Shelley Powers, Jerry Peek, Tim O’Reilly & Mike Loukides
O’REILLY®

Unix/Programming

Unix Power Tools

By its very nature, Unix is a “power tools” environment. Even beginning Unix
lusers quickly grasp that immense power exists in shell programming, aliases and
history mechanisms, and various editing tools. Nonetheless, few users ever really
master the power available to them with Unix. There is just too much to learn!

Unix Power Tools, Third Edition, literally contains thousands of tips, scripts, and
tL(_h]’]]ClLlL‘: that make using Unix easier, more effective, and even more fun. This book is
organized into hundreds of short articles with plenty of references to other sections that
keep you flipping from new article to new article. You'll find the book hard to put down
as you uncover one interesting tip after another.

With the growing popularity of Linux and the advent of Mac OS X, Unix has metamor-
phosed into something new and exciting. With Unix no longer perceived as a difficult
operating system, more and more users are discovering its advantages for the first time.
The latest edition of this best-selling favorite is loaded with advice about almost every
aspect of Unix, covering all the new technologies that users need to know. In addition
to vital information on Linux, Mac OS X, and BSD, Unix Power Tools, Third Edition, now
offers more coverage of bash, zsh, and new shells, along with discussions about modern
utilities and applications. Several sections focus on security and Internet access, and there
is a new chapter on access to Unix from Windows, addressing the heterogeneous nature of
systems today. You'll also find expanded coverage of software installation and packaging,
as well as basic information on Perl and Python.

The book’s accompanying web site provides some of the best software available to Unix
users, which you can download and add to your own set of power tools.

Whether you are a newcomer or a Unix power user, you'll find yourself thumbing through
the gold mine of information in this new edition of Unix Power Tools to add to your store
of knowledge. Want to try something new? Check this book first, and you're sure to find a
tip or trick that will prevent you from learning things the hard way.

www.oreilly.com

US $69.95 CAN $108.95
ISBN-10: 0-596-00330-7
ISBN-13: 978-0-596-00330-2

56995
LAY LI v o O'REILLY"

THIRD EDITION

UNIX
POWER
TOOLS

Shelley Powers, Jerry Peek, Tim O’Reilly, and Mike Loukides
with Steven Champeon, Joe Johnston, and Deborah Hooker

and other authors of O’Reilly books, including Linda Mui,
Dale Dougherty, Larry Wall, Randal Schwarz, and Tom Christiansen

as well as Usenet contributors, including
Chris Torek, Jonathan Kamens, and Bruce Barnett

O’REILLY"

Beijing « Cambridge « Farnham - KéIn - Sebastopol « Taipei « Tokyo

Unix Power Tools, Third Edition
by Shelley Powers, Jerry Peek, Tim O’Reilly, Mike Loukides, and other contributors
(A complete list of contributors is given in the Preface.)

Copyright © 2003, 1997, 1993 O’Reilly Media, Inc. All rights reserved.
Bruce Barnett’s articles are copyrighted by General Electric Corp. and are reprinted by permission.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly Media, Inc. books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (safari.oreilly.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editors: Tim O’Reilly, Laurie Petrycki, and Chuck Toporek
Production Editor: Jeffrey Holcomb
Cover Designer: Edie Freedman
Interior Designer: David Futato
Printing History:
March 1993: First Edition.
August 1997: Second Edition.

October 2002: Third Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Unix Power Tools, Third Edition, the image of a hand drill, and related trade dress
are trademarks of O’Reilly Media, Inc. Many of the designations used by manufacturers and sellers to
distinguish their products are claimed as trademarks. Where those designations appear in this book,
and O’Reilly Media, Inc. was aware of a trademark claim, the designations have been printed in caps or
initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors
assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

ISBN: 978-0-596-00330-2
M] [6/09]

Table of Contents

HowtoUse ThisBook Xxvii
Preface XXiX
Partl Basic Unix Environment

1. Introductionl 3

1.1 What’s Special About Unix? 3

1.2 Power Grows on You 4

1.3 The Core of Unix 6

1.4 Communication with Unix 6

1.5 Programs Are Designed to Work Together 8

1.6 There Are Many Shells 9

1.7 Which Shell Am I Running? 11

1.8 Anyone Can Program the Shell 11

1.9 Internal and External Commands 13

1.10 The Kernel and Daemons 14

111 Filenames 16

112 Filename Extensions 17

113 Wildcards 18

1.14 The Tree Structure of the Filesystem 20

1.15 Your Home Directory 22

1.16 Making Pathnames 23

1.17 File Access Permissions 25

1.18 The Superuser (Root) 26

119 When Is a File Not a File? 27

1.20 Scripting 27

121 Unix Networking and Communications 28
122 The X Window System 30
2. GettingHelp 32
21 The man Command 32
22 whatis: One-Line Command Summaries 33
23 whereis: Finding Where a Command Is Located 33
24 Searching Online Manual Pages 34
25 How Unix Systems Remember Their Names 36
26 Which Version Am I Using? 36
27 Whattty Am1On? 37
28 Who’s On? 38
29 The info Command 38
Partll Customizing Your Environment
3. Setting Up Your Unix Shell 43
3.1 What Happens When You Log In 43
32 The Mac OS X Terminal Application 44
3.3 Shell Setup Files—Which, Where, and Why 44
34 Login Shells, Interactive Shells 48
35 What Goes in Shell Setup Files? 49
36 Tip for Changing Account Setup: Keep a Shell Ready 50
3.7 Use Absolute Pathnames in Shell Setup Files 51
38 Setup Files Aren’t Read When You Want? 51
39 Gotchas in set prompt Test 53
3.10 Automatic Setups for Different Terminals 54
3.11 Terminal Setup: Testing TERM 55
312 Terminal Setup: Testing Remote Hostname and X Display 56
3.13 Terminal Setup: Testing Port 57
3.14 Terminal Setup: Testing Environment Variables 57
3.15 Terminal Setup: Searching Terminal Table 58
3.16 Terminal Setup: Testing Window Size 58
3.17 Terminal Setup: Setting and Testing Window Name 59
318 A .cshrc.$HOST File for Per Host Setup 60
3.19 Making a “Login” Shell 61
320 RCFiles 62
321 Make Your Own Manpages Without Learning troff 65
322 Writing a Simple Manpage with the —man Macros 67
iv Table of Contents

4. Interacting with Your Environment 70

4.1 Basics of Setting the Prompt 70
4.2 Static Prompts 70
43 Dynamic Prompts 71
44 Simulating Dynamic Prompts 72
45 C-Shell Prompt Causes Problems in vi, rsh, etc. 73
46 Faster Prompt Setting with Built-ins 74
4.7 Multiline Shell Prompts 76
48 Session Info in Window Title or Status Line 77
49 A “Menu Prompt” for Naive Users 79
4.10 Highlighting and Color in Shell Prompts 79
4.11 Right-Side Prompts 81
412 Show Subshell Level with $SHLVL 82
413 What Good Is a Blank Shell Prompt? 83
4.14 dirs in Your Prompt: Better Than $cwd 84
4.15 External Commands Send Signals to Set Variables 86
4.16 Preprompt, Pre-execution, and Periodic Commands 87
4.177 Running Commands When You Log Out 89
418 Running Commands at Bourne/Korn Shell Logout 90
4.19 Stop Accidental Bourne-Shell Logouts 90
5. Getting the Most out of Terminals, xterm,
and XWindows 92
5.1 There’s a Lot to Know About Terminals 92
52 The Idea of a Terminal Database 93
5.3 Setting the Terminal Type When You Log In 95
54 Querying Your Terminal Type: qterm 97
55 Querying Your xterm Size: resize 99
56 Checklist: Terminal Hangs When I Log In 100
5.7 Find Out Terminal Settings with stty 104
5.8 Setting Your Erase, Kill, and Interrupt Characters 104
59 Working with xterm and Friends 106
510 Login xterms and rxvts 107
511 Working with Scrollbars 108
512 How Many Lines to Save? 109
513 Simple Copy and Paste in xterm 109
5.14 Defining What Makes Up a Word for Selection Purposes 110
5.15 Setting the Titlebar and Icon Text 111
516 The Simple Way to Pick a Font 112

Table of Contents v

5.17 The xterm Menus 113
518 Changing Fonts Dynamically 115
5.19 Working with xclipboard 117
520 Problems with Large Selections 119
521 Tips for Copy and Paste Between Windows 120
522 Running a Single Command with xterm —e 122
523 Don’t Quote Arguments to xterm —e 123
6. YourXEnvironment.......................... ... 124
6.1 Defining Keys and Button Presses with xmodmap 124
6.2 Using xev to Learn Keysym Mappings 127
6.3 X Resource Syntax 128
6.4 X Event Translations 130
6.5 Setting X Resources: Overview 133
6.6 Setting Resources with the —xrm Option 135
67 How —name Affects Resources 135
6.8 Setting Resources with xrdb 136
6.9 Listing the Current Resources for a Client: appres 139
6.10 Starting Remote X Clients 140
Partlll Working with Files and Directories
7. Directory Organization 147
71 What? Me, Organized? 147
72 Many Homes 148
7.3 Access to Directories 148
74 A bin Directory for Your Programs and Scripts 149
75 Private (Personal) Directories 150
76 Naming Files 150
77 Make More Directories! 151
7.8 Making Directories Made Easier 152
8. DirectoriesandFiles 154
8.1 Everything but the find Command 154
82 The Three Unix File Times 154
83 Finding Oldest or Newest Files with Is —t and Is —u 155
84 List All Subdirectories with Is —R 157
85 Thels—d Option 157
86 Colorls 158
vi Table of Contents

87 Some GNU Is Features 161
88 A csh Alias to List Recently Changed Files 162
89 Showing Hidden Files with Is —A and —a 163
810 Useful Is Aliases 163
8.11 Can’t Access a File? Look for Spaces in the Name 165
812 Showing Nonprintable Characters in Filenames 166
813 Counting Files by Types 167
8.14 Listing Files by Age and Size 168
815 newer: Print the Name of the Newest File 169
8.16 oldlinks: Find Unconnected Symbolic Links 169
817 Picking a Unique Filename Automatically 170
9. Finding Files withfind 171
9.1 How to Use find 171
9.2 Delving Through a Deep Directory Tree 173
9.3 Don’t Forget —print 175
94 Looking for Files with Particular Names 175
9.5 Searching for Old Files 175
96 Be an Expert on find Search Operators 176
9.7 The Times That find Finds 178
9.8 Exact File-Time Comparisons 179
9.9 Running Commands on What You Find 179
9.10 Using —exec to Create Custom Tests 181
9.11 Custom —exec Tests Applied 182
9.12 Finding Many Things with One Command 182
9.13 Searching for Files by Type 184
9.14 Searching for Files by Size 185
9.15 Searching for Files by Permission 185
9.16 Searching by Owner and Group 186
9.17 Duplicating a Directory Tree 187
9.18 Using “Fast find” Databases 187
9.19 Wildcards with “Fast find” Database 189
920 Finding Files (Much) Faster with a find Database 190
9.21 grepping a Directory Tree 192
9.22 lookfor: Which File Has That Word? 193
9.23 Using Shell Arrays to Browse Directories 194
924 Finding the (Hard) Links to a File 197
9.25 Finding Files with —prune 198
926 Quick finds in the Current Directory 199
Table of Contents vii

9.27
9.28

10.
10.1
10.2
10.3
10.4
10.5
10.6
10.7
10.8
10.9
10.10
10.11
10.12
10.13

11.
1.1
11.2
11.3
114
115
11.6
11.7
11.8
11.9
11.10
11.11

12.
121
12.2
12.3
124
125
126
12.7
12.8

Skipping Parts of a Tree in find

Keeping find from Searching Networked Filesystem

Linking, Renaming, and Copying Files

What’s So Complicated About Copying Files
What’s Really in a Directory?

Files with Two or More Names

More About Links

Creating and Removing Links

Stale Symbolic Links

Linking Directories

Showing the Actual Filenames for Symbolic Links
Renaming, Copying, or Comparing a Set of Files
Renaming a List of Files Interactively

One More Way to Do It

Copying Directory Trees with cp —r

Copying Directory Trees with tar and Pipes

ComparingFiles

Checking Differences with diff
Comparing Three Different Versions with diff3
Context diffs

Side-by-Side diffs: sdiff

Choosing Sides with sdiff
Problems with diff and Tabstops
cmp and diff

Comparing Two Files with comm
More Friendly comm Output
make Isn’t Just for Programmers!
Even More Uses for make

Showing What’'sinaFile

Cracking the Nut

What Good Is a cat?

“less” is More

Show Nonprinting Characters with cat —v or od —
What’s in That Whitespace?

Finding File Types

Squash Extra Blank Lines

How to Look at the End of a File: tail

199
200

201
201
203
205
208
209
210
212
212
213
213
214
216

218
220
221
224
225
225
226
227
229
230
232

234
234
236
237
239
240
241
242

viii

Table of Contents

129 Finer Control on tail 243
1210 How to Look at Files as They Grow 243
1211 GNU tail File Following 245
1212 Printing the Top of a File 246
1213 Numbering Lines 246
13. Searching ThroughFiles 247

13.1 Different Versions of grep 247

132 Searching for Text with grep 248

133 Finding Text That Doesn’t Match 249

134 Extended Searching for Text with egrep 250

135 grepping for a List of Patterns 251

136 Approximate grep: agrep 251

13.7 Search RCS Files with rcsgrep 252

138 GNU Context greps 254

13.9 A Muldline Context grep Using sed 255
1310 Compound Searches 256
13.11 Narrowing a Search Quickly 257
13.12 Faking Case-Insensitive Searches 258
13.13 Finding a Character in a Column 258
13.14 Fast Searches and Spelling Checks with “look” 259
13.15 Finding Words Inside Binary Files 259
13.16 A Highlighting grep 260
14. RemovingFiles 262

14.1 The Cycle of Creation and Destruction 262

142 How Unix Keeps Track of Files: Inodes 262

143 rm and Its Dangers 263

144 Tricks for Making rm Safer 265

145 Answer “Yes” or “No” Forever with yes 265

146 Remove Some, Leave Some 266

147 A Faster Way to Remove Files Interactively 266

148 Safer File Deletion in Some Directories 267

149 Safe Delete: Pros and Cons 268
14.10 Deletion with Prejudice: rm —f 269
1411 Deleting Files with Odd Names 269
1412 Using Wildcards to Delete Files with Strange Names 270
1413 Handling a Filename Starting with a Dash (-) 271
14.14 Using unlink to Remove a File with a Strange Name 271

Table of Contents iX

14.15 Removing a Strange File by its i-number 272
14.16 Problems Deleting Directories 272
14.17 Deleting Stale Files 274
14.18 Removing Every File but One 275
14.19 Using find to Clear Out Unneeded Files 276
15. Optimizing DiskSpace 277
15.1 Disk Space Is Cheap 277
152 Instead of Removing a File, Empty It 277
153 Save Space with “Bit Bucket” Log Files and Mailboxes 279
154 Save Space with a Link 279
155 Limiting File Sizes 280
156 Compressing Files to Save Space 281
15.7 Save Space: tar and compress a Directory Tree 284
158 How Much Disk Space? 286
159 Compressing a Directory Tree: Fine-Tuning 288
1510 Save Space in Executable Files with strip 289
1511 Disk Quotas 290
PartIV Basic Editing
16. Spell Checking, Word Counting, and Textual Analysis .. 295
16.1 The Unix spell Command 295
162 Check Spelling Interactively with ispell 296
16.3 How Do I Spell That Word? 298
16.4 Inside spell 299
165 Adding Words to ispell’s Dictionary 301
166 Counting Lines, Words, and Characters: wc 303
16.7 Find a a Doubled Word 305
168 Looking for Closure 305
169 Just the Words, Please 306
17. viTipsand Tricks 308
171 The vi Editor: Why So Much Material? 308
172 What We Cover 309
173 Editing Multiple Files with vi 309
174 Edits Between Files 311
175 Local Settings for vi 312
176 Using Buffers to Move or Copy Text 313

X Table of Contents

177 Get Back What You Deleted with Numbered Buffers 313
178 Using Search Patterns and Global Commands 314
179 Confirming Substitutions in vi 315
17.10 Keep Your Original File, Write to a New File 316
17.11 Saving Part of a File 316
1712 Appending to an Existing File 317
17.13 Moving Blocks of Text by Patterns 317
17.14 Useful Global Commands (with Pattern Matches) 318
1715 Counting Occurrences; Stopping Search Wraps 320
17.16 Capitalizing Every Word on a Line 320
17.17 Per-File Setups in Separate Files 321
17.18 Filtering Text Through a Unix Command 322
17.19 vi File Recovery Versus Networked Filesystems 324
1720 Be Careful with vi —r Recovered Buffers 325
1721 Shell Escapes: Running One Unix
Command While Using Another 326
1722 vi Compound Searches 327
1723 vi Word Abbreviation 328
1724 Using vi Abbreviations as Commands
(Cut and Paste Between vi’s) 330
17.25 Fixing Typos with vi Abbreviations 330
17.26 vi Line Commands Versus Character Commands 331
17.27 Out of Temporary Space? Use Another Directory 332
17.28 Neatening Lines 333
17.29 Finding Your Place with Undo 334
17.30 Setting Up vi with the .exrc File 334
18. Creating Custom Commandsinvi 336
18.1 Why Type More Than You Have To? 336
182 Save Time and Typing with the vi map Commands 336
183 What You Lose When You Use map! 339
184 vi @-Functions 340
185 Keymaps for Pasting into a Window Running vi 343
186 Protecting Keys from Interpretation by ex 343
18.7 Maps for Repeated Edits 345
188 More Examples of Mapping Keys in vi 347
189 Repeating a vi Keymap 348
18.10 Typing in Uppercase Without CAPS LOCK 348
18.11 Text-Input Mode Cursor Motion with No Arrow Keys 349
Table of Contents Xi

18.12 Don’t Lose Important Functions with vi Maps: Use noremap 350

18.13 vi Macro for Splitting Long Lines 350
1814 File-Backup Macros 351
19. GNUEmacs ... 353
19.1 Emacs: The Other Editor 353
192 Emacs Features: A Laundry List 354
19.3 Customizations and How to Avoid Them 358
194 Backup and Auto-Save Files 358
195 Putting Emacs in Overwrite Mode 360
196 Command Completion 360
19.7 Mike’s Favorite Timesavers 361
19.8 Rational Searches 362
19.9 Unset PWD Before Using Emacs 363
19.10 Inserting Binary Characters into Files 363
19.117 Using Word-Abbreviation Mode 364
19.12 Directories for Emacs Hacks 366
19.13 An Absurd Amusement 366
20. BatchEditing 367
20.1 Why Line Editors Aren’t Dinosaurs 367
202 Writing Editing Scripts 368
203 Line Addressing 369
204 Useful ex Commands 370
205 Running Editing Scripts Within vi 373
206 Change Many Files by Editing Just One 373
20.7 ed/ex Batch Edits: A Typical Example 375
208 Batch Editing Gotcha: Editors Fail on Big Files 376
209 patch: Generalized Updating of Files That Differ 377
2010 Quick Reference: awk 378
20.11 Versions of awk 388
21. You Can’t Quite Call ThisEditing 390
21.1 And Why Not? 390
212 Neatening Text with fmt 391
21.3 Alternatives to fmt 392
214 Clean Up Program Comment Blocks 394
21.5 Remove Mail/News Headers with behead 395
216 Low-Level File Butchery with dd 396

Xii Table of Contents

21.7 offset: Indent Text 396
21.8 Centering Lines in a File 397
21.9 Splitting Files at Fixed Points: split 398
21.10 Splitting Files by Context: csplit 401
21.11 Hacking on Characters with tr 404
2112 Encoding “Binary” Files into ASCII 406
21.13 Text Conversion with dd 410
21.14 Cutting Columns or Fields 410
21.15 Making Text in Columns with pr 411
21.16 Make Columns Automatically with column 413
21.17 Straightening Jagged Columns 415
21.18 Pasting Things in Columns 416
21.19 Joining Lines with join 417
2120 WhatIs (or Isn’t) Unique? 418
21.21 Rotating Text 419
22. Sorting 421
221 Putting Things in Order 421
222 Sort Fields: How sort Sorts 422
223 Changing the sort Field Delimiter 424
224 Confusion with Whitespace Field Delimiters 424
225 Alphabetic and Numeric Sorting 426
226 Miscellaneous sort Hints 427
227 lensort: Sort Lines by Length 429
228 Sorting a List of People by Last Name 430
PartV Processes and the Kernel

23. JobControl 435
231 Job Control in a Nutshell 435
232 Job Control Basics 437
233 Using jobs Effectively 438
234 Some Gotchas with Job Control 440
235 The “Current Job” Isn’t Always What You Expect 442
236 Job Control and autowrite: Real Timesavers! 442
237 System Overloaded? Try Stopping Some Jobs 443
238 Notification When Jobs Change State 444
239 Stop Background Output with stty tostop 444
2310 nohup 445
Table of Contents Xiii

23.11
23.12
23.13

24,
241
24.2
24.3
244
24.5
24.6
24.7
24.8
24.9
24.10
24.11
24,12
24.13
24.14
24,15
24.16
24.17
24,18
24.19
24.20
24.21
24.22

25.
25.1
25.2
25.3
254
25.5
25.6
25.7
25.8
25.9

Disowning Processes
Linux Virtual Consoles
Stopping Remote Login Sessions

Starting, Stopping, and Killing Processes
What’s in This Chapter

fork and exec

Managing Processes: Overall Concepts
Subshells

The ps Command

The Controlling Terminal

Tracking Down Processes

Why ps Prints Some Commands in Parentheses
The /proc Filesystem

What Are Signals?

Killing Foreground Jobs

Destroying Processes with kill

Printer Queue Watcher: A Restartable Daemon Shell Script

Killing All Your Processes

Killing Processes by Name?

Kill Processes Interactively

Processes Out of Control? Just STOP Them
Cleaning Up an Unkillable Process

Why You Can’t Kill a Zombie

The Process Chain to Your Window
Terminal Windows Without Shells

Close a Window by Killing Its Process(es)

Delayed Execution

Building Software Robots the Easy Way
Periodic Program Execution: The cron Facility
Adding crontab Entries

Including Standard Input Within a cron Entry
The at Command

Making Your at Jobs Quiet

Checking and Removing Jobs

Avoiding Other at and cron Jobs

Waiting a Little While: sleep

446
447
449

451
452
453
455
456
459
460
462
463
468
469
470
471
473
474
476
478
479
480
480
482
484

488
489
494
495
495
496
496
497
498

Xiv

Table of Contents

26. System Performance and Profiling 500

26.1 Timing Is Everything 500
262 Timing Programs 503
263 What Commands Are Running and How Long Do They Take? 504
264 Checking System Load: uptime 506
265 Know When to Be “nice” to Other Users...and When Not To 506
266 A nice Gotcha 510
26.7 Changing a Running Job’s Niceness 510

Part VI Scripting

27. Shell Interpretation 513
271 What the Shell Does 513
272 How the Shell Executes Other Commands 514
273 What's a Shell, Anyway? 515
274 Command Evaluation and Accidentally Overwriting Files 517
275 Output Command-Line Arguments One by One 518
276 Controlling Shell Command Searches 518
277 Wildcards Inside Aliases 520
278 eval: When You Need Another Chance 521
279 Which One Will bash Use? 523
2710 'Which One Will the C Shell Use? 524
2711 IsTt “2>&1 file” or “> file 2>&17? Why? 526
2712 Bourne Shell Quoting 526
2713 Differences Between Bourne and C Shell Quoting 531
2714 Quoting Special Characters in Filenames 533
2715 Verbose and Echo Settings Show Quoting 533
2716 Here Documents 534
2717 “Special” Characters and Operators 535
2718 How Many Backslashes? 540
28. Saving Time on the CommandLine 542
281 What’s Special About the Unix Command Line 542
282 Reprinting Your Command Line with CTRL-r 543
283 Use Wildcards to Create Files? 544
284 Build Strings with { } 545
285 String Editing (Colon) Operators 547
286 Automatic Completion 549

Table of Contents XV

28.7

28.8

28.9
28.10
28.11
28.12
28.13
28.14
28.15
28.16
28.17
28.18

29.
29.1
29.2
29.3
29.4
29.5
29.6
29.7
29.8
29.9
29.10
29.11
29.12
29.13
29.14

30.
30.1
302
303
304
305
306
307
30.8
309

Don’t Match Useless Files in Filename Completion
Repeating Commands

Repeating and Varying Commands

Repeating a Command with Copy-and-Paste
Repeating a Time-Varying Command

Multiline Commands, Secondary Prompts

Here Document Example #1: Unformatted Form Letters

Command Substitution

Handling Lots of Text with Temporary Files
Separating Commands with Semicolons
Dealing with Too Many Arguments

Expect

CustomCommands

Creating Custom Commands

Introduction to Shell Aliases

C-Shell Aliases with Command-Line Arguments
Setting and Unsetting Bourne-Type Aliases
Korn-Shell Aliases

zsh Aliases

Sourceable Scripts

Avoiding C-Shell Alias Loops

How to Put if-then-else in a C-Shell Alias

Fix Quoting in csh Aliases with makealias and quote
Shell Function Basics

Shell Function Specifics

Propagating Shell Functions

Simulated Bourne Shell Functions and Aliases

TheUseofHistory

The Lessons of History

History in a Nutshell

My Favorite Is !$

My Favorite Is !:n*

My Favorite Is "

Using !$ for Safety with Wildcards
History by Number

History Substitutions

Repeating a Cycle of Commands

553
554
554
557
558
559
560
561
563
563
565
567

571
571
572
574
575
576
576
578
579
580
581
585
586
591

593
594
595
595
596
597
597
599
604

xvi Table of Contents

30.10 Running a Series of Commands on a File 604
30.11 Check Your History First with :p 605
30.12 Picking Up Where You Left Off 606
30.13 Pass History to Another Shell 608
30.14 Shell Command-Line Editing 609
30.15 Changing History Characters with histchars 615
30.16 Instead of Changing History Characters 616
31. Moving AroundinaHurry 617
31.1 Getting Around the Filesystem 617
31.2 Using Relative and Absolute Pathnames 618
31.3 What Good Is a Current Directory? 620
314 How Does Unix Find Your Current Directory? 621
31.5 Saving Time When You Change Directories: cdpath 622
316 Loop Control: break and continue 623
31.7 The Shells’ pushd and popd Commands 624
31.8 Nice Aliases for pushd 626
31.9 Quick cds with Aliases 627
31.10 cd by Directory Initials 627
31.11 Finding (Anyone’s) Home Directory, Quickly 629
31.12 Marking Your Place with a Shell Variable 630
31.13 Automatic Setup When You Enter/Exit a Directory 630
32. Regular Expressions (Pattern Matching) 633
321 That’s an Expression 633
322 Don’t Confuse Regular Expressions with Wildcards 634
323 Understanding Expressions 635
324 Using Metacharacters in Regular Expressions 637
325 Regular Expressions: The Anchor Characters ™ and $ 638
326 Regular Expressions: Matching a Character
with a Character Set 639
327 Regular Expressions: Match Any Character with . (Dot) 640
328 Regular Expressions: Specifying
a Range of Characters with [...] 640
329 Regular Expressions: Exceptions in a Character Set 641
3210 Regular Expressions: Repeating Character Sets with * 641
3211 Regular Expressions: Matching a Specific
Number of Sets with \ { and \ } 642
3212 Regular Expressions: Matching Words with \ < and \ > 643
Table of Contents Xvii

32.13

32.14
32.15
32.16
32.17
32.18
32.19
32.20
32.21

33.
331
332
33.3
334
335
336
337
33.8

34.
34.1
342
343
344
345
34.6
34.7
348
349
34.10
34.11
34.12
34.13
34.14
34.15
34.16
34.17
34.18

Regular Expressions: Remembering Patterns
with\ (;\), and \1

Regular Expressions: Potential Problems
Extended Regular Expressions

Getting Regular Expressions Right

Just What Does a Regular Expression Match?
Limiting the Extent of a Match

I Never Meta Character I Didn’t Like

Valid Metacharacters for Different Unix Programs
Pattern Matching Quick Reference with Examples

Wildeards,

File-Naming Wildcards

Filename Wildcards in a Nutshell

Who Handles Wildcards?

What if a Wildcard Doesn’t Match?

Maybe You Shouldn’t Use Wildcards in Pathnames
Getting a List of Matching Files with grep -1
Getting a List of Nonmatching Files

nom: List Files That Don’t Match a Wildcard

The sed Stream Editor

sed Sermon"H"H"H"H”"H"HSummary
Two Things You Must Know About sed
Invoking sed

Testing and Using a sed Script: checksed, runsed
sed Addressing Basics

Order of Commands in a Script

One Thing at a Time

Delimiting a Regular Expression

Newlines in a sed Replacement

Referencing the Search String in a Replacement
Referencing Portions of a Search String

Search and Replacement: One Match Among Many
Transformations on Text

Hold Space: The Set-Aside Buffer

Transforming Part of a Line

Making Edits Across Line Boundaries

The Deliberate Scrivener

Searching for Patterns Split Across Lines

644
644
645
646
648
649
650
651
652

657
658
660
662
663
664
664
666

668
669
669
670
672
674
675
675
676
677
678
679
680
680
683
685
688
690

Xviii

Table of Contents

34.19 Multiline Delete 692
3420 Making Edits Everywhere Except... 693
3421 The sed Test Command 695
3422 Uses of the sed Quit Command 696
3423 Dangers of the sed Quit Command 696
3424 sed Newlines, Quoting, and Backslashes in a Shell Script 697
35. Shell Programming for the Uninitiated 698
351 Writing a Simple Shell Program 698
352 Everyone Should Learn Some Shell Programming 700
353 What Environment Variables Are Good For 702
354 Parent-Child Relationships 705
355 Predefined Environment Variables 705
356 The PATH Environment Variable 708
357 PATH and path 709
358 The DISPLAY Environment Variable 710
359 Shell Variables 711
3510 Test String Values with Bourne-Shell case 713
3511 Pattern Matching in case Statements 714
3512 Exit Status of Unix Processes 715
3513 Test Exit Status with the if Statement 716
3514 Testing Your Success 718
35.15 Loops That Test Exit Status 719
35.16 Set Exit Status of a Shell (Script) 720
35.17 Trapping Exits Caused by Interrupts 721
35.18 read: Reading from the Keyboard 723
35.19 Shell Script “Wrappers” for awk, sed, etc. 724
3520 Handling Command-Line Arguments in Shell Scripts 725
3521 Handling Command-Line Arguments with a for Loop 727
3522 Handling Arguments with while and shift 728
3523 Loop Control: break and continue 730
3524 Standard Command-Line Parsing 730
3525 The Bourne Shell set Command 732
3526 test: Testing Files and Strings 735
35.27 Picking a Name for a New Command 736
3528 Finding a Program Name and Giving
Your Program Multiple Names 736
3529 Reading Files with the . and source Commands 737
3530 Using Shell Functions in Shell Scripts 738
Table of Contents Xix

36. Shell Programming for the Initiated 741

36.1 Beyond the Basics 741
36.2 The Story of : # #! 742
363 Don’t Need a Shell for Your Script? Don’t Use One 743
364 Making #! Search the PATH 744
365 The exec Command 745
366 The Unappreciated Bourne Shell “:” Operator 746
36.7 Parameter Substitution 747
368 Save Disk Space and Programming:
Multiple Names for a Program 748
3.9 Finding the Last Command-Line Argument 749
36.10 How to Unset All Command-Line Parameters 749
36.11 Standard Input to a for Loop 750
36.12 Making a for Loop with Multiple Variables 750
36.13 Using basename and dirname 751
36.14 A while Loop with Several Loop Control Commands 753
36.15 Overview: Open Files and File Descriptors 753
36.16 n>&m: Swap Standard Output and Standard Error 756
36.177 A Shell Can Read a Script from Its Standard Input, but... 759
36.18 Shell Scripts On-the-Fly from Standard Input 760
3619 Quoted hereis Document Terminators: sh Versus csh 761
3620 Turn Off echo for “Secret” Answers 761
36.21 Quick Reference: expr 762
36.22 Testing Characters in a String with expr 764
36.23 Grabbing Parts of a String 764
36.24 Nested Command Substitution 768
36.25 Testing Two Strings with One case Statement 770
3626 Outputting Text to an X Window 770
36.27 Shell Lockfile 772
37. Shell Script Debugging and Gotchas 775
371 Tips for Debugging Shell Scripts 775
372 Bourne Shell Debugger Shows a Shell Variable 777
37.3 Stop Syntax Errors in Numeric Tests 777
374 Stop Syntax Errors in String Tests 778
375 Quoting and Command-Line Parameters 779
376 How Unix Keeps Time 781
377 Copy What You Do with script 782
378 Cleaning script Files 783
379 Making an Arbitrary-Size File for Testing 784

XX Table of Contents

Part VIl Extending and Managing Your Environment

38. BackingUpFiles..................................... 787
381 What Is This “Backup” Thing? 787
382 tarin a Nutshell 788
383 Make Your Own Backups 788
384 More Ways to Back Up 790
385 How to Make Backups to a Local Device 790
386 Restoring Files from Tape with tar 795
38.7 Using tar to a Remote Tape Drive 797
388 Using GNU tar with a Remote Tape Drive 798
389 On-Demand Incremental Backups of a Project 798
3810 Using Wildcards with tar 800
3811 Avoid Absolute Paths with tar 803
38.12 Getting tar’s Arguments in the Right Order 804
3813 The cpio Tape Archiver 805
38.14 Industrial Strength Backups 806
39. Creating and Reading Archives 808
39.1 Packing Up and Moving 808
39.2 Using tar to Create and Unpack Archives 809
39.3 GNU tar Sampler 813
394 Managing and Sharing Files with RCS and CVS 814
39.5 RCS Basics 815
396 List RCS Revision Numbers with rcsrevs 817
39.7 CVS Basics 818
398 More CVS 819
40. Software Installation............................ ... 822
40.1 /usr/bin and Other Software Directories 822
402 The Challenges of Software Installation on Unix 824
403 Which make? 824
404 Simplifying the make Process 824
405 Using Debian’s dselect 825
406 Installing Software with Debian’s Apt-Get 832
40.7 Interruptable gets with wget 834
408 The curl Application and One-Step GNU-Darwin
Auto-Installer for OS X 836
40.9 Installation with FreeBSD Ports 837

Table of Contents xxi

40.10 Installing with FreeBSD Packages 837
40.11 Finding and Installing RPM Packaged Software 838
a1. Perl 839
41.1 High-Octane Shell Scripting 839
412 Checking your Perl Installation 839
41.3 Compiling Perl from Scratch 841
414 Perl Boot Camp, Part 1: Typical Script Anatomy 842
415 Perl Boot Camp, Part 2: Variables and Data Types 845
41.6 Perl Boot Camp, Part 3: Branching and Looping 852
41.7 Perl Boot Camp, Part 4: Pattern Matching 854
41.8 Perl Boot Camp, Part 5: Perl Knows Unix 856
41.9 Perl Boot Camp, Part 6: Modules 859
41.10 Perl Boot Camp, Part 7: perldoc 861
4111 CPAN 862
41.12 Make Custom grep Commands (etc.) with Perl 865
41.13 Perl and the Internet 866
42. Pythonl 869
421 What Is Python? 869
422 Installation and Distutils 869
423 Python Basics 871
424 Python and the Web 876
425 urllib 876
426 urllib2 877
427 htmllib and HTMLParser 878
428 cgi 878
429 mod_python 879
4210 'What About Perl? 880
PartVIll Communication and Connectivity
43. Redirecting InputandOQutput................. ... 885
43.1 Using Standard Input and Output 885
432 One Argument with a cat Isn’t Enough 888
43.3 Send (Only) Standard Error Down a Pipe 888
434 Problems Piping to a Pager 889
435 Redirection in C Shell: Capture Errors, Too? 891
436 Safe I/0O Redirection with noclobber 892
XXii Table of Contents

43.7 The () Subshell Operators 893
438 Send Output Two or More Places 894
439 How to tee Several Commands into One Place 895
4310 Redirecting Output to More Than One Place 895
4311 Named Pipes: FIFOs 897
4312 What Can You Do with an Empty File? 898
44. Devices 900
44.1 Quick Introduction to Hardware 900
442 Reading Kernel Boot Output 900
44.3 Basic Kernel Configuration 902
444 Disk Partitioning 903
445 Filesystem Types and /etc/fstab 904
446 Mounting and Unmounting Removable Filesystems 906
447 Loopback Mounts 907
448 Network Devices—ifconfig 908
449 Mounting Network Filesystems—NFS, SMBFS 908
4410 'Win Is a Modem Not a Modem? 909
44.11 Setting Up a Dialup PPP Session 910
44.12 USB Configuration 911
44.13 Dealing with Sound Cards and Other Annoying Hardware 911
44.14 Decapitating Your Machine—Serial Consoles 912
45. Printingl 914
451 Introduction to Printing 914
452 Introduction to Printing on Unix 915
453 Printer Control with Ipc 917
454 Using Different Printers 918
455 Using Symbolic Links for Spooling 919
456 Formatting Plain Text: pr 920
457 Formatting Plain Text: enscript 922
458 Printing Over a Network 923
459 Printing Over Samba 923
4510 Introduction to Typesetting 925
4511 A Bit of Unix Typesetting History 926
4512 Typesetting Manpages: nroff 927
45.13 Formatting Markup Languages—
troff, LATEX, HTML, and So On 928
45.14 Printing Languages—PostScript, PCL, DVI, PDF 929
Table of Contents xxiii

45.15 Converting Text Files into a Printing Language 930
4516 Converting Typeset Files into a Printing Language 931
45177 Converting Source Files Automagically Within the Spooler 932
4518 The Common Unix Printing System (CUPS) 933
4519 The Portable Bitmap Package 933
46. Connectivity 936
46.1 TCP/IP—IP Addresses and Ports 936
462 /etc/services Is Your Friend 938
46.3 Status and Troubleshooting 939
464 Where, Oh Where Did That Packet Go? 941
465 The Director of Operations: inetd 942
46.6 Secure Shell (SSH) 943
46.7 Configuring an Anonymous FTP Server 944
468 Mail—SMTP, POP, and IMAP 944
469 Domain Name Service (DNS) 945
46.10 Dynamic Host Configuration Protocol (DHCP) 947
46.11 Gateways and NAT 948
46.12 Firewalls 949
46.13 Gatewaying from a Personal LAN over a Modem 950
47. Connecting to MS Windows 951
47.1 Building Bridges 951
472 Installing and Configuring Samba 951
47.3 Securing Samba 955
474 SWAT and GUI SMB Browsers 956
475 Printing with Samba 958
476 Connecting to SMB Shares from Unix 959
47.7 Sharing Desktops with VNC 959
478 Of Emulators and APIs 962
479 Citrix: Making Windows Multiuser 963
PartIX Security
48. SecurityBasics 969
481 Understanding Points of Vulnerability 969
482 CERT Security Checklists 970
483 Keeping Up with Security Alerts 971
484 What We Mean by Buffer Overflow 972

XXiv Table of Contents

485 What We Mean by DoS 973

486 Beware of Sluggish Performance 974

48.7 Intruder Detection 977

488 Importance of MOTD 978

489 The Linux proc Filesystem 979

48.10 Disabling inetd 979
4811 Disallow rlogin and rsh 980
4812 'TCP Wrappers 980
49. Root, Group, and User Management 982

49.1 Unix User/Group Infrastructure 982

49.2 When Does a User Become a User 982

49.3 TForgetting the root Password 984

49.4 Setting an Exact umask 985

49.5 Group Permissions in a Directory with the setgid Bit 985

496 Groups and Group Ownership 986

49.7 Add Users to a Group to Deny Permissions 988

49.8 Care and Feeding of SUID and SGID Scripts 989

49.9 Substitute Identity with su 990

49.10 Never Log In as root 990
49.11 Providing Superpowers with sudo 991
49.12 Enabling Root in Darwin 992
49.13 Disable logins 993
50. File Security, Ownership, and Sharing 994

50.1 Introduction to File Ownership and Security 994

50.2 Tutorial on File and Directory Permissions 994

50.3 Who Will Own a New File? 998

504 Protecting Files with the Sticky Bit 999

505 Using chmod to Change File Permission 1000

506 The Handy chmod = Operator 1001

50.7 Protect Important Files: Make Them Unwritable 1002

508 cx, cw, c—w: Quick File Permission Changes 1003

509 A Loophole: Modifying Files Without Write Access 1003

50.10 A Directory That People Can Access but Can’t List 1004
50.11 Juggling Permissions 1006
50.12 File Verification with md5sum 1007
50.13 Shell Scripts Must Be Readable and (Usually) Executable 1009
50.14 Why Can’t You Change File Ownership? 1009
50.15 How to Change File Ownership Without chown 1010
Table of Contents XXV

51.
51.1
51.2
51.3
51.4
51.5
51.6
51.7

SSH
Enabling Remote Access on Mac OS X

Protecting Access Through SSH

Free SSH with OpenSSH

SSH Problems and Solutions

General and Authentication Problems

Key and Agent Problems

Server and Client Problems

XXVi

Table of Contents

Summary Boxes

You'll see gray shaded summary
boxes all through the book. They
summarize a topic and point you to
articles with examples and further
explanation.

Article Number

The first two digits indicate in which
chapter the article resides; the last
two digits indicate the number of the
article within that chapter. The arti-
cle number is used to refer to this
article in all cross-references through-
out the book.

Cross-Reference in
a Sentence

To find out more about the topic dis-
played in gray type, see the article
referenced by the number in paren-
theses immediately following the
term.

Cross-Reference in

a Code Example

When a cross-reference occurs in an
example, the cross-referenced text
and related article number appear in
the left margin.

How to Use This Book

Dictionary-Style Headers

As in a dictionary, we show the entry that
starts or ends each page. On a lefthand page,
the first article whose title is visible is shown
in the shaded box to the upper left; on a
righthand page, the last article is shown in

the upper right.

1412

14.12

196
pern B15

We'll also give hints for:
ticle 14.12).

= Deleting all the files in a directory, except for one or two (article 14.13).

* Deleting unused (or rarely used) files

Muost tips for deleting files also work for renaming the files (if you wanr 1o
keep them): just replace the rm command with mv.

—Ml

Deleting Stale Files

Sooner or later, a lot of junk collects in your directones: files thar you don’t
really care about and never use. It's possible 1o write fin commands that will
you want w0 clean up regularly, you can add

e 253,

automarically clean these up.

some find commands ro your

Basically, all you need ro do is write a find command thar locates files based on

and use —ok of —exer @9 1o delere them. Such a

their last access time (-
command might loek like this:

X find . -atise +60 -ok ™ -f {
This locates files that haven'pteen accessed in the lase 60 days, asks if you want
to delete the file, and hefi deletes the file, (If you run it from cron, make sure
of —ok; and make absolutely sure that the find won't delete
are important.)

YOU USe —exec INSIg)
files that you t

an modify this find command to exclude (or select) files with
for example, the command below deletes old core dumps and
MU Emacs backup files (whose names end in =), but leaves all others alone:
% find . \(-name core -0 -name "*~" \) -atime 460 -ok ym -f {} \;
If you take an automated approach to deleting stale files, here are some things 1o
watch out for;
* There are plenty of files (for example, Unix urilities and log files) thar should
never be remov
any other

cer run any “automatic deletion” scnipt on dusr or £ or

m" directory.

On som ms, executing a binary executable doesn’t update the last
son 1o read these files, you can expect them
to get prery stale, even if they're used often. You don't want 1o delere them,
If you cook up a complicated enough find command, you should be able 1o
handle this automarically. Something like this should (ar least partially) do
the trick:

% find . -atime +30 | -pers -111 ...

access time, Since there's ne

-eee e ()

Part Three: Woaking with the Filesystem

Running Footer

The part title appears in the footer
on all lefthand pages; the chapter
title appears on all righthand pages
(except for the first page of any
chapter).

How to Use This Book XXvii

Globe

If you don’t want to type this
script into a file yourself, or if
we’re talking about a C pro-
gram that isn’t shown, you can
download it from the book’s |
web site. See the Preface for
full details on the content
available for download.

Screw

Be careful with this feature, or |
you might get screwed.

Pushpin
A note to keep in mind, or a |
helpful tip.

2120

unlg

Join can do a lot more than this simple example shows. See your online manual
page. The GNU version of join 15 on the CD-ROM.

—Jp

. sy .
What is (or isn’t) Unique?
wnig reads a file and compares adjacent lines (which means you'll usually want
wo sort the file first—to be sure identical lines appear next to each other). Here's
what unig can do as it watches the input lines stream by:
= With the -« option, the ourpur gers only the lines that occur just once (and
weren't repeated).

The -4 option does the opposite: the ourput gets a single copy of each line
thar was repeated (no matter how many times it was repeated).

(The GNU version also has a =D option. 1t's like =d except that all duplicare
lines are outpur.)

The default outpu (with no options) is the union of - and ~&: only the
occurrence of a line is wntten to the outpue file; any adjacent copies of a line
(second, third, etc.) are ignored.

The output with — 15 like the default, but each line 15 preceded by a count of
how many times it occurred.

Be warned:

— @ % wnig filex filez
will not print the unigque lines from both filel and file2 to stan-

Bomb

A bomb icon in the margin is a cross-

reference to another article

explains the possible trouble you |

might encounter using the ti

that

p or

script in the current article. (You can
think of the bomb as a cross-refer-

enced screw.)

Author’s Initials

The author’s full name is listed in the

Preface.

dard cutput. It will replace the contents of file2 with the unique
lines from filel!

Three more ontions control how ¢ are done:

N

#eal World-watching gemeration fail to realize is that
our American forefathers, under the tutelage of Zog,

the wizened master sage from Jeta-Reticuli, had to fight
not only the godless and effete British for our system of
self-deternined government, but also aveid the terrcrs of
hynpo-death from the dark and unclean Draco-Repitilians,

There is one subtlety to fmi to be aware of: fmi expects sentences to end with
cither a peniod, a question mark or an exclaimation point followed by two
spaces. If your document isn't marked up according to this convention, fimt can’t
differentiated between sentences and abbreviations. This is a commeon “gotcha™

thar appears frequently on Usenet.

your enline mamual page and sec the fimf equivalents below.

There are a few different versions of fmt, some fancier than others. In general,

the program assumes thar:
= Paragraphs have blank lines between them.
= If a line 15 indented, keep the indentation.

* The output lines should be about 70 characters wide. Some have a com-
mand line option to let you set this. For example, fmt -132 (or, on some ver-
sions, fat -1 132) would reformat your file to have lines with no more than

132 characrers on each,

= Irreads files or standard input, Lines will be written to standard ourput.

The GNU fmt is on the CD-ROM. There are also a couple of freely available
| . sions, Many versions of fot have options for other structured data. The —p
fut 1.4) reformats program source code. (If your fmt doesn

e

ones,

Alternatively, you can make your
with sed and nroff. Il you want to get fi

much more,
—JP, TOR, and j]

Alternatives to fmt

fmr @12 is hard 1o do withour once you've learmed

Chapter 21: You Can't Quite Call This Editing

On ax beast one version of Unix, fart is o disk imnializer (disk for-
matter) command. Don’t rn that command accidentally! Check

ment @14 scripr uses standard fmt with sed o do the same thing.) The -
option breaks long lines at whitespace bur doesn't join short lines to form longer

@3 simple (and a lietke slower) version
v (and use some nroff and/or thl cod-
ing), this will let you do automarically formarted rext rables, bullered lists, and

about it. Unfortunately, it's
not available in some versions of Unix. You can get the GNU version from the

213

How to Use This Book

Preface

A Book for Browsing

Technical books can be boring. But this is not an ordinary technical book! This
book is like an almanac, a news magazine, and a hypertext database all rolled
into one. Instead of trying to put the topics in perfect order—and expecting you
to start at the beginning, then read through to the end—we hope that you’ll
browse. Start anywhere. Read what you want. (That’s not quite true. First, you
should read this Preface and the pages before it titled How to Use This Book. They
will help you get the most out of your time with this book. Next, you may want
to skim through the Unix fundamentals in Chapter 1. Then read what you want.)

Like an Almanac

The book is full of practical information. The main purpose isn’t to teach you
concepts (though they’re in here). We’ve picked a lot of common problems, and
we’ll show you how to solve them.

Even though it’s not designed to be read in strict order, the book is organized
into chapters with related subject matter. If you want to find a specific subject,
the table of contents is still a good place to start. In addition, several of the chap-
ters contain shaded boxes. These are like small tables of contents on a particu-
lar subject, which might be even more limited than the scope of the chapter
itself. Use the Index when you’re trying to find a specific piece of information
instead of a general group of articles about a topic.

Like a News Magazine

This book has short articles. Most show a problem and a solution—in one page
or less. The articles are numbered within each chapter. Not all articles are “how-
to” tips. Some articles have background information and concepts.

XXix

LA

Like a Hypertext Database

Each article doesn’t define all the concepts and words used. Instead, it gives
you “links” that let you get more information if you need it. It’s easy to get
more information when you need it, but just skip the link if you don’t. Unix
Power Tools uses two kinds of links: those in a sentence and those in the mar-
gin. For examples, see the pages before this Preface titled How to Use This
Book.

Programs on the Web

The book describes scripts and freely available programs that are available on
the web site. An article about a program or file that’s on the web site will have a
globe icon next to it, like this. To get one of these programs, visit the web site:

http://www.oreilly.com/catalog/upt3/

About Unix Versions

There are lots of similarities between different versions of Unix. But it’s almost
impossible to write a book that covers every detail of every version correctly.
Where we know there might be big differences or problems, we’ll print a note in
the text. Other places, we’re forced to use “weasel words” like “Some versions of
XXX will do...,” without telling you exactly which versions. When you see those
weasel words, what can you do?

* If the command or feature won’t destroy anything when it doesn’t work, try
it! For instance, don’t experiment with rm, the command that removes files.
But cat, a command that shows files, probably won’t hurt anything if some
feature doesn’t work with your version.

* Look at the online manual or check your vendor’s latest printed manuals.
However, even these can be wrong. For instance, your system administrator
may have installed a local version of a command that works differently—but
not updated the online documentation. Be careful with “generic” manuals,
the kind you buy at a bookstore; there are lots of versions of Unix, and the
manual may not match your version closely enough.

* Ask your system administrator or another “guru” for help before you use a
command that might be dangerous.

XXX

Preface

Cross-References

If a cross-reference is to a single word—for example, a command name like this:
tar—the cross reference is probably to an article that introduces that command.
Cross references to phrases—like this: from a parent process to child process—
are to an article that explains more about the concept or problem printed in

gray.
Cross references don’t necessarily give a complete list of all articles about a

topic. We’ve tried to pick one or a few articles that give the best information. For
a more complete list, use the Index.

What’s New in the Third Edition

There have been some big changes in Unix since we wrote the first edition in the
early 1990s, and there’s been a surprising number of changes since the second
edition, released in the late 1990s. Well over half of the articles have been
revised, and we’ve expanded our coverage of the so-called small Unix flavors:
Linux, FreeBSD, Mac OS X’s Darwin, and so on.

A major change to this edition was the addition of several new topics relevant to
today’s connected world, including protecting your machine from attack and
several articles related to Internet protocols. We’ve also added chapters with
coverage of two of the more popular languages used in Unix: Perl and Python.

Typefaces and Other Conventions

Italic
Is used for the names of all Unix utilities, switches, directories, and filena-
mes and to emphasize new terms and concepts when they are first intro-
duced. It’s also used in programs and examples to explain what’s happening
or what’s been left out at the ... marks.

Bold
Is used occasionally within text to make words easy to find—just like movie
stars’ names in the People section of your local newspaper.

Constant width
Is used for sample code fragments and examples. A reference in text to a
word or item used in an example or code fragment is also shown in con-
stant width font.

Constant width bold
Is used in examples to show commands or text that would be typed in liter-
ally by the user.

Preface XXXi

Constant width italic, bold italic
Are used in code fragments and examples to show variables for which a con-
text-specific substitution should be made. (The variable filename, for exam-
ple, would be replaced by some actual filename.)

function(n)
Is a reference to a manual page in Section n of the Unix programmer’s man-
ual. For example, getopt(3) refers to a page called getopt in Section 3.

% Is the C-shell prompt.

$ Is the Bourne-shell prompt.

)
Is a “smiley face” that means “don’t take this seriously.” The idea started on
Usenet and spread.

Stands for text (usually computer output) that’s been omitted for clarity or
to save space.

CTRL
Starts a control character. To create CTRL-d, for example, hold down the
“control” key and press the “d” key. Control characters are not case sensi-
tive; “d” refers to both the upper- and lowercase letter. The notation D also
means CTRL-d. Also, you’ll sometimes see the key sequence in bold (for
example, CTRL-d is used when we want to make it clear exactly what you
should type.

Is used in some examples to represent a space chara. cter.

TAB
Is used in some examples to represent a TAB character.

The Authors

This book is the effort of several authors who have contributed to one edition or
another since the first edition was released. Much of the material for the first and
second edition came from three authors: Jerry Peek, Tim O’Reilly, and Mike
Loukides. Their work is still present, though edited for current times. This third
edition brought in four new authors, who edited the previous material, in addi-
tion to contributing new articles: Shelley Powers, Steven Champeon, Deborah
Hooker, and Joe Johnston.

In addition, we also had several other authors contribute to all three editions—
either people who originally posted a good tip to Usenet, authors of Nutshell
Handbooks who let us take material from their books, or authors of software
packages who let us take a few paragraphs from README files or other docu-
mentation.

XXXii

Preface

Here’s a list of authors and their initials:

AD Angus Duggan JIK Jonathan I. Kamens
AF AFleen Frisch M Jeff Moskow

AN Adrian Nye JpP Jerry Peek

BA Brandon S. Allbery JJ Joe Johnston

BB Bruce Barnett]S John Strang

BR Bill Rosenblatt LK Lar Kaufman

CT Chris Torek LL Linda Lamb

DC Debra Cameron LM Linda Mui

DD Dale Dougherty LW Larry Wall

DG Daniel Gilly MAL Maarten Litmaath
DH Dave Hitz ML Mike Loukides
DJPH Deborah Hooker MS Mike Stansbery
DL Don Libes RS Randal Schwartz
DR Daniel Romike SP Shelley Powers
DS Daniel Smith SG Simson Garfinkel
EK Eileen Kramer SC Steve Champeon
EP Eric Pearce SW Sun Wu

GS Gene Spafford TC Tom Christiansen
GU Greg Ubben TOR Tim O’Reilly

HS Henry Spencer UM Udi Manber

The Fine Print

Where we show an article from an author on Usenet, that person may not have
thought of the idea originally, but may just be passing on something he or she
learned. We attribute everything we can.

Request for Comments

Please tell us about any errors you find in this book or ways you think it could be
improved. Our U.S. mail address, phone numbers, and electronic mail address
are as follows:

O’Reilly & Associates, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international/local)

(707) 829-0104 (fax)
bookquestions@oreilly.com (email)

Preface XXXiii

Acknowledgments for the
First Edition

This book wouldn’t exist without Ron Petrusha. As the technical book buyer at
Golden-Lee, a major book distributor, he discovered us soon after we started
publishing Nutshell Handbooks in the mid-1980s. He was one of our early
boosters, and we owed him one. So when he became an editor at Bantam (whose
computer-book publishing operations were later acquired by Random House),
we took him seriously when he started asking if there was anything we could do
together.

At first nothing seemed to fit, since by that time we were doing pretty well as a
publisher. We needed to find something that we could do together that might
sell better than something that either company might do alone. Eventually, Ron
suggested that we copublish a Unix book for Bantam’s “Power Tools” series.
This made sense for both of us. It gave Bantam access to our Unix expertise and
reputation, and it gave us a chance to learn from Bantam about the mass market
bookstore trade, as well as build on their successful “Power Tools” series.

But what would the book contain? There were two features of Bantam’s original
DOS Power Tools that we decided to emulate: its in-depth treatment of under-
documented system features and its large collection of freely available scripts
and utilities. However, we didn’t want to write yet another book that duplicated
the format of many others on the market, in which chapters on each of the major
Unix tools follow one another in predictable succession. Our goal was certainly
to provide essential technical information on Unix utilities, but more impor-
tantly, to show how the utilities can be combined and used to solve common
(and uncommon) problems.

Similarly, because we were weary of the multitude of endless tutorial books
about Unix utilities, we wanted to keep the tone brisk and to the point. The
solution I came up with, a kind of “hypertext in print,” actually owes a lot to
Dale Dougherty. Dale has been working for several years on hypertext and
online information delivery, and I was trying to get him to work with me on this
project. So I tried to imagine the kind of book that he might like to create. (We
have a kind of friendly rivalry, in which we try to leapfrog each other with ideas
for new and better books!) Dale’s involvement never went far beyond the early
brainstorming stage, but the book still bears his indirect stamp. In some of the
first books he wrote for me, he introduced the idea that sidebars—asides that
illuminate and expand on the topic under discussion—could be used effectively
in a technical book. Well, Dale, here’s a book that’s nothing but sidebars!

Dale, Mike Loukides, and I worked out the basic outline for the book in a week
or two of brainstorming and mail exchanges. We thought we could throw it
together pretty quickly by mining many of our existing books for the tips and
tricks buried in them. Unfortunately, none of us was ever able to find enough

XXXiv

Preface

time, and the book looked to be dying a slow death. (Mike was the only one who
got any writing done.) Steve Talbott rescued the project by insisting that it was
just too good an idea to let go; he recruited Jerry Peek, who had just joined the
company as a writer and Unix consultant/tools developer for our production
department.

Production lost the resulting tug of war, and Jerry plunged in. Jerry has forgot-
ten more Unix tips and tricks than Mike, Dale, or I ever knew; he fleshed out our
outline and spent a solid year writing and collecting the bulk of the book. I sat
back in amazement and delight as Jerry made my ideas take shape. Finally,
though, Jerry had had enough. The book was just too big, and he’d never signed
on to do it all alone! (It was about 1,000 pages at that point, and only half done.)
Jerry, Mike, and I spent a week locked up in our conference room, refining the
outline, writing and cutting articles, and generally trying to make Jerry feel a lit-
tle less like Sisyphus.

From that point on, Jerry continued to carry the ball, but not quite alone, with
Mike and I playing “tag team,” writing and editing to fill in gaps. I'm especially
grateful to Mike for pitching in, since he had many other books to edit and this
was supposed to be “my” project. I am continually amazed by the breadth of
Mike’s knowledge and his knack for putting important concepts in perspective.

Toward the end of the project, Linda Mui finished up another book she was
working on and joined the project, documenting many of the freely available
utilities that we’d planned to include but hadn’t gotten around to writing up.
Linda, you really saved us at the end!

Thanks also to all the other authors, who allowed us to use (and sometimes
abuse!) their material. In particular, we’re grateful to Bruce Barnett, who let us
use so much of what he’s written, even though we haven’t yet published his
book, and Chris Torek, who let us use many of the gems he’s posted to the Net
over the years. (Chris didn’t keep copies of most of these articles; they were
saved and sent in by Usenet readers, including Dan Duval, Kurt J. Lidl, and
Jarkko Hietaniemi.)

Jonathan Kamens and Tom Christiansen not only contributed articles but read
parts of the book with learned and critical eyes. They saved us from many a
“power goof.” If we’d been able to give them enough time to read the whole
thing, we wouldn’t have to issue the standard disclaimer that any errors that
remain are our own. H. Milton Peek provided technical review and proofread-
ing. Four sharp-eyed Usenet readers helped with debugging: Casper Dik of the
University of Amsterdam, Byron Ratzikis of Network Appliance Corporation,
Dave Barr of the Population Research Institute, and Duncan Sinclair.

In addition to all the acknowledged contributors, there are many unacknowl-
edged ones—people who have posted questions or answers to the Net over the
years and who have helped to build the rich texture of the Unix culture that

Preface XXXV

we've tried to reflect in this book. Jerry also singles out one major contributor to
his own mastery of Unix. He says: “Daniel Romike of Tektronix, Inc. (who
wrote articles 28.5 and 30.8 in the early 1980s, by the way) led the first Unix
workshop T attended. He took the time to answer a ton of questions as I taught
myself Unix in the early 1980s. I'm sure some of the insights and neat tricks that
I thought I've figured out myself actually came from Dan instead.”

James Revell and Bryan Buus scoured “the Net” for useful and interesting free
software that we weren’t aware of. Bryan also compiled most of the software he
collected so we could try it out and gradually winnow down the list.

Thanks also to all of the authors of the software packages we wrote about. With-
out their efforts, we wouldn’t have had anything to write about.

Jetf Moskow of Ready-to-Run Software solved the problem we had been putting
off to the end: that of packaging up all the software for the original disk, porting
it to the major Unix platforms, and making it easy to install. This was a much
bigger job than we’d anticipated, and we could never have done it without Jeff
and the RTR staff. We might have been able to distribute source code and bina-
ries for a few platforms, but without their porting expertise, we could never have
ported all these programs to every supported platform. Eric Pearce worked with
RTR to pre-master the software for CD-ROM duplication, wrote the installation
instructions, and made sure that everything came together at the end! (Eric,
thanks for pitching in at the last minute. You were right that there were a lot of
details that might fall through the cracks.)

Edie Freedman worked with us to design the format of the book—quite an
achievement considering everything we wanted the format to do! She met the
challenge of presenting thousands of inline cross-references without distracting
the reader or creating a visual monstrosity. What she created is as attractive as it
is useful—a real breakthrough in technical book design, and one that we plan to
use again and again!

Lenny Muellner was given the frightful task of implementing all of our ideas in
troff—no mean feat, and one that added to his store of grey hair.

Eileen Kramer was the copyeditor, proofreader, and critic who made sure that
everything came together. For a thousand-plus page book with multiple authors,
it’s hard to imagine just how much work that was.

Ellie Cutler wrote the index; Chris Reilley created the illustrations. Additional
administrative support was provided by Bonnie Hyland, Donna Woonteiler, and
Jane Appleyard.

—Tim O’Reilly

XXXVi

Preface

Acknowledgments for the
Second Edition

After teaching myself about Unix for the past 15 years, I'm off to graduate school
in Computer Science. Frank Willison, O’Reilly’s Editor-in-Chief, fit this project
into the summer between leaving my position at ORA and starting school. Frank
didn’t just give me something to do in the summer: the royalties should help to
pay for my coursework. (So, buy this book and support a student! ;-)) Gigi
Estabrook edited this edition and fielded my zillions of questions along the way.
Many thanks to Gigi, Frank, and ORA’s Production staff. Clairemarie Fisher
O’Leary and Nancy Wolfe Kotary shared the jobs of production editor and
project manager. Madeleine Newell and Kismet McDonough-Chan provided
production support. Sheryl Avruch, Nicole Gipson Arigo, and Danny Marcus
provided quality control checks. Lenny Muellner provided extensive troff assis-
tance and technical support. Chris Reilley created the technical illustrations.

When time was short, I got expert advice from Arnold Robbins, the maintainer
of the GNU gawk utility, and coauthor of O’Reilly’s sed & awk, Second Edition.
He reviewed parts of the book and gave me thorough comments.

I'd also like to thank all the readers who took a moment to send us comments
and corrections. I read every message, and the ideas in them made a big differ-
ence in this second edition. Three peoples’ comments were extensive enough to
mention specially. Ted Timar spotted problems that showed his deep knowledge
of Unix. I'm glad he still found the book useful enough to read it—and to spot
goofs in some of our hairier tips. Andrew T. Young sent two long email mes-
sages: one a few years ago and another after I contacted him. He caught plenty of
techno-goofs and also sent fixes for them. Andy doesn’t know just Unix: his back-
ground in English helped to sharpen a few rough spots in our folksy writing style.
Finally, Greg Ubben sent a 15-page (!) email message that took me most of a week
to work through. When I tracked him down, three years after writing his mes-
sage, he was even more helpful. Greg wrote enough to make into a small book—
and, in fact, agreed to write a few new articles, too. He’s an expert in sed and reg-
ular expressions (and Unix) who taught me a lot in our month of email messages
back and forth. T deeply appreciate all that he’s given to this book’s readers.

—Jerry Peck, jpeek@jpeek.com

Acknowledgments for the
Third Edition

Though much of this book is new material or has been newly updated for
changes in Unix, there is a core that remains from previous editions. The fact
that this material has continued to be fresh, useful, and relevant through the

Preface XXXVii

years is a testament to the abilities—technical and writing—of the original
authors. These include Tim O’Reilly and Jerry Peek, among others previously
mentioned, who contributed to past editions. We, the authors of this current
edition, thank you. We had a number of terrific reviewers comment on this ver-
sion of the text. We appreciate the work of Dave Carrano, Chris DiBona,
Schuyler Erle, Jeff Kawski, Werner Klauser, Adam Langley, Arnold Robbins,
Jaron Rubenstein, Kevin Schmidt, Jay Sekora, Joe Sloan, Nat Torkington, and
Jay Ts. Thanks also to Stephen Samuel.

In addition, I would like to thank those who contribute their time and efforts on
Unix systems, particularly the open source versions of Unix such as FreeBSD,
Linux, and now Darwin.

—Shelley Powers

I’d just like to thank you all for inviting me to contribute to a book that helped
me learn Unix a long time ago. It’s nice to be able to give something back, given
how much the book helped me back in 1994 when I was just another Unix new-

bie.
—Steven Champeon

Thank you, Amy and Joel, for the input and review and just for putting up with
me through it, and Jasper, for being my strength when I needed it.

—Deborah Hooker

XXXViii

Preface

Part |

Basic Unix Environment

Part I contains the following chapters:

Chapter 1, Introduction
Chapter 2, Getting Help

1.1

Introduction

What’s Special About Unix?

If we were writing about any other operating system, “power tools” might mean
“nifty add-on utilities to extend the power of your operating system.” That
sounds suspiciously like a definition of Unix: an operating system loaded with
decades’ worth of nifty add-on utilities.

Unix is unique in that it wasn’t designed as a commercial operating system
meant to run application programs, but as a hacker’s toolset, by and for pro-
grammers. In fact, an early release of the operating system went by the name
PWB (Programmer’s Work Bench).

When Ken Thompson and Dennis Ritchie first wrote Unix at AT&T Bell Labs, it
was for their own use and for their friends and coworkers. Utility programs were
added by various people as they had problems to solve. Because Bell Labs wasn’t
in the computer business, source code was given out to universities for a nomi-
nal fee. Brilliant researchers wrote their own software and added it to Unix in a
spree of creative anarchy, which has been equaled only with Linux, in the intro-
duction of the X Window System (1.22), and especially the blend of Mac and
Unix with Darwin included in the Mac OS X.

Unlike most other operating systems, where free software remains an unsup-
ported add-on, Unix has taken as its own the work of thousands of independent
programmers. During the commercialization of Unix within the past several
years, this incorporation of outside software has slowed down for larger Unix
installations, such as Sun’s Solaris and HP’s hp-ux, but not stopped entirely.
This is especially true with the newer lighter versions of Unix, such as the vari-
ous flavors of Linux and Darwin.

Therefore, a book on Unix inevitably has to focus not just on add-on utilities
(though we do include many of those), but on how to use clever features of the
many utilities that have been made part of Unix over the years.

1.2

1.2

Unix is also important to power users because it’s one of the last popular operat-
ing systems that doesn’t force you to work behind an interface of menus, win-
dows, and mouse with a “one-size(-doesn’t)-fit-all” programming interface. Yes,
you can use Unix interfaces with windows and menus—and they can be great
time savers in a lot of cases. But Unix also gives you building blocks that, with
some training and practice, will give you many more choices than any software
designer can cram onto a set of menus. If you learn to use Unix and its utilities
from the command line, you don’t have to be a programmer to do very powerful
things with a few keystrokes.

So, it’s also essential that this book teach you some of the underlying principles
that make Unix such a tinkerer’s paradise.

In the body of this book, we assume that you are already moderately familiar
with Unix—a journeyman hacker wanting to become a master. But at the same
time, we don’t want to leave beginners entirely at sea; so in this chapter, we
include some fundamental concepts. We’ve tried to intersperse some simple tips
and tricks to keep things interesting, but the ratio of concept articles to tips is
much higher than in any other part of the book. The concepts covered are also
much more basic. If you aren’t a beginner, you can safely skip this chapter,
though we may bounce you back here if you don’t understand something later in
the book.

Don’t expect a complete introduction to Unix—if you need that, buy an intro-
ductory book. What you’ll find here is a selection of key concepts that you’ll
need to understand to progress beyond the beginner stage, as well as answers to
frequently asked questions and problems. In some ways, consider this introduc-
tion a teaser. If you are a beginner, we want to show you enough of Unix to whet
your appetite for more.

Also, don’t expect everything to be in order. Because we don’t want you to get in
the habit of reading through each chapter from beginning to end, as in most
books, the articles in this chapter are in loose order. We've tried not to make you
jump around too much, but we’ve also avoided a lot of the transitional material
that makes reading most books a chore.

—TOR, JP, and SP

Power Grows on You

It has been said that Unix is not an operating system as much as it is a way of
thinking. In The UNIX Programming Environment, Kernighan and Pike write
that at the heart of the Unix philosophy “is the idea that the power of a system
comes more from the relationships among programs than from the programs
themselves.”

Part I: Basic Unix Environment

Most of the nongraphical utility programs that have run under Unix since the
beginning, some 30 years ago, share the same user interface. It’s a minimal inter-
face, to be sure—but one that allows programs to be strung together in pipe-
lines to do jobs that no single program could do alone.

Most operating systems—including modern Unix and Linux systems—have
graphical interfaces that are powerful and a pleasure to use. But none of them
are so powerful or exciting to use as classic Unix pipes and filters, and the pro-
gramming power of the shell.

