, ine¤able emanations of spirit had to be replaced by

systems of neurons that di¤er (and defer) according to separable func-

tions, in this case recording (memory) and transmission of data (percep-

tual consciousness). In Freud’s time, however, storage functions could

only be conceived of on the model of the engram, which includes not

only the graphic inscriptions theorized by Jacques Derrida but also the

grooves on Edison’s newly invented phonograph. Significantly, for both

his ‘‘case studies’’ and lectures Freud relies on his own ‘‘phonographic

memory,’’ as he emphasizes on several occasions. In medial terms, psy-

choanalysis (‘‘the talking cure’’) is actually a form of ‘‘telephony,’’ a com-

munication circuit between patient and analyst in which the former’s

unconscious is transformed into sound or speech and then back into the

unconscious. As Kittler puts it, ‘‘Because mouths and ears have become

electro-acoustical transducers, the [analytic] session remains a simulated

long distance call between two psychic apparatuses.’’22 In fact, a tele-

phone cable had been laid in Freud’s house, but not in the consulting

room, in 1895. Yet Freud doesn’t limit himself to the phonographic. In

The Interpretation of Dreams the transmission medium is optical, a cam-

eralike apparatus that converts latent dream thoughts into a system of

conscious perception, the virtual images of which Lacan would under-

stand as cinema. In constructing his model of the psychic apparatus,

Freud thus implemented all storage and transmission media available at
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the time: print, phonograph, telephone, and cinema, though the last term

never appears in his writing.

As suggested by the titles of his own works—Écrits, the Seminars, Tele-

vision, ‘‘Radiophonie’’—Lacan grasped both the importance of these

media for Freudian theory and the extent to which the foundations of

psychoanalysis stood at the beginning of a new era, characterized by the

technical di¤erentiation of media and the end of the print monopoly. For

Kittler, this explains why Lacan’s triple register of the real, the imaginary,

and the symbolic corresponds to the separations of technical media, that

is, to gramophone, film, and typewriter, respectively. Yet, as Kittler

insists, the Lacanian symbolic corresponds not only to the linguistic signi-

fiers inscribed mechanically by the typewriter but to the entire domain of

computation. Hence the final chapter of Gramophone, Film, Typewriter

moves from a study of the typewriter to the German cryptographic ma-

chine Enigma and the Allied e¤orts (led by Alan Turing) to decipher its

encoded commands to the German military, e¤orts that directly contrib-

uted to the development of the modern computer. The latter di¤ers from

‘‘a several-ton version of Remington’s special typewriter with calculating

machine’’ (258) because it includes ‘‘conditional jumps’’ in its pro-

grammed instruction set. (These ‘‘jumps’’ are conditional branchings like

IF-THEN sequences.) Through these and other feedback loops, the com-

puter itself becomes a subject:

Computers operating on IF-THEN commands are therefore machine subjects. . . .

Not for nothing was [Konrad] Zuse ‘‘frankly nervous’’ about his algorithmic

golems and their ‘‘halting problem.’’ Not for nothing did the Henschel Works or

the Ministry of Aviation assign the development of cruise missiles to these golems.

On all fronts, from top-secret cryptoanalysis to the most spectacular future weap-

ons o¤ensive, the Second World War devolved from humans and soldiers to ma-

chine subjects. (259)

All of which makes cybernetics—the theory of self-guidance and feed-

back loops—‘‘a theory of the Second World War’’ (259).

Does this mean that Lacan’s writings are at bottom a theory of the

machinic subject? Kittler doesn’t pose the question. He merely insists

that when Lacan utters the word ‘‘machine’’ we hear the word ‘‘com-

puter.’’ Lacan’s machines are really information machines, simple ones

at that, since all they do is count, store, and integrate codings of binary

numbers (1s and 0s). Yet these basic operations underlie all that a modern

digital computer does. Since the computer, or rather its conceptual fore-

runner, Alan Turing’s universal machine of 1936, is the most important
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technological invention between Freud and Lacan, Lacan’s rewriting of

Freud should be understood as an attempt to redefine the psychic appara-

tus according to contemporary conditions of mediality. In these terms

Lacan can be said to implement a more fully functional model of the psy-

chic apparatus, since it now includes the most up-to-date media of infor-

mation storage, transmission, and computation.

In this perspective the presumed ‘‘presence’’ of Turing and technical

media should not be understood to operate as an instance of technologi-

cal determinism. Rather, in pointing out that Lacan’s refashioning of the

psychic apparatus is necessarily built on and therefore reflects contempo-

rary conditions of mediality, conditions that presuppose a theory of com-

putation (i.e., the concept of a universal Turing machine), Kittler makes

explicit both the technical and discursive conditions of possibility of

Lacan’s discourse. Put di¤erently, the interlacing of Lacan’s discourse

with the new discourse of cybernetics and information theory means that

Lacan participates in a specific ‘‘discourse network.’’23 But here an

anachronism appears to enter Kittler’s historical scheme, for he situates

both Freud and Lacan in the discourse network of 1900, which is marked

by the emergence of technical media and the discourses of psychophysics

and psychoanalysis. However, Lacan’s discourse, though closely tied to

Freud, depends on a di¤erent set of historical a priori, namely, the uni-

versal Turing machine and the digital information machines that operate

through cybernetic feedback mechanisms. It would seem more reasonable

therefore to argue that Lacan’s revision of Freudian theory, at least in its

early stages, draws on and participates in a new discourse network, one

that emerges in the aftermath of the Second World War and that has sub-

sequently become our own. In this new discourse network psychophysics

is replaced by the computational paradigm and psychoanalysis by cogni-

tive science. Since the computer is a universal symbol manipulator that

can simulate any computational device, the new discourse network is not

defined by any particular set of specific machines but rather by networks

of computational assemblages. Whereas in the earlier discourse network

nature became a series of data flows that ‘‘stopped not writing them-

selves,’’ here we might say that all dynamical systems, including living

systems, have become a series of data flows that ‘‘stopped not computing

themselves.’’

Following Turing, computational theory was further developed by

Alonso Church, Emile Post, Stephen Kleene, and, from very di¤erent

perspectives, McCulloch and Pitts (neural net theory), and John von Neu-

mann (automata theory). However, the new discourse network would be
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consolidated only with the advent and full flowering of cybernetics and

information theory, following discussions of information, feedback,

and circular causality at the Macy Conferences and the construction

of the stored-program computer. As organisms and molecules began

to be viewed as information storage and retrieval systems and DNA as a

coded program, this discourse network would come to include molecular

biology and genetics. With Noam Chomsky’s work (discussed below),

linguistics would be added as well. By the end of the 1950s, in fact, a

specific set of concerns, assumptions, and languages had coalesced across

a web of scientific and technological connections that included the univer-

sity and scientific establishment, the military, and a nascent communica-

tions industry. And as later chapters suggest, subsequently developed

computational assemblages in artificial intelligence and cognitive science,

distributed emergent computation in Artificial Life and the new sciences

of complexity, as well as evolutionary computation in robotics would be-

come vectors for this discourse network’s further spread, consolidation,

and refinement.

To be sure, the concept of a discourse network needs to be more

precisely defined, both in terms of historical limits (a terminus ab quo and

terminus ad quem) and the material/informational practices that make

each network unique. But rather than elaborate a detailed definition here,

I want to demonstrate further how deeply Lacan’s theory—at its initial

stage at least—is embedded in the discourse of cybernetics and informa-

tion theory. The anachronism in his historical scheme notwithstanding,

I begin with Kittler’s passing remark that Claude Shannon

calculated the probability of every single letter in the English language, and from

these calculations produced a beautiful gibberish. [He] then went on to take into

account the transition probabilities between two letters, that is, digraphs, and the

gibberish began to sound a bit more like English. Finally, through the use of tetra-

grams (not to be confused with the names of God) there arose that ‘‘impression of

comprehension’’ which so loves to hallucinate sense from nonsense. Lacan’s anal-

ysis of Poe works with precisely these types of transition probabilities, the major

mathematical discovery of Marko¤ and Post.24

O¤ered without comment, Kittler’s observation that Lacan ‘‘works with’’

the same types of ‘‘transition probabilities’’ essential to cybernetics and

information theory leads to a whole web of discursive linkages. To trace

several out will further clarify Lacan’s conceptualization of the role of in-

formation machines in the functioning of the symbolic order, and specifi-

cally in relation to language. The degree to which these linkages and

discursive a‰liations instantiate a new discourse network and the light
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they throw on Lacan’s theory will then appear to be two sides of the same

conceptual nexus.

Language and Finite-State Automata

It should first be noted that Lacan himself mentions the Markov chains to

which Kittler draws our attention (see Écrits, 51). A Markov chain is a

special instance of a discrete-time stochastic process, which Claude Shan-

non introduces into his Mathematical Theory of Information in order to

treat the sending of a message in information theoretical terms:

We can think of a discrete source as generating the message, symbol by symbol. It

will choose successive symbols according to certain probabilities depending, in

general, on preceding choices as well as particular symbols. . . . A physical system,

or a mathematical model of such a system which produces such a sequence of

symbols governed by a set of probabilities, is known as a stochastic process. We

may consider a discrete source, therefore, to be represented by a stochastic pro-

cess. Conversely, any stochastic process which produces a discrete sequence of

symbols chosen from a finite set may be considered a discrete source.25

Note that sending (and receiving) messages are thus to be viewed as sto-

chastic—not deterministic—processes and that even the constraints on

the message (like syntax in language) are treated as probabilities.

Shannon goes on to explain how the statistical structure of several

examples of discrete information sources can be described ‘‘by a set of

transition possibilities pið jÞ, the probability that letter i is followed by

letter j ’’ (41). By increasing the transition probabilities to higher order

approximations of English—for two, three, and four letters (digram, tri-

gram, and tetragram, respectively), as in Kittler’s example—the symbols

from the discrete source begin to concatenate into strings that constitute

recognizable words. Stochastic processes of this type, Shannon continues,

are known as discrete Markov processes:

The general case can be described as follows: There exist a finite number of

‘‘states’’ of a system; S1; S2; . . . Sn. In addition there is a set of transition possibil-

ities, pið jÞ, the probability that if the system is in state Si it will go to state Sj . To

make this Marko¤ process into an information source we need only assume that a

letter is produced for each transition from one state to another. (45)

What Shannon doesn’t make clear here is the specific property of the

Markov stochastic process, or chain, namely, that the probability of the

system’s next state depends solely on it current state, therefore making

its previous states irrelevant for predicting subsequent states. In e¤ect,
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the transition matrix that calculates the probabilities for each change of

state is ‘‘without memory.’’ While this property may seem strangely inap-

propriate for describing language, it is actually what allows for a high de-

gree of indeterminacy and freedom while not giving up structure and

predictability.

The reason for these technical details will soon become apparent, but it

should already be evident why Markov chains might be of interest to

Lacan. If the ‘‘discourse of the other’’ is a discrete information source

(sending messages from the unconscious), then it might indeed exhibit

the character of a Markov process. While at first this might seem un-

likely, in fact G. A. Miller had introduced Markov modeling into certain

areas of psychology in 1952.26 We should also recall that Ross Ashby dis-

cussed Markov chains and ‘‘Markovian machines’’ in An Introduction to

Cybernetics (1956).27 Moreover, in the 1950s Markov modeling was

applied successfully to animal learning; in the 1960s, to human concept

learning.28 Lacan’s particular interest, it can be inferred, was twofold.

First, and more generally, without some psychic mechanism of ‘‘return’’

to earlier states, the process of association in the analytic session would

never lead anywhere. (Freud had simply denied that there was any such

thing as chance in the unconscious.) But could such ‘‘returns’’ reveal a

pattern or even articulate a subjective structure? Could Markov chains,

in revealing a pattern of probabilities, provide a model for understanding

the ‘‘discourse of the other,’’ which is neither random nor simply deter-

mined and therefore not easily predictable? If the e¤ect of a Markov

chain is not unlike the kind of emergent order Lacan had described with

pluses and minuses, then it would seem much more likely. This leads us to

the second aspect of Lacan’s interest. We have already seen how a finite

automaton describes the symbolic order’s functioning in his reading of

Poe’s story. But it turns out that machines that produce languages in this

manner are considered mathematically as finite-state Markov processes.

This convergence—particularly visible in the addenda to the seminar

on ‘‘The Purloined Letter’’ published in Écrits (44–61) but omitted from

the English version—further emphasizes the heretofore unrecognized

extent to which Lacan’s formulations resonate with ‘‘formal language

theory,’’ which was developing more or less contemporaneously.29 This

new branch of mathematical theory devoted itself to the study of relation-

ships between languages and machines, or theories of grammar on one

side and finite-state machines on the other. The connection with Lacan’s

thought is unmistakable, though it has been missed by scholars so pre-

occupied with the influence of structural linguistics (i.e., Saussure and
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Jakobson) that, like the police in Poe’s story, they have conducted their

search strictly according to a priori assumptions. Not surprisingly, recon-

textualizing Lacan’s seminar in relation to the mathematical formalisms

of information theory and formal language theory produces a di¤erent

perspective and a di¤erent set of consequences.

It becomes clear that, at least in the early stages of his thought, Lacan

considered the working of the symbolic order not only in terms analogous

to those of a cybernetic circuit but precisely as a circuit that operates as a

finite-state automaton. To be sure, the two examples he provides—the

counting system for the game of odd and even and the syntactical permu-

tations marked by the purloined letter’s passage—are very rudimentary.

However, in the addenda in Écrits (see 48, 56–57), he includes more com-

plex circular and directional graphs. Like the simpler examples, these

graphs are intended to show how the operation of a ‘‘primordial symbol’’

can constitute a structure linking ‘‘memory to a law.’’ The fact that

Lacan’s circular and directional graphs closely resemble the transition-

state graphs found in textbooks on computation and automata theory

clearly establishes the extent to which he was thinking of the symbolic

order explicitly in terms of finite-state automata. (These graphs indicate

schematically the sequence of possible transitions from state to state for a

particular machine.) Figures 2.4, 2.5, and 2.6—two of Lacan’s graphs fol-

lowed by a transition diagram from a classic textbook on computation—

should dispel any doubts.30

It may be useful to ‘‘read’’ and explain one of these graphs. Figure 2.6,

for example, shows all the possible transitions for a finite automaton with

four states (q0, q1, q2, and q3) that takes a string of 1s and 0s as input.

Starting in its initial state (q0), if the first digit is 1, the automaton moves

Figure 2.4
Lacan’s first directed graph. Jacques Lacan, ‘‘Le séminaire sur ‘La lettre volée,’ ’’ in Écrits
(Paris: Éditions du Seuil, 1966), 48.
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Figure 2.5
Lacan’s second directed graph. Jacques Lacan, ‘‘Le séminaire sur ‘La lettre volée,’ ’’ in Écrits
(Paris: Éditions du Seuil, 1966), 57.

Figure 2.6
Transition diagram of a finite automaton. John E. Hopcroft and Je¤rey D. Ullman, Intro-
duction to Automata Theory, Languages and Computation (Reading, Mass.: Addison-
Wesley, 1979), 16.

The In-Mixing of Machines 87



to the q1 state; if 0, it moves to q2. Once in the q1 state, if the next digit is

1, it moves back to the initial state; if a 0, it moves to q3. If, however, it is

at q2 and the next digit is 1, it moves to q3; if it is 0 it moves back to the

initial state. Continuing in this manner, we can see that certain input

strings will advance the automaton through all of its states, either clock-

wise or counterclockwise. Some, however, will not. The input 1101, for

example, will leave the machine hanging in state q3. This sequence of 0s

and 1s, therefore, is not an ‘‘acceptable’’ input. Although it can be proved

mathematically, simple trial and error will confirm that this finite autom-

aton will accept all strings of 1s and 0s in which the number of both is

even, since then control of the automaton will start at the initial state q0
and be returned to it. This property allows the machine to be used, for

example, to check a symbol string for parity.

Another consequence of the influence of automata theory on Lacan

bears on the relationship between the symbolic order and natural lan-

guage, a relationship that Lacan addresses in cybernetic terms in his

paper presented to the Société française de psychanalyse. Before turning

to the paper, it should be noted that in the seminar Lacan never identifies

the symbolic order with language itself; rather, he understands the sym-

bolic order as operating within or by means of language, in and by means

of specific circuits of discourse in which signs of recognition or exchange

are passed or not passed. Importantly, the operations of the symbolic

order are never confused with or reduced to the operations of language.

The idea that the distinction between the two must be rigorously preserved

may have come from several sources, including number theory and Lévi-

Strauss’s work on structure and symbolic function in primitive societies.

In any case, it is clear that the autonomy of the symbolic function—the

key theme of the seminar—required a new conceptual framework for its

full elucidation, and Lacan found it in the discourse of cybernetics and

the new information machines. Indeed, it can be inferred that it was

Lacan’s familiarity with finite-state automata that enabled him to under-

stand that simple information machines were not unlike simple restricted

languages with a limited set of functions, in contrast to natural languages,

whose full expressive powers enable them to be used for multiple pur-

poses. Lacan presumably concluded that the workings of the symbolic

order could be fully described by the grammar of a finite-state automa-

ton, whereas natural language required a higher and more powerful

grammar.31

We owe the scientific demonstration of this insight to Noam Chomsky,

who begins Syntactic Structures (1957) from within the same newly
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emerging context of information processing and formal language theory

on which Lacan implicitly draws and to which Chomsky had already

contributed groundbreaking work on di¤erent types of formal gram-

mars.32 Chomsky asks what sort of grammar is necessary to generate

all the sequences of morphemes that constitute grammatical English

sentences—and only these. The ‘‘familiar communication theoretic model

of language,’’ by which he means Shannon’s model in The Mathematical

Theory of Communication, suggests a way to find the answer:

Suppose that we have a machine that can be in any one of a finite number of dif-

ferent internal states, and suppose that this machine switches from one state to an-

other by producing a certain symbol (let us say, an English word). One of these

states is an initial state; another is a final state. Suppose that the machine begins

in the initial state, runs through a sequence of states (producing a word with each

transition), and ends in the final state. Then we call the sequence of words that has

been produced a ‘‘sentence.’’ Each such machine thus defines a certain language;

namely, the set of sentences that can be produced in this way. Any language that

can be produced by a machine of this sort we call a finite state language; and we

can call the machine itself a finite state grammar.33

Chomsky then supplies a state-transition diagram for the two sentences

‘‘the man comes’’ and ‘‘the men come’’ (figure 2.7). Each node in the

diagram corresponds to an internal state of the machine. The sequence

of possible state-transitions ensures that if the singular subject man is

chosen, then so is the singular verb form comes. Each state-transition

thus limits the choice of the succeeding word or morpheme, and the se-

quence of possible transitions from one state of the machine to another

determines a grammar. Of course, to adopt this conception of language

entails our viewing the speaker as a type of machine, at least as a sub-

ject with this type of machine in his or her head, and Chomsky indispu-

tably does (Syntactic Structures, 20).

Figure 2.7
Chomsky’s state-transition diagram for the two sentences ‘‘the man comes’’ and ‘‘the men
come.’’ Noam Chomsky, Syntactic Structures (The Hague: Mouton, 1957), 18–19.
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Machines that generate languages in this manner are known as finite-

state Markov processes, which constitute the simplest type of finite-state

grammar that can generate an infinite number of sentences. But Chomsky

demonstrates that this type is not adequate for generating English sen-

tences, which require a more powerful kind of grammar—specifically,

a phrase-structure grammar that allows the embedding of subordinate

phrases. However, this type too turns out to be inadequate, and Chomsky

is forced to conceptualize a transformational grammar that will allow one

type of phrase structure to be transformed into another according to ‘‘re-

write rules,’’ which then yields the linguistic theory for which he is justly

famous.

In addition to making explicit the di¤erence between a relatively simple

finite-state grammar and the more complex grammar of natural lan-

guages like English—a di¤erence, I have argued, that is tacitly operative

in Lacan’s theory of the symbolic order as a finite-state grammar or

automaton—Chomsky shows very clearly how formal theories of lin-

guistic grammar are closely related to information machines. In ‘‘Three

Models for the Description of Language,’’ which provides the theoretical

basis for Syntactic Structures, Chomsky conceives of language as either a

finite or infinite set of sentences, each of finite length, all constructed from

a finite alphabet of symbols. As the first step in the analysis of a language,

he assumes that all sentences can be or already have been represented by

a finite system of representation; in fact, they are represented as messages,

in the information theoretical sense. As a matter of nomenclature, then:

‘‘If A is an alphabet, we shall say that anything formed by concatenating

the symbols of A is a string in A. By a grammar of the language L

we mean a device of some sort that produces all of the strings that are

sentences of L and only these’’ (106). (Here ‘‘device’’ simply means a

machine or automaton for generating symbol strings.) Di¤erent types of

automata (or grammars) are distinguished by the type or configuration

of symbol string they can recognize and generate. For a machine this is

determined by the transition rules that define how the machine changes

from one state to another after receiving a given symbol string as input.

(As we saw above, certain symbol strings are not acceptable, since they

would leave the machine hanging in an intermediary state rather than

moving it to a final state or returning it to a previous state.) As in Chom-

sky’s example above, in defining an automaton’s possible sequence of

states, these transition rules articulate a corresponding syntax, or gram-

mar. More complex machines have a larger set of possible transition

states, as well as a memory that allows them to transform or rewrite
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many more types of symbol strings into new or equivalent strings. They

can therefore recognize and generate symbol strings with a more complex

grammar.

In demonstrating that a finite-state automaton generating Markov

strings is inadequate for modeling English grammar and that more com-

plex types of automata like Turing machines are necessary for modeling

natural and other ‘‘higher’’ types of language, Chomsky made an essen-

tial contribution not only to linguistics and formal language study but

also to the theory of computation. In 1959 he proposed the following

classification scheme of languages (or grammars) and their corresponding

automata:

regular languages finite automata

context-free languages pushdown automata

context-sensitive languages linear bounded automata

recursively enumerable languages Turing machines34

Usually referred to the as Chomsky hierarchy, the scheme indicates an or-

der of correlational complexity: as the grammar increases in complexity,

so does the computational power of the corresponding automaton; con-

versely, as the computational power increases, so does the complexity of

the possible orders, or grammar, of the symbol strings that it can recog-

nize and generate. Building on this and related research, the field of au-

tomata theory deals with such topics as: ‘‘(1) Given a grammar, what is

the simplest structure of a machine which will examine input strings and

determine which ones are sentences in the language specified by the gram-

mar? (2) Given a machine, find a grammar which describes the set of

strings ‘accepted’ by the machine.’’35 While these kinds of problems are

obviously far more technical than the questions posed by Lacan and indi-

cate a fairly advanced stage of automata theory, they nevertheless provide

both the fullest context for and an unforeseen confirmation of his intu-

ition that the ‘‘world of the symbolic is the world of the machine.’’

A Conjectural Science Redefines the Real

At the opening of his lecture ‘‘Psychoanalysis and Cybernetics,’’ Lacan

announces, ‘‘To understand what cybernetics is all about one must look

for its origin in a theme, so crucial for us, of the signification of chance’’

(296). But rather than take up the signification of chance directly, Lacan

turns to a related concern: the relationship of cybernetics to the real. By
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the real, Lacan initially means what is always to be found in the same

place, like the fact that at the same hour and date the same constellation

of stars will always appear in the sky. This sense of the real, he asserts,

has always been the provenance of science. But cybernetics introduces a

new and di¤erent kind of science, a conjectural science concerned with

the articulation of place as such, regardless of what does or doesn’t come

to occupy it. (Theorists today would simply call this structuralism.)

By way of explanation, Lacan asks us to consider the opening and clos-

ing of a door. As that which opens or closes one space in relation to

another, a door marks an obvious threshold and as such serves an inher-

ently symbolic function. But whether it opens onto the real or the imagi-

nary, Lacan says, we don’t quite know, because ‘‘there is an asymmetry

between the opening and closing—if the opening of the door controls ac-

cess, when closed, it closes the circuit’’ (302). Lacan thus playfully super-

imposes onto the familiar function of the door its function as a ‘‘logic

gate,’’ which is a device—usually part of an electronic circuit—used to

implement logical and other computational functions. When a gate is

closed, there is flow of an electric current; when open, there is not. In

this way the presence or absence of electrical flow (i.e., a voltage poten-

tial) digitally encodes a ‘‘bit’’ of information: closed or open, on or o¤, 1

or 0. There are several types of these gates. In an AND gate both of the

two input circuits must be closed for the output circuit to be closed and

thus for current to pass; in an OR gate only one of the two input circuits

has to be closed; in the more complex XOR gate the circuit is closed if

and only if the two inputs are not the same (i.e., one is closed and the

other open). Gates are also combined to produce an invert function, in

which one circuit is closed if and only if the other is open, and vice versa.

By combining logic gates in multiple arrays, Boolean functions can be

implemented, mathematical operations like addition and multiplication

can be calculated, and information can be stored.36

In the lecture, Lacan reproduces the logic tables of OR, AND, and

XOR gates, using the binary language of 0s and 1s. (He could just as

easily have used the Boolean values true and false.) These tables appear

in figure 2.8, with their proper names underneath. (The possible combi-

nations of the two input circuits are indicated in the two columns on the

left, the result in the output circuit on the right.)

Curiously, Lacan omits the proper names for these gates and doesn’t

bother to explain how they function; he merely states that the XOR gate

is of ‘‘considerable interest’’ (303), without explaining why. (In fact, all of

the Boolean functions can be derived from the XOR function, which is
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not true of the AND and OR functions.) Yet Lacan does provide all he

deems necessary to show how circuits of these doors instantiate the tying

of the real to a syntax, which then allows a symbolic order to emerge.

Since the real is precisely that which admits of no absence—in the real

nothing is ever missing from its place—the symbolic order is first of all a

succession of presences and absences or, as he later puts it, ‘‘of presence

on a background of absence, of absence constituted by the fact that a

presence can exist’’ (313). There can be no doubt about what this means:

‘‘Once we have the possibility of embodying this 0, this 1, the notation of

presence and absence, in the real, embodying it in a rhythm, a fundamen-

tal scansion, something moves into the real, and we are left asking

ourselves—perhaps for not very long, but after all some substantial minds

are doing so—whether we have a machine that thinks’’ (303–304).

One substantial mind, Alan Turing, had addressed this very question

only a few years earlier. In ‘‘Computing Machinery and Intelligence,’’ he

argued that there is no compelling reason why machines should not be

able to think and proposed what became well known as the Turing test

for determining whether a particular machine can simulate human-level

intelligence.37 Surprisingly, Lacan takes the question of whether or not

the machine really thinks—since humans make the machine, it can only

do what they program it to do—as an occasion for play. We know that

the machine doesn’t think, he adds; but if the machine doesn’t think,

then neither do we, since when we think we are following the very same

procedures as the machine. (Turing argues conversely: when broken

down into steps, each part of his own reasoning process can be duplicated

Figure 2.8
Logic tables.
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by a machine.) In any case, what is truly important about these new

machines, Lacan asserts, is that they provide the means by which

the chain of possible combinations of the encounter can be studied as such, as an

order which subsists in its rigor, independently of all subjectivity. Through cyber-

netics, the symbol is embodied in the apparatus—with which it is not to be con-

fused, the apparatus being just its support. And it is embodied in it in a literally

trans-subjective way. (304)

Presciently, here Lacan attributes to cybernetics an idea that will later

become a cornerstone of research in artificial intelligence, namely, Newell

and Simon’s physical symbol system hypothesis.38 According to this hy-

pothesis, symbol-processing devices do not depend for their operation on

the nature of their material substrate; hence they operate equally well in

either a digital computer or a human brain. Though symbols are tied to

material counters, their operations are not reducible to the physical laws

that govern the behavior of the latter. What does govern their behavior is

the syntax of symbolic logic, which George Boole called the ‘‘language of

thought.’’ As Lacan implies in the lecture, this autonomization of the

symbol, that is, its being set free from the constraints of nature (the phys-

ical laws of matter and energy), is at the heart of the symbolic function

and its relationship to the real.

In contrast to phenomena of nature, which are always subject to

entropy and therefore tend to equalize levels of di¤erence, cybernetic

machines, once set going, autonomously maintain or even increase levels

of di¤erentiation. ‘‘Everything we call language,’’ Lacan says, is orga-

nized around this kind of di¤erentiation, but in order for language to

come into being, there must be ‘‘insignificant little things such as spelling

and syntax’’ (305). Constituting ‘‘a pure syntax,’’ the logic gates and their

corresponding truth tables make it evident that cybernetics is a ‘‘science

of syntax’’ and thus well positioned to help us perceive that ‘‘syntax exists

before semantics.’’ Does this mean that it is we who introduce meaning

[or ‘‘direction,’’ since the French word sens can mean either]? Not alto-

gether, Lacan answers; for there to be meaning (sens) there must be ‘‘a

sequence of directed signs’’ (305). In other words, meaning presupposes

syntax, even if it is not reducible to it. What, then, is the meaning of

meaning? It is ‘‘the fact that the human being isn’t master of this primor-

dial, primitive language. He has been thrown into it, committed, caught

up in its gears’’ (307).

While Lacan is careful not to identify the syntax of language with the

functioning of the cybernetic circuit, he insists that they are closely re-

lated. Considered together, they provide precise evidence of a symbolic
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order. In the cybernetic circuit it is visible ‘‘in its most purified form’’

(305), whereas in the ‘‘impure discourse’’ in which ‘‘the human subject

addresses himself to us’’ (that is, addresses the analyst) it is hidden within

and behind this discourse, only visible ‘‘in the symbolic function which is

manifested through it’’ (306). Though symbols—images of the body and

all kinds of other objects—pervade ordinary discourse, they serve only an

imaginary function. This is a necessary function and cannot be elimi-

nated. But in ordinary discourse the imaginary and the symbolic are al-

ways and inevitably found to be in-mixed, whereas cybernetics highlights

precisely the di¤erence between the two registers. Just as the cybernetic

machine is not to be confused with its support, so the symbolic function

is not to be confused with the language through which it operates and by

which it is made manifest. Thus Lacan makes explicit what was only im-

plicit in the seminar—the irreducible di¤erence between the symbolic

order and natural language.

Again we find parallels with Chomsky’s theory, which also gives prior-

ity to syntax. Syntactic Structures contains perhaps his best-known

example of this priority: ‘‘colorless green ideas sleep furiously’’ is a recog-

nizably grammatical sentence, whereas ‘‘furiously sleep ideas green color-

less’’ is not, even though neither concatenation appears to mean anything

(15). What allows a speaker of English to recognize the grammaticality of

the first utterance is a certain kind of machine in the head, a linguistic au-

tomaton. In this sense Chomsky’s theory, like Lacan’s theory of the sym-

bolic order, also supposes an in-mixing of machines. In both cases this

machine is a device for syntax recognition and production, the exact

workings of which appear to be unconscious: Chomsky’s machine, or au-

tomaton, putatively accounts for the human capacity for language, while

Lacan’s is identified with a symbolic order that works in and through

language but remains distinct from it. Both are ‘‘abstract machines,’’

imported from computational theory in order to renovate their respective

disciplines.39

Lacan closes his lecture on what he unexpectedly admits is the central

question: ‘‘to know whether the symbolic exists as such, or whether the

symbolic is simply the fantasy of the second degree of the imaginary

coaptations’’ (305–306). If cybernetics provides the answer by confirm-

ing the existence of the symbolic order, it is because it allows us to dem-

onstrate that ‘‘there is something into which [man] integrates himself,

which through its combinations already governs’’ (307). Although there

are various ways of saying this—Lacan cites examples from both Freud

and Claude Lévi-Strauss—the cybernetic machine provides the most

direct and material proof that ‘‘man is engaged with all his being in the
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procession of numbers’’ (306). Since it is in or through numbers, most

simply in the articulation of 1s and 0s, that nonbeing comes to be, Lacan

concludes his lecture with a paradox: ‘‘The fundamental relation of man

to this symbolic order is very precisely what founds the symbolic order

itself—the relation of non-being to being’’ (308).40

This sudden shift to metaphysical terms in the last moments of the lec-

ture may seem annoying or mystifying, since up to this point Lacan has

spoken of the symbolic order as ‘‘tying the real to a syntax’’ but not in

relation to ‘‘non-being.’’ Yet a more striking and certainly more signifi-

cant shift is evinced by Lacan’s use of the term real, which varies over

the course of the seminar. Analyzing Freud’s dream of Irma’s injection

(one of Freud’s most famous exercises in self-analysis), Lacan had spoken

of the image of the ‘‘unnamable’’ that arises from the abyss of her throat.

This anxiety-provoking image ‘‘summarizes what we can call the revela-

tion of that which is least penetrable in the real, of the real lacking any

possible mediation, of the ultimate real, of the essential object which isn’t

an object any longer, but this something faced with which all words cease

and all categories fail, the object of anxiety par excellence’’ (164). But

later in the seminar Lacan shifts from this ‘‘privileged experience, in

which the real is apprehended beyond all mediation, be it imaginary or

symbolic’’ (177) to another order of designation in which the real is the

domain of chance and the random, and then again to a putatively more

scientific conception of the real as that which ‘‘is always well and truly in

its place’’ (297).41 Yet this last conception, Lacan asserts in the lecture,

will have to yield in turn to the formulations of cybernetics as ‘‘the

science of the combination of places as such,’’ for it is in cybernetics that

a new relationship of symbols to the real is articulated.

This new relationship follows from the fact that when the science of

numbers becomes a combinatory science, we can see that ‘‘the more or

less confused, accidental traversal of the world of symbols is organized

around the correlation of absence and presence’’ (300). Accordingly, the

search for the laws of presence and absence tends toward the establishing

of binary orderings, which in turn leads to cybernetics. The whole move-

ment of the theory, Lacan insists, ‘‘converges on the binary symbol, and

on the fact that anything can be written in terms of 0 and 1’’ (300). In

order for cybernetics to appear, however, this binary symbol must begin

to ‘‘function in the real’’:

It has to function in the real, independently of any subjectivity. This science of

empty places, of encounters in and of themselves has to be combined, has to be

totalized and has to start functioning all by itself.
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What is required for that? To support this, something must be taken from the

real. From the beginning, man has tried to join the real in the play of symbols. He

has written things on the wall, he has even imagined that things like Mene, Mene,

Tekel, Upharsin, get written all by themselves on walls, he has placed figures at the

spot where, at each hour of the day, the shadow of the sun comes to rest. But in

the end, the symbols always stayed where they were intended to be placed. Stuck

in the real, one might think that they were just its landmark. (300)

But cybernetics permits these symbols ‘‘to fly with their own wings’’

(300), that is, to operate simultaneously in the real and in the circuit of

pathways Lacan calls ‘‘the discourse of the other.’’ The Poe story pro-

vides one instance of how the symbol can fly with its own wings: as the

letter, or symbol, moves, so does the psychological disposition and distri-

bution of the characters. But it does this only because, as it moves, it

extracts something from the real by hollowing out an absence, leaving

‘‘something missing from its place.’’ This is not a simple absence but a

scansion of presences and absences that appears to self-organize into an

autonomous order articulating a structure into which human beings

must integrate themselves; indeed, through combinations of presence and

absence, the structure ‘‘already governs’’ (307) the place of the human.

From the point of view of traditional semiotics or iconology, what is

perhaps most striking about these formulations is Lacan’s splitting of the

symbol into two distinct functions. According to the first, the symbol is

essentially a perceptible image of an object of desire (and of fear and anx-

iety), entering into discourse through what Lacan calls the imaginary

order, or register. According to the second, the symbol is essentially a dig-

ital or numeric counter in a written or writeable code that is understood

to govern, or regulate, human relationships. Within this framework

Lacan appears merely to have reformulated the ancient and traditional

opposition between image and word, desire and law, the perceptible and

the intellectual. The introduction of cybernetics serves primarily as a new

way to distinguish between the two, and to (re)assert the necessary supe-

riority of the second sense of the symbolic. Yet Lacan acknowledges from

the outset that these two distinguishable functions are never fully separate

but always in-mixed. The cybernetic information machine therefore finds

its illustrative value in the fact that the subjective, imaginary aspect of the

symbol is absent (i.e., these machines have no imaginary: they cannot see

and desire). As Lacan puts it, ‘‘The machine is the structure detached

from the activity of the subject’’ (47). However, this doesn’t quite work

either, since this very same machine is also found to be ‘‘inside’’ the sub-

ject, as the mechanism enabling the subject to recognize and follow the
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syntactic laws that integrate him or her into the human order; at the same

time, this mechanism is in-mixed with desires that subvert this very inte-

gration. At this stage of his thought, in short, Lacan seems to have no

other way to articulate the ‘‘impossibility’’ that defines the human.

Playing against a Machine: Kasparov versus Deep Blue

Over the course of the seminar Lacan wonders several times what it

would be like to play against a machine. But how, exactly, would playing

against a machine shed light on the Lacanian problematic of in-mixing?

In the recent chess matches between the Russian chess master Garry Kas-

parov and the computer Deep Blue we find a dramatic encounter that

suggests several possibilities. In 1996 Kasparov, generally considered to

be the greatest chess player in the world, accepted the challenge to play

against Deep Blue, which had been built and programmed by a research

team at IBM. Until then there had been many chess-playing programs

and machines that could easily beat mid-level players, but no machine or

program had ever been a match for a grand master. Yet Deep Blue was

di¤erent. It was faster and more powerful; thanks to new parallel process-

ing hardware, it could conduct multiple searches simultaneously. In fact,

it was said to be capable of several million scansions of the board per sec-

ond and could ‘‘think’’ (i.e., evaluate board positions) as many as seven

moves (or ‘‘ply’’) ahead. Confidence among the IBM team was therefore

very high.

Two matches were scheduled and played: the first in February 1996,

which Kasparov won after losing the first game, and the second in May

1997, which Kasparov lost after winning the first game. Both matches

have generated a great deal of commentary and discussion, which in

certain ways may be as revealing as the matches themselves. What is im-

mediately noticeable is that most of this discussion is governed by a dis-

course of rivalry (man versus the machine) and thus, in Lacanian terms, is

played out entirely in the domain of the imaginary. But it also seems

clear, at least in retrospect, that the outcome of the games could not fail

to be determined by the order of the symbolic, or rather, more precisely

and in keeping with Lacan, that it would emerge from a continual cross-

ing or in-mixing of the two.

If Lacan is right, the outcome of the first match is meaningless; it is

only the sequence that matters. Beyond the utter novelty and nearly un-

bearable tension generated by the fear or anticipation that Deep Blue

might actually win (especially after winning the first game), the lesson of
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the first match seemed to be that it confirmed what everybody already

knew—that chess is not a game of pure calculation but involves strategy

or style. Although Kasparov won the first match, many commentators

criticized him precisely for changing his style. At the time Kasparov was

known as a power player who played very aggressively and usually van-

quished his opponent with sheer speed and force. In other words, he

played like a machine, although, significantly, no commentator actually

says this. Evidently Kasparov realized after losing the first game that if

he played to his own strength he would lose, since aggressive play based

on rapid calculation is precisely what a computer can do better. So, after

the first game Kasparov began to play deliberately odd opening moves,

and developed a strategy of underplaying himself. He appears to have

adopted the popular wisdom that a computer plays best when it has a sit-

uation to respond to, that is, when put into a defensive position, and that

the most e¤ective strategy therefore is to make it take the o¤ensive, hop-

ing that it will waste a move or two, which at this level of play is usually

fatal. The strategy seems to have worked perfectly and Kasparov won the

first match.

In the second match something very di¤erent happened. Continuing his

prior strategy, Kasparov won the first game, although the quality of the

game was very high and it was clear to the experts that Deep Blue was

playing at a level never seen before in computer chess. In fact, between

the matches the IBM team had doubled Deep Blue’s processing power

and programmed analyses of Kasparov’s previous games and typical

strategies into its memory. It was not until the second game, however,

that something very surprising, indeed stunning, occurred. At move 36,

instead of moving its queen to a strong position deep within Kasparov’s

territory, which is what everyone expected, Deep Blue hesitated, then

spent almost two full minutes calculating other possibilities before finally

deciding on a simple pawn exchange. From then on Deep Blue played

with what the experts unanimously agreed was a certain style, as if play-

ing with an intuitive feel for the game. ‘‘Deep Blue made many moves

that were based on understanding chess, on feeling the position. We all

thought computers couldn’t do that,’’ the women’s world champion

Susan Polger said afterward.42 More important, Kasparov himself was

so deeply shaken that his strategy immediately unraveled. He would later

say that ‘‘Suddenly, [Deep Blue] played like a god for one moment,’’ and

he dubbed the play ‘‘the Hand of God’’ move.43 In the postgame analysis

another surprise emerged: in playing out the endgame Deep Blue had

actually made a mistake, which, had Kasparov caught it, might have led
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to a draw instead of a loss. During the course of the game Deep Blue had

played so brilliantly that Kasparov had come to assume that it couldn’t

make such mistakes. Consequently, he had missed his opponent’s

simple error, something normally inconceivable for a grand master like

Kasparov.

The next two games were played to a draw. Although Kasparov stated

that Deep Blue was back to playing like a computer again, it was appar-

ent to everyone that the human player was slowly being worn down.

In game 5, Deep Blue once again displayed strategic brilliance, parti-

cularly in the endgame, and Kasparov, known throughout the chess

world for his nerves of steel, actually began to exhibit fear. He later

acknowledged being disturbed by Deep Blue’s evident power: ‘‘[Deep

Blue] goes beyond any chess computer in the world.’’44 Finally, in game

6, Kasparov shocked the chess world by capitulating after only nineteen

moves. ‘‘I lost my fighting spirit,’’ he confessed. ‘‘I was sure I would

win because I was sure the computer would make certain kinds of mis-

takes, and I was correct in game 1. But after that the computer stopped

making those mistakes. Game 2 had dramatic consequences, and I never

recovered.’’

Yet this statement only tells half the story. In fact Deep Blue had made

a critical mistake, while also playing with a widely recognized brilliance.

As several observers remarked, it had played strategically: it had begun to

play the game instead of responding mechanically after a rapid evaluation

of the board’s current possibilities. In game 2, in that two-minute pause

followed by an unexpected move, Kasparov believes that Deep Blue had

actually begun to think and that a spark of true artificial intelligence had

been born. But perhaps at that moment Deep Blue simply began to imi-

tate the human whose games and typical strategies it had ‘‘learned’’ to

play against. Although imitating a machine was one of Kasparov’s most

successful strategies, it evidently never occurred to him—why should

it?—that the machine might also begin to imitate him. Somewhat eerily,

that imitation entailed an almost Medusa-like combination of superior

brilliance and near obvious blunder. Apparently it was this imitation of

his own strategy in combination with rapid calculation that defeated

Kasparov.

Where does this leave us in regard to Lacan? What do we discover

when we actually play against a machine? If modern machines like Deep

Blue can not only calculate but adopt strategies and imitate us to a cer-

tain degree, will the di¤erence between the symbolic and the imaginary

orders be impossibly blurred or irrevocably clarified in the harsh light of
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their dazzling play? In the case of Kasparov, at least, the outcome, if not

its meaning, is clear. In facing o¤ against Deep Blue, in imagining a liter-

ally acephalic machine as the rival other, Kasparov’s normally indomita-

ble will could only dissolve and fade in something like what Lacan calls

‘‘a spectral decomposition of the ego function’’ (165). Speaking of the

dream of Irma’s injection, Lacan suggests what may also have been true

for Kasparov: ‘‘What’s at issue is an essential alien [un dissemblable], who

is neither the supplement, nor the complement of [my] fellow being [mon

semblable], who is the very image of dislocation, of the essential tearing

apart of the subject’’ (177). In these terms Kasparov’s visible collapse—

particularly evident in his ascription of Deep Blue’s winning move to the

‘‘hand of God’’—follows from a radical disavowal that the game could

be anything other than the head-on opposition between a human and a

machine. In other words, Kasparov confused a scenario of the imaginary

with the real itself.

In this perspective Kasparov’s collapse appears to result from a total

denegation of everything Lacan is trying to convey in his seminar,

namely, that it is in and through the in-mixing of machines that we are

integrated into a symbolic order that everywhere exceeds us. Inscribed in

a circuit whose ‘‘syntax’’ (if not language) we have not yet learned to rec-

ognize, we continue to misrecognize the true nature of the encounter.

Thus in ascribing the hand of God to an imitation or appropriation of

his own strategy, Kasparov misrecognizes not only what is at stake but

what is in play. For what is certain above all is that the game is not

played out in the opposition between the human and the machine. Just

where it is played out—in the crossing levels and in-mixing of the

symbolic, the imaginary and the real, where the subject appears only to

disappear—is precisely what Lacan’s seminar teaches. Nevertheless, if

from this perspective Lacan’s notion of in-mixing begins to deconstruct

the human/machine opposition (since the other is inscribed on both sides

of the opposition), it is not a deconstruction in the Derridean sense, inas-

much as the symbolic order—the world of the machine—clearly retains

an absolute priority.45

Yet if Lacan leaves us with a fairly precise notion of the symbolic

order and its relation to the ‘‘world of the machine,’’ what makes up or

characterizes the human is less well defined. As Lacan himself puts it,

‘‘The question of knowing whether the machine is human or not is evi-

dently well decided [toute tranchée]: it is not. But it’s also a matter of

knowing if the human, in the sense in which you understand it, is all so

human as that’’ (319). Lacan no doubt sensed that the introduction of
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an abstract machine into the nexus of relationships that constitute the

human could not fail to have profound consequences for the very defini-

tion of the human. In contrast then to Norbert Wiener, who wavered

between a conscientious endorsement of the liberal humanist values

founded on an assumed ‘‘autonomous’’ ego and a working commit-

ment to the cybernetic viewpoint that eroded it, Lacan confronted the

new challenge brought by information machines from a less blinkered

perspective.46 At the very least, Lacan understood that in the era ushered

in by these new machines the decentralization of the ego begun by Freud

would have to be carried even further and given new theoretical foun-

dations. That he sought to achieve this by means of the very theory

that brought these machines into existence redounds all the more to his

credit.

There are, however, limits to Lacan’s farsightedness. Having intro-

duced the new science of cybernetics into his seminar on psychoanalytic

theory in 1954, he also pointed to what he thought was an obvious limit

of this new science: ‘‘Machines which reproduce themselves have yet to be

built, and have yet even to be conceived of—the schema of their symbolic

has not even been established’’ (54). Evidently he was not aware that just

such a schema had already been worked out, only a few years before, by

John von Neumann.47

I conclude with a final historical note on Kasparov and Deep Blue. Al-

though their confrontation occurred only ten years ago, in many respects

they are relics—but cultural icons nonetheless—from an earlier historical

moment. Whereas Kasparov is a highly egotistical Cold War–style strat-

egist, free to imitate a machine precisely because he believes that he is not

one, Deep Blue is a powerful computational machine built on principles

of artificial intelligence worked out in the 1950s and ’60s. The founda-

tions of both positions—of the computational assemblage that together

they articulate—are now obsolete. The limits of classic AI, which

attempts to emulate the human by mechanically reproducing certain iso-

lated human cognitive functions, are now widely recognized and have

largely given way to other approaches. And similarly for the specious

man-versus-machine opposition. To take only one example, J. C. R.

Licklider’s ‘‘Man-Machine Symbiosis’’ (published in 1960) adumbrates

an altogether di¤erent kind of cybernetic ‘‘machinic subject’’: ‘‘The hope

is that, in not too many years, human brains and computing machines

will be coupled together very tightly, and that the resulting partnership

will think as no human brain has ever thought and process data in a way

not approached by the information handling machines we know to-
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day.’’48 Licklider understands ‘‘man-machine symbiosis’’ as a subclass of

human-machine systems that promises to be a distinct advance over the

‘‘mechanically extended men’’ who characterize the industrial era, but

without the problems that the artificial intelligence of the distant future

will bring. In fact, he predicts a ‘‘fairly long interim during which the

main intellectual advances will be made by men and computers working

together in intimate association’’ (58).

Deep Blue itself, furthermore, is not so much a ‘‘thinking machine’’ as

a chess-playing program implemented on the lightning-fast hardware of a

parallel-processing computer. The basis for the program, first worked out

by Claude Shannon in 1950, is an evaluative function that rates every

possible position on the board in terms of a minimax strategy.49 But al-

though Deep Blue performs this function faster than any computer ever

built and at grand master levels of expertise, it is not, as IBM acknowl-

edges on its Web site, ‘‘a learning system . . . [and is] therefore not capable

of utilizing artificial intelligence to either learn from its opponent or

‘think’ about the current position of the chessboard.’’ In other words, its

ability to ‘‘learn’’ is extremely limited; it can neither ‘‘teach itself ’’ nor in-

vent new strategies. More important, it cannot adapt or change its behav-

ior in response to changing environmental conditions.

By today’s criteria, this makes it a very limited form of artificial intelli-

gence. As the contemporary roboticist Rodney Brooks explains in his

essay, ‘‘Elephants Don’t Play Chess,’’ whereas traditional AI ‘‘tried to

demonstrate sophisticated reasoning in rather impoverished domains [i.e.,

chess],’’ the new AI ‘‘tries to demonstrate less sophisticated tasks operat-

ing robustly in noisy complex domains.’’50 While the two approaches

may seem in some ways complementary, what drives much of current AI

research is the excitement generated by using evolution itself, as is evident

in evolutionary programming, Artificial Life, and evolutionary robotics.

These new sciences suggest that the best route to producing truly creative

intelligence may lie in mimicking the processes of natural evolution. In-

deed, as culture itself becomes more dependent on advanced technology,

it is more likely that strategies of artificial evolution will provide the

means by which the culture of the future will be engineered. If cybernetics

and information theory can be said to have inaugurated a new discourse

network in the 1950s, then the now unforeseeable results of artificial evo-

lution will one day be seen as its full flowering.
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3 Machinic Philosophy: Assemblages, Information, Chaotic
Flow

Valentine: We can’t even predict the next drip from a dripping tap when it gets

irregular. Each drip sets the conditions for the next, the smallest variation blows

prediction apart, and the weather is unpredictable the same way, will always be

unpredictable. When you push the numbers through the computer you can see it

on the screen. The future is disorder. A door like this has cracked open five or six

times since we got up on our hind legs. It’s the best possible time to be alive, when

almost everything you thought you knew is wrong.

Hannah: The weather is fairly predictable in the Sahara.

Valentine: The scale is di¤erent but the graph goes up and down the same way.

Six thousand years in the Sahara looks like six months in Manchester, I bet you.

—Tom Stoppard, Arcadia

As a new kind of abstract machine defined solely by its computational

functionality, the Turing machine is surely one of the most consequential

conceptions of the twentieth century, leading not only to the invention of

the modern computer but also to new ways of thinking about human cog-

nition. This new type of machine di¤ers essentially from both the sim-

ple machines known in antiquity (wheel, axle, lever, pulley, wedge, and

screw) and the motor or power-driven machines that characterize moder-

nity (windmill, turbine, steam and combustion engines). Whereas the two

earlier types transmit force or energy, the new type processes information.

Whether a calculating machine or logic engine, a finite automaton or

universal Turing machine, an information processor does something

fundamentally di¤erent, touching at the heart of what is often said to

be the essence of the human: the capacity to think. Little surprise, then,

that with the appearance of the information-processing machines we sim-

ply call computers (and the popular press first referred to as thinking

machines), symbol systems, cognition, and symbol-dependent behavior

became new objects of theoretical scrutiny. As we’ve seen, in parallel

with the early formulations of artificial intelligence, Jacques Lacan was



able to isolate what governs the operation and role of the symbolic order.

By showing how these new machines digitally encode sequences of sym-

bols articulating presence with absence, Lacan could thus lay bare—at

least this was his claim—the specific logic that regulates human existence.

Thanks to cybernetics, Lacan recognized that this symbolic order al-

ways exists in tension with another register of human experience, the

imaginary order, within which bodies and objects, starting with our own

bodies, are internalized in images. Lacan also realized that the new cyber-

netic machines do not simply exist outside of us. Insofar as many human

activities are computational, that is, either perform or depend upon

computations, human being assumes an in-mixing of many kinds of

information-processing machines. Although not concerned with how

these machines would greatly intensify the (for him) imaginary opposition

between human and machine—and thus provoke a denial of this very in-

mixing, Lacan accepted the challenge that cybernetics posed to tradi-

tional human boundaries. The chess matches between Deep Blue and

Kasparov subtly display the e¤ects of this boundary disturbance. How-

ever, with the flowering of AI and ALife, genetic engineering, cloning,

biochip implants and other cyborg technologies, the blurring of hereto-

fore fundamental boundaries becomes more dramatically visible. In order

to explore these boundary disturbances and breakdowns in a less negative

light—as a new nexus of creative transformation—a wider and more rad-

ical framework than Lacan can provide is necessary. What is needed is a

framework that enables us to grasp and go beyond the limits of his con-

cept of the symbolic as an abstract machine, which he imported from

mathematics and the formal sciences in order to impute universality and

deep structure to phenomena that seem neither wholly universal nor his-

torical, neither wholly natural nor cultural, but function at the hinge of

these deeply entrenched oppositions.

Such a framework can be found in Gilles Deleuze and Félix Guattari’s

two-volume Capitalism and Schizophrenia.1 Its original impetus, plainly

visible in Anti-Oedipus (the first volume), was to explode the limits of the

psychoanalytic theory of desire by arguing that desire is produced not

from a dialectic of lack embedded within the Oedipal triangle (Daddy-

Mommy-Me)—indeed, this societal set-up is seen to be only one of

many culturally contingent possibilities—but by particular arrangements

of bodies and discourses that define the social field, which can be coded

and stratified in a variety of ways. Yet Deleuze and Guattari exceed this

initial critical aim by elaborating an alternative theory of ‘‘machinic de-

sire.’’ This theory extends Lacan’s notion of the in-mixing of machines
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beyond the boundaries of the individual subject and relocates both sub-

jects and machines on an expansive surface they designate as the socius,

or ‘‘body without organs.’’ Nature itself becomes a machinic process,

endlessly producing, inscribing, and consuming flows that are cut into,

siphoned o¤, and connected to other flows. This, in essence, is what

Deleuze and Guattari call a desiring machine. In A Thousand Plateaus

(the second volume), they redefine these machines in a theory of the

assemblage (agencement), by which they mean a specific functional ar-

rangement of heterogeneous flows and interactions, a concrete set-up of

connections between humans and machines that ensures both the coding

and decoding of fluxes of matter, energy, and signs (information). Feudal-

ism, psychoanalysis, the war machine, a performance by the composer

John Cage—there is no limit to their variety. Assemblages arise, mutate,

and disappear at specific conjunctions of material and historical forces;

hence they are always dated. However, because they are guided by an ab-

stract machine that reappears in di¤erent time periods and unique social

formations, they are not simply historical constructions. This aspect of

the assemblage leads Deleuze and Guattari to postulate the existence of

a special realm they call the machinic phylum, which cuts across the op-

position between history and nature, the human and the nonhuman. The

term itself suggests a conjunction or interface between the organic and the

nonorganic, a form of ‘‘life’’ that combines properties of both. They

locate the origins of the machinic phylum in the e¤orts of the first metal-

lurgists, who fabricated weapons out of the earth’s ores and metals.

Following Deleuze and Guattari, Manual DeLanda has extended this

realm to include all forms of nonorganic life that occur with the self-

organization of matter.2 Taken as a whole, this entire body of work pro-

vides a fresh perspective for thinking about how science and information

technology have begun to loosen and transform one of Western culture’s

most fundamental boundaries, dating back to the Greek opposition be-

tween phusis and technē. In general terms, Deleuze and Guattari’s notion

of the machinic phylum can be said to arise in the space—physical as well

as conceptual—where crossovers and exchanges erode the clear and fixed

distinction between the two. In a further extension of this body of work,

I suggest that this realm is the site of a ‘‘becoming machinic,’’ fully expli-

cable as neither a natural evolutionary process nor a human process of

construction. Rather, it is a process of dynamic self-assembly and organi-

zation in new types of assemblage that draw both the human and the

natural into interactions and relays among a multiplicity of material, his-

torical, and evolutionary forces. In this new space of machinic becomings
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an increasingly self-determined and self-generating technology thus con-

tinues natural evolution by other means.

This chapter focuses on the new window opened onto the machinic

phylum by the computer and the computational methods essential to the

discoveries of chaos science. Thanks to the computer, new studies of non-

linear dynamical systems have made visible and understandable many

unsuspected ways in which common physical forces act unpredictably

and even creatively, most notably as new research in physical turbulence

stimulated new approaches to modeling the ‘‘strange’’ behavior of such

systems.3 Dynamical systems are systems whose state changes as a func-

tion of time; their behavior is usually described by di¤erential equations

that can be solved by analytic methods. (The latter break the problem

down into parts that are solved separately and then recombined.) Non-

linear dynamical systems, on the other hand, have exponential or other

functions that make them intractable, or nearly so; parts of these systems

interact in ways that produce disproportionate and strange e¤ects. For

example, small changes can produce unpredictably large e¤ects, and these

systems usually exhibit chaotic or aperiodic behavior. Because of these

di‰culties, nonlinearity was mostly ignored, or its e¤ects were approxi-

mated. Yet this proved to be a form of blindness, finally rectified with

the advent of nonlinear studies and what became widely known in the

1980s as chaos science. Generally speaking, this science is concerned

with the emergence and measurement of the new fractal, or self-similar,

structures and unpredictable regularities that nonlinear systems exhibit,

often revealed by computer modeling and simulation. The result has

been a new understanding and redefinition of chaos. Not surprisingly,

both the technical and popular literature on chaos theory—a lay term

not used by scientists—is now extensive. In fact, two popular and success-

ful books, Ilya Prigogine and Isabelle Stengers’s Order out of Chaos and

James Gleick’s Chaos: Making a New Science, have created the impres-

sion that there are two distinct strands of chaos science.4

The first strand centers on the emergence of order out of chaos and is

often identified with Prigogine’s Nobel Prize–winning research on highly

dissipative, open thermodynamic systems, in which large amounts of

energy are expended and energy is not conserved. At a state ‘‘far from

equilibrium,’’ or near chaos, Prigogine argued, many physical systems

spontaneously organize themselves and begin to evince new orderly pat-

terns of behavior. The most famous example (though not Prigogine’s dis-

covery) is the Belousov-Zhabotinski chemical clock, in which a chemical

reaction suddenly produces colorful, pulsating rhythms. In his foreword
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to Prigogine and Stengers’s Order out of Chaos, Alvin To¿er likens this

jump to a higher level of organization to the visual e¤ect that a million

black and white ping-pong balls bouncing around randomly in a tank

would make—visually a gray blur—if suddenly they fell into distinct

patterns of black on white and white on black.5 The problem with Order

out of Chaos, however, is that all too often the authors seamlessly blend

science with sometimes unwarranted philosophical speculation. Neverthe-

less, Prigogine’s work with self-organizing chemical systems retains its

rightful place alongside other innovative investigations of self-organizing

dynamical systems. Hermann Haken’s work on laser light theory and

Manfred Eigen’s work on prebiological forms of organization known as

hypercycles are two prominent examples. In providing evidence for the

spontaneous emergence of complex self-organizing structures, all three

research initiatives bring to fruition the early theoretical formulations of

W. Ross Ashby and Heinz von Foerster, in particular the principle of

order from noise considered in the first chapter.

The second strand, brought to wide public attention by James Gleick’s

Chaos: Making a New Science, focuses on the application of nonlinear

mathematics to diverse phenomena like weather prediction and turbulent

flow, population growth, and the rise and fall of market prices.6 In con-

trast to Prigogine’s interest in a new kind of order that emerges from the

self-organization of matter, this second strand is distinguished by the dis-

covery of deeply embedded fractal patterns of order within processes (or

data) that formerly appeared to be chaotic or random.7 Thus whereas the

first strand—pace both classical and quantum physics—argues for the

irreversibility of time, the second demonstrates the limits of predictability,

even for completely deterministic systems. Somewhat confusingly, more-

over, the first strand is sometimes loosely referred to as a version of com-

plexity theory, whereas the second is simply subsumed into dynamical

systems theory. Nevertheless, as we’ll see, at least one line of early re-

search in chaos science, Robert Shaw’s modeling of a chaotic system,

conceived of the two together.

Given Deleuze and Guattari’s central concern with the chaotic flux of

matter and energy and its capture and stratification by various coding

mechanisms, it would be surprising if A Thousand Plateaus did not

exhibit some kind of influence or relationship with chaos science. Yet

when the book was fist published in 1980 much of the groundbreaking re-

search on turbulent phenomena, deterministically chaotic systems, and

self-organizing tendencies in a variety of physical systems was still being

carried out and not widely known. Nevertheless, in War in the Age of
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Intelligent Machines Manuel DeLanda boldly claims that Deleuze’s no-

tion of singularity anticipates the mathematical modeling in phase space

of the attractors and bifurcations that characterize nonlinear dynamical

systems and hence that aspects of chaos theory were already inscribed in

Deleuze’s earlier philosophy.8 While this claim is perhaps overstated, it is

evident that in certain respects A Thousand Plateaus does converge and

resonate with aspects of chaos science. Of further importance, their cen-

tral notion of the assemblage clearly owes much to cybernetics. But rather

than mapping these convergences, DeLanda conflates Deleuze and Guat-

tari and dynamical systems theory in the making of a revitalized materi-

alist philosophy in which human agency plays almost no part. This poses

something of a problem, for although A Thousand Plateaus is materialist

in intention, it strives not to eliminate the human but to resituate it in a

highly distributed field of functions defined by the assemblage. Thus while

arguing for a certain kind of naturalism, the book also presents itself as a

clear instance of constructivism.

I suggest that Deleuze and Guattari—or the collective authorial agency

I shall henceforth refer to as D&G—go beyond such contradictions in

their elaboration of what I call machinic philosophy. As I examine

aspects of this philosophy in the following sections, it should become evi-

dent how an articulation with certain fundamental concepts of chaos

science can strengthen D&G’s central concept of the assemblage by sup-

plying what is crucially missing, namely, a causal framework that would

explain why particular assemblages arise, mutate, and disappear. Con-

versely, D&G’s concepts can also cast light on some of the most radical

implications of chaos science research. Thus instead of rewriting D&G in

the terms of dynamical systems theory, as DeLanda does, I examine two

specific instances of how D&G’s concepts and those of chaos science

relay and cross-illuminate one another. Specifically, I show how Robert

Shaw’s modeling of a chaotic system and Jim Crutchfield’s �-machine

construction function as what I call computational assemblages. In its

innovative combination of dynamical systems theory and information

theory, their groundbreaking research exemplifies an approach that will

become essential to ALife and AI. While D&G’s concept of the assem-

blage involves no explicit computational component, in this chapter I

clarify how I have refashioned it into a framework for defining and situat-

ing di¤erent kinds of information machines and their discourses. Finally,

beyond the usefulness of this concept for distinguishing among various

computational systems, D&G’s discussion of nonorganic life in relation

to a new realm they call the machinic phylum will also be of overarching
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importance to this book as a whole. As later chapters show, with the ap-

pearance of new forms of artificial life—digital organisms, mobile auton-

omous robots, and autonomous software agents—this concept assumes a

relevancy far beyond D&G’s original formulations.

The Theory of the Assemblage

Deleuze and Guattari’s Capitalism and Schizophrenia projects an image

of thought hardly recognizable to many academic philosophers. Both in

its organization and treatment of a vast quantity of material it blurs dis-

ciplinary boundaries and enjoins us to rethink themes both ancient and

modern through the lens of a novel series of concepts. This originality

emerges more fully in the second volume, A Thousand Plateaus, which

advances well beyond the first volume’s unremitting polemic against

psychoanalysis and, to a lesser extent, beyond its anthropological and

semiotized Marxism, both of which make Anti-Oedipus appear less

conceptually rigorous than it is. As one sign of this development the new

concepts actually shape the second volume’s composition. Divided into

‘‘plateaus’’ rather than chapters, sections of A Thousand Plateaus are

meant to be read and connected up along a variety of paths. Although

each plateau is devoted to a central concept and set of related themes,

there is ‘‘recurrence and communication’’ among and across the plateaus

according to the principles of the rhizome, which provides an image for

the way the book is arranged.9 In contrast to the ordered, forking hierar-

chy of the tree and other arborescent structures, a rhizome (like crabgrass

or a burrow) shoots out in all directions at once, articulating a decentered

network of interconnecting paths with multiple entrances and exits. As an

alternative to the concept of unity, D&G propose what they call a plane

of consistency, where unstructured parts meet and coalesce in a multiplic-

ity. Neither the formation of a dichotomy (e.g., one or many, subject or

object) nor the reduction to a single substance with many attributes, the

consistency of such a plane can be likened to that of small population or

‘‘pack,’’ or a multiagent, highly distributed system. In short, it is a collec-

tivity of diverse forces working together without any centralizing com-

mand and control structure or hierarchical organization. In these terms

A Thousand Plateaus constitutes (and advocates itself as) a system of non-

hierarchical relations based upon multiplicity and states of intensity,

rather than conventional notions of structure and unity.

Two terms in particular—machine and machinic—may pose di‰culties

for some readers. For D&G, the term machine designates an ensemble of
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heterogeneous parts and processes whose connections work together to

enable flows of matter, energy, and signs (and consequently desire); a

machine, therefore, is not necessarily a mechanical device. The term

machinic refers precisely to this working together of heterogeneous flows

of parts and processes. These terms do not operate as metaphors, as in the

phrase ‘‘the turning wheels of the bureaucratic machine,’’ but designate

arrangements and processes, respectively. Machines, first of all, are

assemblages that include both humans and tools, or in modern societies,

technical machines. These machines are never simply ‘‘out there,’’ await-

ing our use; this is a myth fostered by capitalism, like the belief that indi-

vidualism and the liberal self are not constructions of the market and

somehow predate it. D&G therefore collapse the boundary between sub-

ject and machine. Instead of seeing the machine as a part of objective

reality that subjects can take up and use for their own productive or

expressive ends, they understand machines and subjects as imbricated

in particular distributions across a full body (‘‘the body without organs’’

or socius) defined by the kinds of reciprocal relations that subjects and

machines can enter into on this full body’s surface. In Anti-Oedipus this

view gives rise to various typologies and regimes, not only of social orga-

nization (primitive, barbarian, capitalist) but also of individual types of

psychic structure (perverse, paranoid, schizoid), defined according to

how these relations are distributed and coded.

In A Thousand Plateaus D&G redefine these typologies and regimes as

functions of an assemblage, which is constituted by the conjunction of

two subassemblages: a collective assemblage of enunciation (i.e., a spe-

cific regime of signs and gestures) and a machinic assemblage of interact-

ing bodies. In this conjunction of the two component assemblages ‘‘there

are states of things, states of bodies (bodies interpenetrate, mix together,

transmit a¤ects to one another); but also utterances, regimes of utterances

where signs are organized in a new way, new formulations appear, a new

style for new gestures.’’10 To illustrate, D&G consider the feudal assem-

blage, which on the one hand is composed of a new machinic assemblage

of man-horse-stirrup and on the other of a new set of utterances, gestures,

and emblems that individualize the knight and give form to his oaths of

allegiance and declaration of love, and so on. Thus on one side of the as-

semblage, human bodies enter into a new relationship with an animal by

means of a technology, which in turn makes possible the development of

new weapons and a di¤erent fighting style, while on the other side human

subjects are distinguished and individualized by new expressive possibil-

ities and attendant social formalizations. Yet neither side is viewed as
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the cause or result of the other; instead, both are functional aspects of the

same assemblage, reciprocally determining and coproductive.

Assemblages form, however, only after a series of stratifications pro-

duced by a process of double articulation. This double articulation oper-

ates by selection (or sorting) and consolidation (or coding), thereby

producing a duality of substance and form, territory and code. In the

third plateau, the lecturer ‘‘Professor Challenger’’ (a fictional persona)

explains how flows of unformed, unstable matters are given form and

stratified, ‘‘imprisoning intensities and locking singularities into systems

of resonance and redundancy’’ (40). This kind of stratification is first

seen in the creation of sediment and sedimentary rock in the geological

stratum:

The first articulation chooses or deducts, from unstable particle-flows, molecular

units or metastable quasi-molecular units (substances) upon which it imposes a

statistical order of connections and successions ( forms). The second articulation

establishes functional, compact, stable structures ( forms), and constructs molar

compounds in which these structures are simultaneously actualized (substances).

Thus . . . the first articulation is the process of ‘‘sedimentation,’’ which deposits

units of cyclic sediment according to a statistical order: flysch, with its succession

of sandstone and schist. The second articulation is the ‘‘folding’’ that sets up a sta-

ble functional structure and guarantees the passage from sediment to sedimentary

rock. (40–41, trans. modified)

Stratification thus involves the formation of substances, which are noth-

ing but formed matters. But forms imply a code, a system of resonance

and redundancy, which for D&G always occurs in relation to a specific

territory (here a geological stratum). In order for an area of formed mat-

ter to be a territory, it must be marked, but coding involves more: in the

second articulation it produces ‘‘phenomena of centering, unification,

totalization, integration, hierarchization, and finalization’’ (41). Coding

thus establishes a form, an order and organization of functions, but

always and only in relation to a particular milieu or territory. This under-

standing of coding (which di¤ers from more familiar semiotic concep-

tions), becomes clearer when D&G consider two successive forms of

stratification, the formation of organic strata and the formation of an-

thropomorphic strata (which includes language).

The details of these subsequent stratifications are less important here

than the fact that the process performs the work of a double articulation.

In order to describe these later stratifications D&G mobilize Louis Hjelm-

slev’s theory of glossematics, in which the categories of content and ex-

pression are further subdivided on both sides into form and substance.11
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Hjelmslev’s theory thus yields both a form of content and a form of

expression, as well as a substance of content and a substance of expres-

sion. Since D&G do not want a scheme that projects only signifying or

meaning-bearing categories onto material processes, this set of distinc-

tions is greatly preferable to purely linguistic relations (as in signifier to

signified). With Hjelmslev’s categories in place, D&G can say that the

first articulation concerns content, the second expression. In the geologi-

cal or physico-chemical stratum with which they begin, content and ex-

pression have no relevance and the primary distinction is between the

‘‘molecular’’ (uncoded) and the ‘‘molar’’ (coded). But with the appear-

ance of organic strata content and expression become distinguishable,

and the latter becomes independent: the unit of expression is the linear se-

quence of nucleotides, and the unit of content is the linear sequence of

amino acids that corresponds to the DNA sequence:

Before, the coding of the stratum was co-extensive with that stratum; on the or-

ganic stratum, on the other hand, it takes place on an autonomous and indepen-

dent line that detaches as much as possible from the second and third dimensions.

Expression ceases to be voluminous or superficial, becoming linear, unidimen-

sional (even in its segmentarity). The essential thing is the linearity of the nucleic

sequence. (59)

This linearity means that the code (here DNA) can be detached from

a specific territory and reproduced, thereby constituting the first ‘‘deter-

ritorialization,’’ which is what D&G call the detaching of a specific

code from its associated territory. They also refer to this process as a

‘‘decoding.’’

The advent of the anthropomorphic stratum is defined by yet another

new distribution of content and expression, and not by any putative ‘‘hu-

man essence’’:

Form of content becomes ‘‘alloplastic’’ rather than ‘‘homoplastic’’; in other

words, it brings about modifications in the external world. Forms of expression

become linguistic rather than genetic; in other words, they operate by means of

symbols that are comprehensible, transmittable and modifiable from outside.

What some call the properties of human beings—technology and language, tool

and symbol, free hand and supple larynx, ‘‘gesture and speech’’—are in fact

properties of this new distribution. . . . Leroi-Gourhan’s analyses [in Gesture and

Speech] give us an understanding of how contents came to be linked with the

hand-tool couple and expressions with the face-language couple. In this context,

the hand must not be thought of simply as an organ but instead as a coding (the

digital code), a dynamic structuration, a dynamic formation (the manual form, or

manual formal traits). The hand as a general form of content is extended in tools,

which are themselves active forms implying substances, or formed matters; finally,
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products are formed matters, or substances, which in turn serve as tools. (60–61,

trans. modified)

The hand ‘‘as a formal trait or general form of content’’ thus marks a new

threshold of deterritorialization and accelerates the ‘‘shifting interplay’’

of deterritorialization (decoding) and reterritorialization (recoding). And

similarly for speech as a new form of expression. D&G o¤er a clear ex-

ample in their earlier book on Franz Kafka.12 The mouth, tongue, and

teeth, they say, ‘‘find their primitive territoriality in food,’’ but are then

deterritorialized in the articulation of sound; sounds, in turn, are reterri-

torialized in meaning. Finally, Kafka achieves a deterritorialization of ex-

pression itself by pushing further along lines of linguistic impoverishment

already evident in the provincial Czech German in which he wrote, arriving

at an asignifying, intensive use of language. This trajectory of deterritori-

alization D&G call a ‘‘line of flight,’’ since it marks both a path of escape

and a vector along which a code is detached from a territory. Yet according

to the same ‘‘shifting interplay’’ or dynamic, a line of flight (a deterritori-

alization) also presupposes that somewhere in the assemblage something

else is being captured, recoded, and stratified, in what amounts to a type

of cybernetic feedback e¤ect. For this reason deterritorialization is said

to be relative. However, in certain instances deterritorialization becomes

absolute, causing a mutation or dissolution of the entire assemblage.

The coding of language, of course, is much more complex than that of

DNA. For D&G the main di¤erence is that ‘‘vocal signs have temporal

linearity, and it is this superlinearity that constitutes their specific deterri-

torialization and di¤erentiates them from genetic linearity’’ (62). More

specifically, temporal linearity gives rise to a

formal synthesis of succession in which time constitutes a process of linear over-

coding and engenders a phenomenon unknown on the other strata: translation,

translatability, as opposed to the previous inductions and transductions. Transla-

tion should not be understood simply as the ability of one language to ‘‘represent’’

in some way the givens of another language, but beyond that as the ability of lan-

guage, with its own givens on its own stratum, to represent all the other strata and

thus achieve a scientific conception of the world. The scientific world (Welt, as

opposed to the Umwelt of the animal) is the translation of all of the flows, par-

ticles, codes, and territorialities of the other strata into a su‰ciently deterritorial-

ized system of signs, in other words, into an overcoding specific to language. This

property of overcoding or superlinearity explains why, in language, not only is

expression independent of content, but form of expression is independent of sub-

stance: translation is possible because the same form can pass from one substance

to another, which is not the case for the genetic code, for example, between RNA

and DNA chains. (62)
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This power of translation, and the fact that language achieves a greater

degree of independence from its material medium, gives it unequaled ex-

pressive power. At the same time, D&G caution against ‘‘certain imperi-

alist pretensions on behalf of language’’ which they see as prevalent in

linguistics.

Obviously this brief summary cannot fully explain these complex

processes. It is meant only to indicate—in barest outline—how D&G

recursively apply the principle of double articulation (selection and con-

solidation) to material and semiotic processes at ascending strata. In

sum, processes of stratification and destratification, coding and decoding,

produce formations doubly articulated into form and substance, content

and expression. On both molar (coded) and molecular (decoded) levels,

these processes are always found at work following the same dynamic,

as we move upward from geological to organic to anthropomorphic

strata. Yet the principle of double articulation alone can only describe

the dynamic of stratification and deterritorialization, coding and decod-

ing, evident throughout the processes that D&G analyze. As we’ll see be-

low, to fully account for the dynamic working of force and material—the

‘‘shifting interplay’’ of doing and undoing—they postulate a virtual force,

or abstract machine, that, while not fully present, actualizes these doubly

articulated processes.

At the last, anthropomorphic series of strata, the process of double ar-

ticulation yields a more complex formation, which D&G call an assem-

blage. It is here, within the assemblage, that human activities can finally

be considered. Nevertheless, what is human and not human within the as-

semblage is never given in advance; in fact, for D&G the human never

transcends the assemblages within which it is always to be found. To

map an assemblage in human terms, one must determine both what

captures desire and sets it circulating, by tracing flows and blockages,

the codings and decodings that make it meaningful, and the intensities

and ‘‘black holes’’ where it is sustained or disappears. Desire is always

a machinic setup, a particular arranging and assembling of connections

that bring about a specific flow of bodies and signs. It is not, therefore, a

‘‘lack in being’’ that would define the subject as a set of impossible desires

(as in Lacan). From D&G’s perspective, moreover, the encoding of the

real e¤ectuated by the symbolic is merely one type of machine, which

has been singled out and elevated to the status of a formal principle de-

fining and regulating human existence. Whereas individual agency for

Lacan is mostly an illusion of the ego, for D&G it operates within the

larger set of distributed relations that define the assemblage. Assemblage,
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arrangement, setup: these are possible translations for D&G’s unusual

term, agencement, which suggests a locus of agency within which specific

functionalities are distributed and the human subject deploys a specific re-

gime of signs as the basis on which to form an identity.

An assemblage, however, is not always or necessarily the intentional

construction of an individual or a collectivity; more often it arises when

converging forces enable a particular amalgam of material and semiotic

flows to self-assemble and work together, and within which forms of sub-

jectivity and subject positions can emerge. This contingency is reflected in

the fact that D&G define an assemblage only pragmatically, in terms of

its components and actions, rather than in relation to meanings that can

be attributed to it. Composed of relations, liaisons, and a‰liations among

and across heterogeneous materials and functions that work together, an

assemblage possesses no inherent structural unity or totality, only a func-

tional consistency that emerges from the ‘‘jelling together’’ of its parts

and processes. It is, in short, nothing more than a functional arrangement

of material and semiotic flows, with no other meaning than the fact that

it ‘‘works.’’ Specifically, an assemblage works by conjoining two recipro-

cally interacting realms—a machinic assemblage of bodies and a col-

lective assemblage of enunciation—that hold it in a state of dynamic

equilibrium. It is essentially a cybernetic conception, and in a loose (non-

scientific) sense, self-organizing, though D&G do not use the term. With-

in the assemblage agency is completely distributed; no centrally located

seat of power, control, or intentionality allocates and guides its function-

ing. Nevertheless, assemblages are always subject to capture and overcod-

ing, most egregiously by the State apparatuses that form despotic and

imperialist regimes of power.

While resembling a cybernetic machine, the assemblage di¤ers from it

in this respect: instead of positive and negative feedback, there is both a

coding and decoding, or territorialization and deterritorialization, in each

of the two realms, or sides, of the assemblage. Diagrammatically, this

yields a ‘‘tetravalent’’ set of relations, meaning that on both sides of the

assemblage—the one of material bodies, the other of semiotic expres-

sions—forces pull in opposed directions, both toward stabilization of

the assemblage through the creation of molar forms (stratification) and

the articulation of a code with a territory, or milieu, and, simultaneously,

toward its dissolution or mutation through a particle-izing (moleculariza-

tion) and decoding, that is, the detaching or unhinging of a code from a

territory. This deterritorialization usually remains relative, o¤set or coun-

terbalanced by reterritorializations and recodings within the assemblage.
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In instances of absolute deterritorialization, however, the assemblage it-

self loses coherence and dissolves, and the subject positions it makes pos-

sible disappear. This eventuality remains undertheorized by D&G and

suggests one place where chaos science might provide a complementary

perspective on what happens between the dissolution of one assemblage

and the appearance of another. In short, the moment of crisis and dis-

solution may well be described by dynamical systems theory as a bifur-

cation in which constituent processes become chaotically unstable and

vacillate among a set of possible solutions. The appearance in the same

milieu of another assemblage that successfully self-organizes into a work-

ing functional arrangement would then be the solution to this crisis.

By way of summary, D&G delineate what a full description of the feu-

dal assemblage would entail:

Taking the feudal assemblage as an example, we would have to consider the inter-

mingling of bodies defining feudalism: the body of the earth and the social body;

the body of the overlord, vassal, serf; the body of the knight and the horse and

their new relation to the stirrup; the weapons and tools assuring a symbiosis of

bodies—a whole machinic assemblage. We would also have to consider state-

ments, expressions, the juridical regime of heraldry, all of the incorporeal trans-

formations, in particular, oaths and their variables (the oath of obedience, but

also the oath of love, etc.): the collective assemblage of enunciation. On the other

axis, we would have to consider the feudal territorialities and reterritorializations,

and at the same time the line of deterritorialization that carries away both the

knight and his mount, statements and acts. We would have to consider how all

this combines in the Crusades. (89)

To map the assemblage’s tetravalence, therefore, means tracing two kinds

of lines: the lines of stratification in which forces acting on both sides of

the assemblage produce stability and redundancy, both of substance and

form, territory and code; and, at the same time, the ‘‘lines of flight,’’ or

vectors, along which the assemblage is destratified and particle-ized until

it dissolves and is swept away. In the example of the Crusades, codings

and reterritorializations like oaths of allegiance and commitments of faith

reinforce the assemblage’s stability and counter the pull of deterritorializ-

ing forces that sweep toward the ‘‘outside’’ and limits of the assemblage.

Although D&G do not discuss the dissolution of the feudal assemblage, a

similar pairing of terms in Thomas Carlyle’s famous declaration that feu-

dalism was destroyed by gunpowder and the printing press accords per-

fectly with their theory: on the one hand, gunpowder brings about a new

war technology that produces a di¤erent machinic assemblage of bodies;

on the other, the printing press as a new technology for producing and

disseminating statements brings about a di¤erent type of collective assem-

118 From Cybernetics to Machinic Philosophy



blage of enunciation. Their integration in a new assemblage leads to the

formation of the modern European state.

We arrive finally at the assemblage’s piloting function, which D&G call

the abstract machine. Defined ‘‘diagrammatically’’ (141–145), as what

‘‘constitutes and conjugates all of the assemblage’s cutting edges of deter-

ritorialization’’ (141), the abstract machine is responsible for what defines

and dissolves the assemblage. As such, it is one of D&G’s most complex

and elusive concepts:

The diagrammatic or abstract machine does not function to represent, even some-

thing real, but rather constructs a real that is yet to come, a new type of reality.

Thus when it constitutes points of creation or potentiality it does not stand out-

side history but is instead always ‘‘prior’’ to history. Everything escapes, every-

thing creates—never alone, but through an abstract machine that produces

continuums of intensity, e¤ects conjunctions of deterritorialization, and extracts

expressions and contents. . . . Abstract machines thus have proper names (as well

as dates), which of course designate not persons or subjects but matters and func-

tions. (142)

Much of the di‰culty in this passage will drop away if we assume, as

Manual DeLanda asserts (see the section below on the machinic phylum),

that D&G’s abstract machine is conceptually equivalent to attractors and

bifurcations in dynamical systems theory. No doubt the similarity is

strong. Rather than take up the issue here, however, I want to develop

the point that the abstract machine is not formed by and does not act in

opposition to specific or concrete machines; rather, it involves a relation

of the virtual to the actual.

This usage follows from Henri Bergson’s distinction between the possi-

ble and the real on the one hand, and the virtual and the actual on the

other—two oppositions that philosophy often tends to blur. Given a situ-

ation or specific state of a¤airs, the possible is what might happen or

could be, as in the simple example: if only the driver of the car had

stopped for the red light, the accident would not have occurred. As such,

the possible is always formed on the image of the real, hovering like

ghostly images of other possible realizations. The relation of the possible

to the real is thus one of resemblance and limitation, since only one of

these possible images can be realized, to the exclusion of all others. Con-

ceptually, the only di¤erence between the possible and the real is a logical

di¤erence, the predicate of existence. The relation of the virtual to the

actual, on the other hand, is completely di¤erent, and accounts for the

creative process of biological evolution in contrast to the mechanical rep-

etition of physical law. Creative evolution, Bergson says, is a virtuality in
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the process of actualization. This actualization occurs through ceaseless

di¤erentiation, dissociation, and division; in short, from the splittings,

forkings, and branchings of an always burgeoning ramification. The vir-

tual is like a seed in time, but unlike a plant seed, its actualization can

take any number of forms or directions. (In this sense, a car accident is

not a contingent possibility but one inherent actualization of driving a

car.) Thus the virtual is what enables and ensures the creative aspect of

time—instead of cyclic repetition, the creation of new lines of actualiza-

tion in positive acts. What is actualized does not resemble the virtuality

it embodies; rather, it is di¤erentiated as it ramifies into divergent series

in a becoming other, or hetero-genesis. This creative force, which Bergson

calls the élan vital, explains how the genuinely new can come into

existence.13

In Bergson’s sense, the virtual is abstract but not transcendent in rela-

tion to the concrete, as would be the case for a Platonic form or essence.

Instead, it is immanent to the concrete, ‘‘real without being concrete,

actual although not e¤ectuated,’’ as D&G put it. It is precisely this sense

of the abstract—as the relation of the virtual to the actual—that informs

D&G’s use of the concept of the abstract machine. The abstract machine,

accordingly, points to the virtual dimension of an assemblage, its power

to actualize a virtual process, power, or force that while not physically

present or actually expressed immanently draws or steers the assemblage’s

‘‘cutting edges of deterritorialization’’ along a vector or gradient leading

to the creation of a new reality.

Biological Assemblages

It is striking that one of its most important aspects of the assemblage—its

doubly articulated structure—resonates with similar theoretical formula-

tions found within science itself, particularly in biophysics. Howard Pat-

tee’s theory of the physics of symbols is a clear instance. It is based on the

fact that while all physical processes are determined by the laws of phys-

ics, once an element is introduced that has the capacity to direct, alter, or

constrain these processes, the laws of physics alone are no longer ade-

quate to account for the outcome.14 This is most evidently true for living

systems, where a complementary or double model is called for. In an

early essay, ‘‘How Does a Molecule Become a Message?’’ Pattee focuses

on how ‘‘molecules can function symbolically, that is, as records, codes,

and signals.’’15 Communication between molecules must first be distin-

guished from the ‘‘normal physical interactions or forces between mole-
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cules that account for all their motions’’ (1). As Pattee argues, even for a

molecule to function as a simple on-o¤ switch it must be situated ‘‘in a

more global set of geophysical and geochemical constraints, which we

could call the primeval ‘ecosystem language’ ’’ (3). In other words, only

within the context of a ‘‘primitive communication network’’ understood

as a ‘‘larger system of physical constraints’’ (8) can a molecule become a

message. This primitive ecosystem must exist first, as a more or less ran-

dom network of switching catalysts, before real functionality can occur.

Pattee points to Stuart Kau¤man’s experiments using random Boolean

networks to simulate genetic networks (described in chapter 5, below) as

a fruitful confirmation of his theoretical perspective.

In later work Pattee focuses more specifically on symbol systems capa-

ble of generating and holding in memory the self-descriptions necessary

for cell replication and the reproduction of a living organism, while

asserting the necessity of a dual and complementary model. Again, this

necessity stems from the fact that physical processes are governed by

material laws, whereas structures of control are determined by a semiotic,

or symbolic, ‘‘syntax.’’ Since neither is reducible to the other, both are

deemed necessary for a complete description of a living organism. Pattee

calls the principle underlying this reciprocal complementarity ‘‘semantic

closure’’ and points to its implications for both a theory of the origin of

symbols and the possibility of open-ended evolution.16 At the same time,

Pattee’s terms make it easy to think of a living system like a cell as a kind

of molecular assemblage. On the one hand, what is unique about every

specific form of biological organization is symbolically encoded in its

genetic information. On the other hand, while this genetic information

‘‘spells out’’ the organism’s identity, it is not fully given in the organism’s

DNA. In fact, the expression of the genetic information that results in the

phenotype results from a complex of self-organizing dynamic processes

that are very sensitive to and dependent on the material environment.

