theweh Application

Hacker's
Handbook

Finding and Exploiting

Security Flaws S
[.dition

-
-
—— B Dafydd Stuttard MMarcus Pinto

The Web Application
Hacker's Handbook_

Second Edition

Finding and Exploiting Security Flaws

Dafydd Stuttard
Marcus Pinto

WILEY
Wiley Publishing, Inc.

The Web Application Hacker’s Handbook: Finding and Exploiting Security Flaws, Second Edition

Published by

John Wiley & Sons, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2011 by Dafydd Stuttard and Marcus Pinto
Published by John Wiley & Sons, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-1-118-02647-2

ISBN: 978-1-118-17522-4 (ebk)
ISBN: 978-1-118-17524-8 (ebk)
ISBN: 978-1-118-17523-1 (ebk)

Manufactured in the United States of America
10987654321

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted
under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permis-
sion of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright
Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the
Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111
River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http: //www.wiley .
com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or war-
ranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all
warranties, including without limitation warranties of fitness for a particular purpose. No warranty may be
created or extended by sales or promotional materials. The advice and strategies contained herein may not
be suitable for every situation. This work is sold with the understanding that the publisher is not engaged in
rendering legal, accounting, or other professional services. If professional assistance is required, the services
of a competent professional person should be sought. Neither the publisher nor the author shall be liable for
damages arising herefrom. The fact that an organization or Web site is referred to in this work as a citation
and/or a potential source of further information does not mean that the author or the publisher endorses
the information the organization or website may provide or recommendations it may make. Further, readers
should be aware that Internet websites listed in this work may have changed or disappeared between when
this work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department
within the United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats and by print-on-demand. Not all content
that is available in standard print versions of this book may appear or be packaged in all book formats. If
you have purchased a version of this book that did not include media that is referenced by or accompanies
a standard print version, you may request this media by visiting http: //booksupport.wiley.
com. For more information about Wiley products, visit us at www . wiley.com

Library of Congress Control Number: 2011934639

Trademarks: Wiley and the Wiley logo are trademarks or registered trademarks of John Wiley & Sons, Inc.
and/or its affiliates, in the United States and other countries, and may not be used without written permission.
All other trademarks are the property of their respective owners. John Wiley & Sons, Inc. is not associated
with any product or vendor mentioned in this book.

http://www.wiley.com
http://www.wiley.com/go/permissions
http://www.wiley.com/go/permissions
http://booksupport.wiley.com
http://booksupport.wiley.com
http://www.wiley.com

About the Authors

Dafydd Stuttard is an independent security consultant, author, and software
developer. With more than 10 years of experience in security consulting, he
specializes in the penetration testing of web applications and compiled soft-
ware. Dafydd has worked with numerous banks, retailers, and other enterprises
to help secure their web applications. He also has provided security consulting to
several software manufacturers and governments to help secure their compiled
software. Dafydd is an accomplished programmer in several languages. His
interests include developing tools to facilitate all kinds of software security
testing. Under the alias “PortSwigger,” Dafydd created the popular Burp Suite
of web application hacking tools; he continues to work actively on Burp’s devel-
opment. Dafydd is also cofounder of MDSec, a company providing training and
consultancy on Internet security attack and defense. Dafydd has developed and
presented training courses at various security conferences around the world,
and he regularly delivers training to companies and governments. He holds
master’s and doctorate degrees in philosophy from the University of Oxford.

Marcus Pinto is cofounder of MDSec, developing and delivering training
courses in web application security. He also performs ongoing security con-
sultancy for financial, government, telecom, and retail verticals. His 11 years
of experience in the industry have been dominated by the technical aspects of
application security, from the dual perspectives of a consulting and end-user
implementation role. Marcus has a background in attack-based security assess-
ment and penetration testing. He has worked extensively with large-scale web
application deployments in the financial services industry. Marcus has been
developing and presenting database and web application training courses since
2005 at Black Hat and other worldwide security conferences, and for private-
sector and government clients. He holds a master’s degree in physics from the
University of Cambridge.

iv

About the Technical Editor

Dr. Josh Pauli received his Ph.D. in Software Engineering from North Dakota
State University (NDSU) with an emphasis in secure requirements engineering
and now serves as an Associate Professor of Information Security at Dakota
State University (DSU). Dr. Pauli has published nearly 20 international jour-
nal and conference papers related to software security and his work includes
invited presentations from the Department of Homeland Security and Black
Hat Briefings. He teaches both undergraduate and graduate courses in system
software security and web software security at DSU. Dr. Pauli also conducts web
application penetration tests as a Senior Penetration Tester for an Information
Security consulting firm where his duties include developing hands-on techni-
cal workshops in the area of web software security for IT professionals in the
financial sector.

MDSec: The Authors’ Company

Dafydd and Marcus are cofounders of MDSec, a company that provides training
in attack and defense-based security, along with other consultancy services. If
while reading this book you would like to put the concepts into practice, and
gain hands-on experience in the areas covered, you are encouraged to visit our
website, http: //mdsec.net. This will give you access to hundreds of interactive
vulnerability labs and other resources that are referenced throughout the book.

vi

Credits

Executive Editor
Carol Long

Senior Project Editor
Adaobi Obi Tulton

Technical Editor
Josh Pauli

Production Editor
Kathleen Wisor

Copy Editor
Gayle Johnson

Editorial Manager
Mary Beth Wakefield

Freelancer Editorial Manager
Rosemarie Graham

Associate Director of
Marketing
David Mayhew

Marketing Manager
Ashley Zurcher

Business Manager
Amy Knies

Production Manager
Tim Tate

Vice President and Executive
Group Publisher
Richard Swadley

Vice President and Executive
Publisher
Neil Edde

Associate Publisher
Jim Minatel

Project Coordinator, Cover
Katie Crocker

Proofreaders
Sarah Kaikini, Word One
Sheilah Ledwidge, Word One

Indexer
Robert Swanson

Cover Designer
Ryan Sneed

Cover Image
Wiley InHouse Design

Vertical Websites Project Manager
Laura Moss-Hollister

Vertical Websites Assistant Project
Manager
Jenny Swisher

Vertical Websites Associate
Producers

Josh Frank

Shawn Patrick

Doug Kuhn

Marilyn Hummel

Acknowledgments

We are indebted to the directors and others at Next Generation Security Software,
who provided the right environment for us to realize the first edition of this
book. Since then, our input has come from an increasingly wider community
of researchers and professionals who have shared their ideas and contributed
to the collective understanding of web application security issues that exists
today. Because this is a practical handbook rather than a work of scholarship,
we have deliberately avoided filling it with a thousand citations of influential
articles, books, and blog postings that spawned the ideas involved. We hope
that people whose work we discuss anonymously are content with the general
credit given here.

We are grateful to the people at Wiley — in particular, to Carol Long for
enthusiastically supporting our project from the outset, to Adaobi Obi Tulton
for helping polish our manuscript and coaching us in the quirks of “American
English,” to Gayle Johnson for her very helpful and attentive copy editing, and
to Katie Wisor’s team for delivering a first-rate production.

A large measure of thanks is due to our respective partners, Becky and Amanda,
for tolerating the significant distraction and time involved in producing a book
of this size.

Both authors are indebted to the people who led us into our unusual line
of work. Dafydd would like to thank Martin Law. Martin is a great guy who
first taught me how to hack and encouraged me to spend my time developing
techniques and tools for attacking applications. Marcus would like to thank his
parents for everything they have done and continue to do, including getting me
into computers. I've been getting into computers ever since.

viii

Contents at a Glance

Introduction

Chapter 1
Chapter 2
Chapter 3
Chapter 4
Chapter 5
Chapter 6
Chapter 7
Chapter 8
Chapter 9
Chapter 10
Chapter 11
Chapter 12
Chapter 13
Chapter 14
Chapter 15
Chapter 16
Chapter 17
Chapter 18
Chapter 19
Chapter 20
Chapter 21
Index

Web Application (In)security

Core Defense Mechanisms

Web Application Technologies
Mapping the Application

Bypassing Client-Side Controls
Attacking Authentication

Attacking Session Management
Attacking Access Controls

Attacking Data Stores

Attacking Back-End Components
Attacking Application Logic

Attacking Users: Cross-Site Scripting
Attacking Users: Other Techniques
Automating Customized Attacks
Exploiting Information Disclosure
Attacking Native Compiled Applications
Attacking Application Architecture
Attacking the Application Server
Finding Vulnerabilities in Source Code
A Web Application Hacker’s Toolkit

A Web Application Hacker’s Methodology

xxiii

17
39
73
117
159
205
257
287
357
405
431
501
571
615
633
647
669
701
747
791
853

Contents

Introduction xxiii
Chapter 1 Web Application (In)security 1
The Evolution of Web Applications 2
Common Web Application Functions 4
Benefits of Web Applications 5
Web Application Security 6
“This Site Is Secure” 7
The Core Security Problem: Users Can Submit
Arbitrary Input 9
Key Problem Factors 10
The New Security Perimeter 12
The Future of Web Application Security 14
Summary 15
Chapter2 Core Defense Mechanisms 17
Handling User Access 18
Authentication 18
Session Management 19
Access Control 20
Handling User Input 21
Varieties of Input 21
Approaches to Input Handling 23
Boundary Validation 25
Multistep Validation and Canonicalization 28
Handling Attackers 30
Handling Errors 30
Maintaining Audit Logs 31
Alerting Administrators 33
Reacting to Attacks 34

X

Contents

Chapter 3

Chapter 4

Managing the Application
Summary
Questions

Web Application Technologies
The HTTP Protocol
HTTP Requests
HTTP Responses
HTTP Methods
URLs
REST
HTTP Headers
Cookies
Status Codes
HTTPS
HTTP Proxies
HTTP Authentication
Web Functionality
Server-Side Functionality
Client-Side Functionality
State and Sessions
Encoding Schemes
URL Encoding
Unicode Encoding
HTML Encoding
Base64 Encoding
Hex Encoding
Remoting and Serialization
Frameworks
Next Steps
Questions

Mapping the Application
Enumerating Content and Functionality
Web Spidering
User-Directed Spidering
Discovering Hidden Content
Application Pages Versus
Functional Paths
Discovering Hidden Parameters
Analyzing the Application
Identifying Entry Points for User Input
Identifying Server-Side Technologies
Identifying Server-Side Functionality
Mapping the Attack Surface
Summary
Questions

35
36
36

39
39
40
41
42
44
44
45
47
48
49
49
50
51
51
57
66
66
67
67
68
69
69

70
70
71

73
74
74
77
80

93
96
97
98
101
107
111
114
114

Contents

Chapter 5

Chapter 6

Bypassing Client-Side Controls

Transmitting Data Via the Client
Hidden Form Fields
HTTP Cookies
URL Parameters
The Referer Header
Opaque Data
The ASP.NET ViewState

Capturing User Data: HTML Forms
Length Limits
Script-Based Validation
Disabled Elements

Capturing User Data: Browser Extensions
Common Browser Extension Technologies
Approaches to Browser Extensions
Intercepting Traffic from Browser Extensions
Decompiling Browser Extensions
Attaching a Debugger
Native Client Components

Handling Client-Side Data Securely
Transmitting Data Via the Client
Validating Client-Generated Data
Logging and Alerting

Summary

Questions

Attacking Authentication
Authentication Technologies
Design Flaws in Authentication
Mechanisms
Bad Passwords
Brute-Forcible Login
Verbose Failure Messages
Vulnerable Transmission of Credentials
Password Change Functionality
Forgotten Password Functionality
“Remember Me” Functionality
User Impersonation Functionality
Incomplete Validation of Credentials
Nonunique Usernames
Predictable Usernames
Predictable Initial Passwords
Insecure Distribution of Credentials
Implementation Flaws in Authentication
Fail-Open Login Mechanisms
Defects in Multistage Login Mechanisms
Insecure Storage of Credentials

117
118
118
121
121
122
123
124
127
128
129
131
133
134
135
135
139
151
153
154
154
155
156
156
157

159
160

161
161
162
166
169
171
173
176
178
180
181
182
183
184
185
185
186
190

Contents

Xi

Chapter 7

Chapter 8

Securing Authentication
Use Strong Credentials
Handle Credentials Secretively
Validate Credentials Properly
Prevent Information Leakage
Prevent Brute-Force Attacks
Prevent Misuse of the Password Change Function
Prevent Misuse of the Account Recovery Function
Log, Monitor, and Notify
Summary
Questions

Attacking Session Management

The Need for State
Alternatives to Sessions

Weaknesses in Token Generation
Meaningful Tokens
Predictable Tokens
Encrypted Tokens

Weaknesses in Session Token Handling
Disclosure of Tokens on the Network
Disclosure of Tokens in Logs
Vulnerable Mapping of Tokens to Sessions
Vulnerable Session Termination
Client Exposure to Token Hijacking
Liberal Cookie Scope

Securing Session Management
Generate Strong Tokens
Protect Tokens Throughout Their Life Cycle
Log, Monitor, and Alert

Summary

Questions

Attacking Access Controls
Common Vulnerabilities
Completely Unprotected Functionality
Identifier-Based Functions
Multistage Functions
Static Files
Platform Misconfiguration
Insecure Access Control Methods
Attacking Access Controls
Testing with Different User Accounts
Testing Multistage Processes
Testing with Limited Access
Testing Direct Access to Methods
Testing Controls Over Static Resources

191
192
192
193
195
196
199
199
201
201
202

205
206
208
210
210
213
223
233
234
237
240
241
243
244
248
248
250
253
254
255

257
258
259
261
262
263
264
265
266
267
271
273
276
277

Contents xiii
Testing Restrictions on HTTP Methods 278
Securing Access Controls 278
A Multilayered Privilege Model 280
Summary 284
Questions 284
Chapter 9 Attacking Data Stores 287
Injecting into Interpreted Contexts 288
Bypassing a Login 288
Injecting into SQL 291
Exploiting a Basic Vulnerability 292
Injecting into Different Statement Types 294
Finding SQL Injection Bugs 298
Fingerprinting the Database 303
The UNION Operator 304
Extracting Useful Data 308
Extracting Data with UNION 308
Bypassing Filters 311
Second-Order SQL Injection 313
Advanced Exploitation 314
Beyond SQL Injection: Escalating the
Database Attack 325
Using SQL Exploitation Tools 328
SQL Syntax and Error Reference 332
Preventing SQL Injection 338
Injecting into NoSQL 342
Injecting into MongoDB 343
Injecting into XPath 344
Subverting Application Logic 345
Informed XPath Injection 346
Blind XPath Injection 347
Finding XPath Injection Flaws 348
Preventing XPath Injection 349
Injecting into LDAP 349
Exploiting LDAP Injection 351
Finding LDAP Injection Flaws 353
Preventing LDAP Injection 354
Summary 354
Questions 354
Chapter 10 Attacking Back-End Components 357
Injecting OS Commands 358
Example 1: Injecting Via Perl 358
Example 2: Injecting Via ASP 360
Injecting Through Dynamic Execution 362
Finding OS Command Injection Flaws 363
Finding Dynamic Execution Vulnerabilities 366

xiv Contents

Preventing OS Command Injection 367
Preventing Script Injection Vulnerabilities 368
Manipulating File Paths 368
Path Traversal Vulnerabilities 368
File Inclusion Vulnerabilities 381
Injecting into XML Interpreters 383
Injecting XML External Entities 384
Injecting into SOAP Services 386
Finding and Exploiting SOAP Injection 389
Preventing SOAP Injection 390
Injecting into Back-end HTTP Requests 390
Server-side HTTP Redirection 390
HTTP Parameter Injection 393
Injecting into Mail Services 397
E-mail Header Manipulation 398
SMTP Command Injection 399
Finding SMTP Injection Flaws 400
Preventing SMTP Injection 402
Summary 402
Questions 403
Chapter 11 Attacking Application Logic 405
The Nature of Logic Flaws 406
Real-World Logic Flaws 406
Example 1: Asking the Oracle 407
Example 2: Fooling a Password Change Function 409
Example 3: Proceeding to Checkout 410
Example 4: Rolling Your Own Insurance 412
Example 5: Breaking the Bank 414
Example 6: Beating a Business Limit 416
Example 7: Cheating on Bulk Discounts 418
Example 8: Escaping from Escaping 419
Example 9: Invalidating Input Validation 420
Example 10: Abusing a Search Function 422
Example 11: Snarfing Debug Messages 424
Example 12: Racing Against the Login 426
Avoiding Logic Flaws 428
Summary 429
Questions 430
Chapter 12 Attacking Users: Cross-Site Scripting 431
Varieties of XSS 433
Reflected XSS Vulnerabilities 434
Stored XSS Vulnerabilities 438
DOM-Based XSS Vulnerabilities 440
XSS Attacks in Action 442

Real-World XSS Attacks 442

Contents

Payloads for XSS Attacks 443
Delivery Mechanisms for XSS Attacks 447
Finding and Exploiting XSS Vulnerabilities 451
Finding and Exploiting Reflected XSS Vulnerabilities 452
Finding and Exploiting Stored XSS Vulnerabilities 481
Finding and Exploiting DOM-Based XSS Vulnerabilities 487
Preventing XSS Attacks 492
Preventing Reflected and Stored XSS 492
Preventing DOM-Based XSS 496
Summary 498
Questions 498
Chapter 13 Attacking Users: Other Techniques 501
Inducing User Actions 501
Request Forgery 502
UI Redress 511
Capturing Data Cross-Domain 515
Capturing Data by Injecting HTML 516
Capturing Data by Injecting CSS 517
JavaScript Hijacking 519
The Same-Origin Policy Revisited 524
The Same-Origin Policy and Browser Extensions 525
The Same-Origin Policy and HTML5 528
Crossing Domains with Proxy Service Applications 529
Other Client-Side Injection Attacks 531
HTTP Header Injection 531
Cookie Injection 536
Open Redirection Vulnerabilities 540
Client-Side SQL Injection 547
Client-Side HTTP Parameter Pollution 548
Local Privacy Attacks 550
Persistent Cookies 550
Cached Web Content 551
Browsing History 552
Autocomplete 552
Flash Local Shared Objects 553
Silverlight Isolated Storage 553
Internet Explorer userData 554
HTMLS5 Local Storage Mechanisms 554
Preventing Local Privacy Attacks 554
Attacking ActiveX Controls 555
Finding ActiveX Vulnerabilities 556
Preventing ActiveX Vulnerabilities 558
Attacking the Browser 559
Logging Keystrokes 560

Stealing Browser History and Search Queries 560

xvi Contents

Enumerating Currently Used Applications 560
Port Scanning 561
Attacking Other Network Hosts 561
Exploiting Non-HTTP Services 562
Exploiting Browser Bugs 563
DNS Rebinding 563
Browser Exploitation Frameworks 564
Man-in-the-Middle Attacks 566
Summary 568
Questions 568
Chapter 14 Automating Customized Attacks 571
Uses for Customized Automation 572
Enumerating Valid Identifiers 573
The Basic Approach 574
Detecting Hits 574
Scripting the Attack 576
JAttack 577
Harvesting Useful Data 583
Fuzzing for Common Vulnerabilities 586
Putting It All Together: Burp Intruder 590
Barriers to Automation 602
Session-Handling Mechanisms 602
CAPTCHA Controls 610
Summary 613
Questions 613
Chapter 15 Exploiting Information Disclosure 615
Exploiting Error Messages 615
Script Error Messages 616
Stack Traces 617
Informative Debug Messages 618
Server and Database Messages 619
Using Public Information 623
Engineering Informative Error Messages 624
Gathering Published Information 625
Using Inference 626
Preventing Information Leakage 627
Use Generic Error Messages 628
Protect Sensitive Information 628
Minimize Client-Side Information Leakage 629
Summary 629
Questions 630
Chapter 16 Attacking Native Compiled Applications 633
Buffer Overflow Vulnerabilities 634
Stack Overflows 634

Heap Overflows 635

Contents

Xvil

Chapter 17

Chapter 18

Chapter 19

“Off-by-One” Vulnerabilities

Detecting Buffer Overflow Vulnerabilities
Integer Vulnerabilities

Integer Overflows

Signedness Errors

Detecting Integer Vulnerabilities
Format String Vulnerabilities

Detecting Format String Vulnerabilities
Summary
Questions

Attacking Application Architecture
Tiered Architectures
Attacking Tiered Architectures
Securing Tiered Architectures
Shared Hosting and Application Service Providers
Virtual Hosting
Shared Application Services
Attacking Shared Environments
Securing Shared Environments
Summary
Questions

Attacking the Application Server
Vulnerable Server Configuration
Default Credentials
Default Content
Directory Listings
WebDAV Methods
The Application Server as a Proxy
Misconfigured Virtual Hosting
Securing Web Server Configuration
Vulnerable Server Software
Application Framework Flaws
Memory Management Vulnerabilities
Encoding and Canonicalization
Finding Web Server Flaws
Securing Web Server Software
Web Application Firewalls
Summary
Questions

Finding Vulnerabilities in Source Code

Approaches to Code Review
Black-Box Versus White-Box Testing
Code Review Methodology

Signatures of Common Vulnerabilities
Cross-Site Scripting

636
639
640
640
641
642
643
644
645
645

647
647
648
654
656
657
657
658
665
667
667

669
670
670
671
677
679
682
683
684
684
685
687
689
694
695
697
699
699

701
702
702
703
704
704

xviii Contents

Chapter 20

SQL Injection
Path Traversal
Arbitrary Redirection
OS Command Injection
Backdoor Passwords
Native Software Bugs
Source Code Comments
The Java Platform
Identifying User-Supplied Data
Session Interaction
Potentially Dangerous APIs
Configuring the Java Environment
ASPNET
Identifying User-Supplied Data
Session Interaction
Potentially Dangerous APIs
Configuring the ASPNET Environment
PHP
Identifying User-Supplied Data
Session Interaction
Potentially Dangerous APIs
Configuring the PHP Environment
Perl
Identifying User-Supplied Data
Session Interaction
Potentially Dangerous APIs
Configuring the Per] Environment
JavaScript
Database Code Components
SQL Injection
Calls to Dangerous Functions
Tools for Code Browsing
Summary
Questions

A Web Application Hacker’s Toolkit
Web Browsers
Internet Explorer
Firefox
Chrome
Integrated Testing Suites
How the Tools Work
Testing Work Flow
Alternatives to the Intercepting Proxy
Standalone Vulnerability Scanners
Vulnerabilities Detected by Scanners
Inherent Limitations of Scanners

705
706
707
708
708
709
710
711
711
712
713
716
718
718
719
720
723
724
724
727
727
732
735
735
736
736
739
740
741
741
742
743
744
744

747
748
748
749
750
751
751
769
771
773
774
776

Contents

Chapter 21

Technical Challenges Faced by Scanners
Current Products
Using a Vulnerability Scanner
Other Tools
Wikto/Nikto
Firebug
Hydra
Custom Scripts
Summary

A Web Application Hacker’s Methodology
General Guidelines
1 Map the Application’s Content
1.1 Explore Visible Content
1.2 Consult Public Resources
1.3 Discover Hidden Content
14 Discover Default Content
1.5 Enumerate Identifier-Specified Functions
1.6 Test for Debug Parameters
2 Analyze the Application
2.1 Identify Functionality
2.2 Identify Data Entry Points
2.3 Identify the Technologies Used
2.4 Map the Attack Surface
3 Test Client-Side Controls
3.1 Test Transmission of Data Via the Client
3.2 Test Client-Side Controls Over User Input
3.3 Test Browser Extension Components
4 Test the Authentication Mechanism
4.1 Understand the Mechanism
4.2 Test Password Quality
4.3 Test for Username Enumeration
4.4 Test Resilience to Password Guessing
4.5 Test Any Account Recovery Function
4.6 Test Any Remember Me Function
4.7 Test Any Impersonation Function
4.8 Test Username Uniqueness
49 Test Predictability of Autogenerated Credentials
410 Check for Unsafe Transmission of Credentials
411 Check for Unsafe Distribution of Credentials
4.12 Test for Insecure Storage
4.13 Test for Logic Flaws
4.14 Exploit Any Vulnerabilities to Gain Unauthorized Access
5 Test the Session Management Mechanism
5.1 Understand the Mechanism
5.2 Test Tokens for Meaning
5.3 Test Tokens for Predictability

778
781
783
785
785
785
785
786
789

791
793
795
795
796
796
797
797
798
798
798
799
799
800
800
801
801
802
805
805
806
806
807
807
808
808
809
809
810
810
811
811
813
814
814
815
816

XX

Contents

54 Check for Insecure Transmission of Tokens
5.5 Check for Disclosure of Tokens in Logs
5.6 Check Mapping of Tokens to Sessions

5.7 Test Session Termination

5.8 Check for Session Fixation

59 Check for CSRF

5.10 Check Cookie Scope

Test Access Controls

6.1 Understand the Access Control Requirements
6.2 Test with Multiple Accounts

6.3 Test with Limited Access

6.4 Test for Insecure Access Control Methods
Test for Input-Based Vulnerabilities

71 Fuzz All Request Parameters

7.2 Test for SQL Injection

7.3 Test for XSS and Other Response Injection
74 Test for OS Command Injection

7.5 Test for Path Traversal

7.6 Test for Script Injection

7.7 Test for File Inclusion

Test for Function-Specific Input Vulnerabilities
8.1 Test for SMTP Injection

8.2 Test for Native Software Vulnerabilities
8.3 Test for SOAP Injection

8.4 Test for LDAP Injection

8.5 Test for XPath Injection

8.6 Test for Back-End Request Injection

8.7 Test for XXE Injection

Test for Logic Flaws

9.1 Identify the Key Attack Surface

9.2 Test Multistage Processes

9.3 Test Handling of Incomplete Input

94 Test Trust Boundaries

9.5 Test Transaction Logic

10 Test for Shared Hosting Vulnerabilities

10.1 Test Segregation in Shared Infrastructures

10.2 Test Segregation Between ASP-Hosted Applications
11 Test for Application Server Vulnerabilities

11.1 Test for Default Credentials

11.2 Test for Default Content

11.3 Test for Dangerous HTTP Methods

114 Test for Proxy Functionality

11.5 Test for Virtual Hosting Misconfiguration
11.6 Test for Web Server Software Bugs

11.7 Test for Web Application Firewalling

817
817
818
818
819
820
820
821
821
822
822
823
824
824
827
829
832
833
835
835
836
836
837
839
839
840
841
841
842
842
842
843
844
844
845
845
845
846
846
847
847
847
847
848
848

Contents

12 Miscellaneous Checks 849
12.1 Check for DOM-Based Attacks 849
12.2 Check for Local Privacy Vulnerabilities 850
12.3 Check for Weak SSL Ciphers 851
12.4 Check Same-Origin Policy Configuration 851

13 Follow Up Any Information Leakage 852

Index 853

Introduction

This book is a practical guide to discovering and exploiting security flaws in
web applications. By “web applications” we mean those that are accessed using
a web browser to communicate with a web server. We examine a wide variety
of different technologies, such as databases, file systems, and web services, but
only in the context in which these are employed by web applications.

If you want to learn how to run port scans, attack firewalls, or break into serv-
ers in other ways, we suggest you look elsewhere. But if you want to know how
to hack into a web application, steal sensitive data, and perform unauthorized
actions, this is the book for you. There is enough that is interesting and fun to
say on that subject without straying into any other territory.

Overview of This Book

The focus of this book is highly practical. Although we include sufficient back-
ground and theory for you to understand the vulnerabilities that web applications
contain, our primary concern is the tasks and techniques that you need to master
to break into them. Throughout the book, we spell out the specific steps you need
to follow to detect each type of vulnerability, and how to exploit it to perform
unauthorized actions. We also include a wealth of real-world examples, derived
from the authors” many years of experience, illustrating how different kinds of
security flaws manifest themselves in today’s web applications.

Security awareness is usually a double-edged sword. Just as application
developers can benefit from understanding the methods attackers use, hackers
can gain from knowing how applications can effectively defend themselves.
In addition to describing security vulnerabilities and attack techniques, we
describe in detail the countermeasures that applications can take to thwart an

XXiv

Introduction

attacker. If you perform penetration tests of web applications, this will enable
you to provide high-quality remediation advice to the owners of the applica-
tions you compromise.

Who Should Read This Book

This book’s primary audience is anyone who has a personal or professional
interest in attacking web applications. It is also aimed at anyone responsible for
developing and administering web applications. Knowing how your enemies
operate will help you defend against them.

We assume that you are familiar with core security concepts such as logins
and access controls and that you have a basic grasp of core web technologies
such as browsers, web servers, and HTTP. However, any gaps in your current
knowledge of these areas will be easy to remedy, through either the explana-
tions contained in this book or references elsewhere.

In the course of illustrating many categories of security flaws, we provide
code extracts showing how applications can be vulnerable. These examples are
simple enough that you can understand them without any prior knowledge
of the language in question. But they are most useful if you have some basic
experience with reading or writing code.

How This Book Is Organized

This book is organized roughly in line with the dependencies between the dif-
ferent topics covered. If you are new to web application hacking, you should read
the book from start to finish, acquiring the knowledge and understanding you
need to tackle later chapters. If you already have some experience in this area,
you can jump straight into any chapter or subsection that particularly interests you.
Where necessary, we have included cross-references to other chapters, which
you can use to fill in any gaps in your understanding.

We begin with three context-setting chapters describing the current state of
web application security and the trends that indicate how it is likely to evolve
in the near future. We examine the core security problem affecting web appli-
cations and the defense mechanisms that applications implement to address
this problem. We also provide a primer on the key technologies used in today’s
web applications.

The bulk of the book is concerned with our core topic — the techniques
you can use to break into web applications. This material is organized around
the key tasks you need to perform to carry out a comprehensive attack. These
include mapping the application’s functionality, scrutinizing and attacking its
core defense mechanisms, and probing for specific categories of security flaws.

Introduction

The book concludes with three chapters that pull together the various strands
introduced in the book. We describe the process of finding vulnerabilities in
an application’s source code, review the tools that can help when you hack web
applications, and present a detailed methodology for performing a comprehen-
sive and deep attack against a specific target.

Chapter 1, “Web Application (In)security,” describes the current state of secu-
rity in web applications on the Internet today. Despite common assurances, the
majority of applications are insecure and can be compromised in some way with
a modest degree of skill. Vulnerabilities in web applications arise because of a
single core problem: users can submit arbitrary input. This chapter examines the
key factors that contribute to the weak security posture of today’s applications.
It also describes how defects in web applications can leave an organization’s
wider technical infrastructure highly vulnerable to attack.

Chapter 2, “Core Defense Mechanisms,” describes the key security mechanisms
that web applications employ to address the fundamental problem that all user
input is untrusted. These mechanisms are the means by which an application
manages user access, handles user input, and responds to attackers. These
mechanisms also include the functions provided for administrators to manage
and monitor the application itself. The application’s core security mechanisms
also represent its primary attack surface, so you need to understand how these
mechanisms are intended to function before you can effectively attack them.

Chapter 3, “Web Application Technologies,” is a short primer on the key
technologies you are likely to encounter when attacking web applications. It
covers all relevant aspects of the HTTP protocol, the technologies commonly
used on the client and server sides, and various schemes used to encode data. If
you are already familiar with the main web technologies, you can skim through
this chapter.

Chapter 4, “Mapping the Application,” describes the first exercise you need
to perform when targeting a new application — gathering as much information
as possible to map its attack surface and formulate your plan of attack. This
process includes exploring and probing the application to catalog all its content
and functionality, identifying all the entry points for user input, and discover-
ing the technologies in use.

Chapter 5, “Bypassing Client-Side Controls,” covers the first area of actual
vulnerability, which arises when an application relies on controls implemented
on the client side for its security. This approach normally is flawed, because
any client-side controls can, of course, be circumvented. The two main ways
in which applications make themselves vulnerable are by transmitting data
via the client on the assumption that it will not be modified, and by relying on
client-side checks on user input. This chapter describes a range of interesting
technologies, including lightweight controls implemented within HTML, HTTP,
and JavaScript, and more heavyweight controls using Java applets, ActiveX
controls, Silverlight, and Flash objects.

XxXvi

Introduction

Chapters 6, 7, and 8 cover some of the most important defense mechanisms
implemented within web applications: those responsible for controlling user
access. Chapter 6, “Attacking Authentication,” examines the various functions by
which applications gain assurance of their users’ identity. This includes the main
login function and also the more peripheral authentication-related functions such
as user registration, password changing, and account recovery. Authentication
mechanisms contain a wealth of different vulnerabilities, in both design and
implementation, which an attacker can leverage to gain unauthorized access.
These range from obvious defects, such as bad passwords and susceptibility to
brute-force attacks, to more obscure problems within the authentication logic.
We also examine in detail the types of multistage login mechanisms used in
many security-critical applications and describe the new kinds of vulnerabilities
these frequently contain.

Chapter 7, “Attacking Session Management,” examines the mechanism by which
most applications supplement the stateless HTTP protocol with the concept of
a stateful session, enabling them to uniquely identify each user across several
different requests. This mechanism is a key target when you are attacking a
web application, because if you can break it, you can effectively bypass the login
and masquerade as other users without knowing their credentials. We look at
various common defects in the generation and transmission of session tokens
and describe the steps you can take to discover and exploit these.

Chapter 8, “Attacking Access Controls,” looks at the ways in which applica-
tions actually enforce access controls, relying on authentication and session
management mechanisms to do so. We describe various ways in which access
controls can be broken and how you can detect and exploit these weaknesses.

Chapters 9 and 10 cover a large category of related vulnerabilities, which
arise when applications embed user input into interpreted code in an unsafe
way. Chapter 9, “Attacking Data Stores,” begins with a detailed examination of
SQL injection vulnerabilities. It covers the full range of attacks, from the most
obvious and trivial to advanced exploitation techniques involving out-of-band
channels, inference, and time delays. For each kind of vulnerability and attack
technique, we describe the relevant differences between three common types
of databases: MS-SQL, Oracle, and MySQL. We then look at a range of similar
attacks that arise against other data stores, including NoSQL, XPath, and LDAP.

Chapter 10, “Attacking Back-End Components,” describes several other cate-
gories of injection vulnerabilities, including the injection of operating system
commands, injection into web scripting languages, file path traversal attacks,
file inclusion vulnerabilities, injection into XML, SOAP, back-end HTTP requests,
and e-mail services.

Chapter 11, “Attacking Application Logic,” examines a significant, and fre-
quently overlooked, area of every application’s attack surface: the internal logic
it employs to implement its functionality. Defects in an application’s logic are
extremely varied and are harder to characterize than common vulnerabilities

Introduction xxvii

such as SQL injection and cross-site scripting. For this reason, we present a
series of real-world examples in which defective logic has left an application
vulnerable. These illustrate the variety of faulty assumptions that application
designers and developers make. From these different individual flaws, we derive
a series of specific tests that you can perform to locate many types of logic flaws
that often go undetected.

Chapters 12 and 13 cover a large and very topical area of related vulnerabili-
ties that arise when defects within a web application can enable a malicious
user of the application to attack other users and compromise them in vari-
ous ways. Chapter 12, “Attacking Users: Cross-Site Scripting,”, examines the
most prominent vulnerability of this kind — a hugely prevalent flaw affecting
the vast majority of web applications on the Internet. We examine in detail all the
different flavors of XSS vulnerabilities and describe an effective methodology
for detecting and exploiting even the most obscure manifestations of these.