A new user starts by stringing together simple pipelines and, when they get long
enough, saving them for later execution in a file (1.8), alias (29.2), or function
(29.11). Gradually, if the user has the right temperament, he gets the idea that the
computer can do more of the boring part of many jobs. Perhaps he starts out
with a for loop (289) to apply the same editing script to a series of files. Condi-
tions and cases soon follow and before long, he finds himself programming.

On most systems, you need to learn consciously how to program. You must take
up the study of one or more programming languages and expend a fair amount
of concentrated effort before you can do anything productive. Unix, on the other
hand, teaches programming imperceptibly—it is a slow but steady extension of
the work you do simply by interacting with the computer.

Before long, you can step outside the bounds of the tools that have already been
provided by the designers of the system and solve problems that don’t quite fit
the mold. This is sometimes called hacking; in other contexts, it is called “engi-
neering.” In essence, it is the ability to build a tool when the right one is not
already on hand.

No single program, however well thought out, will solve every problem. There is
always a special case, a special need, a situation that runs counter to the
expected. But Unix is not a single program. It is a collection of hundreds of
them, and with these basic tools, a clever or dedicated person can meet just
about any computing problem.

Like the fruits of any advanced system, these capabilities don’t fall unbidden into
the hands of new users. But they are there for the reaching. And over time, even
those users who want a system they don’t have to think about will gradually
reach out for these capabilities. Faced with a choice between an hour spent on a
boring, repetitive task and an hour putting together a tool that will do the task in
a flash, most of us will choose the latter.

—TOR

Chapter 1: Introduction 5

1.2

13

1.3

1.4

The Core of Unix

In recent times, more attention has been paid on the newer and more light-
weight varieties of Unix: FreeBSD, Linux, and now Darwin—the version of BSD
Unix that Apple used as the platform for the new Mac OS X. If you’ve worked
with the larger Unix versions, you might be curious to see how it differs within
these new environments.

For the most part, basic Unix functionality differs very little between implemen-
tations. For instance, I’ve not worked with a Unix box that doesn’t have vi (21.7)
installed. Additionally, I’ve also not found any Unix system that doesn’t have
basic functionality, such as traversing directories with cd (1.16) or getting addi-
tional help with man (2.1).

However, what can differ between flavors of Unix is the behavior of some of the
utilities and built-in commands, as well as the options. Even within a specific
Unix flavor, such as FreeBSD, installations can differ because one installation
uses the built-in version of a utility such as make (40.3) and another installation
has a GNU version of the same application.

An attempt was made to create some form of standardization with the POSIX
effort. POSIX, which stands for Portable Operating System Interface, is an IEEE
standard to work towards application interoperability. With this, C programs
written on one flavor of Unix should work, with minimum modification, on
another flavor of Unix.

Unfortunately, though the POSIX effort has had some impact on interoperabil-
ity, there still are significant differences between Unix versions. In particular,
something such as System V Unix can differ considerably from something such
as Darwin.

However, there is stability in this seeming chaos: for the most part, the basic
Unix utilities and commands behave the same in all Unix flavors, and aside from
some optional differences, how a command works within one environment is
exactly the same as in another environment. And if there are differences, using
the facilities described in Chapter 2 should help you resolve these quickly.

—SP

Communication with Unix

Probably the single most important concept for would-be power users to grasp is
that you don’t “talk” directly to the Unix operating system. Instead, you talk to a
program—and that program either talks to Unix itself or it talks to another pro-
gram that talks to Unix. (When we say “talk” here, we mean communication
using a keyboard and a mouse.)

Part I: Basic Unix Environment

222113

There are three general kinds of programs you’ll probably “talk” to:

* The program called the shell (27.1). A shell is a command interpreter. Its main
job is to interpret the commands you type and to run the programs you
specify in your command lines. By default, the shell reads commands from
your tty and arranges for other programs to write their results there. The
shell protects Unix from the user (and the user from Unix). It’s the main
focus of this book (and the rest of this article).

* An interactive command, running “inside” a tty, that reads what you type
directly. These take input directly from the user, without intervention from
the shell. The shell’s only job is to start them up. A text editor, a mail pro-
gram, or almost any application program (such as word processing) includes
its own command interpreter with its own rules. This book covers a few
interactive commands—such as the vi editor—but its main focus is the shell
and “noninteractive” utilities that the shell coordinates to do what needs
doing.

* A Graphical User Interface (GUI) with a desktop, windows, and so on. On
Unix, a GUI is implemented with a set of running programs (all of which
talk to Unix for you).

Unix was around long before GUIs were common, and there’s no need to
use a GUI to use Unix. In fact, Unix started in the days of teletypes, those
clattering printing devices used to send telegrams. Unix terminals are still
referred to as teletypes or ttys (27).

The core of the Unix operating system is referred to as the kernel (1.10). Usually,
only programs talk to the kernel (through system calls). Users talk to one of the
three previous types of programs, which interprets their commands and either
executes them directly or passes them on to other programs. These programs
may, in turn, request lower-level services from the kernel.

Let’s look at a specific example of using the shell. When you type a command to
display files whose four-character filenames start with the letter “m”:

% cat m?2?

it is the shell that finds the filenames, makes a complete list of them, and calls
the cat (12.2) command to print the expanded list. The cat command calls on the
kernel to find each file on the disk and print its contents as a stream of charac-
ters on the display.

Why is this important? First of all, you can choose between several different
shells (1.6), each of which may have different rules for interpreting command
lines.

Second, the shell has to interpret the command line you type and package it up
for the command you are calling. Because the shell reads the command line first,
it’s important to understand just how the shell changes what it reads.

Chapter 1: Introduction 7

1.4

1.5

1.5

For example, one basic rule is that the shell uses “whitespace” (spaces or tabs) to
separate each “argument” of a command. But sometimes, you want the shell to
interpret its arguments differently. For example, if you are calling grep (13.1), a
program for searching through files for a matching line of text, you might want
to supply an entire phrase as a single argument. The shell lets you do this by
quoting (27.12) arguments. For example:

% grep "Power Tools" articles/*

Understanding how the shell interprets the command line, and when to keep it
from doing so, can be very important in a lot of special cases, especially when
dealing with wildcards (1.13), like the * (asterisk) in the previous example.

You can think of the relationship of the kernel, the shell, and various Unix utili-
ties and applications as looking like Figure 1-1.

User
4
user interactive
commands commands handle
and data own input as well
as output
prompt | g output output
Shell
transfer Is| ooo Vi ooo
built-in commands of control
A
requests for
v services
UNIX Kernel and Device Drivers

Figure 1-1. Relationship of kernel, shell, utilities, and applications

Figure 1-1 shows that a user can interact with the shell, as well as directly with
interactive commands like cat and Is. The shell transfers control to the com-
mands it starts for you—then those commands may write the output you see.
The shell also has some built-in commands (1.9) that run directly within the shell
itself. All of the commands shown in Figure 1-1 interact directly with Unix itself.

—TOR and JP

Programs Are Designed to Work Together

As pointed out by Kernighan and Pike in The UNIX Programming Environment,
there are a number of principles that distinguish the Unix environment. One key
concept is that programs are tools. Like all good tools, they should be specific in
function, but usable for many different purposes.

Part I: Basic Unix Environment

1.6

In order for programs to become general-purpose tools, they must be data inde-
pendent. This means three things:

1. Within limits, the output of any program should be usable as the input to
another.

2. All of the information needed by a program should be either contained in
the data stream passed to it or specified on the command line. A program
should not prompt for input or do unnecessary formatting of output. In
most cases, this means that Unix programs work with plain text files that
don’t contain “nonprintable” or “control” characters.

3. If no arguments are given, a program should read the standard input (usu-
ally the terminal keyboard) and write the standard output (usually the termi-
nal screen).

Programs that can be used in this way are often called filters.

One of the most important consequences of these guidelines is that programs
can be strung together in “pipelines” in which the output of one program is used
as the input of another. A vertical bar (|) represents pipe and means “take the
output of the program on the left and feed it into the program on the right.”

For example, you can pipe the output of a search program to another program
that sorts the output, and then pipe the result to the printer program or redirect
it to a file (43.1).

Not all Unix programs work together in this way. An interactive program like
the Emacs editor (19.1) generally doesn’t read from or write to pipes you'd create
on the command line. Instead, once the shell has started Emacs, the editor
works independently of the shell (1.4), reading its input and output directly from
the terminal. And there are even exceptions to this exception. A program like less
(12.3) can read its standard input from a pipe and still interact with you at the
keyboard. It does that by reading directly from your tty (2.7).

—TOR

There Are Many Shells

With most operating systems, the command intepreter is built in; it is an inte-
gral part of the operating system. With Unix, your command interpreter is just
another program. Traditionally, a command interpreter is called a “shell,” per-
haps because it protects you from the underlying kernel—or because it protects
the kernel from you!

In the early 1980s, the most common shells were the Bourne shell (sh) and the C
shell (csh). The Bourne shell (3.3) (named after its creator, Steve Bourne) came
first. It was excellent for shell programming (1.8). But many Unix users (who were
also writing programs in the C language) wanted a more familiar programming

Chapter 1: Introduction 9

1.6

1.6

syntax—as well as more features for interactive use. So the C shell came from
Berkeley as part of their Unix implementation. Soon (on systems that gave you
the choice, at least) csh was much more popular for interactive use than sh. The
C shell had a lot of nice features that weren’t available in the original Bourne
shell, including job control (23.1) and history (30.2). However, it wasn’t hard for a
shell programmer or an advanced user to push the C shell to its limits.

The Korn shell (also named after its creator, David Korn) arrived in the mid-
1980s. The ksh is compatible with the Bourne shell, but has most of the C shell’s
features plus features like history editing (30.14), often called command-line edit-
ing. The Korn shell was available only with a proprietary version of Unix,
System V—but now a public-domain version named pdksh is widely available.

These days, most original C shell users have probably switched to tcsh (pro-
nounced “T-shell”). It has all the features of csh and more—as well as fewer mis-
features and outright bugs.

The “Bourne-again” shell, bash, is from the Free Software Foundation. It’s fairly
similar to the Korn shell. It has most of the C shell’s features, plus command-line
editing and a built-in help command. The programming syntax, though, is much
more like the original Bourne shell—and many systems (including Linux) use
bash in place of the original Bourne shell (but still call it sh).

The Z shell, zsh, is an interesting hybrid. It tries to be compatible with most fea-
tures of all the other shells, with compatibility modes and a slew of options that
turn off conflicting features. In its soul, though, zsh has a different way of doing
some things. It’s been accused of feature creep. But zsh users love its flexibility.

There are other shells. If you’re a fan of the Bell Labs research operating system
named Plan 9 (actually, Plan 9 from Outer Space), you’ll be happy to know that
its shell, rc, has been ported to Unix. If you program in Tcl, you’ll probably be
familiar with tclsh, which lets you intermix Unix commands with Tcl commands.
(And we can’t forget wish, the shell that’s a superset of tclsh: it uses Tcl/Tk com-
mands to let you build graphical interfaces as you go.) Least—but certainly not
last—if you’re a minimalist who needs the original sh, a newer shell named ash
emulates the late-1980s Bourne shell.

In this book, we try to be as generic as we can. Where we need to get specific,
many examples are shown in the style of both the Bourne shell and the C shell—
for instance, we’ll often show Bourne-shell functions side-by-side with C-shell
aliases. Because bash and ksh can read scripts written for the original Bourne
shell, we use original sh syntax to make our shell programming as portable as
possible.

Where we talk about “the Bourne shell” or sh, it’s usually a safe bet that the
information applies to bash and ksh too. In the same way, “the C shell” gener-
ally also means tcsh.

—JP and ML

10

Part I: Basic Unix Environment

1.7

1.8

Which Shell Am | Running?

You can usually tell which family your shell belongs to by a character in the
prompt it displays. Bourne-type shells, such as bash, usually have $ in the
prompt. The C shell uses % (but tcsh users often use >).

If your shell has superuser (1.18) privileges, though, the prompt typically ends
with a hash, #.

To check the shell that runs automatically when you log in to Unix, type one of
these commands (the second is for systems that use NIS, Sun’s Network Infor-
mation Service, to manage network-wide files):

% grep yourloginname /etc/passwd

% ypmatch yourloginname passwd
You should get back the contents of your entry in the system password file. For
example:

shelleyp:*:1006:1006:Shelley Powers:/usr/home/shelleyp:/usr/local/bin/bash

The fields are separated by colons, and the default shell is usually specified in the
last field.

Note that in Mac OS X, passwords are managed and stored in Netinfo by
default. To store the passwords in /etc/passwd, you’ll need to configure this using
Netinfo.

—TOR and SP

Anyone Can Program the Shell

One of the really wonderful things about the shell is that it doesn’t just read and
execute the commands you type at a prompt. The shell is a complete program-
ming language.

The ease of shell programming is one of the real highlights of Unix for novices. A
shell program need be no more than a single complex command line saved in a
file—or a series of commands.

For example, let’s say that you occasionally need to convert a Macintosh
Microsoft Word file for use on your Unix system. Word lets you save the file in
ASCII format. But there’s a catch: the Mac uses a carriage return ASCII charac-
ter 015 to mark the end of each line, while Unix uses a linefeed (ASCII 012). As a
result, with Unix, the file looks like one long paragraph, with no end in sight.

That’s easy to fix: the Unix tr (21.11) command can convert every occurrence of
one character in a file to another:

bash-2.04$ tr '\015' '\012' < file.mac > file.unix

Chapter 1: Introduction 1

1.8

1.8

for 35.21

$x 35.9

But you’re a novice, and you don’t want to remember this particular piece of
magic. Fine. Save the first part of this command line in a file called mac2unix in
your personal bin directory (7.4):

tr '\o15" '\012'

Make the file executable with chmod (505):
bash-2.04$% chmod +x mac2unix

Now you can say:
bash-2.04$% mac2unix < file.mac > file.unix

But why settle for that? What if you want to convert a bunch of files at once?
Easy. The shell includes a general way of referring to arguments passed to a
script and a number of looping constructs. The script:
for x
do
echo "Converting $x"
tr '\015" '\012' < "$x" > "tmp.$x"
v "tmp.$x" "$x"
done
will convert any number of files with one command, replacing each original with
the converted version:

bash-2.04$% mac2unix file1 file2 file3 ...

As you become more familiar with Unix, it quickly becomes apparent that doing
just a little homework can save hours of tedium. This script incorporates only
two simple programming constructs: the for loop and variable substitution (35.9,
35.3)." As a new user with no programming experience, I learned these two con-
structs by example: I saved a skeleton for loop in a file and simply filled in the
blanks with whatever commands I wanted to repeat. Article 35.2 has more about
shell programming.

In short, Unix is sometimes difficult because it is so rich and complex. The user
who doesn’t want to learn the complexity doesn’t have to—the basic housekeep-
ing commands are simple and straightforward. But the user who wants to take
the time to investigate the possibilities can uncover a wealth of useful tools.

—TOR

* [Tim is keeping this article simple, as an illustration of how easy writing a shell program can be. If
you’re writing this little script for general use, you can make it work like a filter (1.5) by adding four or
five more lines of code: a case (35.10) or if (35.13) statement that tests the number of command-line
arguments. With no filename arguments, the script would simply run tr '\o15' '\o012'. —]JP]

12

Part I: Basic Unix Environment

1.9

Internal and External Commands

Some commands that you type are internal, which means they are built into the
shell, and it’s the shell that performs the action. For example, the ¢d command is
built-in. The Is command, on the other hand, is an external program stored in

the file /bin/ls.

The shell doesn’t start a separate process to run internal commands. External
commands require the shell to fork and exec (27.2) a new subprocess (24.3); this
takes some time, especially on a busy system.

When you type the name of a command, the shell first checks to see if it is a
built-in command and, if so, executes it. If the command name is an absolute
pathname (1.16) beginning with /, like /bin/ls, there is no problem: the command
is likewise executed. If the command is neither built-in nor specified with an
absolute pathname, most shells (except the original Bourne shell) will check for
aliases (20.2) or shell functions (29.11), which may have been defined by the user—
often in a shell setup file (3.3) that was read when the shell started. Most shells
also “remember” the location of external commands (27.6); this saves a long hunt
down the search path. Finally, all shells look in the search path for an execut-
able program or script with the given name.

The search path is exactly what its name implies: a list of directories that the
shell should look through for a command whose name matches what is typed.

The search path isn’t built into the shell; it’s something you specify in your shell
setup files.

By tradition, Unix system programs are kept in directories called /bin and /usr/
bin, with additional programs usually used only by system administrators in
either /etc and /usr/etc or /sbin and /usr/sbin. Many versions of Unix also have
programs stored in /usr/uchb (named after the University of California at Berke-
ley, where many Unix programs were written). There may be other directories
containing programs. For example, the programs that make up the X Window
System (1.22) are stored in /usr/bin/X11. Users or sites often also have their own
directories where custom commands and scripts are kept, such as /usr/local/bin
or /opt.

The search path is stored in an environment variable (35.3) called PATH (3556). A
typical PATH setting might look something like this:

PATH=/bin:/usr/bin:/usr/bin/X11:/usx/ucb:/home/tim/bin:

The path is searched in order, so if there are two commands with the same
name, the one that is found first in the path will be executed. For example, your
system certainly has the Is command we mentioned earlie—and it’s probably in

/bin/ls.

Chapter 1: Introduction 13

1.9

1.10

1.10

You can add new directories to your search path on the fly, but the path is usu-
ally set in shell setup files.

—TOR

The Kernel and Daemons

If you have arrived at Unix via Windows 2000 or some other personal computer
operating system, you will notice some big differences. Unix was, is, and always
will be a multiuser operating system. It is a multiuser operating system even
when you’re the only person using it; it is a multiuser operating system even
when it is running on a PC with a single keyboard; and this fact has important
ramifications for everything that you do.

Why does this make a difference? Well, for one thing, you’re never the only one
using the system, even when you think you are. Don’t bother to look under your
desk to see if there’s an extra terminal hidden down there. There isn’t. But Unix
is always doing things “behind your back,” running programs of its own,
whether you are aware of it or not. The most important of these programs, the
kernel, is the heart of the Unix operating system itself. The kernel assigns mem-
ory to each of the programs that are running, partitions time fairly so that each
program can get its job done, handles all I/O (input/output) operations, and so
on. Another important group of programs, called daemons, are the system’s
“helpers.” They run continuously—or from time to time—performing small but
important tasks like handling mail, running network communications, feeding
data to your printer, keeping track of the time, and so on.

Not only are you sharing the computer with the kernel and some mysterious
daemons, you’re also sharing it with yourself. You can issue the ps x (245) com-
mand to get a list of all processes running on your system. For example:

PID TTY STAT TIME COMMAND

18034 tty2 S 0:00 -zsh

18059 ? S 0:01 ssh-agent

18088 tty2 S 0:00 sh /usr/X11R6/bin/startx

18096 tty2 S 0:00 xinit /etc/X11/xinit/xinitrc -- :0 -auth /home/jpeek/
18101 tty2 S 0:00 /usr/bin/gnome-session

18123 tty2 S 0:33 enlightenment -clientId default2

18127 tty2 S 0:01 magicdev --sm-client-id=defaulti2

18141 tty2 S 0:03 panel --sm-client-id default8

18145 tty2 S 0:01 gmc --sm-client-id defaultio

18166 ? S 1:20 gnomepager_applet --activate-goad-server gnomepager a
18172 tty2 S 0:01 gnome-terminal

18174 tty2 S 0:00 gnome-pty-helper

18175 pts/0 S 0:00 zsh

18202 tty2 S 0:49 gnome-terminal

18203 tty2 S 0:00 gnome-pty-helper

18204 pts/1 S 0:01 zsh

18427 pts/1 T 0:00 man zshjp

14

Part I: Basic Unix Environment

18428 pts/1 T 0:00 sh -c /bin/gunzip -c /home/jpeek/.man/cat1/zshjp.1.gz
18430 pts/1 T 0:03 /usr/bin/less -is

18914 pts/1 T 0:02 vi upt3 changes.html

1263 pts/1 T 0:00 vi urls.html

1511 pts/1 T 0:00 less coding

3363 pts/1 S 0:00 vi 1007.sgm

4844 tty2 S 0:24 /usr/lib/netscape/netscape-communicator -irix-session
4860 tty2 S 0:00 (dns helper)

5055 pts/1 R 0:00 ps x

This output tells us that the user has only three windows open. You may think
that they’re only running four or five programs, but the computer is actually
doing a lot more. (And, to keep this brief, we aren’t showing all the lines of out-
put!) The user logged into his Linux system on virtual console (23.12) 2, which
shows as tty2 in the TTY column; a lot of programs are running there, including
the X Window System (1.22) (which actually runs itself as another user—root—so
its process isn’t listed here). The user is also running Gnome and Enlighten-
ment, which keep track of the workstation’s display. Two of the windows are
Gnome terminals, which are windows that act like separate terminals; each has
its own tty, pts/0 and pts/1. And the list continues.

If you are running a different window system (or no window system at all) or dif-
ferent utility programs, you will see something different. But we guarantee that
you’re running at least two programs, and quite likely many more. If you want to
see everything that’s running, including the daemons, type the command ps aux
(Berkeley-style ps) or ps -el (for many other flavors of ps). You’ll be impressed.

Because there is so much going on at once, Unix requires a different way of
thinking. The Unix kernel is a traffic cop that mediates different demands for
time, memory, disks, and so on. Not only does the kernel need to run your pro-
grams, but it also needs to run the daemons, any programs that other users
might want to start, or any programs that you may have scheduled to run auto-
matically, as discussed in Chapter 23. When it runs a program, the kernel allo-
cates a small slice of time—up to a second—and lets the program run until that
slice is used up or until the program decides to take a rest of its own accord (this
is called “sleeping”). At this point, regardless of whether the program is fin-
ished, the kernel finds some other program to run. The Unix kernel never takes a
vacation: it is always watching over the system.

Once you understand that the kernel is a manager that schedules many different
kinds of activity, you understand a lot about how Unix works. For example, if
you have used any computer system previously, you know that it’s a bad idea to
turn the computer off while it is writing something to disk. You will probably
destroy the disk, and you could conceivably damage the disk drive. The same is
true for Unix—but with an important complication. Any of the programs that
are running can start doing something to the disk at any time. One of the dae-
mons makes a point of accessing the disk drive every 30 seconds or so, just to

Chapter 1: Introduction 15

1.10

1.11

1.11

stay in touch. Therefore, you can’t just turn a Unix computer off. You might do
all sorts of damage to the system’s files—and not just your own, but conceiv-
ably files belonging to many other users. To turn a Unix system off, you must
first run a program called shutdown, which kicks everyone off the system, makes
sure that a daemon won’t try to play with a disk drive when you aren’t looking,
and runs a program named sync to make sure that the disks have the latest ver-
sion of everything. Only then is it safe to pull the switch. When you start up a
Unix system, it automatically runs a program called fsck, which stands for “file-
system check”; its job is to find out if you shut down the system correctly and try
to fix any damage that might have happened if you didn’t.

—ML and JP

Filenames

Like all operating systems, Unix files have names. (Unix directories, devices, and
so on also have filenames—and are treated like files (1.19).) The names are words
(sequences of characters) that let you identify a file. Older versions of Unix had
some restrictions on the length of a filename (14 characters), but modern ver-
sions have removed these restrictions for all practical purposes. Sooner or later
you will run into a limit, but if so, you are probably being unnecessarily verbose.

Technically, a filename can be made from almost any group of characters
(including nonprinting characters and numbers) except a slash (/). However,
you should avoid filenames containing most punctuation marks and all
nonprinting characters. To be safe, limit your filenames to the following charac-
ters:

Upper- and lowercase characters
Unix filenames are always case sensitive. That is, upper- and lowercase let-
ters are always different (unlike Microsoft Windows and others that con-
sider upper- and lowercase letters the same). Therefore, myfile and Myfile
are different files. It is usually a bad idea to have files whose names differ
only in their capitalization, but that’s your decision.

Underscores (L)
Underscores are handy for separating “words” in a filename to make them
more readable. For example, my_long filename is easier to read than
mylongfilename.

Periods (.)
Periods are used by some programs (such as the C compiler) to separate file-
names from filename extensions (1.12). Extensions are used by these pro-
grams to recognize the type of file to be processed, but they are not treated
specially by the shell, the kernel, or other Unix programs.

16

Part I: Basic Unix Environment

1.12

Filenames that begin with a period are treated specially by the shell: wild-
cards won’t match (1.13) them unless you include the period (like .*). The Is
command, which lists your files, ignores files whose names begin with a
period unless you give it a special option (Is —a (8.9)). Special configuration
files are often “hidden” in directories by beginning their names with a
period.

Certain other punctuation
About the only other punctuation mark that is always safe is the comma (,),
although it isn’t part of the POSIX-portable character set.

I'm so dead-set against using weird, nonprinting characters in filenames that I
won’t even tell you how to do it. I will give you some special techniques for
deleting files with weird names (14.11), though, in case you create some by acci-
dent.

Some things to be aware of:

* Unix does not have any concept of a file version. There are some revision
control programs (39.4) that implement their own notion of a version, but
there is nothing built into the operating system that handles this for you. If
you are editing a file, don’t count on Unix to save your previous versions—
you can program this (35.16, 18.14) though, if you want to; the GNU Emacs
editor also makes backups (19.4).

* Once you delete a file in Unix, it is gone forever (14.3). You can’t get it back
without restoring it from a backup. So be careful when you delete files.
Later, we’ll show you programs that will give you a “grace period” between
the time you delete a file and the time it actually disappears.

—ML

Filename Extensions

In Microsoft Windows and some other operating systems, filenames often have
the form name.extension. For example, plain text files have extensions such as
.txt. The operating system treats the extension as separate from the filename and
has rules about how long it must be, and so forth.

Unix doesn’t have any special rules about extensions. The dot has no special
meaning as a separator, and extensions can be any length. However, a number of
programs (especially compilers) make use of extensions to recognize the differ-
ent types of files they work with. In addition, there are a number of conventions
that users have adopted to make clear the contents of their files. For example,
you might name a text file containing some design notes notes.txt.

Table 1-1 lists some of the filename extensions you might see and a brief descrip-
tion of the programs that recognize them.

Chapter 1: Introduction 17

1.12

Table 1-1. Filename extensions that programs expect

Extension Description

a Archive file (library)

.c C program source file

f FORTRAN program source file

.F FORTRAN program source file to preprocess
.0z 9zipped file (15.6)

.h C program header file

.html or .htm HTML file for web servers

xhtml XHTML file for web servers

.0 Object file (compiled and assembled code)
.S Assembly language code

.z Packed file

A Compressed file (15.6)

110.8 Online manual (2.1) source file

~ Emacs editor backup file (19.4)

In Table 1-2 are some extensions often used by users to signal the contents of a
file, but are not actually recognized by the programs themselves.

Table 1-2. Filename extensions for user’s benefit

Extension Description

tar tar archive (39.2)

tar.gz or .tgz gzipped (15.6) tar archive (39.2)

.shar Shell archive

.sh Bourne shell script (1.8)

.csh C shell script

.mm Text file containing froffs mm macros

.ms Text file containing froffs ms macros

.ps PostScript source file

.pdf Adobe Portable Document Format
—ML and TOR

1.13 Wildcards

The shells provide a number of wildcards that you can use to abbreviate
filenames or refer to groups of files. For example, let’s say you want to delete all
filenames ending in .txt in the current directory (1.16). You could delete these files
one by one, but that would be boring if there were only 5 and very boring if

Part I: Basic Unix Environment

there were 100. Instead, you can use a wildcarded name to say, “I want all files
whose names end with .txt, regardless of what the first part is.” The wildcard is
the “regardless” part. Like a wildcard in a poker game, a wildcard in a filename
can have any value.

The wildcard you see most often is * (an asterisk), but we’ll start with some-
thing simpler: ? (a question mark). When it appears in a filename, the ? matches
any single character. For example, letter? refers to any filename that begins
with letter and has exactly one character after that. This would include letterA,
letter1, as well as filenames with a nonprinting character as their last letter, such
as letter~C.

The * wildcard matches any character or group of zero or more characters. For
example, *.txt matches all files whose names end with .txt; ¢* matches all files
whose names start with ¢; c*b* matches names starting with ¢ and containing at
least one b; and so on.

The * and ? wildcards are sufficient for 90 percent of the situations that you will
find. However, there are some situations that they can’t handle. For example,
you may want to list files whose names end with .txt, mail, or let. There’s no way
to do this with a single *; it won’t let you exclude the files you don’t want. In
this situation, use a separate * with each filename ending;:

*.txt *mail *let

Sometimes you need to match a particular group of characters. For example, you
may want to list all filenames that begin with digits or all filenames that begin
with uppercase letters. Let’s assume that you want to work with the files
program.n, where n is a single-digit number. Use the filename:

program.[0123456789]

In other words, the wildcard [character-1ist] matches any single character that
appears in the list. The character list can be any group of ASCII characters; how-
ever, if they are consecutive (e.g., A—Z, a—z, 0-9, or 3-5, for that matter), you
can use a hyphen as shorthand for the range. For example, [a-zA-Z] means any
alphabetic English character.

There is one exception to these wildcarding rules. Wildcards never match /,
which is both the name of the filesystem root (1.14) and the character used to sep-
arate directory names in a path (1.16). The only way to match on this character is
to escape it using the backslash character (\). However, you’ll find it difficult to
use the forward slash within a filename anyway (the system will keep trying to
use it as a directory command).

If you are new to computers, you probably will catch on to Unix wildcarding
quickly. If you have used any other computer system, you have to watch out for
one important detail. Virtually all computer systems except for Unix consider a
period (.) a special character within a filename. Many operating systems even
require a filename to have a period in it. With these operating systems, a * does

Chapter 1: Introduction 19

1.13

1.14

1.14

not match a period; you have to say *.*. Therefore, the equivalent of rm * does
virtually nothing on some operating systems. Under Unix, it is dangerous: it
means “delete all the files in the current directory, regardless of their name.” You
only want to give this command when you really mean it.

But here’s the exception to the exception. The shells and the Is command con-
sider a . special if it is the first character of a filename. This is often used to hide
initialization files and other files with which you aren’t normally concerned; the
Is command doesn’t show these files unless you ask (8.9) for them. If a file’s name
begins with ., you always have to type the . explicitly. For example, .*rc matches
all files whose names begin with . and end with rc. This is a common conven-
tion for the names of Unix initialization files.

Table 1-3 has a summary of common wildcards.
Table 1-3. Common shell wildcards

Wildcard Matches

? Any single character

* Any group of zero or more characters
[ab] Eitheraorb

[a-Z] Any character between a and z, inclusive

Wildcards can be used at any point or points within a path. Remember, wild-
cards only match names that already exist. You can’t use them to create new files
(28.3)—though many shells have curly braces ({}) for doing that. Article 33.3
explains how wildcards are handled, and article 33.2 has more about wildcards,
including specialized wildcards in each of the shells.

—ML

The Tree Structure of the Filesystem

A multiuser system needs a way to let different users have different files with the
same name. It also needs a way to keep files in logical groups. With thousands of
system files and hundreds of files per user, it would be disastrous to have all of
the files in one big heap. Even single-user operating systems have found it neces-
sary to go beyond “flat” filesystem structures.

Almost every operating system solved this problem by implementing a tree-struc-
tured, or hierarchical, filesystem. Unix is no exception. A hierarchical filesystem
is not much different from a set of filing cabinets at the office. Your set of cabi-
nets consists of many individual cabinets. Each individual cabinet has several
drawers; each drawer may have several partitions in it; each partition may have
several hanging (Pendaflex) folders; and each hanging folder may have several
files. You can specify an individual file by naming the filing cabinet, the drawer,

20

Part I: Basic Unix Environment

the partition, the group of folders, and the individual folder. For example, you
might say to someone: “Get me the ‘meeting of July 9’ file from the Kaiser folder
in the Medical Insurance Plans partition in the Benefits drawer of the Personnel
file cabinet.” This is backwards from the way you’d specify a filename, because it
starts with the most specific part, but the idea is essentially the same.

You could give a complete path like this to any file in any of your cabinets, as
shown in Figure 1-2. The concept of a “path” lets you distinguish your July 9
meeting with Kaiser from your July 9 interview with a job applicant or your July
9 policy-planning meeting. It also lets you keep related topics together: it’s easy
to browse through the “Medical Insurance” section of one drawer or to scan all
your literature and notes about the Kaiser plan. The Unix filesystem works in
exactly the same way (as do most other hierarchical filesystems). Rather than
having a heap of assorted files, files are organized into directories. A directory is
really nothing more than a special kind of file that lists a bunch of other files (see
article 10.2). A directory can contain any number of files (although for perfor-
mance reasons, it’s a good idea to keep the number of files in one directory rela-
tively small—under 100, when you can). A directory can also contain other
directories. Because a directory is nothing more than a special kind of file, direc-
tories also have names. At the top (the filesystem “tree” is really upside down) is
a directory called the “root,” which has the special name / (pronounced “slash,”
but never spelled out).

Document

Folder

r Pendaflex

- rr % Section
g - —
> = Cabinet
-

Drawer

Cabinet

least specific to
most specific

Figure 1-2. A hierarchical filesystem

Chapter 1: Introduction 21

1.14

1.15

1.15

To locate any file, we can give a sequence of names, starting from the filesys-
tem’s root, that shows the file’s exact position in the filesystem: we start with the
root and then list the directories you go through to find the file, separating them
by slashes. This is called a path. For examples, let’s look at the simple filesystem
represented by Figure 1-3. The names /home/mkl/mystuff/stuff and /home/hun/
publick/stuff both refer to files named stuff. However, these files are in different
directories, so they are different files. The names home, hun, and so on are all
names of directories. Complete paths like these are called “absolute paths.”
There are shorter ways to refer to a file: relative paths (1.16).

—ML

| / |(r00tdirect0ry)

bin usr | home |

| local || bin || uch | | mkl | | hun || otherl

| mystuffl | private | | hisstuﬁl | publick |

- directory

-stuff - file
- (stuff) (stuff)

Figure 1-3. A Unix filesystem tree

Your Home Directory

Microsoft Windows and the Mac OS have hierarchical filesystems (1.14), much
like those in Unix and other large systems. But there is an important difference.
On many Windows and Mac systems, you start right at the “root” of the filesys-
tem tree. In effect, you start with a blank slate and create subdirectories to orga-
nize your files.

A Unix system comes with an enormous filesystem tree already developed.
When you log in, you start somewhere down in that tree, in a directory created
for you by the system administrator (who may even be yourself, if you are
administering your own system).

22

Part I: Basic Unix Environment

1.16

This directory—the one place in the filesystem that is your very own, to store
your files (especially the shell setup files (3.3) and rc files (3.20) that you use to cus-
tomize the rest of your environment)—is called your home directory.

Home directories were originally stored in a directory called /usr (and still are on
some systems), but are now often stored in other directories, such as /home.
Within the Linux Filesystem Hierarchy Standard (FHS), the home directory is
always at /home, as configuration files are always in /etc and so on.

To change your current directory (1.16) to your home, type cd with no pathname;
the shell will assume you mean your home directory.

Within the Mac OS X environment, home is in the /Users/username directory by

default.
—TOR

Making Pathnames

Pathnames locate a file (or directory, or any other object) in the Unix filesystem.
As you read this article, refer to Figure 1-4. It’s a diagram of a (very) small part of
a Unix filesystem.

| / | (root directory)
- directory

|_|_| - file
usr home

1 [
[wo |[bin | | gima | mike

[1 I | I I
| lib | | bin | Ctextfile) Ctextfile) | notes | | SIc | | work |

(textfile)

Figure 1-4. Part of a Unix filesystem tree

Whenever you are using Unix, you have a current directory. By default, Unix
looks for any mentioned files or directories within the current directory. That is,
if you don’t give an absolute pathname (1.14) (starting from the root, /), Unix

Chapter 1: Introduction 23

1.16

1.16

tries to look up files relative to the current directory. When you first log in, your
current directory is your home directory (1.15), which the system administrator
will assign to you. It typically has a name like /u/mike or /home/mike. You can
change your current directory by giving the cd command, followed by the name
of a new directory (for example, cd /usr/bin). You can find out your current
directory by giving the pwd (“print working directory”) command.

If your current directory is /home/mike and you give the command cat textfile,
you are asking Unix to locate the file textfile within the directory /home/mike.
This is equivalent to the absolute path /home/mike/textfile. If you give the com-
mand cat notes/textfile, you are asking Unix to locate the file textfile within
the directory notes, within the current directory /home/mike.

A number of abbreviations help you to form relative pathnames more conve-
niently. You can use the abbreviation . (dot) to refer to the current working
directory. You can use .. (dot dot) to refer to the parent of the current working
directory. For example, if your current directory is /home/mike, ./textfile is the
same as textfile, which is the same as /home/mike/textfile. The relative path ../
ginaltextfile is the same as /home/gina/textfile; .. moves up one level from /home/
mike (to /home) and then searches for the directory gina and the file textfile.

You can use either the abbreviation ~ (tilde) or the environment variables $HOME
or $LOCDIR, to refer to your home directory. In most shells, ~name refers to the
home directory of the user name. See article 31.11.

Here’s a summary of the rules that Unix uses to interpret paths:

If the pathname begins with /
It is an absolute path, starting from the root.

If the pathname begins with ~ or with ~name
Most shells turn it into an absolute pathname starting at your home direc-
tory (*) or at the home directory of the user name (*name).

If the pathname does not begin with a /
The pathname is relative to the current directory. Two relative special cases
use entries that are in every Unix directory:

a. If the pathname begins with ./, the path is relative to the current direc-
tory, e.g., ./textfile, though this can also execute the file if it is given exe-
cutable file permissions.

b. If the pathname begins with ../, the path is relative to the parent of the
current directory. For example, if your current directory is /home/mike/
work, then ../src means /home/mike/src.

Article 10.2 explains where . and .. come from.

24

Part I: Basic Unix Environment

1.17

The . and .. may appear at any point within a path. They mean
“the current directory at this point in the path” and “the parent
of the current directory at this point in the path.” You com-
monly see paths starting with ../../ (or more) to refer to the
grandparent or great-grandparent of the current directory. How-
ever, they can appear at other places in a pathname as well. For
example, /usr/ucb/./bin is the same as /usr/ucb/bin, and /usr/ucb/
bin/../lib is the same as /usr/ucb/lib. Placing . or .. in the middle
of a path may be helpful in building paths within shell scripts,
but I have never seen them used in any other useful way.

—ML and JP

File Access Permissions

Under Unix, access to files is based on the concept of users and groups.

Every “user” on a system has a unique account with a unique login name and a
unique UID (24.3) (user ID number). It is possible, and sometimes convenient, to
create accounts that are shared by groups of people. For example, in a transac-
tion-processing application, all of the order-entry personnel might be assigned a
common login name (as far as Unix is concerned, they only count as one user).
In a research and development environment, certain administrative operations
might be easier if members of a team shared the same account, in addition to
having their own accounts. However, in most situations each person using the
system has one and only one user ID, and vice versa.

Every user may be a member of one or more “groups.” The user’s entry in the
master password file (/etc/passwd (22.3)) defines his “primary group member-
ship.” The /etc/group (496) file defines the groups that are available and can also
assign other users to these groups as needed. For example, I am a member of
three groups: staff, editors, and research. My primary group is staff; the group file
says that I am also a member of the editors and research groups. We call editors
and research my “secondary groups.” The system administrator is responsible
for maintaining the group and passwd files. You don’t need to worry about them
unless you’re administering your own system.

Every file belongs to one user and one group. When a file is first created, its
owner is the user who created it; its group is the user’s primary group or the
group of the directory in which it’s created. For example, all files I create are
owned by the user mikel and the group staff. As the file’s owner, I am allowed to

* In most newer Unix systems, users have the access privileges of all groups to which they belong, all at
the same time. In other Unix systems, you use a command like newgrp (49.6) to change the group to
which you currently belong. Your system may even support both methods.

Chapter 1: Introduction 25

1.17

1.18

1.18

use the chgrp command to change the file’s group. On filesystems that don’t
have quotas (15.11), I can also use the chown command to change the file’s owner.
(To change ownership on systems with quotas, see article 50.15.) For example,
to change the file data so that it is owned by the user george and the group oth-
ers, I give the commands:

% chgrp others data
% chown george data

If you need to change both owner and group, change the group
first! You won’t have permission to change the group after you
aren’t the owner.

Some versions of chown can change both owner and group at the same time:
% chown george.others data

File access is based on a file’s user and group ownership and a set of access bits
(commonly called the mode bits). When you try to access a file, you are put into
one of three classes. You are either the file’s owner, a member of the file’s group,
or an “other.” Three bits then determine whether you are allowed to read, write,
or execute the file. So, there are a total of nine mode bits (three for each class)
that set the basic access permissions.

—ML

The Superuser (Root)

In general, a process (24.1) is a program that’s running: a shell, the Is command,
the vi editor, and so on. In order to kill a process (24.12), change its priority (265),
or manipulate it in any other way, you have to be the process’ owner (i.e., the
user who started it). In order to delete a job from a print queue (45.1), you must
be the user who started it.

As you might guess, there needs to be a way to circumvent all of this security.
Someone has to be able to kill runaway programs, modify the system’s files, and
so on. Under Unix, a special user known as root (and commonly called the
“superuser”) is allowed to do anything.

To become the superuser, you can either log in as root or use the su (49.9) com-
mand. In this book, though, we’ll assume that you don’t have the superuser
password. Almost all of what we describe can be done without becoming
superuser.

—ML

26

Part I: Basic Unix Environment

1.19

1.20

When Is a File Not a File?

Unix differs from most operating systems in that it is file oriented. The designers
of Unix decided that they could make the operating system much simpler if they
treated everything as if it were a file. As far as Unix is concerned, disk drives, ter-
minals, modems, network connections, etc. are all just files. Recent versions of
Unix (such as Linux) have gone further: files can be pipes (FIFOs) (43.11) and
processes are files (249). Like waves and particles in quantum physics, the
boundary between files and the rest of the world can be extremely fine: whether
you consider a disk a piece of hardware or a special kind of file depends prima-
rily on your perspective and what you want to do with it.

Therefore, to understand Unix, you have to understand what files are. A file is
nothing more than a stream of bytes—that is, an arbitrarily long string of bytes
with no special structure. There are no special file structures and only a few spe-
cial file types (for keeping track of disks and a few other purposes). The struc-
ture of any file is defined by the programs that use it, not by the Unix operating
system.” You may hear users talk about file headers and so on, but these are
defined by the applications that use the files, not by the Unix filesystem itself.

Unix programs do abide by one convention, however. Text files use a single
newline character (linefeed) between lines of text, rather than the carriage
return-linefeed combination used in Microsoft Windows or the carriage returns
used in the Macintosh. This difference may cause problems when you bring files
from other operating systems over to Unix. Windows files will often be littered
with carriage returns (Ctrl-M), which are necessary for that operating system but
superfluous for Unix. These carriage returns will look ugly if you try to edit or
print the file and may confuse some Unix programs. Mac text files will appear to
be one long line with no breaks. Of course, you can use Unix utilities to convert
Mac and Windows files for Unix.

—ML

Scripting

Scripting languages and scripting applications differ from compiled languages
and applications in that the application is interpreted as run rather than com-
piled into a machine-understandable format. You can use shell scripting for
many of your scripting needs, but there are times when you’ll want to use some-
thing more sophisticated. Though not directly a part of a Unix system, most
Unix installations come with the tools you need for this more complex script-
ing—Perl (Chapter 41), Python (Chapter 42), and Tcl.

* Many executable files—programs—begin with a magic number. This is a special two-byte-long
sequence that tells the kernel how to execute the file.

Chapter 1: Introduction 27

1.20

1.21

1.21

These three scripting languages seem so prevelant within the Unix world that I
think of them as the Unix Scripting Language Triumvirate.

Perl is probably the granddaddy of scripting. Created by Larry Wall, this lan-
guage is probably used more than any other for creating complex scripts to per-
form sophisticated functionality with Unix and other operating systems. The
language is particularly noted for its ability to handle regular expressions, as well
as working with files and other forms of I/O.

Python isn’t as widespread as Perl, but its popularity is growing. One reason it’s
gaining popularity is that as a language, Python is more structured and a little
more verbose than Perl, and therefore a little easier to read. In addition, accord-
ing to its fans, Python has more object-oriented and data-manipulation features
than the file-manipulation and regular-expression manipulation of Perl.

Tcl is particularly prevalant within Linux systems, though its use is widespread
throughout all Unix systems. It’s popular because it’s simpler to learn than Perl
and allows scripters to get up to speed more quickly than you can with Perl or
Python. In addition, the language also has access to a very popular graphical user
interface library called the Tk toolkit. You’ll rarely hear about Tcl without the
associated Tk.

—TOR and SP

Unix Networking and Communications

Generally speaking, a network lets two or more computers communicate and
work together. Partly because of the open design of Unix, a lot of networking
development has been done in this operating system. Just as there are different
versions of Unix, there are different ways and programs to use networks from
Unix.

There’s an entire chapter devoted to Connectivity (Chapter 46), but for now,
here’s a quick review of the major networking components.

The Internet
The Internet is a worldwide network of computers. Internet users can trans-
fer files, log into other computers, and use a wide range of programs and ser-
vices.

wWwWwW
The World Wide Web is a set of information servers on the Internet. The
servers are linked into a hypertext web of documents, graphics, sound, and
more. Point-and-click browser programs turn that hypertext into an easy-to-
use Internet interface. (For many people, the Web is the Internet. But Unix
lets you do much more.)

28

Part I: Basic Unix Environment

mail

ftp

A Unix facility that’s been around for years, long before networking was
common, is electronic mail. Users can send electronic memos, usually called
email messages, between themselves. When you send email, your message
waits for the other user to start his own mail program. System programs can
send you mail to tell you about problems or give you information. You can
send mail to programs, asking them for information. Worldwide mailing
lists connect users into discussion groups.

The ftp program is one way to transfer files between your computer and
another computer with TCP/IP, often over the Internet network, using the
File Transfer Protocol (FTP).

UuUCP

Unix-to-Unix Copy is a family of programs (uucp, uux, uulog, and others)
for transferring files and email between computers. UUCP is usually used
with modems over telephone lines and has been mostly superceded by Inter-
net-type connections.

Usenet

Usenet isn’t exactly a network. It’s a collection of hundreds of thousands
(millions?) of computers worldwide that exchange files called news articles.
This “net news” system has thousands of interactive discussion groups—
electronic bulletin boards—for discussing everything from technical topics
to erotic art.

telnet

rsh

ssh

This utility logs you into a remote computer over a network (such as the
Internet) using TCP/IP. You can work on the remote computer as if it were
your local computer. The telnet program is available on many operating sys-
tems; telnet can log you into other operating systems from your Unix host
and vice versa.

This starts a “remote shell” to run a command on a remote system without
needing to log in interactively. If you don’t give a command, rsh acts like
rlogin. This is often used to start remote X Window System (1.22) programs
whose display opens on your local system. Article 6.10 has examples—as
well as details on problems you can have running rsh for any application.

ssh acts like rsh (and rlogin), but it makes a secure encrypted connection to
the remote computer. It also can encrypt X Window System (1.22) connec-
tions, as well as other types of connections, between hosts. The utility ssh-
agent allows remote logins without typing a passphrase. We’ve included an
entire chapter on ssh (Chapter 51).

Chapter 1: Introduction 29

1.21

1.22

1.22

rep
This is a “remote cp” program for copying files between computers. It has
the same command-line syntax as cp except that hostnames are added to the
remote pathnames.

scp
This is a secure version of rcp that uses the ssh protocol. ssh-agent works
here, too.

NFS
NFS isn’t a user utility. The Network FileSystem and related packages like
NIS (the Network Information Service) let your system administrator mount
remote computers’ filesystems onto your local computer. You can use the
remote filesystem as easily as if it were on your local computer.

write
This sends messsages to another user’s screen. Two users can have a discus-
sion with write.

talk
A more sophisticated program than write, talk splits the screen into two
pieces and lets users type at the same time if they wish. talk can be used over
networks, though not all versions of talk can talk to one another.

irc
Internet Relay Chat allows multiple users to carry on multiple discussions
across the Internet and other networks. One popular IRC client is irc.

The X Window System

In 1988, an organization called the MIT (Massachusetts Institute of Technol-
ogy) X Consortium was formed to promote and develop a vendor-neutral win-
dowing system called the X Window System. (It was called “X” because it was a
follow-on to a window system called “W” that was developed at Stanford Uni-
versity.) The organization eventually moved away from MIT and became known
as the X Consortium. The XFree86 Project, Inc. is another major group develop-
ing X; they produce a freely redistributable version that’s used on Linux and
other Unix-like systems such as Darwin.

A window system is a way of dividing up the large screen of a workstation into
multiple virtual terminals, or windows. Each window can interact with a sepa-
rate application program—or a single application can have many windows.
While the “big win” is to have applications with point-and-click mouse-driven
user interfaces, one of the most common applications is still a simple terminal
emulator (xterm (59)). X thus allows a workstation to display multiple simulta-
neous terminal sessions—which makes many of the standard Unix multitasking

30

Part I: Basic Unix Environment

features such as job control less important because programs can all be running
in the foreground in separate windows. X also runs on many kinds of hardware,
and it lets you run a program on a remote computer (across a network) while the
program’s windows are displayed on your local system. Because Unix systems
also run on many kinds of hardware, this makes X a good match for Unix.

Unix boxes are, by default, character-based systems. GUI 1.4 systems are added
to facilitate ease of use, as well as to provide access to a great number of sophisti-
cated applications. The Mac OS X, though, is already a GUI, built on the BSD-
based Unix environment, Darwin.

Though Darwin doesn’t come with the X Window System, versions of X are
available for Mac OS X.

TOR and JP

Chapter 1: Introduction 31

1.22

Getting Help

2.1

The man Command

The Unix operating system was one of the first to include online documenta-
tion. It’s not the best in the world—most users who haven’t internalized the
manual set curse it once a week—but it has proven surprisingly resilient. What’s
particularly interesting about Unix’s online documentation is that, unlike other
early help systems, it isn’t an adjunct to another set of printed documentation
that contains the “real” truth. The online manual is complete, authoritative, and
usually more current than any printed documentation.

The basis for Unix’s online documentation is the man command. Most simply,
you use it as follows:

% man topic

where topic is usually the name of some command; but it can also be the name
of a system call, a library routine, an I/O device, or an administrative file (or file
type). The output from man is usually sent to a pager like more, which allows
you to page through the results.

There are several command-line options for the man command that can differ
based on system. For instance, to look at a command within a specific section,
on a System V machine use the —s “section” option, with the following format:

% man section topic

% man -s section topic
For example, if you want to read documentation about the /etc/passwd file
(rather than the passwd command) on a System V machine, give the command:

% man -s 4 passwd

This is an easy way to distinguish between topics with the same name, but in dif-
ferent sections. For other Unix systems, such as FreeBSD, the option to search a
section could be something different, such as -S.

32

2.2

2.3

Another useful command-line option is the —k option, which is equivalent to the
apropos command. This option searches database files for matches of a given
keyword, returning the results. This is particularly helpful in finding commands
that contain a specific keyword if you’re not quite sure what the command is.

Your system may have a configuration file for man named /etc/man.config. 1f it
does, reading it will show you the directories in which manpages are stored, the
order in which manpages are searched by default, and more. Even if you don’t
have an /etc/man.config file, your man command may understand the MAN-
PATH (3.21) environment variable, a list of where man should search. You can set
your own MANPATH, for example, to show manpages for local versions of com-
mands before standard versions with the same name.

Your system may also have a different manual page system: info (2.9).

—ML and JP

whatis: One-Line Command Summaries

whatis is almost identical to apropos or the use of man —k (21), but it requires a
command name as an argument—rather than an arbitrary string. Why is this
useful? Well, let’s say you forget what cat (12.2) does. On my system, apropos cat
gives you several screenfuls of output. You may not want to read the entire man-
ual page. But whatis cat gives you a nice one-line summary:

% whatis cat
cat (1v) - concatenate and display

The whatis command is equivalent to man —f on most systems.

Before running whatis the first time on your system—particularly if you’re run-
ning a standalone machine using FreeBSD, Linux, or Darwin—you’ll want to
run the makewhatis at /usr/libexec/makewhatis, which creates the whatis data-
base by scanning the command names from the existing manpages.

—ML

whereis: Finding Where a Command
Is Located

The whereis command helps you to locate the executable file, source code, and
manual pages for a program. I use it primarily as a sanity check; if I type cat
useless.txt and get the message “cat: command not found,” T immediately try
whereis cat. This gives me a lot of information about what went wrong: some-
one may have removed cat (12.2) from the system, or my PATH (356) environ-
ment variable may be set incorrectly, etc.

Chapter 2: Getting Help 33

23

24

24

Output from whereis typically looks like this:

% whereis cat

cat: /bin/cat /usr/share/man/mani/cat.1.gz
This says that the executable file is /bin/cat and the manual page is /usr/share/
man/manl/cat.1.gz.

whereis has a few options worth mentioning:

—b Only report the executable name
—-m Only report the location of the manual page
—s Only search for source files

—u Only issue a report if any of the requested information (executable, manual
page, source) is missing

There are other options for modifying the list of directories through which
whereis searches; if you need these, check your manual pages. In addition, the
functionality and flags for whereis can differ between versions of Unix. For
instance, much of the basic functionality of the command was removed in ver-
sion 4.4 of FreeBSD as well as Darwin. Again, the manual pages will show you
this information.

—ML and SP

Searching Online Manual Pages

When the other techniques in this chapter don’t find the information you want,
you can try searching the online manual page (2.1) files. You’ll probably have to
wade through a lot of stuff that you don’t want to see, but this method can work
when nothing else does. As an example, you remember that there’s some com-
mand for chopping columns out of a file. You try man —k or apropos, but it only
mentions colrm and pr, and those aren’t what you want. You’ll usually be able to
narrow your search to one or two manual page sections (21); here, you know
that user commands are in section 1. So you go to the manual pages and do a
case-insensitive search through all the files for “column” or “chop”:

% cd /usr/man/mani

% egrep -i 'column|chop' *

awk.1:Add up first column, print sum and average:

colrm.1:colrm \- remove characters from specified columns within each line

cut.1:.IX cut "' "\fIcut\fP \(em remove columns from file"

It’s cut! Notice that awk also handles columns, but apropos doesn’t say so.

34

Part I: Basic Unix Environment

*1.13

(I cheated on that example: there were other ways to find cut—using the syn-
onym apropos field instead of apropos column, for instance. But this method does
work in tougher cases.) To search the manual page files, you’ll need to know
where they’re stored. There are lots of possibilities. If your system has an /etc/
man.config file, it’ll probably tell you. Otherwise, the directories /usr/man or /usr/
share/man are good places to look. If the command is local, try /usr/local/man
and maybe /opt (a big tree where find (9.4) can help). If your system has fast find
or locate (9.18), try searching for man or */man*.

Your manpage files may be compressed (156). In that case, use grep (13.2) with the
-Z option, grep -Z.

You’ll probably find subdirectories with names like manl, man2,...and/or catl,
cat2,... Directory names like manN will have unformatted source files for sec-
tion N; the catN directories have formatted source files. Or you may just find
files named command.N, where N is 1 for section 1, 2 for section 2, and so on.

There are two types of manpage files: unformatted (shown in article 3.22) and
formatted. The unformatted pages are easier to search because none of the
words will have embedded backspace characters. The previous example shows
how. The unformatted pages have nroff commands and macros in them, though,
which can make searching and reading tougher.

To search formatted pages, you’ll want to strip the embedded backspace charac-
ters. Otherwise, grep might miss the word you want because it was boldfaced or
underlined—with backspaces in it. In the following example, a shell loop (28.9)
applies a series of commands to each file. First, col —b removes the overstriking.
grep does a search (case insensitive, as before). Because grep is reading its stan-
dard input, it doesn’t know the filename, so a little sed command adds the name
to the start of every line grep outputs.

$ cd /usr/man/cat1

$ for file in *

> do col -b < $file | grep -i column | sed "s/*/${file}:/"

> done

awk.1: Add up first column, print sum and average:

cut.1: Use cut to cut out columns from a table or fields from each

If your manpage files are compressed, replace col -b < $file with:
zcat $file | col -b

In Bourne shells, you can pipe the output of the loop to a pager (like less (12.3)) to
see the output a screenful at a time and quit (with q) when you’re done. To do
that, change the last line of the for loop to:

done | less

—JP

Chapter 2: Getting Help 35

24

25

2.5

2.6

How Unix Systems Remember
Their Names

Each computer on a network needs a name. On many Unix versions, the
uname —n command shows you this name. On some systems, the command
hostname or uuname -1 (two us, lowercase L) may be what you want. If you use
more than one system, the hostname is great to use in a shell prompt—or any
time you forget where you’re logged in.

—JP

Which Version Am | Using?

Your system may have several versions of a particular command—for instance, a
BSD-compatible version in one directory and a System V—compatible version
somewhere else (and you might have added a private version in your own bin
directory (7.4)). Which command you’ll get depends on your PATH (356) envi-
ronment variable. It’s often essential to know which version you’re using. For
example:

$ type sort

sort is /bin/sort
tells me exactly which version of the sort program I’'m using. (On one system I've
used, there were two sorts; I had also defined an alias for sort.) If I want to see all
versions, bash supports a —all option:

$ type -all sort

sort is aliased to "TMPDIR=/var/tmp /bin/sort’

sort is /bin/sort
sort is /usr/5bin/sort

A similar command is whence.

But type and whence are built into shells and are also Unix-version dependent
(not all Unix systems have them), so they won’t work everywhere. The which
command is usually external (1.9), so it works everywhere—although, because it
isn’t built into the shells, it can’t always find out about aliases defined in your
current shell. For example:

% which sort

/usr/bin/sort
You’ll find that which comes in handy in lots of other situations. I find that I'm
always using which inside of backquotes to get a precise path. (whence and type
may print extra text.) For example, when [was writing these articles, I started
wondering whether or not man, apropos, and whatis were really the same execut-
able. It’s a simple question, but one I had never bothered to think about. There’s
one good way to find out:

36

Part I: Basic Unix Environment

2.7

© 2814

% 1s -1i “which man® “which apropos® “which whatis”

102352 -IwWXr-Xr-X 3 root 24576 Feb 8 2001 /usr/ucb/apropos
102352 -TWXI-Xr-x 3 root 24576 Feb 8 2001 /usr/ucb/man
102352 -IWXr-Xr-x 3 root 24576 Feb 8 2001 /usr/ucb/whatis

What does this tell us? Well, within this system the three commands have the
same file size, which means that they’re likely to be identical; furthermore, each
file has three links, meaning that each file has three names. The —i option con-
firms it; all three files have the same i-number. So, apropos, man, and whatis are
just one executable file that has three hard links.

However, running the same command in another environment, such as in Dar-
win, results in a different output:
117804 -r-xr-xr-x 1 root wheel 14332 sep 2 2001 /usr/bin/apropos

117807 -r-xr-xr-x 1 root wheel 19020 sep 2 2001 /usr/bin/man
117808 -r-xr-xr-x 1 root wheel 14336 sep 2 2001 /usr/bin/whatis

In Darwin, the commands are separate entities.
A few System V implementations don’t have a which command.

—ML, JP, MAL, and SP

What tty Am | On?

Each login session has its own tty (24.6)—a Unix device file that handles input
and output for your terminal, window, etc. Each tty has its own filename. If
you’re logged on more than once and other users want to write or talk (1.21) to
you, they need to know which tty to use. If you have processes running on sev-
eral ttys, you can tell which process is where.

To do that, run the ¢ty command at a shell prompt in the window:

% tty
/dev/ttyo7

You can tell other users to type write your-username tty07.

Most systems have different kinds of ttys: a few dialup terminals, some network
ports for rlogin and telnet, etc. (1.21). A system file like /etc/ttys lists which ttys are
used for what. You can use this to make your login setup more automatic. For
example, most network terminals on our computers have names like /dev/ttypx
or /dev/pts/x, where x is a single digit or letter. I have a test in my .logout file
(4.17) that clears the screen on all ttys except network:

Clear screen non-network ttys:

if ("“tty™" I~ /dev/ttyp?) then

clear
endif

Chapter 2: Getting Help 37

2.7

28

2.8

-v13.3

29

(Of course, you don’t need to clear the terminal screen if you’re using an xterm
window that you close when you log out.)

Who’s On?

The who command lists the users logged on to the system now. Here’s an exam-
ple of the output on my system:

% who

naylor ttyZ1 Nov 6 08:25

hal ttypo Oct 20 16:04 (zebra.ora.com:0.)
pmui ttypt Nov 4 17:21 (dud.ora.com:0.0)
jpeek ttyp2 Nov 5 23:08 (jpeek.com)

hal ttyp3 Oct 28 15:43 (zebra.ora.com:0.)

Each line shows a different terminal or window. The columns show the user-
name logged on, the ity (27) number, the login time, and, if the user is coming in
via a network (1.21), you’ll see their location (in parentheses). The user hal is
logged on twice, for instance.

It’s handy to search the output of who with grep (13.1)—especially on systems
with a lot of users. For example:

% who | grep "~hal " ...where is hal logged on?
% who | grep "Nov 6" ...who logged on today?

% who | grep -v "Nov 6" ...who logged on before today?

Your version may have more options. To find out, type man who.

—JP

The info Command

An information system gaining popularity on the more lightweight Unix-based
systems is info. It’s particularly relevant for finding information within Linux
and FreeBSD.

Unlike man—which displays all information on a topic at once, usually routed
through some form of paging system such as cat—info is based on a hypertext
like linkage between topic components. You connect to each of the subtopics
using character-based commands and typing part or all of the subtopic title—at
least enough to distinguish one subtopic from another.

To use info, you type the command info followed by the Unix command about
which you’re trying to find information. For instance, to find out more about
info itself, you would use the following command line:

info info

38

Part I: Basic Unix Environment

This will return the main info introduction page and a menu of subtopics such
as:
Getting Started

Advanced Info
Creating an Info File

To access the subtopic, you type the letter m for menu, and then in the prompt
that opens at the bottom of the screen, type enough of the letters to distinguish
the subtopic menu item from any other. You don’t have to complete the com-
mand: you can just type enough of the letters followed by a TAB to fill in the
rest. Once the subtopic menu item has been filled in, hitting ENTER sends you
to the information.

To learn more about using info, you can type the letter h when you’re in info and
no command line buffer is showing. This brings up basic information about the
info command, including the commands you use within info to use the applica-
tion. These letters are summarized in Table 2-1.

Table 2-1. info commands

Command Action

h To get help on using info

m To access a subtopic menu item

n To get to next related subtopic

p To get to the previous related subtopic

space To move forward in the display if it exceeds page size
delete To move backward in the display if it exceeds page size
Ctrl-1 To clean up the display if it gets mangled

b To get to the first page of the display

? To get a list of info commands

q To quit info

d To return to highest level of info topics
mEmacsreturn To access the Emacs manual

S To search for string within current node

Note that the letter commands are case insensitive: U works the same as u.

Use the d command to pull up the Directory node, the menu of info major top-
ics. In fact, this is a good way to become familiar with info and its contained
subtopics—type d and then use the menu commands to explore each of the
major subtopic areas.

For instance, from the Directory Node, typing m followed by typing strings into
the command buffer pulls up the strings info node.

Chapter 2: Getting Help 39

29

29

When using the info command, if the information doesn’t fit within a page,
header and footer information will provide you some details about the subtopic,
such as the info file, node, and the next nodes within the hierarchy. For instance,
when accessing information about man, depending on your system the header
reads as follows:

File: *manpages*, Node:man, Up: (dir)

This translates to the info file manpages and the node for man. Typing the u will
move you up to the dir info page. Within Emacs, use mouse button two to click
on and access a subtopic.

The footer provides a summary of the header information and also provides the
number of lines for the topic if the topic page extends past the current screen. To
see more information, type the space to page through the topic, just as you do
with man.

Much of the help information within info is pulled over as is from manpages and
hasn’t been converted to the hypertext format of info. Because of this, the use of
the m command won’t pull up any subtopic. You’ll need to use the space key to
access the additional information.

To search within an info node/page, type s and then type the search string into
the command buffer. The cursor is moved to the first occurance of the string.

—SP

40

Part I: Basic Unix Environment

Part Il

Customizing Your
Environment

Part II contains the following chapters:

Chapter 3, Setting Up Your Unix Shell
Chapter 4, Interacting with Your Environment

Chapter 5, Getting the Most out of Terminals, xterm,
and X Windows
Chapter 6, Your X Environment

3.1

Setting Up Your Unix Shell

What Happens When You Log In

When you first log in to a Unix system, the login program performs various secu-
rity measures. These vary slightly from Unix variant to Unix variant, but they are
largely the same.

First, login checks to see if you are not the root user and whether the file /etc/
nologin exists (it is created by the shutdown command to indicate that the sys-
tem is being brought down for maintenance). If both of these conditions are
true, the login program prints the contents of that file to the terminal, and the
login fails. If you are the root user, however, you will be allowed to log in.

Second, login checks to see if there are any special conditions on your login
attempt (which may be defined in /etc/usertty or /etc/securetty), such as on which
tty you’re coming in. Linux systems do this, for example. Some systems (such as
Darwin and other BSD-based systems) also check /etc/fbtab and may restrict
your access to any devices listed in that file. These systems may also log failed
login attempts to a file, such as /var/log/failedlogin, if it exists.

login may also record the time of login in the file /var/log/lastlog, make an entry
in the file /var/run/utmp, showing that you are successfully logged in (it is
removed once you log out), and append the utmp entry to the file /var/log/wtmp,
showing that you logged in. This wtmp record will be updated on logout, show-
ing the duration of your login session.

If the file .hushlogin exists in the user’s home directory, the login will be quiet;
otherwise, the following sequence of events will occur. If the system has any spe-
cial copyright information to display, it will be printed to the terminal, followed
by the message of the day (usually stored in /etc/motd), and the user’s last login
time and system of origin (from the wtmp file, as discussed in the previous para-
graph). If you want your login to be quiet, simply touch ~/.hushlogin. If you want
it to be noisy, remove the file.

43

3.2

3.2

3.3

Finally, if all other checks have passed and restrictions have been performed,
login starts a shell for you. Which shell depends on what is set in your user data-
base entry (fetc/passwd, NIS, or possibly Netlnfo under Darwin). If the shell
specified for you is not interactive (3.4), you may well be denied a command line.
This is common for POP and ftp-only user accounts, where /bin/true and /bin/
false are often specified as shells to disallow shell logins from those accounts.

—JP and SJC

The Mac 0S X Terminal Application

Throughout the book, we will refer to terminals, terminal emulators, and other
software that allows you, the end user, to interact with the computer via some
character-driven screen. In the old days, most terminals were separate hardware,
but nowadays they’re usually software. Mac OS X is no exception: its Terminal
application, found in the Utilities folder of your Applications folder, is a termi-
nal emulator.

You can launch Terminal by double-clicking on the icon in the Finder, or if you
have the Terminal icon in your Dock, by single-clicking on that icon.

Once launched, Terminal may be configured as most Mac applications can: by
setting preferences in the Preferences dialog and choosing a font family and size
from the Font menu.

One big difference between Terminal and other, X-specific applications is that
instead of running individual instances of xterm, you run one instance of Termi-
nal and may have multiple windows, known as “shells,” which may have saved
settings (such as color, size, font choice, and various other settings). You can’t
run a shell in Mac OS X without running Terminal.

—sJC

Shell Setup Files—Which, Where,
and Why

To understand setup files, you need to understand that a shell can act like a login
shell or a nonlogin shell (3.4). There are different setup files for nonlogin and login

shells.

When you log in to a Unix system—but not under a window system—the login
program starts a shell for you. The login program sets a special flag (3.19) to tell a
shell that it’s a login shell. If the shell doesn’t have that flag set, it won’t act like a
login shell. Opening a new window in a window system may or may not set the
“login shell” flag—that depends on the configuration. (For example, the command

44

Part Il: Customizing Your Environment

xterm —lIs starts a login shell in an xterm window (24.20); xterm +ls starts a nonlogin
shell.) When you connect to a system with programs like ftp and scp, that usually
starts a nonlogin shell. And a subshell (24.4) is never a login shell (unless you set a
command-line option to force a login shell, like bash -1).

How can you tell whether your shell is a login shell? The answer is “it depends.”
When you first log in to a system, you want a login shell that sets things like the
terminal type (5.2, 5.3). Other shells on the same terminal should be nonlogin
shells—to avoid redoing those one-time-only setup commands. Different shells
have their own methods for handling first-time shell invocations versus later
invocations, and that’s what the rest of this article is about.

Parenthesis operators (43.7) don’t read any setup file. Instead, they start another
instance of your current shell. Parentheses are called “subshell operators,” but
the subshell they start doesn’t print a prompt and usually has a short lifetime.

Next, let’s look at the setup files—login and nonlogin—for the major shells. I
recommend that you read about all of them. Then experiment with your shell’s
setup files until you get things working the way you want them.

System-wide setup

Your login(1) command probably sets some environment variables (35.3) like
HOME, PATH, SHELL, TERM, MAIL, and LOGNAME or USER; check its
manual page. Your system may set some environment variables or other
parameters that apply to all shells or to all shells of a particular type (all bash
shells, zsh shells, etc.). All of these will be passed through the environment,
from parent process to child process (354), to all of your shells, login and
nonlogin.