For example, although DNA specifies the linear sequence of amino acids

for building proteins, the folding and unfolding of the proteins that re-

sult are governed by complex dynamic processes dependent in turn on

chemical properties, temperature, the presence of specific enzymes, and

so forth.17 As in D&G’s assemblage, the functioning of each side of the

cell assemblage presupposes the functioning of the other.

Another assemblage of considerable interest to artificial life is Richard

Dawkins’s conception of biological organisms as replicator-survival

machines.18 Basically Dawkins reinvigorates evolutionary theory by

reversing the customary perspective: instead of viewing our genes as the
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means by which we reproduce, he argues that the fundamental and incon-

trovertible lesson of Darwin is that we are ‘‘robot vehicles [built and] pro-

grammed to preserve the selfish molecules known as genes’’ (v). In other

words, the function of our genes is not to reproduce us; rather, we are the

means by which the genes themselves replicate. Our bodies are only

instruments, highly crafted vehicles or ‘‘survival machines’’ that house

and protect the genes, so that they can replicate and propagate more

e¤ectively and for longer periods of time. In short, we exist so that genes

can replicate. Dawkins casts this stark perspective in narrative terms.

Some four billion years ago a molecule that could copy itself emerged by

accident from a primeval chemical soup. This was the first replicator, and

soon the soup would have been filled with identical replicating molecules,

each producing more copies of itself. Copying errors would inevitably

have led to variations and then competition among the variant replicators

for the necessary building blocks. Some may have ‘‘discovered’’ how to

break up the molecules of rivals and use their materials, thus becoming

proto-predators. Others may have discovered how to shield and protect

themselves with protein coatings. (Perhaps this was the origin of the first

living cells.) In any case, ‘‘the replicators that survived were the ones that

built survival machines for themselves to live in’’ (19), and over time these

survival machines only got bigger and more elaborate. Giving up their

freedom, the replicators no longer float in primordial seas:

Now they swarm in huge colonies, safe inside giant lumbering robots, sealed o¤

from the outside world, communicating with it by tortuous indirect routes, manip-

ulating it by remote control. They are in you and in me; they created us, body and

mind; and their preservation is the ultimate rationale for our existence. They have

come a long way, those replicators. Now they go by the name of genes, and we

are their survival machines. (19–20)

Dawkins’s replicator-survival machine is really a stripped down, bare-

bones assemblage, its dual and reciprocal functionality easy to specify:

the genetic code is the collective assemblage of enunciation; the physical

body, its machinic assemblage. Viewed in these terms, a biological species

appears not as an organic whole or embodiment of a particular essence

but as a contingent amalgam of parts and functions wholly selected by

the rigors of the evolutionary process. Citing Dawkins, Manual DeLanda

reflects this contingency when he writes: ‘‘Much as our bodies are

temporary coagulations in the flow of biomass, they are also passing con-

structions in the flow of genetic materials’’ (A Thousand Years of Non-

linear History, 111). Furthermore, the entire process of natural selection

that defines and shapes the life of the replicator-survival machine is
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algorithmic—the mechanical execution of a set of steps that invariably

produces a specific result, in this case the replication and propagation of

the most viable and e‰cient genes. Thus evolution is an ongoing, highly

distributed and parallel computation on a vast scale. Not only is natural

selection a computation, but so is the construction of the individual sur-

vival machine by the replicator code, the building process itself being only

the execution of a specific set of instructions, a morphogenetic computa-

tion both constrained and enabled by the laws of physics and chemistry.

This example brings to light something that was not fully evident in

Pattee’s cell assemblage: how over the course of evolution a single func-

tional entity (the replicator) becomes a double entity or assemblage in

the sense that the replicator code, on the one hand, and the physical

body that houses it, on the other, become quasi-independent; it is their

conjunction and reciprocal functionality that makes the whole an assem-

blage. In the replicator-survival machine the role of computation also

becomes more prominent. Indeed, this machine is at bottom not very dif-

ferent from what I call a computational assemblage, where the survival

machine is simply the material computational device and the replicator

the instructions, or code, of its associated discourse. In basically the

same sense, a desktop PC, cellular automaton, neural net, and even the

immune system are all computational assemblages, distinguished by both

their physical computational mechanisms and the codes they instantiate

and execute. Yet in these instances the discursive side of the assemblage

(D&G’s ‘‘collective assemblage of enunciation’’) includes not only the

code but the entire discourse that explains its usage, justification, or pur-

pose. A simple way to think of the distinctions this concept introduces is

to consider the evolution of the computer, from simple calculators to the

stored-program machines capable of executing more complex instructions

like conditional jumps, to the multiplicity of PCs, mainframes, work

stations, and supercomputers, which run complex simulations and instan-

tiate vast communicational networks. All these computational assem-

blages compete and evolve, get copied and improved at both hardware

and software levels as new computational spaces, or ‘‘niches,’’ open up

and gradually become saturated. Overall, these computational assem-

blages may even appear to constitute a new ecology.

The Machinic Phylum

Like the psychoanalytic theories of Freud and Lacan, D&G’s theory of

the assemblage decenters the human subject in relation to the social field
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in which it arises and by which it is circumscribed. But as we have seen,

their theory goes much further in relating the human subject to a multi-

plicity of material and semiotic processes, not all of which are signifying

in the linguistic sense. This opening of the assemblage to various non-

signifying (i.e., nonanthropomorphic) flows of matter and energy leads

D&G to the notion of what they call nonorganic life. Specifically, they

consider how metals and metallurgy bring to light ‘‘a life proper to mat-

ter, a vital state of matter as such . . . ordinarily hidden or covered, ren-

dered unrecognizable, dissociated by the hylomorphic model’’ (411). The

hylomorphic model assumes that matter passively receives the imposition

of an extrinsic form and therefore ignores a number of features and

behaviors in the flow of matter as it is brought out of the ground, vari-

ously transformed (usually by heat), and combined with diverse elements.

Seeking a model that can account for these other properties, D&G postu-

late a realm where, contrary to the hylomorphic model, matter appears to

be active and exhibits this hidden kind of life. They call this realm the

machinic phylum, which they define as ‘‘materiality, natural or artificial,

and both simultaneously; it is matter in movement, in flux, in variation,

matter as a conveyor of singularities and traits of expression’’ (409). First

rendered visible by metallurgists working with and on di¤erent metals

and ores, this new phylum eventually comes to constitute a technological

lineage comprehending di¤erent ‘‘lines of variation’’ (405). In short, what

D&G propose is a di¤erent way of conceptualizing the development of

technology.

They begin by asking how nomads first found or invented their weap-

ons and note that nomadism and metallurgy formed a confluent flow.

While it is generally assumed that metallurgists were always controlled

by a State apparatus, it is more likely that they enjoyed a certain auton-

omy. Our lack of a su‰ciently developed concept of a technological lin-

eage, considered as a line or continuum with variables of extension, poses

another obstacle to understanding the early nomad metallurgists. But in

fact, metallurgy is inseparable from ‘‘several lines of variation’’ (405)

that arise from di¤erences in kinds of metal (meteorites and indigenous

metals, ores, and proportions of metal), kinds of alloys (natural and arti-

ficial), and kinds of operations that can be performed on the metals given

their inherent material qualities. D&G group these variables under two

rubrics, singularities and traits of expression, and illustrate the di¤erences

by considering the saber and sword:

[The saber] implies the actualization of a first singularity, namely, the melting of

the iron at high temperatures; then a second singularity, the successive decarbon-
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ations; corresponding to these singularities are traits of expression—not only the

hardness, sharpness, and finish, but also the undulations or designs traced by the

crystallization and resulting from the internal structure of the cast steel. The iron

sword is associated with entirely di¤erent singularities because it is forged and not

cast or molded, quenched and not air cooled, produced by the piece and not in

number; its traits of expression are necessarily very di¤erent because it pierces

rather than hews, attacks from the front rather than from the side; even the ex-

pressive designs are obtained in an entirely di¤erent way, by inlay. (406)

Since saber and sword have distinguishable lines of variation with respect

to both their singularities and traits of expression, they can be said to de-

rive from di¤erent metal phyla. But the analysis can also be situated on

the level of singularities that extend from one phylum to another, thus

yielding ‘‘a single phylogenetic lineage, a single machinic phylum, ideally

continuous: the flow of matter-movement, the flow of matter in continu-

ous variation, conveying singularities and traits of expression’’ (406).

Before describing how the machinic phylum enters into di¤erent

assemblages, D&G make a more general point: ‘‘This operative and ex-

pressive flow is as much artificial as natural,’’ as if it were the ‘‘unity of

human beings and Nature’’ (406). Yet it is not the unity, precisely because

‘‘it is not realized in the here and now without dividing [and] di¤erentiat-

ing.’’ In other words, every assemblage is at once a unity of human beings

and nature and a di¤erent di¤erentiation of both. Since every assemblage

is a ‘‘constellation of singularities and traits deducted from the flow—

selected, organized, stratified—in such a way as to converge ([providing]

consistency) artificially and naturally,’’ the limits to how this unity and

di¤erentiation can be accomplished and to the corresponding variety of

subjects called forth are determined only by the physical laws of nature.

While assemblages can be grouped into large constellations constituting

whole ‘‘cultures’’ or ‘‘ages,’’ specific assemblages still ‘‘di¤erentiate the

phyla or the flow, dividing it into so many di¤erent phyla, of a given or-

der, on a given level, and introducing selective discontinuities in the ideal

continuity of matter-movement. Yet at the same time that assemblages

cut the phylum up into distinct, di¤erentiated lineages, the machinic phy-

lum cuts across them all, taking leave of one to pick up again in another,

or making them coexist’’ (406). To summarize, as matter-in-variation

flows into and out of various assemblages, these flows are in turn selected,

di¤erentiated, and distributed into phyla. Yet cutting across them all,

appearing and disappearing from one assemblage to another, is the

machinic phylum itself.

As the passages cited above indicate, within the assemblage the opposi-

tion between the artificial and the natural disappears, and a kind of unity

Machinic Philosophy 125



of human beings with nature is glimpsed. D&G develop this idea specifi-

cally in relation to the artisan and the apparent fact, which they insist on,

that the matter-flow or machinic phylum ‘‘can only be followed.’’ Thus

the artisan is an ‘‘itinerant,’’ one who follows the matter-flow. The first

specialized artisan is the metallurgist, who forms a collective body distinct

from, while always having relations with, other collectivities—hunters,

farmers, nomads, the State apparatus, and so on. In a sense that D&G

only suggest, metallurgists not only follow the matter-flow but join with

and become part of it, extracting ore and metal and using their knowl-

edge of its singularities to extend and transform it as it is brought forth

from the earth, worked, and then passed along into other domains. In

this role as itinerant artisan the metallurgist is thus also part prospector.

However, once the social organization separates the prospector from the

artisan and the artisan from the merchant, the artisan is ‘‘mutilated’’ into

a mere ‘‘worker.’’ Finally, in this double function of extracting and trans-

forming, which often occurs at the same time, the artisan operates as a

probe head, or searching device (une tête chercheuse). In this capacity the

artisan functions as the metallic head of the machinic phylum and as such

the bearer of a certain kind of thought, the ‘‘prodigious idea of Non-

organic Life’’ (411).

Following Deleuze and Guattari, Manual DeLanda has reformulated

these singularities and traits of expression in the language of dynam-

ical systems or ‘‘chaos theory,’’ as bifurcations and instances of self-

organization. The basic idea behind these terms is that the behavior of a

dynamical system can be modeled by constructing its ‘‘phase portrait,’’

which maps how the system’s global behavior changes as its variables

change.19 The phase portrait thus provides a visual snapshot of the con-

figuration of forces that determine the system’s behavior over successive

moments of time. Most dynamical systems exhibit a tendency to move to-

ward one or more stable or limit states called ‘‘attractors,’’ which are rec-

ognized by the pattern of the system’s trajectory through phase space.

These attractor states vary in complexity, from single point to periodic

to ‘‘strange’’ (chaotic), and unstable systems often undergo continuous

deformation from one state to another. The point of change or transfor-

mation from one attractor to another is called a bifurcation. This forking

in the phase portrait occurs because the system has begun to oscillate be-

tween two possible states. Finally, the term self-organization (as we saw

in chapter 1) is generally applied to highly dissipative systems ‘‘far from

equilibrium’’ that suddenly and unpredictably jump to a more organized

state or structure. What chaotic attractors and self-organization have in
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common is simply that they only occur in nonlinear dynamical systems,

whose exponential variables interact in complex ways and produce un-

expected and disproportionate e¤ects.20

In War in the Age of Intelligent Machines DeLanda cites a number of

self-organizing phenomena in the domains of chemistry, physics, biology,

and human social history (migrations, crusades, invasions) which can all

be described by the dynamical systems model. He then extends D&G’s

concept of the machinic phylum to include the ‘‘overall set of self-

organizing processes in the universe’’ (6). Thus, in DeLanda’s formula-

tion, at certain critical moments all material processes, whether organic

or nonorganic, are traversed or subtended by a few abstract mechanisms

that can be said to constitute the machinic phylum. More specifically,

under conditions of instability the nonlinear flows of matter and energy

spontaneously evolve toward a limited set of possible states that can be

mapped as a ‘‘reservoir’’ of abstract mathematical mechanisms (i.e.,

attractors). What Deleuze calls a virtual or abstract machine, therefore,

is really a ‘‘particular set of attractors’’ (236):

We have then two layers of ‘‘abstract machine’’: attractors and bifurcations.

Attractors are virtual machines that, when incarnating [sic], result in a concrete

physical system. Bifurcations, on the other hand, incarnate by a¤ecting the attrac-

tors themselves, and therefore result in a mutation in the physical system defined

by those attractors. While the world of attractors defines the more or less stable

and permanent features of reality (its long-term tendencies), the world of bifurca-

tions represents the source of creativity and variability in nature. For this reason

the process of incarnating bifurcations into attractors and these, in turn, into con-

crete physical systems, has been given the name of ‘‘stratification’’: the creation of

the stable geological, chemical and organic strata that make up reality. Deleuze’s

theory attempts to discover one and the same principle behind the formation of all

strata. (237)

Regrettably, however, this important discussion is relegated to a long

footnote, for here we glimpse how dynamical systems theory might ac-

count more fully for the processes of stratification and destratification

that D&G discuss only in terms of a double articulation and implicit dy-

namic. And while their dynamic is surely not the dynamic of dynamical

systems theory (it is not expressed mathematically in terms of variables

that change over time), it could easily be strengthened and completed by

it. Indeed, one could easily extend the application of dynamical systems

theory in order to explain how assemblages arise, mutate, and dissolve,

as I suggested earlier. Yet perhaps it is because D&G lacked a more pre-

cise understanding of nonlinear dynamical systems (the theory of which

was still being developed when they wrote A Thousand Plateaus) that
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they show little interest in the mutations and instabilities that lead to

transformations of specific assemblages.21

In any event, whereas D&G emphasize how specific material properties

are brought to consciousness by itinerant artisans and metallurgists who

follow and develop the metallic matter-flow, DeLanda focuses on the

complex history of changing military strategy and weapons development,

particularly of ‘‘smart weapons.’’ Basically it is a story about the mili-

tary’s attempt to get human beings ‘‘out of the loop’’—that is, removed

from the production and use of new weapons systems, and, as a conse-

quence, the increasing necessity of decentralized command and control

structures. DeLanda begins War in the Age of Intelligent Machines by

asking us to imagine a book similar to his own but written by some future

‘‘robot historian.’’ Such a historian would not look at things from a hu-

man point of view. Rather, since it would be concerned with its own his-

tory, it would trace the gradually increasing transfer of intelligence from

humans to machinic processes and engineered systems. It would see the

emergence of fully autonomous artificial intelligence as the inevitable out-

come of an evolutionary process in which humans had become increas-

ingly dependent on machinic arrangements and technical assemblages.

Yet DeLanda’s purpose is not to o¤er techno-scientific speculation

about futuristic possibilities but to trace the actual ‘‘history of several mil-

itary applications of AI as much as possible from the point of view of our

robot historian.’’ He understands the military as ‘‘a coherent ‘higher level’

machine: a machine that actually integrates men, tools and weapons as

if they were no more than the machine’s components’’ (4). From this

nonanthropomorphic perspective, human social assemblages appear to

be immanent to nature, di¤erent in scale but not in essence, and the his-

tory of war only incidentally concerned with success or failure of policy.

For DeLanda, looking through the eyes of the robot historian, what mat-

ter most are moments of singularity, transitions, or thresholds, when

physical processes unpredictably change state or achieve new levels of

self-organization. These changes are recognized when an aggregate of

previously disconnected elements suddenly jells and begins to ‘‘cooper-

ate,’’ resulting in the formation of a higher-level entity with new and

unforeseeable properties. The emergence of the canoidal bullet, for exam-

ple, which gave the rifle unprecedented accuracy and allowed the foot sol-

dier a new independence, in turn demanding a restructuring of military

tactics and organization, is one such moment. (This new formation is pre-

cisely what D&G mean by an assemblage.) However, these thresholds of

emergence in self-organizing processes could hardly escape the notice of

128 From Cybernetics to Machinic Philosophy



the robot historian, since its own ‘‘intelligence’’ or ‘‘consciousness’’ would

be the result of this very same ongoing process. In the robot historian’s

narrative, ‘‘humans would have served only as machines’ surrogate repro-

ductive organs until robots acquired their own self-replication capabil-

ities’’; consequently, ‘‘both human and robot bodies would ultimately be

related to a common phylogenetic line: the machinic phylum’’ (7).

DeLanda’s next book, A Thousand Years of Nonlinear History, takes

up D&G’s discussion of the three major strata. Again applying nonlinear

dynamical systems theory, he shows how the self-organization of matter

directs three layered histories—in geology, biology, and linguistics—

from about 1000 AD to 2000. Much could be said about this important

work, which greatly elucidates (and fills out) D&G’s overly schematic dis-

cussion of the formation of the three strata, but here I will confine myself

to one methodological point. In his account of living structures DeLanda

distinguishes between two abstract machines (‘‘one generating hierar-

chies, the other meshworks’’), but goes on to assert the necessity of a

third, which has no counterpart in the geological world and is closely re-

lated to the mechanism of Darwinian evolution (variation plus natural se-

lection). Generalizing from the latter, DeLanda states that scientists have

come to realize ‘‘that any variable replicator (not just genetic replicators)

coupled to any sorting device (not just ecological selection pressures)

would generate a capacity for evolution’’ (138–139). This leads to a cen-

tral idea: ‘‘The coupling of variable replicators with a selection pressure

results in a kind of ‘searching device’ (or ‘probe head’) that explores a

space of possible forms (the space of possible organic shapes, or bird-

songs, or solutions to computer programs)’’ (139). Like the mechanisms

of Darwinian evolution, this searching device is blind (or shortsighted),

though often highly e¤ective. It is, DeLanda asserts, ‘‘the abstract ma-

chine we were looking for, the one that di¤erentiates the process of

sedimentary-rock formation from the process that yields biological spe-

cies’’ (139). And later, discussing how linguistic norms can evolve within

language, he advances an analogous claim, that ‘‘language may be con-

sidered to embody a probe head or searching device’’ (320).

However, in explaining these mechanisms DeLanda uses the term

probe head in a more general sense than D&G, and the distinctive mean-

ing they give to it is lost. Whereas for them it is the artisan who functions

as a probe head in the process of the machinic phylum’s emergence and

extension along diverse lines of variation (hence the term doesn’t appear

in their text before the discussion of anthropomorphic strata), for

DeLanda the term designates a blind and random exhaustion of a search
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space and thus a form of agency without a human agent. The computer,

for example, is often used as a searching device; but for D&G that would

not make it a probe head. Yet DeLanda uses probe head and search

device synonymously—in one instance (the discussion of biology) to indi-

cate nature’s e¤ort to produce an e¤ective combination of genes but in

another (explaining the evolution of language) to designate ‘‘the abstract

machine we are looking for.’’ While making the two terms synonymous

may emphasize and compensate rhetorically for an absence of human

agency, it also blurs D&G’s usage, according to which the concept of the

probe head is reserved for the human agent’s function in a process that,

while not altogether anthropomorphic, nevertheless requires human inter-

vention and agency. By assimilating probe head to the general meaning of

a search device DeLanda can rhetorically eliminate ‘‘the human’’ and

‘‘naturalize’’ the processes described. But this seems plainly redundant,

given that the processes he describes in A Thousand Years of Nonlinear

History are already natural and nonanthropomorphic. On the other

hand, if we should want to consider the role of those who have used the

computer to develop new theoretical sciences, the term probe head taken

in D&G’s original sense seems not only pertinent but highly suggestive.

Silicon Probe Heads

With the invention of the digital computer, physical processes character-

ized by nonlinear relationships and deterministically chaotic e¤ects could

be modeled and made widely visible for the first time. Because the

computations could be rendered graphically, the computer made both

quantitative and qualitative methods available for the study of chaotic

phenomena. For this reason nonlinear systems science—that is, chaos

theory—owes its widespread and rapid acceptance, if not its actual exis-

tence, to the extensive use of computers, especially after the late 1970s,

when desktop computers became available. By opening a ‘‘window’’

onto the machinic phylum, the computer enabled many scientists, engi-

neers, and hackers to begin tracking and directing the emergence and

flows of the machinic phylum in the medium of silicon, much as the arti-

sans and metallurgists had done with various ores and metals taken from

the earth. These modern silicon probe heads constructed and worked with

a number of distinct computational assemblages, several of which we ex-

amine below.

This is not, of course, the customary perspective. It is surprising, never-

theless, that there haven’t been detailed narrative accounts of how non-
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linear dynamical systems theory has been relayed by the computer’s de-

velopment and particularly by its capacity to simulate physical systems.

To be sure, historical accounts of the emergence of chaos theory are

sprinkled with acknowledgments of the importance of nonlinear mathe-

matics and the computer’s crucial role in making both old and new data

‘‘visible’’ in a new light. What remains inadequately discussed is the ex-

tent to which the computer, rather than being simply a new tool in a con-

stellation of research programs, has both made new sciences possible and

changed the ways in which normal science is done. The real issue lies not

in the computer’s unparalleled capacity for calculation, although that has

certainly been essential to the discovery of the new phenomena studied by

chaos science. But beyond its capacity for calculation, the computer can

automate search strategies and simulate physical processes with extra-

ordinary precision and speed. These new capabilities have inaugurated

what many claim is a paradigm shift in contemporary science.

The computer has also brought about a new kind of blurring of human

and machine functions. In contrast to the telescope and microscope,

which make visible what is only contingently invisible to the naked hu-

man eye, the computer renders visible what is inherently invisible, as in

the case of the configuration of forces or relationships that define a

‘‘strange attractor.’’ In and through these new functions the computer

exceeds its prosthetic and calculating instrumentality and becomes a new

type of abstract machine. Functioning in a variety of ways within science

and contemporary society at large, new computational assemblages have

brought into existence not only a new sense and understanding of physi-

cal reality but a new reality tout court. Although this larger story cannot

be told here, some of the consequences of the computer’s productive and

performative capacities will be discussed. In general, the work of three

distinct (but sometimes overlapping) groups of silicon probe heads were

essential to the evolution of both computer hardware and software: the

scientists and mathematicians who developed nonlinear systems science,

the computer scientists who developed new computational techniques

(particularly simulations, evolutionary programming techniques, and

automated search strategies), and the hackers who emerged as a new so-

cial and functional type in the 1980s. In each instance the computer oper-

ates as part of a larger and very specific computational assemblage, and

as such it allows a new extension and development of the machinic phy-

lum. Though I focus here on the activities of a few individuals within the

first group, in later chapters I discuss significant instances from within the

second and third groups as well.
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In Chaos: Making a New Science, James Gleick o¤ers a vivid account

of what would mark the beginnings of chaos theory in the 1960s. Using a

Royal McBee computer that barely fit into his o‰ce, Edward Lorenz dis-

covered that very small di¤erences in the initial conditions of weather

systems lead rapidly to wide divergences in their behavior and hence pre-

dictability.22 Taking into account obvious variables, such as temperature,

barometric pressure, and wind speed, the relationships among which he

calculated by means of a group of twelve equations, Lorenz produced a

skeletal but reasonably realistic model of a weather system. Although

the physics of weather prediction were thought to be well understood,

the variables could not be accurately measured nor the calculations

made rapidly enough to make long-range weather prediction feasible.

With the advent of the digital computer and the assumption that small

influences could be ignored or approximated, hopes grew for more accu-

rate and longer-range predictions. These hopes were dashed when Lorenz

began to simulate weather systems by feeding real values into the vari-

ables of his bare-bones model and computing the results. These were

graphically displayed in a simple line drawing, which showed how a spe-

cific weather system was changing over time. As Gleick describes it, one

day Lorenz decided to rerun one of the sequences, but instead of starting

the whole run over again he began midway by punching in the initial con-

ditions from the first printout. Rather than entering the numbers to the

sixth decimal point (0.506127), he rounded them o¤ to three (0.506).

When he later returned after grabbing a cup of co¤ee, he was startled by

the results: after duplicating the first pattern for several wavy humps, the

graphic display began to diverge rapidly, until it was clearly no longer

the same pattern.

What did this mean? Obviously a weather system is nonperiodic (it

never repeats itself exactly), but here the same values were plugged into

the equations and therefore the results should have been the same. How-

ever, because Lorenz had not started at the exact same point as in the

prior run, he had produced a second weather system, not a replication

of the first. Because the equations were nonlinear, the calculated outputs

changed disproportionately as the variables changed; specifically, the

tiny di¤erence in decimal points was greatly magnified as the equations

were iterated again and again to calculate the changes for each successive

time step. This peculiar sensitivity to initial conditions accounted for the

growing divergence between the two (at first) very similar systems. It later

became known as the butterfly e¤ect, meaning that small di¤erences in

initial conditions ramify into disproportionately large e¤ects.23
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An explanation is to be found in Lorenz’s essay ‘‘Deterministic Non-

periodic Flow,’’ one of the most often cited and by all accounts deeply

beautiful of the early articles on chaos theory.24 The paper explores just

what Lorenz had seen in his simulated weather system: a lack of periodic-

ity coupled with the growth or amplification of small di¤erences. (The

latter e¤ect, a hallmark of nonlinear systems, is now referred to as ‘‘sensi-

tive dependence upon initial conditions.’’) Instead of using the twelve-

equation model, he had pared it down to three, having started with his

colleague Barry Saltzman’s seven equations for describing convection

currents (The Essence of Chaos, 137). These three di¤erential equations

describe the behavior of a general type of nonlinear deterministic system,

although in the article the weather remains the ostensible reference:

dx=dt ¼ �sxþ sy

dy=dt ¼ �xzþ rz� y

dz=dt ¼ xy� bz

The equations look disarmingly simple; but as Lorenz notes (188), they

have been intensively studied and have even become the subject of a

book-length study by Colin Sparrow at Cambridge University. The three

constants b, s, and r determine the system’s behavior. After suitable

values are chosen, solutions can be plotted to graph points in a three-

dimensional coordinate system such that each point indicates the system’s

state at that particular moment and the sequence of points traces a path

of the system’s changes over successive moments ðt1; t2; t3 . . . tnÞ.
The resulting ‘‘phase portrait’’ sketches a visual image of how the sys-

tem behaves over a period of time. Such phase portraits provide qualita-

tive information about the attractors acting on, or ‘‘pulling,’’ a dynamical

system. If the traced path arrives at a single point and then remains there,

it means that the system’s behavior is governed by a single point attrac-

tor; if the path forms a circle or loop, it means that the system has settled

into a pattern of periodic behavior, its behavior determined by a periodic

attractor. Lorenz’s system did neither; rather, it looped endlessly in two

quadrants, without the paths ever crossing or repeating (see fig. 3.1). As

Gleick describes the figure, it ‘‘traced a strange distinctive shape, a kind

of double spiral in three dimensions, like a butterfly with its two wings’’

(Chaos, 30). This double spiral became known as the Lorenz attractor,

one of several types of strange attractor that signaled a deterministically

chaotic system. Although its phase portrait resulted from deterministic

equations, its exact path was unpredictable. Even so, the path always
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stayed within certain bounds, while tracing a clearly recognizable shape.

Deterministic chaos was thus a new kind of disorderly order, chaotic but

not random, unpredictable but visually coherent.

Soon other scientists would get a glimpse into this strange new realm,

and each time the computer played a central role. Nevertheless, in a re-

view of Gleick’s book the mathematician John Franks takes Gleick to

task for not making the computer’s role central enough. Indeed, accord-

ing to Franks, what Gleick chronicles is not the ‘‘chaos revolution’’ but

the ‘‘computer revolution, and the current popularity of chaos is only a

corollary.’’25 Stephen H. Kellert, discussing the claim that chaos theory

had to wait for the appearance of computers as its technological precon-

dition, stresses the extent to which the institutionalized study of physics

had trained scientists to ignore phenomena not amenable to linear analy-

sis, thereby blinding them to the importance of nonlinear systems and the

kinds of e¤ects that made chaos visible.26 Yet this is a theme treated by

Gleick as well, notably in the chapter he devotes to the Dynamical Sys-

tems Collective at the University of California at Santa Cruz.

The Santa Cruz Collective is crucially important, not only because of

the fundamental contributions to chaos science made by the four gradu-

ate students who comprised it but also because of the special intensity

with which they were captured by a vision of how the computer had

opened a new realm of study, as if chaos theory and the computer (or

new ideas about computation) were simply two sides of the same assem-

Figure 3.1
Lorenz strange attractor.
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blage. It started when Robert Shaw began to spend more time with the

old analog computer at the lab than with his doctoral thesis on super-

conductivity. (I note in passing the connection of superconductivity with

metallurgy.) Then one of his professors handed him Lorenz’s equations to

tinker with, Shaw having already learned to do phase-space portraits of

simple systems on the old analog machine. The Lorenz equations didn’t

look more complicated than those with which he was already familiar,

and it was a simple matter to plug in the right cords and adjust the knobs.

Gleick describes the result:

[Shaw] spent several nights in that basement, watching the green dot of the oscil-

loscope flying around the screen, tracing over and over the characteristic owl’s

mask of the Lorenz attractor. The flow of the shape stayed on the retina, a flick-

ering, fluttering thing, unlike any object Shaw’s research had shown him. It

seemed to have a life of its own. It held the mind just as a flame does, by running

in patterns that never repeat. The impression and not-quite-repeatability of the

analog computer worked to Shaw’s advantage. He quickly saw the sensitive de-

pendence on initial conditions that persuaded Edward Lorenz of the futility of

long-term weather forecasting. He would set the initial conditions, push the go

button, and o¤ the attractor would go. Then he would set the same initial condi-

tions again—as close as physically possible—and the orbit would sail merrily

away from its previous course, and yet end up on the same attractor. (Chaos,

246–247)

This fascination was soon imparted to the other members of the

collective—Doyne Farmer, Norman Packard, and James Crutchfield—

who were all drawn irresistibly to this newly visible realm of nonlinear be-

havior, which their training in physics had largely taught them to ignore.

Eventually the four would author an article on chaotic attractors that re-

mains the best short introduction to chaos theory.27

Following that first glimpse of the Lorenz attractor, the Collective

quickly absorbed the research of other early pioneers of chaos science

(notably Lorenz, Hénon, Rössler, May, Ruelle and Takens, and Gollub

and Swinney) and began to explore for themselves the behavior of chaotic

attractors. One of their most significant early achievements was to dem-

onstrate how the state space of an attractor could be constructed from a

time series of experimental measurements.28 Focusing specifically on how

the unpredictability of chaotic systems could be measured, the Collective

further developed the work of the Russian mathematician A. R. Lyapu-

nov, whose ‘‘Lyapunov exponents . . . [there was one for each dimension]

provided a way of measuring the conflicting e¤ects of stretching, con-

tracting, and folding in the phase space of an attractor’’ (Chaos, 253).

The group also made a number of animations that visually display the
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dynamics of di¤erent attractors, both singly and in combination, using

the analog computer as well as film and video equipment.29 This render-

ing visible of what had never been seen before was extremely valuable

and merits attention in its own right. But more important here, the e¤ort

to determine the unpredictability of chaotic systems led two members of

the group to pursue the study of these systems in information-theoretical

terms.

Strange Attractors and Information Flow

The combining of information theory with dynamical systems theory in

the study of chaotic or complex systems marks a conceptual accomplish-

ment of great import. As noted in chapter 1, the first quantitative theory

of information was proposed by Claude Shannon in a technical paper

published in 1948 and in book format in 1949. Based on his work at Bell

Labs to reduce noise in telephone lines, Shannon’s mathematical theory

of communication became a core text of the cybernetic movement, and

his association with Wiener, von Neumann, and Turing probably ensured

that its influence would extend far beyond its practical value in the techno-

logy of signal processing. But in fact the theory was groundbreaking and

soon attracted the attention of many interested in dynamical systems.30

As Shannon’s schematic diagram of a general communication system in-

dicates (see fig. 3.2), the theory takes into account the entire process of en-

coding a message in a signal or medium, transmitting it through a channel

impeded by noise, and decoding the message at the receiver’s end.31

Because noise in a communication system causes uncertainty—

uncertainty as to how closely the message received compares with the

Figure 3.2
Shannon’s diagram of a general communication system. Claude E. Shannon and Warren
Weaver, The Mathematical Theory of Communication (Urbana: University of Illinois Press,
1963), 34.
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message sent—the theory requires a precise measure of this uncertainty.

A concept that makes this uncertainty quantitative and measurable lies

therefore at the heart of Shannon’s theory. This concept is information,

defined as a function of probabilities and not in any way to be confused

with meaning. Simply put, information expresses the probability of any

single message in relation to all messages possible in a given communi-

cation system. Mathematically, it takes the ‘‘p log p’’ form of Ludwig

Boltzmann’s well-known logarithmic equation for computing entropy in

a closed system, where p designates the probability that a single molecule

will be in a specified state at a moment in time. Shannon consciously

adopted Boltzmann’s formula,

H ¼ �k
X

pi log pi

stating that it would ‘‘play a central role in information theory as mea-

sures of information, choice and uncertainty’’ (50). Whereas in Boltz-

mann’s statistical mechanics ‘‘pi is the probability of a system being in

cell i of its phase space,’’ Shannon explains, in his own theory pi is the

probability of a single symbol’s occurrence. The total probability of the

message is found by adding up all the probabilities of the individual sym-

bols that compose it. The constant k refers to the choice of unit of mea-

sure. The minus sign is necessary to ensure that the information value is

positive, since probabilities are given as fractions or decimals (like 1/2 or

.5) and the log of a number less than 1 is negative. Simple calculation

shows that if the probability is 1 (i.e., there is no uncertainty or choice in

the message), then the information value is zero, and that information is

greatest when there is an equal probability of all possible messages. How-

ever, in most messages the probabilities of the symbols are not equal. In

English, for example, the probability of the letter e is much higher than

that of a z; furthermore, the probability in any given message that an e

will follow th is much greater than that it will follow a z. The statistical

inequality of such groupings makes the probabilities more di‰cult to

compute. Fortunately, many such sequences are ergodic, meaning that

they exhibit statistical properties that make the job of calculating their

probabilities much more feasible (see Mathematical Theory of Communi-

cation, 45–48).

In Boltzmann’s theory entropy is the measure of a system’s disorder, or

of our uncertainty about individual molecular states. We can therefore

think of entropy as missing or invisible information. In physical terms,

entropy measures the loss of energy available for doing work. (In a closed
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system, heat loss from the random collisions of molecules inevitably

causes entropy to increase over time.) Given the impossibility of keeping

track of the individual positions and velocities of these molecules, Boltz-

mann defined entropy as a property of statistical distribution. As a statis-

tical measure, the entropy of a system tells us how far it has evolved in

the drift from a less probable to a more probable state, with uniform dis-

tribution or thermal equilibrium being the most probable. The drift seems

inevitable because there are infinitely more pathways to increasing dis-

order than to increasing order, making increasing order far less likely.

However, in Shannon’s concept of information there is no inevitable in-

crease or decrease of information. The probability of the message (or of

the symbols that compose the message) alone determines the amount of

information it contains. Hence a surprising fact or unexpected phrase

transmits more information than a cliché. However, this example is mis-

leading because it concerns meanings rather than probabilities of sym-

bols. Since information is measured in bits (short for binary digits)—the

outcome of a coin toss or the answer to a yes or no question yields one

bit—the game of twenty questions provides a better analogy for deter-

mining how much information a message contains.

Shannon’s theory of information entropy and use of Boltzmann’s

formula generated a number of intriguing theoretical questions. For

example, since an increase in uncertainty (i.e., more symbols to choose

among, with an equiprobability of choosing any one) increases the mea-

sure of information of any single message, would not utter uncertainty

about the message (as in the case of a completely random string of sym-

bols) mean maximum information? And does computation or the manip-

ulation of information itself expend energy?32 In fact, the first question

blurs the distinction between two sources of uncertainty: the uncertainty

of the message and the uncertainty generated by noise in the communica-

tion channel. In contrast to information defined as a purely relative, sta-

tistical concept divorced from questions of meaning or significance, noise

is something we all think we understand. In Shannon’s theory, however,

noise acquires a paradoxical complexity. In a communication channel,

noise appears to be both what impedes the transmission of information

and what is not (yet?) coded as information. Because of noise, in fact,

the amount of information received can be greater than the amount trans-

mitted. (This is because the received message is selected out of a greater

set of possibilities than the transmitted message.) This apparent paradox

notwithstanding, Shannon’s theory was basically directed toward solving

a very practical problem: how to encode a message in such a way that its
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transmission rate through a noisy channel (in bits per second) could be

maximized and the error rate minimized. Using Boltzmann’s formula to

define both the entropy of an information source or input to a communi-

cation channel and the entropy of the received signal or output, Shannon

was able to give a very precise definition of channel capacity: It is the

maximum of the mutual information between source and receiver com-

puted over the whole range of possible messages. Mutual information

thus measures the reduction in the uncertainty that results from receiving

a message from a sender.33 On this basis, Shannon was able to establish a

fundamental theorem for the maximum rate of symbol transmission for a

particular channel. Previously it had been assumed that noise could be

overcome simply by repeating the message or adding redundancies to the

code, at an obvious cost in transmission capacity. Shannon’s theorem

demonstrated contrarily that there were inherent, insurmountable limits.

At the same time, it suggested unexpected ways to encode the message to

take advantage of the statistical properties of a particular channel, result-

ing in a more e‰cient signal-to-noise ratio and pointing to more e‰cient

methods of error detection and correction. Indeed, these discoveries are

actually what made modern digital communications possible.

Turning to the study of dynamical systems, we find that the most strik-

ing historical development is how claims for the complete predictability

of all physical systems—stated most famously by Pierre Simon de

Laplace—have given way to the realization that even simple, completely

deterministic systems can become chaotic over time.34 In other words, the

universe is not as orderly and stable as Newton’s deterministic equations

for classical mechanics would suggest. The first to grasp that nonlinearity

in a dynamical system is what gradually erodes stability (and hence pre-

dictability) was Henri Poincaré. In the 1890s, while working on the di¤er-

ential equations used to compute the positions and orbits of multiple

bodies in celestial mechanics (the n-body problem), Poincaré was able to

prove that even for three bodies the problem could not be solved quanti-

tatively. Forced to take a di¤erent approach, he adopted qualitative and

geometrical methods. It was while attempting to resolve these di‰culties

that Poincaré saw evidence of sensitivity to initial conditions and the

growing divergence of nearby trajectories.35 Thus he wrote presciently

in 1903, ‘‘It may happen that small di¤erences in the initial conditions

produce very great ones in the final phenomena. A small error on the

former will produce an enormous error in the latter. Prediction becomes

impossible, and we have the fortuitous phenomenon.’’36 However, given

the mathematics of his time, Poincaré had no way to integrate these
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observations into a more complete theory. Nevertheless, in working out a

geometric method for representing the possible states of a deterministic

system in phase space, he laid the foundations for the new field of dynam-

ical systems.

When we consider that nonlinearity in the study of physics in the 1970s

was a peripheral problem to be avoided through approximation, that the

use of computers was generally disdained, and that information theory

was thought to be the provenance of electrical engineering, we begin to

see the originality and importance of the work of the Dynamical Systems

Collective. Though several early articles published by members of the

Collective were concerned with how to measure the influence of chaotic

attractors in a physical system, it was Shaw’s article, ‘‘Strange Attractors,

Chaotic Behavior, and Information Flow,’’ published in 1981, that first

makes the case for information theory.37 Indeed, Shaw shows how

chaotic attractors can be seen in a new light, as generators of information.

In developing this powerful idea, Shaw synthesizes several sets of related

ideas: first, equations like Lorenz’s that produce a deterministically cha-

otic stream of numbers are articulated with the qualitative transitions

marking turbulent flow; second, the problematic gap between energy

states of a system at the microscales and those at the macroscale is

bridged; and finally, the di¤erence between dynamical systems that are

time reversible and those that are not is understood in terms of the pro-

duction and destruction of information.

Shaw distinguishes at the outset between conservative and dissipative

dynamical systems. When mapped into phase space, the former turn out

to be ‘‘well behaved,’’ meaning predictable and describable in terms of

the laws of physics and the extensive mathematical formalisms developed

to quantify their behavior. As Shaw notes, ‘‘Implicit in the use of this

formalism for the description of dynamical systems is the assumption of

reversibility, i.e., no information is lost as time passes’’ (82). Since each

dimension of phase space represents a variable and hence a degree of free-

dom for the system, laws of nature, such as the conservation of energy,

act as a constraint, reducing the dimensionality of the state space avail-

able to a given system. Whether governed by a single-point or periodic

attractor, the state space remains low dimensional, and its phase portrait

shows how over time the system continually revisits each of its possible

states. Put another way, if the system is abstractly represented by a flow

in phase space, this flow remains ‘‘compact’’ and predictable. Further-

more, if the information it generates is computed by the change in pre-
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dictability of its movement through phase space per unit of time (in bits

per second, for example), then this system generates no information at all,

since its behavior remains predictable for an indefinite time into the fu-

ture. In the terms of classical mechanics this modeling of a conservative

system corresponds to temperature measurements made at the macro-

scale, which ignores the fact that the total ‘‘free energy’’ of a system at

the microscale may be far greater. Classical mechanics thus keeps the

two scales artificially separated, with no interaction or communication

between them.

Everything changes, however, when the phase portrait for a highly dis-

sipative, nonconservative system is constructed. As shown above, when

Lorenz’s system of equations is mapped in phase space, it yields the por-

trait of a chaotic attractor. As the system flows through its possible states,

it twists and turns from one quadrant to another in what first appears

to be a three-dimensional space, without ever exactly retracing its path.

In fact, the space is fractal.38 Apparently composed of many ultrathin

layers, it is a space articulated in fractional dimensions. Topologically,

the trajectories stretch and then fold over onto themselves, increasing the

dimensionality or volume of the phase space. As Shaw argues, the flows

of such strange, or chaotic, attractors through phase space actually create

new information:

In three and higher dimensions it is possible to have flows which in a compact

region continuously expand volumes of phase space in some dimension or dimen-

sions while contracting it in others. . . . The e¤ect of these flows is to systematically

create new information which was not implicit in the initial conditions of the flow.

Given any finite error in the observation of the initial state of some orbit, and the

Uncertainty Principle guarantees such an error, the position of an orbit will be

causally disconnected from its initial conditions in finite time, thus any prediction

as to its position after that time is in principle impossible. (85–86)

Not only is new information created as the system moves away from its

initial state into an expansion of phase space, but information also be-

comes irretrievable as other regions of phase space are contracted as a re-

sult of this same flow. With this loss of information, the system becomes

time irreversible.

But where does this new information come from? In one sense it merely

reflects the fact that the system is becoming chaotic and unpredictable;

that is, applying Shannon’s formula, this information would simply be

the quantitative measure of the increasing uncertainty of a particular

state. But in terms of the system’s physical alteration, the increase in
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information means that the uncertainties of the microscale, ‘‘the bath of

microscopic randomness in which anything physical is immersed,’’ as

Shaw vividly puts it, are being systematically pulled up to macroscopic

expression. In physical systems driven by a chaotic attractor, in other

words, events at the macroscale and events at the microscale can no

longer be artificially separated. In the case of turbulent flow, for example,

as increasing energy flows into the system downward to microscales, it

produces eddies, whorls, and vortices, and then eddies, whorls, and vor-

tices within them at ever smaller scales, in a telltale sign of the system’s

increasing turbulence. As the turbulence increases to chaotic flow, infor-

mation in the form of increasing unpredictability over a unit of time can

be said to flow upward from the microscale to the macroscale, where it

can then be measured. Using a Systron Donner analog computer Shaw

was able to verify in quantitative terms that indeed, in the case of turbu-

lent flow, information is continuously generated by the flow itself.

In his article Shaw points out that equations like Lorenz’s and Robert

May’s logistic equation belong to a special class of theoretical object,

since they define an iteration procedure that produces a stream of num-

bers that eventually becomes unpredictable. He doesn’t deny their rele-

vance to the study of deterministically chaotic physical systems—in fact,

to the contrary—but their applicability is not his primary interest.

Rather, he is searching for ‘‘a common thread’’ running through a diver-

sity of research fields that all yield this very peculiar object, with these

specific mathematical properties. Hence his central question: ‘‘What is re-

sponsible for the same qualitative behavior in these systems?’’ (81). His

answer, hardly surprising now that chaos science is a respectable field of

study, is that ‘‘the many examples of systems exhibiting chaotic behavior

which are appearing and will no doubt continue to appear, are di¤erent

guises of what are actually a limited number of basic forms. Furthermore,

these forms arise naturally in a geometry where irreversibility is taken as

a postulate, in contrast to the reversibility implicit in the usual description

of systems in phase space’’ (81).39 As Shaw demonstrates, this irreversi-

bility can be quantified in terms of the loss and gain of information that

a chaotic attractor produces in a nonlinear dynamical system. Ultimately

this means, as Shaw concludes, that ‘‘new information is continuously

being injected into the macroscopic degrees of freedom of the world by

every pu¤ of wind and swirl of water,’’ an e¤ect that may put severe

limits on our predictive ability but also ‘‘insures the constant variety and

richness of our experience’’ (103).
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The Dripping Faucet as Model Chaotic System

In 1984 Shaw published a short book, The Dripping Faucet as a Model

Chaotic System, which continued his investigation into the relationship

between a chaotic dynamical system and its production of information.40

As the title indicates, Shaw takes a specific physical system—a simple

dripping faucet—as his model of study. The simplicity of the model is

belied, however, by both the complexity of its behavior and the degree

of philosophical questioning to which Shaw submits ‘‘the idea’’ of the

model. Indeed, there is a subversive, even revolutionary idea lurking in

chaos science that Shaw’s little book carefully (and rigorously) brings to

the foreground. What is at stake is the di¤erence between two correla-

tions: the correlation of observed experimental data and the explanatory

model in classical experiments versus the correlation in experiments when

a chaotic attractor is shaping the behavior of a physical system. Shaw

primes us with an initial sense of this di¤erence with a quotation from

Steven Hawking’s lecture ‘‘Is the End in Sight for Theoretical Physics?’’:

‘‘It is a tribute to how far we have come already in theoretical physics

that it now takes enormous machines and a great deal of money to per-

form an experiment whose results we cannot predict’’ (The Dripping Fau-

cet, 1). The irony is obvious: Shaw will demonstrate that even an ordinary

dripping faucet can generate data that is quantifiably unpredictable. Far

from being the exception to the rule, chaotic behavior pervades the phys-

ical world.41

Shaw notes in the first few pages that the dripping faucet exhibits be-

havior typical of a deterministically chaotic system. Although many vari-

ables determine how and when individual drops form and fall, Shaw

assumed that measuring the intervals between drops would reveal some-

thing essential about the system’s behavior. The experimental apparatus

he constructed therefore measured the drop intervals in addition to the

flow rate of the falling water. (Shaw’s drawing of the apparatus is repro-

duced in figure 3.11.)

Taking successive intervals as the x and y coordinates, Shaw plotted a

two-dimensional ‘‘return map’’ of the data. If, for example, the time inter-

val between the first and second drops was 0.168 seconds and the interval

between the second and third was also 0.168 seconds, that would yield a

single point on the map (with x and y coordinates 0.168 and 0.168). If the

second interval measured 0.168 but the third was 0.180, there would now

be two dots; and if these intervals continued to repeat it would suggest a

Machinic Philosophy 143



periodic pattern. But if successive intervals varied randomly, the result

would be a stochastic scattering of dots. Finally, if the dots formed fuzzy

curves or combinations of fuzziness with a visible geometric pattern, that

would indicate the presence of one or more chaotic attractors. Three such

sets of mappings—which result from increasing the flow rates—are indi-

cated by figures 3.3, 3.4, and 3.5 (reproduced from The Dripping Faucet).

As expected, when the tap was opened slightly, drops of water began

to fall in regular intervals. As the tap was opened further, the drops

began to fall in periodic intervals. When the water pressure was further

increased, a period-doubling bifurcation appeared, in what is now the

Figure 3.3
Chaotic attractors with increasing flow rates, 1. Robert Shaw, The Dripping Faucet as a
Model Chaotic System (Santa Cruz: Aerial Press, 1984), 11.

Figure 3.4
Chaotic attractors with increasing flow rates, 2. Robert Shaw, The Dripping Faucet as a
Model Chaotic System (Santa Cruz: Aerial Press, 1984), 12.
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telltale sign of increasing turbulence and the route to chaotic flow. While

noting this behavior, Shaw cautiously observes that this increasingly

chaotic behavior is not a simple function of flow rate, since it depends

upon a variety of di¤erent initial conditions. In fact, although the physi-

cal forces producing individual drops can be modeled as a problem of

falling bodies in classical mechanics (see The Dripping Faucet, 15, as well

as Chaos, 266), in the end what mattered to Shaw was only the variation

in drop rate over time.

In Shaw’s experimental apparatus this variation is registered as a data

stream, or flow of numbers. According to classical experimental proce-

dure, the experimenter would then construct a discourse that tells us

what these numbers mean—interpreting the data by showing how it con-

firms or invalidates predictions based upon a specific model. Although

Shaw certainly doesn’t ignore this objective, he is primarily interested in

how this data might be used to compute other quantities, specifically

‘‘the amount of information a system is capable of storing, or transmit-

ting from one instant of time to the next, and . . . the rate of loss of this

information’’ (The Dripping Faucet, 3). A loss of information about a sys-

tem, of course, means an increased uncertainty about its future state. This

is because, as Shaw had demonstrated in his article, as a system moves

into a chaotic regime its present state is causally disconnected from its ini-

tial conditions and past states. This information, in e¤ect, is lost. But if a

system becomes unpredictable, how unpredictable is it? And can the dif-

ference between randomness arising from the interaction of many degrees

of freedom and randomness due to the chaotic dynamics of only a few

Figure 3.5
Chaotic attractors with increasing flow rates, 3. Robert Shaw, The Dripping Faucet as a
Model Chaotic System (Santa Cruz: Aerial Press, 1984), 106.
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degrees of freedom be discerned? More specifically, how could the

amount of information stored in a system be computed and its rate of

loss be measured?

Again information theory provided the framework. Every physical sys-

tem is subject to noise, which of course limits the total amount of infor-

mation it can store and transmit. Moreover, in order to be useful the

information stored in a system must be a property of the system and not

of the particular type of measurement used to measure it. This implies,

Shaw says, ‘‘an invariance under coordinate transformations, a property

which appropriately defined measures of information possess’’ (6). It is

hoped, he adds, that ‘‘any dynamic variable [in this case, the drop inter-

val] will serve to characterize the predictability’’ (7). His objective will be

to use this varying predictability as a way to measure how the system’s

capacity to store and transmit information changes over time.

Shaw takes as his point of departure Shannon’s theory of the transmis-

sion of information from a ‘‘transmitter’’ to a ‘‘receiver’’ through a spe-

cific ‘‘channel,’’ designating their known statistical properties as shown

in figure 3.6. Here PðxÞ denotes the distribution of possible transmitted

messages x, PðyÞ the distribution of possible received messages y, and

Pðy=xÞ the probability of receiving message y given that message x was

transmitted.

Assuming that a dynamical system ‘‘communicates’’ some (but not

necessarily all) information about its past state into the future yields the

diagram shown in figure 3.7. Here x and x 0 denote observable past

and future system variables, the other time independent variables being

‘‘lumped into the conditional distribution Pðx 0=xÞ which describes the

causal connection between past and future given by the system dynamic’’

(22). This means that PðxÞ and Pðx 0Þ represent (as probability distribu-

tions) knowledge of the system’s past and future states.

These probability distributions can then be rendered by a series of iter-

ated mappings ðFÞ, from t1 to t2 and so on into the future. Figure 3.8 dis-

Figure 3.6
Distribution through a communication channel. Robert Shaw, The Dripping Faucet as a
Model Chaotic System (Santa Cruz: Aerial Press, 1984), 21.

146 From Cybernetics to Machinic Philosophy



plays the change in the distribution of x over one time step (i.e., from x to

x 0). Keeping in mind that a highly peaked probability distribution (as on

the left) represents a fairly definite knowledge about the variables and

that a broader distribution (as on the right) indicates an increase of uncer-

tainty, the broadening of the distribution of x 0 indicates that there has

been a loss of knowledge (i.e., information) and thus of predictive ability.

Shaw’s task is to quantify this procedure, thus providing a measure of

the system’s predictability. Not surprisingly, it requires considerable

mathematical ingenuity and we need not follow Shaw’s inventive path in

detail. Part of the di‰culty has to do with the nature of information itself:

as a purely relative concept, the information in a distribution PðxÞ is al-
ways measured relative to an a priori expectation, which is the system’s

minimum information distribution. We must keep in mind therefore that

anything coming out of the channel that could be predicted from the in-

put or system’s past state is not information, and there is no surprise asso-

ciated with it. Another problem is that the iterated mappings from one

distribution to the next have to be much more fine-grained than indicated

above, since for some dynamical systems the ‘‘points’’ can spread apart

exponentially fast and errors grow uncontrollably. Indeed, in certain

cases, Shaw states, the concept of the point is but a ‘‘convenient name

for an arbitrarily sharp probability distribution’’ (31). Following the work

of Kolmogorov and Sinai,42 Shaw resolves this di‰culty by applying ‘‘a

Figure 3.7
Distribution from past to future. Robert Shaw, The Dripping Faucet as a Model Chaotic
System (Santa Cruz: Aerial Press, 1984), 22.

Figure 3.8
Mapping distributions. Robert Shaw, The Dripping Faucet as a Model Chaotic System
(Santa Cruz: Aerial Press, 1984), 23.
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‘partition’ to the domain of the continuous variables x and x 0, breaking
it up into small elements. The deterministic dynamics can now map an

image of each little block, conserving the underlying probability’’ (31).

Shaw represents this more refined mapping of distributions as shown in

figure 3.9.

With this more refined mapping, he can begin to define the amount of

information stored in a system:

A ‘‘system’’ might be considered a body of information propagating through time.

If there is any causal connection between past and future system states, then infor-

mation can be said to be ‘‘stored’’ in the state variables, or communicated to the

immediate future. This stored information places constraints on future states, and

enables a degree of predictability. Again, if the system dynamics can be repre-

sented by a set of transition probabilities Pðx 0=xÞ, this amount of predictability is

directly quantifiable, and corresponds, in Shannon’s vocabulary, to a particular

rate of transmission of information through the ‘‘channel’’ defined by Pðx 0=xÞ. (37)

There are two possibilities, as figures 3.9 and 3.10 indicate.

Suppose, as the system moves into the future, its state is restricted to a

narrow interval in x, described by PðxÞ (indicated by the shaded area in

fig. 10). If the distribution relaxes back to the minimum knowledge state

(as in the top half of the diagram) regardless of the input distribution over

the time interval, then no information is stored in the system. If, on the

other hand, the output distribution varies with the input (as in the lower

portion of the diagram), then some information is passing into the future.

An unchanging and completely known ‘‘variable’’ communicates no information

into the future. Although a static structure is certainly a predictable element,

establishing continuity through time, it becomes a part of the fixed time-

independent system description. The ‘‘information’’ measures described here are

a property of the system dynamics. In mechanics, as in the human sphere, the

transmission of information requires the possibility of change. (38)

In short, only those parts of a system that are changing over time can

convey information.

Figure 3.9
Mapping with partition. Robert Shaw, The Dripping Faucet as a Model Chaotic System
(Santa Cruz: Aerial Press, 1984), 31.
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We now arrive at the crucial step of defining quantitatively the infor-

mation stored in a system: it is simply ‘‘the Shannon channel rate for an

input (and output) distribution given by the equilibrium distribution for

the system’’ (39). This formula, Shaw explains, ‘‘quantifies the average in-

crease in our ability to predict the future of a system when we learn its

past’’ (40). In other words, it is the quantity derived by Shannon’s for-

mula for the mutual information shared by sender and receiver. Thus

Shaw’s exact formula provides a measure of ‘‘the di¤erence in the ex-

pected randomness of a system with and without knowledge of its past’’

(40). With this quantity in hand, to compute the rate of loss of the stored

information or the system’s entropy becomes a relatively simple matter.

This computation in turn enables Shaw to measure quantitatively the

changes in the system’s predictability over time, which is his primary

objective.

Omitted from this bare-bones exposition are not only the mathematical

details but also several essential considerations, most importantly the

problem of noise and the system’s entropy. In order for the system’s

stored information to be a meaningful quantity, it has to be distinguished

from both the noise in the physical system and the noise in the system of

measurement. These two kinds of noise reflect our inability to measure

the system’s behavior accurately and thus add to our overall uncertainty.

However, what Shaw seeks is a way to measure a third kind of noise—the

uncertainty that the system itself produces over time as it moves from a

Figure 3.10
Measure of stored information. Robert Shaw, The Dripping Faucet as a Model Chaotic
System (Santa Cruz: Aerial Press, 1984), 38.

Machinic Philosophy 149



single-point or periodic regime to a chaotic one. In this movement the

system’s total entropy (which combines all these forms of noise) would

rapidly increase. Since Shaw wants to quantify this increase in unpredict-

ability precisely in informational terms, he first has to establish, following

Shannon on channel capacity, that the information measurement channel

has a higher capacity than the system’s entropy; otherwise, he would sim-

ply be measuring fluctuations in the heat bath. Then, subtracting out the

entropy caused by the first two kinds of noise—subtracting a smaller

entropy from a larger one (40)—he arrives at the precise amount of the

system’s stored information.43

Shaw’s experiment thus performs a necessary integration of two con-

cepts: the system’s physical entropy as given by Ludwig Boltzmann’s fa-

mous formula and the system’s stored quantity of information as derived

from Shannon’s formula. As he establishes in his article and restates here,

‘‘Entropy describes the rate at which information flows from the micro-

scopic variables to the macroscopic’’ (34). In the dripping faucet model,

however, he is able to demonstrate that ‘‘the maximum entropy, or loss

of predictability, will thus occur when the stored information is at a max-

imum’’ (49). This makes intuitive sense, because ‘‘sharper distributions

representing greater stored information will spread faster than broad dis-

tributions’’ (49). This discovery, of course, provides further empirical evi-

dence for what Shaw had proposed in his article. But what distinguishes

The Dripping Faucet as a Model Chaotic System—indeed, makes it a

methodological tour de force—is how it throws light on the problem of

predictability in the precise modeling of a chaotic system. Not only is

Shaw’s central intuition concerning the loss of information and predict-

ability borne out by precise experimental results, but a contradiction in

classical experimental methodology is resolved: specifically, a discrepancy

that grows over time between the number stream generated by empirical

observation of the physical system and the number stream generated by

the explanatory model does not automatically or necessarily mean that

the experiment is a failure, since this discrepancy itself can be a positive

source of new information if the growing rate of that di¤erence can be

measured. Which is exactly what Shaw demonstrates.

While it is not my purpose to assess Shaw’s unique contribution to the

then fledgling field of chaos science, there is no denying the ingenuity of

his experiment—based simply on counting the intervals between drops of

water—and the sheer amount of intellectual work he accomplishes in

elaborating its significance for a theory of modeling chaotic systems. But

above all, what gives this work special value and importance is the con-
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ceptual synthesis Shaw achieves by introducing information theory into a

dynamical systems framework. At the same time, this work also marks

a pioneering exploration of the machinic phylum. First, it can easily be

shown that Shaw’s experimental apparatus and published discourse to-

gether constitute a concrete assemblage in Deleuze and Guattari’s specific

sense. On one side, the experimental apparatus and observer define a

machinic assemblage of bodies; on the other side, the data stream and dis-

course that accompanies it define a collective assemblage of enunciation,

woven from many textual sources but primarily from the technical lan-

guages of physics and mathematics (see figs. 3.11 and 3.12).44

At first glimpse, what stands out is the obvious contrast between the ev-

eryday banality of the dripping faucet and the abstruse fecundity of this

mathematical discourse. D&G, in fact, characterize mathematics as a

‘‘fantastic and nomadic argot’’ (A Thousand Plateaus, 24). More striking

is what draws the two sides of the assemblage together onto a ‘‘plane of

consistency’’ while also defining its ‘‘cutting edges of deterritorialization’’:

it is clearly the force of the strange, or chaotic, attractor, which on both

Figure 3.11
The apparatus (drawn by Chris Shaw). Robert Shaw, The Dripping Faucet as a Model
Chaotic System (Santa Cruz: Aerial Press, 1984), 3.
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sides is pulling the assemblage into the realm of the unpredictable. On

one side, the behavior of falling water becomes unpredictable, even

though mapping a fuzzy but recognizable visual pattern; while on the

other side, a certain amount of the system’s stored information becomes

irretrievable, but at a quantifiable rate. Yet these paradoxes derive from

the chaotic attractor itself, which is at once a deterritorializing set of

physical forces and a very complex mathematical object with singular

properties.

As modeled by Shaw, moreover, the chaotic attractor exhibits the pre-

cise attributes of what Deleuze and Guattari call an abstract machine,

which inhabits equally the realms of matter-energy and abstract mathe-

matical function:

The abstract machine in itself is destratified, deterritorialized; it has no form of its

own (much less substance) and makes no distinction within itself between content

and expression, even though outside itself it presides over that distinction and dis-

Figure 3.12
The two data streams (drawn by Chris Shaw). Robert Shaw, The Dripping Faucet as a
Model Chaotic System (Santa Cruz: Aerial Press, 1984), 87.
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tributes it in strata, domains, territories. An abstract machine in itself is not phys-

ical or corporeal, any more than it is semiotic; it is diagrammatic (it knows noth-

ing of the distinction between the artificial and the natural either). It operates by

matter, not by substance; by function, not by form. Substances and forms are of

expression ‘‘or’’ content. But functions are not yet ‘‘semiotically’’ formed, and

matters are not yet ‘‘physically’’ formed. The abstract machine is pure Matter-

Function—a diagram independent of the forms and substances, expressions and

contents it will distribute. (141)

The primordial and dynamic quality of an abstract machine, which is

what D&G are trying to elucidate, cannot be conveyed in the language

of a ‘‘thing’’ and its ‘‘representation.’’ If both thing and representation

could change in a dynamic relationship of reciprocal determination, then

perhaps the ‘‘diagrammatic’’ quality of the abstract machine could be

conveyed. Viewed as a type of abstract machine, however, the peculiar

qualities of the chaotic attractor begin to make a unique kind of sense.

As both an array of forces and a mapping of their vectors, the chaotic

attractor is what deterritorializes the assemblage, both pulling it into a

state of chaotic unpredictability and pointing to a new mathematical cod-

ing that allows this process to be measured. Rather than view the attrac-

tor as a kind of Platonic form that exists independently of its instantiation

in a particular nonlinear dynamical system—which is how attractors are

sometimes viewed—we should say, as D&G say of the abstract machine,

that it ‘‘plays a piloting role’’ (142): it neither preexists nor represents the

real, but constructs it and holds it in place.

Although D&G’s concepts provide an unusual perspective on Shaw’s

work and chaos science more generally, this perspective is not incompati-

ble with that of chaos science itself. This is not to downplay or ignore

their many obvious di¤erences, which reflect fundamental di¤erences

between physics and philosophy. While Shaw’s research stands firmly

on its own as part of an already validated and ongoing scientific

revolution—and similarly for D&G’s accomplishment in relationship to

philosophy—when brought together these two lines of inquiry create a

conceptual space for considering how the new realm of phenomena

made visible by nonlinear systems science actually opens a window onto

the machinic phylum. In one sense this new perspective simply re-asserts

what Shaw and other nonlinear systems physicists have made clear—that

chaotic attractors pervade the natural world and that recognition of non-

linear phenomena restores complexity to the classical deterministic uni-

verse, which is the world we actually inhabit. At the same time, D&G’s

concepts give special emphasis to the chaotic attractor’s most radical and

deterritorializing e¤ects.
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Strikingly original research like Shaw’s often generates questions about

how it is to be interpreted: Is this research primarily empirical or theoret-

ical, physical or mathematical, creation or discovery? However, by con-

sidering his modeling of a chaotic attractor in relation to the machinic

phylum and the absolute deterritorialization of an abstract machine we

can easily see that it falls on neither side of these false oppositions but

represents an innovative conjunction made possible by physical measure-

ment and a creative extension of information theory. As noted earlier, the

whole point of Shaw’s experiment is not to use the observed data merely

to confirm the model as a correct understanding of a physical process, as

would be the case for a traditional experiment. Rather, it is to use it as

the basis for further computations that may account for the data’s

increasing di¤erence from the data that the model was supposedly con-

structed to explain. In fact, the novel use of computational theory is a

theme that characterizes much innovative contemporary science. In using

experimental data in a manner not to confirm what is already known but

to measure the rate of its destruction, Shaw becomes a kind of probe

head, the human part of a machinic assemblage that functions like a dy-

namic feedforward device, relentlessly pushing into the unknown (or at

least the unpredictable future) all while insistently measuring the rate of

that advance. What is a‰rmed and confirmed—for both physics and phi-

losophy, and against their prior and respective idealizations—is that pro-

cesses of dynamic change follow the irreversible arrow of time.

Further consequences follow. First, as suggested earlier, Shaw’s re-

search possesses an epistemological complexity di¤erent in kind from the

methodologies made by means of the telescope or microscope, whose

prosthetic powers made visible phenomena previously imperceptible to

the naked eye. Although the physical evidence required a conceptualiza-

tion in order to become part of scientific theory—in Newton’s theory of

gravity or the germ theory of disease, for example, it also retained an au-

tonomy within the empirical order. But in chaos science the behavior of

numbers points to kinds of changes that can’t be seen directly, except in

a simulation. Lorenz’s research, for example, did not so much explain

the phenomena of weather as provide numerical evidence—and a new

understanding—of its unpredictability. In Shaw’s experiment the primary

data are measured intervals between drops of water, but what matters are

how these intervals are correlated as indices of information storage and

loss in a simple physical system. Although we can see turbulence in water

flowing from a faucet, the irretrievable loss of information it instantiates

as a process can only grasped in a complex conceptualization. In Shaw’s
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experimental apparatus what counts as empirical data and as theoretical

construct are mediated not only by the computer but by a new under-

standing of computation, which brings the two together in a new kind of

dynamic relationship. This mediation, which is both a material and dis-

cursive conjunction, can best be understood diagrammatically, in relation

to a computational assemblage that opens out onto the machinic phylum.

A Complexity Metric: ��-machine Reconstruction

This reading of Shaw’s work is confirmed and can be extended by consid-

ering some very original research carried out by Shaw’s younger col-

league in the Santa Cruz Collective, James P. Crutchfield. Like other

members of the Collective, in the late 1970s and early ’80s Crutchfield

published a number of pathbreaking articles that greatly advanced our

understanding of chaotic attractors, specifically in terms of the modeling

and measurement of their behavior. Study of the coupling of dynamical

systems with external information sources and the influence of noise

soon led Crutchfield to focus on the computational capacity of physical

processes. Given a data stream obtained by a measuring instrument (like

Shaw’s waterdrop intervals), how could the physical processes that pro-

duced it be understood as instantiating a computation and therefore be

modeled as a specific type of computational machine? Thus, whereas

Shaw had sought to measure how the information stored and transmitted

in a system varied as it gradually entered a chaotic regime, Crutchfield

became interested in how a dynamical system’s intrinsic computational

capacity might be measured in relation to its changing state. His objec-

tive, in short, was to (re)construct a computationally equivalent machine,

or what he would call an �-machine. Given that there are many di¤erent

computational models, classes, and languages, the complexity of the par-

ticular ‘‘reconstructed’’ machine or automaton would necessarily reveal a

great deal about the complexity of the physical process that produced the

data stream. The point of reconstructing such a machine, however, was

not simply to reproduce this stream (or a future time series of data) but

to measure quantitatively the complexity of the computational process

required to produce it. In essence, the �-machine reconstruction would

provide a complexity metric for nonlinear or chaotic systems.

For Crutchfield, complexity means a productive tension between order

and chaos. More specifically, he assumes that the data stream will be nei-

ther orderly and predictable, like the motion of a clock, nor utterly ran-

dom and unpredictable, like a series of coin flips. Research on nonlinear
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systems suggests that a rich spectrum of unpredictability lies between

these two extremes, and that complexity would appear to be an amalgam

of both order and randomness, the unpredictable result of their interplay.

‘‘Natural systems,’’ Crutchfield writes, ‘‘that evolve with and learn from

interaction with their immediate environment exhibit both structural

order and dynamical chaos.’’45 The interface between structure and un-

certainty often results in increased complexity, which can appear ‘‘as a

change in a system’s computation capability.’’ Indeed, the present state

in the course of evolutionary progress suggests that we need ‘‘to postulate

a force that drives in time toward successively more sophisticated and

qualitatively di¤erent computation.’’ We ourselves, and our ongoing

attempts to construct more sophisticated models, both of ourselves and

of the processes around us, are the evidence for this, in addition to the

fact that we can look back to earlier times when there were ‘‘no systems

that attempted to model themselves’’ (46). Answering the question of how

‘‘lifeless and disorganized matter [can] exhibit such a drive’’ is therefore

essential to the understanding of our own complexity.

As we might expect, the task of measuring complexity involves both

new conceptual and technical tools. As Crutchfield conceptualizes it,

two distinct kinds of processes must be taken into account. On the one

hand, reconstructing an �-machine is fundamentally an inductive problem

(detecting a pattern in the data stream) and involves formal learning

theory in its inference of a regularity. Treated as a sequence of symbols,

the data stream implies a specific language with its own type of grammar,

in the sense that formal language theory defines these terms. On the other

hand, to reconstruct an �-machine requires the application of computa-

tional ideas to dynamical systems and therefore a statistical mechanical

description of the machines themselves. Critically, the reconstruction

must be of ‘‘minimal computational power yielding a finite description

of the data stream.’’46 This minimality is essential, since it restricts ‘‘the

scope of properties detected in the �-machine to be no larger than those

possessed by the underlying physical system’’ (230). In other words, the

�-machine must be able to reproduce exactly—nothing greater and noth-

ing less than—the physical system’s intrinsic capacity for computation.

The very idea of an �-machine thus implies a hierarchy of computational

models and types, di¤erentiated by the order of complexity each type of

computation is capable of. As we saw in the previous chapter, Noam

Chomsky produced the first and best-known of these computational hier-

archies, in which the complexity of the type of language is ranked accord-

ing to the complexity of the machine or automaton that recognizes or can
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generate it. Specifically, this hierarchy provides the following correlation

between formal languages (grammars) and automata (machines), in an

order of increasing complexity:

1. Regular languages are recognized by finite-state automata.

2. Context-free languages are recognized by pushdown automata.

3. Context-sensitive languages are recognized by linear-bounded

automata.

4. Phrase-structure or recursively enumerable languages are recognized

by Turing machines.

Epsilon-machine reconstruction assumes and builds on this hierarchical

correlation. To be sure, computation theory cannot simply be applied to

the construction of computational metrics for natural physical processes,

as Crutchfield is well aware. Many di¤erences have to be taken into

account, and the theory itself has to be extended in several ways. For

example, whereas research in computation theory is primarily occupied

with scaling the di‰culty of di¤erent computational and information-

processing tasks, any attempt to use computation theory for scientific

modeling must be able to measure structure in stochastic processes.47 In

fact, in order to construct a useful computational hierarchy, a wide range

of variables must be considered, such as how input-output configurations

correspond to internal states of the machine, the amount and kind of

memory required to perform the computation, and so on. In ‘‘Recon-

structing Language Hierarchies,’’ Crutchfield includes a table of eight

di¤erent types, ranked according to specific formal criteria such as gram-

mar, state, memory, and so on; however, in ‘‘The Calculi of Emergence’’

the computational hierarchy contains a much greater diversity of compu-

tational mechanisms, as we see from his diagram (fig. 3.13). Indeed, look-

ing at the array of twenty-four interrelated but distinguishable types, one

cannot help but wonder if this mapping of abstract machines might repre-

sent a new kind of computational phylum.

Like Shaw’s experimental assemblage, Crutchfield’s �-machine recon-

struction can be reconceptualized as a two-part computational assem-

blage: on the one hand it is a machine for producing a data stream (i.e.,

measuring physical quanta); on the other, a machine for (re)producing

the structure of this data in a correlative computational discourse. If the

data stream is conceived of as a symbol string that obeys the ‘‘grammar’’

of a formal language, then it should correspond to a specific type of ma-

chine or automaton.48 The di‰culty arises when the data stream exhibits
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Figure 3.13
The discrete computation hierarchy. James P. Crutchfield, ‘‘The Calculi of Emergence:
Computation, Dynamics and Induction,’’ Physica D 75 (1994): 21.
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the e¤ect of a nonlinear parameter and thus the presence of a chaotic

attractor in the dynamical system producing it. Given that Crutchfield’s

�-machine reconstruction is explicitly designed to model complexity in

the form of noticeably irregular or chaotic data and is therefore predi-

cated on the conjunction of a physical machine and discursive machine,

it is not surprising that the result resembles what I have been calling a

computational assemblage. As with Shaw’s computational assemblage,

the relationship between the physical machine and the discursive machine

is one that reflects dynamical di¤erences rather than simple numerical

correlations.49 Only this more complex kind of correlation, it would

seem, makes the quantification of complex behavior possible.

In several articles, but most notably in ‘‘Computation at the Onset of

Chaos,’’ Crutchfield focuses on a complex behavior well known in chaos

science: the period-doubling cascade observed when a system first ad-

vances along the route to chaos. The most familiar of such nonlinear sys-

tems is the logistic map plotted by the di¤erence equation

xnþ1 ¼ rxnð1� xnÞ
which exhibits steady states, periodic cycles of di¤erent lengths, and

chaos for di¤erent values of r. Specifically, with increasing values of r

above 3.0, the system enters a period-doubling regime. In e¤ect, the sys-

tem cycles twice through phase space before exactly repeating its periodic

orbit, then cycles four times, then eight times and so forth, in what was

recognized early in the development of chaos science as a telltale sign of

the system’s entry into a chaotic regime.50 In the terms of dynamical sys-

tems theory, with each cycle the attractor bifurcates, or splits into two

attractors. These bifurcations indicate a dramatically increasing instabil-

ity in the system and correspond to the system’s phase transition from a

solid and orderly structure to a fluid or gaseous one. Typical bifurcation

diagrams of this transition (see fig. 3.14) show a slowly increasing series

of pitchfork splittings that eventually give way to a series of blurry bands

unpredictably punctuated by clear stripes, indicating brief reappearances

of periodic (i.e., orderly) behavior. Reproducing a similar bifurcation

map, Gleick notes that ‘‘the structure is infinitely deep. When portions

are magnified . . . they turn out to resemble the whole diagram’’ (74–75).

In other words, the structure is fractal.

How might this behavior be emulated by a set of computational

machines or automata whose output would provide data sets that (re)pro-

duce such a mapping? To produce the equivalence of periodic behavior

would be easy: it would only require a stored pattern that repeated itself,
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like 001100110011. . . . Likewise, a random behavior would be easy to

generate using a Bernoulli-Turing machine, which could feed stochastic

input to a Turing machine through contact with a heat bath information

source, such as a boiling pot of water.51 As we have seen in previous sec-

tions, the first type of behavior would be low in information content,

while the second would be high. Furthermore, according to measures of

complexity derived from Shannon’s information entropy and ergodic

theory, most notably Kolmogorov’s ‘‘algorithmic complexity,’’52 the first

would also be low in complexity and the second high. But this seems

counterintuitive, given the just noted ease with which both behaviors can

be reproduced. Crutchfield thus argues for a measure of complexity that

would reflect the relative simplicity of both regularity and randomness,

compared with the behavior observed in phase transitions. As noted, he

believes that a measure of the computational e¤ort needed to model and

reproduce the behavior of nonlinear dynamical systems would reflect such

di¤erences. This other kind of complexity he calls statistical complexity.53

Indeed, the whole point of �-machine reconstruction is to provide a suit-

able way to measure it.

Returning to the problem at hand, we note that a system in a period-

doubling cascade en route to chaos seems to partake of both types of be-

havior in an impure mix, so to speak, with a marked transition from one

toward the other. Since this complexity of behavior may not be captured

with measures of entropy and mutual information, the classification of

system behavior based on an application of the entropy metric to the stor-

Figure 3.14
Bifurcation map.
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age and transmission of information (as in Shaw) must be seen as limited.

That approach, Crutchfield demonstrates, can be complemented with one

based on the combination of computation theory with nonlinear dynam-

ical systems theory in such a way that the behavior under study would be

graded according to the intrinsic amount of computation that is per-

formed by the dynamical system, ‘‘quantified in terms of machine size

(memory) and the number of machine steps [required] to reproduce be-

havior’’ (226). Put simply, since a dynamical system consists of a series

of states and their transitions, its computational machine equivalent

would consist of a directed graph of nodes and links (like the examples

in chapter 2) that would accept or generate only those sequences of sym-

bols allowed by its computational grammar or formal language. Crutch-

field goes on to show that the behavior of the period-doubling cascade

at its initial stage has as its machine equivalent a series of deterministic

finite-state automata, which grow in size as the periods double. As the

system enters more deeply into the chaotic regime, its states, though still

visited deterministically, exhibit nondeterministic branching, meaning

that at certain points in the system’s orbit through phase space—the

points of bifurcation—it must ‘‘choose’’ between two equally viable

states. To compute this e¤ect requires a higher-order machine in the

Chomsky hierarchy. Specifically, the critical limits of the phase transition

require a computational machine with an ‘‘indexed context-free gram-

mar,’’ in other words, an automaton with a nondeterministic nested stack

(that is, a memory with a ‘‘last in first out’’ structure). Crutchfield then

demonstrates that this jump in level of machine complexity is explained

by the fact that ‘‘nontrivial computation, beyond information storage

and transmission, arises at a phase transition’’ (257).

‘‘Computation at the Onset of Chaos’’ thus makes fully evident that

Crutchfield’s project goes well beyond a categorization of levels of com-

plexity such that, for example, thanks to his research we might know

that a particular physical process P requires a computational machine of

complexity M to fully account for it. His underlying aim, as he plainly

avows, is to establish the relationships between levels and to know pre-

cisely which changes in a physical process require or instantiate a jump

in computational level. And indeed, these are precisely the terms of his

actual achievement. Having devised a workable ‘‘complexity metric,’’ he

has been able to show that the emergence of complexity in certain physi-

cal processes is associated with the innovation of new computational

model classes. In simpler terms, as certain physical systems tend toward

the onset of chaos, they exhibit a marked increase in computational
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capacity and thus in their information-processing capacity. But there is

more. Crutchfield’s complexity metric reveals a very precise relationship

between the increasing complexity and the increasing randomness of a

dynamical system: the two increase together only up to a certain point—

the point of a phase transition and the onset of chaos—beyond which

complexity begins to decrease as the randomness (or Shannon informa-

tion entropy) further increases (‘‘Computation at the Onset of Chaos,’’

258–262).

These unexpected discoveries are absolutely essential for future work in

complex systems and theories of complexity. Yet this work has also been

of special interest to those studying evolutionary dynamical systems,

where the complex interplay between dynamical behavior and informa-

tion processing is clearly essential to their full understanding.54 It should

come as no surprise, therefore, that the combination of chaos science (or

nonlinear dynamical systems theory) and computational theory has been

a sine qua non for the development of the new science of ALife and com-

plex adaptive systems, as we’ll see in part II.
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4 Vital Cells: Cellular Automata, Artificial Life, Autopoiesis

Durham tried again, but the Autoverse was holding fast to its laws. Red atoms could

not spontaneously appear from nowhere—it would have violated the cellular autom-

aton rules. And if those rules had once been nothing but a few lines of a computer

program—a program which could always be halted and rewritten, interrupted and

countermanded, subjugated by higher laws—that was no longer true. Zemansky

was right: there was no rigid hierarchy of reality and simulation anymore. The chain

of cause and e¤ect was a loop now—or a knot of unknown topology.

—Greg Egan, Permutation City

The very idea of self-reproducing machines disrupts our conceptual

boundaries and sets us wondering how such self-reproduction could be

initiated and sustained. Specifying the formal conditions that would have

to be met in order for such a process to occur, John von Neumann first

broached the question from a logical point of view. In ‘‘The General and

Logical Theory of Automata’’ (1948) and then in his five-part lecture

‘‘The Theory and Organization of Complicated Automata’’ (1949), von

Neumann considered di¤erences between natural and artificial automata

in computation, control, and complexity. Then in ‘‘The Theory of Au-

tomata: Construction, Reproduction, Homogeneity,’’ a manuscript begun

in 1952 but not completed during his lifetime, he worked out the design

criteria and specifications for a self-reproducing automaton.1 However,

it was not until the late 1970s that von Neumann’s schema came to fru-

ition, when Christopher Langton embedded a self-reproducing machine

in a cellular automaton running on an actual computer. Then, in order

to gather together scientists interested in ‘‘the synthesis and simulation of

living systems,’’ Langton organized a conference (which took place in

1987) that led to the founding of the new science of ALife.2 Drawing

on both theoretical biology and computer science—but reducible to

neither—artificial life fomented new questions about life and its relation



to information, mainly by creating digital organisms that could replicate

and evolve within computer-generated virtual machines. Moreover, as

ALife dovetailed with and relayed theories of self-organization and emer-

gence in nonlinear dynamical systems, it took a leading role in the forma-

tion of a new conceptual framework in the interdisciplinary study of

complex adaptive systems.3

From the outset ALife constituted a new kind of computational assem-

blage, one that produced both new forms of lifelike behavior and a scien-

tific discourse that was performative and synthetic rather than simply

descriptive and analytic. In challenging conceptual boundaries, it also

raised novel philosophical questions. Daniel Dennett, for example, has

suggested that ALife is ‘‘a new way of doing philosophy’’ and not simply

a new object for philosophy.4 Like its putative older cousin artificial

intelligence—although the filiation is misleading in key respects—ALife

involves the creation and testing of thought experiments, with the di¤er-

ence that the experimenter is kept honest by the fact that the experiments

are, as Dennett puts it, ‘‘prosthetically controlled’’ by the ‘‘simulational

virtuosity of computers.’’ Although Dennett does not discuss specific

experiments, he understands that ALife is no ordinary science, since it

creates both a new kind of object and a new methodology. Initially opin-

ion di¤ered on whether this object was only the simulation of natural life

processes and behaviors or the actual realization of life in a nonorganic

medium—ALife’s ‘‘weak’’ and ‘‘strong’’ forms, respectively. About its

methodological significance, however, there could be no doubt. Proceed-

ing by what Dennett calls ‘‘bottom-up reverse engineering,’’5 ALife

opened up a new space of exploration, a search or design space predi-

cated on an innovative synthesis of computational theory, dynamical sys-

tems theory, and the Darwinian theory of evolution.

Even more than AI, ALife experiments loosen hard-and-fast oppo-

sitions between the natural and the artificial—phusis and technē—

oppositions that are increasingly being challenged and transformed.6 To

be sure, the opposition between organism and machine has never been a

simple empirical given, even while functioning, at least since Aristotle, as

a mainstay of Western metaphysics. What has enabled the boundary line

between machines and biological organisms (‘‘life’’) to be drawn and

maintained is the basic fact that machines have never been able to repro-

duce themselves. In Kant’s classical formulation, a machine possesses

only ‘‘motive force,’’ not ‘‘formative force.’’ In contrast, a product of na-

ture is an ‘‘organized being that has within it formative force, and a for-

mative force that this being imparts to the kinds of matter that lack it
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(thereby organizing them). This force is therefore a formative force that

propagates itself [ fortpflanzende bildende Kraft ]—a force that a mere

ability [of one thing] to move [another] (i.e., a mechanism) cannot ex-

plain.’’7 What all machines thus lack (Kant’s specific example is a watch)

is ‘‘natural purpose,’’ which is exhibited by all ‘‘organized beings.’’ Natu-

ral purpose, in turn, follows from two conditions, both of which must be

met: the parts of organized being are produced and exist for one another,

and they are all part of a self-organizing unity of the whole. Again,

machines lack this purposiveness, or the capacity to be self-organizing

and self-directed, and receive not only their formal cause or purpose but

also their e‰cient cause from outside themselves. As Kant summarily

states, machines exist only ‘‘for the sake of the other.’’

Not surprisingly, then, when machines begin to self-organize and re-

produce, they attain a dramatic kind of ‘‘life’’ never before imagined, ex-

cept under the literary or mythic aegis of the demonic and the infernal.

Yet it is not from these categories and the thinking they imply that

machinic life will liberate itself. What we now see taking place, rather, is

a complex process of involution and rearticulation: not only have new

kinds of abstract machines been constructed that can reproduce them-

selves, but biological life itself has been reconceived in terms of ‘‘living

systems,’’ that is, as self-organizing biochemical machines that produce

and maintain their own boundaries and internal regulation. The theory

of autopoiesis proposed by the Chilean biologists Humberto Maturana

and Francisco Varela is the earliest and most influential version of this

reconceptualization. Inspiring what is generally considered to be cyber-

netic theory’s ‘‘second wave,’’ Maturana and Varela defined a living sys-

tem as a machine that constantly produces, regenerates, and maintains

itself in all of its parts and processes as a function of its dynamic and

self-directed organization. Arguing that autopoiesis is the essential defin-

ing feature of all living systems, they decried the information-processing

bias of molecular biology as misleading, precisely because it centralizes

DNA and cellular reproduction, which they regard as a subsidiary or sec-

ondary process.

When ALife and the theory of autopoiesis are considered together, as

they will be in this chapter, they provide striking evidence of a double in-

version in which each side of the opposition between machines and bio-

logical organisms gives way to the other: nonorganic machines become

self-reproducing quasi organisms, and organisms become autopoietic

machines. This double inversion participates in a contemporary tendency

of technological development that Kevin Kelly has vividly described as
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neobiological.8 Marshaling an impressive array of examples from systems

theory, ecology, computer simulations, robotics, e-commerce and evolu-

tionary theory, Kelly argues that we have entered a new era defined by

a ‘‘biology of machines,’’ in which ‘‘the realm of the born—all that is

nature—and the realm of the made—all that is humanly constructed—

are becoming one’’ (1). But whether this is a becoming ‘‘one’’ or a new

and dramatic exfoliation of the machinic phylum—the position I take, it

is clear that the opposition between machine and organism no longer

marks the site of a simple conceptual breach or collapse; rather, it has be-

come a nexus from which new conceptual possibilities and technologies

are rapidly emerging. Computer viruses and recent attempts to construct

artificial immune systems, both discussed below, are only two of many

compelling examples.