Chapter 13, “Attacking Users: Other Techniques,” looks at several other types
of attacks against other users, including inducing user actions through request
forgery and Ul redress, capturing data cross-domain using various client-side
technologies, various attacks against the same-origin policy, HTTP header
injection, cookie injection and session fixation, open redirection, client-side SQL
injection, local privacy attacks, and exploiting bugs in ActiveX controls. The
chapter concludes with a discussion of a range of attacks against users that do
not depend on vulnerabilities in any particular web application, but that can be
delivered via any malicious web site or suitably positioned attacker.

Chapter 14, “Automating Customized Attacks,” does not introduce any new
categories of vulnerabilities. Instead, it describes a crucial technique you need
to master to attack web applications effectively. Because every web application
is different, most attacks are customized in some way, tailored to the applica-
tion’s specific behavior and the ways you have discovered to manipulate it to
your advantage. They also frequently require issuing a large number of similar
requests and monitoring the application’s responses. Performing these requests
manually is extremely laborious and prone to mistakes. To become a truly
accomplished web application hacker, you need to automate as much of this
work as possible to make your customized attacks easier, faster, and more effec-
tive. This chapter describes in detail a proven methodology for achieving this.
We also examine various common barriers to the use of automation, including
defensive session-handling mechanisms and CAPTCHA controls. Furthermore,
we describe tools and techniques you can use to overcome these barriers.

Chapter 15, “Exploiting Information Disclosure,” examines various ways in
which applications leak information when under active attack. When you are
performing all the other types of attacks described in this book, you should
always monitor the application to identify further sources of information dis-
closure that you can exploit. We describe how you can investigate anomalous
behavior and error messages to gain a deeper understanding of the application’s

xxviii Introduction

internal workings and fine-tune your attack. We also cover ways to manipulate
defective error handling to systematically retrieve sensitive information from
the application.

Chapter 16, “Attacking Native Compiled Applications,” looks at a set of impor-
tant vulnerabilities that arise in applications written in native code languages
such as C and C++. These vulnerabilities include buffer overflows, integer vul-
nerabilities, and format string flaws. Because this is a potentially huge topic,
we focus on ways to detect these vulnerabilities in web applications and look
at some real-world examples of how these have arisen and been exploited.

Chapter 17, “Attacking Application Architecture,” examines an important area
of web application security that is frequently overlooked. Many applications
employ a tiered architecture. Failing to segregate different tiers properly often
leaves an application vulnerable, enabling an attacker who has found a defect
in one component to quickly compromise the entire application. A different
range of threats arises in shared hosting environments, where defects or mali-
cious code in one application can sometimes be exploited to compromise the
environment itself and other applications running within it. This chapter also
looks at the range of threats that arise in the kinds of shared hosting environ-
ments that have become known as “cloud computing.”

Chapter 18, “Attacking the Application Server,” describes various ways in
which you can target a web application by targeting the web server on which
it is running. Vulnerabilities in web servers are broadly composed of defects in
their configuration and security flaws within the web server software. This topic
is on the boundary of the subjects covered in this book, because the web server
is strictly a different component in the technology stack. However, most web
applications are intimately bound up with the web server on which they run.
Therefore, attacks against the web server are included in the book because they
can often be used to compromise an application directly, rather than indirectly
by first compromising the underlying host.

Chapter 19, “Finding Vulnerabilities in Source Code,” describes a completely
different approach to finding security flaws than those described elsewhere
within this book. In many situations it may be possible to review an applica-
tion’s source code, not all of which requires cooperation from the application’s
owner. Reviewing an application’s source code can often be highly effective in
discovering vulnerabilities that would be difficult or time-consuming to detect
by probing the running application. We describe a methodology, and provide
alanguage-by-language cheat sheet, to enable you to perform an effective code
review even if you have limited programming experience.

Chapter 20, “A Web Application Hacker’s Toolkit,” pulls together the various
tools described in this book. These are the same tools the authors use when attack-
ing real-world web applications. We examine the key features of these tools and
describe in detail the type of work flow you generally need to employ to get the
best out of them. We also examine the extent to which any fully automated tool

Introduction

can be effective in finding web application vulnerabilities. Finally, we provide
some tips and advice for getting the most out of your toolkit.

Chapter 21, “A Web Application Hacker’s Methodology,” is a comprehensive
and structured collation of all the procedures and techniques described in this
book. These are organized and ordered according to the logical dependencies
between tasks when you are carrying out an actual attack. If you have read
about and understood all the vulnerabilities and techniques described in this
book, you can use this methodology as a complete checklist and work plan
when carrying out an attack against a web application.

What's New in This Edition

In the four years since the first edition of this book was published, much has
changed, and much has stayed the same. The march of new technology has, of
course, continued apace, and this has given rise to specific new vulnerabilities
and attacks. The ingenuity of hackers has also led to the development of new
attack techniques and new ways of exploiting old bugs. But neither of these
factors, technological or human, has created a revolution. The technologies
used in today’s applications have their roots in those that are many years old.
And the fundamental concepts involved in today’s cutting-edge exploitation
techniques are older than many of the researchers who are applying them so
effectively. Web application security is a dynamic and exciting area to work in,
but the bulk of what constitutes our accumulated wisdom has evolved slowly
over many years. It would have been distinctively recognizable to practitioners
working a decade or more ago.

This second edition is not a complete rewrite of the first. Most of the material
in the first edition remains valid and current today. Approximately 30% of the
content in this edition is either new or extensively revised. The remaining 70%
has had minor modifications or none at all. If you have upgraded from the first
edition and feel disappointed by these numbers, you should take heart. If you
have mastered all the techniques described in the first edition, you already have
the majority of the skills and knowledge you need. You can focus on what is
new in this edition and quickly learn about the areas of web application security
that have changed in recent years.

One significant new feature of the second edition is the inclusion through-
out the book of real examples of nearly all the vulnerabilities that are covered.
Wherever you see a “Try It!” link, you can go online and work interactively
with the example being discussed to confirm that you can find and exploit the
vulnerability it contains. There are several hundred of these labs, which you
can work through at your own pace as you read the book. The online labs are
available on a subscription basis for a modest fee to cover the costs of hosting
and maintaining the infrastructure involved.

XXX

Introduction

If you want to focus on what’s new in the second edition, here is a summary
of the key areas where material has been added or rewritten:

Chapter 1, “Web Application (In)security,” has been partly updated to reflect
new uses of web applications, some broad trends in technologies, and the ways
in which a typical organization’s security perimeter has continued to change.

Chapter 2, “Core Defense Mechanisms,” has had minor changes. A few
examples have been added of generic techniques for bypassing input valida-
tion defenses.

Chapter 3, “Web Application Technologies,” has been expanded with some
new sections describing technologies that are either new or that were described
more briefly elsewhere within the first edition. The topics added include REST,
Ruby on Rails, SQL, XML, web services, CSS, VBScript, the document object
model, Ajax, JSON, the same-origin policy, and HTML5.

Chapter 4, “Mapping the Application,” has received various minor updates
to reflect developments in techniques for mapping content and functionality.

Chapter 5, “Bypassing Client-Side Controls,” has been updated more exten-
sively. In particular, the section on browser extension technologies has been
largely rewritten to include more detailed guidance on generic approaches to
bytecode decompilation and debugging, how to handle serialized data in com-
mon formats, and how to deal with common obstacles to your work, including
non-proxy-aware clients and problems with SSL. The chapter also now covers
Silverlight technology.

Chapter 6, “Attacking Authentication,” remains current and has only minor
updates.

Chapter 7, “Attacking Session Management,” has been updated to cover new
tools for automatically testing the quality of randomness in tokens. It also contains
new material on attacking encrypted tokens, including practical techniques for
token tampering without knowing either the cryptographic algorithm or the
encryption key being used.

Chapter 8, “Attacking Access Controls,” now covers access control vulner-
abilities arising from direct access to server-side methods, and from platform
misconfiguration where rules based on HITTP methods are used to control
access. It also describes some new tools and techniques you can use to partially
automate the frequently onerous task of testing access controls.

The material in Chapters 9 and 10 has been reorganized to create more man-
ageable chapters and a more logical arrangement of topics. Chapter 9, “Attacking
Data Stores,” focuses on SQL injection and similar attacks against other data
store technologies. As SQL injection vulnerabilities have become more widely
understood and addressed, this material now focuses more on practical situa-
tions where SQL injection is still found. There are also minor updates through-
out to reflect current technologies and attack methods. A new section on using
automated tools for exploiting SQL injection vulnerabilities is included. The
material on LDAP injection has been largely rewritten to include more detailed

Introduction

coverage of specific technologies (Microsoft Active Directory and OpenLDAP),
as well as new techniques for exploiting common vulnerabilities. This chapter
also now covers attacks against NoSQL.

Chapter 10, “Attacking Back-End Components,” covers the other types of
server-side injection vulnerabilities that were previously included in Chapter 9.
New sections cover XML external entity injection and injection into back-end
HTTP requests, including HTTP parameter injection/pollution and injection
into URL rewriting schemes.

Chapter 11, “Attacking Application Logic,” includes more real-world examples of
common logic flaws in input validation functions. With the increased usage
of encryption to protect application data at rest, we also include an example of
how to identify and exploit encryption oracles to decrypt encrypted data.

The topic of attacks against other application users, previously covered in
Chapter 12, has been split into two chapters, because this material was becom-
ing unmanageably large. Chapter 12, “Attacking Users: Cross-Site Scripting,”
focuses solely on XSS. This material has been extensively updated in various
areas. The sections on bypassing defensive filters to introduce script code have
been completely rewritten to cover new techniques and technologies, includ-
ing various little-known methods for executing script code on current brows-
ers. There is also much more detailed coverage of methods for obfuscating
script code to bypass common input filters. The chapter includes several new
examples of real-world XSS attacks. A new section on delivering working XSS
exploits in challenging conditions covers escalating an attack across application
pages, exploiting XSS via cookies and the rReferer header, and exploiting XSS
in nonstandard request and response content such as XML. There is a detailed
examination of browsers” built-in XSS filters and how these can be circumvented
to deliver exploits. New sections discuss specific techniques for exploiting XSS
in webmail applications and in uploaded files. Finally, there are various updates
to the defensive measures that can be used to prevent XSS attacks.

The new Chapter 13, “Attacking Users: Other Techniques,” unites the remain-
der of this huge area. The topic of cross-site request forgery has been updated to
include CSRF attacks against the login function, common defects in anti-CSRF
defenses, Ul redress attacks, and common defects in framebusting defenses. A
new section on cross-domain data capture includes techniques for stealing data
by injecting text containing nonscripting HTML and CSS, and various tech-
niques for cross-domain data capture using JavaScript and E4X. A new section
examines the same-origin policy in more detail, including its implementation
in different browser extension technologies, the changes brought by HTMLS5,
and ways of crossing domains via proxy service applications. There are new
sections on client-side cookie injection, SQL injection, and HTTP parameter pol-
lution. The section on client-side privacy attacks has been expanded to include
storage mechanisms provided by browser extension technologies and HTMLS5.
Finally, a new section has been added drawing together general attacks against

xxxii Introduction

web users that do not depend on vulnerabilities in any particular application.
These attacks can be delivered by any malicious or compromised web site or
by an attacker who is suitably positioned on the network.

Chapter 14, “Automating Customized Attacks,” has been expanded to cover
common barriers to automation and how to circumvent them. Many applications
employ defensive session-handling mechanisms that terminate sessions, use
ephemeral anti-CSRF tokens, or use multistage processes to update application
state. Some new tools are described for handling these mechanisms, which let
you continue using automated testing techniques. A new section examines
CAPTCHA controls and some common vulnerabilities that can often be exploited
to circumvent them.

Chapter 15, “Exploiting Information Disclosure,” contains new sections about
XSS in error messages and exploiting decryption oracles.

Chapter 16, “Attacking Native Compiled Applications,” has not been updated.

Chapter 17, “Attacking Application Architecture,” has a new section about
vulnerabilities that arise in cloud-based architectures, and updated examples
of exploiting architecture weaknesses.

Chapter 18, “Attacking the Application Server,” contains several new examples
of interesting vulnerabilities in application servers and platforms, including Jetty,
the JMX management console, ASP.NET, Apple iDisk server, Ruby WEBrick web
server, and Java web server. It also has a new section on practical approaches
to circumventing web application firewalls.

Chapter 19, “Finding Vulnerabilities in Source Code,” has not been updated.

Chapter 20, “A Web Application Hacker’s Toolkit,” has been updated with
details on the latest features of proxy-based tool suites. It contains new sections
on how to proxy the traffic of non-proxy-aware clients and how to eliminate SSL
errors in browsers and other clients caused by the use of an intercepting proxy.
This chapter contains a detailed description of the work flow that is typically
employed when you test using a proxy-based tool suite. It also has a new dis-
cussion about current web vulnerability scanners and the optimal approaches
to using these in different situations.

Chapter 21, “A Web Application Hacker’s Methodology,” has been updated
to reflect the new methodology steps described throughout the book.

Tools You Will Need

This book is strongly geared toward hands-on techniques you can use to attack
web applications. After reading the book, you will understand the specifics of
each individual task, what it involves technically, and why it helps you detect
and exploit vulnerabilities. The book is emphatically not about downloading
a tool, pointing it at a target application, and believing what the tool’s output
tells you about the state of the application’s security.

Introduction xxxiii

That said, you will find several tools useful, and sometimes indispensable,
when performing the tasks and techniques we describe. All of these are avail-
able on the Internet. We recommend that you download and experiment with
each tool as you read about it.

What's on the Website

The companion website for this book at http: //mdsec.net /wahh, which you can
also link to from www/wiley.com/go/webhacker2e, contains several resources
that you will find useful in the course of mastering the techniques we describe
and using them to attack actual applications. In particular, the website contains
access to the following:

m Source code for some of the scripts we present in the book

m A list of current links to all the tools and other resources discussed in
the book

m A handy checklist of the tasks involved in attacking a typical application
m Answers to the questions posed at the end of each chapter

m Hundreds of interactive vulnerability labs that are used in examples
throughout this book and that are available on a subscription basis to
help you develop and refine your skills

Bring It On

Web application security remains a fun and thriving subject. We enjoyed writ-
ing this book as much as we continue to enjoy hacking into web applications
on a daily basis. We hope that you will also take pleasure from learning about
the different techniques we describe and how you can defend against them.

Before going any further, we should mention an important caveat. In most
countries, attacking computer systems without the owner’s permission is against
the law. The majority of the techniques we describe are illegal if carried out
without consent.

The authors are professional penetration testers who routinely attack web
applications on behalf of clients to help them improve their security. In recent
years, numerous security professionals and others have acquired criminal
records — and ended their careers — by experimenting on or actively attack-
ing computer systems without permission. We urge you to use the information
contained in this book only for lawful purposes.

Web Application (In)security

There is no doubt that web application security is a current and newsworthy
subject. For all concerned, the stakes are high: for businesses that derive increas-
ing revenue from Internet commerce, for users who trust web applications with
sensitive information, and for criminals who can make big money by stealing
payment details or compromising bank accounts. Reputation plays a critical role.
Few people want to do business with an insecure website, so few organizations
want to disclose details about their own security vulnerabilities or breaches.
Hence, it is not a trivial task to obtain reliable information about the state of
web application security today.

This chapter takes a brief look at how web applications have evolved and the
many benefits they provide. We present some metrics about vulnerabilities in
current web applications, drawn from the authors” direct experience, demon-
strating that the majority of applications are far from secure. We describe the
core security problem facing web applications — that users can supply arbitrary
input — and the various factors that contribute to their weak security posture.
Finally, we describe the latest trends in web application security and how these
may be expected to develop in the near future.

Chapter 1 = Web Application (In)security

The Evolution of Web Applications

In the early days of the Internet, the World Wide Web consisted only of web
sites. These were essentially information repositories containing static docu-
ments. Web browsers were invented as a means of retrieving and displaying
those documents, as shown in Figure 1-1. The flow of interesting information
was one-way, from server to browser. Most sites did not authenticate users,
because there was no need to. Each user was treated in the same way and was
presented with the same information. Any security threats arising from host-
ing a website were related largely to vulnerabilities in web server software (of
which there were many). If an attacker compromised a web server, he usually
would not gain access to any sensitive information, because the information
held on the server was already open to public view. Rather, an attacker typically
would modify the files on the server to deface the web site’s contents or use the
server’s storage and bandwidth to distribute “warez.”

@ Paul Wrights Future Employer Page - Mozilla Firefox
File Edit View History Bookmarks Tools Help

@ 22 c 2y | | http://www.ukcert.org.uk/paul N7

|| Paul Wrights Future Employer Page ok -

Dear prospective future employer,

This 15 the CV site of Paul Ifichael Wright, Oracle Secunty Consultant, Developer and Forensic Analyst for IG2
Software in Sutton, Surrey (South London) where T have worked for the last two years and previously in a similar
role for Pentest Lid of Cheshire. I am a non-smolang, British, 38 vear old, married man, relocatable with no criminal
record, disabilities or health problems and can be identified by this phetograph of my wife and T

Introductory summary:

-Consulting to top banks and technology companies on the subject of Oracle securtty and general IT security.
-Responsible for writing the Oracle security checks m NGS S0uurel for Cracle.

-Currently the most qualified 3AM3-GIAC person outside of TI3 and Spain with @ certs ncluding the G
specialised in Oracle Forensics.

-Credited by Oracle m ther Aprl 2007 CPT with finding and ethically reporting a securtty wilnerability i the Oracle
EDEMS. T have five more to come in fiture CPT's,

-Author of Oracle Forensics by Rampant Techpress. ISBI 0-9776715-2-6

-Teacher for SANS of Oracle security, Incident Handling and Ietasplott courses,

-Author of many papers including a MISE paper on Oracle passwords (in Japanese), Oracle forensics for
wvulnerability detection in the SATTS Eeading Eoom and the first paper published on the subject of Oracle Forensics at
GIAC,

Done

Figure 1-1: A traditional website containing static information

Today, the World Wide Web is almost unrecognizable from its earlier form.
The majority of sites on the web are in fact applications (see Figure 1-2). They
are highly functional and rely on two-way flow of information between the
server and browser. They support registration and login, financial transactions,

Chapter 1 = Web Application (In)security

search, and the authoring of content by users. The content presented to users
is generated dynamically on the fly and is often tailored to each specific user.
Much of the information processed is private and highly sensitive. Security,
therefore, is a big issue. No one wants to use a web application if he believes

his information will be disclosed to unauthorized parties.

& -c - a

T Y
& !
W o

Nam

WIKIPEDIA

The Free Encyclopedia

Main page
Contents

Featured content
Current events
Random article
Donate to Wikipedia

~ Interaction
Help
About Wikipedia
Community portal
Recent changes

Main Page Discussion

(@) Wikipedia, the free encyclopedia - Mozilla Firefox
File Edit View History Bookmarks Tools Help

W http://en.wikipedia.org/wiki/Main_Page

W/ Wikipedia. the free encyclopedia

Welcome to Wikipedia,
the free encyclopedia that anyone can edit.
3,656,962 articles in English

Today's featured article

The Norte Chico
civilization was a
complex Pre-Columbian
society that included as
many as 30 major

population centers in what

is now the Morte Chico region of north-central
coastal Peru. It is the oldest known civilization in
the Americas and one of the six sites where

Read View source

e Geography s Science

[E=3 (B 55

[g ‘.l" Google 2

& Login/ create account

m

| e Q
» Arls = History = Society
= Biography e Mathematics « Technology

« All portals

In the news

In basketball, the Dallas
Mavericks defeat the
Miami Heat to win their
first NBA championship
(Finals MVP Dirkc
Nowitzki pictured).

In the Turkish general election,
Prime Minister Recep Tayyip
Erdogan is elected for a third term

Contact Wikipedia S =
civilization separately originated in the ancient and the AK Party retains its majority
b Toolbox world. It flourished between the 30th century BC in parliament. =
Done

Figure 1-2: A typical web application

Web applications bring with them new and significant security threats. Each
application is different and may contain unique vulnerabilities. Most applica-
tions are developed in-house — many by developers who have only a partial
understanding of the security problems that may arise in the code they are
producing. To deliver their core functionality, web applications normally require
connectivity to internal computer systems that contain highly sensitive data and
that can perform powerful business functions. Fifteen years ago, if you wanted
to make a funds transfer, you visited your bank, and the teller performed the
transfer for you; today, you can visit a web application and perform the transfer
yourself. An attacker who compromises a web application may be able to steal
personal information, carry out financial fraud, and perform malicious actions
against other users.

Chapter 1 = Web Application (In)security

Common Web Application Functions

Web applications have been created to perform practically every useful function
you could possibly implement online. Here are some web application functions
that have risen to prominence in recent years:

m Shopping (Amazon)

m Social networking (Facebook)
m Banking (Citibank)

m Web search (Google)

m Auctions (eBay)

m Gambling (Betfair)

m Web logs (Blogger)

m Web mail (Gmail)

m Interactive information (Wikipedia)

Applications that are accessed using a computer browser increasingly overlap
with mobile applications that are accessed using a smartphone or tablet. Most
mobile applications employ either a browser or a customized client that uses
HTTP-based APIs to communicate with the server. Application functions and
data typically are shared between the various interfaces that the application
exposes to different user platforms.

In addition to the public Internet, web applications have been widely adopted
inside organizations to support key business functions. Many of these provide
access to highly sensitive data and functionality:

m HR applications allowing users to access payroll information, give and
receive performance feedback, and manage recruitment and disciplinary
procedures.

m Administrative interfaces to key infrastructure such as web and mail
servers, user workstations, and virtual machine administration.

m Collaboration software used for sharing documents, managing work-
flow and projects, and tracking issues. These types of functionality often
involve critical security and governance issues, and organizations often
rely completely on the controls built into their web applications.

m Business applications such as enterprise resource planning (ERP) software,
which previously were accessed using a proprietary thick-client applica-
tion, can now be accessed using a web browser.

Chapter 1 = Web Application (In)security

m Software services such as e-mail, which originally required a separate
e-mail client, can now be accessed via web interfaces such as Outlook
Web Access.

m Traditional desktop office applications such as word processors and spread-
sheets have been migrated to web applications through services such as
Google Apps and Microsoft Office Live.

In all these examples, what are perceived as “internal” applications are increas-
ingly being hosted externally as organizations move to outside service providers
to cut costs. In these so-called cloud solutions, business-critical functionality
and data are opened to a wider range of potential attackers, and organizations
are increasingly reliant on the integrity of security defenses that are outside of
their control.

The time is fast approaching when the only client software that most com-
puter users will need is a web browser. A diverse range of functions will have
been implemented using a shared set of protocols and technologies, and in so
doing will have inherited a distinctive range of common security vulnerabilities.

Benefits of Web Applications

It is not difficult to see why web applications have enjoyed such a dramatic rise
to prominence. Several technical factors have worked alongside the obvious
commercial incentives to drive the revolution that has occurred in how we use
the Internet:

m HTTP, the core communications protocol used to access the World Wide
Web, is lightweight and connectionless. This provides resilience in the
event of communication errors and avoids the need for the server to
hold open a network connection to every user, as was the case in many
legacy client/server applications. HTTP can also be proxied and tunneled
over other protocols, allowing for secure communication in any network
configuration.

m Every web user already has a browser installed on his computer and
mobile device. Web applications deploy their user interface dynamically
to the browser, avoiding the need to distribute and manage separate
client software, as was the case with pre-web applications. Changes to
the interface need to be implemented only once, on the server, and take
effect immediately.

m Today’s browsers are highly functional, enabling rich and satisfying
user interfaces to be built. Web interfaces use standard navigational and

6

Chapter 1 = Web Application (In)security

input controls that are immediately familiar to users, avoiding the need
to learn how each individual application functions. Client-side scripting
enables applications to push part of their processing to the client side, and
browsers’ capabilities can be extended in arbitrary ways using browser
extension technologies where necessary.

m The core technologies and languages used to develop web applications are
relatively simple. A wide range of platforms and development tools are
available to facilitate the development of powerful applications by relative
beginners, and a large quantity of open source code and other resources
is available for incorporation into custom-built applications.

Web Application Security

As with any new class of technology, web applications have brought with them
anew range of security vulnerabilities. The set of most commonly encountered
defects has evolved somewhat over time. New attacks have been conceived
that were not considered when existing applications were developed. Some
problems have become less prevalent as awareness of them has increased. New
technologies have been developed that have introduced new possibilities for
exploitation. Some categories of flaws have largely gone away as the result of
changes made to web browser software.

The most serious attacks against web applications are those that expose
sensitive data or gain unrestricted access to the back-end systems on which
the application is running. High-profile compromises of this kind continue
to occur frequently. For many organizations, however, any attack that causes
system downtime is a critical event. Application-level denial-of-service attacks
can be used to achieve the same results as traditional resource exhaustion
attacks against infrastructure. However, they are often used with more subtle
techniques and objectives. They may be used to disrupt a particular user or
service to gain a competitive edge against peers in the realms of financial trad-
ing, gaming, online bidding, and ticket reservations.

Throughout this evolution, compromises of prominent web applications have
remained in the news. There is no sense that a corner has been turned and that
these security problems are on the wane. By some measure, web application
security is today the most significant battleground between attackers and those
with computer resources and data to defend, and it is likely to remain so for
the foreseeable future.

Chapter 1 = Web Application (In)security

“This Site Is Secure”

There is a widespread awareness that security is an issue for web applications.
Consult the FAQ page of a typical application, and you will be reassured that
it is in fact secure.

Most applications state that they are secure because they use SSL. For example:

This site is absolutely secure. It has been designed to use 128-bit Secure Socket
Layer (SSL) technology to prevent unauthorized users from viewing any of your
information. You may use this site with peace of mind that your data is safe with us.

Users are often urged to verify the site’s certificate, admire the advanced
cryptographic protocols in use, and, on this basis, trust it with their personal
information.

Increasingly, organizations also cite their compliance with Payment Card
Industry (PCI) standards to reassure users that they are secure. For example:

We take security very seriously. Our web site is scanned daily to ensure that we
remain PCI compliant and safe from hackers. You can see the date of the latest scan
on the logo below, and you are guaranteed that our web site is safe to use.

In fact, the majority of web applications are insecure, despite the widespread
usage of SSL technology and the adoption of regular PCI scanning. The authors
of this book have tested hundreds of web applications in recent years. Figure 1-3
shows what percentage of applications tested during 2007 and 2011 were found
to be affected by some common categories of vulnerability:

m Broken authentication (62%) — This category of vulnerability encom-
passes various defects within the application’s login mechanism, which
may enable an attacker to guess weak passwords, launch a brute-force
attack, or bypass the login.

m Broken access controls (71%) — This involves cases where the application
fails to properly protect access to its data and functionality, potentially
enabling an attacker to view other users’ sensitive data held on the server
or carry out privileged actions.

m SQL injection (32%) — This vulnerability enables an attacker to submit
crafted input to interfere with the application’s interaction with back-end
databases. An attacker may be able to retrieve arbitrary data from the
application, interfere with its logic, or execute commands on the database
server itself.

Chapter 1 = Web Application (In)security

m Cross-site scripting (94%) — This vulnerability enables an attacker to
target other users of the application, potentially gaining access to their
data, performing unauthorized actions on their behalf, or carrying out
other attacks against them.

m Information leakage (78%) — This involves cases where an application
divulges sensitive information that is of use to an attacker in developing
an assault against the application, through defective error handling or
other behavior.

m Cross-site request forgery (92%) — This flaw means that application
users can be induced to perform unintended actions on the application
within their user context and privilege level. The vulnerability allows a
malicious web site visited by the victim user to interact with the applica-
tion to perform actions that the user did not intend.

Broken authentication

Broken access controls

SQL injection

Cross-site scripting 94%

Information leakage

Cross-site request

forgery 92%

30% 40% 50% 60% 70% 80% 90% 100%

Incidence in recently tested applications

0% 10% 20%
Figure 1-3: The incidence of some common web application vulnerabilities in
applications recently tested by the authors (based on a sample of more than 100)

SSL is an excellent technology that protects the confidentiality and integrity
of data in transit between the user’s browser and the web server. It helps defend
against eavesdroppers, and it can provide assurance to the user of the identity of
the web server he is dealing with. But it does not stop attacks that directly target
the server or client components of an application, as most successful attacks do.
Specifically, it does not prevent any of the vulnerabilities just listed, or many
others that can render an application critically exposed to attack. Regardless of
whether they use SSL, most web applications still contain security flaws.

Chapter 1 = Web Application (In)security

The Core Security Problem: Users Can Submit
Arbitrary Input

As with most distributed applications, web applications face a fundamental
problem they must address to be secure. Because the client is outside of the
application’s control, users can submit arbitrary input to the server-side appli-
cation. The application must assume that all input is potentially malicious.
Therefore, it must take steps to ensure that attackers cannot use crafted input
to compromise the application by interfering with its logic and behavior, thus
gaining unauthorized access to its data and functionality.
This core problem manifests itself in various ways:

m Users can interfere with any piece of data transmitted between the client
and the server, including request parameters, cookies, and HTTP head-
ers. Any security controls implemented on the client side, such as input
validation checks, can be easily circumvented.

m Users can send requests in any sequence and can submit parameters at a
different stage than the application expects, more than once, or not at all.
Any assumption developers make about how users will interact with the
application may be violated.

m Users are not restricted to using only a web browser to access the application.
Numerous widely available tools operate alongside, or independently of,
a browser to help attack web applications. These tools can make requests
that no browser would ordinarily make and can generate huge numbers
of requests quickly to find and exploit problems.

The majority of attacks against web applications involve sending input to the
server that is crafted to cause some event that was not expected or desired by
the application’s designer. Here are some examples of submitting crafted input
to achieve this objective:

m Changing the price of a product transmitted in a hidden HTML form field
to fraudulently purchase the product for a cheaper amount

m Modifying a session token transmitted in an HTTP cookie to hijack the
session of another authenticated user

m Removing certain parameters that normally are submitted to exploit a
logic flaw in the application’s processing

m Altering some input that will be processed by a back-end database to inject
a malicious database query and access sensitive data

Needless to say, SSL does nothing to stop an attacker from submitting crafted
input to the server. If the application uses SSL, this simply means that other users
on the network cannot view or modify the attacker’s data in transit. Because

10

Chapter 1 = Web Application (In)security

the attacker controls her end of the SSL tunnel, she can send anything she likes
to the server through this tunnel. If any of the previously mentioned attacks
are successful, the application is emphatically vulnerable, regardless of what
its FAQ may tell you.

Key Problem Factors

The core security problem faced by web applications arises in any situation
where an application must accept and process untrusted data that may be mali-
cious. However, in the case of web applications, several factors have combined
to exacerbate the problem and explain why so many web applications on the
Internet today do such a poor job of addressing it.

Underdeveloped Security Awareness

Although awareness of web application security issues has grown in recent
years, it remains less well-developed than in longer-established areas such as
networks and operating systems. Although most people working in IT security
have a reasonable grasp of the essentials of securing networks and hardening
hosts, widespread confusion and misconception still exist about many of the
core concepts involved in web application security. A web application devel-
oper’s work increasingly involves weaving together tens, or even hundreds,
of third-party packages, all designed to abstract the developer away from the
underlying technologies. It is common to meet experienced web application
developers who make major assumptions about the security provided by their
programming framework and to whom an explanation of many basic types of
flaws comes as a revelation.

Custom Development

Most web applications are developed in-house by an organization’s own staff
or third-party contractors. Even where an application employs well-established
components, these are typically customized or bolted together using new code.
In this situation, every application is different and may contain its own unique
defects. This stands in contrast to a typical infrastructure deployment, in which
an organization can purchase a best-of-breed product and install it in line with
industry-standard guidelines.

Deceptive Simplicity

With today’s web application platforms and development tools, it is possible for
a novice programmer to create a powerful application from scratch in a short
period of time. But there is a huge difference between producing code that is

Chapter 1 = Web Application (In)security

11

functional and code that is secure. Many web applications are created by well-
meaning individuals who simply lack the knowledge and experience to identify
where security problems may arise.

A prominent trend in recent years has been the use of application frameworks
that provide ready-made code components to handle numerous common areas
of functionality, such as authentication, page templates, message boards, and
integration with common back-end infrastructure components. Examples of these
frameworks include Liferay and Appfuse. These products make it quick and
easy to create working applications without requiring a technical understanding
of how the applications work or the potential risks they may contain. This also
means many companies use the same frameworks. Thus, when a vulnerability
is discovered, it affects many unrelated applications.

Rapidly Evolving Threat Profile

Research into web application attacks and defenses continues to be a thriving
area in which new concepts and threats are conceived at a faster rate than is now
the case for older technologies. Particularly on the client side, it is common for
the accepted defenses against a particular attack to be undermined by research
that demonstrates a new attack technique. A development team that begins a
project with a complete knowledge of current threats may have lost this status
by the time the application is completed and deployed.

Resource and Time Constraints

Most web application development projects are subject to strict constraints on
time and resources, arising from the economics of in-house, one-off develop-
ment. In most organizations, it is often infeasible to employ dedicated security
expertise in the design or development teams. And due to project slippage,
security testing by specialists is often left until very late in the project’s life
cycle. In the balancing of competing priorities, the need to produce a stable and
functional application by a deadline normally overrides less tangible security
considerations. A typical small organization may be willing to pay for only a
few man-days of consulting time to evaluate a new application. A quick pen-
etration test will often find the low-hanging fruit, but it may miss more subtle
vulnerabilities that require time and patience to identify.

Overextended Technologies

Many of the core technologies employed in web applications began life when
the landscape of the World Wide Web was very different. They have since been
pushed far beyond the purposes for which they were originally conceived, such
as the use of JavaScript as a means of data transmission in many AJAX-based

12

Chapter 1 = Web Application (In)security

applications. As the expectations placed on web application functionality have
rapidly evolved, the technologies used to implement this functionality have
lagged behind the curve, with old technologies stretched and adapted to meet
new requirements. Unsurprisingly, this has led to security vulnerabilities as
unforeseen side effects emerge.

Increasing Demands on Functionality

Applications are designed primarily with functionality and usability in mind.
Once-static user profiles now contain social networking features, allowing upload-
ing of pictures and wiki-style editing of pages. A few years ago an application
designer may have been content with implementing a username and password
challenge to create the login functionality. Modern sites may include password
recovery, username recovery, password hints, and an option to remember the
username and password on future visits. Such a site would undoubtedly be
promoted as having numerous security features, yet each one is really a self-
service feature adding to the site’s attack surface.

The New Security Perimeter

Before the rise of web applications, organizations’ efforts to secure themselves
against external attack were largely focused on the network perimeter. Defending
this perimeter entailed hardening and patching the services it needed to expose
and firewalling access to others.

Web applications have changed all this. For an application to be accessible
by its users, the perimeter firewall must allow inbound connections to the
server over HTTP or HTTPS. And for the application to function, the server
must be allowed to connect to supporting back-end systems, such as databases,
mainframes, and financial and logistical systems. These systems often lie at
the core of the organization’s operations and reside behind several layers of
network-level defenses.