Once login or your window system starts your individual shell, it may also
read its own system-wide setup files. These files, if any, will be read before
your personal setup files. Check your shell’s manual page and the /etc direc-
tory for files like csh.login, bashrc, zshre, and so on. On Red Hat systems, for
example, there is a directory named /etc/profile.d containing package-specific
C and Bash shell config files that are sourced (read into the current shell) on
startup of a shell. On Mac OS X, when you use Terminal (32), your shell
(which is tesh by default) reads /private/etc/csh.cshre, as well as any user-spe-
cific files (e.g., ~/.tcshrc).
Bourne shell
The original Bourne shell has one file that it reads when you log in: it’s
called .profile and is in your home directory. Put all your setup commands
there. Later versions of the Bourne shell may also read /etc/profile before
your local setup file is read and may also read the contents of whatever file is
named in the ENV environment variable (35.3) (but only for interactive
shells). You may set this variable from your own .profile:
ENV=$HOME/.mystartup; export ENV

Chapter 3: Setting Up Your Unix Shell 45

3.3

3.3

The Bourne shell doesn’t read .profile when you start a nonlogin shell or
subshell (43.7), though. Subshells are set up through inheritance of environ-
ment variables (35.3) that were set when you first logged in (in system-wide
setup files or .profile) or from commands you typed since.

C shell
C shell users have several shell setup files available:

* The .cshrc file is read any time a C shell starts—that includes shell
escapes and shell scripts.” This is the place to put commands that
should run every time you start a shell. For instance, shell variables like
cdpath (315) and prompt should be set here. Aliases (29.2) should, too.
Those things aren’t passed to subshells through the environment, so
they belong in .cshrc (or .tcshrc). See the upcoming section on tcsh for
more details.

Alternately, you can put aliases into a separate file and use the source
command to read the file into the current shell from your .cshrc/
.teshrc—if you’re the sort who likes to have custom init files for every
host you log in to, but like your aliases to be common wherever you go.
This provides a quick and easy way for you to copy your .csh.aliases (or
whatever name you give it, being careful to distinguish between it and
the slightly different format required by bash aliases) from host to host
without clobbering your custom, localized init files.

* When csh starts up, on recent systems it may read a system-wide setup
file, such as /etc/csh.cshre,t and for login shells, /etc/csh.login.

* Your .login file is read when you start a login shell. You should set sev-
eral things here. Set environment variables (35.3) (which Unix will pass
to subshells automatically). Run commands like tset (5.3) and stty (5.7,
5.8) that set up your terminal. Finally, include commands you want to
run every time you log in—checking for mail and news (1.21), running
fortune, checking your calendar for the day, etc.

Note that .cshrc is read before .login, by csh, but that tcsh may be com-
piled such that the order is reversed, and .tcshrc may be read after .login
in some environments. Check the version shell variable to find out how
your environment is set up.

* The shell reads .logout when you end a login shell. Article 3.8 has tips
for reading .logout from nonlogin shells.

* If you write a csh (or tesh) script, you probably should use the —f option to keep scripts from reading
.cshre (or .teshre). However, you probably shouldn’t use ¢sh or tesh for scripts.

1 On Mac OS X, /etc is a symbolic link to /private/etc. The actual initialization files for tcsh are in /usr/
sharefinit/tcsh.

46 Part Il: Customizing Your Environment

Korn shell
The Korn shell is a lot like the Bourne shell. A login Korn shell (3.4) will read
the .profile first; recent versions do so only after reading /etc/profile, if
present. The .profile can set the ENV (355) environment variable to the path-
name of a file (typically SHOME/.kshrc). Any child Korn shell started by that
login shell—including all subshells—will read the file named by $ENV as it
starts up, before printing a prompt or running other commands.

The public domain Korn shell often found on Linux may also be further
restricted when invoked as a “privileged” shell, using a pattern that matches
r*sh, in which case neither the ~/.profile nor the file named by the ENV envi-
ronment variable will be read. Instead, the shell will be initialized using /etc/
suid_profile, if present.
bash

bash is something of a cross between the Bourne and C shells. A login bash
will read .bash_profile, .bash_login, or .profile. A noninteractive bash will
read a file named .bashrc in your home directory. The shell reads .bash_
logout when you end a login shell; you can set a trap (418) to handle
nonlogin shells.

bash also uses GNU Readline for reading and editing text you enter at a shell
prompt. The .inputrc file configures Readline for a given user; /etc/inputrc is
for global configuration.

tesh
tesh is like the C shell but more flexible. If a tcsh shell is run, it first tries to
read .tcshrc and, if not found, then tries .cshrc. In addition, tcsh will also
load either .history or the value of the histfile variable, if set; then it may try
to read .cshdirs or the value of the dirsfile variable.

zsh

As always, zsh is very flexible. Startup files are read from the directory
named in the ZDOTDIR environment variable, if any;" otherwise, from
HOME. All shells read the global /etc/zshenv and your .zshenv files. If the
shell is a login shell, commands are read from /etc/zprofile and then your
.zprofile. Then, if the shell is interactive, commands are read from /etc/zshrc
and your .zshrc. Finally, if the shell is a login shell, /etc/zlogin and your
.zlogin files are read.

—JP and S§JC

* ZDOTDIR may be hard to set on your first login—when your zsh is a login shell—because it’s hard to
set an environment variable before your first shell starts. (The system program that starts your shell,
like login(1), could do the job, I guess.)

Chapter 3: Setting Up Your Unix Shell 47

3.4

3.4

Login Shells, Interactive Shells

Each Unix shell (sh, csh, etc.) can be in interactive mode or noninteractive mode.
A shell also can act as a login shell or a nonlogin shell. A shell is a shell is a
shell—e.g., a login bash shell is the same program (like /bin/bash) as a nonlogin
bash shell. The difference is in the way that the shell acts: which setup files it
reads, whether it sets a shell prompt, and so on.

Login Shells

When you first log in to a Unix system from a terminal, the system normally
starts a login shell. (34) A login shell is typcally the top-level shell in the “tree” of
processes that starts with the init (24.2) process. Many characteristics of pro-
cesses are passed from parent to child process down this “tree”—especially envi-
ronment variables (35.3), such as the search path (35.6). The changes you make in
a login shell will affect all the other processes that the top-level shell starts—
including any subshells (24.4).

So, a login shell is where you do general setup that’s done only the first time
you log in—initialize your terminal, set environment variables, and so on. A
shell “knows” (3.19) when it’s a login shell—and, if it is, the shell reads special
setup files (3.3) for login shells. For instance, login C shells read your .login file,
and Bourne-type login shells read .profile. Bash may also read /etc/profile, and
~/.bash_profile or ~/.bash_login or ~/.profile, depending on whether those files
exist and whether the —noprofile option has been passed (which would disable
reading of any startup files).

Nonlogin shells are either subshells (started from the login shell), shells started
by your window system (24.20), or “disconnected” shells started by at (25.5), rsh
(1.21), etc. These shells don’t read .login or .profile. In addition, bash allows a
nonlogin shell to read ~/.bashrc or not, depending on whether the —norc or —rcfile
options have been passed as arguments during invocation. The former simply
disables reading of the file, and the latter allows a substitute file to be specified as
an argument.

Some shells make it easy to know if a particular invocation is a login shell. For
instance, fcsh sets the variable loginsh. Check your shell’s manual page for
details. Article 4.12 shows another solution: the SHLVL variable that’s set in
most modern shells. Or you can add the following line to the beginning of a
setup file that’s only read by login shells (3.3). The line sets a shell variable (35.9)
named loginshell:

set loginsh=yes ..csh

loginshell=yes ...bash and other sh-type shells

48

Part Il: Customizing Your Environment

if 35.13

3.5

Now wherever you need to know the type of shell, use tests like:

if ($?1loginsh) ...csh-type shells

if [-n "$loginshell"] ...sh-type shells (including bash)

This works because the flag variable will only be defined if a shell has read a
setup file for login shells. Note that none of the variable declarations use the
“export” keyword—this is so that the variable is not passed on to subsequent
shells, thereby ruining its purpose as a flag specific to login shells.

Interactive Shells

In general, shells are used for two jobs. Sometimes, a shell handles commands
that you type at a prompt. These are interactive shells. Other times, a shell reads
commands from a file—a shell script (35.2). In this case, the shell doesn’t need to
print a prompt, to handle command-line editing, and so on. These shells can be
noninteractive shells. (There’s no rule that only noninteractive shells can read
shell scripts or that only interactive shells can read commands from a terminal.
But this is generally true.)

One other difference between interactive and noninteractive shells is that inter-
active shells tie STDOUT and STDERR to the current terminal, unless other-
wise specified.

It’s usually easy to see whether a particular invocation of your shell is interac-
tive. In C shells, the prompt variable will be set. In the Korn shell and bash, the —i
flag is set. Your current flags may be displayed using the $— variable:

prompt$ echo $-

imH
The previous example, from an interactive bash shell, shows that the flags for an
interactive shell (i), monitor mode (m), and history substitution (H) have been
set.

—JP and S§JC

What Goes in Shell Setup Files?

Setup files for login shells (3.4)—such as .login and .profile—typically do at least
the following;:

* Set the search path (27.6) if the system default path isn’t what you want.

* Set the terminal type (53) and make various terminal settings (5.7, 5.8) if the
system might not know your terminal (if you log in from various terminals
over a dialup line or from a terminal emulator on a desktop machine, for
instance).

Chapter 3: Setting Up Your Unix Shell 49

3.5

3.6

3.6

* Set environment variables (35.3) that might be needed by programs or scripts
that you typically run.

* Run one or more commands that you want to run whenever you log in. For
example, if your system login program doesn’t show the message of the day,
your setup file can. Many people also like to print an amusing or instructive
fortune. You also might want to run who (2.8) or uptime (26.4) or w (a combi-
nation of the other two, but not found on all systems) for information about
the system.

In the C shell, the .cshre file is used to establish settings that will apply to every
instance of the C shell, not just login shells. For example, you typically want
aliases (29.2) available in every interactive shell you run—but these aren’t passed
through the environment, so a setup file has to do the job. You may wish to put
all of your aliases into another file, such as .aliases, or qualify the name with the
shell’s name, such as .csh.aliases, to allow for different alias formats between
shells, and then you can use the source command to read in that file on startup
from .cshrc.

Even novices can write simple setup files. The trick is to make these setup scripts
really work for you. Here are some of the things you might want to try:

* Creating a custom prompt.

* Coordinating custom setup files on different machines (article 3.18).

* Making different terminal settings depending on which terminal you’re
using (article 3.10 and others).

* Seeing the message of the day only when it changes.

* Doing all of the above without making your login take forever.

—TOR and SJC

Tip for Changing Account Setup:
Keep a Shell Ready

The shell is your interface to Unix. If you make a bad mistake when you change
your setup file (3.3) or your password, it can be tough to log in and fix things.

Before you change your setup, it’s a good idea to start a login session to the same
account from somewhere else. Use that session for making your changes. Log in
again elsewhere to test your changes.

Don’t have a terminal with multiple windows or another terminal close to your
desk? You can get the same result by using rlogin or telnet (1.21) to log in to your
host again from the same terminal. What [mean is:

50

Part Il: Customizing Your Environment

3.7

$$27.17
S, 2814

somehost% vi .cshrc
...Make edits to the file...
somehost% rlogin localhost
...Logs you in to your same account...
An error message
somehost% logout
Connection closed.
somehost% vi .cshrc
...Edit to fix mistake...
If you don’t have rlogin or telnet, the command su - username, where username is
your username, will do almost the same thing. Or, if you’re testing your login

shell configuration, login will do as well.

—JP and S§JC

Use Absolute Pathnames in Shell
Setup Files

One common mistake in shell setup files (3.3) is lines like these:

source .aliases
echo "Shell PID $$ started at “date™" >> login.log

What’s wrong with those lines? Both use relative pathnames (1.16) for the files
(.aliases, login.log), assuming the files are in the home directory. Those lines
won’t work when you start a subshell (24.4) from somewhere besides your home
directory because your setup files for nonlogin shells (like .cshrc) are read when-
ever a shell starts. If you ever use the source or . commands (35.29) to read the
setup files from outside your home directory, you’ll have the same problem.

Use absolute pathnames instead. As article 31.11 explains, the pathname of your
home directory is in the tilde (~) operator or the $HOME or $LOGDIR environment
variable:

source ~/.aliases
echo "Shell PID $$ started at “date™" >> ~/login.log

Setup Files Aren’t Read When
You Want?

The C shell reads its .cshrc, .login, and .logout setup files at particular times (3.3).
Only “login” C shells (3.4) will read the .login and .logout files. Back when csh
was designed, this restriction worked fine. The shell that started as you logged in
was flagged as a login shell, and it read all three files. You started other shells
(shell escapes, shell scripts, etc.) from that login shell, and they would read only

Chapter 3: Setting Up Your Unix Shell 51

3.8

3.8

.cshrc. The same can be said of other shell variants, such as tcsh, though they
may have multiple startup files—the problem of distinguishing between login
and nonlogin shell startup is the same.

Now, Unix has interactive shells started by window systems (like xterm (24.20)),
remote shells (like rsh (1.21) or ssh), and other shells that might need some things
set from the .login or .logout files. Depending on how these shells are invoked,
these might not be login shells—so they might read only .cshrc (or .teshre, etc.).
How can you handle that? Putting all your setup commands in .cshrc isn’t a
good idea because all subshells (24.4) read it...you definitely don’t want to run
terminal-setting commands like tset (5.3) during shell escapes!

Most other shells have the same problem. Some, like zsh and bash, have several
setup files that are read at different times—and probably can be set up to do what
you want. For other shells, though, you’ll probably need to do some tweaking.

To handle problems at login time, put almost all of your setup commands in a
file that’s read by all instances of your shell, login or nonlogin. (In the C shell,
use .cshrc instead of .login.) After the “login-only” commands have been read
from the setup file, set the ENV_SET environment variable (353) as a flag.
(There’s nothing special about this name. You can pick any name you want.)
You can then use this variable to test whether the login-only commands have
already been run and skip running them again in nonlogin shells.

Because the environment variables from a parent process are passed to any child
processes it starts, the shell will copy the “flag” variable to subshells, and the
.cshre can test for it. If the variable exists, the login-only commands are skipped.
That’ll keep the commands from being read again in a child shell.

Here are parts of a .cshrc that show the idea:
...Normal .cshrc stuff. . .
if ($?prompt && | $?ENV_SET) then
Do commands that used to go in .login file:

setenv EDITOR /usr/ucb/vi
tset

seter'n./.ENV_SET done
endif
You might put a comment in the file you’ve bypassed—the csh .login file, the ksh
.profile file, etc.—to explain what you’ve done.

The file that runs when you log out (in the C shell, that’s .logout) should proba-
bly be read only once—when your last (“top-level”) shell exits. If your top-level
shell isn’t a login shell, you can make it read the logout file anyway. Here’s how:
first, along with the previous fixes to your .cshre-type file, add an alias that will
read your logout file when you use the exit command. Also set your shell to force
you to use the exit command (35.12) to log out—in csh, for example, use set ignor-
eeof. Here’s what the chunk of your .bashrc will look like:

52

Part Il: Customizing Your Environment

case 35.10
/36.25

function 29.11
. 35.29

3.9

case "$-/${ENV_SET:-no}" in
i/no)
This is an interactive shell / $ENV_SET was not set earlier.
Make all top-level interactive shells read .bash logout file:
set -o ignoreeof
function exit {
. ~/.bash_logout
builtin exit

}

ESaC, ’
The builtin exit (27.9) prevents a loop; it makes sure bash uses its internal exit
command instead of the exit function you’ve just defined. In the C shell, use
""exit (27.10) instead. This isn’t needed on all shells though. If you can’t tell from
your manual page, test with another shell (3.6) and be ready to kill (24.12) a loop-

ing shell.

—/JP and SJC

Gotchas in set prompt Test

Lots of users add an if (! $?prompt) exit test to their .cshrc files. It’s gotten so
common that some vendors add a workaround to defeat the test. For instance,
some versions of the which command (26) set the prompt variable so that it can
see your aliases “hidden” inside the $?prompt test. I've also seen a version of at
that starts an interactive shell to run jobs.

If you’ve buried commands after if (! $?prompt) that should only be run on
interactive shells or at login time, then you may have trouble.

There are workarounds. What you’ll need depends on the problem you’re trying
to work around.

* Here’s a way to stop the standard which from reading parts of your .cshrc
that you don’t want it to read. The first time you log in, this scheme sets a
CSHRC_READ environment variable (35.3). The variable will be copied into
all subshells (24.4) (like the one that which starts). In subshells, the test
if ($?CSHRC_READ) will branch to the end of your .cshrc file:

if (! $?prompt) goto cshrc_end

COMMANDS BELOW HERE ARE READ ONLY BY INTERACTIVE SHELLS:
alias foo bar

if ($2CSHRC_READ) goto cshrc_end

Chapter 3: Setting Up Your Unix Shell 53

3.9

3.10

()43.7
\at 29.8

3.10

COMMANDS BELOW HERE ARE READ ONLY AT LOGIN TIME:
setenv CSHRC_READ yes

cshrc_end:

* If you have a buggy version of at (255) that runs jobs from interactive shells,
make your own frontend to at (29.1) that sets an environment variable named
AT temporarily before it submits the at job. Add a test to your .cshrc that
quits if AT is set:

at JOBS RUN INTERACTIVE SHELLS ON MY BUGGY VERSION OF UNIX.

WORKAROUND IS HERE AND IN THE at ALIAS BELOW:
if ($?AT) goto cshrc_end

alias at '(setenv AT yes; \at \!*)'

cshrc_end:
Most modern versions of at save a copy of your environment when you sub-
mit the job and use it when the at job is run. At that time, the AT environ-
ment variable will be set; the C shell will skip the parts of your .cshrc that
you want it to. It’s ugly, but it works.

Those workarounds probably won’t solve all the problems on your version of
Unix, but I hope they’ll give you some ideas.

—JP and SJC

Automatic Setups for
Different Terminals

If you work at several kinds of terminals or terminal emulators, terminal setup
can be tough. For instance, my X terminal sends a backspace character when I
push the upper-right key, but the same key on another terminal sends a delete
character—I want stty erase (58) to set the correct erase character automati-
cally.” Maybe you want a full set of calendar programs started when you log in to
the terminal at your desk, but not when you make a quick login from some-
where else.

The next seven articles have ideas for changing your login sequence automati-
cally. Some examples are for the C shell and use that shell’s switch and if. Exam-
ples for Bourne-type shells use case (35.10) and if (35.13). If you use the other type
of shell, the idea still applies; just swap the syntax.

* Of course, it is all arbitrary and contingent on your keyboard layout and configuration.

54

Part Il: Customizing Your Environment

3.11

* If you use several kinds of terminals or terminal emulators, try testing the
TERM environment variable (3.11). Testing other environment variables (3.14)
can identify the frontend system (like a window system) you’re using.

* Test the output of who am i (312) to find out about the remote system from
which you’ve logged in.

* If you log into different kinds of ports—network, hardwired, and so on—
search for the port type (3.15) in a table like /etc/ttys (in BSD derivatives) or
letc/inittab (in some other variants). Testing the port name (3.13) may also
work.

* In the X Window System, you can test the window size (3.16) and make vari-
ous settings based on that. Naming windows (3.17) lets you identify a partic-
ular window by reading its environment.

* You can also handle some of these cases using the venerable but obscure set
(5.3) program to select and initialize the correct terminal type. Another pro-
gram that sets the terminal type is gterm (5.4).

Because your terminal type doesn’t change after you’ve logged in, many of these
tests probably belong in your .profile or .login file. Those setup files are read
when you first log in to a tty. Other tests, especially ones that involve windows,
will probably fit better in a per-shell setup file such as .bashrc or .cshrc. Article
3.3 can help you choose.

—JP and S§JC

Terminal Setup: Testing TERM

If you use several different kinds of terminals (or, as is far more common these
days, terminal emulators) and your TERM environment variable is set differ-
ently on each terminal, you can add a test like this to your C shell .login file:

switch ($TERM)

case vt100:
...do commands for vt100
breaksw

case xxx:
...do commands for xxx
breaksw

default:
...do commands for other terminals
breaksw

endsw

Chapter 3: Setting Up Your Unix Shell 55

3.1

3.12

3.12

case 35.10

\(.\) 1
34.11

If you have a Bourne-type shell, use a case statement (35.10) in your .profile instead:

case "$TERM" in
vt100)
...do commands for vt100
55
xterm)
...do commands for xterm
55
*)
...do commands for other terminals
55
esac

—JP and SJC

Terminal Setup: Testing Remote
Hostname and X Display

If you log in from other hosts (1.21) or from hosts running the X Window System
(24.20), the who am i" command will probably show a hostname and/or window
information in parentheses:

schampeo@fugazi:1002 $ who am i

schampeo ttyp7 Jun 19 03:28 (fugazi:0.0)
(Long hostnames may be truncated. Also, note that some versions of who am i
prepend the name of the local host to the username and don’t include the
remote hostname at all in their output. Check yours before you write this test.)
The information in parentheses can help you configure your terminal based on
where you’ve logged in from and/or which display you’re using. To test it, add
commands such as the following to your .profile file. (In C-type shells, use a
switch statement in .login instead.)

case "“who am i | sed -n 's/.*(\(.*\))/\1/p'"" in

*0.0) ...do commands for X display 0 ;;

mac2*) ...do commands for the host mac2.foo.com ;;

") ...no output (probably not a remote login) ;;

*) ...do commands for other situations ;;

esac
That uses sed (34.1) to give the text between the parentheses for that remote host
to the case. This *0.0 case matches lines ending with 0.0; the mac2 case matches
lines that start with mac2; an empty string means sed probably didn’t find any
parentheses; and the * case catches everything else.

—JP and S§JC

* Also try “who mom likes” or maybe “who is responsible?”—the who doesn’t really care, as long as there
are only two arguments. So, “who let the dogs out?”, as you might expect, causes an error.

56

Part Il: Customizing Your Environment

3.13

tty 2.7

3.14

[135.26

Terminal Setup: Testing Port

If you know that certain port (tty) numbers are used for certain kinds of logins,
you can test that and change your terminal setup based on the ¢ty you're cur-
rently using. For example, some systems use ttyp0, ttyql, etc. as network ports
for rlogin and ssh (1.21), while others use pty0, etc. This Bourne-type case state-
ment branches on the port name:

case "“tty " in

/dev/tty[pqgrs]?)
rlogin, telnet:

/dev/tty02)
terminal on my desk:

"not a tty") ;; ...notaterminal login session; do nothing
esac

In C-type shells, try a switch or if statement instead.
On Linux, you may need to look for patterns to match /dev/pts/0, /dev/pts/1, etc.
—JP and S§JC

Terminal Setup: Testing
Environment Variables

Certain systems set certain environment variables. For example, the X Window
System sets a DISPLAY environment variable (355). If you’ve logged in from a
remote system using ssh (1.21), look for variables like SSH_CLIENT and SSH_
TTY or SSH_AUTH_SOCK on the system you log in to. (If you aren’t sure about
your system, use the env or printenv command (35.3) to look for changes in your
environment at different systems.)

Your shell setup file (3.3) makes decisions based on the environment variables
that have been set. Here are examples for both C-type and Bourne-type shells:
if ($2DISPLAY) then if [-n "$DISPLAY"]; then
on X window system # on X window system

else if ($?XDARWIN_VERSION) then elif [-n "$XDARWIN_VERSION"]; then

on MacOS X system # on MacOS X system
elsén elsén
endi%' fi o
—JP and SJC

Chapter 3: Setting Up Your Unix Shell 57

3.14

3.15

3.15

awk 20.10

3.16

-e5.22

Terminal Setup: Searching
Terminal Table

Your system may have an /etc/ttytab or /etc/ttys file that lists the type of each ter-
minal port (tty (24.6)).” Here are lines from /etc/ttys on a NetBSD system I use:
console "/usr/libexec/getty std.9600" vt100 on local

ttyoo "/usr/libexec/getty std.9600" dialup off local
ttyol "/usr/libexec/getty std.9600" plugboard off local

ttyp0 none network off

For example, port ttyp0 is network, the type used by xterm (24.20), telnet (1.21), etc.

To change your account configuration based on the tty port type, match the first
column of that file to the output of the ¢ty (27) command, which shows your cur-
rent tty pathname. The output of tty starts with /dev or /dev/pts. So, to match
your current tty to the file, you need to strip the name to its tail. For example, in
bash and ksh, these three lines would put the terminal port type (vtio0,
plugboard, etc.) into the ttykind shell variable:

tty="tty"

ttytail=${tty#/dev/}

ttykind="awk '$1 == "'$ttytail'" {print $3}' /etc/ttys’
Then you can test the value with case (35.10) or if (35.13). In C shells, you can set
ttytail by using the :t string modifier (28.5) and test its value with switch or if.

—JP and SJC

Terminal Setup: Testing Window Size

I use several terminal windows of different sizes. I don’t stretch the windows
after I open them; instead, I set the size as I start each xterm. Here’s an excerpt
from my X setup file (3.20) that opens the windows:

xterm -title SETI -geometry 80x9+768+1 -e setiathome -verbose -nice 10 &

xterm -title "work xterm" -geometry 80x74+329-81 &
The first window has 9 rows (80x9) and the second has 74 rows (80x74).T I'd like
the less (12.3) pager to use different jump-target lines in larger windows. If the
window has more than 24 lines, I want less to use its option —j3 to show search-
matches on the third line of the window instead of the first.

* Then again, it may not. The RedHat Linux system I tested this on did not; the MacOS X 10.1.5 box I
tested it on did.

1 Both windows have 80 columns. This is a Unix custom that comes from “the old days” when terminals
all were 80 columns wide. But it’s still a common width today—and a good default when you don’t
need a wider window. Some people are even sort of weird about it, especially for reading email.

58

Part Il: Customizing Your Environment

3.17

On many systems, the command stty size gives the number of rows and columns
in the current window, like this:

$ stty size

74 80
Your system might need the command stty —a instead—or it could have environ-
ment variables named LINES and COLUMNS. We’ll use stty size in the follow-
ing Bourne shell setup file. The set (35.25) command puts the number of rows into
the $2 shell parameter. (Using set this way is portable to all shells, but it’s a
clumsy way to split stty’s output into words. If you have a newer shell with array
support, it’'ll be easier.) Then a series of if (35.13)/then (35.26) tests handle different
window sizes:

LESS=emqc; export LESS

Put number of rows into $2, configure session based on that:

set x “stty size’

if [-z "$2" -0 "$2" -1t 1]

then echo ".profile: bogus number of rows ($2) in window!?" 1>82

elif ["$2" -gt 24]

then LESS=j3$LESS

fi

Additionally, you may be able to run resize on machines with the X Window
System installed; it may output something like this:

schampeo@fugazi: 1046 $ resize

COLUMNS=80;

LINES=37;
export COLUMNS LINES;

You may then capture the output and read it for the current setting or simply
check the COLUMNS or LINES environment variables.

—JP and S§JC

Terminal Setup: Setting and Testing
Window Name

[use several xterm windows. Here’s an excerpt from my X setup file (3.20):

WINNAME=console xterm -C -title Console -geometry 80x9+0+0 &

WINNAME=work xterm -title "work xterm" -geometry 80x74+329-81 &
The WINNAME=name sets an environment variable named WINNAME for the par-
ticular command line it’s on. This is passed through the environment, through
the xterm process, to the shell running inside the window. So the shell’s setup
file can test for this variable—and, by knowing the window name stored in that
variable, do specific setup for just that window. For example, in tcsh:

if ($?WINNAME) then
switch ($WINNAME)

Chapter 3: Setting Up Your Unix Shell 59

3.17

3.18

-£12.10
{1284

3.18

setenv 35.3
~31.11

case console:
Watch logs:
tail -f /var/log/{messages,maillog,secure} ~/tmp/startx.log &
breaksw

case work:
/usr/games/fortune
fetchmail
breaksw

endsw

endif

On the console terminal, this .tcshre file starts a job in the background (23.2) to

watch log files. On the work xterm, I get a fortune and grab email from the POP
server.

—JP and SJC

A .cshrc.$HOST File
for Per Host Setup

I work with different types of machines every day. It is often necessary to set
things up differently for, say, a Linux box than a SPARCstation or a MacOS X
box. Going beyond that, you may want to set things up differently on a per-host
basis.

I have this test in my .cshrc file:

setenv HOST "“uname -n™"
if (-e ~/1lib/cshrc.hosts/cshrc.$HOST) then
source ~/1lib/cshrc.hosts/cshrc.$HOST

endif
So, if T log in to a machine named (25) bosco, and 1 have a file called ~/lib/
cshre.hosts/cshre.bosco, 1 can source (35.29) it to customize my environment for
that one machine. These are examples of things you would put in a
.cshre. SHOST file:

Search path (21.6)
Some machines have /usr/local/bin, and some have /opt. The same goes for
cdpath (31.5).

Terminal settings (5.8)
I always like to reach for the upper-right part of a keyboard to erase charac-
ters. Sometimes this is the location for the BACKSPACE key, and some-
times it is the DELETE key. I set things up so that I can consistently get
“erase” behavior from whatever key is there.

60

Part Il: Customizing Your Environment

3.19

bin 7.4
./-14.13

Other shell variables (35.9) and environment variables (35.3)
These may be different. You may run a package on a certain machine that
relies on a few environment variables. No need to always set them and use
up a little bit of memory if you only use them in one place!

In general, this idea allows you to group together whatever exceptions you want
for a machine, rather than having to write a series of switch or if statements
throughout your .cshrc and .login files. The principle carries over directly to the
newer shells as well.

—DS and SJC

Making a “Login” Shell

When you log in to most Unix systems, your shell is a login shell. When a shell is
a login shell, it acts differently (3.4).

Sometimes, when you’re testing an account or using a window system, you want
to start a login shell without logging in. Unix shells act like login shells when
they are executed with a name that starts with a dash (-).” This is easy to do if
you’re using a system call in the exec(3) family. These system calls let a C-lan-
guage programmer give both the filename of an executable file, like sh or /bin/sh,
as well as the name that should be used to identify the process (in a ps (24.5) list-
ing, for example), like —sh.

If you’re currently using zsh, you can invoke another shell this way by typing a
dash and a space before the shell’s name:
zsh% - csh
...C shell starts, acting like a login shell...
%
C programmers can write a little program that runs the actual shell but tells the
shell that its name starts with a dash. This is how the Unix login process does it:

run_login csh()

execl("/bin/csh", "-csh", 0);
}
A more general solution is to make a link (104) to the shell and give the link a
filename starting with a dash. If your own bin subdirectory is on the same filesys-
tem as /bin (or wherever the executable shell file is), you can use a hard link.
Otherwise, make a symbolic link, as shown here:

$ cd $HOME/bin
$ 1n -s /bin/csh ./-csh

* bash also has a command-line option, —login, that makes it act like a login shell. zsh —I (lowercase L)
does the same for zsh.

Chapter 3: Setting Up Your Unix Shell 61

3.19

3.20

3.20

Then you can execute your new shell by typing its name:

$ -csh
...normal C shell login process...
% ...run whatever commands you want...
% logout
$...back to original shell

—JP and SJC

RC Files

One way to set defaults for your applications is with environment variables (35.3)
that the applications might read. This can get messy, though, if your environ-
ment has tens or hundreds of variables in it. A lot of applications have a differ-
ent way to choose defaults: setup files, similar to shell setup files (3.3). Most of
these filenames end with rc, so they’re often called RC files.” Today’s more-
complex applications also use their own setup subdirectories. Almost all of these
files and directories are hidden (8.9) in your home directory; you’ll need Is —-A to
see them.

This article describes some of the most common setup files. For a more com-
plete list, check your application’s manpage:

.emacs
For the Emacs editor. See article 19.3.

.exrc
For the vi (actually, ex) editor. See article 17.5.

.inputrc
For the GNU Readline library and applications that use it, such as the bash
shell.

.mailrc
For the mail (1.21) program and others like it. This can be handy if you use
mail from the command line to send quick messages. For example:

If I send mail to "bookquestions", send it to myself too:
alias bookquestions bookquestions@oreilly.com, jerry

When I send a message, prompt me for "cc:" addresses:
set askcc

.mh_profile
For the MH email system.

* Don’t ask me why. It’s one of those acronyms, like spool (45.2), that’s open to interpretation, though
one theory is that it is derived from “runcom files,” (possibly short for “run commands”) on the Com-
patible Time-Sharing System, ¢.1962-63 (source: The Jargon File).

62

Part Il: Customizing Your Environment

$1d 39.5

.netrc

A listing of hostnames, accounts—and possibly passwords—used for con-
necting to remote hosts with ftp and some other programs. Should have file
access mode (50.2) 600 or 400 for security, but this may not be enough pro-
tection for passwords! Best used for Anonymous ftp.

.newsrc

For news readers (1.21). (Some newer news readers have more complex files.)
A list of newsgroups in the order you want to see them. For example:

comp.security.announce: 1-118
news.announce.important: 1
comp.org.usenix: 1-1745
comp.sys.palmtops! 1-55069,55071

A newsgroup name ending with a colon (:) means you want to read that
newsgroup; an exclamation point (!) means you don’t. After each name is a
list of the article numbers you’ve read in that newsgroup; a range like 1-
55069 means you’ve read all articles between number 1 and number 55069.

.rhosts

A list of remote hostnames that are allowed to access your local machine
with clients like rsh and rlogin (1.21). Remote usernames are assumed the
same as your local username unless the remote username is listed after the
hostname. This file can be a security hole; make its file access mode (50.2)
600 or 400. We suggest you only use it if your system or network adminis-
trator approves. For example:

rodan Allow a user with same username from host rodan
foo.bar.com joe Allow username joe from host foo.bar.com

Xauthority

For xauth, a program that handles authorization information used in con-
necting to the X Window System server.

Xdefaults

A resource file (6.5) for the X Window System. Sometimes also called .xrdb.

.xinitrc

A shell script (35.2) that runs as you log in to an X Window System session
using xinit. (Also see .xsession, later in this list.)

All commands except the last typically end with an ampersand (&), which
makes those clients run in the background. The last command becomes the
controlling process; when that process exits (for instance, you use the win-
dow manager’s “quit” command), the window system shuts down. For
example:

#! /bin/sh

Id
Usage: .xinitrc [DISPLAY]

wm=Fvwm2 # window manager

Chapter 3: Setting Up Your Unix Shell 63

3.20

3.20

Put all output into log that you can watch from a window (tail -f):
mv -f $HOME/tmp/startx.log $HOME/tmp/,startx.log

exec > 36.5 exec > $HOME/tmp/startx.log 2>81
-v35.25 set -v
Set DISPLAY from $1 if the X server isn't on same host as client:
if [$# -gt o]
then
if [$# -ne 1]
then
echo "Usage: .xintirc [DISPLAY]" 1>82
exit 1
else
DISPLAY=$1
fi
else
uname -n 2.5 host="uname -n’
${..:=..136.7 DISPLAY=${DISPLAY:=$host:0.0}
fi
export 35.3 export DISPLAY
xrdb 6.8 xrdb -load $HOME/.xrdb
#
Clients
#
xterm -C -geometry 80x9+0+0 -s1 2000 &
oclock -geometry -1+1 &
xterm -title "SETI console" -bg blue -fg white -geometry 80x9+768+1 -e \
sh-c 24.21 sh -c 'cd /var/cache/seti 8& exec ./setiathome -nice 5 -verbose' &
exec 36.5 # Don't use -e because Mozilla crashes; start by hand from prompt:
xterm -title "Mozilla console" -bg orange -geometry 80x9-0+1 &
xterm -geometry 80x74+329-81 &
#
Start window manager
#
exec $wm
.xsession
An executable file (generally a shell script (35.2), but it can be any execut-
able) that runs as you log into an X Window System session using xdm. See
.xinitrc, earlier in this list.
letclrc*
Last but not least, your system probably has a lot of setup files in its /etc
directory. Look for subdirectory or filenames starting with rc. These are read
when your system reboots or changes its runlevel (for example, from single-
user mode to multiuser mode). These files are basically shell scripts (35.2). If
you know a little about shell programming, you can learn a lot about your
system by looking around these files.
—JP and S§JC
64 Part Il: Customizing Your Environment

3.21

3.21 Make Your Own Manpages Without
Learning troff

We strongly suggest that you write a manual page for each command that you
place in your bin directory. Unix manual pages typically have the following for-
mat, which we suggest you follow:

NAME
The program's name; one line summary of what it does.

SYNOPSIS
How to invoke the program, including all arguments and
command-1line options. (Optional arguments are placed in
square brackets.)

DESCRIPTION
A description of what the program does—as long as
is necessary.

OPTIONS
An explanation of each option.

EXAMPLES
One or more examples of how to use the program.

ENVIRONMENT
Any environment variables that control the program's behavior.

FILES
Files the program internals will read or write. May include
temporary files; doesn't include files on the command line.

BUGS
Any known bugs. The standard manual pages don't take
bug recording seriously, but this can be very helpful.

AUTHOR
Who wrote the program.

To see how a “real” manual page looks, type man 1s.

Feel free to add any other sections that you think are necessary. You can use the
nroff —man macros (3.22) if you want a nicely formatted manual page. However,
nroff is fairly complicated and, for this purpose, not really necessary. Just create
a text file that looks like the one we showed previously. If you are using a BSD
system and want your manual pages formatted with nroff, look at any of the files
in /usr/man/manl, and copy it.

Chapter 3: Setting Up Your Unix Shell 65

3.21

-s12.7

€&
gnroff
awf

~31.11

If you insist on formatting your manual page properly, using the
troff or groff “man” macros, you can use nroff to preview the file.

The man (2.1) command is essentially the same as this:
% nroff -e -man filename | more -s

You can safely omit the —e option to nroff and the —s option to more, or even
substitute in your favorite pager, such as less. And remember that nroff may not
be available on all systems, but the web site has gnroff and awf. In fact, on some
systems, nroff is simply a script that emulates the real nroff using groff.

Now, you want to make this manual page “readable” by the standard man com-
mand. There are a few ways to do this, depending on your system. Create the
directory man in your home directory; create the directory catl as a subdirec-
tory of man; then copy your manual entry into catl, with the name program.1
(where program is the name of your special command). When you want to read
the manual page, try the command:

% man -M ~/man program

We like to be more strict about naming things properly, but you
can omit the man directory and just put the catl directory into
your home directory. In this case, the command would be as
follows:

% man -M ~ program

Some systems have a MANPATH environment variable (35.3), a colon-separated
list of directories where the man command should look. For example, my MAN-
PATH contains:

/home/mike/man:/usr/local/man:/usr/man

MANPATH can be more convenient than the =M option.

We are telling you to put the manual page into the catl directory
rather than the manl directory because the man program assumes
that files in cat1 are already formatted.

If you are sharing your program with other people on the system, you should put
your manual entry in a public place. Become superuser and copy your documenta-
tion into /usr/local/man/catl, giving it the name program.l (the “1” stands for
“local”). You may need to create /usr/local and /usr/local/man first. If you can’t
become superuser, get the system administrator to do it for you. Make sure that
everyone can read the manual page; the permissions should be something like this:

66

Part Il: Customizing Your Environment

less 12.3

3.22

1241

% 1s -1 /usr/local/man/catl
-r--r--r-- 1 root 468 Aug 5 09:21 program.l

Then give the command man program to read your documentation.

If you are working on some other systems, the rules are a little different. The
organization of the manual pages and the man command itself are slightly differ-
ent—and really, not as good. Write your manual entry, and place it in your doc
directory. Then create the following C shell alias (29.3):

alias myman "(cd ~/doc; man -d \!$ | less)"
or shell function (29.11):
myman() { (cd $HOME/doc; man -d "$1" | less); }

Now the command myman docfilename will retrieve your manual page. Note
that if you use a section-number extension like .1, you have to give the entire
filename (e.g., program.1), not just the program’s name.

If you want to make your manual page publicly available, copy the file into the
system manual page directory for section 1; you may have to become superuser
to do so. Make sure that anyone on the system can read your file. If the entry is
extremely long and you want to save space in your filesystem, you can use the
gzip (156) utility on your documentation file. The resulting file will have the
name program.l.gz; newer versions of the man command will automatically
uncompress the file on-the-fly.

—ML and SJC

Writing a Simple Manpage
with the —man Macros

If you’re not satisfied with the simple manual pages we discussed in article 3.21,
here’s how to go all the way and create a “real” manual page. As we said, the
best way to create a manual page is to copy one that already exists. So here’s a
sample for you to copy. Rather than discuss it blow by blow, I'll include lots of
comments (these start with .\" or \").

.\" Title: Program name, manual section, and date

.TH GRIND 1

.\" Section heading: NAME, followed by command name and one line summary
A" It's important to copy this exactly; the "whatis" database (used

.\" for apropos) looks for the summary line.

.SH NAME

grind \- create output from input

-\" Section heading: SYNOPSIS, followed by syntax summary

.SH SYNOPSIS

.B grind \" .B: bold font; use it for the command name.

Chapter 3: Setting Up Your Unix Shell 67

3.22

3.22

[-b][-c][-d] \"Put optional arguments in square brackets.

[input [output]] \" Arguments can be spread across several lines.

.br \" End the synopsis with an explicit line break (.br)
\" A new section: DESCRIPTION, followed by what the command does

.SH DESCRIPTION

.I Grind \" .I: TItalic font for the word "Grind"

performs lots of computations. Input to

IR grind , \" .IR: One word italic, next word roman, no space between.
is taken from the file

IR input ,

and output is sent to the file

.IR output ,

which default to standard input and standard output if not specified.
.\" Another section: now we're going to discuss the -b, -c, and -d options
.SH OPTIONS

.\" The .TP macro precedes each option

TP

.B \-b \" print the -b option in bold.

Print output in binary.

TP

.B \-c \" \- requests a minus sign, which is preferable to a hyphen (-)
Eliminate ASCII characters from input before processing.

TP

.B \-d

Cause daemons to overrun your computer.

\" OK, we're done with the description and the options; now mention
.\" other requirements (like environment and files needed) as well as
.\" what can go wrong. You can add any other sections you want.

.SH FILES

.PD 0O

.TP 20

.B /dev/null

data file

.TP

.B /tmp/grind*

temporary file (typically 314.159 Gigabytes)

.PD

.SH BUGS

In order to optimize computational speed, this program always produces
the same result, independent of the input.

.\" Use .LP between paragraphs

.LP

If the moon is full,

.I grind

may destroy your input file. To say nothing of your sex life.

.\" Good manual pages end by stating who wrote the program.

.SH AUTHOR

I wouldn't admit to this hack if my life depended on it.

After all that, you should have noticed that there are four important macros
(listed in Table 3-1) to know about.

68 Part Il: Customizing Your Environment

Table 3-1. Important —man macros

Macro
.TH
.SH
TP
LP

Meaning

Title of the manual page.

Section heading; one for each section.

Formats options correctly (sets up the “hanging indent”).
Used between paragraphs in a section.

For some arcane reason, all manual pages use the silly .B, .BI, etc. macros to
make font changes. I've adhered to this style in the example, but it’s much eas-
ier to use inline font changes: \fI for italic, \fB for bold, and \fR for roman.
There may be some systems on which this doesn’t work properly, but I’'ve never

seen any.

—ML and SJC

Chapter 3: Setting Up Your Unix Shell 69

3.22

Interacting with Your Environment

4.1

4.2

Basics of Setting the Prompt

The prompt displayed by your shell is contained in a shell variable (35.9) called
prompt in C-type shells and PS1 in Bourne-type shells. As such, it can be set like
any other shell variable.

There are two or three ways to set a prompt. One is a static prompt (4.2) that
doesn’t change during your login session (as you change directories, as the time
of day changes, etc.). Some shells let you set a dynamic prompt (4.3) string that is
interpreted by the shell before each prompt is printed. Even on shells that don’t
interpret prompt strings dynamically, you can simulate a dynamic prompt (4.4)
by changing the prompt string automatically.”

Depending on your shell’s capabilties, you can use or combine those three tech-
niques—and those found in the rest of this chapter—to do a lot. But, of course,
you don’t want to type that prompt-setting command every time you log in. So
after you’ve perfected your prompt on the command line, store it in the correct
shell setup file (3.3): use the file that’s read by interactive shells or add an interac-
tive shell test to your setup file. (Setting the prompt in noninteractive shells is
pointless—and it can even cause problems (4.5).)

—]JP, TOR, and SJC

Static Prompts

As article 4.1 explains, the simplest prompts—which I call static prompts—are
prompts whose value are set once. The prompt doesn’t change (until you reset
the prompt variable, of course).

* I haven’t seen prompts described this way before. I invented the terms static prompt and dynamic
prompt to make them easier to talk about.

70

4.3

The default bash prompt is a good example of a static prompt. It’s “bash$ ”
(with a space at the end, to make the command you type stand out from the rest
of the prompt). You could set that prompt with the simple command:

PS1="bash$ '.

Notice the single quotes (12.3) around the value; this is a good idea unless you
want special characters in the prompt value to be interpreted before it’s set. You
can try it now: type that command on a command line, just as you would to set
any other shell variable. Experiment a bit. The same prompt works on ksh and

sh.

If you use csh or tcsh, try one of these, then experiment:

set prompt="csh% '
set prompt="tcsh>

(zsh users: you can use any of the previous styles, but omit the set from the set
prompt style.) Those prompts are fairly useless, right? If you log in to more than
one machine, on more than one account, it’s nice to have your hostname and
username in the prompt. So try one of the following prompts. (From here on, I
won’t show a separate tcsh version with a > instead of a %. You can do that your-
self, though, if you like.) If your system doesn’t have uname, try hostname
instead:

PS1="$USER@ uname -n~$ "

set prompt="$user@ uname -n"% "
Notice that I've used double quotes (12.3) around the values, which lets the shell
expand the values inside the prompt string before the prompt is stored. The shell
interprets the variable $USER or $user—and it runs the command substitution
(28.14) that gives the hostname—once, before the prompt is set. Using double
quotes is more efficient if your prompt won’t change as you move around the
system.

—JP and SJC

Dynamic Prompts

Many shells can interpret the stored prompt string as each prompt is printed. As
article 4.1 explains, I call these dynamic prompts.

Special character sequences in the prompt let you include the current directory,
date and time, username, hostname, and much more. Your shell’s manual page
should list these at the PS1 or prompt variable. (If you use the Korn shell or the
original C shell, you don’t have these special sequences. Article 4.4 has a tech-
nique that should work for you.)

It’s simplest to put single quotes around the prompt string to prevent interpreta-
tion (27.1) as the prompt is stored. For example, the following prompt shows the

Chapter 4: Interacting with Your Environment 71

4.3

4.4

4.4

date and time, separated by spaces. It also has a special sequence at the end (\$
in bash, % in tcsh and zsh) that’s printed as a hash mark (#) if you’re the
superuser, or the usual prompt character for that shell otherwise. The first com-
mand in the following code listing works only in bash; the second only in tcsh:

PS1="\d \t \$ ' ...bash
set prompt="%w %D %Y %P %# ' ...tesh
PS1="%W %* %# ' ..zsh

Having the history number in your prompt, as article 4.14 shows, makes it easy
to use history (30.8) to repeat or modify a previous command. You can glance up
your screen to the prompt where you ran the command, spot the history num-
ber (for example, 27), and type 127 to repeat it, 127:$ to grab the filename off the
end of the line, and much more. In csh, tcsh, and bash prompts, use \! to get the
history number. In zsh, use %! instead.

—JP, TOR, and SJC

Simulating Dynamic Prompts

Some shells don’t have the special “dynamic” prompt-setting sequences shown
in article 4.3. If you still want a dynamic prompt, you probably can simulate
one. Both ksh and bash will expand variables (like $PWD), do command substitu-
tion (to run a command like 'date"), and do arithmetic as they print the prompt.
So, for example, you can put single quotes around the prompt string to prevent
interpretation of these items as the prompt is stored. When the prompt string is
interpreted, the current values will be put into each prompt. (zsh gives control
over whether this happens as a prompt is printed. If you want it to happen, put
the command setopt prompt_subst (28.14) in your .zshrc file (3.3).)

The following prompt stores the $PWD parameter to give the current directory,
followed by a backquoted date command. The argument to date is a format
string; because the format string is inside single quotes, I've used nested double
quotes around it. Because it’s in single quotes, it’s stored verbatim—and the
shell gets the latest values from date and $PWD each time a prompt is printed. Try
this prompt, then cd around the filesystem a bit:

PS1=""date "+%D %T"" $PWD $ '

That prompt prints a lot of text. If you want all of it, think about a multiline
prompt (47). Or you could write a simple shell function (29.11) named, say, do_
prompt:
for bash
function do_prompt {
date="date '+%D %T'"
dir="echo $PWD | sed "s@$HOME@~@""
echo "$date $dir"
unset date dir

72

Part Il: Customizing Your Environment

4.5

}

for ksh
do_prompt() {
date="date '+%D %T'"
dir="echo $PWD | sed "s@$HOME@~@""
echo "$date $dir"
unset date dir

}
and use its output in your prompt:
PS1=""do_prompt® $ ' ...for sh-type shells

The original C shell does almost no interpretation inside its prompt variable. You
can work around this by writing a shell alias (29.2) named something like set-
prompt (414) that resets the prompt variable after you do something like chang-
ing your current directory. Then, every time csh needs to print a prompt, it uses
the latest value of prompt, as stored by the most recent run of setprompt. (Origi-
nal Bourne shell users, see article 4.15 for a similar trick.)

—JP, TOR, and SJC

C-Shell Prompt Causes Problems
in vi, rsh, etc.

Stray prompts can cause trouble for many commands that start a noninteractive
shell. This problem may have (and probably has) been fixed in your C shell, but
some of the following tricks will speed up your .cshrc, so keep reading.

If you set prompt in your .cshrc file without carefully checking first whether
prompt was already set (4.1), many older versions of the C shell will cheerfully
print prompts into the pipe vi uses to expand glob characters, such as filename

wildcards (*, ?, [1) (1.13) and the tilde (~) (31.11).

When you type :r abc*, vi opens a pipe to the C shell, writes the command
echo abc* down the pipe, then reads the response. If the response contains
spaces or newlines, vi gets confused. If you set your prompt to (n) in your .cshrc
[i.e., if you show the history number in parentheses as the prompt—TOR], vi
tends to get:

(1) abc.file (2)
back from the C shell, instead of just abc.file.
The solution is to kludge your .cshrc like this:

if ($?prompt) then
things to do for an interactive shell, like:
set prompt="(\!) '

endif

Chapter 4: Interacting with Your Environment 73

4.5

4.6

4.6

{}35.9

This works because a noninteractive shell has no initial prompt, while an inter-
active shell has it set to % .

If you have a large .cshrc, this can speed things up quite a bit when programs run
other programs with csh -c 'command', if you put all of it inside that test.

—CT

Faster Prompt Setting with Built-ins

To set your prompt, you execute a command (on most shells, that command
sets a shell variable). Before setting the prompt, you may run other commands to
get information for it: the current directory name, for example. A shell can run
two kinds of commands: built-in and external (1.9). Built-in commands usually
run faster than external commands. On a slow computer, the difference may be
important—waiting a few seconds for your prompt to reset can get irritating
(though the computer would have to be quite slow nowadays for it to matter
that much). Creative use of your shell’s built-in commands might pay off there,
and they are still quite useful for those trying to squeeze the most performance
out of their system. Let’s look at some examples:

* Article 4.3 has examples of some shells’ special characters, such as %D to give
the current date. Check your shell’s manual page; if it has these features,
using them won’t slow you down the way an external command in back-
quotes (28.14), like 'date’, might.

* If you're putting your current directory in your prompt, you may only want
the tail of the pathname (the name past the last slash). How can you edit a
pathname? You might think of using basename (36.13) or sed (34.1) with the
current directory from $cwd—as in the first command in the following code
listing, and probably in an alias like setprompt (47) to make sure the prompt
is updated whenever you change directories. The faster way is with the sec-
ond command, using the C shell’s built-in “tail” operator, :t:

set prompt=""basename $cwd % "

set prompt="${cwd:t}% "
If your current directory is /ust/users/hanna/projects, either of those prompts
would look like “projects% ” (with a space after the percent sign).

The C shell has several of these built-in string operators (285) like :t; the
Korn Shell, zsh, and bash have more-powerful string operators (28.5).

* If your prompt gets complex, you can use a shell function (20.11) to access
other built-in commands and edit the prompt. This can be faster than using
an external shell or Perl script because functions run within the shell instead
of in an external process. Here’s an example from my .zshrc file:

Change "script" prompt automatically so I remember I'm in one.
alias script="SCRIPT=yes /usr/bin/script’

74

Part Il: Customizing Your Environment

$(...)28.14

${+} 36.7

#
Functions:
#
setprompt() {
case "${TTY##*/}" in
tty[1-9]) xpi=":tty%l' ;; # Virtual console
*) xpi= ;;
esac

PS1="

$USER@%m$xpi $(dirs)

%* \$(folder -list)

${SCRIPT+SCRIPT- }%!%# "

}
Before the function, I set an alias that temporarily sets an environment vari-
able named SCRIPT while the script (37.7) program is running. The setprompt
function, running in the child shell under script, sees that this environment
variable has been set and adds the string SCRIPT- before the prompt. This
reminds me that I'm logging to a script file. (If this is hard to visualize, arti-
cles 24.3 and 35.3 have some background.)

The setprompt function itself has two parts. The first is a case statement
(35.11) that tests $TTY, the name of the ¢ty (27) 'm currently using. If the
name ends in ttyl, tty2, etc., it’s one of my Linux virtual consoles (23.12). In
that case, I want to add the console name (ttyl, etc.) to my prompt—so [
store the name in the xpi (extra prompt info) shell variable. This variable’s
value—if it’s been set—is expanded when the prompt is printed. The sec-
ond part sets the prompt variable PS1. The whole prompt looks like this:

jpeek@kludge:tty1l ~/pt/art

15:38:30 inbox pt

501%
The first line shows my username, hostname, the virtual console name (if
any), and the current directory (in this example, there was nothing else on
the directory stack (31.7)). The second line has the time—and my email folder
stack, from the MH folder —list command, which is the only nonbuilt-in com-
mand used in the prompt. And here’s a subtle point that’s worth perusing.
The whole prompt string is inside double quotes (27.12) so that variable and
command substitution will happen whenever setprompt is run. But, the way
my prompt is set, the MH folder stack may change between the times that
setprompt resets the prompt. So I escape the $ in \$(folder -list). This
stores the command substitution without executing folder! So, when every
prompt is about to be printed, the shell will evaulate the prompt string and
expand the $(...) operators into the current folder stack. The third line sets
the end of the prompt string: the zsh prompt substitution at %m, %*, %! and %t.

Chapter 4: Interacting with Your Environment 75

4.6

4.7

4.7

%

miprompt.csh
miprompt.sh

uname -n 2.5

{..}35.9

On a slow machine, I'd try hard to find a way to eliminate the external
folder ~list command. But my Linux box is fast enough so that I don’t notice
any delay before a prompt. To make this work, I needed a good understand-
ing of what’s evaluated when. It’s this sort of subtlety that makes prompt
setting a challenge—and a pleasure, too, when you get it working just right.

As another example, article 4.14 shows more about using dirs in a shell prompt.

—JP and S§JC

Multiline Shell Prompts

Lots of people like lots of information in their prompts: hostname, directory
name, history number, and maybe username. Lots of people have spent lots of
time trying to make their prompts short enough to fit across the screen and still
leave room for typing a command longer than Is:

<elaineq@applefarm> [/usr/elaineq/projects/april/weeka] 23 % 1s

Even with fairly short prompts, if you look back at a screen after running a few
commands, telling the data from the prompts can be a little tough (real termi-
nals don’t show user input in boldface, so I won’t do it here either):

+<elaineq@applefarm> [~] 56% cd beta
<elaineq@applefarm> [~/beta] 57% which prog
/usr/tst/applefarm/bin/beta/prog
<elaineq@applefarm> [~/beta] 58% prog
61,102 units inventoried; 3142 to do
<elaineq@applefarm> [~/beta] 59%

One nice answer is to make a prompt that has more than one line. Here’s part of
a .cshre file that sets a three-line prompt: one blank line, one line with the host-
name and current directory, and a third line with the history number and a per-
cent sign. (If this were a tcsh, I could have gotten the hostname with %m.) The C
shell quoting (27.13) is ugly—doubly ugly because the prompt is set inside an
alias—but otherwise it’s straightforward:

set hostname="uname -n°

alias setprompt 'set prompt="\\

${hostname}:${cwd}\\

\P

alias cd 'chdir \!* && setprompt'

alias pushd 'pushd \!* & setprompt’

alias popd 'popd \!* 8& setprompt’

setprompt # to set the initial prompt
(There’s a version on the Web for Bourne-type shells.) The prompts look like
this:

applefarm:/usr/elaineq/projects/april/week4

23 % prog | tee /dev/tty | mail -s "prog results" bigboss@corpoffice
61,102 units inventoried; 3142 to do

76

Part Il: Customizing Your Environment

4.8

applefarm:/usr/elaineq/projects/april/week4
24 % cd ~/beta

applefarm:/usr/elaineq/beta

25 % prog | mail joanne
The blank lines separate each command—though you may want to save space
by omitting them. For example, Mike Sierra of O’Reilly & Associates has used a
row of asterisks:

HEx 23 FRE (mike@mymac> *** ~/calendar *xF**

% cd Sep*

*REX 24 FFF <mike@mymac> *** ~/calendar/September *****

%
Other shells have different syntax, but the idea is the same: embed newlines to
get multiline prompts. In Bourne-type shells you’ll need zero or one backslash
before each newline; article 27.12 explains. In bash, put a \n (which stands for a
newline character) anywhere you want the prompt to break to a new line.

What I like best about multiline prompts is that you get a lot of information but
have the whole screen width for typing. Of course, you can put different infor-
mation in the prompt than I’'ve shown here. The important idea is that if you
want more information and need room to type, try a multiline prompt.

—JP and S§JC

Session Info in Window Title
or Status Line

Some people don’t like to put the current directory, hostname, etc. into their
prompts because it makes the screen look cluttered to them. Here’s another
idea. If your terminal or window system has a status line or titlebar, you might
be able to put the information there. That’s nice because you can see the infor-
mation while you run programs. The down side is that the information can get
out of date if you use a command that takes you to another host or directory
without updating the status line. The latest bash and zsh shells do this by default
when you’re using an xterm window. For the rest of you, here’s how to do it
yourself. Because neither csh or tcsh do this by default, I'll show C-shell-type
syntax. But you can do the same thing in Bourne-type shells with a shell func-
tion and case (35.10) statement; there’s a ready-to-use version on the web site.

When you use cd, pushd, or popd, an alias uses the echo command to write spe-
cial escape sequences to the terminal or window.

Here are cd aliases and other commands for your .cshrc or .tcshre file. If T were
logged in to www.jpeek.com in the directory /home/jpeek, this alias would put:

www : /home/ jpeek

Chapter 4: Interacting with Your Environment 77

4.8

4.8

stattitle.csh
stattitle.sh

:h 28.5

3435.14

in the status area or window title, depending on which terminal type I'm using.
Of course, you can change the format of the status line. Change the following
command string, ${host:h}:${cwd}, to do what you need; see your shell’s man-
ual page for a list of variables, or create your own custom information.

set e="echo x | tr x '\033"'" # Make an ESCape character

set g="echo x | tr x "\o7"" # And a Ctrl-g
set host="uname -n"
Puts $host and $cwd in VT102 status line. Escape sequences are:
${e}7 = save cursor position, ${e}[25;1f = go to start of status
line (line 25), ${e}[0K = erase line, ${e}8 = restore cursor
alias setstatline 'echo -n "${e}7${e}[25;1f${e}[0K ${host:h}:${cwd}${e}8""
alias settitle 'echo -n "${e}]2;${host:h}:${cwd}${g}""
switch ($TERM)
case vt107?:

alias cd 'cd \I* && setstatline’

alias pushd 'pushd \!* && setstatline’

alias popd 'popd \!* 8& setstatline’

breaksw
case xterm*:

alias cd 'cd \!* && settitle’

alias pushd 'pushd \!* &3 settitle’

alias popd 'popd \!* 8& settitle’

breaksw
endsw

(Article 5.15 has more about how this works in xterms.)

The ESC and CTRL-g characters are stored with a trick that should work on all
Unix shells. Most modern echos will let you make a nonprintable character
directly, like this: g="echo '\07'"'.

If you always use a VT102-type terminal (and many people do), the setstatline
alias will work fine. If you use a different terminal, try it anyway! Otherwise,
read the terminal manual or its termcap/terminfo entry and find the escape
sequences that work for it; then add a new case to the switch statement.

Note that you might have some trouble here: if this code is in your .cshrc file but
your terminal type is set in your .login file, the terminal type may not be set until
after the alias has been read. There are workarounds (3.8).

The status line or titlebar can also get out of sync with reality if you use remote
logins (1.21), subshells (24.4), etc. These might make a new status line or titlebar
but not reset the original one when needed. To fix this, just type setstatline or
settitle at a shell prompt. Or, if you don’t want to bother to think of the name of
the alias, use the following command to change to the current directory (.),
which will use the correct alias and reset the status or title:

% cd .

78

Part Il: Customizing Your Environment

4.9

410

LA

blink-
prompt.csh
blink-
prompt.sh

uname -n 2.5

If you’re using tcsh, its special alias cwdecmd will be run every time you change
the shell’s current directory. So, in tcsh, you can replace the three aliases for cd,
pushd, and popd with something like this:

alias cwdcmd settitle

—JP and SJC

A “Menu Prompt” for Naive Users

Some people don’t want to be faced with a Unix % or $ shell prompt. If you (or, if
you’re a sys admin on a multiuser system, your users) usually run only a few par-
ticular Unix commands, you can put those command names in the shell prompt.
Here’s a simple one-line Bourne-shell prompt for a .profile:

PS1="Type "rn", "mailx", "wp", or "logout":
Next, a multiline prompt (4.7) for the C shell .cshrc or .tcshre file:

if ($?prompt) then

set prompt="\\

Type "pine" to read the news,\\

type "mutt" to read and send mail,\\

type "wp" for word processing, or\\

type "logout" to log out.\\

YES, MASTER? '
endif

You get the idea.
—JP and S§JC

Highlighting and Color in Shell Prompts

If your prompt has some information that you want to stand out—or if you want
your whole prompt to stand out from the rest of the text on the screen—you
might be able to make it in enhanced characters or colors. If your terminal has
special escape sequences for enhancing the characters (and most do), you can
use them to make part or all of your prompt stand out. Newer versions of xterm
also have color capability, as does the Mac OS X Terminal program, though Ter-
minal may not properly support the escape sequences we discuss later. (The
GNU dircolors (8.6) command sets up a color-capable terminal.)

Let’s say that you want to make sure people notice that they’re logged in as root
(the superuser) by making part of the root prompt flash. Here are lines for the
root .cshre:

Put ESCape character in $e. Use to start blinking mode (${e}[5m)
and go back to normal mode (${e}[Om) on VT100-series terminals:
set e=""echo x | tr x '\033'™"

set prompt="${e}[5mroot${e}[Om@ uname -n # "

Chapter 4: Interacting with Your Environment 79

4.10

4.10

That prompt might look like this, with the word root flashing:

root@www. jpeek. com

Shells with command-line editing need to calculate the width of
your prompt string. When you put nonprinting escape sequences
in a prompt (as we’re doing here), in zsh and tcsh you have to
delimit them with %{ and %}. In bash, bracket nonprinting charac-
ters with \[and \]. In the Korn shell, prefix your prompt with a
nonprinting character (such as CTRL-a) followed by a RETURN,
and delimit the escape codes with this same nonprinting charac-
ter. As the pdksh manual page says, “Don’t blame me for this
hack; it’s in the original ksh.”

The prompt is set inside double quotes ("), so the uname, -n command is run
once, when the PS1 string is first stored. In some shells, like bash and pdksh, you
can put single quotes (') around the PSI string; this stores the backquotes (*) in
the string, and the shell will interpret them before it prints each prompt. (In this
case, that’s useless because the output of uname -n will always be the same in a
particular invocation of a shell. But if you want constantly updated information
in your prompt, it’s very handy.) Articles 4.6 and 27.12 have more info.

Because the same escape sequences won’t work on all terminals, it’s probably a
good idea to add an if test that only sets the prompt if the terminal type $TERM
is in the Digital Equipment Corporation VT100 series (or one that emulates it).
Table 4-1 shows a few escape sequences for VT100 and compatible terminals.
(The ESC in each sequence stands for an ESCape character.)

Table 4-1. VT100 escape sequences for highlighting

Sequence What it does

ESC[1m Bold, intensify foreground
ESC[4m Underscore

ESC[5m Blink

ESC[7m Reverse video

ESC[Om Al attributes off

Of course, you can use different escape sequences if your terminal needs them.
Better, read your terminal’s terminfo or termcap database with a program like
tput or tcap to get the correct escape sequences for your terminal. Store the
escape sequences in shell variables (35.9).

bash interprets octal character codes (like \033) in the prompt. It also has special-
backslashed special-prompt characters—for instance, bash Version 2 has \e,
which outputs an ESCape character, and \H, which gives the complete hostname.

80 Part Il: Customizing Your Environment

4.11

The string \$ is replaced by a dollar sign ($) on non-root shells and a hash mark
(#) if you’re currently root. So, on bash, you can make the previous csh prompt
this way:

PS1="\[\e[5m\]root\[\e[Om\]@\H\$ '

(The delimiters for nonprinting characters, \[and \], might make it look com-
plicated. Try spotting them first, as you look at the prompt string, so you can see
what’s left.)

Eight-bit-clean versions of tcsh can put standout, boldface, and underline—and
any other terminal escape sequence, too—into your shell prompt. For instance,
%S starts standout mode and %s ends it; the tcsh manpage has details for your ver-
sion. The next example shows how to make the same prompt as earlier with the
word root in standout mode. (tcsh puts the hostname into %m.) Because tcsh
“knows” the width of its special %S and %s formatting sequences, they don’t need
to be delimited with %{ or %}:

set prompt = '%Sroot%s@km# '

You also can add color to your prompt! For instance, make the previous prompt
for bash using bright red (1;31) on a blue background (44):

PS1="\[\e[1;31;44m\]root\[\e[Om\]@\H# '
—JP and S§JC

Right-Side Prompts

Both zsh and tcsh have an optional prompt at the right side of the screen. Unlike
the normal left-side prompt, the cursor doesn’t sit next to the right-side prompt
(though the right prompt disappears if you type a long command line and the
cursor passes over it). It’s stored in the zsh RPROMPT variable and in tcsh
rprompt.

What can you do with a right-hand prompt? Anything you want to! (You’ll
probably want to keep it fairly short, though.) Put the time of day on the right-
hand side, for instance; on tcsh, it’s this easy:

[jpeek@ruby ~1% set rprompt='%t’

[jpeek@ruby ~1% users 3:44pm
jpeek ollie
[Jpeek@ruby ~1% 3:45pm

As another idea, you could use sched to remind you of an important meeting by
setting the right-hand prompt. Here’s a shell function for zsh that sets the right
prompt to “LEAVE NOW?” at a particular time. You can give it one argument to
set the time to remind you. Or, with no argument, it removes the right-hand
prompt:
leave() {
case "$#" in

Chapter 4: Interacting with Your Environment 81

4.1

412

4.12

0) unset RPROMPT ;;

1) sched "$1" "RPROMPT='LEAVE NOW'" ;;
*) echo "Usage: leave [time]" 1>&2 ;;
esac

}
Here’s an example:

jpeek$ date
Fri May 12 15:48:49 MST 2000
jpeek$ leave 15:55
...do some work...
jpeek$ pwd
/u/jpeek/pt
jpeek$ date LEAVE NOW
Fri May 12 15:55:22 MST 2000
jpeek$ lpr report LEAVE NOW
jpeek$ leave LEAVE NOW
jpeek$

—JP and SJC

Show Subshell Level with $SHLVL

If you’re like me, when you start a shell escape (17.21) or any subshell (24.4), you
can forget that you aren’t in your login shell. Your shell history (30.1) might get
confused, shell variables (35.9) may not be set, and other problems may come up.
zsh and bash have a built-in SHLVL environment variable (35.3) that lets you
track how many subshells deep your current shell is. tcsh has a shivl shell vari-
able that’s automatically set from (and sets) SHLVL. So, all three shells cooper-
ate with each other to set the right value, even if you start one shell from
another. (For other shells that don’t have SHLVL—ksh and csh—you can set up
something similar with a bit of arithmetic in the ENV (355) file or the .cshrc file,
respectively.)

In your top-level shell, the value of $shlvl is 1 (one). In the first subshell, it’s 2;
in a sub-subshell, it’s 3; and so on. You can use this to control your shell startup
files—for example, have some commands in your .cshrc that run when you first
log in (and $shlvl is 1), but don’t run in subshells. You can also put $shlvl in
your prompt (but only during subshells, if you’d like—as a reminder that you
aren’t in your top-level shell). You can set your prompt to mike% in top-level
shells, (1) mike% in a first-level subshell, (2) mike% in a second-level subshell, and
so on. Here’s some sample prompt-setting code for your .tcshrc:

If this is a subshell, put shell level in prompt:

if ($shlvl == 1) then

set prompt="${USER}% "
else

set prompt="($SHLVL) ${USER}% "
endif

82

Part Il: Customizing Your Environment

413

bash doesn’t need an if because login shells read your .bash_profile (or .profile)
and subshells read your .bashrc. Here are commands to set the prompts I men-
tioned earlier:

PS1="\u\$ ' ...for the .bash_profile

PS1="($SHLVL) \u\$ ' ...for the .bashrc
Does your account run a windowing system that’s started from your top-level
shell startup file (like .login)? If it does, lines like the following examples (these
are for .login) will reset SHLVL so that the shell in the window will start at a
SHLVL of 1—and act like a top-level shell. This code assumes that your first
login shell starts on a tty named /dev/tty1 through /dev/tty6 (which are the Linux
virtual consoles (23.12)) and that the windows that open won’t have a tty with the
same name (which is true on Linux). (If you aren’t sure, check who (2.8).) You
may need to adapt this. The trick is to make SHLVL 0 (zero) before you start the
windowing system. When the windows’ shells start, they’ll raise SHLVL to 1:

If on a virtual console, bury this shell and start X right away:

if ("“tty™" =~ /dev/tty[1-6]) then
setenv SHLVL 0
startx

endif

Getting this to work right in every situation (rsh (1.21), ssh, su, shell escapes
(17.21)—both interactive and noninteractive (3.4)—subshells, window systems, at
jobs (25.5), and so on) can be a challenge (3.8)! It takes a little planning. Sit down
and think about all the ways you start subshells—which subshells are interac-
tive and which aren’t—and whether they’ll get SHLVL passed from their parent
process. (If you aren’t sure, test that with an env or printenv command (35.3).)
Then plan which kind of shell needs which SHLVL settings. If it gets too compli-
cated, make it work in most cases! If you use many subshells, this system can be
too handy to ignore.