Life on the Grid

When John von Neumann first began to think about how self-reproduc-

ing machines could be constructed, he imagined a Rube Goldberg–like

apparatus floating in a lake. This apparatus, or automaton, consisted of

various ‘‘organs’’ that would enable it to build a copy of itself out of parts

freely available in the lake. The most important of these organs were a

Turing machine with a tape control that could both store and execute

instructions and a ‘‘universal constructor’’ with a constructing arm and

various ‘‘elements’’ that could sense, cut out, and connect other elements.

In the design of the automaton certain elements called ‘‘girders’’ provided

both structural rigidity and encoded information (i.e., their presence or

absence at certain joints denoted 1s or 0s). The ‘‘lake’’ was simply a reser-

voir of elements that di¤ered from the universal constructor only in that it

was unbounded and lacked internal organization.9

This rather crude and unwieldy model could nonetheless serve its in-

tended purpose, for what von Neumann sought was not so much a mate-

rial device that could be constructed as a visualizable instantiation of a

set of abstract logical functions. Intrinsic to the automaton’s design was

von Neumann’s insight that in order for an entity to reproduce itself—

whether that entity be natural or artificial—two separate but imbricated

functions were necessary. First, the entity would have to provide a blue-

print with instructions that when activated could direct the production of

a copy of itself. Second, the blueprint and instructions would have to be

passively copied into the o¤spring, which otherwise would not be able to

reproduce itself in turn. Summarily, then, the reproductive mechanism
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would have to contain information that could function as both executable

instructions and passive, or uninterpreted, data to be copied. Watson and

Crick’s discovery of the structure of DNA in 1953 confirmed that nature

itself used the same dual functionality for the reproduction of life.

Von Neumann’s student Arthur Burks called this first attempt to

instantiate the principles of self-reproduction in an abstract logical struc-

ture the kinematic model. Its obvious limitation was its material complex-

ity. Consequently, in order to avoid unwieldy problems like the sensing,

cutting, and connecting of the girders randomly dispersed in the lake,

von Neumann decided, following the suggestion of the mathematician

Stanley M. Ulam, to try a di¤erent medium—a cellular automaton. In

its most common form, a CA is a two-dimensional lattice, or checker-

board array, divided into square cells, each of which is a finite-state au-

tomaton. Recall that at each time step every cell takes its present state as

well as the states of its surrounding neighbor cells as its input. Its output

will then be its own state in the next time step, as defined by a specific set

of rules called a state-transition table. For example, a transition rule

might be that if three or more of the adjacent cells are ‘‘alive’’ (‘‘on’’),

then the central cell will also be ‘‘alive’’ for the next time step; if not,

the cell will ‘‘die’’ or go quiescent. Such simple rules can generate very

complex behavior.10 In von Neumann’s cellular automaton there were

twenty-nine possible states for each cell: one quiescent state and twenty-

eight ways to be on. Von Neumann thought that such a large number of

states would be necessary in order to work out the state-transition table

that would yield a configuration of cells with the specific property that it

could reproduce itself.

As with the kinematic model, the automaton consisted of two parts: a

control unit (basically, a universal Turing machine) and a constructor

arm. Given the right programming (i.e., the right set of rules), the con-

structor control would ‘‘grow’’ a constructor arm out into an empty, or

o¤, region of the cellular space. As the ‘‘head’’ of the constructor arm

scanned back and forth, it would produce new on cells. Eventually a

copy of the original configuration would be built from the surrounding

cells. Finally, when complete, it would separate from the original config-

uration and begin to reproduce itself in turn. In contrast to the kinematic

model, self-reproduction in the cellular automaton takes place simply by

extending into and directly organizing the adjacent space according to the

logic of a predefined set of rules. Despite the fact that von Neumann

never fully worked out the state-transition tables—an essential but ardu-

ous task—the entire conception possesses an eerie brilliance. Yet von
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Neumann also realized that by ‘‘axiomatizing’’ natural automata in this

way, ‘‘one has thrown half the problem out the window and it may be

the more important half,’’ since ‘‘one has resigned oneself not to explain

how these parts are made up of real things. . . . One does not ask the most

intriguing, exciting and important question of why the molecules or

aggregates which in nature really occur in these parts are the sort of

things they are’’ (Theory of Self-Reproducing Automata, 77). In other

words, there could be other forces at work in the physical process of self-

reproduction that this formalization fails to capture, a possibility that

would come to haunt ALife research.

Following Arthur Burks’s editing and completion of von Neumann’s

manuscripts, both Edgar Codd and John Conway devised cellular autom-

ata that could self-reproduce, but with far fewer states per cell.11 Conway

also initiated an eventually successful e¤ort to prove that some cellular

automata are computationally universal (that is, equivalent to Turing

machines). Then, in the late 1970s and early 1980s, just as the study of

cellular automata was about to tail o¤ into complete obscurity, a number

of physics-oriented researchers—among them J. Doyne Farmer, Norman

Packard, Edward Fredkin, Tommaso To¤oli, Norman Margolus, and

Stephen Wolfram—began to explore CA as dynamical systems. In 1983

an invigorating interdisciplinary workshop at Los Alamos National Lab-

oratory brought these scientists together and consolidated this new per-

spective. The key idea was that a change of state in a discrete dynamical

system was also a computation. Since in a CA each cell in the whole

array of cells is changing state simultaneously, the computation is actu-

ally parallel, rather than serial, as Stephen Wolfram explains in the pref-

ace to the workshop Proceedings:

The discrete nature of cellular automata allows a direct and powerful analogy be-

tween cellular automata and digital computers to be drawn. The initial configura-

tion for a cellular automaton corresponds to the ‘‘program’’ and ‘‘initial data’’ for

a computation. ‘‘Processing’’ occurs through the time evolution of a cellular au-

tomaton, and the ‘‘results’’ of the computation are given by the configurations

obtained. Whereas typical digital electronic computers process data serially, a

few bits at a time, cellular automata process a large (or infinite) number of bits

in parallel. Such parallel processing, expected to be crucial in the architecture of

new generations of computers, is found in many natural systems.12

One of the main themes of the conference, in fact, was that cellular au-

tomata, in their capacity to perform parallel and highly distributed com-

putations, could provide a new and better tool for studying the behavior

of complex dynamical systems. In short, CA could simulate many physi-
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cal processes that when modeled using di¤erential equations were compu-

tationally intractable.

Overall, then, CA research following von Neumann underwent two dis-

tinct developments: the mechanism of self-reproduction was simplified

and the parallel processing capacities of CA were actualized in computer

simulations. But yet another possibility was waiting in the wings, which

would eventually give birth to ALife. This was the realization that cellu-

lar automata, by virtue of their capacity to generate self-reproducing

structures and, like many natural systems, to process information in par-

allel streams, might actually constitute another form of life. In other

words, computers could not only simulate natural forms but synthesize

and actualize life in a computational medium.

Christopher Langton, who had pursued the trajectory of CA research

from von Neumann to Burks, Cobb, and Conway more or less on his

own, made this idea a concrete reality. He would later argue that biolog-

ical life as we know it may be only one possible form—it is carbon-

based—of a more general process whose logic and essential properties

remain to be discovered. This would mean that some of the properties of

life as biologists currently study it may be only contingent properties, due

solely to local conditions on Earth. It is easy to see how research with

CA, in which ‘‘cells’’ interacting according to simple rules produce highly

complex patterns of behavior, would lead Langton to the idea that life is

‘‘a property of form, not matter, a result of the organization of matter

rather than something that inheres in the matter itself.’’13 Neither nucleo-

tides nor amino acids are alive, he observes, yet when combined in a cer-

tain way ‘‘the dynamic behavior that emerges out of their interactions is

what we call life.’’ Life is thus a kind of behavior—not a kind of stu¤—

that emerges from simpler behaviors. The complex behavior that emerges

from the nonlinear interactions among many physical parts are ‘‘virtual

parts’’ of living systems, in the sense that they cease to exist when the

physical parts are isolated.14 However, when these virtual parts—in

Langton’s metaphor, ‘‘the fundamental atoms and molecules of behav-

ior’’ (41)—are simulated in a computer, the dynamic behavior resulting

from their interaction is no less real and can lay claim to reality as a new

form of ‘‘life.’’

Langton shaped these ideas into the guiding principles of a new re-

search program. First, he organized and launched the conference on the

‘‘Synthesis and Simulation of Living Systems’’ mentioned above. It took

place in Los Alamos in 1987 and drew a diverse assortment of 160 scien-

tists working on ‘‘a wide variety of models of living systems, including
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mathematical models for the origin of life, self-reproducing automata,

computer programs using the mechanisms of Darwinian evolution to pro-

duce co-adapted ecosystems, simulations of flocking birds and schooling

fish, the growth and development of artificial plants, and much, much

more.’’15 Second, in the essay that would become the new research pro-

gram’s manifesto and the title of the conference proceedings, Langton

gave this diversity both a conceptual unity and a name. Appropriately,

the new discipline was called Artificial Life, and Langton would become

known as its founder.16

Langton’s path to conceptual innovation began as an attempt to pur-

sue a mysterious feeling he had experienced while working on the main-

frame computer at Massachusetts General Hospital, which employed

him as a programmer in the early 1970s. Debugging code one night while

running a long configuration of Conway’s Game of Life on the computer,

he was suddenly overwhelmed by a sense that what was on the screen was

somehow alive, and that something akin to life was evolving before his

very eyes. He soon sought out books on cellular automata theory and

retraced von Neumann’s work. A telephone call to Arthur Burks brought

the unexpected news that a self-reproducing cellular automaton had yet

to be programmed on a computer. Fortunately for Langton, desktop

computers were beginning to appear on the market, and in the summer

of 1979 he bought an Apple II. Within months he was able to duplicate

Codd’s work with eight-state CA, and by October he had created little

digital loops with short tails—were they organisms or machines?—that

could replicate and form colonies.

The centrality of the computer in Langton’s research cannot be over-

stated. Like von Neumann before him, he experienced a shift of interest

that can be viewed retrospectively as a two-stage process. Von Neu-

mann’s work with cellular automata grew out of his work developing the

new computing machines; in fact, his design for EDVAC, the first elec-

tronic general purpose, stored-program computer, was one of his most

far-reaching achievements. Like the cyberneticists, von Neumann thought

about these new machines in relation to both natural and artificial auto-

mata. His objective, nonetheless, was not to simulate or synthesize bio-

logical life but to understand how its organizational logic might be

deployed to achieve greater reliability in computational devices. When his

interest turned to constructing a self-reproducing automaton, he reasoned

roughly as follows. Since self-reproduction in nature occurs, there must

be an algorithm that describes it. If there is such an algorithm, then it

can be executed on a universal Turing machine. The task, therefore, is to
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embed a UTM that can both execute and copy its own instructions, along

with a universal constructor, in a cellular automaton. Langton continued

this line of thinking, which he also experienced in two stages. First, he

realized that with CA a self-reproducing structure could be achieved with-

out the necessity of either universal computation or a universal construc-

tor. Having demonstrated this insight with his self-reproducing digital

loops, he widened his objective to consider how new ideas about compu-

tation might provide the conditions of possibility for new forms of artifi-

cial life.

Langton defines this larger agenda in his introduction to Artificial Life.

In a section entitled ‘‘The Role of Computers in Studying Life and Other

Complex Systems,’’ he distinguishes between AI and Artificial Life.17

Whereas the former takes the technology of computers as a model of in-

telligence, the latter attempts ‘‘to develop a new computational paradigm

based on the natural processes that support living organisms’’ (50). As

Langton points out, this shift was already implicit in the development of

‘‘connectionist [neural] net’’ models that had revived an early strand of

AI research based on Warren McCulloch and Walter Pitts’s classic work

on neural nets.18 Langton therefore explicitly aligns ALife with connec-

tionism and its rejection of the digital computer’s architecture as a model

of intelligence. This alignment signals both an underlying conceptual and

a methodological a‰nity, inasmuch as both ALife and connectionism es-

pouse an understanding of intelligence and life based on the concepts of

dynamic self-organization and parallel, highly distributed information

processing.

This new approach to computation, later called emergent computation,

inverts the rigidly hierarchical, centralized command-and-control struc-

ture that dominated early AI approaches to modeling intelligence and

that is still deployed in most computer architectures today. The inversion

is necessary for the simple reason that, in contrast to AI’s top-down

approach, ALife ‘‘starts at the bottom, viewing an organism as a large

population of simple machines, and works upward synthetically from

there—constructing large aggregates of simple, rule-governed objects

which interact with one another nonlinearly in the support of life-like,

global dynamics’’ (Artificial Life [1989], 2). The result Langton calls

emergent behavior:

Natural life emerges out of the organized interactions of a great number of non-

living molecules, with no global controller responsible for the behavior of every

part. Rather, every part is a behavior itself, and life is the behavior that emerges

from out of all of the local interactions among individual behaviors. It is this
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bottom-up, distributed, local determination of behavior that AL employs in its

primary methodological approach to the generation of life-like behaviors. (Artifi-

cial Life [1989], 2)

Clearly it would not be appropriate, therefore, to instantiate this bottom-

up approach using a traditional computer program—‘‘a centralized

control structure with global access to a large set of predefined data-

structures’’—since such programs are specifically designed to halt after

producing a final result, not to allow ‘‘ongoing dynamic behavior’’ (Arti-

ficial Life [1989], 3).19 Accordingly, Langton proposes the following as

essential features of computer-based ALife models:

� They consist of populations of simple programs or specifications.

� There is no single program that directs all of the other programs.

� Each program details the way in which a simple entity reacts to local

situations in its environment, including encounters with other entities.

� There are no rules in the system that dictate global behavior.

� Any behavior at levels higher than the individual programs is therefore

emergent. (Artificial Life [1989], 3–4)

As discussed below, the new computational paradigm defined by emer-

gence extends well beyond its application to ALife and has been general-

ized in what is loosely called complexity theory. Langton contributed

further to its development by creating Swarm, a software platform that

deploys a bottom-up, highly distributed architecture designed to simulate

a range of complex systems comprised of many interacting agents (Swarm

even allows for the hierarchical nesting of such complex systems).20 It

should be emphasized—particularly since Langton himself does not al-

ways receive proper credit—that it was within the context of ALife re-

search that the basic principles of emergence in the contemporary sense

were first fully elaborated.21

Langton points out in ‘‘Artificial Life’’ that the computer is both ‘‘an

alternative medium within which [one can] attempt to synthesize life’’

and a laboratory tool that replaces the ‘‘wetware paraphernalia’’ that

would normally stock a typical biology lab. This is because the computer

itself can incubate informational structures: ‘‘Computers themselves will

not be alive, rather they will support informational structures within

which dynamic populations of informational ‘molecules’ engage in infor-

mational ‘biochemistry’ ’’ (50–51).22 As both medium and tool, com-

puters can simulate complex processes such as turbulent flow as well as
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show that ‘‘complex behavior need not have complex roots’’ (51). Indeed,

one of Langton’s major points is that complexity often arises from the

interactions of many simple elements. Summarily, then, ALife involves

two fundamental themes: first, life is an emergent, bottom-up form of be-

havior arising from decentralized, nonliving elements in interaction; sec-

ond, as a form of behavior, it can be synthesized in media other than

that of organic chemistry, specifically in a computational medium in

which informational structures can replicate and propagate. While these

themes owe their condition of possibility to the computer, ALife itself

participates in the computer’s use within and further development of

new kinds of computational assemblages, which vary in material organi-

zation, means of functioning, and purpose.23

Artificial Life: The First Formulations

In his programmatic essay ‘‘Artificial Life,’’ Langton recontextualizes his

earlier research with cellular automata, for the most part presented in

articles published in Physica D,24 within a broad overview of this new

field of scientific inquiry. In addition, he discusses the work of those he

deems necessary or exemplary for ALife research. Beyond conveying

‘‘the ‘spirit’ of the Artificial Life enterprise’’ (92), Langton opens a new

beginning that necessarily concerns a moment of origination. What

begins with the conference (at least o‰cially or professionally) is a new

kind of science grounded in a reconceptualized understanding of life

based on simulation and synthetic (re)production and not limited by

what has been observed in the natural realm. But as discussed below, it

also leads to a new theorization of the origins of life. Indeed, the question,

what is life? is perhaps more central to ALife than it is to biology, which

restricts itself to documenting and explaining the empirical order of or-

ganic life. In contrast, ALife gives itself a double objective: to advance

scientific understanding of the mechanisms and logic of life regardless of

medium and to bring into existence new forms of nonorganic life. This

double objective necessarily means that ALife has an ambiguous status

in relation to traditional biology. For in taking what Deleuze and Guat-

tari call ‘‘the prodigious idea of Nonorganic Life’’ as a sanctioned objec-

tive of scientific research, Langton and fellow ALife scientists in e¤ect

join the ranks of other silicon probe heads who follow and develop the

flow of a new phylum. Yet ALife is less a window onto the ‘‘machinic

phylum’’ than its burgeoning and increasingly rich extension into new
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forms of behavior and even a new mode of being. With this double per-

spective in mind, let us review the intellectual framework that Langton

proposes.

In contrast to biology’s analytic approach, which breaks down living

systems into their component parts in an attempt to understand how

they work, ALife seeks to synthesize not simply life as we know it but,

more importantly, life as it could be. Theoretically this means that ALife

is no longer simply a mimetic undertaking but is a performative and

productive one. Langton wisely confines himself to what this means in

practice—producing diverse and complex lifelike behavior through evolu-

tion in an artificial or wholly constructed medium. Specifically, in its

attempts to generate lifelike behavior, ALife will first identify the mecha-

nisms by which behavior is generated in natural systems and then recreate

these mechanisms in artificial systems. Unlike AI, which seeks to produce

the e¤ects of intelligence without concerning itself with the methods by

which it occurs naturally, ALife endeavors to follow nature in at least

one fundamental aspect, which Langton succinctly emphasizes: ‘‘Living

systems are highly distributed and quite massively parallel’’ (41). Further-

more, if life results from a particular organization of matter, rather than

from something inherent in matter, then nature suggests that this organi-

zation emerges from dynamic, nonlinear interactions among many small

parts. In other words, life does not result from the infusion of some uni-

versal law or life-principle into lower, more localized levels of activity but

emerges spontaneously from the bottom-up. Having rejected vitalism,

modern biologists generally believe that life can be explained by biochem-

istry. In principle, this means that they believe that ‘‘living organisms are

nothing more than complex biochemical machines’’ (5). In Langton’s

view, however, a living organism is not a single, complicated biochemical

machine but a large population of relatively simple machines. The com-

plexity of its behavior results from the highly nonlinear nature of the

interactions among all the members of this polymorphic population. ‘‘To

animate machines,’’ he states, ‘‘is not to ‘bring’ life to a machine; rather it

is to organize a population of machines in such a way that their interac-

tive dynamics is ‘alive’ ’’ (Artificial Life [1989], 5). In practice this means

creating a population of machines that evolve and self-organize.

To model the complex behavior characteristic of life as a multiplicity of

machines, Langton appropriates the biological terms genotype and pheno-

type, applying the first to the set of local rules that define the local agents,

or elements, of the system, and the second to the behavior that results

from their interactions. Thus the genotype is a ‘‘bag of instructions,’’
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and the phenotype what happens when those instructions are executed.

Applied to nonbiological situations, the terms also yield a distinction of

levels: at the level of the genotype (GTYPE), local rules produce nonlin-

ear interactions among simple elements, or agents, while at the level of

the phenotype (PTYPE) global behaviors and structures emerge. Thus

defined, the model exhibits the essential key features of rich behavior

and unpredictability: nonlinear interactions among the constituent objects

specified by the GTYPE provide the basis for an extremely rich variety of

possible PTYPES, which draw on the full combinatorial potential implicit

in the set of possible interactions among the low-level rules. This means,

however, that we cannot predict the PTYPES that will emerge from spe-

cific GTYPES, due to the general unpredictability of nonlinear systems

(57–58). In other words, one cannot look at a GTYPE and determine

what kind of behavior or properties it will generate in the PTYPE. In-

versely, one cannot begin with a desired behavior or property (evident

in a given PTYPE) and work backward to the specific GTYPE that pro-

duced it. Again, this is because any specific PTYPE is the outcome of

many nonlinear interactions among local elements.25 For example, what

changes would have to be made in the human genome in order to pro-

duce six fingers on each hand instead of five? No answer can be calcu-

lated; there is only trial and error. Or rather, there is nature’s way—trial

and error guided by the process of evolution by natural selection. Lang-

ton concludes that ‘‘it is quite likely that this is the only e‰cient, general

procedure that could find GTYPES with specific PTYPE traits when non-

linear functions are involved’’ (58). Thus evolution enters the picture not

as an external theme that ALife will have to address but as the inevitable

and necessary solution to a dilemma internally generated by the very na-

ture of the object or process considered.

Turning to the building of actual GTYPE/PTYPE systems, Langton

considers only examples based on the methodology of ‘‘recursively gener-

ated objects’’—objects generated by repeatedly applying the same rule or

procedure within a larger procedure.26 (See the Lindenmayer system be-

low for an example.) The appeal of this approach ‘‘arises naturally

from the GTYPE/PTYPE distinction: the local developmental rules—the

recursive description itself—constitute the GTYPE, and the developing

structure—the recursively generated object or behavior itself—constitutes

the PTYPE’’ (59). As a consequence, the resultant behavior occurs in the

same medium as the rules written to generate it. Specific examples are

taken from three areas: Lindenmayer systems (L-systems), cellular au-

tomata, and computer animations.
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L-systems are produced by simply iterating over a set of substitution

rules, as in: for A, substitute CB, for B substitute A, for C substitute

DA, and for D substitute C. Taking A as the initial ‘‘seed,’’ one can

quickly generate a linear growth in a relatively short number of steps.

Thus A ! CB ! DAA ! CCBCB, and so forth. This kind of growth

can be correlated with the behavior of a specific type of finite-state ma-

chine. To achieve a branching growth one only has to introduce context-

sensitive rules to make the substitution rule change depending on what

lies to the left or right of the element in question (see Langton, 60–61,

for further discussion). With context sensitive rules one can generate

grammars equivalent to Noam Chomsky’s ‘‘context-sensitive or Turing

languages’’ (63) as well as propagate a signal in the sense of moving a

symbol from one position to another in a symbol string—from the far

left to the far right positions, for example. Context-sensitive rules thus en-

able one to embed a computational process that will directly e¤ect the

structure’s development.

This type of embedding is even more evident in the example of cellular

automata, where Langton introduces his own self-reproducing loops as

the ‘‘simplest known structure that can reproduce itself ’’ (64). Every cell

in the CA lattice is a finite automaton whose state-transition table is

defined by a single set of rules applied homogeneously across the lattice.

In this sense the rules constitute the ‘‘physics’’ of a discrete space/time

universe. However, although the same set of rules is iteratively applied

to update the cell states, the resulting individual cell states constantly dif-

fer because of changing local configurations. (In order to compute its

next state, each cell takes as input its own present state as well as the

states of its neighboring cells.) This context sensitivity of the rules is

what allows the embedding of general-purpose computers and structures

that compute and construct other structures (64). Moreover, since these

computers are ‘‘simply particular configurations of states within the lat-

tice of automata, they can compute over the very set of symbols out of

which they are constructed ’’ (64, author’s emphasis). To illustrate, Lang-

ton explains how his self-reproducing loops are embedded in a recursively

generated structure. Each loop consists of an inert sheath of cells within

which there is a data path. Along the data path, signals (carried by con-

tiguous cells) propagate counter-clockwise until they reach a T-junction

between loop and tail, where another loop begins to form. Through four

cycles of instructions an o¤spring-loop is gradually constructed, at which

point a collision of signals disconnects the two loops. These two loops in

turn replicate, then those replicate, and so on, eventually producing a col-
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ony of loops.27 In this way, Langton states, a ‘‘double level of recursively

applied rules . . . makes use of the signal propagation capacity to embed a

structure that itself computes the resulting structure, rather than having

the ‘physics’ directly responsible for developing the final structure from a

passive seed’’ (65). For Langton, this kind of embedding captures the fla-

vor of what happens in natural biological development, where the geno-

type codes for the constituents of a dynamic process in the cell and this

dynamic process then ‘‘computes’’ the expression of the genotype.

For his third example Langton cites Craig Reynolds’s computer simu-

lation of flocking behavior. Reynolds discovered that only three easily

programmable rules were necessary to make his artificial birds, or

‘‘boids,’’ exhibit realistic flocking behavior:

� to maintain a minimum distance from other objects in the environment,

including other boids,

� to match velocities with boids in the neighborhood, and

� to move toward the perceived center of mass of the boids in its neigh-

borhood. (Langton, 66)

The vivid computer simulations that instantiate Reynolds’s flocking al-

gorithm allow Langton to make an essential point about the ‘‘ontologi-

cal status of the various levels of behavior in such systems,’’ namely,

that even though boids are obviously not real birds, ‘‘flocking Boids and

flocking birds are two instances of the same phenomenon: flocking’’ (68,

author’s emphasis). In other words, the flocking behavior of boids is not

simply a ‘‘lifelike’’ imitation but emerges within an artificial system in the

same way that it emerges in nature—through the interaction of indepen-

dent agents following a simple set of rules. Here the complex behavior

(the PTYPE) that emerges from the interaction of simple agents whose

local behavior is determined by simple rules (the GTYPE) is just as real

or genuine as its naturally occurring counterpart. This means that terms

like model or simulation do not quite convey what is going on here:

Reynolds’s boids exhibit flocking behavior tout court and do not simply

imitate or simulate flocking behavior.28

Langton states this explicitly when he refers back to the L-systems and

self-reproducing loops in a summary statement: ‘‘The constituent parts of

the artificial systems are di¤erent kinds of things from their natural coun-

terparts, but the emergent behaviors that they support are the same kinds

of thing as their natural counterparts: genuine morphogenesis and di¤er-

entiation for L-systems, and genuine self-reproduction in the case of the

Vital Cells 179



loops’’ (68). From here it is a short step to ALife’s ‘‘strong claim,’’ with

which Langton concludes this section: ‘‘A properly organized set of artifi-

cial primitives carrying out the same functional roles as the biomolecules

in natural living systems will support a process that will be ‘alive’ in the

same way that natural organisms are alive. Artificial Life will therefore be

genuine life—it will simply be made of di¤erent stu¤ than the life that has

evolved here on Earth’’ (69, author’s emphasis).

Having established the cogency of this fundamental idea, Langton

turns to evolution and how the principles of natural selection might be

embedded in a population of machines. In the original (conference pro-

ceedings) version of the essay, Langton considers only John Holland’s

genetic algorithms, which apply the process of natural selection to the

problem of machine learning.29 Genetic algorithms, basically, are the re-

sult of methods Holland invented to ‘‘breed’’ algorithms that are more

e‰cient at performing specific tasks. Starting with a population of algo-

rithms (each typically encoded as a symbol string), Holland selected the

most successful and applied ‘‘genetic operators’’ to generate a popula-

tion of o¤spring. The basic genetic operators are: (1) random mutation,

(2) inversion or bit-flipping, and (3) ‘‘crossover,’’ where the algorithm is

split in half and the two halves ‘‘mated’’ with the two halves of another

algorithm. The entire process is then repeated several times. The method

turns out to be a very e¤ective way to search the ‘‘schema space’’ of pos-

sible algorithms and to produce algorithms meeting ever higher fitness

criteria. Holland also formulated theorems explaining this remarkable

e‰ciency.

In the expanded version of his essay Langton discusses several other re-

search projects that apply evolutionary principles to computation. In con-

nection with Holland’s work, John Koza extends genetic algorithms to

parse trees in the programming language Lisp. In what Koza calls genetic

programming, genetic operators are embedded in the programming lan-

guage itself.30 Another example of ‘‘computational artificial selection’’ is

the ‘‘biomorph breeder’’ program that Richard Dawkins wrote to illus-

trate the ideas in his book The Blind Watchmaker. Evolutionary program-

ming techniques, or ‘‘algorithmic breeders,’’ are also used by Danny

Hillis to design more optimized sorting programs and by Kristian Lindg-

ren to evolve better strategies for playing Prisoner’s Dilemma. In general,

these various projects are preliminary stages along the way toward elimi-

nating the human hand from the selection/breeding process, which would

thus allow something like genuine, autonomous evolution to occur. Lang-

ton’s crowning example in these terms is Thomas Ray’s computer-created
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environment Tierra, one of the most successful instantiations of the evo-

lutionary dynamic in ALife research. In Tierra, digital organisms (actu-

ally blocks of code) reproduce, mutate, and compete for the computer’s

resources, with the result that a complex ecology rapidly evolves. Since

this work will be discussed at length in the next chapter, I turn instead to

Langton’s subsequent research on computation and the origin of life, as

set forth in his essay ‘‘Life at the Edge of Chaos.’’

Life and Information at the Edge of Chaos

Whereas in ‘‘Artificial Life’’ Langton presents a framework for program-

matic research on the ‘‘biology of possible life,’’ that is, life defined with-

out the historical and possibly contingent restrictions of carbon-based

chemistry as it has developed on Earth, in ‘‘Life at the Edge of Chaos’’

he attempts to answer a specific question: ‘‘Under what conditions can

we expect a dynamics of information to emerge spontaneously and come

to dominate the behavior of a physical system?’’31 Langton’s answer is

emblazoned in his title. Taking it as a given that living systems are pre-

cisely instances in which ‘‘information processing has gained control

over the dynamics of energy, which determines the behavior of most

non-living systems’’ (41), Langton argues that it is ‘‘at the edge of chaos’’

that information processing is most likely to gain the upper hand over the

dynamics of energy exchange. To be sure, we may wonder if it is always

so easy to draw a clear line between information processing and the

dynamics of energy exchange, especially in biological processes. In these

general terms, in fact, many systems, such as the stock market, could per-

haps be said to exhibit the features of a living system.32 But Langton does

not concern himself with such possibilities and proceeds directly to his

argument.

The evidence, once again, is culled from his research with cellular

automata. He o¤ers the following list of features to justify their

appropriateness:

� CA are spatially extended, nonlinear dynamical systems.

� As nonlinear dynamical systems, CA exhibit the entire spectrum of

dynamical behaviors, from fixed-points, through limit cycles, to fully

developed chaos.

� CA are capable of supporting universal computation. Thus they are

capable of supporting the most complex known class of information

dynamics.
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� There is a very general and universal representation scheme for all pos-

sible CA: a look-up table. This form of representation allows us to

parameterize the space of possible CA, and to search this space in a ca-

nonical fashion.

� CA are very physical, a kind of ‘‘programmable matter.’’ . . . Thus what

we learn about information dynamics in CA is likely to tell us something

about information dynamics in the physical world. (42)33

The idea of CA as a kind of programmable matter is especially significant

here. To¤oli and Margolus explain that conventional models of computa-

tion like the Turing machine are structurally divided into fixed parts

(hardware) and variable parts (data and instructions). But a computer

built on this principle, they assert, ‘‘cannot operate on its own ‘matter,’

so to speak; it cannot extend or modify itself, or build other computers’’

(9). However, a special cellular automata machine, or CAM, can be spe-

cifically designed to do so. It would constitute a computationally amor-

phous machine that can be programmed to act as a numerical wind

tunnel one moment and a sea of fermions the next. In a later article,

‘‘Programmable Matter: Concepts and Realization,’’ To¤oli and Margo-

lus acknowledge that all computers ‘‘can realize programmable matter to

some extent,’’ but a CAM would do it ‘‘on a su‰ciently large scale (in

terms of spatial resolution and updating rate) and with su‰cient flexi-

bility (in terms of the underlying fine-grained model) for the concept of

‘programmable matter’ to come to life.’’34 In these terms Langton’s un-

derlying question becomes, To what extent can the idea of programma-

ble matter be extended to an understanding and reproduction of life

processes?

For Langton the answer requires a specific way to correlate the

information-processing capacity of CA with their dynamical state or re-

gime. Accordingly, he devises a tuning knob, which he calls the lambda

parameter, that reflects how changes in the CA rules correspond to the

changing behavior of the CA themselves. This behavior is mapped in

phase space in exactly the same way as the behavior of dynamical systems

is mapped in dynamical systems theory. The lambda parameter l varies

from 0, which corresponds to a lifeless, or frozen, state of the automata,

to 1, which corresponds to chaotic, completely aperiodic behavior. At low

values the system is rigid and exhibits little life. As the value of l slowly

increases, some activity appears, but then dies out, as if determined by a

limit point attractor. Around l ¼ 0:2 local structures begin to persist and

may propagate in a single direction. Around l ¼ 0:3 another dramatic
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change occurs, as self-sustaining structures propagate in every direction.

Behavior in this range seems to be determined by a periodic attractor,

the di¤erence being that around 0.2 interactions are only local, while

around 0.3 they propagate across the entire array. At values greater than

0.4, on the other hand, the system begins to go chaotic, as if pulled by a

strange attractor.35 The area of greatest interest therefore lies somewhere

in between, in ‘‘the sweet spot’’ of the CA rule space that Langton indi-

cates with the diagram in figure 4.1 (76).

As the behavior of the CA moves from fixed or periodic to chaotic, it

doesn’t alter continuously from one regime to another but passes through

the space of a critical phase transition. Far from being ‘‘a smooth surface

between the other two domains,’’ Langton argues, this transition regime

is a complex domain with its own ‘‘complicated structure’’ (75) that can

support ‘‘complex interactions between propagating and static structures’’

(69). But if this is the case, then these structures can in turn ‘‘be pressed

into useful service as logical building blocks in the construction of a uni-

versal computing device’’ (69). For example, glider guns (a particular

configuration of cells in Conway’s Game of Life) can be constructed to

emit on-o¤ pulses that can be arrayed together to function as AND,

OR, and NOT logic gates, which can in turn function as the basic build-

ing blocks of a computational device. Such an array of glider guns instan-

tiates what Langton calls ‘‘constructability,’’ which refers to whether or

Figure 4.1
Langton’s CA rule space. Christopher G. Langton, ‘‘Life at the Edge of Chaos,’’ in Artificial
Life II: Proceedings of the Workshop on Artifical Life Held February, 1990 in Santa Fe, New
Mexico, Santa Fe Institute Studies in the Sciences of Complexity 10 (Redwood City, Calif.:
Addison-Wesley, 1992), 76.

Vital Cells 183



not a particular set of CA rules can be used to construct logic gates and

thus be said to support computation. Some rule sets, for example, do not

yield glider guns.

Langton acknowledges that there is no sure determination or absolute

guarantee that constructability will always be the case: ‘‘Similar con-

structions can be made for other complex rules, but not all complex rules

tried have yielded to such simple constructions’’ (75). Yet this is not a

stumbling block, since what matters is the remarkable similarity observed

between ‘‘the surface-level phenomenology of CA systems’’ and ‘‘the

surface-level phenomenology of computational systems,’’ specifically

with respect to ‘‘the existence of complexity classes, the capacity for uni-

versal computation, undecidability, etc.’’ (75). Langton thinks that this

fundamental similarity can only be explained by concluding that ‘‘the

structure of the space of computations is dominated by a second-order

[or critical] phase transition’’ (75). In other words, the complex behavior

of CA and the conditions of universal computation exhibit the same un-

derlying structure because both are instances of a more general structure

of change, which can best be characterized by the phase transitions of

matter—from solid to liquid to gas.36

To define this underlying structure Langton draws on Stephen Wolf-

ram’s classification of the CA’s dynamical behavior. Wolfram found that

CA behavior falls into four general classes, with ‘‘analogs’’ (46) in

dynamical systems theory. In class 1, the cells go quiescent or ‘‘die’’ with-

in several time steps (they are drawn by a single-point attractor). In class

2, the cells are livelier but settle down to static or periodically oscillating

configurations, sometimes with fractal, self-similar structures (they are

drawn by a periodic attractor). In class 3, the cells behave chaotically,

with no patterns forming or lasting for more than a few time steps (they

are drawn by a strange attractor). In class 4, where the behavior is the

most interesting, the cells endlessly form localized structures, which often

move across the grid, break apart, and reform. Neither periodic nor cha-

otic and having very long transients, the behavior of the class 4 cells does

not correspond directly to any analog ‘‘identified among continuous

dynamical systems’’ (46), although this kind of complex behavior is some-

times exhibited in Conway’s Game of Life. Langton notes, however, that

there is an exact correspondence between the behavior of class 4 CA and

the l values that mapped the space of a phase transition in the CA rule

space diagram. While low l values correspond to classes 1 and 2, and

high values to class 3, the complexity of class 4 behavior corresponds to

a peculiar CA rule space that seems to define a specific regime with its

184 Machinic Life



own intrinsic features and phenomenology (see Langton’s diagram, fig.

4.2). Approaching this special regime from low l values, the CA exhibit

longer and longer periods of transient time as well as increasing sensitiv-

ity to array size. When moving away from this regime toward high val-

ues, the inverse occurs: at values that fall exactly within the domain of

complexity the transient time becomes immeasurably long or undecid-

able. From these correlations Langton concludes that the CA phenomen-

ology is structured by an underlying phase transition.

Furthermore, since the same or a very similar phenomenology holds

true for the space of computation, Langton concludes that ‘‘the structure

of the space of computation is dominated by a second-order phase transi-

tion’’ (75). Although mathematicians often develop a practical sense of

whether or not particular computations can be carried out in finite time,

Turing proved that in many instances computability cannot be deter-

mined in advance. Computational problems can therefore be classified ac-

cordingly: the first class is comprised of computations that halt (i.e., those

that can be solved in finite computational time); the second, of those that

do not halt (and thus that cannot be computed); and the third, of those

that are undecidable. Not surprisingly, the phenomenology of these three

Figure 4.2
Complexity versus lambda in Langton’s CA rule space. Christopher G. Langton, ‘‘Life at
the Edge of Chaos,’’ in Artificial Life II: Proceedings of the Workshop on Artifical Life
Held February, 1990 in Santa Fe, New Mexico, Santa Fe Institute Studies in the Sciences of
Complexity 10 (Redwood City, Calif.: Addison-Wesley, 1992), 77.
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classes suggested to Langton the same structure of the CA dynamics, with

its critical transition regime: the halting computations correspond to class

1 and class 2 CA, non-halting computations to class 3 CA, and undecid-

able computations to class 4. Once again this would mean that as one

approached the complex domain from either side, the transient time of

computability would increase exponentially. In short, the most complex

computations are to be found at a phase transition.37

Langton thus believed that he had found a clear correlation between

the complex behavior of nonlinear dynamical systems—in this instance,

that of cellular automata—and the structure or conditions of computabil-

ity. Hence the question, What kind of structure is necessary if informa-

tion is to be computed? The phase transition regime turns out to provide

both the underlying structure and the key to understanding its phenomen-

ology. To clinch his argument Langton presents a third instantiation—

the phase transitions of matter itself, from solid to liquid to gas and the

reverse. As ice melts, for example, it moves through a phase transition

from solid to liquid in which each molecule must ‘‘decide’’ whether to be

in either of two qualitatively di¤erent states. As the temperature ap-

proaches the limits of the phase transition, the molecules seem to require

more and more time to reach a decision. (Their transient time is said to

increase.) Accordingly, Langton understands the phase transition as a

moment of critical ‘‘slowing down,’’ when ‘‘the system is engaged in ‘solv-

ing’ an intractable problem’’ (82). Though this sounds anthropomorphic,

he thinks that the results justify our thinking that such systems are ‘‘e¤ec-

tively computing their way to a minimum energy state’’ (82, author’s

emphasis).

For Langton, these correlations provide ‘‘evidence for a natural domain

of information in the physical world’’ (81, author’s emphasis). To be sure,

the question of whether information exists in the natural world or is only

a human measure of structure is a thorny one, for it raises the semantic

problem of how information is to be defined as well as the epistemologi-

cal issue of its status.38 For Langton, nevertheless, the evidence that in-

formation processing—the storage, transmission, and modification of

information—takes place in the physical world is not in question.39 Nor

is there any question about where we should expect this process to emerge

and come to dominate the dynamics of a physical system: it is in a space

between orderly and chaotic regimes, in the vicinity of a critical phase

transition that can be defined precisely using the lambda parameter.

In the essay’s final section Langton summarizes what this work implies

about the relationship of life to matter, computation (or intelligence), and
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evolution. It seems very likely, he suggests, that ‘‘the origin of life

occurred when some physico-chemical process underwent a critical phase

transition in the early history of the earth’’ (81). His work lends credence

to this claim by o¤ering compelling evidence for a series of subsidiary

claims. First, there is ‘‘a fundamental equivalence between the dynamics

of phase transitions and the dynamics of information processing’’ (82).

Not only does the phenomenology of phase transitions explain the phe-

nomenology of computation, but also the reverse; thus these are not two

distinct phenomenologies, but one: ‘‘We are observing one and the same

phenomenon reflected in two very di¤erent classes of systems and their

associated bodies of theory’’ (82).

Second, solids and liquids are dynamical, rather than material, cate-

gories, and these two universality classes of dynamical behavior are

separated by a phase transition.40 Furthermore, since the dynamical be-

havior of systems operating near this phase transition provide a basis for

embedded computation, ‘‘a third category of dynamical behaviors exists

in which materials—or more broadly, material systems in general—can

make use of an intrinsic computational capacity to avoid either of the

two primary categories of dynamical behaviors by maintaining them-

selves on indefinitely extended transients’’ (83). More simply, a dynamical

system operating near a phase transition can use its acquired computa-

tional capacity to maintain itself near this enabling regime.

Third, ‘‘living systems can perhaps be characterized as systems that dy-

namically avoid attractors,’’ and ‘‘have learned to steer a delicate course

between too much order and too much chaos—the Scylla and Charybdis

of dynamical systems’’ (85). In these terms evolution can be viewed ‘‘as

the process of gaining control over more and more ‘parameters’ a¤ecting

a system’s relationship to the vital phase transition’’ (85). In sum, after a

living system has emerged near a critical phase transition, ‘‘evolution

seems to have discovered the natural information-processing capacity in-

herent in near-critical dynamics, and to have taken advantage of it to

further the ability of such systems to maintain themselves on essentially

open-ended transients’’ (85).41

Whereas his earlier theoretical objective was to synthesize artificial life

by abstracting and simulating its complex dynamical behavior, here

Langton arrives at a scenario for understanding not only the basic condi-

tions of life but also a specific mechanism by which life might have arisen

from nonlife and then maintained and perpetuated itself. He has argued

along the way that ‘‘hardness, wetness, or gaseousness are properties of

the organization of matter, rather than properties of the matter itself ’’
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(84), implying that it is only a matter of organization to turn ‘‘hardware’’

into ‘‘wetware’’ and that hardware should eventually be able to achieve

everything achieved by wetware. Fittingly, Langton ends with a paean to

water the writer James Joyce would no doubt have appreciated. While

theorists of the origin of life have looked to ‘‘the dynamics of molecules

embedded in liquid water,’’ Langton states, it may well be that life ‘‘origi-

nated in the dynamics of water itself ’’ (85).

Autopoiesis: The Self-Organization of Living Systems

Beyond its paramount importance in the founding of ALife, Langton’s

research possesses a methodological and intellectual interest compara-

ble in one respect to Robert Shaw’s and James Crutchfield’s work on

chaos: it combines (and to a certain extent synthesizes) an information-

processing, computational approach with a dynamical systems perspec-

tive, making them complementary aspects of the same computational

assemblage. In the next chapter I consider the critique of Langton’s

work on computation at ‘‘the edge of chaos’’ proposed by Melanie

Mitchell and James Crutchfield—one problem is that Langton doesn’t

define computation in relation to specific tasks—as well as further devel-

opments in ALife that similarly contribute to the fields of theoretical biol-

ogy and nonlinear dynamical systems theory. Here I want to turn to

another nonstandard theoretical approach to the definition of life, most

readily recognized by its central concept of autopoiesis. This approach

was developed in the 1970s by Humberto Maturana and Francisco

Varela. As they define it, an autopoietic system—for them all living sys-

tems are autopoietic—is organized in such a way that its only goal is to

produce and maintain itself. Directly opposed to the computational/

informational approach to the study of life, they object to the centrality

of DNA and genetic coding in molecular biology and seek to put the

autonomy and individuality of all living systems on a firm theoretical

footing.

Maturana and Varela first presented their theory in Autopoiesis: The

Organization of the Living, a collaborative work first published in Chile

in 1972.42 Later, in Principles of Biological Autonomy, Varela re-pre-

sented the theory in a more biologically detailed version, with attention

to several organs as well as the nervous system.43 This later volume is of

special interest because in it Varela discusses his early work with cellular

automata, which he used to model a simple autopoietic system that forms

self-enclosing boundaries and repairs them when they break down.44 In
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the early 1990s, many European scientists found in these formulations the

basis for an alternative approach to ALife, no doubt spurred by the first

European conference on ALife in 1991, organized by Varela and Paul

Bourgine.45 What makes this body of work noteworthy, however, is less

the alternative approach it o¤ers (in fact, its influence on the new AI and

robotics is more significant, as we’ll see in later chapters) than the fact

that it confirms one of ALife’s most fundamental assumptions. In short,

even while opposed to the informational/computational basis of ALife,

Maturana and Varela share with it a conceptual underpinning that under-

stands living systems as machines.46

Maturana and Varela’s intellectual lineage also reaches back to cyber-

netics, specifically to the catalyzing influence of Heinz von Foerster.

Varela himself attests to von Foerster’s importance for both the further

development of cybernetic theory and Maturana’s and his own work.47

An active participant in the Macy Conferences and editor of its published

proceedings, von Foerster went on to found and direct the Biological

Computer Laboratory at the University of Illinois at Champaign-

Urbana. Two key ideas he developed are relevant here: first, his order-

from-noise principle (in certain systems, noise can sometimes spur a

system to self-organize at a higher level), which anticipated the develop-

ment of theories of self-organization in the 1970s; second, self-reference

and the role of the observer can play a constitutive role in the formation

of systems.48 As a result of this work, many consider von Foerster the ar-

chitect of second-order cybernetics. Varela and others have also claimed

that von Foerster’s work was unjustly overshadowed and even repressed

because of the importance ‘‘granted’’ (in every sense) to dogmatic forms

of cognitive science and classical AI, particularly to what later became

known as symbolic, or ‘‘high church’’ (Daniel Dennett’s phrase), compu-

tationalism. For my purposes, what is important is that von Foerster’s

first idea became crucial for complexity theory and his second for Matur-

ana and Varela’s theory of autopoiesis.

Autopoiesis: The Organization of the Living attempts to redefine the

fundamental principles of a science of living systems. To do so, Maturana

and Varela draw tacitly on systems theory (G. Spencer-Brown) and

second-order cybernetics (Heinz von Foerster) as well as Maturana’s ear-

lier empirical studies of vision in frogs (and later pigeons), research that

stemmed directly from McCulloch and Pitts’s neural net theory.49 Alto-

gether, this research led Maturana to reject the assumed objectivity of

science and to formulate his own epistemology. In the retrospective intro-

duction Maturana wrote for Autopoiesis and Cognition, he recounts how
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the results of his experimental research on vision actually worked against

the assumptions of realism and epistemological objectivity and how a

reorientation necessarily imposed itself. Specifically, Maturana and his

group were unable to map the activity of cells in the frog’s retina directly

onto the contours and colors of the visual world and were forced to re-

verse their assumptions and the questions they were asking. As Maturana

framed the question, ‘‘What if, instead of attempting to correlate the

activity of the retina with the physical stimuli external to the organism,

we did otherwise, and tried to correlate the activity of the retina with the

color experience of the subject?’’ (xv). Pushing further, he was forced to

assume that ‘‘the activity of the nervous system [is] determined by the

nervous system itself, and not by the external world; thus the external

world would have only a triggering role in the release of the internally-

determined activity of the nervous system’’ (xv). This perspective led him

to treat the nervous system as a system closed on itself and the ‘‘report of

the color experience as if it represented the state of the nervous system as

a whole’’ (xv). It follows that perception of distinct objects in the external

world doesn’t at all correspond to the stimulation of specific cells in the

retina—there is no point-to-point correspondence. Rather, the inflection

of the visual field by the appearance of a distinct object results from a

triggering e¤ect that perturbs the visual system as a whole, which then

reestablishes its own equilibrium. In the frog’s visual system only certain

kinds of perturbation are possible, and these correspond to what the frog

can see—small objects moving fast, with little ability to discern large

objects moving slowly. To say, therefore, that the frog’s vision is perfectly

adapted to its environment, enabling it to catch flies and avoid predatory

birds, is true but misses the essential point that the frog does not so much

see the world as respond to and interact with selected aspects of it. More

precisely, seeing is a perceptual/cognitive linkage, with stimuli that have

no objective existence outside the activities of the perceiving subject. It is

only the observer who infers the distinction and who may then describe

the interaction. This approach stands in obvious contrast to conventional

scientific descriptions, which usually involve the attribution of causal rela-

tions, from which the reified metaphysic of realism and objectivity closely

follows.

Rejecting these assumptions, Maturana replaces them with a conceptu-

alization based on ‘‘circular organization’’ and the idea that cognition is

inherent to all living systems. His research on the frog’s vision had indi-

cated that the nervous system operates as a closed network of interactions

in which every change in the interactive relations of one set of compo-
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nents always results in the interactive relations of other components.50 In

brief, the nervous system is not only self-organizing but self-maintaining.

Having theorized that the nervous system is both autonomous (opera-

tionally closed) and coupled to the environment (interactionally open),

Maturana hypothesized that circular organization is the general feature

that defines all living systems: ‘‘Living systems . . . [are] organized in a

closed causal circular process that allows for evolutionary change in the

way the circularity is maintained, but not for the loss of the circularity

itself ’’ (9). Moreover, since this circular organization determines what

aspects of the external environment the system can interact with, in e¤ect

it operates as a selective mechanism that Maturana equates with cogni-

tion as a whole: ‘‘Living systems are cognitive systems, and living as a

process is a process of cognition’’ (13).51

This framework is assumed in Autopoiesis: The Organization of the Liv-

ing, where Maturana and Varela attempt to answer the question, What is

life, and how should it be defined?52 Their general thesis is that ‘‘there is

an organization that is common to all living systems, [whatever] the na-

ture of their components’’ (76). As scientists, they declare at the outset

that their explanation of life is mechanistic, not vitalist; yet they also in-

sist that it is in the circular organization of physico-chemical processes,

not in the specific properties of the latter, that life is to be found. Since

the organization of living systems is what enables these systems to main-

tain their own boundaries, to replenish their component parts and hence

to maintain their identity over time, the specific details of these processes

are relegated to a secondary concern. And this includes what for most

biologists are the essential processes of reproduction and evolution. In-

deed, Autopoiesis evinces little interest in the concrete ‘‘stu¤ ’’ of most bi-

ological investigations—the myriad diversity and dynamic profusion of

exchanges that take place within and among living entities. Instead, like

a treatise by Spinoza or Leibniz, the book proceeds almost exclusively

by definition and conceptual reframing. What it o¤ers, nonetheless, is a

completely new perspective on how living systems may be thought of as

machines.

A machine is an organized unity of various component parts and pro-

cesses. For Maturana and Varela, the organization of the machine is pre-

cisely what gives it this unity and what determines ‘‘the dynamics of

interactions and transformations which it may undergo as such a unity’’

(77). Contrastingly, the structure of the machine is constituted by ‘‘the

actual relations which hold among the components which integrate a con-

crete machine in a given space’’ (77). These definitions allow Maturana
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and Varela to distinguish sharply between the relations that give the ma-

chine its unity and the properties of the components that realize the ma-

chine as a concrete system. Specifically, for them the organization of a

machine is independent of the material properties of its components;

hence a given machine can be realized in di¤erent ways and by di¤erent

components. In this sense organization plays the same role as information

in computation: it signifies a functional process or e¤ect not dependent on

the exact nature of its supporting material substrate. A second corollary

of these definitions is that the use to which a machine may be put is

not a feature of its organization but rather ‘‘of the domain in which the

machine operates’’ (77). Of course, we usually think of human-made

machines as constructed for a specific purpose or end, including our own

amusement. However, just because this aim or purpose is expressed as a

result of the machine’s operation should not lead us to believe that it is a

constitutive property. These notions, rather, are extrinsic to the machine’s

organization and pertain only to the domain of its observation. They may

help us to imagine, describe, or simply talk about machines, and they

may even be realized in a particular machine’s operation. Nevertheless,

they remain in the domain of descriptions generated by the observer.

That a living system is a kind of machine can be demonstrated there-

fore only by pointing to its organization, not to its component parts or

structure. Specifically, living systems are organized in such a way that

they produce and maintain their own identity, which makes them distinct

from the environment and independent of relations with an observer.

Maturana and Varela call this kind of machine autopoietic:

An autopoietic machine is a machine organized (defined as a unity) as a network

of processes of production (transformation and destruction) of components that

produce the components which: (i) through their interactions and transformations

continuously regenerate and realize the network of processes (relations) that pro-

duced them; and (ii) constitute it (the machine) as a concrete unity in the space in

which [the components] exist by specifying the topological domain of its realiza-

tion as a network. (78–79)

As in the definition of organization above, the emphasis falls on the net-

work of processes that produce and maintain identity, not on the prop-

erties of the individual components and their varied relations. It is

intentionally a circular definition: A produces B, which in turn produces

A. Hence a living entity is a network of processes organized in such a way

as to maintain the integrity and functioning of the processes that define it.

As long as a domestic cat, for example, breathes air, drinks water, and

eats food, autopoietic networks will provide the energy to generate and
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maintain the cells and tissue that will enable the cat to interact with its

surrounding environment as a cat. In contrast, an automobile is orga-

nized in such a way that burning gasoline is converted into enough kinetic

energy to move the automobile across the landscape, but ‘‘these processes

are not processes of production of components which specify the car as a

unity since the components of a car are produced by other processes

which are independent of the organization of the car and its operation’’

(79). Simply put, the car itself does not and cannot maintain its own iden-

tity. In Maturana and Varela’s terminology, it is therefore an allopoietic

machine. Whereas autopoietic machines are autonomous and subordinate

all aspects of their functioning to the maintenance of their own organiza-

tion (and hence to their identity), allopoietic machines (like the automo-

bile) have something di¤erent from themselves as the product of their

functioning. It follows that an allopoietic machine has no individuality

and that its identity depends entirely on the observer, the ‘‘other’’ who

stands outside its process of operation. This identity is not determined by

or through the machine’s operation, precisely because the result of this

operation is di¤erent from the machine itself. An automobile, for exam-

ple, could serve as a simple vehicle for transportation, a source of spare

parts in a junkyard, a collector’s item or a fetishized prop in a movie (or

in the life of its owner). In contrast, an autopoietic machine maintains

its own individual identity independently of its interactions with any

observer.

While at first the definitions of autopoietic and allopoietic may seem to

reinscribe the opposition between a living entity and a tool, the organic

and the inorganic, the di¤erences between them are not so easily reduc-

ible. Autopoietic machines are homeostatic since they maintain as con-

stant precisely the relations that define them as autopoietic, but they do

not have inputs and outputs, as do allopoietic machines. Of course auto-

poietic machines can be perturbed by independent events and can un-

dergo internal structural changes as a result of these perturbations. But

adjustments to perturbations, whether as singular or repeated events, are

always subordinated to the maintenance of the organization that defines

the machine as autopoietic. Nevertheless, human observers can still ‘‘de-

scribe physical autopoietic machines, and also manipulate them, as parts

of a larger system that defines the independent events which perturb

them’’ (82). Specifically, the observer can view these perturbing indepen-

dent events as input and the changes the machine makes to compensate

for these perturbations as output. Maturana and Varela insist, however,

that this is precisely the mistake of molecular biology, which treats the
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living system as an information-processing device. That is, it mistakes an

autopoietic machine for an allopoietic one. It is also possible ‘‘to recog-

nize that if the independent perturbing events are regular in their nature

and occurrence, an autopoietic machine can in fact be integrated into a

larger system as a component allopoietic machine, without any alteration

in its autopoietic organization’’ (82). In the same way, parts of auto-

poietic machines can be analyzed as allopoietic submachines in relation

to their input and output. In neither case, however, can the essential and

defining nature of the autopoietic machine be revealed.

With these definitions at hand, Maturana and Varela advance their

central claim that ‘‘autopoiesis is necessary and su‰cient to characterize

the organization of living systems’’ (82). Before attempting to substanti-

ate this claim, they make two points. First, they argue that since living

systems are machines, once their organization is understood, there is no

a priori reason why they cannot be reproduced and even designed by

humans. To think otherwise would be to succumb to the ‘‘intimate fear’’

that the awe with which we view life would disappear if we recreated it or

to the prejudiced belief that life will always remain inaccessible to our un-

derstanding. Second, they point out that as long as the nature of the liv-

ing organization remains unknown, it is not possible ‘‘to recognize when

one has at hand, either as a concrete synthetic system or as a description,

a system that exhibits it’’ (83). In other words, it is not always or immedi-

ately obvious what is living and what is not. For most biologists, repro-

duction and evolution appear as constitutive, determinant properties, to

which ‘‘the condition of living’’ is subordinated. But as Maturana and

Varela point out, once these properties are reproduced in human-made

systems, those who do not accept the proposition that any synthetic or

human-made system can be living simply add new requirements.

In the remainder of the book Maturana and Varela develop the impli-

cations of their claim that autopoiesis is necessary and su‰cient to char-

acterize the organization of living systems. They argue, for example,

against the common assumption that teleology is a necessary feature of a

living system. It must be remarked, however, that they do not pursue

some of the most interesting implications of their theory—for example,

that in certain respects social systems and many information systems

might qualify under their definition as living systems, as Félix Guattari

points out in his essay, ‘‘Machinic Heterogenesis.’’53 While institutions

and technical machines appear to be allopoietic, Guattari notes, ‘‘when

one considers them in the context of the machinic assemblages they con-
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stitute with human beings, they become ipso facto autopoietic.’’ Guattari

thus finds Varela’s concept useful, but only if viewed from the perspective

of ‘‘the ontogenesis and phylogenesis proper to the mechanosphere super-

posed on the biosphere’’—in other words, from the perspective intro-

duced by a machinic assemblage, which could be said to combine both

allopoietic and autopoietic functions. Guattari’s reflections on the limits

of the concept of autopoiesis lead him to call for a reframing, or recontex-

tualization, in terms that converge precisely with issues central to ALife

research: ‘‘Autopoiesis deserves to be rethought in terms of evolutionary,

collective entities, which maintain diverse types of relations of alterity,

rather than being implacably closed in on themselves.’’

Varela himself is eventually forced to confront these issues more fully

when he considers the immune system. Meanwhile, in Principles of Bio-

logical Autonomy, he o¤ers a less abstract and more useful summary of

autopoietic theory, which he applies to specific biological phenomena.

Following the assumptions Maturana developed in his early theory of vi-

sion, Varela considers both the immune system and the nervous system as

instances of operational closure and structural coupling, the technical

terms Maturana proposed to describe how a system closed on itself can

nevertheless interact with environmental stimuli.54 Of more immediate

importance here is the cellular automaton model of autopoiesis that

Varela includes. Since this model anticipates Varela’s explicit interest in

Artificial Life, which he prefers to consider under the alternative rubric

of autonomous systems, it will be useful to examine it briefly before con-

trasting Varela’s approach with Langton’s.

Autonomous Systems and Artificial Life

Varela’s cellular automaton demonstrates how an autopoietic unity can

spontaneously emerge through a simple linking of elements in the pres-

ence of a catalyst. It involves three processes: (1) composition, when two

basic elements (denoted by O and [ ] in his diagram) form a link ([O]) in

the presence of a catalyst (*); (2) concatenation (or bonding), when a link

joins with two or more other links ([O]-[O]-[O]); and (3) disintegration,

when a link decomposes back into two basic elements (see Varela’s dia-

gram, fig. 4.3).55 Varela had these processes encoded in a computer pro-

gram in such a way as to define the interactions of cellular automata

(each space being either empty or occupied by a single element). When

the program is run, links form and decompose randomly, but inevitably
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links form around a catalyst and gradually produce a bounded, self-

enclosed space. Links also decompose, but new links form to replace

them, and the boundary is maintained.

Some years later, at the Santa Fe Institute, Barry McMullin pointed

out that the computer coding of the model was flawed. Varela and

McMullin then revised the code, using slightly di¤erent algorithms to im-

plement the ‘‘artificial chemistry’’ governing the interactions of the ele-

ments, and ran the model on the Swarm platform that Langton and his

associates had written.56 Since the results were essentially the same, the

Figure 4.3
Varela’s CA model. F. G. Varela, H. R. Maturana, and R. Uribe, ‘‘Autopoiesis: The Orga-
nization of Living Systems, Its Characterization and a Model,’’ in BioSystems 5, no. 4 (May
1974): 190.

196 Machinic Life



updated demonstration further strengthened the claim that ‘‘autopoietic

phenomena are not dependent on any particular details of the original

program or algorithm, but may be expected in any system sharing the

same qualitative chemistry’’ (39, authors’ emphasis). The demonstration

also brought Varela into direct personal contact with scientists at the

Santa Fe Institute and thus with proponents of what some Europeans

thought of as the American brand of ALife. Indeed, the term ‘‘computa-

tional autopoiesis’’ in the title of McMullin and Varela’s conference

paper suggests some sort of rapprochement. Yet the term is misleading,

inasmuch as it elides several crucial di¤erences between Varela and Lang-

ton, di¤erences that can be pinpointed by considering how each one

understands the CA assemblage.

If we compare Varela’s use of CA as a model of autopoiesis and dem-

onstration of its viability to Langton’s use of CA as an instantiation of

artificial life, two obvious di¤erences emerge. First, Varela shifts the focus

from the issue of the cell group’s self-reproduction to that of its unity and

boundary maintenance. As he (as well as Maturana and Uribe) puts it:

‘‘For reproduction to take place there must be a unity to be reproduced:

the establishment of the unity is logically and operationally antecedent to

its reproduction’’ (189). The formation of a self-enclosing boundary and

its dynamic maintenance is therefore what is most essential to Varela’s

model. In Langton’s self-reproducing loops, by contrast, the boundary is

a static construction, a sheath within which the core cells are pro-

grammed by manipulating the CA rules to function as data paths for a

signal sequence in the cell’s reproductive process.57 (In Varela’s terms,

the sheath is thus an allopoietic device.) A second di¤erence is defined

by the role of information processing. In Langton’s research the CA are

configured as information machines. Indeed, a specific configuration of

information is what reproduces itself: both the medium and the event of

this reproduction are constituted as information. For Varela, however, in-

formation processing is secondary, subordinate to the dynamic processes

that constitute and maintain the cell group’s unity, or, in other words,

constitute its organization. Informational processes, which include the

cell group’s reproduction, are allopoietic submachines. As such, they do

not define what it is that gives life to a living system. In Varela’s CA

model this idea is illustrated by the formation and restoration of bounda-

ries around a catalytic agent. It is the presence of the catalyst that initiates

the dynamic process of self-organization, which does not involve informa-

tion processing except at the lower level of transition-state tables that de-

termine whether particular cells are on or o¤.
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How much should be made of these di¤erences? In the introduction to

the proceedings of the ‘‘First European Conference on Artificial Life’’

(published under the title, Toward a Practice of Autonomous Systems),

Varela spells out succinctly what he thinks Artificial Life research should

be and how his view di¤ers from Langton’s earlier definition of the field.

The key concept for Varela is autonomy:

Autonomy in this context refers to [the living creatures’] basic and fundamental

capacity to be, to assert their existence and to bring forth a world that is signifi-

cant and pertinent without being pre-digested in advance. Thus the autonomy of

the living is understood here both in regards to its actions and to the way it shapes

a world into significance. This conceptual exploration goes hand in hand with the

design and construction of autonomous agents and suggests an enormous range of

applications at all scales, from cells to societies.58

Whereas Langton seeks to ‘‘abstract the fundamental dynamical princi-

ples underlying biological phenomena, and recreat[e] these dynamics in

other physical media—such as computers—making them accessible to

new kinds of experimental manipulation and testing’’ (Langton, as quoted

by Varela, xi), Varela proposes that ‘‘artificial life can be better defined

as a research program concerned with autonomous systems, their charac-

terization and specific modes of viability’’ (xi). He concedes that his

view does not contradict Langton’s but asserts that it does make it more

precise. Yet he also adds that ‘‘it is by focusing on living autonomy that

one can naturally go beyond the tempting route of characterizing living

phenomena entirely by disembodied abstractions, since the autonomy of

the living naturally brings with it the situated nature of its cognitive per-

formances’’ (xi).

Although his tone is conciliatory, Varela thus reveals that he views

Langton’s work as a ‘‘disembodied abstraction’’ and therefore of limited

scope, since it has no way of dealing with the ‘‘situated nature’’ of living

systems and hence with their ‘‘cognitive performances.’’ In fact, with the

charge of ‘‘disembodied abstraction’’ Varela comes perilously close to

associating Langton’s methodology with the assumptions that dominated

the first period of AI and cognitive science following the development

of cybernetics and information theory in the 1950s. After a thirty-year

period of dominance by a ‘‘research program emphasizing symbolic com-

putations and abstract representations,’’ Varela continues, it is time to

benefit from the rediscovery of connectionist models and neural net-

works.59 Surprisingly, here Varela seems to have completely forgotten

(or willfully ignored) Langton’s explicit a‰liation with connectionist

models and natural systems that instantiate highly distributed parallel
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processing. In any event, Varela concludes his introduction to the confer-

ence proceedings by going one step further: Having reinscribed ALife

within the study of autonomous systems, he resituates it within the evolv-

ing history of cognitive science. The latter, having started with classical

cognitivism (based on symbolic computation) and having passed through

connectionism, has now arrived at what Varela characterizes as ‘‘an enac-

tive view of cognitive processes, which also places the autonomy of the

system at its center and is thus naturally close to AL’’ (xvi). (By ‘‘enac-

tion,’’ Varela means the emergence of a new world through the codeter-

mination of a structural coupling.) However, by strongly emphasizing

emergence, a key term in ALife research, Varela would seem to want to

annex ALife to a new or transformed version of his own work.60

Whatever the assumed limits of the computational, information-

processing approach, it must be said that it is neither accurate nor fair

to drive a wedge between it and the study of emergence and self-

organization, as Varela does by identifying the latter exclusively with his

own successor paradigm in his history of cognitive science.61 In fact, the

experimental production of emergence and self-organization has been an

intrinsic aspect of research at the Santa Fe Institute and the putatively

‘‘American’’ approach to ALife from its inception. What has always

been essential to this research is not at all the earlier, ‘‘standard’’ model

of computation, but rather, as Langton emphasizes, the emergence of

dynamic behavior in nonlinear processes and highly distributed systems.

Indeed, one of the most salient aspects of Langton’s work is that it con-

siders distributed parallel computation and nonlinear dynamical systems

in a single framework. The resulting new form of emergent computation

becomes the explicit research method in complex systems theory, as dis-

cussed in chapter 5. Suspiciously, however, Varela makes no mention of

this aspect of Langton’s research and never seriously considers the new

biologically oriented alternatives to the standard model of computation.

Instead, he continues to insist on—indeed, to harp on—the sense in

which living systems are the result of particular histories and contingen-

cies. What is most wrong about the computational approach, he empha-

sizes at a subsequent European workshop on Artificial Life (held at San

Sebastián, Spain, in 1993), is that it leaves out this contingency: ‘‘If it’s

silicon contingency, if it’s tin can contingency, fine with me. What you

cannot abstract out, centrifuge out, is that kind of process or situation

that only comes from history.’’62

But while we may never really escape from history, life never allows

history to remain intact either. As part of contemporary history ALife
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challenges many historical conceptions of life and evolution. What Varela

seems to abhor above all else is that ALife deterritorializes (in Deleuze

and Guattari’s sense) biological processes and reterritorializes (i.e., reco-

des) them in a digital medium. But surely this can’t be totally unlike the

contingencies that living systems have always confronted. Indeed, the use-

fulness of D&G’s perspective—however limited their discussion of spe-

cific biological process—is that it indicates in general theoretical terms

how life arose and gained a stronghold precisely through such decodings

and recodings. Within the frame of published ALife research, other

researchers have questioned whether life can be abstracted from one ma-

terial substrate and instantiated in another,63 and they have done so with

more cogency than Varela, whose approach does not adequately address

the normative view held by biologists that reproduction and evolutionary

adaptation are essential to all living systems. Animating these other cri-

tiques is the fact that molecular biology tends increasingly to view the re-

lationship between the information contained in the genotype and the

material production of the phenotype as one of dynamic interdependence.

It is often pointed out, for example, that not all of the information neces-

sary for protein production is contained within DNA; rather, it is ‘‘filled

in’’ and the process completed in the complex dynamics of molecular

interaction.

What should be emphasized in any case is that Varela is not opposed

to ALife per se and related attempts to synthesize life in nonorganic

materials—indeed, he completely endorses e¤orts like those of Rodney

Brooks to build autonomous mobile robots (see chapter 6 below). He is

only opposed to computational approaches like Langton’s that abstract

the purely formal features of life from their material instantiation, thus

putatively removing life from historical contingency and the particulars

of its situatedness and concrete embodiment. Evidently the contingencies

of the computer environment don’t count. Moreover, by ignoring the fact

that Langton’s approach to synthesizing life depends on the kind of

highly parallel and distributed processing observed in biological life,

Varela also avoids having to consider the extent to which natural life

itself depends on similar kinds of computational processes.

It is also important to note that one significant strand of early ALife

research—‘‘artificial chemistry’’—draws on both Langton and Varela. In-

deed, ‘‘artificial chemistry’’ quickly became a flourishing part of ALife re-

search, thanks in large part to Walter Fontana’s ambitious project to

pinpoint ‘‘a logical deep structure of which carbon chemistry-based life

is a manifestation.’’64 Langton himself provides the best short summary:
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In Fontana’s system, functions expressed in the lambda-calculus [a formal symbol

system] are represented as character strings that ‘‘react’’ with other such func-

tional character-strings via function composition, producing new function-strings

in the process. These new function-strings then enter into reactions with existing

function-strings and the process continues. Fontana finds that the natural dynam-

ics of this ‘‘Algorithmic Chemistry’’ give rise to the spontaneous emergence of

many cooperative reactions between function-strings, including self-replicators,

self-replicating sets, autocatalytic cycles, symbiotic and parasitic sets of functions,

and so forth.65

Fontana has also reinforced the theoretical significance of ALife in both

nuanced and trenchant terms. On the one hand, he observes, ‘‘biology

lacks a theory of organization’’ (212), and this accounts for unsolved

problems in ontogeny and phylogeny; on the other, he states, ALife

‘‘makes sense only if there is an implementation independent definition of

life that informs biology’’ (224, author’s emphasis). Citing Varela and

Maturana as ‘‘the first to think extensively about organization in a new

way’’ (225), Fontana also reflects Langton’s influence when he argues

that the role of ALife is to develop a concept of life that ‘‘encompasses

biology’’ (224), which means not simply imitating it but comprehending

it, particularly by identifying its unsolved problems and seeking their

resolution.

Thus the continued absence of a consensual definition of life among

biologists in e¤ect makes the theoretical aims and challenges that Fon-

tana spells out for ALife necessary and indeed essential for its disciplinary

justification.66 Meanwhile, this lack suggests an obvious way to situate

the di¤erences between Langton and Varela: each one simply valorizes

what he believes to be life’s essential attributes. For Langton it is self-

reproduction and evolution; for Varela, self-organization and autonomy.

Accordingly, experiments in ALife research following Langton tend to

explore the former, while contemporary robotics (beginning with Rodney

Brooks and his followers) take up the latter, with adaptation and learning

falling somewhere between the two initiatives. What this means here is

that before any further assessments can be made both initiatives must be

examined in detail, which will be the objective of chapters 5 and 7. In

brief, we will find that these initiatives in machinic life cannot be consid-

ered apart from a core set of theoretical issues involving the shortcomings

of Darwinian evolutionary theory (as revealed by self-organization and

the processes of emergence in nonlinear dynamical systems), and that the

question then becomes whether or not the framework of ‘‘complex adap-

tive systems’’ can provide an adequate new conceptual synthesis. While

robotics will claim to make up for the putative deficiency of abstraction

Vital Cells 201



and disembodiment in ALife, the fruits of simulation and new, nonstan-

dard approaches to computation (especially evolutionary computation)

will also prove to be necessary for further advance.

In the meantime we should not ignore some of the new ‘‘uno‰cial’’

forms of artificial life. To single out only one example (but a significant

one), I conclude this chapter with a brief exploration of two convergent

lines of research on immune systems. After summarizing Varela’s biolog-

ical theory of the immune system I take up a parallel development that

arises from an interest in machine learning. This leads to a discussion of

a computational model of the immune system and computer viruses, and

of their relationship to ALife. A central question raised by this conver-

gence is again whether the information-processing approach and the

dynamical systems approach are actually or necessarily as opposed as

Varela and others have claimed. This is important because many of those

who work in contemporary robotics and cognitive science believe that

they are. The evidence, however, suggests that for complex systems like

the immune system, information processing and dynamic behavior are

very closely related, implicating and relaying each other in ways not yet

fully understood.

Silicon Immune Systems and Viral Life

For Varela, the immune system of a biological organism presents a clear

and compelling example of an autopoietic system: it possesses an autono-

mous unity, operationally closed but structurally coupled to the outside

by a triggering mechanism that communicates perturbations. What’s

more, it serves an essential cognitive function in that it is responsible for

the organism’s very identity at the molecular level. Thus it is hardly sur-

prising that Varela has devoted much of his research to the immune

system, first presenting his theory in Principles of Biological Autonomy

(1979) and continuing to publish important ‘‘update’’ articles well into

the 1990s. From the outset he has always advocated an alternative to the

classical view of the immune system as the body’s primary defense against

disease and infectious agents. According to this understanding, a wide va-

riety of highly interactive cells, the lymphocytes (popularly known as

white blood cells), possess and produce markers known as antibodies

that either protrude from their surface or circulate freely. When such an

antibody comes into contact with a foreign infectious agent or antigen,

the antibody bonds with it chemically, rendering it harmless or destroying

it. If the infection is severe, the particular type of lymphocyte with the
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right chemical ‘‘key,’’ or recognition device, will immediately clone itself

until it produces a veritable army of antibodies attacking the foreign in-

truder. This military model, however, raises a number of questions. First,

how do the body’s lymphocytes come to recognize the millions of new

antigens that it encounters? Inversely, how does a lymphocyte know how

to recognize its own body’s cells, since in the classical view recognition is

a chemical locking-on that destroys the other cell? Furthermore, what

makes this mechanism fail in autoimmune disorders? Finally and most

generally, how does the immune system maintain a ‘‘catalog’’ of all

known foreign intruders, past and present, and how does it produce new

types of lymphocytes to counteract the new types of intruders?

In Varela’s view the classical theory attempts to answer these questions

with a series of ad hoc proposals and hypotheses. A case in point is the

‘‘clonal selection theory,’’ which proposes a Darwinian model to explain

how the antibodies required for the body’s maintenance have evolved

over time. As Varela points out, this theory assumes that the body’s anti-

body repertoire is initially incomplete.67 Moreover, the theory postulates

that those clones that would recognize (and destroy) self-molecules are

missing. Since there is no known genetic mechanism that can account for

this, it is assumed that these clones are filtered out and destroyed at the

embryonic stage. One version of this theory, called ‘‘clonal deletion,’’

postulates that such lymphocytes are removed in the thymus. Thus the

recognition problem—how to distinguish between self and nonself at the

level of molecular profiles—is not really resolved.68

Varela’s solution to the problems posed by the classical model is to

adopt a radically di¤erent perspective, doing away with both the military

metaphor underlying the classical view and the information-processing

model it assumes for its operation. The former understands the mainte-

nance of the body’s identity at the molecular level as essentially a nega-

tive, wholly defensive reaction, while the latter views the body’s immune

response as a type of input-output relationship and therefore ‘‘externally

determined.’’ Building on the work of Neils Jerne, who proposed that

antibodies do not operate as separate, individual elements but as tightly

meshed networks, Varela argues that the immune system is an autono-

mous network that must first be understood in positive terms. In his

view the defensive reaction of the immune system is actually secondary

to its normal functioning. Its primary function, rather, is to maintain the

body’s molecular identity by regulating the levels of di¤erent cell types

and molecules circulating throughout the entire system. Only when the

invading antigens become so numerous as to perturb these regulatory

Vital Cells 203



functions does the immune system assume or fall back on its defensive

posture. The problem, then, is not how the body identifies individual anti-

gens but how it regulates levels of a whole range of interacting molecules.

For this reason Varela prefers to think of the immune system as part of a

larger, autonomous network that constitutes a complex ecology:

Like the living species of the biosphere, [lymphocytes] stimulate or inhibit each

other’s growth. Like the species in an ecosystem they generate an amazing diver-

sity: the antibodies and other molecules produced by lymphocytes are by far (by a

million fold) the most highly diversified molecular group in the body. They are

therefore ideally qualified to ensure the constant change and diversity of other

molecules in the body. (274)

This autonomous network functions as a dynamical system, with

global emergent properties that enable it to track and remember the indi-

vidual’s molecular history:

In our view the IS [immune system] asserts a molecular self during ontogeny, and

for the entire lifetime of the individual, it keeps a memory of what this molecular

self is. . . . It is as a result of this assertive molecular identity that an individual

who had measles in childhood is di¤erent from what he would have been had he

not been in contact with the virus, or how an IS changes if the person switched

from an omnivorous to a vegetarian diet. The IS keeps track of all this history,

while defining and maintaining a sensorial-like interface at the molecular level. It

must be stressed that the self is in no way a well-defined ([nor a] predefined) reper-

toire, a list of authorized molecules, but rather a set of viable states, of mutually

compatible groupings, of dynamical patterns.69

As a dynamical system, the immune network functions not by guarding

and protecting boundaries between self and nonself, but by keeping di¤er-

ent groups and subnetworks in states of dynamic equilibrium. In Varela’s

view the immune system does not and cannot discriminate between self

and nonself:

The normal function of the network can only be perturbed or modulated by in-

coming antigens, responding only to what is similar and to what is already pres-

ent. Any antigen that perturbs the immune network is by definition an ‘‘antigen

of the interior,’’ and will therefore only modulate the ongoing dynamics of the

network. Any element that is incapable of doing so is simply not recognized and

may well trigger a ‘‘reflexive’’ immune response, that is, one produced by quasi-

automatic processes that are only peripheral to the network itself. (‘‘The Body

Thinks,’’ 283)

There are always antigens present in the network, just as there are always

antibodies that attack other antibodies. The result is a ceaseless change in

levels, quantities, and distributions and thus of perturbations in an al-
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ready existing network that is constantly (re)adjusting to itself. The most

apt metaphor is not a military campaign intent upon vanquishing the

enemy but the dynamics of a weather pattern. The latter ‘‘never settles

down to a steady-state, but rather constantly changes, with local flare

ups and storms, and with periods of quiescence.’’70 Yet the immune sys-

tem is not exactly like a weather system either, since in order to function

it must ‘‘remember’’ and draw upon its own history.

Indeed, the immune system’s ability to remember and learn, that is, to

evolve new pattern-recognition capacities, is precisely what made it of in-

terest to J. Doyne Farmer and Norman Packard when they organized a

conference devoted to ‘‘Evolution, Games, and Learning: Models for

Adaptation in Machines and Nature.’’71 The central problem to be

addressed was how machines might learn to solve problems without hav-

ing to be explicitly programmed to do so. Since biological systems—most

evidently the immune system and the brain—accomplish this task as part

of their regular functioning, they o¤er privileged models for studying the

underlying principles of biological computation. Since games are ‘‘highly

simplified models of higher level human interaction,’’ they too can pro-

vide access to ‘‘smart algorithms.’’ But most important, as Farmer and

Packard emphasize in their introduction to the conference proceedings,

the behavior of these various adaptive systems is inevitably nonlinear

and emergent:

Adaptive behavior is an emergent property, which spontaneously arises through

the interaction of simple components. Whether these components are neurons,

amino acids, ants, or bit strings, adaptation can only occur if the collective behav-

ior of the whole is qualitatively di¤erent from that of the sum of the individual

parts. This is precisely the definition of the nonlinear. (vii)

Consequently, the approach to such nonlinear dynamical systems requires

new syntheses rather than further elaborations of the reductive approach,

which breaks down complex processes into simpler component parts and

processes. The most powerful and innovative tool available for the new

synthetic approach is the computer, which provides a way of simulating

adaptive systems too complex to model quantitatively. Although orders

of magnitude simpler than ‘‘the brain or a complex organic molecule

such as DNA’’ (viii), the digital computer’s increasing speed, decreasing

cost, and wide availability have made it an essential part of what Farmer

and Packard think of as an explosion of ‘‘new wave science,’’ character-

ized by the synthetic approach and the crossing of conventional disciplin-

ary boundaries.
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In ‘‘The Immune System, Adaptation, and Machine Learning,’’ their

own contribution to the conference, Farmer, Packard, and Alan S. Perel-

son propose a dynamical model of the immune system simple enough to

be simulated on a computer. Actually, what they construct is a very orig-

inal working example of a computational assemblage. Of greatest initial

interest to the authors was the fact that ‘‘by employing genetic operators

on a time scale fast enough to observe experimentally, the immune system

is able to recognize novel shapes without pre-programming’’ (187). Fur-

thermore, because of its vast combinatorial diversity, the immune system

rapidly generates a large number of di¤erent types of antibodies (for a

typical mammal it is on the order of 107 to 108) capable of recognizing

an even larger number of foreign molecules (estimates range as high as

1016). A realistic model must not only match this capacity but also pro-

vide a means by which the list of antibody and antigen types can con-

stantly change as new types are added and removed.

In Farmer, Packard, and Perelson’s model, both antibodies and anti-

gens are represented by binary strings that allow for either full or partial

complementary matches. In this way digital bit strings model recognition

in natural immune systems, where matching is thought to occur when the

molecular shape of the antibody’s paratope ‘‘fits’’ with and thereby allows

chemical binding to the antigen’s epitope. Both paratopes and epitopes

are sequences of amino acids and thus complexly related, but researchers

generally think of their relationship as that of locks and keys. The

dynamics of the system are further complicated by the fact that anti-

bodies also possess epitopes, which are recognized by other antibodies

and thus also participate in a self-regulating function. In natural immune

systems each antibody type (or key) will fit a variety of antigen types (or

locks). Yet this mechanism alone does not bridge the huge gap between

the numbers of antibody and antigen types. In fact, since an organism

never ceases to encounter both old and new antigens throughout its life-

time, its immune system must constantly ‘‘turn over,’’ producing not only

a large supply of antibody types e¤ective against known and remembered

antigens but also a repertory of new types that will recognize new anti-

gens. In humans, for example, the entire supply of lymphocytes is replen-

ished every few months. To remain e¤ective, the system must produce a

staggering combinatorial diversity of antibody types, and at least two

mechanisms operating at di¤erent levels ensure this diversity. First, there

is a constant reshu¿ing of the DNA that codes for antibody genes in the

production of the cells in the bone marrow.72 Second, when the lympho-
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cytes themselves reproduce, there is an exceptionally high mutation rate,

much greater in fact than in any other body cell type.

Of necessity, then, Farmer, Packard, and Perelson must simplify. For

example, they only attempt to model the actions of B-lymphocytes and

ignore the fact that natural immune systems also combine the actions of

T-lymphocytes and macrophages. The central problem is how to mimic

the production of this combinatorial diversity, clearly the immune sys-

tem’s most essential and characteristic property. The genetic algorithm,

developed by John Holland, provides the solution. By applying genetic

operators like crossover, inversion, and point mutation to both epitope

and paratope bit strings, a vast number of antibody types are generated

that basically comprise their model immune system. Antigens, on the

other hand, are generated either randomly or by design, then repeatedly

‘‘presented’’ to the system in both varying number and rate in order to

measure how well the system remembers (or how rapidly it forgets). Alto-

gether, the total number of antibodies and antigens present at a given mo-

ment defines a single dynamical system, whose state will change as some

of these antibodies and antigens interact and die and both new and simi-

lar ones are added. The state of the system can thus be computed with a

set of di¤erential equations that allow new variables to be triggered into

action as the system evolves. In fact, the model consists of just such a set

of equations. Having shown how they arrive at its formulation, the

authors note the model’s evident similarities to John Holland’s classifier

system, which they also rewrite as a set of di¤erential equations in order

to compare the two.

Both interesting in its own right and a highly influential new method

of problem solving in the field of machine learning, Holland’s classifier

system deserves a brief summary. Basically, it is comprised of three com-

ponents: a rule and message system, a credit system, and a genetic algo-

rithm. In Genetic Algorithms in Search, Optimization, and Machine

Learning, David E. Goldberg (one of Holland’s former students) provides

the schematic diagram shown in figure 4.4.73

As we can see from the diagram, information enters the system via

detectors or sensors, where it is coded in binary strings and posted on a

message list. Each string is then read by the classifiers, which are rules

that take the form: ‘‘if hconditioni then hactioni.’’ If the hconditioni
is a match with the message, the hactioni might be to post another mes-

sage on the message list and/or to trigger an output action through an

e¤ector. The rules are also composed of binary strings, with an additional
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wildcard marker (#) designating either 0 or 1. Thus the message 0101

would match with rule 0##1. To illustrate, consider a simple system com-

posed of the following four classifiers, with their outputs given after the

colons. (The example, slightly modified, is taken from Goldberg.)

1. 01## : 0000

2. 00#0 : 1100

3. 11## : 1000

4. ##00 : 0001

Suppose the message 0111 from the environmental detector is posted on

the message list. Since it matches with classifier 1, the latter would post

the message 0000. This message in turn matches with classifiers 2 and 4,

which would then post their messages, 1100 and 0001. Message 1100 now

matches with classifiers 3 and 4, which posts messages 1000 and 0001. Of

these two, only 1000 elicits a response: classifier 4 posts message 0001,

which then elicits no response, and the process is terminated.

Figure 4.4
A learning classifier system. David E. Goldberg, Genetic Algorithms in Search, Optimization,
and Machine Learning (Reading, Mass.: Addison-Wesley, 1989), 223.

208 Machinic Life



However, a classifier is not allowed simply to post a message when acti-

vated, as assumed above for purposes of exposition. In actuality it makes

a bid to post a message, the e‰cacy of which is proportional to the clas-

sifier’s strength as measured by the number of times its activation has led

to an output action. Moreover, it must give credit to any and all classi-

fiers whose activation has led to its own activation. In short, its own acti-

vation simply initiates a complex process of credit assignment, which then

conditions its ability to participate further in a larger process. Holland

has called this system of auction, payment, and reinforcement the

bucket-brigade algorithm, and the result is what Goldberg likens to ‘‘an

information economy where the right to trade information is bought and

sold by classifiers . . . [which] form a chain of middlemen from informa-

tion manufacturer (the environment) to information consumer (the e¤ec-

tors)’’ (225).