If a vulnerability exists within a web application, an attacker on the public
Internet may be able to compromise the organization’s core back-end systems
solely by submitting crafted data from his web browser. This data sails past all
the organization’s network defenses, in the same way as does ordinary, benign
traffic to the web application.

The effect of widespread deployment of web applications is that the security
perimeter of a typical organization has moved. Part of that perimeter is still
embodied in firewalls and bastion hosts. But a significant part of it is now occupied
by the organization’s web applications. Because of the manifold ways in which
web applications receive user input and pass this to sensitive back-end systems,
they are the potential gateways for a wide range of attacks, and defenses against
these attacks must be implemented within the applications themselves. A single

Chapter 1 = Web Application (In)security

13

line of defective code in a single web application can render an organization’s
internal systems vulnerable. Furthermore, with the rise of mash-up applications,
third-party widgets, and other techniques for cross-domain integration, the
server-side security perimeter frequently extends well beyond the organization
itself. Implicit trust is placed in the services of external applications and services.
The statistics described previously, of the incidence of vulnerabilities within
this new security perimeter, should give every organization pause for thought.

.:ma For an attacker targeting an organization, gaining access to the net-
work or executing arbitrary commands on servers may not be what he wants
to achieve. Often, and perhaps typically, what an attacker really wants is to
perform some application-level action such as stealing personal informa-
tion, transferring funds, or making cheap purchases. And the relocation of the
security perimeter to the application layer may greatly assist an attacker in
achieving these objectives.

For example, suppose that an attacker wants to “hack in” to a bank’s systems
and steal money from users’ accounts. In the past, before the bank deployed
a web application, the attacker might have needed to find a vulnerability

in a publicly reachable service, exploit this to gain a toehold on the bank’s
DMZ, penetrate the firewall restricting access to its internal systems, map the
network to find the mainframe computer, decipher the arcane protocol used
to access it, and guess some credentials to log in. However, if the bank now
deploys a vulnerable web application, the attacker may be able to achieve the
same outcome simply by modifying an account number in a hidden field of an
HTML form.

A second way in which web applications have moved the security perimeter
arises from the threats that users themselves face when they access a vulner-
able application. A malicious attacker can leverage a benign but vulnerable web
application to attack any user who visits it. If that user is located on an internal
corporate network, the attacker may harness the user’s browser to launch an
attack against the local network from the user’s trusted position. Without any
cooperation from the user, the attacker may be able to carry out any action that
the user could perform if she were herself malicious. With the proliferation of
browser extension technologies and plug-ins, the extent of the client-side attack
surface has increased considerably.

Network administrators are familiar with the idea of preventing their users
from visiting malicious web sites, and end users themselves are gradually becom-
ing more aware of this threat. But the nature of web application vulnerabilities
means that a vulnerable application may present no less of a threat to its users
and their organization than a web site that is overtly malicious. Correspondingly,
the new security perimeter imposes a duty of care on all application owners
to protect their users from attacks against them delivered via the application.

14

Chapter 1 = Web Application (In)security

A further way in which the security perimeter has partly moved to the cli-
ent side is through the widespread use of e-mail as an extended authentication
mechanism. A huge number of today’s applications contain “forgotten password”
functions that allow an attacker to generate an account recovery e-mail to any
registered address, without requiring any other user-specific information. This
allows an attacker who compromises a user’s web mail account to easily escalate
the attack and compromise the victim’s accounts on most of the web applications
for which the victim is registered.

The Future of Web Application Security

Over a decade after their widespread adoption, web applications on the Internet
today are still rife with vulnerabilities. Understanding of the security threats
facing web applications, and effective ways of addressing these, are still underde-
veloped within the industry. There is currently little indication that the problem
factors described in this chapter will disappear in the near future.

That said, the details of the web application security landscape are not static.
Even though old and well-understood vulnerabilities such as SQL injection
continue to appear, their prevalence is gradually diminishing. Furthermore,
the instances that remain are becoming more difficult to find and exploit. New
research in these areas is generally focused on developing advanced techniques
for attacking more subtle manifestations of vulnerabilities that a few years ago
could be easily detected and exploited using only a browser.

A second prominent trend has been a gradual shift in attention from attacks
against the server side of the application to those that target application users.
The latter kind of attack still leverages defects within the application itself, but
it generally involves some kind of interaction with another user to compromise
that user’s dealings with the vulnerable application. This is a trend that has
been replicated in other areas of software security. As awareness of security
threats matures, flaws in the server side are the first to be well understood and
addressed, leaving the client side as a key battleground as the learning process
continues. Of all the attacks described in this book, those against other users
are evolving the most quickly, and they have been the focus of most research
in recent years.

Various recent trends in technology have somewhat altered the landscape of
web applications. Popular consciousness about these trends exists by means of
various rather misleading buzzwords, the most prominent of which are these:

m Web 2.0 — This term refers to the greater use of functionality that enables
user-generated content and information sharing, and also the adoption
of various technologies that broadly support this functionality, including
asynchronous HTTP requests and cross-domain integration.

Chapter 1 = Web Application (In)security

15

m Cloud computing — This term refers to greater use of external service
providers for various parts of the technology stack, including applica-
tion software, application platforms, web server software, databases, and
hardware. It also refers to increased usage of virtualization technologies
within hosting environments.

As with most changes in technology, these trends have brought with them
some new attacks and variations on existing attacks. Notwithstanding the hype,
the issues raised are not quite as revolutionary as they may initially appear. We
will examine the security implications of these and other recent trends in the
appropriate locations throughout this book.

Despite all the changes that have occurred within web applications, some
categories of “classic” vulnerabilities show no sign of diminishing. They continue
to arise in pretty much the same form as they did in the earliest days of the
web. These include defects in business logic, failures to properly apply access
controls, and other design issues. Even in a world of bolted-together applica-
tion components and everything-as-a-service, these timeless issues are likely
to remain widespread.

Summary

In a little over a decade, the World Wide Web has evolved from purely static
information repositories into highly functional applications that process sensitive
data and perform powerful actions with real-world consequences. During this
development, several factors have combined to bring about the weak security
posture demonstrated by the majority of today’s web applications.

Most applications face the core security problem that users can submit arbi-
trary input. Every aspect of the user’s interaction with the application may be
malicious and should be regarded as such unless proven otherwise. Failure to
properly address this problem can leave applications vulnerable to attack in
numerous ways.

All the evidence about the current state of web application security indicates
that although some aspects of security have indeed improved, entirely new
threats have evolved to replace them. The overall problem has not been resolved
on any significant scale. Attacks against web applications still present a serious
threat to both the organizations that deploy them and the users who access them.

Core Defense Mechanisms

The fundamental security problem with web applications — that all user input
is untrusted — gives rise to a number of security mechanisms that applica-
tions use to defend themselves against attack. Virtually all applications employ
mechanisms that are conceptually similar, although the details of the design
and the effectiveness of the implementation vary greatly.

The defense mechanisms employed by web applications comprise the following
core elements:

m Handling user access to the application’s data and functionality to prevent
users from gaining unauthorized access

m Handling user input to the application’s functions to prevent malformed
input from causing undesirable behavior

m Handling attackers to ensure that the application behaves appropriately
when being directly targeted, taking suitable defensive and offensive
measures to frustrate the attacker

m Managing the application itself by enabling administrators to monitor its
activities and configure its functionality

Because of their central role in addressing the core security problem, these
mechanisms also make up the vast majority of a typical application’s attack
surface. If knowing your enemy is the first rule of warfare, then understanding
these mechanisms thoroughly is the main prerequisite for being able to attack

17

18

Chapter 2 = Core Defense Mechanisms

applications effectively. If you are new to hacking web applications (and even
if you are not), you should be sure to take time to understand how these core
mechanisms work in each of the applications you encounter, and identify the
weak points that leave them vulnerable to attack.

Handling User Access

A central security requirement that virtually any application needs to meet is
controlling users” access to its data and functionality. A typical situation has
several different categories of user, such as anonymous users, ordinary authenti-
cated users, and administrative users. Furthermore, in many situations different
users are permitted to access a different set of data. For example, users of a web
mail application should be able to read their own e-mail but not other people’s.

Most web applications handle access using a trio of interrelated security
mechanisms:

m Authentication
m Session management

m Access control

Each of these mechanisms represents a significant area of an application’s
attack surface, and each is fundamental to an application’s overall security
posture. Because of their interdependencies, the overall security provided by
the mechanisms is only as strong as the weakest link in the chain. A defect in
any single component may enable an attacker to gain unrestricted access to the
application’s functionality and data.

Authentication

The authentication mechanism is logically the most basic dependency in an
application’s handling of user access. Authenticating a user involves establishing
that the user is in fact who he claims to be. Without this facility, the application
would need to treat all users as anonymous — the lowest possible level of trust.

The majority of today’s web applications employ the conventional authen-
tication model, in which the user submits a username and password, which
the application checks for validity. Figure 2-1 shows a typical login function.
In security-critical applications such as those used by online banks, this basic
model is usually supplemented by additional credentials and a multistage login
process. When security requirements are higher still, other authentication mod-
els may be used, based on client certificates, smartcards, or challenge-response
tokens. In addition to the core login process, authentication mechanisms often
employ a range of other supporting functionality, such as self-registration,
account recovery, and a password change facility.

Chapter 2 = Core Defense Mechanisms

19

i ETTT R
Log in T\

Please log in below by completing the details requested, then select 'Log In'.

For security reasons, you have a limited number of atternpts to provide the correct infarmation. Ifyou do
not pravide the correct infarmation, access to vour Intelligent Finance plan will be suspended. Ifthis
happens, please call 0845 609 4343 and we will send you a new Plan Security Code. You will then be
able to access your plan by following the reactivation process

Ifyou are not sure ahout vour login details or require help, please call us.

Online Username I This must be at least 6 charactars long and

can have lafters and/or numbers, but no
spaces.

Online Password I This must be at least 6 characters fong and

must have both lefters and numbers, but
no SPEces

Figure 2-1: A typical login function

Despite their superficial simplicity, authentication mechanisms suffer from a
wide range of defects in both design and implementation. Common problems
may enable an attacker to identify other users’” usernames, guess their pass-
words, or bypass the login function by exploiting defects in its logic. When
you are attacking a web application, you should invest a significant amount of
attention to the various authentication-related functions it contains. Surprisingly
frequently, defects in this functionality enable you to gain unauthorized access
to sensitive data and functionality.

Session Management

The next logical task in the process of handling user access is to manage the
authenticated user’s session. After successfully logging in to the application, the
user accesses various pages and functions, making a series of HTTP requests from
his browser. At the same time, the application receives countless other requests
from different users, some of whom are authenticated and some of whom are
anonymous. To enforce effective access control, the application needs a way to
identify and process the series of requests that originate from each unique user.

Virtually all web applications meet this requirement by creating a session for
each user and issuing the user a token that identifies the session. The session
itself is a set of data structures held on the server that track the state of the user’s
interaction with the application. The token is a unique string that the applica-
tion maps to the session. When a user receives a token, the browser automati-
cally submits it back to the server in each subsequent HTTP request, enabling
the application to associate the request with that user. HTTP cookies are the
standard method for transmitting session tokens, although many applications
use hidden form fields or the URL query string for this purpose. If a user does
not make a request for a certain amount of time, the session is ideally expired,
as shown in Figure 2-2.

20

Chapter 2 = Core Defense Mechanisms

Your Account Session has ended

Sorry - for your own protection we have had to log you out of your online account
because you did not use the service for more than 10 minutes. To re-enter your account,
please log in again.

‘Would you like to log in now?

Figure 2-2: An application enforcing session timeout

In terms of attack surface, the session management mechanism is highly
dependent on the security of its tokens. The majority of attacks against it seek to
compromise the tokens issued to other users. If this is possible, an attacker can
masquerade as the victim user and use the application just as if he had actually
authenticated as that user. The principal areas of vulnerability arise from defects
in how tokens are generated, enabling an attacker to guess the tokens issued to
other users, and defects in how tokens are subsequently handled, enabling an
attacker to capture other users’ tokens.

A small number of applications dispense with the need for session tokens by
using other means of reidentifying users across multiple requests. If HTTP’s
built-in authentication mechanism is used, the browser automatically resubmits
the user’s credentials with each request, enabling the application to identify the
user directly from these. In other cases, the application stores the state infor-
mation on the client side rather than the server, usually in encrypted form to
prevent tampering.

Access Control

The final logical step in the process of handling user access is to make and enforce
correct decisions about whether each individual request should be permitted or
denied. If the mechanisms just described are functioning correctly, the applica-
tion knows the identity of the user from whom each request is received. On this
basis, it needs to decide whether that user is authorized to perform the action,
or access the data, that he is requesting, as shown in Figure 2-3.

The access control mechanism usually needs to implement some fine-grained
logic, with different considerations being relevant to different areas of the
application and different types of functionality. An application might support
numerous user roles, each involving different combinations of specific privileges.
Individual users may be permitted to access a subset of the total data held within
the application. Specific functions may implement transaction limits and other
checks, all of which need to be properly enforced based on the user’s identity.

Because of the complex nature of typical access control requirements, this
mechanism is a frequent source of security vulnerabilities that enable an attacker

Chapter 2 = Core Defense Mechanisms

21

to gain unauthorized access to data and functionality. Developers often make
flawed assumptions about how users will interact with the application and
frequently make oversights by omitting access control checks from some appli-
cation functions. Probing for these vulnerabilities is often laborious, because
essentially the same checks need to be repeated for each item of functionality.
Because of the prevalence of access control flaws, however, this effort is always
a worthwhile investment when you are attacking a web application. Chapter
8 describes how you can automate some of the effort involved in performing
rigorous access control testing.

Home» Access Denied [402]

Access Denied [403]

We're sorry...
You are not authorized to access this page.
s Login to the site.
» If you typed the page url, check the spelling.

» Click your browser's back button and try another link.
« Consider telling us about the broken link that led you to this page.

We apologize for the inconvenience, and hope we'll see you again soon.

Figure 2-3: An application enforcing access control

Handling User Input

Recall the fundamental security problem described in Chapter 1: All user input
is untrusted. A huge variety of attacks against web applications involve submit-
ting unexpected input, crafted to cause behavior that was not intended by the
application’s designers. Correspondingly, a key requirement for an application’s
security defenses is that the application must handle user input in a safe manner.

Input-based vulnerabilities can arise anywhere within an application’s func-
tionality, and in relation to practically every type of technology in common use.
“Input validation” is often cited as the necessary defense against these attacks.
However, no single protective mechanism can be employed everywhere, and
defending against malicious input is often not as straightforward as it sounds.

Varieties of Input

A typical web application processes user-supplied data in many different forms.
Some kinds of input validation may not be feasible or desirable for all these
forms of input. Figure 2-4 shows the kind of input validation often performed
by a user registration function.

22

Chapter 2 = Core Defense Mechanisms

First Name
Ia Must contain at least 4 characters

Last Name

[a Must contain at least 4 characters

Email

Ia Please provide a valid email address

Phone number
Ia Must contain only numbers

Figure 2-4: An application performing input validation

In many cases, an application may be able to impose very stringent valida-
tion checks on a specific item of input. For example, a username submitted to a
login function may be required to have a maximum length of eight characters
and contain only alphabetical characters.

In other cases, the application must tolerate a wider range of possible input.
For example, an address field submitted to a personal details page might legiti-
mately contain letters, numbers, spaces, hyphens, apostrophes, and other char-
acters. However, for this item, restrictions still can be feasibly imposed. The data
should not exceed a reasonable length limit (such as 50 characters) and should
not contain any HTML markup.

In some situations, an application may need to accept arbitrary input from
users. For example, a user of a blogging application may create a blog whose
subject is web application hacking. Posts and comments made to the blog may
quite legitimately contain explicit attack strings that are being discussed. The
application may need to store this input in a database, write it to disk, and display
it back to users in a safe way. It cannot simply reject the input just because it
looks potentially malicious without substantially diminishing the application’s
value to some of its user base.

In addition to the various kinds of input that users enter using the browser
interface, a typical application receives numerous items of data that began their
life on the server and that are sent to the client so that the client can transmit
them back to the server on subsequent requests. This includes items such as
cookies and hidden form fields, which are not seen by ordinary users of the
application but which an attacker can of course view and modify. In these cases,
applications can often perform very specific validation of the data received. For
example, a parameter might be required to have one of a specific set of known
values, such as a cookie indicating the user’s preferred language, or to be in a
specific format, such as a customer ID number. Furthermore, when an applica-
tion detects that server-generated data has been modified in a way that is not
possible for an ordinary user with a standard browser, this often indicates
that the user is attempting to probe the application for vulnerabilities. In these

Chapter 2 = Core Defense Mechanisms

23

cases, the application should reject the request and log the incident for potential
investigation (see the “Handling Attackers” section later in this chapter).

Approaches to Input Handling

Various broad approaches are commonly taken to the problem of handling
user input. Different approaches are often preferable for different situations
and different types of input, and a combination of approaches may sometimes
be desirable.

“Reject Known Bad”

This approach typically employs a blacklist containing a set of literal strings or
patterns that are known to be used in attacks. The validation mechanism blocks
any data that matches the blacklist and allows everything else.

In general, this is regarded as the least effective approach to validating user
input, for two main reasons. First, a typical vulnerability in a web applica-
tion can be exploited using a wide variety of input, which may be encoded or
represented in various ways. Except in the simplest of cases, it is likely that a
blacklist will omit some patterns of input that can be used to attack the applica-
tion. Second, techniques for exploitation are constantly evolving. Novel methods
for exploiting existing categories of vulnerabilities are unlikely to be blocked
by current blacklists.

Many blacklist-based filters can be bypassed with almost embarrassing ease
by making trivial adjustments to the input that is being blocked. For example:

m If sELECT is blocked, try seLect
m If or 1=1--is blocked, try or 2=2--

[Ifalert('xss')istﬂocked,h37prompt('xss')

In other cases, filters designed to block specific keywords can be bypassed by
using nonstandard characters between expressions to disrupt the tokenizing
performed by the application. For example:

SELECT/*foo*/username, password/*foo*/FROM/*foo* /users

<img%09onerror=alert(1l) src=a>

Finally, numerous blacklist-based filters, particularly those implemented in
web application firewalls, have been vulnerable to NULL byte attacks. Because
of the different ways in which strings are handled in managed and unmanaged
execution contexts, inserting a NULL byte anywhere before a blocked expression
can cause some filters to stop processing the input and therefore not identify
the expression. For example:

%00<script>alert (1) </script>

24

Chapter 2 = Core Defense Mechanisms

Various other techniques for attacking web application firewalls are described
in Chapter 18.

.]Im Attacks that exploit the handling of NULL bytes arise in many areas
of web application security. In contexts where a NULL byte acts as a string
delimiter, it can be used to terminate a filename or a query to some back-
end component. In contexts where NULL bytes are tolerated and ignored
(for example, within HTML in some browsers), arbitrary NULL bytes can be
inserted within blocked expressions to defeat some blacklist-based filters.
Attacks of this kind are discussed in detail in later chapters.

“Accept Known Good”

This approach employs a whitelist containing a set of literal strings or patterns,
or a set of criteria, that is known to match only benign input. The validation
mechanism allows data that matches the whitelist and blocks everything else.
For example, before looking up a requested product code in the database, an
application might validate that it contains only alphanumeric characters and is
exactly six characters long. Given the subsequent processing that will be done
on the product code, the developers know that input passing this test cannot
possibly cause any problems.

In cases where this approach is feasible, it is regarded as the most effective
way to handle potentially malicious input. Provided that due care is taken in
constructing the whitelist, an attacker will be unable to use crafted input to
interfere with the application’s behavior. However, in numerous situations an
application must accept data for processing that does not meet any reasonable
criteria for what is known to be “good.” For example, some people’s names contain
an apostrophe or hyphen. These can be used in attacks against databases, but
it may be a requirement that the application should permit anyone to register
under his or her real name. Hence, although it is often extremely effective, the
whitelist-based approach does not represent an all-purpose solution to the
problem of handling user input.

Sanitization

This approach recognizes the need to sometimes accept data that cannot be
guaranteed as safe. Instead of rejecting this input, the application sanitizes it
in various ways to prevent it from having any adverse effects. Potentially mali-
cious characters may be removed from the data, leaving only what is known to
be safe, or they may be suitably encoded or “escaped” before further processing
is performed.

Approaches based on data sanitization are often highly effective, and in many
situations they can be relied on as a general solution to the problem of malicious

Chapter 2 = Core Defense Mechanisms

25

input. For example, the usual defense against cross-site scripting attacks is to
HTML-encode dangerous characters before these are embedded into pages of the
application (see Chapter 12). However, effective sanitization may be difficult to
achieve if several kinds of potentially malicious data need to be accommodated
within one item of input. In this situation, a boundary validation approach is
desirable, as described later.

Safe Data Handling

Many web application vulnerabilities arise because user-supplied data is pro-
cessed in unsafe ways. Vulnerabilities often can be avoided not by validating
the input itself but by ensuring that the processing that is performed on it is
inherently safe. In some situations, safe programming methods are available
that avoid common problems. For example, SQL injection attacks can be pre-
vented through the correct use of parameterized queries for database access
(see Chapter 9). In other situations, application functionality can be designed
in such a way that inherently unsafe practices, such as passing user input to an
operating system command interpreter, are avoided.

This approach cannot be applied to every kind of task that web applications
need to perform. But where it is available, it is an effective general approach to
handling potentially malicious input.

Semantic Checks

The defenses described so far all address the need to defend the application against
various kinds of malformed data whose content has been crafted to interfere
with the application’s processing. However, with some vulnerabilities the input
supplied by the attacker is identical to the input that an ordinary, nonmalicious
user may submit. What makes it malicious is the different circumstances under
which it is submitted. For example, an attacker might seek to gain access to
another user’s bank account by changing an account number transmitted in a
hidden form field. No amount of syntactic validation will distinguish between
the user’s data and the attacker’s. To prevent unauthorized access, the applica-
tion needs to validate that the account number submitted belongs to the user
who has submitted it.

Boundary Validation

The idea of validating data across trust boundaries is a familiar one. The core
security problem with web applications arises because data received from users
is untrusted. Although input validation checks implemented on the client side
may improve performance and the user’s experience, they do not provide any
assurance about the data that actually reaches the server. The point at which

26

Chapter 2 = Core Defense Mechanisms

user data is first received by the server-side application represents a huge trust
boundary. At this point the application needs to take measures to defend itself
against malicious input.

Given the nature of the core problem, it is tempting to think of the input
validation problem in terms of a frontier between the Internet, which is “bad”
and untrusted, and the server-side application, which is “good” and trusted. In
this picture, the role of input validation is to clean potentially malicious data on
arrival and then pass the clean data to the trusted application. From this point
onward, the data may be trusted and processed without any further checks or
concern about possible attacks.

As will become evident when we begin to examine some actual vulnerabili-
ties, this simple picture of input validation is inadequate for several reasons:

m Given the wide range of functionality that applications implement, and the
different technologies in use, a typical application needs to defend itself
against a huge variety of input-based attacks, each of which may employ
a diverse set of crafted data. It would be very difficult to devise a single
mechanism at the external boundary to defend against all these attacks.

m Many application functions involve chaining together a series of different
types of processing. A single piece of user-supplied input might result in
a number of operations in different components, with the output of each
being used as the input for the next. As the data is transformed, it might
come to bear no resemblance to the original input. A skilled attacker
may be able to manipulate the application to cause malicious input to be
generated at a key stage of the processing, attacking the component that
receives this data. It would be extremely difficult to implement a valida-
tion mechanism at the external boundary to foresee all the possible results
of processing each piece of user input.

m Defending against different categories of input-based attack may entail
performing different validation checks on user input that are incompat-
ible with one another. For example, preventing cross-site scripting attacks
may require the application to HTML-encode the > character as > ;, and
preventing command injection attacks may require the application to
block input containing the & and ; characters. Attempting to prevent all
categories of attack simultaneously at the application’s external boundary
may sometimes be impossible.

A more effective model uses the concept of boundary validation. Here, each
individual component or functional unit of the server-side application treats
its inputs as coming from a potentially malicious source. Data validation is
performed at each of these trust boundaries, in addition to the external frontier
between the client and server. This model provides a solution to the problems
just described. Each component can defend itself against the specific types of
crafted input to which it may be vulnerable. As data passes through different

Chapter 2 = Core Defense Mechanisms 27

components, validation checks can be performed against whatever value the data
has as a result of previous transformations. And because the various validation
checks are implemented at different stages of processing, they are unlikely to
come into conflict with one another.

Figure 2-5 illustrates a typical situation where boundary validation is the
most effective approach to defending against malicious input. The user login
results in several steps of processing being performed on user-supplied input,
and suitable validation is performed at each step:

1. The application receives the user’s login details. The form handler vali-
dates that each item of input contains only permitted characters, is within
a specific length limit, and does not contain any known attack signatures.

2. The application performs a SQL query to verify the user’s credentials.
To prevent SQL injection attacks, any characters within the user input
that may be used to attack the database are escaped before the query is
constructed.

3. If the login succeeds, the application passes certain data from the user’s
profile to a SOAP service to retrieve further information about her account.
To prevent SOAP injection attacks, any XML metacharacters within the
user’s profile data are suitably encoded.

4. The application displays the user’s account information back to the user’s
browser. To prevent cross-site scripting attacks, the application HTML-
encodes any user-supplied data that is embedded into the returned page.

1. General checks ,

Login submission

Y

A

Display account details

User Application

S —— server
4. Sanitize output |

3. Encode XML
metacharacters

SOAP
message

ol

SOAP service

Figure 2-5: An application function using boundary validation at multiple stages of
processing

28

Chapter 2 = Core Defense Mechanisms

The specific vulnerabilities and defenses involved in this scenario will be
examined in detail in later chapters. If variations on this functionality involved
passing data to further application components, similar defenses would need
to be implemented at the relevant trust boundaries. For example, if a failed
login caused the application to send a warning e-mail to the user, any user
data incorporated into the e-mail may need to be checked for SMTP injection
attacks.

Multistep Validation and Canonicalization

A common problem encountered by input-handling mechanisms arises when
user-supplied input is manipulated across several steps as part of the valida-
tion logic. If this process is not handled carefully, an attacker may be able to
construct crafted input that succeeds in smuggling malicious data through the
validation mechanism. One version of this problem occurs when an application
attempts to sanitize user input by removing or encoding certain characters or
expressions. For example, an application may attempt to defend against some
cross-site scripting attacks by stripping the expression:

<script>

from any user-supplied data. However, an attacker may be able to bypass the
filter by supplying the following input:

<gscr<script>ipt>

When the blocked expression is removed, the surrounding data contracts
to restore the malicious payload, because the filter is not being applied
recursively.

Similarly, if more than one validation step is performed on user input, an
attacker may be able to exploit the ordering of these steps to bypass the filter.
For example, if the application first removes . . / recursively and then removes
. . \ recursively, the following input can be used to defeat the validation:

\/

A related problem arises in relation to data canonicalization. When input
is sent from the user’s browser, it may be encoded in various ways. These
encoding schemes exist so that unusual characters and binary data may be
transmitted safely over HTTP (see Chapter 3 for more details). Canonicalization
is the process of converting or decoding data into a common character set. If
any canonicalization is carried out after input filters have been applied, an
attacker may be able to use a suitable encoding scheme to bypass the valida-
tion mechanism.

For example, an application may attempt to defend against some SQL injec-
tion attacks by blocking input containing the apostrophe character. However, if

Chapter 2 = Core Defense Mechanisms

29

the input is subsequently canonicalized, an attacker may be able to use double
URL encoding to defeat the filter. For example:

%2527

When this input is received, the application server performs its normal URL
decode, so the input becomes:

%27

This does not contain an apostrophe, so it is permitted by the application’s filters.
But when the application performs a further URL decode, the input is converted
into an apostrophe, thereby bypassing the filter.

If the application strips the apostrophe instead of blocking it, and then per-
forms further canonicalization, the following bypass may be effective:

%%2727

It is worth noting that the multiple validation and canonicalization steps
in these cases need not all take place on the server side of the application. For
example, in the following input several characters have been HTML-encoded:

<iframe src=javascript:alert(1) >

If the server-side application uses an input filter to block certain JavaScript
expressions and characters, the encoded input may succeed in bypassing the
filter. However, if the input is then copied into the application’s response, some
browsers perform an HTML decode of the src parameter value, and the embed-
ded JavaScript executes.

In addition to the standard encoding schemes that are intended for use in
web applications, canonicalization issues can arise in other situations where a
component employed by the application converts data from one character set
to another. For example, some technologies perform a “best fit” mapping of
characters based on similarities in their printed glyphs. Here, the characters «
and » may be converted into < and >, respectively, and ¥ and A are converted
into v and a. This behavior can often be leveraged to smuggle blocked characters
or keywords past an application’s input filters.

Throughout this book, we will describe numerous attacks of this kind, which
are effective in defeating many applications’ defenses against common input-
based vulnerabilities.

Avoiding problems with multistep validation and canonicalization can some-
times be difficult, and there is no single solution to the problem. One approach is
to perform sanitization steps recursively, continuing until no further modifications
have been made on an item of input. However, where the desired sanitization
involves escaping a problematic character, this may result in an infinite loop.
Often, the problem can be addressed only on a case-by-case basis, based on the
types of validation being performed. Where feasible, it may be preferable to avoid
attempting to clean some kinds of bad input, and simply reject it altogether.

30

Chapter 2 = Core Defense Mechanisms

Handling Attackers

Anyone designing an application for which security is remotely important must
assume that it will be directly targeted by dedicated and skilled attackers. A key
function of the application’s security mechanisms is being able to handle and
react to these attacks in a controlled way. These mechanisms often incorporate
a mix of defensive and offensive measures designed to frustrate an attacker as
much as possible and give the application’s owners appropriate notification and
evidence of what has taken place. Measures implemented to handle attackers
typically include the following tasks:

m Handling errors
m Maintaining audit logs
m Alerting administrators

m Reacting to attacks

Handling Errors

However careful an application’s developers are when validating user input, it
is virtually inevitable that some unanticipated errors will occur. Errors resulting
from the actions of ordinary users are likely to be identified during functional-
ity and user acceptance testing. Therefore, they are taken into account before
the application is deployed in a production context. However, it is difficult to
anticipate every possible way in which a malicious user may interact with the
application, so further errors should be expected when the application comes
under attack.

A key defense mechanism is for the application to handle unexpected errors
gracefully, and either recover from them or present a suitable error message
to the user. In a production context, the application should never return any
system-generated messages or other debug information in its responses. As
you will see throughout this book, overly verbose error messages can greatly
assist malicious users in furthering their attacks against the application. In some
situations, an attacker can leverage defective error handling to retrieve sensi-
tive information within the error messages themselves, providing a valuable
channel for stealing data from the application. Figure 2-6 shows an example of
an unhandled error resulting in a verbose error message.

Most web development languages provide good error-handling support
through try-catch blocks and checked exceptions. Application code should
make extensive use of these constructs to catch specific and general errors and
handle them appropriately. Furthermore, most application servers can be con-
figured to deal with unhandled application errors in customized ways, such as

Chapter 2 = Core Defense Mechanisms

31

by presenting an uninformative error message. See Chapter 15 for more details
on these measures.

i oo]
File Edit View History Bookmarks Tools Help
@ = C 7y mhtt“pSH'rn"mdSEC.HEtf‘EddrESSbODkf R -'l— Google p
| | https:y//mdsec.net/addressbook/ ok =
[07/05/22 08:25:19.702] 2

java lang Exception:
[07/05i22 02:25:19.687] SQL Exception
IORA-OU921. unezpected end of 2QL command 3Q0L3tate: 42000 VendorError 921

|select price_cale from contentowners where ownernbr=

m

S0QLat orgapache jsp. dStore_jsp._jsplervice(dStore_jsp javal24), at

org.apache jasper. runtime HitpJspBase service(HttpJspBase java 137); at

javax servlet hitp Hitp Servlet service(Http Servlet java 853); at

org.apache jasper. servlet Jsp ServletWrapper service(Jsp ServletWrapper java204), at
org.apache jasper. servlet Jsp Servlet servicelspFilelTsp Servlet java 295),

juva Jng, Encception:

|[071’05!22 08:25:19.687] QL Exception
ORA-00921: unexpecte diencrirorfsralr, command
S0L3tate: 42000 VendotError 921

|select price_cale from contentowners where ownernbr=

org.apache jasper.runtime HitpJspBase service(HttpJspBase java 137); at

javaz, serviet hitp Hitp Servlet. service(Hitp Servlet java 853, at

org apache jasper. servlet Tsp ServletWrapper service(Tsp ServletWrapper java204); at
org.apache jasper. servlet JspServlet sermcelspFile(TspServlet java 295,

Done

Figure 2-6: An unhandled error

Effective error handling is often integrated with the application’s logging
mechanisms, which record as much debug information as possible about unan-
ticipated errors. Unexpected errors often point to defects within the application’s
defenses that can be addressed at the source if the application’s owner has the
required information.

Maintaining Audit Logs

Audit logs are valuable primarily when investigating intrusion attempts against
an application. Following such an incident, effective audit logs should enable
the application’s owners to understand exactly what has taken place, which
vulnerabilities (if any) were exploited, whether the attacker gained unauthorized
access to data or performed any unauthorized actions, and, as far as possible,
provide evidence of the intruder’s identity.

32

Chapter 2 = Core Defense Mechanisms

In any application for which security is important, key events should be logged
as a matter of course. At a minimum, these typically include the following:

m All events relating to the authentication functionality, such as successful
and failed login, and change of password

m Key transactions, such as credit card payments and funds transfers
m Access attempts that are blocked by the access control mechanisms

m Any requests containing known attack strings that indicate overtly mali-
cious intentions

In many security-critical applications, such as those used by online banks,
every client request is logged in full, providing a complete forensic record that
can be used to investigate any incidents.

Effective audit logs typically record the time of each event, the IP address
from which the request was received, and the user’s account (if authenticated).
Such logs need to be strongly protected against unauthorized read or write
access. An effective approach is to store audit logs on an autonomous system
that accepts only update messages from the main application. In some situa-
tions, logs may be flushed to write-once media to ensure their integrity in the
event of a successful attack.

In terms of attack surface, poorly protected audit logs can provide a gold mine
of information to an attacker, disclosing a host of sensitive information such as
session tokens and request parameters. This information may enable the attacker
to immediately compromise the entire application, as shown in Figure 2-7.