—JP and SJC

What Good Is a Blank Shell Prompt?

This tip is also great if you use a mouse to copy and paste com-
mand lines in your window.

Some terminals I’ve used (like old Hewlett-Packard and Tektronix terminals)
had local editing. You could move your cursor up the screen to a previous com-
mand line, maybe make some edits to it, then press a SEND LINE key to resend
that line to the host. This didn’t have anything to do with sophisticated

Chapter 4: Interacting with Your Environment 83

413

414

4.14

command-line editing (30.14) that modern Unix shells have, though. Maybe your
terminal can do that, too. Depending on how your emacs editor is configured,
shell-mode may work that way, as well.

The problem was that unless I erased the shell prompt (%) on my screen, it would
be sent back to the shell and give the error “%: Command not found.” So I set my
shell prompt to this:

set prompt='

That’s right: four spaces. Most Unix commands start their output at column 1,
so my command lines were easy to find because they were indented. The shell
didn’t care if I sent four spaces before the command line. So everything was fine
until I got my new terminal without a SEND LINE key...

If you want some information in your prompt, too, make a multiline prompt (4.7)
with four spaces in the last line.

—JP and SJC

dirs in Your Prompt: Better
Than $cwd

Many people use the current directory in their prompts. If you use the pushd and
popd (31.7) commands, you may not always remember exactly what’s in your
directory stack (I don’t, at least). Here’s how: run the dirs command, and use its
output in your prompt. A simple csh and tcsh alias looks like this:

alias cd 'chdir \!* && set prompt=""dirs % "'
and the prompts look like:

/work/project % cd
~ % cd bin
~/bin %
Here’s what to put in .cshrc or .tcshre to make a multiline prompt (47) that

shows the directory stack:

PUT hostname.domain.name IN $hostname AND hostname IN $HOST:

uname -n 2.5 set hostname="uname -n
expr 36.21 setenv HOST “expr $hostname : "\([~.]*\).*"'"
alias setprompt 'set prompt="\\
${USER}@${HOST} ~dirs \\
L%t
dirs- alias cd 'chdir \!* && setprompt’
prompt.csh alias pushd 'pushd \!* &3 setprompt’
dirs- alias popd ‘'popd \!* & setprompt’
prompt.sh setprompt # SET THE INITIAL PROMPT
84 Part Il: Customizing Your Environment

$(...)28.14

dirstail-
prompt.csh

Because bash can run a command each time it sets its prompt, and because it has
built-in prompt operators (4.3) like \u, the bash version of all the previous stuff
fits on one line:

PS1="\n\u@\h $(dirs)\n\! \$ '

That makes a blank line before each prompt; if you don’t want that, join the first
and second lines of the setprompt alias or remove the first \n. Let’s push a cou-
ple of directories and watch the prompt:

jerry@ora ~

1 % pushd /work/src/perl
/work/src/perl ~

jerry@ora /work/src/perl ~
2 % cd ../cnews

jerry@ora /work/src/cnews ~
3 % pushd ~/bin
~/bin /work/src/cnews ~

jerry@ora ~/bin /work/src/cnews ~

4%
Of course, the prompt looks a little redundant here because each pushd com-
mand also shows the dirs output. A few commands later, though, having your
directory stack in the prompt will be handy. If your directory stack has a lot of
entries, the first line of the prompt can get wider than the screen. In that case,
store the dirs output in a shell array, and edit it with a command like sed or with
the built-in csh string editing (28.5).

For example, to show just the tail of each path in the dirs output, use the follow-
ing alias; the C shell operator :gt globally edits all words, to the tail of each
pathname:

alias setprompt 'set dirs=("dirs’); set prompt="\\

${USER}@${HOST} $dirs:gt\\

\P
Watch the prompt. If you forget what the names in the prompt mean, just type
dirs:

jerry@ora bin cnews jerry

5 % pushd ~/tmp/test
~/tmp/test ~/bin /work/src/cnews ~

jerry@ora test bin cnews jerry
12 % dirs
~/tmp/test ~/bin /work/src/cnews ~

—JP and SJC

Chapter 4: Interacting with Your Environment 85

414

4.15

4.15

%

date-
prompt.sh

: 36.6

External Commands Send Signals
to Set Variables

The Bourne shell’s trap (35.17) will run one or more commands when the shell
gets a signal (24.10) (usually, from the kill command). The shell will run any com-
mand, including commands that set shell variables. For instance, the shell could
reread a configuration file; article 24.13 shows that. Or it could set a new PS1
prompt variable that’s updated any time an external command (like another shell
script or a cron job (25.2)) sends the shell a signal. There are lots of possibilities.

This trick takes over signal 5 (SIGTRAP), which usually isn’t used. When the
shell gets signal 5, a trap runs a command to get the date and time, then resets
the prompt. A background (23.2) job springs this trap once a minute. So, every
minute, after you type any command, your prompt will change.

You can use any command’s output in your prompt (possibly with some edit-
ing, probably with sed (34.1) or expr (36.21)): count the number of users, show the
load average (26.4), whatever. Newer shells, like bash, can run a command in
backquotes (28.14) each time the prompt is displayed—article 4.10 has an exam-
ple. But, to have an external command update a shell variable at any random
time, this trap trick is still the best.

Now on to the specific example of putting date and time in the old Bourne
shell’s prompt. If your system’s date command doesn’t understand date formats
(like +%a), get one that does. Put these lines in your .profile file (or just type them
in at a Bourne shell prompt):

Put date and time in prompt; update every 60 seconds:
trap 'PSi="date "+%a %D %H:%M%n""\
$\ "5
while :
do
sleep 60
kill -5 $%
done &
promptpid=$!

Now, every minute after you type a command, your prompt will change:

Thu 06/20/02 02:33

$ cc bigprog.c

undefined symbol first referenced in file
xputc bigprog.o
1d fatal: Symbol referencing errors.

Thu 06/20/02 02:34

$1s

bigprog.c

bigprog.o

Thu 06/20/02 02:35

$

Part Il: Customizing Your Environment

4.16

The prompt format is up to you. This example makes a two-line prompt (4.7)
with backslashes (\) to protect the newline and space from the trap; a single-line
prompt might be easier to design. The manual page for date lists what you can
put in the prompt.

This setup starts a while loop (35.15) in the background. The promptpid variable
holds the process ID number (24.3) of the background shell. Before you log out,
you should kill (24.12) the loop. You can type the command:

kill $promptpid
at a prompt or put it in a file that’s executed when you log out (4.18).

—JP and SJC

Preprompt, Pre-execution,
and Periodic Commands

bash, tcsh, and zsh can run a Unix command, or multiple commands, before
printing each prompt. tcsh and zsh also can do something you specify before exe-
cuting the command you’ve typed at a prompt. Finally, tcsh and zsh can do
something periodically (every n seconds) before whatever prompt comes next.
(Article 4.15 shows how to execute commands periodically in the original
Bourne shell.) These commands don’t have anything to do with setting the
prompt itself, though they can. The command could do some system checking,
reset shell variables, or almost anything that you could type at a shell prompt. If
the commands run slowly, they’ll delay whatever else you’re doing, so keep that
in mind.

Let’s start with precmd, the tcsh alias that’s run after your command line is read
and before the command is executed. In zsh, the same thing is done by the shell
function named preexec. Shell history is available, so you can use history substi-
tution (30.8) inside the alias or function. Here’s a nice example adapted from the
tcsh manual page: showing the command line you’re running in your xterm win-
dow titlebar. It’s ugly because it has ESC and CTRL-g characters embedded
directly in the alias; I'd rather store the escape sequences in shell variables, as
shown in the xterm titlebar article (4.8). The if sets the alias only if you’re using
an xterm terminal:

Show each command line in xterm title bar:

if ($TERM == xterm) alias postcmd 'echo -n "~[]2;\!#°G"'
Next, let’s look at running a command periodically. You’d like to watch the load
average by running uptime (26.4) every minute, before a prompt. Here’s how to
do it in zsh: put code like this in your .zshrc file (33) (or just type it at a prompt
to try it). The PERIOD shell variable is the interval, in seconds, between runs of
the periodic function as shown in the following code:

Chapter 4: Interacting with Your Environment 87

4.16

4.16

1FS 36.23

set 35.25

shift $# 36.10

Run "uptime" every 60 seconds; put blank line before:
periodic() {echo "\n==> $(uptime) <==";}
PERIOD=60

Here’s how it looks:

jpeek@ruby$ pwd
/u/jpeek/pt

==> 5:16pm up 4:07, 6 users, load average: 0.22, 0.15, 0.08 <==
jpeek@ruby$ lpr xrefs
jpeek@ruby$ mail -s "xrefs list" jan < xrefs

==> 5:17pm up 4:08, 7 users, load average: 1.29, 0.55, 0.23 <==

jpeek@ruby$
Finally, here’s how to set preprompt commands. These are run before each shell
prompt is printed. In fcsh, define a precmd alias. In zsh, define a precmd func-
tion. In bash, store the command(s) in the PROMPT_COMMAND shell vari-
able. Let’s look at bash this time. Here’s a silly example that I used to have in my
bash setup file (3.3):

PROMPT_COMMAND="

Save old $IFS; set IFS to tab:

O0IFS="$IFS"; IFS=" "

Put x in $1, face in $2, explanation[s] in $3[, $4, ...]:

set x “smiley”

Put face into $face and explanation(s) into $explan:

face="$2"; shift 2; explan="¢§*"

Restore shell environment:

shift $#; IFS="$OIFS"'

Prompt I use (includes the latest $face):

PS1="\u@\h $face '
The first part is a series of shell commands that are stored in the PROMPT_
COMMAND variable; they’re surrounded by a pair of single quotes (', '), one
on the first line (after the =) and the other after IFS is reset. That series of com-
mands is executed before every prompt. It sets two shell variables, $face and
$explan, with new values before each prompt is set. The prompt is set on the last
line; it includes the value of $face.

Here’s what my screen looked like with this ridiculous setup. Notice that the
prompt keeps changing as the PROMPT_COMMAND resets $face and $explan.
If I wanted the explanation of a face I saw as [went along, I could type echo <">
$explan<">:

jerry@ruby :-{) echo "$explan"

normal smiling face with a moustache
jerry@ruby +<||-) vi proj.cc

jerry@ruby :-0 echo "$explan”
Mr. Bill

88

Part Il: Customizing Your Environment

417

Wow!
ohh, big mouth, Mick Jagger
uh oh

jerry@ruby :-) < g++ -Wall proj.cc

(It was even more useless than psychoanalyze-pinhead (19.13), but it was fun
while it lasted.) Seriously now, I'll say again: preprompt commands do not have
to be used to set a prompt. You can use them to do anything. If the commands
in PROMPT_COMMAND—or any of the other functions or aliases we’ve cov-
ered—write to standard output or standard error, you’ll see that text on your
screen, before or after the prompt, at the point where the commands are
executed.

—JP and SJC

Running Commands When You
Log Out

Is there something you want to do every time you log out: run a program that
deletes temporary files, asks you a question, or prints a fortune to your screen? If
you use the C shell, make a file named .logout (3.3) in your home directory and
put the commands there. Before a login C shell exits, it will read that file. A login
bash reads .bash_logout, and zsh reads .zlogout. But not all shells are login shells;
you might want these shells to read your logout-type file, too. Article 4.18 shows
a fix for the Bourne and Korn shells; articles 3.8 and 3.4 have background
information.

Some ideas for your logout file are:

* A command like fortune to give you something fun to think about when you
log out.

* A command to list a “reminder” file—for example, work to take home.

* A script that prompts you for the hours you’ve worked on projects so you
can make a timesheet later.

* The command clear to erase your screen. This keeps the next user from
reading what you did.” In the Mac OS X Terminal application, command-k
will delete the scrollback buffer. It also helps to stop “burn-in” damage to
old, monochrome monitors caused by characters left over from your login
session (though this is hardly a concern nowadays; most of us have moved

* Some terminals and windows have “scroll back” memory of previous screens. clear usually doesn’t
erase all of that. To set scrollback in xterm, use the —sb and —sl options. Most other terminal emulators
have similar mechanisms to set the number of lines to keep in the scrollback buffer.

Chapter 4: Interacting with Your Environment 89

417

4.18

4.18

trap 35.17
. 35.29

if 35.13
[-f35.26

4.19

on to color screens that are not subject to burn-in). (Some Unixes clear the
screen before printing the login: prompt. Of course, this won’t help users
who connect with a data switch or port manager because the connection
will be broken before the next login prompt.)

If you connect to this host over a network, with a slow modem or on a data
switch—and you don’t see all the logout commands run before your connection
closes—try putting the command sleep 2 (25.9) at the end of the file. That makes
the shell wait two seconds before it exits, which gives output more time to get to
your screen.

—JP and S§JC

Running Commands at Bourne/Korn
Shell Logout

Article 4.17 describes logout files. Commands in those files are run when you log
out. The Bourne and Korn shells don’t have a logout file, though. Here’s how to
make one:

1. In your .profile file, add the line:

trap '. $HOME/.sh logout; exit' 0
(Some systems may need $LOGDIR instead of $HOME.)

2. Make a file in your home directory named .sh_logout. Put in the commands
you want to be run when you log out. For example:

clear
if [-f $HOME/todo.tomorrow]
then
echo "=========== STUFF TO DO TOMORROW: ============"

cat $HOME/todo.tomorrow
fi

The trap will read the .sh_logout file when the shell exits.
—JP and S§JC

Stop Accidental Bourne-Shell
Logouts

It’s pretty easy to type one too many CTRL-d characters and log out of a Bourne
shell without meaning to. The C shell has an ignoreeof shell variable that won’t
let you log out with CTRL-d. So do the Korn shell and bash; use set -o
ignoreeof.

90

Part Il: Customizing Your Environment

trap 35.17

exec < 36.15

case 35.11

exec 24.2
-sh 3.19

Here’s a different sort of solution for the Bourne shell. When you end the shell,
it asks if you’re sure. If you don’t answer yes, a new shell is started to replace
your old one.

First, make a file like the C shell’s .logout that will be read when your Bourne
shell exits (4.18). Save your tty (2.7) name in an environment variable (35.3), too—
you’ll need it later:

TTY="tty"; export TTY

trap '. $HOME/.sh_logout; exit' 0
(Your system may need $LOGDIR instead of $HOME.) Put the following lines in your
new .sh_logout file:

exec < $TTY

echo "Do you really want to log out? \c"

read ans

case "$ans" in

[Yyl*) 55

*) exec $HOME/bin/-sh ;;

esac
The last line uses some trickery to start a new login shell (3.19). The shell closes
your tty (36.15) before reading your .sh_logout file; the exec < $TTY reconnects the
shell’s standard input to your terminal.

Note that if your system is very slow, you may not get the reminder message for
a couple of seconds—consequently, you might forget that it’s coming and walk
away. That hasn’t been a problem where I've tested this. If it is for you, though,
replace the read ans with a program like grabchars that times out and gives a
default answer after a while. There may be some Bourne shells that need other
tricks—and others that don’t need these tricks—but this should give you an idea
of what to do.

—JP and SJC

Chapter 4: Interacting with Your Environment 91

419

Getting the Most out of Terminals,
xterm, and X Windows

5.1

There’s a Lot to Know
About Terminals

This chapter covers most of what you need to know to set up your terminal or
terminal emulator from your shell setup files (3.3).

In the latter half of the chapter, we cover the ins and outs of working with some
of the most popular terminal-emulator software for the X Window System,
including xterm, rxvt, and others, where applicable. The list of terminals and
emulators you might come into contact with is long and getting longer, though,
so the advice we give in the first section of the chapter regarding how to config-
ure your terminal will be helpful. As you find yourself suddenly confronted with
the prospect of configuring the terminal emulator on your cell phone or tablet
computer, remember: you can usually make it work, with enough time and
effort.

It is important to remember, however, that the tricks and tips we discuss in this
chapter, if implemented incorrectly, may cause your terminal to hang. One way
around a hung terminal is always to keep at least one other terminal emulator
window, with sane settings, open all the time you’re modifying the setup of the
other. That way, if you hang up the terminal you’re actively modifying, you can
always go back to the other and save yourself. On systems that support virtual
consoles, such as Linux, you can also use command keys (e.g., ALT and the first
five function keys) to switch between various virtual consoles, just as you might
with a terminal emulator. Don’t just reach for the power switch!

—TOR and SJC

92

5.2

The Idea of a Terminal Databhase

In the past few years, terminals have been standardized to a few types. In fact,
most terminals nowadays are terminal emulators (like xterm) that simulate a ter-
minal on a graphical display. Years ago, though, terminals differed widely.
Rather than simply being implemented in software, they were hardware—key-
boards and monitors or even teletypes, with which the user interacted to com-
municate with an often faraway mainframe or other big iron. All were
specialized, and differences between them often came down to how much you
paid and to what manufacturer. This lets you take advantage of other features of
the manufacturer’s primary hardware—the big computers they considered their
main product. Manufacturers produced a variety of terminals, each one includ-
ing a particular set of features for a certain price. There were smart terminals and
dumb ones, terminals with big screens and terminals with small screens, print-
ing terminals and video displays, and terminals with all sorts of special features.

Differences between terminals do not matter much to programs like cat (12.2) or
who (2.8) that use the terminal screen as a sort of typewriter with an endless scroll
of paper. These programs produce sequential output and do not make use of the
terminal’s special features; they do not need to know much to do their job. Only
programs such as screen editors, which make use of screen-handling features,
need to know a lot about differences between terminals.

However, even today, we find a wide variety of terminal emulators across a mul-
titude of platforms. My new Kyocera Smartphone, for example, is a Palm device
integrated with a PCS telephone; one of the main reasons I bought it was for
remote, emergency ssh access to my servers, using a tiny terminal emulator that
runs on the PalmOS. Many Unix programs assume a basic environment that this
terminal emulator does not provide—an 80-column screen—so even simple
commands such as w, which prints a list of who is logged in, where they logged
in from, and what they’re currently running, become impossible to run. But let’s
go back to the early days and revisit some of the old problems that plagued early
Unix developers, so that we might better understand how to deal with today’s
problems.

In the late 1970s, Bill Joy created the vi (17.2) text editor at UC Berkeley. Like all
screen-oriented editors, vi uses the terminal screen nonsequentially (in stark con-
trast to earlier editors such as ed, which were designed for a teletype, and so use
even more terse commands and feature even more terse output). A program per-
forming nonsequential output does not just print character after character, but
must manipulate the text that was sent before, scroll the page, move the cursor,
delete lines, insert characters, and more. While it would be possible to keep
redrawing the screen in its entirety, many features are provided in hardware or
firmware by the terminal itself, saving too much time and trouble to be ignored.

Chapter 5: Getting the Most out of Terminals, xterm, and X Windows 93

5.2

5.2

The first version of vi was written specifically for Lear Siegler ADM3a terminals.
vi was such an improvement over line-oriented editors that there was great
demand to port vi to other brands of terminals. The problem was that each ter-
minal had different features and used different control codes to manipulate the
features that they did have in common.

Rather than write separate terminal drivers for each terminal type, Bill Joy did
something very clever, which all Unix users now take for granted. He wrote a
version of vi with generic commands to manipulate the screen instead of hard-
coding the control codes and dimensions for a particular terminal.”

Joy came up with a generic terminal-handling mechanism that had two parts: a
database describing the capabilities of each of the terminals to be supported and
a subroutine library that allows programs to query that database and make use
of the capability values it contains. Both the library and the database were given
the name termcap, which is short for terminal capabilities.

At this point, users take for granted that you can use just about any terminal
with a Unix system and use screen-oriented programs like vi without any prob-
lem. But this is really quite remarkable!

The termcap database is contained in a single text file, which grew quite large
over the years to include descriptions of hundreds of different terminals. To
improve performance, AT&T later introduced a database called terminfo, which
stores terminal descriptions in compiled form in a separate file for each terminal.

If a program is designed to use termcap or terminfo, it queries an environment
variable called TERM to determine the terminal type (or terminal type being
emulated), then looks up the entry for that terminal in the terminal database,
and reads the definition of any capabilities it plans to use as external variables.
Programs that use termcap or terminfo range from screen editors like vi and
emacs (19.1), which use the complete terminal description, to a program like
clear, which needs to know only one capability (the escape sequence to clear the
screen). Other programs include more, pg, rogue, tset (5.3), ul, and nroff.

—]JS and SJC

* When we refer to terminals throughout this and other chapters, understand that we mean, more often
than not, the set of standard terminal-emulation control codes implemented by terminal emulators,
such as v£100 or ANSI color. So, though we may refer to a vt100 terminal, we’re more likely referring
to any terminal-emulator software that can understand and react to that set of control codes.

94

Part Il: Customizing Your Environment

5.3

Setting the Terminal Type When You
Log In

If you always work at the same terminal or use the same terminal emulator,
there’s no problem with setting the terminal type explicitly in your shell setup
file (3.3)—Tlike .login or .profile. Just set the TERM environment variable (35.3):

setenv TERM vt100 ...csh, tesh
TERM=vt100; export TERM ...sh, ksh, zsh
export TERM=vt100 ...pdksh, bash, zsh

In fact, on a hardwired terminal, your terminal type may already have been set in
a system file like /etc/ttys or Jetc/ttytype (3.15). But if, like many Unix users, you
might log in from time to time at different terminals, from home, or on different
systems over a network, you may need some more intelligent method for setting
the terminal type. To find out, try logging in at each place and starting a screen-
oriented program like vi. Do various operations: scrolling up, inserting text that
wraps onto another line, deleting lines. If the screen scrambles or the cursor gets
“out of sync,” your terminal type may need to be set.

It’s possible to set up various tests (3.10) in your shell setup files to do this. But
you can also do a surprising amount of terminal type testing with tset, even
though it was nominally designed for initializing the terminal:

* If no arguments (1.4) are specified and TERM is already set, tset uses the
value of TERM to determine the terminal type.

* If no arguments are specified and TERM is not set, then tset uses the value
specified in the system file /etc/ttytype or /etc/ttys (BSD 4.3 and later and its
derivatives only). On Linux systems, the terminal type is determined by
getty, based on a similar process but using the /etc/inittab file or other con-
figuration files used by getty during initialization. On SVR4 systems, a simi-
lar process is managed by ttymon and listen.”

* If a terminal type is specified as an argument, that argument is used as the
terminal type, regardless of the value of TERM.

* The —m (map) option allows a fine degree of control in cases where the ter-
minal type may be ambiguous. For example, if you sometimes log in on a
dialup line, sometimes over a local area network, and sometimes on a hard-
wired line, the —m option can be specified to determine which login is cur-
rently being used, and the terminal type can be set accordingly.

* getty is spawned by the init at multiuser system startup, and it sets up all ttys, handles the initial login
prompt, and then hands successful logins over to login to complete.

Chapter 5: Getting the Most out of Terminals, xterm, and X Windows 95

53

53

In Bourne-type shells, tset can be used to set the value of TERM as follows:

export TERM="tset - -Q options’ ...newer shells

TERM="tset - -Q options™; export TERM ...all shells
(Given the — option, tset prints the value determined for the terminal type to stan-
dard output (43.1). Otherwise, it initializes the terminal (5.3), but keeps the terminal
type to itself. The —Q (quiet) option causes fset to suppress printing a message it
normally prints regarding the values set for the erase and kill characters—a job it
does in its alternate role as terminal initializer. The backquotes (28.14) surrounding
the tset command interpolate its output into the command line.)

In the C shell, you should use the eval (27.8) command to capture the output of
tset; this will also allow you to set the TERMCAP variable (35.5). (You must also
issue the command set noglob.) To simplify the rest of this article, we’ll show
examples for the C shell; if you don’t use a C-type shell, please translate to
Bourne-shell syntax (as shown earlier).

To see what tset can do, consider a case where the terminal’s serial line is con-
nected to a dialup modem, through which several different users might be con-
nected, each using a different type of terminal. Accordingly, the default terminal
type in Jetc/ttytype or /etc/ttys should be set to dialup. The tset command could
then be used in the .login file as follows, with the appropriate terminal type set
for each user:

set noglob

eval “tset -s -Q -m 'dialup:vt100'"
This means that if ttytype says dialup, use vt100 as the terminal type. A colon
separates the ttytype value and the value to which it is to be mapped. If a user
wants to be prompted to be sure, place a question mark after the colon and
before the mapped terminal type:

set noglob
eval “tset -s -Q -m 'dialup:?vt100'"

The prompt will look like this:
TERM = (vt100)

If the user presses RETURN, the preferred terminal type will be used. Alter-
nately, another terminal type could be entered at that time.

You can cause tset to prompt for a terminal type even without testing a generic
entry like dialup. Just specify the desired terminal type, preceded by a question
mark, after the —m option. For example:

set noglob

eval “tset -s -Q -m '?vt100'"
It is also possible to specify different terminal types for different line speeds. For
example, say that you normally used a Wyse-50 with a 9600-bps modem when

96

Part Il: Customizing Your Environment

5.4

%

gterm

'...'28.14

dialing in from home, but used a portable PC with a VT100 terminal emulator
and 2400-bps modem on the road.” You might then use a tset command like this:
set noglob
eval “tset -s -Q -m 'dialup@2400:vt100' wy50°
Assuming that the type is set in /etc/ttys or /fetc/ttytype as dialup, tset will use the
type v¢100 if at 2400 bps and, if not, will use the type wy50. See the tset(1) manual
page for more choices. Watch out for the line-speed switches. They don’t work on
a lot of networked systems—usually, the line speed at the computer’s port is
higher than the speed at the terminal. The same problem occurs with dialup
modems that use data compression. The stty command will tell you what data rate
the system believes you’re using.

Multiple —m options can be specified; the first map to be satistied will be used. If
no match is found, a final value specified on the line without a —m option (as in
the previous example) will be used. If no value is specified, the type in /etc/
ttytype or /etc/ttys will be used.

—TOR and SJC

Querying Your Terminal Type: gterm

tset (5.3) is a powerful tool to use if you often log in at different terminals. You
can use tset to prompt you with a default terminal type, giving you the opportu-
nity to specify a new terminal type when you log in:

TERM = (vt100)

However, tset requires you to know your terminal type. You might log in at a
new terminal and have no idea what to set the terminal type to. Or your termi-
nal might be configured to emulate another terminal type without your knowl-
edge. New users in particular are confused by the tset prompt. In some respects,
this is not a surprise, as the prompt itself can be confusing without a bit of
context.

As an alternative, try Michael Cooper’s gterm program. gterm sends the termi-
nal a test string and determines what sort of terminal you’re using based on how
the terminal responds. Using gterm, you can make sure you always use the cor-
rect terminal type by placing the following line in your .login:

setenv TERM “qgterm’
or in .profile:

TERM="qterm" ;export TERM

* Sure, you don’t have to worry about whether there is a local TYMNET dialup nowadays, but back in
the day...

Chapter 5: Getting the Most out of Terminals, xterm, and X Windows 97

5.4

5.4

The advantage of gterm is that it sets the terminal type without your interven-
tion. You don’t need to know your terminal type; it gets set automatically.

qterm works by sending the terminal a query string and returning the terminal
type depending on the terminal’s response. gterm is configured using a listing of
responses and the terminals to which they correspond. By default, gterm looks
for the listings in a system-wide location such as /usr/local/lib/qtermtab. In addi-
tion, you can call gterm with the +usrtab option, so that it will look for a file
called .qtermtab in your home directory.

The string used to query the terminal is usually ESC Z. The sample gtermtab file
distributed with gterm defines the responses several different terminals give for
that string:

#

QtermTab - Query terminal table for qterm.

#

#SendStr ReceiveStr TermName FullTermName

#

~z A [?1;0c vt100 Base vt100

ANz M?1;1c vt100 vt100 with STP
Az M[?1;2¢ vt100 ANSI/VT100 Clone
ANz A/K h29 Zenith z29 in zenith mode
Az M/zZ vt52 Generic vt52

~z A [on vt100 AT&T Unix PC 7300

If your terminal isn’t listed here, you can just add it. To find out your terminal’s
response to the query string, just echo ESC Z to your terminal and see what the
response is. For example, I logged in from my Macintosh terminal emulator at
home and found that gterm didn’t recognize my terminal type:

% qterm

Terminal NOT recognized - defaults to "vt100".

vt100
qterm defaults to the right terminal description, but I’d still rather define my
own entry. [find out my terminal’s response to the ESC Z string:

% echo "~[Z"
MLE;YI

(Note that ESC prints as #[.) Then I add the entry to my gterm description file:
ANz ALLE; Y] vt100 Macintosh terminal emulator
Now when I run gterm, the terminal is recognized:

% qterm
Terminal recognized as vt100 (Macintosh terminal emulator)
vt100

98

Part Il: Customizing Your Environment

2.9

The string Terminal recognized as ... is sent to standard error (43.1); only the ter-
minal type itself is sent to standard output (43.1). So if you use the following com-
mand line:

% setenv TERM “qterm’
Terminal recognized as vt100 (Macintosh terminal emulator)

the TERM variable is set correctly:

% echo $TERM

vt100
Now for the caveat: gterm’s results are only as accurate as the gtermtab file. Not
all terminals respond to the ESC Z string, and you may not find a string to which
it responds uniquely. And some terminals do uncanny imitations of others. For
example, 'm currently using an xterm (24.20) window, but gterm thinks I'm using
avtl100:

% echo $TERM

xterm

% qterm

Terminal recognized as vt100 (ANSI/VT100 Clone)

vt100
As a hack, you can just edit your .qtermtab file. For example, I could comment
out the old v¢100 entry and map ~[[?1;2c to xterm instead:

#~[2Z r[?1;52¢ vt100 ANSI/VT100 Clone
ANz MI?1;2¢ xterm xterm window

and then call gterm with the +usrtab command-line option:

setenv TERM “qterm +usrtab’

—ILM and SJC

Querying Your xterm Size: resize

When the xterm client is called, it not only sets the TERM environment variable,
but it also adjusts the terminal definition for the size of the window being cre-
ated. The size of xterm windows, however, can be changed later on by using the
window manager. If the window is resized, then the user’s shell may need to be
passed the new size information as well, or programs that use termcap and ter-
minfo won’t work correctly. The resize client is provided for redefining the num-
ber of lines and columns for the terminal database used in an xterm window.
Note that resize cannot be used for terminal emulators other than xterm (except
for those, like rxvt, that emulate xterm) because it depends on xterm’s escape
sequences.

Some systems can send a “window size changed” signal (SIGWINCH) to pro-
grams and do not require resize to be run for a resized xterm window. We rec-
ommend using resize only if terminal-based programs start to have problems

Chapter 5: Getting the Most out of Terminals, xterm, and X Windows 99

5.6

t...028.14

5.6

with your window size. A typical terminal-based program that is having prob-
lems with the window size will fill only some of the lines in the window—or may
scroll lines down the window when it shouldn’t.

The resize client is typically used immediately after the dimensions of an xterm
window are changed. A peculiarity of the resize client is that it does not access
the shell itself, but simply returns the shell commands that would be needed; to
have those commands read by the shell, you either save its output in a file and
read the file with the shell commands source or . (35.29), or evaluate resize output
using the shell command eval (27.8). For example, after resizing a window, you
would type in that shell:

% eval “resize®

When you call the resize command under a termcap system, it produces the
commands for resetting the TERMCAP environment variable with the li# and
co# capabilities reflecting the current dimensions. When you call the resize com-

mand under a terminfo system, it produces the commands for resetting the
LINES and COLUMNS environment variables.

The resize command consults the value of your SHELL environment variable
and generates the commands for setting variables within that shell. If you’re
using a nonstandard shell, resize may still recognize your shell; as of X Release 5,
resize recognizes tcsh, jcsh, ksh, bash, and jsh. But if resize does not recognize
your shell, try using the —c or —u options to force resize to use C- or Bourne-shell
syntax (respectively), depending on which syntax is appropriate for your shell.

—LM, EP, and S]C

Checklist: Terminal Hangs
When | Log In

If your terminal seems to “hang” (freeze, lock up) when you log in, here are
some things to try:

* Have another user look at your shell’s setup files (3.3). There could be some
obvious mistakes that you didn’t catch.

* Log in to another account and use the su stucklogin command (if the stuck
account uses Bourne-type shells) or the su —f stucklogin command (if the
stuck account uses csh or tcsh). Change (cd) to the home directory. Rename
the account’s setup files so the shell won’t see them as you log in. (If you
have superuser access (1.18), you also can use it to rename the file.)"

* Note that there is no user named stucklogin; you’re expected to supply the actual login username as an
argument to su.

100

Part Il: Customizing Your Environment

If you can log in after that, you know that the problem is with the account’s
setup files.

Set shell debugging (27.15) on the stuck account’s setup files. From another
account or as the superuser, start an editor and put the following line at the
top of an sh-like setup file (such as .profile). It’ll tell you whether .profile is
being read at all and where it hangs:

set -xv

You’ll see each line read from the .profile and the commands executed on
the screen. If you don’t see anything, then the shell probably didn’t read
.profile. Bash users would want to check .bashrc or .bash_profile.

C-shell users should put this command at the top of .cshrc (or .tcshre, for
tcsh) instead:
set echo verbose

Note that on many Unix systems, the shell won’t read its startup files if the
files aren’t owned by you. You might use [s —[(50.2) to check.

Look at the entry in the /etc/passwd file (22.3) for this user. Be sure it has the
correct number of fields (separated by :). Also, see if there’s another user
with the same login name. (If your system has commands like useradd,
linuxconf, or vipw(8) and pwck(8), using them to edit and check the passwd
file will avoid many of these problems, as those programs perform sanity
checks on any modifications you make before taking them live.)

Does your account use any directories remotely mounted (by NFES) (1.21)? If
the remote host or network is down and any command in your startup files
(especially set path) tries to access those directories, the shell may hang
there.
To fix that problem, su to the account as explained earlier, and take the
command or directory name out of your startup file. Or, if this problem
happens a lot, the system administrator can mount an NFS filesystem “soft”
(instead of “hard,” the default) and limit the number of retrys.
What looks like a “hang” might also be that you just aren’t getting any out-
put to the terminal, for some very weird reason. Then the set —xv wouldn’t
help you. In that case, try adding this line to the start of the .profile:

exec > /tmp/sh.out.$$ 2>&1
If the Bourne shell starts reading .profile, it’ll make a file in /tmp called
sh.out.nnn with output from the commands and the shell’s set —xv.

There’s no command like that for the C shell or tcsh.

Here are a few more tips for dealing with stuck terminals.

Chapter 5: Getting the Most out of Terminals, xterm, and X Windows 101

5.6

5.6

Output Stopped?

If your terminal has a HOLD SCREEN or SCROLL LOCK button, did you acci-
dentally press it? Try pressing it and see if things start working again. If pressing
the button once doesn’t fix the problem, you should probably press it once more
to undo the screen hold. Otherwise, you may lock up your session worse than it
was before!

Another way to stop output is by pressing CTRL-s. The way to restart stopped
output is with CTRL-q—try pressing that now. (Unlike a SCROLL LOCK but-
ton, though, if CTRL-q doesn’t help, you don’t need to undo it.)

Job Stopped?

If you’re at a shell prompt instead of in the program you thought you were run-
ning—and if your Unix has job control—you may have stopped a job. Try the
jobs command (23.1); if the job is stopped, restart it.

Program Waiting for Input?

The program may be waiting for you to answer a question or type text to its
standard input.

If the program you were running does something that’s hard to
undo—Ilike removing files—don’t try this step unless you’ve
thought about it carefully.
If your system has job control, you can find out by putting the job
in the background with CTRL-z and bg. If the job was waiting for
input, you'll see the message:

[1] + Stopped (tty input) grep pat
You can bring the job back into the foreground and answer its
question, if you know what that question is. Otherwise, now that
the job is stopped, you can kill it. See the following directions.
On systems without job control, you might satisfy the program by
pressing RETURN or some other key that the program is expect-
ing, like y or n. You could also try pressing CTRL-d or whatever
your “end of input” character is set to. That might log you out,
though, unless you’ve set the ignoreeof variable.

Stalled Data Connection?

Be sure that the wires haven’t come loose.

If you’re using a modem and the modem has function lights, try pressing keys to
see if the Send Data (SD) light flashes. If it does, your terminal is sending data to
the host computer. If the Receive Data (RD) light flashes, the computer is

102

Part Il: Customizing Your Environment

sending data to your terminal. If you don’t see anything, there might be some-
thing wrong on your terminal.

If you’re connected with rlogin or telnet or ssh (1.21), the network to the remote
computer might be down or really slow. Try opening another connection to the
same remote host—if you get a response like Connection timed out, you have two
choices:

1. Wait for your original connection to unfreeze. The connection may come
back and let you keep working where you left off. Or the connection may
end when rlogin, telnet, or ssh notices the network problem.

2. Quit the session, and try again later.

Aborting Programs

To abort a program, most users press CTRL-c. Your account may be set up to
use a different interrupt character, such as DELETE. If this doesn’t work, try
CTRL-\ (CTRL-backslash). Under most circumstances, this will force the pro-
gram to terminate. Otherwise, do the following:

1. Log in at another terminal or window.

2. Enter the command ps x, or, if that doesn’t work, use ps -u yourname, where
yourname is your Unix username. This displays a list of the programs you are
running, something like this:

% ps x

PID TTY STAT TIME COMMAND

163 i26 I 0:41 -csh (csh)
8532 i26 W 2:17 vi ts.ms

22202 126 S 12:50 vi UNIXintro.ms
8963 pb R 0:00 ps -X

24077 pb S 0:05 -bin/csh (csh)

%
3. Search through this list to find the command that has backfired. Note the
process identification (PID) number for this command.

4. Enter the command kill PID (24.12), where PID is the identification number
from the previous step. If that doesn’t work, try kill -1 PID to send a HUP
signal. You can also try various other signals, including -2 or -15. If none of
them work, you may need kill -9, but try the other kills first.

5. If the Unix shell prompt (such as % or $) has appeared at your original termi-
nal, things are probably back to normal. You may still have to take the ter-
minal out of a strange mode though.

If the shell prompt hasn’t come back, find the shell associated with your ter-
minal (identified by a tty number), and kill it. The command name for the C
shell is csh. For the Bourne shell, it is sh. In most cases, this will destroy any
other commands running from your terminal. Be sure to kill the shell on

Chapter 5: Getting the Most out of Terminals, xterm, and X Windows 103

5.6

5.7

5.7
LA

stty

2.8

your own terminal, not the terminal you borrowed to enter these com-
mands. The tty you borrowed is the one running ps; look at the previous
example and check the TTY column. In this case, the borrowed terminal is
TTY pb.

Check ps to ensure that your shell has died. If it is still there, take more dras-
tic action with the command kill -9PID.

6. Run ps x or ps -u yourname again to be sure that all processes on the other
tty have died. (In some cases, processes will remain.) If there are still pro-
cesses on the other tty, kill them.

7. At this point, you should be able to log in again from your own terminal.

The ps (245) command, which lists some or all of the programs you are running,
also gives you useful information about the status of each program and the
amount of CPU time it has consumed.

—JP and SJC

Find Out Terminal Settings with stty

It may hardly seem appropriate to follow Chris Torek’s learned article about
how stty works with some basics, but this book is designed for beginners as well
as those who already know everything. :-) [Good idea, Tim. This is also a handy
place to put the globe icon for the GNU version. ;*) —JP]

So, to find out what settings your terminal line currently has, type:
% stty

For a more complete listing, type:
% stty -a

On older BSD-style systems, use stty everything instead. On most newer BSD-
derived systems, stty everything and stty-a are both supported, but with
slightly different output formats. The former prints a tabular layout, while the
latter prints each control character setting in a name = value format.

As Jerry Peek said in an editorial aside to Chris’s article, be sure to have your stty
manual page handy!

—TOR and SJC

Setting Your Erase, Kill, and
Interrupt Characters

Have you ever sat down at a terminal where the “erase” key (the character that
deletes the last thing you typed) wasn’t where you thought it would be? If you

104

Part Il: Customizing Your Environment

have, you know how disorienting this can be! On Linux, there’s loadkeys. If
you’re using the X Window System, check into the xmodmap (6.1) command.
Newer shells, like bash and zsh, tend to do their own handling of these special
characters—especially during their built-in command-line editing (30.14). Check
your shell’s manual page about readline. The most portable method is with the
stty (57) command. All of these give you a way of changing the erase character
(along with several others) so you can restore some order to your world.

stty takes two kinds of input. If you want to give the command interactively,
type stty erase char, where char is the key you normally use for erase—BACK-
SPACE, DELETE, whatever—followed by RETURN. This will do the trick, pro-
vided that the character you type isn’t already used for something. If the
character is in use or if you’re putting stty commands into your .login, .profile, or
.bash_profile file, it’s better to “spell these characters out.” “Control” characters
in .login are allowed, but they aren’t a great idea. If you like to use the BACK-
SPACE key as the erase key, add the following line:

stty erase *h

If you want to use the DELETE key, quote the ? character so the shell won’t
treat it as a wildcard (1.13):

stty erase "\?
That is, stty lets you represent a control key with the two-character combination
~x, where * is the literal key » (caret) and x is any single character. You may need
to put a \ before the x to prevent the shell from interpreting it as a wildcard [and
a \ before the * to prevent old Bourne shells from interpreting it as a pipe!—JP].

Of course, you’re not limited to the BACKSPACE or DELETE keys; you can
choose any other key you want. If you want to use “Z” as your DELETE key,
type stty erase Z. Just make sure you never want to type a real Z!

Table 5-1 lists functions that stty can change.

Table 5-1. Keys to set with stty

Character Function Good setting See article
erase Erases the previous character. M\? (DELETE) 5.8
kill Erases the entire line. Au (CTRL-u) 5.8
werase Erases the previous word. Aw (CTRL-w) 5.8
intr Terminates the current job. Ac (CTRL-c) 2411
quit Terminates the current job; makes a A\ (CTRL-Y) 24.11
core file.
susp Stops the current job (so you can putitin Az (CTRL-2) 23.3
the background).
rprnt Redisplays the current line. Ar (CTRL-r) 28.2

Chapter 5: Getting the Most out of Terminals, xterm, and X Windows 105

5.8

59

5.9

The command stty everything (BSD derivatives) or stty —a (Linux and System V
derivatives) shows all your current terminal settings. The werase and rprnt char-
acters aren’t implemented on some older versions of Unix, though they are on
Linux and Darwin and most other modern Unix variants.

It’s amazing how often you’ll see even moderately experienced Unix users hold-
ing down the BACKSPACE or DELETE key to delete a partially completed com-
mand line that contains an error.

It’s usually easier to use the line-kill characters—typically CTRL-u or CTRL-x.
(The command stty —a or stty everything (41.3) will tell you which. Article 5.7
shows how to change them.) The line-kill character will work on a command
line (at a shell prompt (4.1)) and in other places where the terminal is in cooked
mode. Some Unix programs that don’t run in cooked mode, like vi, understand
the line-kill character, too.

Even better, many systems have a “word-erase” character, usually CTRL-2,
which deletes only back to the previous whitespace. There’s no need to delete
the entire command line if you want to change only part of it!

As a historical note, the erase character was originally #, and the kill character
was originally @. These assignments go back to the olden days, when terminals
printed with real ink on real paper and made lots of noise. However, I'm told
that there are some modern systems on which these settings are still the default.”

Terminal emulators, editors, and other programs can fool around
with all of this stuff. They should be well behaved and reset your
terminal when you leave them, but that’s often not true. So don’t
expect your settings to work within a terminal emulator; they
may, or they may not. And don’t expect your settings to be cor-
rect after you exit from your terminal emulator. Again, they may,
or they may not. This is primarily due to the fact that some termi-
nal-emulator programs lie about the extent to which they sup-
port a given set of control codes.

The tset program also fools around (5.3) with key settings. There-
fore, in your shell setup files (3.3), put stty after tset.

—ML, JP, SJC, and TOR

Working with xterm and Friends

xterm is by far the most commonly used X client, although more and more peo-
ple are switching from xterm to similar or related programs, such as rxvt—which
is a lightweight xterm derivative without the Tektronix terminal emulation sup-
port. Regardless, the most commonly used clients are largely derivatives of
xterm, so we’re devoting the rest of this section to this single client and its family.

* ...for some values of “modern”, anyway...—SJC

106

Part Il: Customizing Your Environment

5.10

5.10

xterm" gives you a window containing your standard shell prompt (as specified
in your /etc/passwd entry). You can use this window to run any command-line-
oriented Unix program or to start additional X applications.

The uncustomized xterm window should be sufficient for many users’ needs.
Certainly you can do anything in a vanilla xterm window that you can from a
character-based terminal. But xterm also has special features you can use, and
since you spend so much time in xterm, you might as well use them.

The rest of this chapter gives you a set of tricks and tips about using xterm,
including the following:

* Specifying and using a scrollbar (article 5.11).

* Copying and pasting text selections (article 5.13).

* Modifying text-selection behavior (article 5.14).

* Printing the current directory in the xterm titlebar (article 5.15).

* Dynamically changing fonts and other features (articles 5.17, 5.18).

The articles in this chapter use terms that you may want defined:

* A pointer, or pointing device, is a piece of hardware designed
for navigating a screen. Most people use a mouse as their
pointer, but there are also trackballs, touchpads, and others.

* The best pointer to use with X has three buttons. When we
refer to the first button or button 1, we mean the button you
click with your index finger. For right-handed people, this is
usually the left button on a mouse. But the X client
xmodmap (6.1) lets left-handed users swap mouse buttons to
make the rightmost button the “first.”

* Even though the actual image on the screen is called a cur-
sor, throughout this chapter we refer to “moving the
pointer” to avoid confusion with the standard text cursor
that can appear in an xterm window.

—LM, VQ, and SJC

Login xterms and rxvts

If you want your xterm or rxvt to run a login shell (34), give it the -Is flag, or put
a line like one of the following in your X resource file (6.5):
xterm*loginShell: true ...for xterm

XTerm*loginShell: true ...for xterm or rxvt
Rxvt*loginShell: true ..forrxvt

* When we refer, throughout the rest of the chapter, to xterm, we’re often referring to xterm proper, as
well as rxvt and other related terminal programs.

Chapter 5: Getting the Most out of Terminals, xterm, and X Windows 107

5.11

5.11

Once you've defined the appropriate resource, you can get a nonlogin shell
(which is otherwise the default) with xterm +Is.

—JP and S§JC

Working with Scrollbars

The scrollbar is a favorite xterm feature, particularly among those whose termi-
nals lacked the ability to scroll backwards. Using the scrollbar, you can re-
examine the output or error from a command, select previous text to supply in
another command line or to paste into a file, or to hide your current screen
from a nosy coworker.

There are many ways to start up the scrollbar. You can specify the —sb option on
the command line:

% xterm -sb &
% rxvt -sb &

or you can set the scrollBar resource (6.5) to true:

XTerm*scrollBar: true ...for xterm or rxvt
Rxvt*scrollBar: true ...forrxvt

or for an xterm window that’s already running, you can call up the VT Options
menu (5.17) by holding down the CTRL key and the center mouse button or by
selecting Enable Scrollbar. These menus are not supported by rxut.

A scrollbar appears on the left side of the xterm window, as shown in Figure 5-1.

[®] Aworkfxpt
walBruby 1342

Figure 5-1. xterm window with scrollbar

—LM and S]C

108

Part Il: Customizing Your Environment

5.12

5.13

How Many Lines to Save?

If you use the scrollbar in xterm (5.11), you’ll find that by default the scrollbar
retains only 64 previous lines of text. You can change this by using the —sI com-
mand-line option:

% xterm -sb -sl 200 &
% rxvt -sb -sl 200 &

or by setting the savelines resource:
XTerm*savelines: 200

You don’t want to go crazy with the number of saved lines, though. Too many
lines saved may crunch on virtual memory and also make it hard to scroll.

—ILM and SJC

Simple Copy and Paste in xterm

You can use the pointer to select text to copy and paste within the same xterm
window or between xterm windows. You don’t need to be in a text editor to
copy and paste. You can also copy or paste text to and from the command line,
between the command line and a file, etc.

There are several ways to select (copy) text; all require you to use the pointer.
You can select a passage of text, or you can select text by individual words or
lines.

When you select text, it is highlighted and copied into global memory from
which you can paste it into any xterm window. Regardless of the number of
xterm windows you’re running, you can store only one selection in memory at a
time. However, you can paste that selection as many times as you like. When
you make another selection, the new text replaces the previous selection in
memory.

Table 5-2 summarizes all of the text-selection methods.

Table 5-2. Button combinations to select text for copying

To select Do this

Passage Click the first button at the start of the selection and the third button at the end of the
selection. Or at the beginning of the selection, hold down the first button; drag the
pointer to the end of the desired text; release the button.

Word Double-click the first button anywhere on the word.
Line Triple-click the first button anywhere on the line.

Chapter 5: Getting the Most out of Terminals, xterm, and X Windows 109

5.13

5.14

5.14

To clear the highlighting, move the pointer off the selection, and click the first
button anywhere else in the window. Note, however, that the text still remains
in memory until you make another selection.

Of the two methods for selecting a passage, the first is generally easier. Hypo-
thetically, you can select a passage of any length; in practice, we’ve found there
to be limitations. The size of the window limits the amount of text you can high-
light in one action. You can extend a selection beyond the parameters of a win-
dow. Copying an extremely long selection, however, doesn’t seem to work
reliably. Also, when pasting a long selection, the text can become garbled.

You can paste text into any xterm window, either onto the command line or into
a text file you're editing. In both cases, move the pointer into the window, and
click the second button. The text will be pasted; in other words, it will appear on
the screen, just as if you typed it.

To paste into an open text file, the editing program must be in
insert mode. (If not, when pasted, the selection may be inter-
preted as a stream of editor commands, such as in vi. The act of
pasting the word “selection” in a vi editor not in insert mode
would be to ignore everything up until the i, which would place vi
into insert mode, and then the last three letters would be inserted
into the buffer.)

—VQ and SJC

Defining What Makes Up a Word
for Selection Purposes

You probably already know how to select text (5.13) in an xterm, and you’ve
probably discovered that double-clicking (5.13) will select the entire word around
the pointer. What you may not know is that it is possible to change what defines
a “word.”

xterm maintains a table of all the ASCII characters and their character classes.
Any sequence of adjacent characters of the same class is treated as a word. Num-
bers, letters, and the underscore are in class 48 (which is the ASCII code for the
character 0) and SPACE and TAB are in class 32 (the ASCII code for SPACE). By
default, all the other characters are in classes by themselves.

For Unix users, this isn’t the most useful default; it would be better if you could
select filenames, email addresses, URLs, resource specifications, etc. as single
words even though they often contain punctuation characters.

110

Part Il: Customizing Your Environment

5.15

You can modify the character class table with xterm’s charClass resource vari-
able (6.3). The value this resource accepts is a comma-separated list; each item on
the list is an ASCII character code or range of characters, followed by a colon,
followed by the character class to which the character should be added. I set the
charClass resource as follows:

xterm*charClass: 33:48, 37:48, 42:48, 45-47:48, 63-64:48, 126:48

This tells xterm to treat !, %, *, -, ., /, ?, @, and ~ as characters of the same class
as numbers and letters. You may also want to treat : as a member of this class,
for URLs; in that case, use the following charClass string:

xterm*charClass: 33:48, 37:48, 42:48, 45-47:48, 58:48, 63-64:48, 126:48
—DJF and SJC

Setting the Titlebar and Icon Text

Under most modern window managers, most windows (including xterm) are dis-
played with a titlebar. You can change the text in the titlebar using the following
Xterm escape sequence:

A 12;string™G

Note that this sequence has a close bracket (]) following the ESC (Escape, [)—
not an open bracket. It ends with a CTRL-g character—not a caret followed by a

SCg’, .

I use this sequence to display my current working directory and directory stack
in the titlebar, where they are visible but unobtrusive. I do this by adding a few
lines to my shell setup file (3.3). Article 4.8 explains.

If you change the number “2” in the escape sequence to “1,” it will set the text
that appears in the xterm’s icon instead of its titlebar. If you change it to “0,” it
will set the text for both the icon and the titlebar. If you use and iconify a num-
ber of xterms, you may find these sequences useful.

You may also wish simply to specify an icon name and/or title text for a given
window, statically, for those situations where the window is only used to dis-
play output from some program, and not for interactive use. Both xterm and rxvt
allow this, using the —n option to specify the icon name and the —T option to
specify the title. You may also use X resources to specify icon name or title.

The Mac OS X Terminal application lets you set the title from the Set Title com-
mand on the Shell menu as well.

—DJF and S]C

Chapter 5: Getting the Most out of Terminals, xterm, and X Windows 11

5.15

5.16

5.16 The Simple Way to Pick a Font

X font names make the Rosetta Stone look like bedtime reading. Those hardy
souls who want to experiment with fonts or access fonts on remote machines must
take the high road and learn the X font naming conventions anyway. But if you
just want to locate some fonts to use with xterm and other clients, you can use the
predefined aliases for some of the constant-width fonts available on most systems.

Figure 5-2 lists the aliases for some constant-width fonts that should be appropri-
ate for most of the standard clients, including xterm. [These “aliases” are basi-
cally font names. They aren’t the same as shell aliases (20.1). Also note that
terminals should use constant-width fonts (where every character—thin or
wide—occupies the same horizontal width). Constant-width fonts ensure that, for
instance, the 54th character in every line of output from Is - is always in the same
horizontal position on the screen—so columns will always be straight.—JP] To
give you an idea of the range of sizes, each alias is written in the font it identifies.

VT Fonts

¢ Default
Unreadable
Tiny
Small
Medium
Large
Huge
Escape Sequence
Selection

Figure 5-2. Miscellaneous fonts for xterm and other clients

In these cases, the aliases refer to the dimensions in pixels of each character in
the font. (For example, “10x20” is the alias for a font with characters 10 pixels
wide by 20 pixels high.) Note, however, that an alias can be virtually any charac-
ter string.

The default font for many applications, including xterm, is a 6x13 pixel font that
has two aliases: “fixed” and “6x13.” Many users consider this font to be too
small. If you have enough screen space, you might want to use the 10x20 font
for xterm windows:

% xterm -fn 10x20 &

You can make this font the default for xterm by specifying it as the value for the
font resource variable (6.3):

XTerm*font: 10x20

112

Part Il: Customizing Your Environment

5.17

Another quick way to get a list of fonts that match a given string is to use the
xlsfonts program, which accepts a variety of options but may be used as simply
as this:

% x1lsfonts -fn *-10-*
This command will display all of the fonts that are 10 pixels wide. The string
-10- is a wildcard expression matching any font specification containing -

10-. Be sure to escape the * and ? characters when specifying a pattern on the
command line, to avoid interpolation by the shell.

—VQand S]C

The xterm Menus

xterm has four different menus, each providing items that serve different pur-
poses. You display a menu by placing the pointer on the window and simulta-
neously pressing the CTRL (keyboard) key and a pointer button. When you’re
using a window manager that provides a titlebar or frame, the pointer must rest
within the window proper and not on any window decoration.

Table 5-3 describes the menus and how to display them.

Table 5-3. The xterm menus

Menu title Display by holding Use to

Main Options ~ CTRL, pointer button 1 Enter secure mode; interrupt, stop, etc., the xterm
process.

VT Options CTRL, pointer button 2~ Toggle user preferences, including scrollbar, reverse
video, margin bell; toggle Tektronix/VT100 mode.

VT Fonts CTRL, pointer button 3 Select alternative display font.

Tek Options CTRL, pointer button2, Toggle VT100/Tektronix mode; select display font.
on Tektronix window

As shown in Table 5-3, three of the four xterm menus are divided into sections
separated by horizontal lines. The top portion of each divided menu contains
various modes that can be toggled. (The one exception is the Redraw Window
item on the Main Options menu, which is a command.) A check mark appears
next to a mode that is currently active. Selecting one of these modes toggles its
state.

The items on the VT Fonts menu change the font in which text is displayed in
the xterm window. Only one of these fonts can be active at a time. To turn one
off, you must activate another. See article 5.18 for information on using the VT
Fonts menu.

Chapter 5: Getting the Most out of Terminals, xterm, and X Windows 113

5.17

5.17

When you display an xterm menu, the pointer becomes the arrow pointer and
initially appears in the menu’s title. Once the menu appears, you can release any
keyboard key. The menu will remain visible as long as you continue to hold
down the appropriate pointer button. (You can move the pointer off the menu
without it disappearing.) To toggle a mode or activate a command, drag the
pointer down the menu and release the pointer button on the item you want.

If you decide not to select a menu item after the menu has appeared, move the
pointer off the menu and release the button. The menu disappears and no action
is taken.

You probably won’t use the xterm menus too often. You can set most mode
entries by using command-line options when invoking xterm or by using entries
in a resource file (6.5). See the xterm manpage for a complete list of options and
resource variables.

The various modes on the menus are very helpful if you’ve set (or failed to set) a
particular mode on the command line and then decide you want the opposite
characteristic. For instance, say you’ve run xterm without a scrollbar and then
decide you want one. You can toggle the scrollbar from the VT Options menu.

The sections below the modes portion of each menu contain various com-
mands. Selecting one of these commands performs the indicated function. Many
of these functions can be invoked only from the xterm menus. However, some
functions can be invoked in other ways, which are often more convenient. For
example, you can remove the xterm window using several of the items on the
Main Options menu, but it’s probably simpler to type exit or logout, or use a
window manager menu or button. Of course, the xterm menus can be very help-
ful when other methods fail to invoke a function. And some functions (such as
Secure Keyboard) are not available in any other way—unless you do a little
customizing.

Most people tend to use the mode toggles on the VT Options menu (which
allow you to turn features like the scrollbar on and off) and the items on the VT
Fonts menu (which allow you to change the display font once the client is
running). If you're concerned about security, you may want to invoke secure
keyboard mode from the Main Options menu before typing passwords or other
sensitive information.

Note that a Release 5 patch (20.9) has eliminated xterm’s logging capability for
security reasons. If this patch has been applied, your Main Options menu will
not offer the Log to File option.

—VQand S]C

114

Part Il: Customizing Your Environment

5.18

5.18 Changing Fonts Dynamically

Ideally, you want to set up your environment so that xterm windows (and other
clients) come up automatically with the characteristics you prefer, including the
display font. I use the very large 10x20-pixel font (5.16) for all my xterm windows
by specifying the resource variable (6.3):

XTerm*font: 10x20

But if you start an xterm and then decide you want a different font, you do have
an option.

VT Fonts Menu

The xterm VT Fonts menu (5.17) allows you to change a window’s font on the fly,
which is a very handy capability. You can change the font any number of times
to accommodate a variety of uses. You might choose to use a large font for text
editing; you could then change to a smaller font while a process is running, since
you don’t need to be reading or typing in that xterm. Since xterm’s dimensions
are determined by the number of characters wide by the number of lines high,
changing the font also changes the size of the window.

When the focus is on an xterm, you display the menu by pressing CTRL and
then the third pointer button. The default menu is shown in Figure 5-3.

8086 fugazi:fusersischampeo

schampeoB@fugazii623 ¢ B

YT Fonts

v Default
Unreadable
Tiny
Small
Medium
Large
Huge

Line-Drawing Characters
v Doublesized Characters

Figure 5-3. xterm’s VT Fonts menu lets you change fonts dynamically

Chapter 5: Getting the Most out of Terminals, xterm, and X Windows 115

5.18

The items on the VT Fonts menu are toggles, each of which provides a different
size display font. If you have not toggled any items on this menu, a check mark
will appear next to Default, which is the font specified when the xterm was run.
This font could have been specified on the xterm command line or in a resource
file. Whatever the case, this font remains the Default for the duration of the cur-
rent xterm process.

By default, the Unreadable, Tiny, Small, Medium, Large, and Huge menu
choices toggle the constant-width fonts shown in Table 5-4.

Table 5-4. VT Fonts menu defaults

Menu item Default font
Unreadable nil2

Tiny 5x7

Small 6x10
Medium 7x13

Large 9x15

Huge 10x20

Bring up the VT Fonts menu, and toggle some of these fonts to see what they
look like. The first choice is not called Unreadable for nothing, but it does have
a practical use.

You can specify your own Unreadable, Tiny, Small, Medium, Large, and Huge
fonts using the xterm resource variables font1, font2, font3, font4, fonts, and
font6. You might want to specify bold alternatives to some of the default fonts.
For example, 7x13 bold is somewhat more readable than the standard Medium
font.

All of the references to fonts and command-line options also apply to rxvt,
which does not, however, support the VT Fonts menu supported by xterm.

Enabling Escape Sequence and Selection

When you first run an xterm window, the final two choices on the VT Fonts
menu, Escape Sequence and Selection, are not functional. (They will appear in a
lighter typeface than the other selections.) The average user may not care about
these items, but if you’re experimenting with fonts, they are sometimes useful.

To enable Selection, you first have to select a font name. You can do this simply
by highlighting a font name with the pointer, as you would any text selection
(513). However, it’s more likely that you’ll use Selection in concert with the
xfontsel client. [This is a client that does point-and-click selection of X11 font
names; see its manpage.—JP] Once you’ve selected a font name, you can toggle
it using the Selection menu item. A serious limitation: Selection tries to use the

116

Part Il: Customizing Your Environment

5.19

last selected text as a font name. If the last selected text was not a valid font
name, toggling Selection will get you nothing more than a beep. When there is
no primary text selection in memory, the menu item is grayed out again.

The Escape Sequence item is a little more complicated, but once set up it will be
available for the duration of the xterm process. To make it available, you first
need to change the font by a more primitive method, using a literal escape
sequence that you send to the xterm using echo:

val@ruby 181% echo "Esc]50;7x13boldControl-g"

These are the literal keys you type to change the font to 7x13bold. But pressing
ESC actually generates the symbol ~[, and CTRL-g appears as G, so you’ll get a
line that looks like this:

val@ruby 181% echo "~[]50;7x13bold"G"

If you don’t get this string, try typing the CTRL-v character before both the ESC
and CTRL-g characters, letting the system know you intend for the following
character to be a literal.

I’ve used a short font name alias (5.16), but you could use a full name or a name
with wildcards. Once you’ve changed the font in this manner, you can toggle it
using the Escape Sequence menu item. If you change the font again using the lit-
eral escape sequence, that font will be available via the menu item. Note that the
trick for changing the font discussed earlier also works in rxvt, but does not
enable any font menus.

—VQand SJC

Working with xclipboard

The xclipboard client does exactly what you might think: it allows you to save
multiple text selections (5.13) and copy them to other windows. Text you copy
from an xterm window can be made the CLIPBOARD selection (and thus auto-
matically appear in the xclipboard window). To set this up, you first need to cus-
tomize xterm using resources.”

For text you copy from an xterm to be pasted automatically into xclipboard, the
text must be made the CLIPBOARD selection. You set this up to happen by
specitying a few translations (6.4) for xterm.t Here are the translations I use to
coordinate xterm with xclipboard:

* Since there can be only one CLIPBOARD selection at a time, you can only run one xclipboard per dis-
play.

1 If you're using a terminal emulator other than xterm, the program should also allow this sort of cus-
tomization. See the client manpage for the actions (the equivalents of select-end and insert-
selection) to include in the translation table.

Chapter 5: Getting the Most out of Terminals, xterm, and X Windows 117

5.19

5.19

*VT100.Translations: #override\

Buttonl <Btn3Down>: select-end(primary,CUT_BUFFERO,CLIPBOARD)\n\

1Shift <Btn2Up>: insert-selection(CLIPBOARD)\n\

~Shift ~Ctrl ~Meta <Btn2Up>: insert-selection(primary,CUT BUFFERO)
To let you store multiple text selections, the seemingly tiny xclipboard actually
provides multiple screens, each of which can be thought of as a separate buffer.
Each time you use the pointer to make text the CLIPBOARD selection, the
xclipboard advances to a new screen in which it displays and stores the text. If
you make a long selection, it might take up more than one screen, but the clip-
board still considers it a single buffer. When you make a selection that extends
beyond the bounds of the xclipboard window (either horizontally, vertically, or
both), scrollbars (5.11) will be activated in the window to allow you to view the
entire selection.

To the right of the command buttons is a tiny box that displays a number corre-
sponding to the selection currently in the xclipboard window. Once you have
saved multiple selections, you can click on the client’s Next and Prev command
buttons to move forward and backward among these screens of text.

If you’ve coordinated xterm with xclipboard using the guidelines outlined ear-
lier, you paste the CLIPBOARD selection in an xterm window by holding down
the Shift key and clicking the second pointer button. When you paste the CLIP-
BOARD selection, you get the selection that’s currently being displayed in the
xclipboard window. Here’s where the client really comes in handy. Suppose you
send four selections to xclipboard and you want to paste #2. Just go back to
selection #2 using the Prev command button; when you use the pointer com-
mand to paste the CLIPBOARD selection, selection #2 is pasted. In Figure 5-4,
we’ve pasted selection #2 into a new file. (Notice that the text is too wide for the
xclipboard window and that a horizontal scrollbar has been provided so we can
view the entire selection.)

A selection remains available in xclipboard until you Quit the program or use the
Delete button to erase the current buffer.

Use the Save command button to save the text in the current buffer to a file. A
dialog will ask you to Accept or Cancel the save to a file with the default name
clipboard. You can change the filename using Text widget commands [these are
listed in the xedit(1) manpage—JP]. If you want to save multiple selections,
you’ll need to change the filename each time, or you’ll overwrite the previous
save.

You can edit text you send to the xclipboard using Text widget commands.
When you edit a screenful of text, the xclipboard continues to store the edited
version until you delete it or exit the program.

—VQand SJC

118

Part Il: Customizing Your Environment

9.20

=] xtemn | =
Each time you use the pointer to make text the “=—1CLIPBOARD“ww(selection.

the “WIxclipboard“fR advances to a new screen in which it displadys and

stores the text,

-
o
o
o
o
o
o
o

rew " [Hew filel 4 lines. 164 characters

xcliphoard | =

=|

[Each time wou use the pointe
the ZWfIzclipboard\fE adwance
stores the text.

Figure 5-4. Text you copy from an xterm appears in xclipboard

Problems with Large Selections

If you experiment making large selections with xclipboard, you may discover
what seems to be a bug in the program. Though making a new selection usually
causes the screen to advance and display the new text, this does not happen reli-
ably after a selection that vertically spans more than one screenful. In these
cases, the new selection is saved in the xclipboard (and the number in the small
box is incremented to indicate this); however, the xclipboard window does not
automatically advance to show you the new current selection. Instead, the previ-
ous long selection is still displayed. (For example, though the box says “5,” indi-
cating that a fifth selection has been saved, the window is still displaying
selection #4.) This is a bit of xclipboard sleight of hand: the new selection has
been successfully made, but the appearance of the window belies this fact. The

Chapter 5: Getting the Most out of Terminals, xterm, and X Windows 119

5.20

5.21

5.21

%

requote

Next button will probably add to your confusion; it will not be available for
selection, suggesting that the text in the window is the last selection saved. This
is not the case.

To get around this problem and display the actual current selection, press the
Previous button. The same long selection (which is, in actuality, the Previous
selection) will be displayed again. (The small box will flip back to display the
preceding number as well.) Then the Next button will be enabled, and you can
click on it to display the actual current selection. The selection displayed in the
window and the number in the small box will correspond.”

—VQand SJC

Tips for Copy and Paste
Between Windows

One of my favorite uses for an xterm (which may seem natural to people who’ve
grown up using window systems, but was a pleasant surprise for a guy who
started computing with teletypes in 1970) is using a window to accept text
pasted from some other window. For instance, in writing this book, I'll have one
window open with something happening that I want to put into the book. So I
select the text, then paste it into another xterm window—where there’s usually a
text editor (like vi, with its keymaps for pasting text (18.5)).

You can also use a text editor or Unix utilities to reformat text from one win-
dow before pasting it into another. For instance, you’d like to send most of the
text in your browser to another window where you’re composing an email mes-
sage. But the web site used those irritating Microsoft Windows—specific quote
characters that show up as question marks (?) on any other platform. So you
paste the text into an Emacs window, do a quick run of text substitution, and
copy the result to paste into the email window.

Another problem with email messages comes when you’re sending a reply to
someone who’s used very long or jagged lines and the quoted text is a mess. But
if you cut the messy text into an xterm window running the requote shell script,
you’ll get a neatened version. In the following example, the text I paste (cut from
a quoted email message) is shown in boldface. Then I press CTRL-d, and the
result appears; I can paste it back into the email message:

$ requote

> This is a long line of text that runs on and on and wraps to the next

line without a quote character at the start and it goes on and on and on

and well you know
> This is the next line of text

* By this time, the observant reader will have concluded that xclipboard is a nuisance at best.