With such rigorous and competitive demands on the rules or classifiers,

one might wonder how the system can be supplied with rules that work at

all, much less with high e‰ciency. But this is where the third part of the

classifier system fits in: through the use of genetic algorithms, new and

better rules are generated that can be injected into the system. This third

part works in conjunction with the credit assignment subsystem, which

separates the rules that perform e¤ectively from those that do not. By

applying the processes of crossover and mutation to these good rules,

new and better ones are bred, which are then added to the population of

rules to have their performances evaluated and winnowed in turn, as the

whole system gradually turns over. As an alternative to the serial process-

ing of traditional expert systems, the parallel rule activation of the clas-

sifier system avoids the bottlenecks of the latter and allows multiple

activities to be coordinated simultaneously. While this makes for a much

faster hardware implementation, the real accomplishment is a machine

that can actually learn and adapt to changing information.

Although the classifier system is clearly an information-processing de-

vice, the fact that the rules operating within it are changing over time

also means that it functions as a dynamical system. As Farmer, Packard,

and Perelson demonstrate, both the classifier and model immune system

are strongly nonlinear, and the equations for computing their changing

behavior take the same basic form:

Dx ¼ internal interactionsþ driving� damping ð202Þ
The precise form that these terms take depends on how the interactions

as well as the driving and damping forces influence one another, but the
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general form of the equation is often seen in biological phenomena. In

particular, the authors mention coupled autocatalytic reactions and the

Lotka-Volterra equations for population dynamics in biology. These sim-

ilarities are hardly surprising, given that their model immune system as

well as Holland’s classifier system mimic parallel computation in natural

biological systems. Indeed, after comparing the two systems, Farmer,

Packard, and Perelson conclude by a‰rming the superiority of such par-

allel computational systems over standard serial Turing machines. Not

only does their model provide insight into the internal operations of real

immune systems, but the correspondences between their model and the

classifier system reinforces the growing sense ‘‘that generalized versions

of our model may be capable of performing artificial intelligence tasks’’

(203). Since then, in fact, parallel processing and the use of genetic algo-

rithms in classifier systems have become part of the larger repertory of

contemporary AI.74

Although Varela later acknowledges Farmer, Packard, and Perelson’s

model of the immune system, he ignores the fact that it combines an

information-processing and dynamical systems approach. This combi-

nation, as I have emphasized, is an essential feature of a new kind of

computational assemblage. Further examples will to be taken up in sub-

sequent chapters. Here I want to turn briefly to computer viruses and

computer immune systems, which constitute a very di¤erent kind of

computational assemblage. That there is research on computer immune

systems—in obvious contrast to the commercial development of antivirus

software—of course presupposes an environment of proliferating and in-

creasingly sophisticated computer viruses. These viruses began to appear

in the early 1980s, and it was only a matter of time before they would be

considered as forms of artificial life.

Actually, computer viruses were one of the few topics that Langton

actively sought to discourage at the first ALife conference in 1987.75 In

the bibliography to the conference proceedings, however, he does list A.

K. Dewdney’s article, ‘‘Computer Recreations: A Core War Bestiary of

Viruses, Worms and Other Threats to Computer Memories,’’ published

two years earlier.76 At the time of the conference, Dewdney was well

known for his invention of the computer game Core Wars, in which play-

ers attempt to fill up and disable the opponent’s memory space with rep-

licating code. In short, Core Wars made virus writing into a game.

Langton invited Dewdney to the ALife conference to judge an ‘‘artificial

4-H contest’’ for the best computer creature, an event intended to amuse

and entertain the participants. However, he did not invite Fred Cohen,
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who as a graduate student in computer science in 1983 had written a virus

of two hundred lines of code that could invisibly give him system admin-

istrator privileges on a Unix operating system. Cohen was one of the first

‘‘professional’’ experimenters with computer viruses and published the

results of his experiments in the highly reputable journal, Computers and

Security. But the line of demarcation was not always clear. In 1988 Cor-

nell student Robert Morris had released his self-replicating ‘‘Internet

worm,’’ which quickly paralyzed some six thousand computers. Creating

panic and hysteria, Morris’s actions eventually resulted in the establish-

ment of a panoply of legal measures and law enforcement agencies.

Cohen’s own laconic response was that Morris had just set the world’s

record for high-speed computation. Even so, in those inchoate times

uncontrolled experiments with forms of artificial life avant la lettre could

only be worrying and even an impediment to professional researchers, as

Stephen Levy remarks in his book on artificial life:

During the period that young Morris and other unauthorized experimenters were

blithely releasing predatory creatures in the wild [i.e., floppy disks and networked

computers], Cohen and other serious researchers were consistently being refused

not only funding but even permission to conduct experiments in computer viruses.

As a result, the creations of willful criminals and reckless hackers were for years

the most active, and in some ways the most advanced, forms of artificial life thus

far. (Artificial Life, 324)

Levy gives the impression that a whole new realm of artificial life was be-

ginning to burgeon, some of which was scientifically ‘‘authorized’’ and of-

ficially sanctioned, while other forms constituted an unauthorized but no

less fertile underside. While no doubt this would become the o‰cial posi-

tion, the boundary line it assumes has never been firm and is perceptibly

ever shifting.77 For example, in his book It’s Alive! The New Breed of

Computer Programs, Cohen discusses computer viruses under the rubric

of ‘‘living programs’’ (or LPs), which also include Core Wars, Conway’s

Game of Life and Ray’s Tierra. Cohen defines a living system as com-

prised of an organism and its environment, arguing that when viewed as

a pattern in ‘‘the information environment’’ computer viruses are very

much alive. The ‘‘outsider’’ scientist Mark A. Ludwig pushes this point

of view even further. In Computer Viruses, Artificial Life and Evolution

he o¤ers a technically and philosophically astute analysis of artificial life,

while also—like Cohen—providing computer code for experimenting

with a variety of real viruses.78 In fact, Ludwig argues that computer

viruses are a more significant form of artificial life than the ‘‘labora-

tory contained’’ forms produced in scientifically sanctioned experiments,
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precisely because viruses live in a world that was not specifically designed

to support them. For Ludwig, Darwinian evolutionary theory provides

the proper scientific framework for comparison. Describing several pro-

gressive steps by which virus writers have attempted to foil antivirus scan-

ning techniques, with the mutating or polymorphic virus first written by

the legendary Dark Avenger representing the latest stage, Ludwig sug-

gests that the next step would be a mutating virus with a genetic memory

that could evolve into increasingly more immune forms. Not content with

speculation, Ludwig actually supplies the source code (in assembly lan-

guage) for a ‘‘Darwinian Genetic Mutation Engine’’ that can convert a

lowly DOS virus into a genetically evolving polymorph. Significantly,

like some ALife scientists, Ludwig ends up questioning whether standard

Darwinian theory can actually explain the evolutionary developments he

describes. Whatever the case, there is little reason to believe that such re-

search has been ignored by malignant hackers and virus writers. Indeed,

the latter’s undeclared war against software industry giants like Microsoft

and corporate Web sites and the consequent attempts to provide virus

protection have clearly resulted in an escalating ‘‘arms race’’ in today’s

digital ecology that illustrates Ludwig’s basic argument.

Eventually the fact that the networked world of computers had become

a site where new forms of viral life were constantly emerging could no

longer be avoided by ALife scientists. At the ALife IV conference, Je¤rey

O. Kephart argued that current antivirus techniques are doomed to fail

and must eventually be replaced by a biologically inspired immune sys-

tem for computers.79 Although an important step, Kephart’s model still

assumed the military understanding of the immune system that Varela

contests. In contrast, a potentially much more fruitful approach was

taken by Stephanie Forrest when she conceived of the world of computers

as having many of the properties of a living ecosystem, populated with

‘‘computers, with people, software, data, and programs.’’80 In ‘‘Principles

of a Computer Immune System,’’ Forrest lists twelve organizing princi-

ples of a biological immune system, many of which—autonomy, adapt-

ability, and dynamically changing coverage—while not going as far as

Varela, move beyond the strictly defined military model.81 Forrest argues

that these principles must be incorporated as design principles if a com-

puter immune system is to function. However, if the objective is ‘‘to de-

sign systems based on direct mappings between system components and

current computer system architectures’’ (79), then the latter will have to

be radically modified. One possible architecture, she suggests, would be

something like an equivalent ‘‘lymphocyte process’’ comprised of lots of
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little programs that would query other programs and system functions to

determine whether they were behaving normally or not. But they would

also have to monitor one another, ‘‘ameliorating the dangers of rogue

self-replicating mobile lymphocytes’’ (80) and thus a possible form of

digital cancer. Just how feasible this approach will turn out to be is di‰-

cult to say, and Forrest herself rightly remains cautious and acutely aware

of the limitations of ‘‘imitating biology,’’ since biological organisms

and human-made computers obviously have very di¤erent methods and

objectives.

But here we may be bumping up against the limits of a conceptual con-

tradiction between the computer as a tool or medium over which we ex-

ercise near complete control and the computer as part of an ecosystem

that cannot function unless given more lifelike capacities that will put

it outside of our control.82 Perhaps human computational and commu-

nicational activities will eventually have to be made more like biologi-

cal exchanges if a fully functional computer immune system is to be

constructed—or rather, and more likely, evolved. In any case, the study

of what are now known as complex adaptive systems constitutes an im-

portant theoretical step toward the construction and understanding of

such systems. One of the most interesting features of complex adaptive

systems is that they emerge in both nature and culture. It is certainly no

accident that they should come into view—that is, be identified as such—

about the same time that ALife research gets seriously under way. This

convergence will be of primary interest in the next chapter.
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5 Digital Evolution and the Emergence of Complexity

Yet nature is made better by no mean

But nature makes that mean: so, over that art

Which you say adds to nature, is an art

That nature makes.

—William Shakespeare, A Winter’s Tale

In laying the foundations for ALife, Christopher Langton argued that

ALife machines and programs would actualize the essential processes of

living systems. In so doing, they would instantiate real life, not just simu-

late or model it. This amounts to a ‘‘strong’’ theory of ALife, in contrast

to ‘‘weak’’ theories that would view ALife simulations as only lifelike rep-

licas of living systems.1 As we saw in the previous chapter, Francisco

Varela did not so much challenge the possibility of strong ALife as argue

for a di¤erent set of criteria for defining a living system. While Langton

had extended John von Neumann’s theory that life’s essential logic could

be captured by self-reproducing, evolving automata, Varela followed in

the footsteps of Humberto Maturana, arguing that autopoiesis—a sys-

tem’s capacity to produce and sustain the organization by which it can

maintain itself as autonomous—is what defines life, whether natural or

artificial. Maturana and Varela also insisted that evolution logically

presupposes a living entity. It is therefore possible that a living, self-

organizing entity might be incapable of reproduction. Since most biolo-

gists consider evolution to be a fundamental attribute of life, this position

raises obvious questions. How, for example, is the widely held assump-

tion that life somehow emerged from nonliving matter to be addressed?

And what about liminal instances like viruses, which only live in a state

of parasitic dependency on host organisms, but nonetheless replicate, mu-

tate, and evolve, and thus fall under the seemingly iron law of natural

selection?



At one level, the conflict between Langton and Varela simply reflects

the lack of consensus among biologists about how to define life: is there

an underlying essence, or is life a constellation of ‘‘family’’ properties,

not all of which have to be present in any given instance? Yet their di¤er-

ences are not merely definitional. Langton understands life as an emer-

gent phenomenon and therefore focuses on its underlying dynamical

structure rather than the materiality of its constituent parts. What is cru-

cial, he writes, is that in life ‘‘the local dynamics of a set of interacting

entities (e.g., molecules, cells, etc.) support an emergent set of global

dynamical structures which stabilize themselves by setting boundary con-

ditions within which the local dynamics operate. That is, these global

structures can ‘reach down’ to their own, physical bases of support and

fine tune them in the furtherance of their own, global ends. Such LOCAL

to GLOBAL back to LOCAL inter-level feedback loops are essential to

life, and are the key to understanding its origin, evolution and diversity.’’2

For Varela, on the other hand, diversity stems from ‘‘the situated nature

of [a living system’s] cognitive performances’’ and from how it maintains

its own autonomy in the face of unending contingencies.3

This basic di¤erence has further implications. It not only echoes the

origin-of-life question—which came first, a replicator or a metabolic

mechanism?—but also determines exactly which life processes are to be

instantiated (or simulated) in ALife experiments. Although much ground-

breaking work has been devoted to creating ‘‘artificial chemistries,’’ auto-

catalytic sets, and metabolic activities, Varela’s position (further discussed

in chapter 7) lends itself more readily to the construction of autonomous

mobile robots than to the generation of artificial organisms. For those

interested in emergence, however, there is no means ‘‘so accessible or as

easy to manipulate as that of increasing complexity by evolution through

natural selection,’’ as Charles Taylor puts it (‘‘ ‘Fleshing Out’ Artificial

Life II,’’ 32). Not surprisingly, then, the most dramatically successful

ALife research to date has been based on the evolution of digital organ-

isms (i.e., strings of self-replicating code) in computer-generated virtual

worlds. This chapter examines a body of that research—together with

the underlying theories of emergence and complexity—conducted on var-

ious software platforms, including Thomas Ray’s Tierra, John Holland’s

Echo, Christoph Adami’s Avida, Andrew Pargellis’s Amoeba, Tim Tay-

lor’s Cosmos, and Larry Yaeger’s PolyWorld. I conclude the chapter by

considering several of the methodological limitations of these platforms

and then point to some recently developed alternatives, including living

computation and attempts to create an artificial protocell. Haunting this
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entire body of work is the still unresolved question of ALife’s relationship

to biological conceptions of life and whether its simulations and recrea-

tions can free themselves from mimetic and representational dependencies

without devolving into merely interesting technical performances. In

other words, to what extent, at this stage, can the new science of ALife

achieve genuine autonomy?

Tierra Cognita

In order to study the dynamics of evolution, Thomas Ray constructed

Tierra, a computer-generated virtual machine in which digital organisms

spawn, mutate, and die. The obvious advantage of using a computer pro-

gram to mimic natural evolution is that it can o¤set the latter’s grindingly

slow pace. At the same time, an artificial environment entails an obvious

reduction of complexity: in addition to its apparent simplicity and paucity

of organisms, it lacks the unplanned openness of nature in which natural

selection can turn to its advantage whatever chance o¤ers, whether it be

an aspect of the environment, a parasitic or symbiotic relationship with

another species, or, in the most familiar instance, a beneficial mutation

in an organism’s genome. While the idea of simulating evolution on a

computer was certainly not new among the early practitioners of ALife,

no one before Ray had figured out exactly how it could be done.4 The

stumbling block was precisely this open-ended aspect of nature—the

problem of how to get ‘‘the hand of the breeder’’ out of the selection pro-

cess and let natural selection do its own work. Evidently nature’s algo-

rithm, as Daniel Dennett calls natural selection, could not be so easily

reproduced in a computational medium.5

Trained as a biologist and specializing in rain forest ecology, Ray had

arrived at the idea of studying evolution in a computer-generated envi-

ronment completely on his own.6 Within a year of buying his first com-

puter in 1987, he was well on his way toward realizing his basic project:

to make digital creatures out of machine instructions that could replicate

and evolve. The creatures would ‘‘live’’ in computer memory (their spa-

tial habitat) and compete for time (analogous to their energy source) on

the computer’s central processing unit (CPU). (The code was written in

assembly language, a programming language one step above the 0s and

1s of machine code.) In order to produce mutations in the replication pro-

cess, Ray included instructions that would cause random bit flipping

(reversing 0s and 1s). The creature that would initiate, or ‘‘seed,’’ the pro-

cess he called the Ancestor. Once introduced into Tierra (Spanish for

Digital Evolution and the Emergence of Complexity 217



‘‘earth’’), it would immediately begin to replicate, and the resulting digital

organisms would be assigned: (1) a memory address; (2) a place in the

queue that would bring them to the CPU, where they would execute their

code; and (3) a place in the queue of the ‘‘reaper’’ function, which would

eliminate them. Young organisms, naturally, would be inserted at the

bottom of the reaper queue, but Ray also included code that would slow

down the advance up the queue of the organisms that were most success-

ful in the replication process (that accumulated the lowest number of

errors), thus allowing them to live longer. So as not to infect his or

other machines, the entire simulator program would run on a virtual

machine—a software emulation of a computer within Ray’s computer.

Since instructions designed for this virtual machine would not execute on

other machines, it provided a contained environment.

That, in brief, was the main idea. When Ray presented his project to

Langton and other ALife scientists at the Santa Fe Institute, however,

the response was somewhat mixed: on the one hand, there was enthusias-

tic support for the idea; on the other, warnings about infection (Robert

Morris had recently released his Internet worm) and how long it would

take to make a fully functional simulator. An obvious obstacle was writ-

ing a self-replication program that could actually allow mutation and

continue to function, since most computer programs, being extremely

brittle, malfunction with only slight changes in the code. Inspired by the

way RNA replication works, Ray introduced a number of ‘‘template

matching’’ function calls into the organism’s instruction set. Conse-

quently, when the code calls for a certain function to be executed in a

replication loop, the computer looks for a template—a specific bit

pattern—in its memory rather than for a specific memory address. If it

finds a block of code with a template matching the one needed, the organ-

ism can execute that code. Thus an organism is not necessarily incomplete

or dysfunctional if it lacks certain blocks of code, as long as it can find,

through template-matching, the needed code somewhere in the ‘‘soup,’’

as Ray called the program’s total memory. Yet even with this innovative

feature Ray was greatly surprised by the results of Tierra’s first trial run.

Seeding it with what he thought would be only a primitive, first version of

the Ancestor, he assumed that it would require much more work to get a

genuine evolutionary process going, that is, to get the bugs into his system

and replicating. As it turned out, he says, ‘‘I never had to write another

creature’’ (quoted in Levy, Artificial Life, 221).

The trial run took place on January 3, 1990. Composed of 80 lines of

code, the ancestor required 839 CPU cycles to replicate, so Ray let the
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program run all night on his laptop computer, which executed about 12

million instructions per hour. The reaper function was set to kick in

when the program’s memory capacity reached 80 percent, and the results

could be tracked on a bar graph that identified organisms and the number

of their proliferation. Not expecting much on this first run, Ray was

astonished the next morning to discover that genuine evolutionary behav-

ior already seemed to be taking place. Not only were the 80-instruction

Ancestors replicating, but there were also 79-instruction mutants, and

45- and 51-instruction parasites. In subsequent runs 61-instruction hyper-

parasites and 27-instruction ‘‘cheaters’’ also appeared. Indeed, by taking

advantage of the special conditions of this virtual environment, a small

but thriving ecology of interacting digital organisms had come into being.

It was clear, for example, that many of the mutant organisms were

quite resourceful. The 45-instruction parasites, lacking the code for repli-

cation, would simply borrow it from the larger-sized Ancestors. Being

smaller than their hosts, they required less CPU time to copy themselves

to a new location in memory and could thus proliferate more quickly.

The parasites and hosts also exhibited dynamic behavior similar to the

Lotka-Volterra population cycling in predator-prey studies familiar to

ecologists. In contrast, the hyperparasites would quickly decimate the

parasites. These creatures could do everything the Ancestors could do,

but mutation had made their code more compact and e‰cient, enabling

them to destroy the parasites by capturing the latter’s CPU time. As for

the cheater, though very small (only 27 instructions), it could intercept the

replication instructions it needed as they were passed between two coop-

erating hyperparasites. Ray later reported that one type of creature had

actually discovered the advantage of ‘‘lying’’ about its size.7 The replica-

tion code requires that each creature do a self-examination and calculate

its size in order to request precisely enough memory for its daughter cell.

In this instance the creature would calculate its size as 36 instructions but

request a space of 72 instructions for its daughter, thereby doubling the

amount of space and energy (memory and CPU time) available to its

progeny.

The marvelous success of Tierra rests upon the fact that it actually

instantiates, rather than merely models, the fundamental dynamic of

open-ended evolution in a limited milieu. For undeniably, digital organ-

isms had evolved in such a way as to take advantage of the unique fea-

tures of their silicon world, and in a manner that could not have been

foreseen, much less planned for in advance. The distinguished evolution-

ary biologists John Maynard Smith and Richard Dawkins immediately
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saw the value of Ray’s experiments, and another highly respected biolo-

gist, Graham Bell of McGill University, summarized Ray’s contribution

as follows:

This work has three important uses. First, it is a superb educational tool. Many

people doubt that the theory of evolution is logically possible. . . . Now, one can

simply point to the output of Ray’s programs; they are the ultimate demonstra-

tion of the logical coherence of evolution by selection. Secondly, it seems likely

to provide a superior method for testing theoretical ideas in evolution by pro-

viding more realistic general algorithms than have ever before been available.

Thirdly, it may also represent a general advance in computation, since it makes

it possible to evolve algorithms for any purpose. (Levy, Artificial Life, 230)

Appreciation, to be sure, but also accommodation to familiar and readily

acceptable frameworks. Both Langton and Ray himself describe Tierra’s

methodology and experimental results in more far-reaching terms. For

Langton, what mattered most was that by removing the ‘‘hand of the

breeder’’ Ray had created an artificial environment in which ‘‘natural se-

lection is truly at play.’’8 In these terms Tierra represented a great leap

forward in ALife research, carrying it beyond the earlier work of John

Holland and others with genetic algorithms, Danny Hillis with coevolu-

tionary strategies for the development of algorithms, and Kristian Lind-

gren with computational ecologies. Before considering Tierra further, we

should briefly recall Langton’s summary of this precedent work.

In all three of these instances, algorithms were evolved according to

preexistent notions of fitness. Although the procedures are di¤erent, the

underlying assumptions are similar to those used in animal husbandry

and agriculture, as in the selection and grafting of grape vines in wine

production. In Holland’s genetic algorithms, strings of code are repeat-

edly divided, swapped, and mated in order to evolve algorithms that pro-

vide an optimal solution to a precisely defined problem, most often in

machine learning or sorting operations. Hillis, on the other hand, discov-

ered how to combine di¤erent kinds of sorting problems and di¤erent

kinds of sorting networks and then make them coevolve in a host-parasite

dynamic. Let’s say that a particular population of sorting networks is

stuck on a local fitness peak. (Evolutionary biologists typically represent

measures of fitness as peaks or valleys on a topographical map.) In order

to get to a higher peak, the population would first have to cross a valley,

which is di‰cult, since performance would have to get worse before it

could get better, and there is no Darwinian selection mechanism for

that. Hillis, however, found that in certain instances the parasites would

deform the fitness landscape of the sorting networks, turning the low
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peak into a valley from which the population could then escape by evolv-

ing upward. Lastly, building on the celebrated work of Robert Axelrod,

Lindgren considered evolutionary strategies for cooperating or defecting

in iterated games of Prisoner’s Dilemma. By making a player’s strategy

depend on what the opposed player did in the previous game or games,

Lindgren introduced memory as a factor. This in turn initiated an evolu-

tion of strategies. At first the results were what might be expected: to de-

fect works to one player’s advantage in the short term but to cooperate

becomes advantageous to both over the long term. As strategies evolved

over the long term, moreover, the system began to exhibit more interest-

ing complex behavior. First, the phenomenon known as punctuated equi-

libria could be observed, that is, ‘‘after an initial irregular transient, the

system settles down to relatively long periods of stasis ‘punctuated’ irreg-

ularly by periods of rapid evolutionary change’’ (84).9 In addition, extinc-

tion events, or crashes in the diversity of species (here, game strategies), as

well as ecologies or mixtures of di¤erent strategies, also emerged.

To everyone’s surprise, Tierra exhibited this entire range of evolution-

ary behavior. Yet the much greater autonomy of the evolutionary process

at work in Ray’s silicon world makes the appearance of this complex

behavior much more significant. With the elimination of the outside algo-

rithmic breeding agent, Langton stresses, the ‘‘external task of evaluation

of fitness has been internalized in the function of the organisms them-

selves’’ (88). This means that the conditions that obtain within Tierra it-

self define fitness, not some external objective or performance criteria.

These conditions are not known in advance and can be assumed to

change over time. The fitness of any particular organism will be deter-

mined by its interactions with other organisms in the soup. As we saw

above, these interactions involve competition, host-parasite and symbi-

otic relationships, and strategies of deception. To be sure, fitness in Tierra

really means long-term reproductive vitality. As Ray himself notes, ‘‘sur-

vival of the fittest’’ is nearly a tautology, since the fittest by definition are

those that tend to survive. The tautology is avoided, however, if the

fitness landscape itself ‘‘is shaped by specific adaptations that facilitate

passing genes along.’’10And this is exactly what happens in Tierra, as well-

adapted digital organisms pass their replication code to their o¤spring.

Initially, Tierra’s fitness landscape is defined by the organism’s replica-

tion code and the fixed parameters of computer memory and CPU time.

That is, the original fitness landscape is based solely on the Ances-

tor’s adaptation to the environment constituted by the computer itself.

However, as replication and mutation occur and the soup is filled with a
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diversity of organisms, the fitness landscape begins to change. What now

becomes important is how the organisms interact, as they discover new

ways both to exploit one another and to cooperate. Thus in addition to

the computer environment, the creatures must also adapt to the changing

environment created by their own interactions, which quickly becomes

the primary force driving evolutionary change and development. Ray

summarizes the consequences as follows: ‘‘Because the fitness landscape

includes an ever-increasing realm of adaptations to other creatures which

are themselves evolving, it can facilitate an autocatalytic increase in com-

plexity and diversity of organisms’’ (395). As the digital organisms change

and evolve in response to one another, their digital universe grows in

complexity. But are there limits to the growth of this complexity? How

far can it go, and what are the factors that enhance as well as diminish it?

At the chapter’s conclusion I suggest that a lack of diversity ultimately

limits this growth. Nevertheless, the importance of Tierra for subsequent

ALife research cannot be overemphasized. Like Langton, many special-

ists within ALife and evolutionary biology saw it as instantiating—rather

than merely modeling—the Darwinian principle of natural selection in a

digital medium. It also provided an unexpectedly e‰cient means to

evolve high-performance algorithms—certainly no mean feat. Yet some,

including a few nonspecialists, have contested the claim that the behavior

observed in Tierra is worthy of the label ‘‘life’’ and have seen Ray’s

descriptions of his experiments as misleadingly anthropomorphic.11 Yet

even organo-centric speculation on these questions, if it is not to be triv-

ial, must confront the issue of complexity and the new kind of silicon-

becoming that Tierra instigates. To do this, however, may require a

conceptual framework as innovative as Tierra itself. In several published

essays, notably ‘‘An Approach to the Synthesis of Life,’’ ‘‘An Evolution-

ary Approach to Synthetic Biology: Zen and the Art of Creating Life,’’

and ‘‘Evolution and Complexity,’’ Ray has emphasized the importance

of emergence and complexity, two key ideas in nonlinear dynamical sys-

tems theory. At the same time, he remains curiously silent about the chal-

lenges that these ideas pose to modern, neo-Darwinian evolutionary

theory, the explicit frame for his experiments. To grasp what is at stake,

we must now consider several of these central challenges.

Darwinian Evolution and the Theory of Self-Organization

Of course Darwin himself did not know by what specific mechanism

inherited traits were passed down from generation to generation. Several
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important aspects of that mechanism were discovered by Gregor Mendel,

an Austrian monk and amateur botanist, only a few years after the publi-

cation of The Origin of Species in 1859, but unfortunately they did not

become widely known until the turn of the century. In the subsequently

formed neo-Darwinian synthesis, the gene theory of inheritable traits

was combined with Darwin’s laws of inherited variation and natural se-

lection. With the discovery of DNA and the ‘‘cracking of the genetic

code,’’ all the parts of a complete theory of biological evolution seemed

to be in place. The material evidence for this updated version of Darwin’s

theory is overwhelming and it is now accepted as scientific law. Yet there

remain a few significant problems that the theory cannot account for or

address without new extensions and enrichments.

First, the genome of a well-defined species like human beings, initially

pictured ‘‘as a linear array of independent genes, each corresponding to a

biological trait,’’ actually behaves more like a complex, nonlinear dynam-

ical system in which di¤erent genes switch one another on and o¤, and a

single gene may e¤ect a wide range of traits; or, conversely, many sepa-

rate genes may combine to produce a single trait.12 This makes it unlikely

or rare that evolution acts on a single, isolated gene. Actually, evolution

within the genome is enormously complex, and there is even evidence of

‘‘directed mutation,’’ as Lynn Helena Corporale has demonstrated.13

Second, the fossil evidence does not confirm—as Darwinian theory

demands—that evolution has proceeded through slow and continuous

gradual change over long periods of time. Instead, it tends to support

Niles Eldredge and Stephen Jay Gould’s thesis of ‘‘punctuated equilib-

ria,’’ according to which long periods of stability are followed by sudden

transitions to catastrophic change, characterized by mushrooming growth

of a wide diversity of completely new forms, massive extinction events, or

sometimes both. The best-known examples are the Cambrian explosion,

in which as many as 100 new phyla formed (compared to the 32 today),

and the Permian extinction, in which about 96 percent of all species be-

came extinct. A third problem is raised by the discovery that at the micro-

bial level of bacteria and other simple life forms, genes are and possibly

always have been freely traded and shared in a process known as DNA

recombination. As a result, for several billion years a vast planetary web

of life whose growth is based on networks and coevolution has flourished

on earth.14 In view of these and other complications, the older picture of

evolution based on chance mutation and competition both within and

across variant species is giving way to a di¤erent picture, characterized

by a constellation of self-organizing and coevolving forces.15 In brief, a
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mix of nonlinear dynamical systems theory and coevolutionary theory is

replacing the violent Victorian image of ‘‘Nature red in tooth and claw,’’

as Tennyson put it.

In the context of ALife research, the most directly relevant complica-

tion of Darwinian theory stems from the work of theoretical biologist

Stuart Kau¤man, who was at the Santa Fe Institute during roughly the

same period as Langton. Although Kau¤man is often seen as challenging

the Darwinian hegemony in evolutionary biology, it is perhaps more ac-

curate to say that he has sought a marriage of self-organization and nat-

ural selection, rather than a wholesale dethroning of the latter.16 Early in

his career Kau¤man proposed random Boolean networks derived from

the neural nets of McCulloch and Pitts as a model for understanding

how arrays of genes constituted a dynamical system. In a Boolean net-

work, interconnected nodes switch one another on or o¤ according to

the complex nonlinear dynamics of the system as a whole. In Kau¤man’s

model network, only slight changes to simple variables, specifically the

number of nodes ðNÞ and the average number of inputs to each node

ðKÞ, would cause it to display a range of distinct behaviors. At K ¼ 1

and below, large sectors of the network would remain frozen and almost

inanimate. At K ¼ N � 1, in contrast, highly animated and chaotically

changing patterns would cascade through it, and no stable structures ap-

pear. Kau¤man discovered that the most interesting behavior occurred in

certain regions between these two regimes, around K ¼ 2, where the net-

work would evolve toward clearly distinct self-organizing states in which

a stable but unpredictable order emerged. Kau¤man called this emergent

order ‘‘order for free’’ and thought that it might play a large role in the

evolution of biological organization at many levels.17

Since a random Boolean network constitutes a dynamical system, each

of these distinct behaviors corresponds to a di¤erent attractor state (e.g.,

single point, periodic, or chaotic). Kau¤man thus assumed that detailed

study of the NK model in relation to attractor states would deepen our

understanding of how genetic networks and cell di¤erentiation actually

work. Specifically, he theorized that each specific cell type would be the

result of a stable, self-organizing state of the genetic network (i.e., an

attractor):

Order for free. But more: the spontaneously ordered features of such systems

actually parallel a host of ordered features seen in the ontogeny of mouse, man,

bracken fern, fly and bird. A ‘‘cell type’’ becomes a stable recurrent pattern of

gene expression, an ‘‘attractor’’ in the jargon of mathematics, where an attractor,

like a whirlpool, is a region in the state space of all the possible patterns of gene
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activities to which the system flows and remains. In the spontaneously ordered re-

gime, such cell-type attractors are inherently small, stable, and few, implying that

the cell types of an organism traverse their recurrent patterns of gene expression in

hours not eons, that homeostasis, Claude Bernard’s conceptual child, lies inevita-

bly available for selection to mold, and, remarkably, that it should be possible to

predict the number of cell types, each a whirlpool attractor in the genomic reper-

toire, in an organism. Bacteria harbor one to two cell types, yeast three, ferns and

bracken some dozen, and man about two hundred and fifty. Thus, as the number

of genes, called genomic complexity, increases, the number of cell types increases.

Plotting cell types against genomic complexity, one finds that the number of cell

types increases as a rough-square root function of the number of genes. And, in

parallel, the number of whirlpool attractors in model genomic systems in the or-

dered regime also increase as a square-root function of the number of genes. Man,

with about 100,000 genes should have 370 cell types, but has close to 250. A sim-

ple alternative theory would predict billions of cell types.18

As a dynamical system, the gene network is constrained to specific state

changes that mean only certain pathways (i.e., sequences of expression

of DNA instructions) are possible. Thus each of these pathways, defined

by a specific attractor state, leads to the production of a specific cell type.

Given that genes switch one another on and o¤ (this was the Nobel

Prize–winning discovery of François Jacob and Jacques Monod) and

that each gene is usually controlled by two other genes (i.e., K ¼ 2),

Kau¤man further postulated that the gene network must lie in the or-

dered regime but near the edge or boundary of the chaotic regime. Other-

wise, it would not have been able to evolve to its present functional state

by successive useful variations.19

Here, Kau¤man’s work dovetails with Christopher Langton’s. As we

saw in the previous chapter, Langton found that it was precisely ‘‘at the

edge of chaos,’’ in a specific domain or regime he characterized as a criti-

cal phase transition, that conditions are most propitious for a dynamics

of information processing to emerge spontaneously and come to domi-

nate the behavior of a physical system. His work thus pointed to how a

natural domain structured by the exchange of information in the physical

world could arise and how the kinds of computational processes neces-

sary for life could get started. In the millions of chemical interactions

occurring in states far from equilibrium, at the onset of chaos, Langton

saw nature seeking a way to compute itself to a stable state, one in which

life could perpetuate and reproduce itself. Looking at this scenario from a

biological perspective, Kau¤man saw that it required an additional idea:

once life gets started by taking advantage of the greatly increased infor-

mation processing that occurs in the region of a phase transition, evolu-

tionary pressures actually select for mechanisms that will move it toward
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or keep it near this state. This idea, first proposed by Norman Packard in

a paper entitled ‘‘Adaptation to the Edge of Chaos’’ and presented at

Santa Fe in 1988, struck Kau¤man with the force of a critical break-

through.20 If living systems actually operate close to the edge-of-chaos

phase transition—and Kau¤man thinks they do—then natural selection

is most likely the motor that pushes them there.

In these terms the contradiction between self-organization and natural

selection appears to be resolved. If complex dynamical systems with the

capacity to self-organize are widespread throughout the natural world,

then the outcome of evolutionary processes would not be a simple matter

of ‘‘chance and necessity,’’ as Jacques Monod famously put it.21 Rather,

spontaneous tendencies to self-organize and produce order for free would

introduce another determining factor in the evolutionary process, one

that Darwin could not have foreseen. Consequently, the discovery of

self-organization in biological systems means that ‘‘we must rethink evo-

lutionary theory, for the sources of order in the biosphere will now in-

clude both selection and self-organization.’’22 As David J. Depew and

Bruce H. Weber summarize Kau¤man’s position, Darwinians ‘‘must be

prepared to admit that in many cases natural selection cannot be expected

to do all or even most of the work, that as explanatory models become

more realistic natural selection ceases to be an explanation of first resort,

and that when selection operates, it does so in a fairly narrow range of

possibility space, since it selects among entities that are already self-

organized modules and that are in the process of spontaneously forming

into still higher levels of self-organization’’ (Darwinism Evolving, 436).

Indeed, Kau¤man believes that complex systems theory may provide a

fuller understanding of Darwinian evolution itself by clarifying the very

conditions of ‘‘evolvability’’:

Selection must achieve the kinds of systems which are able to adapt. That capacity

is not Godgiven; it is a success.

If the capacity to evolve must itself evolve, then the new science of complexity

seeking the laws governing complex adapting systems must discover the laws gov-

erning the emergence and character of systems which can themselves adapt to ac-

cumulation of successive useful variations. (‘‘The Sciences of Complexity,’’ 307)

It follows that those systems that can evolve will most likely turn out to

be precisely those systems poised in the ordered regime but near the edge

of chaos.

These ideas found unexpected resonance with another paper presented

only months after Packard’s. In a presentation on ‘‘self-organized critical-
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ity,’’ the Danish physicist Per Bak contended that many complex systems

evolve spontaneously to a critical state, at which point even a small per-

turbation will produce waves of catastrophic change on all scales.23 An

ordinary sand pile provided a clear illustration. If sand is continually

added to the pile, it will inevitably arrive at such a critical state, where

adding a few more grains will cause it to avalanche. Bak showed that

the distribution of the sizes and frequencies of the avalanches constituting

this change follows a power law.24 Though there seemed to be no way to

know in advance which systems would evolve to a state of self-organized

criticality and which would not, when they did, the size of the changes rel-

ative to their frequency always exhibited the precise correlation of a

power law. Bak pointed to evidence in the data describing earthquakes,

extinction events in the fossil evidence, and even the behavior of the stock

market. The fact that a system poised at a state of self-organized critical-

ity would propagate perturbations on all possible length and size scales

especially intrigued Bak’s audience at Santa Fe, and Kau¤man in partic-

ular thought there might be a connection with Langton’s edge-of-chaos

thesis. But while the point of the latter was that ‘‘systems at the edge had

the potential to do complex computations and show lifelike behaviors . . .

Bak’s critical state didn’t seem to have anything to do with life or compu-

tation’’ (Waldrop, Complexity, 307). Yet both concepts dealt with phase

transitions and exhibited the same phenomenology: ‘‘You can tell that a

system is at the critical state and/or the edge of chaos if it shows waves of

change and upheaval on all scales and if the size of the changes follows a

power law’’ (308). Although it wasn’t exactly clear how they fit together,

Kau¤man was sure there was a connection. Self-organized criticality, for

example, might explain punctuated equilibrium, though the data in the

fossil record was inconclusive. Nevertheless, Kau¤man began to wonder

‘‘if power-law cascades of change would be a general feature of ‘living’

systems on the edge of chaos’’ (309). When he tested this hypothesis in

simulations of an ecosystem with coevolving species, he found that a

coevolving ecosystem could well be evolving toward self-organized crit-

icality while parts of it remain ‘‘frozen’’ in equilibria.25 However, ‘‘cas-

cades, or avalanches of changes initiated at local points in the ecosystem

web may propagate to various extents throughout the ecosystem. Such

avalanches may trigger speciation and extinction events’’ ‘‘Co-evolution

to the Edge of Chaos,’’ 343). Thus Bak’s theory, in conjunction with

Langton’s thesis, could explain the coevolutionary dynamic revealed in

the system’s coupled fitness landscapes.
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Internet Tierra: Theoretical Biology or ‘‘Live’’ Software?

It was within this framework that scientists like Langton and Kau¤man

tended to perceive the significance of Ray’s Tierra. Though skeptical at

first, Ray was willing to run tests on Tierra and analyze the data with

the edge-of-chaos idea and a power law distribution of extinction events

in mind. As he reported to Roger Lewin,

Mutation rate in my system is somewhat analogous to the lambda parameter

Chris [Langton] used in his cellular automata. If I turn up the mutation rate, the

system should go chaotic and die out. At a low rate nothing very interesting

should happen. In between these two rates we should see a rich ecology produced,

and if this is the edge of chaos, this is where we should see avalanches of extinc-

tions with a power law distribution.26

Lewin, in turn, pointed out that the data Ray had already gathered exhib-

its the power law distribution, suggesting that Tierra ‘‘might have evolved

to the edge of chaos all by itself ’’ (103). Ray agreed, but wanted to run

more tests, which confirmed Lewin’s insight.

Following Tierra’s success, Ray decided to install a second version in

the more expansive, networked space of the Internet. Before we consider

this research, the central importance of complexity in Ray’s work must be

emphasized. Ray himself has stated, ‘‘It is relatively easy to create life.

Evidently, virtual life is out there, waiting for us to provide environments

in which it may evolve’’ (‘‘An Approach,’’ 393). But what is di‰cult to

produce is something like the Cambrian explosion, where there was ‘‘ori-

gin, proliferation and diversification of macroscopic multi-cellular organ-

isms’’ (398). Here, as elsewhere in Ray’s writings, the reference to the

Cambrian explosion harbors something of an ambiguity. On the one

hand, by citing a well-known event in evolutionary biology, Ray sustains

the more or less automatic assumption that his work contributes to our

understanding of basic biological questions about the origin of life and

its evolutionary path to a wide diversity of species. On the other hand,

with the success of Tierra, it has become clear that Ray’s explicit aim is

the production of complexity, understood simply as an increasing diver-

sity of interactions among an increasing diversity of organisms, or agents.

The best medium for realizing this aim is the digital medium of com-

puters. For Ray, it would seem, the actual realization of this complexity

takes precedence over whatever it might mean in relation to the processes

of the organic world. As he bluntly states, ‘‘The objective is not to create

a digital model of organic life, but rather to use organic life as a model on
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which to base our better design of digital evolution.’’27 While references

to organic life continue to have an obvious legitimating function—after

all, Ray is a bona fide biologist working within well-defined disciplinary

constraints—they also have a secondary or subsidiary status, since the

central objective is to produce complexity.

This somewhat ambiguous perspective surfaces directly in Ray’s re-

search after Tierra, when a literal doubling takes place. In 1995 he issued

‘‘A Proposal to Create a Network-wide Biodiversity Reserve for Digital

Organisms.’’ His basic idea was to extend Tierra to the Internet by taking

advantage of the fact that at any given time there are thousands of

‘‘idling’’ machines on the network that could provide spare CPU cycles.

The objective would be ‘‘to set o¤ a digital analog to the Cambrian explo-

sion of diversity, in which multi-cellular digital organisms (parallel pro-

cesses) will spontaneously increase in diversity and complexity.’’28 If

successful, he continues, ‘‘this evolutionary process will allow us to find

the natural form of parallel and distributed processes, and will generate

complete digital information processes that fully utilize the capacities in-

herent in our parallel and networked hardware.’’ At the same time, and in

clear parallel, he issued ‘‘A Proposal to Consolidate and Stabilize the

Rain Forest Reserves of the Sarapiqui Region of Costa Rica.’’ The pur-

pose of this project would be to ‘‘prevent the imminent destruction of

some of the last remaining large areas of rain forest . . . in Northern Costa

Rica,’’ and ‘‘to establish a conservation economy through a community

based nature tourist project.’’ While the obvious parallelism of the two

projects suggests an equal importance, their very formulation lends itself

to a probably unintended interpretation: while organic life now requires

protection and preservation, nonorganic life simply requires the opportu-

nity and conditions in which it can emerge and foment complexity.

Tellingly, at no point in the Internet Tierra proposal does Ray mention

or allude to the simulation of life; instead, he simply reiterates his aim to

use evolution ‘‘to generate complex software.’’ Though he mentions the

Cambrian explosion, it serves only as a convenient and well-known gen-

eral model of complexity. For Ray, in fact, the specific objective was ‘‘to

engineer the proper conditions for digital organisms in order to place

them on the threshold of a digital version of the Cambrian explosion.’’

The global network of the Internet, because of its ‘‘size, topological com-

plexity, and dynamically changing form and conditions,’’ presents the

ideal habitat for this kind of evolution. Under these propitious condi-

tions, Ray hoped, individual digital organisms would evolve into multi-

celled organisms, even if
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the cells that constitute an individual might be dispersed over the net. The remote

cells might play a sensory function, relaying information about energy levels [i.e.,

availability of CPU time] around the net back to some ‘‘central nervous system’’

where the incoming sensory information can be processed and decisions made on

appropriate actions. If there are some massively parallel machines participating in

the virtual net, digital organisms may choose to deploy their central nervous sys-

tems on these arrays of tightly coupled processors.

Furthermore, if anything like the Cambrian explosion were to occur on

Internet Tierra, then we should expect to see not only ‘‘better’’ forms of

existing species of digital organisms but entirely new species, or forms of

‘‘wild’’ software, ‘‘living free in the digital biodiversity reserve.’’ Since the

reserve would be in the public domain, anyone willing to make the e¤ort

would be able to observe and even ‘‘attempt to domesticate’’ these digital

organisms. While domestication would present special problems, Ray

foresaw this as an area where private enterprise could get involved, espe-

cially since the organisms could conceivably become ‘‘autonomous net-

work agents.’’

After several years of operation, Internet Tierra did not prove to be

as dramatically successful as the closed-world version, mainly because

of di‰culties developing the necessary parallel-processing software. Yet

the results were in some ways astonishing. At the ALife VI conference

in 1996, Ray and colleague Joseph Hart reported on the following

experiment:

Digital organisms essentially identical to those of the original Tierra experiment

were provided with a sensory mechanism for obtaining data about conditions on

other machines on the network; code for processing that data and making deci-

sions based on the analysis, the digital equivalent of a nervous system; and e¤ec-

tors in the form of the ability to make directed movements between machines in

the network.29

Tests were then run to observe the migratory patterns of these new organ-

isms. For the first few generations, these organisms would all ‘‘rush’’ to

the ‘‘best-looking machines,’’ as indeed their algorithms instructed them

to do. The result was, as Ray called it, ‘‘mob behavior.’’ Over time, how-

ever, mutation and natural selection led to the evolution of a di¤erent al-

gorithm, one that simply instructed the organism to avoid poor-quality

machines and consequently gave it a huge adaptive advantage over the

others.

Internet Tierra makes fully explicit a central objective in Ray’s work:

to deploy evolutionary strategies like natural selection in the digital me-

dium in order to bring into being a quasi-autonomous silicon world of
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growing complexity. While the digital organisms of this world are of es-

sential interest to ALife and evolutionary biology, their wider significance

exceeds the boundaries of these disciplines and perhaps the frame of sci-

entific research itself. Indeed, the necessary constraints of the latter can

even inhibit us from seeing how these organisms participate in a much

larger transformation, or coevolution, of technology and the natural

world.

Echo: Modeling A Complex Adaptive System

Tierra is an exemplary instance of what has come to be known as a com-

plex adaptive system. Such systems have been and remain a privileged fo-

cus of research at the Santa Fe Institute. If any single person can be said

to be responsible for this central and overarching interest, it would be

John Holland, a frequent visitor for many years. Best known for his in-

vention of genetic algorithms, Holland has devoted much of his profes-

sional career to the study of complex adaptive systems. In Adaptation

in Natural and Artificial Systems, he o¤ers four broad distinguishing

features:

1. All complex adaptive systems involve large numbers of parts undergoing a

kaleidoscopic array of simultaneous nonlinear interactions.

Because of the nonlinear interactions, the behavior of the whole system is not,

not even to an approximation, a simple sum of the behaviors of its parts. . . .

2. The impact of these systems in human a¤airs centers on the aggregate behav-

ior, the behavior of the whole.

Indeed, the aggregate behavior often feeds back to the individual parts, modify-

ing their behavior. . . .

3. The interactions evolve over time, as the parts adapt in an attempt to survive in

the environment provided by the other parts.

As a result, the parts face perpetual novelty, and the system as a whole typically

operates far from global optimum or equilibrium. . . .

4. Complex adaptive systems anticipate. In seeking to adapt to changing circum-

stances, the parts develop ‘‘rules’’ (models) that anticipate the consequences of

responses. . . .30

Because such systems are not easily modeled or described mathemati-

cally, they are usually studied using computer simulations. Holland, how-

ever, has built a general model of a complex adaptive system, which he

calls Echo. Though ‘‘designed primarily for gedanken experiments rather

than precise simulations’’ (186), Echo has been implemented as a com-

puter simulation.31
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Echo consists of a flat spatial expanse on which a number of simple

agents are distributed around specific sites, like pieces on a game board.

Each agent possesses certain attributes defined by ‘‘tags’’ and ‘‘condi-

tions’’ inscribed in its ‘‘chromosomes,’’ which enable it to interact in three

ways: fight, trade, or mate. Each agent also possesses a ‘‘reservoir’’ of

resources, which it attempts to augment. After collecting a predefined

quantity, it can reproduce. Agents interact with specific sites in the envi-

ronment by drawing, or ‘‘uptaking,’’ resources from a site, but they must

also pay a small ‘‘maintenance’’ cost, which is subtracted from the reser-

voir of their resources. If an agent cannot pay this cost, it is deleted from

the site. However, it is also possible for an agent to migrate to another

site, where more resources are available. More frequently, agents simply

accumulate or exchange resources with other agents. Each agent’s specific

capacities are encoded in symbol strings (‘‘chromosomes’’) that determine

its external ‘‘phenotypic’’ properties. Its traits are encoded in tag chromo-

somes; its possible responses to other agents, in condition chromosomes.

The particular configuration of these chromosomes—whether and how

they match—determines how any two agents will interact in an encoun-

ter. For example, if the ‘‘combat condition’’ of either agent matches the

‘‘o¤ense tag’’ of the other, then combat is initiated. There are many

ways of scoring the outcome. In the simplest case, a rapid calculation of

resources and attributes leads to a winner, who collects the loser’s re-

sources; the loser is then deleted. However, if combat does not take place,

then the conditions and tags of each of the agents are checked for a pos-

sible trade. Unlike combat, which can be initiated unilaterally, trading

can only be bilateral. If the proper conditions for both agents match,

they can exchange any excess of resources they possess over and above

what is necessary for their own reproduction. Although agents can also

reproduce asexually, when they mate there is an exchange and recombi-

nation of chromosomes. As with trading, mating is always bilateral, in

which conditions must be met on both sides.

These simple rules of interaction quickly give rise to complex behav-

ior among the agents, including (Holland notes), ‘‘ecological phenom-

ena (e.g., mimicry and biological arms races), immune system responses

(e.g., interactions conditioned on identification), evolution of meta-

zoans (e.g., emergent hierarchical organization), and economic phenom-

ena (e.g., trading complexes and the evolution of ‘money’)’’ (186). This

complexity results from ‘‘surprisingly sophisticated evolutions,’’ which

produced ‘‘evolving sequences of agents with ever longer, more compli-

cated chromosomes, accompanied by a corresponding increase in the
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complexity of their interactions’’ (193). Following this evolution, a bio-

logical arms race ensued, in which defensive tags increased in length, in

turn necessitating ‘‘the development of ever more sophisticated matches

to overcome the increasing defensive capabilities’’ (193). More recent ver-

sions of the model saw the development of connected communities of

agents that have internal boundaries but reproduce as a unit. This led in

turn to specialization among the agents, some in o¤ensive capabilities,

others in resource acquisition. Overall, a net increase in the reproduc-

tion rate for both types resulted, confirming the generally accepted idea

that evolution often favors cooperation and multiagent networks or

communities.

While intended only as a general model on which di¤erent kinds of

simulations and experiments could be run, Holland’s Echo exhibits one

obvious similarity with Ray’s Tierra: there are no explicit fitness func-

tions. In Echo, the reproductive rate of an agent depends solely on its

ability to gather the necessary resources through interactions with specific

sites and other agents.32 Its fitness, therefore, is a function of its inherited

traits, which enable it to survive and reproduce in its immediate environ-

ment and which it can exchange and pass on to its progeny. But Echo and

Tierra also di¤er in several important respects. As both Ray and Langton

have insisted, the Darwinian evolutionary process is directly instantiated

in Tierra and not merely modeled or simulated. This enables Ray to

speak of Tierra’s digital organisms as in some way alive rather than as

merely lifelike. In contrast, Holland thinks of Echo as only a model that

can support various simulations and readily points to its cartoonlike

aspects. This di¤erence is reflected in their respective presentations.

Whereas Ray describes in detail how the digital organisms are coded,

how they function in the computer, and how they emerge as an evolving

ecology, Holland is primarily concerned with the features of the model,

specifically the attributes of the agents and how they interact. He barely

mentions the computer, and then only to say that ‘‘Echo, and other mod-

els of complex adaptive systems, are readily designed for direct simulation

on massively parallel computers’’ (196). These di¤erences reinforce the

interpretive di¤erences just mentioned. Composed of computer code,

Ray’s digital creatures are machinelike and cannot be abstracted from

their machine environment. From the point of view of a strong theory

of ALife, however, they are not simply lifelike but a new form of

life, not because they imitate natural life forms but because they per-

form functions that actually (in Ray’s view) define life, that is, they repli-

cate, mutate, and evolve to form ecologies of diverse organisms. As
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informational entities composed of code, they exhibit machinic rather

than natural life.33 Holland’s agents, in contrast, are lifelike in a directly

mimetic and representational sense. For one critic, in fact, Holland’s

agents too easily reflect the ideology of possessive individualism and a

capitalist economy.34

When Holland presented his model at the Santa Fe Institute’s confer-

ence on complexity, questions from the audience focused on two aspects

of Echo that are particularly relevant here.35 First, Kau¤man wanted to

know about e¤ects of species interaction. He noted that in his own model

of coevolution when every species interacts with every other species, the

system tends to go chaotic. Contrarily, ‘‘by tuning down the number of

species which interact with one another,’’ he could push his system into

an ordered regime, adding that there is ‘‘evidence from real food webs

that species work quite hard at controlling the number of other species

that they interact with.’’ Implicit in Kau¤man’s comments is the idea

that there may be an ideal or optimal number of interspecies interactions

somewhere between high and low that would drive the ecology to the

edge of chaos, thereby promoting higher levels of fitness and adaptability.

Although Holland responded that ‘‘there’s some stu¤ that’s relevant’’

(‘‘Echoing Emergence,’’ 334), Echo does not seem able to address species

interaction, certainly not with the clarity evinced by Tierra when Ray

varies the mutation rate.

A query from Leo Buss brought Ray’s system directly into the discus-

sion. Buss first returns to his colleague Walter Fontana’s earlier observa-

tion that a great deal of complexity is built into rather than generated by

Holland’s model, specifically by the tags, which require ‘‘entire levels of

organization.’’ On the other hand, because Holland’s agents have a phe-

notype (defined specifically by the tags) his system is substantially richer

than Ray’s. This follows from the fact that, with phenotypes, selection

operates on traits rather than on individual creatures or agents and thus

produces greater variation and hence greater richness. At the same time,

there is a drawback, since the system has not generated the phenotypes—

Holland has simply built them in. As Buss adds, this gap is precisely

where ‘‘biology lacks theory.’’ For Fontana and Buss, it appears, the

real issue lies not in the consequences of the tags in terms of ‘‘the dynam-

ics of the individual entity class’’ (338), but in how to generate or evolve

the tags.

Generalizing, we could say that for Fontana and Buss the complexity

of the Echo system doesn’t arise far enough from the bottom up, since

the mechanism of the tags is ‘‘injected’’ at an intermediary level, as a
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given of the system. (A similar criticism can be made of Tierra, of course,

which is seeded by an Ancestor whose reproductive code is complete from

the start.) Nevertheless, while Echo’s individual agents are only capable

of three types of action, their collective interactions result in the emer-

gence of complex adaptive behavior. This complex behavior not only

exceeds what the individual agents are capable of but also operates glob-

ally: it changes the fitness landscape. As in Tierra, this emergent global

behavior modifies environmental conditions at the local level, to which

individual agents must henceforth adapt through a constant turnover in

trait selection. Thus even though the set of primitive interactions (fight,

mate, or trade) does not evolve, the mechanism of trait selection gener-

ates new combinations that allow more complex adaptive behavior to

emerge. At least up to a point.36 In Tierra the mechanism of evolution is

not trait selection but genome selection, with the motor of change operat-

ing at the deeper level of the organism as a whole: the computer code

defining the ‘‘genotype’’ of each individual organism is rewritten through

mutation (the genotype is the code; the phenotype, the result of its execu-

tion), thus producing new organisms subject to adaptive pressures and

hence natural selection. The result, as we saw, is a dynamically changing

ecology. In two di¤erent ways, then, Echo and Tierra exemplify the feed-

back loop from local to global back to local that Langton describes.

Complex behavior emerges at the global level, sets new constraints at the

local level, and thereby alters the fitness landscape. While the behavior-

generating mechanisms in the two systems di¤er fundamentally, the dy-

namically evolving behavior that results make both of them instances of

complex adaptive systems.37

This leads to what we might call the Santa Fe perspective: what counts

is not whether or not the system is a living biological system but whether

it exhibits the properties of a complex adaptive system. Cutting across

natural and artificial realms, the concept of a complex adaptive system

often encompasses a multiplicity of heterogeneous relationships among

living and nonliving agents and processes, as in Holland’s example of

New York City cited in this book’s introduction. His other examples

include the central nervous system, the immune system, a business firm,

a species, and an ecology, with their operative time scales ranging re-

spectively from seconds to millennia. In an amplification of his earlier

work, Holland examines four properties and three mechanisms common

to all complex adaptive systems.38 Most of them are embodied in Echo

and need not be laid out here. However, Holland also extends the term

adaptation to include learning (9–10), which is significant here in that
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the relationship of learning to evolution was an important theme in early

ALife research, most notably in David Ackley and Michael Litman’s

model of evolutionary reinforcement learning (ERL). Resembling Echo

in some respects, the ERL model incorporates mechanisms that measure

the extent to which agents can learn and act appropriately within a larger

evolutionary framework.39 This groundbreaking research suggests that

‘‘learning and evolution together were more successful than either alone

in producing adaptive populations’’ (487). Unfortunately, the relationship

between learning and evolution figures much less prominently in more re-

cent ALife research.40

If, as complex adaptive systems, Tierra and Echo evolve into states of

greater complexity by di¤erent mechanisms, then several obvious ques-

tions follow. For example, are the criteria sketched above the ones that

should be foremost in making ‘‘lateral’’ comparisons among di¤erent

complex adaptive systems, or does some kind of learning or anticipatory

mechanism need to be included? And can similar kinds of dynamical sys-

tems where local interactions produce global e¤ects be stacked vertically,

so that emergent systems operate ‘‘above’’ and englobe other emergent

systems? Basically, this is the question of how hierarchies in dynamical

systems should be defined and experimentally generated.41 But looming

over this entire discussion is the key question of how emergence itself

should be defined and whether it is a universal type of phenomena. To a

great extent, these questions are still being engaged by ongoing research

within current ALife and complex adaptive systems theory. Here, how-

ever, some basic questions about how ALife systems work remain to be

pursued. Specifically, given the computational nature of such systems,

we need to consider how computational processes function in an emer-

gent system and how these computational processes contribute to the

emergence of the dynamical behavior of the system as a whole.

What’s New? Emergent Computation

Several papers presented at the Santa Fe conference at which John Hol-

land presented Echo attempt to grapple with the question of how to de-

fine emergence. The most ambitious, James Crutchfield’s ‘‘Is Anything

Ever New? Considering Emergence,’’ focuses on computation in emer-

gent systems, centering specifically on the di¤erence between the percep-

tion or appearance of a new pattern in physical phenomena and the

detection of an ‘‘emergence of coordinated behavior and global infor-

mation processing.’’42 Combining rigorous science with epistemological
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sophistication, Crutchfield distinguishes among (1) intuitive notions of

emergence according to which ‘‘something new appears,’’ (2) an observ-

er’s identification of pattern or ‘‘organization’’ in a dynamical system,

and (3) what he calls ‘‘intrinsic emergence,’’ where a new pattern brings

about an increase in the system’s computational capacity, thus giving it

additional functionality. Crutchfield then discusses a method by which in-

trinsic emergence can be measured.43

At the outset Crutchfield distinguishes between a pattern having impor-

tance only in the eye of an observer and one having importance within the

system in which it emerges. In the former case, the pattern’s ‘‘newness’’ is

attributed by the observer, who anticipates and recognizes it in relation to

other patterns or to a ‘‘fixed palette of possible regularities.’’ For Crutch-

field, the novel patterns that emerge from deterministic chaos (like the

owl face pattern of the Lorenz strange attractor), the self-similar ‘‘fractal-

ness’’ of the random walk, the self-organizing material states like the

Belousov-Zhabotinsky chemical clock, and the studies of solitons in tur-

bulence all fall into this first category. In the second category, that of in-

trinsic emergence, the pattern’s newness must be defined in relation to

other structures within the same system. Since there is no external ref-

erent for novelty or pattern, this type of emergence is ‘‘intrinsic.’’ More

specifically, intrinsic emergence confers ‘‘additional functionality which

supports global information processing.’’ In any instance of intrinsic

emergence, therefore, there is an ‘‘increase in intrinsic computational

capability, which can be capitalized on and so can lend additional func-

tionality’’ (518). For example, competitive agents in a capitalist market

economy develop strategies based on the pricing of goods and services

that emerges from their collective interactions. Inasmuch as pricing

reflects all the available information in the system, it is an instance of

global information processing (i.e., intrinsic computation) that in turn

becomes the basis for better investment strategies. Examples of this

second type, Crutchfield adds, fall under the rubric of what is called emer-

gent computation. This important concept will be considered momen-

tarily; here let it su‰ce to say that emergent computation refers to a type

of information processing that arises from the interactions of a large

number of simple agents or elements without any centralized external

control. Emergent computation can thus be said to occur when a large

number of local interactions with limited computational and communica-

tional capacities give rise to coordinated global information processing.

Insect colonies, immune systems, the brain, cellular automata, and the

capitalist market system—all evince forms of emergent computation.
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Clearly the role and position of the observer vis-à-vis both the observed

phenomenon and the assumed model di¤er significantly in the two types

of emergence. In the first type, the relation of the observer to the phenom-

enon, or pattern, and the model, whether assumed or explicit, is external;

that is, the observer perceives the phenomenon and compares it with a

preexistent model. In the second type, the observer is inside the system,

one of its subprocesses so to speak, and the model is embedded in the ob-

server. This is a logical requirement, since the observer must have ‘‘the

requisite information processing capability with which to take advantage

of the emergent patterns’’ (519).

Crutchfield next proposes a method by which to detect and quantify in-

trinsic emergence in nonlinear processes. The method is distinguished by

two aspects, which make it very similar to his earlier work on �-machine

reconstruction: a notion of structure based on a ‘‘computational mechan-

ics of nonlinear processes’’; and a mechanism or process he calls ‘‘hierar-

chical machine reconstruction’’ for measuring its complexity. The method

works roughly as follows. Isolating a process in nature, an observer

makes a series of discrete-time, discrete-space measurements. In order to

extract structure from these measurements the observer can assume that

an information-processing architecture is embedded in the states that the

measurements reflect. This means that, ‘‘given a discrete series of mea-

surements from a process, a machine can be constructed that is the best

description or predictor of this discrete time series’’ (523). The structure

of the machine would thus provide ‘‘the best approximation to the origi-

nal process’s information processing structure’’ (523). The more com-

plex the structure, the more complex the machine required to recognize

it. Fortunately, computational theory distinguishes di¤erent classes of

machines on the basis of precisely this correlation. (Chomsky’s computa-

tional hierarchy is the best-known example.) Basically, then, a data

stream exhibiting dynamic patterns is mapped as a function of the formal

language and corresponding computational machine or automaton

required to recognize or compute it. As expected, patterns of increased

complexity require a more complex type of formal language for their de-

scription. In sum, since the architecture of the reconstructed machine it-

self ‘‘represents the organization of the information processing,’’ it can

provide ‘‘a model of the mechanisms by which the natural process manip-

ulates information’’ (523).

In considering the relevance of his method to contemporary debates on

biological evolution, Crutchfield notes that three schools of thought on

the guiding mechanisms in Darwinian evolution can account for the
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emergent complexity visible in ‘‘the present diversity of biological struc-

ture’’ (527). Selectionists, represented by John Maynard Smith, are the

heirs of classical Darwinian theory brought up to date by genetics. Al-

though natural selection based on a notion of fitness culls the destabi-

lizing e¤ects of genetic variation, this approach o¤ers no theory of

structure. Historicists, represented by Stephen J. Gould, accept the Dar-

winian mechanisms of variation and selection but insist that change is

often nonadaptive and that accidents and contingencies play an ulti-

mately determinant role in the shaping of biological form. Again, there

is no theory of structure. Finally, structuralists represented by Brian

Goodwin and Stuart Kau¤man argue that on many levels biological

development is both enabled and constrained by principles of self-

organization, that is, by structural attractors that lie in wait in a possibil-

ity space. The role of natural selection is reduced to ‘‘choosing between

these ‘structural attractors’ and possibly fine-tuning their adaptiveness’’

(527). While lacking a theory of transformation, this approach does yield

a theory of structure. However, despite an explicit interest in organization

and structural archetypes, Crutchfield finds structuralism inadequate

since ‘‘the structure archetypes are neither analyzed in terms of their in-

ternal components, nor in terms of system-referred functionality’’ (528).

Reviewing these three basic positions on evolution, Crutchfield con-

cludes that ‘‘there is a crying need for a theory of biological structure

and a qualitative dynamical theory of its emergence’’ (528–529). Since

computational mechanics provides a theory of structure, and hierarchical

machine reconstruction provides a theory of its transformation, together

they are well suited to ‘‘study what drives and what constrains the ap-

pearance of novelty’’ (529). Such a study of the dynamics of innovation,

he adds, might well be called evolutionary mechanics. If it could be ap-

plied to the biological domain, it might point toward a synthesis of the

conflicting viewpoints within the three schools. In fact, expanding on his

critique of the latter, Crutchfield later demonstrated how hierarchical �-

machine reconstruction can be ‘‘folded into’’ an evolutionary process

and thus applied to the evolution of complexity.44 Going beyond Kau¤-

man, Crutchfield establishes that ‘‘Darwinian evolution cannot, in and of

itself, produce novel biological structures and functions’’ (102); however,

by using the computational tools he has developed, epochal evolution can

be understood as an ‘‘open-ended process of discovering and stabilizing

novelty’’ (128). Moreover, it is not necessarily a process driven by exter-

nal forces. As we’ll see, this theoretical position finds significant reso-

nance in several ALife experiments.
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Considered more widely, Crutchfield’s work on intrinsic emergence

marks a notable turning point. While theories of emergence and com-

plexity have attracted considerable attention, there is still no scientific

consensus on their status. No doubt, structures of self-organization arise

spontaneously in many nonlinear dynamical systems—in all complex

adaptive systems, it seems—but scientists have not yet been able to estab-

lish incontrovertibly that emergence and complexity are underlying uni-

versal phenomena rather than unique if widespread instances. In fact,

doubts about the viability of a unified theory of complex systems have

been publicly aired, perhaps most visibly by John Horgan.45 Given that

scientific method requires rigorous skepticism, Horgan’s objections

should be salutary, but unfortunately he o¤ers too one-sided an account

and fails to report on a number of promising avenues of current research.

Referring to Christopher Langton’s and Norman Packard’s work with

cellular automata, work that concludes that ‘‘a system’s computational

capacity—that is, its ability to store and process information—peaks in

a narrow regime [the space of a phase transition] between highly periodic

and chaotic behavior’’ (106), Horgan cites criticisms by Crutchfield and

Melanie Mitchell, who were unable to repeat and thus verify the results

of Langton’s and Packard’s edge-of-chaos research. However, Horgan

fails to mention not only the context in which these criticisms were made

but also, and more importantly, the promising work these two scientists

themselves have done in the area of emergent computation, specifically

in relation to complex adaptive systems and the assumed conflict between

the computational and dynamical approaches to systems theory. Since

their investigations constitute one of the most fruitful paths that complex-

ity theory has taken, I shall now consider it in some detail.

The very idea of emergent computation immediately recalls two basic

questions that Langton posed: how does information processing arise

and gain control over the dynamics of a system, and what are the most

propitious conditions for its emergence?46 The term, however, owes its

current usage not to Langton but to Stephanie Forrest, who organized

the conference ‘‘Emergent Computation: Self-Organizing, Collective, and

Cooperative Phenomena in Natural and Artificial Networks’’ in 1990 at

the Center for Nonlinear Studies at Los Alamos National Laboratory.47

This conference followed two other groundbreaking conferences spon-

sored by the center mentioned in earlier chapters: the 1983 conference on

cellular automata organized by J. Doyne Farmer, Tomas To¤oli, and

Stephen Wolfram; and the 1986 conference ‘‘Evolution, Games, and

Learning: Models for Adaptation in Machines and Nature,’’ organized
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by J. Doyne Farmer, Alan Lapedes, Norman Packard, and Burton

Wendro¤.48 The latter was especially important for emergent computa-

tion, addressing issues of evolutionary adaptation through learning in

both machines and natural processes, with a key paper (discussed in the

previous chapter) on an artificial immune system. Significantly, Langton

presented papers on cellular automata at all three conferences. While he

doesn’t broach all of the problems and issues on the table at these confer-

ences, his work is clearly central to them. It seems appropriate, therefore,

to begin the discussion of emergent computation with Crutchfield and

Mitchell’s critique of Langton’s work.

Melanie Mitchell, a computer scientist who had worked with John

Holland and Douglas Hofstadter, had come to the Santa Fe Institute to

pursue research on genetic algorithms. Thus the pairing of Mitchell and

Crutchfield would seem to be the perfect combination for investigating

emergent computation in evolutionary systems, whether natural or artifi-

cial. As they themselves state, ‘‘Our ultimate motivations are both to un-

derstand emergent computation in natural systems and to explore ways of

engineering sophisticated emergent computation in decentralized multi-

processor systems.’’49 Crutchfield, we should recall, began his research

as a physicist in the late 1970s with investigations into deterministic

chaos. Early work in this new science had revealed that the onset of chaos

often occurred as a phase transition characterized by rapid bifurcations

and period doublings in a dynamical system’s phase space. Working

with colleagues like Karl Young in the late 1980s, Crutchfield proved

that a system’s computational capacity increased significantly at the onset

of chaos, attaining what he called ‘‘statistical complexity.’’50 Simply put,

at moments of rapid change in a system’s physical state—in the transi-

tion, say, from solid to fluid—the system can be understood as a finite-

state automaton with the capacity to store and transmit large amounts

of information globally, that is, from one part to another throughout the

entire system.

As Langton acknowledges in ‘‘Life at the Edge of Chaos,’’ Crutch-

field’s research on computation and chaos parallels his own. There were,

of course, di¤erences. Working with cellular automata, Langton sought

correlations between information processing (changes in the CA rule

space) and the dynamic behavior of the CA (evident in the changing

visual patterns). Working with physical systems under the influence of

chaotic attractors, Crutchfield wanted to develop precise measurements

of the increases in information-processing capacity of those systems as

they became more chaotic. Whereas in Langton’s CA changes occur
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over discrete time steps, in the physical systems Crutchfield considers,

dynamical changes occur continuously. This is significant inasmuch as

the terms Langton uses to describe CA behavior (i.e., the attractor states

in dynamical systems theory, first applied to CA behavior by Stephen

Wolfram) were developed for continuous-time, continuous-state systems,

not discrete-time, discrete-state systems like cellular automata. While the

consequences of this importation are not immediately evident, what does

become an issue is whether or not Langton’s experiments were defined

rigorously enough to provide unambiguous proof of his claims. In short,

did the results fully justify his claim that the information-processing ca-

pacity of the CA measurably increased as its dynamic behavior ap-

proached the edge of chaos?

The computational capacity of CA at the onset of chaos was also at the

heart of Norman Packard’s research, and Crutchfield and Mitchell’s first

joint investigations revisited both Langton’s and Packard’s experiments.

Since I intend to focus on work they have done following their critique

of these experiments, I shall simply summarize their findings. In neither

case, they found, could they reproduce the experimental results and there-

fore could not confirm the claims advanced on its basis. But while Hor-

gan’s article implies that the claims themselves are invalid, what

Crutchfield and Mitchell actually do is to pinpoint the inherent simplifica-

tion and vagueness in the experimenters’ assumptions that made the

results unrepeatable. ‘‘Those negative results,’’ Mitchell writes, ‘‘did not

disprove the hypothesis that computational capability can be correlated

with phase transitions in CA rule space; they showed only that Packard’s

results did not provide support for that hypothesis.’’51 In fact, Mitchell

cites the work by Crutchfield and Young mentioned above that demon-

strates the validity of this hypothesis, though not by using cellular

automata.

The central problem in both Langton’s and Packard’s work arises from

the way the correlation between the dynamic behavior of the CA and its

computational capacity is defined and demonstrated. In Langton’s case,

where the correlation is measured by the lambda parameter (discussed in

chapter 4), Mitchell and Crutchfield demonstrate on both theoretical and

empirical grounds why it is too crude. For one thing, the assumption that

the ‘‘CA rule tables themselves are the appropriate loci of dynamical be-

havior’’ is unwarranted.52 For another, the actual behavior of the CA is

averaged in a way that obscures the meaning of the correlated results. Fi-

nally, the imputed increase in computational capacity that occurs as

lambda approaches certain critical values (‘‘the edge of chaos’’) is not
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defined for any specific computational task. In Packard’s case, the desired

computational task of the CA (described below) is defined at the outset,

and genetic algorithms are evolved as the best means to accomplish it.

Since the best performing genetic algorithms have lambda values very

close to the critical values that correspond to class 4 CA, Packard inter-

prets the results as confirming the edge-of-chaos hypothesis. But again,

Mitchell and Crutchfield show that the experimental results do not justify

this conclusion. They do not deny that as the CA behavior approaches

the edge of chaos threshold the computational capacity of the CA

increases—in fact, they acknowledge that it does for certain computa-

tions—but only that these results do not confirm the hypothesis as stated.

In short, the hypothesis ‘‘has not been rigorously formulated’’ (510), and

other factors explain the correlation.

Nevertheless, Packard’s specific computational task and his deploy-

ment of genetic algorithms to solve it have proved useful for subsequent

work that Crutchfield and Mitchell themselves carried out. The computa-

tional task is simple but well suited for determining emergent compu-

tation, understood as ‘‘collective information-processing abilities that

emerge from the individual actions of simple components interacting via

restricted communication pathways.’’53 Given that the CA forms a lattice

of cells, with each one in an on or o¤ state (i.e., 1 or 0) at a particular

moment in time, the task is to determine whether, at an initial configura-

tion, a majority of the cells are on or o¤. If the majority is on, then the

desired behavior is for the remaining cells to change to the on state; if,

on the other hand, the majority is o¤, then the desired behavior is for all

the remaining cells to change to the o¤ state. For computational systems

with a central processor (like an ordinary digital computer) or a neural

network with global connectivity, it would be easy to design an algorithm

to perform this task. But for cellular automata, where the interactions

among cells are always and only local, this is a very di‰cult task and

becomes more so as the size of the cell array increases. The reason is ob-

vious: as the lattice increases in size, the CA must communicate informa-

tion over larger space-time distances, and without a central processor

there is no easy way to coordinate information from distant parts of the

array. Packard solved the problem by evolving a genetic algorithm that

would provide the most e‰cient CA rule (or transition-state table) lead-

ing to the desired transformation; in short, it would map the neighbor-

hood state configuration to an update state of all 1s or 0s. Since Packard

was working with one-dimensional cellular automata of finite size, the

transition-state table was a string of 1s and 0s of only moderate length.
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According to Mitchell and Crutchfield, Packard’s work was meant to

test two hypotheses: ‘‘(1) CA rules able to perform complex computations

are most likely to be found near [lambda critical] values; and (2) when

CA rules are evolved to perform complex computations, evolution will

tend to select rules near [lambda critical] values’’ (505). But, as already

noted, when they repeated the experiment, they were unable to obtain

the same results and were forced to explain the di¤erences and o¤er an

alternative interpretation of Packard’s data. Their subsequent work, how-

ever, both corrects and extends the work of Langton and Packard by put-

ting it on a more mathematically precise and better-grounded theoretical

foundation. In a series of experiments they have followed Packard’s

e¤orts to evolve genetic algorithms to perform the specific computational

task described above, usually referred to as the p ¼ 1=2 task. But whereas

Packard sought to build or engineer emergent information processing in

decentralized, spatially extended systems like CA, their work is intended

to detect such behavior. As a consequence, it is better suited to provide

a more precise understanding of how globally coordinated computations

in such systems can evolve on their own. To accomplish this they devel-

oped ‘‘a novel technique for analyzing particle-based logic embedded in

pattern-forming systems’’ (‘‘The Evolution of Emergent Computation,’’

1). Although technically complex, at its core the technique involves a

means of revealing vectors of pattern formation as the CA change over

time. Specifically, patterns quickly appear that are composed of areas

of black (1s), white (0s), and gray (combinations of 1s and 0s). A filter is

then applied that screens out these large areas, leaving visible only the

edges and lines of intersection. These edges and intersecting lines are

then analyzed as streams of particles traveling across the lattice that carry

information (or signals) over space-time distances. The visualization of a

CA pattern changing over time and the diagram that provides the filter

(reproduced from ‘‘The Evolution of Emergent Computation’’) illustrate

the method (figs. 5.1 and 5.2).

Points of intersection in figure 5.2 mark sites where the signals perform

logical operations, much as colliding streams from the glider guns in

Langton’s CA experiments are used to perform the operations of logic

gates. These logical operations in fact constitute density mapping opera-

tions: when a high-density particle collides with a low-density particle, the

particle that emerges maps this information onto another signal moving

toward a di¤erent spatial configuration. According to the logic of this im-

plementation, ‘‘the collection of domains, domain walls, particles, and

particle interactions for a CA represents the basic information processing
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Figure 5.1
Evolving CA. James P. Crutchfield and Melanie Mitchell, ‘‘The Evolution of Emergent
Computation,’’ SFI Technical Report 94-03-012, 1.

Figure 5.2
Evolving CA filter. James P. Crutchfield and Melanie Mitchell, ‘‘The Evolution of Emergent
Computation,’’ SFI Technical Report 94-03-012, 1.
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elements embedded in the CA’s behavior—the CA’s ‘intrinsic’ computa-

tion’’ (6). Analyzing a number of di¤erent instances of ‘‘particle-based

computation,’’ Crutchfield and Mitchell have been able to demonstrate

how ‘‘(1) complex global coordination can emerge within a collection of

simple individual actions; and (2) how an evolutionary process, by taking

advantage of certain nonlinear pattern-forming propensities of CA, can

produce this new level of behavior through a succession of innovations

that build up the delicate balance [between order and chaos] necessary

for e¤ective emergent computation’’ (10).

Crutchfield and Mitchell’s particle-embedded approach to detecting

emergent computation represents a major step forward in making com-

plexity theory and emergence directly amenable to scientific investigation.

Specifically, in pursuing a theoretically rigorous and empirically precise

method for detecting emergent computation in decentralized, spatially

extended systems, they develop a tool that synthesizes dynamical systems

and information-processing approaches. Both scientists, in fact, have

denied that there is any necessary or inherent dichotomy between the

two approaches.54 Indeed, their work suggests that evolutionary adapta-

tion can perhaps best be explained by their synthesis. More generally, by

adumbrating a unified framework in which dynamical systems, computa-

tion, and the evolutionary process can be articulated and understood to-

gether, they are pursuing what is perhaps the most fruitful direction for

further research with evolving complex systems. Experiments with ALife

systems confirm the importance of this framework. In Christoph Adami’s

Avida and Andrew Pargellis’s Amoeba in particular we see how evolution

leads to two di¤erent kinds of complexity.

Avida: Evolving Complexity in the Digital Genome

A physicist at the California Institute of Technology, Christoph Adami

first began to perform ALife experiments with Thomas Ray’s freely avail-

able Tierra system. This led him to develop Avida, a next-generation

system conceived in the same spirit and set up to do experiments in

open-ended evolution.55 Like Tierra, Avida basically consists of self-

replicating blocks of code that execute their instructions on a virtual ma-

chine within a digital computer. However, as in Tierra, because these

individual blocks of code are subject to mutation and ‘‘death’’ (erasure)

and compete with one another for CPU time and memory space, they

are rightfully treated as digital organisms. As we saw earlier, Ray’s digital

creatures reshape the fitness landscape through their dynamic interactions
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and thereby increase the complexity of their environment’s fitness land-

scape. This complexity is global, a result of ‘‘creatures adapting to other

creatures which are themselves evolving,’’ as Ray puts it. In Avida the

same kinds of dynamic interaction occur, but the software allows the ex-

perimenter to track increases of complexity not just at the global level, as

in Tierra, but at local levels as well.

To enhance Avida’s functionality as a platform for ALife experiments,

Adami and software developer Titus Brown introduced a spatial structure

and local update rules.56 In Avida the digital organisms ‘‘live on a two-

dimensional grid’’ (Introduction, 50), the structure of which is reminiscent

of a cellular automaton. Hence, Adami states, ‘‘We term each grid point

a cell or organism, and each associated list of instructions the genome of

that organism’’ (301). Unlike Tierra, where any program or block of code

can in principle interact with any other, in Avida the programs located at

the grid points can only interact with the eight other programs in their

neighborhood, and thus only propagate information locally. Death, or

the reaper queue, functions similarly. Positioned at each lattice location,

it can only delete cells in the immediate neighborhood. Avida also di¤ers

from Tierra in that its ‘‘update rules are not fixed but rather are depen-

dent on the genome of the cells in the immediate neighborhood’’ (‘‘Evolu-

tionary Learning,’’ 377). Whereas in Tierra each block of code (i.e.,

genome or instruction set) is given the same time slice—that is, it is allo-

cated the same amount of CPU time to execute its code—in Avida, time

slicing is a variable that can be set by the user. For example, it can be

made constant (as in Tierra), dependent on the length of the genome, or

size neutral. Most usefully, it can be made proportional to the organism’s

‘‘merit,’’ which is determined by the number of instructions copied into or

executed by the organism multiplied by any ‘‘bonuses’’ that accrue in its

interaction with the environment. For example, the user can reward

organisms for performing computational and logical tasks beyond mere

replication.57 Each of these options will di¤erently carve the fitness land-

scape generated by each run of the Avida system.

As in Tierra, a run begins when the Avida system is seeded with an an-

cestor program. It can be the default creature, creature.base, or one with

a smaller instruction set, creature.small, or for that matter any other crea-

ture in genebank. What di¤ers in each case is the genome, or instruction

set, which can also be modified by the user. The default instruction set,

written in assembly language, contains twenty-four instructions, although

as many as forty-two are available. In addition to the ‘‘biological’’

instructions that enable the organisms to replicate (allocate memory,

Digital Evolution and the Emergence of Complexity 247



copy, divide, etc.), there are instructions for mathematical and logical

operations as well as input and output. There is also a jump command

that can move the instruction pointer from one organism’s instruction

set to another’s (as long as it resides in the same neighborhood), thus

allowing one organism to execute another’s code, like forms of bacteria

using one another’s DNA. The default ancestor, creature.base, has a

genome of thirty-one instructions and ‘‘carries a certain amount of redun-

dancy in its code’’ (Introduction, 234). Importantly, this extra code pro-

vides additional raw material for the processes of mutation and natural

selection. For one experiment Adami describes an ancestor of a hundred

instructions ‘‘containing mostly nonsense code, from which all popula-

tions are spawned.’’58 It turns out, however, that this extra, ‘‘junk’’ code

is essential for producing genomic complexity.

The replication process is carried out in four stages: (1) allocation of

new memory; (2) duplication of the parent program in the new memory,

instruction by instruction; (3) division of the program into parent and

child programs; and (4) placement of the child program into the cell lat-

tice. All operations but the last are handled by the instruction set. The

placement of o¤spring, however, involves the environment and brings

with it both restrictions and options. First, the o¤spring cell can only be

placed at one of the eight grid points that constitute the parent’s neigh-

borhood. The user sets where it is to be placed, by selecting one of four

options in the BIRTH_METHOD variable in the genesis file: it can be

set randomly; the o¤spring cell can replace the oldest cell in the neighbor-

hood (in some cases this might be the parent cell); it can replace the cell

with the highest value of age divided by merit; or it can be placed in

an empty cell. There is also choice of how cells die. First, the DEATH

_METHOD can be turned o¤ so that a cell only dies by being replaced

by a younger cell. Second, a cell can die at a certain ‘‘age limit,’’ that is,

after executing a specified number of instructions. And third (a variation

on the second method), it can die after a specified number of instructions

multiplied by its genome length. These options in BIRTH_METHOD

and DEATH_METHOD enable the user to vary parameters that will

considerably alter the dynamics of this virtual world and hence the result-

ing fitness landscape.

After the system is seeded with a self-replicating organism, the grid

begins to fill with copies. (The grid is 60 by 60, and thus supports a total

population of 3,600 organisms.) Very quickly, mutated creatures also

begin to appear and replicate if capable. As alterations of the seed organ-

ism’s code, mutations are lethal, neutral, or favorable with respect to
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replication. Once a mutant produces three copies of itself, its new genome

is identified with a letter. Several types of screen allow the user to track

this process in detail. The software also allows the user to extract, exam-

ine, and inject individual genomes. Both the mutation rate and the types

of mutation—five are available in Avida—can also be adjusted by the

user.59 This tool in fact constitutes one of Avida’s most essential features,

for the system is designed precisely to study the relationship between mu-

tation and genomic complexity. Recall that in Tierra the most e¤ective

mutants all had shorter instruction sets (i.e., genomes) than the Ancestor.

Since the time slice, or CPU time, remained constant whatever the code

length, mutants with a shorter code—or that could use the code of other

cells to replicate—possessed a distinct advantage. The shorter the organ-

ism’s code, the less it has to copy and the more copies of itself it can make

in the fixed amount of time allotted. As Adami remarks, this situation

leads to a very e‰cient optimization of code but discourages the evolu-

tion of complex code (Introduction, 303). The question, therefore, is not

what makes for an e‰cient and successful replicator but under what cir-

cumstances does the acquisition of additional capacities—like the ability

to do simple computations—also enhance replication in the long run. The

answer clearly has to do with the nature of the environment. A replicator

that is successful in a simple environment might not function well or at all

in a more complex one. This means that the information inscribed in the

genome must also be understood as information about the environment.

This information is stored in the genome and transmitted through rep-

lication. When an organism copies its genome into an o¤spring, informa-

tion is transferred to that other site. In his Introduction to Artificial Life,

Adami describes experiments that ‘‘investigate the mode and speed of this

transfer in relation to the fitness of the genotype carrying the information,

the fitness of the other genotypes near this carrier, and the mutation rate’’

(253). For example, when the fitness of the carrier genome is the same as

those in the neighborhood, then information transfer can be modeled as a

case of di¤usion, describable in terms of a classic random walk. On the

other hand, if the carrier is more fit, information spreads in sharply

defined wavefronts that propagate at a constant speed. The various

dynamics of information propagation let Adami determine the character-

istic time scale of the system, that is, the average time it takes for the

system to return to equilibrium after a perturbation, or information prop-

agation event. Although this ‘‘relaxation time’’ depends on the size of the

system and the speed of information propagation within it, Adami dis-

covered that ‘‘persistent mutation pressure’’ would always keep it far
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from equilibrium. Indeed, a subsequent series of experiments involves

increasing the mutation rate ‘‘to the edge of an error catastrophe,’’ where

the probability that a string of code will acquire a mutation before being

able to replicate itself is close to 100 percent. Surprisingly, increases in the

mutation rate drove the population to greater adaptability right up to the

catastrophic error rate. In this regard the experiments yielded results sim-

ilar to Langton’s edge-of-chaos research. Beneficial mutations that propa-

gated increasing amounts of information through organism replication

peaked just short of the ‘‘edge of an error catastrophe,’’ while on the

other side, errors in coding multiplied so fast that chaos in the form of

dysfunctional code swamped the system.