. @ Mozilla Firefox E”E‘

File Edit View History Bookmarks Tools Help

@ > C 1y @https:_.-‘_;'mdsec.net.-‘logs_.f Sy -

__| httpsy//mdsec.net/logs/ + -

[05/Mar/2007:19:31:25 +0100] "POST /lx-office-erp/admin.pl HTTP/1.1™ 200 1085 "ht 4
[05/Mar/2007:19:34:39 +0100] "GET /lx-office-erp/admin.pl?action=edit&login=andre
[05/Mar/2007:19:34:56 +0100] "POST /lux-office-erp/admin.pl HTTP/1.1" 200 2358 "ht;
[05/Mar/2007:19:35:09 +0100] "POST /lx-office-srpd login.pl HTTR/1.17 200 5368 "hti
[05/Mar/2007:19:35:22 +0100] "GET /lx-office-erp/menuvi.pl?login=andreasspassword:
[05/Mar/2007:19:35:23 +0100] "GET /lx-office-erp/ocss/menuvd.ces?id=94273 HTTP/1.1
[05/Mar/2007:19:35:23 +0100] "GET /lx-office-erp/image/bg titel.gif HTTP/1.1" Z00
[05/Mar/2007:19:35:23 +0100] "GET /lx-office-erp/image/by css menu.png HTTF/1.1"

[05/Mar/2007:19:35:23 +0100] "GET /lx-office-erp/login.pl?login=andreasspassword=
[05/Mar/2007:19:35:25 +0100] "GET /lwx-office-erp/image/right.gif HTTE/1.1"™ 200 &0
[05/Mar/2007:19:35:26 +0100] "GET /lx-office-erp/ot.pl?action=searchselevel=Master:
[05/Mar/2007:19:35:31 +0100] "POST /lx-office-erpfct.pl HTTR/1.1" 200 14703 "http
[05/Mar/2007:19:35:38 +0100] "GET /lwx-office-erpfar.pl?action=search&level=aR--Re
[05/Mar/2007:19:35:39 +0100] "GET /lx-office-erp/js/jscalendar/calendar-winzZk-1.ci-

m

Done

Figure 2-7: Poorly protected application logs containing sensitive information
submitted by other users

Chapter 2 = Core Defense Mechanisms

33

Alerting Administrators

Audit logs enable an application’s owners to retrospectively investigate intrusion
attempts and, if possible, take legal action against the perpetrator. However, in
many situations it is desirable to take much more immediate action, in real time,
in response to attempted attacks. For example, administrators may block the IP
address or user account an attacker is using. In extreme cases, they may even
take the application offline while investigating the attack and taking remedial
action. Even if a successful intrusion has already occurred, its practical effects
may be mitigated if defensive action is taken at an early stage.

In most situations, alerting mechanisms must balance the conflicting objec-
tives of reporting each genuine attack reliably and of not generating so many
alerts that these come to be ignored. A well-designed alerting mechanism can
use a combination of factors to diagnose that a determined attack is under way
and can aggregate related events into a single alert where possible. Anomalous
events monitored by alerting mechanisms often include the following:

m Usage anomalies, such as large numbers of requests being received from
a single IP address or user, indicating a scripted attack

m Business anomalies, such as an unusual number of funds transfers being
made to or from a single bank account

m Requests containing known attack strings

m Requests where data that is hidden from ordinary users has been modified

Some of these functions can be provided reasonably well by off-the-shelf
application firewalls and intrusion detection products. These typically use a
mixture of signature- and anomaly-based rules to identify malicious use of
the application and may reactively block malicious requests as well as issue
alerts to administrators. These products can form a valuable layer of defense
protecting a web application, particularly in the case of existing applications
known to contain problems but where resources to fix these are not immedi-
ately available. However, their effectiveness usually is limited by the fact that
each web application is different, so the rules employed are inevitably generic
to some extent. Web application firewalls usually are good at identifying the
most obvious attacks, where an attacker submits standard attack strings in
each request parameter. However, many attacks are more subtle than this. For
example, perhaps they modify the account number in a hidden field to access
another user’s data, or submit requests out of sequence to exploit defects in the
application’s logic. In these cases, a request submitted by an attacker may be

34

Chapter 2 = Core Defense Mechanisms

identical to that submitted by a benign user. What makes it malicious are the
circumstances under which it is made.

In any security-critical application, the most effective way to implement real-
time alerting is to integrate this tightly with the application’s input validation
mechanisms and other controls. For example, if a cookie is expected to have
one of a specific set of values, any violation of this indicates that its value has
been modified in a way that is not possible for ordinary users of the application.
Similarly, if a user changes an account number in a hidden field to identify a
different user’s account, this strongly indicates malicious intent. The application
should already be checking for these attacks as part of its primary defenses,
and these protective mechanisms can easily hook into the application’s alert-
ing mechanism to provide fully customized indicators of malicious activity.
Because these checks have been tailored to the application’s actual logic, with
a fine-grained knowledge of how ordinary users should be behaving, they
are much less prone to false positives than any off-the-shelf solution, however
configurable or easy-to-learn that solution may be.

Reacting to Attacks

In addition to alerting administrators, many security-critical applications con-
tain built-in mechanisms to react defensively to users who are identified as
potentially malicious.

Because each application is different, most real-world attacks require an
attacker to probe systematically for vulnerabilities, submitting numerous requests
containing crafted input designed to indicate the presence of various common
vulnerabilities. Effective input validation mechanisms will identify many of
these requests as potentially malicious and block the input from having any
undesirable effect on the application. However, it is sensible to assume that
some bypasses to these filters exist and that the application does contain some
actual vulnerabilities waiting to be discovered and exploited. At some point, an
attacker working systematically is likely to discover these defects.

For this reason, some applications take automatic reactive measures to frus-
trate the activities of an attacker who is working in this way. For example, they
might respond increasingly slowly to the attacker’s requests or terminate the
attacker’s session, requiring him to log in or perform other steps before con-
tinuing the attack. Although these measures will not defeat the most patient
and determined attacker, they will deter many more casual attackers and will
buy additional time for administrators to monitor the situation and take more
drastic action if desired.

Chapter 2 = Core Defense Mechanisms

35

Reacting to apparent attackers is not, of course, a substitute for fixing any
vulnerabilities that exist within the application. However, in the real world, even
the most diligent efforts to purge an application of security flaws may leave
some exploitable defects. Placing further obstacles in the way of an attacker
is an effective defense-in-depth measure that reduces the likelihood that any
residual vulnerabilities will be found and exploited.

Managing the Application

Any useful application needs to be managed and administered. This facility
often forms a key part of the application’s security mechanisms, providing a
way for administrators to manage user accounts and roles, access monitoring
and audit functions, perform diagnostic tasks, and configure aspects of the
application’s functionality.

In many applications, administrative functions are implemented within
the application itself, accessible through the same web interface as its core
nonsecurity functionality, as shown in Figure 2-8. Where this is the case, the
administrative mechanism represents a critical part of the application’s attack
surface. Its primary attraction for an attacker is as a vehicle for privilege esca-
lation. For example:

m Weaknesses in the authentication mechanism may enable an attacker
to gain administrative access, effectively compromising the entire
application.

m Many applications do not implement effective access control of some of
their administrative functions. An attacker may find a means of creating
a new user account with powerful privileges.

m Administrative functionality often involves displaying data that originated
from ordinary users. Any cross-site scripting flaws within the administra-
tive interface can lead to compromise of a user session that is guaranteed
to have powerful privileges.

m Administrative functionality is often subjected to less rigorous security
testing, because its users are deemed to be trusted, or because penetration
testers are given access to only low-privileged accounts. Furthermore, the
functionality often needs to perform inherently dangerous operations,
involving access to files on disk or operating system commands. If an
attacker can compromise the administrative function, he can often lever-
age it to take control of the entire server.

36 Chapter 2 » Core Defense Mechanisms

1) PHP-Nuke Powered Site - Administration Menu - Mozilla Firefox El@
File Edit View History Bookmarks Tools Help
@ > e ﬁ E https://mdsec.net/phpnuke/admin.php T | '-.' - Google P

[[PHP-Nuke Powered Site - Administra...| | =

R s s —
| |

Your Account

Downloads | Submit News Topics

m Administration System Login
Haorne

" AvantGa

+ Downloads Adrmin ID I—

" FAQ

Feoibaol Passwnrdl

+ Journal Login

" Private Messages
* Recommend Us
* Search

" Statistics b

Dane

Figure 2-8: An administrative interface within a web application

Summary

Despite their extensive differences, virtually all web applications employ the
same core security mechanisms in some shape or form. These mechanisms rep-
resent an application’s primary defenses against malicious users and therefore
also comprise the bulk of the application’s attack surface. The vulnerabilities
we will examine later in this book mainly arise from defects within these core
mechanisms.

Of these components, the mechanisms for handling user access and user input
are the most important and should receive most of your attention when you are
targeting an application. Defects in these mechanisms often lead to complete
compromise of the application, enabling you to access data belonging to other
users, perform unauthorized actions, and inject arbitrary code and commands.

Questions

Answers can be found at http://mdsec.net/wahh.

1. Why are an application’s mechanisms for handling user access only as
strong as the weakest of these components?

2. What is the difference between a session and a session token?

3. Why is it not always possible to use a whitelist-based approach to input
validation?

Chapter 2 = Core Defense Mechanisms 37

4. You are attacking an application that implements an administrative func-
tion. You do not have any valid credentials to use the function. Why should
you nevertheless pay close attention to it?

5. An input validation mechanism designed to block cross-site scripting
attacks performs the following sequence of steps on an item of input:

Strip any <script> expressions that appear.
Truncate the input to 50 characters.

Remove any quotation marks within the input.
URL-decode the input.

If any items were deleted, return to step 1.

SR

Can you bypass this validation mechanism to smuggle the following data
past it?

"><script>alert ("foo")</script>

Web Application Technologies

Web applications employ a myriad of technologies to implement their function-
ality. This chapter is a short primer on the key technologies that you are likely
to encounter when attacking web applications. We will examine the HTTP
protocol, the technologies commonly employed on the server and client sides,
and the encoding schemes used to represent data in different situations. These
technologies are in general easy to understand, and a grasp of their relevant
features is key to performing effective attacks against web applications.

If you are already familiar with the key technologies used in web applications,
you can skim through this chapter to confirm that it offers you nothing new. If
you are still learning how web applications work, you should read this chapter
before continuing to the later chapters on specific vulnerabilities. For further
reading on many of the areas covered, we recommend HTTP: The Definitive
Guide by David Gourley and Brian Totty (O’Reilly, 2002), and also the website
of the World Wide Web Consortium at www.w3 . org.

The HTTP Protocol

Hypertext transfer protocol (HTTP) is the core communications protocol used to
access the World Wide Web and is used by all of today’s web applications. It is
a simple protocol that was originally developed for retrieving static text-based
resources. It has since been extended and leveraged in various ways to enable
it to support the complex distributed applications that are now commonplace.

39

40

Chapter 3 = Web Application Technologies

HTTP uses a message-based model in which a client sends a request mes-
sage and the server returns a response message. The protocol is essentially
connectionless: although HTTP uses the stateful TCP protocol as its transport
mechanism, each exchange of request and response is an autonomous transac-
tion and may use a different TCP connection.

HTTP Requests

All HTTP messages (requests and responses) consist of one or more headers,
each on a separate line, followed by a mandatory blank line, followed by an
optional message body. A typical HTTP request is as follows:

GET /auth/488/YourDetails.ashx?uid=129 HTTP/1.1

Accept: application/x-ms-application, image/jpeg, application/xaml+xml,
image/gif, image/pjpeg, application/x-ms-xbap, application/x-shockwave-
flash, */*

Referer: https://mdsec.net/auth/488/Home.ashx

Accept-Language: en-GB

User-Agent: Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 6.1; WOW64;
Trident/4.0; SLCC2; .NET CLR 2.0.50727; .NET CLR 3.5.30729; .NET CLR
3.0.30729; .NET4.0C; InfoPath.3; .NET4.0E; FDM; .NET CLR 1.1.4322)
Accept-Encoding: gzip, deflate

Host: mdsec.net

Connection: Keep-Alive

Cookie: SessionId=5B70C71F3FD4968935CDB6682E545476

The first line of every HTTP request consists of three items, separated by spaces:

m A verb indicating the HTTP method. The most commonly used method
is GET, whose function is to retrieve a resource from the web server. GET
requests do not have a message body, so no further data follows the blank
line after the message headers.

m The requested URL. The URL typically functions as a name for the resource
being requested, together with an optional query string containing param-
eters that the client is passing to that resource. The query string is indicated
by the 2 character in the URL. The example contains a single parameter
with the name uid and the value 129.

m The HTTP version being used. The only HTTP versions in common use
on the Internet are 1.0 and 1.1, and most browsers use version 1.1 by
default. There are a few differences between the specifications of these
two versions; however, the only difference you are likely to encounter
when attacking web applications is that in version 1.1 the Host request
header is mandatory.

Chapter 3 = Web Application Technologies

Here are some other points of interest in the sample request:

m The Referer header is used to indicate the URL from which the request
originated (for example, because the user clicked a link on that page).
Note that this header was misspelled in the original HTTP specification,
and the misspelled version has been retained ever since.

m The user-agent header is used to provide information about the browser
or other client software that generated the request. Note that most brows-
ers include the Mozilla prefix for historical reasons. This was the user-
agent string used by the originally dominant Netscape browser, and other
browsers wanted to assert to websites that they were compatible with this
standard. As with many quirks from computing history, it has become so
established that it is still retained, even on the current version of Internet
Explorer, which made the request shown in the example.

m The Host header specifies the hostname that appeared in the full URL
being accessed. This is necessary when multiple websites are hosted on
the same server, because the URL sent in the first line of the request usu-
ally does not contain a hostname. (See Chapter 17 for more information
about virtually hosted websites.)

m The cookie header is used to submit additional parameters that the server
has issued to the client (described in more detail later in this chapter).

HTTP RESPOHSES
A typical HTTP response is as follows:

HTTP/1.1 200 OK

Date: Tue, 19 Apr 2011 09:23:32 GMT
Server: Microsoft-IIS/6.0
X-Powered-By: ASP.NET

Set-Cookie: tracking=tI8rk7joMx44S2Uu85nSWc
X-AspNet-Version: 2.0.50727
Cache-Control: no-cache

Pragma: no-cache

Expires: Thu, 01 Jan 1970 00:00:00 GMT
Content-Type: text/html; charset=utf-8
Content-Length: 1067

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://
www.w3.0rg/TR/xhtmll/DTD/xhtmll-transitional.dtd"><html xmlns="http://
www.w3.0rg/1999/xhtml" ><head><title>Your details</title>

42 Chapter 3 = Web Application Technologies

The first line of every HTTP response consists of three items, separated by
spaces:

m The HTTP version being used.

m A numeric status code indicating the result of the request. 200 is the most
common status code; it means that the request was successful and that
the requested resource is being returned.

m A textual “reason phrase” further describing the status of the response. This
can have any value and is not used for any purpose by current browsers.

Here are some other points of interest in the response:

m The server header contains a banner indicating the web server software
being used, and sometimes other details such as installed modules and
the server operating system. The information contained may or may not
be accurate.

m The set-cookie header issues the browser a further cookie; this is sub-
mitted back in the cookie header of subsequent requests to this server.

m The pPragma header instructs the browser not to store the response in its
cache. The Expires header indicates that the response content expired
in the past and therefore should not be cached. These instructions are
frequently issued when dynamic content is being returned to ensure
that browsers obtain a fresh version of this content on subsequent
occasions.

m Almost all HTTP responses contain a message body following the blank
line after the headers. The content-Type header indicates that the body
of this message contains an HTML document.

m The content-Length header indicates the length of the message body in
bytes.

HTTP Methods

When you are attacking web applications, you will be dealing almost exclusively
with the most commonly used methods: GeT and posT. You need to be aware
of some important differences between these methods, as they can affect an
application’s security if overlooked.

The GET method is designed to retrieve resources. It can be used to send
parameters to the requested resource in the URL query string. This enables
users to bookmark a URL for a dynamic resource that they can reuse. Or other
users can retrieve the equivalent resource on a subsequent occasion (as in a
bookmarked search query). URLs are displayed on-screen and are logged in
various places, such as the browser history and the web server’s access logs.
They are also transmitted in the referer header to other sites when external

Chapter 3 = Web Application Technologies

43

links are followed. For these reasons, the query string should not be used to
transmit any sensitive information.

The posT method is designed to perform actions. With this method, request
parameters can be sent both in the URL query string and in the body of the
message. Although the URL can still be bookmarked, any parameters sent in
the message body will be excluded from the bookmark. These parameters will
also be excluded from the various locations in which logs of URLs are main-
tained and from the rReferer header. Because the rosT method is designed for
performing actions, if a user clicks the browser’s Back button to return to a
page that was accessed using this method, the browser does not automatically
reissue the request. Instead, it warns the user of what it is about to do, as shown
in Figure 3-1. This prevents users from unwittingly performing an action more
than once. For this reason, posT requests should always be used when an action
is being performed.

.Conﬁlm @

To display this page, Firefox must send information that will repeat any action (such as a search or
order confirmation) that was performed earlier,

‘ Cancel |

Figure 3-1: Browsers do not automatically reissue POST requests made by
users, because these might cause an action to be performed more than once

In addition to the GET and posT methods, the HTTP protocol supports numer-
ous other methods that have been created for specific purposes. Here are the
other ones you are most likely to require knowledge of:

m HEAD functions in the same way as a GET request, except that the server
should not return a message body in its response. The server should return
the same headers that it would have returned to the corresponding GET
request. Hence, this method can be used to check whether a resource is
present before making a GET request for it.

m TRACE is designed for diagnostic purposes. The server should return in the
response body the exact contents of the request message it received. This
can be used to detect the effect of any proxy servers between the client
and server that may manipulate the request.

m OPTIONS asks the server to report the HTTP methods that are available for
a particular resource. The server typically returns a response containing
an Allow header that lists the available methods.

m PUT attempts to upload the specified resource to the server, using the con-
tent contained in the body of the request. If this method is enabled, you
may be able to leverage it to attack the application, such as by uploading
an arbitrary script and executing it on the server.

44

Chapter 3 = Web Application Technologies

Many other HTTP methods exist that are not directly relevant to attacking
web applications. However, a web server may expose itself to attack if certain
dangerous methods are available. See Chapter 18 for further details on these
methods and examples of using them in an attack.

URLs

A uniform resource locator (URL) is a unique identifier for a web resource through
which that resource can be retrieved. The format of most URLSs is as follows:

protocol://hostname[:port]/[path/]file[?param=value]

Several components in this scheme are optional. The port number usually is
included only if it differs from the default used by the relevant protocol. The
URL used to generate the HTTP request shown earlier is as follows:

https://mdsec.net/auth/488/YourDetails.ashx?uid=129

In addition to this absolute form, URLs may be specified relative to a particular
host, or relative to a particular path on that host. For example:

/auth/488/YourDetails.ashx?uid=129
YourDetails.ashx?uid=129

These relative forms are often used in web pages to describe navigation within
the website or application itself.

.]ma You may encounter the term UR/ (or uniform resource identifier)
being used instead of URL, but it is really only used in formal specifications
and by those who want to exhibit their pedantry.

REST

Representational state transfer (REST) is a style of architecture for distributed
systems in which requests and responses contain representations of the current
state of the system’s resources. The core technologies employed in the World
Wide Web, including the HTTP protocol and the format of URLSs, conform to
the REST architectural style.

Although URLSs containing parameters within the query string do themselves
conform to REST constraints, the term “REST-style URL" is often used to signify
a URL that contains its parameters within the URL file path, rather than the
query string. For example, the following URL containing a query string:

http://wahh-app.com/search?make=ford&model=pinto

corresponds to the following URL containing “REST-style” parameters:

http://wahh-app.com/search/ford/pinto

Chapter 3 = Web Application Technologies

45

Chapter 4 describes how you need to consider these different parameter styles
when mapping an application’s content and functionality and identifying its
key attack surface.

HTTP Headers

HTTP supports a large number of headers, some of which are designed for
specific unusual purposes. Some headers can be used for both requests and
responses, and others are specific to one of these message types. The following
sections describe the headers you are likely to encounter when attacking web
applications.

General Headers

m Connection tells the other end of the communication whether it should
close the TCP connection after the HTTP transmission has completed or
keep it open for further messages.

m Content-Encoding specifies what kind of encoding is being used for the
content contained in the message body, such as gzip, which is used by
some applications to compress responses for faster transmission.

m Content-Length specifies the length of the message body, in bytes (except
in the case of responses to HEAD requests, when it indicates the length of
the body in the response to the corresponding GET request).

m Content-Type specifies the type of content contained in the message body,
such as text/html for HTML documents.

m Transfer-Encoding specifies any encoding that was performed on the
message body to facilitate its transfer over HTTP. It is normally used to
specify chunked encoding when this is employed.

Request Headers

m Accept tells the server what kinds of content the client is willing to accept,
such as image types, office document formats, and so on.

m Accept-Encoding tells the server what kinds of content encoding the client
is willing to accept.

m Authorization submits credentials to the server for one of the built-in
HTTP authentication types.

m Cookie submits cookies to the server that the server previously issued.

m Host specifies the hostname that appeared in the full URL being requested.

46

Chapter 3 = Web Application Technologies

m If-Modified-Since specifies when the browser last received the requested

resource. If the resource has not changed since that time, the server may
instruct the client to use its cached copy, using a response with status code 304.

If-None-Match specifies an entity tag, which is an identifier denoting the
contents of the message body. The browser submits the entity tag that
the server issued with the requested resource when it was last received.
The server can use the entity tag to determine whether the browser may
use its cached copy of the resource.

Originis used in cross-domain Ajax requests to indicate the domain from
which the request originated (see Chapter 13).

Referer specifies the URL from which the current request originated.

User-Agent provides information about the browser or other client soft-
ware that generated the request.

Response Headers

m Access-Control-Allow-Origin indicates whether the resource can be

retrieved via cross-domain Ajax requests (see Chapter 13).

Cache-Control passes caching directives to the browser (for example,

no-cache).

ETag specifies an entity tag. Clients can submit this identifier in future
requests for the same resource in the 1f-None-Match header to notify the
server which version of the resource the browser currently holds in its cache.

Expires tells the browser for how long the contents of the message body
are valid. The browser may use the cached copy of this resource until
this time.

Location is used in redirection responses (those that have a status code
starting with 3) to specify the target of the redirect.

pragma passes caching directives to the browser (for example, no-cache).
server provides information about the web server software being used.

Set-Cookie issues cookies to the browser that it will submit back to the
server in subsequent requests.

m WWW-Authenticate is used in responses that have a 401 status code to

provide details on the type(s) of authentication that the server supports.

m X-Frame-Options indicates whether and how the current response may

be loaded within a browser frame (see Chapter 13).

Chapter 3 = Web Application Technologies

47

Cookies

Cookies are a key part of the HTTP protocol that most web applications rely
on. Frequently they can be used as a vehicle for exploiting vulnerabilities. The
cookie mechanism enables the server to send items of data to the client, which
the client stores and resubmits to the server. Unlike the other types of request
parameters (those within the URL query string or the message body), cookies
continue to be resubmitted in each subsequent request without any particular
action required by the application or the user.

A server issues a cookie using the set-cookie response header, as you
have seen:

Set-Cookie: tracking=tI8rk7joMx44S2Uu85nSWc

The user’s browser then automatically adds the following header to subsequent
requests back to the same server:

Cookie: tracking=tI8rk7joMx44S2Uu85nSwWc

Cookies normally consist of a name/value pair, as shown, but they may consist
of any string that does not contain a space. Multiple cookies can be issued by
using multiple set-cookie headers in the server’s response. These are submit-
ted back to the server in the same cookie header, with a semicolon separating
different individual cookies.

In addition to the cookie’s actual value, the set-cookie header can include
any of the following optional attributes, which can be used to control how the
browser handles the cookie:

m expires sets a date until which the cookie is valid. This causes the browser
to save the cookie to persistent storage, and it is reused in subsequent
browser sessions until the expiration date is reached. If this attribute is
not set, the cookie is used only in the current browser session.

m domain specifies the domain for which the cookie is valid. This must be
the same or a parent of the domain from which the cookie is received.

m path specifies the URL path for which the cookie is valid.

m secure — If this attribute is set, the cookie will be submitted only in HTTPS
requests.

m Httponly — If this attribute is set, the cookie cannot be directly accessed
via client-side JavaScript.

Each of these cookie attributes can impact the application’s security. The
primary impact is on the attacker’s ability to directly target other users of the
application. See Chapters 12 and 13 for more details.

Chapter 3 = Web Application Technologies

Status Codes

Each HTTP response message must contain a status code in its first line, indi-
cating the result of the request. The status codes fall into five groups, according
to the code’s first digit:

1xx — Informational.

2xx — The request was successful.

3xx — The client is redirected to a different resource.
4xx — The request contains an error of some kind.

5xx — The server encountered an error fulfilling the request.

There are numerous specific status codes, many of which are used only in
specialized circumstances. Here are the status codes you are most likely to
encounter when attacking a web application, along with the usual reason phrase
associated with them:

100 Continue is sent in some circumstances when a client submits a
request containing a body. The response indicates that the request headers
were received and that the client should continue sending the body. The
server returns a second response when the request has been completed.

200 ok indicates that the request was successful and that the response
body contains the result of the request.

201 Created is returned in response to a puT request to indicate that the
request was successful.

301 Moved Permanently redirects the browser permanently to a different
URL, which is specified in the Location header. The client should use the
new URL in the future rather than the original.

302 Found redirects the browser temporarily to a different URL, which is
specified in the Location header. The client should revert to the original
URL in subsequent requests.

304 Not Modified instructs the browser to use its cached copy of the
requested resource. The server uses the If-Modified-Since and If-None-
Match request headers to determine whether the client has the latest version
of the resource.

400 Bad Request indicates that the client submitted an invalid HTTP request.
You will probably encounter this when you have modified a request in
certain invalid ways, such as by placing a space character into the URL.

401 Unauthorized indicates that the server requires HTTP authentication
before the request will be granted. The www-authenticate header contains
details on the type(s) of authentication supported.

Chapter 3 = Web Application Technologies

49

m 403 Forbidden indicates that no one is allowed to access the requested
resource, regardless of authentication.

m 404 Not Found indicates that the requested resource does not exist.

m 405 Method Not Allowed indicates that the method used in the request is
not supported for the specified URL. For example, you may receive this
status code if you attempt to use the pur method where it is not supported.

m 413 Request Entity Too Large — If you are probing for buffer overflow
vulnerabilities in native code, and therefore are submitting long strings
of data, this indicates that the body of your request is too large for the
server to handle.

m 414 Request URI Too Long is similar to the 413 response. It indicates that
the URL used in the request is too large for the server to handle.

m 500 Internal Server Error indicates that the server encountered an
error fulfilling the request. This normally occurs when you have submit-
ted unexpected input that caused an unhandled error somewhere within
the application’s processing. You should closely review the full contents
of the server’s response for any details indicating the nature of the error.

m 503 Service Unavailable normally indicates that, although the web
server itself is functioning and can respond to requests, the application
accessed via the server is not responding. You should verify whether this
is the result of any action you have performed.

HTTPS

The HTTP protocol uses plain TCP as its transport mechanism, which is unen-
crypted and therefore can be intercepted by an attacker who is suitably posi-
tioned on the network. HTTPS is essentially the same application-layer protocol
as HTTP but is tunneled over the secure transport mechanism, Secure Sockets
Layer (SSL). This protects the privacy and integrity of data passing over the
network, reducing the possibilities for noninvasive interception attacks. HTTP
requests and responses function in exactly the same way regardless of whether
SSL is used for transport.

.m SSL has strictly been superseded by transport layer security (TLS), but
the latter usually still is referred to using the older name.

HTTP Proxies

An HTTP proxy is a server that mediates access between the client browser and
the destination web server. When a browser has been configured to use a proxy

50

Chapter 3 = Web Application Technologies

server, it makes all its requests to that server. The proxy relays the requests to
the relevant web servers and forwards their responses back to the browser.
Most proxies also provide additional services, including caching, authentica-
tion, and access control.

You should be aware of two differences in how HTTP works when a proxy
server is being used:

m When a browser issues an unencrypted HTTP request to a proxy server, it
places the full URL into the request, including the protocol prefix http://,
the server’s hostname, and the port number if this is nonstandard. The
proxy server extracts the hostname and port and uses these to direct the
request to the correct destination web server.

m When HTTPS is being used, the browser cannot perform the SSL hand-
shake with the proxy server, because this would break the secure tunnel
and leave the communications vulnerable to interception attacks. Hence,
the browser must use the proxy as a pure TCP-level relay, which passes
all network data in both directions between the browser and the destina-
tion web server, with which the browser performs an SSL handshake as
normal. To establish this relay, the browser makes an HTTP request to the
proxy server using the connecT method and specifying the destination
hostname and port number as the URL. If the proxy allows the request,
it returns an HTTP response with a 200 status, keeps the TCP connection
open, and from that point onward acts as a pure TCP-level relay to the
destination web server.

By some measure, the most useful item in your toolkit when attacking web
applications is a specialized kind of proxy server that sits between your browser
and the target website and allows you to intercept and modify all requests and
responses, even those using HTTPS. We will begin examining how you can use
this kind of tool in the next chapter.

HTTP Authentication

The HTTP protocol includes its own mechanisms for authenticating users using
various authentication schemes, including the following:

m Basic is a simple authentication mechanism that sends user credentials as
a Base64-encoded string in a request header with each message.

m NTLM is a challenge-response mechanism and uses a version of the
Windows NTLM protocol.

m Digest is a challenge-response mechanism and uses MD5 checksums of
a nonce with the user’s credentials.

Chapter 3 = Web Application Technologies

51

It is relatively rare to encounter these authentication protocols being used
by web applications deployed on the Internet. They are more commonly used
within organizations to access intranet-based services.

COMMON MYTH

“Basic authentication is insecure.”

Because basic authentication places credentials in unencrypted form within
the HTTP request, it is frequently stated that the protocol is insecure and
should not be used. But forms-based authentication, as used by numerous
banks, also places credentials in unencrypted form within the HTTP request.

Any HTTP message can be protected from eavesdropping attacks by using HTTPS
as a transport mechanism, which should be done by every security-conscious
application. In relation to eavesdropping, at least, basic authentication in itself
is no worse than the methods used by the majority of today’s web applications.

Web Functionality

In addition to the core communications protocol used to send messages between
client and server, web applications employ numerous technologies to deliver
their functionality. Any reasonably functional application may employ dozens
of distinct technologies within its server and client components. Before you can
mount a serious attack against a web application, you need a basic understand-
ing of how its functionality is implemented, how the technologies used are
designed to behave, and where their weak points are likely to lie.

Server-Side Functionality

The early World Wide Web contained entirely static content. Websites con-
sisted of various resources such as HTML pages and images, which were
simply loaded onto a web server and delivered to any user who requested
them. Each time a particular resource was requested, the server responded
with the same content.

Today’s web applications still typically employ a fair number of static resources.
However, a large amount of the content that they present to users is generated
dynamically. When a user requests a dynamic resource, the server’s response
is created on the fly, and each user may receive content that is uniquely custom-
ized for him or her.

Dynamic content is generated by scripts or other code executing on the server.
These scripts are akin to computer programs in their own right. They have vari-
ous inputs, perform processing on these, and return their outputs to the user.

52

Chapter 3 = Web Application Technologies

When a user’s browser requests a dynamic resource, normally it does not
simply ask for a copy of that resource. In general, it also submits various
parameters along with its request. It is these parameters that enable the server-
side application to generate content that is tailored to the individual user.
HTTP requests can be used to send parameters to the application in three
main ways:

m In the URL query string
m In the file path of REST-style URLs
m In HTTP cookies

m In the body of requests using the posT method

In addition to these primary sources of input, the server-side application may
in principle use any part of the HTTP request as an input to its processing. For
example, an application may process the user-agent header to generate content
that is optimized for the type of browser being used.

Like computer software in general, web applications employ a wide range of
technologies on the server side to deliver their functionality:

m Scripting languages such as PHP, VBScript, and Perl

m Web application platforms such as ASP.NET and Java

m Web servers such as Apache, IIS, and Netscape Enterprise
m Databases such as MS-SQL, Oracle, and MySQL

m Other back-end components such as filesystems, SOAP-based web services,
and directory services

All these technologies and the types of vulnerabilities that can arise in rela-
tion to them are examined in detail throughout this book. Some of the most
common web application platforms and technologies you are likely to encounter
are described in the following sections.

COMMON MYTH

“Our applications need only cursory security review, because they employ a
well-used framework.”

Use of a well-used framework is often a cause for complacency in web
application development, on the assumption that common vulnerabilities
such as SQL injection are automatically avoided. This assumption is mistaken
for two reasons.

First, a large number of web application vulnerabilities arise in an applica-
tion’s design, not its implementation, and are independent of the development
framework or language chosen.

Chapter 3 = Web Application Technologies

53

Second, because a framework typically employs plug-ins and packages
from the cutting edge of the latest repositories, it is likely that these packages
have not undergone security review. Interestingly, if a vulnerability is later
found in the application, the same proponents of the myth will readily swap
sides and blame their framework or third-party package!

The Java Platform

For many years, the Java Platform, Enterprise Edition (formerly known as J2EE)
was a de facto standard for large-scale enterprise applications. Originally devel-
oped by Sun Microsystems and now owned by Oracle, it lends itself to multitiered
and load-balanced architectures and is well suited to modular development and
code reuse. Because of its long history and widespread adoption, many high-
quality development tools, application servers, and frameworks are available to
assist developers. The Java Platform can be run on several underlying operating
systems, including Windows, Linux, and Solaris.

Descriptions of Java-based web applications often employ a number of poten-
tially confusing terms that you may need to be aware of:

m An Enterprise Java Bean (EJB) is a relatively heavyweight software com-
ponent that encapsulates the logic of a specific business function within the
application. E]Bs are intended to take care of various technical challenges
that application developers must address, such as transactional integrity.

m A Plain Old Java Object (POJO) is an ordinary Java object, as distinct
from a special object such as an EJB. A POJO normally is used to denote
objects that are user-defined and are much simpler and more lightweight
than E]JBs and those used in other frameworks.

m A Java Servlet is an object that resides on an application server and receives
HTTP requests from clients and returns HTTP responses. Servlet imple-
mentations can use numerous interfaces to facilitate the development of
useful applications.

m A Java web container is a platform or engine that provides a runtime
environment for Java-based web applications. Examples of Java web con-
tainers are Apache Tomcat, BEA WebLogic, and JBoss.

Many Java web applications employ third-party and open source components
alongside custom-built code. This is an attractive option because it reduces
development effort, and Java is well suited to this modular approach. Here are
some examples of components commonly used for key application functions:

m Authentication — JAAS, ACEGI
m Presentation layer — SiteMesh, Tapestry

54

Chapter 3 = Web Application Technologies

m Database object relational mapping — Hibernate

m Logging — Log4J

If you can determine which open source packages are used in the application
you are attacking, you can download these and perform a code review or install
them to experiment on. A vulnerability in any of these may be exploitable to
compromise the wider application.

ASP.NET

ASPNET is Microsoft’s web application framework and is a direct competitor
to the Java Platform. ASPNET is several years younger than its counterpart but
has made significant inroads into Java’s territory.

ASPNET uses Microsoft’s NET Framework, which provides a virtual machine
(the Common Language Runtime) and a set of powerful APIs. Hence, ASPNET
applications can be written in any .NET language, such as C# or VB.NET.