120

Part Il: Customizing Your Environment

${1+"$0"} 36.7

CTRL-d

> This is a long line of text that runs on and on and wraps to the next
> line without a quote character at the start and it goes on and on and
> on and well you know This is the next line of text

You can pass a fmt width option to tell requote how wide to make the output
lines. (Different versions of fmt have different width options: —w, I, etc.) requote
also works great as a vi filter-through (17.18): paste the messy text into vi, and run
a command like !{requote to requote the text in place.

requote is a simple script that doesn’t try to handle multiple levels of quoting
(>> > »>, etc.). The main formatting commands are shown here; the tempo-
rary file $temp makes sure fmt has read all the text before the final sed outputs
any of it:

sed 's/™> /7" |

fmt ${1+"$@"} > $temp

sed 's/*/> /' $temp
Here’s another problem like the one requote solves. When I copy text from a
browser window, my browser usually puts some whitespace before each line.
When I paste the text, it’s a mess. I could use a text editor to clean up the lines,
but a one-line sed script can do the job faster.

Let’s look at three examples of dedent. It removes all space and TAB characters
from the start of each line it reads on its standard input, and it writes the result
to standard output.
$ dedent > order_confirmation
...paste text into xterm, press CTRL-d...
$ dedent | fmt > johnson
...paste text into xterm, press CTRL-d...
$ dedent | mail -s 'article I mentioned' ali
...paste text into xterm, press CTRL-d...

$

In the first example, I started dedent and pasted text into the xterm. After I
pressed CTRL-d, dedent removed leading whitespace from the pasted text and
wrote the result to standard output, which the shell had redirected to a file
named order_confirmation. In the second example, dedent’s output is piped to
fmt (21.2) to make the lines neat. (Without dedent, most versions of fmt would
indent the reformatted text.) The third example removes leading whitespace,
then emails (1.21) the text to ali.

One more thing: many of the tricks discussed earlier may be implemented as
shell functions or even emacs functions or vi macro. If you use a mail user agent
such as mutt, you can specify your favorite editor for email messages and just call
the functions or macros while you edit. This is how I requote my replies to oth-
ers’ email, wrap it to a sane width, and so on. In emacs, ESC q is mapped to the

Chapter 5: Getting the Most out of Terminals, xterm, and X Windows 121

5.21

5.22

9.22

LA

ssh-agent

tail -f 12.10

function fill-paragraph, so if I need a paragraph wrapped to a certain width
(determined by default-fill-column), I just position the cursor inside the para-
graph and call the function. If the fill-prefix variable is properly set (say, to >)
it even knows how to wrap several levels of nested quoting in email.

—JP and S§JC

Running a Single Command
with xterm —e

The —e option to xterm is useful for running a single command before exiting.
For example, if you just want to run a character-based mail program, type the
following:

% xterm -e mail
When you quit the mail program, the xterm window exits.

The —e option needs to be the last xterm option on the command line. The
remainder of the command line is assumed to be part of the command to be exe-
cuted by xterm. The new window has the command name in its titlebar by
default (unless overridden by other command-line options (5.15)).

One use for xterm —e is for running a window with a login session to a remote
system, like this:

% xterm -e ssh hostname &

The xterm process runs on the local system, but immediately logs you into the
remote machine. You are prompted for a password in the new xterm that pops
up—before you can log in to the remote system. This isn’t as convenient as put-
ting that command in your X setup file (like .xinitrc or .xsession)—but it’s far
more secure because you don’t need to put your hostname in your .rhosts or
.shosts file (1.21), which is a potential security hole. (Or, if you use ssh for your
remote login—and you start ssh-agent before you start X—you won’t need to
type passwords at all during your X session. This is the handiest setup by far.)

You can use —e to create a makeshift X display for any character-based programs
you like to run. For example, you might want to keep track of messages sent to
the console, but you can’t run xterm —C to get console messages because you
aren’t actually logged in on the console. You might run something like this:

% xterm -e tail -f /var/log/messages &

Article 24.21 has more about how this works.
—ILM, JP, and SJC

122

Part Il: Customizing Your Environment

5.23

Don’t Quote Arguments to xterm —e

Being a belt-and-suspenders kind of guy, I've gotten in the habit of quoting argu-
ments to commands. This makes good sense with lots of Unix shell commands,
but it can get you in trouble with xterm —e. For example, I wanted to set up a job
that would open vi in a window to edit a file named .postit. At first, I used the
command:

xterm ... -e 'vi .postit' &
only to receive the perplexing message in the resulting window:

Can't execvp vi .postit

The quotes passed the entire string to xterm as an argument, which parsed it as a
single command name, rather than a command plus argument. Removing the
quotes solved the problem.

—TOR and SJC

Chapter 5: Getting the Most out of Terminals, xterm, and X Windows 123

5.23

Your X Environment

6.1

Defining Keys and Button Presses
with xmodmap

If you have a Linux system, you may want to use loadkeys instead of xmodmap.
loadkeys is designed to set the keymap used by the system as a whole, particu-
larly the console, so use your own judgment. Whatever is done in xmodmap will
affect X but not the system console.

An important piece to the X Window System puzzle is filled by the xmodmap cli-
ent. When the user performs any action—such as typing a key or moving the
mouse—the server sends a packet of information to the client called an event.
These events are then translated into actions by the client. You can use the
xmodmap utility to effectively change the event that is reported to the client.

Keysym mappings are mappings of keyboard events at the server level, before the

event is sent to the client. Keysyms are the symbols used for each key on the
keyboard.

The X server maintains a keymap table, which contains a listing of keys on the
keyboard and how they should be interpreted. A client gets the keymap table
from the server upon client startup. In most cases, the keymap table is used to
interpret keys literally—when you press the letter “a,” a key code is sent to the
client that corresponds to the letter “a” in the keymap table.

You can use the xmodmap client to reassign key codes within the keymap table.
xmodmap can therefore be used to redefine how the key is interpreted by the cli-
ent. You probably wouldn’t want to translate the alphanumeric keys on the key-

board, but you may want to translate others. For example, you might want to
change the BACKSPACE key to DELETE:

% xmodmap -e "keysym BackSpace = Delete"

124

Another example is if you mistakenly hit the CAPS LOCK key a bit too often,
you can disable it completely. Some people might disable CAPS LOCK the low-
tech way (by just removing the key from the keyboard!), but you can also render
it harmless with the command:

% xmodmap -e "keysym Caps_Lock = "

effectively disabling the CAPS LOCK key entirely. Note that the symbol is now
gone and can’t be redefined without using the hardware key code.

If you are a DVORAK typist, you can use xmodmap to translate every key on the
keyboard and so your QWERTY keyboard behaves like a DVORAK keyboard.

If it ever seems that keystrokes are not working correctly, you can check current
keysym settings by running xmodmap with the —pk argument. Use the xev client
to determine exactly which key code a key generates on your display. There is
also a public domain client called xkeycaps that can be used to display the key-
syms for selected keyboards.

You can use xmodmap to add or remove keysyms, or even to redefine the key
code associated with that keysym. You can also use it to redefine the mouse but-
tons, using the pointer keyword. For example, to have the second and third
mouse button switch places, you can enter:

% xmodmap -e "pointer = 1 3 2"

If you have a large number of keys to remap, you can put the commands in a file
that is read when your X session starts. For example, create a file called .Xmod-
map:

I'my .Xmodmap file

remove Lock = Caps_Lock

remove Control = Control L

keysym Control L = Caps_Lock

keysym Caps Lock = Control L

add Lock = Caps_Lock

add Control = Control L

These commands effectively reverse your CTRL and CAPS LOCK keys. (CTRL
and CAPS LOCK are “switched” on PC and Macintosh keyboards, which can be
exceedingly frustrating.) This file can then be read automatically in a X startup
script:

xset b 10 100 10

xrdb $HOME/.Xdefaults
xmodmap $HOME/ .Xmodmap
fvwm &

Chapter 6: Your X Environment 125

6.1

6.1

Alternately, you might want to assign different functions to little-used keys, such
as making the tiny “enter” key on Powerbook keyboards into another command
key. Remember, too, that some keys may have different names than what you’re
used to. Sun keyboards, for example, often come with a “meta” key; Macintosh
keyboards have an “option” key where PC users expect to find “alt” (though
they act the same); and so forth.

On Linux systems, the loadkeys command is often used to make system-level
changes to key mappings; it’'s common to see a variety of keytables already
defined and a system default chosen from among them. The system default is
often found in /etc/sysconfig/keytable (Red Hat 6 and earlier) or /etc/sysconfig/
keyboard (Red Hat 7) or otherwise defined in a directory such as /usr/share/
keymaps or /usr/lib/kbd/keymaps. On Debian, the keytable is simply set in /etc/
console-tools/default.kmap.gz.

If you have a physical keyboard on which you’ve switched certain keys, you may
want to modify the system-level key mappings as well, so that they are always
loaded properly for those times when you need the console to work without any
special user-level configuration. For example, on my Red Hat systems, I always
modify my keymap (in 6.* and earlier, found in /ust/lib/kbd/keymaps/i386/
qwertylus.kmap.gz, and in 7.%, found in /lib/kbd/keymaps/i386/qwerty/
us.kmap.gz) to reflect the fact that the keyboard I carry with me to the co-lo has
swapped CAPS LOCK and CTRL keys. Just gunzip the file, edit, and then gzip it
back up again. Alternately, you can create a new file from an existing one, make
your edits, and specify the new file in your /etc/sysconfig/keytable or /etc/
syscongig/keyboard file, as appropriate.

The keymaps directory tree is broken down by the platform (Amiga, Atari, 1386,
Mac, Sun) and then by the layout type of the keyboard (DVORAK, QWERTY,
and various other layouts) and finally by the language or character set. So, there
is a U.S. keymap, a U.K. keymap, a Hebrew keymap, and dozens of various oth-
ers, for all of the systems on which Linux is supported. The files are in a rela-
tively straightforward format:

keycode 54 = Shift
keycode 56 = Alt
keycode 57 = space
control keycode 57 = nul
keycode 58 = Control
keycode 86 = less greater bar
keycode 97 = Control

First comes the keycode keyword, followed by the numeric value of the keysym
generated when the key is pressed, and then a keyword (or several) describing
the character to be generated when a given keysym is received. Modifiers may
precede the keycode keyword, binding the combination of modifier key and key-
sym to another character value.

126

Part Il: Customizing Your Environment

6.2

One danger of using xmodmap is that anything set with xmodmap
might remain in effect after you have logged out. This isn’t a
problem if you use the same X server every day, but be aware that
if you use a coworker’s X terminal in his absence, he may come
back complaining that you broke his CAPS LOCK key. This
might happen if you use xdm, since the server is not restarted
after every X session. On some X terminals, you can fix this prob-
lem by toggling “Retain X Settings” on the X terminal setup
menu.

—ILM, EP, and SJC

Using xev to Learn Keysym Mappings

The xev client is essential for debugging X Window System keysym mappings
(6.1). When you start up xev, a small “event window” appears. All events that
take place within that window are shown on standard output. This means
screenfuls of output, but it also means that when you type a key, you can imme-
diately trace the resulting event. For example, if you need to know what keysym
is sent when you type the DELETE key on the keyboard, just run xev and type
the DELETE key in the event window. Typical output might be the following;:
KeyPress event, serial 13, synthetic NO, window 0x800001,
Toot 0x8006d, subw 0x800002, time 1762968270, (50,36),

root:(190,176), state 0x0, keycode 27 (keysym oxffff, Delete),
same_screen YES, XLookupString gives 1 characters: "~?"

KeyRelease event, serial 15, synthetic NO, window 0x800001,
root 0x8006d, subw 0x800002, time 1762968336, (50,36),
root:(190,176), state 0x0, keycode 27 (keysym oxffff, Delete),
same_screen YES, XLookupString gives 1 characters: "~?"

This tells you that the DELETE key (keycode 27) is interpreted as keysym

oxffff, which is Delete and character *?. If you do an xmodmap -pk (6.1), you
should see a line resembling:*

27 oxffff (Delete)

If you redefine the DELETE key as the BACKSPACE key and do the same exer-
cise (run xev and press the DELETE key), you should see something like this:

% xmodmap -e "keysym Delete = BackSpace"
% xev

* The keycode numbers may vary from system to system, depending on how your key mappings are con-
figured. For example, under a Debian 2.2 install running inside VirtualPC on a Powerbook G3,
DELETE is keycode 107, whereas under OroborusX on the same machine, the same keypress produces
keycode 59, the BACKSPACE character. On both systems, however, the hexadecimal keysym values
for DELETE and BACKSPACE are the same: oxffff and oxffo08, respectively.

Chapter 6: Your X Environment 127

6.2

6.3

6.3

KeyPress event, serial 13, synthetic NO, window 0x800001,
root 0x8006d, subw 0x800002, time 1763440073, (44,39),
root:(240,235), state 0x0, keycode 27 (keysym 0xff08, BackSpace),
same_screen YES, XLookupString gives 1 characters: ""H"

KeyRelease event, serial 15, synthetic NO, window 0x800001,
root 0x8006d, subw 0x800002, time 1763440139, (44,39),
root:(240,235), state 0x0, keycode 27 (keysym 0xff08, BackSpace),
same_screen YES, XLookupString gives 1 characters: "~H"
This tells you that now the DELETE key (still keycode 27) is being interpreted as
hexadecimal oxff08, keysym BackSpace, and generates character “*H.” xmodmap -pk
should show you the following:

27 oxffo8 (BackSpace)

For more information, see O’Reilly & Associates’ X Window System User’s
Guide, Volume 3.

—ILM, EP, and SJC

X Resource Syntax

Virtually all X Window System clients are customizable.” You can specify how a
client looks on the screen—its size and placement, its border and background
color or pattern, whether the window has a scrollbar, and so on. This article
introduces X resources and shows their syntax.

Traditional Unix applications rely on command-line options to allow users to
customize the way they work. X applications support command-line options
too, but often not for all features. Almost every feature of an X program can be
controlled by a variable called a resource; you can change the behavior or

appearance of a program by changing the value associated with a resource vari-
able.

Resource variables may be Boolean (such as scrollBar: True) or take a numeric
or string value (borderWidth: 2 or foreground: blue). What’s more, in applica-
tions written with the X Toolkit (or an Xt-based toolkit such as the Motif tool-
kit), resources may be associated with separate objects (or “widgets”) within an
application. There is a syntax that allows for separate control over both a class of
objects in the application and an individual instance of an object. This is illus-
trated by these resource specifications for a hypothetical application called
xclient:

*

Not to be confused with the extensive customization of window decorations and the like now possible
with window managers such as Enlightenment, Afterstep, FVWM, or Sawfish. If you have a difficult
time visualizing what is affected by these resource assignments apart from the fancy decoration around
the windows themselves, try killing your window manager and viewing just the X clients themselves,
in all of their sparse glory.

128

Part Il: Customizing Your Environment

xclient*Buttons.foreground: blue

xclient*help.foreground: red
The first resource specification makes the foreground color blue for all buttons
in the xclient application (in the class Buttons); the second resource specification
makes the foreground color red for the help button in this application (an
instance of the class Buttons). Resource settings can be even simpler than this.

The values of resources can be set as application defaults using a number of dif-
ferent mechanisms, including resource files in your home directory and a pro-
gram called xrdb (X resource database manager). As we’ll see, the xrdb program
stores resources directly in the X server, making them available to all clients,
regardless of the machine on which the clients run.”

Placing resources in files allows you to set many resources at once without the
restrictions encountered when using command-line options. In addition to a pri-
mary resource file (often called .Xdefaults, .Xresources, or xrdb) in your home
directory, which determines defaults for the clients you yourself run, the system
administrator can create system-wide resource files to set defaults for all
instances of the application run on this machine. It is also possible to create
resource files to set some resources for just the local machine, some for all
machines in a network, and some for one or more specific machines.t

The various resource files are automatically read in and processed in a certain
order within an application by a set of routines called the resource manager. The
syntax for resource specifications and the rules of precedence by which the
resource manager processes them are intended to give you the maximum flexibil-
ity in setting resources with the minimum amount of text. You can specify a
resource that controls only one feature of a single application, such as the red
help button in the hypothetical xclient settings listed earlier. You can also spec-
ify a resource that controls one feature of multiple objects within multiple appli-
cations with a single line.

Command-line options normally take precedence over any prior resource set-
tings; so you can set up the files to control the way you normally want your
application to work and then use command-line options (in an alias or shell
function (29.1), for instance) to specify changes you need for only one or two
instances of the application.

* Remember, in X the client server model is the inverse of what you may be used to; the server is local,
and displays clients that may be running remotely.

1 While this is often okay for applications such as xterm that have not been modified much since the early
nineties, app-defaults files can be more trouble than they’re worth in a rapid application development
environment, as they can quickly get out of sync with changes in the application itself from one version
to the next.

Chapter 6: Your X Environment 129

6.3

6.4

6.4

The basic syntax of a resource definition file is fairly simple. Each client recog-
nizes certain resource variables that can be assigned a value; see the client’s
manpage for a list.

Toolkits are a mechanism for simplifying the design and coding of applications
and making them operate in a consistent way. Toolkits provide a standard set of
objects or widgets, such as menus, command buttons, dialog boxes, scrollbars,
and so on. If a client was built with the X Toolkit, this should be noted on its
manual page. In addition to certain application-specific resource variables, most
clients that use the X Toolkit recognize a common set of resource variables.

The most basic line you can have in a resource definition file consists of the
name of a client, followed by a dot (.) or an asterisk (*), and the name of a vari-
able. A colon (:) and whitespace separate the client and variable names from the
actual value of the resource variable. The following line gives a scrollbar to all
instances of the xterm client:

xterm*scrollBar: True

If the name of the client is omitted, the variable is global: it applies to all
instances of all clients (in this case, all clients that can have a scrollbar). If the
same variable is specified as a global variable and a client-specific variable, the
value of the client-specific variable takes precedence for that client. However, if
the name of the client is omitted, the line should generally begin with an
asterisk.

Be sure not to omit the colon inadvertently at the end of a resource specifica-
tion. This is an easy mistake to make, and the resource manager provides no
error messages. If there is an error in a resource specification (including a syntax
error such as the omission of the colon or a misspelling), the specification is
ignored. The value you set will simply not take effect.

A line starting with an exclamation point (1) is ignored as a comment. If the last
character on a line is a backslash (\), the resource definition on that line is
assumed to continue on the next line.

—VQand S]C

X Event Translations

This article introduces event translations, which are special X Window System
resources that control actions of things like mouse clicks. Article 6.3 introduces
X resources and shows their syntax. Articles 6.5 through 6.9 explain how to set
and check resources—as you log in and after.

We've discussed the basics of resource-naming syntax. From the sample
resource settings, it appears that what many resource variables do is self-evident

130

Part Il: Customizing Your Environment

or nearly so. Among the less obvious resource variables, there is one type of
specification, an event translation, that can be used with many clients and war-
rants somewhat closer examination.

User input and several other types of information pass from the server to a client
in the form of events. An event is a packet of information that gives the client
something to act on, such as keyboard input. Moving the pointer or pressing a
key causes input events to occur. When a program receives a meaningful event, it
responds with some sort of action.

For many clients, the resource manager recognizes mappings between certain
input events (such as a pointer button click) and some sort of action by the cli-
ent program (such as selecting text). A mapping between one or more events and
an action is called a translation. A resource containing a list of translations is
called a translation table.

Many event translations are programmed into an application and are invisible to
the user.” For our purposes we are only concerned with very visible translations
of certain input events, primarily the translation of keystrokes and pointer but-
ton clicks to particular actions by a client program.

The operation of many clients, notably xterm, is partly determined by default
input event translations. For example, selecting text with the first pointer but-
ton (an event) saves that text into memory (an action).

In this case, the input “event” is actually three separate X events:
1. Pressing the first pointer button.
2. Moving the pointer while holding down the first button.t
3. Releasing the button.

Each of these input events performs a part of the action of selecting text:
1. Unselects any previously selected text and begins selecting new text.
2. Extends the selection.

3. Ends the selection, saving the text into memory (both as the primary selec-
tion and CUT_BUFFERO).

The event and action mappings would be expressed in a translation table as
follows:

<Btn1Down>: select-start()\n\
<BtniMotion>: select-extend()\n\
<BtniUp>: select-end(primary,CUT BUFFERO)

* For more information on events and translations, see O’Reilly & Associates’ X Window System Guide,
Volume 4.

T Actually, if there is no text to select, motion is recorded as a series of MotionNotify events.

Chapter 6: Your X Environment 131

6.4

6.4

where each event is enclosed in angle brackets (<>) and produces the action that
follows the colon (:). A space or TAB generally precedes the action, though this
is not mandatory:

<event>: action

A translation table must be a continuous string. To link multiple mappings as a
continuous string, each event-action line should be terminated by a newline
character (\n), which is in turn followed by a backslash (\) to escape the actual
newline.

These are default translations for xterm.” All of the events are simple, comprised of
a single button motion. As we’ll see, events can also have modifiers: i.e., addi-
tional button motions or keystrokes (often CTRL or Meta) that must be per-
formed with the primary event to produce the action. (Events can also have
modifiers that must not accompany the primary event if the action is to take place.)

As you can see, the default actions of keysym mappings are hardly intuitive. The
client’s manpage usually lists the event-action mappings that you can modify.

You can specify nondefault translations using a translation table (a resource con-
taining a list of translations). Since actions are part of the client application and
cannot be modified, you are actually specifying alternative events to perform an
action.T Keep in mind that only applications written with the X Toolkit (or an

Xt-based toolkit such as the Motif Toolkit) recognize translation-table syntax as
described here.

The basic syntax for specifying a translation table as a resource is as follows:

[object*[subobject...]]*translations: #override\
[modifier]<event>: action
The first line is basically like any other resource specification with a few excep-
tions. First, the final argument is always translations, indicating that one (or
more) of the event-action bindings associated with the [object*[subobject...]]
are being modified.

Second, note that #override is not the value of the resource; it is literal and indi-
cates that what follows should override any default translations. In effect,
#override is no more than a pointer to the true value of the resource: a new event-
action mapping (on the following line) where the event may take a modifier.

*

They are actually slightly simplified versions of default translations. Before you can understand the
actual translations listed in the xterm manual page, you must learn more about the syntax of transla-
tions. We cover the basics here; for more information, see O’Reilly & Associates’ X Window System
Guide, Volume 3M, Appendix F.

1 As we'll see, in certain cases you may be able to supply an alternative argument (such as a selection
name) to an action. These changes are interpreted by the resource manager.

132

Part Il: Customizing Your Environment

6.5

A not-so-obvious principle behind overriding translations is that you only liter-
ally “override” a default translation when the event(s) of the new translation
match the event(s) of a default translation exactly. If the new translation does
not conflict with any existing translation, it is merely appended to the defaults.

To be specified as a resource, a translation table must be a single string. The
#override is followed by a backslash (\) to indicate that the subsequent line
should be a continuation of the first.

In the previous basic syntax example, the value is a single event-action map-
ping. The value could also be a list of several mappings, linked by the characters
\n\ to make the resource a continuous string.

The following xterm translation table shows multiple event-action mappings
linked in this manner:

*VT100.Translations: #override\

<BtniDown>: select-start()\n\

<BtniMotion>: select-extend()\n\

<BtniUp>: select-end(primary,CUT_BUFFERO)
—VQand S]C

Setting X Resources: Overview

Learning to write resource specifications is a fairly manageable task, once you
understand the basic rules of syntax and precedence. In contrast, the multiple
ways you can set resources—for a single system, multiple systems, a single user,
or for all users—can be confusing. For our purposes, we are primarily con-
cerned with specifying resources for a single user running applications both on
the local system and on remote systems in a network.

As we've said, resources are generally specified in files. A resource file can have
any name you like. Resources are generally “loaded” into the X server by the
xrdb (6.8) client, which is normally run from your startup file or run automati-
cally by xdm when you log in. Prior to Release 2 of X, there was only one
resource file called . Xdefaults, placed in the user’s home directory. If no resource
file is loaded into the server by xrdb, the . Xdefaults file will still be read.

Remember that X allows clients to run on different machines across a network,
not just on the machine that supports the X server. One problem with the older
.Xdefaults mechanism was that users who were running clients on multiple
machines had to maintain multiple .Xdefaults files, one on each machine. By
contrast, xrdb stores the application resources directly in the server, thus mak-
ing them available to all clients, regardless of the machine on which the clients
are running. As we’ll see, xrdb also allows you to change resources without edit-
ing files.

Chapter 6: Your X Environment 133

6.5

6.5

Of course, you may want certain resources to be set on all machines and others
to be set only on particular machines. For a complex setup, check the detailed
information in O’Reilly & Associates’ X Window System Guide, Volume 3M,
Chapter 11.

In addition to loading resource files, you can specify defaults for a particular
instance of an application from the command line using two options: —xrm
and —name.

A sample resources file follows. This file sets the border width for all clients to a
default value of two pixels, and it sets other specific variables for xclock and
xterm. The meaning of each variable is obvious from its name. (For example,
xterm*scrollBar: True means that xterm windows should be created with a
scrollbar.)

Note that comments are preceded by an exclamation point (!).

For a detailed description of each variable, see the X client manpages.

*porderWidth: 2

!

I xclock resources

|

xclock*borderWidth: 5
xclock*geometry: 64x64
!

| xterm resources
|

xterm*curses: on
xterm*cursorColor: skyblue
xterm*pointerShape: pirate
xterm*jumpScroll: on
xterm*savelines: 300
xterm*scrollBar: True
xterm¥*scrollKey: on
xterm*background: black
xterm*borderColor: blue
xterm*borderWidth: 3
xterm*foreground: white
xterm*font: 8x13

Article 6.6 takes a look at the use of the —xrm command-line option in standard
X clients; article 6.7 covers —name. Article 6.8 discusses various ways you can
load resources using the xrdb program. Article 6.9 shows how to list the
resources for a client with appres.

—VQand SJC

134

Part Il: Customizing Your Environment

6.6

6.7

Setting Resources with
the —xrm Option

The —xrm command-line option, which is supported by all X Window System
clients written with the X Toolkit, can be useful in specifying from the com-
mand line any specification that you would otherwise put into a resources file
(6.5). For example:

% xterm -xrm 'xterm*Foreground: blue' &

Note that a resource specification on the command line must be quoted using
the single quotes.

The —xrm option only specifies the resource(s) for the current instance of the
application. Resources specified in this way do not become part of the resource
database.

The —xrm option is most useful for setting classes, since most clients have com-
mand-line options that correspond to instance variable names. For example, the
—fg command-line option sets the foreground attribute of a window, but —xrm
must be used to set Foreground.

Note also that a resource specified with the —xrm option will not take effect if a
resource that takes precedence has already been loaded with xrdb. For example,
say you've loaded a resource file that includes the specification:

xterm*pointerShape: pirate
The command-line specification of another cursor will fail:
% xterm -xxm '*pointerShape: gumby' &

because the resource xterm*pointerShape is more specific than the resource
*pointerShape. Instead, you’ll get an xterm with the previously specified pirate
cursor.

To override the resource database (and get the Gumby cursor), you’d need to
use a resource equally (or more) specific, such as the following:

% xterm -xrm 'xterm*pointerShape: gumby' &

—VQ and SJC

How —name Affects Resources

The command-line option —name lets you name one instance of an application;
the server identifies the single instance of the application by this name. The
name of an application affects how resources are interpreted. This option is sup-
ported by all X Window System clients written with the X Toolkit.

Chapter 6: Your X Environment 135

6.7

6.8

6.8

For example, the following command sets the xterm instance name to bigxterm:
% xterm -name bigxterm &

When this command is run, the client uses any resources specified for bigxterm
rather than for xterm.

The —name option allows you to create different instances of the same applica-
tion, each using different resources. For example, you could put the following
entries into a resource file such as . Xresources:

XTerm*Font: 8x13
smallxterm*Font: 6x10
smallxterm*Geometry: 80x10
bigxterm*Font: 9x15

bigxterm*Geometry: 80x55

You could then use these commands to create xterms of different specifications.
The command:

% xterm &
would create an xterm with the default specifications, while:
% xterm -name bigxterm &

would create a big xterm, 80 characters across by 55 lines down, displaying in
the font 9x15. The command:

% xterm -name smallxterm &

would create a small xterm, 80 characters across by 10 lines down, displaying in
the font 6x10.

—VQ and S]C

Setting Resources with xrdb

The xrdb program saves you from maintaining multiple resource files if you run
clients on multiple machines. It stores resources on the X server, where they are
accessible to all clients using that server. (This property is also called the
resource database.)

Place the appropriate xrdb command line in your .xinitrc file or .xsession file to
initialize resources at login, although it can also be invoked interactively. It has
the following syntax:

xxdb [options] [filename]

The xrdb client takes several options, all of which are documented on its man-
ual page. We’ll discuss the most useful options.

The optional filename argument specifies the name of a file from which the val-
ues of client variables (resources) will be read. If no filename is specified, xrdb

136

Part Il: Customizing Your Environment

will expect to read its data from standard input. Note that whatever you type
will override the previous contents, so if you inadvertently type xrdb without a
filename argument and then quit with CTRL-d, you will delete any previous val-
ues. (You can append new settings to current ones using the —merge option dis-
cussed later in this article.)

The resource filename can be anything you want. Two commonly used names
are . Xresources and . Xdefaults.

You should load a resource file with the xrdb —load option. For example, to load
the contents of your .Xresources file into the RESOURCE_MANAGER, you
would type:

% xrdb -load .Xresources

Querying the resource database
You can find out what options are currently set by using the —query option.
For example:

% xxrdb -query

XTerm*ScrollBar: True
bigxterm*font: 9x15
bigxterm*Geometry: 80x55
smallxterm*Font: 6x10

smallxterm*Geometry: 80x10
xterm*borderWidth: 3

If xrdb has not been run, this command will produce no output.

Loading new values into the resource database
By default, xrdb reads its input (either a file or standard input) and stores the
results into the resource database, replacing the previous values. If you sim-
ply want to merge new values with the currently active ones (perhaps by
specifying a single value from standard input), you can use the —merge
option. Only the new values will be changed; variables that were already set
will be preserved rather than overwritten with empty values.

For example, let’s say you wanted to add new resources listed in the file
new.values. You could say:

% xrdb -merge new.values
As another example, if you wanted all subsequently run xterm windows to
have scrollbars, you could use standard input and enter:

% xrdb -merge
xterm*scrollBar: True

and then press CTRL-d to end the standard input. Note that because of pre-
cedence rules for resource naming, you may not get what you want automat-
ically. For example, if you specify:

xterm*scrollBar: True

Chapter 6: Your X Environment 137

6.8

6.8

and the more specific value:
xterm*vt100.scrollBar: False

has already been set, your new, less specific setting will be ignored. The
problem isn’t that you used the —merge option incorrectly—you just got
caught by the rules of precedence.

If your specifications don’t seem to work, use the —query option to list the
values in the RESOURCE_MANAGER property, and look for conflicting
specifications.

Note also that when you add new specifications, they won'’t affect any pro-
grams already running—only programs started after the new resource speci-
fications are in effect. (This is also true even if you overwrite the existing
specifications by loading a new resource file. Only programs run after this
point will reflect the new specifications.)

Saving active resource definitions in a file

Assume that you’ve loaded the RESOURCE_MANAGER property from an
Xresources or other file. However, you’ve dynamically loaded a different
value using the —merge option, and you’d like to make the new value your

default.

You don’t need to edit the file manually (although you certainly could.)
The —edit option allows you to write the current value of the RESOURCE_
MANAGER property to a file. If the file already exists, it is overwritten
with the new values. However, xrdb is smart enough to preserve any com-
ments and preprocessor declarations in the file being overwritten, replac-
ing only the resource definitions. For example:

% xrdb -edit ~/.Xresources

will save the current contents of the RESOURCE_MANAGER property in
the file . Xresources in your home directory.
If you want to save a backup copy of an existing file, use the —backup
option:

% xrdb -edit .mydefaults -backup old
The string following the —backup option is an extension appended to the old
filename. In the prior example, the previous copy of .mydefaults would be
saved as .mydefaults.old.

Removing resource definitions

You can delete the definition of the RESOURCE_MANAGER property from
the server by calling xrdb with the —remove option.

There is no way to delete a single resource definition other than to read the
current xrdb values into a file. For example:

% xxrdb -query > filename

138

Part Il: Customizing Your Environment

6.9

Use an editor to edit the file, deleting the resource definitions you no longer
want, and save the file:

% vi filename

Then read the edited values back into the RESOURCE_MANAGER with xrdb
(note that we’re replacing the values, not merging them, so we use —load):

% xxrdb -load filename
—VQ and SJC

Listing the Current Resources
for a Client: appres

The appres (application resource) program lists the resources that currently
might apply to a client. These resources may be derived from several sources,
including the user’s . Xresources file and a system-wide application defaults file.
The directory /ust/lib/X11/app-defaults contains application-default files for sev-
eral clients. (Note that it may be in a different place depending on how your X11
is installed; on Mac OS X, which does not come with X by default, you might
find it in /usr/X11R6/etc/app-defaults in one popular install or /usr/local/lib/X11/
app-defaults in another.) The function of these files is discussed in the next sec-
tion. For now, be aware that all of the resources contained in these files begin
with the class name of the application.

Also be aware that appres has one serious limitation: it cannot distinguish
between valid and invalid resource specifications. It lists all resources that might
apply to a client, regardless of whether the resources are correctly specified.

appres lists the resources that apply to a client having the class name and/or
instance_name you specify. Typically, you would use appres before running a cli-
ent program to find out what resources the client program will access.

For example, say you want to run xterm, but you can’t remember the latest
resources you’ve specified for it, whether you’ve loaded them, what some of the
application defaults are, etc. You can use the appres client to check the current
xterm resources. If you specify only a class name, as in this command line:"

% appres XTerm

appres lists the resources that any xterm would load. In the case of xterm, this is
an extensive list, encompassing all of the system-wide application defaults, as
well as any other defaults you have specified in a resource file.

* The class name of xterm starts with two uppercase letters; this is contrary to the naming scheme fol-
lowed by most other application classes.

Chapter 6: Your X Environment 139

6.9

6.10

6.10

You can also specify an instance name to list the resources that applies to a par-
ticular instance of the client, as in:

% appres XTerm bigxterm

If you omit the class name, xappres assumes the class -NoSuchClass-, which has
no defaults, and returns only the resources that would be loaded by the particu-
lar instance of the client.

Note that the instance can simply be the client name, e.g., xterm. In that case
none of the system-wide application defaults would be listed, since all begin with
the class name XTerm. For example, the command:

% appres xterm
might return resources settings similar to these:

xterm.vt100.scrollBar: True

xterm*PhonyResource: youbet
xterm*pointerShape: gumby
xterm*iconGeometry: +50+50
*VT100.Translations: #override\

Button1 <Btn3Down>: select-end(CLIPBOARD)\n\

~Ctrl ~Meta <Btn2Up>: insert-selection(primary,CLIPBOARD)
Most of these resources set obvious features of xterm. The translation table sets
up xterm to use the xclipboard. Notice also that appres has returned an invalid
resource called PhonyResource that we created for demonstration purposes. You
can’t rely on appres to tell you what resources a client will actually load because
the appres program cannot distinguish a valid resource specification from an
invalid one. Still, it can be fairly useful to jog your memory as to the defaults
you’ve specified in your .Xresources file, as well as the system-wide application
defaults.

—VQ and SJC

Starting Remote X Clients

One of the unique advantages of window systems such as X is that you can run
applications remotely and view them on the local display (as opposed to sys-
tems that merely allow for the execution of shared applications by the local host,
such as Windows and the Mac OS prior to OS X). Even Mac OS X, except inso-
far as it can run an X server, does not allow for a split between an application’s
display and its execution. Only X-aware applications may be executed in such a
fashion.

140

Part Il: Customizing Your Environment

6.10

Starting Remote X Clients from Interactive Logins

You can try this easily enough by doing an rlogin or telnet” to the remote host,
setting the DISPLAY environment variable and starting up an X client. Of
course, it helps to have an X server already running on your local machine. In
the following example, we start up a new xload client running on the host ruby:
sapphire:joan % rlogin ruby
Password:

Last login: Mon Mar 12 16:27:23 from sapphire.oreilly.com
NetBSD 1.4.2A (ORA-GENERIC) #6: Wed May 31 06:12:46 EEST 2000

TERM = (vt100) xterm

ruby:joan % setenv DISPLAY sapphire:0
ruby:joan % xload &

(You must, of course, have an account on the remote system.)

The first thing that might go wrong is that you may run into server access con-
trol. If you see the following error:

Xlib: connection to "sapphire:0" refused by server

X1ib: Client is not authorized to connect to Server

Error: Can't open display: sapphire:0
you can probably fix it by typing xhost +ruby in a sapphire window and running
the command again on ruby.t

Once you have networking and access control issues solved, you should be able
to display clients from the remote machine. The next issue is how to run remote
clients easily.

If you have ssh (1.21), its X forwarding handles authorization (setting DISPLAY)
and also encrypts the connection to make it secure. Here’s an example using ssh
for an interactive login:

sapphire:joan % ssh ruby

joan's passphrase:

Last login: Mon Mar 12 16:27:23 from sapphire.oreilly.com
NetBSD 1.4.2A (ORA-GENERIC) #6: Wed May 31 06:12:46 EEST 2000

TERM = (vt100) xterm

Tuby:joan % xload &

* Most of the recent distributions of Unix default to the use of ssh as a secure replacement for the various
r* command, (rsh, rcp, rlogin, et al.), so you may want to skip ahead to Chapter 5.

T The security-conscious may prefer to use the fully qualified domain name on the xhost command line
(such as xhost +ruby.oreilly.com).

Chapter 6: Your X Environment 141

6.10

Starting a Remote Client with rsh and ssh

If you have ssh, that’s the easiest way to start a remote client:
sapphire:joan % ssh ruby -n xterm &

If you aren’t running an SSH agent, you’ll need to enter your password before
the remote command can run. If you have trouble, try the ssh —f option—with
no ampersand (8) at the end of the command line.

If you don’t have ssh, the best way to start a remote client is the same way you’d
start any remote command: using the rsh command:

sapphire:joan % rsh ruby -n xterm -display sapphire:0
There are a few issues to be ironed out first, though.

To run rsh successfully, make sure that you have permission to run remote shells
on the remote machine. This means that the local machine must be listed either
in the remote machine’s /etc/hosts.equiv file or in your personal $HOME/.rhosts
file on the remote machine. For example, an .rhosts file might read:
sapphire.ora.com
harry.ora.com
If the host is properly set up on the remote machine, then rsh will execute prop-
erly, and rlogin will no longer ask for a password when you try to connect to the
remote machine. If it is not set up properly, then rlogin will prompt for a pass-
word, and rsh will fail with the message Permission denied.

Using .rhosts or /etc/hosts.equiv for this purpose might be considered a breach of
security: it means that if someone breaks into your account on one machine, he
can break into your account on all other machines as well. Clearly, you want to
be careful what hosts you list in .rhosts. For that reason, it’s better to use the
fully qualified domain name (i.e., harry.ora.com instead of just harry).

There are a few more rules:

* For security reasons, the .rhosts file will be ignored if it is publically writ-
able. Make sure that the .rhosts file is writable only by you.
* Make sure that you are running the correct rsh command. Some systems
have a restricted shell, also named rsh. If you get the following error:
ruby: ruby: No such file or directory
or:
ruby: ruby: cannot open
where ruby is the name of the system that you wanted to run the remote
shell on, the problem is probably that you are using the wrong rsh com-
mand. Use the which (2.6) or whereis (2.3) command to see which rsh you are
using:

142

Part Il: Customizing Your Environment

6.10

sapphire:joan % which rsh

/bin/rsh

sapphire:joan % echo $path

/bin /usr/bin /usr/bin/X11 /usr/bsd
On some System V—derived systems such as IRIX, the restricted shell rsh
might live in /bin, while the remote shell rsh (the one you want) resides in
fusr/bsd. /bin often shows up in search paths earlier than /usr/bsd, so on
those systems you need to redefine your path explicitly so that /usr/bsd is
searched before /bin. Alternately, you can supply the full path to the com-
mand when you invoke it.

* You may need to append the —n option to rsh to avoid a Stopped error mes-
sage on some machines.

* You need to be sure that the directory containing X binaries is defined in
your search path in your shell setup file (3.3) on the remote system.

* If you are using host-based access control, you need to execute the xhost cli-
ent to extend access to the remote host before the rsh command is run. Oth-
erwise, clients from the remote host will not have permission to access your
display. If you are using user-based access control, you may need to run the
xauth command to copy your access code to the remote machine.

* You have to use the —display option in calling a remote shell, or the Can't
Open display error will be returned. (Alternatively, you can have your
DISPLAY environment variable hard-coded into your shell setup file (3.3) on
the remote machine, but this is a very bad idea.) See article 35.8 for more
information on setting your display.

* Be careful not to use unix:0.0 or :0.0 as the display name! Otherwise, the
client will display the window on the local display of the remote host. If this
succeeds, the user on that display could either become very annoyed or take
advantage of the sudden access to your account by reading personal files and
sending nasty mail to your boss. You would have no warning; all you would
know is that your window didn’t appear. So, before running another client,
you may want to log in to the remote system and do a ps to ensure that
you’re not already running the application on the remote display.

ssh expects slightly different files than does rsh, although the server may be con-
figured to allow the use of both .rhosts and .shosts, as well as the system-level
letc/hosts.equiv and /fetc/ssh/shosts.equiv files. Many administrators have wisely
chosen to avoid rsh and related commands altogether, even to the point of disal-
lowing fallback to rsh from a ssh login attempt. More information about the
peculiarities of ssh may be found in Chapter 51.

—LM, EP, JP, and S]C

Chapter 6: Your X Environment 143

Part Il

Working with Files
and Directories

Part III contains the following chapters:

Chapter 7, Directory Organization

Chapter 8, Directories and Files

Chapter 9, Finding Files with find

Chapter 10, Linking, Renaming, and Copying Files
Chapter 11, Comparing Files

Chapter 12, Showing What’s in a File

Chapter 13, Searching Through Files

Chapter 14, Removing Files

Chapter 15, Optimizing Disk Space

7.1

Directory Organization

What? Me, Organized?

Computers and offices have one thing in common: you lose things in them. If
you walk into my office, you’ll see stacks of paper on top of other stacks of
paper, with a few magazines and business cards in the mix. I can often find
things, but I'd be lying if I said that I could always find that article I was reading
the other day!

When you look at a new computer user’s home directory (31.11) , you often see
something similar to my office. You see a huge number of unrelated files with
obscure names. He hasn’t created any subdirectories, aside from those the sys-
tem administrator told him they needed; and those probably aren’t even being
used. His home directory probably contains programs for several different
projects, personal mail, notes from meetings, a few data files, some half-finished
documentation, a spreadsheet for something he started last month but has now
forgotten, and so on.

Remember that a computer’s filesystem isn’t that much different from any other
filing system. If you threw all of your papers into one giant filing cabinet with-
out sorting them into different topics and subtopics, the filing cabinet wouldn’t
do you much good at all: it would just be a mess. On a computer, the solution to
this problem is to sort your files into directories, which are analogous to the fil-
ing cabinets and drawers.

The Unix filesystem can help you keep all of your material neatly sorted. Your
directories are like filing cabinets, with dividers and folders inside them. In this
chapter, we’ll give some hints for organizing your computer “office.” Of course,
things occasionally get misplaced even in the most efficient offices. Later we’ll
show some scripts that use the find (8.3) and grep (9.21) commands to help you
find files that are misplaced.

—ML

147

7.2

1.2

73

Many Homes

Various operating systems store users’ home directories in many places, and
you’ve probably already noticed evidence of this throughout this book. Home
directories may be in /home/username, /ulusername, /Users/username, or some
other, more esoteric location.

The simplest way to find out where your system believes your home directory to
be is to take advantage of the fact that ¢d with no arguments changes to your
home directory:

% cd

% pwd

/home/users/deb

Generally, the $HOME environment variable will point to your home directory:

% echo $HOME

/home/users/deb
Most shells also expand tilde (*) to a user’s home directory as well, so ~/archive
on my machine becomes /homefusers/deb/archive and ~joel/tmp expands to
/homelusers/joel/tmp.

Your home directory is set in your /etc/passwd entry (or equivalent—Netinfo on
Darwin and NIS on Solaris store the same information, for example). There is no
actual requirement that all users’ home directories be in the same directory. In
fact, I've seen systems that have lots of users organize home directories by the
first few letters of the username (so my home directory there was /home/d/de/

deb).

If you add user accounts using a tool rather than by using vipw and adding them
by hand, take a peek at the documentation for your tool. It should tell you both
where it wants to put home directories by default and how to change that default
should you want to.

—DJPH

Access to Directories

Unix uses the same mode bits (50.2) for directories as for files, but they are inter-
preted differently. This interpretation will make sense if you remember that a
directory is nothing more than a list of files. Creating a file, renaming a file, or
deleting a file from a directory requires changing this list: therefore, you need
write access to the directory to create or delete a file. Modifying a file’s contents
does not require you to change the directory; therefore, you can modify files
even if you don’t have write access to the directory (provided that you have write
access to the file).

148

Part lll: Working with Files and Directories

74

Reading a directory is relatively straightforward: you need read access to list the
contents of a directory (find out what files it contains, etc.). If you don’t have
read access, you can'’t list the contents of the directory. However (surprise!), you
may still be able to access files in the directory, provided that you already know
their names.

Execute access for a directory has no meaning per se, so the designers of Unix
have reassigned this. It is called the search bit. Search access is needed to per-
form any operation within a directory and its subdirectories. In other words, if
you deny execute access to a directory, you are effectively denying access to the
directory and everything beneath it in the directory tree. Note that providing
search access to a directory without read access prevents people from listing the
directory, but allows them to access files if they know their names. This is partic-
ularly useful in situations where you want to allow public access to areas, but
only to people who know exactly what files to access; files available via a web
server are a good example.

The SUID bit (50.4) is meaningless for directories, but the SGID bit set on a direc-
tory affects group ownership of files created in that directory, and the sticky bit
prohibits users with write access to the directory from deleting or renaming files
that they don’t own.

The exception is, of course, that the superuser can do absolutely anything at any
time.

—ML

A bin Directory for Your Programs
and Scripts

If you compile programs or write shell scripts, it’s good to put them in one direc-
tory. This can be a subdirectory of your home directory. Or, if several people want
to use these programs, you could pick any other directory—as long as you have
write access to it. Usually, the directory’s name is something like bin—though I
name mine .bin (with a leading dot) to keep it from cluttering my Is listings.

For instance, to make a bin under your home directory, type:

% cd
% mkdir bin

Once you have a directory for storing programs, be sure that the shell can find
the programs in it. Type the command echo $PATH and look for the directory’s
pathname. For instance, if your directory is called /u/walt/bin, you should see:

% echo $PATH
...:/u/walt/bin:...

If the directory isn’t in your PATH, add it in your .profile or .cshrc.

Chapter 7: Directory Organization 149

74

7.5

1.9

1.6

If other people are using your bin directory, use a command like
chmod go+rx bin to give them access. If you’re concerned about security, pre-
vent unauthorized users from adding, removing, or renaming files in your direc-
tory by making sure that only you have write access; you can do this with a
command like chmod go-w bin. Also be sure that individual files can’t be edited
by people who shouldn’t have access to the files.

When you add a new program to your bin directory, if you use the C shell or a
C-shell derivative, you need to use the shell’s rehash command to update its
command search path.

—JP

Private (Personal) Directories

You might want to create a private directory for your personal files: love letters,
financial data, complaints about your boss, off-color jokes, or whatever you
want to keep there. While you can set any directory you own to be private, hav-
ing one in your home directory is convenient to organize all of your private
directories together. For simplicity, you can just name it private; giving it a less
obvious name, however, can make it more difficult for prying eyes to discover.

Once you’ve created a private directory, you should set its file access mode (50.2)
to 700; this means that you’re the only person allowed to read, write, or even list
the files that are in the directory. Here’s how:

% mkdir private

% chmod 700 private
On any Unix system, anyone who knows the root password can become
superuser (49.9) and read any files he wants. So a private personal directory
doesn’t give you complete protection by any means—especially on systems
where most users know the root password. If you really need security, you can
always encrypt your files.

—ML and DJPH

Naming Files

Let’s think about a filing cabinet again. If the files in your filing cabinet were
called letterl, letter2, letter3, and so on, you’d never be able to find anything—
the names aren’t descriptive enough. The same is true on your computer—you
should come up with a descriptive name for each file that you create. Unix sys-
tems let you have very long filenames. A few older systems have a 14-character
limit, but most allow names that are 256 characters long—hopefully, longer than
you will ever need.

150

Part lll: Working with Files and Directories

1.7

Generally, a descriptive filename summarizes the contents with a few useful
words. letter is not a terribly useful summary, unless perhaps you’ve only ever
written one letter and don’t expect to write another. The recipient’s name
(JohnShmoe, for example) would only be a useful summary if you expect to send
only one letter to that person. Even if you only plan to send one letter, the name
doesn’t tell you anything about what you sent Mr. Shmoe.

OctoberGoldPriceTrends is a pretty good summary; it’s obvious what the con-
tents of that file are, though you might want to know to which year it referred,
looking back two years from now. I often start time-specific files with the date,
so that Is sorts the files in date order. If you do this, I recommend a
YYYYMMDD format to get proper sorting, so files look like 20021004-
GoldPrices. If you're going to have regular updates to something, you might
want to make a directory to hold those things (e.g., GoldPrices/20021004,
GoldPrices/20021108, GoldPrices/20021206, and so forth). Note that in this spe-
cific example, a filename of nothing but a date makes sense, because you don’t
have anything else in that directory but information on gold prices.

Bruce Barnett has suggested that, by using long filenames, you can create a simple
“relational database.” For example, you could find out everything you’ve recorded
about the price of gold with a command like more *Gold*Price*. Of course, if this
starts to get very complex, using an actual database is much simpler.

Similarly, if you’re a programmer, the name of each file in your program should
describe what the code does. If the code diagonalizes matrices, the file should be
called something like MatrixDiagonalizer.cpp. If the code reads input from bank
tellers, it should be called something like teller_input.c. Some programming lan-
guages even enforce this by requiring a particular file-naming convention; Java
requires files to have only one object per file, and the name of the file and the
object within it must be the same. (Of course, if your object names aren’t very
good, you’re right back where you started.)

—DJPH

Make More Directories!

Creating many directories has several advantages:

* First, it is easier to find any particular file if your home directory is well
sorted. Imagine a rack of filing cabinets that isn’t sorted; people just insert
files wherever they fit. You may as well throw your data out; when you need
something, you’ll never be able to find it.

* Second, Unix can access files much faster when directories are relatively
small. Ideally, directories should have at most 60 files in them.

Chapter 7: Directory Organization 151

1.7

7.8

7.8

* Third, directories are an important part of Unix file protections. By setting
the permissions on the directories themselves, you can use directories to
help protect certain groups of files against access by others.

Create new directories liberally! Make a new directory for every new project you
start; make subdirectories within these directories for subtopics. Your home
directory should ideally contain nothing but subdirectories. Following are some
recommended conventions.

If you’re a programmer, create a new directory for each project. In the project
directory, create a directory called src for source files, a directory called doc or
man for documentation, a directory called obj for object files, a directory called
rel for the current working version (or almost-working version) of the program, a
directory called test for test files and results, and so on. If the program is large,
your src and obj directories should also be split into different subdirectories,
each containing different parts of the project (or perhaps the subdirectory for
each part of the project should have its own src and obj directories).

Many users save all of their mail in one directory (often called Mail or Maildir,
depending on your mail system), which is then divided into subdirectories by
topic. I use a variation of this scheme; I keep general mail in my Mail directory,
but I save correspondence about particular projects with the project itself. For
example, my Power Tools mail is shelved with the source code for this article.

—ML

Making Directories Made Easier

Earlier we told you that you should have lots of directories. Experienced Unix
users are creating new directories all the time. How do you make a directory?

It’s easy. Use the mkdir command, followed by the name of your new directory:
% mkdir directory

This creates the new directory you want. It doesn’t necessarily have to be in your
current directory. For example:

% cd /home/los/mikel
% mkdir /src/books/power/articles/files

The only requirements are:

* The parent of the directory you want to create must exist (in this case, /src/
books/power/articles).

* You must have write access to the parent directory.

152

Part lll: Working with Files and Directories

What if the parent directory doesn’t already exist? Assume, for example, that
/src/books already exists, but the power and articles directories do not. You
can make these “by hand,” or on many Unix systems you can add the —p (par-
ents) option:

% mkdir -p /src/books/power/articles/files

This tells mkdir to create all the intermediate directories that are needed. So the
previous command creates three directories:
/src/books/power

/src/books/power/articles
/src/books/power/articles/files

If your mkdir doesn’t have —p, you can use history substitution:

% mkdir /src/books/power

% !1/articles

mkdir /src/books/power/articles

% 11/files

mkdir /src/books/power/articles/files
On some mkdirs, you can also supply the file protection mode to be assigned to
the directory. (By default, the file protection mode is derived from your umask.)
To do so, use the —m option. For example:

% mkdir -m 755 /src/books/power/articles/files

This creates the directory with access mode 755, which allows the owner to do
anything with the directory. Note that this must be a numeric mode.

—ML

Chapter 7: Directory Organization 153

7.8

Directories and Files

8.1

8.2

Everything but the find Command

A computer isn’t that much different from a house or an office; unless you’re
incredibly orderly, you spend a lot of time looking for things that you’ve mis-
placed. Even if you are incredibly orderly, you still spend some time looking for
things you need—you just have a better idea of where to find them. After all,
librarians don’t memorize the location of every book in the stacks, but they do
know how to find any book, quickly and efficiently, using whatever tools are
available. A key to becoming a proficient user of any system, then, is knowing
how to find things.

This chapter is about how to find things. We’re excluding the find (9.1) utility
itself because it’s complicated and deserves a chapter of its own. We’ll concen-
trate on simpler ways to find files, beginning with some different ways to use Is.

Well, okay, towards the end of the chapter we’ll touch on a few simple uses of
find, but to really get into find, take a peek at Chapter 9.

—ML

The Three Unix File Times

When you’re talking to experienced Unix users, you often hear the terms
“change time” and “modification time” thrown around casually. To most peo-
ple (and most dictionaries), “change” and “modification” are the same thing.
What’s the difference here?

The difference between a change and a modification is the difference between
altering the label on a package and altering its contents. If someone says
chmod a—w myfile, that is a change; if someone says echo foo >> myfile, that is a
modification. A change modifies the file’s inode; a modification modifies the
contents of the file itself. A file’s modification time is also called the timestamp.

154

8.3

As long as we’re talking about change times and modification times, we might as
well mention “access times,” too. The access time is the last time the file was
read or written. So reading a file updates its access time, but not its change time
(information about the file wasn’t changed) or its modification time (the file
itself wasn’t changed).

Incidentally, the change time or “ctime” is incorrectly documented as the “cre-
ation time” in many places, including some Unix manuals. Do not believe them.

—CT

Finding Oldest or Newest Files
with Is -t and Is —u

Your directory might have 50, 100, or more files. Which files haven’t been used
for a while? You might save space by removing them. You read or edited a file
yesterday, but you can’t remember its name? These commands will help you find
it. (If you want a quick review of Unix file times, see article 8.2.)

In this example, I'll show you my bin (7.4) directory full of shell scripts and other
programs—I want to see which programs I don’t use very often. You can use the
same technique for directories with text or other files.

The Is command has options to change the way it orders files. By default, Is lists
files alphabetically. For finding old files, use the —t option. This sorts files by
their modification time, or the last time the file was changed. The newest files are
listed first. Here’s what happens:

jerry@ora ~/.bin

60 % 1s -t

weather unshar scandrafts rn2mh recomp
crontab zloop tofrom rmmer mhprofile
rhyes showpr incc mhadd append
rhno rfl dxrmm fixsubj README
pickthis maillog reheader distprompter rtfm
cgrep c-w zrefile xmhprint saveart
dirtop w zscan replf echoerr
which cx zfolders fols

tex showmult alifile incs

I just added a shell script named weather yesterday; you can see it as the first file
in the first column. I also made a change to my script named crontab last week;
it’s shown next. The oldest program in here is echoerr; it’s listed last.”

* On some systems, [s —t will list the files in one column, with the newest file first. Although that’s usually
a pain, I actually find that more convenient when I’m interested in the most recent files. If your system
does that and you don’t like the single-column display, you can use Is —Ct. On other systems, if a single-
column display would be handy, use Is —1t; the “1” option means “one column.” You can also use Is It,
since long listings also list one file per line. Throughout this article, we’ll assume you’re using an Is ver-
sion that makes multicolumn output.

Chapter 8: Directories and Files 155

8.3

8.3

Is —t is also great for file-time comparisons in a script (8.15). Is —¢ is quite useful
when I've forgotten whether I've edited a file recently. If I've changed a file, it
will be at or near the top of the Is —t listing. For example, I might ask, “Have I
made the changes to that letter I was going to send?” If T haven’t made the
changes (but only think I have), my letter will most likely appear somewhere in
the middle of the listing.

The —u option shows the files’ last-access time instead of the last-modification
time. The —u option doesn’t do anything with plain Is—you have to use it with
another option like —t or —I. The next listing shows that I've recently used the
rtfm and rmmer files. I haven’t read README in a long time, though—oops:

jerry@ora ~/.bin

62 % 1s -tu

rtfm cx drmm saveart fixsubj
Immex c-w zscan scandrafts echoerr
rfl w zrefile rhno dirtop
mhprofile distprompter xmhprint rhyes cgrep
showmult recomp zloop replf append
tex crontab zfolders reheader alifile
tofrom mhadd which incs README
rn2mh pickthis unshar maillog

weather incc showpr fols

(Some Unixes don’t update the last-access time of executable files when you run
them. Shell scripts are always read, so their last-access times will always be
updated.)

The — option shows when the file’s inode information was last changed. The
inode time tells when the file was created, when you used chmod to change the
permissions, and so on.

jerry@ora ~/.bin

64 % 1s -tc

weather maillog reheader Tecomp incs
crontab tex rn2mh fols cx
cgrep zscan tofrom Immer cw
zloop zrefile mhadd fixsubj C-w
dirtop rfl drmm mhprofile echoerr
pickthis showmult alifile append which
rhno rtfm showpr saveart README
unshar incc scandrafts distprompter

rhyes zfolders xmhprint replf

If you’re wondering just how long ago a file was modified (or accessed), add the
—| option for a long listing. As before, adding —u shows the last-access time; —c
shows inode change time. If T look at the access times of a few specific files, I
find that I haven’t read README since 2001.

156

Part lll: Working with Files and Directories

8.4

8.5

jerry@ora ~/.bin
65 % 1s -1tu README alifile maillog

-IWXT-XT-X 1 jerry ora 59 Feb 2 2002 maillog
-IWXI-XY-X 1 jerry ora 213 Nov 29 2001 alifile
-IW-I--r-- 1 jerry ora 3654 Nov 27 2001 README

—JP

List All Subdirectories with Is -R

By default, Is lists just one directory. If you name one or more directories on
the command line, Is will list each one. The —R (uppercase R) option lists all
subdirectories, recursively. That shows you the whole directory tree starting at
the current directory (or the directories you name on the command line).

This list can get pretty long; you might want to pipe the output to a pager pro-
gram such as less (12.3). The Is —C option is a good idea, too, to list the output in
columns. (When the Is output goes to a pipe, many versions of Is won’t make
output in columns automatically.)

—JP

The Is —d Option

If you give Is the pathname of a directory, Is lists the entries in the directory:

% 1s -1 /home/joanne

total 554
-IW-Ir--r-- 1 joanne 15329 Oct 5 14:33 catalog
“IW------- 1 joanne 58381 Oct 10 09:08 mail

With the —d option, Is lists the directory itself:

% ls -1d /home/joanne

drwxr-x--x 7 joanne 4608 Oct 10 10:13 /home/joanne
The —d option is especially handy when you’re trying to list the names of some
directories that match a wildcard. Compare the listing with and without the —d
option:

% ls -Fd [a-c]*

arc/ bm/ ctrl/

atcat.c cdecl/

atl.c.z cleanscript.c

% 1s -F [a-c]*

atcat.c atl.c.z cleanscript.c
arc:

BugsEtc.Z arcadd.c arcext.c.Z arcmisc.c.Z

Chapter 8: Directories and Files 157

8.5

8.6

8.6

%

GNU Is

bm:
Execute.c.Z MakeDesc.c.Z MkDescVec.c.Z Search.c.Z

Color Is

The GNU Is command—which is on a lot of systems, including Linux—can dis-
play names in colors. For instance, when I enable color listings on my system,
directory names are in dark blue, symbolic links are in sky blue, executable files
(scripts, programs, etc.) are in green, and so on.

tesh’s built-in Is —=F command can display in colors, too. Just set color in your
.cshre to enable it, and configure it using LS COLORS as described later in this sec-
tion. You may also want to look at the section “Another color Is” for another
way to configure colors if ——color doesn’t seem to work.

Trying It
Has your system been set up for this? Simply try this command:
$ 1s --color / /bin

If you don’t get an error (Is: no such option --color, or something similar), you
should see colors. If you don’t get an error, but you also don’t get colors, try one
of these commands, and see what you get:

$ 1s --color=always / /bin | cat -v

~[[oom/:

~[[01;34mbin"[[0Om

~[[01;34mboot”[[00Om

~[[01;34mvar”[[oom

bin:
[[01;32march”[[00Om
[l
[l

>

A

01;36mawk” [[00m
01;32mbasename”™[[00m

N

$ 1s --color=yes / /bin | cat -v
...same kind of output...
Those extra characters surrounding the filenames, such as ~[[01;34m and *[[oom,
are the escape sequences that (you hope) make the colors. (The cat —v (12.4) com-
mand makes the sequences visible, if there are any to see.) The *[is an ESC
character; the next [starts a formatting code; the 01 code means “boldface”; the
semicolon (;) is a code separator; the 34 means “blue”; and the m ends the escape
sequence. ~[[oom is an escape sequence that resets the attributes to normal. If

158

Part lll: Working with Files and Directories

eval 27.8
'...'28.14

you see the escape sequences when you use cat -v, but you haven’t gotten any
highlighting effects when you don’t use it, there’s probably some kind of mis-
match between your termcap or terminfo entry (5.2) (which should define the
sequences) and the color database (see later in this section). If you don’t see the
escape sequences at all, take a look at Chapter 8 for another way to configure
color Is.

Configuring It

How are the colors set? Both GNU Is and tcsh’s Is —F use the LS_COLORS envi-
ronment variable to decide how to format filenames. Here’s a sample (truncated
and split onto three lines for printing):
$ echo $LS_COLORS
LS COLORS=n0=00:fi=00:di=01;34:1n=01;36:pi=40;33:50=01;35:
bd=40;33;01:cd=40;33;01:0r=01;05;37;41:mi=01;05;37;41:ex=01;32:
.cmd=01;32:.exe=01;32:*.com=01;32:*.btm=01;32:*.bat=01;32:

The LS_COLORS value is a series of item=attribute values with a colon (;)
between each pair. For instance, fi=00 means that files have the attribute (color)
00; di=01;34 means that directories have the attributes 01 (bold) and 34 (blue);
and *.exe=01;32 means that filenames ending with .exe have the attributes 01
(bold) and 32 (green). There can be up to three numbers. The first is an attribute
code (bold, underscore, etc.); the second is a foreground color; the third is a
background color. So, 01;37;41 indicates boldfaced white foreground (37) text
on a red background (41).

The format is fairly obtuse, so you won’t want to set LS_COLORS directly if you
don’t have to. The easy way to set it is with the dircolors command—typically in
a shell setup file (3.3):

eval “dircolors”

There, dircolors is reading the default database and outputting a command to set
LS_COLORS. What if you don’t want the default database settings? You can
make your own. An easy place to start is with dircolors —p, which outputs a copy
of the database. You can redirect the output to a file; a good option is to use a
.dircolorsrc file in your home directory. Then take a look at it:

$ dircolors -p > $HOME/.dircolorsrc
$ cat $HOME/.dircolorsrc

Below should be one TERM entry for each colorizable termtype
TERM 1inux

TERM vt100

Below are the color init strings for the basic file types. A color
init string consists of one or more of the following numeric codes:

Chapter 8: Directories and Files 159

8.6

8.6

Attribute codes:

00=none 01=bold 04=underscore 05=blink 07=reverse 08=concealed

Text color codes:

30=black 31=red 32=green 33=yellow 34=blue 35=magenta 36=cyan 37=white
Background color codes:

40=black 41=red 42=green 43=yellow 44=blue 45-magenta 46=cyan 47=white
NORMAL 00 # global default, although everything should be something.
FILE 00 # normal file

DIR 01;34 # directory

LINK 01;36 # symbolic link

List any file extensions like '.gz' or '.tar' that you would like 1s

to colorize below. Put the extension, a space, and the color init string.
(and any comments you want to add after a '#')

.tar 01;31 # archives or compressed (bright red)

.tgz 01;31

The file starts with a listing of terminal type (5.3) names that understand the color
escape sequences listed in this file. Fortunately, the escape sequences are almost
universal; there are some old terminals (like my old Tektronix 4106, I think...
R.1.P.) that don’t understand these, but not many. (If you have a different termi-
nal or an odd terminal emulator, you can select a setup file automatically as you
log in (3.10).) The second section has a commented-out list of the attributes that
these terminals recognize. You can use that list in the third section—which has
standard attributes for files, directories, and so on. The fourth section lets you
choose attributes for files by their filename “extensions”—that is, the part of the
filename after the final dot (like .tar).

If you make your own database, you’ll need to use it (again, typically in a shell
setup file) to set LS_COLORS:

eval “dircolors $HOME/.dircolorsrc”

The --color Option

For better or for worse, the way to activate color Is is by using the --color option
on the command line. Because almost no one will want to type those characters
every time they run s, most users need to make an alias (20.2, 20.4) for Is that runs
1s --color. For example, here are the three aliases defined for bash on my Linux
system:

alias 1.='ls .[a-zA-Z]* --color=auto'

alias 11="ls -1 --color=auto’

alias 1s='ls --color=auto’
If you’re using tcsh, setting the color variable to enable Is —F’s color also arranges
to send --color=auto to regular Is.

160

Part lll: Working with Files and Directories

8.7

The --color option gives you three choices of when the Is output should be col-
ored: --color=never to never output color, --color=always to always output color,
and --color=auto to only output color escape sequences if the standard output of
Is is a terminal. T suggest using --color=auto, because --color=always means that
when you pipe the output of Is to a printer or redirect it to a file, it will still have
the ugly escape sequences you saw earlier in this article.

Another color Is

Some systems have another way to configure and use color Is. My FreeBSD sys-
tems use this scheme; if none of the configuration techniques described earlier
work, use Is -G or set the CLICOLOR environment variable. If this works, you’ll
want to use the LSCOLORS environment variable to configure color information
instead of LS_COLORS as described earlier. Spend a little time perusing your Is(1)
manpage for further details if your Is seems to work this way, as configuring it is
likely to be completely different from what we described previously.

—JP and DJPH

Some GNU Is Features

A lot of the GNU utilities came from Unix utilities—but with extra features. The
GNU Is command is no exception: as its info page (2.9) says, “Because Is is such a
fundamental program, it has accumulated many options over the years.” Amen.
Let’s look at three of the options that aren’t covered by other articles on Is.

An Emacs editor backup file (19.4) has a name ending in ~ (tilde). If you use
Emacs a lot, these files can really clutter your directories. The Is—B option
ignores Emacs backup files:

$1s

bar.c bar.c~ baz.c baz.c® foo.c foo.c~

$1s -B

bar.c baz.c foo.c
The option —I (uppercase letter I) takes —B one step further: you can give a wild-
card expression (shell wildcard pattern, not grep-like expressions) for entries not
to list. (Remember that—because you want to pass the wildcard pattern to Is,
and not let the shell expand it first—you need to quote (27.12) the pattern.) For
instance, to skip all filenames ending in .a and .o, use the wildcard pattern
*.[a0], like this:

$1s

bar.a bar.c bar.o baz.a baz.c baz.o foo.a foo.c foo.o

$ 1s -I "*,[a0]"

bar.c baz.c foo.c

Chapter 8: Directories and Files 161

8.7

8.8

8.8

The “minimalist” side of me might argue that both —B and -I are feeping crea-
tures because you can get basically the same effect by combining plain old Is
with one of the “not this file” shell wildcard operators. This next option is in the
same category. Instead of using =S to sort the files by size, you could pipe the
output of plain Is I to sort —n (22.5) and sort on the size field, then strip off the
information you didn’t want and...ahem. (Grumble, grumble.) Okay, —S really
is pretty useful. ;-) T use it a lot when I'm cleaning out directories and want to
find the most effective files to remove:

$ 1s -1s

total 1724

-TW-TW-T-- 1 jerry ora 395927 Sep 9 06:21 SunTran_map.pdf

“IW------- 1 jerry ora 389120 Oct 31 09:55 core

-IW-I--T-- 1 jerry ora 178844 May 8 16:36 how

SIW------- 1 jerry ora 77122 Oct 29 08:46 dead.letter
_]P

A csh Alias to List Recently
Changed Files

Looking for a recently changed file? Not sure of the name? Trying to do this in a
directory with lots of files? Try the Ir alias:

alias 1r "ls -lagFqt \!* | head"

This alias takes advantage of the —t option (8.3) to Is, so that recent files can float
to the top of the listing. !* is the csh syntax for “put all of the arguments to the
alias here.” (We have to escape the exclamation point to keep it from being
interpreted when we set the alias.) head (12.12) shows just the first ten lines.