Experiments with complexity thus lie at the heart of Adami’s project.

And like Crutchfield, Adami realized that complexity had to be defined

precisely, in measurable terms. He also understood that complexity

means one thing to physicists and computational theorists and something

else to biologists.60 Physicists who think about the complexity of dynam-

ical systems usually resort to computational measures, since in principle

all physical processes can be viewed as computations and vice versa. A

well-known example is Kolmogorov, or algorithmic, complexity, which

is measured by the length of the algorithm to which a symbol string or

sequence can be compressed. In contrast, biologists who think about

complexity consider form, function, or the symbolic sequence (DNA)

that codes for the production of the organism.61 Among biologists, fur-

thermore, there is no clear consensus on whether or not evolution neces-

sarily increases complexity.62 Since there are no universal measures for

structural or functional complexity in biology, Adami opts for a version

of sequence complexity, even while acknowledging that ‘‘the di‰culty of

biology lies precisely in the intimacy of this map from sequence to func-

tion’’ (‘‘What Is Complexity?’’ 1086). ‘‘It is very likely,’’ he adds, ‘‘that a

properly defined sequence complexity should mirror the complexity of the

organism that the sequence gives rise to’’ (1086). If this conjecture is true,

then Adami can adopt some of the mathematical methods used by phys-

icists to measure complexity in dynamical systems and perhaps ‘‘bridge

the gap between the physical and biological sciences’’ (1086).

Adami defines the physical complexity of a sequence as the amount of

information about a particular environment stored in that sequence. He

suggests that we think of the sequence as a tape. The ‘‘sequence entropy’’

of the tape measures the amount of information that the tape could hold

and is indicated by the length of the tape. As the tape is filled with mea-

surements (i.e., recordings) about a particular environment, the length of
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the tape containing the recordings would constitute a measure of this in-

formation. Because this information is correlated with a particular envi-

ronment (for another environment it would be meaningless noise), it has

predictive value for that environment. Quoting David Deutsch (‘‘Genes

embody knowledge about their niche’’) and E. O. Wilson (‘‘[Organisms]

encode the predictable occurrence of nature’s storms in the letters of their

genes’’), Adami declares that this is precisely what physical complexity

measures: ‘‘It is information about an environment that can be used to

make predictions about it. Being able to predict the environment allows

an organism to exploit it for survival. In such a manner, physical com-

plexity translates into fitness for the organism’’ (1087).

Mathematically, Adami defines physical complexity as ‘‘the shared Kol-

mogorov complexity between a sequence, and a description of the environ-

ment in which that sequence is to be interpreted.’’ At first glance this

seems somewhat akin to defining the complexity of a book as the com-

plexity of the information it contains plus a description of the cultural

context in which it will be read and made use of. However, the context

of Adami’s definition greatly narrows its reference: ‘‘It is su‰cient to

think of the physical complexity of a sequence as the amount of informa-

tion that is coded in the genomes of an adapting population, about the

environment to which it is adapting’’ (1087). In fact, it is because Adami

is not concerned with a single genome but a population of genomes that

the entire evolutionary selection process can be understood as a kind of

Maxwell’s demon; that is, for a given environment, natural selection sep-

arates successful from unsuccessful replicators. As we would expect, when

moments of increased replication are considered in an otherwise unchang-

ing environment, genomic complexity in the population as a whole is

observed to increase.

While acknowledging that there are serious questions about how com-

plexity in biological living systems should be defined and measured,

Adami believes that in artificial living systems the evolution of complexity

can be explicitly observed by examining the e¤ects of mutation on the

genomic complexity of a population of digital organisms. In Avida specif-

ically this is accomplished as follows. As a population of organisms self-

replicates, some of these organisms will discover through random

mutation a sequence of instructions that benefits their survival and in-

crease. These new parts of the mutated code gradually become fixed, or

frozen, in the organism’s genome as it continues to replicate. These frozen

parts of the code can be distinguished from parts that are still volatile, in

the sense that the latter provide genomic diversity without storing any
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useful information about the environment. Adami notes, however, that

‘‘the determination of [the] volatility of a site is only possible statistically,

i.e., by examining ensembles of members of the same ‘species.’ ’’63 Signifi-

cantly, in adaptive events in which the replication rate increases, the num-

ber of volatile instructions can be observed to decrease. This is illustrated

in figure 5.3 (‘‘What Is Complexity?’’ 1092), a before-after comparison of

two genomes in which the instructions are color-coded in relation to their

site-entropy—a measure of their fixity or volatility.

As Adami points out, instructions in blue and the cooler colors (here,

dark) possess low entropy: mutations at those loci usually produce non-

functional organisms. Contrarily, instructions in red and other warm

colors (here, light) are highly entropic and thus volatile. Comparing the

instructions of two extracted genomes, A and B, we can clearly see a

‘‘cooling o¤ ’’ in instructions 63–74 (in the lower half of the third column

in B). This represents a visible gain in the number of fixed instructions

and thus a gain of information about the environment. Since the number

of nonvolatile instructions in a code string represents an estimate of the

physical complexity of a particular species of string, this gain also indi-

cates an increase of physical complexity. Adami summarizes the signifi-

cance of these experiments as follows:

Figure 5.3
Two genomes according to their per-site entropy. Christof Adami, ‘‘What Is Complexity?’’
BioEssays 24, no. 12 (2002): 1092.
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In artificial living systems, the increase of physical complexity, which coincides

with increasing acquisition and storage of information, can be monitored directly,

and illustrates the usefulness of this measure. Note that this process of acquisition

of information constitutes, in the language of thermodynamics, [ . . . ] the opera-

tion of a natural Maxwell-demon: the population performs random measurements

on its environment, and stores those ‘‘results’’ that decrease the entropy, but

rejects all others. Thus, the process can be likened to a semi-permeable ‘‘mem-

brane’’ for information, and the physical complexity increases as a function of

evolutionary time (given a fixed environment) as the strings store more and more

information about that environment. Naturally, a change in environment (cata-

strophic or otherwise) generally leads to a reduction in complexity. Such experi-

ments suggest that physical complexity is indeed the ‘‘quantity that increases

when self-organizing systems organize themselves.’’64

Adami and his group’s experiments with digital organisms thus confirm

the intuitive idea that there is a positive correlation between environmen-

tal replication success (fitness) and a collective increase of information

about the environment. This correlation, for Adami, provides the basis

for a quantitative measure of complexity. It also turns out that experi-

mental data on the e¤ects of mutation rates observed using the Avida sys-

tem correlates very positively with data obtained in experiments with the

evolution of E. coli and other bacterialike biological organisms, as biolo-

gist Richard Lenski and others have shown.65 Yet, as in the case of

Tierra, these results may be viewed from two di¤erent though not neces-

sarily contradictory perspectives. On the one hand, Avida is an invaluable

tool for evolutionary biologists who want to study the e¤ects of mutation

on the genome of an asexual organism. But on the other, it is an incu-

bator spawning new and increasingly complex forms of artificial life

whose ultimate value may well exceed the specific interests of theoretical

biology.

Amoeba: The Spontaneous Generation of Digital Life

Both Tierra and Avida are seeded by a handcrafted digital ancestor

designed to self-replicate. Implicitly these systems raise the intriguing pos-

sibility that under certain conditions a self-replicating digital organism

might arise spontaneously, without having to be crafted by a designer’s

hand. This possibility is exactly what Andrew Pargellis sought to address

with Amoeba, a software platform he designed following the general les-

sons of Tierra and Avida. In 1996 Pargellis published the results of over

one hundred separate runs, in which self-replicating digital creatures

emerged from a ‘‘primordial soup’’ composed of random sequences of
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machine instructions.66 This success allowed Pargellis to identify some

of the primary factors that optimize the probability of the appearance of

self-replicators and to follow their subsequent evolution. What perhaps

best characterizes Amoeba, however, is the dynamic complexity of the

soup itself, which results from Pargellis’s creative use of the instruction

pointer in the execution of each organism’s code.

We might reasonably assume that two factors in particular are criti-

cally important: first, that the primordial soup is filled with a relatively

limited number of types of instructions; and second, that a very small

subset of these would be su‰cient for self-replication to occur. The

assumed biological counterpart is the high likelihood that primitive forms

of RNA arose spontaneously and acquired the capacity to self-replicate.

To test these assumptions Pargellis created a virtual machine with an in-

struction set composed of 16 instructions, with only a minimal set of 5

necessary for self-replication. (By comparison, in Tierra a minimum num-

ber of 19 instructions is necessary, while in Avida it is 11.) Since the num-

ber of possible combinations of these instructions (165) is approximately

106, or one million, the probability that a self-replicating organism might

appear seems rather remote. However, if we take into account the fact

that Amoeba can support as many as a thousand organisms in a single

run, and that the computation cycle for the execution of every organism’s

code is very rapid, then even a moderate mutation rate is likely to result

in the appearance of a self-replicator in a reasonable time period. Noting

that ‘‘the probability of a randomly generated sequence resulting in a self-

replicator increases with replicator size’’ (‘‘The Evolution,’’ 118), Pargellis

calculated that the probability of a sequence of 25 instructions is approx-

imately 10�4, or 1 in 10,000. And indeed, self-replicators did emerge in

Amoeba after about four hundred generations. Pargellis expected these

ancestral replicators to be small, with simple sequences of instructions,

but in fact they were ‘‘large and unlikely combinations of computer oper-

ations [i.e., instructions]’’ (‘‘The Spontaneous Generation,’’ 87). Once

these self-replicators appeared, moreover, competition for CPU time and

memory forced them to optimize their code, just as we would expect.

To initiate a run, Pargellis seeded Amoeba with a primordial soup con-

sisting of several hundred digital organisms or cells, each composed of a

unique and randomly generated sequence of computer instructions that

makes up a cell’s genome. These genomes or instruction sets range in

length from one to twenty-five instructions, although in later experiments

as many as thirty instructions made up a set. When the soup fills to max-

imum capacity, a reaper function eliminates about 30 percent of the cells,
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beginning with the oldest. At the completion of the reaper cycle, about 50

of the empty slots are filled with new, randomly generated sequences of

instructions. In addition to the reaper, there are also random mutations.

Each time a child cell is initiated, there is a 10 percent probability that

one of its instructions will be mutated. Of these mutations, 60 percent

are substitutional, 20 percent are insertional, and 20 percent are deletions.

Pargellis has observed, however, that only about 3 percent of the muta-

tions enable a replicator to remain viable. As a consequence, a number

of default settings and routines are required in order to handle improperly

executed instructions.

The instruction set from which the cell’s genome is constituted di¤ers in

two major respects from those of Tierra and Avida. First, it has many

fewer instructions (the minimum required for replication) and conse-

quently is not Turing complete (i.e., not capable of universal computa-

tion). Second, a great deal of work is accomplished by the cell’s

instruction pointer, which functions like the program counter in a CPU:

it sequentially points to the address of the next instruction to be executed.

Designated ip(cell, op), the instruction pointer in Pargellis’s virtual ma-

chine has two vectors (i.e., variables or arguments): cell is the particular

cell whose instructions are being executed as the pointer points to each

one seriatim in a classic visitation sequence; op is the position (from 1 to

30) of the instruction presently being executed. A jump command can

move the pointer to a new position or address, but eventually it must be

followed by a return command; otherwise, the pointer is ‘‘lost.’’ When a

cell loses its pointer, it can no longer execute its code and more than

likely will be ‘‘captured’’ by a neighboring cell. The neighboring cell will

then be able to use this host cell’s registers, CPU time, and memory slot

for its own additional replication. Since this feature is responsible for how

many of the cells in Amoeba replicate and is essential to what drives the

system’s dynamic behavior, it is worth considering in detail.

In another contrast with Avida, cells in Amoeba ‘‘randomly di¤use

about on the grid.’’ Actually, each cell’s coordinates on this 22 by 80 in-

teraction grid serves primarily as a means of identifying that cell’s nearest

neighbors—the cells with which it can interact. An interaction occurs,

Pargellis states, ‘‘when a cell (virus) transfers its pointer to, and executes

the code of, another cell (host)’’ (‘‘The Spontaneous Generation,’’ 89).

Pargellis’s introduction of the virus-host language here is potentially con-

fusing, as we’ll see. We can, nevertheless, extrapolate a basic idea of how

the system works. In the present instance there are two ways for this

‘‘transfer of the pointer’’ to happen. In the first (as noted above), a cell
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loses its pointer when there is no return, or reset, command after it exe-

cutes the last instruction in its code. Thereupon a search routine is initi-

ated that finds a cell within three grid units and that acquires a pointer

with new parameters: ip(cell’s host, opF1). In e¤ect, this means that the

CPU jumps from the first cell (with the lost pointer) to an adjacent cell

and begins to execute its code. In other words, the first cell has now be-

come the adjacent cell’s host. The second way occurs if a cell finds an ad-

dress (usually in its cx address register) that points to another cell. If that

happens, a search is initiated for a nearby cell containing that address,

and the first cell’s pointer is altered to new parameters: ip(cell’s host,

opF address position). Again, as a result the CPU jumps from the execu-

tion of the first cell’s code to that of the second. In both cases the CPU

performs this jump at the next computational cycle and then regularly,

unless a mutation causes a change in the cell’s code (in the first instance)

or the address register (in the second). Thus rather than execute each

cell’s code in a classic visitation sequence, the CPU is constantly jumping

around the grid, crossing cell boundaries and executing code in ever new

sequences.

These features result in a very interesting ecology. Before considering

the special dynamics at work, a further clarification is necessary. As noted

above, Pargellis refers to cell interaction as a viral process. This is confus-

ing, for actual ‘‘viruses’’ also appear in the primordial soup. Strangely,

however, Pargellis does not define them or even include them in his ac-

count of the various cell types. Let us therefore define a virus in this con-

text as a cell that uses the code of a neighboring cell (as host) to produce

another virus. How does this di¤er from the process described above,

where a cell loses its pointer only to see it acquired or replaced by a par-

asite cell’s pointer? The simple answer is that the parasitic cell gets twice

as much CPU time and memory, since at each computational cycle it will

be visited twice: once for itself and again when the CPU visits the host

cell without a pointer and is subsequently jumped to the parasitic cell to

execute its instructions a second time. All other things being equal, if it

has all the necessary code to replicate, the parasitic cell will therefore rep-

licate roughly twice as fast as a nonparasitic replicator. A virus, on the

other hand, is able to copy ‘‘part of its code, followed by part of the

host’s code, into the viral embryo’’ (90).67 Exactly how the virus does

this is not explained. In the examples Pargellis provides in his two articles

there doesn’t appear to be a minimal set of instructions that every virus

contains. All we know for certain is that a virus always and only produces
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another virus. These viral children are always small (they do not possess

many lines of code) and can quickly form colonies around host cells.

In order to compare emerging self-replicators and viruses, Pargellis

supplies a ‘‘phylogeny’’ (see fig. 5.4, reproduced from ‘‘The Spontaneous

Generation,’’ 91). Viruses appear on the left; the ‘‘main rootstock’’ self-

replicator with various o¤shoots, on the right. The numbers refer to spe-

cific instructions (described in a table), with the colors indicating useful

code (yellow), nonfunctional code (blue), and useful additional code

(red). Viruses appear about the same time (around the 406th generation)

as self-replicators. But as the phylogeny emphasizes, viruses don’t evolve

as successfully as the bigger self-replicators, which tend to lose many of

their ‘‘introns’’ (the nonfunctional code) and acquire new subroutines.

Pargellis observes that in fact viral species usually don’t last more than a

few hundred generations and soon lose their small size advantage in the

presence of robust self-replicators. Thus, he notes, the viral population

will be either suppressed or vigorous depending on the ‘‘robustness of

the dominant self-replicators in the soup’’ (91).

However, a more complex picture emerges when Pargellis describes the

three types of cells that make up the soup: the prebiotic, the protobiotic,

and the biotic. More specifically, the narrative that his account generates

appears to support two di¤erent interpretations, depending on whether

we assume the point of view of the ‘‘true biotic,’’ as Pargellis calls the

spontaneously generated ancestral cell capable of ‘‘replicating itself suc-

cessfully many times’’ (92), or that of the soup as a dynamical system.

As evident in the phylogeny, when the primordial replicators first appear,

they are usually large but ine‰cient. In fact, in a majority of runs the first

self-replicators are protobiotics—large cells that either replicate only once

or replicate incorrectly at least once before acquiring the capacity to rep-

licate correctly. But here we see a division. Those that are successful (the

minority) soon shed their introns and become very e‰cient over succeed-

ing generations. They then begin to grow again and acquire advantageous

subroutines. They are, in short, the perfect success story. In contrast, the

majority of protobiotics su¤er an ambiguous fate. Frequently they cannot

compete with neighboring viruses, which are able to use the code of their

protobiotic hosts to ‘‘generate viral children, quickly allocating the avail-

able computer memory.’’ Although a protobiotic often doesn’t last more

than a few generations, Pargellis adds, somewhat contradictorily, ‘‘It

often lasts indefinitely, becoming the dominant component of the soup

by initially existing in a colony (where it trades instruction pointers with
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Figure 5.4
Phylogeny of a digital organism. A. N. Pargellis, ‘‘The Spontaneous Generation of Digital
‘Life’,’’ Physica D 91 (1996): 91.
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other similar cells, for example) and evolving into a more e‰cient organ-

ism, the biotic cell’’ (93).

Meanwhile, the prebiotics also endure an ambiguous fate. As we would

expect, they are incapable of self-replication. But here again a division

appears: either the prebiotics are ‘‘completely inactive or they are only

able to create a daughter cell that has either one or no operations’’ (92).

Curiously, although the prebiotics at first appear to be inert, they enjoy

both an initial moment of glory and a truly essential function. In the be-

ginning, in fact, there are only prebiotics. However, as soon as the first

replicators emerge, the prebiotics lose their dominance, even though they

continue to exist as long as the soup endures. Since any children they

spawn are empty or only contain a few pieces of code, they can ‘‘generate

o¤spring only through chance encounters with other cells’’:

Usually, they lose their pointer to the soup, which is then captured by another cell

and used to copy either the viral code, that of the host, or some combination of

both, into the viral child. Therefore, prebiotic cells that are unable to retain their

pointers play an important role as their instruction pointers are captured by

nearby cells that may be more viable, protobiotics. (92)

Yet Pargellis’s statement is confusing here precisely because it collapses

two distinct processes: in the first instance the prebiotic is a prey to

viruses, whereas in the second the prebiotic is a helper or enabler for

protobiotics.

Clearly there is something odd about the dynamics of the soup. The

oddity has to do with the fact that because pointers can be lost and

acquired by other cells and used as an alternative form of replication, pre-

biotics are essential for protobiotics, and protobiotics are essential for

biotics, in the sense that in both cases the former enable or even become

the latter. Furthermore, if we take this process of loss and acquisition of

the pointer followed by alternative replication as equivalent to the actions

of a virus, as Pargellis appears to do, then viruses are also essential to the

ecology. Or rather, as parasites that compete for CPU time and memory

space viruses are both the ‘‘enemy’’ of all other cells—prebiotics, proto-

biotics, and biotics alike—and essential to the dynamics of the soup, since

without them there would be no dynamic interaction. Put another way,

the dynamic interactions of the soup necessitate a blurring between entity

(or category of entity) and function. As entity, viruses are dangerous, and

prey on ‘‘healthy’’ cells; as function, they are absolutely necessary to the

soup’s continuing viability. A striking example of this split occurs in

Pargellis’s discussion of the protobiotics: either they are the easy prey of
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viruses, with which they cannot successfully compete, or they exist in col-

onies, where they can trade ‘‘instruction pointers with other similar cells.’’

In short, either they succumb to viruses or they become viruslike and sur-

vive by sharing pointers in colonies.

It is much too simple, therefore, to describe the dynamics of the soup in

terms of cell types. Rather, in addition to the replicators and their ongo-

ing evolution, we must consider the actions of both its parasites and sym-

bionts and their ongoing evolution as well. In his article ‘‘The Evolution

of Self-replicating Computer Organisms,’’ Pargellis begins to acknowl-

edge this more complex picture in a schematic diagram of the interaction

grid (115), which now includes three distinct processes: (1) the actions of

an isolated self-replicator; (2) a parasite (i.e., virus) using some of the

code of its nearest neighbor; and (3) cells sharing their pointers within a

colony. Pargellis refers to these colonies as ‘‘primitive types of multicellu-

lar life where cells exchange resources, in this case computer memory and

CPU time through the exchange of instruction pointers’’ (120). In these

terms, one cannot help but wonder how these colonies—and the colonies

of viruses as well—would fare under varying mutation rates, both in the

short and long term, and would compare with the isolated self-replicators.

One can only hope that Pargellis or other researchers will pursue the

question in future research.

The issue of mutation rate in Pargellis’s experiments relates directly to

an idea that Adami has recently discussed.68 When exposed to high mu-

tation rates, Adami notes, some species survive as a cloud of mutants, or

quasi species, in the following sense.69 No longer does any one organism

contain the entire genome for the species, but rather a range of genomes

exist, and this variety allows the species to survive the onslaught of de-

structive mutations. Viruses in particular exhibit this kind of quasi-species

behavior, Adami continues, just as ‘‘the more robust of his digital organ-

isms do’’:

In virus evolution, you clearly have mutation rates on the order of those we have

played around with. It is clear that a virus is not one particular sequence. Viruses

are not pure species. They are, in fact, this cloud, this mutational cloud that lives

on flat peaks [in a fitness landscape]. They present many many di¤erent geno-

types. (2)

A multiplicity of digital organisms that can no longer be defined except as

a ‘‘mutational cloud’’—surely this is a curious order of being, produced

inadvertently by technology but only made intelligible by an anomalous

phenomenon of nature. Yet the pursuit of such anomalous instances

may prove highly instructive in the attempt to define and create life.

260 Machinic Life



The End of ALife’s First Phase?

At the Fourth European Conference on Artificial Life (1997), Mark

Bedau and Norman Packard presented the results of a study comparing

evolutionary activity in artificial evolving systems with those in the bio-

sphere.70 The results are sobering and indicate the need to make artificial

evolving systems more open ended. Seeking to identify trends in adapta-

tion rather than complexity, the authors define three measurable aspects

of evolutionary activity: cumulative activity, mean activity, and diversity.

In general terms, evolutionary activity simply reflects the fact that an

evolving population produces innovations, which are adaptive ‘‘if they

persist in the population with a beneficial e¤ect on the survival potential

of the components that have it’’ (126). Innovations are defined as new

components introduced into the system, genotypes in the case of artificial

systems, and the appearance of a family in the fossil record. In both

instances an activity counter is incremented at each successive time step

if the innovation still exists in the population under study. This count is

then used to compute the other measures. Diversity, for example, is the

total number of innovations present at time t in a particular run of an

evolving system. These quantitative measures were then used to compare

evolutionary activity in two artificial evolving systems, Evita and Bugs,

with evolutionary activity in the fossil record.71

The results are unmistakable: ‘‘Long-term trends involving adaptation

are present in the biosphere but missing in the artificial models’’ (132).

Specifically, cumulative activity, mean activity, and diversity in the fossil

record show a steady increase from the Cambrian to the Tertiary periods,

except for a momentary drop in the Permian period, which corresponds

to a large and well-known extinction event. In contrast, after an initial

burst of evolutionary activity in the two artificial evolving systems, there

are no long-term trends. In Evita the reproductive rate improves signifi-

cantly at the beginning of the simulation, after which the new genotypes

remain ‘‘neutrally variant’’; in other words, though highly adaptive, they

are no more so than the majority of genotypes already in the population.

The authors interpret this to mean that ‘‘the bulk of this simulation con-

sists of a random drift among genotypes that are selectively neutral, along

the lines of [M. Kimura’s] neutral theory of evolution.’’ In the Bugs

model, three major peaks of innovation occur, but then the evolutionary

activity ‘‘settles down into a random drift among selectively-neutral vari-

ant genotypes, as in the Evita simulation’’ (130). These peaks, the authors

explain, reflect successive strategies that enable the population to exploit
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more of the available resource sites.72 But as with Evita, the possibilities

for significant adaptation are soon exhausted.

After presenting quantitative evidence for the qualitative di¤erence be-

tween these ALife systems and the biosphere, Bedau and Packard attempt

to account for this di¤erence as a necessary prelude to closing the gap

between them. First, they note the absence of interesting interactions be-

tween organisms, like predator-prey relations, cooperation, or communi-

cation. (Since Ray’s Tierra and Holland’s Echo permit such interactions,

they planned to extend the study to them. A follow-up study, however,

revealed that Echo also lacks ‘‘the unbounded growth in evolutionary

activity observed in the fossil record.’’)73 Second, they acknowledge that

the spatial and temporal scales of Evita and Bugs are vastly smaller than

those of the biosphere, and that these systems are much less complex.

However, they don’t believe that scaling up space and time in the artificial

systems or making them more complex will make any qualitative di¤er-

ence. This follows from what they think is the primary reason behind the

biosphere’s arrow of cumulative activity: the fact that ‘‘the dynamics of

the biosphere constantly create new niches and new evolutionary possibil-

ities through interactions between diverse organisms. This aspect of bio-

logical evolution dramatically amplifies both diversity and evolutionary

activity, and it is an aspect not evident in these models.’’ Noting a quali-

tative similarity between the initial part of the cumulative activity curve

for the fossil data and for Bugs, they speculate that the biosphere might

be on some kind of ‘‘transient’’ during the period reflected in the fossil

data, whereas the statistical stabilization in Bugs may be caused by the

system hitting its ‘‘resource ceiling,’’ meaning that ‘‘growth in activity

would be limited by the finite spatial and energetic resources available to

support adaptive innovations.’’ Contrarily, the biosphere seems not to be

limited by ‘‘any inexorable resource ceilings.’’ Its evolution continues to

make new resources available when it creates new niches, as ‘‘organisms

occupying new niches create the possibility for yet newer niches, i.e., the

space of innovations available to evolution is constantly growing’’ (132).

Whatever is responsible for unbounded growth of adaptive activity in the

biosphere, the challenge is clear. Indeed, creating a comparable system,

the authors assert, ‘‘is among the very highest priorities of the field of ar-

tificial life’’ (‘‘A Classification,’’ 236). The good news is that an objective,

quantitative means for measuring success is now available.

Despite their intentions, Bedau and Packard’s findings can be taken as

evidence that we are nearing the end of the first phase of o‰cial ALife

research. Of course, this interpretation ignores or relegates to a lesser sta-
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tus much of the very valuable work devoted to ‘‘artificial chemistries,’’

the transition to ‘‘life’’ from nonliving origins, and the synthesizing of

dynamical hierarchies, to name only three other significant strands of

ALife research.74 Nevertheless, several things argue for this assessment.

ALife programs like Tierra and Avida, which have been applauded pre-

cisely for instantiating open-ended evolution, stand out among the disci-

pline’s most visible successes. Now that the inherent limitations of these

systems are objectively measurable, new approaches that can move be-

yond them and advance ALife research to a new stage are called for.

One e¤ort in this direction is Tim Taylor’s Cosmos, which, though it

incorporates many of the features that have made Tierra and Avida suc-

cessful, is intended to surpass their limits by correcting for a number of

perceived deficiencies.75 For example, Taylor thinks that the appearance

of parasites in these systems is due to the fact that an organism can read

and directly execute the code of another organism, thus making parasit-

ism an artifact of the system’s design rather than a reflection of evolution-

ary processes. Cosmos, accordingly, does not allow one organism to copy

another’s code. Another criticism is that, since CPU time serves as an

analogy for energy in a biological system, the organisms in these systems

are essentially getting energy for free. Like Echo and Bugs, therefore,

Cosmos includes a simple metabolic system, and requires that a price be

paid for every organism’s ‘‘energy tokens.’’ Yet beyond these and other

‘‘corrections’’ what makes Cosmos an ambitious system is that it is

designed to allow multicellular organisms to evolve. Taylor accepts the

widely held assumption that once evolution hits upon multicellularity the

emergence of complex organisms will inevitably follow. As noted earlier,

Tom Ray has followed this path with Internet Tierra, which operates

as a multithreaded, or parallel-processed, network. But instead of a net-

work, Taylor uses object-oriented programming to provide a basis for

multicellularity:

Each program within Cosmos is an Organism object. An organism contains one

or more Cell objects. Each cell object represents a single process, so that an Or-

ganism with one Cell is a serial program, and an Organism with multiple Cells is

a parallel program. A Cell contains a bit string—the Genome, which gets trans-

lated to the executable code of the process. A Cell also contains a number of other

objects, including: Nucleus Working Memory for writing a copy of the Genome

for replication; Communications Working Memory for composing arbitrary mes-

sages; a Regulator Store containing promoters and repressors which dictate which

sections of the Genome are translated; a bu¤er for receiving incoming messages;

an Energy Token Store; four 16 bit registers and a stack. (553)
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Thus in addition to making the evolution of multicellular organisms pos-

sible, Cosmos allows gene regulation, an evolvable mapping between geno-

type and phenotype, energy storage, intercellular communication, and

interorganism communication. These features greatly increase the poten-

tial complexity of the system and enable a wider range of experiments to

be performed than most ALife systems to date can support.

Yet despite this promise, Taylor’s reported results have been disap-

pointing. No multicellular (parallel) programs have evolved, and evolu-

tionary activity (according to Bedau and Packard’s criteria) does not

compare with that of the biosphere; that is, evolutionary activity in Cos-

mos is bounded.76 These negative results have led Taylor to assess the

basic design and underlying assumptions that characterize Tierra- and

Avida-type systems. He discusses the problems they pose under the fol-

lowing rubrics:

� Lack of an explicit theoretical grounding.

� Predefined organism structure.

� Restricted ecological interactions.

� No competition for matter and energy.

� Evolving a self-reproductive algorithm.

(From Artificial Evolution to Artificial Life, 188)

Drawing together early criticisms with more recent perspectives like that

of Bedau and Packard, Taylor reviews the arguments for the putative lim-

its of ALife e¤orts to synthesize life in a computational medium. The

overall e¤ect—though certainly not Taylor’s intention—is to reinforce

the idea that a first phase of ALife research may be drawing to a close.

One of the most salient problems that Taylor identifies concerns the

need to embed organisms more fully in the (or an) environment. The ar-

gument for embedding takes several forms, but Howard Pattee’s seems to

be the most compelling (and the one Taylor mostly draws upon). Pattee

has argued that a symbol system only functions and has meaning within

a specific physical context. Thus the symbolic information contained in

an organism’s genes has ‘‘no intrinsic meaning outside the context of an

entire symbol system as well as the material organization that constructs

(writes) and interprets (reads) the symbol for a specific function, such as

classification, control, construction, communication.’’77 This ‘‘semantic

closure,’’ as Pattee calls the linking of the self-referential symbol system

to the matter that instantiates it through these specific functions, consti-

tutes a necessary condition for open-ended evolution. As Taylor adds,
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‘‘Open-ended evolution fundamentally requires the evolution of new

meaning in the system, and this can only be achieved in the context of a

semantically closed organization which is completely embedded within

the physical world’’ (218). More specifically, ‘‘It is only when an organ-

ism’s genotype, phenotype, and the interpretation machinery that pro-

duces the latter from the former, are all embedded in the arena of

competition that fundamentally new symbolic information can arise in

the genome (thereby permitting truly open-ended evolution)’’ (219).

From which it follows that ALife organisms—both the genotype and

phenotype—should be constructed ‘‘with the parts and laws of an artifi-

cial physical world.’’78 Otherwise, no relationship of semantic closure be-

tween the genomic code (i.e., the symbol system) and the artificial physics

of the environment can be established, and the organisms will simply

obey the instructions of the program and settings of the hardware on

which they are run. More recently, Luis Rocha has taken up and

strengthened Pattee’s argument that only if the phenotypes of the organ-

isms result from a material, self-organizing process can open-ended evolu-

tion be attained.79 Changes and contingencies in the environment would

then be able to exert a more varied selection pressure on the organisms,

and the simulation would more fully model the conditions of life in the

biosphere. Evolution in the digital medium, in short, would be less

bounded.

A second, closely related concern is the very limited nature of the eco-

logical interactions within these systems. In biological evolution there is a

struggle for existence among a diversity of organisms that compete for

resources of space and energy both among themselves and with other spe-

cies and subspecies. Nevertheless, noting that some of the ‘‘most spectac-

ular examples of artificial evolution rely upon coevolutionary interactions

between organisms,’’ Taylor points out that not enough attention in

ALife research has been directed to the question of what ‘‘sorts of ecolog-

ical interactions should be available’’ (189).

Let us consider, in this light, the di¤erence between Tom Ray’s highly

lauded Tierra and Larry Yaeger’s virtually undiscussed PolyWorld. Ana-

lyzing the results of evolutionary runs on Tierra, Ray has observed that

the innovations fall into two broad categories: ‘‘ecological solutions’’

and ‘‘optimizations.’’80 The former refer to adaptive relations with and

among parasites, while the latter refer to improvements of the reproduc-

tive algorithm of individual organisms. At this point it is hardly necessary

to emphasize the importance of these results. Yet it is seldom noted that

in Yaeger’s PolyWorld a number of distinct species of organisms have
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actually evolved and coexisted.81 Most likely this success has to do with

the complexity of the organisms and their interactions. Whereas Ray’s

paired-down digital creatures exhibit no di¤erence between genotype and

phenotype—hence their evolution and adaptation only involves strategies

of replication, Yaeger’s organisms can eat, reproduce, fight, move for-

ward, turn, control their field of vision, and control the brightness of a

few of the polygons on their bodies (268). These ‘‘primitive behaviors’’

are controlled by the organism’s brain, which consists of a neural net-

work, the initial configuration of which is determined genetically, that is,

by the initial values included in the organism’s genes. This inclusion of a

neural net means, in principle, that the organisms can learn, although

thus far the update rules actually applied to the neural nets are ‘‘coarse

abstractions’’ (277). Nevertheless, the fact that these organisms can per-

ceive aspects of their environment (including other organisms) and re-

spond volitionally makes PolyWorld unique among ALife simulations.82

Although particular runs of PolyWorld usually begin with a created

organism—this is the case with most ALife systems, Amoeba being a

striking exception—the run is judged to be successful only ‘‘if some num-

ber of species emerge with a Successful Behavior Strategy’’ (283) capable

of sustaining their numbers through reproduction. Yaeger describes sev-

eral examples: the ‘‘frenetic joggers,’’ the ‘‘indolent cannibals,’’ the ‘‘edge

runners,’’ and the ‘‘dervishes,’’ each of which represents a di¤erent but

successful strategy for adapting to this virtual world (see ‘‘Computational

Genetics,’’ 283–284, for details). Yet, as Yaeger notes, the most interest-

ing species and individuals are not so easily classified. The most impor-

tant instances are those in which there are multiple distinct species, no

one of which dominates. In this setting, complex emergent behaviors ap-

pear, including responding to visual stimuli by speeding up, responding to

an attack by running away or fighting back, responding to food patches

by slowing down and grazing, seeking out and circling food, and follow-

ing other organisms. Yaeger has also observed foraging as well as the for-

mation of swarms, noting the adaptive advantage of the former in regard

to eating and of the latter in regard to finding reproductive partners. On

these grounds alone, PolyWorld clearly qualifies as one of the most com-

plex of ALife worlds.

To my knowledge, Bedau and Packard’s measures of adaptive evolu-

tionary activity have never been applied to PolyWorld. If increases of

complexity over the long term were observed to occur, they would most

likely be due to the system’s large repertory of organism behavior (com-

parable in this regard to Echo) and the immense advantage o¤ered by
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vision and a neural net brain. As Yaeger insists, what distinguishes his

‘‘ecological simulator’’ from previous ones is ‘‘its unique use of a natu-

ralistic visual perceptive system to ground its inhabitants in their envi-

ronment’’ (266). This ‘‘grounding,’’ he believes, ‘‘should answer one of

cognitive psychology’s most frequently sounded complaints against tradi-

tional AI’’ (278). Whether this grounding would satisfy critics like Pattee

is not clear; yet it is undeniable that in Yaeger’s project the evolution of

digital organisms is not separate from the evolution of intelligence. Thus,

to the question of how to evolve greater complexity and/or lifelike behav-

ior in artificial life forms, Yaeger’s implicit response is to make them

smarter and more aware of their environment.

Summarizing recent work with Network Tierra, which also provides

sensory data to its digital organisms, Ray writes, ‘‘The objective is not to

create a digital model of organic life, but rather to use organic life as a

model on which to base our better design of digital evolution’’ (‘‘Selecting

Naturally,’’ 26). But perhaps all ALife projects in which digital organisms

replicate and evolve can be seen in this perspective, whatever the experi-

menter’s explicit intentions. This would be true not only of PolyWorld

and Cosmos but of all the systems previously discussed. Indeed, this sa-

lient ambiguity may ultimately supersede in importance the tension be-

tween weak and strong theories of ALife. In any case, by making digital

evolution itself the primary objective, Ray decisively rejects the mimetic

and representational assumptions that have governed the discourse of

much ALife research. With Network Tierra, moreover, he also moved be-

yond the use of a small-scale, closed-world system generated by a single

computer, which has been the type of platform on which most of the o‰-

cial ALife research has been conducted during its first phase.

To conclude this chapter let us consider two research paths that strike

o¤ in new directions. In the first, the focus shifts to computers in net-

works as a form of ALife; in the second, to the laboratory creation of

‘‘wetlife.’’ Both approaches implicitly move beyond the paradigm devel-

oped by Langton and Ray, in which biological processes are simulated

in a particular type of computational assemblage. What seems to drop

out in these newer e¤orts is the special role of simulation.

New Directions in ALife Research

If asked to give an example of artificial life, millions of computers users

today would most likely answer: computer viruses. So notes David Ack-

ley at the outset of a paper he presented at the ALife VII conference in
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2000.83 Ackley goes on to wonder whether we really want to exclude the

expanding world of computers and computer networks from consider-

ation as forms of artificial life. Such questions lead him to point to a

number of interesting parallels between living systems and manufactured

computers, starting with the fact that both are excellent copiers and there-

fore present ‘‘tremendously virus-friendly environments’’ (487). An even

more striking parallel is evident between ‘‘the arc of software develop-

ment’’ and the ‘‘evolution of living architectures’’:

From early proteins and autocatalytic sets amounting to direct coding on bare

hardware; to the emergence of higher level programming languages such as

RNA and DNA, and associated interpreters; to single-celled organisms as com-

plex applications running monolithic codes; to simple, largely undi¤erentiated

multicellular creatures like SIMD [single-instruction multiple-data stream] paral-

lel computers. Then, apparently, progress seems to stall for a billion years give or

take—the software crisis.

Some half a billion years ago all that changed, with the ‘‘Cambrian’’ explosion

of di¤erentiated multicellular organisms, giving rise to all the major groups of

modern animal. . . . Living computation hypothesizes that it was primarily a pro-

gramming breakthrough—combining what we might today view as object-

oriented programming with plentiful MIMD [multiple-instruction multiple-data

stream] parallel hardware—that enabled that epochal change. (495)84

In the context of these observations Ackley proposes that ‘‘the actual

physicality of a computer itself may support richer notions of life’’ than

either software programs alone or the software candidates for artificial

life. In e¤ect, this perspective stands the ALife agenda on its head:

‘‘Rather than seeking to understand natural life-as-it-is through the com-

putational lens of artificial life-as-it-could-be . . . we seek to understand

artificial computation-as-it-could-be through the living lens of natural

computation-as-it-is’’ (488). Ackley calls this research agenda living com-

putation. With computer source code serving as its ‘‘principal genotypic

basis’’ (488), he is looking into how the principles of living systems can

be applied to networked computer systems.

For specific experiments Ackley has constructed ccr, which is ‘‘a code

library for peer-to-peer networking with emphases on security, robust op-

eration, object persistence, and run-time extensibility’’ (491). An explicit

objective is to enable a ccr world to communicate with other ccr worlds

in a manner consistent with how living systems guard against possible

sources of danger. Hence the peer-to-peer communications architecture

requires a more layered, self-protective system of protocols than the fa-

miliar TCP/IP protocols of Internet communication. Ackley describes
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how ccr starts with very small messages and builds to larger ones using a

cryptographic session key as a rough equivalent of means used in the nat-

ural world—complex chemical signaling systems, hard-to-duplicate bird

songs, ritualized interactions—to authenticate messages and build trust

and confidence before stepping up to more elaborate and sustained

exchanges. Another initiative deployed in ccr is to circumvent the com-

mercial software practice of distributing only precompiled binary pro-

grams while ‘‘guarding access to the ‘germ line’ source code, largely to

ensure that nobody else has the ability to evolve the line’’ (493). Accord-

ing to the analogy of software genetics, Ackley understands computer

source code as genome, the software build process as embryological de-

velopment, and the resulting executable binary as phenotype. In these

terms, the rapidly growing open source software movement is of essential

importance:

With source code always available and reusable by virtue of the free software

licensing terms, an environment supporting much more rapid evolution is created.

The traditional closed-source ‘‘protect the germ line at all cost’’ model is reminis-

cent of, say, mammalian evolution; by contrast the free software movement is

more like anything-goes bacterial evolution, with the possibility of acquiring

code from the surrounding environment and in any event displaying a surprising

range of ‘‘gene mobility,’’ as when genes for antibiotic drug resistance jump be-

tween species. (493)

Ackley illustrates this point by comparing ccr to a di¤erent ‘‘species,’’ the

GNU Image Manipulation Program (GIMP). Both utilize an identical

piece of code—the GNU regular expression package—which Ackley

likens to a ‘‘highly useful gene incorporated into multiple di¤erent appli-

cations out of the free software environment’’ (495). According to tradi-

tional, commercial software practices such duplication might be deemed

wasteful, but for Ackley ‘‘such gene duplication reduces epistasis and

increases evolvability’’ (495).

By treating the computer itself as a kind of living system, Ackley is

surely pushing the limits of what some will perceive as merely an interest-

ing analogy. Yet the application of the principles of living systems to

actual computational systems is hardly new or outré. As discussed in

chapter 1, it was the basis of many of John von Neumann’s novel ideas

about computation as well as the development of neural nets, and sub-

sequently it has been essential to computational strategies like genetic

algorithms and evolutionary computation. Ackley’s project, moreover,

is closely linked to Stephanie Forrest’s research on the development of

Digital Evolution and the Emergence of Complexity 269



computer immune systems, discussed in the previous chapter. Indeed, by

resizing the framework of ALife research and extending it to networked

computer systems, Ackley openly pushes the contemporary convergence

between new computational approaches to biology and biological ap-

proaches to computation. At the same time, in attributing a kind of life

to networked computers he is further extending Langton’s idea that life

is the result of a particular organization of matter rather than of some-

thing that inheres in individual entities. Here life is envisioned as a prop-

erty of the complex exchanges that some computational networks make

possible.

A second new direction for ALife research involves the attempt to syn-

thesize artificial ‘‘living’’ cells and thus represents a wetlife approach. In

one respect this e¤ort is not new at all, since it builds on an extensive

body of research that has sought to understand the transition from non-

living to living matter and thus to discover the origin of life. What makes

the new research di¤erent—and now part of the o‰cial ALife agenda—is

that its primary objective is to synthesize a cell in the laboratory, even

though it may be quite di¤erent from any known form of life and might

not even recapitulate life’s actual origins.85 These experimental, yet-to-

be-created artificial life forms are usually called protocells. As we would

expect, the very notion of a living artificial cell raises the question (once

again) of what it means to be alive. Although still a matter of contro-

versy, the generally agreed-upon assumption is that a living cell must be

capable of regenerating itself, replicating and evolving, and that the pro-

cesses that accomplish these things are housed together within a single

membrane and constitute a single entity. This assumption thus rests on

the further assumption that natural living cells are the smallest units or

instances of unquestionable life and constitute a distinct threshold. More

precisely, every natural living cell is composed of separable molecular

processes that are not in themselves alive, yet when these processes work

together the result is what we call a living cell. It may turn out—as seems

likely—that these distinct processes do not simply work side by side but

somehow enable one another in ways not yet fully understood.

Thus far there are two distinct approaches to artificial cell synthesis:

from the top down and from the bottom up. The top-down approach pro-

ceeds by simplification: starting with already existing cells with very small

genomes, it attempts to reprogram them genetically. One candidate, the

bacterium Mycoplasma genitalium, ‘‘is thought to contain the smallest

genome for a self-replicating organism (560 kb) and represents an im-

portant system for exploring a minimal gene set.’’86 Additionally, it can
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remain alive after much of its genome has been removed. It has been esti-

mated that it requires only about 300 to 350 of its 517 genes to function

acceptably. For J. Craig Venter and Hamilton O. Smith, this feature

has made it an attractive object of protocell research.87 Their project

involves removing some of the genome from a bacterium cell and then

injecting into its nucleus an artificial string of genes that resembles a nat-

urally occurring chromosome. The hope is that the cell will not only sur-

vive but evolve into a new kind of cell, or at least a cell with new

capabilities. Since this approach builds on both the functionality of an

already naturally living cell and the now vast knowledge base of DNA re-

search and genetic engineering, it may well be more successful in the short

run.

More ambitious, the bottom-up approach attempts to construct artifi-

cial cells from scratch, out of nonliving organic and inorganic materials.

Here the mechanisms of cellular metabolism and replication (with ensu-

ing heritable variation) must somehow be made to self-assemble in the

same space, so that they remain housed in the same physical container.

The problems are truly daunting, but there has been definite progress.

For example, Vincent Noireaux and Albert Libchaber at Rockefeller

University have succeeded in creating small, bacterium-sized cells that

can make specific proteins.88 Biomolecules that can produce proteins al-

ready exist and are commercially available, but in order to function they

require a constant supply of raw materials and the removal of waste

products. The problem Noireaux and Libchaber tackled was how to en-

close these biomolecules in cell walls and keep them working longer. Ba-

sically, they were able to house a collection of biomolecules in a double

layer of phospholipids that looks like a real cell membrane. To create

molecular portals, they added a bacterial gene that codes for a protein,

alpha-hemolysin, with a hollow barrel-shaped structure that inserts itself

into the cell’s membranes and creates pores. To monitor the behavior of

these ‘‘cells,’’ they added DNA that codes for a florescent protein, so that

when it is produced the cells begin to glow. In contrast with the commer-

cial biomolecules, which only worked for two hours, Noireaux and Lib-

chaber’s cells would continue to turn out proteins for days.

Currently there are several research programs afoot that are attempting

to create a fully functional protocell. An important—indeed essential—

precursor event was the discovery in the late 1980s that lipid aggregates

are self-replicating (lipids are fatty, water-insoluble compounds).89 So a

common feature of these programs is to enclose the molecular ma-

chinery in a lipid vesicle. These e¤orts also tend to use an RNA genome
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containing an RNA-replicase ribozyme as a way to include transcription

and translation functionalities. A somewhat di¤erent path—equally ambi-

tious and perhaps further along—has been taken by Steen Rasmussen at

the Los Alamos National Observatory and Liaohai Chen at the Argonne

National Laboratory.90 Rasmussen, a biophysicist who has been an

ALife scientist from its beginnings, and Chen, a newcomer trained as a

chemist, aim to keep things as simple as possible by creating a minimalist

protocell in which the barest few components and processes do double

duty or at least help one another out in and through their interaction.

These components include a container or supporting chassis, a few genes,

and a simple metabolic process:

(1) The housing, or chassis, for their protocell doesn’t enclose the compo-

nents but provides a surface on which they stick, somewhat like a sheet of

chewing gum. This function is served by a very small lipid aggregate, or

‘‘micelle.’’ Since it is a surfactant, meaning that one side is hydrophobic

while the other is hydrophilic, in water it spontaneously forms into tiny

droplets. However, it is the second property, mentioned above, that is

crucial: after forming, when micelles reach a critical size, they split or

replicate.

(2) The genetic components are made of peptide nucleic acid (PNA),

an artificial molecule that could be thought of as a double or artificial

cousin of DNA. It contains the same four nucleotide bases as DNA—

adenine (A), thymine (T), guanine (G), and cytosine (C)—and has the

same double-stranded helical structure, but in PNA the structure is made

from peptides rather than sugars. Since peptides are also hydrophilic,

these genetic components stick to the micelle’s outer layer.

(3) Photoactive molecules that embed themselves in the micelle mem-

branes serve as the necessary energy source for the simple metabolic pro-

cess, working somewhat like chlorophyll in plant photosynthesis. When

light strikes one of these photoactive molecules it gives up an electron.

Normally the molecule would quickly recapture it, but it turns out that

in the presence of PNA and certain nutrient molecules a metabolic chain

is started. This is because the PNA molecules lend electrons to the photo-

active molecules, leaving a supply of free electrons to sustain the metabo-

lism of the nutrients. Furthermore, the speed and e‰ciency with which

PNA conducts electrons depends upon the sequence of its base pairs,

which means that the e‰ciency of the metabolic process can actually be

encoded.
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The processes that make up the two approaches to constructing a pro-

tocell are illustrated in figure 5.5. In Rasmussen’s bottom-up approach,

each of the individual processes has been demonstrated in the laboratory,

but thus far they have not all worked together as a whole. The greatest

problem remains the protocell replication process. In DNA replication

the double strand ‘‘unzips,’’ and each strand provides a template for a

new set of complement base pairs. Although roughly the same thing

occurs in PNA replication (i.e., the strands spontaneously separate and

complementary strands are formed), there is nothing comparable to the

elaborate check-and-repair mechanisms that normally make DNA repli-

cation highly accurate and reliable. As Rasmussen admits, ‘‘The replica-

tion process will be very error-prone, because we don’t have any repair

system’’ (quoted in Castelvecchi, ‘‘A New Game of Life’’). However, this

also means that the protocells will be characterized by great genetic diver-

sity, with some unable to replicate or sustain a metabolism, while others

with ‘‘the right sequence’’ will proliferate. Still, the ‘‘Los Alamos bug’’—

as Rasmussen and Chen call their protocell—will be very di¤erent from

any known life form. Measuring only 5 to 20 nanometers in diameter, it

Figure 5.5
Creating an artificial cell. Steen Rasmussen, Chicago Tribune, April 14, 2004.
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will be an order of magnitude smaller than any bacteria. Although it will

have carbon-based components like lipids and amino acids, it will not

contain water and proteins. Yet it will be a life form, with an almost

unimaginable range of uses in technology and engineering—and perhaps

equally unimaginable consequences for human life and culture.
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6 The Decoded Couple: Artificial Intelligence and Cognitive
Science

The mission of AI is not to make a human mind but to explore the ‘‘space’’ of pos-

sible intelligences.

—Kevin Kelly

Taken together, complex systems theory and Artificial Life experiments

constitute one of the most innovative theory-practice relay systems in

contemporary science and technology, for the simple reason that they ar-

ticulate a single framework in which nonlinear dynamical interactions,

emergent computation, and adaptation in evolution are constellated as

relational aspects of the same process or system. Understandably, for sci-

entists and theorists alike this framework has raised hopes that complex

systems theory—or, more simply, complexity theory—may be able to re-

solve contradictions between theories of structure and theories of change.

Consider, for example, recent controversies in evolutionary biology,

where the orthodox Darwinian theory of natural selection (that random

mutations passed from one generation to the next lead inevitably to adap-

tation) has been challenged both by those who, like Stephen Jay Gould,

argue for the primacy of historical contingency, and by those who, like

Brian Goodwin and Stuart Kau¤man, argue that selection is predeter-

mined by intrinsic, self-organizational stabilities and constraints. The

problem, as Melanie Mitchell has observed, is that ‘‘the stark oppositions

posited among these three frameworks are not only false oppositions, but

are hindering progress in evolutionary theory.’’1 Speaking as a scientist

whose own work demonstrates how new forms of emergent computation

in globally distributed representations can arise and evolve from the sub-

strate of a complex dynamical system, Mitchell has brought the same crit-

ical perspective to bear on a recent shift in the methodology of cognitive

science.



Mitchell’s remarks were occasioned by the publication of Tim van

Gelder’s article ‘‘The Dynamical Hypothesis in Cognitive Science.’’2 Mil-

itating against the ‘‘dominant computational approach,’’ van Gelder

argues for the validity and fruitfulness of the dynamical systems approach

more widely, that is, for cognitive science at large. Thus, from Mitchell’s

perspective, the debate over whether the priority should be placed on

change or structure now appears to be repeating itself within the field of

cognitive science, wherein the older computational model, which gave

pride of place to internal structure, is to be jettisoned for the new dynam-

ical systems approach, which valorizes change. Esther Thelen and Linda

Smith’s study of the development of kicking and reaching in infants

clearly illustrates the di¤erence.3 According to the authors, these new

movements are explained ‘‘in terms of dynamical notions such as the sta-

bility of attractors in a phase space defined by body and environmental

parameters’’ (Mitchell, ‘‘A Complex-Systems Perspective,’’ 645). As the

infant grows, changes in its body weight and length produce bifurcations

that lead to new attractors and hence new trajectories of stability. Thelen

and Smith thus reject the traditional theory, which would understand new

developmental stages in terms of brain maturation and the infant’s in-

creasing ability to control its body through information processing. Since

higher cognitive skills are rooted in these early spatial skills, they too are

best understood dynamically.

In many respects this shift makes good sense. Human behavior entails

a fluid linking of body, brain, and environment, with all three constantly

changing over time and many of these changes feeding and being fed by

complex interactive loops. Hence the appropriateness of a model that

maps behavior as a dynamical system with varying ‘‘trajectories,’’ ‘‘at-

tractors,’’ and ‘‘bifurcations,’’ rather than the older model, which assumes

that the cognitive agent is a computing device whose ‘‘input’’ comes from

the environment and whose ‘‘output’’ is its own behavior. The rigid struc-

ture of this older model is simply not equipped to reveal paths of develop-

ment, transition and stability, or instability and chaos.4 However, as

Mitchell points out, there are limits to current dynamical approaches

that cannot be overcome within the dynamical systems framework. The

first limit is scaling: since most of the work with dynamical systems

involves low-dimensional analyses, it is not certain how such an approach

can be scaled up to the dimensions required for modeling truly complex

behavior. (Mitchell points to Randall Beer’s five-neuron neural network

controller for a walking robot, which will be discussed in chapter 7.) The

second limit is that the dynamical model does not provide any way of
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understanding how changes in a system can be newly functional or adap-

tive. For this to be possible, Mitchell argues, the dynamical systems

framework must include an additional capacity ‘‘in which functional,

information-bearing, and information-processing components can be

identified’’ (646). In short, instead of seeing the two approaches as

opposed, Mitchell calls for their synthesis in a complex systems perspec-

tive in which the dynamical behavior of the system e¤ects and is in turn

e¤ected by information processing within the system.5

Whether such a synthesis can or will be attained in cognitive science re-

mains an open question. Recent signs, including van Gelder’s article, sug-

gest that contemporary cognitive science is moved by a somewhat

di¤erent agenda, often encapsulated in the term embodiment and closely

allied with the dynamical systems approach. Francisco Varela, in his con-

cise little book Invitation aux sciences cognitives, finds both the cognitivist

approach based on computation and the connectionist approach based on

self-organization to be inadequate and spells out the new agenda.6 This

agenda dictates the book’s basic rhetorical structure, which outlines in

four stages the progressive development of cognitive science from its

beginnings in cybernetics to symbol processing and the cognitivist hy-

pothesis, to the neural net alternative, and finally to Varela’s own theory

of enaction as an alternative to representation. As Varela sees it, the

problem with these earlier approaches is that they cut o¤ the act of

cognition—whether understood as the manipulation of symbols or the

completion of a pattern in a neural network—from the world in which it

occurs. In other words, both approaches presuppose an objective world

and rely on representations of it. In order to determine the e‰cacy of cog-

nition, therefore, the cognitive act must be tested against some aspect of

the world. For Varela, however, the world does not exist outside of or

apart from cognition. Rather, the act of cognition is a structural coupling

in which some aspect of the world coemerges in and through this very act.

At the most fundamental level, therefore, cognition does not depend on

or involve representations. Because cognition is always embodied and

concretely situated in the world, Varela calls it enaction and believes that

his theory of enaction overcomes the deficiencies of the earlier approaches

and restores common sense to the study of cognition.

Varela’s wholesale rejection of both computation and representation,

evident throughout Invitation aux science cognitives, is part of a continu-

ing reaction against the same abstracting, deterritorializing impulse that

characterizes classic AI. Not surprisingly, he admits to certain a‰nities

with the Heideggerian critique of the latter and explicitly aligns himself
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with the phenomenology of Merleau-Ponty.7 More important here, his

explicit rejection of representation brings him into close alliance with

what is called the new AI, which is neither the AI based on the brain-as-

computer model that dominated research from the 1950s through the

1970s nor the connectionist strand of AI based on the neural net theory

that mostly superseded the latter in the 1980s. Rather, as the roboticist

Rodney Brooks and others refer to it, the new AI comes after ALife and

is concerned with behavior-based (as opposed to knowledge-based)

robotics, autonomous and/or situated agents, and multiagent systems, or

what is sometimes called distributed artificial intelligence. As described

in the next chapter, Brooks’s groundbreaking innovations began in the

late 1980s with what he called subsumption architecture—his theory and

practice of constructing autonomous, mobile robots in vertical functional

layers without a centralized controller, which consequently operate with-

out any global representation of the exterior world. In this sense,

Brooks’s robots can be seen as the machinic counterpart to Varela’s

theory of cognition. Indeed, Varela has stated that Brooks’s approach to

constructing intelligent machines ‘‘is akin to our enactive orientation.’’8

It is one thing, however, to push behavior-based robotics to the point

of doing away with a central controller and the necessity of representa-

tions of the external world, and something else to claim that the direct

coupling of perception and action fully accounts for intelligence and

cognition. Insofar as the new AI espouses this claim, it questions the use-

fulness of representation in cognitive science.9 In fact, an interest in rep-

resentation is noticeably lacking in van Gelder’s dynamical systems

approach to cognitive science and may account for the radical and sub-

versive aspect of his article. To be sure, classic cognitive science, to which

both Varela and van Gelder react so negatively, conceives of representa-

tion in cognition in a very specific sense: as the mental manipulation of

representations composed of symbols, with this manipulation itself under-

stood as a species of computation, or ‘‘information processing psychol-

ogy.’’ Indeed, this understanding lies at the foundation of cognitive

science, and in his ‘‘history of the cognitive revolution’’ Howard Gardner

singles out mental representations and the computer model as its primary

defining features:

First of all, there is the belief that, in talking about human cognitive activities, it is

necessary to speak about mental representations and to posit a level of analysis

wholly separate from the biological and the neurological, on the one hand, and

the sociological or cultural, on the other.
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Second, there is the faith that central to any understanding of the human mind

is the electronic computer. Not only are computers indispensable for carrying out

studies of various sorts, but, more crucially, they also serve as the most viable

model of how the human mind functions.10

From this brief exposition alone, the radical abstraction of the cogniti-

vist model, as it is usually called, should be self-evident. It shares this ab-

straction with the first theorizations of AI, born in the same year as

cognitive science (1956). This shared feature is not surprising, given that

both disciplines sprang from the same new ‘‘computational paradigm’’; in

fact, several scientists, most notably Herbert Simon and Allen Newell,

worked simultaneously in both fields. At the heart of this paradigm lies

the newly developed digital computer, which can therefore be said to

have given birth simultaneously to these two complementary discourses.

This discursive doubling, in which a single new technical artifact pro-

duces two distinct but complementary disciplines, is not unusual in itself.

But the fact that this discursive couple remained tied together and com-

plementary through two more paradigmatic changes—indicated roughly

by Varela’s (and Franklin’s) three-part scheme: symbolic computation,

connectionism, and enaction—surely calls for a critical examination that

goes beyond the usual perfunctory acknowledgment of their initial beget-

ting by the computer as ‘‘model’’ and ‘‘influence.’’ This chapter begins

such an analysis, first by uncovering what I think underlies a peculiar

and problematic aspect of the relationship between AI and cognitive

science, then by traversing in detail the conceptual history of AI research.

After pointing to the shaping role of technics as what has been missing

from previous discussions of the relationship between AI and cognitive

science, I suggest that both must be analyzed as particular concrete

instances of what I call a computational assemblage. The dramatic clash

between symbolic and connectionist models of AI is also examined in

these terms, after which I briefly consider two e¤orts to simulate con-

sciousness (or several of its features) in robotic machines. The history of

AI is then resumed in the next chapter, where I consider the new AI, the

construction of autonomous agents, and artificial evolution.

Blurred Boundaries: The Importance of Technics

In his useful history of artificial intelligence, Daniel Crevier remarks that

over time the boundary between AI and psychology grew fuzzy, with

the area of overlap then becoming a discipline in its own right: ‘‘With
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help from other fields (anthropology, linguistics, philosophy, and neuro-

science), cognitive science aims to explore the nature and functioning of

the mind.’’11 Two observations must be added. First, Crevier ignores the

fact that in every description of cognitive science since Gardner’s The

Mind’s New Science: A History of the Cognitive Revolution, AI is always

listed as one of its tributaries, thus suggesting that as far as disciplinary

boundaries are concerned, AI can and should be subsumed under the

more encompassing activities of cognitive science. Second, in ascribing

to cognitive science the aim of exploring the ‘‘nature and functioning of

the mind’’—and this is the path followed by most researchers and com-

mentators alike—Crevier opens the door to problems similar to those

raised by attempts to define the concept of intelligence. Indeed, mind is

even slipperier, since it obscures or ignores the specific material condi-

tions and ‘‘machinery’’ in and through which intelligence operates. In

fact, until fairly recently the operations of mind, which generally included

all higher cognitive functions, were studied in complete separation from

those of the brain, the site of neuronal activity whose proper domain of

study is neuroscience.

What must be acknowledged, in any case, is the constitutive role of

technics, even in so-called natural human intelligence. To do so fore-

grounds the view that human intelligence arises in and through the use

of not only tools but gestures, signs, languages, and props in the environ-

ment that make cognitive activities repeatable. This perspective has been

conspicuously missing from discussions of AI and cognitive science, even

though both took the computer as their explicit conceptual model at their

inception. The problem is that common notions of the computer, model,

and influence are not precise enough to account for the formation of these

discourses in relation to specific types of computational machines. But

before attempting a more exact theoretical analysis, I want to draw atten-

tion to the blurring that both produces and hides the double objective

that arises with the simultaneous birth of AI research and cognitive

science. This blurring is apparent in textbooks on artificial intelligence,

Patrick Winston’s for example, where the goals of AI are characterized

as both the construction of useful intelligent systems and the understand-

ing of human intelligence.12 While AI researchers would certainly agree

that the first goal alone would delimit their activities too restrictively,

acceptance of the second puts them squarely in the realm of cognitive

science. What is needed, therefore, is a theory that would mediate be-

tween the two objectives and precisely define their relationship. In my
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view this can only be accomplished with a fully contemporary under-

standing of technics.

Technics, of course, is not a new topic. In the second half of the twen-

tieth century Jacques Ellul, André Leroi-Gourhan, Gilbert Simondon,

Lewis Mumford, and others too numerous to mention were mainly con-

cerned with the development of tools, machines, and the bureaucratic

organization of society as a ‘‘mega-machine.’’ A fully contemporary tech-

nics, however, must consider (as one of many problem areas) the underly-

ing division or separation between ‘‘natural’’ and artificial intelligence

reflected in the early agenda of cognitive science and AI. It would attend

not only to the Heideggerian questioning of technics and the basis of

the oppositions on which these sciences arise but also to how changes in

technology constantly redefine the terms of both our conscious and un-

conscious engagements with it. The almost invisible interiorization of

writing is a notable case in point, but only recently have scholars begun

to attend to its immense consequences.13 In cognitive science, an analysis

based on technics would investigate how human cognitive functions are

made possible by technical artifacts and how human cognition cannot be

conceived outside of the shaping force and environment these artifacts

constitute. Edwin Hutchins’s study of how navigational instruments

aboard a navy ship constitute a cognitive system is a rare and remark-

able example of this much-needed approach.14 Indeed, it is the general

absence of this kind of analysis that explains—because it actually pro-

duces—the blurred boundary between AI and cognitive science. In the

hiatus between wanting to produce artificial intelligence and wanting

to understand natural intelligence, the constitutive role of technics unac-

countably drops out of sight, even though both oppositions (produce/

understand, artificial/natural) presuppose it.

In La technique et le temps Bernard Stiegler makes a decisive step to-

ward establishing the centrality of technics in contemporary terms. Stie-

gler argues that the human (in contradistinction to the anthropos, which

is only the human’s genetic imprint), cannot be conceived outside of or

apart from the advent and forces of technē and specifically of the tools

that make the exteriorization of memory possible. With the invention of

the human, that is, with what Stiegler calls the constitutive interplay of

the ‘‘who and the what’’ in and through technics, the laws of biological

evolution are in e¤ect suspended. No longer does Homo sapiens evolve,

but the milieu as shaped by technological artifacts, a theme Stiegler takes

from Leroi-Gourhan. Characterizing our present cultural condition in
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terms of an ‘‘industrialization of memory,’’ Stiegler o¤ers a critique of

cognitive science based on its denial of both the material supports neces-

sary for writing in general and those temporal processes in which memory

is externalized. In the cognitive sciences and for the first time in the his-

tory of Western thought, technics itself becomes a ‘‘heuristic vector,’’

and a new explanatory paradigm finds its unity in a research project that

begins with the idea that ‘‘we humans are ourselves computers.’’15 Yet

despite the fact that the cognitive sciences position ‘‘the technological ar-

tifact at the heart of their heuristic approach, they do not seem to accord

any theoretical pertinence to the technical fact in the history of life’’:

Thus, the process of corticalization [expansion of the cerebral cortex] at work at

the same time that tools appear, inaugurating a new relationship of the living

with its milieu, mediated by an artefactual layer which is also an artificial memory

essential to the living human, is not grasped in its specificity: by the very force of

the gesture that consists in e¤acing the traditional metaphysical oppositions be-

tween animal, human and machine, the sciences of cognition weaken themselves

by simultaneously erasing the dynamic specificities that are engendered there,

that is to say, the temporality of the process.

That human knowledge is technological in its essence, that there are no possi-

bilities of knowledge without the surfaces of inscription of an artificial memory,

and that the concrete characteristics of these supports as organized inorganic mat-

ter constitute the reality of human cognitive operations, are thus ignored. Assum-

ing a priori that a machinic simulation of thought, as production of a prosthesis of

thought, is conceivable, the cognitivist model forgets the originary role of prosthe-

sis in thought: what is not thought is the coupling of the who and the what as that

which pre-dates the who and the what as such. (189)

If we assume that ‘‘prosthesis’’ is originary and not a supplementary

technological extension or add-on, then not only the machinic simulation

of thought but computation as well must be part of this primordial con-

stitution of the ‘‘who and the what.’’ But here, unfortunately, Stiegler

becomes preoccupied with the Heideggerian/deconstructive problematic

of language and fails to consider computation as an essential and increas-

ingly constitutive aspect of technics. More important, by not pushing

his critique deep enough historically he fails to locate the occlusion of

technics at the very origin of cognitive science, that is, in its ‘‘repressed’’

relationship to cybernetics.16 Like his fellow French poststructuralist phi-

losophers, Stiegler never entertains the possibility that computation as a

process may be part of poiesis, both in nature and its artificial simulation.

Only Jacques Lacan, as a consequence of his encounter with cybernetics

(as we saw in chapter 2), understood that a ‘‘symbolic order’’ can provide

a basis for social organization precisely because it is a form of quasi-
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autonomous computation. This symbolic order, arising from counting

practices and the emergence of self-organizing ‘‘laws’’ in primitive nota-

tion systems (Lacan remains vague about the origins), functions as a

complex information-processing machine in-mixed in human behavior.

As Lacan argues, cybernetics and the new digital information machines

make these laws visible in and for themselves and thus establish the tru-

ism that ‘‘the world of the symbolic is the world of the machine.’’ For

Lacan, and contrary to contemporary misunderstandings, the symbolic

order is not language but an abstract machine that only takes the ex-

changes that occur within language as its support.

Given the historical significance of cybernetics and the centrality of

technics in human cognition, we turn with high expectation to Varela’s

Invitation aux sciences cognitives, since it foregrounds at the outset the im-

portance of both. Indeed, it begins with the resounding declaration: ‘‘The

sciences and technologies of cognition (which we will henceforth desig-

nate with the acronym STC) represent the most important conceptual

and technological revolution since the advent of atomic physics, having

a long-term impact on all levels of society’’ (21). Disappointingly, how-

ever, the precise nature of this impact is never explored. Instead, Varela

asserts that cognitive science and technology are ‘‘confounded’’ and that

‘‘the distinction between applied science and fundamental research’’ (21)

is hardly pertinent, since to consider either aspect alone would obscure

the vitality of the movement and its conjunction of multiple perspectives.

At the same time, he acknowledges that typical themes in cognitive

science—perception, language, inference, and action—stand in parallel

proximity to several ‘‘principle axes of technological development: image

recognition, language understanding, syntheses in programming and

robotics’’ (23). This amounts to saying that no matter which relays the

other, technology and cognitive science are each implicated in the other’s

development.

Yet this relaying e¤ect is precisely what we want to understand. In my

view, it requires a di¤erent kind of conceptualization: we must first posit

the technical and discursive assemblages that make the ‘‘the sciences and

technologies of cognition’’ (STC) possible as such. Then, in view of the

specific computational assemblages that began to take shape in the

1950s, we can chart the emergence of two series of reciprocally related

technical/theoretical constructions: on one side, a succession of computa-

tional techniques concretized in the digital computer, artificial neural

nets, and the dynamic interactions of body-brain-environment; on the

other, a succession of computational models of the mind, ideas about the
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‘‘language’’ of thought, mental process, cognition, and consciousness. In

short, we find a series of distinct machines, each with its correlative dis-

course that explains how cognition occurs. In each case, the reciprocal

relations between a specific machine and its specific, correlated discourse

define a computational assemblage, which is understood to work precisely

in and through this singular coupling of the two. The priority of technics

is thereby maintained, and the brute materiality of the machine is not

reduced to e¤ects of language or conceptualization.17

This mutating computational assemblage originates in an ‘‘abstract

machine,’’ first imported from mathematics in Alan Turing’s conception

of the Turing machine. In postulating a formal equivalence between a

set of e¤ective procedures, or algorithms, and their instantiation in a

mechanistic sequence of machine-state transitions, Turing made possible

not only the modern computer but the very idea of cognition as a me-

chanically reproducible computational process. When Warren McCulloch

and Walter Pitts proposed that the activity of networks of neurons in the

brain could be treated as calculations in propositional logic and that these

neural nets thus constituted a biological but computationally equivalent

Turing machine, the seed of an alternative conception of computation

was planted.18 Materialized in devices like Oliver Selfridge’s Pandemo-

nium and Frank Rosenblatt’s Perceptron, this alternative gave rise to a

di¤erent model of cognition, based on the parallel processing of informa-

tion in a dynamic network. Revived and further developed in the mid-

1980s under the banners of connectionism and parallel distributed

processing, this alternative finds its most recent incarnation in emergent

computation and complex systems theory.19

In Turing’s model of computation, states of a machine (a finite autom-

aton with infinite memory) and stages in a performed calculation are

set in a relationship of strict mechanical determination. In the recent al-

ternative approaches, by contrast, computation occurs as the result of a

self-organizing process among large numbers of elements or agents un-

controlled by any central processing unit or hierarchical command sys-

tem. In these terms a seemingly unbridgeable gap opens up between the

two models of how ‘‘thought’’ is understood to operate: the one is logical

and procedural, the other dynamic and statistical. Yet both are guided

and comprehended by computational, information-processing objectives

made possible by this new kind of abstract machine. Because this ma-

chine transcends any particular material instantiation, it raises philosoph-

ical questions similar to those raised by the putatively transcendent status
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of representation in language, an issue (taken up in chapter 7) essential to

behavior-based robotics.

Miraculous Birth, Symbolic Murder: The Beginnings of Classic AI

In his analyses of complex cultural events like the birth of tragedy and the

genealogy of morality, the philosopher Friedrich Nietzsche suggests that

the historian’s search for the pristine, self-identical point of origin is

doomed to be ba¿ed by the discovery of a dissension and disparity at

the very heart of things and that the supposed ‘‘origin’’ always and only

serves to cover over a profusion of entangled and contradictory events.20

The history of AI proves to be no exception. At its origin, operating side

by side, we find two distinct research initiatives—one seeking to mecha-

nize or automate thought using logic and algorithmic computation, the

other seeking to model and reproduce mental processes by simulating

the capacity of the cells in the brain to link together in self-organizing net-

works. Within a few years, however, these two approaches would be set

into conflict by an altogether di¤erent kind of agency: DARPA, the sec-

tion of the Defense Department then responsible for funding most AI re-

search. Seymour Papert’s fairy-tale version of this division and rivalry is

worth quoting at length:

Once upon a time two daughter sciences were born to the new science of cybernet-

ics. One sister was natural, with features inherited from the study of the brain,

from the way nature does things. The other was artificial, related from the begin-

ning to the use of computers. Each of these sister sciences tried to build models of

intelligence, but from very di¤erent materials. The natural sister built models

(later called neural networks) out of mathematically purified neurons. The artifi-

cial sister built her models out of computer programs.

In the first bloom of youth the two were equally successful and equally pursued

by suitors from other fields of knowledge. They got on very well together. Their

relationship changed in the early sixties when a new monarch appeared, one with

the largest co¤ers ever seen in the kingdom of the sciences: Lord DARPA, the De-

fense Department’s Advanced Research Projects Agency. The artificial sister grew

jealous and was determined to keep for herself the access to Lord DARPA’s re-

search funds. The natural sister would have to be slain.

The bloody work was attempted by two staunch followers of the artificial sister,

Marvin Minsky and Seymour Papert, cast in the role of the huntsmen sent to slay

Snow White and bring back her heart as proof of the deed. Their weapon was

not the dagger but the mightier pen, from which came a book—Perceptrons—

purporting to prove that neural nets could never fill their promise of building

models of mind: only computer programs could do this. Victory seemed assured

for the artificial sister. . . . But Snow White was not dead.21
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Papert’s dark conceit was prompted by a deep rupture within the his-

tory of AI. O‰cially emerging with Simon and Newell’s Logic Theorist

and later consolidated in their physical symbol system hypothesis, the

‘‘artificial sister’’ rose to dominance in the 1960s and ’70s, only to be ef-

fectively challenged in the 1980s with the resurrection of biologically

inspired neural net research—the ‘‘natural sister,’’ Snow White in

Papert’s tale—now conducted under the broader terms of connectionism

and parallel distributed processing. While Papert wonders whether this re-

vival is really a happy ending after all, onlookers today may be inclined

to interpret his allegory somewhat di¤erently: since symbolic AI denied

the importance of the material substrate or body and could only flourish

with the murder of the ‘‘natural sister’’ (the first form of embodied AI),

the recent valorization of ‘‘embodiment’’ in the new AI would seem to

be just and inevitable revenge. In any event, the torch has clearly passed

to the new AI. Stressing the concrete situatedness of autonomous mobile

robots and influenced by the bottom-up, distributed approach of ALife,

the new AI inaugurated by Brooks and others has positioned itself on

the other side of this rupture, as we’ll see in chapter 7.

To recount the history of AI as several stages in a progressive history,

as Varela does, is misleading, however, inasmuch as the basic problems—

what is intelligence? how can it be artificially simulated?—are not so

much resolved or abandoned as successively reformulated from di¤erent

vantage points and within di¤erent research agendas.22 In this sense AI

is constantly beginning again, while never altogether abandoning the

accomplishments of preceding phases. Even though the ‘‘image of

thought’’ neural net theory proposes di¤ers radically from that of its pre-

decessor, symbolic AI, it must account nonetheless for the syntax and log-

ical structures on which the latter is built. Similarly, the new AI cannot

really ignore neural net theory, so it mostly relegates it to the status of a

tool or function, its instantiation in the brain only one instance of a bio-

logical implementation. In what follows I propose to map these various

relationships as a series of decodings and recodings of di¤erent computa-

tional assemblages. I focus first on that conflicting inaugural moment in

AI history summarized by Papert, although less in relation to the institu-

tions brought into play than in terms of the two images of thought

brought into conflict. Instead of resolving the conflict between symbolic

and connectionist AI, the new AI shifts the conceptual field to include

the relationship with an environmental ‘‘outside,’’ cognition being rede-

fined in terms of dynamical systems theory. As a consequence, its image
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of thought becomes unequivocally antirepresentational. The semantic dif-

ficulty posed by the nature of intelligence is resolved by defining intelli-

gence as an emergent, adaptive response—a behavior that arises in and

further enables the interactions between an agent or collectivity of agents

and the larger environment.

As far as the institutional history of AI is concerned, this may be the

place to mention Paul Edwards’s The Closed World: Computers and the

Politics of Discourse in Cold War America, which admirably counters the

idealizing and progressive history-of-ideas approach.23 Resituating analy-

sis of the development of computers and the early history of AI and cog-

nitive science in relation to America’s Cold War politics and military

agenda, Edwards shows how they participate in the construction of a

‘‘cyborg discourse.’’ Understanding both human minds and artificial

intelligences as information machines, cyborg discourse serves to inte-

grate humans into the new techno-military complex of the ‘‘closed

world.’’ However, and unfortunately for my purposes, Edwards does not

extend his critical history beyond the initial moments of symbolic AI,

with scant attention given to its rivalry with neural net theory. In certain

respects the subsequent history of AI—the return to neural net theory

and the later development of autonomous agent theory—constitutes a

break with and escape from ‘‘the closed world.’’ Or rather, in Deleuze

and Guattari’s useful terms, it is a history of decodings and recodings, in

the sense that cognitive functions are abstracted and deterritorialized

(decoded) and then reinscribed (recoded) in a transformed context. We

saw above how the cognitivist theory of cognition radically decontextual-

izes, or decodes, intelligence and cognitive capacity by understanding

them as abstract computational functions, and we consider below how

they are recoded in a symbol system. In D&G’s theory, the functioning

of an abstract machine in a particular assemblage ensures both the coding

of closure (‘‘the closed world’’) and the decoding that allows a fruitful

break or line of escape. In these terms we can say that Edwards describes

only those aspects of the militarized, Cold War computational assem-

blage that recodes and reterritorializes. However, by focusing exclusively

on the political and ideological capture of forces unleashed by the new

technology, we can also fail to recognize or downplay the conceptual

innovations of the technics of computation, which have not only been

harnessed to a wide variety of creative and more positive ends but also

have ushered in changes that outstrip the Cold War ideological field.24

To see only the negative side of this Cold War assemblage was precisely
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Heidegger’s mistake in his celebrated critique of technology, and this

perspective continues to bias influential work in contemporary science

studies.25

The first two chapters touched on many of the new ideas that provided

the conditions for AI to emerge as a field of research, most notably Alan

Turing’s essay on computable numbers (1936) and his later essay on ma-

chine intelligence (1950) as well as the work of diverse individual talents

in the 1940s and early ’50s such as McCulloch and Pitts, John von Neu-

mann, Claude Shannon, Norbert Wiener, and Ross Ashby. The first

public discussions of cybernetics and information theory at the Macy

Conferences brought together and disseminated much of this work, which

consequently spurred various research projects that circulated it in wider

orbits. But the development and ensuing use of the electronic, stored-

program computer was AI’s most essential precondition, and that is true

of cognitive science as well. The magic year of 1956 saw the o‰cial birth

of both: AI from a conference at Dartmouth that summer organized by

John McCarthy; cognitive science from a symposium at MIT in Septem-

ber organized by George A. Miller. As the Dartmouth Conference orga-

nizers explained, the conference was predicated ‘‘on the conjecture that

every aspect of learning or any other feature of intelligence can in princi-

ple be so precisely described that a machine can be made to simulate

it.’’26 One immediate e¤ect of the conference was to ratify the term artifi-

cial intelligence, suggested by McCarthy. The MIT symposium had simi-

lar repercussions. Ostensibly devoted to information theory, it actually

focused on information-processing psychology, as cognitivism was often

called during its first decades. Miller later reflected: ‘‘I went away from

the Symposium with a strong conviction . . . that human experimental

psychology, theoretical linguistics, and computer simulation of cognitive

processes were all pieces of a larger whole, and that the future would see

the progressive elaboration and coordination of their shared concerns.’’27

In retrospect, the striking temporal proximity of the two conferences is

superseded in importance by the fact that Allen Newell and Herbert

Simon, two researchers from RAND, presented their work on the Logic

Theorist at both. This was a catalyzing event, for the presentation was

singularly instrumental in valorizing the new computational paradigm

within which both artificial intelligence and cognitive science would first

develop. But before considering the Logic Theorist, let us briefly assess

the significance of the MIT symposium in the history of cognitive science.

In the most general terms, the symposium and the work that flows out

of it mark the end of the behaviorist and stimulus-response model for
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understanding human behavior and the beginning of the information-

processing model. In addition to Simon and Newell’s paper (discussed

below), two other seminal papers presented at the symposium can be

regarded in this light. The first, Noam Chomsky’s ‘‘Three Models of Lan-

guage,’’ described how Shannon’s theory of information can be modified

to produce the more complex and powerful formal grammar necessary

for describing the syntax of natural language. This work would lead

Chomsky to a new theory of transformational grammar and a devastat-

ing critique of B. F. Skinner’s behaviorist account of language. As we

saw in chapter 2, Chomsky theorized that a specific type of information-

processing machine or automaton underlies our linguistic capacity, that

is, our ability to recognize and generate grammatically correct sentences,

and believed that this machine is an essential part of our innate cognitive

faculties. The second paper, George Miller’s ‘‘The Magical Number

Seven, Plus or Minus Two: Some Limits on Our Capacity for Processing

Information,’’ demonstrated the empirical limits of human short-term

memory in a variety of contexts.28 Miller also showed how these limits

can sometimes be surpassed by a method of chunking he called recoding.

Within a few years, with coauthors Eugene Galanter and Karl Pribram,

he would publish Plans and the Structure of Behavior, an immensely influ-

ential book that replaced the behaviorist notion of the reflex arc with the

mediating function of internal representations:

[Cognitivists] believe that the e¤ect an event will have upon behavior depends on

how the event is represented in the organism’s picture of itself and the universe.

They are quite sure that any correlations between stimulation and response must

be mediated by an organized representation of the environment, a system of con-

cepts and relations within which the organism is located. A human being—and

probably other animals as well—builds up an internal representation, a model of

the universe, a schema, a simulacrum, a cognitive map, an image.29

These internal representations are built up in ways that resemble or that

can be modeled or simulated by computer programs. In fact, at the heart

of all the symposium papers was the new idea that human beings are nat-

ural information-processing systems that take information from the envi-

ronment (perception), process it (cognition), and act or make decisions on

the basis of its output (behavior).30

At both the Dartmouth and MIT conferences, Newell and Simon sim-

ply stole the show by presenting a working computer program that

instantiated ‘‘thinking,’’ or what they would later call intelligent action.

Specifically, they described the construction, operation, and first results of

Logic Theorist—the first computer program to perform a mathematical
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proof.31 It was written in Information Processing Language (IPL), a

computer programming language that Newell, Simon, and Cli¤ Shaw

had invented specifically for the program. This new higher-level program-

ming language enabled Logic Theorist to use a list processing scheme that

could be applied to both numerical and symbolic expressions.32 Two in-

novative features account for the program’s dramatic e¤ect. First, no

specific proofs for theorems were programmed into Logic Theorist’s

memory; and second, in addition to the axioms and rules of logic the pro-

gram consisted of heuristics and search procedures for solving formal

problems.33 The inclusion of heuristics proved to be fundamental. Where-

as algorithms are exact procedures for arriving infallibly at a predeter-

mined result, heuristics are only search strategies that may work in

solving a specified problem. Starting from an initial hypothesis (the root

node in what became known as a search tree), Logic Theorist would

move toward a determined goal by searching possible branches from the

root node. In this manner it eventually succeeded in discovering proofs

that were more elegant or succinct than the standard ones without the ex-

act outcome being programmed or even known in advance.34

Logic Theorist thus solves a problem (how to prove a theorem in sym-

bolic logic) by establishing a goal and the means to achieve it in algorith-

mic terms. For early AI, the problem-solving approach and the search

strategy—and their implementation in a working computer program—

were what was most essential. Search and heuristics clearly go together,

since an exponential explosion of the number of possible solutions to a

problem is common. This problem was anticipated by Claude Shannon

in his paper ‘‘A Chess-Playing Machine,’’ published in 1950, in which he

emphasizes the importance of an automated search and the necessity of

reducing its scope. The highest priority, Shannon reasoned, was the prob-

lem of ‘‘searching the space [of possible chess moves] for an acceptable

solution.’’35 It didn’t have to be the best possible solution—only a work-

able one. Not coincidentally, Herbert Simon reports that he had enter-

tained ‘‘thoughts about chess programming’’ in a RAND summer

seminar in 1952 and had learned to program the IBM 701 in 1954. It

was while Simon was working with Newell and Shaw at RAND on heu-

ristics and problem-solving strategies that they realized that ‘‘we could

use the computer to simulate all sorts of information processes and use

computer languages as formal descriptions of those processes’’ (Models

of My Life, 201). Their earliest e¤orts were directed toward writing a

computer chess program, but the project was superseded by Logic Theo-

rist. However, they did publish a revealing essay in which they assert that
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the essence of human thinking is problem solving, which is most clearly

exemplified in the playing of chess.36

Alan Turing had also been very interested in chess as a ‘‘model for me-

chanical thought,’’ and at Bletchley Park during the war he also spoke

‘‘about the possibility of computing machines solving problems by means

of searching through the space of possible solutions, guided by rules of

thumb.’’37 In his unpublished essay ‘‘Intelligent Machinery’’ (1948) and

more directly in ‘‘Computing Machinery and Intelligence’’ (1950), Turing

confronted the question of whether ‘‘machines can think,’’ arguing that

there was no compelling reason why not. But it was still only an idea.

That the Logic Theorist could prove theorems in logic without external

help from its programmers thus seemed to make the notion of a thinking

machine a reality. Certainly Simon and Newell thought so. Describing

Logic Theorist, Simon flatly asserted, ‘‘We invented a computer program

capable of thinking non-numerically’’ (190). And two years after Logic

Theorist: ‘‘I don’t mean to shock you. But the simplest way I can summa-

rize is to say that there are now machines that think, that learn and that

create. Moreover, their ability to do these things is going to increase rap-

idly until—in a visible future—the range of problems they can handle

will be coextensive with the range to which the human mind has been

applied.’’38

Considered philosophically, the question of what it means to think is

certainly a vexed one; but no one could deny that proving a theorem in

logic requires some kind of thinking. There was (and still is) the common

sense objection that the machine itself does not really think—it only fol-

lows the instructions that its designers have programmed into it and

therefore lacks the flexibility and creativity of human thinking. Yet this

objection does not take into account what computers actually do and

may be capable of doing, and it relies on unexamined assumptions about

what makes possible and constitutes ‘‘human thinking.’’ Thus there are

really two questions here. First, what does it mean to say that a machine

can think? Second, what does a human being do when he or she thinks?