ASPNET lends itself to the event-driven programming paradigm that is
normally used in conventional desktop software, rather than the script-based
approach used in most earlier web application frameworks. This, together with
the powerful development tools provided with Visual Studio, makes devel-
oping a functional web application extremely easy for anyone with minimal
programming skills.

The ASPNET framework helps protect against some common web application
vulnerabilities such as cross-site scripting, without requiring any effort from
the developer. However, one practical downside of its apparent simplicity is that
many small-scale ASPNET applications are actually created by beginners who
lack any awareness of the core security problems faced by web applications.

PHP

The PHP language emerged from a hobby project (the acronym originally stood
for “personal home page”). It has since evolved almost unrecognizably into
a highly powerful and rich framework for developing web applications. It is
often used in conjunction with other free technologies in what is known as the
LAMP stack (composed of Linux as the operating system, Apache as the web
server, MySQL as the database server, and PHP as the programming language
for the web application).

Numerous open source applications and components have been developed
using PHP. Many of these provide off-the-shelf solutions for common application
functions, which are often incorporated into wider custom-built applications:

m Bulletin boards — PHPBB, PHP-Nuke
m Administrative front ends — PHPMyAdmin

Chapter 3 = Web Application Technologies

55

m Web mail — SquirrelMail, IlohaMail

m Photo galleries — Gallery

m Shopping carts — osCommerce, ECW-Shop
m Wikis — MediaWiki, WakkaWikki

Because PHP is free and easy to use, it has often been the language of choice
for many beginners writing web applications. Furthermore, the design and
default configuration of the PHP framework has historically made it easy for
programmers to unwittingly introduce security bugs into their code. These
factors have meant that applications written in PHP have suffered from a dis-
proportionate number of security vulnerabilities. In addition, several defects
have existed within the PHP platform itself that often could be exploited via
applications running on it. See Chapter 19 for details on common defects aris-
ing in PHP applications.

Ruby on Rails

Rails 1.0 was released in 2005, with strong emphasis on Model-View-Controller
architecture. A key strength of Rails is the breakneck speed with which
fully fledged data-driven applications can be created. If a developer follows the
Rails coding style and naming conventions, Rails can autogenerate a model
for database content, controller actions for modifying it, and default views for
the application user. As with any highly functional new technology, several
vulnerabilities have been found in Ruby on Rails, including the ability to bypass
a “safe mode,” analogous to that found in PHP.
More details on recent vulnerabilities can be found here:

www . ruby-lang.org/en/security/

sQL

Structured Query Language (SQL) is used to access data in relational databases,
such as Oracle, MS-SQL server and MySQL. The vast majority of today’s web
applications employ SQL-based databases as their back-end data store, and nearly
all application functions involve interaction with these data stores in some way.

Relational databases store data in tables, each of which contains a number
of rows and columns. Each column represents a data field, such as “name” or
“e-mail address,” and each row represents an item with values assigned to some
or all of these fields.

SQL uses queries to perform common tasks such as reading, adding, updat-
ing, and deleting data. For example, to retrieve a user’s e-mail address with a
specified name, an application might perform the following query:

select email from users where name = 'daf'

56

Chapter 3 = Web Application Technologies

To implement the functionality they need, web applications may incorporate
user-supplied input into SQL queries that are executed by the back-end data-
base. If this process is not carried out safely, attackers may be able to submit
malicious input to interfere with the database and potentially read and write
sensitive data. These attacks are described in Chapter 9, along with detailed
explanations of the SQL language and how it can be used.

XML

Extensible Markup Language (XML) is a specification for encoding data in a
machine-readable form. Like any markup language, the XML format sepa-
rates a document into content (which is data) and markup (which annotates
the data).

Markup is primarily represented using tags, which may be start tags, end
tags, or empty-element tags:

<tagname>
</tagname>

<tagname />

Start and end tags are paired into elements and may encapsulate document
content or child elements:

<pet>ginger</pet>
<pets><dog>spot</dog><cat>paws</cat></pets>

Tags may include attributes, which are name/value pairs:

<data version="2.1"><pets>...</pets></data>

XML is extensible in that it allows arbitrary tag and attribute names. XML
documents often include a Document Type Definition (DTD), which defines
the tags and attributes used in the documents and the ways in which they can
be combined.

XML and technologies derived from it are used extensively in web applica-
tions, on both the server and client side, as described in later sections of this
chapter.

Web Services

Although this book covers web application hacking, many of the vulnerabilities
described are equally applicable to web services. In fact, many applications are
essentially a GUI front-end to a set of back-end web services.

Chapter 3 = Web Application Technologies

57

Web services use Simple Object Access Protocol (SOAP) to exchange data.
SOAP typically uses the HTTP protocol to transmit messages and represents
data using the XML format.

A typical SOAP request is as follows:

POST /doTransfer.asp HTTP/1.0
Host: mdsec-mgr.int.mdsec.net
Content-Type: application/soap+xml; charset=utf-8
Content-Length: 891
<?xml version="1.0"?>
<soap:Envelope xmlns:soap="http://www.w3.0rg/2001/12/soap-envelope">
<soap:Body>
<pre:Add xmlns:pre=http://target/lists soap:encodingStyle=
"http://www.w3.0rg/2001/12/soap-encoding">
<Account>
<FromAccount>18281008</FromAccount>
<Amount>1430</Amount>
<ClearedFunds>False</ClearedFunds>
<ToAccount>08447656</ToAccount>
</Account>
</pre:Add>
</soap:Body>
</soap:Envelope>

In the context of web applications accessed using a browser, you are most
likely to encounter SOAP being used by the server-side application to com-
municate with various back-end systems. If user-supplied data is incorporated
directly into back-end SOAP messages, similar vulnerabilities can arise as for
SQL. These issues are described in detail in Chapter 10.

If a web application also exposes web services directly, these are also worthy
of examination. Even if the front-end application is simply written on top of the
web service, differences may exist in input handling and in the functionality
exposed by the services themselves. The server normally publishes the available
services and parameters using the Web Services Description Language (WSDL)
format. Tools such as soapUI can be used to create sample requests based on a
published WSDL file to call the authentication web service, gain an authentica-
tion token, and make any subsequent web service requests.

Client-Side Functionality

For the server-side application to receive user input and actions and present
the results to the user, it needs to provide a client-side user interface. Because
all web applications are accessed via a web browser, these interfaces all share a

58

Chapter 3 = Web Application Technologies

common core of technologies. However, these have been built upon in various,
diverse ways, and the ways in which applications leverage client-side technol-
ogy has continued to evolve rapidly in recent years.

HTML

The core technology used to build web interfaces is hypertext markup language
(HTML). Like XML, HTML is a tag-based language that is used to describe the
structure of documents that are rendered within the browser. From its simple
beginnings as a means of providing basic formatting for text documents, HTML
has developed into a rich and powerful language that can be used to create
highly complex and functional user interfaces.

XHTML is a development of HTML that is based on XML and that has a stricter
specification than older versions of HTML. Part of the motivation for XHTML
was the need to move toward a more rigid standard for HTML markup to avoid
the various compromises and security issues that can arise when browsers are
obligated to tolerate less-strict forms of HTML.

More details about HTML and related technologies appear in the following
sections.

Hyperlinks

A large amount of communication from client to server is driven by the user’s
clicking on hyperlinks. In web applications, hyperlinks frequently contain preset
request parameters. These are items of data that the user never enters; they are
submitted because the server places them into the target URL of the hyperlink
that the user clicks. For example, a web application might present a series of
links to news stories, each having the following form:

What's happening?
When a user clicks this link, the browser makes the following request:

GET /news/8/?redir=/updates/update29.html HTTP/1.1
Host: mdsec.net

The server receives the redir parameter in the query string and uses its value
to determine what content should be presented to the user.

Forms

Although hyperlink-based navigation is responsible for a large amount of client-
to-server communications, most web applications need more flexible ways
to gather input and receive actions from users. HTML forms are the usual

Chapter 3 = Web Application Technologies

59

mechanism for allowing users to enter arbitrary input via their browser. A
typical form is as follows:

<form action="/secure/login.php?app=quotations" method="post">

username: <input type="text" name="username">

password: <input type="password" name="password">

<input type="hidden" name="redir" value="/secure/home.php">

<input type="submit" name="submit" value="log in">

</form>

When the user enters values into the form and clicks the Submit button, the
browser makes a request like the following;:

POST /secure/login.php?app=quotations HTTP/1.1

Host: wahh-app.com

Content-Type: application/x-www-form-urlencoded
Content-Length: 39
Cookie: SESS=GTnrpx2ss2tSWSnhXJGyGOLJ47MXRsjcFM6BA

username=daf&password=foo&redir=/secure/home.php&submit=1log+in

In this request, several points of interest reflect how different aspects of the
request are used to control server-side processing;:

Because the HTML form tag contains an attribute specifying the posT
method, the browser uses this method to submit the form and places the
data from the form into the body of the request message.

In addition to the two items of data that the user enters, the form contains
a hidden parameter (redir) and a submit parameter (submit). Both of
these are submitted in the request and may be used by the server-side
application to control its logic.

The target URL for the form submission contains a preset parameter (app),
as in the hyperlink example shown previously. This parameter may be
used to control the server-side processing.

The request contains a cookie parameter (sess), which was issued to the
browser in an earlier response from the server. This parameter may be
used to control the server-side processing.

The preceding request contains a header specifying that the type of content in
the message body is x-www-form-urlencoded. This means that parameters are
represented in the message body as name/value pairs in the same way as they
are in the URL query string. The other content type you are likely to encoun-
ter when form data is submitted is multipart/form-data. An application can
request that browsers use multipart encoding by specifying this in an enctype
attribute in the form tag. With this form of encoding, the content-Type header
in the request also specifies a random string that is used as a separator for the

60

Chapter 3 = Web Application Technologies

parameters contained in the request body. For example, if the form specified
multipart encoding, the resulting request would look like the following:

POST /secure/login.php?app=quotations HTTP/1.1

Host: wahh-app.com

Content-Type: multipart/form-data; boundary=--------—---- 7d71385d0ala
Content-Length: 369

Cookie: SESS=GTnrpx2ss2tSWSnhXJGyG0LJ47MXRsjcFM6BA

———————————— 7d71385d0ala
Content-Disposition: form-data; name="username"

———————————— 7d71385d0ala
Content-Disposition: form-data; name="password"

———————————— 7d71385d0ala
Content-Disposition: form-data; name="redir"

/secure/home.php
———————————— 7d71385d0ala
Content-Disposition: form-data; name="submit"

———————————— 7d71385d0ala--

Ccss

Cascading Style Sheets (CSS) is a language used to describe the presentation of a
document written in a markup language. Within web applications, it is used to
specify how HTML content should be rendered on-screen (and in other media,
such as the printed page).

Modern web standards aim to separate as much as possible the content of a
document from its presentation. This separation has numerous benefits, includ-
ing simpler and smaller HTML pages, easier updating of formatting across a
website, and improved accessibility.

CSS is based on formatting rules that can be defined with different levels
of specificity. Where multiple rules match an individual document element,
different attributes defined in those rules can “cascade” through these rules so
that the appropriate combination of style attributes is applied to the element.

CSS syntax uses selectors to define a class of markup elements to which
a given set of attributes should be applied. For example, the following
CSS rule defines the foreground color for headings that are marked up using
<h2> tags:

h2 { color: red; }

Chapter 3 = Web Application Technologies

61

In the earliest days of web application security, CSS was largely overlooked
and was considered to have no security implications. Today, CSS is increasingly
relevant both as a source of security vulnerabilities in its own right and as a
means of delivering effective exploits for other categories of vulnerabilities (see
Chapters 12 and 13 for more information).

JavaScript

Hyperlinks and forms can be used to create a rich user interface that can easily
gather most kinds of input that web applications require. However, most appli-
cations employ a more distributed model, in which the client side is used not
simply to submit user data and actions but also to perform actual processing
of data. This is done for two primary reasons:

m [t can improve the application’s performance, because certain tasks can
be carried out entirely on the client component, without needing to make
a round trip of request and response to the server.

m It can enhance usability, because parts of the user interface can be dynami-
cally updated in response to user actions, without needing to load an
entirely new HTML page delivered by the server.

JavaScript is a relatively simple but powerful programming language that
can be easily used to extend web interfaces in ways that are not possible using
HTML alone. It is commonly used to perform the following tasks:

m Validating user-entered data before it is submitted to the server to avoid
unnecessary requests if the data contains errors

m Dynamically modifying the user interface in response to user actions — for
example, to implement drop-down menus and other controls familiar
from non-web interfaces

m Querying and updating the document object model (DOM) within the
browser to control the browser’s behavior (the browser DOM is described
in a moment)

VBScript

VBScript is an alternative to JavaScript that is supported only in the Internet
Explorer browser. It is modeled on Visual Basic and allows interaction with
the browser DOM. But in general it is somewhat less powerful and developed
than JavaScript.

Due to its browser-specific nature, VBScript is scarcely used in today’s web
applications. Its main interest from a security perspective is as a means of
delivering exploits for vulnerabilities such as cross-site scripting in occasional
situations where an exploit using JavaScript is not feasible (see Chapter 12).

62

Chapter 3 = Web Application Technologies

Document Object Model

The Document Object Model (DOM) is an abstract representation of an HTML
document that can be queried and manipulated through its APL

The DOM allows client-side scripts to access individual HTML elements by
their id and to traverse the structure of elements programmatically. Data such
as the current URL and cookies can also be read and updated. The DOM also
includes an event model, allowing code to hook events such as form submission,
navigation via links, and keystrokes.

Manipulation of the browser DOM is a key technique used in Ajax-based
applications, as described in the following section.

Ajax

Ajax is a collection of programming techniques used on the client side to create
user interfaces that aim to mimic the smooth interaction and dynamic behavior
of traditional desktop applications.

The name originally was an acronym for “Asynchronous JavaScript and
XML,” although in today’s web Ajax requests need not be asynchronous and
need not employ XML.

The earliest web applications were based on complete pages. Each user action,
such as clicking a link or submitting a form, initiated a window-level navigation
event, causing a new page to be loaded from the server. This approach resulted
in a disjointed user experience, with noticeable delays while large responses
were received from the server and the whole page was rerendered.

With Ajax, some user actions are handled within client-side script code and
do not cause a full reload of the page. Instead, the script performs a request “in
the background” and typically receives a much smaller response that is used to
dynamically update only part of the user interface. For example, in an Ajax-based
shopping application, clicking an Add to Cart button may cause a background
request that updates the server-side record of the user’s shopping cart and a
lightweight response that updates the number of cart items showing on the
user’s screen. Virtually the entire existing page remains unmodified within the
browser, providing a much faster and more satisfying experience for the user.

The core technology used in Ajax is xMLHt tpRequest. After a certain consolida-
tion of standards, this is now a native JavaScript object that client-side scripts can
use to make “background” requests without requiring a window-level naviga-
tion event. Despite its name, XMLHt tpRequest allows arbitrary content to be sent
in requests and received in responses. Although many Ajax applications do use
XML to format message data, an increasing number have opted to exchange data
using other methods of representation. (See the next section for one example.)

Note that although most Ajax applications do use asynchronous communica-
tions with the server, this is not essential. In some situations, it may actually make

Chapter 3 = Web Application Technologies

63

more sense to prevent user interaction with the application while a particular
action is carried out. In these situations, Ajax is still beneficial in providing a
more seamless experience by avoiding the need to reload an entire page.

Historically, the use of Ajax has introduced some new types of vulnerabili-
ties into web applications. More broadly, it also increases the attack surface of
a typical application by introducing more potential targets for attack on both
the server and client side. Ajax techniques are also available for use by attack-
ers when they are devising more effective exploits for other vulnerabilities. See
Chapters 12 and 13 for more details.

JSON

JavaScript Object Notation (JSON) is a simple data transfer format that can
be used to serialize arbitrary data. It can be processed directly by JavaScript
interpreters. It is commonly employed in Ajax applications as an alternative to
the XML format originally used for data transmission. In a typical situation,
when a user performs an action, client-side JavaScript uses xMLHt tpRequest to
communicate the action to the server. The server returns a lightweight response
containing data in JSON format. The client-side script then processes this data
and updates the user interface accordingly.

For example, an Ajax-based web mail application may contain a feature to
show the details of a selected contact. When a user clicks a contact, the browser
uses XMLHttpRequest to retrieve the details of the selected contact, which are
returned using JSON:

{

"name": "Mike Kemp",
"id": "8041148671",
"email": "fkwitt@layerone.com"

The client-side script uses the JavaScript interpreter to consume the JSON
response and updates the relevant part of the user interface based on its contents.

A further location where you may encounter JSON data in today’s applications
is as a means of encapsulating data within conventional request parameters. For
example, when the user updates the details of a contact, the new information
might be communicated to the server using the following request:

POST /contacts HTTP/1.0
Content-Type: application/x-www-form-urlencoded
Content-Length: 89

Contact={"name":"Mike Kemp", "id":"8041148671","email": "pikey@
clappymonkey.com" }
&submit=update

Chapter 3 = Web Application Technologies

Same-Origin Policy

The same-origin policy is a key mechanism implemented within browsers that
is designed to keep content that came from different origins from interfering
with each other. Basically, content received from one website is allowed to read
and modify other content received from the same site but is not allowed to
access content received from other sites.

If the same-origin policy did not exist, and an unwitting user browsed to a
malicious website, script code running on that site could access the data and
functionality of any other website also visited by the user. This may enable the
malicious site to perform funds transfers from the user’s online bank, read his
or her web mail, or capture credit card details when the user shops online. For
this reason, browsers implement restrictions to allow this type of interaction
only with content that has been received from the same origin.

In practice, applying this concept to the details of different web features and
technologies leads to various complications and compromises. Here are some
key features of the same-origin policy that you need to be aware of:

m A page residing on one domain can cause an arbitrary request to be made
to another domain (for example, by submitting a form or loading an
image). But it cannot itself process the data returned from that request.

m A page residing on one domain can load a script from another domain and
execute this within its own context. This is because scripts are assumed
to contain code, rather than data, so cross-domain access should not lead
to disclosure of any sensitive information.

m A page residing on one domain cannot read or modify the cookies or
other DOM data belonging to another domain.

These features can lead to various cross-domain attacks, such as inducing
user actions and capturing data. Further complications arise with browser
extension technologies, which implement same-origin restrictions in different
ways. These issues are discussed in detail in Chapter 13.

HTML5

HTMLS is a major update to the HTML standard. HTML5 currently is still under
development and is only partially implemented within browsers.

From a security perspective, HTMLS5 is primarily of interest for the follow-
ing reasons:

m It introduces various new tags, attributes, and APIs that can be lever-
aged to deliver cross-site scripting and other attacks, as described in
Chapter 12.

Chapter 3 = Web Application Technologies

65

m [t modifies the core Ajax technology, XMLHt tpRequest, to enable two-way
cross-domain interaction in certain situations. This can lead to new cross-
domain attacks, as described in Chapter 13.

m [t introduces new mechanisms for client-side data storage, which can lead
to user privacy issues, and new categories of attack such as client-side SQL
injection, as described in Chapter 13.

“Web 2.0”

This buzzword has become fashionable in recent years as a rather loose and
nebulous name for a range of related trends in web applications, including the
following:

m Heavy use of Ajax for performing asynchronous, behind-the-scenes requests
m Increased cross-domain integration using various techniques

m Use of new technologies on the client side, including XML, JSON, and Flex
m More prominent functionality supporting user-generated content, infor-

mation sharing, and interaction

As with all changes in technology, these trends present new opportunities
for security vulnerabilities to arise. However, they do not define a clear subset
of web application security issues in general. The vulnerabilities that occur in
these contexts are largely the same as, or closely derived from, types of vulner-
abilities that preceded these trends. In general, talking about “Web 2.0 Security”
usually represents a category mistake that does not facilitate clear thinking
about the issues that matter.

Browser Extension Technologies

Going beyond the capabilities of JavaScript, some web applications employ
browser extension technologies that use custom code to extend the browser’s
built-in capabilities in arbitrary ways. These components may be deployed as
bytecode that is executed by a suitable browser plug-in or may involve installing
native executables onto the client computer itself. The thick-client technologies
you are likely to encounter when attacking web applications are

m Java applets

m ActiveX controls
m Flash objects

m Silverlight objects

These technologies are described in detail in Chapter 5.

66

Chapter 3 = Web Application Technologies

State and Sessions

The technologies described so far enable the server and client components of
a web application to exchange and process data in numerous ways. To imple-
ment most kinds of useful functionality, however, applications need to track the
state of each user’s interaction with the application across multiple requests. For
example, a shopping application may allow users to browse a product catalog,
add items to a cart, view and update the cart contents, proceed to checkout, and
provide personal and payment details.

To make this kind of functionality possible, the application must maintain a
set of stateful data generated by the user’s actions across several requests. This
data normally is held within a server-side structure called a session. When a
user performs an action, such as adding an item to her shopping cart, the server-
side application updates the relevant details within the user’s session. When the
user later views the contents of her cart, data from the session is used to return
the correct information to the user.

In some applications, state information is stored on the client component
rather than the server. The current set of data is passed to the client in each
server response and is sent back to the server in each client request. Of course,
because the user may modify any data transmitted via the client component,
applications need to protect themselves from attackers who may change this
state information in an attempt to interfere with the application’s logic. The
ASPNET platform makes use of a hidden form field called viewstate to store
state information about the user’s web interface and thereby reduce overhead
on the server. By default, the contents of the viewstate include a keyed hash
to prevent tampering.

Because the HTTP protocol is itself stateless, most applications need a way to
reidentify individual users across multiple requests for the correct set of state
data to be used to process each request. Normally this is achieved by issuing
each user a token that uniquely identifies that user’s session. These tokens may
be transmitted using any type of request parameter, but most applications use
HTTP cookies. Several kinds of vulnerabilities arise in relation to session han-
dling, as described in detail in Chapter 7.

Encoding Schemes

Web applications employ several different encoding schemes for their data. Both
the HTTP protocol and the HTML language are historically text-based, and dif-
ferent encoding schemes have been devised to ensure that these mechanisms
can safely handle unusual characters and binary data. When you are attacking
a web application, you will frequently need to encode data using a relevant

Chapter 3 = Web Application Technologies

67

scheme to ensure that it is handled in the way you intend. Furthermore, in many
cases you may be able to manipulate the encoding schemes an application uses
to cause behavior that its designers did not intend.

URL Encoding

URLs are permitted to contain only the printable characters in the US-ASCII
character set — that is, those whose ASCII code is in the range 0x20 to 0x7e,
inclusive. Furthermore, several characters within this range are restricted because
they have special meaning within the URL scheme itself or within the HTTP
protocol.

The URL-encoding scheme is used to encode any problematic characters
within the extended ASCII character set so that they can be safely transported
over HTTP. The URL-encoded form of any character is the % prefix followed by
the character’s two-digit ASCII code expressed in hexadecimal. Here are some
characters that are commonly URL-encoded:

$3d — =
%25 — %

%20 — Space

%0a — New line

m 300 — Null byte

A further encoding to be aware of is the + character, which represents a
URL-encoded space (in addition to the %20 representation of a space).

.Ima For the purpose of attacking web applications, you should URL-
encode any of the following characters when you insert them as data into an
HTTP request:

space % ? & = ; + #

(Of course, you will often need to use these characters with their special
meaning when modifying a request — for example, to add a request parameter
to the query string. In this case, they should be used in their literal form.)

Unicode Encoding

Unicode is a character encoding standard that is designed to support all of the
world’s writing systems. It employs various encoding schemes, some of which
can be used to represent unusual characters in web applications.

16-bit Unicode encoding works in a similar way to URL encoding. For
transmission over HTTP, the 16-bit Unicode-encoded form of a character is

Chapter 3 = Web Application Technologies

the su prefix followed by the character’s Unicode code point expressed in
hexadecimal:

m 2u2215 —/

m 2u00e9 — ¢

UTF-8 is a variable-length encoding standard that employs one or more bytes
to express each character. For transmission over HTTP, the UTF-8-encoded form
of a multibyte character simply uses each byte expressed in hexadecimal and
preceded by the % prefix:

m %c2%a9 —©
m %e2%89%a0 — #

For the purpose of attacking web applications, Unicode encoding is primarily
of interest because it can sometimes be used to defeat input validation mecha-
nisms. If an input filter blocks certain malicious expressions, but the component
that subsequently processes the input understands Unicode encoding, it may
be possible to bypass the filter using various standard and malformed Unicode
encodings.

HTML Encoding

HTML encoding is used to represent problematic characters so that they can be
safely incorporated into an HTML document. Various characters have special
meaning as metacharacters within HTML and are used to define a document’s
structure rather than its content. To use these characters safely as part of the
document’s content, it is necessary to HTML-encode them.

HTML encoding defines numerous HTML entities to represent specific literal
characters:

"

m " —
W ' —
m samp; — &
m < —<
m > — >

In addition, any character can be HTML-encoded using its ASCII code in deci-
mal form:

m s#34; —"

m s#39; —'

or by using its ASCII code in hexadecimal form (prefixed by an x):

Chapter 3 = Web Application Technologies

69

m " — "

m ' —

When you are attacking a web application, your main interest in HTML
encoding is likely to be when probing for cross-site scripting vulnerabilities. If
an application returns user input unmodified within its responses, it is prob-
ably vulnerable, whereas if dangerous characters are HTML-encoded, it may
be safe. See Chapter 12 for more details on these vulnerabilities.

Base64 Encoding

Base64 encoding allows any binary data to be safely represented using only
printable ASCII characters. It is commonly used to encode e-mail attachments
for safe transmission over SMTP. It is also used to encode user credentials in
basic HTTP authentication.

Base64 encoding processes input data in blocks of three bytes. Each of these
blocks is divided into four chunks of six bits each. Six bits of data allows for 64
different possible permutations, so each chunk can be represented using a set
of 64 characters. Base64 encoding employs the following character set, which
contains only printable ASCII characters:

ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopgrstuvwxyz0123456789+/

If the final block of input data results in fewer than three chunks of output
data, the output is padded with one or two = characters.

For example, here is the Base64-encoded form of The Web Application Hacker’s
Handbook:

VGh1lIFdlYiBBcHBsaWNhdGlvbiBIYWNrZXIncyBIYWS5kYm9vaw==

Many web applications use Base64 encoding to transmit binary data within
cookies and other parameters, and even to obfuscate (that is, to hide) sensitive
data to prevent trivial modification. You should always look out for, and decode,
any Base64 data that is issued to the client. Base64-encoded strings can often
be easily recognized by their specific character set and the presence of padding
characters at the end of the string,.

Hex Encoding

Many applications use straightforward hexadecimal encoding when transmit-
ting binary data, using ASCII characters to represent the hexadecimal block.
For example, hex-encoding the username “daf” within a cookie would result
in this:

646166

70

Chapter 3 = Web Application Technologies

As with Base64, hex-encoded data is usually easy to spot. You should always
attempt to decode any such data that the server sends to the client to understand
its function.

Remoting and Serialization Frameworks

In recent years, various frameworks have evolved for creating user interfaces in
which client-side code can remotely access various programmatic APIs imple-
mented on the server side. This allows developers to partly abstract away from
the distributed nature of web applications and write code in a manner that is
closer to the paradigm of a conventional desktop application. These frameworks
typically provide stub APIs for use on the client side. They also automatically
handle both the remoting of these API calls to the relevant server-side functions
and the serialization of any data that is passed to those functions.

Examples of these kinds of remoting and serialization frameworks include
the following;:

m Flex and AMF
m Silverlight and WCF

m Java serialized objects

We will discuss techniques for working with these frameworks, and the kinds
of security issues that can arise, in Chapters 4 and 5.

Next Steps

So far, we have described the current state of web application (in)security, exam-
ined the core mechanisms by which web applications can defend themselves,
and taken a brief look at the key technologies employed in today’s applications.
With this groundwork in place, we are now in a position to start looking at the
actual practicalities of attacking web applications.

In any attack, your first task is to map the target application’s content and
functionality to establish how it functions, how it attempts to defend itself, and
what technologies it uses. The next chapter examines this mapping process
in detail and shows how you can use it to obtain a deep understanding of an
application’s attack surface. This knowledge will prove vital when it comes to
finding and exploiting security flaws within your target.

Chapter 3 = Web Application Technologies

7

Questions

Answers can be found at http://mdsec.net/wahh.

1.
2.

What is the oprroNs method used for?

What are the 1£-Modified-Since and If-None-Match headers used for?
Why might you be interested in these when attacking an application?

3. What is the significance of the secure flag when a server sets a cookie?

4. What is the difference between the common status codes 301 and 302?

5. How does a browser interoperate with a web proxy when SSL is being

used?

Mapping the Application

The first step in the process of attacking an application is gathering and examin-
ing some key information about it to gain a better understanding of what you
are up against.

The mapping exercise begins by enumerating the application’s content and
functionality in order to understand what the application does and how it
behaves. Much of this functionality is easy to identify, but some of it may be
hidden, requiring a degree of guesswork and luck to discover.

After a catalog of the application’s functionality has been assembled, the
principal task is to closely examine every aspect of its behavior, its core secu-
rity mechanisms, and the technologies being employed (on both the client and
server). This will enable you to identify the key attack surface that the application
exposes and hence the most interesting areas where you should target subse-
quent probing to find exploitable vulnerabilities. Often the analysis exercise can
uncover vulnerabilities by itself, as discussed later in the chapter.

As applications get ever larger and more functional, effective mapping is a
valuable skill. A seasoned expert can quickly triage whole areas of functionality,
looking for classes of vulnerabilities as opposed to instances, while investing
significant time in testing other specific areas, aiming to uncover a high-risk issue.

This chapter describes the practical steps you need to follow during application
mapping, various techniques and tricks you can use to maximize its effective-
ness, and some tools that can assist you in the process.

73

74

Chapter 4 = Mapping the Application

Enumerating Content and Functionality

In a typical application, the majority of the content and functionality can be
identified via manual browsing. The basic approach is to walk through the
application starting from the main initial page, following every link, and navi-
gating through all multistage functions (such as user registration or password
resetting). If the application contains a “site map,” this can provide a useful
starting point for enumerating content.

However, to perform a rigorous inspection of the enumerated content, and
to obtain a comprehensive record of everything identified, you must employ
more advanced techniques than simple browsing.

Web Spidering

Various tools can perform automated spidering of websites. These tools work
by requesting a web page, parsing it for links to other content, requesting these
links, and continuing recursively until no new content is discovered.

Building on this basic function, web application spiders attempt to achieve
a higher level of coverage by also parsing HTML forms and submitting these
back to the application using various preset or random values. This can enable
them to walk through multistage functionality and to follow forms-based navi-
gation (such as where drop-down lists are used as content menus). Some tools
also parse client-side JavaScript to extract URLs pointing to further content.
Numerous free tools are available that do a decent job of enumerating applica-
tion content and functionality, including Burp Suite, WebScarab, Zed Attack
Proxy, and CAT (see Chapter 20 for more details).

m Many web servers contain a file named robots. txt in the web root that
contains a list of URLs that the site does not want web spiders to visit or search
engines to index. Sometimes, this file contains references to sensitive func-
tionality, which you are certainly interested in spidering. Some spidering tools
designed for attacking web applications check for the robots. txt file and use
all URLs within it as seeds in the spidering process. In this case, the robots. txt
file may be counterproductive to the security of the web application.

This chapter uses a fictional application, Extreme Internet Shopping (EIS), to
provide examples of common application mapping actions. Figure 4-1 shows
Burp Spider running against EIS. Without logging on, it is possible to map out the
/shop directory and two news articles in the /media directory. Also note that
the robots. txt file shown in the figure references the directories /mdsecportal
and /site-old. These are not linked from anywhere in the application and would
not be indexed by a web spider that only followed links from published content.

m Applications that employ REST-style URLs use portions of the URL file
path to uniquely identify data and other resources used within the application

Chapter 4 = Mapping the Application 75

(see Chapter 3 for more details). The traditional web spider's URL-based view
of the application is useful in these situations. In the EIS application, the
/shop and /pub paths employ REST-style URLs, and spidering these areas eas-
ily provides unique links to the items available within these paths.

burp suite professional o
burp intruder repeater window help
target I’proxy I’spider rscanner rintruder rrepealer rsequencer rdemder rcomparer romions ralerta |
site map | scope
Filter: hiding CS5S, image and general binary content; hiding 4x responses
9 hitp:ileis =] host |method| URL |params| status | |
O hitp:/ieis |GET |robots.td |] J200 ag
¢ 3 auth
[} ForgotPassword
o= % Login
o @ gb
93 home
[
4 Il b
o 3 icons l l
o [Z3 images response rrequest |
= raw | headers | hex
D HTTP/1.1 200 OK -
¥ Spub Date: Mon, 24 Jan 2011 16:24:29 GMT
! i Server: Apache
¢ {23 media —|||Last-Modified: Mon, 24 Jan 2011 16:24:11 GMT
o [:‘ 100 ETag: "ZE6cl-de-49a%a07a900cO"
- Qi aa
robots.ixt Vary: Accept-Encoding
7 shop Connection: close
o—@j Contenc-Type: text/plain
¢ 23 browse X
& [books # robots.txt for http://eis
{r [:‘ clotnlng. User-agent: *
o 2] electronics Dizallow: /mdsecportal/ § Adwin Portal Site.
o=] home Disallow: /site-old/ # these will scon disappear
Q_Domce but needed for partner companies
& (3 sonware Disallow: /shop # No old pricing should be indexed
o= (73 tools B
D browse
o @ search |
o~ [static =
] i || | | 0matches
L y

Figure 4-1: Mapping part of an application using Burp Spider

Although it can often be effective, this kind of fully automated approach to
content enumeration has some significant limitations:

m Unusual navigation mechanisms (such as menus dynamically created
and handled using complicated JavaScript code) often are not handled
properly by these tools, so they may miss whole areas of an application.

m Links buried within compiled client-side objects such as Flash or Java
applets may not be picked up by a spider.

m Multistage functionality often implements fine-grained input validation
checks, which do not accept the values that may be submitted by an auto-
mated tool. For example, a user registration form may contain fields for
name, e-mail address, telephone number, and zip code. An automated

76

Chapter 4 = Mapping the Application

application spider typically submits a single test string in each editable
form field, and the application returns an error message saying that one
or more of the items submitted were invalid. Because the spider is not
intelligent enough to understand and act on this message, it does not
proceed past the registration form and therefore does not discover any
more content or functions accessible beyond it.

Automated spiders typically use URLs as identifiers of unique content.
To avoid continuing spidering indefinitely, they recognize when linked
content has already been requested and do not request it again. However,
many applications use forms-based navigation in which the same URL
may return very different content and functions. For example, a bank-
ing application may implement every user action via a POST request to
/account . jsp and use parameters to communicate the action being per-
formed. If a spider refuses to make multiple requests to this URL, it will
miss most of the application’s content. Some application spiders attempt
to handle this situation. For example, Burp Spider can be configured to
individuate form submissions based on parameter names and values.
However, there may still be situations where a fully automated approach
is not completely effective. We discuss approaches to mapping this kind
of functionality later in this chapter.

Conversely to the previous point, some applications place volatile data
within URLs that is not actually used to identify resources or functions (for
example, parameters containing timers or random number seeds). Each
page of the application may contain what appears to be a new set of URLs
that the spider must request, causing it to continue running indefinitely.