A simple Ir in my home directory gives me:

bermuda:home/dansmith :-) 1r

total 1616

~IW------- 1 dansmith staff 445092 Oct 7 20:11 .mush256
-IW-I--r-- 1 dansmith staff 1762 Oct 7 20:11 .history
drwxr-xr-x 30 dansmith staff 1024 Oct 7 12:59 text/
~IW------- 1 dansmith staff 201389 Oct 7 12:42 .recoxrd
drwxr-xr-x 31 dansmith staff 1024 Oct 4 09:41 src/
-IW-T--T-- 1 dansmith staff 4284 Oct 4 09:02 .mushrc

You can also give a wildcarded pattern to narrow the search. For example, here’s
the command to show me the dot files that have changed lately:
bermuda:home/dansmith :-) 1lr .2?*

“IW------- 1 dansmith staff 445092 Oct 7 20:11 .mush256
-IWw-r--r-- 1 dansmith staff 1762 Oct 7 20:11 .history

162

Part lll: Working with Files and Directories

8.9

8.10

8.10

~IW------- 1 dansmith staff 201389 Oct 7 12:42 .recoxrd
-IW-1--T-- 1 dansmith staff 4284 Oct 4 09:02 .mushrc
—DS

Showing Hidden Files
with Is -A and -a

The Is command normally ignores any files whose names begin with a dot (.).
This is often very convenient: Unix has lots of small configuration files, scratch
files, etc. that you really don’t care about and don’t want to be bothered about
most of the time. However, there are some times when you care very much
about these files. If you want to see “hidden” files, use the command Is —a. For
example:

% cd

% 1s Don't show hidden files

Mail mail.txt performance powertools

% 1s -a This time, show me EVERYTHING
.emacs Mail powertools

.. .login mail.txt

.cshrc .mailrc performance

With the —a option, we see four additional files: two C-shell initialization files,
the customization files for the GNU Emacs editor, and mail. We also see two
“special” entries, .and .., which represent the current directory and the parent
of the current directory. All Unix directories contain these two entries (10.2).

If you don’t want to be bothered with . and .., many versions of Is also have a
—A option:

% 1s -A Show me everything but . and ..

.cshrc .login Mail performance
.emacs .mailrc mail.txt powertools
—ML

Useful Is Aliases

Because Is is one of the most commonly used Unix commands and provides
numerous options, it’s a good idea to create aliases for the display formats that
best suit your needs. For example, many users always want to know about their
“hidden” files. That’s reasonable—they’re just as important as any other files
you have. In some cases, they can grow to take up lots of room (for example,
some editors hide backup files), so it’s worth being aware of them.

Chapter 8: Directories and Files 163

8.10

Rather than typing Is —a every time, you can create a convenient alias that sup-
plies the —a or —A option (8.9) automatically:

$ alias la="ls -aF"
% alias la 1s -aF

or:

$ alias la="1s -AF"

% alias la 1s -AF
Two things to note here. First, I recommend using la as the name of the alias,
rather than just renaming Is. I personally think it’s dangerous to hide the pure,
unadulterated command underneath an alias; it’s better to pick a new name and
get used to using that name. If you ever need the original Is for some reason,
you’ll be able to get at it without problems.

Second, what’s with the —F option? I just threw it in to see if you were paying
attention. It’s actually quite useful; many users add it to their Is aliases. The —F
option shows you the type of file in each directory by printing an extra character
after each filename. Table 8-1 lists what the extra character can be.

Table 8-1. Filename types listed by ls —F

Character Definition
(nothing) The file is a regular file.

* The file is an executable.
/ The file is a directory.
@ The file is a symbolic link (10.4).

| The file is a FIFO (named pipe) (43.11).
= The file is a socket.

For example:

% la Alias includes -F functionality
.cshrc .login Mail/ performance/
.emacs .mailrc mail.txt powertools@

This says that Mail and performance are directories. powertools is a symbolic link
(Is =l will show you what it’s linked to). There are no executables, FIFOs, or
sockets in this directory.

[If you use tcsh, it has a built-in Is called Is —F, which not only prints this extra
information, but also supports color (8.6) and caching of filesystem information
for speed. I generally put alias Is Is —F in my .cshrc. —DH]

You may want this version instead:

$ alias la="1ls -aFC"
% alias la 1s -aFC

164

Part lll: Working with Files and Directories

8.1

-v12.4
-t-e12.5

8.1

The —C option lists the files in multiple columns. This option isn’t needed with Is
versions where multicolumn output is the normal behavior. Note, however, that
when piped to another command, Is output is single-column unless —C is used.
For example, use 1s -C | less to preserve multiple columns with a paged list-
ing.

Finally, if you often need the full listing, use the alias:

$ alias 11="1s -1"
% alias 11 1s -1

This alias may not seem like much of a shortcut until after you've typed it a
dozen times. In addition, it’s easy to remember as “long listing.” Some Unix sys-
tems even include [l as a regular command.

—DG and ML

Can’t Access a File? Look for Spaces
in the Name

What’s wrong here?

% 1s

afile exefiles j toobig

% lpr afile

lpr: afile: No such file or directory

Huh? Is shows that the file is there, doesn’t it? Try using:
%1ls -1 | cat -v -t -e

total 89%

-IW-TW-Tw- 1 jerry 28 Mar 7 19:46 afile $
-IW-r--r-- 1 root 25179 Mar 4 20:34 exefiles$
-IW-IW-Tw- 1 jerry 794 Mar 7 14:23 j$
-IW-I--r-- 1 root 100 Mar 5 18:24 toobig$

The cat —e option marks the ends of lines with a $. Notice that afile has a $ out
past the end of the column. Aha...the filename ends with a space. Whitespace
characters like TABs have the same problem, though the default Is—q (8.12)
option (on many Unix versions) shows them as ? if you’re using a terminal.

If you have the GNU version of Is, try its —Q option to put double quotes around
each name:

$1s -Q
"afile " ‘"exefiles" "j" "toobig"

To rename dfile, giving it a name without the space, type:

% mv "afile " afile

Chapter 8: Directories and Files 165

8.12

8.12

The quotes (27.12) tell the shell to include the space as part of the first argument it
passes to mv. The same quoting works for other Unix commands as well, such as
rm.

—JP

Showing Nonprintable Characters
in Filenames

From time to time, you may get filenames with nonprinting characters, spaces,
and other garbage in them. This is usually the result of some mistake—but it’s a
pain nevertheless.

If you’re using a version of Is that uses —q by default (and most do these days), the
Is command gives you some help; it converts all nonprinting characters to a ques-
tion mark (?), giving you some idea that something funny is there.” For example:
% 1s
ab??cd
This shows that there are two nonprinting characters between ab and cd. To
delete (or rename) this file, you can use a wildcard pattern like ab??cd.

Be careful: when I was new to Unix, I once accidentally gener-
ated a lot of weird filenames. Is told me that they all began with
2222, so I naively typed rm ?2??*. That’s when my troubles began.
See article 14.3 for the rest of the gruesome story. (I spent the
next day and night trying to undo the damage.) The moral is: it’s
always a good idea to use echo to test filenames with wildcards in
them

If you’re using an Is that came from System V Unix, you have a different set of
problems. System V’s Is doesn’t convert the nonprinting characters to question
marks. In fact, it doesn’t do anything at all—it just spits these weird characters
at your terminal, which can respond in any number of strange and hostile ways.
Most of the nonprinting characters have special meanings—ranging from “don’t
take any more input” to “clear the screen.” [If you don’t have a System V Is, but
you want this behavior for some reason, try GNU Is with its =N option. —]JP]

To prevent this, or to see what’s actually there instead of just the question
marks, use the —b option.T This tells Is to print the octal value of any nonprint-
ing characters, preceeded by a backslash. For example:

* Even in Ises that use it, the —q option is the default only when Is’s standard output is a terminal. If you
pipe the output or redirect it to a file, remember to add —g.

+ On systems that don’t support Is —b, pipe the Is —q output through cat —v or od —¢ (12.4) to see what the
nonprinting characters are.

166

Part lll: Working with Files and Directories

8.13

xargs 28.17

% 1s -b

ab\013\014cd
This shows that the nonprinting characters have octal values 13 and 14, respec-
tively. If you look up these values in an ASCII table, you will see that they corre-
spond to CTRL-k and CTRL-l. If you think about what’s happening—you’ll
realize that CTRL-l is a formfeed character, which tells many terminals to clear
the screen. That’s why the regular Is command behaved so strangely.

Once you know what you’re dealing with, you can use a wildcard pattern to
delete or rename the file.

—ML

Counting Files by Types

[use awk (20.10) a lot. One of my favorite features of awk is its associative arrays.
This means awk can use anything as an index into an array. In the next exam-
ple, I use the output of the file (126) command as the index into an array to count
how many files there are of each type:

#!/bin/sh

usage: count types [directory ...]

Counts how many files there are of each type

Original by Bruce Barnett

Updated version by yu@math.duke.edu (Yunliang Yu)
find ${*-.} -type f -print | xargs file |

awk '{
$1=NULL;
t[$0]++;
}
END {

for (i in t) printf("%d\t%s\n", t[i], 1);
}' | sort -nr # Sort the result numerically, in reverse

The output of this might look like:

38 ascii text

32 English text

20 c program text

17 sparc executable not stripped

12 compressed data block compressed 16 bits

8 executable shell script

1 sparc demand paged dynamically linked executable
1 executable /bin/make script

Chapter 8: Directories and Files 167

8.13

8.14

8.14

xargs 28.17

Listing Files by Age and Size

If you find a large directory and most of the files are new, that directory may not
be suitable for removal, as it is still being used. Here is a script that lists a sum-
mary of file sizes, broken down into the time of last modification. You may
remember that Is - will list the month, day, hour, and minute if the file is less
than six months old and show the month, day, and year if the file is more than
six months old. Using this, the script creates a summary for each of the last six
months, as well as a summary for each year for files older than that:

#!/bin/sh
usage: age files [directory ...]
lists size of files by age
#
pick which version of 1s you use
System V
#LS="1s -1s"
Berkeley
LS="1s -1sg"
#
find ${*:-.} -type f -print | xargs $LS | awk '
argument 7 is the month; argument 9 is either hh:mm or yyyy
test if argument is hh:mm or yyyy format
{
if ($9 I~ /:7) {
sz[$9]+=$1;
} else {
sz[$7]+=$1;
}

}
END {

for (i in sz) printf("%d\t%s\n", sz[i], i);
}' | sort -nr

The program might generate results like this:

5715 1991
3434 1992
2929 1989
1738 Dec
1495 1990
1227 Jan
1119 Nov
953 Oct
61 Aug

40 Sep

[For the book’s third edition, I thought about replacing this venerable ten-year-
old script with one written in Perl. Perl, after all, lets you get at a file’s inode
information directly from the script, without the Is —awk kludge. But I changed
my mind because this technique—groveling through the output of Is - with a
“summarizing” filter script—is really handy sometimes.—JP]

—BB

168

Part lll: Working with Files and Directories

8.15

-d8.5

8.16

8.16

newer: Print the Name
of the Newest File

Here’s a quick alias that figures out which file in a group is the newest:
alias newer "ls -dt \!* | head -1"
If your system doesn’t have a head (1212) command, use sed 1q instead.

For example, let’s say that you have two files named plan.vl and plan.v2. If
you’re like me, you (often) edit the wrong version by mistake—and then, a few
hours later, can’t remember what you did. You can use this alias to figure out
which file you changed most recently:

% newer plan.v*
plan.vi

I could also have used command substitution (28.14) to handle this in one step:
% emacs ~newer plan.*”

—ML

oldlinks: Find Unconnected
Symbolic Links

One problem with symbolic links is that they’re relatively “fragile” (10.6). The
link and the file itself are different kinds of entities; the link only stores the name
of the “real” file. Therefore, if you delete or rename the real file, you can be left
with a “dead” or “old” link: a link that points to a file that doesn’t exist.

This causes no end of confusion, particularly for new users. For example, you’ll
see things like this:

% 1s -1 nolink

lrwxrwxrwx 1 mikel users 12 Nov 2 13:57 nolink -> /u/joe/afile

% cat nolink
cat: nolink: No such file or directory

The file’s obviously there, but cat tells you that it doesn’t exist.

There’s no real solution to this problem, except to be careful. Try writing a script
that checks links to see whether they exist. Here’s one such script from Tom
Christiansen; it uses find to track down all links and then uses perl to print the
names of links that point to nonexistent files. (If you’re a Perl hacker and you’ll
be using this script often, you could replace the Unix find utility with the Perl
File::Find module.)

#!/bin/sh
find . -type 1 -print | perl -nle '-e || print'

Chapter 8: Directories and Files 169

8.17

8.17

The script only lists “dead” links; it doesn’t try to delete them or do anything
drastic. If you want to take some other action (such as deleting these links auto-
matically), you can use the output of the script in backquotes (28.14). For
example:

% rm ~oldlinks”

—ML

Picking a Unique Filename
Automatically

Shell scripts, aliases, and other programs often need temporary files to hold data
to be used later. If the program will be run more than once, or if the temp file
needs to stay around after the program is done, you need some way to make a
unique filename. Generally these files are stored in /tmp or /usr/tmp.

One way is with the shell’s process ID number (24.3), available in the $$ parame-
ter. You might name a file /tmp/myprog$$; the shell will turn that into something
like /tmp/myprog1234 or /tmp/myprog28471. If your program needs more than one
temporary file, add an informative suffix to the names:

% exxs=/tmp/myprog-errs$$

% output=/tmp/myprog-output$$
You can also use date’s + option to get a representation of the date suitable for
temporary filenames. For example, to output the Year, month, day, Hour,
Minute, and Second:

% date

Wed Mar 6 17:04:39 MST 2002

% date +'%Ykm%Ed%HZEM%S

20020306170515
Use a + parameter and backquotes (*7) (28.14) to get a temp file named for the
current date and/or time. For instance, on May 31 the following command
would store f00.0531 in the Bourne shell variable temp. On December 7, it
would store foo.1207:

% temp=foo. date +'%m¥kd"'"

If you’ll be generating a lot of temporary files in close proximity, you can use
both the process ID and the date/time:
% output=/tmp/myprog$$. date +'%YAmBdEHAEM%ES "

% echo $output
/tmp/myprog25297.20020306170222

—JP and DJPH

170

Part lll: Working with Files and Directories

9.1

Finding Files with find

How to Use find

The utility find is one of the most useful and important of the Unix utilities. It
finds files that match a given set of parameters, ranging from the file’s name to
its modification date. In this chapter, we’ll be looking at many of the things it
can do. As an introduction, here’s a quick summary of its features and basic
operators:

% find path operators

where path is one or more directories in which find will begin to search and
operators (or, in more customary jargon, options) tell find which files you’re
interested in. The operators are as follows:

-name filename
Find files with the given filename. This is the most commonly used opera-
tor. filename may include wildcards, but if it does, they must be quoted to
prevent the shell from interpreting the wildcards.

-perm mode
Find files with the given access mode. You must give the access mode in
octal.

-type ¢
Find the files of the given type, specified by c. ¢ is a one-letter code; for
example, f for a plain file, b for a block special file, 1 for a symbolic link, and
so forth.

-user name
Find files belonging to user name. name may also be a user ID number.

-group name
Find files belonging to group name. name may also be a group ID number.

171

9.1

-sizen
Find files that are n blocks long. A block usually equals 512 bytes. The nota-
tion +n says “find files that are over n blocks long.” The notation nc says
“find files that are n characters long.” Can you guess what +nc means?

-inumn
Find files with the inode number n.

-atimen
Find files that were accessed n days ago. +n means “find files that were
accessed over n days ago” (i.e., not accessed in the last n days). -n means
“find files that were accessed less than n days ago” (i.e., accessed in the last n
days).

-mtime n
Similar to —atime, except that it checks the time the file’s contents were

modified.

-ctime n
Similar to —atime, except that it checks the time the inode was last changed.
“Changed” means that the file was modified or that one of its attributes (for
example, its owner) was changed.

-newer file
Find files that have been modified more recently than file.

You might want to take some action on files that match several criteria. So we
need some way to combine several operators:

operatorl -a operator2
Find files that match both operator1 and operator2. The -a isn’t strictly nec-
essary; when two search parameters are provided, one after the other, find
assumes you want files that match both conditions.

operatorl -o operator2
Find files that match either operator1 or operator2.

! operator
Find all files that do not match the given operator. The ! performs a logical
NOT operation.

\(expression\)
Logical precedence; in a complex expression, evaluate this part of the
expression before the rest.

Another group of operators tells find what action to take when it locates a file:

-print
Print the file’s name on standard output. On most modern finds, this is the
default action if no action is given.

172

Part lll: Working with Files and Directories

9.2

-1s
List the file’s name on standard output with a format like 1s -1. (Not on
older versions.)

-exec command
Execute command. To include the pathname of the file that’s just been found
in command, use the special symbol {}. command must end with a backslash fol-
lowed by a semicolon (\;). For example:
% find . -name "*.0" -exec rm -f {} \;

tells find to delete any files whose names end in .o.

-ok command
Same as -exec, except that find prompts you for permission before execut-
ing command. This is a useful way to test find commands.

A last word: find is one of the tools that vendors frequently fiddle with, adding
(or deleting) a few operators that they like (or dislike). The GNU version, in par-
ticular, has many more. The operators listed here should be valid on virtually
any system. If you check your manual page, you may find others.

—ML

Delving Through a Deep
Directory Tree

The first, most obvious, use of this utility is find’s ability to locate old, big, or
unused files whose locations you’ve forgotten. In particular, find’s most funda-
mentally important characteristic is its ability to travel down subdirectories.

Normally the shell provides the argument list to a command. That is, Unix pro-
grams are frequently given filenames and not directory names. Only a few pro-
grams can be given a directory name and march down the directory searching for
subdirectories. The programs find, tar (38.3), du, and diff do this. Some versions of
chmod (50.5), chgrp, ls, rm, and cp will, but only if a —r or —R option is specified.

In general, most commands do not understand directory structures and rely on
the shell to expand wildcards to directory names. That is, to delete all files
whose names end with a .0 in a group of directories, you could type:

% xm *,0 *¥/*.0 */*/*,0
Not only is this tedious to type, it may not find all of the files you are searching
for. The shell has certain blind spots. It will not match files in directories whose
names start with a dot. And, if any files match */*/*/*.0, they would not be

deleted.

Chapter 9: Finding Files with find 173

9.2

9.2

Another problem is typing the previous command and getting the error “Argu-
ments too long.” This means the shell would expand too many arguments from
the wildcards you typed.

find is the answer to these problems.
A simple example of find is using it to print the names of all the files in the direc-
tory and all subdirectories. This is done with the simple command:

% find . -print
The first arguments to find are directory and file pathnames—in the example, a
dot (.) is one name for the current directory. The arguments after the pathnames
always start with a minus sign (-) and tell find what to do once it finds a file;
these are the search operators. In this case, the filename is printed.
You can use the tilde (~), as well as particular paths. For example:

% find ~ ~barnett /usr/local -print
And if you have a very slow day, you can type:

% find / -print
This command will list every file on the system. This is okay on single-user
workstations with their own disks. However, it can tie up disks on multiuser sys-
tems enough to make users think of gruesome crimes! If you really need that list

and your system has fast find or locate, try the command find '/*' or
locate ' *' instead.

find sends its output to standard output, so once you’ve “found” a list of file-
names, you can pass them to other commands. One way to use this is with com-
mand substitution:

% 1ls -1 “find . -print’
The find command is executed, and its output replaces the backquoted string. Is

sees the output of find and doesn’t even know find was used.

An alternate method uses the xargs command. xargs and find work together
beautifully. xargs executes its arguments as commands and reads standard input
to specify arguments to that command. xargs knows the maximum number of
arguments each command line can handle and does not exceed that limit. While
the command:

% 1ls -1d “find / -print’

might generate an error when the command line is too large, the equivalent com-
mand using xargs will never generate that error:

% find / -print | xargs 1ls -1d
—BB and JP

174

Part lll: Working with Files and Directories

9.3

9.4

9.5

Don’t Forget —print
“Why didn’t find find my file?” I wondered sometimes. “I know it’s there!”

More often than not, I'd forgotten to use —print. Without —print (or —Is, on ver-
sions of find that have it), find may not print any pathnames. For a long time,
this quirk of find confused new users, so most modern versions of find will
assume —print if you don’t supply an action; some will give you an error message
instead. If you don’t get the output you expected from find, check to make sure
that you specified the action you meant.

—JP and DJPH

Looking for Files with
Particular Names

You can look for particular files by using an expression with wildcards (28.3) as
an argument to the —name operator. Because the shell also interprets wildcards,
it is necessary to quote them so they are passed to find unchanged. Any kind of
quoting can be used:

% find . -name *.o -print
% find . -name '*.0' -print
% find . -name "[a-zA-Z]*.0" -print

Any directory along the path to the file is not matched with the —name operator,
merely the name at the end of the path. For example, the previous commands
would not match the pathname ./subdir.o/afile—but they would match ./subdir.o
and ./src/subdir/prog.o.

Article 9.27 shows a way to match directories in the middle of a path. Here’s a
simpler “find file” alias that can come in very handy:

alias ff "find . -name '*\!{*}*' -1s"

Give it a file or directory name; the alias will give a long listing of any file or
directory names that contain the argument. For example:

% ff cho9
2796156 4 -rw-r--1-- 1 deb deb 628 Feb 2 10:41 ./oreilly/UPT/book/ch09.sgm

—BB and JP

Searching for Old Files

If you want to find a file that is seven days old, use the —mtime operator:

% find . -mtime 7 -print

Chapter 9: Finding Files with find 175

9.5

9.6

9.6

An alternate way is to specify a range of times:
% find . -mtime +6 -mtime -8 -print

mtime is the last modified time of a file. If you want to look for files that have not
been used, check the access time with the —atime argument. Here is a command
to list all files that have not been read in 30 days or more:

% find . -type f -atime +30 -print

It is difficult to find directories that have not been accessed because the find
command modifies the directory’s access time.

There is another time associated with each file, called the ctime, the inode
change time. Access it with the —ctime operator. The ctime will have a more
recent value if the owner, group, permission, or number of links has changed,
while the file itself has not. If you want to search for files with a specific number
of links, use the —links operator.

Article 8.2 has more information about these three times, and article 9.7 explains

how find checks them.
—BB

Be an Expert on find
Search Operators

find is admittedly tricky. Once you get a handle on its abilities, you’ll learn to
appreciate its power. But before thinking about anything remotely tricky, let’s
look at a simple find command:

% find . -name "*.c" -print

The . tells find to start its search in the current directory (.) and to search all sub-
directories of the current directory. The -name "*.c" tells find to find files whose
names end in .c. The -print operator tells find how to handle what it finds, i.e.,
print the names on standard output.

All find commands, no matter how complicated, are really just variations on this
one. You can specify many different names, look for old files, and so on; no mat-
ter how complex, you’re really only specifying a starting point, some search
parameters, and what to do with the files (or directories or links or...) you find.

The key to using find in a more sophisticated way is realizing that search param-
eters are really “logical expressions” that find evaluates. That is, find:
* Looks at every file, one at a time.

* Uses the information in the file’s inode to evaluate an expression given by
the command-line operators.

176

Part lll: Working with Files and Directories

* Takes the specified action (e.g., printing the file’s name) if the expression’s
value is “true.”

So, -name "*.c" is really a logical expression that evaluates to true if the file’s
name ends in .c.

Once you've gotten used to thinking this way, it’s easy to use the AND, OR,
NOT, and grouping operators. So let’s think about a more complicated find
command. Let’s look for files that end in .0 or .tmp AND that are more than five
days old, AND let’s print their pathnames. We want an expression that evalu-
ates true for files whose names match either *.0 OR *. tmp:

-name "*.0" -0 -name "*.tmp"

If either condition is true, we want to check the access time. So we put the previ-
ous expression within parentheses (quoted with backslashes so the shell doesn’t
treat the parentheses as subshell operators). We also add a —atime operator:

-atime +5 \(-name "*.0" -0 -name "*.tmp" \)

The parentheses force find to evaluate what’s inside as a unit. The expression is
true if “the access time is more than five days ago and \(either the name ends
with .0 or the name ends with .tmp \).” If you didn’t use parentheses, the expres-
sion would mean something different:

-atime +5 -name "*.0" -0 -name "*.tmp" Wrong!

When find sees two operators next to each other with no -o between, that means
AND. So the “wrong” expression is true if “either \(the access time is more than
five days ago and the name ends with .0 \) or the name ends with .tmp.” This
incorrect expression would be true for any name ending with .tmp, no matter
how recently the file was accessed—the -atime doesn’t apply. (There’s nothing
really “wrong” or illegal in this second expression—except that it’s not what we
want. find will accept the expression and do what we asked—it just won’t do
what we want.)

The following command, which is what we want, lists files in the current direc-
tory and subdirectories that match our criteria:

% find . -atime +5 \(-name "*.o" -o -name "*.tmp" \) -print

What if we wanted to list all files that do not match these criteria? All we want is
the logical inverse of this expression. The NOT operator is an exclamation point
(1). Like the parentheses, in most shells we need to escape ! with a backslash to
keep the shell from interpreting it before find can get to it. The ! operator applies
to the expression on its right. Since we want it to apply to the entire expression,
and not just the —atime operator, we’ll have to group everything from -atime to
" tmp" within another set of parentheses:

% find . \! \(-atime +5 \(-name "*.0" -o -name "*.tmp" \) \) -print

Chapter 9: Finding Files with find 177

9.6

9.7

9.7

For that matter, even —print is an expression; it always evaluates to true. So are
—exec and —ok; they evaluate to true when the command they execute returns a
zero status. (There are a few situations in which this can be used to good effect.)

But before you try anything too complicated, you need to realize one thing. find
isn’t as sophisticated as you might like it to be. You can’t squeeze all the spaces
out of expressions, as if it were a real programming language. You need spaces
before and after operators like !, (,), and {}, in addition to spaces before and after
every other operator. Therefore, a command line like the following won’t work:

% find . \!\(-atime +5 \(-name "*.0" -o -name "*.tmp"\)\) -print

A true power user will realize that find is relying on the shell to separate the com-
mand line into meaningful chunks, or tokens. And the shell, in turn, is assuming
that tokens are separated by spaces. When the shell gives find a chunk of charac-
ters like *.tmp)) (without the double quotes or backslashes—the shell took them
away), find gets confused; it thinks you’re talking about a weird filename pat-
tern that includes a couple of parentheses.

Once you start thinking about expressions, find’s syntax ceases to be obscure—
in some ways, it’s even elegant. It certainly allows you to say what you need to
say with reasonable efficiency.

—ML and JP

The Times That find Finds

The times that go with the find operators —mtime, —atime, and —ctime often
aren’t documented very well. The times are in days:

* A number with no sign, for example, 3 (as in —mtime 3 or —atime 3), means
the 24-hour period that ended exactly 3 days ago (in other words, between
96 and 72 hours ago).

* A number with a minus sign (-) refers to the period since that 24-hour
period. For example, -3 (as in —mtime —3) is any time between now and 3
days ago (in other words, between 0 and 72 hours ago).

* Naturally, a number with a plus sign (+) refers to the period before that 24-
hour period. For example, +3 (as in —mtime +3) is any time more than 3 days
ago (in other words, more than 96 hours ago).

Got that? Then you should see that —atime —2 and —atime 1 are both true on files
that have been accessed between 48 and 24 hours ago. (—atime -2 is also true on
files accessed 24 hours ago or less.)

For more exact comparisons, use find —newer with touch (9.8).

—JP

178

Part lll: Working with Files and Directories

9.8

9.9

Exact File-Time Comparisons

One problem with find’s time operators (—atime and its brethren) is that they
don’t allow very exact comparisons. They only allow you to specify time to
within a day, and sometimes that’s just not good enough. You think that your
system was corrupted at roughly 4 p.m. yesterday (March 20); you want to find
any files that were modified after that point, so you can inspect them. Obvi-
ously, you’d like something more precise than “give me all the files that were
modified in the last 24 hours.”

Some versions of touch, and other freely available commands like it, can create a
file with an arbitrary timestamp. That is, you can use touch to make a file that’s
backdated to any point in the past (or, for that matter, postdated to some point
in the future). This feature, combined with find’s —newer operator, lets you make
comparisons accurate to one minute or less.

For example, to create a file dated 4 p.m., March 20, give the command:
% touch -t 03201600 /tmp/4PMyesterday

Then to find the files created after this, give the command:
% find . -newer /tmp/4PMyesterday -print

What about “older” files? Older files are “not newer” files, and find has a conve-
nient NOT operator (!) for just this purpose. So let’s say that you want to find
files that were created between 10:46 a.m. on July 3, 1999 and 9:37 p.m. on
June 4, 2001. You could use the following commands:”
% touch -t 199907031046 /tmp/file1

% touch -t 200106042137 /tmp/file2
%
%

find . -newer /tmp/file1i \! -newer /tmp/file2 -print
m /tmp/file[12]

—ML

Running Commands on What
You Find

Often, when you find a file, you don’t just want to see its name; you want to do
something, like grep (132) for a text string. To do this, use the —exec operator.
This allows you to specify a command that is executed upon each file that is
found.

* Very old versions of find have trouble with using multiple —newer expressions in one command. If find
doesn’t find files that it should, try using multiple explicit —mtime expressions instead. They’re not as
precise, but they will work even on finds with buggy —newer handling.

Chapter 9: Finding Files with find 179

9.9

9.9

The syntax is peculiar and in many cases, it is simpler just to pipe the output of
find to xargs (28.17). However, there are cases where —exec is just the thing, so
let’s plunge in and explain its peculiarities.

The —exec operator allows you to execute any command, including another find
command. If you consider that for a moment, you realize that find needs some
way to distinguish the command it’s executing from its own arguments. The
obvious choice is to use the same end-of-command character as the shell (the
semicolon). But since the shell uses the semicolon itself, it is necessary to escape
the character with a backslash or quotes.

Therefore, every —exec operator ends with the characters \;. There is one more
special argument that find treats differently: {}. These two characters are used as
the variable whose name is the file find found. Don’t bother rereading that last
line: an example will clarify the usage. The following is a trivial case and uses the
—exec operator with echo to mimic the —print operator:

% find . -exec echo {} \;

The C shell (29.1) uses the characters { and }, but doesn’t change {} together,
which is why it is not necessary to quote these characters. The semicolon must
be quoted, however. Quotes can be used instead of a backslash:

% find . -exec echo {} ';'

as both will sneak the semicolon past the shell and get it to the find command.
As 1 said before, find can even call find. If you wanted to list every symbolic link
in every directory owned by a group staff under the current directory, you could
execute:

% find “pwd” -type d -group staff -exec find {} -type 1 -print \;

To search for all files with group-write permission under the current directory
and to remove the permission, you can use:

% find . -perm -20 -exec chmod g-w {} \;
or:
% find . -perm -20 -print | xargs chmod g-w

The difference between —exec and xargs is subtle. The first one will execute the
program once per file, while xargs can handle several files with each process.
However, xargs may have problems with filenames that contain embedded
spaces. (Versions of xargs that support the —0 option can avoid this problem;
they expect NUL characters as delimiters instead of spaces, and find’s —print0
option generates output that way.)

Occasionally, people create a strange file that they can’t delete. This could be
caused by accidentally creating a file with a space or some control character in
the name. find and —exec can delete this file, while xargs could not. In this case,
use Is il to list the files and i-numbers, and use the —inum operator with —exec to
delete the file:

180

Part lll: Working with Files and Directories

9.10

% find . -inum 31246 -exec rm {} ';'

If you wish, you can use —ok, which does the same as —exec, except the program
asks you to confirm the action first before executing the command. It is a good
idea to be cautious when using find, because the program can make a mistake
into a disaster. When in doubt, use echo as the command. Or send the output to
a file, and examine the file before using it as input to xargs. This is how I discov-
ered that find requires {} to stand alone in the arguments to —exec. I wanted to
rename some files using -exec mv {} {}.orig, but find wouldn’t replace the {} in
{}.orig. I learned that I have to write a shell script that I tell find to execute.

GNU find will replace the {} in {}.orig for you. If you don’t have
GNU find, a little Bourne shell while loop with redirected input
can handle that too:

$ find ... -print |

> while read file

> do mv "$file" "$file.orig"

> done
find writes the filenames to its standard output. The while loop
and its read command read the filenames from standard input
then make them available as $file, one by one.

Articles 9.12 and 9.27 have more examples of —exec.

—BB

Using —exec to Create Custom Tests

Here’s something that will really make your head spin. Remember that —exec
doesn’t necessarily evaluate to “true”; it only evaluates to true if the command it
executes returns a zero exit status. You can use this to construct custom find
tests.

Assume that you want to list files that are “beautiful.” You have written a pro-
gram called beauty that returns zero if a file is beautiful and nonzero otherwise.
(This program can be a shell script, a perl script, an executable from a C pro-
gram, or anything you like.)

Here’s an example:
% find . -exec beauty {} \; -print

In this command, —exec is just another find operator. The only difference is that
we care about its value; we’re not assuming that it will always be “true.” find
executes the beauty command for every file. Then —exec evaluates to true when
find is looking at a “beautiful” program, causing find to print the filename.
(Excuse us, causing find to evaluate the —print. :-))

Chapter 9: Finding Files with find 181

9.10

9.11

9.11

9.12

Of course, this ability is capable of infinite variation. If you’re interested in find-
ing beautiful C code, you could use the command:

% find . -name "*.[ch]" -exec beauty {} \; -print

For performance reasons, it’s a good idea to put the —exec operator as close to
the end as possible. This avoids starting processes unnecessarily; the —exec com-
mand will execute only when the previous operators evaluate to true.

—JP and ML

Custom —exec Tests Applied

My favorite reason to use find’s —exec is for large recursive greps. Let’s say I want
to search through a large directory with lots of subdirectories to find all of the
.cc files that call the method GetRaw():

% find . -name *.cc -exec grep -n "GetRaw(" {} \; -print

58: string Database::GetRaw(const Name &owner) const {

67: string Database::GetRaw(const Name 8owner,

./db/Database.cc

39: return new Object(owner, _database->GetRaw(owner));

51: string Object::GetRaw(const Propertyd property) const {

52: return _database->GetRaw(_owner, property);

86: Properties properties(database->GetRaw(owner));

103: return _database->GetRaw(_owner);

./db/Object.cc

71: return new DatabaseObject(owner, GetDatabase().GetRaw(owner));
89: return Sexp::Parse(GetRaw(property));

92: SexpPtr parent = Sexp::Parse(GetRaw(" parent"))->Eval(this);

./tlisp/Object.cc

This output is from a real source directory for an open source project I'm work-
ing on; it shows me each line that matched my grep along with its line number,
followed by the name of the file where those lines were found. Most versions of
grep can search recursively (using —R), but they search all files; you need find to
grep through only certain files in a large directory tree.

—JP and DJPH

Finding Many Things
with One Command

Running find is fairly time consuming, and for good reason: it has to read every
inode in the directory tree that it’s searching. Therefore, combine as many things
as you can into a single find command. If you’re going to walk the entire tree,
you may as well accomplish as much as possible in the process.

182

Part lll: Working with Files and Directories

Let’s work from an example. Assume that you want to write a command (even-
tually for inclusion in a Chapter 27shell script) that sets file-access modes cor-
rectly. You want to give 771 access to all directories, 600 access for all backup
files (*BAK), 755 access for all shell scripts (*.sh), and 644 access for all text files
(*txt). You can do all this with one command:
$ find . \(-type d -a -exec chmod 771 {} \; \) -0\

\(-name "*.BAK" -a -exec chmod 600 {} \; \) -0\

\(-name "*,sh" -a -exec chmod 755 {} \; \) -0\

\(-name "*.,txt" -a -exec chmod 644 {} \; \)
Why does this work? Remember that —exec is really just another part of the
expression; it evaluates to true when the following command is successful. It
isn’t an independent action that somehow applies to the whole find operation.
Therefore, —exec can be mixed freely with —type, —name, and so on.

However, there’s another important trick here. Look at the first chunk of the
command—the first statement, that is, between the first pair of \(and \). It
says, “If this file is a directory and the chmod command executes successfully...”
Wait. Why doesn’t the —exec execute a chmod on every file in the directory to see
whether it’s successful?

Logical expressions are evaluated from left to right; in any chunk of the expres-
sion, evaluation stops once it’s clear what the outcome is. Consider the logical
expression “‘A AND B’ is true.” If A is false, you know that the result of “‘A
AND B’ is true” will also be false—so there’s no need to look the rest of the
statement, B.

So in the previous multilayered expression, when find is looking at a file, it
checks whether the file is a directory. If it is, —type d is true, and find evaluates
the —exec (changing the file’s mode). If the file is not a directory, find knows that
the result of the entire statement will be false, so it doesn’t bother wasting time
with the —exec. find goes on to the next chunk after the OR operator—because,
logically, if one part of an OR expression isn’t true, the next part may be—so
evaluation of an OR...OR...OR... expression has to continue until either one
chunk is found to be true, or they’ve all been found to be false. In this case hav-
ing the directory first is important, so that directories named, for example,
blah.BAK don’t lose their execute permissions.

Of course, there’s no need for the —execs to run the same kind of command.
Some could delete files, some could change modes, some could move them to
another directory, and so on.

One final point. Although understanding our multilayered find expression was
difficult, it really was no different from a “garden variety” command. Think
about what the following command means:

% find . -name "*.c" -print

Chapter 9: Finding Files with find 183

9.12

9.13

9.13

There are two operators: —name (which evaluates to true if the file’s name ends
in .c) and —print (which is always true). The two operators are ANDed together;
we could stick a —a between the two without changing the result at all. If —name
evaluates to false (i.e., if the file’s name doesn’t end in .c¢), find knows that the
entire expression will be false. So it doesn’t bother with —print. But if —name
evaluates to true, find evaluates —print—which, as a side effect, prints the name.

As we said in article 9.6, find’s business is evaluating expressions—not locating
files. Yes, find certainly locates files; but that’s really just a side effect. For me,
understanding this point was the conceptual breakthrough that made find much
more useful.

—ML

Searching for Files by Type

If you are only interested in files of a certain type, use the -type argument, fol-
lowed by one of the characters in Table 9-1. Note, though that some versions of
find don’t have all of these.

Table 9-1. find —type characters

Character Meaning

b Block special file (“device file”)
c Character special file (“device file”)
d Directory

f Plain file

1 Symbolic link

p Named pipe file

s Socket

Unless you are a system administrator, the important types are directories, plain
files, or symbolic links (i.e., types d, f, or 1).
Using the —type operator, here is another way to list files recursively:

% find . -type f -print | xargs ls -1
It can be difficult to keep track of all the symbolic links in a directory. The next
command will find all the symbolic links in your home directory and print the
files to which your symbolic links point. $NF gives the last field of each line,

which holds the name to which a symlink points. If your find doesn’t have a —Is
operator, pipe to xargs Is —I as previously.

% find $HOME -type 1 -1s | awk '{print $NF}'
—BB

184

Part lll: Working with Files and Directories

9.14

9.15

Searching for Files by Size

find has several operators that take a decimal integer. One such argument is —size.
The number after this argument is the size of the files in disk blocks. Unfortu-
nately, this is a vague number. Earlier versions of Unix used disk blocks of
512 bytes. Newer versions allow larger block sizes, so a “block” of 512 bytes is
misleading.

This confusion is aggravated when the command Is —s is used. The —s option
supposedly lists the size of the file in blocks. But if your system has a different
block size than Is —s has been programmed to assume, it can give a misleading
answer. You can put a c after the number and specify the size in bytes. To find a
file with exactly 1,234 bytes (as in an Is -/ listing), type:

% find . -size 1234c -print

To search for files using a range of file sizes, a minus or plus sign can be speci-
fied before the number. The minus sign () means less than, and the plus sign (+)
means greater than. This next example lists all files that are greater than 10,000
bytes, but less than 32,000 bytes:

% find . -size +10000c -size -32000c -print
When more than one qualifier is given, both must be true.

—BB

Searching for Files by Permission

find can look for files with specific permissions. It uses an octal number for these
permissions. If you aren’t comfortable with octal numbers and the way Unix
uses them in file permissions, article 1.17 is good background reading.

The string rw-rw-1-- indicates that you and members of your group have read
and write permission, while the world has read-only privilege. The same permis-
sions are expressed as an octal number as 664. To find all *.o files with these
permissions, use the following:

% find . -name *.o -perm 664 -print
To see if you have any directories with write permission for everyone, use this:
% find . -type d -perm 777 -print

The previous examples only match an exact combination of permissions. If you
wanted to find all directories with group write permission, you want to match
the pattern ----w----. There are several combinations that can match. You could
list each combination, but find allows you to specify a pattern that can be bitwise

Chapter 9: Finding Files with find 185

9.15

9.16

9.16

ANDed with the permissions of the file. Simply put a minus sign (-) before the
octal value. The group write permission bit is octal 20, so the following negative
value:

% find . -perm -20 -print
will match the following common permissions:
Permission Octal value

TWXTWXTWX 777

TWXTWXT -X 775

TW-TW-TW- 666
IW-TW-T-- 664
IW-TW---- 660

If you wanted to look for files that the owner can execute (i.e., shell scripts or
programs), you want to match the pattern --x------ by typing:

% find . -perm -100 -print

When the -perm argument has a minus sign, all of the permission bits are exam-
ined, including the set user ID, set group ID, and sticky bits.

—BB

Searching by Owner and Group

Often you need to look for a file belonging to a certain user or group. This is
done with the —user and —group search operators. You often need to combine
this with a search for particular permissions. To find all files that are set user ID
(setuid) root, use this:

% find . -user root -perm -4000 -print
To find all files that are set group ID (setgid) staff, use this:
% find . -group staff -perm -2000 -print

Instead of using a name or group from /etc/passwd or /etc/group, you can use the
UID or GID number:

% find . -user 0 -perm -4000 -print
% find . -group 10 -perm -2000 -print

Often, when a user leaves a site, his account is deleted, but his files are still on
the computer. Some versions of find have —nouser or —nogroup operators to find
files with an unknown user or group ID.

—BB

186

Part lll: Working with Files and Directories

9.17

9.18

Duplicating a Directory Tree

In many versions of find, the operator {}, used with the —exec operator, only
works when it’s separated from other arguments by whitespace. So, for exam-
ple, the following command will not do what you thought it would:

% find . -type d -exec mkdir /usr/project/{} \;

You might have thought this command would make a duplicate set of (empty)
directories, from the current directory and down, starting at the directory /usr/
project. For instance, when the find command finds the directory ./adir, you
would have it execute mkdir /usr/project/.Jadir (mkdir will ignore the dot; the
result is /usr/project/adir).

That doesn’t work because those versions of find don’t recognize the {} in the
pathname. The GNU version does expand {} in the middle of a string. On ver-
sions that don’t, though, the trick is to pass the directory names to sed, which
substitutes in the leading pathname:

% find . -type d -print | sed 's@“@/usr/project/@' | xargs mkdir

% find . -type d -print | sed 's@*@mkdir @' | (cd /usr/project; sh)
Let’s start with the first example. Given a list of directory names, sed substitutes
the desired path to that directory at the beginning of the line before passing the
completed filenames to xargs and mkdir. An @ is used as a sed delimiter because
slashes (/) are needed in the actual text of the substitution. If you don’t have
xargs, try the second example. It uses sed to insert the mkdir command, then it
changes to the target directory in a subshell where the mkdir commands will
actually be executed.

—JP

Using “Fast find” Databases

Berkeley added a handy feature to its find command—if you give it a single argu-
ment, it will search a database for file or directory names that match. For exam-
ple, if you know there’s a file named MH.eps somewhere on the computer but
you don’t know where, type the following:

% find MH.eps

/nutshell/graphics/cover/MH.eps
That syntax can be confusing to new users: you have to give find just one argu-
ment. With more arguments, find searches the filesystem directly. Maybe that’s
one reason that GNU has a “fast find” utility named locate—and its find utility
always searches, as described in the rest of this chapter. The GNU slocate com-
mand is a security-enhanced version of locate. In the rest of this article, T’ll
describe locate—but find with a single argument (as shown previously) works
about the same way.

Chapter 9: Finding Files with find 187

9.18

9.18

The “fast find” database is usually rebuilt every night. So, it’s not completely up-
to-date, but it’s usually close enough. If your system administrator has set this
up, the database usually lists all files on the filesystem—although it may not list
files in directories that don’t have world-access permission. If the database isn’t
set up at all, you’ll get an error like /usr/1ib/find/find.codes: No such file or
directory. (If that’s the case, you can set up a “fast find” database yourself. Set
up your own private locate database, or see article 9.20.)

Unless you use wildcards, locate does a simple string search, like fgrep, through a
list of absolute pathnames. Here’s an extreme example:

% locate bin

/bin

/bin/ar

/home/robin

/home/robin/afile

/home/sally/bin

You can cut down this output by piping it through grep, sed, and so on. But
locate and “fast find” also can use wildcards to limit searches. Article 9.19
explains this in more detail.

locate has an advantage over the “fast find” command: you can have multiple file
databases and you can search some or all of them. locate and slocate come with a
database-building program.

Because locate is so fast, it’s worth trying to use whenever you can. Pipe the out-
put to xargs and any other Unix command, or run a shell or Perl script to test its
output—almost anything will be faster than running a standard find. For exam-
ple, if you want a long listing of the files, here are two locate commands to do it:
% 1s -1 “locate whatever’
% locate whatever | xargs ls -1d
There’s one problem with that trick. The locate list may be built by root, which
can see all the files on the filesystem; your Is -] command may not be able to
access all files in the list. But slocate can be configured not to show you files you
don’t have permission to see.

The locate database may need to be updated on your machine
before you can use locate, if it’s not already in the system’s nor-
mal cron scripts. Use locate.updatedb to do this, and consider hav-
ing it run weekly or so if you’re going to use locate regularly.

188

Part lll: Working with Files and Directories

9.19 Wildcards with “Fast find” Database

locate and all the “fast find” commands I've used can match shell wildcards (1.13)
(*, 2, [1. If you use a wildcard on one end of the pattern, the search pattern is
automatically “anchored” to the opposite end of the string (the end where the
wildcard isn’t). The shell matches filenames in the same way.

The difference between the shell’s wildcard matching and locate matching is that
the shell treats slashes (/) in a special manner: you have to type them as part of
the expression. In locate, a wildcard matches slashes and any other character.
When you use a wildcard, be sure to put quotes around the pattern so the shell
won’t touch it.

Here are some examples:

* To find any pathname that ends with bin:
% locate '*bin’
/bin
/home/robin
/home/robin/bin

* To find any pathname that ends with /bin (a good way to find a file or direc-
tory named exactly bin):
% locate '*/bin’
/bin
/home/robin/bin
/usr/bin

* Typing locate '*bin*' is the same as typing locate bin.
* To match the files in a directory named bin, but not the directory itself, try
something like this:
% locate '*/bin/*'

/bin/ar
/bin/cat

/home/robin/bin/prog
e To find the files in /home whose names end with a tilde (~) (these are proba-
P
bly backup files from the Emacs editor):
% locate '/home/*~'
/home/testfile™
/home/allan/.cshrc™

/home/allan/.login™
/home/dave/.profile~

Notice that the locate asterisk matches dot files, unlike shell wildcards.

Chapter 9: Finding Files with find 189

9.19

9.20

9.20

* The question mark (?) and square brackets ([]) operators work, too.
They’re not quite as useful as they are in the shell because they match the
slashes (/) in the pathnames. Here are a couple of quick examples:

% locate '?22?'
/bin

/etc

/1ib

/sxc

/sys

/usr

% locate '/[bel]??'
/bin

/etc

/1ib

Finding Files (Much) Faster
with a find Database

If you use find to search for files, you know that it can take a long time to work,
especially when there are lots of directories to search. Here are some ideas for
speeding up your finds.

By design, setups like these that build a file database won’t have
absolutely up-to-date information about all your files.

If your system has “fast find” or locate, that’s probably all you need. It lets you
search a list of all pathnames on the system.

Even if you have “fast find” or locate, it still might not do what you need. For
example, those utilities only search for pathnames. To find files by the owner’s
name, the number of links, the size, and so on, you have to use “slow find.” In
that case—or, when you don’t have “fast find” or locate—you may want to set
up your own version.

slocate can build and update its own database (with its —u option), as well as
search the database. The basic “fast find” has two parts. One part is a com-
mand, a shell script usually named updatedb or locate.updatedb, that builds a
database of the files on your system—if your system has it, take a look to see a
fancy way to build the database. The other part is the find or locate command
itself—it searches the database for pathnames that match the name (regular
expression) you type.

190

Part lll: Working with Files and Directories

9.20

To make your own “fast find”:

* Pick a filename for the database. We’ll use $HOME/.fastfind (some systems
use $LOGDIR instead of $SHOME).

* Design the find command you want to use. The command to build a data-

base of all the files in your home directory might look like this:

% cd

% find . -print | sed "s@"./@@" > .fastfind.new

% mv -f .fastfind.new .fastfind
That doesn’t update the database until the new one is finished. It also
doesn’t compress the database. If you’re short on disk space, use this
instead:

% cd

% find . -print | sed "s@"./@@" | gzip > .fastfind.gz
The script starts from your home directory, then uses sed (13.9) to strip the
start of the pathname (like ./) from every entry. (If you're building a data-
base of the whole filesystem, don’t do that part!) To save more space, you
can compress with bzip2 instead; it’s slow, but it saved about 25% of the
disk space for my database.

* Set up cron (25.3) or at to run that find as often as you want—usually once a
day, early in the morning morning, is fine.

* Finally, make a shell script (I call mine ffind) to search the database. If you
use egrep (13.4), you can search with flexible regular expressions:
egrep "$1" $HOME/.fastfind | sed "s@"@$HOME/@"
or, for a gzipped database:
gzcat $HOME/.fastfind.gz | egrep "$1" | sed "s@“@$HOME/@"

The sed expressions add your home directory’s pathname (like /usr/freddie)
to each line.

To search the database, type:

% ffind somefile
/usr/freddie/lib/somefile

% ffind '/(sep|oct)[~/]*$'
/usr/freddie/misc/project/september
/usr/freddie/misc/project/october

You can do much more: I'll get you started. If you have room to store more
information than just pathnames, you can feed your find output to a command
like Is —I. For example, if you do a lot of work with links, you might want to keep
the files’ i-numbers as well as their names. You’d build your database with a
command like this:

% cd

% find . -print | xargs ls -id > .fastfind.new
% mv -f .fastfind.new .fastfind

Chapter 9: Finding Files with find 191

9.21

9.21

Or, if your version of find has the handy —Is operator, use the next script. Watch
out for really large i-numbers; they might shift the columns and make cut give
wrong output. The exact column numbers will depend on your system:

% cd

% find . -1s | cut -c1-7,67- > .fastfind.new

% mv -f .fastfind.new .fastfind
Then, your ffind script could search for files by i-number. For instance, if you
had a file with i-number 1234 and you wanted to find all its links:

% ffind "~1234 "

The space at the end of that regular expression prevents matches with i-num-
bers like 12345. You could search by pathname in the same way. To get a bit
fancier, you could make your ffind a little perl or awk script that searches your
database by field. For instance, here’s how to make awk do the previous i-num-
ber search; the output is just the matching pathnames:

awk '$1 == 1234 {print $2}' $HOME/.fastfind

With some information about Unix shell programming and utilities like awk, the
techniques in this article should let you build and search a sophisticated file
database—and get information much faster than with plain old find.

grepping a Directory Tree

Want to search every file, in some directory and all its subdirectories, to find the
file that has a particular word or string in it? That’s a job for find and one of the
grep commands.

For example, to search all the files for lines starting with a number and contain-
ing the words “SALE PRICE,” you could use:

% egrep '~[0-9].*SALE PRICE' “find . -type f -print”

./archive/ad.1290: 1.99 a special SALE PRICE

./archive/ad.0191: 2.49 a special SALE PRICE

Using the backquotes (") might not work. If find finds too many files, egrep’s
command-line arguments can get too long. Using xargs can solve that; it splits
long sets of arguments into smaller chunks. There’s a problem with that: if the
last “chunk” has just one filename and the grep command finds a match there,
grep won’t print the filename:

% find . -type f -print | xargs fgrep '$12.99'

./o0ld _sales/ad.0489: Get it for only $12.99!

./0ld_sales/ad.0589: Last chance at $12.99, this month!
Get it for only $12.99 today.

192

Part lll: Working with Files and Directories

9.22

The answer is to add the Unix “empty file,” /dev/null. It’s a filename that’s guar-
anteed never to match but always to leave fgrep with at least two filenames:

% find . -type f -print | xargs fgrep '$12.99' /dev/null
Then xargs will run commands like these:

fgrep '$12.99"' /dev/null ./afile ./bfile ...

fgrep '$12.99' /dev/null ./archives/ad.0190 ./archives/ad.0290 ...

fgrep '$12.99' /dev/null ./old sales/ad.1289
That trick is also good when you use a wildcard (28.3) and only one file might
match it. grep won’t always print the file’s name unless you add /dev/null:

% grep "whatever" /dev/null /x/y/z/a*

9.22 lookfor: Which File Has That Word?

The following simple shell script, lookfor, uses find to look for all files in the
specified directory hierarchy that have been modified within a certain time, and
it passes the resulting names to grep to scan for a particular pattern. For exam-
ple, the command:

% lookfor /work -7 tamale enchilada

would search through the entire /work filesystem and print the names of all files
modified within the past week that contain the words “tamale” or “enchilada.”
(For example, if this article is stored in /work, lookfor should find it.)

The arguments to the script are the pathname of a directory hierarchy to search
in ($1), a time ($2), and one or more text patterns (the other arguments). This
simple but slow version will search for an (almost) unlimited number of words:

#!/bin/sh

temp=/tmp/lookfor$$

trap 'rm -f $temp; exit' 0 1 2 15

find $1 -mtime $2 -print > $temp

shift; shift

for word

do grep -i "$word" “cat $temp” /dev/null

done
That version runs grep once to search for each word. The —i option makes the
search find either upper- or lowercase letters. Using /dev/null makes sure that
grep will print the filename. Watch out, though: the list of filenames may get too
long.

Chapter 9: Finding Files with find 193

9.23

9.23

The next version is more limited but faster. It builds a regular expression for
egrep that finds all the words in one pass through the files. If you use too many
words, egrep will say Regular expression too long. Also, your egrep may not have
a —i option; you can just omit it. This version also uses xargs; though xargs has
its problems.
#!/bin/sh
where="$1"
when="$2"
shift; shift
Build egrep expression like (wordi|word2|...) in $expr
for word
do
case "$expr" in
") expr="($word" ;;
*) expr="$expr|$word" ;;
esac
done
expr="$expr)"

find $where -mtime $when -print | xargs egrep -i "$expr" /dev/null

—JP and TOR

Using Shell Arrays to
Browse Directories

Even a graphical file manager might not be enough to help you step through a
complicated directory tree with multiple layers of subdirectories. Which directo-
ries have you visited so far, and which are left to go? This article shows a simple
way, using shell arrays, to step through a tree directory-by-directory. The tech-
nique is also good for stepping through lists of files—or almost any collection of
things, over a period of time—of which you don’t want to miss any. At the end
are a couple of related tips on using arrays.

Using the Stored Lists

Let’s start with a quick overview of expanding array values; then we’ll look at
specifics for each shell. A dollar sign ($) before the name of a shell variable gives
you its value. In the C shells and zsh, that gives all members of an array. But, in
the Korn shell and bash2, expanding an array value without the index gives just
the first member. To pick out a particular member, put its number in square
brackets after the name; in ksh and bash2, you also need to use curly braces ({}).
A hash mark (#) gives the number of members. Finally, you can use range opera-
tors to choose several members of an array.

194

Part lll: Working with Files and Directories

9.23

Here’s a practical example that you might use, interactively, at a shell prompt.
You’re cleaning your home directory tree. You store all the directory names in an
array named d. When you’ve cleaned one directory, you go to the next one. This
way, you don’t miss any directories. (To keep this simple, I'll show an example
with just four directories.)

If you don’t want to use shell commands to browse the directo-
ries, you could use a command to launch a graphical file browser
on each directory in the array. For instance, make the nextdir alias
launch Midnight Commander with mc $d[1].

Let’s start with the C shell:

% set d=("find $home -type d -print”)
echo $#d directories to search: $d
directories to search: /u/ann /u/ann/bin /u/ann/src /u/ann/lib
alias nextdir 'shift d; cd $d[1]; pwd; 1s -1'
cd $d[1]
...clean up first directory...
% nextdir
/u/ann/bin
total 1940
LrwxTwxTwx 1 ann users 14 Feb 7 2002] -> /usr/ucb/reset
-T-XT-XI-X 1 ann users 1134 Aug 23 2001 addup
...clean up bin directory...
% nextdir
/u/ann/sxc
...do other directories, one by one...
% nextdir
d: Subscript out of range.

3R

X X

You store the array, list the number of directories, and show their names. You
then create a nextdir alias that changes to the next directory to clean. First, use
the C shell’s shift command; it “throws away” the first member of an array so
that the second member becomes the first member, and so on. Next, nextdir
changes the current directory to the next member of the array and lists it. (Note
that members of a C shell array are indexed starting at 1—unlike the C lan-
guage, which the C shell emulates, where indexes start at 0. So the alias uses ¢d
$d[1].) At the end of our example, when there’s not another array member to
shift away, the command cd $d[1] fails; the rest of the nextdir alias isn’t
executed.

Bourne-type shells have a different array syntax than the C shell. They don’t
have a shift command for arrays, so we’ll use a variable named n to hold the
array index. Instead of aliases, let’s use a more powerful shell function. We’ll
show ksh and bash2 arrays, which are indexed starting at 0. (By default, the first
zsh array member is number 1.) The first command that follows, to store the

array, is different in ksh and bash2—but the rest of the example is the same on
both shells.

Chapter 9: Finding Files with find 195

9.23

bash2$ d=("find $HOME -type d -print”)
ksh$ set -A d “find $HOME -type d -print’

$ echo ${#d[*]} directories to search: ${d[*]}

4 directories to search: /u/ann /u/ann/bin /u/ann/src /u/ann/lib
$ n=0

$ nextdir() {

> if [$((n += 1)) -1t ${#d[*]}]

> then cd ${d[$n]}; pwd; 1s -1
> else echo no more directories
> fi
>}
$ cd ${d[o]}
...clean up first directory...
$ nextdir
/u/ann/bin
total 1940
LrwxTwxTwx 1 ann users 14 Feb 7 2002] -> /usr/ucb/reset

-T-XT-XI-X 1 ann users 1134 Aug 23 2001 addup
...do directories, as in C shell example...

$ nextdir

no more directories
If you aren’t a programmer, this may look intimidating—like something you’d
never type interactively at a shell prompt. But this sort of thing starts to hap-
pen—without planning, on the spur of the moment—as you learn more about
Unix and what the shell can do.

Expanding Ranges

We don’t use quite all the array-expanding operators in the previous examples,
so here’s a quick overview of the rest. To expand a range of members in ksh and
bash2, give the first and last indexes with a dash (-) between them. For instance,
to expand the second, third, and fourth members of array arrname, use
${arrname[1-3]}. In zsh, use a comma (,) instead—and remember that the first
zsh array member is number 1; so you’d use ${arrname[2-4]} in zsh. C shell
wants $arrname[2-4]. If the last number of a range is omitted (like ${arrname([2-]}
or $arrname(2-]), this gives you all members from 2 through the last.

Finally, in all shells except zsh, remember that expanded values are split into
words at space characters. So if members of an array have spaces in their values,
be careful to quote them. For instance, Unix directory names can have spaces in
them—so we really should have used cd "$d[1]" in the newdir alias and
cd "${d[$n]}" in the newdir function.” If we hadn’t done this, the cd command
could have gotten multiple argument words. But it would only pay attention to
the first argument, so it would probably fail.

* We didn’t do so because the syntax was already messy enough for people getting started.

196

Part lll: Working with Files and Directories

9.24

To expand a range of members safely, such as ${foo[1-3]} in bash2 and ksh, you
need ugly expressions without range operators, such as "${foo[1]}" "${foo[2]}"
"${foo[3]}". The C shell has a :q string modifier that says “quote each word,” so
in csh you can safely use $foo[1-3]:q. It’s hard to quote array values, though, if
you don’t know ahead of time how many there are! So, using ${foo[*]} to give
all members of the foo array suffers from word-splitting in ksh and bash2 (but
not in zsh, by default). In ksh and bash2, though, you can use "${foo[@]}",
which expands into a quoted list of the members; each member isn’t split into
separate words. In csh, $foo[*]:q does the trick.

Finding the (Hard) Links to a File

Here is how to find hard links, as well as a brief look at the Unix filesystem from
the user’s viewpoint. Suppose you are given the following:

% 1s -1i /usr/bin/at

8041 -r-sr-xr-x 4 root wheel 19540 Apr 21 2001 /usr/bin/at*
In other words, there are four links, and /usr/bin/at is one of four names for inode
8041. You can find the full names of the other three links by using find. How-
ever, just knowing the inode number does not tell you everything. In particular,
inode numbers are only unique to a given filesystem. If you do a find / —inum
8041 —print, you may find more than four files, if inode 8041 is also on another
filesystem. So how do you tell which ones refer to the same file as /usr/bin/at?

The simplest way is to figure out the filesystem on which /usr/bin/at lives by
using df:
% df /usr/bin/at

Filesystem 1K-blocks Used Avail Capacity Mounted on
/dev/adosif 3360437 1644024 1447579 53% /usr

Then start your find at the top of that filesystem, and use —xdev to tell it not to
search into other filesystems:

% find /usr -xdev -inum 8041 -print

/usr/bin/at

/usr/bin/atq

/usr/bin/atrm

/usx/bin/batch
Some manpages list —x as an alternative to —xdev; —xdev is generally more
portable.

—DJPH and CT

Chapter 9: Finding Files with find 197

9.24

9.25

9.25 Finding Files with —prune

find has lots of operators for finding some particular kinds of files. But find won’t
stop at your current directory—if there are subdirectories, it looks there too.
How can you tell it “only the current directory”? Use —prune.

Most finds also have a —maxdepth option that gives the maximum number of
directory levels to descend. For example, find . —-maxdepth 0 operates only on the
current directory.

—prune cuts short find’s search at the current pathname. So, if the current path-
name is a directory, find won’t descend into that directory for any further
searches. The command line looks kind of hairy. Here’s one to find all files mod-
ified in the last 24 hours from the current directory:

% date

Tue Feb 12 19:09:35 MST 2002

% 1s -1

total 0

drwxr-xr-x 1 deb deb 0 Feb 12 12:11 adir

-IW-Y--r-- 1 deb deb 0 Feb 12 19:08 afile

-TW-1--r-- 1 deb deb 0 Jan 10 10:37 bfile

-IW-1r--r-- 1 deb deb 0 Feb 11 22:43 cfile

% find . \(-type d ! -name . -prune \) -o \(-mtime -1 -print \)

./afile

./cfile

Let’s try to understand this command: once you see the pattern, you’ll under-

stand some important things about find that many people don’t. Let’s follow find
as it looks at a few pathnames.

find looks at each entry, one by one, in the current directory (.). For each entry,
find tries to match the expression from left to right. As soon as some parenthe-
sized part matches, it ignores the rest (if any) of the expression.”

When find is looking at the file named ./afile, the first part of the expression,
(~type d ! —name . —prune), doesn’t match (/afile isn’t a directory). So find
doesn’t prune. It tries the other part, after the —o (or):

Has ./afile been modified in the last day? In this (imaginary) case, it has—so the
—print (which is always true) prints the pathname.

Next, ./bfile: like the previous step, the first part of the expression won’t match.
In the second part, (—mtime —1 —print), the file’s modification time is more than
one day ago. So the —mtime —1 part of the expression is false; find doesn’t bother
with the —print operator.

* That’s because if one part of an OR expression is true, you don’t need to check the rest. This so-called
“short-circuit” logical evaluation by find is important to understanding its expressions.

198

Part lll: Working with Files and Directories

9.26

9.27

Finally, let’s look at ./adir, a directory: the first part of the expression,
(—type d | —name . —prune), matches. That’s because ./adir is a directory (~type d),
its name is not . (! —-name .). So —prune, which is always true, makes this part of
the expression true. find skips ./adir (because —prune prunes the search tree at
the current pathname). Note that if we didn’t use ! —name ., then the current
directory would match immediately and not be searched, and we wouldn’t find
anything at all.

Article 9.27 shows handy aliases that use —prune.
—JP

Quick finds in the Current Directory

find —prume prunes find’s search tree at the current pathname. Here are a couple
of aliases that use —prune to search for files in the current directory. The first
one, named find. (with a dot on the end of its name, to remind you of ., the rela-
tive pathname for the current directory), simply prints names with —print. The
second alias gives a listing like Is —gilds. You can add other find operators to the
command lines to narrow your selection of files. The aliases work like this:

% find. -mtime -1

./afile

./cfile

% find.1ls -mtime -1

43073 0 -r-------- 1 jerry ora 0 Mar 27 18:16 ./afile
43139 2 -r--r--1-- 1 jerry ora 1025 Mar 24 02:33 ./cfile

The find. alias is handy inside backquotes, feeding a pipe, and other places you
need a list of filenames. The second one, find.Is, uses —Is instead of —print:

alias find. 'find . \(-type d ! -name . -prune \) -o \(\!* -print \)
alias find.1ls 'find . \(-type d ! -name . -prune \) -o \(\I* -1s \)'

If you don’t want the ./ at the start of each name, add a pipe through cut —c3— or
cut —d'/' =f2— to the end of the alias definition.

Skipping Parts of a Tree in find

Q: I want to run find across a directory tree, skipping standard directories like
lustr/spool and fusr/local/bin. A —name dirname —prune clause won’t do it
because —name doesn’t match the whole pathname—ijust each part of it, such
as spool or local. How can I make find match the whole pathname, like /usr/
local/bin/, instead of all directories named bin?

A: It cannot be done directly. You can do this:
% find /path -exec test {} = /foo/bar -o {} = /foo/baz \; -prune -o pred

Chapter 9: Finding Files with find 199

9.27

9.28

9.28

This will not perform pred on /foo/bar and /foo/baz; if you want them done,
but not any files within them, try:
% find /path \(-exec test test-exprs \; ! -prune \) -o pred

The second version is worth close study, keeping the manual for find at
hand for reference. It shows a great deal about how find works.

The —prune operator simply says “do not search the current path any
deeper” and then succeeds a la —print.

Q: I only want a list of pathnames; the pred I use in your earlier answer will be
just —print. I think I could solve my particular problem by piping the find out-
put through a sed or egrep —v filter that deletes the pathnames I don’t want to
see.

A: That would probably be fastest. Using test runs the test program for each file
name, which is quite slow. Take a peek at locate, described in article 9.18.

There’s more about complex find expressions in other articles, especially 9.6
and 9.12.

—CT and JP

Keeping find from Searching
Networked Filesystem

The most painful aspect of a large NFS environment is avoiding the access of
files on NFS servers that are down. find is particularly sensitive to this because it
is very easy to access dozens of machines with a single command. If find tries to
explore a file server that happens to be down, it will time out. It is important to
understand how to prevent find from going too far.

To do this, use —xdev or —prune with —fstype, though, unfortunately, not all finds
have all of these. —fstype tests for filesystem types and expects an argument like
nfs, ufs, cd9660, or ext2fs. To limit find to files only on a local disk or disks, use
the clause —fstype nfs —prune, or, if your find supports it, —fstype local.

To limit the search to one particular disk partition, use —xdev. For example, if
you need to clear out a congested disk partition, you could look for all files big-
ger than 10 MB (10*1024*1024) on the disk partition containing /usr, using this
command:

% find /usr -size +10485760c -xdev -print
—BB

200

Part lll: Working with Files and Directories

10

Linking, Renaming, and Copying Files

10.1

10.2

What’s So Complicated
About Copying Files

At first glance, there doesn’t seem to be enough material to fill an entire chapter
with information about linking, moving, and copying files. However, there are
several things that make the topic more complex (and more interesting) than you
might expect:

* In addition to moving and copying files, Unix systems also allow you to link
them—to have two filenames, perhaps in different directories or even on dif-
ferent filesystems, that point to the same file. Article 10.3 explores the rea-
sons why you want to do that; Article 10.4 discusses the difference between
“hard” and “soft” links; Article 10.5 demonstrates how to create links; and
other articles discuss various issues that can come up when using links.

* It’s nontrivial to rename a group of files all at once, but Unix provides many
ways to circumvent the tedium of renaming files individually. In the chapter
you’ll see many different ways to do this, exploring the variety in the Unix
toolbox along the way.

* In a hierarchical filesystem, you’re sometimes faced with the problem of
moving not only files but entire directory hierarchies from one place to
another. Articles 10.12 and 10.13 demonstrate two techniques you can use
to perform this task.

—TOR

What'’s Really in a Directory?

Before you can understand moving and copying files, you need to know a bit
more about how files are represented in directories. What does it mean to say
that a file is really “in” a directory? It’s easy to imagine that files are actually

201

10.2

inside of something (some special chunk of the disk that’s called a directory).
But that’s precisely wrong, and it’s one place where the filing cabinet model of a
filesystem doesn’t apply.

A directory really is just another file, and it really isn’t different from any other
datafile. If you want to prove this, try the command od —c . On some Unix sys-
tems, it dumps the current directory to the screen in raw form. The result cer-
tainly looks ugly (it’s not a text file; it just has lots of binary characters). But, if
your system allows it, od —c should let you see the names of the files that are in
the current directory [and, probably, some names of files that have been deleted!
Sorry, they’re only the old directory entries; you can’t get the files back —JP]. If
od —c . doesn’t work (and it won’t on current versions of Linux, for example),
use [s —if instead.

A directory is really just a list of files represented by filenames and inode num-
bers, as shown in the output in Example 10-1.

Example 10-1. Directory-content visualization

The file named . is inode 34346
The file named .. is inode 987

The file named mr.ed is inode 10674
The file named joe.txt is inode 8767
The file named grok is inode 67871

The file named otherdir is inode 2345

When you give a filename like grok, the kernel looks up grok in the current
directory and finds out that this file has inode 67871; it then looks up this inode
to find out who owns the file, where the data blocks are, and so on.