Simon and Newell answer both questions with a general theory of

information-processing psychology based on the creation and manipula-

tion of symbols. Both of these activities—whether they take place in a hu-

man or a machine—are forms of intelligent action made possible by what

they call the physical symbol system hypothesis.

Simon and Newell’s theory of the physical symbol system provided

the cornerstone for the computational theory of mind, which was the

underlying paradigm of both cognitivism and symbolic AI. The theory
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postulates that thinking, or cognition, is accomplished by the manipula-

tion of symbols or tokens that represent some entity, pattern, or process

in the world.39 The symbols exist on two levels, that of their concrete

embodiment (the physical) and that of the relations that allow them to

be components of another type of entity called an expression, or symbol

structure. The rules of their manipulation constitute a syntax, but because

the symbols designate processes or entities beyond themselves, they in-

clude semantic constraints as well. Two types of symbolic action, designa-

tion and interpretation, are essential in this respect, since they evoke and

perform processes by means of the expressions that designate them. Com-

prised of symbols, symbol structures or expressions are operated on by

‘‘processes of creation, modification, reproduction and destruction.’’ The

physical symbol system is thus ‘‘a machine that produces through time an

evolving collection of symbol structures’’ while also existing ‘‘in a world

of objects wider than just these symbolic expressions themselves’’ (40).

This semantic dimension means that the symbol structures cannot be

viewed as mere tokens in a formal system manipulated by rules indepen-

dently of what the tokens represent. The heuristic search hypothesis, or

principle means by which a physical symbol system solves problems, also

goes beyond the constraints of a merely formal system: ‘‘The solutions to

problems are represented as symbol structures. A physical-symbol system

exercises its intelligence in problem-solving by search—that is, by gen-

erating and progressively modifying symbol structures until it finds a

solution structure’’ (51). Whether these constraints actually anchor the

symbol structures in external reality will be contested by the new AI.

The core hypothesis, in any case, is that such a physical symbol system

has the necessary and su‰cient means for general intelligent action. . . . By ‘‘neces-

sary’’ we mean that any system that exhibits general intelligence will prove upon

analysis to be a physical symbol system. By ‘‘su‰cient’’ we mean that any physi-

cal symbol system of su‰cient size can be organized further to exhibit general in-

telligence. By ‘‘general intelligent action’’ we wish to indicate the same scope of

intelligence we see in human action: that in any real situation behavior appropri-

ate to the ends of the system and adaptive to the demands of the environment can

occur, within some limits of speed and complexity. (40–41)

This hypothesis, they emphasize, is to be verified or disproved by further

empirical research. As with any hypothesis, it spells out certain assump-

tions while leaving others tacit or hidden. In particular, their hypothesis

draws together and synthesizes various research e¤orts, beginning with

Turing’s concept of the universal machine and work on computability,

subsequent developments of automated formal systems, especially the
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stored-program concept for the computer and the list-processing com-

puter language, later formalized as LISP by John McCarthy in 1959–

1960. Altogether, these precursor accomplishments make possible ‘‘the

total concept,’’ which is ‘‘the join of computability, physical realizability

(and by multiple technologies), universality, the symbolic representation

of processes (i.e., interpretability), and, finally, symbolic structure and

designation’’ (46). This ‘‘total concept’’ yields a realizable recipe for the

construction of an intelligent system.

Let us consider the physical symbol hypothesis more simply. A com-

puter performs calculations by submitting symbols to a predefined reper-

tory of possible operations. For example, it carries out mathematical

operations on physical representations of numbers according to a rigor-

ously mechanical procedure. To add 2 and 3, for example, they are first

converted to binary numbers (0s and 1s), which are represented by volt-

age di¤erences in an electrical current. These di¤erences are brought to-

gether and ‘‘combined’’ in an array of switching circuits (the central

processor). The resulting current (which would represent their sum) is

then converted back from a binary number to the natural number 5.

However, because this example involves only numerical calculation, it

doesn’t convey the full power of Newell and Simon’s proposal. Since

symbols can designate not only numbers but logical propositions, data

structures, instructions, and so forth, the physical symbol system hypoth-

esis applies to the manipulation of any type of symbolic expression, as

long as the steps that constitute it can be written as a combination of

algorithmic and heuristic procedures. As such, that is, as software, these

procedures must be implemented in some form of hardware, either a dig-

ital computer or a biological brain. But it is the process—the manipula-

tion of symbol structures—that defines thinking, not the medium or

material substrate of the symbols.

In these terms the agenda for AI becomes clear: one only has to simu-

late a thought process by recasting it as a series of symbolic operators and

expressions. This is similar to what Turing theorized in his essay ‘‘Com-

puting Machinery and Intelligence’’—find a mechanical equivalent for a

thought process such that when the physical operation is carried out, the

thought process is simulated—but in Newell and Simon’s version it is ac-

complished at a higher level of abstraction. Yet the physical symbol sys-

tem hypothesis implies something more: that ‘‘thought’’ does not operate

directly in and on the world, but independently in representations com-

posed of symbolic expressions and structures. At bottom, ‘‘intelli-

gent action’’ consists of the manipulation and transformation of these
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expressions and structures, which can be expanded, broken down, reas-

sembled, destroyed, and created. The e‰cacy of any particular expression

or symbol structure can only be determined by comparing it with other

expressions and structures. In this sense, the physical symbol system hy-

pothesis locates the intelligent action within a closed realm of representa-

tions, in contrast to the behavior of the earlier cybernetic machines, which

always took place in response to the larger physical environment. That a

computer architecture provides the best image of this realm is directly

a‰rmed when Allen Newell later rewrites the hypothesis as a universal,

general-purpose computer program.40

Compared to the machines built or proposed by the cyberneticists,

Simon and Newell’s program/model not only operated at much higher,

purely symbolic level of abstraction but claimed an independence from

material embodiment itself. Significantly, their programs did not need to

access the computer’s machine language. Similarly, since in theory sym-

bolic logic and the manipulation of symbol structures worked the same

whether instantiated in a computer or biological brain, the physical im-

plementation or substrate of intelligent action was no longer a matter of

direct interest.41 But Logic Theorist and General Problem Solver were

not just theory—they produced tangible results. And they worked be-

cause of the software, that is, the underlying programming language,

IPL, which was machine independent. (IPL went through five iterations

before it was replaced by LISP.) Paul Edwards, in The Closed World,

rightly emphasizes the multiple layerings of languages and systems that

software requires, in order that conceptual independence can be achieved,

asserting that ‘‘this insight into the possibility of a symbolic, machine-

independent level of description in computing was the conceptual founda-

tion of artificial intelligence’’ (246). Newell himself certainly understood

that software was what AI was all about: ‘‘AI as a whole is founded on

some striking methodological innovations, namely, using programs, pro-

gram designs, and programming languages as experimental vehicles.’’42

However, the machine independence of software or symbol manipulation

allows and justifies a disconnection from the material brain, as the twin

and coupled discourse of AI and cognitive science makes clear. In fact,

Newell and Simon highlight this very separation: ‘‘Our theory is a

theory of the information processes involved in problem-solving and

not a theory of neural or electronic mechanisms for information process-

ing’’ (cited in Edwards, The Closed World, 252). The brain—whether bi-

ological or mechanical—is replaced by the ‘‘psychology’’ of information

processing.43
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What we witness here is simply the displacement of one kind of com-

putational assemblage by another.44 The various cybernetic machines

constructed or theorized by Shannon, von Neumann, Ashby, and Walter

—and later the learning machines of Rosenblatt and Selfridge—are

primarily dynamic systems physically situated in the environment and

function with a relatively low-level information-processing capacity. The

emphasis is always on the concrete behavior of these machines, but this

behavior is su‰ciently complex to support a discourse constituted by

notions of feedback, adaptation, self-reproduction, and self-organization.

Consequently these material automata evoke and to a certain degree can

sustain an analogy with organic life. In the computational assemblage of

early AI, on the other hand, the machine is displaced by the computer,

but almost entirely in the latter’s formal and conceptual aspect. Not only

does the physical hardware so important to the cyberneticists drop out of

sight, but so does the environment. Like the user himself, these physical

actualities are shadowy and only implied. Indeed, the disembodiment of

the subject and his or her reinscription in the psychology simulated by

the symbol processing is rather striking. Though much attention is given

to problem solving, decision making, searches, goals, logical operations,

languages, and representation, these are processes without an identifiable

subject. In this sense AI is truly a simulation of abstract thought.

The Cognitivist Paradigm

The importance of Logic Theorist was not lost on the participants at ei-

ther conference, and its successful simulation of a specific kind of thinking

went a long way toward establishing not only the viability of AI but a

new research paradigm for cognitive science. Generally known as the cog-

nitivist paradigm, or ‘‘the mind as computer’’ model, it quickly gained

prominent adherents in AI and cognitive science as well as in the neigh-

boring fields of linguistics and philosophy. Two examples, Noam Chom-

sky and Jerry Fodor, will be considered below. Nevertheless, within this

paradigm there are degrees of variation and subtlety. One advocate,

John Haugeland, states unequivocally that ‘‘AI . . . is based on a theoreti-

cal conception as deep as it is daring: namely, we are, at root, computers

ourselves.’’45 But Newell and Simon’s position is actually more nuanced.

As Simon summarizes it in The Sciences of the Artificial, their founding

hypothesis states that intelligence is the work of a physical symbol sys-

tem; or, more strongly, that a physical symbol system is both neces-

sary and su‰cient to account for intelligent behavior. Physical symbol
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systems, furthermore, constitute a ‘‘family of artifacts,’’ of which the

computer and the human mind/brain are the most important. Thus while

Haugeland starts with the idea of a computer as an automated formal

system and then suggests that humans are more or less competent com-

puters, Newell and Simon start with the idea of the physical symbol

system and then find that it can be instantiated in di¤erent ways, as

in human brains and computers. In other words, whereas Haugeland

gives us an idealized model to which concrete instances seem more or

less adequate, Newell and Simon provide a functional diagram for under-

standing what must take place in order for there to be cognition, or

‘‘intelligent action.’’ While Haugeland essentializes and idealizes intellec-

tual functions, Newell and Simon abstract, or deterritorialize, these func-

tions and then reterritorialize, or recode, them in a symbolic, operational

language.

The subsequent history of AI until the mid-1980s is precisely the record

of the development and limits of the physical system hypothesis. Accord-

ing to Herbert and Stuart Dreyfus, the research program launched by

Newell and Simon has gone through three ten-year stages.46 The first

stage (1955–1965) was dominated by problems of representation and

search, specifically by the heuristics approach first deployed in Logic

Theorist and further developed in Newell and Simon’s more ambitious

General Problem Solver. The second stage (1965–1975) continued to in-

vestigate how data and rules could be implemented in a systematic pro-

gram but deliberately reduced its ambition to the construction of simple

and isolated ‘‘micro-worlds,’’ with the hope that once success was

achieved with these restricted worlds, e¤orts could be directed toward

more realistic, real-world problems. The best-known e¤ort in this vein

was Terry Winograd’s program SHRDLU, constructed around 1970 at

MIT, which could obey commands given in a subset of a natural lan-

guage about a simplified ‘‘blocks-world.’’ The third stage (1975–1985)

focused primarily on what came to be known as the commonsense knowl-

edge problem, that is, how to incorporate not only commonsense but the

immense background of assumptions that humans take for granted when

solving just about any practical problem. Here the problem of representa-

tion was addressed in terms of various kinds of frames and scripts. How-

ever, despite some limited success with certain ‘‘expert systems’’ that

succeeded in narrowly constricted domains such as medical diagnosis,

the intractability of the commonsense knowledge problem eventually led

to the widespread feeling that AI research had reached an impasse.
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Certainly by the mid-1980s many believed that classic AI research

founded on symbol processing and a computational model based on algo-

rithms and heuristics had run its course. Two projects in particular, nota-

ble for their grandiose ambition and signal failure, should be mentioned.

The first, Japan’s very expensive ‘‘Fifth Generation Project,’’ was to be a

computer distinguished by the ability to understand its users’ needs (as

communicated in a natural language) and to design programs that would

meet those needs. However, it gradually became obvious to all concerned

that the programming languages required to realize these ambitions were

either too far in the future or inherently untenable. In either case, the am-

bition itself was flawed, and by the end of the decade the project was

abandoned as an acknowledged failure.47 The other project, called CYC

and launched by Douglas Lenant and his group, faired only slightly bet-

ter. After considerable success in the 1970s with programs for machine

learning, particularly one called Automated Mathematician, in the early

1980s Lenant and his group embarked on an attempt to encode literally

millions of assertions in a vast data base of common knowledge that,

with the proper programming, would lead to ‘‘semantic convergence’’

and thus to something like the artificial (re)creation of common sense.

The group assumed that if they encoded a complex hierarchy of interlock-

ing frames into the computer’s programming, it would gradually acquire

a repertory of concepts and categories large enough to enable it to encode

new statements. For example, consider the statements, ‘‘Napoleon died

on St. Helena. Wellington was saddened.’’ This relatively simple pair of

declarations contains a number of embedded assumptions (that Napoleon

and Wellington are human individuals, that all such individuals eventu-

ally die, that their deaths a¤ect still living individuals, etc.), which are un-

derstood immediately by natural-language users everywhere, even if they

know nothing about the specific context (here, European history). Even

so, it took Lenant’s team three months to encode the two statements.

Again, the group assumed that the coding would eventually go much

faster, one day reaching the point when it could be completely auto-

mated. Critics, however, remained skeptical, pointing out that ‘‘every sen-

tence required the definition of a new and arbitrarily long chain of related

categories, and reality seemed to branch out into an infinitely large num-

ber of unrelated concepts.’’48 Indeed, this is the very problem that classic

AI failed to resolve in the 1970s. Far from being a theoretical break-

through, CYC simply continues to build up (and on) ad hoc represen-

tational schemes. It is the old AI writ large, and founders on the
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impossibility of recoding in machine language what appears to be coded

in natural language.49

As already noted, the value of the physical symbol hypothesis was not

limited to its conceptualization of human intelligence (and therefore of

AI). During the 1960s it also came to provide the unity and theoretical

grounding for cognitive science as a new discipline. No doubt one of the

most important consolidations of the symbolic computational approach

outside of AI came from Noam Chomsky’s theory of generative gram-

mar, the importance of which was immediately recognized with the pub-

lication of Syntactic Structures in 1957. Chomsky demonstrated that in

order for a grammar to adequately account for natural language, it would

have to be generative, that is, it would have to embed recursion rules in

order to generate an infinite number of new sentences; but it would also

have to be transformational, that is, it would have to embed rewrite rules

that would allow one type of phrase structure to be transformed into an-

other. Developed in order to understand the grammar of natural lan-

guage, these kinds of rules could be easily applied to symbol strings and

their concatenation and thus gave additional strength to what was consid-

ered to be the standard computational paradigm.

Chomsky, however, actually faced a double problem: to discover the

rules that allow a speaker to understand and produce an infinite number

of sentences, and to understand how these rules are acquired. The latter

was a particularly vexing problem, given the observable fact that chil-

dren in a specific linguistic environment are able to instantiate these

rules in speech relatively quickly and on the basis of imperfect and frag-

mentary perceptions. As Chomsky himself has pointed out, no empiri-

cal theory—that is, no theory based on accumulation, association, and

generalization—could possibly explain this fact.50 The di‰culty, simply

put, was to ascertain where (outside of linguistic theory) these rules exist

and how they are implemented by human speakers. Chomsky’s solution

was to distinguish between ‘‘competence’’ and ‘‘performance.’’ Compe-

tence refers to the knowledge internalized by a speaker that unconsciously

enables him or her to understand and produce an infinite number of new

sentences. Generative grammar is the explicit account of this knowledge.

Performance, on the other hand, refers to the production and comprehen-

sion of language by actual speakers in real time, in which other systems

(memory, vocalization, etc.) intervene. While performance is obviously

influenced by a number of individual contingencies, Chomsky believes

that competence is guaranteed by an innate, hardwired feature of the hu-

man brain. It is this innate capacity, moreover, that enables a child to ac-
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quire a human language; which language depends only on the particular

linguistic environment in which the child is brought up.

Although Chomsky makes no mention of the Newell-Simon hypothe-

sis, there can be no doubt that his theory of generative grammar lends it

both weight and credibility. This is made explicit in the philosophy of

Jerry Fodor, where we find a direct linkage between the two. Building

on Chomsky’s work, Fodor argues for the necessity of what he calls a

‘‘language of thought’’ composed of bedrock linguistic-like mechanisms

ensuring that a capacity for symbol manipulation is inherently part of

our native cognitive apparatus.51 Specific examples will be considered in

the next section. What must be emphasized here—and it is reflected in

Fodor’s work—is that the development, relay, and support of the cogni-

tivist computational hypothesis forms a single block extending from AI to

linguistics to cognitive science and philosophy. Yet even while the sym-

bolic computational paradigm functioned as the core hypothesis for cog-

nitive psychology from the early 1960s well into the 1980s, completely

displacing behaviorism, unease with the innateness hypothesis persisted

among more empirically minded psychologists and philosophers. For

one thing, its double functionality was troubling: by postulating the sym-

bolic function as a biological given, the singularity of the human was also

assured as a ‘‘natural’’ capacity; and by establishing a biological, prede-

termined basis for mental functioning, the rigid hierarchy of formal and

abstract cognitive functions valorized by the cognitivist paradigm was

firmly anchored in nature. Yet these assurances were advanced in a con-

text outside of any dialogue with evolutionary theory or palpable interest

in how ‘‘the language of thought’’ could be explained in Darwinian

terms.52 Here we see a clear instance of the structure-change dichotomy

mentioned at the chapter’s outset.

However, if we consider cognitive science and symbolic AI as two par-

ticular discourses, we can understand how this double functionality

answers to the specific and dynamic logic of a decoding and a recoding.

On the one hand, these new sciences both e¤ectuate and valorize an ab-

straction and deterritorialization of cognitive functions, which are then

reinscribed in the highly abstract, formal languages of symbolic logic

and computer programming. On the other hand, this decontextualization

(or decoding, in Deleuze and Guattari’s sense) seems to call inevitably for

a recoding at another level; specifically, the abstracted cognitive functions

find their guarantee and necessary grounding in the innateness hypothesis

of biological hardwiring. Yet this recoding doesn’t simply reflect an ideo-

logical bias, since there seemed to be no conceptual alternative, at least
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until the rebirth of neural net research in the 1980s. However, with the re-

surgence of interest in the brain model, as neural net theory was some-

times called, an entirely new conception of how coding occurs becomes

available, one that makes the language of thought look as if it were based

on subsymbolic, statistical connections well beneath the threshold of con-

sciousness. These connections are not given as the components of an in-

nate structure but are the consequence of temporal material processes.

Thought thus finds its condition of possibility not in an underlying but

theoretically transparent set of logical and syntactic structures, but in the

changes and continual self-modifications of a dynamic network.

A striking anticipation of this cataclysmic shift in the modeling of

thought appears in Douglas Hofstadter’s essay ‘‘Waking Up from the

Boolean Dream, or, Subcognition as Computation.’’53 Without abandon-

ing the computational perspective, Hofstadter espouses his own version of

subsymbolic cognition and sketches the essentials of a multiagent system.

The freshness of Hofstadter’s approach appears at the outset. To the

question, what is AI? he responds with the question, what is the letter a?

In other words, how are all a’s alike, and what is the intelligence already

at work in the process of recognizing letters, which can be rendered in a

wide diversity of scripts, typefaces, and degrees of legibility. From letters,

of course, it is only a short step to symbols, but for Hofstadter the prob-

lem with symbols, at least as Newell and Simon define them in the physi-

cal symbol system hypothesis, is that they are too passive, and their

manipulation according to rules doesn’t correspond to the processes of

actual thinking. Hofstadter argues, consequently, that it is not cognition

but subcognition that is computational, and it involves what he calls

active symbols, which ‘‘activate or trigger or awaken other symbols in a

brain.’’ These active symbols result from ‘‘team’’ activity in the brain:

The brain itself does not ‘‘manipulate symbols’’; the brain is the medium in which

the symbols are floating and in which they trigger each other. There is no central

manipulator, no central program. There is simply a vast collection of ‘‘teams’’—

patterns of neural firings that, like teams of ants, trigger other patterns of neural

firings. (648)

The upshot of this formulation is that we are not symbol manipulators;

rather, ‘‘we are manipulated by our symbols’’ (648).54 For Hofstadter,

these active symbols are what connect vast collections, or ‘‘clouds,’’ of

neural firings to semantic categories; hence ‘‘symbol triggering patterns

are the roots of meanings’’ (650). Far from being a formal, rule-bound

activity, thought springs from an evolutionary need to survive. Humans
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thus use these semantic categories in a makeshift way in order ‘‘to imag-

ine a cluster of approximations of what may happen and anticipating

some plausible consequences of them’’ (650). Hofstadter concludes that

high-level, global, cognitive events are not in themselves computational,

but epiphenomenal. They are constituted out of and driven by many

smaller computational events at a substrate level. Given this perspective,

the goal of AI is to bridge the gap between cognition and subcognition,

which can only be done by giving up the Boolean dream for a ‘‘statisti-

cally emergent mentality’’ (654).

Neural Networks: Statistical Coding and the Recoding of the Symbolic

Having staked its claim that thinking is symbol processing and thus in

principle capable of being emulated by software, classic AI research soon

found itself increasingly dependent on advances in computer hardware.

As Rodney Brooks observes, for a long time rapid increases in computing

power kept AI researchers from having to reexamine their founding

assumptions.55 Even today the claim is often repeated: when machines at-

tain a certain level of processing speed and memory, artificial intelligence

will become a reality.56 In contrast, for cognitive science the issue of

‘‘hardware implementation’’ posed a problem from the outset, since there

is nothing in the brain that corresponds to physical symbols and their

rules of operation. McCulloch and Pitts, of course, argued that because

the brain’s networks of neurons (‘‘neural nets’’) functioned as ‘‘all-or-

none processes,’’ that is, as arrays of on-o¤ switches, their operations

could be treated in terms of propositional logic (i.e., as performing com-

putations). But these networks were nothing like the architecture devel-

oped for the modern digital computer. In fact, as a computing device the

brain doesn’t resemble the computer at all: it contains no separable cen-

tral processor or storage unit for memory; instead, it consists of a spongy

mass of some hundred billion elaborately interconnected neurons, some

with as many as ten thousand connections to other neurons. Moreover,

there are few visible hints as to how this tangle of ‘‘wetware’’ could imple-

ment the kind of logical thinking instantiated by Newell and Simon’s

Logic Theorist, much less the range of mental activities exhibited by a

normally functioning human being. It is hardly surprising, then, that the

physical structure of the human brain would give rise to a completely dif-

ferent paradigm for computation, one that has challenged not only the

dominance of classic AI but the cognitivist or symbolic computational

hypothesis more generally.
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There are several ways to tell this story, and even Papert’s fairy-tale

version still holds a certain interest. In 1949, following McCulloch and

Pitts’s research on neural nets, Donald Hebb postulated that learning

could be explained as the result of progressive modifications of connec-

tions among neurons; specifically, when neurons fired together in re-

sponse to the same stimulus, their connections were strengthened; if not,

their connections weakened.57 Building on this work, Frank Rosenblatt

constructed an artificial device called the Perceptron, in which the links

between connected nodes would imitate the behavior of neurons.58 The

Perceptron, Rosenblatt explains, ‘‘was designed to illustrate some of the

fundamental properties of intelligent systems . . . without becoming too

deeply enmeshed in the special conditions which hold for particular

biological organisms’’ (180).59 An early version, the Photoperceptron,

consisted of three units. The first, or sensor unit, was an array of photo-

electric cells meant to function somewhat like the retina of the eye when

exposed to a pattern of light and dark. The cells fed randomly into a net-

work of artificial neurons consisting of variable switches that composed

the second, or associator unit, the output of which fed into an activator

unit. Since the objective was to train the Photoperceptron to recognize

letters, the activator unit consisted of a bank of labeled lights. Meant to

replicate one kind of brain activity, the idea behind the Photopercepton’s

functioning was simple: when presented with an input pattern from the

photoelectric cells, the neural network unit would organize itself into a

global state that would be the specific output pattern for that input.

Initially, this might not seem like much. However, because the net-

work’s capacity to organize itself depends on a combination of states in

dynamic interaction rather than any single neuron’s state, the network as

a whole is capable of complex relationships between input and output. In

fact, it can not only recognize old patterns but learn new ones. Although

we now know that biological neurons behave much more complexly, arti-

ficial neurons capture an essential feature: each one is a ‘‘weighted’’ node

in a highly interconnected network of similar nodes. In order to fire, or

pass electrical current, it must attain a threshold level, which is deter-

mined by two quantities: its own internal weight and the combined

weights of the inputs from its neighbors, which, like its own e¤ect on

them, can be either positive (excitatory) or negative (inhibitory). For any

given input stimulus, consequently, each neuron is a¤ected not simply by

the stimulus itself but by how all of its neighbors in the network are also

a¤ected. If the sum total of all these weights is positive and exceeds the

neuron’s firing threshold, it fires. Since every neuron in the neighborhood
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a¤ects every other neuron in the same manner, the overall e¤ect is a com-

plex and dynamic range of possibilities.60 However, for the neural net as

a whole to function, it has to reach a stable state, such that for a specific

given input the corresponding or associated output always occurs, and in

artificial neural networks this is accomplished by adjusting the weights of

each individual neuron. In natural neural nets in the brain and central

nervous system this learning process occurs spontaneously, through inter-

active feedback processes with the environment, as the creature discovers

and repeats functional behavior. In artificial neural nets the weight

adjustments can be either supervised and directed or allowed, like natural

nets, to self-organize into stable patterns autonomously. However—and

this is what is most important—in both natural and artificial nets the in-

formation that defines each input pattern is stored as a particular distri-

bution of weights in the network’s connections. It is not stored in any

specific location, but as a pattern distributed throughout the network.

For the Perceptron, the weights had to be adjusted by Rosenblatt him-

self, a process that came to be known as training the net. By adjusting

these weights Rosenblatt could teach the net to recognize a particular

input pattern, one that might be given by the shape of the letter S, for ex-

ample. It would not have to be a perfect S, for the Perceptron could com-

pensate for noise, that is, missing elements or distortions. What’s more, if

some of the individual neurons malfunctioned, the net as a whole usually

remained operational or, over time, would exhibit what would later be

known as ‘‘graceful degradation.’’ Like the human brain, which loses

thousands of neurons daily, artificial neural nets like the Perceptron are

highly fault tolerant.

McCulloch and Pitts had claimed that neural nets could perform sev-

eral sets of computational functions in a propositional calculus and were

thus equivalent to Turing machines. But Rosenblatt was interested in pur-

suing a di¤erent line of research, namely, discovering how information is

stored and remembered in biological systems and how it influences recog-

nition and behavior. Two alternative explanations had already been for-

mulated. According to the first, sensory information could be stored ‘‘in

the form of coded representations or images, with some sort of one-to-

one mapping between the sensory stimulus and the stored pattern.’’

According to the second, ‘‘images of stimuli may never be recorded at

all, and the central nervous system simply acts as an intricate switching

network, where retention takes the form of new connections, or path-

ways, between centers of activity’’ (179). The first hypothesis, that is, a

coded, representational memory, means ‘‘that recognition of any stimulus
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involves the matching or systematic comparison of the contents of storage

with incoming sensory patterns’’ (180). In the second hypothesis, con-

trastingly, ‘‘there is never any simple mapping of the stimulus into mem-

ory, according to some code which permits its later reconstruction.

Whatever information is retained must somehow be stored as a preference

for a particular response; i.e., the information is contained in connections

or associations rather than topographic representations’’ (179). The sec-

ond hypothesis thus does not distinguish between memory and activation:

‘‘Since the stored information takes the form of new connections, or

transmission channels in the nervous system . . . it follows that the new

stimuli will make use of these new pathways which have been created, au-

tomatically activating the appropriate response without requiring any

separate process for their recognition or identification’’ (180). To his

credit, Rosenblatt recognized that the second hypothesis explains how

neural networks actually work.

The connectionist hypothesis led Rosenblatt to another highly fruitful

discovery. With the application of symbolic logic to switching theory

and the development of digital computers, many researchers simply

assumed the functional equivalence between neurons and the on-of

switches that make up the circuits of these computers. But neural nets

containing many random connections actually behave very di¤erently

from the logic arrays of a digital computer. Rosenblatt realized that this

behavior does not readily lend itself to description in the language of sym-

bolic logic and Boolean algebra. He decided therefore to formulate his

own descriptive model in terms of probability theory, which is much bet-

ter suited to describing the behavior of a cluster of connected neurons

than symbolic logic. On this basis, he was able to demonstrate that ‘‘the

fundamental phenomena of learning, perceptual discrimination and gener-

alization can be predicted entirely from six physical parameters’’ (195).

These six parameters are variables defined by the number of excitatory

and inhibitory connections in the network, their threshold values, and

the proportions among types of connections. These parameters essentially

define the weights and the types of nodes that comprise the network. In

sum, neural net devices like the Perceptron, with an acentric, distributed

architecture and functionality, promised to lead to a major advance in

understanding how information is stored in biological systems and to an

alternative to symbolic computation.

In the early 1960s Rosenblatt was not the only one doing research on

artificial neural nets. Oliver Selfridge built another pattern recognition

machine worth mentioning. Called Pandemonium, it di¤ered from the
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Perceptron in that each of the units in the network was assigned to a par-

ticular feature.61 If a su‰cient number of these ‘‘feature demons’’ were

activated, specialized ‘‘cognitive demons’’ would then ‘‘shout out’’ the

results to a ‘‘decision demon’’—the greater the evidence, the louder the

shout. In this way a decision was reached that summarized the findings

of many parallel and independent computations.62 Devices like the Per-

ceptron and Pandemonium, at this early stage in the development of the

AI community, were generally viewed as worthy and valuable pursuits.

Neural net theory was deemed neither a rival nor an alternative to sym-

bolic AI, but simply a di¤erent avenue of exploration. This was due in

part to the fact that while artificial neural nets could recognize and clas-

sify patterns of stimuli, it was not clear whether or not they could repre-

sent such acts. The evidence, on all accounts, suggested that the act of

perception/recognition itself could not be symbolized and referred to,

but had to be repeated again and again.63 In the 1960s this and other

questions instigated e¤orts to assess more thoroughly the potential and

limits of neural nets, both in theory and in their implementation in con-

structed devices.

The most consequential examination was made by Marvin Minsky and

Seymour Papert. An original participant in the Dartmouth Conference,

Minsky had published one of the earliest and most influential papers on

symbolic AI,64 and he later would become one of its most distinguished

advocates and researchers. But before that, in 1954, he had written his

PhD dissertation at Princeton on ‘‘Neural Nets and the Brain-Model

Problem,’’ and had long been interested in neural net research. A gifted

mathematician, in 1967 he published Computation: Finite and Infinite

Machines, which became a classic of computational theory. Throughout

this period Minsky had experimented with neural nets and even engaged

in spirited public debates with Rosenblatt. In 1969 he and Papert, a col-

league at MIT, published Perceptrons, which grew out of their mostly dis-

appointing e¤orts to establish the scientific value of Rosenblatt’s work

and of neural nets in general. According to canonical accounts, the book

literally delivered a deathblow to neural net research, which would not be

resumed for some fifteen years. As Papert acknowledges in the fairy-tale

version of these events quoted above, there had come a point when sym-

bolic AI and neural net research were seen as rivals for Defense Depart-

ment funding, and he and Minsky were the self-appointed assassins.

Curiously, a somewhat di¤erent picture emerges from the pages of

Minsky and Papert’s book, especially the revised edition of 1988, which

includes a new prologue and epilogue written after the revival of neural
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net research in the mid-1980s.65 Although they readily admit in the pro-

logue that by the end of the 1950s ‘‘battle lines began to form along such

conceptual fronts as parallel versus serial processing, learning versus pro-

gramming, and emergence versus analytic description’’ (xi), their own

purpose had been to make an objective, scientific assessment of the

strengths and weaknesses of neural nets as learning machines and compu-

tational devices. In the period following the publication in 1962 of Ro-

senblatt’s own book, Principles of Neurodynamics, which summarized

neural net research up to that point, ‘‘progress had come to a virtual halt

because of the lack of adequate basic theories’’ (xii). In particular, there

was no rigorous theoretical account of why nets could recognize certain

patterns but not others. In attempting to answer this question, they dis-

covered other limitations as well, most importantly, an inability to per-

form the XOR (exclusive or) computation. Minsky and Papert also

pointed to the mathematical intractability of learning rules for neural

nets above a certain level of complexity, essentially arguing that there

could be no reliable algorithm for training these nets to solve any but the

most elementary problems. Meanwhile, important advances in AI were

being made ‘‘through the use of new kinds of models based on serial

processing of symbolic expressions’’ (xi). On balance, then, the symbolic

approach ‘‘suddenly seemed more satisfactory’’ (xi).

This same tone, at once rigorous and friendly, also animates their epi-

logue, which attempts to address the claims of ‘‘the new connectionism,’’

as the mid-1980s revival of interest in neural networks led by David

Rumelhart, James McClelland, and fourteen collaborators who form the

PDP Research Group is usually called.66 On the one hand, Minsky and

Papert readily acknowledge that distributed parallel processing can do

many things and that connectionist networks must be included in a full

understanding of how the brain actually works. It seems certain, they as-

sert, that the brain is composed of many small, highly specialized net-

works that are interconnected in multiple ways. On the other hand, the

strength of these networks is also their weakness, inasmuch as the widely

distributed representations that emerge from them cannot be made the

object of symbolic representation, and they lack the power of extension

and generalization that characterize systems built on symbol processing.

(I return to this issue below.) Thus, while refusing the role of the ‘‘en-

emy’’ of connectionism, in the revised edition the authors remain consis-

tent with their original intentions as well as their overall negative

judgments as set forth in the 1969 edition.
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The revival of neural net theory and the advent of the new connection-

ism is an event of considerable interest and importance. Before we con-

sider particulars, a brief look at the wider cultural context may be in

order. In Invitation aux sciences cognitives, Varela points to the renewal

of interest in self-organizing systems and nonlinear mathematics, citing

in particular Ilya Prigogine and Isabelle Stengers’s Order out of Chaos

(published in France in 1979 under the title La nouvelle alliance), as well

as the new availability of powerful computers (55). Similarly, in Connec-

tionism and the Mind, William Bechtel and Adele Abrahamsen emphasize

the development of powerful new approaches to network modeling that

gave rise to new architectures and new training techniques as well as to

new mathematical models of description. They also point to a growing in-

terest among cognitive scientists, who were spurred by an increasingly

acute sense of the limits of symbol-processing models. The rule systems

of the latter seemed too complex, brittle, and ad hoc compared with

actual human cognition, which ‘‘seemed to be relatively free of such limi-

tations.’’67 Yet to a certain extent these explanations of the sudden and

widespread interest in neural nets and nonlinear mathematics and decen-

tralized models presuppose one another, and therefore what they are

meant to explain. Perhaps the renewed interest in neural networks forms

part of a larger cultural shift, a movement of decentralization visible in

social and economic organization, technologies, scientific models, theories

of self and mind, and theories of knowledge.68 Whatever the reasons, the

shift in the basic model of AI and cognitive science is striking. Whereas

the ‘‘mind as computer model’’ postulates intelligence as the manipula-

tion of symbols according to a syntax of well-defined rules, the neural

net brain model understands intelligence as a coherent global state emerg-

ing from the dynamic and only statistically knowable interaction of nu-

merous nonmeaningful components. Not surprisingly, the merits of the

two conflicting models have been extensively discussed, and their di¤er-

ences have incited serious philosophical debate. Perhaps the best place to

begin is with the two most salient points in Minsky and Papert’s critique.

First, Minsky and Papert showed that a neural net could not perform

the XOR computation, which yields a positive output if and only if its

two inputs are di¤erent; otherwise, it returns a negative output. Since

its negation, NOT(XOR), is a computationally universal function—

meaning that all other functions can be derived from it, and thus a com-

puter can be built from this function alone—this appears to be a serious

limitation indeed. For this very reason, in fact, Minsky and Papert argued
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that neural nets are not universally computational. In the mid-1980s,

however, Rumelhart and McClelland’s group were able to show that sim-

ply by adding another layer of neurons between input and output layers

(usually referred to as a hidden layer) neural nets gained the capacity to

perform this computation.69 Second, Minsky and Papert insisted on the

mathematical intractability of learning rules for neural nets above a cer-

tain level of complexity, essentially arguing that there could be no reliable

algorithm for training these nets to solve any but the most elementary

problems. Yet this ‘‘inherent’’ limit was also surpassed, mainly through

the development of what are called gradient descent algorithms, in which

a learning rule (basically, a formula for adjusting the weights) is applied

repeatedly until the di¤erence between the desired and actual output is

eliminated (see Rumelhart, Hinton, and Williams, ‘‘Learning Internal

Representations,’’ 321–328). The most e¤ective algorithm of this type,

known as ‘‘back propagation’’ and discovered simultaneously by several

researchers in the mid-1980s, made it possible to train a multilayered,

‘‘feedforward’’ network in real time. About the same time, other types of

network architecture were also developed, most notably autoassociative

networks, in which all the nodes are connected to one another, and recur-

rent networks, in which layers have both feedforward and feedback con-

nections. Since these architectures produce highly nonlinear e¤ects, new

e¤orts were directed toward determining what configuration of weights

and paths is responsible for the output. In sum, the mid-1980s saw con-

nectionist research advance simultaneously on two fronts, with research-

ers discovering both new kinds of architectures and new learning

algorithms.70

One of the most important of these advances occurred in 1982, when

physicist John J. Hopfield published a remarkable essay, ‘‘Neural Net-

works and Physical Systems with Emergent Collective Computational

Abilities,’’ that greatly stimulated interest in neural net research.71 Hop-

field was interested in the peculiar dynamics of spin glass, a certain class

of alloys whose magnetic properties depend on how their atoms are

arrayed in lattices with up or down spin orientations. The spin orientation

of each atom, moreover, would influence that of its neighbors, leading

these atoms to evolve collectively to global states in a manner that could

be described by the mathematics of the rapidly developing field of nonlin-

ear dynamical systems theory. Specifically, the states could be represented

by attractors in a phase space mapping of all the possible states that the

spin glass system could assume. The attractor states would indicate points

of equilibrium or stability between the system’s random heat loss and the
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interacting organizational forces of the spin glass atoms. Hopfield real-

ized that there was a deep analogy between the dynamics of this system

and that of a certain kind of autoassociative neural net (now known as a

Hopfield net) in which all nodes are connected to one another. Given an

initial input, the network will evolve toward and then self-organize

around one of these attractors, which thus corresponds to a stable pat-

tern. In fact, the network can reliably store as many patterns of informa-

tion as there are attractors. Not only does the Hopfield net not have to be

trained, but because it seeks configurations of equilibrium spontaneously

it can be e¤ectively deployed to solve computationally di‰cult problems

like ‘‘constrained optimization’’—the traveling salesman who must visit a

cluster of cities and has to figure out the order that will result in the least

repetitive sequence is the best-known example. In settling into patterns of

stability, however, a Hopfield net only goes ‘‘downhill,’’ as it seeks the

equivalence of local energy minima. To overcome this limitation, Geof-

frey E. Hinton and Terence J. Sejnowski added a hidden layer to a Hop-

field net, creating what they called a Boltzmann machine (after the great

scientist of statistical mechanics), capable not only of modifying its own

connectivity and thus of unsupervised learning but also of moving ‘‘up-

hill.’’72 This made it possible to solve a variety of constrained optimiza-

tion problems. As Cowan and Sharp state, it ‘‘provides a way in which

distributed representations of abstract symbols can be formed and there-

fore permits the investigation by means of adaptive neural nets of sym-

bolic reasoning’’ (‘‘Neural Nets,’’ 102).

Summarily, then, by the mid-1980s all of Minsky and Papert’s objec-

tions to neural nets had been refuted or overcome, leading to the rebirth

of neural net research and a new beginning in the quest to model intelli-

gence and simulate the workings of the brain. This rebirth essentially

amounted to a series of spectacular successes in the theory and applica-

tion of connectionist models and parallel distributed processing, successes

all the more impressive in that they were perceived against a background

of failure and dead ends in symbolic AI. Two accomplishments in partic-

ular should be mentioned. In a striking application of back propagation,

Sejnowski and Charles Rosenberg trained a neural net machine called

NETtalk to ‘‘read’’ and pronounce printed English words.73 Perhaps

more impressively, D. E. Rumelhart and J. L. McClelland were able to

teach a neural net how to form the correct past tenses of both regular

and irregular English verbs.74 Remarkably, they discovered that in the

process of learning the neural net actually made the same kinds of mis-

takes (and at the same rate) that children make in learning the past tense.
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Since then neural net theory has made great strides in understanding how

the brain and central nervous system work, particularly in regard to sen-

sory perception and motor control, memory, and learning. Beyond any

doubt, these accomplishments demonstrate that neural nets are capable

of pattern recognition, categorization, and (to a limited degree) general-

ization. Of particular importance, neural nets can encode content

addressable memory, a capability that brings a whole new dimension to

theories of learning and cognition not available to computer-inspired

models of the brain based on symbolic computation. The literature on

these developments is extensive, but even a brief indication of how the

brain represents input from the sensory world will indicate the richness

of this system.75

When we bite into a ripe peach or take a sip of good-quality wine, we

are immediately assailed by a profusion of tastes and smells. The same is

true of course for our other senses when we dive into a fresh pool of water

or listen to a complex piece of music. How does our brain process any

one of these highly distinctive onslaughts of fresh sensory information?

And how is it represented in the brain? Let’s consider the taste of a peach.

Four basic types of cell receptors (corresponding to sweet, sour, salty, and

bitter) are found on the tongue. When the juice from the peach hits these

receptor cells, they are excited and produce a unique activation pattern

determined by the excitation levels of all four cell types. The pattern is

not a mix but a unique combination, like a signature or footprint. And

of course there are always multiple patterns, produced in temporal waves.

These activation patterns are passed to successive layers of neurons where

they are transformed into other activation patterns and passed to other

neuron groups, and so on throughout parts of the brain. What happens

to this series of activation patterns will partly depend on whether this is

a first time experience or a repetition, in which case there is a very similar

activation pattern already stored in memory. If not, it will be passed up-

ward to higher cognitive levels. These activation patterns can be repre-

sented or coded as vectors in a state space. The peach activation pattern

would be coded by a vector defined by the four values of the excitation

levels of each of the four receptor cell types. This vector, in turn, can be

mapped as a point located in a four-dimensional space, with each recep-

tor value determining the length along one of the four axes. Though di‰-

cult to visualize, the vector points in this 4-D space would represent all

possible tastes, with di¤erences and similarities in taste reflected by the

distances between individual vectors. Peaches and apricots, for example,

would be found in one region in fairly close proximity, while black olives
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and green olives would be found close together but in another region. The

combinatorics of vector coding thus constitute a simple but rich system

that can represent the extraordinary range of ‘‘sensory subtleties [the ner-

vous system] encounters’’ (Churchland, The Engine of Reason, 21).76 In

the brain itself, of course, the activation patterns are stored in the vari-

ously weighted synaptic connections among the trillions of networks of

neurons.

The Philosophers Clash

Even with the eye-opening breakthroughs achieved by neural net research

in the 1980s, the research agenda of classic AI did not simply fade away,

nor was it dispatched to the historical dustbin. Indeed, in its own way

symbolic AI continued to set the agenda, at least for research on ‘‘higher’’

cognitive and intellectual functions, though often indirectly from the pre-

cincts of math and logic within philosophy, while relegating connection-

ism to neuroscience. Following Jerry Fodor’s The Language of Thought,

several philosophers have taken up the attack against connectionism,

arguing that, unlike computational or symbolic AI, it cannot provide a

fully adequate model of cognitive functions. The ensuing philosophical

debates over the relative merits of symbolic AI and connectionism drama-

tize the fundamental di¤erences between symbol-processing and neural

net approaches to computation and how each understands what intelli-

gence is and how it operates. The first valorizes the formalized procedures

and relations of syntax and logic; the second, the perception of pattern

and the dynamics of self-organization. While the first must postulate a

series of homuncular agents that implement or carry out cognitive tasks

at lower levels, the second must assume that cognitive functions some-

how emerge from the bottom-up dynamics of a self-organizing neural

network.

These debates may call to mind how the two approaches reach back to

and recapitulate di¤erences within the history of Western philosophy. For

Plato, intelligence entailed the anamnesis of innate Ideas imprinted on the

soul, whereas for Aristotle it involved the perception of analogies in the

actual world. Later, Hobbes, Descartes, and Leibniz would understand

thinking as basically a form of reckoning (i.e., calculation), whereas for

Locke, Hume, and the British empiricists it was a process of mental asso-

ciation. Symbolic AI and connectionism manifestly draw on and extend

these familiar oppositions into new realms, with something new emerging

on both sides: symbolic AI does not simply repeat the long familiar tenets
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of rationalism but brings precision and detail to our knowledge of the

mechanics of symbol processing; similarly, connectionism is not merely

associationism reborn, but rather a di¤erent kind of computational archi-

tecture that may reveal how symbolic structures are implemented at sub-

symbolic levels, both in natural and artificial computational devices. The

clash between the cognitivist philosophers Jerry Fodor and Zenon Pyly-

shyn and the connectionist researcher Paul Smolensky goes to the heart

of these di¤erences, which are explored below in relation to a dynamical

systems theory of language. A second encounter—between the philoso-

phers Daniel Dennett and Paul Churchland—over the nature of con-

sciousness, will in turn implicate these di¤erences in the phenomenology

of conscious states and the possibility of conscious machines.

In ‘‘Connectionism and Cognitive Architecture: A Critical Analysis,’’

Fodor and Pylyshyn try to pinpoint the inherent weaknesses of connec-

tionism and parallel distributed processing for a cognitive theory of

mind.77 Detailed and rigorous (at least in its own terms), the essay argues

that there are certain things that an adequate theory of cognition or intel-

ligent behavior must be able to account for. The classic theory of cogni-

tive architecture (i.e., Newell and Simon’s physical symbol hypothesis,

Fodor’s language of thought) meets these conditions, whereas connec-

tionism fails. The authors do not deny that connectionism may explain

how this cognitive architecture is implemented in a subsymbolic domain,

but in itself, they argue, it is not an adequate theory of cognition.

At the outset Fodor and Pylyshyn acknowledge that connectionist

models are representational, that is, that a connectionist network can rep-

resent a thought or mental state. The problem is that connectionist repre-

sentations, unlike the representations of classic cognitive architecture,

lack a combinatorial syntax and semantics. In other words, a connection-

ist network has no inherent structure that would allow for complex men-

tal representations. They give a simple example. In the classic model, if

we are given the proposition A & B, we can logically infer A with a pres-

ervation of truth value. However, although a connectionist network can

represent this same relationship, the relationship among constituent parts

is fundamentally di¤erent. In the connectionist network the relationship

between A & B and A is only a causal or associative one. In other words,

since the connectionist network e¤ectuates a mapping of an input onto a

statistical distribution of weights among nodes, the relationship of the

particular distribution that yields A & B to the one that yields only A

involves no structural relation like part/whole or logical entailment. In

short, for any array of symbols modeled by connectionism the relation-
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ship among the symbols can only be ‘‘atomic,’’ whereas for the classic ar-

chitecture it can be either atomic or syntactic and semantic.

Put another way, representations in connectionist networks are distrib-

uted over microfeatures. For the proposition ‘‘Mary drinks a cup of

co¤ee,’’ the connectionist representation will in e¤ect consist of a concat-

enation of nodes that give something like ‘‘þMary-subject; þdrink-verb;

þcup (of co¤ee)-object.’’ But simple changes in the distributions of

weights in the nodes might yield ‘‘A co¤ee of cup drinks Mary.’’ This is

because the connectionist architecture lacks the kind of inherent, system-

atic constraints that define language. It should be noted, however, that in-

stead of the term ‘‘language,’’ Fodor and Pylyshyn speak of ‘‘thought or

mental processes.’’ As they later explain, ‘‘linguistic capacity is a para-

digm of systematic cognition, but it’s wildly unlikely that it’s the only ex-

ample’’ (329). Leaving this distinction aside for the moment, the crucial

point for Fodor and Pylyshyn is that while connectionist networks can

represent linguistic propositions, they do not instantiate the kinds of rela-

tionships (i.e., syntactic and semantic constraints) that are required to ac-

count for human cognition.

In contrast, because the classic cognitive architecture of symbol systems

entails ‘‘not just causal relations among representational states but also

relations of syntactic and semantic constituency,’’ it thereby provides an

adequate cognitive model. Fodor and Pylyshyn discuss this adequacy spe-

cifically in terms of productivity, systematicity, and inferential coherence.

By productivity they mean that unbounded expressive power is achieved

by finite means, mainly by means of recursive structures. (Here again, the

influence of the language model is clearly evident.) By systematicity

(sometimes called compositionality) they mean that ‘‘the ability to pro-

duce/understand some sentences is intrinsically connected to the ability

to produce/understand certain others’’ (330). Anyone capable of thinking

the thought ‘‘Tim loves Mary’’ will also be capable of thinking the

thought ‘‘Mary loves Tim.’’ In short, thought has a composite structure.

What guarantees systematicity, of course, is syntax, and Fodor and Pyly-

shyn contrast the mastery of syntax with the phrase book approach to

speaking a foreign language. While a phrase book can provide an addi-

tive, one-to-one correspondence between utterances and meanings (i.e., a

lexicon), it cannot convey the relational and systematic understanding

that is absolutely necessary to form and comprehend thoughts that are

not in the phrase book, even though some or all of the constituent parts

might be found there. Inferential coherence, finally, restates and expands

on the first example given above. By virtue of syntax, logical relations of
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entailment and inference are intrinsic to thought. As Fodor and Pylyshyn

put it, the mental representations that express thought are ‘‘structure-

sensitive.’’ Although logical and syntactical relationships can be rep-

resented by connectionist networks, there will always be gaps and

inconsistencies that the structure of classic architecture does not allow.

Hence the positive features that distinguish connectionist networks and

parallel distributed processing are irrelevant for their value as cognitive

models. At best, connectionist networks can only serve as a theory of im-

plementation for the classic model of symbol processing.

In ‘‘Connectionism, Constituency, and the Language of Thought,’’

Paul Smolensky meets this critique head on and o¤ers a powerful rebut-

tal, arguing that connectionism should be viewed as a refinement, not an

implementation, of the classic symbolic approach.78 More precisely, con-

nectionist models o¤er ‘‘a truly di¤erent cognitive architecture, to which

the Classical architecture is a scientifically important approximation’’

(287). This reversal of Fodor and Pylyshyn’s argument stands on two sep-

arate claims: first, that Fodor and Pylyshyn’s critique does not take into

account fully distributed representations and therefore only applies to lo-

cally structured networks in which units or nodes represent a single fea-

ture instead of being distributed over the entire network; and second,

that fully distributed networks can in fact embody compositionality and

structure-sensitive processing. Smolensky’s countercritique thus amounts

to the charge that Fodor and Pylyshyn have focused their attack on an

overly simplified version of connectionism, in e¤ect reducing it to a form

of neoassociationism. Yet Smolensky does not directly contest the

language-of-thought model that underlies classic cognitive architecture.

Instead, he argues that ‘‘distributed representations provide a description

of mental states with semantically interpretable constituents’’ (298).

According to Smolensky, ‘‘There is no complete, precise, formal ac-

count of the construction of composites or of mental processes in general

that can be stated solely in terms of context-independent semantically

interpretable constituents.’’ More simply, there can be no completely ade-

quate formal (syntactic and semantic) account of mental processes inde-

pendent of context. This amounts to saying that the language-of-thought

hypothesis cannot possibly do what it claims to do. As Smolensky puts it,

‘‘There is a language of thought—but only approximately; the language

of thought by itself does not provide a basis for an exact formal account

of mental structure or processes—it cannot by itself support a precise for-

mal account of the cognitive architecture’’ (298). One might have already
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suspected that this was the case and that the classic model only gives a

highly abstract and idealized picture of thought, not an account of how

thought actually works. Yet the connectionist perspective gives this cri-

tique an unexpected precision. Summarily, then, Smolensky’s rebuttal of

the cognitivist position amounts to a double claim: not only can connec-

tionism in fact do the things that Fodor and Pylyshyn say it cannot, but

the classic model to which connectionism is held up as the standard is it-

self inadequate as a model of thought or cognition.

Before entering into the details of Smolensky’s countercritique, more

must be said about how he characterizes connectionism. In contrast to

the classic architecture, in which mental representations are made up of

symbols manipulated according to clearly defined rules, mental repre-

sentations in connectionist networks correspond to ‘‘vectors partially

specifying the state of a dynamical system (the activities of units in a con-

nectionist network)’’ (287). Connectionist networks thus give us what

Smolensky calls a split-level cognitive architecture: ‘‘The syntax or pro-

cessing algorithm strictly resides at the lower level, while the semantics

strictly resides at the upper level’’ (288). At the lower level of nodes and

links there is only the dynamic interaction of states described by mathe-

matical relationships; only at the upper level do large-scale patterns

emerge that can be interpreted or assigned a meaning. The strength of

this split-level architecture appeared earlier with the introduction of the

Perceptron: since the actual processing is carried out by many simple ele-

ments working in parallel, flexibility, speed, and graceful degradation are

inherent features.

As we have seen, cognitivism’s strongest criticism is directed at the way

connectionist networks represent a mental state. Since a representation is

essentially a pattern of logically and semantically connected microfea-

tures (as in the example, ‘‘Mary drinks a cup of co¤ee’’), connectionist

networks have no unequivocal way of representing either a context-

independent entity or the constraints that syntax imposes. To represent

‘‘co¤ee’’ one would have to produce the pattern for ‘‘cup of co¤ee’’ and

then subtract the pattern for ‘‘cup,’’ or some such operation. In an

extended demonstration that Smolensky refers to as ‘‘the co¤ee story,’’

he explains how the problem can be resolved using the mathematics of

vector coding; thus, he states, ‘‘The representation of co¤ee is a collection

of vectors knit together by family resemblance’’ (293). But this solu-

tion, he acknowledges, is ‘‘too weak to serve all the uses of constituent

structure—in particular, too weak to support formal inference—because
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the vector representing cup cannot fill multiple structural roles’’ (294). He

then o¤ers a strong solution to the problem of constituent structure by

means of what he calls tensor product representations. Basically, he

shows how the latter can be combined and superimposed on one another.

The technical details of this part of Smolensky’s argument are di‰cult to

summarize, however, and need not detain us here (see 294–297).

Having resolved this problem, Smolensky argues that the ‘‘agenda for

connectionism should not be to develop a connectionist implementation

of the symbolic language of thought, but rather to develop formal analy-

sis of vectorial representation of complex structures and operations on

those structures that are su‰ciently structure-sensitive to do the required

work.’’ More generally, he believes that ‘‘when powerful connectionist

computational systems are appropriately analyzed at higher levels, ele-

ments of symbolic computation appear as emergent properties’’ (298).

The central hypotheses of classic cognition, which concern principles of

memory, inference, compositionality, and constituent structure, are to be

understood therefore as approximations of complex mental processes.

Connectionism’s agenda for these approximations is to find

new ways to instantiate them in formal principles based on the continuous math-

ematics of dynamical systems. . . . The concept of memory retrieval is reformalized

in terms of the continuous evolution of a dynamical system toward a point attrac-

tor whose position in the state space is the memory; we naturally get content-

addressed memory instead of location-addressed memory. (Memory storage

becomes modification of the dynamics of the system so that its attractors are

located where the memories are supposed to be; thus the principles of memory

storage are even more unlike their symbolic counterparts than those of memory

retrieval.) When reformalizing inference principles, the continuous formalism

leads naturally to principles of statistical inference rather than logical inference.

(298)

Yet there is more at stake here than a redirection of research, even though

this redirection has been astonishingly successful. While it was clear from

the start that connectionism would expose ‘‘the hidden microstructure in

. . . large-scale, discrete symbolic operations’’ (299), it has still not been

able to completely bridge the gap between the micro- and macro-levels

of cognitive functioning. More important, even if there is now wide agree-

ment that the ‘‘mind is a statistics-sensitive engine operating on structure-

sensitive (numerical) representations’’ (293), as Smolensky puts it, in

certain essential respects the classic cognitive model remains intact. Far

from being dismantled, it has simply been demoted to the status of an

approximation.
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Another way to get at the issue here is to suggest that while Smolen-

sky’s approach provides the terms for a fruitful exchange between the

two models, the truly radical implications of the connectionist model re-

main mostly in abeyance. That radicality stems from connectionism’s

decoupling of syntactic and semantic coding—its split-level cognitive ar-

chitecture, in short. This architecture displaces computational informa-

tion processing to a subsymbolic domain, while on an upper level it

attempts to account for semantic coding (including memory) and rule-

bound relationships in terms of attractors in the state space of a dynami-

cal system. Ultimately its success would seem to hinge on its ability to

model not only abstract and logical thinking (as Smolensky shows it

can), but the complex operations of natural language as well.

Language and Attractor Syntax

One of the most exciting prospects for the neural net modeling of lan-

guage can be found in Je¤rey Elman’s research. Elman boldly proposes

that human natural language processing is actually the instantiation of a

dynamical system and works as such; it is not, therefore, the result of a

computational machine that works the way most linguists have assumed

since Chomsky’s groundbreaking work of the 1950s. Deploying the terms

and concepts of dynamical systems theory, Elman argues that the internal

representations of words are not symbols but locations in state space, that

the lexicon or dictionary is the structure in this space, and that the pro-

cessing rules are not symbolic manipulations but dynamic attractors that

pull the system state in specific directions. According to this understand-

ing, when we form sentences that are guided and shaped by grammatical

rules, we are not processing thoughts by accessing fixed, coded blocks of

information and following tracks and pathways preimprinted or hard-

wired in our computational brains; instead, we are being pulled and

twisted by invisible attractors in a dynamic force field that is constantly

changing as we ourselves traverse it, in part because we change and shape

it according to how we pass through it. As Elman himself puts it:

‘‘Objects of mental representation are better thought of as trajectories

through mental space than things constructed’’ (199).79 The material sub-

strate of this process is a ‘‘recurrent neural network,’’ that is, a neural

net with both feedforward and feedback (or ascending and descending)

pathways. These networks have incredibly complex activation patterns,

mainly because the feedback or descending pathways make information

about past activity available for current processing.80
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Among cognitive scientists, Elman is widely known for his work with a

specific type of recurrent neural net, which produces a temporally struc-

tured activation pattern. As he often emphasizes, time is an essential as-

pect of language use: we hear, make sense of, and in turn utter words in a

temporal process; our speaking, hearing, and understanding of language

all depend on patterns of expectation and anticipation, di¤erent kinds of

memory as well as many contextual parameters that classic language

theory mostly ignores. In this light, the assumptions of classic theory

make our use of language seem very mechanical and remote from actual

experience. According to this theory, words are conceived of as lexical

items in a passive data structure that the speaker processes. First, words

are subjected to acoustic and phonetic analysis; then their internal repre-

sentations must be accessed, recognized, and retrieved from permanent

storage. Following this, the internal representations have to be inserted

into a grammatical structure defined by a syntax, and so forth. Our own

experience, contrarily, is that speaking is more like following a path we

make as we go along. For this reason Elman’s theory that time is essential

to language and that language is the unfolding of a dynamical system

obviously holds great promise.

In ‘‘Language as a Dynamical System’’ Elman explains how his theory

has been developed and tested using a simple recurrent neural network.

Recall that neural nets can be trained to encode representations (both ver-

bal and visual) as unique activation patterns. To begin, Elman trained a

recurrent network to encode simple sentences formed from a small lexi-

con of twenty-nine nouns and verbs, using a learning set of ten thousand

sentences. Each word thus trained represented a vector in the network’s

total state space. To understand what this means we must keep in mind

that what the network ‘‘learned’’ had nothing to do with ‘‘how the form

of the word was correlated with its properties’’ (i.e., its sound or mean-

ing), but only with its distributional behavior in relation to other words.

Yet this single relationship turned out to be very rich and revealing.

Elman then tested to see if the network could predict successive missing

words from among sentences in the training set. Since the network had

not memorized these sentences, his purpose was to determine the degree

to which the network would supply the correct type of word—most often

a verb or noun as subject or direct object—and thus had made a classifi-

cation of word types based solely on their distributional behavior and co-

occurrence associations. When Elman determined that the network could

indeed make such predictions with a high degree of accuracy, he then did

tests and calculations based on hierarchical clustering of vectors (for an
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explanation, see ‘‘Language as a Dynamical System,’’ 205) to determine

more precisely the network’s category structure of classifications. The

results were mapped in a tree diagram (fig. 6.1).

The diagram makes it clear that the network has learned to distinguish

verbs from nouns; verbs, furthermore, are distinguished according to

whether a direct object is necessary, optional, or required. Nouns, on the

other hand, are subdivided into animates and inanimates, the former be-

ing further subdivided into humans and animals (which then breaks down

into large and small), while the category of inanimates subdivides into

breakables, edibles, and miscellaneous.

Having shown that the network has structured the lexicon as a highly

di¤erentiated state space, Elman turns to the notoriously di‰cult problem

of syntax, specifically in order to show how embedded relative clauses can

be modeled, especially those in which the verb endings are di¤erent over

several successive phrases. (For example: ‘‘The girls who chase the boy

who follows the cat run noisily.’’) Essentially, Elman is able to demon-

strate that a grammatical sequence of word vectors delineates a vector

space trajectory, and that grammatically similar sentences have similar

trajectories. Most crucially, successively nested relative clauses are coded

as similar but spatially distinct cycles within the activation space. (See

Elman’s fig. 8.7, reproduced below as fig. 6.2.) In short, small grammati-

cal di¤erences are encoded as slight but dynamically relevant di¤erences

in a vector space trajectory. Grammatical structures can thus be said to

have ‘‘signature trajectories’’; furthermore, the network can distinguish

between the same words in di¤erent grammatical contexts.

While cognitive scientists in the last twenty years have been able to

show how neural nets in the brain code sensory perceptions,81 language

has been the last holdout. But Elman’s work suggests that a combination

of neural net and dynamical systems theory can eventually yield a more

complete understanding of human language use in all its varied aspects.

Once it can be shown that higher cognitive functions like language can

be understood in the same conceptual terms and underlying framework

as sensorimotor and perceptual functions, then we are well on our way

to a bottom-up approach that is concordant with our intuitive under-

standing of the physically integrated human body, instead of a mélange

of theories that apply to di¤erent parts and functions, as if the body

were an assemblage of mechanically related ad hoc attachments and the

mind (or brain) its magical controller.

To be sure, higher cognitive functions like language and high-order

perception are distinctly more complex than sensorimotor movement,
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Figure 6.1
Elman’s clustering diagram. Je¤rey Elman, ‘‘Language as a Dynamical System,’’ in Mind as
Motion: Explorations in the Dynamics of Cognition, ed. Robert F. Port and Timothy van
Gelder (Cambridge, Mass.: MIT Press, 1995), 206.
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Figure 6.2
Elman’s trajectories through state space. Je¤rey Elman, ‘‘Language as a Dynamical
System,’’ in Mind as Motion: Explorations in the Dynamics of Cognition, ed. Robert F. Port
and Timothy van Gelder (Cambridge, Mass.: MIT Press, 1995), 214.
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and their operations and functions are constantly being extended and

reshaped by the techniques and technologies that constitute our physical

and cognitive environment. Nevertheless, the combination of neural nets

and dynamical systems makes for a powerful model, which is likely to be

part of the conceptual toolkit that will enable us to understand how we

interact with and are shaped cognitively by these technologies. The NN/

DS model also tends to suggest that there is no clear or inherent hierarchy

between perception and language use, as the computational cognitivists

earlier posited. In fact, there is compelling research that understands these

two functions as very closely allied and even codependent. The work of

Douglas Hofstadter and Melanie Mitchell on analogy making as a form

of high-level perception is one example; another is Jean Petitot’s studies

of both language and perception from the perspective of what he calls

morphodynamics. Let us briefly consider the latter.

Petitot’s morphodynamics is a further development of René Thom’s ca-

tastrophe theory.82 According to Thom (who was Petitot’s teacher), there

are seven simple types of catastrophe, or ways that one kind of topo-

logical structure can be transformed into another. For obvious reasons

Thom’s work has been especially useful to embryologists interested in

morphological change, that is, in how a body changes shape and form as

it grows. In general terms Petitot can be said to extend Thom’s theory to

other kinds of morphological change by applying dynamical systems

theory more fully. Given a state space in which there are several attrac-

tors, what kinds of changes can bring about the disappearance of these

attractors and the appearance of new ones? Technically, this is the

provenance of bifurcation theory, which is concerned with the critical

changes that cause attractors to appear and disappear. From this view-

point, morphodynamics studies how complex structures can emerge from

bifurcations.

Like Elman, Petitot seeks to understand how linguistic syntax results

from particular attractors in a state space (the underlying dynamical sys-

tem is again a neural network), but Petitot puts greater emphasis on

transformation, or catastrophes in Thom’s sense. To this heady theoreti-

cal mix he also brings ideas from the field of cognitive grammar, as repre-

sented primarily by the work of Ron Langacker. One way to explain

cognitive grammar is to go back to Aristotle’s idea that language struc-

turally mirrors the world we perceive through our senses (i.e., that agents

and actions are symbolized in nouns and verbs, etc.). Founded on a simi-

lar idea, cognitive grammar finds (or assumes) such mirrorings at a much

deeper level. Specifically, it elaborates what is known as the iconicity the-
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sis, which ‘‘asserts that there exists a homology (though not, of course, an

isomorphism) between the structure of the [visual] scene as an organized

Gestalt and the structure of the sentences which describe it’’ (‘‘Morpho-

dynamics,’’ 249). All of which suggests that there is a deep-level connec-

tion between verbal meaning, visual perception, and mental images.

Herbert Simon reflects the iconicity thesis in a passage that Petitot quotes:

We experience as mental images our encodings of words we have read or of mem-

ories we have recovered. . . . The most common explanation of mental images in

cognitive science today . . . is that such images, whether generated from sensations

or memories, make use of the same neuronal equipment that is used for displaying

or representing the images of perceptually recorded scenes. . . . On this hypothesis,

a mental picture formed by retrieving some information from memory or by visu-

alizing the meaning of a spoken or written paragraph is stored in the same brain

tissue and acted on by the same mental processes as the picture recorded by the

eyes. (250)

Petitot seeks to understand these mental processes as transformations in a

state space of what cognitive grammar understands as cognitive arche-

types, or Gestalten. These transformations of Gestalten would suggest

that both verbal and visual syntax are markers in the unfolding of a dy-

namic process. Following Thom’s geometric-topological conception of

syntax, Petitot believes that ‘‘there exist syntactic Gestalts constituting a

perceptively rooted iconic protosyntax’’ (249). Indeed, if one accepts the

idea that ‘‘many linguistic structures (conceptual, semantic, and syntactic

structures) are organized in essentially the same way as visual Gestalts

are,’’ in short, if one accepts the idea of an ‘‘iconicity of syntax’’ (and

many studies in cognitive linguistics find evidence for it), then a way to

address the problem of the missing link between language and perception

in classic linguistic theory becomes possible. What interests Petitot, there-

fore, is ‘‘an intermediary representational level where perceptual scenes

are organized by cognitive organizing Gestalts and image schemas which

are still of a perceptive nature but already of a linguistic nature’’ (249).

Given this interest, in his article on morphodynamics Petitot focuses spe-

cifically on how a form of visual syntax that first involves the scanning of

boundaries and then the extracting of singularities from instances of

‘‘contour di¤usion’’ can be accounted for precisely using these conceptual

tools.

Petitot’s work is highly technical and draws on multiple disciplines, but

even this brief sketch reveals that it no longer assumes that linguistic

syntax is a unique and intrinsic feature of language; instead, syntax is

conceived as a transformation of deeper primitive visual structures, or
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‘‘scenes.’’ As a consequence, there is no basis for language’s assumed su-

periority over visual modes of apprehension or expression, since both lin-

guistic and perceptual syntax are understood to emerge from underlying

dynamical transformations of activation patterns in the brain that encode

these primitive scenes as cognitive archetypes. This contrast between ver-

bal and visual modes of attention, nevertheless, continues to be a particu-

larly vexed problem in theories of consciousness.

Consciousness, Human and Otherwise

For a variety of reasons, the 1990s saw an energetic resurgence of interest

in the study of consciousness, both among philosophers and scientists

working in the fields of cognitive science, neuroscience, and AI. New

studies of higher primate behavior and advances in brain imaging tech-

nology no doubt contributed to this interest, but don’t fully explain it.

Consciousness, of course, is a very complex phenomenon, and there has

been surprisingly little agreement on how it should be defined and

explained, or even how important it is in many human activities. Two

perspectives on consciousness, o¤ered in Daniel Dennett’s Consciousness

Explained and Paul Churchland’s critique of this work,83 highlight

(though at a di¤erent level) several of the issues in cognitive science and

neural net theory discussed above; more important, they lead, by way of

the question of whether consciousness can be simulated by a machine, to

the best-known critique of classic AI.

According to Dennett, what is presented to consciousness is a confused

mass of ‘‘content-discriminations’’ that

yield, over the course of time, something rather like a narrative stream or se-

quence, which can be thought of as subject to continual editing by many processes

distributed around in the brain, and continuing indefinitely into the future. This

stream of contents is only rather like a narrative because of its multiplicity; at

any point in time there are multiple ‘‘drafts’’ of narrative fragments at various

stages of editing in various places in the brain. (113)

Since consciousness is precisely what is produced by these highly distrib-

uted editings of multiple drafts, there can be no single ‘‘Witness’’ or

‘‘Central Meaner’’ at the center of a Cartesian theater directing its opera-

tions. As Dennett readily concedes, this latter image is part of a whole

family of metaphors that he wants to replace with another, ‘‘trading in

the Theater, the Witness, the Central Meaner, the Figment for Software,

Virtual Machines, Multiple Drafts, [and] a Pandemonium of Homunculi’’

(455). However, since metaphors are the ‘‘tools of thought,’’ it is not a
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matter of merely substituting one set for another, but of using the new set

to build a theory of consciousness that is more consistent with scientific

and phenomenological fact.

Essential to his theory is the hardware/software distinction. At the out-

set, Dennett acknowledges the neural net theory of the brain and that the

brain is a massively parallel computing device bearing no visible relation-

ship to the now classic structure of a serial, discrete-state, programmed

digital computer. For Dennett, however, the billions of dynamically inter-

acting neurons in our brains are only the underlying material ‘‘hard-

ware.’’ When humans learn language, this hardware is restructured to

run as a virtual serial computer, thus giving humans the capacity ‘‘to rep-

resent and process information in a structured sequence of rule-governed

representations unfolding in time’’ (264–265). Thus, Dennett assumes,

our brain as a parallel processing device works as a virtual machine that

can emulate (or run as software) a serial machine, here instantiated as (or

in) language. But what allows a human mind to emerge from the opera-

tions of this brain machine is not simply language. Appropriating

Richard Dawkins’s idea of the ‘‘meme’’ as cultural replicator, Dennett

argues that once ‘‘our brains have built the entrance and exit pathways

for the vehicles of language, they swiftly become parasitized . . . by entities

that have evolved to thrive in just such a niche: memes’’ (200).84 Through

the infestation of memes and their constant reprogramming by the brain,

human consciousness and the larger field of human culture become the

sites of natural selection and evolutionary process.

In his critique, Churchland argues that Dennett has perverted a genu-

ine scientific advance (distributed parallel processing and neural net

theory) in order to return to an earlier model of symbolic computation.

But this perverse maneuver is based on a deeply confused analogy. While

it is true that computational machines can generally emulate other com-

putational machines, it is essentially a matter of replicating input-output

functions, in which the fundamental di¤erences between the two modes of

computation are bypassed and ignored. Dennett wants to ignore these

di¤erences because he is ultimately committed to a language-centered

theory of consciousness. As a consequence, Churchland charges, Den-

nett’s theory is rooted in a historical and cultural prejudice that no longer

has any scientific basis:

The prototype of language-like activity has exercised an iron grip over all theoret-

ical attempts to account for human cognition since Aristotle. But it is a false pro-

totype for cognitive activity, even in humans. Here in the closing decades of the

twentieth century, we have finally unearthed and have begun to explore the power
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of a very di¤erent prototype: distributed vectorial processing in a massively paral-

lel recurrent neural network. It is now beyond serious doubt that this is the prin-

cipal form of computational activity in all biological brains, and we have begun to

see how to explain the familiar forms of cognitive activity with the strikingly novel

and fertile resources that this new prototype provides. (265–266)

For Churchland, furthermore, Dennett’s theory is not only scientifically

wrong but ethically o¤ensive: having made consciousness essentially lin-

guistic, Dennett must deny any form of consciousness to animals. A few

pages later, Churchland summarizes his critique:

Finally, Dennett’s account of consciousness is skewed in favor of a tiny subset of

the contents of consciousness: those that are broadly language-like. Human con-

sciousness, however, also contains visual sequences, musical sequences, tactile

sequences, motor sequences, visceral sequences, social sequences, and so on. A

virtual serial machine has no especially promising explanatory resources for any

of these things. A recurrent parallel network does. (269)

In sum, Churchland believes that Dennett has missed the fundamental

scientific truth that an array of connected recurrent parallel networks

o¤ers the most promising model for understanding how the brain accom-

plishes higher cognitive functions, including consciousness.85

Despite these fundamental di¤erences, there is one issue on which Den-

nett and Churchland completely agree: the feasibility of machine con-

sciousness. With little or no reticence, in fact, the question of an artificial

consciousness was often raised in the 1990s. Churchland, for example,

devotes an entire chapter to the question: ‘‘Could an electronic machine

be conscious?’’ His answer is straightforward: not only is it possible in

principle but rather likely, once it becomes possible ‘‘to construct elec-

tronic implementations of the sorts of networks that in us are imple-

mented biologically and neurochemically’’ (236). In fact, research like

Carver Mead’s development of a silicon retina (to which Churchland

devotes several pages) demonstrates that it is already under way. Dennett

takes the same position but arrives at it by a di¤erent route. Since,

according to his theory, we are machines and human consciousness is it-

self machinic, it is not much of a leap to reason that machines can be con-

scious too.86 Dennett takes up some of the implications of this position in

a section called ‘‘Imagining a Conscious Robot’’ (431–440) as well as in

his later essay ‘‘The Practical Requirements for Making a Conscious

Robot.’’87 In the latter he reveals that he is working with a team led by

Rodney Brooks at MIT to construct a robot, named Cog, with higher

cognitive functions. ‘‘Many of the details of Cog’s ‘neural organization’,’’
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he declares, ‘‘will parallel what is known (or presumed known) about

their counterparts in the human brain.’’

Although the details of this neural organization remain unavailable,

Cog and its fellow humanoid robot, Kismet, merit at least a brief descrip-

tion. The two robots were designed and built at MIT’s Artificial Intelli-

gence Laboratory, which is directed by Brooks, and reflect the central

importance accorded to perception and social attention, respectively, in

theories of consciousness. As Brooks describes them in Flesh and

Machines, each robot has achieved remarkably humanlike behavior in

these two restricted domains.88 The development of Cog began in 1993,

as an attempt to make a vision system that ‘‘works like that of people,

and with eyes that can saccade and verge, and that look like human

eyes’’ (87). Physically, Cog has a head, two arms and a torso, which is

mounted on a heavy platform (fig. 6.3). In photographs, Cog often

Figure 6.3
Rodney Brooks with Cog. Peter Menzel and Faith D’Aluisio, Robo sapiens: Evolution of a
New Species (Cambridge, Mass.: MIT Press, 2000), 62–63. 6 Peter Menzel/menzelphoto
.com.
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appears in front of a bank of computer monitors that display in grainy

images what Cog is actually ‘‘seeing.’’ Notably, each one of Cog’s two

eyes has two camera eyes that give it both peripheral and foveal vision.

The eyes are mounted on gimbals that can pan and tilt; additionally,

head and neck motors give it more freedom of movement. It also has a

gyroscope so that, like the human inner ear, it can sense its own head mo-

tion. With Cog, Brooks asserts, ‘‘We have been able to duplicate the me-

chanical aspects of the human visual system’’ (88).

As Brooks acknowledges, ‘‘The di‰cult thing is how to process the

images’’ (88). Though Cog can do things like recognize human faces and

track moving objects, there are many things—mostly involving recogni-

tion and discrimination—that it cannot do very well at all. (Brooks lists

what Cog can do well and not so well on page 90.) The chief obstacle is

that scientists do not yet have the algorithms that can convert a visual

pattern of intensities into a rich description of what humans can perceive

in the world.

What appears to be a sharp boundary to our eyes and vision system combined

does not necessarily show up in an obvious way in the data that comes from a dig-

ital camera. If we see a pen lying on a desk, we can see a sharp boundary between

the pen and the desk. But often when we look at the intensities of light from each

little square pixel in a digital image, there is no clear boundary. Pixels correspond-

ing to parts of the pen, and parts of the desk, just two or three pixels apart, may

have exactly the same intensity values. Somehow our brain is getting a much more

global understanding of what is going on, and it then perceives the boundary. (89)

Brooks concludes from this that we must be ‘‘missing something funda-

mental’’ in our understanding of how human vision is organized (91).

What he doesn’t say, but it seems implied, is that Cog is ideally suited to

research that one day may fill this gap.

Cynthia Breazeal, who helped Brooks design and build Cog, has spent

an enormous amount of time doing simple things like holding an object in

front of Cog, who would then saccade toward it and reach out and touch

it. Looking at videotapes of these interactions, Breazeal noticed that in

her behavior she always assumed more than Cog could actually do. As

Brooks describes it, ‘‘She had picked up on the dynamics of what Cog

could do and embedded them in a more elaborate setting, and Cog had

been able to perform at a higher level than its design so far called for’’

(92). This led to her thinking about social interaction, particularly at an

unconscious level, and about those basic learning situations that occur be-

tween mother or primary caregiver and child. This led in turn to the con-

struction of Kismet, something of an o¤shoot of Cog but really more of
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an abstractly expressive ‘‘face.’’ Physically, Kismet has two eyes and, like

Cog, the capacity to move them as well as its neck and head; but it also

has microphone ears, eyelids, eyebrows, and a mouth—all of which gives

it the capacity to make facial expressions. The expression in figure 6.4 is

one of happiness.

For Kismet to make facial expressions and to respond appropriately to

human expressions obviously requires a very elaborate visual attention

system, which was designed by Breazeal and another of Brooks’s stu-

dents, Brian Scassellati. Like Cog, Kismet saccades toward whatever

catches its attention. Three kinds of things will work: things in motion,

things with saturated colors, and things with skin color. However, Kismet

does not simply observe these things passively but acts in accordance with

its own set of ‘‘drives,’’ or basic needs: it has a need to be stimulated by

humans (a social drive) and to play with toys or objects (a stimulation

drive); but it also has a ‘‘fatigue syndrome,’’ which makes it tired over

time.89 In addition to being a¤ected by these internal drives, Kismet is

emotionally a¤ected by the prosodic signals it receives through its ears

and auditory system.90 More specifically, Kismet’s mood or emotional

Figure 6.4
Kismet showing happiness. Peter Menzel and Faith D’Aluisio, Robo sapiens: Evolution of a
New Species (Cambridge, Mass.: MIT Press, 2000), 68. 6 Peter Menzel/menzelphoto.com.
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state is conditioned by three variables: valence, a measure of its happi-

ness; arousal, a measure of its stimulation versus how tired it is; and

stance, which is how open it is to new stimuli. Basically, Kismet tries to

keep its drives in balance by getting people to interact with it. In this

sense it is a very sophisticated cybernetic machine, though curiously the

word is never used in Brooks’s or Breazeal’s descriptions. In these inter-

actions Kismet displays its emotional state by moving its ears, eyebrows,

and lips, and by altering the prosody of the sounds it makes. In fact, the

photographs in Menzel and D’Aluisio’s Robo sapiens (68–71) register

quite a range: calmness, happiness, sadness, anger, surprise, disgust, tired-

ness, and the state of sleep. Needless to add, some people are much better

at interacting with Kismet than others, children in particular being more

apt to engage with sustained interest. In their interactions with Kismet

both Breazeal and Scassellati comfortably assume the role of caregiver

to infant, so it is not surprising that their published research is framed by

theories of child learning and psychology.91

Witnesses who observe Cog and Kismet interacting with humans often

feel that there is more going on than there actually is. Kismet in particu-

lar seems to elicit the feeling that it has intentions and awareness and

therefore some nascent form of consciousness. Brooks attributes these

feelings to our tendency to ‘‘over-anthropomorphize,’’ even in purely hu-

man activities. ‘‘We attribute too much to what people are doing,’’ he

states (Robo sapiens, 58), making the category error of mistaking the ap-

pearance of something and a description of the appearance for a descrip-

tion of the mechanism that explains it. Like Dennett, he believes that

human beings are machines—highly complex machines, but machines

nonetheless. There is no reason in principle, therefore, why life, intelli-

gence, and even consciousness cannot be constructed artificially. But if

so, why haven’t there been more dramatic breakthroughs, especially given

the great leaps in computational power that new computers make readily

available? Brooks believes that there is still ‘‘something missing’’ from

our models, particularly of life and consciousness. It is not anything mys-

terious and ine¤able, as in the old biological theory of vitalism; rather,

it comes from a lack of complexity in the models themselves, like some

deeper principle that is staring us in the face but has yet to be recognized.

Just when the needed discoveries might come remains unpredictable. In

the meantime, he intends to seek what is missing—the ‘‘missing stu¤ ’’ he

calls it—by building machines that approach the human from the bottom

up.
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Increasingly, the position that Dennett, Churchland, and Brooks as-

sume toward machine consciousness is gaining ground, while earlier

counterarguments like John Searle’s ‘‘Chinese room’’ polemic against

strong AI (and implicitly machine consciousness) seem less convincing.92

Searle argues that a mechanical or algorithmic implementation of a

thought process, even when performed by a man emulating a Turing ma-

chine (or its read/write head), fails to exhibit or instantiate real intelli-

gence because it lacks understanding or intentionality. In other words, it

is not conscious of, nor does it understand, what it is doing. Searle illus-

trates his claim with the following thought experiment. A man in an iso-

lated room receives through a slot in the door sheets of paper covered

with unintelligible ‘‘swiggles.’’ However, with the aid of a code book of

instructions (as in: if two swiggles, write two swoggles), he is able to reply

in kind, and send back similarly marked sheets of paper. Outside the

room it is known that the messages are written in Chinese, and it is

assumed therefore that the man inside understands the Chinese language.

But clearly, Searle proclaims, the man doesn’t understand Chinese, no

more than a computer understands the computations it performs. At

best one could say that he simulates such an understanding. From this

thought experiment Searle concludes that no computer, no matter how

fast and powerful, will ever be able to think. This is because its formal

operations are defined syntactically, as a sequence of purely symbolic

manipulations, and lack the necessary semantic dimension—the

intentionality—necessary for understanding and authentic intelligence.

Searle’s argument has provoked a number of important critical

responses by Douglas Hofstadter, Daniel Dennett, and David Chalmers,

to name only three. The reason, I believe, is not simply because of the

issues involved but also because of Searle’s deceptive clarity, which

obscures the extent to which his argument against strong AI is entangled

with and even displaced by a host of other important issues and ques-

tions, such as: What is the relationship between intentionality and con-

sciousness, or between understanding and consciousness? And what does

it mean to understand a language? Accordingly, one might interpret the

Chinese room as a simple parable about meaning, that is, a machine can’t

possibly understand Chinese (or any other language) if it doesn’t under-

stand what its words or written symbols mean. The best known reply to

Searle, designated the ‘‘systems reply,’’ argues that while the man in the

room does not understand Chinese, the room itself does. Hofstadter and

Dennett both take this position.93 Basically, it asserts that all the things
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in the room—the man, the pieces of paper, the code and instruction

books, and so forth—constitute a distributed system that exhibits intelli-

gent behavior. But Searle rejects this argument out of hand, since for him

understanding (which he silently substitutes for intelligent behavior)

requires conscious mental states, which cannot reasonably be attributed

to a room. However, in The Conscious Mind David Chalmers retorts

with a more elaborate counterargument, involving the step-by-step substi-

tution of the man’s neurons with computational demons and then with a

single demon in which the neuron-level organization of the human brain

is completely duplicated.94 With these substitutions, the room becomes a

dynamical system in which neuronal states are determined by the rules

and manipulations of the symbols, and the system as a whole is su‰-

ciently complex to have ‘‘the conscious experiences [including qualia] of

the original system’’ (325), that is, of a human being.

This rendering of the room as a dynamical system is necessary because,

as Chalmers argues, the slips of paper are not merely a pile of formal

symbols but ‘‘a concrete dynamical system with a causal organization

that corresponds directly to the original brain,’’ and it is ‘‘the concrete

dynamics among the pieces of paper that gives rise to conscious experi-

ence’’ (325). With his fiction of neuronal substitution and demons,

Chalmers thus makes fully visible what was submerged in Searle’s ver-

sion: the full systemic complexity of the computational room. Actually,

Hofstadter anticipates this very aspect of Chalmers’s argument when he

writes that ‘‘the program on those ‘bits of paper’ embodies the entire

mind and character of something as complex in its ability to respond to

written material as a human being is, by virtue of being able to pass the

Turing test’’ (375). But Chalmers also attacks Searle precisely on the issue

of how the computer in the room (or the computational process that is

the room) is implemented. He agrees with Searle’s assertion that a com-

puter program is purely syntactical but points out that the program must

be implemented physically in a system with ‘‘causal dynamics.’’ In more

fully accounting for the causal dynamics of the activities in the Chinese

room, albeit by means of a simulation accomplished with artificial neu-

rons organized like the brain, Chalmers makes a compelling argument

that the system would be capable of having conscious states. He thereby

joins the ranks of contemporary philosophers who share the view that

‘‘the outlook for machine consciousness [and strong AI] is good in princi-

ple’’ (331).

As a postscript to this argument, it is worth noting that Searle himself

never denies the possibility that ‘‘a machine could think.’’ To the con-
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trary, we are machines and we can certainly think, he asserts. But we are

biological machines, and intentionality (or consciousness) is a biological

phenomenon. Thus his argument really falls into two parts. The first

part, illustrated by the Chinese room thought experiment, asserts a nega-

tive: that no program running on a digital computer is capable of inten-

tionality (i.e., consciousness or thought). This also means that ‘‘the

computational properties of the brain are simply not enough to explain

its functioning to produce mental states’’ (40). The second part, which is

unduly developed and therefore usually ignored, argues that thinking, or

consciousness, is essentially biological in nature and therefore cannot be

reproduced without a causal, material system equivalent in complexity

to our own biochemical system. It means that thinking requires a body

located within—and which would be part of—the world. While the first

part of Searle’s argument was (correctly) understood to be a hostile cri-

tique of the operational and functionalist approach of early AI, the sec-

ond now finds wide agreement among contemporary neuroscientists and

those with a biologically inspired approach to the building of intelligent

machines.95

It may be surprising, nevertheless, that the original biologically inspired

neural net approach should give new life to the quest to build intelligent

machines, given that the symbol-processing cognitivist approach it dis-

placed was so closely allied to it. Moreover, while important di¤erences

among the cognitive scientists and philosophers who have taken up these

debates continue to exist, increasingly the central philosophical issues

have shifted away from classic cognitivist versus neural net architecture,

strong AI versus weak, and so forth, toward questions about representa-

tion, particularly as a consequence of how dynamical systems theory and

theories of emergence e¤ect causal explanation.96 Indeed, with Brooks’s

inauguration of behavior-based robotics, which is discussed in the next

chapter, the antirepresentational bias of the new AI becomes an explicit

issue.