Where an application uses authentication, an effective application spider
must be able to handle this to access the functionality that the authen-
tication protects. The spiders mentioned previously can achieve this by
manually configuring the spider either with a token for an authenticated
session or with credentials to submit to the login function. However, even
when this is done, it is common to find that the spider’s operation breaks
the authenticated session for various reasons:

m By following all URLs, at some point the spider will request the logout
function, causing its session to break.

m If the spider submits invalid input to a sensitive function, the applica-
tion may defensively terminate the session.

m If the application uses per-page tokens, the spider almost certainly will
fail to handle these properly by requesting pages out of their expected
sequence, probably causing the entire session to be terminated.

Chapter 4 = Mapping the Application

77

m In some applications, running even a simple web spider that
parses and requests links can be extremely dangerous. For example, an applica-

tion may contain administrative functionality that deletes users, shuts down a
database, restarts the server, and the like. If an application-aware spider is used,
great damage can be done if the spider discovers and uses sensitive functional-
ity. The authors have encountered an application that included some Content
Management System (CMS) functionality for editing the content of the main
application. This functionality could be discovered via the site map and was not
protected by any access control. If an automated spider were run against this
site, it would find the edit function and begin sending arbitrary data, resulting in
the main website’s being defaced in real time while the spider was running.

User-Directed Spidering

This is a more sophisticated and controlled technique that is usually prefer-
able to automated spidering. Here, the user walks through the application in
the normal way using a standard browser, attempting to navigate through all
the application’s functionality. As he does so, the resulting traffic is passed
through a tool combining an intercepting proxy and spider, which monitors
all requests and responses. The tool builds a map of the application, incorpo-
rating all the URLs visited by the browser. It also parses all the application’s
responses in the same way as a normal application-aware spider and updates
the site map with the content and functionality it discovers. The spiders
within Burp Suite and WebScarab can be used in this way (see Chapter 20
for more information).

Compared with the basic spidering approach, this technique offers numer-
ous benefits:

m Where the application uses unusual or complex mechanisms for navigation,
the user can follow these using a browser in the normal way. Any functions
and content accessed by the user are processed by the proxy/spider tool.

m The user controls all data submitted to the application and can ensure
that data validation requirements are met.

m The user can log in to the application in the usual way and ensure that the
authenticated session remains active throughout the mapping process. If
any action performed results in session termination, the user can log in
again and continue browsing.

m Any dangerous functionality, such as deleteUser.jsp, is fully enumer-
ated and incorporated into the proxy’s site map, because links to it will be
parsed out of the application’s responses. But the user can use discretion
in deciding which functions to actually request or carry out.

78

Chapter 4 = Mapping the Application

In the Extreme Internet Shopping site, previously it was impossible for the
spider to index any content within /home, because this content is authenticated.
Requests to /home result in this response:

HTTP/1.1 302 Moved Temporarily

Date: 24 Jan 2011 16:13:12 GMT
Server: Apache
/auth/Login?ReturnURL=/home/

Mon,

Location:

With user-directed spidering, the user can simply log in to the application
using her browser, and the proxy/spider tool picks up the resulting session and
identifies all the additional content now available to the user. Figure 4-2 shows
the EIS site map when the user has successfully authenticated to the protected

areas of the application.

~
‘% burp suite professional lilm
burp intruder repeater window help
l’larget rpmxy r spider f scanner rlmruder frepeatsr r sequencer |/ decoder f comparer r options f alerts |
site map | scope
| Filter: hiding C3S, image and general binary content, hiding 4xx responses |
¥ hitp:ileis =] host | method| URL | params| status W
O hitp:/ieis GET |lhome/ | 7 Jeo0 o¢
- i3 auth
[} ForgotPassword
o= % Login
- i34 core
¢ sitestats
[2] pagelD=momesa =rankjhitg
<] I I [
o=] games
o [E3 gb response |/ request ‘
€3 home =||[raw | headers | hex [himl | render
Dﬂ <hbr> -
) myaccount —
partner

D register private
o search profile</as

o Cicons public profile

) account
o [C1 images information</a»

D register a card with
[index EIS</a»

] || <& href="/home/scarch">search the store

& =3 pub partners

D , leave feedback

924 media g
o 3100 SiteSpeed 2.0 Statout
o~ (@117 <a))
¢ 3 user href="nttp://eis/core/sitestats?pageIl=/homesidisplay ||
=rank| hits| time">stats
O e L
robots
¢ {23 shop </ div> I—
- I —{ il </ html> -
- sl [N EN] | 0matches
d] Il [T
L

Figure 4-2: Burp’s site map after

This reveals some additional resources within the home menu system. The
figure shows a reference to a private profile that is accessed through a JavaScript

user-guided spidering has been performed

function launched with the onClick event handler:

private profile

Chapter 4 = Mapping the Application

A conventional web spider that simply follows links within HTML is likely to
miss this type of link. Even the most advanced automated application crawlers
lag way behind the numerous navigational mechanisms employed by today’s
applications and browser extensions. With user-directed spidering, however,
the user simply needs to follow the visible on-screen link using her browser,
and the proxy/spider tool adds the resulting content to the site map.

Conversely, note that the spider has successfully identified the link to /core/
sitestats contained in an HTML comment, even though this link is not shown
on-screen to the user.

m In addition to the proxy/spider tools just described, another range
of tools that are often useful during application mapping are the various
browser extensions that can perform HTTP and HTML analysis from within the
browser interface. For example, the IEWatch tool shown in Figure 4-3, which
runs within Microsoft Internet Explorer, monitors all details of requests and
responses, including headers, request parameters, and cookies. It analyzes
every application page to display links, scripts, forms, and thick-client compo-
nents. Of course, all this information can be viewed in your intercepting proxy,
but having a second record of useful mapping data can only help you better
understand the application and enumerate all its functionality. See Chapter 20
for more information about tools of this kind.

= = R
g' 1|2 https:/fmdsec.net/auth/4/Default ashx 0O ~ & Certificate error B = X ‘ i o LH
| 2 Login ‘ ‘

Username:

Password: [Login |

Register ”
*leow XK ¢aB-2 0 1= |@- a
Time Duration Size Method IP Address Status Content Type URL Mote (f
12:51:23.729 01565 1189 GET 200 text/html c... hitps://mdsec.net/auth/4/Default.ashx Login
12:51:33.041 0.000 5 7571 GET (Cac.. image/png https://mdsec.net/wahh.png Login |=|
12:51:38057 1157s 1635 GET 404 text/html https://mdsec.net/favicon.ico Login
12:51:42.885 0.688 s 140 POST 302 ted/html c.. hitpsi//mdsec.net/auth/4/Default.ashx Login
12:51:48307 0125s 1009 GET 200 text/html; c.. https;//mdsec.net/auth/4/Home.ashx Login -
< T 3
S Request Header Name Request Header Value - X Response Header Name Respohse Header Yalue o
:: [Method-Line] POST fauth/g4/Default.ashy HTTPA1.1 ;uu [Status-Line] HTTPA.1 302 Found
_rgn Accept testhtml, applicationdshtmbesml, </ _g Date Mon, 13 Jun 2011 11:51:43 GMT
g Referer https://mdzec.net/auth/4/Default. ashy S| Server Micrazoft-15 /6.0 |
z Accept-Language enGB ";‘ MicrosoftOfficewebServer 5.0 _Pub 12
2 || Userbgent M ozilla/5.0 [compatible; MSIE 9.0; Wi, & || M-Powered-By BSPMNET

|15 ContentType application/svafomeuilencoded 5 || sbspMetiersion 2050727

E Accept-Encading gzip, deflate “ | Location dauthidHarme. ashe

= Host mdsec.net Set-Cookie Sessionld_test login_4=E1ECCF7414

E Cantent-Length 27 Cache-Cantral no-cache

5 Cannection Keep-hlive o Pragma no-cache &

o - =z =3 z |

ﬁ _1| Request Headers)'g Request Ca.., .‘._L Post ... L—_E Query St... % Response Headers | {# Response Cookies 1'1‘ Caontent

s

E ﬁ HTTP Analysis _ﬂ HTML Analysis

Figure 4-3: IEWatch performing HTTP and HTML analysis from within the browser

Chapter 4 = Mapping the Application

1. Configure your browser to use either Burp or WebScarab as a local proxy
(see Chapter 20 for specific details about how to do this if you're unsure).

2. Browse the entire application normally, attempting to visit every link/URL
you discover, submitting every form, and proceeding through all multi-
step functions to completion. Try browsing with JavaScript enabled and
disabled, and with cookies enabled and disabled. Many applications can
handle various browser configurations, and you may reach different con-
tent and code paths within the application.

3. Review the site map generated by the proxy/spider tool, and identify
any application content or functions that you did not browse manually.
Establish how the spider enumerated each item. For example, in Burp
Spider, check the Linked From details. Using your browser, access the item
manually so that the response from the server is parsed by the proxy/spi-
der tool to identify any further content. Continue this step recursively until
no further content or functionality is identified.

4. Optionally, tell the tool to actively spider the site using all of the already
enumerated content as a starting point. To do this, first identify any URLs
that are dangerous or likely to break the application session, and config-
ure the spider to exclude these from its scope. Run the spider and review
the results for any additional content it discovers.

The site map generated by the proxy/spider tool contains a wealth of infor-
mation about the target application, which will be useful later in identifying
the various attack surfaces exposed by the application.

Discovering Hidden Content

It is common for applications to contain content and functionality that is not
directly linked to or reachable from the main visible content. A common example
is functionality that has been implemented for testing or debugging purposes
and has never been removed.

Another example arises when the application presents different functionality
to different categories of users (for example, anonymous users, authenticated
regular users, and administrators). Users at one privilege level who perform
exhaustive spidering of the application may miss functionality that is visible to
users at other levels. An attacker who discovers the functionality may be able
to exploit it to elevate her privileges within the application.

There are countless other cases in which interesting content and functionality
may exist that the mapping techniques previously described would not identify:

m Backup copies of live files. In the case of dynamic pages, their file extension
may have changed to one that is not mapped as executable, enabling you

Chapter 4 = Mapping the Application

to review the page source for vulnerabilities that can then be exploited
on the live page.

Backup archives that contain a full snapshot of files within (or indeed
outside) the web root, possibly enabling you to easily identify all content
and functionality within the application.

New functionality that has been deployed to the server for testing but not
yet linked from the main application.

Default application functionality in an off-the-shelf application that has
been superficially hidden from the user but is still present on the server.

Old versions of files that have not been removed from the server. In the
case of dynamic pages, these may contain vulnerabilities that have been
fixed in the current version but that can still be exploited in the old version.

Configuration and include files containing sensitive data such as database
credentials.

Source files from which the live application’s functionality has been
compiled.

Comments in source code that in extreme cases may contain information
such as usernames and passwords but that more likely provide information
about the state of the application. Key phrases such as “test this function”
or something similar are strong indicators of where to start hunting for
vulnerabilities.

Log files that may contain sensitive information such as valid usernames,
session tokens, URLs visited, and actions performed.

Effective discovery of hidden content requires a combination of automated and
manual techniques and often relies on a degree of luck.

Brute-Force Techniques

Chapter 14 describes how automated techniques can be leveraged to speed up
just about any attack against an application. In the present context of informa-
tion gathering, automation can be used to make huge numbers of requests to the
web server, attempting to guess the names or identifiers of hidden functionality.

For example, suppose that your user-directed spidering has identified the
following application content:

http

http:
http:
http:
http:
http:

://eis/auth/Login
//eis/auth/ForgotPassword
//eis/home/
//eis/pub/media/100/view
//eis/images/eis.gif
//eis/include/eis.css

82 Chapter 4 - Mapping the Application

The first step in an automated effort to identify hidden content might involve
the following requests, to locate additional directories:

http://eis/About/
http://eis/abstract/
http://eis/academics/
http://eis/accessibility/
http://eis/accounts/
http://eis/action/

Burp Intruder can be used to iterate through a list of common directory
names and capture details of the server’s responses, which can be reviewed to
identify valid directories. Figure 4-4 shows Burp Intruder being configured to
probe for common directories residing at the web root.

. L burp suite professional EI@

burp intruder repeater window help

[target | prowy | spider | scanner | intruder | repeater | sequencer | decoder | comparer | options | aleris |

(1 [z
|' target | positions rpayloads romions ‘

attack type |sniper 4
1 payload position length: 321
GET /8§/ HTTP/L.1 -

| add §
Host: eis

User—Agent: Mozilla/5.0 (Windows: U; Windows NT E.l; =n-GB: rv:l.9.2.13)
Gecko/20101203 Firefox/3.8.13 clear§
Aoeepr: text/html,application/xhtml+4xml, application/xml;q=0.9, */*;q=0.8
LAeecept-Language: en-gh,en:g=0.5

Accept-Encoding: gzip,deflate

Accept-Charset: IS0-8859-1,utf-B;qg=0.7,%;q=0.7

auto §

refresh

ek

= clear

]

Lall=ll=] | 0 matches

Figure 4-4: Burp Intruder being configured to probe for common directories

When the attack has been executed, clicking column headers such as “status”
and “length” sorts the results accordingly, enabling you to quickly identify a
list of potential further resources, as shown in Figure 4-5.

Having brute-forced for directories and subdirectories, you may then want
to find additional pages in the application. Of particular interest is the /auth
directory containing the Login resource identified during the spidering pro-
cess, which is likely to be a good starting point for an unauthenticated attacker.
Again, you can request a series of files within this directory:

Chapter 4 = Mapping the Application

83

http://eis/auth/About/
http://eis/auth/Aboutus/
http://eis/auth/AddUser/
http://eis/auth/Admin/
http://eis/auth/Administration/
http://eis/auth/Admins/

-

=
. intruder attack 9 E‘M
attack save columns
| Filter: showing all items I
(results | target | positions | pajloads | options |
request payload status | error [imeo.| length comment
1200] [] |2096 baseline request =
479 games 1200] [[1938 =
2265 shop [] [| |3500
2708 images 1200 ™ Ll [1728
482 ob 301 H | & |2z
2716 home 302 ™ [] [399
996 server-status 403 =] 403
1500 auth 403 Ll [L] [394
1639 core 403 ™ Ll [394
1881 include 403 H | & par
2683 auth 403 ™ O [394
1 About 1404 ™| L [391
2 about-us 404 Ll | L] [394
3 about_us 404 ™ ™ 394 =
request | response
raw params | headers hex

GET /shop/ HTTE/L.L
Host: eis

rv:l.9.2.13)
Accept:

Gecko/20101203 Firefox/3.6.13

.8
Accept-Languages: en-gbh,sn:g=0.5

User-Agent: Mozilla/5.0 (Windows; U; Windows NT £.1; en-GB;:

text/html, application/xhtml+uml, application/xml: g=0.9, */*;q=0

G

-

et sl

| 0matches

finished |

Figure 4-5: Burp Intruder showing the results of a directory brute-force attack

Figure 4-6 shows the results of this attack, which has identified several resources

within the /auth directory:

Login
Logout
Register
Profile

Note that the request for profile returns the HTTP status code 302. This
indicates that accessing this link without authentication redirects the user to
the login page. Of further interest is that although the Login page was discov-
ered during spidering, the Register page was not. It could be that this extra
functionality is operational, and an attacker could register a user account on

the site.

- - -
84 Chapter 4 - Mapping the Application
intruder attack 7 SRRl X
attack save columns
Filter: showing all items
fresu\ts rtarget r positions rpayloads r options |
request payload status | error [imeo..| length comment
158 Register 00 L] Ll 2011 =]
241 Login 200 =] [l |768 =
242 Logout 200 = 1 [302
222 Profile 302 | [[534
0 403 L] L] [394 baseline request
2 About 404 ™| Ll |395
3 Aboutus 404 O [O [397
4 Adduser 404 O | O [397
5 Admin 404 o] [395
i \Administration 404 L] L] |404
7 Admins 404 O | OO [396
8 Ads 404 0O | O [393
9 Advertise 404 ™ [] [399
10 App 404 ; ; 393 =]
request rresponse
raw | params | headers
GET /auth/Register HTTP/Ll.1 |~
Host: eis
Aooept: /* =
Accept-lLanguage: en
User-Agent: Nozilla/4.0 (compatible; MSIE 7.0; Windows NT £.0)
Connection: close
Content-Length: € |
[ell=llal] | 0matches
finished |

Figure 4-6: Burp Intruder showing the results of a file brute-force attack

.IIE Do not assume that the application will respond with 200 oxif a
requested resource exists and 404 Not Found if it does not. Many applica-
tions handle requests for nonexistent resources in a customized way, often
returning a bespoke error message and a 200 response code. Furthermore,
some requests for existent resources may receive a non-200 response. The fol-
lowing is a rough guide to the likely meaning of the response codes that you
may encounter during a brute-force exercise looking for hidden content:

B 302 Found — If the redirect is to a login page, the resource may be
accessible only by authenticated users. If the redirect is to an error mes-
sage, this may indicate a different reason. If it is to another location, the
redirect may be part of the application’s intended logic, and this should

be investigated further.

B 400 Bad Request — The application may use a custom naming scheme
for directories and files within URLs, which a particular request has not
complied with. More likely, however, is that the wordlist you are using
contains some whitespace characters or other invalid syntax.

B 401 Unauthorized or 403 Forbidden — This usually indicates that
the requested resource exists but may not be accessed by any user,

Chapter 4 = Mapping the Application

85

regardless of authentication status or privilege level. It often occurs when
directories are requested, and you may infer that the directory exists.

B 500 Internal Server Error — During content discovery, this usually
indicates that the application expects certain parameters to be submitted
when requesting the resource.

The various possible responses that may indicate the presence of interesting
content mean that is difficult to write a fully automated script to output a list-
ing of valid resources. The best approach is to capture as much information as
possible about the application’s responses during the brute-force exercise and
manually review it.

1. Make some manual requests for known valid and invalid resources, and
identify how the server handles the latter.

2. Use the site map generated through user-directed spidering as a basis for
automated discovery of hidden content.

3. Make automated requests for common filenames and directories within
each directory or path known to exist within the application. Use Burp
Intruder or a custom script, together with wordlists of common files and
directories, to quickly generate large numbers of requests. If you have iden-
tified a particular way in which the application handles requests for invalid
resources (such as a customized “file not found” page), configure Intruder
or your script to highlight these results so that they can be ignored.

4. Capture the responses received from the server, and manually review
them to identify valid resources.

5. Perform the exercise recursively as new content is discovered.

Inference from Published Content

Most applications employ some kind of naming scheme for their content and
functionality. By inferring from the resources already identified within the
application, it is possible to fine-tune your automated enumeration exercise to
increase the likelihood of discovering further hidden content.

In the EIS application, note that all resources in /auth start with a capital letter.
This is why the wordlist used in the file brute forcing in the previous section
was deliberately capitalized. Furthermore, since we have already identified a
page called Forgotpassword in the /auth directory, we can search for similarly
named items, such as the following;:

http://eis/auth/ResetPassword

86

Chapter 4 = Mapping the Application

Additionally, the site map created during user-directed spidering identified
these resources:

http://eis/pub/media/100
http://eis/pub/media/117
http://eis/pub/user/11

Other numeric values in a similar range are likely to identify further resources
and information.

m Burp Intruder is highly customizable and can be used to target any por-
tion of an HTTP request. Figure 4-7 shows Burp Intruder being used to per-
form a brute-force attack on the first half of a filename to make the requests:

http://eis/auth/AddPassword
http://eis/auth/ForgotPassword
http://eis/auth/GetPassword
http://eis/auth/ResetPassword
http://eis/auth/RetrievePassword
http://eis/auth/UpdatePassword

burp suite professional =Rl X]

burp intruder repeater window help

|’target I’pmxy rsp\der fscanner [’lmruder frepeater rsequencer rdecoder fcomparer roptmns fa\ens |
2
target | positions rpa'floads romions ‘

[»

attack type |sniper [~]

1 payload position length: 167

GET /auth/§SPassword HTTP/Ll.1 B add§
Host: eis

Aoccept: %/
Accept-Language: en =

User—-Agent: Mozilla/4.0 (compatible; MSIE 7.0:; Windows NT £.0)

Connection: close auto §

1 refresh

= clear

[ell=]l=]] | 0 matches

Figure 4-7: Burp Intruder being used to perform a customized brute-force attack on
part of a filename

Chapter 4 = Mapping the Application

87

Review the results of your user-directed browsing and basic brute-force
exercises. Compile lists of the names of all enumerated subdirectories, file
stems, and file extensions.

Review these lists to identify any naming schemes in use. For example, if
there are pages called AddDocument . jsp and ViewDocument . jsp, there
may also be pages called EditDocument . jsp and RemoveDocument . jsp.
You can often get a feel for developers’ naming habits just by reading a
few examples. For example, depending on their personal style, develop-
ers may be verbose (AddaNewUser . asp), succinct (AddUser . asp), use
abbreviations (Addusr.asp), or even be more cryptic (addu.asp). Getting
a feel for the naming styles in use may help you guess the precise names
of content you have not already identified.

Sometimes, the naming scheme used for different content employs
identifiers such as numbers and dates, which can make inferring hidden
content easy. This is most commonly encountered in the names of static
resources, rather than dynamic scripts. For example, if a company’s web-
site links to AnnualReport2009.pdf and AnnualReport2010.pd£f,

it should be a short step to identifying what the next report will be called.
Somewhat incredibly, there have been notorious cases of companies
placing files containing financial reports on their web servers before they
were publicly announced, only to have wily journalists discover them
based on the naming scheme used in earlier years.

Review all client-side code such as HTML and JavaScript to identify any
clues about hidden server-side content. These may include HTML com-
ments related to protected or unlinked functions, HTML forms with dis-
abled suBMIT elements, and the like. Often, comments are automatically
generated by the software that has been used to generate web content,
or by the platform on which the application is running. References to
items such as server-side include files are of particular interest. These
files may actually be publicly downloadable and may contain highly sensi-
tive information such as database connection strings and passwords. In
other cases, developers’ comments may contain all kinds of useful tidbits,
such as database names, references to back-end components, SQL query
strings, and so on. Thick-client components such as Java applets and
ActiveX controls may also contain sensitive data that you can extract. See
Chapter 15 for more ways in which the application may disclose informa-
tion about itself.

Continued

Chapter 4 = Mapping the Application

HACK STEPS (continued)

5. Add to the lists of enumerated items any further potential names con-
jectured on the basis of the items that you have discovered. Also add to
the file extension list common extensions such as txt, bak, src, inc,
and o14d, which may uncover the source to backup versions of live pages.
Also add extensions associated with the development languages in use,
such as .java and . cs, which may uncover source files that have been
compiled into live pages. (See the tips later in this chapter for identifying
technologies in use.)

6. Search for temporary files that may have been created inadvertently by
developer tools and file editors. Examples include the .Ds_store file,
which contains a directory index under OS X, £ile.php~1, which is a
temporary file created when £ile.php is edited, and the . tmp file exten-
sion that is used by numerous software tools.

7. Perform further automated exercises, combining the lists of directories,
file stems, and file extensions to request large numbers of potential
resources. For example, in a given directory, request each file stem com-
bined with each file extension. Or request each directory name as a subdi-
rectory of every known directory.

8. Where a consistent naming scheme has been identified, consider perform-
ing a more focused brute-force exercise. For example, if AddDocument
.jsp and viewDocument . jsp are known to exist, you may create
a list of actions (edit, delete, create) and make requests of the form
XxxDocument . j sp. Alternatively, create a list of item types (user, account,
file) and make requests of the form addx=x.jsp.

9. Perform each exercise recursively, using new enumerated content and
patterns as the basis for further user-directed spidering and further auto-
mated content discovery. You are limited only by your imagination, time
available, and the importance you attach to discovering hidden content
within the application you are targeting.

.m You can use the Content Discovery feature of Burp Suite Pro to auto-
mate most of the tasks described so far. After you have manually mapped an
application’s visible content using your browser, you can select one or more
branches of Burp’s site map and initiate a content discovery session on those
branches.

Burp uses the following techniques when attempting to discover new
content:

B Brute force using built-in lists of common file and directory names

B Dynamic generation of wordlists based on resource names observed
within the target application

B Extrapolation of resource names containing numbers and dates

Chapter 4 = Mapping the Application

89

B Testing for alternative file extensions on identified resources

B Spidering from discovered content

B Automatic fingerprinting of valid and invalid responses to reduce false
positives

All exercises are carried out recursively, with new discovery tasks being
scheduled as new application content is discovered. Figure 4-8 shows a con-
tent discovery session in progress against the EIS application.

content discovery: hitp://eis/pub/media/100/ =ARes X

control rcuﬂﬁg rsite map |

[] session running

requests made: 58
bytes transferred: 37,045
errors: 0
tasks queued: 13
spider requests queued: 0
responses queued for analysis 0

quened tasks:

path task reqguests
pub/imedia100/ |[Test observed file names with custom extensions 14
fpub/imedia/100/ |Testobserved directory names
Ipub/medial100/ [Testshortfile list with custom extensions
lpub/media00/ [Test short directory list
/pub/media/100/ |[Test extension variants on history
fpub/imedia/100/ |Test extension variants on add
lpub/mediali00/ [Test extension variants on delete -

Figure 4-8: A content discovery session in progress against the EIS application

m The DirBuster project from OWASP is also a useful resource when per-
forming automated content discovery tasks. It includes large lists of directory
names that have been found in the wild, ordered by frequency of occurrence.

Use of Public Information

The application may contain content and functionality that are not presently linked
from the main content but that have been linked in the past. In this situation,
it is likely that various historical repositories will still contain references to the
hidden content. Two main types of publicly available resources are useful here:

m Search engines such as Google, Yahoo, and MSN. These maintain a fine-
grained index of all content that their powerful spiders have discovered,
and also cached copies of much of this content, which persists even after
the original content has been removed.

m Web archives such as the WayBack Machine, located at www.archive.org/.
These archives maintain a historical record of a large number of websites.
In many cases they allow users to browse a fully replicated snapshot of a
given site as it existed at various dates going back several years.

90

Chapter 4 = Mapping the Application

In addition to content that has been linked in the past, these resources are
also likely to contain references to content that is linked from third-party sites,
but not from within the target application itself. For example, some applications
contain restricted functionality for use by their business partners. Those part-
ners may disclose the existence of the functionality in ways that the application
itself does not.

1. Use several different search engines and web archives (listed previously)
to discover what content they indexed or stored for the application you
are attacking.

2. When querying a search engine, you can use various advanced techniques
to maximize the effectiveness of your research. The following suggestions
apply to Google. You can find the corresponding queries on other engines
by selecting their Advanced Search option.

m site:www.wahh-target.com returns every resource within the target
site that Google has a reference to.

m site:www.wahh-target.com login returns all the pages containing the
expression login. In a large and complex application, this technique can
be used to quickly home in on interesting resources, such as site maps,
password reset functions, and administrative menus.

m link:www.wahh-target.com returns all the pages on other websites
and applications that contain a link to the target. This may include links
to old content, or functionality that is intended for use only by third par-
ties, such as partner links.

m related:www.wahh-target.com returns pages that are “similar” to the
target and therefore includes a lot of irrelevant material. However, it may
also discuss the target on other sites, which may be of interest.

3. Perform each search not only in the default Web section of Google, but
also in Groups and News, which may contain different results.

4. Browse to the last page of search results for a given query, and select
Repeat the Search with the Omitted Results Included. By default, Google
attempts to filter out redundant results by removing pages that it believes
are sufficiently similar to others included in the results. Overriding this
behavior may uncover subtly different pages that are of interest to you
when attacking the application.

5. View the cached version of interesting pages, including any content that is
no longer present in the actual application. In some cases, search engine
caches contain resources that cannot be directly accessed in the applica-
tion without authentication or payment.

Chapter 4 = Mapping the Application

91

6. Perform the same queries on other domain names belonging to the same
organization, which may contain useful information about the application
you are targeting.

If your research identifies old content and functionality that is no longer
linked to within the main application, it may still be present and usable. The
old functionality may contain vulnerabilities that do not exist elsewhere
within the application.

Even where old content has been removed from the live application, the
content obtained from a search engine cache or web archive may contain
references to or clues about other functionality that is still present within the
live application and that can be used to attack it.

Another public source of useful information about the target application is
any posts that developers and others have made to Internet forums. There are
numerous such forums in which software designers and programmers ask
and answer technical questions. Often, items posted to these forums contain
information about an application that is of direct benefit to an attacker, including
the technologies in use, the functionality implemented, problems encountered
during development, known security bugs, configuration and log files submit-
ted to assist in troubleshooting, and even extracts of source code.

1. Compile a list containing every name and e-mail address you can discover
relating to the target application and its development. This should include
any known developers, names found within HTML source code, names found
in the contact information section of the main company website, and any
names disclosed within the application itself, such as administrative staff.

2. Using the search techniques described previously, search for each identi-
fied name to find any questions and answers they have posted to Internet
forums. Review any information found for clues about functionality or vul-
nerabilities within the target application.

Leveraging the Web Server

Vulnerabilities may exist at the web server layer that enable you to discover
content and functionality that are not linked within the web application itself.
For example, bugs within web server software can allow an attacker to list the
contents of directories or obtain the raw source for dynamic server-executable
pages. See Chapter 18 for some examples of these vulnerabilities and ways in
which you can identify them. If such a bug exists, you may be able to exploit it to
directly obtain a listing of all pages and other resources within the application.

92

Chapter 4 = Mapping the Application

Many application servers ship with default content that may help you attack
them. For example, sample and diagnostic scripts may contain known vul-
nerabilities or functionality that may be leveraged for a malicious purpose.
Furthermore, many web applications incorporate common third-party com-
ponents for standard functionality, such as shopping carts, discussion forums,
or content management system (CMS) functions. These are often installed to a
fixed location relative to the web root or to the application’s starting directory.

Automated tools lend themselves naturally to this type of task, and many
issue requests from a large database of known default web server content, third-
party application components, and common directory names. While these tools
do not rigorously test for any hidden custom functionality, they can often be
useful in discovering other resources that are not linked within the application
and that may be of interest in formulating an attack.

Wikto is one of the many free tools that performs these types of scans, addi-
tionally containing a configurable brute-force list for content. As shown in
Figure 4-9, when used against the Extreme Internet Shopping site, it identifies
some directories using its internal wordlist. Because it has a large database of
common web application software and scripts, it has also identified the fol-
lowing directory, which an attacker would not discover through automated or
user-driven spidering:

http://eis/phpmyadmin/

Type Weight Trigger Request

) 0.00233B08744447042 200 ficans!

& 0424242424242424 200 Jauthy

= 0 200 Ihome

& 0.0211267605633608 200 iphpmysdmin/

@ 0.0485867768595041 200 Jpubd

& 00228126882128278 200 Ishop!

() 0424242424242424 200 jssrver-status

& 0 200 Igblindsx phpTlogin=trus
) 0.424242424242424 200 Ihaip!

& 0 200 findex php?=PHFESSEEFR
- 0 200 findex. php?=PHPESSEEF ..
@ 0 200 findex.php?=PHPESSESF...
& 0.00504625735912532 200 Jindx php?=PHPBBESF2. .
= 0.0108685652172918 200 findzse phpPmodula=My_ .
s 0.0t TRACE [HTTP/A. i

L] 0.0 Index of fimages/

Figure 4-9: Wikto being used to discover content and some known vulnerabilities
Additionally, although the /gb directory had already been identified via
spidering, Wikto has identified the specific URL:
/gb/index.php?login=true

Wikto checks for this URL because it is used in the gbook PHP application,
which contains a publicly known vulnerability.

Chapter 4 = Mapping the Application

93

m Like many commercial web scanners, tools such as Nikto and
Wikto contain vast lists of default files and directories and consequently appear
to be industrious at performing a huge number of checks. However, a large
number of these checks are redundant, and false positives are common. Worse
still, false negatives may occur regularly if a server is configured to hide a ban-
ner, if a script or collection of scripts is moved to a different directory, or if
HTTP status codes are handled in a custom manner. For this reason it is often
better to use a tool such as Burp Intruder, which allows you to interpret the raw
response information and does not attempt to extract positive and negative
results on your behalf.

Several useful options are available when you run Nikto:

1. If you believe that the server is using a nonstandard location for interest-
ing content that Nikto checks for (such as /cgi/cgi-bin instead of
/cgi-bin), you can specify this alternative location using the option -root
/cgi/. For the specific case of CGl directories, these can also be specified
using the option -cgidirs.

2. If the site uses a custom “file not found” page that does not return the
HTTP 404 status code, you can specify a particular string that identifies
this page by using the -404 option.

3. Be aware that Nikto does not perform any intelligent verification of
potential issues and therefore is prone to report false positives. Always
check any results Nikto returns manually.

Note that with tools like Nikto, you can specify a target application using its
domain name or IP address. If a tool accesses a page using its IP address, the
tool treats links on that page that use its domain name as belonging to a dif-
ferent domain, so the links are not followed. This is reasonable, because some
applications are virtually hosted, with multiple domain names sharing the
same IP address. Ensure that you configure your tools with this fact in mind.

Application Pages Versus Functional Paths

The enumeration techniques described so far have been implicitly driven by one
particular picture of how web application content may be conceptualized and
cataloged. This picture is inherited from the pre-application days of the World
Wide Web, in which web servers functioned as repositories of static informa-
tion, retrieved using URLs that were effectively filenames. To publish some web
content, an author simply generated a bunch of HTML files and copied these
into the relevant directory on a web server. When users followed hyperlinks,

94

Chapter 4 = Mapping the Application

they navigated the set of files created by the author, requesting each file via its
name within the directory tree residing on the server.

Although the evolution of web applications has fundamentally changed the
experience of interacting with the web, the picture just described is still appli-
cable to the majority of web application content and functionality. Individual
functions are typically accessed via a unique URL, which is usually the name
of the server-side script that implements the function. The parameters to the
request (residing in either the URL query string or the body of a posT request)
do not tell the application what function to perform; they tell it what information
to use when performing it. In this context, the methodology of constructing a
URL-based map can be effective in cataloging the application’s functionality.

In applications that use REST-style URLs, parts of the URL file path contain
strings that in fact function as parameter values. In this situation, by map-
ping URLs, a spider maps both the application functions and the list of known
parameter values to those functions.

In some applications, however, the picture based on application “pages”
is inappropriate. Although it may be possible to shoehorn any application’s
structure into this form of representation, in many cases a different picture,
based on functional paths, is far more useful for cataloging its content and
functionality. Consider an application that is accessed using only requests of
the following form:

POST /bank.jsp HTTP/1.1
Host: wahh-bank.com
Content-Length: 106

servlet=TransferFunds&method=confirmTransfer&fromAccount=10372918&to
Account=
3910852&amount=291.23&Submit=0k

Here, every request is made to a single URL. The parameters to the request
are used to tell the application what function to perform by naming the Java
servlet and method to invoke. Further parameters provide the information to
use in performing the function. In the picture based on application pages, the
application appears to have only a single function, and a URL-based map does
not elucidate its functionality. However, if we map the application in terms of
functional paths, we can obtain a much more informative and useful catalog of
its functionality. Figure 4-10 is a partial map of the functional paths that exist
within the application.