What’s more, some of these “files” may be directories in their own right. In par-
ticular, that’s true of the first two entries: . and ... These entries are in every
directory. The current directory is represented by ., while .. refers to the “par-
ent” of the current directory (i.e., the directory that “contains” the current direc-
tory). The file otherdir is yet another directory that happens to be “within” the
current directory. However, there’s no way you can tell that from its directory
entry—Unix doesn’t know it’s different until it looks up its inode.

Now that you know what a directory is, think about some basic directory opera-
tions. What does it mean to move, or rename, a file? If the file is staying in the
same directory, the mv command just changes the file’s name in the directory; it
doesn’t touch the data at all.

Moving a file into another directory takes a little more work, but not much. A
command like mv dirl/foo dir2/foo means “delete foo’s entry in dirl and create a
new entry for foo in dir2.” Again, Unix doesn’t have to touch the data blocks or
the inode at all.

202

Part lll: Working with Files and Directories

10.3

The only time you actually need to copy data is if you’re moving a file into
another filesystem. In that case, you have to copy the file to the new filesystem;
delete its old directory entry; return the file’s data blocks to the “free list,” which
means that they can be reused; and so on. It’s a fairly complicated operation, but
(still) relatively rare. (On some old versions of Unix, mv wouldn’t let you move
files between filesystems. You had to copy it and remove the old file by hand.)

How does Unix find out the name of the current directory? In Example 10-1
there’s an entry for ., which tells you that the current directory has inode 34346.
Is the directory’s name part of the inode? Sorry—it isn’t. The directory’s name is
included in the parent directory. The parent directory is .., which is inode 987.
So Unix looks up inode 987, finds out where the data is, and starts reading every
entry in the parent directory. Sooner or later, it will find one that corresponds to
inode 34346. When it does that, it knows that it has found the directory entry
for the current directory and can read its name.

Complicated? Yes, but if you understand this, you have a pretty good idea of
how Unix directories work.

—ML

Files with Two or More Names

We've talked about hard links (10.1) and symbolic links in a number of places,
but we’ve not discussed why you’d want a file with several names. It was easy to
understand what a link would do, but why would you want one?

There are many situations that links (and only links) are able to handle. Once
you’ve seen a few of the problems that a link can solve, you’ll start seeing even
more situations in which they are appropriate.

Consider a company phone list on a system that is shared by several users. Every
user might want a copy of the phone list in his home directory. However, you
wouldn’t want to give each user a different phone list. In addition to wasting
disk space, it would be a pain to modify all of the individual lists whenever you
made a change. Giving each user a “link” to a master phone list is one way to
solve the problem.

Similarly, assume that you use several different systems that share files via NFS.
Eventually, you get tired of editing five or six different .login and .cshrc files
whenever you decide to add a new alias or change some element in your startup
file; you’d like to have the exact same file appear in each of your home directo-
ries. You might also want to give several systems access to the same master data-
base files.

Chapter 10: Linking, Renaming, and Copying Files 203

10.3

10.3

How about this: you have a program or script that performs several related func-
tions. Why not perform them all with the same executable? The script or pro-
gram just needs to check the name by which it’s called and act accordingly.

As another example, assume that you have two versions of a file: a current ver-
sion, which changes from time to time, and one or more older versions. One
good convention would be to name the files data.date, where date shows when
the file was created. For example, you might have the files data.jull, data.jul2,
data.jul5, and so on. However, when you access these files, you don’t necessar-
ily want to figure out the date—not unless you have a better chronological sense
than I do. To make it easier on yourself, create a link (either symbolic or hard)
named data.cur that always refers to your most recent file. The following script
runs the program output, puts the data into a dated file, and resets data.cur:

#!/bin/sh

curfile=data. date +%h%d"

linkname=data.cur

output > $curfile

rm -f $linkname

In -s $curfile $linkname
Here’s an analogous situation. When writing technical manuals at one com-
pany, I had two classes of readers: some insisted on referring to the manuals by
name, and the others by part number. Rather than looking up part numbers all
the time, I created a set of links so that I could look up a manual online via either
its name or its part number. For example, if the manual was named “Program-
ming” and had the part number 046-56-3343, 1 would create the file /manuals/
bynamelprogramming. 1 would then create the link /manuals/bynumber/046-56-
3343:

% cd /manuals/bynumber

% ln -s ../byname/programming 046-56-3343
Sometimes you simply want to collect an assortment of files in one directory.
These files may really belong in other places, but you want to collect them for
some temporary purpose: for example, to make a tape. Let’s say that you want
to make a tape that includes manual pages from /development/doc/man/manl, a
manual from /development/doc/product, source files from /src/ccode, and a set of
executables from /release/68000/execs. The following shell script creates links for
all of these directories within the /tmp/tape directory and then creates a tar tape
that can be sent to a customer or friend. Note that the tar h option tells tar to
follow symbolic links and archive whatever is at the end of the link; otherwise,
tar makes a copy of just the symbolic link:

#!/bin/sh

dir=/tmp/tape.mike

test -d $dir || mkdir $dir

cd $dir

1m -f manl product ccode execs

Part lll: Working with Files and Directories

10.4

In -s /development/doc/man/man1

In -s /development/doc/product

1n -s /src/ccode

1n -s /release/68000/execs

tar ch ./manl ./product ./ccode ./execs
These examples only begin to demonstrate the use of linking in solving day-to-
day tasks. Links provide neat solutions to many problems, including source con-
trol, filesystem layout, and so forth.

—ML

More About Links

Unix provides two different kinds of links:

Hard links

With a hard link, two filenames (i.e., two directory entries) point to the
same inode and the same set of data blocks. All Unix versions support hard
links. They have two important limitations: a hard link can’t cross a filesys-
tem (i.e., both filenames must be in the same filesystem), and you can’t cre-
ate a hard link to a directory (i.e., a directory can only have one name)."
They have two important advantages: the link and the original file are abso-
lutely and always identical, and the extra link takes no disk space (except an
occasional extra disk block in the directory file).

Symbolic links (also called soft links or symlinks)

With a symbolic link, there really are two different files. One file contains
the actual data; the other file just contains the name of the first file and
serves as a “pointer.” We call the pointer the link. The system knows that
whenever it opens a symlink, it should read the contents of the link and then
access the file that really holds the data you want. Nearly all Unix systems
support symbolic links these days. Symbolic links are infinitely more flexi-
ble than hard links. They can cross filesystems or even computer systems (if
you are using NFS or RFS (44.9)). You can make a symbolic link to a direc-
tory. A symbolic link has its own inode and takes a small amount of disk
space to store.

You obviously can’t do without copies of files: copies are important whenever
users need their own “private version” of some master file. However, links are
equally useful. With links, there’s only one set of data and many different names
that can access it. Article 10.5 shows how to make links.

* Actually, every directory has at least two names. See the last section of this article.

Chapter 10: Linking, Renaming, and Copying Files 205

10.4

10.4

Differences Between Hard and Symbolic Links

With a hard link, the two filenames are identical in every way. You can delete
one without harming the other. The system deletes the directory entry for one
filename and leaves the data blocks (which are shared) untouched. The only
thing rm does to the inode is decrement its “link count,” which (as the name
implies) counts the number of hard links to the file. The data blocks are only
deleted when the link count goes to zero—meaning that there are no more direc-
tory entries that point to this inode. Article 9.24 shows how to find the hard
links to a file.

With a symbolic link, the two filenames are really not the same. Deleting the link
with rm leaves the original file untouched, which is what you’d expect. But
deleting or renaming the original file removes both the filename and the data.
You are left with a link that doesn’t point anywhere. Remember that the link
itself doesn’t have any data associated with it. Despite this disadvantage, you
rarely see hard links on Unix versions that support symbolic links. Symbolic
links are so much more versatile that they have become omnipresent.

Let’s finish by taking a look at the Is listing for a directory. This directory has a
file named file with another hard link to it named hardlink. There’s also a sym-
link to file named (are you ready?) symlink:

$ 1s -lai

total 8

140330 drwxr-xr-x 2 jerry ora 1024 Aug 18 10:11 .
85523 drwxr-xr-x 4 jerry ora 1024 Aug 18 10:47 ..

140331 -IW-T--I-- 2 jerry ora 2764 Aug 18 10:11 file
140331 -IW-1--I-- 2 jerry ora 2764 Aug 18 10:11 hardlink
140332 lrwxrwxrwx 1 jerry ora 4 Aug 18 10:12 symlink -> file

You’ve seen Is’s —[option (50.2) and, probably, the —a option (8.9) for listing “dot
files.” The —i option lists the i-number (14.2) for each entry in the directory; see
the first column. The third column has the link count: this is the number of hard
links to the file.

When you compare the entries for file and hardlink, you’ll see that they have a
link count of 2. In this case, both links are in the same directory. Every other
entry (i-number, size, owner, etc.) for file and hardlink is the same; that’s
because they both refer to exactly the same file, with two links (names).

A symbolic link has an 1 at the start of the permissions field. Its i-number isn’t
the same as the file to which it points because a symbolic link takes a separate
inode; so, it also takes disk space (which an extra hard link doesn’t). The name
has two parts: the name of the link (here, symlink) followed by an arrow and the
name to which the link points (in this case, file). The symlink takes just four
characters, which is exactly enough to store the pathname (file) to which the link
points.

206

Part lll: Working with Files and Directories

-d8.5

Links to a Directory

While we’re at it, here’s a section that isn’t about linking to files or making sym-
bolic links. Let’s look at the first two entries in the previous sample directory in
terms of links and link counts. This should help to tie the filesystem together
(both literally and in your mind!).

You've seen . and .. in pathnames (1.16); you might also have read an explana-
tion of what’s in a directory (10.2). The . entry is a link to the current directory;
notice that its link count is 2. Where’s the other link? It’s in the parent directory:

$1s -1i ..

total 2

140330 drwxr-xr-x 2 jerry ora 1024 Aug 18 10:11 sub
85524 drwxr-xr-x 2 jerry ora 1024 Aug 18 10:47 sub2

Look at the i-numbers for the entries in the parent directory. Which entry is for
our current directory? The entry for sub has the i-number 140330, and so does
the . listing in the current directory. So the current directory is named sub. Now
you should be able see why every directory has at least two links. One link,
named ., is to the directory itself. The other link, in its parent, gives the direc-
tory its name.

Every directory has a .. entry, which is a link to its parent directory. If you look
back at the listing of our current directory, you can see that the parent directory
has four links. Where are they?

When a directory has subdirectories, it will also have a hard link named .. in
each subdirectory. You can see earlier, in the output from [s —li .., that the par-
ent directory has two subdirectories: sub and sub2. That’s two of the four links.
The other two links are the . entry in the parent directory and the entry for the
parent directory (which is named test in its parent directory):
%1s -dli ../. ../../test

85523 drwxr-xr-x 4 jerry ora 1024 Aug 18 10:47 ../.

85523 drwxr-xr-x 4 jerry ora 1024 Aug 18 10:47 ../../test
As they should, all the links have the same i-number: 85523. Make sense? This
concept can be a little abstract and hard to follow at first. Understanding it will
help you, though—especially if you’re a system administrator who has to under-
stand fsck’s output because it can’t fix something automatically or use strong
medicine like clri. For more practice, make a subdirectory and experiment in it
the way shown in this article.

By the way, directories and their hard links . and .. are added by the mkdir (2)
system call. That’s the only way that normal users can create a directory (and the
links to it).

—JP and ML

Chapter 10: Linking, Renaming, and Copying Files 207

10.4

10.5

10.5

..1.16

.1.16

Creating and Removing Links

The In command creates both hard and soft (symbolic) links (10.4). If by some
strange chance you’re using Minix or some other Unix that doesn’t have sym-
links, then In won’t have the —s option.

% In filename linkname ... To create a hard link

% ln -s filename linkname ... To create a symbolic link
If creating a hard link, filename must already exist, or you will get an error mes-
sage. On many versions of In, linkname must not exist—if it does, you will also
get an error. On other versions, linkname may already exist; if you are allowed to
write the file, In destroys its old contents and creates your link. If you don’t have
write access for linkname, In asks whether it is okay to override the file’s protec-
tion. For example:

% 1n foo bar

In: override protection 444 for bar? y
Typing y gives In permission to destroy the file bar and create the link. Note that
this will still fail if you don’t have write access to the directory.

You are allowed to omit the linkname argument from the In command. In this
case, In takes the last component of filename (i.e., everything after the last slash)
and uses it for linkname. Of course, this assumes that filename doesn’t refer to
the current directory. If it does, the command fails because the link already
exists. For example, the following commands are the same:

% ln -s ../archive/file.c file.c

% 1n -s ../archive/file.c
Both create a link from file.c in the current directory to ../archive/file.c. In also
lets you create a group of links with one command, provided that all of the links
are in the same directory. Here’s how:

% In file1 file2 file3 ... filen directory

This command uses the filename from each pathname (after the last slash) as
each link’s name. It then creates all the links within the given directory. For
example, the first of the following commands is equivalent to the next two:

% 1n ../s/f1 ../s/f2 current

% 1n ../s/f1 current/f1
% 1n ../s/f2 current/f2

You can replace this list of files with a wildcard expression (33.2), as in:
% 1n -s ../newversion/*.[ch]

Note that symbolic links can get out-of-date (10.6). Hard links can also be “bro-
ken” in some situations. For example, a text editor might rename the link textfile
to textfile.bak then create a new textfile during editing. Previous links to textfile
will now give you textfile.bak. To track down this problem, find the links (9.24) to
each file.

208

Part lll: Working with Files and Directories

10.6

To remove a link, either hard or symbolic, use the rm command.

—ML

10.6 Stale Symbolic Links

Symbolic links (10.5) have one problem. Like good bread, they become “stale”
fairly easily. What does that mean?

Consider the following commands:

% 1n -s foo bar
% rm foo

What happens if you run these two commands? Remember that the link bar is a
pointer: it doesn’t have any real data of its own. Its data is the name of the file
foo. After deleting foo, the link bar still exists, but it points to a nonexistent file.
Commands that refer to bar will get a confusing error message:

% cat bar

cat: bar: No such file or directory
This will drive you crazy if you’re not careful. The Is command will show you
that bar still exists. You won’t understand what’s going on until you realize that
bar is only a pointer to a file that no longer exists.

The commands Is —LI or Is —LF will show an unconnected symbolic link. The —L
option means “list the file that this link points to instead of the link itself.” If the
link points nowhere, Is —L will still list the link.

There are many innocuous ways of creating invalid symbolic links. For example,
you could simply mv the data file foo. Or you could move foo, bar, or both to
some other part of the filesystem where the pointer wouldn’t be valid anymore.

One way to avoid problems with invalid links is to use relative pathnames (1.16)
when appropriate. For instance, using relative pathnames will let you move
entire directory trees around without invalidating links (provided that both the
file and the link are in the same tree). Here’s an example: assume that you have
the file /home/mars/john/project/datastash/input123.txt. Assume that you want
to link this file to /home/mars/john/test/input.txt. You create a link by giving the
command:

% cd /home/mars/john/test

% 1n -s ../project/datastash/input123.txt input.txt
At some later date, you hand the project over to mary, who copies (10.13) the
entire project and test data trees into her home directory. The link between
input.txt and the real file, input123.txt, will still be valid. Although both files’
names have changed, the relationship between the two (i.e., the relative path
from one directory to the other) is still the same. Alternatively, assume that you

Chapter 10: Linking, Renaming, and Copying Files 209

10.7

10.7

are assigned to a different computer named jupiter and that you copy your entire
home directory when you move. Again, the link remains valid: the relative path
from your test directory to your datastash directory hasn’t changed, even though
the absolute paths of both directories are different.

On the other hand, there is certainly room for absolute pathnames (31.2). They’re
useful if you’re more likely to move the link than the original file. Assume that
you are creating a link from your working directory to a file in a master direc-
tory (let’s say /corp/masterdata/input345.txt). It is much more likely that you will
rearrange your working directory than that someone will move the master set of
files. In this case, you would link as follows:

% 1n -s /corp/masterdata/input345.txt input.txt

Now you can move the link input.txt anywhere in the filesystem: it will still be
valid, provided that input345.txt never moves.

Note that hard links never have this problem. With a hard link, there is no dif-
ference at all between the link and the original—in fact, it’s unfair to call one file
the link and the other the original, since both are just links to the same inode.
You can’t even tell which one came first.

—ML

Linking Directories

One feature of symbolic links (105) (a.k.a. symlinks) is that unlike hard links, you
can use symbolic links to link directories as well as files. Since symbolic links can
span between filesystems, this can become enormously useful.

For example, sometimes administrators want to install a package in a directory
tree that’s not where users and other programs expect it to be. On our site, we
like to keep /usr/bin pure—that is, we like to be sure that all the programs in
lusr/bin came with the operating system. That way, when we install a new OS,
we know for sure that we can overwrite the entirety of /usr/bin and not lose any
“local” programs. We install all local programs in /usr/local.

The X11 package poses a problem, though. Our X windows package (discussed
in Chapter 5) expects X11 programs to be installed in /usr/bin/X11. But X isn’t
distributed as part of our OS, so we’d prefer not to put it there. Instead, we
install X programs in /usr/local/X11/bin and create a symbolic link named /usr/
bin/X11. We do the same for /usr/include/X11 and /usr/lib/X11:

1n -s /usr/local/X11/bin /usr/bin/X11

1n -s /usr/local/X11/1ib /usr/lib/X11
1n -s /usr/local/X11/include /usr/include/X11

210

Part lll: Working with Files and Directories

-F8.3

LA

Indir

By using symlinks, we installed the package where we wanted, but we kept it
invisible to any users or programs that expected the X programs, libraries, or
include files to be in the standard directories.

Directory links can result in some unexpected behavior, however. For example,
let’s suppose I want to look at files in /usr/bin/X11. 1 can just cd to /usr/bin/X11,
even though the files are really in /usr/local/X11/bin:

% cd /usr/bin/X11

% 1s -F
mkfontdir* xcalc* xinit* xset*

But when I do a pwd,” I see that I'm really in /usr/local/X11/bin. If I didn’t know
about the symlink, this might be confusing for me:

% pwd

/usr/local/X11/bin
Now suppose I want to look at files in /usr/bin. Since 1 did a cd to /usr/bin/X11, 1
might think I can just go up a level. But that doesn’t work:

% cd ..

% 1ls -F

bin/ include/ lib/

% pwd

/usr/local/X11
What happened? Remember that a symbolic link is just a pointer to another file
or directory. So when I went to the /usr/bin/X11 “directory,” my current work-
ing directory became the directory to which /usr/bin/X11 points, which is /usr/
local/X11/bin.

As a solution to this problem and others, the X distribution provides a program
called Indir. Indir makes symlinks between directories by creating links for each
individual file. It’s cheesy, but it works. If you have it, you can use Indir instead
of In —s:

Indir /usr/local/X11/bin /usr/bin/X11
1s -F /usr/bin/X11
X@ mkfontdir@ xcalc@ xinit@ xset@

—LM

* I mean the standard Unix pwd command, an external command that isn’t built into your shell. Most
shells have an internal version of pwd that “keeps track” of you as you change your current directory;
it may not give the same answer I show here. You can run the external version by typing /bin/pwd.

Chapter 10: Linking, Renaming, and Copying Files 211

10.7

10.8

10.8 Showing the Actual Filenames

LA

sl

10.9

-d8.5

AL
34.11

for Symbolic Links

The sl program is a perl script (see coverage of Perl in Chapter 41) that traverses
the pathnames supplied on the command line, and for each one, it tells you if it
had to follow any symbolic links to find the actual filename. Symbolic links to
absolute pathnames start over at the left margin. Symbolic links to relative path-
names are aligned vertically with the path element they replace. For example:

$ sl /usr/lib/libXw.a

/usr/1ib/1ibXw.a:

/usr/1ib/1libXw.a -> /usr/lib/X11/1ibXw.a
/usr/1ib/X11 -> /X11/1ib

/X11 -> /usr/local/X11R4
/usr/local/X11R4/1ib/1ibXw.a

$ sl /bin/rnews

/bin -> /usr/bin
/usr/bin/rnews -> /usr/lib/news/rnews
/usr/lib/news -> ../local/lib/news
local/lib/news/rnews -> inews
inews

—LW and RS

Renaming, Copying, or Comparing
a Set of Files

If you have a group of files whose names end with .new and you want to rename
them to end with .old, you might try something like the following:

% mv *.new *,old Wrong!

However, this won’t work because the shell can’t match *old and because the
mv command just doesn’t work that way. Here’s one way to do it that will work
with most shells:

$ 1s -d *.new | sed "s/\(.*\)\.new$/mv '&" '\1.0ld'/" | sh

% 1s -d *.new | sed 's/\(.*\)\.new$/mv "&" "\1.01d"/' | sh
That outputs a series of mv commands, one per file, and pipes them to a shell
(34). The quotes help make sure that special characters (27.17) aren’t touched by
the shell—this isn’t always needed, but it’s a good idea if you aren’t sure what
files you’ll be renaming. Single quotes around the filenames are “strongest”; we
use them in the Bourne-type shell version. Unfortunately, csh and tcsh don’t
allow $ inside double quotes unless it’s the start of a shell variable name. So the
C shell version puts double quotes around the filenames—but the Bourne shell
version can use the “stronger” single quotes, like this:

212

Part lll: Working with Files and Directories

10.10

3834.10

$32.5

10.11

mv 'afile.new' 'afile.old'
mv 'bfile.new' 'bfile.old'

To copy, change mv to cp. For safety, use mv —i or ¢p —i if your versions have the
—i options (14.15). Using sh —v (27.15) will show the commands as the shell executes
them.

This method works for any Unix command that takes a pair of filenames. For
instance, to compare a set of files in the current directory with the original files
in the /usr/local/src directory, use diff:

% 1s -d *.c *.h | sed 's@.*@diff -c & /usr/local/src/&@' | sh

Note that diff —r does let you compare entire directories, but you need a trick like
this to only compare some of the files.

—JP and DJPH

Renaming a List of Files Interactively

Article 10.9 shows how to rename a set of files, e.g., changing *.new to *.0ld.
Here’s a different way, done from inside vi. This gives you a chance to review
and edit the commands before you run them. Here are the steps:

% vi Start vi without a filename

:r !1s *.new Read in the list of files, one filename per line
s%s/ *¥/mv -1 &&/ Make mv command lines

:%s/new$/o0ld/ Change second filenames; ready to review
:w !sh Run commands by writing them to a shell
:q! Quit vi without saving

If you’ve made your own version of Is that changes its output format, that can
cause trouble here. If your version gives more than a plain list of filenames in a
column, use!/bin/1s instead of just !1s.

One More Way to Do It

I couldn’t resist throwing my hat into this ring. I can imagine an unsophisticated
user who might not trust himself to replace one pattern with another, but
doesn’t want to repeat a long list of mv—i commands. (The —i option will
prompt if a new name would overwrite an existing file.) Here’s a simple script
(1.8) that takes a list of filenames (perhaps provided by wildcards) as input and
prompts the user for a new name for each file:

#1/bin/sh

Usage: newname files

for x
do

Chapter 10: Linking, Renaming, and Copying Files 213

10.11

10.12

10.12

echo -n "old name is $x, new name is:

read newname

mo-i "ex" "
done

$newname"

For example:

% touch junki junk2 junk3

% newname junk*

old name is junk1, new name is: testi
mv: overwrite testl with junk1? y

old name is junk2, new name is: test2
old name is junk3, new name is: test3

In the first case, test1 already existed, so mv —i prompted.

This script is very simple; I just thought I’d use it to demonstrate that there’s
more than one way to do it, even if you aren’t using Perl.

—TOR

Copying Directory Trees with cp -r

cp has a —r (recursive) flag, which copies all the files in a directory tree—that is,
all the files in a directory and its subdirectories.

One of our Unix systems has a cp without a —r option. But it also
has an rcp (1.21) command that does have —. rcp can copy to any
machine, not just remote machines. When I need c¢p —r on that
host, I use rep .

cp —r can be used in two ways. The first is much like normal copies; provide a
list of files to copy and an existing directory into which to copy them. The —r
option just means that source directories will be copied as well as normal files.
The second allows you to copy a single directory to another location.

* Here’s how to do the copy shown in Figure 10-1. This copies the directory
/homel/jane, with all its files and subdirectories, and creates a subdirectory
named jane in the current directory (.) (1.16):

% cd /work/bkup
% cp -r /home/jane .

* How can you copy the contents of the subdirectory called data and all its
files (but not the subdirectory itself) into a duplicate directory named
data.bak? First make sure that the destination directory doesn’t exist. That’s
because if the last argument to cp is a directory that already exists, the
source directory will be copied to a subdirectory of the destination directory
(i.e., it will become data.bak/data rather than just data.bak):

% cd /home/jane
% cp -r data data.bak

214

Part lll: Working with Files and Directories

[..]¥33.2

* Use this to copy the subdirectories Aug and Sep and their files from the
directory /home/jim/calendar into the current directory (.):
% cp -xr /home/jim/calendar/[AS]* .

In many shells, if you wanted the Oct directory too, but not the file named
Output, you can copy just the directories by using the handy curly brace
operators (28.4):

% cp -xr /home/jim/calendar/{Aug,Sep,Oct} .

Some gotchas:

* Symbolic and hard links (10.4) are copied as files. That can be a good thing; if
a symbolic link were not turned into a file along the way, the new symbolic
link would point to the wrong place. It can be bad if the link pointed to a
really big file; the copy can take up a lot of disk space that you didn’t expect.
(In Figure 10-1, notice that the symbolic link in jane’s home directory was
converted to a file named .setup with a copy of the contents of generic.) This
can be prevented by using the —d option, if your ¢p supports it.

* On many Unixes, the copy will be dated at the time you made the copy and
may have its permissions set by your umask. If you want the copy to have
the original modification time and permissions, add the —p option.

* ¢p—r may go into an endless loop if you try to copy a directory into itself.
For example, let’s say you’re copying everything from the current directory
into an existing subdirectory named backup, like this:

% cp -r * backup
Unless your ¢p — is smart enough to scan for files before it starts copying, it
will create backup/backup, and backup/backup/backup, and so on. To avoid
that, replace the * wildcard with other less-“wild” wildcards.

* ¢p-r doesn’t deal well with special files. Most platforms support a —R
option instead, which correctly handles device files and the like. GNU ¢p has
—a as a recommended option for normal recursive copying; it combines —R
with —d and —p, as described earlier.

Note that directories can be copied to another machine using the same basic syn-
tax with rcp and scp. The only difference is that remote files have hostname: in
front of them; note that remote files can be used either as source or destination.
Relative pathnames for remote files are always relative to your home directory on
the remote machine.

% scp -r mydata bigserver:backups

% scp -r bass:/export/src/gold-20020131 .
scp and rcp use the same syntax; scp uses SSH (46.6) to do its copying, while rcp
uses unencrypted connections.

—DJPH and JP

Chapter 10: Linking, Renaming, and Copying Files 215

10.12

10.13

10.13 Copying Directory Trees

with tar and Pipes

The tar (39.2) command isn’t just for tape archives. It can copy files from disk to
disk, too. And even if your computer has cp —r (10.12), there are advantages to
using tar.

The obvious way to copy directories with tar is to write them onto a tape archive
with relative pathnames—then read back the tape and write it somewhere else

on the disk. But tar can also write to a Unix pipe—and read from a pipe. This
looks like:

% reading-tar | writing-tar

with one trick: the writing-tar process has a different current directory (24.3, 24.4)
(the place where you want the copy made) than the reading-tar. To do that, run
the writing-tar in a subshell (43.7), or if your tar supports it, use the —C option.

The argument(s) to the reading-tar can be directories or files. Just be sure to use
relative pathnames (31.2) that don’t start with a slash—otherwise, the writing-
tar may write the copies in the same place from where the originals came!

“How about an example,” you ask? Figure 10-1 has one. It copies from the direc-
tory /homel/jane, with all its files and subdirectories. The copy is made in the
directory /work/bkup/jane:

% mkdir /work/bkup/jane

% cd /home/jane
% tar cf - . | (cd /work/bkup/jane && tar xvf -)

Or, if you want to use —C:
% tar cf - . | tar xvf - -C /work/bkup/jane

In the subshell version, the 8& operator (35.14) tells the shell to start tar xvf -
only if the previous command (the cd) succeeded. That prevents tar writing files
into the same directory from which it’s reading—if the destination directory isn’t
accessible or you flub its pathname. Also, don’t use the v (verbose) option in
both tars unless you want to see doubled output; one or the other is plenty. I
usually put it in the writing-tar to see write progress, as that’s more interesting
to me than how far ahead the system has cached the read for me.

At least one tar version has a v (verbose) option that writes the
verbose text to standard output instead of standard error! If your
tar does that, definitely don’t use v on the reading-tar (the tar
that feeds the pipe)—use v on the writing-tar only.

Part lll: Working with Files and Directories

- directory
- current directory

e

| setups | | bkup |

|calendar| | data |setup_/ -(generic)él jane |

] e L .
T 1 T
|Aug | | Sep | | Oct | Output Sub | data | (.setup)
O OO0 HOOE
ololo

Figure 10-1. Copying /homeljane to /work/bkup with tar

You can use other options that your tar might have—such as excluding files or
directories—on the reading-tar, too. Some gotchas:

* Be aware that symbolic links (10.4) will be copied exactly. If they point to rel-
ative pathnames, the copied links might point to locations that don’t exist
(106). You can search for these symbolic links with find —type I.

* If your system has rsh (1.21) or ssh, you can run either the reading-tar or the

writing-tar on a remote system. For example, to copy a directory to the
computer named kumquat:

% ssh kumquat mkdir /work/bkup/jane
% tar cf - . | ssh kumquat 'cd /work/bkup/jane && tar xvf -'

—JP and DJPH

Chapter 10: Linking, Renaming, and Copying Files 217

10.13

11

Comparing Files

111

LA

diff

Checking Differences with diff

The diff command displays different versions of lines that are found when com-
paring two files. It prints a message that uses ed-like notation (a for append, ¢ for
change, and d for delete) to describe how a set of lines has changed. The lines
themselves follow this output. The < character precedes lines from the first file
and > precedes lines from the second file.

Let’s create an example to explain the output produced by diff. Look at the con-
tents of three sample files:

testl test2 test3
apples apples oranges
oranges | oranges = walnuts
walnuts | grapes chestnuts

When you run diff on test1 and test2, the following output is produced:

$ diff test1 test2
3¢3
< walnuts

> grapes

The diff command displays the only line that differs between the two files. To
understand the report, remember that diff is prescriptive, describing what
changes need to be made to the first file to make it the same as the second file.
This report specifies that only the third line is affected, exchanging walnuts for
grapes. This is more apparent if you use the —e option, which produces an edit-
ing script that can be submitted to ed, the Unix line editor. (You must redirect
standard output (43.1) to capture this script in a file.)

218

$ diff -e test1 test2
3c
grapes

This script, if run on test1, will bring test1 into agreement with test2. (To do this,
feed the script to the standard input of ed (20.6) or ex; add a w command (204) at
the end of the script to write the changes, if you want to.)

If you compare the first and third files, you find more differences:

$ diff test1 test3
1d0

< apples

3a3

> chestnuts

To make test] the same as test3, you’d have to delete the first line (apples) and
append the third line from test3 after the third line in test1. Again, this can be
seen more clearly in the editing script produced by the —e option. Notice that the
script specifies editing lines in reverse order; otherwise, changing the first line
would alter all subsequent line numbers.

$ diff -e test1l test3
3a
chestnuts

1d
So what’s this good for? Here’s one example.
When working on a document, it is common practice to make a copy of a file
and edit the copy rather than the original. This might be done, for example, if
someone other than the writer is inputing edits from a written copy. The diff

command can be used to compare the two versions of a document. A writer
could use it to proof an edited copy against the original.

$ diff brochure brochure.edits

49c43,44

< environment for program development and communications,

> environment for multiprocessing, program development

> and communications, programmers

56¢51

< offering even more power and productivity for commericial
> offering even more power and productivity for commercial
7669

< Languages such as FORTRAN, COBOL, Pascal, and C can be

> Additional languages such as FORTRAN, COBOL, Pascal, and

Chapter 11: Comparing Files 219

11.2

11.2

Using diff in this manner is a simple way for a writer to examine changes with-
out reading the entire document. By redirecting diff output to a file, you can
keep a record of changes made to any document. In fact, just that technique is
used by both RCS and CVS (39.4) to manage multiple revisions of source code
and documents.

—DD, from Unix Text Processing (Hayden Books, 1987)

Comparing Three Different Versions
with diff3

You can use the diff3 command to look at differences between three files. Here
are three sample files, repeated from article 11.1:

testi test2 test3
apples apples oranges
oranges | oranges = walnuts

walnuts | grapes chestnuts

For each set of differences, diff3 displays a row of equal signs (====) followed by
1, 2, or 3, indicating which file is different; if no number is specified, then all
three files differ. Then, using ed-like notation (11.1), the differences are described
for each file:

$ diff3 test1 test2 test3

grapes

3:2,3cC
walnuts
chestnuts

With the output of diff3, it is easy to keep track of which file is which; however,
the prescription given is a little harder to decipher. To bring these files into
agreement, the first range of text (after ====3) shows that you would have to add
apples at the beginning of the third file (3:0a). The second range tells you to
change line 3 of the second file to line 3 of the first file—change lines 2 and 3 of
the third file, effectively dropping the last line.

220

Part lll: Working with Files and Directories

11.3

%

Ics

The diff3 command also has a —e option for creating an editing script for ed. It
doesn’t work quite the way you might think. Basically, it creates a script for
building the first file from the second and third files.

$ diff3 -e test1 test2 test3

3¢

walnuts
chestnuts

1d
W
q

If you reverse the second and third files, a different script is produced:

$ diff3 -e test1l test3 test2
3C
grapes

W
q

As you might guess, this is basically the same output as doing a diff on the first
and third files.

—DD

Context diffs

The diff examples in articles 11.1 and 11.2 show compact formats with just the
differences between the two files. But, in many cases, context diff listings are
more useful. Context diffs show the changed lines and the lines around them.
(This can be a headache if you're trying to read the listing on a terminal and
there are many changed lines fairly close to one another: the context will make a
huge “before” section, with the “after” section several screenfuls ahead. In that
case, the more compact diff formats can be useful.) A related format, unified diff,
shows context but doesn’t take as much space.

The resdiff command shows differences between revisions in an RCS (39.5) file
(and will only be available if you have RCS installed). We’ll use it here instead of
diff—but the concepts are the same. Incidentally, these examples would also
work with cvs diff (39.7), if you have CVS installed.

The —c option shows before-and-after versions of each changed section of a file.
By itself, —c shows three lines above and below each change. Here’s an example
of a C file before and after some edits; the -c2 option shows two lines of con-
text. The —u option shows changed lines next to each other, not in separate
before-and-after sections. Again, an option like -u2 shows two lines of context
around a change instead of the default three lines.

Chapter 11: Comparing Files 221

1.3

1.3

Start of a listing
A diff —c listing starts with the two filenames and their last-modified dates
(“timestamps”). The first filename (here, atcat.c revision 1.1) has three aster-
isks (***) before it; the second name (atcat.c revision 1.2) has three dashes
(---). These markers identify the two files in the difference listings below:
*** atcat.c 1987/09/19 12:00:44 1.1
--- atcat.c 1987/09/19 12:08:41 1.2
A diff —u listing also starts with the two filenames and their last-modified
dates (“timestamps”). The first filename (here, atcat.c revision 1.1) has three
minus signs (---) before it, meaning “from” or “before.” The second name
(atcat.c revision 1.2) has three plus signs (+++). Again, these markers iden-
tify the two files in the difference listings that follow:
--- atcat.c 1987/09/19 12:00:44 1.1
+++ atcat.c 1987/09/19 12:08:41 1.2
Start of a section
Each difference section in a diff —¢ listing starts with a row of asterisks:

kokokokokokokok ok okokokokokk

In a diff —u listing, each difference section starts with a line that has a pair of
line numbers and line counts. This one means that the first version of the file
(with a - before it) starts at line 14 and contains 5 lines; the second version
of the file (with a +) also starts at line 14 and has 5 lines:

@@ -14,5 +14,5 @@

Changes
In a diff —c listing, changed lines that exist in both files are marked with an !
(exclamation point) character in the left margin. So, one of the lines between
lines 15-19 was changed. Other lines in the section weren’t changed:
kkk 15’ 19 kokoksk
#ifndef lint
static char rcsid[] =
! "$Id: chi1,v 1.35 2002/10/15 14:24:27 holcomb Exp troutman $";
#endif not lint
--- 15,19 ----
#ifndef lint
static char rcsid[] =
! "$Id: chi1,v 1.35 2002/10/15 14:24:27 holcomb Exp troutman $";
#endif not lint
/* end of Identification */

A diff —u listing always shows lines that are marked with a minus (-) only in
the first version and lines marked with a plus (+) in the second version.
Here, one line was changed:

0@ -15,5 +15,5 0@

#ifndef lint

static char rcsid[] =
- "$Id: chi1,v 1.35 2002/10/15 14:24:27 holcomb Exp troutman $";

222 Part lll: Working with Files and Directories

static char rcsid[] =
+ "$Id: chi1,v 1.35 2002/10/15 14:24:27 holcomb Exp troutman $";
#endif not lint
/* end of Identification */
Deletions
In a diff —c listing, a line that exists in the first version but not the second
version is marked with a minus sign (-). None of the lines from the second
version are shown. So, line 62 in the first version (lines 64—68) was deleted,
leaving lines 64—67 in the second version:

*kx 64,68 *okokk

{
int i; /* for loop index */
- int userid; /* uid of owner of file */
int isuname; /* is a command line argv a user name? */
int numjobs; /* # of jobs in spooling area */
--- 64,67 ----

A diff —u listing simply shows the deleted line with a minus (-) sign before it.
The section started at line 64 and had 5 lines; after the change, it starts at
line 64 and has 4 lines:

@@ -64,5 +64,4 @@

{
int i; /* for loop index */
- int userid; /* uid of owner of file */
int isuname; /* is a command line argv a user name? */
int numjobs; /* # of jobs in spooling area */
Additions

In a diff —c listing, lines that are added are marked with an exclamation point
() and only appear in the second version. So, one of the lines between lines
111-116 was changed, and two other lines were added, leaving lines 111-
118 in the second version:
kkk 111,116 kekokok
* are given, print usage info and exit.
*/
I if (allflag && argc)
usage();

/*
--- 111,118 ----
* are given, print usage info and exit.
*/
I if (allflag 8& argc) {
usage();
+ exit(1);

/*

Chapter 11: Comparing Files 223

1.4

11.4

In a diff —u listing, lines that are only in the second version are always
marked with a +. Here, one line was changed, and two lines were added.
The original version started at line 111 and had 6 lines; the changed version
started at line 111 and has 8 lines:
@ -111,6 +111,8 @@
* are given, print usage info and exit.
*/
- if (allflag 8& argc)
+ if (allflag && argc) {

usage();
+ exit(1);

+)
/*
Context diffs aren’t just nice for reading. The patch (20.9) program reads context
diff listings and uses them to update files automatically. For example, if I had the
first version of atcat.c, someone could send me either of the previous diff listings
(called a “patch”). From the original and the patch, patch could create the sec-
ond version of atcat.c. The advantage of a context diff over the formats in arti-
cles 11.1 and 11.2 is that context diffs let patch locate the changed sections even
if they’ve been moved somewhat. In this case, it’s probably not a good idea to
save space by reducing the number of context lines (with -c2 or -u2, as I did
here); giving all three lines of context can help patch locate the changed sections.

Side-by-Side diffs: sdiff

After you’ve used diff for a while, the output is easy to read. Sometimes, though,
it’s just easier to see two files side-by-side. The sdiff command does that.
Between the files, it prints < to point to lines that are only in the first file, > for
lines only in the second file, and | for lines that are in both, but different. By
default, sdiff shows all the lines in both files. Here’s a fairly bogus example that
compares two files that contain the output of who (2.8) at different times:

$ sdiff -w75 whol who2

jake vtol Sep 10 10:37 jake vtol Sep 10 10:37

uunmv ttyili Sep 16 11:43 <

jerry ttyi1j Sep 15 22:38 jerry ttyi1j Sep 15 22:38

jake ttyp1 Sep 9 14:55 jake ttyp1 Sep 9 14:55

jake ttyp2 Sep 9 15:19 | ellen ttyp2 Sep 16 12:07
> carolo ttyps Sep 16 13:03

alison ttyp8 Sep 9 12:49 alison ttyp8 Sep 9 12:49

224

Part lll: Working with Files and Directories

11.5

11.6

To see only lines that are different, use —s (silent):

$ sdiff -s -w75 whol who2

2d1

uunmv ttyili Sep 16 11:43 <

5c4,5

jake ttyp2 Sep 9 15:19 | ellen ttyp2 Sep 16 12:07

> carolo ttyps Sep 16 13:03

The output lines are usually 130 characters long. That’s too long for 80-column-
wide screens; if you can put your terminal in 132-column mode or stretch your
window, fine. If you can’t, use the —w option to set a narrower width, like —-w80
for 80-column lines; sdiff will show the first 37 characters from each line (it
doesn’t write quite all 80 columns). If you can set your printer to compressed
type or have a very wide window, use an option like -w170 to get all of each
line.

Article 11.5 explains a very useful feature of sdiff: building one file interactively
from two files you compare.

—JP

Choosing Sides with sdiff

One problem you might be tempted to tackle with diff3 (11.2) is sorting out the
mess resulting if two people make copies of the same file, and then make
changes to their copies. You often find that one version has some things right
and another version has other things right. What if you wanted to compile a sin-
gle version of this document that reflects the changes made to each copy? You
want to select which version is correct for each set of differences. An effective
way to do this would be to use sdiff (11.4). (Of course, the best thing to do is to
prevent the problem in the first place, by using RCS or CVS (394).)

One of the most powerful uses of sdiff is to build an output file by choosing
between different versions of two files interactively. To do this, specify the —o
option and the name of an output file to be created. The sdiff command then dis-
plays a % prompt after each set of differences.

You can compare the different versions and select the one that will be sent to the
output file. Some of the possible responses are 1 to choose the left column, r to
choose the right column, and q to exit the program.

—TOR and JP

Problems with diff and Tabstops

The diff (11.1) utility adds extra characters (>, <, +, and so on) to the beginning of
lines. That can cause you real grief with tabstops because the extra characters

Chapter 11: Comparing Files 225

11.6

11.7

11.7

added by diff can shift lines enough to make the indentation look wrong. The
diff —t option expands TABs to 8-character tabstops and solves the problem.

If you use nonstandard tabstops, though, piping diff’s output through expand or
pr —e doesn’t help because diff has already added the extra characters.

The best answers I've seen are the <() process-substitution operator and the !
(exclamation point) script. You can expand TABs before diff sees them. For
example, to show the differences between two files with 4-column tabstops:

$ diff <(expand -4 afile) <(expand -4 bfile) process substitution

% diff ~! expand -4 afile” °! expand -4 bfile™ other shells
Of course, nonstandard tabstops cause lots more problems than just with diff. If
you can, you're better off using 8-space TABs and using spaces instead of tabs
for indentation.

—JP

cmp and diff

cmp is another program for comparing files. It’s a lot simpler than diff (11.1); it
tells you whether the files are equivalent and the byte offset at which the first dif-
ference occurs. You don’t get a detailed analysis of where the two files differ. For
this reason, cmp is often faster, particularly when you’re comparing ASCII files:
it doesn’t have to generate a long report summarizing the differences. If all you
want to know is whether two files are different, it’s the right tool for the job.

It’s worth noting, though, that ¢cmp isn’t always faster. Some versions of diff
make some simple checks first, such as comparing file length. If two binary files
have different lengths, they are obviously different; some diff implementations
will tell you so without doing any further processing.

Both diff and c¢mp return an exit status (35.12) that shows what they found:

Exit status Meaning

0 The files were the same.
1 The files differed.

2 An error occurred.

Within a shell script, the exit status from diff and ¢mp is often more important
than their actual output.

—ML

226

Part lll: Working with Files and Directories

11.8

11.8 Comparing Two Files with comm

The comm command can tell you what information is common to two lists and
what information appears uniquely in one list or the other. For example, let’s say
you’re compiling information on the favorite movies of critics Ebert and Roeper.
The movies are listed in separate files (and must be sorted (22.1)). For the sake of
illustration, assume each list is short:

% cat roeper
Citizen Kane
Halloween VI
Ninja III
Rambo II
Star Trek V
Zelig

% cat ebert
Cat People
Citizen Kane
My Life as a Dog
0

VA

Zelig

To compare the favorite movies of your favorite critics, type:

% comm roeper ebert
Cat People
Citizen Kane
Halloween VI
My Life as a Dog

Ninja III

0
Rambo II
Star Trek V

VA

Zelig

Column 1 shows the movies that only Roeper likes; column 2 shows those that
only Ebert likes; and column 3 shows the movies that they both like. You can
suppress one or more columns of output by specifying that column as a com-
mand-line option. For example, to suppress columns 1 and 2 (displaying only
the movies both critics like), you would type:

% comm -12 roeper ebert

Citizen Kane

Zelig
As another example, say you’ve just received a new software release (Release 4),
and it’s your job to figure out which library functions have been added so that
they can be documented along with the old ones. Let’s assume you already have

Chapter 11: Comparing Files 227

11.8

a list of the Release 3 functions (#r3_list) and a list of the Release 4 functions (r4_
list). (If you didn’t, you could create them by changing to the directory that has
the function manual pages, listing the files with Is, and saving each list to a file.)
In the following lists, we’ve used letters of the alphabet to represent the
functions:

% cat r3_list
b

S 0Q -+~ QN

% cat r4_list
a
b
c
d
e
.F

You can now use the comm command to answer several questions you might
have:

¢ Which functions are new to Release 4? Answer:

% comm -13 r3_list r4_list Show 2nd column, which is “Release 4 only”
a
e

* Which Release 3 functions have been dropped in Release 4? Answer:

% comm -23 r3_list r4_list Show 1st column, which is “Release 3 only”

g
h

¢ Which Release 3 functions have been retained in Release 4? Answer:

% comm -12 r3_list r4_list Show 3rd column, which is “common functions”

b

“~a n

You can create partial lists by saving the previous output to three separate files.

comm can only compare sorted files. In the GNU version, the option - (lower-
case L) means the input files are sorted using the LC_COLLATE collating
sequence. If you have non-ASCII characters to sort, check your manual page for
details.

—DG

228

Part lll: Working with Files and Directories

11.9

%

commer

More Friendly comm Output

Article 11.8 didn’t show one of my least-favorite comm features. The default out-
put (with text in “columns”) confuses me if the lines of output have much text
(especially text with spaces). For example, if 'm looking at two who (2.8) listings
to compare who was logged on at particular times, the columns in the who out-
put are jumbled:

$ comm whol who2
root ttyl Oct 31 03:13
jpeek tty2 Oct 31 03:15
jpeek pts/0 Oct 31 03:19
jpeek pts/1 Oct 31 03:19
jpeek pts/2 Oct 31 03:19
ally pts/4 Oct 31 03:19
jpeek pts/3 Oct 31 03:19
xena pts/5 Nov 3 08:41

The commer script (see later) filters the comm output through sed. It converts
comm’s indentation characters (one TAB for lines in “column 2” and two TABs
for lines in “column 3”) into labels at the start of each output line. The default
output looks like this:

$ commer whoi who2

BOTH>root tty1 Oct 31 03:13
BOTH>jpeek tty2 Oct 31 03:15
TWO>jpeek pts/0 Oct 31 03:19
BOTH>jpeek pts/1 Oct 31 03:19
BOTH>jpeek pts/2 Oct 31 03:19
TWO>ally pts/4 Oct 31 03:19
BOTH>jpeek pts/3 Oct 31 03:19
ONE>xena pts/5 Nov 3 08:41

With the —i option, the script uses both labels and columns:

$ commer -i whol who2

BOTH> root tty1 Oct 31 03:13
BOTH> jpeek tty2 Oct 31 03:15
TWO>jpeek pts/0 Oct 31 03:19

BOTH> jpeek pts/1 Oct 31 03:19
BOTH> jpeek pts/2 Oct 31 03:19
TWO>ally pts/4 Oct 31 03:19

BOTH> jpeek pts/3 Oct 31 03:19

ONE> xena pts/5 Nov 3 08:41

Here’s the script. The sed substitute (s) commands have one or two TABs
between the first pair of slashes. Note that the sed script is inside double quotes
("), so the shell can substitute the value of $indent with an ampersand (&) into
the sed script if the —i option was used:

#1/bin/sh

commer - label columns in "comm" output

Usage: commer [-i] filel file2

-1 option indents output lines into columns as "comm" does
#

Chapter 11: Comparing Files 229

11.9

11.10

11.10

Note that script WILL FAIL if any input lines start with a TAB.

case "$1" in

-i) indent='8&'; shift ;;

-*¥|"") echo "Usage: “basename $0° [-i] file1 file2" 1>&2; exit 1 ;;
esac

In "comm" output, column 1 (lines in file 1) has no leading TAB.
Column 2 (lines in file 2) has one leading TAB.

Column 3 (lines in both files) has two leading TABs.

Search for these tabs and use them to label lines.

(You could replace ONE and TWO with the filenames $1 and $2)
comm "$1" "$2" |

sed "{

/" / {s//BOTH>$indent/; b}

/" / {s// ONE>$indent/; b}

s/"/ TWO>/

b

" | The commer script will be fooled by lines that already have TAB

characters at the start. If this might be a problem, you can mod-
ify the script to search the files (grep "~TAB" >/dev/null) before
starting comm.

make Isn’t Just for Programmers!

The make program is a Unix facility for describing dependencies among a group
of related files, usually ones that are part of the same project. This facility has
enjoyed widespread use in software-development projects. Programmers use make
to describe how to “make” a program—which source files need to be compiled,
which libraries must be included, and which object files need to be linked. By
keeping track of these relationships in a single place, individual members of a soft-
ware-development team can make changes to a single module, run make, and be
assured that the program reflects the latest changes made by others on the team.

Only by a leap of the imagination do we group make with the other commands
for keeping track of differences between files. However, although it does not
compare two versions of the same source file, it can be used to compare versions
of a source file and to the formatted output.

Part of what makes Unix a productive environment for text processing is discov-
ering other uses for standard programs. The make utility has many possible
applications for a documentation project. One such use is to maintain up-to-
date copies of formatted files—which make up a single manual and provide
users with a way of obtaining a printed copy of the entire manual without hav-
ing to know which preprocessors or formatting options (45.13) need to be used.

230

Part lll: Working with Files and Directories

1p 45.2

The basic operation that make performs is to compare two sets of files—for
example, formatted and unformatted files—and determine if any members of
one set, the unformatted files, are more recent than their counterpart in the
other set, the formatted files. This is accomplished by simply comparing the last-
modification date (8.2) (“timestamp”) of pairs of files. If the unformatted source
file has been modified since the formatted file was made, make executes the
specified command to “remake” the formatted file.

To use make, you have to write a description file, usually named Makefile (or
makefile), that resides in the working directory for the project. The Makefile
specifies a hierarchy of dependencies among individual files, called components.
At the top of this hierarchy is a target. For our example, you can think of the tar-
get as a printed copy of a book; the components are formatted files generated by
processing an unformatted file with nroff (45.12).

Here’s the Makefile that reflects these dependencies:

manual: choi.fmt cho2.fmt cho3.fmt

1p cho[1-3].fmt
cho1l.fmt: chol

nroff -mm chol > choi.fmt
cho2.fmt: cho2

tbl cho2 | nroff -mm > cho2.fmt
cho3.fmt: cho3a cho3b cho3c

nroff -mm cho3[abc] > cho3.fmt

This hierarchy is represented in Figure 11-1.

N 5 B
ch01.fmt ch02.fmt ch03.fmt
nroff -mm tbl | nroff -mm nroff -mm
VN VN A 4 K

(o2) (onosa) (onoan) (Cchose)

Figure 11-1. What Makefile describes: Files and commands to make manual

Chapter 11: Comparing Files 231

11.10

11.11

11.11

The target is manual, which is made up of three formatted files whose names
appear after the colon. Each of these components has its own dependency line.
For instance, chO1.fmt is dependent upon a coded file named ch01. Underneath
the dependency line is the command that generates ch01.fmt. Each command
line must begin with a TAB.

When you enter the command make, the end result is that the three formatted
files are spooled to the printer. However, a sequence of operations is performed
before this final action. The dependency line for each component is evaluated,
determining if the coded file has been modified since the last time the formatted
file was made. The formatting command will be executed only if the coded file is
more recent. After all the components are made, the Ip (452) command is
executed.

As an example of this process, we’ll assume that all the formatted files are up-to-
date. Then by editing the source file ch03a, we change the modification time.
When you execute the make command, any output files dependent on ch03a are
reformatted:

$ make

nroff -mm cho3[abc] > cho3.fmt

1p cho[1-3].fmt
Only ch03.fmt needs to be remade. As soon as that formatting command fin-
ishes, the command underneath the target manual is executed, spooling the files
to the printer.

Although this example has actually made only limited use of make’s facilities, we
hope it suggests more ways to use make in a documention project. You can keep
your Makefiles just this simple, or you can go on to learn additional notation,
such as internal macros and suffixes, in an effort to generalize the description file
for increased usefulness.

—TOR, from Unix Text Processing (Hayden Books, 1987)

Even More Uses for make

Thinking about make will pay off in many ways. One way to get ideas about
how to use it is to look at other Makefiles.

One of my favorites is the Makefile for NIS (1.21) (formerly called YP, or “Yellow
Pages”). 1 like this Makefile because it does something that you’d never think of
doing (even though it suits make perfectly): updating a distributed database.

The Makefile is fairly complicated, so I don’t want to get into a line-by-line expli-
cation; but I will give you a sketch of how it works. Here’s the problem: a sys-
tem administrator updates one or more files (we’ll say the passwd file) and wants
to get her changes into the NIS database. So you need to check whether the new

232

Part lll: Working with Files and Directories

11.11

password file is more recent than the database. Unfortunately, the database isn’t
represented by a single file, so there’s nothing to “check” against. The NIS
Makefile handles this situation by creating empty files that serve as timestamps.
There’s a separate timestamp file for every database that NIS serves. When you
type make, make checks every master file against the corresponding timestamp.
If a master file is newer than the timestamp, make knows that it has to rebuild
part of the database. After rebuilding the database, the Makefile “touches” the
timestamp, so that it reflects the time at which the database was built.

The Makefile looks something like this:

passwd: passwd.time

passwd.time: /etc/master/passwd
@ lots of commands that rebuild the database
@ touch passwd.time
@ more commands to distribute the new database

hosts: hosts.time
hosts.time: similar stuff

You may never need to write a Makefile this complicated, but you should look
for situations in which you can use make profitably. It isn’t just for programming.

—ML

Chapter 11: Comparing Files 233

12

Showing What’s in a File

12.1 Cracking the Nut

This chapter talks about the many ways of dumping a file to the screen.
Most users know the brute force approach provided by cat (12.2), but there’s
more to it than that:

* Pagers such as more and less (12.3) that give you more control when look-
ing through long files.

* Finding out what type of data a file contains before opening it (article
12.6).

* Looking at just the beginning or end of a file (articles 12.8 through
12.12).

* Numbering lines (article 12.13).
—TOR

12.2 What Good Is a cat?

The cat command may well be the first command new users hear about, if only
because of its odd name. cat stands for concatenate or, as some would say, cate-
nate. Both words mean the same thing: to connect in a series. The cat command
takes its filename arguments and strings their contents together. Essentially, cat
takes its input and spits it out again.

cat has many uses, but the four most basic applications are described in the fol-
lowing list. In many ways, they don’t illustrate cat so much as they illustrate the
shell’s output redirection (43.1) mechanism.

234

12.2

1. First form:
% cat file
% cat file1 file2 file...
Use this form to display one or more files on the screen. The output doesn’t
pause when the screen is full. As a result, if your files are more than one
screenful long, the output will whiz by without giving you a chance to read
it. To read output by screenfuls, use a pager such as less (12.3).”

2. Second form:
% cat file(s) > new file
Use this form when you want to combine several smaller files into one large
file. Be sure the destination file does not already exist; otherwise, it will be
replaced by the new contents (effectively destroying the original). For exam-
ple, the command:
% cat chap1 chap2 chap3 > book
creates a new file, book, composed of three files, one after the other. The
three component files still exist as chap1, chap2, and chap3.
3. Third form:

% cat file >> existing file

% cat files >> existing file
Use this form to add one or more files to the end of an existing file. For
example:

% cat notel note2 > note_list
% cat note3 >> note_list

4. Fourth form:
% cat > newfile

Use this form as a quick-and-dirty way to create a new file. This is useful
when you aren’t yet familiar with any of the standard text editors. With this
command, everything you type at the keyboard goes into the new file. (You
won’t be able to back up to a previous line.) To finish your input, enter
CTRL-d on a line by itself.

Well, that was just in case there are some beginners on board. Articles 12.4,
12.7, and 12.13 give some more useful tips about cat options.

—DG

* You may think this command form is pointless. In truth, this form is rarely used in such a basic way.
More often, you’ll use this form along with some of cat’s display options or connect this command to
other Unix commands via a pipe (1.5).

Chapter 12: Showing What’s in a File 235

123

12.3

“less” is More

The most popular pager for Unix systems was once the more command, so
named because it gave you “one more screen.” more is ubiquitous, but also
somewhat limited in its capability. The less command (so named because, of
course, “less is more!”) is more commonly used. less is a full-featured text pager
that emulates more but offers an extended set of capabilities.

One particularly important feature of less is that it does not read all of its input
before starting, which makes it faster than an editor for large input. less also
offers many useful features and is available for almost every operating environ-
ment. As an extra bonus, it is installed by default on most free Unixes.

less begins execution by first examining the environment in which it is running.
It needs to know some things about the terminal (or window) in which its out-
put will be displayed. Once that’s known, less formats the text and displays the
first screen’s output. The last line of the screen is reserved for user interaction
with the program. less will display a colon (:) on the first column of the last line
and leave the cursor there. This colon is a command prompt, awaiting com-
mand input from the user. Most commands to less are single-character entries,
and less will act upon them immediately and without a subsequent carriage
return (this is known as cbreak mode). The most basic command to less (and
more) is a single space, which instructs the pager to move ahead in the text by
one screen. Table 12-1 lists commonly used less commands.

Table 12-1. Commonly used less commands

Command Description

Space Scroll forward one screen.

d Scroll forward one-half screen.

RETURN Scroll forward one line.

b Scroll backward one screen. Unlike more, while /ess is reading from pipes (1.5), it
can redraw the screen and read previous pages.

u Scroll backward one-half screen.

y Scroll backward one line.

g Go to the beginning of the text (could be slow with large amounts of text).

G Go to the end of the text (could be slow with large amounts of text).

/pattern Search forward for pattern, which can be a regular expression.
pattern Search backward for pattern, which can be a regular expression.

n Search for the next occurance of the last search, in the same direction: forward in
the file if the previous search was using / and backwards in the file if the previous
search was using ?.

N Search for the previous occurance of the last search. See earlier.

236

Part lll: Working with Files and Directories

12.4

Table 12-1. Commonly used less commands (continued)

Command Description

h Display a help screen.
n Display next file from command line (two-character command).
p Display previous file from command line (two-character command).

less has a rich command set, and its behavior can be modified as needed for your
use. The lesskey program lets you make custom key definitions, and you can
store your favorite setup options in the LESS environment variable (35.3). See the
less manpage for further details.

One of the big advantages of less is that it doesn’t require any relearning; less
does the right thing when you use more, vi (17.2), or emacs (19.1) file-browsing
commands. Incidentally, it also protects you from terminal control sequences
and other obnoxious things that happen when you try to view a binary file,
because it escapes nonprinting characters (12.4).

—JD

Show Nonprinting Characters
with cat —v or od —¢

Especially if you use an ASCII-based terminal, files can have characters that your
terminal can’t display. Some characters will lock up your communications soft-
ware or hardware, make your screen look strange, or cause other weird prob-
lems. So if you’d like to look at a file and you aren’t sure what’s in there, it’s not
a good idea to just cat the file!

Instead, try cat —v. It shows an ASCII (“printable”) representation of unprint-
able and non-ASCII characters. In fact, although most manual pages don’t
explain how, you can read the output and see what’s in the file. Another utility
for displaying nonprintable files is od. T usually use its —c option when I need to
look at a file character by character.

Let’s look at a file that’s almost guaranteed to be unprintable: a directory file.
This example is on a standard V7 (Unix Version 7) filesystem. (Unfortunately,
some Unix systems won’t let you read a directory. If you want to follow along
on one of those systems, try a compressed file (156) or an executable program
from /bin.) A directory usually has some long lines, so it’s a good idea to pipe
cat’s output through fold:

% 1s -fa

comp

Chapter 12: Showing What’s in a File 237

124

124

% cat -v . | fold -62
M_/\?/\N . /\@/\@A@/\@/\@A@/\@/\@A@/\@/\@A@/\@>/\G‘ . A@/\@/\@A@/\@/\@A@/\@/\@A@/\@/\@

M-a

Comp/\@/\@/\@/\@/\@/\@/\@/\@/\@/\@/\@/\@MaSSAVeFood/\@/\@/\@/\@/\@hist/\@/\@/\

e~ e e e"e e e @

% od -c .

0000000 377 016 . \0 \0o \0o \o N0 N0 \0o N0 N0 N0 \O \O \O
0000020 > 007 . ..\0 \0o N0 N0 N0 \No N0 N0 NO N0 \O \O

0000040 341 \n ¢ o m p N0 N0 \0 \0 N0 \0 \0o \0 \o \o

0000060 \0 \0 M a s s A v e F o o d \o \0o \0O

0000100 N0 N0 h i s t N0 N0 \0 \0 N0 \0 \0o \0 \o \o

0000120
Each entry in a V7-type directory is 16 bytes long (that’s also 16 characters, in
the ASCII system). The od —c command starts each line with the number of
bytes, in octal, shown since the start of the file. The first line starts at byte 0. The
second line starts at byte 20 octal (that’s byte 16 in decimal, the way most peo-
ple count). And so on. Enough about od for now, though. We’ll come back to it
in a minute. Time to dissect the cat —v output:

* You’ve probably seen sequences like “N and ~G. Those are control characters.

Another character like this is @, the character NUL (ASCII 0). There are a
lot of NULs in the directory; more about that later. A DEL character
(ASCII 177 octal) is shown as *?. Check an ASCII chart.

* cat —v has its own symbol for characters outside the ASCII range with their
high bits set, also called metacharacters. cat —v prints those as M- followed by
another character. There are two of them in the cat —v output: M-*? and M-a.

To get a metacharacter, you add 200 octal. For an example, let’s look at M-a.
The octal value of the letter a is 141. When cat —v prints M-a, it means the
character you get by adding 1414200, or 341 octal.

You can decode that the character cat prints as M-*? in the same way. The *?
stands for the DEL character, which is octal 177. Add 200+177 to get 377
octal.

* If a character isn’t M-something or something, it’s a regular printable charac-
ter. The entries in the directory (., .., comp, MassAveFood, and hist) are all
made of regular ASCII characters.

If you're wondering where the entries MassAveFood and hist are in the Is list-
ing, the answer is that they aren’t. Those entries have been deleted from the
directory. Unix puts two NUL (ASCII 0, or "@) bytes in front of the names of
deleted V7 directory entries.

cat has two options, —t and —e, for displaying whitespace in a line. The —v option
doesn’t convert TAB and trailing-space characters to a visible form without those
options. See article 12.5.

238

Part lll: Working with Files and Directories

12.5

Next, od —c. It’s easier to explain than cat —v:

* od —c shows some characters starting with a backslash (\). It uses the stan-

dard Unix and C abbreviations for control characters where it can. For
instance, \n stands for a newline character, \t for a tab, etc. There’s a new-
line at the start of the comp entry—see it in the od —c output? That explains
why the cat —v output was broken onto a new line at that place: cat—v
doesn’t translate newlines when it finds them.

The \0 is a NUL character (ASCII 0). It’s used to pad the ends of entries in
V7 directories when a name isn’t the full 14 characters long.

od —c shows the octal value of other characters as three digits. For instance,
the 007 means “the character 7 octal.” cat —v shows this as ~G (CTRL-g).

Metacharacters, the ones with octal values 200 and higher, are shown as
M-something by cat —v. In od —c, you’ll see their octal values—such as 341.

Each directory entry on a Unix Version 7 filesystem starts with a two-byte
“pointer” to its location in the disk’s inode table. When you type a filename,
Unix uses this pointer to find the actual file information on the disk. The
entry for this directory (named .) is 377 016. Its parent (named . .) is at > 007.
And comp’s entry is 341 \n. Find those in the cat —v output, if you want; and
compare the two outputs.

* Like cat —v, regular printable characters are shown as is by od —c.

The strings (13.15) program finds printable strings of characters (such as file-
names) inside mostly nonprintable files (such as executable binaries).

What’s in That Whitespace?

The cat —v option (12.4) shows an ASCII representation of unprintable and non-
ASCII characters. cat has two options for displaying whitespace in a line. If you
use the —t option with —v, TAB characters are shown as *I. The —e option com-
bined with —v marks the end of each line with a $ character. Some versions of cat
don’t require the —v with those options. Let’s compare a one-line file without
and with the —t —e (which may have to be typed separately, by the way; —te won’t
work on some versions):

% cat afile

This is a one-line file - boring, eh?

% cat -v -t -e afile

ThiS*Hs is”Ia one-line file“I- boring, eh? $

Chapter 12: Showing What’s in a File 239

12.5

12.6

12.6

LA

file

Although you can’t tell it from plain cat, there’s a backspace (CTRL-h) before
the first s, two TABs that take up only one column of whitespace each, and
seven spaces at the end of the line. Knowing this can help you debug problems in
printing and displaying files. It’s also a help for shell programmers who need to
parse or sort the output of other programs.

Finding File Types

Many different kinds of files live on the typical Unix system: database files, exe-
cutable files, regular text files, files for applications like StarOffice, tar files, mail
messages, directories, font files, and so on.

You often want to check to make sure you have the right “kind” of file before
doing something. For example, you’d like to read the file tar. But before typing
more tar, you'd like to know whether this file is your set of notes on carbon-
based sludge or the tar executable. If you're wrong, the consequences might be
unpleasant. Sending the tar executable to your screen might screw up your ter-
minal settings, log you off, or do any number of unpleasant things.

The file utility tells you what sort of file something is. It’s fairly self-explanatory:
% file /bin/sh

/bin/sh: sparc demand paged executable

% file 2650

2650: [nt]roff, tbl, or egqn input text
% file 0001,v

0001,V: ascii text

% file foo.sh

foo.sh: shell commands

file is actually quite clever though it isn’t always correct—some versions are bet-
ter than others. It doesn’t just tell you if something’s binary or text; it looks at
the beginning of the file and tries to figure out what it’s doing. So, for example,
you see that file 2650 is an nroff (45.12) file and foo.sh is a shell script. It isn’t
quite clever enough to figure out that 0001,v is an RCS (39.5) archive, but it does
know that it’s a plain ASCII text file.

Many versions of file can be customized to recognize additional file types. The file
letc/magic tells file how to recognize different kinds of files. [My Linux system has
the file command from ftp:/ftp.astron.com/publ/file/, which uses a multiple-data-
base format. It’s updated fairly often to understand new file formats. —JP] It’s
capable of a lot (and should be capable of even more), but we’ll satisfy ourselves
with an introductory explanation. Our goal will be to teach file to recognize RCS
archives.

240

Part lll: Working with Files and Directories

12.7

letc/magic has four fields:
offset data-type value file-type

These are as follows:

offset

The offset into the file at which magic will try to find something. If you’re
looking for something right at the beginning of the file, the offset should be
0. (This is usually what you want.)

data-type
The type of test to make. Use string for text comparisons, byte for byte
comparisons, short for two-byte comparisons, and long for four-byte
comparisons.

value
The value you want to find. For string comparisons, any text string will do;
you can use the standard Unix escape sequences (such as \n for newline).
For numeric comparisons (byte, short, long), this field should be a number,
expressed as a C constant (e.g., 0x77 for the hexadecimal byte 77).

file-type
The string that file will print if this test succeeds.

So, we know that RCS archives begin with the word head. This word is right at

the beginning of the file (offset 0). Since we obviously want a string comparison,
we make the the following addition to /etc/magic:

0 string head RCS archive

This says, “The file is an RCS archive if you find the string head at an offset of
0 bytes from the beginning of the file.” Does it work?

% file RCS/0001,v

RCS/0001,v: RCS archive
As 1 said, the tests can be much more complicated, particularly if you’re work-
ing with binary files. To recognize simple text files, this is all you need to know.

—ML

Squash Extra Blank Lines

Reading output with lots of empty lines can be a waste of screen space. For
instance, some versions of man (2.1) show all the blank lines between manual
pages. To stop that, read your file or pipe it through cat —s. (Many versions of
less (123) and more have a similar —s option.) The —s option replaces multiple
blank lines with a single blank line. (If your cat doesn’t have s, see the sed alter-
native at the end.)

Chapter 12: Showing What’s in a File 241

12.7

12.8

12.8

cat —s might not always seem to work. The problem is usually that the “empty”
lines have SPACE, TAB, or CTRL-m characters on them. The fix is to let sed
“erase” lines with those invisible characters on them:

% sed 's/~[SPACE TAB CTRL-v CTRL-m]*$//' file | cat -s

In vi (186) and many terminal drivers, the CTRL-v character quotes the CTRL-m
(RETURN) so that character doesn’t end the current line.

If you don’t have cat s, then sed can do both jobs:
% sed -e 's/“[SPACE TAB CTRL-v CTRL-m]*$//' -e '/./,/"$/\d" file
—JP

How to Look at the End of a File: tail

Let’s say that you want to look at the end of some large file. For example, you’ve
just sent some mail and want to find out whether it was handled correctly. But
when you look at your mail logs, you find out that the log file is 30 or 40 KB
long, and you don’t care about the whole thing—you certainly don’t want to
page through it until you get to the end. How do you handle this?