In closing, I mention one further complicating twist concerning the

way in which coding and decoding—both in symbol processing and neu-

ral networks—destabilize the commonsense notion of representation.

Though not considered directly, this destabilization has been an under-

current throughout this chapter. For example, when Smolensky demon-

strates that connectionism can provide an adequate version of classic

cognitive architecture by a recoding—specifically, a vector coding in

terms that are functionally equivalent to the coding accomplished by sym-

bol and rule manipulation—he argues that connectionism can provide an
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adequate account of representation. Yet there is a strong sense in which

connectionism also brings about a decoding. Whereas the classic architec-

ture can only allow either truthful propositions or instances of incoher-

ence and contradiction, a connectionist architecture opens onto ( just as

it reposes on) chaos and dynamic, unpredictable change. In contrast to

the closed (but generative) classic cognitive model, defined by abstract

and idealized syntactic and semantic structures, the neural net model of

‘‘mind’’—whether instantiated in a biological brain or an artificial neural

network—is understood to be a statistical engine operating in a stochastic

field. At the same time, this fundamental decoding of the classic cognitive

model is presented as the outcome of a contained dynamical process, with

clear limits and boundaries. In other words, the dynamic remains internal

to the mind/brain. However, Maturana and Varela’s theory of autopoie-

sis suggests a more radical alternative: through their notion of perturba-

tion, a system is ‘‘open’’ to the outside while its autonomy and closure is

still maintained. As we’ll see in the next chapter, the new AI goes even

further and brings about a more open and active alignment with the out-

side, which is no longer conceivable as simply a source of input or pertur-

bation but becomes an active field in its own right. In this sense, by

shifting the dynamic of the mind/brain/machine to its coupling with the

(or an) external environment, the new AI performs a decoding of connec-

tionism itself. This decoding occurs not as an internal counterdynamic

among or across levels within a bounded neural network—as in connec-

tionism’s decoding of classic cognitivism—but as a shift of the dynamic

itself to a fully immanent articulation with the outside. And what this

new opening attempts to internalize and set to work in the process of con-

structing robotic life is the power of evolution itself.
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7 The New AI: Behavior-Based Robotics, Autonomous
Agents, and Artificial Evolution

Humans can’t build a robot as smart as themselves. But, logically speaking, it is

possible for such robots to exist.

How? Cobb had asked himself throughout the 1970s, How can we bring into exis-

tence the robots which we can’t design? In 1980 he had the bare bones of an answer.

One of his colleagues had written the paper up for Speculations in Science and

Technology. ‘‘Towards robot consciousness,’’ he’d called it. The idea had all been

there. Let the robots evolve.

—Rudy Rucker, Software (1982)

Until the late 1980s, two distinct theoretical orientations had shaped the

history of artificial intelligence. The first, that of classic AI, was to con-

struct intelligent systems from the top down, on the basis of rule-bound

symbol systems. Herbert Simon and Allen Newell’s Logic Theorist, pre-

sented in 1956, was o‰cially recognized as the first working example. In

their ‘‘physical symbol system hypothesis,’’ which provided a theoretical

basis for this approach, they defined the symbol system independently of

its material substrate. Ideally, therefore, it could be instantiated in any

medium, for example, a biological brain or a digital computer. Such a

system, comprised of an accretionary set of symbol structures whose

operations reflected the underlying rules of logic, syntax, and conceptual-

ization, was deemed both necessary and su‰cient for all intelligent

action. In the corresponding cognitivist version assumed by cognitive

science, the structures underlying this capacity were understood to be

somehow hardwired in the brain.

The second—and alternative—theoretical orientation was based on the

brain’s actual dynamic behavior—its parallel processing of information

in neural networks. It led to the construction of machines like the Percep-

tron and Pandemonium, but apparently intractable limitations made this

approach less viable. In the mid-1980s, however, the addition of another,

so-called hidden layer of neurons produced an upgraded, much more



versatile version of neural net computation in which earlier weaknesses

were overcome. Renamed connectionism, it could provide a basic expla-

nation of pattern recognition, learning, and memory in terms that were

consistent with the brain’s inherent capacity for self-organization and

adaptability.

Given that each approach has well defined and complementary

strengths, it would seem that the terms were set for a larger synthesis.

Yet this is not what happened.1 Instead, an altogether new AI emerged,

and with it a renewed argument for a dynamical systems approach indif-

ferent to or even opposed to connectionism. In the 1990s, spearheaded

by Rodney Brooks’s development of a behavior-based (as opposed to

knowledge-based), bottom-up approach to the construction of autono-

mous mobile robots, the new AI made great strides. Drawing on the les-

sons of ALife research, Brooks’s colleagues and followers Luc Steels,

Pattie Maes, Maja Mataric, and Randal Beer developed notions of emer-

gent functionality, autonomous agent theory, collective intelligence in

multiagent systems, and a rigorous dynamical systems approach. Having

rejected symbolic computation as part of the baggage of the old AI, the

new robotics allied itself with Francisco Varela’s theory of enaction, a

new theory of cognitive science based on embodiment and concrete sit-

uatedness. In Varela’s view, whether cognition takes place by means of a

rule-based manipulation of symbols (the computer model) or by means of

self-organizing neural networks (the biological model), the act of cogni-

tion itself is still envisioned as occurring ‘‘in the head.’’ Cognition, how-

ever, must be relocated ‘‘in the world,’’ where it actually occurs. Indeed,

for Varela and his teacher and colleague Humberto Maturana the act of

cognition is precisely what brings about a structural coupling that enables

the very possibility of the (or a) world’s emergence. This view quickly be-

came the more or less o‰cial position of behavior-based robotics and the

new AI. Meanwhile, it also became evident that progress in robotics in-

creasingly depended on the application of programming techniques that

could evolve not only neural net controllers but new robotic morpholo-

gies as well. However, to be maximally e¤ective, evolutionary program-

ming is usually combined with computer simulations, with which the

new robotics has always been uneasy. What results is a strong exigency

to bring computation back into the mix—a form of emergent computa-

tion perhaps, but computation nonetheless.

Viewed historically, this trajectory promises to bring to fruition the

original ambition of cybernetics to fashion a complete theory of the

machine, according to the theoretical perspectives first elaborated by
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W. Ross Ashby and John von Neumann in the early 1950s, as discussed

in chapter 1. Specifically, Ross Ashby had demonstrated how a machine

possessed of a ‘‘requisite variety’’ of internal states would inevitably opti-

mize itself through self-organization, and von Neumann had shown theo-

retically how it would be possible to build self-reproducing automata that

would evolve generations of increasing complexity. Now, some fifty years

later, research in evolutionary robotics seems to be readying itself to leap

over the ‘‘complexity barrier,’’ as von Neumann called it. When it comes,

this leap will not only initiate a new phase in the evolution of technology

but will mark the advent of a new form of machinic life.

One visible sign of the new AI’s ascendance and conceptual hegemony

is the widespread contemporary use of the term agent. In the structural-

ism of the 1960s the term designated a type of function that initiated, sus-

tained, and/or relayed a sequence of actions. Its reappearance in the

discourse of AI, robotics, and cognitive science trades on the same kind

of abstractness and ambiguity that explains its earlier appeal: Does the

term denote a class of subjects, objects, or functions?2 From its use in

phrases like ‘‘modeling cognitive agents,’’ ‘‘designing autonomous

agents,’’ or simply ‘‘embodied agents,’’ we can infer that an agent can be

a person, animal, insect, robotic machine, or even a software program

(a body of code). It seems hardly fortuitous, moreover, that the term’s

reappearance coincides with various breaks with representation in con-

temporary philosophy, which makes perfect sense, given that a repre-

sentation always implies a subject. Presumably, then, actions without

representations—or beyond the possibility of representation—are under-

taken by agents. Agents thus appear when the concept of a subject

defined in relation to a world of representations is no longer useful or

necessary.

A world of technical immanence defined by interacting machines con-

stitutes one such world, although world cannot be the proper term here

but serve only as a placeholder. That such a world is posited and even

constructed in certain sectors of advanced AI is certainly a noteworthy

event, for it brings into focus a tendency at work from AI’s very incep-

tion. As noted in the previous chapter, from its beginnings AI has posited

a model of intelligence in which (a rather abstract) subject is tacitly de-

pendent on technics—not only the computer but a whole computational

assemblage. Yet it never takes into account the consequences of this un-

acknowledged dependence. Consider a simple example. The mere pres-

ence of a sharp bone or heavy stone in an anthropoid’s grip opens a field

of possible acts, thus instantiating a form of intelligence that can be
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assumed again and again but that cannot be attributed retroactively

to the anthropoid. Only with repeated acts and their inscription in

memory—that is, the reorganization of neurons in the cortex and the ex-

pansion of the cortex itself—does intelligence become an inherent attri-

bute.3 Up to that point, it would be more accurate to say that the

anthropoid is the operator, or agent, of the intelligence implicit in this

primitive tool. Thus the subject’s ‘‘intelligence’’ always lags one step be-

hind the technology that makes it possible; the agent, on the other hand,

is at one with the intelligence of the system of which it is a part. As we

shall see, with Rodney Brooks’s behavior-based robotics we (re)enter this

realm of pure technological immanence.

Ants: A Model of Collective Information Processing

Before considering this realm, we can get a glimpse of what is to come by

returning briefly to Douglas Hofstadter’s critique of classic, or symbolic,

AI. In ‘‘Waking Up from the Boolean Dream, or, Subcognition as Com-

putation,’’ Hofstadter argues against the assumption that information

processing occurs through the manipulation of fixed and static symbols,

proposing as an alternative the notion of ‘‘active symbols’’ that function

like a colony of ants.4 What distinguishes Hofstadter’s critique from

others, including those of Varela and Brooks, is that he invokes an under-

standing of the cognitive enterprise in collective and distributive terms.

Though not explicitly, he thus gestures toward a view beyond and no

longer defined by the putatively unified individual subject. With the new

AI, this collective dimension of cognition will come into sharp relief in

the study of multiagent systems, distributed AI, and swarm intelligence.5

Indeed, the collective approach to intelligence has become one of the

most exciting new paths in current AI research.

In proposing the ant colony as alternative model of cognition, Hof-

stadter provides one of the earliest and most fruitful descriptions of a

multiagent system. He first suggested the ant colony metaphor in his ear-

lier book, Gödel, Escher, Bach, in order ‘‘to set up an extended metaphor

for brain activity—a framework in which to discuss the relationship be-

tween ‘holistic,’ or collective, phenomena, and the microscopic events

that make them up’’ (646). The metaphor was inspired by a passage in

E. O. Wilson’s The Insect Societies, where mass communication is defined

‘‘as the transfer, among groups, of information that a single individual

could not pass to another’’ (quoted by Hofstadter, 646). For Hofstadter,

the implications for an alternative to the cognitivist understanding of in-

formation processing are clear:
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One has to imagine teams of ants cooperating on tasks, and information passing

from team to team that no ant is aware of (if ants are ‘‘aware’’ of information at

all—but that is another question). One can carry this up a few levels and imagine

hyperhyperteams carrying and passing information that no hyperteam, not to

mention team or solitary ant, ever dreamt of.

I feel it is critical to focus on collective phenomena, particularly on the idea that

some information or knowledge or ideas can exist at the level of collective activ-

ities, while being totally absent at the lowest level. In fact, one can even go so far

as to say that no information exists at the lowest level. (646)

The lowest level, of course, would be a subcognitive level. Since the for-

mation of information at a higher level results directly from the ants’ col-

lective activities rather than their individual activities, the information is

emergent.

In Hofstadter’s collective model of cognitive processes, no central pro-

gram, programmer, or processing unit is given or implied. Whereas in a

standard computer program ‘‘you can account for every single operation

at the bit level,’’ tracing high-level functions downward to subroutines

and finding a global reason for the manipulation of every single bit, in

an ant colony

a particular ant’s foray is not the carrying-out of some global purpose. It has no

interpretation in terms of the overall colony’s goals; only when many such actions

are considered at once does their statistical quality then emerge as purposeful, or

interpretable. Ant actions are not the ‘‘translation into machine language’’ of

some ‘‘colony-level program.’’ No one ant is essential; even large numbers of

ants are dispensable. All that matters is the statistics: thanks to it, the information

moves around at a level far above that of the ants. Ditto for neural firings in the

brain. Not ditto for most current AI programs’ architecture. (653)

Hofstadter’s interest in the ant colony serves primarily as a metaphor for

what he calls a ‘‘statistically emergent mentality,’’ that is, an explanation

for how ‘‘subcognition at the bottom will drive cognition at the top’’

(654). His remarks, however, have become what John Holland has re-

ferred to as ‘‘the classic description of agent-based emergence.’’6 In emer-

gent systems, as we have seen in previous chapters, persistent global

patterns and properties like self-organization arise from the independent,

nonlinear interactions of many simple lower-level rules, elements, or

agents. We find emergence, for example, in cellular automata, neural net-

works, the immune system, and other physico-chemical systems, but also

in biological ecologies and human economies as well. In the ant colony,

information is not possessed or communicated by any single ant or given

in advance in a genetically inscribed program; rather, it arises solely

through the interactions of a large number of ants and is instantiated
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only in the behavior of the collectivity as a whole, which is more than the

sum total of individual behaviors. Because of this emergence, the colony

as a whole must be understood as a multiagent, information-processing

system.

To be sure, more needs to be said about the ‘‘computations’’ that the

ant colony as a multiagent system actually performs. However, this

would require that we know much more about the di¤erent classes of

ants and their limited repertoire of genetically programmed behavior,

how this behavior is regulated for the welfare of the colony, and how a

primitive sign system of chemical traces (pheromones) is instituted to pro-

vide a collective cartography and external memory. In this regard, the re-

cent work of Eric Bonabeau, Marco Dorigo, and Guy Théraulaz on

swarm intelligence has been groundbreaking.7 Drawing together research

from a range of diverse fields, these authors show how swarms of social

insects—ants as well as bees, termites, and wasps—actually constitute

powerful problem-solving systems that can be said to exhibit very sophis-

ticated collective intelligence. These systems are built on principles with

which we are already familiar: relative autonomy of many individual

agents, distributed functioning, and emergence. These principles give nat-

ural computational systems a robustness, flexibility, and adaptability that

systems based on centralized control and sequential (rather than parallel)

programming noticeably lack. Moreover, the emulation of such systems

has been instrumental to the development of what is distinctively new in

many areas of contemporary science. Recall that Swarm is the name that

Christopher Langton gave to the software system he began to develop in

1995 that would enable scientists to simulate behavior in highly distrib-

uted, multiagent systems.8 As Bonabeau and colleagues note, the term

swarm intelligence was first used in describing cellular robotic systems

(7); today, they add, the field of ‘‘swarm-based robotics’’ is growing so

rapidly, it is di‰cult to keep up with (19). Indeed, swarm robotics holds

great promise, perhaps most spectacularly in its convergence with nano-

technology.

The Robotic Merkwelten

With his invention of subsumption architecture for mobile robots, Rod-

ney Brooks initiated a movement that was continued in the work of his

colleagues Luc Steels, Pattie Maes, and Maja Mataric. This movement

will now be sketched in broad outline. Like Brooks himself, these col-

leagues worked in allegiance and solidarity with a version of cognitive
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science based on Varela’s notions of enaction and embodiment while also

drawing explicitly on ALife research. In 1995 Randall Beer, working

within the same movement, introduced a more rigorous version of

dynamical systems theory into the field. Equally important, the simulated

insectlike robot Beer used to demonstrate the theory’s cogency required a

neural net controller that could only be programmed by evolutionary

programming techniques. However, the use of evolutionary programming

and simulation in the construction of mobile robots, which had actually

begun in the early 1990s, posed new theoretical and practical problems.

For one, in so far as these new forms of computation were actually

required to make the robots functional, computation became a supple-

mental necessity, reentering by the back door, so to speak, from its pe-

ripheral position in behavior-based robotics. As it became evident that

artificial evolution o¤ered not only a viable but an inevitable path for

future progress, the new subdiscipline of evolutionary robotics based

on applications of evolutionary computation necessarily assumed a new

prominence.

In 1989 Brooks and Anita Flynn attracted considerable attention with

the publication of ‘‘Fast, Cheap and Out of Control: A Robot Invasion

of the Solar System,’’ where they argued that for space exploration it

would be more feasible to use a large number of small, insectlike

‘‘mobots,’’ each designed to accomplish a simple task, than a single large,

complex, multipurpose robot.9 While use of the latter would entail solv-

ing nearly insurmountable problems of communication and control, the

mobots could easily be assembled using current o¤-the-shelf parts and

launched immediately with expendable rockets. Before Brooks and

Flynn’s proposal, the reigning assumption had been that mobile robots

needed an onboard computer programmed to plan and coordinate its

activities within a three-dimensional model of the world. This assump-

tion was based on the idea that cognition—understood as modeling and

planning—mediates between perception and action in the world. How-

ever, years of working on vision-based perception and motion planning

for robot manipulator arms had convinced Brooks ‘‘that the so-called

central systems of intelligence—or core AI, as it has been referred to

more recently—was perhaps an unnecessary illusion, and that all the

power of intelligence arose from the coupling of perception and actuation

systems.’’10

This reorientation led Brooks to what he calls subsumption architec-

ture, which approaches robot construction from the bottom up. Instead

of attempting to build a robot with cognitive skills roughly similar to
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those of a human being, he begins with small, mobile constructions that

have a limited repertory of simple functions: the six-legged insectlike

Genghis, for example, is built to traverse extremely rugged terrain.

Tube-shaped Herbert, on the other hand, can avoid obstacles and locate

and pick up soda cans (fig. 7.1).

The key to this architecture is that these simple functions are not inte-

grated by a top-down, globally extensive controlling mechanism. Instead,

each function interacts independently with a single aspect of the world

through sensors and actuators only connected through a controller

designed to adjudicate conflicts. In contrast to the traditional approach,

where sensory information about the environment is fed to a modeling

module, then a planning module, then an action module, and finally to

actuators, in subsumption architecture functional layers are added incre-

mentally, starting with the simple capacity to move around and building

up to more complex tasks.

Brooks’s diagram indicates this basic di¤erence in approach. In sub-

sumption architecture (fig. 7.2b), the idea is to build a robot that can first

move about in the real world without colliding with things. New func-

tions (‘‘to explore,’’ ‘‘build maps,’’ etc.) are then added to this basic plat-

form. As a consequence, and in contrast to the method of ‘‘traditional

decomposition’’ (fig. 7.2a), there is no centralized model of the world rep-

Figure 7.1
Brooks’s MIT robots. Rodney A. Brooks, ‘‘Elephants Don’t Play Chess,’’ in Cambrian
Intelligence: The Early History of the New AI (Cambridge, Mass.: MIT Press, 1999), 119.
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resented within the robot’s various systems and no explicit separation of

input data and computation. Instead, both are ‘‘distributed over the same

network of elements’’ (67), and control is implemented through ‘‘net-

works of message-passing augmented finite state machines (AFSM)’’

(66). Because these distributed functions are not regulated by means of a

centralizing representation of the world, as in earlier generations of

robots like ‘‘Shakey’’ built at Stanford, Brooks’s robots do not require

long periods of number-crunching before they can negotiate even a simple

space. In fact, Brooks believes that human beings evolved in a similar

way, first becoming highly mobile creatures that interacted robustly with

di¤erent aspects of the environment through distributed systems. Con-

sciousness is a ‘‘cheap trick’’ that comes late in the developmental pro-

cess; as an emergent property, it increases the system’s functionality but

is not essential to its architecture.

Robots built according to the principle of subsumption architecture

exhibit two key aspects, situatedness and embodiment, which Brooks

explains as follows:

Situatedness The robots are situated in the world—they do not deal with abstract

descriptions, but with the ‘‘here’’ and ‘‘now’’ of the environment which directly

influences the behavior of the system.

Figure 7.2
Brooks’s subsumption architecture diagram. Rodney A. Brooks, ‘‘New Approaches to
Robotics,’’ in Cambrian Intelligence: The Early History of the New AI (Cambridge, Mass.:
MIT Press, 1999), 67.
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Embodiment The robots have bodies and experience the world directly—their

actions are part of a dynamic with the world, and the actions have immediate

feedback on the robots’ own sensations. (‘‘New Approaches to Robotics,’’ 60)

By way of explanation, Brooks adds that an airline reservation system is

situated but not embodied—since it interacts with the world only through

the sending and receiving of messages, whereas an industrial spray-

painting robot is embodied but not situated—since it doesn’t perceive

any aspect of the object it paints but only carries out preprogrammed

instructions.

Situatedness and embodiment, more or less as Brooks defines them,

soon became the basis for a reorientation in cognitive science as well,

thanks in part to Varela’s recognition of Brooks’s success. In ‘‘Intelli-

gence without Reason’’ (originally published in 1991), Brooks solidifies

this connection with the new cognitive science, adding intelligence and

emergence to situatedness and embodiment:

Intelligence They [behavior-based robots] are observed to be intelligent—but the

source of intelligence is not limited to just the computational engine. It also comes

from the situation in the world, the signal transformations within the sensors, and

the physical coupling of the robot with the world.

Emergence The intelligence of the system emerges from the system’s interac-

tions with the world and from sometimes indirect interactions between its

components—it is sometimes hard to point to one event or place within the sys-

tem and say that is why some external action was manifested. (139)

Though these two added criteria are perhaps less well defined, taken to-

gether the four establish the basic parameters for behavior-based robotics

research in the 1990s. Other themes—learning, adaptability, and collec-

tive or social behavior—are mentioned but remain peripheral. For

Brooks’s followers, however, they will play a more significant role.

Brooks’s early essays constitute a sustained critique of the computa-

tional and cognitivist bent of classic AI. Indeed, this critique is fully ex-

plicit in his notion of subsumption architecture. While not denying that

certain kinds of functional intelligence can be built or programmed into

AI systems, Brooks believes that real-world intelligence can only emerge

from agents or robots that are fully situated and embodied in the world.

Like Varela, he sees abstraction as classic AI’s most fundamental ‘‘sin,’’

and in two key essays argues against the abstraction from perception

that representation and symbol manipulation entail. In ‘‘Intelligence

without Reason,’’ he cites evidence from ethology and neuroscience for

his claim that such abstraction is not necessary for intelligent behavior.
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He implies that an autonomous robot (or agent) exhibits a form of imma-

nent intelligence—immanent because it does not transcend the machinery

in which and by which it acts. In ‘‘Intelligence without Representation,’’

Brooks argues more specifically that in AI programs ‘‘abstraction reduces

the input data so that the program experiences the same perceptual world

(Merkwelt in Uexküll 1921) as humans’’ (84). The term Merkwelt comes

from J. von Uexküll’s pioneering work in animal ethology, where it con-

veys the sense in which the perceptual world is species-specific, since con-

strained by each animal’s unique sensory apparatus, morphology, and

capacity to move.11 When applied to robotics it becomes obvious that

the Merkwelt of humans and machines cannot possibly be the same. If a

machine is to function in the world, it must have or define its own Merk-

welt, not a representation of the human Merkwelt interposed between it-

self and its field of activity. Human representations necessarily transcend

the concrete particulars of embodiment and situatedness. If these repre-

sentations mediate the robotic Merkwelt, they will necessarily make

robots slow, inflexible, and highly fault intolerant. By designing robots

to function in their own Merkwelt, using a layered, bottom-up approach,

Brooks is able to get them up and doing things in the noisy real world.

Brooks’s pragmatic achievement and the theoretical reorientation on

which it reposes greatly stimulated the construction of autonomous mo-

bile robots throughout the 1990s. One indication of the decade’s accom-

plishment is strikingly displayed in Peter Menzel and Faith D’Aluisio’s

Robo sapiens: Evolution of a New Species, which o¤ers color photographs

and detailed descriptions of a whole range of robotic creatures.12 Not

surprisingly, both Cog and Kismet, two humanoid robots with humanlike

cognitive capacities that originated in Brooks’s lab (see chapter 6), figure

prominently in its pages. Another eye-catching project is Honda’s human-

sized P3 robot, which is capable of walking and negotiating stairways.

Whether we want to call these impressive developments ‘‘the evolution

of a new species’’ or an expanding new branch of the machinic phylum,

there can be no doubt about their tendency to blur any hard-and-fast dis-

tinction between the human and the machine.13

AI After ALife

Among the practitioners and theoreticians of the new AI associated with

Brooks in the early 1990s, three in particular were quick to draw out the

implications of recent research in ALife for behavior-based robotics. Luc

Steels, who directs the AI research lab at the University of Brussels and
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who coedited with Brooks The Artificial Life Route to Artificial Intelli-

gence, developed the concept of emergent functionality.14 Pattie Maes,

who worked in Steels’s lab as a research scientist before moving to MIT,

where she co-organized with Brooks the Artificial Life IV conference,

shifted the focus to the construction of autonomous agents and systems.

Meanwhile, both Steels and Maes published essays in Christopher Lang-

ton’s journal Artificial Life and formed relays between ALife research

and behavior-based robotics. At the same time, Maja Mataric, while pur-

suing a PhD with Brooks at MIT, began to take behavior-based robotics

in the direction of collective intelligence, robotic learning, and the design

of adaptive group behavior. Each of these researchers thus brought some-

thing new to the line of research that Brooks had initiated.

In ‘‘The Artificial Life Roots of Artificial Intelligence,’’ Steels assesses

the contributions of ALife for the new AI, by which he means a subgroup

within the AI community that stresses embodied intelligence and the

behavior-oriented approach, in contrast to the knowledge-oriented ap-

proach of classic AI.15 In this essay, as well as in his contribution to The

Artificial Life Route to Artificial Intelligence, Steels spells out the terms of

a fundamental reorientation in AI research. What the new AI finds most

valuable in ALife research is the bottom-up approach and its interest in

emergent complexity. Taken together, these contributions point to the

need for a thorough reconceptualization of intelligence—one that builds

on but goes beyond what is implicit in subsumption architecture and

behavior-oriented robotics.

Classic AI research equates intelligence with knowledge-based concep-

tual and cognitive performance. Operating by means of symbol systems

that must be engineered and programmed from the top down, artificial

intelligence basically amounts to an abstract, disembodied manipulation

of software. This decoding and recoding of mental functions means that

intelligence becomes portable and can be installed in various physical sys-

tems, both natural and artificial. Thus far, expert systems based on the

old AI have been very e¤ective in limited domains but remain highly spe-

cialized and completely dependent on human planning and design in the

engineering of hardware and the programming of the software. In con-

trast, the new AI gives primary importance to the bottom-up processes

by which intelligence emerges and evolves in biological life, particularly

in interactions with the environment that enhance the agent’s present sit-

uation and increase its chances for survival or in which new kinds of or-

ganization and cooperation among multiple agents emerge. Taking up

this new orientation, the new AI assumes that it is far preferable to build
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up or evolve intelligence in artificial life forms, as embodied and situated

agents, than to attempt to abstract formal methods, computational proce-

dures, and search strategies from human cognitive activities and emulate

them mechanically. In this shift the meaning of intelligence also changes,

with the emphasis now falling on adaptation and learning. Intelligence, in

short, becomes adaptive behavior. Top-down planning and design yield

to strategies for implementing evolutionary processes.

Having established the importance of ALife research for the new AI,

Steels develops one of his central themes: how generating complexity

through emergent functionality may further enable the construction of ar-

tificial physical systems (or agents) that exhibit intelligent behavior. Re-

grettably, Steels eliminates from discussion multiagent systems as well as

simulation—the former because of space limitations, the latter because

simulation is associated with the standard computational paradigm and

yields only virtual—not real world—behavior. This is regrettable be-

cause, far from being peripheral, simulation and multiagent systems are

actually essential to the new AI. Even with these exclusions, however,

Steels’s definition of emergent functionality constitutes a significant con-

ceptual advance.

First, his preliminary definition: ‘‘A behavior is emergent if it can only

be defined using descriptive categories that are not necessary to describe

the behavior of the constituent components. An emergent behavior leads

to emergent functionality if the behavior contributes to the system’s self-

preservation and if the system can build further upon it’’ (78). Steels then

considers three distinct types. The first and simplest occurs when a new

functional behavior arises as a result of side e¤ects. For example, two dis-

tinct behavior systems are built into a mobile robot (fig. 7.3), one produc-

ing wall-seeking and the other obstacle-avoidance. However, as a side

e¤ect of the interaction of these behaviors with the environment the robot

acquires another functional behavior: wall following. Since this behavior

is neither built in nor planned but definitely increases the robot’s func-

tionality, it can be called emergent. Steels notes that many adaptations

in nature follow a similar pattern, nature being quick to take advantage

of accidental e¤ects if beneficial to its creatures. A second type of emer-

gent behavior occurs when a temporal or spatial structure produced as a

side e¤ect by the activities of many agents turns out to be of use or bene-

ficial. Steels’s example (ironically, given the exclusion noted above) is the

formation of a path in a multiagent system. When an ant discovers food

in the environment and carries it back to the colony, traces of pheromone

are released along the ant’s route. The pheromone in turn attracts other
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ants, which then discover the same food source and leave more phero-

mone as they traverse the route. Thus a temporal structure functioning

as a path is rapidly marked out, which provides an added functionality

for the colony even though it endures only as long as the food source re-

mains viable. Finally, the third type of emergent behavior occurs when

the formation of new behavior systems leads to the progressive buildup

of more complexity. Since convincing examples do not yet exist, this

type really represents a research objective: to engineer emergent complex-

ity in robotic systems.

The problem boils down to one of applying the research with artificial

neural networks, genetic algorithms, and the creation of ALife worlds like

Tom Ray’s Tierra to the construction of robotic systems that can evolve.

Figure 7.3
Steels’s robot. 6 VUB Artificial Intelligence Lab. Permission to reprint granted by Luc
Steels.
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Following Ray’s work in particular, it would seem that in order for

robotic systems to evolve, two crucial conditions have to obtain:

1. There is enough initial complexity to make the agents viable, and there should

be a diversity of agents. The buildup of complexity would be due as much to the

competitive interactions among these agents as to their interactions with the

world.

2. The ecological pressures on agents are real and partly come from other agents.

There are no pre-defined fitness functions or rewards. (99)

From this we might infer that the third type of emergent functionality

could only arise in an environment of robotic systems where there is a

rather complete mimicking of a natural environment. In any case, Steels

clearly understands that ‘‘emergent functionality is not due to one single

mechanism but to a variety of factors, some of them related to internal

structures of the agent, some of them related to the properties of certain

sensors and actuators, and some of them related to the interaction

dynamics with the environment’’ (101).16 As discussed below, dynamical

systems theory allows all three factors to be brought into play and to

function together as aspects of a single system.

In a later essay, ‘‘The Homo Cyber Sapiens, the Robot Homonidus

Intelligens, and the ‘Artificial Life’ Approach to Artificial Intelligence,’’

Steels describes a robotic ecosystem containing a ‘‘growing repertoire of

adaptive structural components (called behavior systems)’’ (12) out of

which he hopes intelligent behavior will one day emerge.17 An accompa-

nying photograph shows a mobile agent, a charging station and a ‘‘para-

site’’ lamp that drains energy from the charging station. Of equal interest

is the evolutionary parallel suggested by the speculative twin figures Steels

proposes: ‘‘Homo Cyber Sapiens,’’ a future human whose biological

brain capacity has been augmented through its interface with a computer,

and ‘‘Robot Homonidus Intelligens,’’ a future autonomous robotic agent

with the complexity of humans (13). Steels argues that the fulfillment of

the same research objective, that is, a full understanding of the origins of

intelligence and the mechanisms of its evolution, will bring about both.

Once again, this entails a grasp of the principles with which biological

systems operate and their application to the ‘‘construction of artificial sys-

tems’’ (10). But as Steels adds immediately, the word ‘‘construction’’ is

actually inappropriate, because ‘‘one of the main ideas is that intelligent

autonomous agents cannot be built but should evolve in a process similar

to the way that intelligence evolved in nature: using a combination of

evolution by natural selection and adaptivity and development as in the
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development of the biological individual’’ (10). And indeed, this idea will

turn out to be essential to the future development of robots.

In addition to the necessary inclusion of an evolutionary approach,

Steels also stresses the importance of a complex dynamical systems per-

spective for current and future research. Specifically, he repeats the now

familiar argument against the reductionist method—that behavior at a

higher level cannot always be accounted for by identifying the compo-

nents and the laws of their interaction operating at a lower level:

There are properties at each level which cannot be reduced to the level below, but

follow from the dynamics at that level, and from interactions (resonance) between

the dynamics of the di¤erent levels. In the case of intelligence, this means that it

will not be possible to understand intelligence by only focusing on the structures

and processes causally determining observable behavior. Part of the explanation

of intelligence will have to come from the internal dynamics, the interaction with

the structures and processes in the environment, and the coupling between the dif-

ferent levels. (11)

From here it is an easy step to model behavior as a dynamical system in

which the agents’ ‘‘structures’’ are dynamically coupled with ‘‘processes’’

in the environment.

It should be noted that when Steels invokes dynamical systems, he re-

ally means Varela’s specific notion of structural coupling. Like others of

the new AI, he subscribes to Varela’s theory of cognition as embodied

action (or enaction), which is virtually equivalent to Brooks’s twin

notions of embodiment and situatedness. Translated into the practice of

constructing physical robots, this entails giving priority to building

embodied intelligence by implementing direct links (sensors and actua-

tors) with the world, which is basic of course to subsumption architecture.

Brooks himself stressed the importance of sensory organs and the ability

to move in the evolution of human intelligence. However, in their

attempts to build in greater complexity in relation to action selection,

learning, and adaptability, Steels, Maes and others influenced by Brooks

have placed more emphasis on autonomy. Yet this too reflects Varela’s

influence, conveyed specifically by his organization (with Paul Bourgine)

of the first European conference on ALife, ‘‘Toward a Practice of Auton-

omous Systems,’’ held in 1991. Steels himself testifies to this influence in

‘‘Building Agents out of Autonomous Behavior Systems’’ (his contribu-

tion to The Artificial Life Route to Artificial Intelligence), where the con-

ceptual weight falls not so much on mobile robots as on autonomous

agents or autonomous systems of agents. This displacement widens the

scope of the new AI while also giving it a slightly di¤erent conceptual fo-
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cus, for not all autonomous agents are physically embodied, situated

agents, but can also exist as software agents and simulations.

In this shift toward autonomous agent research, Pattie Maes has played

perhaps the most influential role. Her edited collection, Designing Auton-

omous Agents: Theory and Practice from Biology to Engineering and

Back, provides a useful overview of important early work.18 Its publica-

tion followed closely on the 1990 conference ‘‘Simulation of Adaptive

Behavior: From Animals to Animats,’’ to which she contributed ‘‘A

Bottom-up Mechanism for Behavior Selection in an Artificial Crea-

ture.’’19 As Maes notes, the ‘‘animat approach’’—‘‘animat’’ is short for

artificial animal—is an essential part of the new wave of autonomous

agent research. In fact, like the European conferences on ALife following

Varela and Bourgine’s ‘‘Toward a Practice of Autonomous Systems,’’ the

animat series of conferences has given considerable weight to themes and

methods identified with the new AI. At the same time, the results of this

new research—both the simulations and the new robotic machines—are

generally understood to be part of a widening growth and development

of ALife.

Like Steels, Maes demarcates the objectives of this new research orien-

tation from those of traditional AI. In the preface to Designing Autono-

mous Agents she notes that its new architectures emphasize ‘‘a more

direct coupling of perception to action, distributedness and decentraliza-

tion, dynamic interaction with the environment and intrinsic mechanisms

to cope with resource limitations and incomplete knowledge’’ (1). Al-

though she closely echoes Steels, in ‘‘Modeling Adaptive Autonomous

Agents’’ her emphasis on autonomy supersedes robotics per se.20 Maes

first proposes a working definition of an adaptive autonomous agent:

‘‘An agent is called autonomous if it operates completely autonomously,

that is, if it decides itself how to relate its sensor data to motor commands

in such a way that its goals are attended to successfully. An agent is said

to be adaptive if it is able to improve over time, that is, if the agent

becomes better at achieving its goals with experience’’ (136). She then dis-

tinguishes three types of agent: (1) robots that inhabit the physical world;

(2) software agents that inhabit the cyberspace environment of computers

and computer networks, like the ‘‘knowbots’’ that navigate through these

networks in order to find data of a particular kind; and (3) agents that in-

habit simulated physical environments, like the synthetic actors or ani-

mated virtual agents in computer-simulated worlds. This simple typology

distinguishes Maes’s position from those like Steels, who at the time con-

sidered only physical robots.
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Seeking to identify the deepest problems impeding the construction of

adaptive, robust, and e¤ective autonomous agents, Maes acknowledges

that problems of action selection and learning from experience seem to

entail intractable ‘‘computational complexities.’’ This does not mean that

aspects of the old AI must be reintegrated with the new but that ‘‘more

fundamental research’’ is needed. Maes observes that notable successes

in designing autonomous agents have been pragmatic and task driven.

But the objective now is to move beyond an approach that ends up look-

ing like ‘‘a bag of hacks and tricks’’ and instead to develop one that

embodies general laws and principles. The idea of emergent functionality

or emergent complexity still appears to be the most promising, but its spe-

cific application to these problems remains on the horizon.

Here a simple analogy of my own may serve to indicate the kind of dif-

ficulty posed by this lack of general laws and principles. Solving the prob-

lem of action selection and learning in robotics may require a conceptual

leap comparable to the leap from an animal or hominid call system

(screams, cries, finger pointing, fist shaking, etc.) to fully articulate

spoken language. Linguists generally agree that language did not develop

from the former; rather, it seems to have emerged from a number of

nearly simultaneous evolutionary changes (including increased brain size,

enhanced vocalization, tool use, forms of socialization, etc.) that suddenly

jelled together and produced a new emergent capacity. But exactly how

this happened remains unknown. Similarly, roboticists may one day build

or evolve great complexity—and greater intelligence—in robots and au-

tonomous agents, but they may not be able to understand analytically

how this leap occurred. Although research in three crucial areas—social

learning in multiagent systems, understanding behavior and the environ-

ment as forming a single dynamical system, and mimicking nature’s evo-

lutionary strategies of development—has been very fruitful, it remains

uncertain whether the behavior-based approach is adequate for dealing

with higher-level, more properly cognitive, behavior. While complex sys-

tems theory o¤ers the most viable theoretical framework thus far, it is not

clear yet whether it can supply the general laws and principles that Maes

calls for.21

Before proceeding further it may be instructive to consider a specific

autonomous agent in some detail. One striking success is Pengi, an auton-

omous software agent designed by Philip Agre and David Chapman to

play the commercial video game Pengo.22 The game is played on a two-

dimensional labyrinth of moveable ice blocks, along the paths of which

bees roam randomly. The player manipulates a penguin through the laby-
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rinth, trying to kill bees and avoid being killed by them. Both bees and

penguins can kick ice blocks, causing them to slide; if a sliding block

touches either one, it dies instantly. In the video game a joystick allows

the player to move the penguin up, down, right or left, and a button

allows it to kick an ice block. In Agre and Chapman’s version, the video

game is simulated and the player is the autonomous agent Pengi, who is

composed of a ‘‘central system made of combinatorial logic, a moderately

realistic visual system, and a trivial motor system’’ (274), all implemented

in LISP, a high-level programming language used mainly for AI research.

Pengi’s play is enabled by deictic representations, which are representa-

tions defined in terms of the agent’s immediate circumstances or the activ-

ities in which it is currently engaged. Thanks to its visual system Pengi

can see and track penguins, bees, and blocks of ice. Although Pengi pos-

sesses no objective representation of a bee, he (or she) can recognize and

respond to the bee-that-is-chasing-me-now or the bee-that-I-can-kill-by-

kicking-this-block-of-ice. These deictic representations are characterized

by entity and aspect: the-ice-block-I-am-kicking is an entity; the-ice-

block-I-am-kicking-is-moving-away is an aspect. Such entities and aspects

do not add up to a representational model of the Pengo world but only to

a set of routines for actions within it, as in: if a bee is moving toward me,

I must move to avoid it. Albeit limited in number, such routines can be

combined to fit new situations that develop as the environment changes.

Since the blocks of ice are always shifting position in relation to the cease-

less movement of the penguins and bees, there could be no fixed map of

this world in any case. To know where it is and what is happening, Pengi

simply looks at the screen like a human video game player—rather than

like a computer that plays by modeling and planning. Thus Pengi’s

choices are not based on detailed representations and elaborate reasoning

but on immediate possible reactions to the situation now. But unlike

either behaviorism’s stimulus-response or the computational machinery

of decision making, these deictic representations allow complex behav-

ior to emerge by being keyed to dynamic situations—that is, to agent-

environment interactions.

For Agre and Chapman, Pengi’s behavior recalls Herbert Simon’s de-

scription of an ant slowly making its way across the irregular surface of a

beach.23 As the ant traces an erratic and di‰cult-to-describe path, halting

here and detouring there but nonetheless progressing toward its goal, its

behavior appears to be quite complex in the eye of an observer. However,

as Simon notes, the complexity lies not in the ant but in the ant’s traversal

of this irregular surface. Similarly, while Pengi’s behavioral repertoire is
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not in itself complex, his behavior grows quite complex as he enters into a

set of dynamic relationships with a constantly changing environment.

Agre and Chapman note that Pengi plays the game better than either of

them, but that is not the point; nor is their experiment an argument

against representation. What Pengi demonstrates, rather, is how much

can be accomplished with limited representations, improvisational strat-

egies, and simple routines when keyed to dynamic interactions in specific

situations. If Pengi’s complex but mostly improvised behavior validates

Agre and Chapman’s argument against presituational planning, as they

call it, it is precisely because the representations Pengi deploys are gener-

ated by specific situations and have validity or usefulness only within that

context.24

Pengi typifies one type of autonomous agent among a whole new fauna

of artificial creatures that have steadily increased in number and type

since the late 1980s. Their behavior is complex enough to warrant the

question of whether there is more there than can be predicted and ac-

counted for by the details of their construction and programming. This

is essentially the question of emergent functionality addressed by Steels.

But Steels was also well aware that complex emergent behavior is most

likely to arise in a field of interacting multiple agents; hence his more re-

cent research with a robot ecosystem (‘‘Artificial Life Roots’’). Mean-

while, and from the very beginnings of her graduate research in the early

1990s, Maja Mataric has focused on group behavior in behavior-based

multirobot systems.

In ‘‘Designing Emergent Behavior: From Local Interactions to Collec-

tive Intelligence,’’ Mataric presents an overview of her research objectives

and some of her experimental results.25 Her goal is to understand how

simple local interactions among a collection of artificial autonomous

agents produce complex and purposive group behavior. The agents are

physically identical mobile robots about twelve inches long, equipped

with bump sensors and a forklift for picking up, carrying, and stacking

pucks. Twenty in number, each robot carries a radio transceiver that en-

ables it to broadcast its own state and to receive information about the

states of other agents at the rate of one byte/second. Furthermore, their

control systems are set up to make them capable of what Mataric calls

‘‘interaction primitives’’: collision avoidance, following, dispersion, ag-

gregation, homing, and flocking. For example, using the robots’ capacity

to detect obstacles with infrared censors (IRs), she devised the following

two formulae for avoidance behavior:
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Avoiding Other Agents:

If another robot is on the right

turn left

otherwise turn right.

Avoiding Everything Else:

If an obstacle is on the right only

turn left, go.

If an obstacle is on the left only

turn right, go.

After three consecutive identical turns

backup and turn.

If an obstacle is on both sides

stop and wait.

If an obstacle persists on both sides

turn randomly and back up. (435–436)

Using these formulae, other behaviors can be built up. Following, for

example, can be implemented using the inverse of the collision avoidance

behavior. Behaviors can also be combined, although this sometimes

entails adding new sensors.

Under conditions of su‰cient density, collision avoidance and following can pro-

duce more complex global behaviors. For instance, chemotropotaxic ants exhibit

emergence of unidirectional tra‰c lanes. The same lane-forming e¤ect could be

demonstrated with robots executing following and avoiding behaviors. However,

more complex sensors than IRs must be used in order to determine which direc-

tion to follow. If using only IRs, the robots cannot distinguish between other

robots heading toward and away from them, and are thus unable to select whom

to follow. (436)

By adopting various combinations of basic behaviors (the ‘‘interaction

primitives’’), she has devised formulae for dispersion, aggregation, hom-

ing, and flocking. As the following formula suggests, flocking turns out

to be the most complex:

Weight the inputs from

avoid, follow, aggregate, disperse

then compute a turning vector.

If in the front of the flock,

slow down.

If in the back of the flock,

speed up. (438)

Inspired by Craig Reynolds’s ALife simulation of bird flocking with

boids, she admits that implementing robot flocking involves more com-

plex dynamics and therefore requires a more detailed approach.
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Mataric’s ultimate objective is to produce more complex behaviors,

such as foraging and puck sorting—and eventually learning. These more

complex behaviors would ‘‘emerge as temporal sequences of basic inter-

actions, each triggered by the appropriate conditions in the environment’’

(438). Foraging, for example, would be initiated as a dispersing behavior,

as each agent begins to search for food (i.e., pucks). Once it obtains food,

it starts for home (homing). Along the way, it may encounter another

agent also carrying food (i.e., in the same state, which would be indicated

by a simple radio signal). If so, it would then follow it, eventually forming

a flock if enough agents find food in the same vicinity (fig. 7.4). Mataric

emphasizes that this work establishes ‘‘the e¤ectiveness of the behaviors

in our basis set [the simple interactive behaviors] by showing necessity

(they are not reducible to each other) and su‰ciency (they can generate

a large repertoire of more complex agent interactions).’’26 She concludes,

however, that in order for basis behaviors ‘‘to be a truly e¤ective sub-

strate of adaptive behavior, they must serve as a substrate for e‰cient

and general learning.’’

In subsequent work, Mataric explores strategies by means of which

robots can learn adaptive group behavior from one another and thus

Figure 7.4
Mataric’s ‘‘Nerd herd.’’ Maja Mataric, ‘‘Designing and Understanding Adaptive Group
Behavior,’’ Adaptive Behavior 4, no. 1 (1995): 6.
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learn to behave socially. As she notes, social learning is ubiquitous in na-

ture, and its propensity appears to be innate: ‘‘Animals imprint, mimic

and imitate adults of their own kind instinctively, often without obtaining

direct rewards or even successfully achieving the goal of the behavior’’

(453). Animals also mimic their peers, especially if the behavior leads to

visible rewards, and usually avoid behaviors that do not, like eating pois-

oned substances. Obviously this is a large field of study, with many di¤er-

ent distinctions—between imitation and mimicry, for example. Mataric

focuses specifically on learning social rules, or behaviors that do not pro-

duce immediate payo¤ for the agent but benefit the group as a whole. In

contrast to related research in game theory, she wants to find out ‘‘what is

required for learning social strategies in situated agent domains where,

due to incomplete or nonexistent world models, inconsistent reinforce-

ment, noise and uncertainty, the agents cannot be assumed to be ratio-

nal’’ (454). To do this she sets up a test environment with three

autonomous robots that will gather food (pucks) and bring it home dur-

ing a specific time period (‘‘day’’), and rest during another specific time

period (‘‘night’’). She then postulates three types of necessary reinforce-

ment: direct reinforcement, observation of other agents’ behavior, and

observation of reinforcement received by other agents. These types are

implemented by means of a set of known learning algorithms (like a small

reward for a definite progress achieved toward a specific goal), which are

programmed into the robots using Brooks’s Behavior Language.

As in her previous experiments, the robots use radios to communicate

their state to the others, as in ‘‘holding food,’’ ‘‘finding home,’’ and so

forth. The learning algorithm is activated whenever an agent finds itself:

1. near a large amount of food away from home,

2. receiving an agent’s message,

3. within observing range of another stopped agent,

4. within observing range of another moving agent,

5. within interference range of another stopped agent,

6. within interference range of another moving agent. (459)

In previous work utilizing this same setup Mataric had tested the learning

algorithm, finding that within an average fifteen-minute trial run the

robots were able to learn foraging by learning to select appropriate indi-

vidual behaviors for each state (459). But here the objective was for the

robots to learn to yield and share information in a foraging task, with

this learning behavior being implemented by means of reinforcement

The New AI 359



functions added to the learning algorithms. Overall, the results were suc-

cessful. Groups of robots using the social rules always outperformed

groups with only ‘‘greedy individual strategies’’ (460). As one might ex-

pect, rules that produce the most immediate reward were learned the fast-

est; for example, the social rule of sharing information about food was by

far the hardest to learn, as the benefit to the agent had the least direct

payo¤ (460). This suggests that altruistic social rules are perhaps best

learned ‘‘genetically,’’ an intuition supported by biological data.

In these experiments Mataric observed that the speed at which learning

occurred was often directly reduced by hardware error and noise. Yet

these unavoidable factors did not disable the learning algorithm; they

only slowed it down.27 In future work she intends to apply the basis be-

havior idea to other social and cooperative tasks with multiple agents,

using both homogeneous and heterogeneous groups of robots. She also

intends to use the strategies of genetic programming developed by John

Koza for automatic generation of basis behavior sets for specific do-

mains.28 This will take her research into the increasingly important realm

where behavior-based robotics as strictly defined begins to blur into evo-

lutionary robotics. But before considering this development, we must take

up the coupling of behavior-based robotics with dynamical systems

theory, for that is where evolutionary programming was first deployed in

robot construction.

Autonomous Agents in/as Dynamical Systems

Although behavior-based robotics research assumes a dynamical systems

perspective from the outset, only with Randall Beer’s essay ‘‘A Dynami-

cal Systems Perspective on Agent-Environment Interaction’’ does it

become a fully analytic framework for understanding the interactions be-

tween agents and their environment.29 Beer demonstrates how a dynam-

ical systems perspective can be rigorously applied to the construction of

autonomous robotic agents, while also aligning this approach with new

research in cognitive science that uses dynamical systems to address prob-

lems in cognition.30 Thus while the vocabulary of embodiment and sit-

uatedness is retained, Varela’s centrality is eclipsed by the more analytic

concepts of dynamical systems theory (attractors, phase space, bifurca-

tions, etc.). For this reason alone, the essay marks a significant concep-

tual advance, even though Beer considers only the interactions between

a single autonomous agent and the environment and omits multiagent

systems.
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Beer begins by rehearsing the argument made by Brooks and Steels

that AI research must now concern itself with embodied agents, specifi-

cally with autonomous agents situated in changing real-world settings

within which the agents must interact in versatile and robust ways, rather

than continue with attempts to emulate high-level intellectual skills like

language acquisition, problem solving and abstract reasoning. From an

evolutionary perspective, these high-level skills appeared long after motor

and perceptual skills and the ‘‘basic capacity for situated action that is

universal among animals’’ (175). Beer then proposes dynamical systems

theory as the descriptive/theoretical model that can best characterize the

interactions between an agent and the environment. Considered sepa-

rately, agent and environment each constitute a dynamical system with

its own state variables and parameters and thus possible behaviors in a

state space of trajectories indicating stable limit sets, or attractors, basins

of attraction, and so forth. Beer’s central idea is to couple the two dynam-

ical systems, by making some of the parameters of each system functions

of some of the state variables of the other. He assumes that the coupled

agent-environment system ‘‘exhibits only convergent dynamics’’ (181),

that is, that the values of the state variables converge to some limit set,

as we usually observe in the ‘‘adaptive fit’’ between animals and the envi-

ronment in nature, rather than diverging to infinity or chaos. Of course

there are borderline cases, as when it is uncertain whether the agent’s

body should be treated as part of the environment or part of the agent.

Needless to say, the coupled system of agent-environment constitutes a

feedback system. Acknowledging the influence of cybernetics and specifi-

cally of W. Ross Ashby, Beer points out that one dynamical system can-

not ‘‘in general ‘steer’ the trajectory of another along the desired path. It

is therefore perhaps most accurate to view the agent and its environment

as mutual sources of perturbation, with each system continuously influ-

encing the other’s potential for subsequent interaction’’ (182). In figure

7.5, Beer represents schematically the coupling of agent A and environ-

ment E to form a dynamical system. Note that S represents a sensory

function that couples environmental state variables to agent parameters,

while M represents a motor function that couples agent state variables to

environmental parameters.

In order to survive in nature, a living organism must maintain the in-

tegrity of the network of biochemical processes that keep it alive—what

Maturana and Varela call an ‘‘autopoietic system.’’ Again acknowledging

the influence, Beer suggests that such a system serves as a crucial con-

straint on the organism’s behavioral dynamics. In other words, this
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constraint defines a trajectory or set of behavioral possibilities that, as

long as the organism remains within it, allows it to survive despite pertur-

bations and obstacles. For an artificial agent this constraint could be

defined by particular performance criteria, such as the ability to carry

out a variety of tasks. In both cases, only a subset among all the possible

behavior trajectories of the agent-environment system is admissible. Beer

proposes an illustration of such an ‘‘adaptive fit’’ (fig. 7.6).

Assuming, then, that the coupling of an agent with an environment

establishes a unique dynamical system with its own specific constraints,

what new factors does this framework put into play and what does it al-

low us to understand? Perhaps most important, it brings about a funda-

mental shift in perspective, since the agent’s behavior is now seen to

reside in the dynamics of the coupled system E and A and not in the indi-

vidual dynamics of either one alone. As Beer points out, ‘‘This suggests

that we must learn to think of an agent as containing only a latent poten-

tial to engage in appropriate patterns of interaction. It is only when

coupled with a suitable environment that this potential is actually realized

through the agent’s behavior in that environment’’ (183). In these terms

evolution in nature appears to be the trying out of many di¤erent agent

dynamics, with only those that on average prove capable of satisfying

autopoietic constraints long enough to allow the organism to reproduce

being retained. As for the construction of artificial autonomous agents,

Figure 7.5
Coupled agent and its environment. Randall D. Beer, ‘‘Computational and Dynamical
Languages for Autonomous Agents,’’ in Mind as Motion: Explorations in the Dynamics of
Cognition, ed. Robert F. Port and Timothy van Gelder (Cambridge, Mass.: MIT Press,
1995), 131.

362 Machinic Intelligence



Beer believes that the dynamical systems framework suggests solutions to

two kinds of problems: ‘‘the synthesis problem,’’ or how to construct an

agent that does what we want in a given environment; and ‘‘the analysis

problem,’’ or how to understand what an agent actually does in a given

environment.

To illustrate, Beer considers the walking behavior of a simulated artifi-

cial insect from these two aspects. First, in relation to its synthesis or con-

struction, the key to the creature’s capacity to walk resides in the

controllers that regulate the movements of each of its six legs. Each con-

troller, which consists of a five-neuron neural network, is connected to an

angle sensor (input) that gives the leg’s angle in relation to the body, and

to a signal (output) that moves a foot attached to a leg either up or down.

When raised to the up position, the leg also swings. The problem is to co-

ordinate the controllers so that the creature ‘‘walks.’’ In other words,

walking would be one of the possible behaviors of the dynamical system

formed by coupling the creature’s body E to the neural network A that

controls it. To manually design the algorithm for setting the weights of

the neural net controller would be a truly daunting task, so Beer resorted

to genetic algorithms as a search technique. The space to be searched

(defined by about fifty network parameters) was encoded as binary strings

whose performances in training the network were then evaluated. By

Figure 7.6
Beer’s illustration of an adaptive fit. Randall D. Beer, ‘‘Computational and Dynamical
Languages for Autonomous Agents,’’ in Mind as Motion: Explorations in the Dynamics of
Cognition, ed. Robert F. Port and Timothy van Gelder (Cambridge, Mass.: MIT Press,
1995), 133.
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continually mating relatively successful strings, eleven di¤erent locomo-

tion controllers were evolved.

Second, in his analysis of these performances Beer demonstrates that

the neural net controllers settle on patterns of interaction with the envi-

ronment that correspond to recognized gaits (like the ‘‘tripod gait’’) of

insects in the world. More specifically, three classes of locomotion con-

trollers were found: (1) ‘‘reflexive pattern generators,’’ which evolved

when the sensors were activated during the genetic algorithm (GA)

search; (2) ‘‘central pattern generators,’’ which emerged when the sensors

were disabled during the GA search; and (3) ‘‘mixed pattern generators,’’

which evolved when the sensors were sometimes available and sometimes

not. Each class has its own strengths and weaknesses. The first makes

maximum use of the dynamics already in the environment, but this ad-

vantage also makes the agent vulnerable to sensory loss. The second

enables the agent to walk without sensory input, but it is not able to

fine-tune its skill in response to environmental changes. The third class

o¤ers a mix of the first two: it works better with its sensors intact, but it

is still able to function (i.e., to walk) without them. As Beer points out,

such mixed organizations are the most typical among biological pattern

generators. Analysis of the trajectory in the controller’s state space por-

trait revealed two single-point attractors that corresponded to the two

leg positions (up and down). However, the most interesting phenomenon

that emerged was the systematic flipping back and forth between the two

fixed-point attractors as the leg moved from the stance phase to the swing

phase. The leg’s swing thus corresponded to a bifurcation in the state

space and thus to a branch point between two di¤erent basins of attrac-

tion and hence two di¤erent results from the specific dynamic of forces

acting on the leg at this moment. What most merits emphasis, finally, is

that this dynamic behavior was neither that of the neural net controller

alone nor that of the agent’s legs, but of the two acting together in a

coupled dynamical system.

Evolutionary Robotics

In order to produce this coupled dynamical system, Beer had to resolve a

formidable design problem: finding the algorithms that would enable the

neural net leg controllers to perform in a manner resulting in a specific

action (i.e., the artificial insect would be able to walk). The creature’s ba-

sic design was given in advance, and an evolutionary programming tech-

nique was deployed to make that design physically workable. In nature,
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of course, there is no such split: an organism’s morphology and nervous

system evolve together as an interactive relay system. This simple fact

raises some obvious questions: Was the controller all that could be

evolved? That is, would it not be possible to apply evolutionary tech-

niques more globally, to the robot’s design and controllers together,

especially since the design of control systems by hand could become expo-

nentially more di‰cult as the robot’s desired behavior increases in com-

plexity? These questions suggest that the implementation of a workable

neural net controller, as in Beer’s example, is hardly a peripheral or sub-

sidiary design issue. Indeed, in the formation of the new discipline of evo-

lutionary robotics these questions become central.

In one sense, as Luc Steels had already suggested, evolutionary robotics

was simply a continuation of the application of ALife techniques to the

construction of mobile robots. This is the perspective adumbrated by

Rodney Brooks in ‘‘Artificial Life and Real Robots,’’ an early acknowl-

edgment of the importance of evolutionary strategies in the building of

autonomous robots.31 After reviewing his previous work in behavior-

based robotics, Brooks admits that progress with robots learning new

behaviors has proven to be di‰cult, mainly because programming each

new behavior must be done by hand. However, ALife ‘‘has developed

techniques for evolving programs for controlling situated, but unem-

bodied (i.e., simulated), robots,’’ and thus may provide ‘‘techniques to

evolve programs to control physically embodied mobile robots’’ (3). In

fact, it was none other than Christopher Langton who suggested that

Brooks program his physical robots ‘‘genetically.’’

Genetic programming is preferable to genetic algorithms because whole

programs can be evolved rather than bit-string representations of solu-

tions for particular predefined problems. In the most fruitful example of

genetic programming, John R. Koza has developed successful strategies

for evolving short LISP programs that have been applied to a range of

programming tasks. Notably, Koza has applied genetic programming

techniques to the ‘‘base behaviors’’ in Maya Mataric’s behavior-based ro-

bot programs, which were written in Brooks’s Behavior Language (BL).

Although the results were only run in simulation, Brooks felt that they

warranted further exploration. Consequently, he states, he plans to de-

velop a high-level language called GEN that can be compiled into BL to

facilitate the genetic programming of physical robots.

Yet Brooks also expresses an uneasiness concerning the ‘‘methodologi-

cal dangers of using simulations as a testing medium in which to evolve

programs which are intended eventually to run on physical robots’’ (9).
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He admits, in fact, to having been very careful to avoid using simulations

in his previous work. For him the dangers are clear: either a great deal of

e¤ort is wasted trying to solve problems that arise in simulations but

‘‘simply do not come up in the real world with a physical robot (or

robots),’’ or programs that work well in simulations fail completely on

real robots because of di¤erences in real-world sensing and actuation.

Real-world dynamics, moreover, can sometimes be exceedingly di‰cult

to simulate. Nevertheless, despite these drawbacks, Brooks is enough of

a pragmatist to accept the advantages that simulation can bring, as long

as a ‘‘su‰cient validation regime’’ is also developed.

In one respect Brooks’s bias against simulation recalls Varela’s objec-

tions to Langton’s version of ALife.32 Both assume that since the agents

in the simulations are not physically embodied, they are somehow onto-

logically lesser beings. While understandable for Brooks, who has de-

voted his life to making physical robots, this view appears somewhat

problematic. For one thing, it clearly diminishes the significance of much

ALife research, which has been of such enormous benefit to contempo-

rary robotics. In any case, the status and usefulness of simulation within

robotics has been a matter of ongoing debate, despite several striking suc-

cesses in evolving a morphology and controller together in a simulated

world. In the most spectacular example, Karl Sims’s ‘‘virtual creatures,’’

blocklike entities are evolved that can swim, walk, jump, follow, and

compete for a cube in a three-dimensional virtual world in which phys-

ical forces like gravity, friction, and fluid viscosity are also simulated.33

Sims used evolutionary programming techniques to produce genotypes

‘‘structured as directed graphs of nodes and connections, and they can

e‰ciently but flexibly describe instructions for the development of crea-

tures’ bodies and control systems with repeating or recursive compo-

nents’’ (28) (see figs. 7.7 and 7.8, the still image from his computer

animation). The phenotypes or individual creatures that result then com-

pete in various contests in a virtual world, with the winners receiving a

higher fitness rating that allows them to survive and reproduce.

By the mid-1990s, the successes of Beer, Mataric, Sims and others had

ratified the primary objective in evolutionary robotics: to deploy evolu-

tionary programming strategies and simulation (when necessary or prag-

matic to do so) in the construction of more complex physical robots.

Nevertheless, while success came rather quickly in the evolution of neural

net controllers, particularly for movement and navigational tasks, the

evolution of new adaptive morphologies has proved to be more di‰cult.

Adaptive hardware configurations like field-programmable gate arrays
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Figure 7.7
Sims’s graphs and creature morphologies. Karl Sims, ‘‘Evolving 3D Morphology and
Behavior by Competition,’’ in Artificial Life IV, ed. Rodney Brooks and Pattie Maes
(Cambridge, Mass.: MIT Press, 1994), 31.

Figure 7.8
Sims’s Virtual Creatures. 6 1994 Karl Sims.
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(FPGAs) o¤er one promising path. One problem with adaptive or evolv-

able hardware, however, is that, compared with computer simulations, it

requires tremendous expenditures of time to set up and test in multiple

versions. But this is only one of a number of promising paths currently

being explored. I conclude this brief survey with capsule reports on recent

developments by two prominent research groups.

The Sussex group, centered at the University of Sussex since the early

1990s, is usually credited with first introducing the term evolutionary

robotics.34 In 1991 Inman Harvey introduced species adaptation genetic

algorithms (SAGA), a conceptual framework for exploring the dynamics

of genetic algorithms in instances where bit strings that define genotypes

are allowed to increase in length. Harvey argued that while GA of fixed

length are best employed for solving predetermined problems in optimiza-

tion in a finite search space, for ALife applications a di¤erent kind of

search was necessary—an ‘‘evolutionary search . . . around the current fo-

cus of a species for neighboring regions which are fitter . . . while being

careful not to lose gains that were made in achieving the current status

quo.’’35 For this kind of search, that is, for the evolution of a species

rather than a global search, GAs of di¤erent lengths were needed, hence

SAGA. Harvey soon teamed up with Phil Husbands and David Cli¤, also

at Sussex, for the construction of actual robots.

One of the group’s most impressive achievements to date has been with

visual navigation systems for mobile robots. In one instance, they were

able to ‘‘incrementally evolve . . . visually guided behaviors and sensory

morphologies for a mobile robot expected to discriminate shapes and

[to] navigate towards a rectangle while avoiding a triangle.’’36 Of more

theoretical interest, an earlier e¤ort involved the coevolution of parts of

a robot body with a control system. Here they also used a visually guided

robot with a neural net controller programmed using genetic algorithms,

but the robot’s ‘‘chromosomes’’ were organized into two parts, one speci-

fying the network architecture; the other, the morphology of the visual

system. Having built into the robot a number of visual receptors scattered

around target points on its ‘‘body,’’ each genetically determined version

of the controller would use a di¤erent combination of these receptors.

Thus the group could experiment with di¤erent controller/visual receptor

configurations without constantly changing the hardware.

This kind of strategy leads toward what Stefano Nolfi and Dario Flo-

reano in Evolutionary Robotics have called self-organizing machines. As

leaders of a second prominent group of roboticists (who are physically
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divided between the Swiss Federal Institute of Technology at Lausanne

and the Research Group of Artificial Life in Rome), Nolfi and Floreano

have made robotic self-organization a primary theoretical goal. On the

experimental level the group’s research is distinguished by their use of a

small, two-wheeled mobile robot called the Khepera, which o¤ers three

notable advantages: (1) miniaturization (since it is only 55 mm in diame-

ter, experiments require a small working surface); (2) a modular, open ar-

chitecture that allows variation and expandability (for example, it can be

equipped with a variety of light sensors and/or a gripper module); and (3)

easy interface and compatibility with larger robots. In their book, Nolfi

and Floreano describe many experiments using Khepera; one series, for

example, is devoted to coevolving predator-prey robots and begins by

equipping the predator with a superior vision module and the prey with

twice the capacity for speed.

On the basis of these and other experiments, Nolfi and Floreano claim

that their work marks a break with behavior-based robotics and the lay-

ered, incremental approach to decomposition initiated by Brooks. This

approach, they argue, puts the entire burden of deciding how a desired

behavior should be decomposed, or broken down into simple basic

behaviors, on the designer. (To be fair, Brooks himself has expressed an

awareness of the limits of his approach, as Nolfi and Floreano acknowl-

edge.) Increasingly, however, contemporary robotics seeks to produce

complex behavior that emerges unexpectedly from local interactions

among its various elements and in relation to a changing environment.

Since such global or higher-level complex behavior cannot be designed

‘‘by hand,’’ evolutionary strategies become inevitable. For Nolfi and

Floreano, therefore, it is no longer a matter of simply deploying genetic

algorithms and other strategies of genetic programming to evolve neural

net controllers and, in the best case, controller and new body morpholo-

gies simultaneously. (In point of fact, the authors give too little attention

to the latter.) Rather, for them the key issue is getting the designer further

outside of the construction loop. Referring to the Sussex achievement in

evolving a controller and visual receptor morphology together, they state:

‘‘A more desirable solution . . . would be a self-organized process capable

of producing incremental evolution that does not require any human

supervision. This ideal solution spontaneously arises in competing co-

evolving populations with coupled fitness, such as predator and prey sce-

narios’’ (15). Overall, then, artificial evolution appears to be by far the

most e¤ective method for creating conditions in which machines can
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self-organize and reconfigure themselves in order to adapt to changing en-

vironmental conditions.

However, in order for evolutionary robotics to advance, not only must

‘‘bodies and brains’’ (i.e., morphologies and controllers) be evolved to-

gether, but the design and fabrication processes must also be included.

Only then will robots as a species of artificial life be able ‘‘to bootstrap

and sustain their own evolution.’’37 This, at least, has been the view

advocated and in surprising ways partly realized by Hod Lipson, who

has pushed the edge of evolutionary robotics in a growing body of inno-

vative research.38 Lipson and Jordan Pollack first contributed to this

view of robotics with their GOLEM Project (GOLEM is an acronym for

genetically organized lifelike electro mechanics). The project consists of

three coupled parts, with each accomplishing a separate function in an

almost fully automated three-stage process: first, a computer program

designs a population of robots using evolutionary computation; second,

the robots are run in a simulation program to determine fitness based on

their ability to move horizontally on a flat plane; and third, the most suc-

cessful are then materialized using a commercial rapid prototyping ma-

chine (in e¤ect, a 3-D printer). In the final stage of the experiment, the

locomotion ability of the physical robots is tested against their ability as

measured in the simulation.

Needless to say, these are very simple robots, made from the most ele-

mentary building blocks. Short linear bar/actuators are connected to-

gether with ball joints to form a body (a morphology), while artificial

neurons are connected to one another and to the actuators to form a

brain (a controller). There are no sensors. The extreme simplicity of the

building blocks is necessary in order that body and brain can coevolve

simultaneously. Mutations can modify any aspect of the robots, by add-

ing, removing, and modifying bars, neurons, and actuators. Initially a

population of 200–1,000 machines in which these components are ran-

domly combined is produced by the program, and then their locomotion

ability is tested in the simulation. In an iterative process, fitter machines

are selected, and o¤spring are created ‘‘by adding, modifying and remov-

ing building blocks, and replacing them in the population’’ (283). The

process continues for several hundred generations. Typically, Lipson and

Jordan note, ‘‘several tens of generations passed before the first move-

ment occurred,’’ for movement requires that, ‘‘at a minimum, a neural

network generating varying output must assemble and connect to an

actuator for any motion’’ (284). The best performing robots ‘‘were then
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automatically replicated into reality’’ (284) in the third stage, which they

describe as follows:

The solidifying stage was automatic but used a hand-coded procedure describing

a generic bar, joint and actuator. The virtual solid bodies were then material-

ized using commercial rapid prototyping technology. . . . This machine uses a

temperature-controlled head to extrude thermoplastic material layer by layer, so

that the arbitrarily evolved morphology emerges as a solid three-dimensional

structure . . . without tooling or human intervention. The entire preassembled ma-

chine is printed as a single unit, with fine plastic supports connecting between

moving parts; these supports break away at first motion.

The resulting structures contained complex joints that would be di‰cult to de-

sign or manufacture using traditional methods. . . . Standard motors are then

snapped in, and the evolved neural network is executed to activate the motors.

(284)

Human intervention over the entire process is thus kept to a bare mini-

mum (snapping in the motors and setting the parameters in the simula-

tion). Remarkably, the resulting physical robots performed as well in

reality as their virtual ancestors did in simulation. Also notable is that

for the particular fitness criterion selected (locomotion on a flat plane),

the evolutionary dynamics converged on three di¤erent solutions, or

‘‘species’’: a tetrahedron, an arrow and a pusher, which moved by ratch-

eting, antiphase synchronization, and dragging, respectively. (See fig. 7.9,

where they appear from top to bottom. The images on the left are

the physical robots; those on the right their simulations.) Overall, the

GOLEM project takes a giant step forward in coevolutionary robotics.

Not only are robotic body and brain coevolved, but the results extend

‘‘from virtual simulations . . . to the reality of computer designed and

constructed . . . machines that can adapt to real environments.’’39

Lipson’s next major step was to build a physical robot that could re-

produce itself.40 Again, of necessity, the building blocks are extremely

simple. In this case they are modular cubes containing electromagnets,

the strength of which can increase or decrease, thereby allowing connec-

tions to be easily formed and broken. Each cube, furthermore, is split into

half along a slanted plane, with each half fitted with swivels allowing it to

move in increments of 120 degrees (fig. 7.10). Each module also has its

own power source and microcontroller, and modules communicate both

power and data through their faces. The microcontroller is programmed

to execute ‘‘a motion schedule governed by time and contact events’’

(163). These features enable an assortment of modules to form and

change into any number of arbitrary arrangements.
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In the experiments Lipson describes, three-cube and four-cube col-

umns of modules were able to reproduce themselves. In order for self-

reproduction to occur, of course, new material has to be produced or

provided. Here additional modules were supplied manually at two spe-

cific ‘‘feeding locations.’’ Rather than being passively built, the ‘‘replica

reconfigures itself to assist in its own construction’’ (163), a striking fea-

ture of the process of self-reproduction that Lipson does not explain.

The process is also surprisingly fast: it took 2.5 minutes for the four-cube

Figure 7.9
Lipson’s Tetrahedron, Arrow, and Pusher. Jordon B. Pollack, Hod Lipson, Gregory
Hornby, and Pablo Funes, ‘‘Three Generations of Automatically Designed Robots,’’
Artificial Life 7, no. 3 (2001): 216.
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column to make a replica of itself, and only 1 minute for the three-

cube column. Lipson does not say whether these columns could in turn

have reproduced themselves (presumably they could have) but does say

that other reproducing forms are possible with these modules.

In ‘‘From Virtual to Physical Artificial Life,’’ his keynote address at the

ALife X conference (2006), Lipson described a number of fertile research

paths currently being explored by his team at Cornell.41 For coevolution-

ary robotics, the most important are new or better ways ‘‘to cross the re-

ality gap,’’ that is, to move from robot simulation (especially the task of

evolving robot controllers) to the materialization of physical robots and

new opportunities to discover and develop a physical medium in which

physical ALife can evolve by changing its own morphology autono-

mously. In terms of the first, the most innovative proposal involves

reversing the usual approach: instead of evolving a controller in simula-

tion and then transferring it to the target physical robot, sensory data

Figure 7.10
Lipson’s self-reproducing robot. Victor Zykov, Efstathios Mytilinaios, Bryant Adams, and
Hod Lipson, ‘‘Self-Reproducing Machines,’’ Nature, 12 May 2005, 163.
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recorded by the physical robot is used as fitness criteria in the evolution of

the simulator itself. In short, a robot and its simulator are coevolved.

Starting with a crude simulator, a controller is produced and downloaded

into the target robot. Its actual observed behavior in turn yields data that

is used to evolve a new set of simulators. The best simulator is now used

to produce another controller, which is again downloaded into the target

robot. The cycle is repeated until an acceptable controller is found. This

convergent method considerably reduces both the amount of noise pro-

duced or encountered in the usual method (evolve a simulated controller,

then transfer it to the physical robot), as well as the number of costly

physical tests and adjustments that are always necessary.

Perhaps even more important, the ‘‘exploration-estimation’’ algorithm

developed for this method can also be used for much more than simply

transferring controllers to robots: it can be used by the robot itself ‘‘to es-

timate its own structure’’; that is, it can be used as a means for the robot

to infer its own morphology and thus create a model of itself. As Lipson

points out in his lecture, using an internalized simulator as a way of let-

ting the machine discover for itself how its own morphology is interacting

with the environment (i.e., its own dynamics) is similar to ‘‘identification

for control,’’ an engineering method for creating robust control systems.

It is also similar to a primitive form of learning and may be fruitfully

explored in those terms as well. But however it is viewed, it should be

clear that the problems associated with using simulation in robotics have

here been laid to rest. For in Hobson’s internalized simulator the di¤er-

ences between simulation and actual robot behavior have been introduced

into the productive evolutionary dynamic itself.

As for the problem of developing new, changeable, and evolvable mor-

phologies, a whole new spectrum of possibilities now presents itself. Lip-

son is avowedly most passionate about the potential of rapid prototyping

machines, especially if they can be produced at a cost that would make

them available for use in the home.42 If a fabber (digital fabricator)

could be built that could indeed ‘‘print out’’ an entire robotic machine—

including wires, motors, and electronic parts—then it would constitute a

new physical medium in which robots could evolve. Of course, this would

amount to a top-down approach. At the opposite extreme, the most fruit-

ful bottom-up approach is represented by self-assembly, usually the sto-

chastic self-assembly of large numbers of cells or other small modular

components that have some kind of a‰nity for one another. Here the ob-

jective is to find a way to make the process programmable. Since most

self-assembly is stochastic, the increasing exploration of amorphous mate-
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rial is likely. Lipson thinks that what Rolf Pfeifer calls ‘‘morphological

computation’’—getting the morphology itself to do at least some of the

computational work—may o¤er a promising approach.43

Swarm Machines

The various research activities currently devoted to swarm systems and

swarm intelligence draw together many of the thematic strands discussed

thus far. Ethology, ALife and evolutionary robotics, collective intelli-

gence and distributed processing, autonomous agents and complex adap-

tive systems—all figure into recent e¤orts to mimic one of nature’s most

singular phenomena. Provisionally, a swarm can be defined as a collec-

tion of locally interacting organisms or agents whose collective behavior

is globally adaptive. By definition, then, swarm systems exhibit both self-

organization and emergence. But this raises an obvious problem: What

distinguishes a swarm system from any other self-organizing and emer-

gent system? What is it that justifies the term swarm? To answer I shall

consider three examples, each of which gives to the idea of a swarm sys-

tem a di¤erent twist and thereby constitutes a di¤erent kind of computa-

tional assemblage. The first proposes a model of distributed intelligence

and information processing directly based on social insect behavior; the

second, a computational model that simulates the transforming e¤ects of

social interaction; and the third, a new kind of autonomous mobile robot

with self-assembling capabilities. It is worth noting that as these new

swarm systems enter the public realm—mostly in terms of newly develop-

ing technologies—they raise disturbing questions about control and the

boundaries of the human self-image. Indeed, it is not for nothing that

Michael Crichton made swarm technology the centerpiece of Prey, his re-

cent techno-thriller novel. Drawing extensively on cutting-edge research,

Crichton paints a picture of a new form of autonomous and distributed

artificial intelligence gone frightfully out of control.44 More recently, the

evidence Howard Rheingold marshals in Smart Mobs: The Next Social

Revolution suggests that mobile Internet technology is producing a new

kind of human ‘‘swarming,’’ with far-reaching social consequences.45

While the image of the swarm conveys something of the archetypal and

atavistic, in these examples it is always harnessed to the development of

an almost futuristic technology.

We owe the first scientific formulation of the idea of a swarm system to

the entomologist William Morton Wheeler, the founder of the study of

social insects. In ‘‘The Ant Colony as an Organism,’’ published in the
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Journal of Morphology in 1911, Wheeler writes, ‘‘Like a cell or the per-

son, [the colony] behaves as a unitary whole, maintaining its identity in

space, resisting dissolution . . . neither a thing nor a concept, but a contin-

ual flux or process.’’46 Wheeler was particularly intrigued by the phenom-

enon of swarming, as when all the bees in a hive collectively depart and

go in search of another hive. Who or what decides when to initiate this

process? Without understanding the exact mechanism, Wheeler was

convinced that the hive itself collectively chooses. This would mean that

there is no leader or centralized, organizing agency. Presumably each in-

dividual bee simply follows a small set of elementary rules that tells it

how to behave in relation to the way its neighboring bees are behaving,

very much like the rules Craig Reynolds deduced for flocking behavior

in birds. As a result of these countless local interactions, the swarm

is able to move out across the landscape as if it were a single body or

organism.

That this kind of collective dynamic mobility exhibits a unity of pur-

pose leads entomologists to refer to many insect collectivities as ‘‘super-

organisms.’’ Ant colonies exhibit even more complex behavior; their

collective activities include reproduction, nest or colony building, removal

of the dead, and foraging for food. The primary question is, how are

these diverse activities organized, given the absence of any centralized

command and control structure? In 1959 the French zoologist Pierre-

Paul Grassé introduced the concept of stigmergy, which provided the ba-

sis for an answer. The key idea is that social insects do not communicate

among themselves but are incited to do things by signs in or transforma-

tions of their environment. Grassé observed that, at first, termites move

about completely at random, some of them dropping small, masticated

pellets of earth here and there. However, when other termites encounter

these pellets, they add their own to the pile, which then quickly grows

into a column. If there is only one column in the area the termites will ig-

nore it, but if there are several, the termites then climb to the top and add

pellets that form connecting arches. Soon a nest is under full construction,

without any explicit plan or supervision. Grassé believed that it was the

configuration of pellets in the environment that first stimulated and then

became the agency responsible for regulating and coordinating the vari-

ous activities of social insects. Following Grassé’s original work, the con-

cept of stigmergy has been further elaborated, and now includes both

direct and indirect forms of interaction. Probably the most familiar exam-

ple is ants leaving pheromone traces when they forage for food. Since

pheromone evaporates, it is not simply the trace but its intensity that
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operates as a stigmergic marker, temporally modifying the environment

and triggering new or di¤erent behavior. Because hundreds of ants forage

at the same time, the intensity of the double trace (out and back to the

nest) not only directs other ants to the location of the food source but to

the trail that is shortest in length. Duplicating this natural computational

system has led to new strategies in problem solving.

The recent work of Eric Bonabeau, Marco Dorigo, and Guy Théraulaz

on swarm intelligence draws deeply on Grassé and the research tradition

he inaugurated.47 They bring to it an innovative awareness of the crucial

role played by self-organization, self-assembling, and network dynamics

in the collective activities of social insects. Hence their model of social

insect behavior is more sophisticated than previous models and points to-

ward new ways of connecting individual behavior with collective perfor-

mance. But Bonabeau, Dorigo, and Théraulaz also take a further step:

their model of self-organization in social insect behavior becomes a way

‘‘to transfer knowledge about social insects to the field of intelligent sys-

tem design’’ (6). Although social insects themselves have very limited cog-

nitive abilities, collectively their self-organizing activities constitute truly

remarkable instances of distributed problem solving, as the authors dem-

onstrate. Having created a model of how distributed problem solving

works in specific insect societies, they next apply it to the design of

swarm-intelligent systems. In practice, this means designing simple

agents, including robotic agents, that somehow self-organize to solve

problems. To be sure, it is di‰cult to ‘‘program’’ these systems, precisely

because ‘‘the paths to problem solving are not predefined but emergent in

these systems and result from interactions among individuals and between

individuals and their environment as much as from the behaviors of the

individuals themselves’’ (7).

Success, nevertheless, has come on a number of fronts, as Bonabeau

and Théraulaz report in their article ‘‘Swarm Smarts.’’48 For example,

the foraging of ants has led to a method for rerouting network tra‰c in

congested telecommunications systems. The method involves modeling

the network paths as ‘‘ant highways,’’ along which artificial ants (i.e.,

software agents) deposit and register virtual pheromone traces at the net-

work’s nodes, or routers. In another application of the same model, their

colleague Marco Dorigo has discovered a method of solving the well-

known traveling salesman problem, or how to find the shortest route

through a network of cities that passes through each city only once. In a

third example, swarm software has been developed that enables a group

of robots to cooperate in the transferring of objects from one location to
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another. In a recent interview Bonabeau comments on the general use of

swarm systems:

In social insects, errors and randomness are not ‘‘bugs’’; rather, they contribute

very strongly to their success by enabling them to discover and explore in addition

to exploiting. Self-organization feeds itself upon errors to provide the colony with

flexibility (the colony can adapt to a changing environment) and robustness (even

when one or more individuals fail, the group can still perform its task).

With self-organization, the behavior of the group is often unpredictable, emerg-

ing from the collective interactions of all the individuals. The simple rules by

which individuals can interact can generate complex group behavior. Indeed, the

emergence of such collective behavior out of simple rules is one of the great les-

sons of swarm intelligence.

This is obviously a very di¤erent mindset from the prevailing approach to soft-

ware development and to managing vast amounts of information: no central con-

trol, errors are good, flexibility, robustness (or self-repair). The big issue is this: if I

am letting a decentralized, self-organizing system take over, say, my computer

network, how should I program the individual ants so that the network behaves

appropriately at the system-wide level?

I’m not telling the network what to do, I’m telling little tiny agents to apply lit-

tle tiny modifications throughout the network. Through a process of amplification

and decay, these small contributions will either disappear or add up depending on

the local state of the network, leading to an emergent solution to the problem of

routing messages through the network.49

The major problem, Bonabeau concludes, is selling the concept of swarm

intelligence to the commercial world. Managers, he says memorably,

‘‘would rather live with a problem they can’t solve than with a solution

they don’t fully understand or control’’ (4).

A comparable distinction between controllable and uncontrollable sys-

tems lies at the center of Kevin Kelly’s Out of Control: The Rise of Neo-

biological Civilization. In essence, Kelly finds, there are two kinds of

systems that can be constructed. The first is the familiar mechanical sys-

tem composed of a long string of sequential operations. This system is

linear, predictable, and hierarchical, with a clear chain of command ema-

nating from a central controlling authority. It exhibits the ‘‘cold, fast op-

timal e‰ciency of machines’’ (24), and Kelly associates it with the clock.

At the opposite extreme is the system ordered as ‘‘a patchwork of parallel

operations’’ (21) composed of many autonomous units with a high degree

of connectivity between the units. There is no centralized control struc-

ture, only the ‘‘webby nonlinear causality of peers influencing peers’’

(22). This is the swarm model, as Kelly calls it, and he associates it with

networks, parallel processing, and complex adaptive systems.50 This kind

of system often exhibits the ‘‘crisscrossing, unpredictable and fuzzy attrib-
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utes of living systems’’ (24). Although Kelly presents a convincing argu-

ment that today’s machines tend more and more to be of the second

type, he acknowledges both the benefits and disadvantages of these

swarm systems. On the one hand, they are adaptable, evolvable, resilient,

boundless, and capable of generating novelty; on the other hand, they can

be nonoptimal, noncontrollable, nonunderstandable, and nonimmediate.

In sum, where supreme control is called for, ‘‘old clockware’’ is the way

to go, but where ‘‘extreme adaptability is required, out-of-control swarm-

ware is what you want’’ (24).