Chapter 4 = Mapping the Application

95

WahhBank.
login
WahhBank.
home
TransferFunds. BillPayment. BillPayment. WahhBank.
selectAccounts addPayee selectPayee logout
TransferFunds. BillPayment.
enterAmount enterAmount
TransferFunds. BillPayment.
confirmTransfer confirmPayment

Figure 4-10: A mapping of the functional paths within a web application

Representing an application’s functionality in this way is often more useful
even in cases where the usual picture based on application pages can be applied
without any problems. The logical relationships and dependencies between
different functions may not correspond to the directory structure used within
URLs. It is these logical relationships that are of most interest to you, both in
understanding the application’s core functionality and in formulating possible
attacks against it. By identifying these, you can better understand the expec-
tations and assumptions of the application’s developers when implementing
the functions. You also can attempt to find ways to violate these assumptions,
causing unexpected behavior within the application.

In applications where functions are identified using a request parameter, rather
than the URL, this has implications for the enumeration of application content.
In the previous example, the content discovery exercises described so far are
unlikely to uncover any hidden content. Those techniques need to be adapted
to the mechanisms actually used by the application to access functionality.

96

Chapter 4 = Mapping the Application

1. Identify any instances where application functionality is accessed not by
requesting a specific page for that function (such as /admin/editUser.jsp)
but by passing the name of a function in a parameter (such as
/admin.jsp?action=editUser).

2. Modify the automated techniques described for discovering URL-specified
content to work on the content-access mechanisms in use within the
application. For example, if the application uses parameters that spec-
ify servlet and method names, first determine its behavior when an
invalid servlet and/or method is requested, and when a valid method is
requested with other invalid parameters. Try to identify attributes of the
server's responses that indicate “hits” — valid servlets and methods. If
possible, find a way of attacking the problem in two stages, first enumer-
ating servlets and then methods within these. Using a method similar to
the one used for URL-specified content, compile lists of common items,
add to these by inferring from the names actually observed, and generate
large numbers of requests based on these.

3. If applicable, compile a map of application content based on functional
paths, showing all the enumerated functions and the logical paths and
dependencies between them.

Discovering Hidden Parameters

A variation on the situation where an application uses request parameters to
specify which function should be performed arises where other parameters
are used to control the application’s logic in significant ways. For example, an
application may behave differently if the parameter debug=true is added to the
query string of any URL. It might turn off certain input validation checks, allow
the user to bypass certain access controls, or display verbose debug informa-
tion in its response. In many cases, the fact that the application handles this
parameter cannot be directly inferred from any of its content (for example, it
does not include debug=false in the URLs it publishes as hyperlinks). The effect
of the parameter can only be detected by guessing a range of values until the
correct one is submitted.

Chapter 4 = Mapping the Application

97

1. Using lists of common debug parameter names (debug, test, hide, source,
etc.) and common values (true, yes, on, 1, etc.), make a large number of
requests to a known application page or function, iterating through all
permutations of name and value. For POST requests, insert the added
parameter to both the URL query string and the message body.

Burp Intruder can be used to perform this test using multiple payload
sets and the “cluster bomb” attack type (see Chapter 14 for more details).

2. Monitor all responses received to identify any anomalies that may indicate
that the added parameter has had an effect on the application’s processing.

3. Depending on the time available, target a number of different pages or
functions for hidden parameter discovery. Choose functions where it is
most likely that developers have implemented debug logic, such as login,
search, and file uploading and downloading.

Analyzing the Application

Enumerating as much of the application’s content as possible is only one ele-
ment of the mapping process. Equally important is the task of analyzing the
application’s functionality, behavior, and technologies employed to identify the
key attack surfaces it exposes and to begin formulating an approach to probing
the application for exploitable vulnerabilities.

Here are some key areas to investigate:

m The application’s core functionality — the actions that can be leveraged
to perform when used as intended

m Other, more peripheral application behavior, including off-site links, error
messages, administrative and logging functions, and the use of redirects

m The core security mechanisms and how they function — in particular,
management of session state, access controls, and authentication mecha-
nisms and supporting logic (user registration, password change, and
account recovery)

98

Chapter 4 = Mapping the Application

m All the different locations at which the application processes user-supplied
input — every URL, query string parameter, item of posT data, and cookie

m The technologies employed on the client side, including forms, client-
side scripts, thick-client components (Java applets, ActiveX controls, and
Flash), and cookies

m The technologies employed on the server side, including static and dynamic
pages, the types of request parameters employed, the use of SSL, web
server software, interaction with databases, e-mail systems, and other
back-end components

m Any other details that may be gleaned about the internal structure and
functionality of the server-side application — the mechanisms it uses
behind the scenes to deliver the functionality and behavior that are vis-
ible from the client perspective

Identifying Entry Points for User Input

The majority of ways in which the application captures user input for server-
side processing should be obvious when reviewing the HTTP requests that are
generated as you walk through the application’s functionality. Here are the key
locations to pay attention to:

m Every URL string up to the query string marker

m Every parameter submitted within the URL query string

m Every parameter submitted within the body of a posT request
m Every cookie

m Every other HTTP header that the application might process — in particu-
lar, the User-Agent, Referer, Accept, Accept-Language, and Host headers

URL File Paths

The parts of the URL that precede the query string are often overlooked as entry
points, since they are assumed to be simply the names of directories and files
on the server file system. However, in applications that use REST-style URLs,
the parts of the URL that precede the query string can in fact function as data
parameters and are just as important as entry points for user input as the query
string itself.

A typical REST-style URL could have this format:

http://eis/shop/browse/electronics/iPhone3G/

Chapter 4 = Mapping the Application

In this example, the strings electronics and iPhone3G should be treated as
parameters to store a search function.
Similarly, in this URL:

http://eis/updates/2010/12/25/my-new-iphone/

each of the URL components following updates may be being handled in a
RESTful manner.

Most applications using REST-style URLs are easy to identify given the URL
structure and application context. However, no hard-and-fast rules should be
assumed when mapping an application, because it is up to the application’s
authors how users should interact with it.

Request Parameters

Parameters submitted within the URL query string, message body, and HTTP
cookies are the most obvious entry points for user input. However, some appli-
cations do not employ the standard name=value format for these parameters.
They may employ their own custom scheme, which may use nonstandard query
string markers and field separators, or they may embed other data schemes such
as XML within parameter data.

Here are some examples of nonstandard parameter formats that the authors
have encountered in the wild:

/dir/file; foo=bar&foo2=bar2
/dir/file?foo=bars$foo2=bar2
/dir/file/foo%3dbar%26fo02%3dbar2
/dir/foo.bar/file

/dir/foo=bar/file

/dir/file?param=foo:bar

m /dir/file?data=%3cfoo%3ebar%3c%2ffoo%3e%3cfoo2%3ebar2%3c%2ffoo2%3e

If a nonstandard parameter format is being used, you need to take this into
account when probing the application for all kinds of common vulnerabilities.
For example, suppose that, when testing the final URL in this list, you ignore the
custom format and simply treat the query string as containing a single parameter
called data, and therefore submit various kinds of attack payloads as the value
of this parameter. You would miss many kinds of vulnerabilities that may exist
in the processing of the query string. Conversely, if you dissect the format and
place your payloads within the embedded XML data fields, you may immediately
discover a critical bug such as SQL injection or path traversal.

100

Chapter 4 = Mapping the Application

HTTP Headers

Many applications perform custom logging functions and may log the contents
of HTTP headers such as Referer and User-agent. These headers should always
be considered as possible entry points for input-based attacks.

Some applications perform additional processing on the referer header. For
example, an application may detect that a user has arrived via a search engine,
and seek to provide a customized response tailored to the user’s search query.
The application may echo the search term or may attempt to highlight matching
expressions within the response. Some applications seek to boost their search
rankings by dynamically adding content such as HTML keywords, containing
strings that recent visitors from search engines have been searching for. In this
situation, it may be possible to persistently inject content into the application’s
responses by making a request numerous times containing a suitably crafted
Referer URL.

An important trend in recent years has been for applications to present dif-
ferent content to users who access the application via different devices (laptop,
cell phone, tablet). This is achieved by inspecting the uUser-agent header. As well
as providing an avenue for input-based attacks directly within the user-agent
header itself, this behavior provides an opportunity to uncover an additional
attack surface within the application. By spoofing the user-agent header for
a popular mobile device, you may be able to access a simplified user interface
that behaves differently than the primary interface. Since this interface is gener-
ated via different code paths within the server-side application, and may have
been subjected to less security testing, you may identify bugs such as cross-site
scripting that do not exist in the primary application interface.

m Burp Intruder contains a built-in payload list containing a large number
of user agent strings for different types of devices. You can carry out a simple
attack that performs a GET request to the main application page supplying
different user agent strings and then review the intruder results to identify
anomalies that suggest a different user interface is being presented.

In addition to targeting HTTP request headers that your browser sends by
default, or that application components add, in some situations you can per-
form successful attacks by adding further headers that the application may
still process. For example, many applications perform some processing on the
client’s IP address to carry out functions such as logging, access control, or
user geolocation. The IP address of the client’s network connection typically
is available to applications via platform APIs. However, to handle cases where
the application resides behind a load balancer or proxy, applications may use
the IP address specified in the x-Forwarded-For request header if it is present.
Developers may then mistakenly assume that the IP address value is untainted
and process it in dangerous ways. By adding a suitably crafted x-Forwarded-For

Chapter 4 = Mapping the Application

header, you may be able to deliver attacks such as SQL injection or persistent
cross-site scripting.

Out-of-Band Channels

A final class of entry points for user input includes any out-of-band channel
by which the application receives data that you may be able to control. Some
of these entry points may be entirely undetectable if you simply inspect the
HTTP traffic generated by the application, and finding them usually requires
an understanding of the wider context of the functionality that the application
implements. Here are some examples of web applications that receive user-
controllable data via an out-of-band channel:

m A web mail application that processes and renders e-mail messages received
via SMTP

m A publishing application that contains a function to retrieve content via
HTTP from another server

m An intrusion detection application that gathers data using a network
sniffer and presents this using a web application interface

m Any kind of application that provides an API interface for use by non-
browser user agents, such as cell phone apps, if the data processed via
this interface is shared with the primary web application

Identifying Server-Side Technologies

Normally it is possible to fingerprint the technologies employed on the server
via various clues and indicators.

Banner Grabbing

Many web servers disclose fine-grained version information, both about the
web server software itself and about other components that have been installed.
For example, the HTTP server header discloses a huge amount of detail about
some installations:

Server: Apache/1.3.31 (Unix) mod_gzip/1.3.26.1la mod_auth_passthrough/

1.8 mod_log _bytes/1.2 mod _bwlimited/1.4 PHP/4.3.9 FrontPage/
5.0.2.2634a mod_ssl1/2.8.20 OpenSSL/0.9.7a

In addition to the server header, the type and version of software may be dis-
closed in other locations:

m Templates used to build HTML pages
m Custom HTTP headers

m URL query string parameters

102

Chapter 4 = Mapping the Application

HTTP Fingerprinting

In principle, any item of information returned by the server may be customized
or even deliberately falsified, and banners like the server header are no excep-
tion. Most application server software allows the administrator to configure the
banner returned in the server HTTP header. Despite measures such as this, it is
usually possible for a determined attacker to use other aspects of the web server’s
behavior to determine the software in use, or at least narrow down the range of
possibilities. The HTTP specification contains a lot of detail that is optional or left
to an implementer’s discretion. Also, many web servers deviate from or extend
the specification in various ways. As a result, a web server can be fingerprinted
in numerous subtle ways, other than via its server banner. Httprecon is a handy
tool that performs a number of tests in an attempt to fingerprint a web server’s
software. Figure 4-11 shows Httprecon running against the EIS application and
reporting various possible web servers with different degrees of confidence.

. httprecon 7.3 - http://eis:80/ | =B S
File Cenfiguration Fingerprinting Reporting Help

Target [Apache 2.0.54]

|http./.v‘ j |EIS p ‘Eg j Analyze

GET existing 1 GET long request | GET nnn-exlstlng} GET wirong prntncnl} HEAD Exlslmgl OPTIOM 4 | *

n

« . »

{ Matchlist {352 Implementations] | Fingerprint Details] Report Preview I

| Mame | Hitz | Match % | ~
W, Apache 2054 104 100
W Apache 2055] 94.73..
W, Apache 224 il 875
W Apache2211 a0 86.53...
&Y Microsolt 15 6.0 an B6.53
W Apache 2046 -] B4.61...
W Apache 223 a6 8269 o
b Y LA mAn ot Pt

Generate HTML Repart... Dane.

Figure 4-11: Httprecon fingerprinting the EIS application

File Extensions

File extensions used within URLs often disclose the platform or programming
language used to implement the relevant functionality. For example:

m asp — Microsoft Active Server Pages
m aspx — Microsoft ASP.NET

Chapter 4 = Mapping the Application

103

jsp — Java Server Pages

cfm — Cold Fusion

php — The PHP language

d2w — WebSphere

pl — The Perl language

py — The Python language

d11 — Usually compiled native code (C or C++)

nsf or ntf — Lotus Domino

Even if an application does not employ a particular file extension in its published
content, it is usually possible to verify whether the technology supporting that
extension is implemented on the server. For example, if ASPNET is installed,
requesting a nonexistent . aspx file returns a customized error page generated
by the ASPNET framework, as shown in Figure 4-12. Requesting a nonexistent
file with a different extension returns a generic error message generated by the
web server, as shown in Figure 4-13.

@ The resource cannot be found. - Moxzilla Firefox || (=) @
File Edit View History Bookmarks Tools Help
@ - C 2 ||| httpy//mdsec.net/foo.aspx 7 ~| |2~ Google »p

|| The resource cannot be found. | [~
Server Error in '/' Application.

The resource cannot be found.

Description: HTTP 404. The resource you are looking for (or one of its dependencies) could have been removed, had its name changed, or is temporarily unavailable.
Please review the following URL and make sure that it is spelled correctly.

Requested URL: /foo.aspx

Done

Figure 4-12: A customized error page indicating that the ASP.NET platform is present on
the server

Using the automated content discovery techniques already described, it
is possible to request a large number of common file extensions and quickly
confirm whether any of the associated technologies are implemented on the
server.

The divergent behavior described arises because many web servers map
specific file extensions to particular server-side components. Each different
component may handle errors (including requests for nonexistent content) dif-
ferently. Figure 4-14 shows the various extensions that are mapped to different
handler DLLs in a default installation of IIS 5.0.

104 Chapter 4 = Mapping the Application

(@) The page cannot be found - Mozilla Firefox = |
File Edit View History Bookmarks Tools Help

@ - £2% | http://mdsec.net/foo.aspic 77 - | |2W - Google P
| | The page cannot be found - -

The page cannot be found

The page you are looking for might have been removed, had its name changed, or
is temporarily unavailable.

i

Please try the following:

s Make sure that the Web site address displayed in the address bar of your

browser is spelled and formatted correctly. —
« If you reached this page by clicking a link, contact the Web site

administrator to alert them that the link is incorrectly formatted.
» Click the Back button to try another link.

HTTP Error 404 - File or directory not found.
Internet Information Services (1IS)

Done

Figure 4-13: A generic error message created when an unrecognized file extension is
requested

Application Configuration ll

App Mappings | App Dpllonsl Lpp Debugging |

—&pplication Mapping

Extensionl Executable Path | Werhs -
bt CWw INNT S pstem 32 webhits. dil GET HEAD
.ida CwINMNT 45 pstem32hidg. dil GET HEAD
.idg Cwd MM TS pstem32hidg. dil GETHEAD
.asp CAwAMM TS pstem32hinetsrdazp. dil GET HEAD
.cer CAwWAMM TS patem32hinetsrvhasp. dil GET HEAD
.cdx CWAMM TS petern32hinetsrhazp. dil GET HEAD
.aza CAWIMM TS patem32hinetsrdazp.dl GET HEAD
_htr CAWAMM T Sapstem32hinetsrasp.dll GET POST—
.idz CAWAMM TS petem32hinetsrvshitpodbe. dil OPTIONS.(
.shtm CAWAMM TS petern32hinetsrssine. di GET POST
_ghtml C:AWIMMTYS patem32hinetsrdazine. di GET POST =
:»ih R T4 G isbarn T M inabersd seine il r::TIDnirl_I

Add | Edit Hemoye |

Ok I Cancel | ol | Help |

Figure 4-14: File extension mappings in IIS 5.0

It is possible to detect the presence of each file extension mapping via the
different error messages generated when that file extension is requested. In
some cases, discovering a particular mapping may indicate the presence of a
web server vulnerability. For example, the .printer and .ida/.idq handlers
in IIS have in the past been found vulnerable to buffer overflow vulnerabilities.

Another common fingerprint to be aware of are URLs that look like this:

https://wahh-app/news/0,,2-421206,00.html

Chapter 4 = Mapping the Application

105

The comma-separated numbers toward the end of the URL are usually gener-
ated by the Vignette content management platform.

Directory Names
It is common to encounter subdirectory names that indicate the presence of an
associated technology. For example:
m servlet — Java servlets
m pls — Oracle Application Server PL/SQL gateway
cfdocs or cfide — Cold Fusion

|

m SilverStream— The SilverStream web server

m WebObjects Or {function}.woa — Apple WebObjeCtS
|

rails — Ruby on Rails

Session Tokens

Many web servers and web application platforms generate session tokens by default
with names that provide information about the technology in use. For example:

m JSESSIONID — The Java Platform

m ASPSESSTIONID — Microsoft IIS server

m ASP.NET_SessionId — Microsoft ASP.NET
m CcFID/CFTOKEN — Cold Fusion

m PHPSESSID — PHP

Third-Party Code Components

Many web applications incorporate third-party code components to implement
common functionality such as shopping carts, login mechanisms, and message
boards. These may be open source or may have been purchased from an external
software developer. When this is the case, the same components often appear
within numerous other web applications on the Internet, which you can inspect to
understand how the component functions. Often, other applications use different
features of the same component, enabling you to identify additional behavior and
functionality beyond what is directly visible in the target application. Also, the
software may contain known vulnerabilities that have been discussed elsewhere,
or you may be able to download and install the component yourself and perform
a source code review or probe it for defects in a controlled way.

106 Chapter 4 = Mapping the Application

1. Identify all entry points for user input, including URLs, query string param-
eters, PosT data, cookies, and other HTTP headers processed by the
application.

2. Examine the query string format used by the application. If it does not
employ the standard format described in Chapter 3, try to understand
how parameters are being transmitted via the URL. Virtually all custom
schemes still employ some variation on the name/value model, so try to
understand how name/value pairs are being encapsulated into the non-
standard URLs you have identified.

3. Identify any out-of-bound channels via which user-controllable or other
third-party data is being introduced into the application’s processing.

4. View the HTTP Server banner returned by the application. Note that in
some cases, different areas of the application are handled by different
back-end components, so different sexrver headers may be received.

6. Check for any other software identifiers contained within any custom
HTTP headers or HTML source code comments.

Run the httprint tool to fingerprint the web server.

8. If fine-grained information is obtained about the web server and other
components, research the software versions in use to identify any vulner-
abilities that may be exploited to advance an attack (see Chapter 18).

9. Review your map of application URLs to identify any interesting-looking
file extensions, directories, or other sub-sequences that may provide clues
about the technologies in use on the server.

10. Review the names of all session tokens issued by the application to iden-
tify the technologies being used.

11. Use lists of common technologies, or Google, to establish which technolo-
gies may be in use on the server, or discover other websites and applica-
tions that appear to employ the same technologies.

12. Perform searches on Google for the names of any unusual cookies,
scripts, HTTP headers, and the like that may belong to third-party software
components. If you locate other applications in which the same compo-
nents are being used, review these to identify any additional functionality
and parameters that the components support, and verify whether these
are also present in your target application. Note that third-party compo-
nents may look and feel quite different in each implementation, due to
branding customizations, but the core functionality, including script and
parameter names, is often the same. If possible, download and install the
component and analyze it to fully understand its capabilities and, if pos-
sible, discover any vulnerabilities. Consult repositories of known vulner-
abilities to identify any known defects with the component in question.

Chapter 4 = Mapping the Application 107

Identifying Server-Side Functionality

It is often possible to infer a great deal about server-side functionality and struc-
ture, or at least make an educated guess, by observing clues that the application
discloses to the client.

Dissecting Requests
Consider the following URL, which is used to access a search function:

https://wahh-app.com/calendar.jsp?name=new%20applicants&isExpired=
O&startDate=22%2F09%2F2010&endDate=22%2F03%2F2011&0rderBy=name

As you have seen, the . jsp file extension indicates that Java Server Pages are
in use. You may guess that a search function will retrieve its information from
either an indexing system or a database. The presence of the orderBy parameter
suggests that a back-end database is being used and that the value you submit
may be used as the orDER BY clause of a SQL query. This parameter may well
be vulnerable to SQL injection, as may any of the other parameters if they are
used in database queries (see Chapter 9).

Also of interest among the other parameters is the isExpired field. This
appears to be a Boolean flag specifying whether the search query should include
expired content. If the application designers did not expect ordinary users to
be able retrieve any expired content, changing this parameter from 0 to 1 could
identify an access control vulnerability (see Chapter 8).

The following URL, which allows users to access a content management
system, contains a different set of clues:

https://wahh-app.com/workbench.aspx?template=NewBranch.tpl&loc=
/default&ver=2.31&edit=false

Here, the . aspx file extension indicates that this is an ASPNET application. It also
appears highly likely that the template parameter is used to specify a filename,
and the 1oc parameter is used to specify a directory. The possible file extension
.tpl appears to confirm this, as does the location /default, which could very
well be a directory name. It is possible that the application retrieves the template
file specified and includes the contents in its response. These parameters may
well be vulnerable to path traversal attacks, allowing arbitrary files to be read
from the server (see Chapter 10).

Also of interest is the edit parameter, which is set to false. It may be that
changing this value to true will modify the registration functionality, poten-
tially enabling an attacker to edit items that the application developer did not
intend to be editable. The ver parameter does not have any readily guessable
purpose, but it may be that modifying this will cause the application to perform
a different set of functions that an attacker could exploit.

108

Chapter 4 = Mapping the Application

Finally, consider the following request, which is used to submit a question
to application administrators:

POST /feedback.php HTTP/1.1
Host: wahh-app.com
Content-Length: 389

from=user@wahh-mail.com&to=helpdesk@wahh-app.com&subject=
Problem+logging+in&message=Please+help. ..

As with the other examples, the . php file extension indicates that the function
is implemented using the PHP language. Also, it is extremely likely that the
application is interfacing with an external e-mail system, and it appears that
user-controllable input is being passed to that system in all relevant fields of
the e-mail. The function may be exploitable to send arbitrary messages to any
recipient, and any of the fields may also be vulnerable to e-mail header injec-
tion (see Chapter 10).

m It is often necessary to consider the whole URL and application context
to guess the function of different parts of a request. Recall the following URL
from the Extreme Internet Shopping application:

http://eis/pub/media/117/view

The handling of this URL is probably functionally equivalent to the
following:

http://eis/manager?schema=pub&type=media&id=117&action=view

While it isn’t certain, it seems likely that resource 117 is contained in the
collection of resources media and that the application is performing an action
on this resource that is equivalent to view. Inspecting other URLs would help
confirm this.

The first consideration would be to change the action from view to a possi-
ble alternative, such as edit or add. However, if you change it to add and this
guess is right, it would likely correspond to an attempt to add a resource with
an id of 117. This will probably fail, since there is already a resource with an
id of 117. The best approach would be to look for an add operation with an
id value higher than the highest observed value or to select an arbitrary high
value. For example, you could request the following:

http://eis/pub/media/7337/add

It may also be worthwhile to look for other data collections by altering
media while keeping a similar URL structure:

http://eis/pub/pages/1l/view
http://eis/pub/users/1l/view

Chapter 4 = Mapping the Application

109

1. Review the names and values of all parameters being submitted to the
application in the context of the functionality they support.

2. Try to think like a programmer, and imagine what server-side mechanisms
and technologies are likely to have been used to implement the behavior
you can observe.

Extrapolating Application Behavior

Often, an application behaves consistently across the range of its functionality.
This may be because different functions were written by the same developer
or to the same design specification, or share some common code components.
In this situation, it may be possible to draw conclusions about server-side func-
tionality in one area and extrapolate these to another area.

For example, the application may enforce some global input validation checks,
such as sanitizing various kinds of potentially malicious input before it is pro-
cessed. Having identified a blind SQL injection vulnerability, you may encounter
problems exploiting it, because your crafted requests are being modified in
unseen ways by the input validation logic. However, other functions within the
application might provide good feedback about the kind of sanitization being
performed — for example, a function that echoes some user-supplied data to
the browser. You may be able to use this function to test different encodings and
variations of your SQL injection payload to determine what raw input must be
submitted to achieve the desired attack string after the input validation logic
has been applied. If you are lucky, the validation works in the same way across
the application, enabling you to exploit the injection flaw.

Some applications use custom obfuscation schemes when storing sensitive
data on the client to prevent casual inspection and modification of this data
by users (see Chapter 5). Some such schemes may be extremely difficult to
decipher given access to only a sample of obfuscated data. However, there may
be functions within the application where a user can supply an obfuscated
string and retrieve the original. For example, an error message may include the
deobfuscated data that led to the error. If the same obfuscation scheme is used
throughout the application, it may be possible to take an obfuscated string from
one location (such as a cookie) and feed it into the other function to decipher its
meaning. It may also be possible to reverse-engineer the obfuscation scheme by
submitting systematically varying values to the function and monitoring their
deobfuscated equivalents.

Finally, errors are often handled inconsistently within the application. Some
areas trap and handle errors gracefully, and other areas simply crash and return

110

Chapter 4 = Mapping the Application

verbose debugging information to the user (see Chapter 15). In this situation,
it may be possible to gather information from the error messages returned in
one area and apply it to other areas where errors are handled gracefully. For
example, by manipulating request parameters in systematic ways and monitor-
ing the error messages received, it may be possible to determine the internal
structure and logic of the application component. If you are lucky, aspects of
this structure may be replicated in other areas.

1. Try to identify any locations within the application that may contain clues
about the internal structure and functionality of other areas.

2. It may not be possible to draw any firm conclusions here; however, the
cases identified may prove useful at a later stage of the attack when
you're attempting to exploit any potential vulnerabilities.

Isolating Unique Application Behavior

Sometimes the situation is the opposite of that just described. In many well-
secured or mature applications, a consistent framework is employed that pre-
vents numerous types of attacks, such as cross-site scripting, SQL injection,
and unauthorized access. In these cases, the most fruitful areas for hunting
vulnerabilities generally are the portions of the application that have been added
retrospectively, or “bolted on,” and hence are not handled by the application’s
general security framework. Additionally, they may not be correctly tied into
the application through authentication, session management, and access control.
These are often identifiable through differences in GUI appearance, parameter
naming conventions, or explicitly through comments in source code.

1. Make a note of any functionality that diverges from the standard GUI
appearance, parameter naming, or navigation mechanism used within the
rest of the application.

2. Also make a note of functionality that is likely to have been added retro-
spectively. Examples include debug functions, CAPTCHA controls, usage
tracking, and third-party code.

3. Perform a full review of these areas, and do not assume that the standard
defenses used elsewhere in the application apply.

Chapter 4 = Mapping the Application

111

Mapping the Attack Surface

The final stage of the mapping process is to identify the various attack surfaces
exposed by the application and the potential vulnerabilities that are commonly
associated with each one. The following is a rough guide to some key types
of behavior and functionality that you may identify, and the kinds of vulner-
abilities that are most commonly found within each one. The remainder of this
book is concerned with the practical details of how you can detect and exploit
each of these problems:

m Client-side validation — Checks may not be replicated on the server
m Database interaction — SQL injection

m File uploading and downloading — Path traversal vulnerabilities, stored
cross-site scripting

m Display of user-supplied data — Cross-site scripting
m Dynamic redirects — Redirection and header injection attacks

m Social networking features — username enumeration, stored cross-site
scripting

m Login — Username enumeration, weak passwords, ability to use brute
force

m Multistage login — Logic flaws

m Session state — Predictable tokens, insecure handling of tokens
m Access controls — Horizontal and vertical privilege escalation
m User impersonation functions — Privilege escalation

m Use of cleartext communications — Session hijacking, capture of creden-
tials and other sensitive data

m Off-site links — Leakage of query string parameters in the rReferer
header

m Interfaces to external systems — Shortcuts in the handling of sessions
and/or access controls

m Error messages — Information leakage

m E-mail interaction — E-mail and /or command injection

m Native code components or interaction — Buffer overflows

m Use of third-party application components — Known vulnerabilities

m Identifiable web server software — Common configuration weaknesses,
known software bugs

112

Chapter 4 = Mapping the Application

Mapping the Extreme Internet Shopping Application

Having mapped the content and functionality of the EIS application, many paths

could be followed to attack the application, as shown in Figure 4-15.

-
% burp suite professional

B

burp intruder repeater window help

ftarget [proxy | spider | scanner | intruder | repeater | sequencer | decoder | comparer | options | alers |

site map | scope

I Filter: hiding not found items; hiding CSS, image and general binary content, hiding 4xx responses, hiding empty folders |

5 Alpreis
¢ =3 auth
[ForgotPassword
o- &% Login
D Profile
D ResetPassword
[register
o3 core
¢ sitestats
@ pagelD=thome&display=rankjhits[time
¢ & ap
o &% gbook.php
o= [home
o [icons
o (1] images
73 pub
o= [media
¢ 53 user
11
[BRE]
[BRE
robots tt
¢ i shop
o %/
¢ {53 browse
¢ E3 books
¢ (/Autoliating-eDating_Burp|
o= [Codec-Hacking_my-story
& [Pentesting-Thailand-Edition

a

host | method | URL | params| s

hitp:ileis |GET lishop/browse/books/AutoMating-e..| [| |20

< I [D

response rrequest |

raw headers hex htmi render

<hi>All kgt; books >
AutoMating-eDating Burp</h3»

<hS5>AutoMating-eDating Burp (£35)</h5>Run
through thousands of online users at high
speed using methods including Siper,
Battering Ram, or even Pitchfork.
<brs

<input type=button walue="Back"
onClick="document.location.replace ('/shop'):"
clags="btn">»

</div>
o [Z] SQL-Injection-Again </html> =
o [Security-Jokes-vol-3_Perl |
o (23 WAHH_v2 ~]
& [clothing — | =2 | 0matches
o Ea =

<

Figure 4-15: The attack surface exposed by the EIS application

The /auth directory contains authentication functionality. A full review of
all authentication functions, session handling, and access control is worthwhile,
including further content discovery attacks.

Within the /core path, the sitestats page appears to accept an array of param-
eters delimited by the pipe character (|). As well as conventional input-based
attacks, other values could be brute-forcible, such as source, location, and
1p, in an attempt to reveal more information about other users or about the
page specified in pageID. It may also be possible to find out information about

Chapter 4 = Mapping the Application

113

inaccessible resources or to try a wildcard option in pageID, such as pageIp=all
or pageID=*. Finally, because the observed pageID value contains a slash, it may
indicate a resource being retrieved from the file system, in which case path
traversal attacks may be a possibility.

The /gb path contains the site’s guestbook. Visiting this page suggests it is
used as a discussion forum, moderated by an administrator. Messages are mod-
erated, but the login bypass login=true means that an attacker can attempt to
approve malicious messages (to deliver cross-site scripting attacks, for example)
and read other users’ private messages to the administrator.

The /home path appears to hold authenticated user content. This could make
a good basis for attempts to launch a horizontal privilege escalation attack to
access another user’s personal information and to ensure that access controls
are present and enforced on every page.

A quick review shows that the /icons and /images paths hold static content.
It may be worth brute-forcing for icon names that could indicate third-party
software, and checking for directory indexing on these directories, but they are
unlikely to be worth significant effort.

The /pub path contains REST-style resources under /pub/media and /pub/
user. A brute-force attack could be used to find the profile pages of other appli-
cation users by targeting the numeric value in /pub/user/11. Social networking
functionality such as this can reveal user information, usernames, and other
users’ logon status.

The /shop path contains the online shopping site and has a large number of
URLSs. However, they all have a similar structure, and an attacker could probably
probe all of the relevant attack surface by looking at just one or two items. The
purchasing process may contain interesting logic flaws that could be exploited
to obtain unauthorized discounts or avoid payment.

1. Understand the core functionality implemented within the application and
the main security mechanisms in use.

2. Identify all features of the application’s functionality and behavior that
are often associated with common vulnerabilities.

3. Check any third-party code against public vulnerability databases such as
www.osvdb.org to determine any known issues.

4. Formulate a plan of attack, prioritizing the most interesting-looking func-
tionality and the most serious of the associated potential vulnerabilities.

114 Chapter 4 = Mapping the Application

Summary

Mapping the application is a key prerequisite to attacking it. It may be tempting
to dive in and start probing for bugs, but taking time to gain a sound under-
standing of the application’s functionality, technologies, and attack surface will
pay dividends down the line.

As with almost all of web application hacking, the most effective approach
is to use manual techniques supplemented where appropriate by controlled
automation. No fully automated tool can carry out a thorough mapping of the
application in a safe way. To do this, you need to use your hands and draw on
your own experience. The core methodology we have outlined involves the
following:

m Manual browsing and user-directed spidering to enumerate the applica-
tion’s visible content and functionality

m Use of brute force combined with human inference and intuition to dis-
cover as much hidden content as possible

m Anintelligent analysis of the application to identify its key functionality,
behavior, security mechanisms, and technologies

m An assessment of the application’s attack surface, highlighting the most
promising functions and behavior for more focused probing into exploit-
able vulnerabilities

Questions

Answers can be found at http://mdsec.net/wahh.

1. While mapping an application, you encounter the following URL:
https://wahh-app.com/CookieAuth.dl1?GetLogon?curl=Z2Fdefault.

aspx

What information can you deduce about the technologies employed on
the server and how it is likely to behave?

2. The application you are targeting implements web forum functionality.
Here is the only URL you have discovered:

http://wahh-app.com/forums/ucp.php?mode=register

How might you obtain a listing of forum members?

Chapter 4 = Mapping the Application

115

3. While mapping an application, you encounter the following URL:

https://wahh-app.com/public/profile/Address.
asp?action=view&location
=default

What information can you infer about server-side technologies? What
can you conjecture about other content and functionality that may exist?

4. A web server’s responses include the following header:

Server: Apache-Coyote/l.1

What does this indicate about the technologies in use on the server?

5. You are mapping two different web applications, and you request the URL
/admin.cpf from each application. The response headers returned by each
request are shown here. From these headers alone, what can you deduce
about the presence of the requested resource within each application?