The tail command is just what you need in this situation. tail reads its input and
discards everything except for the last ten lines (by default). Therefore, if you’re
pretty sure that the information you want is at the end of the file, you can use
tail to get rid of the junk that you don’t want. To see just the end of that mail log
(in this case, gmail’s log):

% tail /var/log/maillog

Feb 19 10:58:45 yyy qmail: 1014141525.474209 delivery 6039: success: did_0+0+1/
Feb 19 10:58:45 yyy gmail: 1014141525.491370 status: local 0/10 remote 0/20

Feb 19 10:58:45 yyy qmail: 1014141525.492211 end msg 111214

Feb 19 11:11:15 yyy gmail: 1014142275.469000 new msg 111214

Feb 19 11:11:15 yyy gmail: 1014142275.469631 info msg 111214: bytes 281 from
<Xxx@yyy.zyzzy.com> gp 51342 uid 1000

Feb 19 11:11:15 yyy gmail: 1014142275.562074 starting delivery 6040: msg 111214
to remote xyz@frob.com

Feb 19 11:11:15 yyy gmail: 1014142275.562630 status: local 0/10 remote 1/20

Feb 19 11:11:30 yyy gmail: 1014142290.110546 delivery 6040: success:
64.71.166.115_accepted_message./Remote_host said: 250 Ok:_queued_as_COEC73E84D/
Feb 19 11:11:30 yyy gmail: 1014142290.127763 status: local 0/10 remote 0/20

Feb 19 11:11:30 yyy qmail: 1014142290.128381 end msg 111214

For another common example, to see the latest entries from the BSD or Linux
kernel ring buffer:

% dmesg | tail

1pto: <Printer> on ppbuso

1pto: Interrupt-driven port

ppio: <Parallel I/0> on ppbusO

IPsec: Initialized Security Association Processing.

242

Part lll: Working with Files and Directories

12.9

12.10

ado: 19569MB <ST320430A> [39761/16/63] at atao-master UDMA66
afdo: 239MB <IOMEGA ZIP 250 ATAPI> [239/64/32] at atao-slave using PIO3
acdo: CDROM <ATAPI CDROM> at atail-master using PIO4
Mounting root from ufs:/dev/adosia
pid 50882 (fetch), uid 0: exited on signal 10 (core dumped)
pid 88041 (smbd), uid 1000 on /usr: file system full
This will give you the last ten lines from the dmesg command. If you need more

or less than ten lines, look at article 12.9.

Althought the GNU version is better behaved, some older versions of tail accept
one (and only one!) filename:

% tail somefile

There are many other situations in which tail is useful: I've used it to make sure
that a job that produces a big output file has finished correctly, to remind me
what the last piece of mail in my mailbox was about, and so on. You’ll find tail
important whenever you’re interested only in the end of something.

—ML

Finer Control on tail

What if you need to look at the last 11 lines of the file? The command tail -n
shows the final n lines. The command tail +n discards the first n—1 lines, giving
you line n and everything that follows it.

You can also tell tail to count the number of characters or the number of 512-
byte blocks. To do so, use the —c option (count characters) or the —b option
(count blocks). If you want to state explicitly that you’re interested in lines, give
the — option.

Your tail probably has a —r option that shows the file in reverse order, starting
from the last line.

Many versions of Unix limit the maximum number of lines that tail, especially
tail —r, can display.

—ML

How to Look at Files as They Grow

One of the best things that you can do with tail is to look at a file as it is grow-
ing. For example, I once was debugging a program named totroff that converted
a manual from a plain text format to troff. It was rather slow, so that you didn’t
want to wait until the program finished before looking at the output. But you
didn’t want to be typing more every 20 seconds either, to find out whether the
part of the file that you were debugging had made it through yet. (more quits

Chapter 12: Showing What’s in a File 243

12.10

12.10

823.3

when you “run out” of file, so it can’t really help you look for a part of a file that
hasn’t been written yet.) The tail -f command solves this problem. For example:

% totroff < file.txt > file.ms &
[1] 12345

% tail -f file.ms

.LP

Tail produces output as

the file grows.

CTRL-c
Now suppose you want to monitor several files at once. Administrators, for
example, might want to keep track of several log files, such as /usr/adm/
messages, fusr/adm/lpd-errs, UUCP error files, etc. The GNU tail program comes

in useful for keeping an eye on several administrative log files at once. But it also
comes in useful for nonadministrators.

For example, suppose you want to perform several greps through many files, sav-
ing the output in different files. You can then monitor the files using tail —f. For
example:

% grep Berkeley ch?? > Berkeley.grep &

% grep BSD ch?? > BSD.grep &

% grep "System V" ch?? > SystemV.grep &

% grep SysV ch?? > SysV.grep &

% tail -f Berkeley.grep BSD.grep SystemV.grep SysV.grep
When new text appears in the files called with tail —f, it also appears on the
screen:

==> SysV.grep <==
cho1:using a SysV-based UNIX system, you must

==> Berkeley.grep <==
chol:at the University of California at Berkeley, where

==> BSD.grep <==
cho3:prefer BSD UNIX systems because they are less likely to
cho4:who use a BSD-based UNIX systems must run the

==> SysV.grep <==

cho4:is a SysV derivative sold by Acme Products Inc.
(When text is written to a new file, the filename is printed surrounded by ==>
and <==.

What’s actually happening here?

When you invoke tail -, tail behaves just like it normally does: it reads the file
and dumps the last ten (or however many) lines to the screen. But, unlike most
applications, tail doesn’t quit at this point. Instead, tail goes into an infinite
loop. It sleeps for a second, then wakes up and looks to see if the file is any
longer, then sleeps again, and so on. Because this is an infinite loop, you have to

244

Part lll: Working with Files and Directories

12.11

%

tail

{1284

enter CTRL-c (or whatever your interrupt key (24.11) is) when you’ve seen the
data you’re interested in, or when the file you’re watching has been completed.
tail has no way of knowing when the file has stopped growing.

tail ignores the —f option when it is reading from a pipe. For example, totroff <
file.txt | tail —-f wouldn’t work.

Article 12.11 shows a useful feature of GNU tail: following files by name or file
descriptor.

—ML and LM

GNU tail File Following

I like to keep an xterm window open on my Linux system so I can watch various
log files. Although there are fancier log-file-monitoring programs (such as
swatch), tail —f (12.10) is perfect for me.

I also run a weekly cron (25.2) job to rotate log files (rename the files, compress
and archive them). When this job runs, the log files suddenly have new names—
messages becomes messages.1, for instance—so the system logger starts writing
to a different messages file. Then plain tail —f suddenly stops showing the log
because it doesn’t realize that the same physical file on the disk suddenly has a
new name. When this happened, I had to remember to kill and restart tail each
Sunday morning...until I found the new version of GNU tail, that is.

The GNU tail ——follow option lets you choose how the files you're watching
should be followed. By default, GNU tail acts like the standard tail: it opens a
file for reading and gets a file descriptor (36.15) number, which it constantly
watches for changes. But if that file is renamed and a new file with the old name
(and a new inode) takes its place, the file descriptor may point to a file that’s not
in use anymore.

The GNU tail options, ——follow=name and ——retry, tell it to watch the actual
file name, not the open file descriptor. Here’s what happens Sunday mornings
when I'm using this:

kludge# tail --follow=name --retry ~jerry/tmp/startx.log \
/var/log/{messages,maillog,secure}
...lots of log messages...
tail: “/var/log/secure' has been replaced; following end of new file
tail: “/var/log/maillog' has been replaced; following end of new file
tail: “/var/log/messages’ has been replaced; following end of new file
Dec 31 04:02:01 kludge syslogd 1.3-3: restart.
Dec 31 04:02:01 kludge syslogd 1.3-3: restart.
Dec 31 04:02:05 kludge anacron[8397]: Updated timestamp for job
“cron.weekly' to 2000-12-31

It’s just what I've always needed.

—JP

Chapter 12: Showing What’s in a File 245

12.11

12.12

12.12

12.13

LA

nl

Printing the Top of a File

head can be used to print the first few lines of one or more files (the “head” of
the file or files). When more than one file is specified, a header is printed at the
beginning of each file, and each is listed in succession.

Like tail (129), head supports the —n option to control the number of lines dis-
played and the —¢ option to print characters/bytes instead of lines. GNU head
also supports an extention to —c: —c nk prints the first n kilobytes of the file, and
—c nm prints the first n megabytes of the file.

—DJPH

Numbering Lines

There are times when you want to print out a file with the lines numbered—per-
haps because you are showing a script or program in documentation and want to
refer to individual lines in the course of your discussion.

This is one of the handy things cat can do for you with the —n option.

cat —n precedes each line with some leading spaces, the line number, and a TAB.
How many leading spaces? It depends on how high the line numbers go. The
line numbers are right-justified at column 6, which means that a 6-digit number
will go all the way back to the margin. I only belabor this point in case you’re
tempted to trim the leading spaces with something like cut (21.14).

If you have a version of cat that doesn’t support —n, try nl, the line-numbering
program. nl —ba acts like cat —n. By itself, nl numbers only lines with text. The
GNU version is on the web site.

You can achieve a similar effect with pr —t —n. (The —t keeps pr from inserting the
header and footer (45.6) it normally uses to break its output into pages.) And as
long as we’re giving you choices, here are five more:

less -N filename

grep -n \" filename

awk '{print NR,$0}"' filename

sed = < filename | sed 'N;s/\n/ /'

ex - "+%#\|q" filename

—JP and TOR

246

Part lll: Working with Files and Directories

13

Searching Through Files

13.1 Different Versions of grep

grep is one of Unix’s most useful tools. As a result, all users seem to want their
own, slightly different version that solves a different piece of the problem.
(Maybe this is a problem in itself; there really should be only one grep, as the
manpage says.) Three versions of grep come with every Unix system; in addi-
tion, there are six or seven freely available versions that we’ll mention here, as
well as probably dozens of others that you can find kicking around the Net.

Here are the different versions of grep and what they offer. We’ll start with
the standard versions:

Plain old grep
Great for searching with regular expressions (article 13.2).

Extended grep (or egrep)
Handles extended regular expressions. It is also, arguably, the fastest of
the standard greps (article 13.4).

Fixed grep (or fgrep)
So named because it matches fixed strings. It is sometimes inaccurately
called “fast grep”; often it is really the slowest of them all. It is useful to
search for patterns with literal backslashes, asterisks, and so on that
you’d otherwise have to escape somehow. fgrep has the interesting abil-
ity to search for multiple strings (article 13.5).

Of course, on many modern Unixes all three are the same executable, just
with slightly different behaviors, and so you may not see dramatic speed dif-
ferences between them. Now for the freeware versions:

agrep, or “approximate grep”
A tool that finds lines that “more or less” match your search string. A
very interesting and useful tool, it’s part of the glimpse package, which is
an indexing and query system for fast searching of huge amounts of
text. agrep is introduced in article 13.6.

247

13.2

Very fast versions of grep, such as GNU grep/egrep/fgrep
Most free Unixes use GNU grep as their main grep.

rcsgrep

Searches through RCS files (39.5) (article 13.7).

In addition, you can simulate the action of grep with sed, awk, and perl.
These utilities allow you to write such variations as a grep that searches for a
pattern that can be split across several lines (13.9) and other context grep pro-
grams (41.12), which show you a few lines before and after the text you find.
(Normal greps just show the lines that match.)

—ML

13.2 Searching for Text with grep

There are many well-known benefits provided by grep to the user who doesn’t
remember what his files contain. Even users of non-Unix systems wish they had
a utility with its power to search through a set of files for an arbitrary text pat-
tern (known as a regular expression).

The main function of grep is to look for strings matching a regular expression
and print only the lines found. Use grep when you want to look at how a particu-
lar word is used in one or more files. For example, here’s how to list the lines in
the file ch04 that contain either run-time or run time:

"L 2712 $ grep "run[- Jtime" cho4
This procedure avoids run-time errors for not-assigned
and a run-time error message is produced.
run-time error message is produced.
program aborts and a run-time error message is produced.
DIMENSION statement in BASIC is executable at run time.
This means that arrays can be redimensioned at run time.
accessible or not open, the program aborts and a run-time

Another use might be to look for a specific HTML tag in a file. The following
command will list top-level (<H1> or <h1>) and second-level (<H2> or <h2>) head-
ings that have the starting tag at the beginning (*) of the line:

$ grep "~<[Hh][12]>" cho[12].html

cho1.
cho1.
cho1.
cho1.
cho2.
cho2.
cho2.
cho2.

html:
html:
html:
html:
html:
html:
html:
html:

<h1>Introduction</h1>

<h1>Windows, Screens, and Images</h1>
<h2>The Standard Screen-stdscr</h2>
<h2>Adding Characters</h2>
<H1>Introduction</H1>

<H1>What Is Terminal Independence?</H1>
<H2>Termcap</H2>

<H2>Terminfo</H2>

In effect, it produces a quick outline of the contents of these files.

248 Part lll: Working with Files and Directories

13.3

grep is also often used as a filter (1.5), to select from the output of some other
program. For example, you might want to find the process id of your inetd, if
you just changed the configuration file and need to HUP inetd to make it reread
the configuration file. Using ps (245) and grep together allows you to do this
without wading through a bunch of lines of output:

% ps -aux | grep inetd

root 321 0.0 0.2 1088 548 ?? Is 12NovO1 0:08.93 inetd -wW

deb 40033 0.0 0.2 1056 556 p5 S+ 12:55PM 0:00.00 grep inetd

% kill -HUP 321
There are several options commonly used with grep. The —i option specifies that
the search ignore the distinction between upper- and lowercase. The —¢ option
tells grep to return only a count of the number of lines matched. The —w option
searches for the pattern “as a word.” For example, grep if would match words
like cliff or knife, but grep -w if wouldn’t. The - option returns only the name
of the file when grep finds a match. This can be used to prepare a list of files for
another command. The —v option (133) reverses the normal action, and only
prints out lines that don’t match the search pattern. In the previous example,
you can use the —v option to get rid of the extra line of output:

% ps -aux | grep inetd | grep -v grep

root 321 0.0 0.2 1083 548 ?? Is 12Nov0l 0:08.93 inetd -wW

% kill -HUP 321

—DD

Finding Text That Doesn’t Match

The grep programs have one very handy feature: they can select lines that don’t
match a pattern just as they can select the lines that do. Simply use the —v option.

I used this most recently when working on this book. We have thousands of sepa-
rate files under RCS (395), and I sometimes forget which ones I've got checked
out. Since there’s a lot of clutter in the directory and several people working there,
a simple Is won’t do. There are a series of temporary files created by some of our
printing scripts that I don’t want to see. All of their filenames consist of one or
more x characters: nothing else. So I use a findpt alias to list only the files belong-
ing to me. It’s a version of the find. alias described in article 9.26, with —user tim
added to select only my own files and a grep pattern to exclude the temporary
files. My findpt alias executes the following command line:

find. | grep -v ""\./xx*$'

The leading ./ matches the start of each line of find. output, and xx* matches
one x followed by zero or more xs. I couldn’t use the find operators ! -name in
that case because —name uses shell-like wildcard patterns, and there’s no way to
say “one or more of the preceding character” (in this case, the character x) with

shell wildcards.

Chapter 13: Searching Through Files 249

13.3

13.4

13.4

Obviously, that’s as specific and nonreproducible an example as you’re likely to
find anywhere! But it’s precisely these kinds of special cases that call for a rich
vocabulary of tips and tricks. You’ll never have to use grep —v for this particular
purpose, but you’ll find a use for it someday.

[Note that you could use a slightly simpler regular expression by using egrep
(13.4), which supports the plus (+) operator to mean “one or more,” instead of
having to use the basic regular expression character character zero-or-more (xx*).
The previous regular expression would then become:

find. | egrep -v '"\./x+$'
The richer regular expression language is the primary advantage of egrep. —DJPH]
—TOR

Extended Searching for Text
with egrep

The egrep command is yet another version of grep (132), one that extends the
syntax of regular expressions. (Versions where grep and egrep are the same allow
you to get egrep-like behavior from grep by using the —E option.) A plus sign (+)
following a regular expression matches one or more occurrences of the regular
expression; a question mark (?) matches zero or one occurrences. In addition,
regular expressions can be nested within parentheses:

% egrep "Lab(oratorie)?s" name.list

AT&T Bell Laboratories

AT&T Bell Labs
Symtel Labs of Chicago

Parentheses surround a second regular expression and ? modifies this expres-
sion. The nesting helps to eliminate unwanted matches; for instance, the word
Labors or oratories would not be matched.

Another special feature of egrep is the vertical bar (), which serves as an or oper-
ator between two expressions. Lines matching either expression are printed, as
in the next example:

% egrep "stdscr|curscr" cho3

into the stdscr, a character array.
When stdscr is refreshed, the

stdscr is refreshed.

curscr.

initscr() creates two windows: stdscr
and curscr.

Remember to put the expression inside quotation marks to protect the vertical bar
from being interpreted by the shell as a pipe symbol. Look at the next example:

250

Part lll: Working with Files and Directories

13.5

13.6

% egrep "Alcuin (User|Programmer)('s)? Guide" docguide
Alcuin Programmer's Guide is a thorough

refer to the Alcuin User Guide

Alcuin User's Guide introduces new users to

You can see the flexibility that egrep’s syntax can give you, matching either User
or Programmer and matching them regardless of whether they had an 's.

Both egrep and fgrep can read search patterns from a file using the —f option
(135).

—DJPD

grepping for a List of Patterns

egrep (13.4) lets you look for multiple patterns using its grouping and alternation
operators (big words for parentheses and a vertical bar). But sometimes, even
that isn’t enough.

Both egrep and fgrep support a —f option, which allows you to save a list of pat-
terns (fixed strings in the case of fgrep) in a file, one pattern per line, and search
for all the items in the list with a single invocation of the program. For example,
in writing this book, we’ve used this feature to check for consistent usage in a list
of terms across all articles:

% egrep -f terms *

(To be more accurate, we used rcsegrep (13.7), since the articles are all kept under
RCS (39.5), but you get the idea.)

—TOR

Approximate grep: agrep

agrep is one of the nicer additions to the grep family. It’s not only one of the
faster greps around; it also has the unique feature of looking for approximate
matches. It’s also record oriented rather than line oriented. The three most sig-
nificant features of agrep that are not supported by the grep family are as follows:

1. The ability to search for approximate patterns, with a user-definable level of
accuracy. For example:
% agrep -2 homogenos foo
will find “homogeneous,” as well as any other word that can be obtained
from “homogenos” with at most two substitutions, insertions, or deletions.
% agrep -B homogenos foo
will generate a message of the form:

best match has 2 errors, there are 5 matches, output them? (y/n)

Chapter 13: Searching Through Files 251

13.6

13.7

13.7

2. agrep is record oriented rather than just line oriented; a record is by default a
line, but it can be user-defined with the —d option specifying a pattern that
will be used as a record delimiter. For example:

% agrep -d '“From ' 'pizza' mbox
outputs all mail messages (1.21) (delimited by a line beginning with From and
a space) in the file mbox that contain the keyword pizza. Another example:

% agrep -d '$$' pattern foo
will output all paragraphs (separated by an empty line) that contain pattern.

3. agrep allows multiple patterns with AND (or OR) logic queries. For exam-
ple:
% agrep -d '“From ' 'burger,pizza’ mbox
outputs all mail messages containing at least one of the two keywords
(, stands for OR).

% agrep -d '“From

'good;pizza’ mbox
outputs all mail messages containing both keywords.

Putting these options together, one can write queries such as the following:
% agrep -d '$$' -2 '<CACM>;TheAuthor;Curriculum;<198[5-9]>"' bib

which outputs all paragraphs referencing articles in CACM between 1985 and
1989 by TheAuthor dealing with Curriculum. Two errors are allowed, but they
cannot be in either CACM or the year. (The <> brackets forbid errors in the
pattern between them.)

Other agrep features include searching for regular expressions (with or without
errors), using unlimited wildcards, limiting the errors to only insertions or only
substitutions or any combination, allowing each deletion, for example, to be
counted as two substitutions or three insertions, restricting parts of the query to
be exact and parts to be approximate, and many more.

—JP, SW, and UM

Search RCS Files with rcsgrep

Storing multiple versions of a file in RCS (39.5) saves space. How can you search a
lot of those files at once? You could check out all the files, then run grep—but
you’ll have to remove the files after you’re done searching. Or, you could search
the RCS files themselves with a command like grep foo RCS/*,v—but that can
show you garbage lines from previous revisions, log messages, and other text
that isn’t in the latest revision of your file. This article has two ways to solve that
problem.

252

Part lll: Working with Files and Directories

%

rcsegrep.fast

rcsgrep, rcsegrep, rcsfgrep

The resgrep script—and two links to it named rcsegrep and resfgrep—run grep,
egrep (13.4), and fgrep on all files in the RCS directory. (You can also choose the
files to search.)

The script tests its name to decide whether to act like grep, egrep, or fgrep. Then
it checks out each file and pipes it to the version of grep you chose. The output
looks just like grep’s—although, by default, you’ll also see the messages from the
co command (the —s option silences those messages).

By default, rcsgrep searches the latest revision of every file. With the —a option,
resgrep will search all revisions of every file, from first to last. This is very handy
when you’re trying to see what was changed in a particular place and to find
which revision(s) have some text that was deleted some time ago. (rcsgrep uses
resrevs (39.6) to implement —a.)

Some grep options need special handling to work right in the script: —e, —f, and
—1. (For instance, —e and —f have an argument after them. The script has to pass
both the option and its argument.) The script passes any other options you
type to the grep command. Your grep versions may have some other options
that need special handling, too. Just edit the script to handle them.

rcsegrep.fast

To search an RCS file, resgrep and its cousins run several Unix processes: co,
grep, sed, and others. Each process takes time to start and run. If your directory
has hundreds of RCS files (like our directory for this book does), searching the
whole thing can take a lot of time. I could have cut the number of processes by
rewriting rcsgrep in Perl; Perl has the functionality of grep, sed, and others built
in, so all it would need to do is run hundreds of co processes...which would still
make it too slow.

The solution 1 came up with was to do everything in (basically) one process: a
gawk (20.11) script. Instead of using the RCS co command to extract each file’s
latest revision, the rcsegrep.fast script reads each RCS file directly (The resfile(5)
manpage explains the format of an RCS file.) An RCS file contains the latest revi-
sion of its working file as plain text, with one difference: each @ character is
changed to @@. rcsegrep.fast searches the RCS file until it finds the beginning of
the latest revision. Then it applies an egrep-like regular expression to each line.
Matching lines are written to standard output with the filename first; the —n
option gives a line number after the filename.

resegrep.fast is sort of a kludge because it’s accessing RCS files without using
RCS tools. There’s a chance that it won’t work on some versions of RCS or that
I’'ve made some other programming goof. But it’s worked very well for us. It’s

Chapter 13: Searching Through Files 253

13.7

13.8

13.8

much faster than rcsgrep and friends. I'd recommend using rcsegrep.fast when
you need to search the latest revisions of a lot of RCS files; otherwise, stick to the
resgreps.

—JP

GNU Context greps

By default, standard grep utilities show only the lines of text that match the
search pattern. Sometimes, though, you need to see the matching line’s context:
the lines before or after the matching line. The GNU greps (grep, fgrep, and
egrep) can do this. There are three context grep options:

* The —C option shows two lines of context around each match; you can also
give a numeric argument, such as -C 4, to choose how many lines of context
(here, four).

* The -B option shows context before each match. A numeric argument, such
as -B 2 for two lines of context, is required.

* The —A option shows context after each match. A numeric argument, such
as -A 3 for three lines of context, is required.

Each set of contiguous matching lines is separated by a line of two dashes (--).

Let’s look at an example: I'd like to search my system mail log for all messages
sent to anyone at oreilly.com. But sendmail doesn’t put all information about a
message on the to= log line; some info is in the from= line, which is usually the
previous line. So I'll search for all “to” lines and add one line of context before
each match. I'll also use the —n, which numbers the output lines, to make the
context easier to see. This option also puts marker characters after the line num-
ber: a line number ends with a colon (:) if this line contains a match, and a dash
(-) marks lines before or after a match. Here goes:

grep -n -B 1 'to=<["@]*@oreilly\.com>' maillog

7-Nov 12 18:57:42 jpeek sendmail[30148]: SAA30148: from=<jpeek@jpeek.com>...

8:Nov 12 18:57:43 jpeek sendmail[30150]: SAA30148: to=<al@oreilly.com>...

9-Nov 12 22:49:51 jpeek sendmail[1901]: WAA01901: from=<jpeek@jpeek.com>...

10:Nov 12 22:49:51 jpeek sendmail[1901]: WAA01901: to=<wfurby@oreilly.com>...
11:Nov 12 22:50:23 jpeek sendmail[2000]: WAA01901: to=<wfurby@oreilly.com...
25-Nov 13 07:42:38 jpeek sendmail
26:Nov 13 07:42:44 jpeek sendmail
27-Nov 13 08:08:36 jpeek sendmail
28:Nov 13 08:08:37 jpeek sendmail

9408]: HAA09408: from=<jpeek@jpeek.com>...
9410]: HAA09408: to=<al@oreilly.com>...
10004]: IAA10004: from=<jpeek@jpeek.com>...
10006]: IAA10004: to=<wfurby@oreilly.com>...

—

32-Nov 13 11:59:46 jpeek sendmail[14473]: LAA14473: from=<jpeek@jpeek.com>...
33:Nov 13 11:59:47 jpeek sendmail[14475]: LAA14473: to=<al@oreilly.com>...
34-Nov 13 15:34:17 jpeek sendmail[18272]: PAA18272: from=<jpeek@jpeek.com>...
35:Nov 13 15:34:19 jpeek sendmail[18274]: PAA18272: to=<al@oreilly.com>...

254

Part lll: Working with Files and Directories

13.9

%

cgrep

I've truncated each line for printing, but you still can see the matches. A few
notes about what’s happening here:

¢ Line 8 matches (so it has a colon after its line number), and line 7 is the line
of context before (so it starts with a dash).

* Note that a line is never shown more than once, as you can see in lines 9
through 11: lines 10 and 11 both match, so they both have colons. But
because line 10 has already been shown once, it’s not repeated as the line
“before” line 11.

* There are no matches on line 12, so a line of two dashes is printed as a sepa-
rator. The next match is on line 26.

—JP

A Multiline Context grep Using sed

[One weakness of the grep family of programs is that they are line oriented. They
read only one line at a time, so they can’t find patterns (such as phrases) that are
split across two lines. agrep (136) can do multiline searches. One advantage of
the cgrep script is that it shows how to handle multiple-line patterns in sed and
can be adapted for work other than searches. —JP]

It may surprise you to learn that a fairly decent context grep (13.8) program can
be built using sed. As an example, the following command line:

$ cgrep -10 system main.c

will find all lines containing the word system in the file main.c and show ten
additional lines of context above and below each match. (The -context option
must be at least one, and it defaults to two lines.) If several matches occur within
the same context, the lines are printed as one large “hunk” rather than repeated
smaller hunks. Each new block of context is preceded by the line number of the
first occurrence in that hunk. This script, which can also search for patterns that
span lines:

$ cgrep -3 "awk.*perl"
will find all occurrences of the word “awk” where it is followed by the word
“per]” somewhere within the next three lines. The pattern can be any simple reg-

ular expression, with one notable exception: because you can match across lines,
you should use \n in place of the » and $ metacharacters.

[While this is a wonderful example of some neat sed techniques, if this is all
you’re trying to do, use perl. It has features designed to do exactly this sort of
thing very efficiently, and it will be much faster. —DH]

—GU

Chapter 13: Searching Through Files 255

13.9

13.10

13.10

Compound Searches

You may recall that you can search for lines containing “this” or “that” using the
egrep (134) | metacharacter:

egrep 'this|that' files

But how do you grep for “this” and “that”? Conventional regular expressions
don’t support an and operator because it breaks the rule of patterns matching
one consecutive string of text. Well, agrep (13.6) is one version of grep that breaks
all the rules. If you’re lucky enough to have it installed, just use this:

agrep 'cat;dog;bird' files

If you don’t have agrep, a common technique is to filter the text through several
greps so that only lines containing all the keywords make it through the pipeline
intact:

grep cat files | grep dog | grep bird

But can it be done in one command? The closest you can come with grep is this
idea:

grep 'cat.*dog.*bird' files

which has two limitations—the words must appear in the given order, and they
cannot overlap. (The first limitation can be overcome using egrep
'cat.*dog|dog.*cat', but this trick is not really scalable to more than two
terms.)

As usual, the problem can also be solved by moving beyond the grep family to
the more powerful tools. Here is how to do a line-by-line and search using sed,
awk, or perl:’

sed '/cat/!d; /dog/!d; /bird/!d' files

awk '/cat/ && /dog/ && /bird/' files

perl -ne 'print if /cat/ && /dog/ && /bird/' files
Okay, but what if you want to find where all the words occur in the same para-
graph? Just turn on paragraph mode by setting RS="" in awk or by giving the —00
option to perl:

awk '/cat/ & /dog/ & /bird/ {print $0 ORS}' RS= files

perl -no0Oe 'print "$ \n" if /cat/ && /dog/ && /bird/' files
And if you just want a list of the files that contain all the words anywhere in
them? Well, perl can easily slurp in entire files if you have the memory and you
use the —0 option to set the record separator to something that won’t occur in
the file (like NUL):

perl -In0Oe 'print $ARGV if /cat/ 8& /dog/ && /bird/' files

* Some versions of nawk require an explicit $0~ in front of each pattern.

256

Part lll: Working with Files and Directories

13.11

(Notice that as the problem gets harder, the less powerful commands drop out.)

The grep filter technique shown earlier also works on this problem. Just add a -/
option and the xargs command (28.17) to make it pass filenames, rather than text
lines, through the pipeline:

grep -1 cat files | xargs grep -1 dog | xargs grep -1 bird

(xargs is basically the glue used when one program produces output needed by
another program as command-line arguments.)

—GU

Narrowing a Search Quickly

If you’re searching a long file to find a particular word or name, or you’re run-
ning a program like Is -] and you want to filter some lines, here’s a quick way to
narrow down the search. As an example, say your phone file has 20,000 lines
like these:

Smith, Nancy:MFG:50 Park Place:Huntsville:(205)234-5678

and you want to find someone named Nancy. When you see more information,
you know you can find which of the Nancys she is:

% grep Nancy phones

...150 lines of names...
Use the C shell’s history mechanism (30.2) and sed to cut out lines you don’t
want. For example, about a third of the Nancys are in Huntsville, and you know
she doesn’t work there:

% 11 | sed -e /Huntsville/d

grep Nancy phones | sed -e /Huntsville/d

...100 lines of names...
The shell shows the command it’s executing: the previous command (!!) piped
to sed, which deletes lines in the grep output that have the word Huntsville.

Okay. You know Nancy doesn’t work in the MFG or SLS groups, so delete those
lines, too:

% 1! -e /MFG/d -e /SLS/d

grep Nancy phones | sed -e /Huntsville/d -e /MFG/d -e /SLS/d

...20 lines of names...
Keep using !! to repeat the previous command line, and keep adding more sed
expressions until the list gets short enough. The same thing works for other
commands. When you’re hunting for errors in a BSDish system log, for exam-
ple, and you want to skip lines from named and sudo, use the following:

% cat /var/log/messages | sed -e /named/d -e /sudo/d

Chapter 13: Searching Through Files 257

13.11

13.12

13.12

13.13

If the matching pattern has anything but letters and numbers in it, you’ll have to
understand shell quoting (27.12) and sed regular expressions. Most times, though,
this quick-and-dirty method works just fine.

[Yes, you can do the exact same thing with multiple grep —v (13.3) commands,
but using sed like this allows multiple matches with only one execution of sed.
grep —v requires a new grep process for each condition. —DH]

Faking Case-Insensitive Searches

This may be the simplest tip in the book, but it’s something that doesn’t occur to
lots of users.

Some versions of egrep don’t support the —i option, which requests case-insensi-
tive searches. I find that case-insensitive searches are absolutely essential, partic-
ularly to writers. You never know whether any particular word will be
capitalized.

To fake a case-insensitive search with egrep, just eliminate any letters that might
be uppercase. Instead of searching for Example, just search for xample. If the let-
ter that might be capitalized occurs in the middle of a phrase, you can replace
the missing letter with a “dot” (single character) wildcard, rather than omitting
1t.

Sure, you could do this the “right way” with a command like:
% egrep '[eE]xample' *
but our shortcut is easier.

This tip obviously isn’t limited to egrep; it applies to any utility that only imple-
ments case-sensitive searches, like more.

—ML

Finding a Character in a Column

Here’s an idea for finding lines that have a given character in a column. Use the
following simple awk (20.10) command:

% awk 'substr($0,n,1) == "c"' filename
where c is the character you’re searching for, and 7 is the column you care about.

Where would you do this? If you’re processing a file with strict formatting, this
might be useful; for example, you might have a telephone list with a # in column
2 for “audio” telephone numbers, $ for dialup modems, and % for fax machines.

258

Part lll: Working with Files and Directories

13.14

LA

look

13.15

A script for looking up phone numbers might use an awk command like this to
prevent you from mistakenly talking to a fax machine.

If your data has any TAB characters, the columns might not be where you
expect. In that case, use expand on the file, then pipe it to awk.

—JP and ML

Fast Searches and Spelling Checks
with “look”

Every so often, someone has designed a new, faster grep-type program. Public-
domain software archives have more than a few of them. One of the fastest
search programs has been around for years: look. It uses a binary search method
that’s very fast. But look won’t solve all your problems: it works only on files
that have been sorted (22.1). If you have a big file or database that can be sorted,
searching it with look will save a lot of time. For example, to search for all lines
that start with Alpha:

% look Alpha filename

Alpha particle

Alphanumeric
The look program can also be used to check the spelling of a word or find a
related word; see article 16.3. If you don’t have look installed on your system,
you can get it from the Unix Power Tools web site.

—JP

Finding Words Inside Binary Files

If you try to read binaries on your screen with cat —v (124), you’ll see a lot of non-
printable characters. Buried in there somewhere, though, are words and strings
of characters that might make some sense. For example, if the code is copy-
righted, you can usually find that information in the binary. The pathnames of
special files read by the program will probably show up. If you’re trying to fig-
ure out which program printed an error message, use strings on the binaries and
look for the error. Some versions of strings do a better job of getting just the use-
ful information; others may write a lot of junk, too. But what the heck?>—pipe
the output to a pager (123) or grep (13.2), redirect it to a file, and ignore the stuff
you don’t want.

Here’s a (shortened) example on FreeBSD:

% strings /usr/bin/write
/usr/libexec/1d-elf.so.1
FreeBSD

libc.so.4

Chapter 13: Searching Through Files 259

13.15

13.16

13.16

strcpy

@(#) Copyright (c) 1989, 1993
The Regents of the University of California. All rights reserved.
$FreeBSD: src/usr.bin/write/write.c,v 1.12 1999/08/28 01:07:48 peter Exp $
can't find your tty
can't find your tty's name
you have write permission turned off
/dev/
%s is not logged in on %s
%s has messages disabled on %s
usage: write user [tty]
/var/run/utmp
utmp
%s is not logged in
%s has messages disabled
%s is logged in more than once; writing to %s
%sks
Message from %s@%s on %s at %s ...

The eighth line ($§FreeBSD: ... $) comes from RCS (39.5)—you can see the ver-
sion number, the date the code was last modified or released, and so on. The %s

is a special pattern that the printf(3) function will replace with values like the
username, hostname, and time.

By default, strings doesn’t search all of a binary file: it only reads the initialized
and loaded sections. The - (dash) option tells strings to search all of the file.
Another useful option is -n, where n is the minimum-length string to print. Set-
ting a higher limit will cut the “noise,” but you might also lose what you’re look-
ing for.

The od command with its option -sn command does a similar thing: finds all
null-terminated strings that are at least n characters long.

—JP

A Highlighting grep

Do you ever grep for a word, and when lines scroll down your screen, it’s hard to
find the word on each line? For example, suppose I'm looking for any mail mes-
sages I've saved that say anything about the perl programming language. But
when I grep the file, most of it seems useless:

% grep perl ~/Mail/save

> and some of it wouldn't compile properly. I wonder if
Subject: install script, for perl scripts

perl itself is installed?

> run but dies with a read error because it isn't properly
> if I can get it installed properly on another machine I
> run but dies with a read error because it isn't properly
> if I can get it installed properly on another machine I

260

Part lll: Working with Files and Directories

Well, as described on its own manual page, here’s a program that’s “trivial, but
cute.” hgrep runs a grep and highlights the string being searched for, to make it
easier for us to find what we’re looking for.

% hgrep perl ~/Mail/save

> and some of it wouldn't compile properly. I wonder if
Subject: install script, for perl scripts

perl itself is installed?

> run but dies with a read error because it isn't properly
> if I can get it installed properly on another machine I
> run but dies with a read error because it isn't properly
> if I can get it installed properly on another machine I

And now we know why the output looked useless: because most of it is! Luck-
ily, hgrep is just a frontend,; it simply passes all its arguments to grep. So hgrep
necessarily accepts all of grep’s options, and I can just use the —w option to pare
the output down to what I want:

% hgrep -w perl ~/Mail/save

Subject: install script, for perl scripts
perl itself is installed?

The less (12.3) pager also automatically highlights matched patterns as you
search.

—LM

Chapter 13: Searching Through Files 261

13.16

14

Removing Files

141

14.2

The Cycle of Creation and Destruction

As a computer user, you spend lots of time creating files. Just as the necessary
counterpart of life is death, the other side of file creation is deletion. If you never
delete any files, you soon have a computer’s equivalent of a population explo-
sion: your disks get full, and you must either spend money (buy and install more
disk drives) or figure out which files you don’t really need.

In this chapter, we’ll talk about ways to get rid of files: how to do it safely, how
to get rid of files that don’t want to die, and how to find “stale” files—or unused
files that have been around for a long time. “Safe” deletion is a particularly inter-
esting topic, because Unix’s rm command is extreme: once you delete a file, it’s
gone permanently. There are several solutions for working around this problem,
letting you (possibly) reclaim files from the dead.

—ML

How Unix Keeps Track
of Files: Inodes

The ability to mumble about inodes is the key to social success at a Unix gurus’
cocktail party. This may not seem attractive to you, but sooner or later you will
need to know what an inode is.

Seriously, inodes are an important part of the Unix filesystem. You don’t need to
worry about them most of the time, but it does help to know what they are.

An inode is a data structure on the disk that describes a file. It holds most of the
important information about the file, including the on-disk address of the file’s
data blocks (the part of the file that you care about). Each inode has its own
identifying number, called an i-number.

262

14.3

You really don’t care about where a file is physically located on a disk. You usu-
ally don’t care about the i-number—unless you’re trying to find the links (9.24,
10.3) to a file. But you do care about the following information, all of which is
stored in a file’s inode:

The file’s ownership
The user and the group that own the file

The file’s access mode (117, 50.2)
Whether various users and groups are allowed to read, write, or execute the
file

The file’s timestamps (8.2)
When the file itself was last modified, when the file was last accessed, and
when the inode was last modified

The file’s type
Whether the file is a regular file, a special file, or some other kind of abstrac-
tion masquerading (1.19) as a file

Each filesystem has a set number of inodes that are created when the filesystem
is first created (usually when the disk is first initialized). This number is there-
fore the maximum number of files that the filesystem can hold. It cannot be
changed without reinitializing the filesystem, which destroys all the data that the
filesystem holds. It is possible, though rare, for a filesystem to run out of inodes,
just as it is possible to run out of storage space—this can happen on filesystems
with many, many small files.

The [s -1 (50.2) command shows much of this information. The Is —i option (10.4)
shows a file’s i-number. The stat command lists almost everything in an inode.

—ML

rm and Its Dangers

Under Unix, you use the rm command to delete files. The command is simple
enough; you just type rm followed by a list of files. If anything, rm is too simple.
It’s easy to delete more than you want, and once something is gone, it’s perma-
nently gone. There are a few hacks that make rm somewhat safer, and we’ll get
to those momentarily. But first, here’s a quick look at some of the dangers.

To understand why it’s impossible to reclaim deleted files, you need to know a
bit about how the Unix filesystem works. The system contains a “free list,”
which is a list of disk blocks that aren’t used. When you delete a file, its direc-
tory entry (which gives it its name) is removed. If there are no more links (103) to
the file (i.e., if the file only had one name), its inode (14.2) is added to the list of
free inodes, and its datablocks are added to the free list.

Chapter 14: Removing Files 263

14.3

14.3

Well, why can’t you get the file back from the free list? After all, there are DOS
utilities that can reclaim deleted files by doing something similar. Remember,
though, Unix is a multitasking operating system. Even if you think your system
is a single-user system, there are a lot of things going on “behind your back”:
daemons are writing to log files, handling network connections, processing elec-
tronic mail, and so on. You could theoretically reclaim a file if you could
“freeze” the filesystem the instant your file was deleted—but that’s not possible.
With Unix, everything is always active. By the time you realize you made a mis-
take, your file’s data blocks may well have been reused for something else.

When you’re deleting files, it’s important to use wildcards carefully. Simple typ-
ing errors can have disastrous consequences. Let’s say you want to delete all
your object (.0) files. You want to type:

% m *.0
But because of a nervous twitch, you add an extra space and type:
% rm* .o

It looks right, and you might not even notice the error. But before you know it,
all the files in the current directory will be gone, irretrievably.

If you don’t think this can happen to you, here’s something that actually did hap-
pen to me. At one point, when I was a relatively new Unix user, I was working on
my company’s business plan. The executives thought, so as to be “secure,” that
they’d set a business plan’s permissions so you had to be root (1.18) to modify it.
(A mistake in its own right, but that’s another story.) I was using a terminal I
wasn’t familiar with and accidentally created a bunch of files with four control
characters at the beginning of their name. To get rid of these, I typed (as root):

xm 2222%

This command took a long time to execute. When about two-thirds of the direc-
tory was gone, I realized (with horror) what was happening: I was deleting all
files with four or more characters in the filename.

The story got worse. They hadn’t made a backup in about five months. (By the
way, this article should give you plenty of reasons for making regular backups
(38.3).) By the time I had restored the files T had deleted (a several-hour process in
itself; this was on an ancient version of Unix with a horrible backup utility) and
checked (by hand) all the files against our printed copy of the business plan, I
had resolved to be very careful with my rm commands.

[Some shells have safeguards that work against Mike’s first disastrous example—
but not the second one. Automatic safeguards like these can become a crutch,
though...when you use another shell temporarily and don’t have them, or when
you type an expression like Mike’s very destructive second example. I agree with
his simple advice: check your rm commands carefully!—]P]

—ML

264

Part lll: Working with Files and Directories

14.5

14.4 Tricks for Making rm Safer

Here’s a summary of ways to protect yourself from accidentally deleting
files:

Use rm —i, possibly as an alias (article 14.8).
Make rm —i less painful (article 14.7).

Write a “delete” script that moves “deleted” files to a temporary direc-
tory (article 14.9).

tcsh has an rmstar variable that makes the shell ask for confirmation
when you type something like rm *. In zsh, this protection is automatic
unless you set the RM_STAR_SILENT shell option to stop it.

Use revision control (article 39.4).
Make your own backups, as explained in article 38.3.

Prevent deletion (or renaming or creating) of files by making the direc-
tory (not necessarily the files in it!) unwritable (article 50.2).

If you want to delete with wild abandon, use rm —f (article 14.10).

—ML

14.5 Answer “Yes” or “No” Forever
with yes

Some commands—Ilike rm —i, find —ok, and so on—ask users to answer a “do it
or not?” question from the keyboard. For example, you might have a file-deleting
program or alias named del that asks before deleting each file:

% del *
Remove file1? y
Remove file2? y

If you answer y, then the file will be deleted.

What if you want to run a command that will ask you 200 questions and you
want to answer y to all of them, but you don’t want to type all those ys from the
keyboard? Pipe the output of yes to the command; it will answer y for you:

% yes | del *

Remove file1?

Remove file2?

Chapter 14: Removing Files 265

14.6

14.6

14.7

If you want to answer n to all the questions, you can do:

% yes n | del *

Not all Unix commands read their standard input for answers to
prompts. If a command opens your terminal (/dev/tty (36.15))
directly to read your answer, yes won’t work. Try expect (28.18)
instead.

Remove Some, Leave Some

Most people use rm —i for safety: so they’re always asked for confirmation before
removing a particular file. Mike Loukides told me about another way he uses
rm —i. When he has several files to remove, but the wildcards (1.13) would be too
painful to type with a plain rm, Mike gives rm —i a bigger list of filenames and

«__»

answers “n” to filenames he doesn’t want deleted. For instance:

% 1s
aberrant abhorred abnormal abominate acerbic
aberrate abhorrent abominable absurd acrimonious

% xm -i ab*

1m: remove aberrant (y/n)? y
rm: remove aberrate (y/n)? n
rm: remove abhorred (y/n)? y
1m: remove abhorrent (y/n)? n

A Faster Way to Remove Files
Interactively

The rm —i command asks you about each file, separately. The method in this
article can give you the safety without the hassle of typing y as much.

Another approach, which I recommend, is that you create a new script or alias,
and use that alias whenever you delete files. Call the alias del or Rm, for instance.
This way, if you ever execute your special delete command when it doesn’t exist,
no harm is done—you just get an error. If you get into this habit, you can start
making your delete script smarter. Here is one that asks you about each file if
there are three or fewer files specified. For more than three files, it displays them
all and asks you once if you wish to delete them all:

266

Part lll: Working with Files and Directories

14.8

./-14.13

~31.11

#!/bin/sh
case $# in
0) echo "“basename $0°: you didn't say which file(s) to delete"; exit 1;;
[123]) /bin/tm -i "$@" ;;
) echo "$"
echo do you want to delete these files\?
read a

case "$a" in
[yY]*) /bin/xm "$@" ;;
esac

esac

—BB

Safer File Deletion in
Some Directories

Using noclobber (436) and read-only files only protects you from a few occa-
sional mistakes. A potentially catastrophic error is typing:

% m * .0
instead of:
% rm *,0

In the blink of an eye, all of your files would be gone. A simple, yet effective, pre-
ventive measure is to create a file called —i in the particular directory in which
you want extra protection:

% touch ./-i

In this case, the * is expanded to match all of the filenames in the directory.
Because the file —i is alphabetically listed before any file except those that start
with one of the characters |, #, $,%, &, ', (,), *, +, or ,, the rm command sees the
—i file as a command-line argument. When rm is executed with its —i option, files
will not be deleted unless you verify the action. This still isn’t perfect, though. If
you have a file that starts with a comma (,) in the directory, it will come before
the file starting with a dash, and rm will not get the —i argument first.

The —i file also won’t save you from errors like this:
% rm [a-z]* .0

If lots of users each make a —i file in each of their zillions of subdirectories, that
could waste a lot of disk inodes (14.2). It might be better to make one —i file in
your home directory and hard link (15.4) the rest to it, like this:

cd
touch ./-i
cd somedir

%
%
%
% 1n ~/-1i .

Chapter 14: Removing Files 267

14.8

14.9

14.9

3435.14
-r14.16

Second, to save disk blocks, make sure the —i file is zero-length—use the touch
command, not vi or some other command that puts characters in the file.

—BB

Safe Delete: Pros and Cons

To protect themselves from accidentally deleting files, some users create a
“trash” directory somewhere and then write a “safe delete” program that,
instead of rming a file, moves it into the trash directory. The implementation can
be quite complex, but a simple alias or shell function will do most of what you
want:

alias del "mv \!* ~/trash/."
Or, for Bourne-type shells:
del () { mv "$@" $HOME/trash/.; }

Of course, now your deleted files collect in your trash directory, so you have to
clean that out from time to time. You can do this either by hand or automati-
cally, via a cron (25.2) entry like this:

23 2 * * * cd $HOME/trash && rm -rf *

This deletes everything in the trash directory at 2:23 a.m. daily. To restore a file
that you deleted, you have to look through your trash directory by hand and put
the file back in the right place. That may not be much more pleasant than pok-
ing through your garbage to find the tax return you threw out by mistake, but
(hopefully) you don’t make lots of mistakes.

There are plenty of problems with this approach. Obviously, if you delete two
files with the same name in the same day, you’re going to lose one of them. A
shell script could (presumably) handle this problem, though you’d have to gen-
erate a new name for the deleted file. There are also lots of nasty side effects and
“gotchas,” particularly if you want an rm—r equivalent, if you want this
approach to work on a network of workstations, or if you use it to delete files
that are shared by a team of users.

Unfortunately, this is precisely the problem. A “safe delete” that isn’t really safe
may not be worth the effort. Giving people a safety net with holes in it is only
good if you can guarantee in advance that they won’t land in one of the holes,
believing themselves protected. You can patch some of the holes by replacing
this simple alias with a shell script; but you can’t fix all of them.

—ML

268

Part lll: Working with Files and Directories

14.10 Deletion with Prejudice: rm —f

14.11

The —f option to rm is the extreme opposite of —i. It says, “Just delete the file;
don’t ask me any questions.” The “f” stands (allegedly) for “force,” but this isn’t
quite right. rm —f won’t force the deletion of something that you aren’t allowed
to delete. (To understand what you’re allowed to delete, you need to under-
stand directory access permissions (50.2).)

What, then, does rm —f do, and why would you want to use it?

* Normally, rm asks you for confirmation if you tell it to delete files to which
you don’t have write access—you’ll get a message like Override protection
444 for foo? (The Unix filesystem allows you to delete read-only files, pro-
vided you have write access to the directory.) With —f, these files will be
deleted silently.

* Normally, rm’s exit status (35.12) is 0 if it succeeded and 1 if it failed to delete
the file. With —f, rm’s return status is always 0.

I find that I rarely use rm —f on the Unix command line, but I almost always use
it within shell scripts. In a shell script, you (probably) don’t want to be inter-
rupted by lots of prompts should rm find a bunch of read-only files.

You probably also don’t want to be interrupted if rm —f tries to delete files that
don’t exist because the script never created them. Generally, rm —f keeps quiet
about files that don’t exist; if the desired end result is for the file to be gone, it
not existing in the first place is just as good.

—ML
Deleting Files with 0dd Names

A perennial problem is deleting files that have strange characters (or other
oddities) in their names. The next few articles contain some hints for the fol-
lowing:

* Deleting files with random control characters in their names (article

14.12).

* Deleting files whose names start with a dash (article 14.13).

* Deleting files with “unprintable” filenames (article 14.14).

* Deleting files by using the inode number (article 14.15).

* Deleting directories and problems that can arise as a result (article
14.16).

Chapter 14: Removing Files 269

14.11

14.12

14.12

We'll also give hints for these:

* Deleting unused (or rarely used) files (article 14.17).

* Deleting all the files in a directory, except for one or two (article 14.18).

Most tips for deleting files also work for renaming the files (if you want to
keep them): just replace the rm command with mv.

—ML

Using Wildcards to Delete Files
with Strange Names

Filenames can be hard to handle if their names include control characters or
characters that are special to the shell. Here’s a directory with three oddball
filenames:

% 1s

What now

a$file

prog|.c

program.c
When you type those filenames on the command line, the shell interprets the
special characters (space, dollar sign, and vertical bar) instead of including them
as part of the filename. There are several ways (14.11) to handle this problem. One
is with wildcards (33.2). Type a part of the filename without the weird characters,
and use a wildcard to match the rest. The shell doesn’t scan the filenames for
other special characters after it interprets the wildcards, so you’re (usually) safe if
you can get a wildcard to match. For example, here’s how to rename What now
to Whatnow, remove a$file, and rename prog|.c to prog.c:

% mv What* Whatnow

% rm -i a*

rm: remove a$file? y

% mv prog?.c prog.c
Filenames with control characters are just another version of the same problem.
Use a wildcard to match the part of the name that’s troubling you. The real
problem with control characters in filenames is that some control characters do
weird things to your screen. Once I accidentally got a file with a CTRL-L in its
name. Whenever I ran [s, it erased the screen before I could see what the file-
name was! Article 8.12 explains how, depending on your version of Is, you can
use the —q or —b options to spot the offensive file and construct a wildcard
expression to rename or delete it. (Is —q is the default on most Unix implementa-
tions these days, so you will probably never see this particular problem.)

270

Part lll: Working with Files and Directories

14.13

14.14

Handling a Filename Starting
with a Dash (-)

Sometimes you can slip and create a file whose name starts with a dash (-), like
—output or —f. That’s a perfectly legal filename. The problem is that Unix com-
mand options usually start with a dash. If you try to type that filename on a
command line, the command might think you’re trying to type a command
option.

In almost every case, all you need to do is “hide” the dash from the command.
Start the filename with ./ (dot slash). This doesn’t change anything as far as the
command is concerned; ./ just means “look in the current directory” (1.16). So
here’s how to remove the file —:

% xm /-f

(Most rm commands have a special option for dealing with filenames that start
with a dash, but this trick should work on all Unix commands.)

Using unlink to Remove a File
with a Strange Name

Some versions of Unix have a lot of trouble with eight-bit filenames—that is, file-
names that contain non-ASCII characters. The [s —g (8.12) command shows the
nonASCII characters as question marks (?), but usual tricks like rm —i * (14.12) skip
right over the file. You can see exactly what the filename is by using Is —b (8.12):

% 1s -q

2222

afile

bfile

% xm -i *

afile: ? n

bfile: ? n

% 1s -b

\t\360\207\005\254

afile

bfile

On older Unixes, the —b option to Is might not be supported, in which case you
can use od —c (124) to dump the current directory, using its relative pathname
. (dot) (1.16), character by character. It’s messier, and isn’t supported on all Unix
platforms, but it’s worth a try:

% od -c .

00..... \t 360 207 005 254 \O \O \O \O

Chapter 14: Removing Files 271

14.14

14.15

14.15

14.16

If you can move all the other files out of the directory, then you’ll probably be
able to remove the leftover file and directory with rm —rf (14.16, 14.10). Moving files
and removing the directory is a bad idea, though, if this is an important system
directory like /bin. Otherwise, if you use the escaped name Is —b gave you, you
might be able to remove it directly by using the system call unlink(2) in Perl. Use
the same escape characters in Perl that Is —b displayed. (Or, if you needed to use
od —c, find the filename in the od listing of the directory—it will probably end
with a series of NUL characters, like \0o \0 \0.)

perl -e 'unlink("\t\360\207\005\254");"

Removing a Strange File
by its i-number

If wildcards don’t work (14.12) to remove a file with a strange name, try getting
the file’s i-number (14.2). Then use find’s —inum operator (9.9) to remove the file.

Here’s a directory with a weird filename. Is (with its default —q option (8.12) on
most versions) shows that the name has three unusual characters. Running Is —i
shows each file’s i-number. The strange file has i-number 6239. Give the i-num-
ber to find, and the file is gone:

% 1s
adir afile b???file bfile cfile dfile
% 1s -i
6253 adir 6239 b???file 6249 cfile
9291 afile 6248 bfile 9245 dfile
% find . -inum 6239 -exec rm {} \;
% 1s

adir afile bfile cfile dfile

Instead of deleting the file, I also could have renamed it to newname with the
command:

% find . -inum 6239 -exec mv {} newname \;

If the current directory has large subdirectories, you’ll probably want to keep
find from recursing down into them by using the —maxdepth 1 operator. (finds
that don’t support —maxdepth can use —prune (9.25) for speed.)

Problems Deleting Directories

What if you want to get rid of a directory? The standard—and safest—way to
do this is to use the Unix rmdir “remove directory” utility:

% rmdir files

272

Part lll: Working with Files and Directories

The rmdir command often confuses new users. It will only remove a directory if
it is completely empty; otherwise, you’ll get an error message:

% rmdir files

rmdir: files: Directory not empty

% 1s files

%
As in the example, Is will often show that the directory is empty. What’s going
on?

It’s common for editors and other programs to create “invisible” files (files with
names beginning with a dot). The Is command normally doesn’t list them; if you
want to see them, you have to use Is —A (8.9):"

% rmdir files

rmdir: files: Directory not empty

% 1s -A files

.BAK.textfile2
Here, we see that the directory wasn’t empty after all: there’s a backup file that
was left behind by some editor. You may have used rm * to clean the directory
out, but that won’t work: rm also ignores files beginning with dots, unless you
explicitly tell it to delete them. We really need a wildcard pattern like .?2* or
.[a-zA-Z0-9]* to catch normal dotfiles without catching the directories . and . .:

% rmdir files

rmdir: files: Directory not empty

% 1s -A files

.BAK.textfile2

% xm files/.?2?*

% rmdir files

%
Other pitfalls might be files whose names consist of nonprinting characters or
blank spaces—sometimes these get created by accident or by malice (yes, some
people think this is funny). Such files will usually give you “suspicious” Is out-
put (8.11) (like a blank line).

If you don’t want to worry about all these special cases, just use rm —:
% xm -r files

This command removes the directory and everything that’s in it, including other
directories. A lot of people warn you about it; it’s dangerous because it’s easy to
delete more than you realize. Personally, I use it all the time, and I've never made
a mistake. I never bother with rmdir.

—ML

* If your version of Is doesn’t have the —A option, use —a instead. You'll see the two special directory
entries . and .. (8.9), which you can ignore.

Chapter 14: Removing Files 273

14.16

14.17

14.17

19.6
-perm 9.15

Deleting Stale Files

Sooner or later, a lot of junk collects in your directories: files that you don’t
really care about and never use. It’s possible to write find (9.1) commands that
will automatically clean these up. If you want to clean up regularly, you can add
some find commands to your crontab file (25.2).

Basically, all you need to do is write a find command that locates files based on
their last access time (—atime (9.5)) and use —ok or —exec (9.9) to delete them. Such
a command might look like this:

% find . -atime +60 -ok rm -f {} \;

This locates files that haven’t been accessed in the last 60 days, asks if you want
to delete the file, and then deletes the file. (If you run it from cron, make sure
you use —exec instead of —ok, and make absolutely sure that the find won’t delete
files that you think are important.)

Of course, you can modify this find command to exclude (or select) files with
particular names; for example, the following command deletes old core dumps
and GNU Emacs backup files (whose names end in ~), but leaves all others
alone:

% find . \(-name core -o -name "*~" \) -atime +60 -ok rm -f {} \;

If you take an automated approach to deleting stale files, watch out for these
things:

* There are plenty of files (for example, Unix utilities and log files) that should
never be removed. Never run any “automatic deletion” script on /usr or / or
any other “system” directory.

* On some systems, executing a binary executable doesn’t update the last
access time. Since there’s no reason to read these files, you can expect them
to get pretty stale, even if they’re used often. But you don’t want to delete
them. If you cook up a complicated enough find command, you should be
able to handle this automatically. Something like this should (at least par-
tially) do the trick:

% find . -atime 430 ! -perm -111 ... -exec rm {} \;

* Along the same lines, you’d probably never want to delete C source code, so
you might modify your find command to look like this:

% find . -atime +30 ! -perm -111 ! -pame "*.c" ... -exec rm {} \;

* [personally find that automatically deleting files is an extreme and bizarre
solution. T can’t imagine deleting files without knowing exactly what I've
deleted or without (somehow) saving the “trash” somewhere just in case I
accidentally removed something important. To archive the deleted files on
tape, you can use the find —cpio operator if your system has it. Otherwise, try
a little shell script with GNU tar; the following script writes the list of files

274

Part lll: Working with Files and Directories

if 35.13
8% 35.14

14.18

to a temporary file and then, if that succeeds, reads the list of files, writes
them to tape, and removes the files if the tape write succeeds:

umask 077
files=/tmp/CLEANUP$$
if find ... -print > $files

then tar -c -T $files --remove && rm $files

else echo "cleanup aborted because find returned nonzero status"

fi
Okay, I've said that I don’t really think that automated deletion scripts are a
good idea. However, I don’t have a good comprehensive solution. I spend a rea-
sonable amount of time (maybe an hour a month) going through directories and
deleting stale files by hand. I also have a clean alias that I type whenever I think
about it. It looks like this:

alias clean "rm *~ junk *.BAK core #*"

That is, this alias deletes all of my Emacs (19.1) backup files, Emacs autosave files
(risky, I know), files named junk, some other backup files, and core dumps. Ill
admit that since I never want to save these files, I could probably live with some-
thing like this:

% find ~ \(-name "**" -0 -name core \) -atime +1 -exec rm {} \;

But still, automated deletion commands make me really nervous, and I'd prefer
to live without them.

—ML

Removing Every File but One

One problem with Unix: it’s not terribly good at “excluding” things. There’s no
option to rm that says, “Do what you will with everything else, but please don’t
delete these files.” You can sometimes create a wildcard expression (33.2) that
does what you want—but sometimes that’s a lot of work, or maybe even
impossible.

Here’s one place where Unix’s command substitution (28.14) operators (back-
quotes) come to the rescue. You can use Is to list all the files, pipe the output
into a grep —v or egrep —v (133) command, and then use backquotes to give the
resulting list to rm. Here’s what this command would look like:

% 1m -1 “1s -d *.txt | grep -v '~john\.txt$'"

This command deletes all files whose names end in .txt, except for john.txt. I've
probably been more careful than necessary about making sure there aren’t any
extraneous matches; in most cases, grep —v john would probably suffice. Using
Is —d (85) makes sure that Is doesn’t look into any subdirectories and give you
those filenames. The rm —i asks you before removing each file; if you’re sure of
yourself, omit the —i.

Chapter 14: Removing Files 275

14.18

14.19

Of course, if you want to exclude two files, you can do that with egrep:
% 1m “1s -d *.txt | egrep -v 'john|mary'"
(Don’t forget to quote the vertical bar (|), as shown earlier, to prevent the shell
from piping egrep’s output to mary.)
Another solution is the nom (33.8) script.

—ML

14.19 Using find to Clear Out
Unneeded Files

Do you run find on your machine every night? Do you know what it has to go
through just to find out if a file is three days old and smaller than ten blocks or
owned by “fred” or setuid root? This is why I tried to combine all the things we
need done for removal of files into one big find script:

’ #! /bin/sh
@
cléanup # cleanup - find files that should be removed and clean them
out of the file system.
find / \(\(-name '#*' -atime +1 \) \
-0 \(-name ',*' -atime +1 \) \
-0 \(-name rogue.sav -atime +7 \) \
-0 \(\(-name '*.bak' \
-0 -name "*.dvi' \
-0 -name "*.CKP' \
-0 -name '.*.bak' \
-0 -name '.*¥.CKP' \) -atime +3 \) \
-0 \(-name '.emacs_[0-9]*' -atime +7 \) \
-0 \(-name core \) A\
-0 \(-user guest -atime +9 \) \
2>81 36.16 \) -print -exec rm -f {} \; > /tmp/.cleanup 2>&1

This is an example of using a single find command to search for files with differ-
ent names and last-access times (see article 9.5). Doing it all with one find is
much faster—and less work for the disk—than running a lot of separate finds.
The parentheses group each part of the expression. The neat indentation makes
this big thing easier to read. The -print -exec at the end removes each file and
also writes the filenames to standard output, where they’re collected into a file
named /tmp/.cleanup—people can read it to see what files were removed. You
should probably be aware that printing the names to /tmp/.cleanup lets everyone
see pathnames, such as /home/joe/personalfresume.bak, which some people
might consider sensitive. Another thing to be aware of is that this find command
starts at the root directory; you can do the same thing for your own directories.

—CT and JP

276 Part lll: Working with Files and Directories

15.1

15.2

15

Optimizing Disk Space

Disk Space Is Cheap

Many of the techniques in this chapter aren’t nearly as applicable as they once
were. At the time of this writing, EIDE disks are about a dollar a gigabyte; even
fast-wide SCSI isn’t that expensive. Often the solution to running low on disk
space is just to buy more.

That said, many of these techniques illustrate useful things to know about Unix.
It’s common these days to run Unix on an old, spare machine where it’s not
worth the trouble of upgrading the disks. You may also be dealing with a Unix
box at work or school that uses expensive, highly reliable disks with expensive
backup procedures in place, where more disk space just isn’t an option. It never
hurts to know how to eke the last few bytes out of a partition.

This chapter also has a lot of information about compressing and decompress-
ing files, which is fairly common. (These days, you may well compress files to
save network bandwidth rather than disk space, but the same principles apply.)
So enjoy exploring!

—DH

Instead of Removing a File, Empty It

Sometimes you don’t want to remove a file completely—you just want to empty
it:

* If an active process has the file open (not uncommon for log files), removing
the file and creating a new one will not affect the logging program; those
messages will just keep going to the file that’s no longer linked. Emptying
the file doesn’t break the association, and so it clears the file without affect-
ing the logging program.

277

15.2

tail 12.8

When you remove a file and create a new one with the same name, the new
file will have your default permissions and ownership (50.3). It’s better to
empty the file now, then add new text later; this won’t change the permis-
sions and ownership.

Completely empty files (ones that Is — says have zero characters) don’t take
any disk space to store (except the few bytes that the directory entry (10.2)
uses).

You can use the empty files as “place markers” to remind you that some-
thing was there or belongs there. Some Unix logging programs won’t write
errors to their log files unless the log files already exist. Empty files work fine
for that.

Empty files hold a “timestamp” (just as files with text do) that shows when
the file was last modified. I use empty files in some directories to remind me
when I've last done something (backups, printouts, etc.). The find —newer
(9.8) command can compare other files to a timestamp file.

Well, you get the idea by now.

How can you empty a file? Watch out: when some editors say that a file has “no
lines,” they may still append a newline character when writing the file. Just one
character still takes a block of disk space to store. Here are some better ways to
get a properly empty file:

In Bourne-type shells like sh and bash, the most efficient way is to redirect
the output of a null command:

$ > afile
If the file already exists, that command will truncate the file without need-
ing a subprocess.
Copy the Unix empty file, /dev/null (43.12), on top of the file:
% cp /dev/null afile
Or just cat it there:
% cat /dev/null > afile

You can also “almost” empty the file, leaving just a few lines, this way:

% tail afile > tmpfile
% cat tmpfile > afile
% xm tmpfile

That’s especially good for log files that you never want to delete completely. Use
cat and rm, not mv—mv will break any other links to the original file (afile) and
replace it with the temporary file.

278

Part lll: Working with Files and Directories

15.3 Save Space with “Bit Bucket”

15.4

Log Files and Mailboxes

Some Unix programs—usually background or daemon programs—insist on
writing a log file. You might not want the log file itself as much as you want the
disk space that the log file takes. Here are a few tips:

* Some programs will write to a log file only if the log file exists. If the pro-

gram isn’t running, try removing the log file.

If you remove a log file and the program recreates it, look for command-line
options or a configuration-file setup that tells the program not to make the
log file.

If you can’t get the program to stop writing the log file, try replacing the log
file with a symbolic link to /dev/null (43.12):

rm logfile

1n -s /dev/null logfile
The program won’t complain, because it will happily write its log file to /dev/
null, which discards everything written to it. (Writing to /dev/null is also
known as “throwing it in the bit bucket,” since all the bits just go away.)
Watch out for programs that run at reboot or those that run from the system
crontab (25.2) to truncate and replace the log file. These programs might
replace the symbolic link with a small regular file that will start growing again.

Does a system mailbox for a user like bin keep getting mail (1.21) that you
want to throw away? You may be able to add a .forward file to the account’s
home directory with this single line:

/dev/null
Or add an alias in the system mail alias file that does the same thing:

bin: /dev/null
If your system has a command like newaliases to rebuild the alias database,
don’t forget to use it after you make the change.

Save Space with a Link

You might have copies of the same file in several directories for the following
reasons:

* Several different users need to read it (a data file, a program setup file, a tele-

phone list, etc.).

e It’sa program that more than one person wants to use. For some reason,

you don’t want to keep one central copy and put its directory in your search
path (27.6).

Chapter 15: Optimizing Disk Space 279

15.4

15.5

15.5

* The file has a strange name or it’s in a directory you don’t usually use. You
want a name that’s easier to type, but you can’t use mv.

Instead of running cp, think about In. There are lots of advantages to links (10.3).
One big advantage of hard links is that they don’t use any disk space.” The big-
ger the file, the more space you save with a link. A symbolic link always takes
some disk space, so a hard link might be better for ekeing the most space out of
your disk. Of course, you have to use a symbolic link if you want to link across
filesystems, and symbolic links are much more obvious to other people, so a
symlink is less likely to confuse people. Generally the clarity is worth the little bit
of extra disk space.

Limiting File Sizes

Here are techniques to keep you from creating large files (which can happen by
accident, such as with runaway programs). Your shell may be able to set process
limits. If you’re writing a program in C or another language that has access to
kernel system calls, you can set these limits yourself. And there’s one more trick
you can use.

These limits are passed to child processes. So, if your shell sets a limit, all pro-
grams you start from that shell will inherit the limit from their parent process.

limit and ulimit

Many shells have a built-in command that uses system calls to set resource lim-
its. This is usually done from a shell setup file (3.3), but can also be done from the
command line at a shell prompt. To set a maximum file size in C-type shells and
zsh, use the command 1limit filesize max-size. In the Korn shell and bash, use
ulimit -f max-size. For example, the following csh and ksh commands keep
you from creating any files larger than 2 MB:

% limit filesize 2m

$ ulimit -f 2000
Similarly, on many systems, you can use limit and ulimit to restrict the size of
core dump files. Core dumps are generally large files, and if you are not actively
developing or debugging, they are often not interesting or useful. To set a maxi-
mum size for core dumps, execute one of these commands:

% limit coredumpsize max-size
$ ulimit -c max-size

* The link entry takes a few characters in the directory where you make the link. Unless this makes the
directory occupy another disk block, the space available on the disk doesn’t change.

280

Part lll: Working with Files and Directories

; 28.16

chmod 50.5