The fear of a loss of control that Bonabeau evokes above and that

Kelly argues against might be interpreted as Western culture’s bias

against collective intelligence. However, if James Kennedy and Russell

C. Eberhart are right, swarm intelligence is the best way to understand

human intelligence tout court. In Swarm Intelligence, they expressly op-

pose the view that an isolated individual is an information-processing en-

tity and that thinking or cognition occurs inside an individual’s head.51

It is no accident, of course, that the classic image of thought resembles

Kelly’s first type of system. Whatever else we do as human beings, we

are both the most social of animals and the most intelligent. It makes

sense, therefore, to understand intelligence as something that arises from

interactions among individuals. Expressed in bullet form: mind is social,

human intelligence results from social interaction, and culture and cogni-

tion are inseparable consequences of human sociality (xx–xxi). However,

as Kennedy and Eberhart explain, they are not referring to the kinds of

interaction typically found in multiagent systems, where autonomous

agents perform specialized subroutines:

Agent subroutines may pass information back and forth, but subroutines are not

changed as a result of the interaction, as people are. In real social interaction, in-

formation is exchanged, but also something else, perhaps more important: indi-

viduals exchange rules, tips, beliefs about how to process the information. Thus a

social interaction typically results in a change in the thinking processes—not just

the contents—of the participants. (xv)

The model Kennedy and Eberhart are looking for explicitly incorpo-

rates this change in the participants of a social interaction. At the same

time, they want their model to be computational, that is, constituted of

algorithms that can be implemented in a computer program. Essentially

they want a program that can ‘‘simulate societies of individuals, each

working on a problem and at the same time perceiving the problem-

solving endeavors of its neighbors, and being influenced by those neigh-

bors’ successes’’ (xv). As the authors remind us, a swarm usually refers
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to a disorganized cluster of moving things (often insects) that while

moving irregularly and even chaotically in di¤erent directions somehow

remain together as a whole. To arrive at their model, Kennedy and Eber-

hart reconfigure this image in highly abstract, computational terms. If we

think of the interacting individuals as particles, and of the swarm as a

population of interacting particles that is able to optimize some global

objective in and through their collaborative search of a space, then we

begin to get a sense of the ‘‘particle swarm optimization’’ model at the

heart of their book. Thus while Bonabeau and colleagues define swarm

intelligence ‘‘to include any attempt to design algorithms or distributed

problem-solving devices inspired by the collective behavior of insect colo-

nies and other animal societies’’ (7), Kennedy and Eberhart draw on a

completely di¤erent set of sources: the theories and simulations associated

with ALife research, evolutionary computation and neural net theory.52

Let us briefly consider one of these sources, Mark M. Millonas’s re-

search on swarm behavior and phase transitions.53 Like Bonabeau and

his research team, Millonas is interested in how swarms of social insects

like ants perform emergent computations. As he points out, both the

location of a food source and its utilization ‘‘are computed by the self-

organization of a column of ants between the nest and the food source’’

(420). But in contrast to Bonabeau, Millonas seeks to correlate this com-

putational behavior with the behavior of the swarm as a dynamical sys-

tem. Thus, using data gathered from both laboratory observations of

real ant behavior and their computer simulation, Millonas developed a

method to apply statistical physics to the flow of organisms, in particular

to those changes in its equilibrium that constitute a phase transition. The

essential point of his study is that during a phase transition—the same

kind of transition that Langton defined as the edge of chaos—the system

(i.e., the collective intelligence of the swarm) becomes acutely sensitive to

external influences and thus operates as an ‘‘information amplifier’’ (431).

In their summary of Millonas’s research, Kennedy and Eberhart explain

in simple terms the correlation between ant behavior and the formation of

a pattern that encapsulates the computation:

The movements of ants are essentially random as long as there is no systematic

pheromone pattern; activity is a function of two parameters, which are the

strength of pheromones and the attractiveness of the pheromone to the ants. If

the pheromone distribution is random, or if the attraction of ants to the phero-

mone is weak, then no pattern will form. On the other hand, if a too-strong pher-

omone concentration is established, or if the attraction of ants to the pheromone

is very intense, then a suboptimal pattern may emerge, as the ants crowd together
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in a sort of pointless conformity. At the edge, though, at the very edge of chaos

where the parameters are tuned correctly . . . the ants will explore and follow the

pheromone signals, and wander from the swarm, and come back to it, and even-

tually coalesce into a pattern that is, most of the time, the shortest, most e‰cient

path from here to there. (108)

It was precisely this type of distributed swarm intelligence that Gerardo

Beni studied in cellular robotic systems and cellular automata in the late

1980s and early ’90s and that leads to my third example: the construction

of swarms of robots, or swarm-bots (s-bots). Beni originally defined

swarm intelligence as ‘‘a property of non-intelligent robots exhibiting col-

lectively intelligent behavior.’’54 Although the robots would have no ex-

plicit model of the environment, they would be equipped with sensors and

could communicate with one another. Since they could only interact with

and adapt to the environment collectively, their behavior—and the prob-

lem solving it would entail—would be emergent.

These ideas are being realized through the construction of Swarm-bots,

a project funded by the Future and Emerging Technologies program

of the European Commission.55 A swarm-bot is a collection of autono-

mous mobile robots able to self-assemble and self-organize in order to

solve problems that cannot be solved by a single robot. Typically, it is

composed of twenty to thirty s-bots that are physically interconnected.

The connection can be rigid, as implemented by a gripper, or semiflexible,

as implemented by a flexible arm (figs. 7.11 and 7.12).56 Rigid con-

nections are used to form chains that allow a swarm-bot to pass over

obstacles or crevices in the terrain, while the flexible connections allow

maximum flexibility to each s-bot while still maintaining the swarm-bot

configuration. Clearly the main problem is one of coordination: getting

the s-bots to act together once they are connected. One team of research-

ers has made impressive progress using a combination of traction sensors

that detect the direction and intensity of the force exerted by the turret on

the chassis, and evolutionary programming techniques for evolving the

neural network controllers that generate motor outputs in response to

sensory inputs for each s-bot.57 With this combination they were able

to get four connected s-bots to move in a single direction together, avoid

obstacles, and ‘‘spontaneously produce object pushing/pulling behavior

when connected to or around a given object.’’

Although only in the initial stage of development, swarm-bots and

swarm systems instantiated in autonomous mobile robots have generated

widespread excitement and many new research programs, especially in

defense and military-related fields. In one instance, researchers at the
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University of Wyoming have developed small, swarming robots carrying

‘‘multi-modal sensory arrays’’ programmed to detect and disable chemi-

cal targets in the so-called war against terrorism.58 In another, the De-

fense Department has funded a project to equip a battalion of 120

military robots with swarm intelligence software;59 a related project is to

develop swarming robotic systems that will behave like ‘‘killer insects’’

that can hunt down their prey in bunkers and caves.60 But no doubt the

most futuristic prospects for swarm systems involve a marriage with

nanotechnology, which has undergone an astonishingly rapid develop-

ment in the past few years. As mentioned earlier, Michael Crichton dra-

matizes this marriage in his novel Prey, in which a private research firm

Figure 7.11
Swarm-bot. Image provided by Marco Dorigo, Director of the IRIDIA lab at the Université
Libre de Bruxelles.
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uses predator-prey algorithms to program swarms of nanomachines to

evolve more intelligent forms of collective behavior. And reality may not

be lagging that far behind. At Rutgers University, computer scientist J.

Storrs Halls is developing miniature swarm-bots he calls Foglets.61 About

the size and shape of a human cell, these micromachines have twelve radi-

ating arms that allow them to grip onto other Foglets and form larger

structures. Like the swarms in Crichton’s Prey, Foglets can also merge

their computational capacities to create networks of distributed intelli-

gence. While their purpose is the more benign one of simulating di¤erent

environments by creating wavefronts of light and sound, the di¤erence—

in principle, at least—is only a matter of a di¤erent set of algorithms.

In conclusion, it is worth recalling once again that the double emphasis

on artificial evolution and machinic self-organization so important to

contemporary robotics harks back to ideas first proposed in the cyber-

netics research of the early 1950s. In particular, in his designs for self-

reproducing automata, John von Neumann theorized that it would be

possible to evolve machines more complex than their makers; and in his

Figure 7.12
Swarm-bots climbing stair. Image provided by Marco Dorigo, Director of the IRIDIA lab
at the Université Libre de Bruxelles.
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‘‘homeostat’’ experiments W. Ross Ashby showed how machines possess-

ing a ‘‘requisite variety’’ of internal states would inevitably optimize

themselves through self-organization.62 As robotics moves toward the re-

alization of the cybernetic movement’s ambition to build machines of a

complexity comparable to that of humans, it has increasingly come to

rely on what we can now distinguish as a third method for producing

complexity. The first, of course, is the completely bottom-up, self-

bootstrapping method of nature itself, prodigal and fecund but infinitely

slow and wasteful. The second is the top-down method of human techni-

cal invention, fully evident in classic AI research. Although faster and

more e‰cient than nature, this method nevertheless seems unable to pro-

duce machines of more than limited complexity. The third method com-

bines the top-down with the bottom-up approaches. Widely deployed in

ALife simulations, the third method has also become the primary means

by which evolutionary robotics has developed out of behavior-based

robotics, as top-down strategies like programming and design have been

used to create systems that will organize and evolve on their own by tak-

ing advantage of the new combinations and creative mixings that emerge

from the bottom up. Although still in its infancy, this third method holds

the greatest promise for producing machines of higher orders of complex-

ity and consequently more advanced forms of machinic life.
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8 Learning from Neuroscience: New Prospects for Building
Intelligent Machines

The brain was not a sequential, state-function processor, as the AI people had it. At

the same time, it emerged to exceed the chemical sum passing through its neuronal

vesicles. The brain was a model-maker, continuously rewritten by the thing it tried

to model. Why not model this, and see what insights one might hook in to.

—Richard Powers, Galatea 2.2

In previous chapters some of the most innovative achievements of the

new science of ALife and the new AI have been considered. Yet even

with these obvious successes questions have been raised about whether

the models of life and intelligence underlying them are su‰ciently com-

plex. Perhaps the most notable doubt has come from Rodney Brooks,

current director of MIT’s Artificial Intelligence Laboratory. Brooks

acknowledges that ALife and behavior-based robotic systems built

according to bottom-up computational principles are not as robust or

lifelike as researchers had hoped.1 Both robots and artificial life simula-

tions ‘‘have come a long way,’’ he states, ‘‘but they have not taken o¤ by

themselves in the ways we have come to expect of biological systems’’

(Flesh and Machines, 184). Advancing what he calls the ‘‘new stu¤ ’’ hy-

pothesis, Brooks speculates that there may be some ‘‘extra sort of ‘stu¤ ’

in living systems outside our current scientific understanding’’ (‘‘Matter

and Life,’’ 410). If this is true, then the ALife systems and autonomous

robots discussed in previous chapters may be limited precisely because

the models or assumptions that underlie them are missing some crucial

element or understanding of how life and intelligence actually work. In

this sense Brooks’s hypothesis might better be called the ‘‘missing stu¤

hypothesis.’’ What, specifically, may be lacking? Brooks lists four

possibilities:

1. We might just be getting a few parameters wrong in all our systems.



2. We might be building all our systems in too simple environments, and once we

cross a certain complexity threshold, everything will work out as we expect.

3. We might simply be lacking enough computer power.

4. We might actually be missing something in our models of biology; there might

indeed be some ‘‘new stu¤ ’’ that we need. (Flesh and Machines, 184)

After discussing each possibility in some detail, Brooks concludes that the

last hypothesis is by far the most likely. He admits, however, that he has

no idea what the new stu¤ might be.2

While not explicitly framed as attempts to come up with new stu¤, sev-

eral recent initiatives in AI research have taken a direction that is at least

indirectly responsive to Brooks’s doubt. These initiatives foreground the

biological evolution of the human brain and the specific structure of the

neocortex as the most salient facts to consider in understanding intelli-

gence and building intelligent systems. While biological perspectives on

human intelligence are hardly new, to appreciate their current significance

one only has to peruse the most up-to-date textbooks on AI, which fore-

ground agent theory and give scant if any attention to the biological evo-

lutionary perspective and the latest findings of neuroscience.3 At the

conclusion of chapter 5, after noting some of the apparent methodologi-

cal limits of what has been the dominant approach in ALife research, I

briefly discussed living computation and the attempt to synthesize an ar-

tificial protocell as two promising new research paths. In this chapter I at-

tempt something similar for artificial intelligence and the ongoing e¤ort

to construct intelligent machines.

While this is obviously not the place for a detailed survey or overview

of contemporary AI, a few general observations may be helpful. First,

there appears to be wide agreement that, notwithstanding the success of

behavior-based robotics and the new AI, the 1990s was a period of weak

AI. Or rather, to describe the period in more positive terms, there was a

shift in priorities. Rather than attempt to construct human-level machine

intelligence, most research was directed toward developing practical AI

applications in industry. So much so, in fact, that the acronym AI jok-

ingly came to signify ‘‘almost implemented,’’ meaning that once an AI

technique had been implemented in a practical application it was no lon-

ger AI. An obvious example was the widespread development of smart

systems like credit card fraud detection systems, voice and face recogni-

tion systems, automated scheduling systems and data mining systems. A

notably more ambitious achievement was Remote Agent, an AI system

developed by NASA to assume autonomous control of the Deep Space 1
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probe. In fact, agent technology became the most important focus of de-

velopment in the 1990s. Thus far intelligent agents do not exhibit general

intelligence but tend to be intelligent only in very specific domains. The

Internet, for example, has become a veritable hive of smart agents per-

forming a range of tasks, data mining being the most familiar. But AI

algorithms are also deployed in search engines, and AI will assume a

large role in the forthcoming Semantic Web. Increasingly, moreover,

many commercial software applications contain small AI programs gen-

erally known as cognitive assistants.

But however we view the supposed weak AI of the ’90s, the defeat of

world chess champion Garry Kasparov by the IBM chess computer Deep

Blue in 1997 was clearly a signal achievement. Because chess is a rule-

bound, highly intellectual activity, producing a machine or program that

can defeat a human chess master has been a holy grail or at least marker

of progress comparable to the Turing test since AI’s inception.4 Contrary

to expectation, however, Deep Blue’s victory did not definitively resolve

any issues concerning machine versus human intelligence. This was main-

ly because Deep Blue did not deploy the techniques and computational

processes that human players use. Instead of intuitions based on extensive

knowledge and experience of the game, Deep Blue relied upon lightning-

fast board evaluations at a rate of millions of positions per second and

searches fourteen or so moves deep of all possible lines of play. Obviously

the searches conducted by expert human players are not nearly so fast or

deep and are much more selective. Human players, furthermore, often

make winning moves that go against conventional chess wisdom, and

their decisions are not bound by probabilities. Kasparov himself raised

questions about whether Deep Blue was intelligent in the same way as a

human player and whether it represented a new form of intelligence.5

In his account of the Deep Blue–Kasparov match, Deep Blue’s chip de-

signer Feng-Hsiung Hsu notes that some of Deep Blue’s moves resulted

from software bugs or the software’s inadequacy in dealing with certain

board situations like king safety or endgame without queens, inadequa-

cies that had to be fixed on the fly.6 Indeed, his book makes the strong

impression that Deep Blue should be regarded less as a stand-alone entity

than a complex computational assemblage within which humans assumed

a variety of roles. Feng-Hsiung himself reveals that he and his friends

‘‘understood that the [Deep Blue–Kasparov] match was never really

‘man versus machine,’ but rather ‘man as a performer versus man as a

tool maker’ ’’ (264). Curiously, while a graduate student at Carnegie

Mellon, Feng-Hsiung and those around him building computer chess
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machines felt mainly disdain for AI as a discipline. In contrast, computer

game designers and programmers have increasingly found AI to be a very

valuable resource. The best computer games now tend to rely upon AI

programming techniques like genetic algorithms, neural networks, and

fuzzy logic, and their application has begun to displace the development

of arresting graphics as the new wave in game development.7

No doubt the widespread application of AI in the production of

‘‘smart’’ technology will continue to bring many practical benefits. On

the other hand, inasmuch as useful intelligent machines do not have to

be built following principles derived from an understanding of how hu-

man or animal intelligence actually works, success in this endeavor may

also tend to reinforce the long ingrained tendency in AI research to ignore

or play down biological models of intelligence. The brain, after all, is

assumed to be a complex but messy ‘‘kludge,’’ constrained by evolution

to repeat variations on earlier solutions or reshaped and ‘‘retrofitted’’ to

solve problems for which it wasn’t ‘‘designed.’’ With the newly invented

computer, AI had a powerful and more elegant model at hand. It is

hardly surprising, then, that the computer’s rapid development became

the basis for AI’s projected accomplishments and that Moore’s law is still

touted as the harbinger of AI’s bright future. While innovations in hard-

ware will inevitably occur, these optimistic forecasts tend to ignore or

play down the di‰culties faced in writing—or more likely, evolving—

the software necessary for building truly intelligent systems.8

However, it now seems increasingly likely that a biological reorienta-

tion in the construction of intelligent machines and systems may be the

only way to overcome the deficiency that has plagued artificial intel-

ligence for the past fifty years. Biological perspectives on human intelli-

gence are not at all new of course, and (as we saw in chapter 6) mostly

derive from the neural net theory inspired by McCulloch and Pitts’s clas-

sic essay of 1943, which considered how the passage of electrochemical

impulses through arrays of connected neurons constituted circuits, or

‘‘nets,’’ that could be understood to perform computations. Though neu-

ral net theory promised to provide a biological-based alternative to the

symbol- and logic-based systems of classic AI, artificial neural nets were

found wanting (they could not perform the XOR logical function, for ex-

ample) and rejected in the late 1960s only to reemerge in a much stronger

version in the mid-1980s under the banner of parallel distributed process-

ing, or connectionism, as it came to be called. Over time, unfortunately,

neural net theory has been shorn of its biological roots and absorbed as

just another computational method in AI’s expanding toolbox.
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To be fair, researchers often refer to neural net theory as an unfinished

revolution. For at least two reasons, however, it was unlikely that neural

net theory alone would become a foundation stone in AI’s quest to con-

struct intelligent machines. First is the problem of scale. The human brain

contains about one hundred billion neurons, with each one connected to

thousands of other neurons. Compared with this massive circuit complex-

ity, the neural networks built thus far are extremely simple, though they

are capable of recognizing di¤erent kinds of patterns, which is a necessary

if not su‰cient aspect of intelligence. Second, while neuroscience now

understands a great deal about neuron behavior and the functioning of

many parts of the brain, it doesn’t yet have a theory of the whole, and

there is still a wide gap between understanding neural mechanisms and

understanding the intelligent behavior of whole creatures. In short, the

bottom-up view of neuroscience and the top-down view of classic AI do

not meet in the middle, where all the interesting behavior—perception,

complex movement, and a basic ability to cope with the environment—

seems to lie. As Steve Grand puts it, ‘‘A human being is not an ant with

a natural language interface.’’9

Below I describe three current research initiatives that operate in or are

moving toward this middle realm. The first (Eric Baum) serves as a tran-

sition from classic AI and cognitive science. The second (Je¤ Hawkins)

plunges us into a theory of the brain as a memory prediction machine.

And the third (Steve Grand) involves the actual building of a working

baby android. In conclusion, I consider some recent research in self-

modeling (Lipson) and communication (Steels).

The Modular Mind/Brain

In What Is Thought? Eric Baum directly confronts AI’s failures to deliver

on its overhyped promise to produce machines that emulate human

thinking and behavior.10 Unlike most critics of AI, Baum doesn’t take

these failures as justification for abandoning the premise that human

thinking is computational.11 Rather, he explains what is wrong with the

AI programs themselves and what they lack in relation to the programs

our brains presumably use. Most typically, AI programs fail to exploit

the compact structure inherent in the world, which is precisely what

evolution has developed our brains to do. Instead, they resort to sophis-

ticated techniques that yield solutions but don’t provide a real under-

standing of the problem. In a range of examples from Blocks World,

games like Go and chess, and the traveling salesman problem, Baum
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shows how the typical AI approach applies computational tricks like

brute force search, branch-and-bound, and evaluation functions to a

‘‘problem space’’ that, because it has been abstracted from the world, no

longer exhibits any of the latter’s inherent structure. As a result, the for-

mal procedures deployed have little to do with the problem’s inherent

semantics.

We can easily apply this critique to a range of familiar AI programs.

Consider Joseph Weizenbaum’s Eliza, which simulates the responses of a

psychotherapist to questions posed by the user. (Versions of the program

are easily available on the Internet.) It was designed, using pattern-

matching algorithms, to return answers that seemed credible, appropriate,

and even witty. However, as any persistent questioner soon realizes, the

answers, though varied and to some extent unexpected (i.e., randomized),

are ‘‘canned’’—drawn from lists and modified—and never reflect any real

understanding of the situation expressed by the user’s questions. Here we

see a clear example of how the structure of the program has little relation-

ship with the structure of the problem, beyond the obvious fact that it

exploits the nature of the encounter (question-answer). As a necessary

first step toward achieving real understanding, a genuinely intelligent

therapist would have to somehow recognize the nature of the questioner’s

psychological problem, presumably by extrapolating a pattern from

recurrent references to a particular figure—a mother or father, for exam-

ple, or to a theme, like persecution. In principle, a neural net could be

trained to recognize such patterns, though the number and complexity of

the training sets would have to be quite large. Nevertheless, if after pro-

cessing a wide variety of responses from the user the programmed thera-

pist could reliably deliver judgments like ‘‘You are su¤ering from

paranoia,’’ or ‘‘You are su¤ering from a guilt complex,’’ then we could

reasonably say that the program genuinely describes some aspect of struc-

ture in the world outside the program.

Baum calls the code that does inscribe semantic structure ‘‘compact,’’

since it embodies, or reflects, the constraints of the process it describes.

However, to write code that possesses this semantic dimension is compu-

tationally hard, as Baum often reminds us, and AI researchers have not

yet learned how to make their programs compact in this sense. In con-

trast, the programs that underlie the human mind are compact because

they are the result of millions of years of evolutionary programming

tested and honed by adaptation. Happily for us, the instructions for pro-

ducing this code are inscribed in our DNA. More specifically, nature’s

evolutionary programming produces DNA (the source code), which in
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turn produces the brain’s neural circuitry (the executable code), which in

turn produces behavior that propagates the species (the output).12 But

Baum is less interested in the details of these processes than in the struc-

tural modularity of what he calls the ‘‘program of mind.’’

To conceptualize the program of mind, Baum draws extensively on the

field of evolutionary psychology, which understands the human brain as

an organ that has evolved in the way it has because the results have

made humans more adaptable and therefore better able to survive long

enough to reproduce and propagate their genes.13 Contrary to the view

that the mind is a general-purpose computer, evolutionary psychology

views it as a collection of many special-purpose computational modules,

each having evolved to accomplish a specific behavior or solve a particu-

lar problem. Accordingly, evolutionary psychologists liken the mind to a

Swiss Army Knife with many small tools—blade, corkscrew, can opener,

scissors, and so on—each of which is designed to perform a specific task.

Each mental module would thus correspond to one such tool, with mod-

ules for vision, touch, hearing, language, mate selection, and many

more—as many distinct modules as there are types of behavior required

for human survival and propagation of the species. In Baum’s more

overtly computational language, mind is a program comprised of modules

that ‘‘call’’ other modules and often reuse the same or similar blocks of

code. As we might expect, the granularity of the model—how many mod-

ules are there?—remains an open question. The key idea, nevertheless, is

that the mental module is the primary unit of evolution. While there is

some empirical evidence (which Baum cites), from a computer pro-

grammer’s point of view this makes perfect sense, since any change to a

tightly coupled ensemble of parts or blocks of code—as opposed to

quasi-independent modules—would break the system as a whole. Modu-

lar evolution allows both repeatability (nature tends to repeat solutions to

earlier problems) and flexibility (if newly evolving solutions don’t work,

they won’t break either other subsystems or the system as a whole). Thus

from both computational and evolutionary perspectives modularity o¤ers

unique advantages.

In Baum’s view the evolved modules that constitute the program of

mind call computational routines and subroutines from other modules.

They are also organized hierarchically. The code at the top of the hierar-

chy controls speech and action, makes decisions, and is perhaps responsi-

ble for ‘‘feedback credit assignment’’ and learning. These upper-level

modules, Baum states unexpectedly, ‘‘may be deliberately fed misinfor-

mation by other modules, specifically to control what we say and do in a

Learning from Neuroscience 391



manner advantageous to our genes. What we are verbally aware of, then,

is the disinformation, not the true information only known to the subcon-

scious processes that direct the flow of information’’ (423). That lying and

self-deception are an intrinsic aspect of human behavior is a familiar idea;

that falsification takes place at the information-processing level is some-

thing new. To make this idea plausible Baum would have to both posit a

computational mechanism that functions somewhat like the Freudian

unconscious and establish that these self-deceptions serve biological

imperatives—a daunting task, to be sure. Instead, he pursues a di¤erent

problem, or perhaps it is the same problem considered from a di¤erent

angle. It follows from the fact that much of human behavior is not pre-

programmed (and therefore not predetermined) but learned and adaptive.

Thus he focuses on the learning mechanisms and inductive biases with

which evolution has equipped us in order to make us more flexible and

adaptive in achieving its ultimate end, which is to survive and reproduce.

This requires that the modularity thesis also be applied to cultural

notions like the self, the will, and our belief in the bedrock reality of ex-

periential qualia (like the redness of red things). Since the purpose of

mind is to make decisions about what actions to take, it is more flexible

and e‰cient, Baum argues, to have a ‘‘sovereign agent’’ in charge: ‘‘We

think of creatures as conscious and endowed with free will because this

is a computational module we have: this is much the most compact, e¤ec-

tive way to predict actions of sovereign agents such as others and our-

selves’’ (438). Our inner representation of this agent is the self, which

(again) is a module that interacts with other modules. For Baum, how-

ever, mind is not a highly distributed complex of interacting modules or

agents without a central authority, as in Marvin Minsky’s The Society of

Mind and Daniel Dennett’s Consciousness Explained.14 Essentially the

evolutionary origin of the mind means that ‘‘it is coordinated to represent

a single interest, that of the genes.’’ It is this unity of interest that makes

cogent the concept of self: ‘‘There are many modules, but they are all

working toward the same end, just as the many cells and many organs in

the body are’’ (408). Thus the issue is never really one of truth—either of

the self ’s coherence or the information processing in and through which it

is constituted—but whether and how the organism or creature survives as

an integral entity.15

The metaphoric structure of language provides further evidence for the

modular structure of the mind’s computational program. Baum points

out that basic metaphors pervade all natural languages. For example, in
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our culture ‘‘time is money’’; like money, we spend time, save time, waste

time, borrow time, and so forth. Such metaphors, he argues, are instances

of ‘‘code reuse.’’ If ‘‘the essence of metaphor is understanding and experi-

encing one thing in terms of another,’’ then underlying every metaphor is

a computational module that is being reused in di¤erent contexts. This

view of metaphor, Baum believes, can account for how we learn through-

out our lifetimes and continually build up the modular structure of our

thoughts. We do this ‘‘largely by packaging existing instructions into

small programs’’ (229). Metaphorical language, presumably, is at once

the means and the result.

Baum, incidentally, does not believe that language and our ability to

invent and use symbol systems separate us from all other species. Lan-

guage does not provide a ‘‘new symbolic ability or new reasoning ability’’

(378); rather, it is the communicative and storage capacity of language

that explains our mental superiority. Language constitutes ‘‘a huge data-

base of useful code on top of the programs that evolution wired into the

genome. The computation that has been done by humankind as a whole

in discovering this database of useful code is massive, by some measures

arguably comparable to the computation done by evolution itself in creat-

ing us’’ (375). As both a database of useful code and a means of accessing

and communicating it (but Baum is not concerned with this distinction),

language provides a whole new arsenal of ways by which the human spe-

cies can extend and perpetuate itself.

Given the extraordinary number of computations required by natural

evolution to produce intelligence (or consistently intelligent behavior),

Baum is not optimistic about the prospects for AI. Since humans are not

particularly good at writing the necessarily compact code, probably the

best approach will be to write programs that can recursively write and

evolve their own code. Nevertheless, his accomplishments with the Hayek

Machine, an evolutionary program that he and Ivan Durdanovic

designed to solve di¤erent types of computational problems, give some

hope that there may be ways to jump-start artificial evolution and leap-

frog over the computationally demanding early stages.

Basically, Hayek consists of an evolving population of computational

agents (i.e., small computer programs), whose fitness is determined by

their contribution to the solving of a larger computational task. Thus,

after being randomly generated, the agents undergo a process of selection

that increases the performance, or computational ‘‘fitness,’’ of the popu-

lation as a whole. Agents are ‘‘motivated’’ to solve problems through
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their participation in a world defined in strictly economic terms; that is,

there is a reward, or credit assignment, system. Although the agents act

separately, their collective interactions eventually solve computational

problems that, as a direct consequence, increase the e‰ciency and wealth

of the system as a whole. If, Baum argues, individual agents are rewarded

if and only if the performance of the system as a whole improves, then

two rules must be imposed: the conservation of money and the absolute-

ness of property rights. In short, everything must be owned by some

agent, and this right must always be respected. Constrained by these two

rules, an agent can make money only by increasing the flow of money

into the system from the world, which, in Baum’s experiments, is usually

a problem domain like Blocks World.

To illustrate, suppose that solving a problem entails a particular se-

quence of actions. In Blocks World the sequence would entail picking up

and stacking blocks in the target stack until it exactly matches the object

stack. At any moment Blocks World exists in a specific state defined by a

particular disposition of the blocks. For each agent, this state is mapped

to a set of conditions. Since each agent is capable of computing a simple

action, if the condition matches an action that the agent can execute, it

will issue a bid in an auction. In e¤ect, the agent ‘‘buys’’ the right to per-

form the action. More specifically, in order to carry out the action an

agent must first bid on the action, win the bid, and then pay the previous

owner or agent the amount bid. In this manner agents bid, a sequence of

actions ensues, the state of the world improves (e.g., in Blocks World

there is progress toward replicating the order of blocks in the object

stack), and money flows to the agents responsible. Successful agents

thereby accrue money, while unsuccessful ones do not and are eventually

removed from the system and replaced by new, randomly generated

agents. Although the actions the agents perform accomplish little at first,

with increasing feedback from their world the agents begin to make

money, and the system as a whole evolves. As Baum reports, after a mil-

lion or so computational cycles populations of agents evolved that could

solve very large instances of Blocks World problems.

While Baum does not claim that the human mind works exactly like

this, he thinks the program is ‘‘pedagogically useful in illustrating the

point that the central auctioneer is a location where summaries come to-

gether and yet where little computation is done’’ (414). In these terms,

Hayek illustrates a theory of the brain’s functional structure if not its ma-

terial implementation. If the brain works like a Hayek machine, almost

all of the computation would be distributed among a multiplicity of
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agents; yet there would also be a central location where all the work

comes together. This would be the location of the sovereign agent, or self.

Like most cognitive scientists, Baum assumes that the brain is the

physical substrate of information-processing mechanisms on which

mental software programs run. These programs comprise the mind. The

information-processing mechanisms themselves are more elemental: they

can ‘‘add, match a pattern, turn on some other circuit, or do other logical

and mathematical operations,’’ as Steven Pinker puts it.16 At this sub-

strate level, the same elements—neurons in networks—simply combine

in di¤erent ways to produce di¤erent cognitive ‘‘programs.’’ Most cogni-

tive scientists (and AI researchers as well) therefore believe that they can

ignore this lower level and carry out their analysis of the ‘‘programs’’ at

the higher level of organism behavior. However, this assumption (which

perpetuates the mind-body split) may not be warranted.

The Neocortex: A Memory Prediction System

In his book On Intelligence Je¤ Hawkins proposes what he believes to be

a more accurate account of how information-processing mechanisms in

the brain work, and to what end.17 At the outset he roundly rejects AI

and cognitive science for having failed to adequately explain intelligence

and what it means to understand something. There are two reasons for

this failure: an adherence to the input-output model, which has misled us

into thinking that ‘‘the brain has nothing to teach us about the mind’’

(37–38); and the belief that ‘‘intelligent behavior should be the metric of

an intelligent system’’ (32). Hawkins therefore agrees with John Searle’s

famous ‘‘Chinese room’’ critique: it is false to assume that if a machine

or program acts intelligently, or does things that require intelligence,

then it is intelligent. Real intelligence, Hawkins argues, cannot be mea-

sured by external behavior; a better metric is ‘‘how the brain remembers

things and uses its memories to make predictions’’ (20). And for this the

input-output computational model is completely inadequate on three ob-

vious counts. First, time is an essential factor, since information pro-

cessed by the brain is not only time sensitive but varies dynamically in

its very form over time. Second, the brain is saturated with feedback cir-

cuits, and connections going back toward sensory input often vastly out-

number forward connections, sometimes by a factor of ten to one. And

third, information processing in the brain is hierarchical: it occurs at

many interactive levels—six in the neocortex, which is the seat of the cog-

nitive activities that are deemed essential for human intelligence, like
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perception, memory, language, and reasoning. Since Hawkins’s ultimate

objective is to understand real—not artificial—intelligence in order to

build intelligent machines, there is no recourse but to study the human

neocortex.

As the outer layer of the mammalian brain, the neocortex comprises

about 90 percent of the cerebral cortex. In humans it is about the size of

a dinner napkin, 2–4 mm thick, with extensive folds. Appearing roughly

ten million years ago, it provided mammals with a memory system, which

was tacked on to the sensory paths of the primitive brain. Over time,

Hawkins believes, the neocortex began to interact with the motor system

of the old brain, until it eventually ‘‘usurped most of the motor control

from the rest of the brain’’ (103). This greatly increased the areas of asso-

ciation between sensory and muscle systems, enabling humans to make

much more complex movements. Eventually, he claims, ‘‘the human cor-

tex [began to direct] behavior to satisfy its predictions’’ (104) and to as-

sume its primary function as a large, hierarchical memory-prediction

machine.

Hawkins’s point of departure is the work of neuroscientist Vernon

Mountcastle, whose research revealed that all cortical regions perform

the same operation. What makes ‘‘the vision area visual and the motor

area motoric is how the regions of cortex are connected to each other

and to other parts of the central nervous system’’ (51) and not any di¤er-

ence in function or algorithm. If the same algorithm operates throughout

the cortex, regardless of particular function or modality—whether to see

or hear or control muscle movements—then the cortex must do some-

thing ‘‘universal that can be applied to any type of sensory or motor sys-

tem’’ (52). Before this function can be defined, however, two essential

features of the neocortex have to be noted: the extreme flexibility and

plasticity of the wiring and the fact that the input signals to the cortex

are always and only patterns of electrochemical firings called action

potentials, or spikes. These firings occur across the synapses of neurons,

and the patterns of spikes are similar in nature whether they constitute

signals from the eyes, ears, skin, or muscles. The plasticity of the wiring

means that the neocortex can ‘‘change and rewire itself depending on the

type of inputs flowing into it’’ (54). In fact, there are many examples of

the brain’s capacity to rewire itself after damage or the loss of a sensory

organ.18 Equally wondrous and strange, these patterns of electrochemical

spikes, stored as complex temporal and spatial sequences, are all that the

brain ‘‘knows.’’ Our perception of the world is created from these

patterns—and from nothing else.
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As myriads of patterns continuously stream into the neocortex, it stores

them as autoassociative memories, meaning that a whole pattern or mem-

ory can be recalled from only a part or fragment. Specifically, these mem-

ories are stored, recalled, and recognized as ‘‘invariant representations,’’

in a form that captures the essence but not all of the details of repeated

experiences. On one level an invariant form is simply the stability and

repetition of a specific pattern of neurons firing; but on another it is the

face of a parent, a song we know, or a simple physical act—in each case

something we will always recognize despite variations over an incredibly

wide range of contexts and conditions. Not only are invariant representa-

tions constantly forming, but they are also being modified as they are

compared with patterns (and sequences of patterns) streaming in from

the senses and muscles. The result is a series of predictions about what is

about to happen. As we walk through our house or apartment, for exam-

ple, the neocortex is constantly checking what we actually experience

against what it predicts we will experience—simply by comparing sensory

input to stored invariant representations. Anything new or missing or dif-

ferent will immediately catch our attention. Indeed, this updating of our

experiential reality is so sensitive to sights, sounds, textures, and smells

that even slight di¤erences—like the feel of the front doorknob or the

door’s weight or resistance—will alert us to some possibly significant

change. In this way the neocortex operates as a memory prediction

machine.

It is often asserted that the brain is a parallel computer, processing

multiple streams of information simultaneously. Because neurons pass

current much more slowly than do silicon computer chips, they also pro-

cess information more slowly. But the fact that there are several trillion

connections and circuits in the brain enables it to do parallel processing

on such a vast scale that it easily overcomes this deficiency in speed. Haw-

kins is familiar with this argument but completely rejects its relevance be-

cause he believes that the brain works not by computing a solution to a

problem but by using memory to solve it. Again, the brain (or neocortex)

is not a computer but a dynamic memory system. As a simple example,

consider the ease with which we can learn to catch a ball, compared to

the di‰culty of programming a robotic arm to do it. For the robotic

arm, catching a ball entails a series of mathematical calculations that

must be constantly updated as the ball approaches, and of course the

problem is enormously compounded if the robot must also move to inter-

sect with the ball’s calculated trajectory. While computers can perform

these calculations, the human brain uses an altogether di¤erent method:
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Your brain has a stored memory of the muscle commands required to catch a ball

(along with many other learned behaviors). When a ball is thrown, three things

happen. First, the appropriate memory is automatically recalled by the sight of

the ball. Second, the memory actually recalls a sequence of muscle commands.

And third, the retrieved memory is adjusted as it is recalled to accommodate par-

ticulars of the moment, such as the ball’s actual path and the position of your

body. The memory of how to catch a ball was not programmed into your brain;

it was learned over years of repetitive practice, and it is stored, not calculated, in

your neurons. (69)

Indeed, this is an essential point: the brain’s comparing of any specific

catch to an invariant representation of catching a ball and then making

the slight adjustments necessary is not accomplished computationally but

physically, in the flow and modification of information up and down the

six layers of the neocortex.19 This flow moves through specific columns of

cells within the six layers (the column is the basic unit of prediction, Haw-

kins believes) as well as laterally to adjacent areas and other organs, such

as the hippocampus.

It is in and through this process of building up invariant representa-

tions, constantly comparing them to incoming sensory patterns and mak-

ing adjustments, that the brain creates and stores a model of the world as

it is, independent from how we see it under changing conditions. It does

this by forming and storing invariant representations in all regions of the

neocortex and at all levels, in a hierarchy that mirrors the nested struc-

ture of the world as we experience it (i.e., there are objects within objects

within objects). But instead of images of objects, the neocortex stores

sequences of patterns. Say a stranger enters the room. My eyes will imme-

diately scan his or her face. One saccade might yield the pattern eye/nose/

eye/mouth/eye/ear, while another might yield the same elements in a

di¤erent order. For the neocortex, however, they constitute the ‘‘same’’

sequence, which is matched with an invariant representation of ‘‘face.’’

Note also the nested hierarchy of objects: the face is both part of the

larger head and formed of smaller parts—two eyes, a mouth, nose, and

ears. But all are invariant representations composed of sequences of pat-

terns. Moreover, if one kind of pattern always seems to accompany an-

other in time, the cortex interprets them as related and gives them what

Hawkins refers to as ‘‘a group name.’’ It is this group name—not the in-

dividual patterns—that is passed up the cortical hierarchy to higher

regions. In this way cells in associated groups cause other groups of cells

to fire.

Information is thus registered di¤erently at di¤erent cortical levels. In

the primary sensory regions many cells are active, as the incoming pat-
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terns ceaselessly change. At higher levels fewer cells are active and the

cell-firing patterns are more stable. This is because as information is

passed upward predictable sequences are collapsed into ‘‘named groups,’’

whereas when a pattern moves down the hierarchy it is ‘‘unfolded’’ into

sequences. Let’s say a student is called upon to recite a poem. Assuming

she has memorized it, this pattern unfolds into a sequence of phrases,

each of which unfolds into a sequence of words. At this point the unfold-

ing pattern splits and travels down both the auditory and the motor sec-

tions of the cortex. Following the motor path, each word is unfolded into

a memorized sequence of phonemes and then, at the lowest level, each

phoneme is unfolded into a sequence of muscle commands to make

sounds. The lower you go in the hierarchy, the faster the patterns are

changing. If the student has to type the poem instead, it is the same se-

quence of patterns down the hierarchy but at the appropriate level the

motor cortex would take a di¤erent path: words would be unfolded into

letters (not phonemes), and the letters would unfold into muscle com-

mands to her fingers.

In Hawkins’s account of the memory-prediction system, perception and

behavior, intention and expectation, are almost the same, for there is little

di¤erence between intending to move your arm and predicting it will

move. But what happens if the cortex can’t find any memory or invariant

form that matches an incoming pattern of sequences? Then confusion sets

in, and

the unexpected pattern will keeping propagating up the cortical hierarchy until

some higher region can interpret it as part of its normal sequence of events. The

higher the unexpected pattern needs to go, the more regions of the cortex get

involved in resolving the unexpected input. Finally, when a region somewhere up

the hierarchy thinks it can understand the unexpected event, it generates a new

prediction. This new prediction propagates down the hierarchy as far as it can

go. If the new prediction is not right, an error will be detected, and again it will

climb up the hierarchy until some region can interpret it as part of its currently

active sequence. (159)

For Hawkins this process concludes happily with a ‘‘eureka!’’—the high-

level prediction is found. However, those who are nagged by a vague feel-

ing that some areas of their brains are searching for patterns that may

never be found can find respite in the assurance that the process is even-

tually dampened by the onward press of life.

Hawkins’s whole book vectors toward the question, Can an intelligent

machine be built from the principles that underlie the workings of the

neocortex, as Hawkins himself has described them? The first step, he
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says, is to start with a set of senses that extract patterns from the world,

and they don’t have to be equivalent to human senses. The second is to

attach to the senses a hierarchical memory system that works like the

neocortex. And the third is to train the memory system so that the ma-

chine can begin to build a model of the world as seen through its senses.

The machine will then ‘‘see analogies to past experiences, make predic-

tions of future events, propose solutions to new problems, and make this

knowledge available to us’’ (209). The only serious obstacles, he believes,

are technological: creating a very large memory capacity and making

massively parallel connections among millions of artificial neurons. But

for Hawkins, who was trained as a silicon chip designer and has already

invented the Palm Pilot as well as a transcription system (Gra‰ti) for

entering data into it, these obstacles are not insurmountable, since the ba-

sic principles are already well understood. However, in order to grasp

more exactly how we will get from the first to the third step—that is,

from building a memory system to seeing an intelligence emerge that can

model the world of its senses—we have to turn to the research of Steve

Grand, who has already built something that (almost) does this.

Emergent Intelligence in a Baby Android

The machine is an android robot that Grand has named Lucy, after one

of our hominid ancestors well known to anthropologists. The first ver-

sion, Lucy I, consists of a head with mouth, eyes and ears, upper arms,

and a torso; Lucy II, unfinished but well along in construction, will be a

fully mobile autonomous robot.20 What Grand hopes to achieve with

Lucy is not human-level intelligence but emergent ‘‘mammal-style intelli-

gence,’’ specifically a rudimentary intelligence that emerges from the self-

organization and learning that occurs in an array of neural modules.

Presumably to emphasize Lucy’s mammal-like intelligence, Grand has

made her loosely resemble a short orangutan by giving her a face and

soft cover of hairy skin. But since what makes intelligence possible in

mammals is the special architecture of the neocortex, he has attempted

to recreate this architecture in a simplified but nonetheless functional

form. To make Lucy intelligent, in short, he has given her a simulated bi-

ological brain.

There is, consequently, some overlap and plenty of agreement between

Hawkins and Grand about the key role of the neocortex. This is impor-

tant, since neither seems to know anything about the other’s work. In

contrast to Hawkins’s book, however, Grand’s Growing Up with Lucy
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makes us acutely aware of how di‰cult the construction of a genuine in-

telligence actually is or will be, despite Grand’s obvious technical ingenu-

ity and inventiveness. Grand’s book is also often amusing. Subtitled

‘‘How to Build an Android in Twenty Easy Steps,’’ on the first page he

admits, ‘‘I lied about the number of steps.’’ Even so, the book covers a

wide range of material, deftly anchoring the Lucy project not only in neu-

roscience and neural net theory, but AI, robotics, evolutionary theory,

and machine vision.

Grand is the inventor (software designer and programmer) of the best-

selling computer game Creatures, which is not really a conventional game

but an artificial environment in which little cartoonlike ‘‘Norns’’ are born

and, if given proper care, flourish.21 These creatures exhibit an astonish-

ing range of behavior. They are capable of learning about their environ-

ment, either by being shown things by their owners or by learning from

their own mistakes. They can interact with their owners, using simple lan-

guage, as well as with one another. They can form relationships and pro-

duce o¤spring, which inherit their neural and biochemical structure from

their parents and are capable of open-ended evolution over time. These

capabilities makes Creatures a landmark in the deployment of ALife

theory and methodology, for what underlies the Norns’ complex behavior

is Grand’s understanding of ALife simulation and his very e¤ective

instantiation of the theory of emergence.

In Creation: Life and How to Make It, Grand draws out some of the

implications of ALife theory for the construction of virtual worlds. Recall

that Langton argued that because ALife machines and programs would

instantiate and realize the essential processes of living systems, they

would constitute instances of real life, not just a modeling of these pro-

cesses. This amounts to a strong theory of ALife, in contrast to weak

theories, according to which ALife simulations are only lifelike replicas.

As Grand points out, such a strong, or ‘‘real,’’ instance of artificial life

would emerge as a second-order simulation from the interactions of first-

order simulations. According to this logic, a computer simulation of a

bird is not a bird. Perhaps this is why graphics designer Craig Reynolds

calls his bird simulations ‘‘boids.’’ But a group of boids interacting

according to the abstracted and programmable rules of flocking behavior

would be an instance of real flocking. Similarly, a computer simulation of

an atom or biological cell would not be a real atom or cell; however, a

simulation that accurately captured the actual dynamics of atomic inter-

action in molecules or cellular interaction in living systems would be a

real instance of these processes. In short, a simulation of a living thing is
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not alive; a simulation of intelligence is not intelligent; but—and this is a

central premise of strong ALife research—intelligent, living things can be

made out of simulations. Grand proceeded from exactly this assumption

when he created Creatures: ‘‘Each norn is composed of thousands of tiny

simulated biological components, such as neurons, biochemicals, chemo-

receptors, chemoemitters and genes. The norns’ genes dictate how these

components are assembled to make complete organisms, and the crea-

tures’ behaviour then emerges from the interactions of those parts, rather

than being explicitly ‘programmed in’ ’’ (Web site, ‘‘Norns: The First

Generation,’’ under ‘‘Creatures’’).

In this sense, the Norns’ behavior is comparable to behavior in an

emergent system. This is not surprising, given that the theory of ALife

simulation (discussed in previous chapters) is based on a notion of emer-

gence derived from nonlinear dynamical systems theory. Recall that in

emergent systems a multitude of simple interacting parts or agents can

spontaneously self-organize, producing orderly and complex behavior at

the global level. The interactions are deterministic but nonlinear, usually

characterized by large positive feedback, the amplification of fluctuations,

and the massive acquisition and transfer of information at local levels. In

emergent systems—insect colonies, swarm systems, the immune system,

and the market economy are typical examples—the behavior of the whole

is more complex than that of the constituent parts. Consciousness is also

said to be emergent, inasmuch as it arises from the interactions of neu-

rons in multiple networks in the brain and cannot be reduced to the spe-

cific terms of these interactions. In contrast to these systems, however, the

complex behavior of the Norns is intentionally emergent: the first-order

simulations of neurons, biochemicals, genes, and so forth interact at local

levels, producing rich, unpredictable lifelike behavior at a global level.

This higher-level behavior constitutes a second-order simulation of life.

The Lucy project is an attempt to build an intelligent creature that

‘‘lives’’ in the actual physical world, rather than in a virtual world on a

personal computer. What Lucy and Grand’s Creatures share is a founda-

tion rooted in the theory of emergence. In his public presentations of

Lucy, in fact, nothing has so irritated Grand as the persistent question,

But what is she programmed to do? Consequently, much of his book

attempts to explain an only apparent anomaly: even though a set of

computer programs make Lucy’s behavior possible, the intelligence she

displays emerges from the interactions among thousands of simulated

neurons that self-organize into neural modules capable of learning.

Grand agrees therefore with Hawkins that AI has completely missed the
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boat, for it has always been looking in the wrong direction: ‘‘Strangely,

most neuroscientists who study the cerebral cortex already know this:

they know that the cortex is a highly structured, arraylike, self-

configuring machine, and they know that understanding the cortical ar-

chitecture is the key to understanding the mind’’ (51–52). Grand also

agrees that ‘‘the brain [is] an all-purpose prediction machine’’ (128), and,

like Hawkins, obligingly walks us through several thickets of neuro-

science. But Grand’s task is more di‰cult, since at the same time he

must explain how certain of the functions described can be achieved anal-

ogously with mechanical and electronic hardware. There are di¤erences,

of course: where Hawkins emphasizes the role of invariant representa-

tions, Grand focuses on cortical maps (areas of the cortex associated

with a specific function) and invariant transforms. Grand is also much

more concerned with the details of how the cortex processes sensory in-

formation (both visual and auditory) and how these functions can be

emulated. However, both give primary emphasis to the massive and pro-

fuse feedback circuitry that makes the standard computational input-

output model so useless: yes, information does arrive from the senses,

but that information is accompanied by the information expected as well

as information going out to the muscles to modify or alter the reception

of further incoming information. In fact, information is simultaneously

cascading up and down the cortical hierarchy and laterally across adja-

cent and related areas in such a profusion of patterns that Grand’s pro-

posal to model and replicate these processes with digital circuits and

servo-motors is staggering—and yet it works.

Consider what Lucy can actually do: she can recognize and point to

simple objects like an apple or banana. Admittedly, this does not seem

like complex behavior. But no human child can recognize a banana until

it has been taught to. And once it knows what a banana is, it will recog-

nize it from whatever angle it appears, whatever the lighting, whether the

banana is green, ripe, yellow, or rotten. It is essential to note that Lucy

has not been programmed to recognize a banana; rather, like a child she

has learned to recognize simple objects like bananas and therefore can

point to one and identify it if it appears in her visual field. And, like a

child, Lucy will learn to perform more complex actions over the coming

years. What matters at this early stage is that she is physically functional:

she has eyes that can see (though dimly), ears that hear (though badly);

she can make sounds and move her eyes, mouth, head, and arms. Some

of these movements can be seen on the brief video available on Grand’s

Web site.

Learning from Neuroscience 403



Grand has devoted a great deal of attention and labor to Lucy’s physi-

cal abilities because movement and ‘‘multimodal interactions’’ are essen-

tial for learning. Not only do we see depth because we can reach out with

our arms and vice versa, but establishing correlations among di¤erent

physical activities is a necessary part of the brain’s development. So

much so that Grand is committed to making Lucy’s body emulate a bio-

logical body as closely as possible; in fact, he spent a year trying to make

her muscles animal-like in tensile strength and dexterity. This devotion,

however, has nothing to do with a slavish attempt to imitate nature;

rather, it reflects something fundamental about the brain itself, as Grand

explains:

Brains don’t talk in ASCII code—they talk in muscle tensions and retinal signals.

Our senses have co-evolved with our brains, so that each depends upon the other.

Trying to understand or even replicate the functions of the brain using video cam-

eras and electric motors is futile. It is important to modify these technologies to

make them appear as similar as possible to their biological equivalents. (Web

site, ‘‘Rationale’’)

In short, building Lucy with technologies that work as similarly as possi-

ble to their biological equivalents seems to be the best way to construct

her from the bottom up.

This principle is applied to building Lucy’s every function—to her

muscles as much as her brain, which cannot be conceived and built as

something extra or apart from her capacity to move and sense things in

the world. In fundamental respects this approach draws on the lessons of

cybernetics: the ‘‘brain’’ is first and foremost what coordinates physical

activities in the world; it is very much situated and embodied. But where

Grand goes beyond both cybernetics and subsumption robotics is in his

emphasis on learning: a mammalian brain must be capable of making

certain basic connections itself, in order to be able to alter its responses

and invent new behavior when confronted with novel situations in the en-

vironment. Grand makes a key point in this regard in contrasting the two

evolutionary paths taken by insects and mammals. As he puts it, ‘‘An in-

sect can learn by degree but not by kind: an individual insect can learn its

way back to its own nest using landmarks that are unique to its particular

circumstances, but it can’t choose to do anything other than navigate

with this circuitry, since most of the configuration details were set in place

genetically, as a result of evolution’’ (48).22 Grand thus notes that the

great success of insects is directly due to the intelligence of evolution it-

self. Their nervous system is built upon and has evolved from a highly

generalized, repetitive, and easily modified block structure. When con-
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fronted with ecological change, insects have rapidly evolved into new

niches, with only slight alternation of their nervous systems. For mam-

mals, on the other hand, adaptation and survival depends to a much

greater extent on individual learning and invention—think of the many

di¤erent ways that mammals modify their environment. The basic build-

ing block of a mammal’s nervous system is therefore structurally di¤er-

ent. In contrast to the fixed nature of the insect’s nervous system, the

mammal’s is essentially a highly plastic structure.

Grand guides us into thinking about this di¤erence in the following

way. A single neuron can’t do much by itself, but blocks of neurons can

be programmed by evolution to do a variety of tasks. This is basically

evolution’s insect solution. But suppose that ‘‘an even more powerful

building block structure happened to evolve, which could rewire itself to

perform a range of tasks. Instead of being wired up by genes, just suppose

that this array of building blocks could become wired up by the very in-

formation that is flowing into it’’ (48, author’s emphasis). As we already

know (recall Hawkins’s point of departure in Vernon Mountcastle’s re-

search), this capacity ‘‘to wire itself up’’ in order to accomplish a range

of di¤erent processing tasks turns out to be a primary feature of the neo-

cortex. The same neural tissue can process either visual or audio stimuli,

or change from one to the other if the input signals are changed. As

Grand points out, there is a fairly common electronic device, a program-

mable logic array (PLA), which operates in a roughly analogous manner.

A PLA is basically a large, generalized block of logic circuits that can be

configured and programmed to do specific tasks by making and breaking

connections among the circuits within the block. Nature does something

similar with basic neural building blocks. In some cases (like insects), the

configurations in these natural PLAs are set by evolution; in others (like

mammals), the configurations are made and remade over time according

to the dictates of the creature’s own individual learning experience.

Nature, then, seems to work with three fundamental neural architec-

tures to solve the problems of behavior and control. The first and simplest

is to use the neuron itself as a basic building block in relatively simple net-

works, a solution that su‰ces for very primitive creatures. The second is

to use repeated circuits of neurons, roughly similar to the PLAs, as the

basic building blocks. This solution—the insect solution mentioned

above—o¤ers the advantage that these blocks can be easily configured

by evolution to perform somewhat di¤erent tasks. The third solution is a

more complex version of the second. Here a similar but higher-level kind

of building block is used but its functionality is not set by evolution;
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rather, the block has the capacity to reconfigure itself during the crea-

ture’s lifetime.

Yet Grand thinks that in humans and primates there may be a fourth

level built upon this underlying architecture but greatly augmenting its

power. This fourth level has to do with our ability to take control of and

manipulate certain functional capacities that operate unconsciously and

serve other ends.23 This additional capacity depends on and makes use

of another fundamental feature of the cerebral cortex (or neocortex): it is

made up of neural building blocks that wire themselves up in many di¤er-

ent cortical maps, or regions, devoted to the accomplishment of specific

tasks. The process of vision, for example, occurs in di¤erent stages. In-

coming signals from the optic nerve are first processed in a map called

V1 located at the back of the brain; then they are passed to other maps

for further processing. Muscle movements are driven by a pattern of neu-

ron activity in another map, the primary motor cortex, or M1. And so

on. These specialized maps, which are largely self-organizing, carry out

much of our learned but unconscious activity. At the same time, Grand

notes, we are able ‘‘to make voluntary decisions, and to initiate, alter or

suppress our behavior at will . . . [and to] perform mental tasks for which

no specialized and rigidly structured circuitry is likely to exist’’ (50).

Grand believes that when we do these things, we may be ‘‘switching infor-

mation around among existing maps, altering the flow and hence making

use of their specializations in new ways’’ (50). Thus he postulates a

fourth, volitional level of brain structure that may control the ‘‘flow of

signals around groups of preexisting self-configured maps in a highly flex-

ible and general-purpose way’’ (50). One thing is certain in any case: the

fundamental building blocks of the mind are neither the symbol manipu-

lations of classic AI nor the simple pattern recognition mechanisms of its

old rival, neural net research. The clue to the mystery of what generates

intelligence, rather, is to be found in the basic circuits (each composed of

only a few thousand neurons) that make up the cerebral cortex. ‘‘Under-

stand the structure of these circuits,’’ Grand proclaims, ‘‘what they do to

the signals that enter them (from all directions) and what rules control

their self-organization, and we will be well on our way towards under-

standing the mind’’ (51).

Lucy is primarily a test bed for working out this fundamental idea. As

Grand states, ‘‘I’m essentially on the lookout for a proto-machine: a gen-

eralized neural architecture that can spontaneously self-organise into a

variety of specialized machines, driven only by the nature of the signals

supplied to it’’ (Web site). To put it the other way around, there must be
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specialized machines—for vision, hearing and making sounds, muscle

movement and proprioception—but they must be variations on a core

machine or set of basic principles. On the software level, Lucy’s brain

consists of a large neural network of 50,000 (in the case of Lucy II,

100,000) virtual neurons, or rather, as Grand clarifies, ‘‘neural columns,

each of which is made from a small circuit of neurons.’’ This neural net-

work runs on a computer, a parallel processing multiple instructions–

multiple data (MIMD) machine that Grand built expressly for the task.

It is constructed of five boards, one each devoted to vision, hearing, voice,

muscle/proprioception, and communication with a PC. (Lucy II’s brain,

made of three interconnected boards refashioned from desktop PCs, will

be more powerful.) What really matters, however, is not so much the

details of the computational machine as how it is configured. About the

particulars, Grand remains reticent (understandably, given that the proj-

ect is still being developed) and only summarizes the success he has found

thus far. With Lucy I the object was

to find a single neural architecture that is capable of self-organizing into a wide

range of virtual machines, capable of the manifold tasks involved in seeing, hear-

ing, thinking and moving. By the end of Phase I of the project [Lucy’s] brain con-

sisted of a number of ‘‘modules’’ (cortical maps), each of which performed a

di¤erent function. Each map was unique, but nevertheless they all had enough in

common to o¤er exciting hints about a universal architecture. (Web site, ‘‘Lucy

Mk1’’)

An essential feature of this universal architecture is that it maintains a

state of dynamic tension and is completely bidirectional. It is most defi-

nitely not an input-output device. In fact, if we want to think about this

architecture in terms of feedback, we should think of the incoming sen-

sory signals themselves as the feedback rather than the input (an idea

that of course recalls Maturana and Varela’s concept of autopoiesis).

According to Grand, ‘‘The brain acts in order to keep the bottom-up

and the top-down . . . signal streams in balance. It does this in the

manner of a nonlinear servomotor, comparing the top-down intention/

expectation with the bottom-up sensory information and trying to recon-

cile the two by causing either a change in the internal model or in the

outside world’’ (Web site, ‘‘The Science Bit’’). Cyberneticists of the

1950s like Ross Ashby and Grey Walter would have understood this per-

fectly. But to understand how the brain is at once an information pro-

cessor and dynamical system—the two faces of the same process,

somehow inextricable—requires a contemporary perspective.
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Thinking about this universal architecture has led Grand to a bold but

not unreasonable speculation. Unlike most roboticists, he considers the

imagination to be essential to intelligence:

The key to Lucy’s brain is imagination. Many people still think of the brain as a

passive receptor of information—as if raw data comes in from our eyes and other

senses and gradually gets refined into more symbolic form (e.g. recognition of a

face or a word) until finally all the streams come together somewhere and some-

how give rise to an active response. I think of perception as a very much more

active process. As conscious beings we don’t live in the real world—we live in a

virtual world inside our heads. Most of the time this world is closely synchronized

to the external world—our model matches reality, tracks it and predicts it. When

we dream or when we imagine things (including making plans and rehearsing sce-

narios) we disconnect from the real world and let the model run on its own. The

same mechanisms are at work in both cases, but there’s no synchronization with

reality going on when we dream or think. The model is the crucial thing, and per-

ception is an active process of using this model to predict, hypothesize about and

correct for the data coming in from our senses—‘‘filling in’’ when the data is

incomplete and ‘‘being surprised’’ when reality fails to live up to the model. . . .

Lucy’s brain is designed around a key set of hunches about how such a mecha-

nism can be made using (simulated) neurons and biochemicals, and how some-

thing similar might have evolved in nature. (Web site, ‘‘FAQ’’)

So, in summary, what do we find in the middle ground, in this space

where top-down and bottom-up processes somehow come together? In

contrast to the highly abstract models of classic AI, which were conceived

in terms of symbol systems and the frames and scripts of knowledge rep-

resentation, the middle ground is completely physical, but it is complexly

physical, since it is where changes and movements on di¤erent levels are

coordinated. This coordination requires a memory-prediction system and

a model of the world. But as Grand insists, it also requires a way of dis-

connecting from the world—of letting the model run on its own, as in

acts of imagination and dream—and then reengaging with it. Hence his

Lucy project also entails looking for a mechanism that generates mental

imagery and ‘‘imagination.’’ In this respect his project is unique and of

special interest not only to scientists and engineers but also to those who

study philosophy, literature, and the arts.

Conclusion: Self-Modeling and Communication in Robots

Grand’s argument for the necessity of an internal model for Lucy—

and by implication any robot, if it is to be capable of truly complex

behavior—cannot help but recall Rodney Brooks’s decisive rejection of
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modeling in behavior-based robotics. In developing a new approach to

robotics based on a subsumption architecture (see chapter 7), Brooks

argued explicitly against the sense-model-plan-act approach that charac-

terized traditional robotics and AI more generally. Indeed, for Brooks

and his followers the rallying cry was, ‘‘The world is its own best model.’’

For robotics, this meant that cognition was already implicit in sensor-

actuator articulations, a view that was closely aligned with Varela and

Maturana’s theory that cognition is a structural coupling with an aspect

of the environment. Yet as Grand compellingly suggests, evolutionarily

speaking, this approach is equivalent to the insect solution. In order for

more complex behavior to occur, learning and modeling are necessary,

and these require a much more complex neural substrate than insects

have or could even develop.

Grand has not been alone in initiating a return to the concept of a

model in robotics. Hod Lipson’s successful e¤orts to coevolve simulations

and robot controllers by continually feeding back the sensory data

recorded by physical robots to populations of simulators that were then

further evolved is directly relevant, and in chapter 7 I discussed how this

work could be applied to the development of self-modeling mechanisms

for robots. The basic idea is to evolve models that match the robot’s

own physical observations (i.e., sensory data). This would entail seeking

actions that would make the models disagree as well as actions whose

only goal is to extract data from the environment. Instead of using this

information to evolve a controller, it would be used by the robot to

evolve a model of itself, that is, of its own morphology and dynamic

interactions with the environment. Needless to add, this model would be

completely unlike the abstract maps of the ‘‘world’’ as a geometric 3-D

space proposed by early roboticists following classic AI’s sense-model-

plan-act approach.

Recently Lipson and his colleagues Josh Bongard and Victor Zykov

have taken a remarkable step in the development of this new kind of

model.24 Constructed for a four-legged robot that could push itself across

the floor, the model is actually a series of models that are synthesized,

updated, and replaced as the robot generates and evaluates new actions.

When half of one its legs was removed, thanks to its continuous self-

modeling, the robot was able to infer this change and adapt by generating

an alternative gait by which it could continue to propel itself forward. In

a large number of experiments, this new adaptive behavior was tested

against two di¤erent baselines of randomly generated behavior, with

very positive results.
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The self-modeling process is based on having multiple competing inter-

nal models that generate actions to maximize disagreement between pre-

dictions of new sensory data. The process is broken down into three

algorithmic components for modeling, testing, and prediction, which are

continuously executed whether the robot is moving or at rest. Initially the

robot performs an arbitrary action and records the resulting sensory data.

The model synthesis component (using a stochastic optimization method)

then synthesizes a set of fifteen candidate models that explain the action-

sensory data in a causal relationship. Next, the action synthesis compo-

nent generates a new action that is most likely to garner the most

information from the robot. This is accomplished by searching for an

actuation pattern that will produce the maximum disagreement among

the predicted sensor signals. The robot then executes this action, and the

resulting sensory data is used as additional information by the model syn-

thesis component to assess the model once again. After sixteen iterations

of this process, the most accurate model is used by the action synthesis

component to generate a desired behavior, which is then performed. If,

however, the robot senses an unexpected sensor-motor pattern or an ex-

ternal signal resulting from a change of its morphology, the cycle of mod-

eling and exploratory actions is again initiated, and eventually a new,

compensatory action is taken to recover functionality. This is exactly

what happened when half of one of the robot’s legs was removed.

Throughout the tests, functional behavior generated by the model (as

measured by distance traveled from a point of origin) remained signifi-

cantly higher than randomly generated behavior.

While Bongard, Zykov, and Lipson think it is unlikely that biological

organisms maintain explicit models like the one they present here, their

method may well shed light ‘‘on the processes by which organisms

actively create and update self-models in the brain, how and which

sensor-motor signals are used to do this, what form these models take,

and the utility of multiple competing models’’ (1121). Moreover, by pre-

senting an operational model of how a robot can use directed exploration

to acquire and evolve predictive self-models that will enable it to continue

functioning after damage or a change in its morphology, this work clearly

opens a new path toward achieving a higher level of machine intelligence.

What is particularly impressive about this accomplishment in robotic

self-modeling is how it begins to reclaim and develop a feature or func-

tionality always deemed essential for artificial intelligence, but without

returning to the disembodied abstractions of classic AI. Instead, this de-

velopment builds on and realizes a new synthesis of ideas we have seen
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throughout this book at work in cybernetics (most notably in Ross

Ashby), ALife simulations, behavior-based robotics, and artificial evo-

lution. At the same time, there is something genuinely new. In an ap-

preciative commentary on Bongard, Zykov and Lipson’s achievement

published in the same issue of Science, ALife scientist Christoph Adami

emphasizes that the robot’s updating of its own model (by continually

reviewing its sensory data) is like dreaming—or maybe is dreaming.25

Like us, Adami writes, robots ‘‘need to constantly ascertain where they

are in the world, and like us, they work better if they have an accurate

sense of self ’’ (1093). The means that Bongard and colleagues have

devised to achieve this may one day lead to a discipline of experimental

robot psychology that could, for example, ‘‘record the changes in the

robot’s artificial brain as it establishes its beliefs and models about the

world and itself, and from those infer not only its cognitive algorithms,

but also witness the emergence of a personality’’ (1094). Significantly,

both Adami and Bongard and colleagues refer to the research initiated

by neuroscientists Francis Crick and Christof Koch on the neural corre-

lates of consciousness.

In the context of AI, references to modeling and consciousness invaria-

bly raise the question of language and whether or not some kind of

turn—or indeed return—to symbolic thinking might be necessary in or-

der to develop higher cognitive functions in robots. Luc Steels’s recent

work in robot communication and the origins and evolution of language

takes an innovative approach to this old problem, one that portends

exciting new possibilities.26 Whereas classic AI treated language primar-

ily as a static representational system, Steels understands language as a

living system—a complex adaptive system, to be exact. From every as-

pect and perspective, language is constantly changing and adapting as

the needs and social interactions of its users change. Thus language is re-

ally a rich and dynamically self-organizing ecology of competing forms

that continually demand accommodation, negotiation, and the creation

of new forms. Evolutionary linguistics and the ALife approach to lan-

guage are both predicated on this recognition. The former has ‘‘a specific

focus (understand the origins of language and meaning), a specific hy-

pothesis (language is a complex adaptive system), and a specific method-

ology (construct artificial systems as a way to develop and test theories)’’

(308). The latter attempts to evolve artificial languages with natural

language-like properties, and thereby explore the space of possible lan-

guages in the same way ALife explores the space of possible life forms.

As Steels has understood more clearly than anyone, this new approach
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leads to a bottom-up investigation into how communication protocols, as

well as a lexicon and syntax, can emerge and under what specific condi-

tions this emergence becomes possible.27 In a series of experiments per-

formed with robotic agents grounded in real-world situations through a

sensorimotor apparatus, he shows how these components self-organize,

evolve, and are complexified in and through the agents’ interactions.

Thus, in Steels’s experiments, the communication systems that arise are

developed by the agents themselves; they are not designed and pro-

grammed in by an external observer.

Much of this research is based on simple language games played be-

tween robots or among robots and humans.28 At least two agents, a

speaker and a hearer, as well as a concrete context consisting of agents,

objects, and a situation, are required. Steels’s Talking Head experiment,

for example, is a guessing game in which the two agents are pan-tilt cam-

eras facing a whiteboard on which various colored geometric shapes are

displayed. Software in the computers to which the agents are connected

enables them to segment visual images into a few basic categories like rel-

ative location, shape, color, and size. The game is initiated when one

agent (the speaker) points to a particular ‘‘topic’’ (a red square, let’s

say), and gives the hearer a verbal hint. The verbal hint would be a ran-

dom sound that the agent intends to be associated with the selected topic.

Steels’s gives as an example the utterance ‘‘malena,’’ which might mean

[UPPER EXTREME-LEFT LOW-REDNESS]. Looking in the direction

pointed to, the hearing agent then tries to guess which topic the speaker

means. Depending on whether the hearer guesses correctly or not, a

learning mechanism forms an association between the topic and the utter-

ance or a new category (like redness or squareness) is created. As the

game proceeds, a shared lexicon and a shared ontology (the category dis-

tinctions) are gradually built up and stored, thanks to a positive feedback

loop between use and success. More precisely, two dynamic systems—the

evolving lexicons and the evolving ontologies—are coupled to each other.

From this simple setup the experiment was expanded to include robots

located in cities all over the world connected through the Internet. This

also allowed human users to interact with the agents. In a four-month

period in 1999, some 400,000 games were played among a population of

just under 2,000 agents, and a total of 8,000 words and 500 concepts were

created. The experiment thus demonstrates how a population of agents is

able to generate and self-organize a shared lexicon based on perceptually

grounded categorizations of aspects of the world.
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The Talking Head experiments have been followed by further experi-

ments with AIBO ‘‘pet’’ robots that describe to each other events involv-

ing a ball and with the humanoid Sony Dream Robot (SDR). The latter

is an operationally autonomous robot that can walk on two legs, pos-

sesses stereo vision, surround audition, real-time adapted dynamical tra-

jectory planning, vision-based navigation, and many other features.29 As

such, it reflects the enormous advances made since the early days of

behavior-based robotics in the late 1980s. It also points to the next chal-

lenge, which is to find operational models of how populations of robotic

agents equipped with a cognitive apparatus and a sensorimotor system (a

body) can cocreate shared communication systems that are grounded in

their own activities. In this endeavor, Steels argues, research in the new

field of evolutionary linguistics ‘‘provides the first timid steps towards a

radically new approach, in which language-like communication systems

autonomously evolve in embodied agents through grounded language

games’’ (311). As in the case of human natural languages, when this per-

spective is applied to robotic communication it shifts the focus to how the

agents themselves participate actively in the invention and propagation of

a dynamically evolving language. (Propagation here is viral and memetic

and not simply genetic.) Success in robotics research oriented by an evo-

lutionary linguistics approach can thus not only bring about further

advances in the complexity of human-robot and robot-robot interactions

but also yield new insights into the origin and evolution of language and

communication systems more generally.

Like Bongard, Zykov, and Lipson’s work on robotic self-modeling,

Steels’s work on the development of robotic communication systems

draws on research that has been an essential part of this book’s trajectory,

particularly in ALife, complex adaptive systems, evolutionary theory, and

behavior-based robotics. At the same time, by making the assumptions

and methods from evolutionary linguistics and the ALife approach to

language the working tools of current robotics, Steels has been able

to forge a fruitful new research path into territory until now forbidden to

behavior-based robotics: the realm of symbolic, representational thinking

instantiated in natural human language. To be sure, Steels is fully aware

of the extraordinary complexity of human natural language. He notes, for

example, that there are no ‘‘convincing simulations of grammaticaliza-

tion,’’ which in human natural language appears to be too deeply

grounded in aspects of human culture and embodiment to be incorpo-

rated into artificial systems (‘‘Evolving Grounded Communication for
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Robots,’’ 311). He also realizes that the nascent or protolanguage of

robotic communication does not necessarily have to be anything like hu-

man language; indeed, it cannot be. But while the singularity of human

language may impede translation or a full transcoding into a computa-

tional medium, Steels shows how that bugaboo of classic AI, the sym-

bol-grounding problem, can easily be handled by robots—pace the

objections of philosophers—when the symbols emerge as both objects

and the means of social interaction.

As new capacities of robotic machines, self-modeling and communica-

tion mark high levels of complexity and intelligence that inevitably lead

further. These capacities, that is, are not simply large notches on a ruler

of measurable achievement—they are markers of a new threshold. A

machine that possesses an internal model of its own morphology and

dynamic functioning is a very complex machine. A machine that can

communicate information with another machine about a world of shared

experience is obviously a great deal more intelligent than one that cannot.

But with these particular new capacities the terms complexity and intelli-

gence begin to signify something new—not only known and accountable

actions but future possible actions for which we can only wait in eager an-

ticipation. With these newly complex and intelligent machines, the world

becomes a di¤erent place, inhabited by new forms of complexity that are

also new forms of life.
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Notes

Introduction

1. I take the term machinic phylum from French philosophers Gilles Deleuze and Félix
Guattari but use it in a somewhat di¤erent sense, as I explain in chapter 3. Less discordant
to French ears, the term machinic itself unsettles the opposition between the natural and the
artificial.

2. As noted in the preface, I use the term machinic life to designate forms of nascent life that
emerge in and through technical interactions in a human-constructed environment. ALife
refers specifically to the productions (machines and programs) of the scientific research dis-
cipline established in 1987 following the first conference devoted to ‘‘the synthesis and simu-
lation of living systems’’ organized by Christopher Langton; more generally, artificial life
refers to the whole spectrum of humanly constructed lifelike objects and processes—
automata, computer viruses, robots, and so forth, which of course include those of ALife.

3. Compare Langton: ‘‘The key concept in [Artificial Life] is emergent behavior. Natural life
emerges out of the organized interactions of a great number of nonliving molecules, with no
global controller responsible for the behavior of every part. Rather, every part is a behavior
itself, and life is the behavior that emerges from out of all the local interactions among indi-
vidual behaviors. It is this bottom-up, distributed, local determination of behavior that AL
employs in its primary methodological approach to the generation of lifelike behaviors.’’
From ‘‘Artificial Life,’’ in Artificial Life, ed. Christopher G. Langton (Reading, Mass.:
Addison-Wesley, 1989), 2–3.

4. For discussion, see John Maynard Smith, The Problems of Biology (Oxford: Oxford Uni-
versity Press, 1986), chap. 1, and Lynn Margulis and Dorian Sagan, What Is Life? (New
York: Simon and Shuster, 1995), chap. 9. The whole issue is of fundamental concern to
ALife. See, for example, Mark A. Bedau, ‘‘The Nature of Life,’’ in The Philosophy of Artifi-
cial Life, ed. Margaret Boden (Oxford: Oxford University Press, 1996), 332–357.

5. Here I allude to Herbert Simon’s The Sciences of the Artificial (Cambridge, Mass.: MIT
Press, 1969), even though it is concerned only with the methodology and conceptual frame-
work of artificial intelligence. Focusing on issues of rationality and design, Simon touches on
biology and evolutionary process only near the book’s conclusion. More significant for the
development of ALife as a second new ‘‘science of the artificial’’ is John Holland’s Adapta-
tion in Natural and Artificial Systems (Cambridge, Mass.: MIT Press, 1975), which brings
both perspectives into play in his concept of the ‘‘genetic algorithm’’ and approach to ma-
chine learning. Simon remains important, nevertheless, for his emphasis on computer simu-
lation and the organization of complexity.

6. In attempting to determine the ultimate meaning or essence of modern technology, the
German philosopher Martin Heidegger returned to the Greek concepts of phusis and technē,
which constitute a primordial first instance of the opposition between nature and technology
(or craft) and are valorized as such. Yet, inasmuch as both terms designate forms of poiēsis,



which Heidegger understood in the Greek sense of a ‘‘bringing forth into presence,’’ their
di¤erence cannot be one of simple opposition. Heidegger develops this position in ‘‘The
Question Concerning Technology,’’ in The Question Concerning Technology and Other
Essays (New York: Harper Torchbook, 1977), 3–35.

7. Michel Foucault, The Order of Things (New York: Vintage Books, 1973; orig. pub.
1966), 128.

8. See Michel Foucault, The Birth of the Clinic (New York: Vintage Books, 1975; orig. pub.
1963).

9. The oldest narrative of artificial life seems to be the story of the Golem in Jewish folklore.
Interestingly, though made of clay, like humans, the Golem was an informational entity, at
least in the sense that in many versions what animated it was an inscription on its forehead
or under its tongue, often of the name of God.

10. Critiques of molecular biology based on its too exclusive reliance on information theory
and overly literalist understanding of coding are now well known. For an exposition of this
point of view, see Lily E. Kay, Who Wrote the Book of Life? A History of the Genetic Code
(Stanford, Calif.: Stanford University Press, 2000).

11. Bernard Stiegler, La technique et le temps, vol. 2, La désorientation (Paris: Galilée,
1996), 173–187. See, for example, the section ‘‘La synthèse biologique: quand faire c’est
dire,’’ where the title itself announces this performative dimension.

12. This is not, however, a case of ‘‘pure science’’ being corrupted or perverted by its
application—the usual cover story for our refusal to think the ‘‘question of technics’’
bequeathed by Heidegger in The Question Concerning Technology and Other Essays. Rather,
it is an instance in which a supposedly autonomous entity is first posited as existing outside
the technical mediations that allow us to conceive of the entity and gain access to it and then
found to be violated when those same technical mediations denied in the original positing
are manipulated for other ends. By denying the constitutive role of technical mediation, or
technics—in my terms, by denying that molecular biology constitutes a complex material
and discursive assemblage whose discourse about life is conjoined with and dependent on
several highly advanced computational technologies—one sets up a situation in which the
technical can only return (like Freud’s ‘‘return of the repressed’’) as a corrupting manipula-
tion. In a sense never explored, molecular biology’s denial of its technological dependency is
mirrored and inverted by ALife’s explicit claim to instantiate a form of ‘‘real’’ life through
technological manipulation.

13. See Lynn Helena Caporale, Darwin in the Genome: Molecular Strategies in Biological
Evolution (New York: McGraw-Hill, 2003). Caporale also includes a chapter on ‘‘jumping
genes,’’ or transposons (i.e., genes that move from one location to another on a chromo-
some), which were a major early challenge to the orthodox view of the genome. Discovered
by Barbara McClintock, for which she received the Nobel Prize in 1983, transposons are
now the object of intense study because of their relation to genome evolution and retro-
viruses. As discussed in chapter 5, ALife experiments with mutations in the ‘‘genome’’ of
digital organisms have shown several interesting parallels.

14. Stuart A. Kau¤man, The Origins of Order: Self-Organization and Selection in Evolution
(New York: Oxford University Press, 1993), 10 (author’s emphasis).

15. See note 3, above.

16. See La technique et le temps, vol. 1, La faute d’Épiméthée (Paris: Galilée, 1994), esp. 43–
94. Unfortunately, Stiegler himself does not consider either cybernetics or artificial life in his
discussion of the technical system.

17. See ‘‘On Computable Numbers, with an Application to the Entscheidungsproblem,’’ in
Proceedings of the London Mathematical Society, ser. 2, 42 (1936): 230–265, reprinted in
The Essential Turing, ed. B. Jack Copeland (Oxford: Oxford University Press, 2004), 58–
90. Of particular importance is the passage that begins: ‘‘We may compare a man in the pro-
cess of computing a real number to a machine which is only capable of a finite number of
conditions q1; q2; . . . qR, which will be called internal states.’’
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18. As those working in neurophysiology and early neuroscience were aware, this architec-
ture bore no discernable resemblance to the architecture of the human or mammalian brain.
It seems that Turing himself was aware of this discrepancy. In ‘‘Intelligent Machinery’’
(1948), a remarkable essay never published during his lifetime, Turing postulated what he
called ‘‘unorganized machines,’’ which, unlike organized machines (i.e., Turing machines),
had the capacity to learn. In e¤ect, these unorganized machines amounted to a di¤erent
type of computational assemblage. See Christof Teuscher, Turing’s Connectionism (London:
Springer, 2002), for detailed discussion.

19. I discuss these di¤erences and the story of their rivalry in chapter 6.

20. W. Ross Ashby, ‘‘Principles of the Self-Organizing System,’’ in Principles of Self-
Organization, ed. Heinz von Foerster and George W. Zopf Jr. (New York: Pergamon Press,
1962), 270 (author’s emphasis).

21. The research on neural nets conducted in the early 1980s, particularly that of the physi-
cist J. J. Hopfield, was also crucial in this respect. See chapter 6 for discussion.

22. Unfortunately, a history of cellular automata has yet to be written. See Andrew Ilachin-
ski, Cellular Automata: A Discrete Universe (Singapore: World Scientific, 2001) for a broad
review of much CA research.

23. Stephen Wolfram, ‘‘Statistical Mechanics of Cellular Automata,’’ Reviews of Modern
Physics 55 (July 1983): 601–644.

24. Cellular Automata: Proceedings of an Interdisciplinary Workshop, Los Alamos March 7–
11, 1983, ed. Doyne Farmer, Tommaso To¤oli, and Stephen Wolfram (Amsterdam: North-
Holland, 1984).

25. Ibid., 197. The importance of this new capacity for visual simulation cannot be empha-
sized enough. As we’ll see in chapter 3, the computer played an analogous role in the devel-
opment of chaos theory. To¤oli and Margolus would go on to develop a series of CAMs,
which they describe in their influential book Cellular Automata Machines (Cambridge,
Mass.: MIT Press, 1987), and in their article ‘‘Programmable Matter: Concepts and Realiza-
tion,’’ Physica D 47 (1991): 263–272.

26. I discuss this theory at length in chapter 4.

27. See Samuel Butler, Erewhon (London: Penguin Classics, 1985), ‘‘The Book of the
Machines,’’ chaps. 23–25.

28. Hans Moravec, ‘‘Human Culture: A Genetic Takeover Underway,’’ in Artificial Life,
167–199. See also his book Mind Children (Cambridge, Mass.: Harvard University Press,
1988).

29. See N. Katherine Hayles, How We Became Posthuman (Chicago: University of Chicago
Press, 1999), Andy Clark, Natural-Born Cyborgs (Oxford: Oxford University Press, 2003),
and Francis Fukuyama, Our Posthuman Future: Consequences of the Biotechnology Revolu-
tion (New York: Farrar, Straus & Giroux, 2002).

30. This is not at all to underestimate the tremendous value of what has been achieved by
applying biological methods (mating, reproducing and evolving) to produce more e‰cient
algorithms, as in the case of genetic algorithms. See Melanie Mitchell and Stephanie Forrest,
‘‘Genetic Algorithms and Artificial Life,’’ Artificial Life 1, no. 3 (1994): 267–289.

31. See chapter 5 for an elaboration of this point.

32. Stephen Jay Gould, Wonderful Life: The Burgess Shale and the Nature of History (New
York: Norton, 1989).

33. John H. Holland, Hidden Order: How Adaptation Builds Complexity (Reading, Mass.:
Addison-Wesley, 1995), 41.

34. John H. Holland, Adaptation in Natural and Artificial Systems (Cambridge, Mass.: MIT
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mation (Paris: Hermann, 1972) and Entre le crystal et la fumée: Essai sur l’organisation du
vivant (Paris: Editions du Seuil, 1979), which make a strong case for the richness of von
Foerster’s essay in information-theoretic terms.

41. Kevin Kelly, Out of Control: The Rise of Neo-biological Civilization (Reading, Mass.:
Addison-Wesley, 1994), 453–454.

42. See Foerster’s Observing Systems (Seaside, Calif.: Intersystems Publications, 1982) and
Cybernetics of Cybernetics (Future Systems, 1995). The latter was also the name of a talk
given at the University of Illinois, Urbana.

43. Kelly’s blithe dismissal of the self-referential moment in cybernetics is highly problem-
atic on a number of counts. For a corrective view, see N. Katherine Hayles How We Became
Posthuman (Chicago: University of Chicago Press, 1999), chap. 6, ‘‘The Second Wave of
Cybernetics: From Reflexivity to Self-Organization.’’

44. Von Neumann’s paper, ‘‘First Draft of a Report on the EDVAC’’ (first circulated in
1945), lays out the first detailed diagram of the architecture of the modern digital computer.
Although von Neumann does not claim credit for the idea of the ‘‘stored program’’ (usually
given to Presper Eckert and John Mauchly, whose team was working on ENIAC when von
Neumann joined them), he did develop a formal design that would enable it to work. The
design called for an arithmetic unit for performing calculations, a control unit, a random ac-
cess memory where both data and instructions were stored, and input and output devices.

Notes to Pages 48–59 421



For further details, see Herman H. Goldstine, The Computer from Pascal to von Neumann
(Princeton: Princeton University Press, 1972), 191¤.

45. A. Newell and H. A. Simon, ‘‘Computers in Psychology,’’ in Handbook of Mathematical
Psychology, ed. R. D. Luce, R. R. Bush, and E. Galanter, vol. 1 (New York: Wiley, 1963),
385–386.

46. See Claude E. Shannon, ‘‘Programming a Computer for Playing Chess,’’ Philosophy
Magazine 41 (March 1950), 356–375. For an account of Samuel’s checkers program see
Daniel Crevier, AI: The Tumultuous History for the Search for Artificial Intelligence (New
York: Basic Books, 1993), 220–222.

47. In fact, in ‘‘The Bandwagon,’’ IEEE Transactions on Information Theory 2, no. 3 (1956),
Shannon expressed serious reservations about the widespread extension of information
theory to other disciplines.

48. In these terms one could argue that early AI was at once a progression and a regression.
(In my discussion in chapter 6, I prefer Deleuze and Guattari’s terms ‘‘decoding’’ and
‘‘recoding.’’) In any event, the Cartesian duality can be avoided by understanding the
matter-symbol distinction in the terms provided by Howard Pattee, i.e., that physical pro-
cesses are determined by the laws of physics and structures of control are determined by a
semiotic or symbolic ‘‘syntax,’’ where neither is reducible to the other and both are necessary
for a complete description of a living organism. But whereas Pattee develops his theory in
terms of the relationship of physics and biology, I understand these complementary aspects
as defining the nature of an assemblage, a term I also adopt from Deleuze and Guattari. See
Pattee, ‘‘Evolving self-reference: matter, symbols and semantic closure’’ in Communication
and Cognition—Artificial Intelligence 12, nos. 1–2 (1995): 9–27, as well as chapter 3.

49. Valentino Braitenberg, Vehicles: Experiments in Synthetic Psychology (Cambridge,
Mass.: MIT Press, 1984), 2.

50. Rendered by the artist Maciek Albrecht, the drawings ‘‘illustrate only a few of the many
marvelous ‘creatures’ inspired by Valentino Braitenberg’s text’’ (84).

Chapter 2

1. Quoted by Steve Heims, The Cybernetics Group (Cambridge, Mass.: MIT Press, 1991),
122.

2. The essay first appeared in the Bulletin of Mathematical Physics 5 (1943): 115–133, and
was republished in McCulloch’s Embodiments of Mind (Cambridge, Mass.: MIT Press,
1965), 19–39.

3. Lawrence Kubie, ‘‘Repetitive Core of Neuroses,’’ Psychoanalytic Quarterly 10, no. 23
(1941): 23–43.

4. Warren McCulloch, ‘‘The Past of a Delusion,’’ in Embodiments of Mind, 276–306.

5. All references are to The Seminar of Jacques Lacan: Book II, The Ego in Freud’s Theory
and in the Technique of Psychoanalysis 1954–1955, trans. Sylvana Tomaselli (New York:
W. W. Norton, 1988). Occasionally phrases are taken from the original French edition, Le
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