HTTP/1.1 200 OK

Server: Microsoft-IIS/5.0

Expires: Mon, 20 Jun 2011 14:59:21 GMT

Content-Location: http://wahh-
app.com/includes/error.htm?404;http://wahh-app.com/admin.cpf
Date: Mon, 20 Jun 2011 14:59:21 GMT

Content-Type: text/html

Accept-Ranges: bytes

Content-Length: 2117

HTTP/1.1 401 Unauthorized

Server: Apache-Coyote/1.1

wWWww-Authenticate: Basic realm="Wahh Administration Site"
Content-Type: text/html;charset=utf-8

Content-Length: 954

Date: Mon, 20 Jun 2011 15:07:27 GMT

Connection: close

Bypassing Client-Side Controls

Chapter 1 described how the core security problem with web applications arises
because clients can submit arbitrary input. Despite this fact, a large proportion
of web applications, nevertheless, rely on various measures implemented on
the client side to control the data that they submit to the server. In general, this
represents a fundamental security flaw: the user has full control over the client
and the data it submits and can bypass any controls that are implemented on
the client side and are not replicated on the server.

An application may rely on client-side controls to restrict user input in two
broad ways. First, an application may transmit data via the client component
using a mechanism that it assumes will prevent the user from modifying that
data when the application later reads it. Second, an application may implement
measures on the client side that control the user’s interaction with his or her
own client, with the aim of restricting functionality and/or applying controls
around user input before it is submitted. This may be achieved using HTML
form features, client-side scripts, or browser extension technologies.

This chapter looks at examples of each kind of client-side control and describes
ways in which they can be bypassed.

118

Chapter 5 = Bypassing Client-Side Controls

Transmitting Data Via the Client

It is common to see an application passing data to the client in a form that the
end user cannot directly see or modify, with the expectation that this data
will be sent back to the server in a subsequent request. Often, the application’s
developers simply assume that the transmission mechanism used will ensure
that the data transmitted via the client will not be modified along the way.

Because everything submitted from the client to the server is within the
user’s control, the assumption that data transmitted via the client will not be
modified is usually false and often leaves the application vulnerable to one or
more attacks.

You may reasonably wonder why;, if the server knows and specifies a particular
item of data, the application would ever need to transmit this value to the client
and then read it back. In fact, writing applications in this way is often easier for
developers for various reasons:

m [t removes the need to keep track of all kinds of data within the user’s
session. Reducing the amount of per-session data being stored on the
server can also improve the application’s performance.

m [f the application is deployed on several distinct servers, with users poten-
tially interacting with more than one server to perform a multistep action,
it may not be straightforward to share server-side data between the hosts
that may handle the same user’s requests. Using the client to transmit data
can be a tempting solution to the problem.

m If the application employs any third-party components on the server,
such as shopping carts, modifying these may be difficult or impossible, so
transmitting data via the client may be the easiest way of integrating these.

m In some situations, tracking a new piece of data on the server may entail
updating a core server-side AP, thereby triggering a full-blown formal
change-management process and regression testing. Implementing a more
piecemeal solution involving client-side data transmission may avoid this,
allowing tight deadlines to be met.

However, transmitting sensitive data in this way is usually unsafe and has
been the cause of countless vulnerabilities in applications.

Hidden Form Fields

Hidden HTML form fields are a common mechanism for transmitting data via
the client in a superficially unmodifiable way. If a field is flagged as hidden,
it is not displayed on-screen. However, the field’s name and value are stored
within the form and are sent back to the application when the user submits
the form.

Chapter 5 = Bypassing Client-Side Controls

119

The classic example of this security flaw is a retailing application that stores
the prices of products within hidden form fields. In the early days of web appli-
cations, this vulnerability was extremely widespread, and by no means has it
been eliminated today. Figure 5-1 shows a typical form.

Please enter the required quantity:

Product: IPhone Ultimate
Price: 449

Quantity: {Maximum quantity is 50}

Buy

Figure 5-1: A typical HTML form

The code behind this form is as follows:

<form method="post" action="Shop.aspx?prod=1">

Product: iPhone 5

Price: 449

Quantity: <input type="text" name="quantity"> (Maximum quantity is 50)

<input type="hidden" name="price" value="449">

<input type="submit" value="Buy">

</form>

Notice the form field called price, which is flagged as hidden. This field is sent
to the server when the user submits the form:

POST /shop/28/Shop.aspx?prod=1 HTTP/1.1

Host: mdsec.net

Content-Type: application/x-www-form-urlencoded
Content-Length: 20

quantity=1&price=449

TRY IT!

http://mdsec.net/shop/28/

Although the price field is not displayed on-screen, and the user cannot edit
it, this is solely because the application has instructed the browser to hide the
field. Because everything that occurs on the client side is ultimately within
the user’s control, this restriction can be circumvented to edit the price.

One way to achieve this is to save the source code for the HTML page, edit
the field’s value, reload the source into a browser, and click the Buy button.
However, an easier and more elegant method is to use an intercepting proxy to
modify the desired data on-the-fly.

120

Chapter 5 = Bypassing Client-Side Controls

An intercepting proxy is tremendously useful when attacking a web applica-
tion and is the one truly indispensable tool you need. Numerous such tools are
available. We will use Burp Suite, which was written by one of this book’s authors.

The proxy sits between your web browser and the target application. It inter-
cepts every request issued to the application, and every response received back,
for both HTTP and HTTPS. It can trap any intercepted message for inspection
or modification by the user. If you haven't used an intercepting proxy before,
you can read more about how they function, and how to get them configured
and working, in Chapter 20.

Once an intercepting proxy has been installed and suitably configured, you

can trap the request that submits the form and modify the price field to any
value, as shown in Figure 5-2.

o burp suite professional =S Eeh ==

burp intruder repeater window help

[target |'pruxy " spider ‘ scanner | intruder " repeater i sequencer i decoder | comparer | opfions | aleris |

[intercept | options | history |

requestto hitp:imdsec.net80 [172,16,50.129]

| forward || drop H interceptis on || action

[(raw | params | headers | hex [viewstate |

POST /shop/Z8/Shop.aspx?prod=1 HTTE/L.1 =
Host: mdsesc.nst

User-Agent: Mozilla/5.0 (Windows; U; Windows NT &.l; en-GBE;
Firefox/3.£.8

Accept: text/html, application/xhtml+4zml, application/xml;q=0.9,*/*;q=0.8
Accept-Languages: en-gh,=n;g=0.5

Accept-Encoding: gzip,deflate

Accept-Charset: ISO-B8859-1,utf-8;:¢=0.7,*;c=0.7

Keep-Aliwve: 115

Proxy-Connection: keep-alive

Referer: http://mdsec.net/shop/28/Shop.aspx?prod=1

Content-Type: application/x-www-form-urlencoded

Content-Length: Z0

rv:1.8.2.8) Gecko/ZDLlDD722

quantity=l&price=44%

-

(i o

| 0 matches

Figure 5-2: Modifying the values of hidden form fields using an intercepting proxy

If the application processes the transaction based on the price submitted, you
can purchase the product for the price of your choice.

m If you find an application that is vulnerable in this way, see whether you
can submit a negative amount as the price. In some cases, applications have
actually accepted transactions using negative prices. The attacker receives a

refund to his credit card and also the item he ordered — a win-win situation, if
ever there was one.

Chapter 5 = Bypassing Client-Side Controls

121

HTTP Cookies

Another common mechanism for transmitting data via the client is HTTP cook-
ies. As with hidden form fields, normally these are not displayed on-screen, and
the user cannot modify them directly. They can, of course, be modified using
an intercepting proxy, by changing either the server response that sets them or
subsequent client requests that issue them.

Consider the following variation on the previous example. After the customer
has logged in to the application, she receives the following response:

HTTP/1.1 200 OK
Set-Cookie: DiscountAgreed=25
Content-Length: 1530

This piscountagreed cookie points to a classic case of relying on client-side
controls (the fact that cookies normally can’t be modified) to protect data trans-
mitted via the client. If the application trusts the value of the Discountagreed
cookie when it is submitted back to the server, customers can obtain arbitrary
discounts by modifying its value. For example:

POST /shop/92/Shop.aspx?prod=3 HTTP/1.1
Host: mdsec.net

Cookie: DiscountAgreed=25
Content-Length: 10

quantity=1

TRY IT!

http://mdsec.net/shop/92/

URL Parameters

Applications frequently transmit data via the client using preset URL param-
eters. For example, when a user browses the product catalog, the application
may provide him with hyperlinks to URLs like the following;:

http://mdsec.net/shop/?prod=3&pricecode=32

When a URL containing parameters is displayed in the browser’s location bar,
any parameters can be modified easily by any user without the use of tools.
However, in many instances an application may expect that ordinary users
cannot view or modify URL parameters:

m Where embedded images are loaded using URLs containing parameters

m Where URLs containing parameters are used to load a frame’s contents

122

Chapter 5 = Bypassing Client-Side Controls

m Where a form uses the posT method and its target URL contains preset
parameters

m Where an application uses pop-up windows or other techniques to conceal
the browser location bar

Of course, in any such case the values of any URL parameters can be modified
as previously discussed using an intercepting proxy.

The Referer Header

Browsers include the referer header within most HTTP requests. It is used to
indicate the URL of the page from which the current request originated — either
because the user clicked a hyperlink or submitted a form, or because the page
referenced other resources such as images. Hence, it can be leveraged as a
mechanism for transmitting data via the client. Because the URLs processed by
the application are within its control, developers may assume that the Referer
header can be used to reliably determine which URL generated a particular
request.

For example, consider a mechanism that enables users to reset their password
if they have forgotten it. The application requires users to proceed through
several steps in a defined sequence before they actually reset their password’s
value with the following request:

GET /auth/472/CreateUser.ashx HTTP/1.1
Host: mdsec.net
Referer: https://mdsec.net/auth/472/Admin.ashx

The application may use the referer header to verify that this request origi-
nated from the correct stage (admin.ashx). If it did, the user can access the
requested functionality.

However, because the user controls every aspect of every request, including
the HTTP headers, this control can be easily circumvented by proceeding directly
to CreateUser.ashx and using an intercepting proxy to change the value of the
Referer header to the value that the application requires.

The Referer header is strictly optional according to w3.org standards. Hence,
although most browsers implement it, using it to control application functional-
ity should be regarded as a hack.

TRY IT!

http://mdsec.net/auth/472/

Chapter 5 = Bypassing Client-Side Controls

123

COMMON MYTH

It is often assumed that HTTP headers are somehow more “tamper-proof”
than other parts of the request, such as the URL. This may lead developers to
implement functionality that trusts the values submitted in headers such as
Cookie and Referer while performing proper validation of other data such
as URL parameters. However, this perception is false. Given the multitude of
intercepting proxy tools that are freely available, any amateur hacker who
targets an application can change all request data with ease. It is rather like
supposing that when the teacher comes to search your desk, it is safer to hide
your water pistol in the bottom drawer, because she will need to bend down
farther to discover it.

1. Locate all instances within the application where hidden form fields,
cookies, and URL parameters are apparently being used to transmit data
via the client.

2. Attempt to determine or guess the role that the item plays in the applica-
tion’s logic, based on the context in which it appears and on clues such as
the parameter’s name.

3. Modify the item’s value in ways that are relevant to its purpose in the
application. Ascertain whether the application processes arbitrary values
submitted in the parameter, and whether this exposes the application to
any vulnerabilities.

Opaque Data

Sometimes, data transmitted via the client is not transparently intelligible
because it has been encrypted or obfuscated in some way. For example, instead
of seeing a product’s price stored in a hidden field, you may see a cryptic value
being transmitted:

<form method="post" action="Shop.aspx?prod=4">

Product: Nokia Infinity

Price: 699

Quantity: <input type="text" name="quantity"> (Maximum quantity is 50)

<input type="hidden" name="price" value="699">

<input type="hidden" name="pricing_ token"
value="E76D213D291B8F216D694A34383150265C989229">

<input type="submit" value="Buy">

</form>

124 Chapter 5 = Bypassing Client-Side Controls

When this is observed, you may reasonably infer that when the form is sub-
mitted, the server-side application checks the integrity of the opaque string, or
even decrypts or deobfuscates it to perform some processing on its plaintext
value. This further processing may be vulnerable to any kind of bug. However, to
probe for and exploit this, first you need to wrap up your payload appropriately.

TRY IT!

http://mdsec.net/shop/48/

.]Im Opaque data items transmitted via the client are often part of the
application’s session-handling mechanism. Session tokens sent in HTTP cook-
ies, anti-CSRF tokens transmitted in hidden fields, and one-time URL tokens
for accessing application resources, are all potential targets for client-side
tampering. Numerous considerations are specific to these kinds of tokens, as
discussed in depth in Chapter 7.

Faced with opaque data being transmitted via the client, several avenues of
attack are possible:

1. If you know the value of the plaintext behind the opaque string, you can
attempt to decipher the obfuscation algorithm being employed.

2. As described in Chapter 4, the application may contain functions else-
where that you can leverage to return the opaque string resulting from a
piece of plaintext you control. In this situation, you may be able to directly
obtain the required string to deliver an arbitrary payload to the function
you are targeting.

3. Even if the opaque string is impenetrable, it may be possible to replay
its value in other contexts to achieve a malicious effect. For example, the
pricing token parameter in the previously shown form may contain
an encrypted version of the product’s price. Although it is not possible to
produce the encrypted equivalent for an arbitrary price of your choosing,
you may be able to copy the encrypted price from a different, cheaper
product and submit this in its place.

4. If all else fails, you can attempt to attack the server-side logic that will
decrypt or deobfuscate the opaque string by submitting malformed varia-
tions of it — for example, containing overlong values, different character
sets, and the like.

The ASP.NET ViewState

One commonly encountered mechanism for transmitting opaque data via the
client is the ASPNET viewstate. Thisis a hidden field that is created by default
in all ASPNET web applications. It contains serialized information about the

Chapter 5 = Bypassing Client-Side Controls

125

state of the current page. The ASPNET platform employs the viewstate to
enhance server performance. It enables the server to preserve elements within
the user interface across successive requests without needing to maintain all
the relevant state information on the server side. For example, the server may
populate a drop-down list on the basis of parameters submitted by the user.
When the user makes subsequent requests, the browser does not submit the
contents of the list back to the server. However, the browser does submit the
hidden viewstate field, which contains a serialized form of the list. The server
deserializes the viewstate and recreates the same list that is presented to the
user again.

In addition to this core purpose of the viewstate, developers can use it to
store arbitrary information across successive requests. For example, instead of
saving the product’s price in a hidden form field, an application may save it in
the viewstate as follows:

string price = getPrice (prodno) ;
ViewState.Add ("price", price);

The form returned to the user now looks something like this:

<form method="post" action="Shop.aspx?prod=3">

<input type="hidden" name="__ VIEWSTATE" id="__ VIEWSTATE"
value="/wEPDWULLTE1ODcxNjkwNjIPFgIeBXByaWN1BQMzOT1kZA==" />

Product: HTC Avalanche

Price: 399

Quantity: <input type="text" name="quantity"> (Maximum quantity is 50)

<input type="submit" value="Buy">

</form>

When the user submits the form, her browser sends the following:

POST /shop/76/Shop.aspx?prod=3 HTTP/1.1

Host: mdsec.net

Content-Type: application/x-www-form-urlencoded
Content-Length: 77

_ VIEWSTATE=%2FwEPDWULLTE10DcxNjkwNjIPFgIeBXByaWN1BQMzOT1kZA%3D%3D&
quantity=1

The request apparently does not contain the product price — only the quan-
tity ordered and the opaque viewstate parameter. Changing that parameter at
random results in an error message, and the purchase is not processed.

The viewstate parameter is actually a Base64-encoded string that can be
easily decoded to see the price parameter that has been placed there:

3D FF 01 OF OF 05 OB 2D 31 35 38 37 31 36 39 30 ; =y..... -15871690
36 32 OF 16 02 1E 05 70 72 69 63 65 05 03 33 39 ; 62..... price. .39
39 64 64 ; 9dd

126

Chapter 5 = Bypassing Client-Side Controls

m When you attempt to decode what appears to be a Base64-encoded
string, a common mistake is to begin decoding at the wrong position within the
string. Because of how Base64 encoding works, if you start at the wrong posi-
tion, the decoded string will contain gibberish. Base64 is a block-based format
in which every 4 bytes of encoded data translates into 3 bytes of decoded data.
Hence, if your attempts to decode a Base64 string do not uncover anything
meaningful, try starting from four adjacent offsets into the encoded string.

By default, the ASPNET platform protects the viewstate from tampering by
adding a keyed hash to it (known as MAC protection). However, some applications
disable this default protection, meaning that you can modify the viewstate’s value
to determine whether it has an effect on the application’s server-side processing.

Burp Suite includes a viewstate parser that indicates whether the viewstate
is MAC protected, as shown in Figure 5-3. If it is not protected, you can edit the
contents of the viewstate within Burp using the hex editor below the viewstate
tree. When you send the message to the server or client, Burp sends your updated
ViewState, and, in the present example, enables you to change the price of the
item being purchased.

o burp suite professional EI@

burp intruder repeater window help

| target | proxy | spider ‘ scanner | intruder “ repeater i sequencer i decoder | comparer | opfions | aleris |

[intercept | options | history |

requestto hitp:imdsec.net80 [172.16.50.129]

| forward || drop H interceptis on || action

(‘raw | params | headers | nex [viewstate |

- ViewState v2.0 compatible [MAC is not enabled]
¢ Pair
¢ Pair
string -1587169062
7 Pair
¢ List
string price
string
null
null

1

0 Lid 01 of of 05 |0b |2d (31 35 (38 |37 [31 36 |39 |30 |36 |y -158716906
1 32 |of 16 (02 |1e (05 |70 [72 |69 63 |65 (06 03 |33 |39 |38 |2 price 399
2 64 = =

Figure 5-3: Burp Proxy can decode and render the viewState, allowing you to
review its contents and edit these if the EnableviewStateMac option is not set

Chapter 5 = Bypassing Client-Side Controls

127

TRY IT!

http://mdsec.net/shop/76/

1. If you are attacking an ASP.NET application, verify whether MAC protec-
tion is enabled for the viewstate. This is indicated by the presence of a
20-byte hash at the end of the viewstate structure, and you can use the
ViewState parser in Burp Suite to confirm whether this is present.

2. Even if the viewState is protected, use Burp to decode the viewState
on various application pages to discover whether the application is using
the viewstate to transmit any sensitive data via the client.

3. Try to modify the value of a specific parameter within the viewstate
without interfering with its structure, and see whether an error message
results.

4. If you can modify the viewstate without causing errors, you should
review the function of each parameter within the viewstate and
see whether the application uses it to store any custom data. Try to
submit crafted values as each parameter to probe for common vulner-
abilities, as you would for any other item of data being transmitted
via the client.

5. Note that MAC protection may be enabled or disabled on a per-page
basis, so it may be necessary to test each significant page of the applica-
tion for viewstate hacking vulnerabilities. If you are using Burp Scanner
with passive scanning enabled, Burp automatically reports any pages that
use the viewstate without MAC protection enabled.

Capturing User Data: HTML Forms

The other principal way in which applications use client-side controls to restrict
data submitted by clients occurs with data that was not originally specified by
the server but that was gathered on the client computer itself.

HTML forms are the simplest and most common way to capture input from
the user and submit it to the server. With the most basic uses of this method,
users type data into named text fields, which are submitted to the server as
name/value pairs. However, forms can be used in other ways; they can impose
restrictions or perform validation checks on the user-supplied data. When an

128

Chapter 5 = Bypassing Client-Side Controls

application employs these client-side controls as a security mechanism to defend
itself against malicious input, the controls can usually be easily circumvented,
leaving the application potentially vulnerable to attack.

Length Limits

Consider the following variation on the original HTML form, which imposes
a maximum length of 1 on the quantity field:

<form method="post" action="Shop.aspx?prod=1">

Product: iPhone 5

Price: 449

Quantity: <input type="text" name="quantity" maxlength="1">

<input type="hidden" name="price" value="449">

<input type="submit" value="Buy">

</form>

Here, the browser prevents the user from entering more than one character
into the input field, so the server-side application may assume that the quantity
parameter it receives will be less than 10. However, this restriction can easily be
circumvented either by intercepting the request containing the form submission
to enter an arbitrary value, or by intercepting the response containing the form
to remove the maxlength attribute.

INTERCEPTING RESPONSES

When you attempt to intercept and modify server responses, you may find
that the relevant message displayed in your proxy looks like this:

HTTP/1.1 304 Not Modified

Date: Wed, 6 Jul 2011 22:40:20 GMT
Etag: "6c7-5fcc0900"

Expires: Thu, 7 Jul 2011 00:40:20 GMT
Cache-Control: max-age=7200

This response arises because the browser already possesses a cached copy
of the resource it requested. When the browser requests a cached resource,
it typically adds two headers to the request — 1£-Modified-Since and
If-None-Match:

GET /scripts/validate.js HTTP/1.1

Host: wahh-app.com

If-Modified-Since: Sat, 7 Jul 2011 19:48:20 GMT
If-None-Match: "6c7-5fcc0900"

These headers tell the server when the browser last updated its cached copy.

The Etag string, which the server provided with that copy of the resource,
is a kind of serial number that the server assigns to each cacheable resource.

Chapter 5 = Bypassing Client-Side Controls 129

It updates each time the resource is modified. If the server possesses a newer
version of the resource than the date specified in the T£-Modified-Since
header, or if the Etag of the current version matches the one specified in the
If-None-Match header, the server responds with the latest version of the
resource. Otherwise, it returns a 304 response, as shown here, informing the
browser that the resource has not been modified and that the browser should
use its cached copy.

When this occurs, and you need to intercept and modify the resource that
the browser has cached, you can intercept the relevant request and remove
the 1£-Modified-Since and If-None-Match headers. This causes the server
to respond with the full version of the requested resource. Burp Proxy con-
tains an option to strip these headers from every request, thereby overriding
all cache information sent by the browser.

1. Look for form elements containing a maxlength attribute. Submit data
that is longer than this length but that is formatted correctly in other
respects (for example, it is numeric if the application expects a number).

2. If the application accepts the overlong data, you may infer that the client-
side validation is not replicated on the server.

3. Depending on the subsequent processing that the application performs
on the parameter, you may be able to leverage the defects in validation to
exploit other vulnerabilities, such as SQL injection, cross-site scripting, or
buffer overflows.

Script-Based Validation

The input validation mechanisms built into HTML forms themselves are extremely
simple and are insufficiently fine-grained to perform relevant validation of
many kinds of input. For example, a user registration form might contain fields
for name, e-mail address, telephone number, and zip code, all of which expect
different types of input. Therefore, it is common to see customized client-side
input validation implemented within scripts. Consider the following variation
on the original example:

<form method="post" action="Shop.aspx?prod=2" onsubmit="return
validateForm(this) ">

Product: Samsung Multiverse

Price: 399

130 Chapter 5 = Bypassing Client-Side Controls

Quantity: <input type="text" name="quantity"> (Maximum quantity is 50)

<input type="submit" value="Buy">

</form>

<script>function validateForm(theForm)
{
var isInteger = /"\d+$/;
var valid = isInteger.test (quantity) &&
quantity > 0 && quantity <= 50;
if (!valid)
alert ('Please enter a valid quantity');
return valid;
}

</script>

TRY IT!

http://mdsec.net/shop/139/

The onsubmit attribute of the form tag instructs the browser to execute the
ValidateForm function when the user clicks the Submit button, and to submit
the form only if this function returns true. This mechanism enables the client-
side logic to intercept an attempted form submission, perform customized
validation checks on the user’s input, and decide whether to accept that input.
In the preceding example, the validation is simple; it checks whether the data
entered in the amount field is an integer and is between 1 and 50.

Client-side controls of this kind are usually easy to circumvent. Usually
it is sufficient to disable JavaScript within the browser. If this is done, the
onsubmit attribute is ignored, and the form is submitted without any custom
validation.

However, disabling JavaScript may break the application if it depends on
client-side scripting for its normal operation (such as constructing parts of the
user interface). A neater approach is to enter a benign (known good) value into
the input field in the browser, intercept the validated submission with your
proxy, and modify the data to your desired value. This is often the easiest and
most elegant way to defeat JavaScript-based validation.

Alternatively, you can intercept the server’s response that contains the
JavaScript validation routine and modify the script to neutralize its effect —in
the previous example, by changing the validateForm function to return true
in every case.

Chapter 5 = Bypassing Client-Side Controls

131

1. Identify any cases where client-side JavaScript is used to perform input
validation prior to form submission.

2. Submit data to the server that the validation ordinarily would have
blocked, either by modifying the submission request to inject invalid data
or by modifying the form validation code to neutralize it.

3. As with length restrictions, determine whether the client-side controls are
replicated on the server and, if not, whether this can be exploited for any
malicious purpose.

4. Note that if multiple input fields are subjected to client-side validation
prior to form submission, you need to test each field individually with
invalid data while leaving valid values in all the other fields. If you submit
invalid data in multiple fields simultaneously, the server might stop pro-
cessing the form when it identifies the first invalid field. Therefore, your
testing won't reach all possible code paths within the application.

.m Client-side JavaScript routines to validate user input are common in
web applications, but do not conclude that every such application is vulner-
able. The application is exposed only if client-side validation is not replicated
on the server, and even then only if crafted input that circumvents client-side
validation can be used to cause some undesirable behavior by the application.

In the majority of cases, client-side validation of user input has beneficial effects
on the application’s performance and the quality of the user experience. For
example, when filling out a detailed registration form, an ordinary user might
make various mistakes, such as omitting required fields or formatting his tele-
phone number incorrectly. In the absence of client-side validation, correcting
these mistakes may entail several reloads of the page and round-trip messages
to the server. Implementing basic validation checks on the client side makes
the user’s experience much smoother and reduces the load on the server.

Disabled Elements

If an element on an HTML form is flagged as disabled, it appears on-screen
but is usually grayed out and cannot be edited or used in the way an ordinary
control can be. Also, it is not sent to the server when the form is submitted. For
example, consider the following form:

<form method="post" action="Shop.aspx?prod=5">
Product: Blackberry Rude

Price: <input type="text" disabled="true" name="price" value="299">

132 Chapter 5 = Bypassing Client-Side Controls

Quantity: <input type="text" name="quantity"> (Maximum quantity is 50)

<input type="submit" value="Buy">

</form>

This includes the price of the product as a disabled text field and appears
on-screen as shown in Figure 5-4.

Please enter the required quantity:

Product: Blackberry Rude
Price: 239

Quantity: (Maximum guantity is 50)

Buy

Figure 5-4: A form containing a disabled input field

When this form is submitted, only the quantity parameter is sent to the
server. However, the presence of a disabled field suggests that a price parameter
may originally have been used by the application, perhaps for testing purposes
during development. This parameter would have been submitted to the server
and may have been processed by the application. In this situation, you should
definitely test whether the server-side application still processes this parameter.
If it does, seek to exploit this fact.

TRY IT!

http://mdsec.net/shop/104/

1. Look for disabled elements within each form of the application. Whenever
you find one, try submitting it to the server along with the form's other
parameters to determine whether it has any effect.

2. Often, submit elements are flagged as disabled so that buttons appear
as grayed out in contexts when the relevant action is unavailable. You
should always try to submit the names of these elements to determine
whether the application performs a server-side check before attempting
to carry out the requested action.

Chapter 5 = Bypassing Client-Side Controls

133

3. Note that browsers do not include disabled form elements when forms
are submitted. Therefore, you will not identify these if you simply walk
through the application’s functionality, monitoring the requests issued
by the browser. To identify disabled elements, you need to monitor the
server’s responses or view the page source in your browser.

4. You can use the HTML modification feature in Burp Proxy to automatically
re-enable any disabled fields used within the application.

Capturing User Data: Browser Extensions

Besides HTML forms, the other main method for capturing, validating, and
submitting user data is to use a client-side component that runs in a browser
extension, such as Java or Flash. When first employed in web applications, browser
extensions were often used to perform simple and often cosmetic tasks. Now,
companies are increasingly using browser extensions to create fully functional
client-side components. These run within the browser, across multiple client
platforms, and provide feedback, flexibility, and handling of a desktop appli-
cation. A side effect is that processing tasks that previously would have taken
place on the server may be offloaded onto the client for reasons of speed and
user experience. In some cases, such as online trading applications, speed is so
critical that much of the key application logic takes place on the client side. The
application design may deliberately sacrifice security in favor of speed, perhaps
in the mistaken belief that traders are trusted users, or that the browser exten-
sion includes its own defenses. Recalling the core security problem discussed
in Chapter 2, and the earlier sections of this chapter, we know that the concept
of a client-side component defending its business logic is impossible.

Browser extensions can capture data in various ways — via input forms
and in some cases by interacting with the client operating system’s filesystem
or registry. They can perform arbitrarily complex validation and manipula-
tion of captured data before submission to the server. Furthermore, because
their internal workings are less transparent than HTML forms and JavaScript,
developers are more likely to assume that the validation they perform cannot
be circumvented. For this reason, browser extensions are often a fruitful target
for discovering vulnerabilities within web applications.

A classic example of a browser extension that applies controls on the client
side is a casino component. Given what we have observed about the fallible
nature of client-side controls, the idea of implementing an online gambling
application using a browser extension that runs locally on a potential attacker’s

134 Chapter 5 = Bypassing Client-Side Controls

machine is intriguing. If any aspect of the game play is controlled within the
client instead of by the server, an attacker could manipulate the game with
precision to improve the odds, change the rules, or alter the scores submitted
to the server. Several kinds of attacks could occur in this scenario:

m The client component could be trusted to maintain the game state. In this
instance, local tampering with the game state would give an attacker an
advantage in the game.

m An attacker could bypass a client-side control and perform an illegal action
designed to give himself an advantage within the game.

m An attacker could find a hidden function, parameter, or resource that,
when invoked, allows illegitimate access to a server-side resource.

m If the game involves any peers, or a house player, the client component
could be receiving and processing information about other players that,
if known, could be used to the attacker’s advantage.

Common Browser Extension Technologies

The browser extension technologies you are most likely to encounter are Java
applets, Flash, and Silverlight. Because these are competing to achieve similar
goals, they have similar properties in their architecture that are relevant to
security:

m They are compiled to an intermediate bytecode.

m They execute within a virtual machine that provides a sandbox environ-
ment for execution.

m They may use remoting frameworks employing serialization to transmit
complex data structures or objects over HTTP.

Java

Java applets run in the Java Virtual Machine (JVM) and are subject to the sand-
boxing applied by the Java Security Policy. Because Java has existed since early
in the web’s history, and because its core concepts have remained relatively
unchanged, a large body of knowledge and tools are available for attacking and
defending Java applets, as described later in this chapter.

Flash

Flash objects run in the Flash virtual machine, and, like Java applets, are sand-
boxed from the host computer. Once used largely as a method of delivering
animated content, Flash has moved on. With newer versions of ActionScript,

Chapter 5 = Bypassing Client-Side Controls

135

Flash is now squarely billed as capable of delivering full-blown desktop applica-
tions. A key recent change in Flash is ActionScript 3 and its remoting capability
with Action Message Format (AMF) serialization.

Silverlight

Silverlight is Microsoft’s alternative to Flash. It is designed with the similar goal
of enabling rich, desktop-like applications, allowing web applications to provide
a scaled-down .NET experience within the browser, in a sandboxed environment.
Technically, Silverlight applications can be developed in any .NET-compliant
language from C# to Python, although C# is by far the most common.

Approaches to Browser Extensions

You need to employ two broad techniques when targeting applications that use
browser extension components.

First, you can intercept and modify the requests made by the component
and the responses received from the server. In many cases, this is the quickest
and easiest way to start testing the component, but you may encounter several
limitations. The data being transmitted may be obfuscated or encrypted, or may
be serialized using schemes that are specific to the technology being used. By
looking only at the traffic generated by the component, you may overlook some
key functionality or business logic that can be discovered only by analyzing
the component itself. Furthermore, you may encounter obstacles to using your
intercepting proxy in the normal way; however, normally these can be circum-
vented with some careful configuration, as described later in this chapter.

Second, you can target the component itself directly and attempt to decom-
pile its bytecode to view the original source, or interact dynamically with the
component using a debugger. This approach has the advantage that, if done
thoroughly, you identify all the functionality that the component supports or
references. It also allows you to modify key data submitted in requests to the
server, regardless of any obfuscation or encryption mechanisms used for data
in transit. A disadvantage of this approach is that it can be time-consuming
and may require detailed understanding of the technologies and programming
languages used within the component.

In many cases, a combination of both these techniques is appropriate. The
following sections look at each one in more detail.

Intercepting Traffic from Browser Extensions

If your browser is already configured to use an intercepting proxy, and the
application loads a client component using a browser extension, you may see
requests from this component passing through your proxy. In some cases, you

136

Chapter 5 = Bypassing Client-Side Controls

don’t need to do anything more to begin testing the relevant functionality,
because you can intercept and modify the component’s requests in the usual way.

In the context of bypassing client-side input validation that is implemented in
a browser extension, if the component submits the validated data to the server
transparently, this data can be modified using an intercepting proxy in the same
way as already described for HTML form data. For example, a browser exten-
sion supporting an authentication mechanism might capture user credentials,
perform some validation on these, and submit the values to the server as plain-
text parameters within the request. The validation can be circumvented easily
without performing any analysis or attack on the component itself.

In other cases, you may encounter various obstacles that make your testing
difficult, as described in the following sections.

Handling Serialized Data

Applications may serialize data or objects before transmitting them within HTTP
requests. Although it may be possible to decipher some of the string-based data
simply by inspecting the raw serialized data, in general you need to unpack the
serialized data before it can be fully understood. And if you want to modify the
data to interfere with the application’s processing, first you need to unpack the
serialized content, edit it as required, and reserialize it correctly. Simply edit-
ing the raw serialized data will almost certainly break the format and cause a
parsing error when the application processes the message.

Each browser extension technology comes with its own scheme for serializing
data within HTTP messages. In general, therefore, you can infer the serializa-
tion format based on the type of client component that is being employed, but
the format usually is evident in any case from a close inspection of the relevant
HTTP messages.

Java Serialization

The Java language contains native support for object serialization, and Java
applets may use this to send serialized data structures between the client and
server application components. Messages containing serialized Java objects
usually can be identified because they have the following content-Type header:

Content-Type: application/x-java-serialized-object

Having intercepted the raw serialized data using your proxy, you can deserialize
it using Java itself to gain access to the primitive data items it contains.

DSer is a handy plug-in to Burp Suite that provides a framework for viewing
and manipulating serialized Java objects that have been intercepted within Burp.
This tool converts the primitive data within the intercepted object into XML
format for easy editing. When you have modified the relevant data, DSer then
reserializes the object and updates the HTTP request accordingly.

Chapter 5 = Bypassing Client-Side Controls

137

You can download DSer, and learn more about how it works, at the follow-
ing URL:

http://blog.andlabs.org/2010/09/re-visiting-java-de-serialization-it.html

Flash Serialization

Flash uses its own serialization format that can be used to transmit complex
data structures between server and client components. Action Message Format
(AMF) normally can be identified via the following content-Type header:

Content-Type: application/x-amf

Burp natively supports AMF format. When it identifies an HTTP request or
response containing serialized AMF data, it unpacks the content and presents
this in tree form for viewing and editing, as shown in Figure 5-5. When you have
modified the relevant primitive data items within the structure, Burp reserial-
izes the message, and you can forward it to the server or client to be processed.

burp suite professional v1.2.14 o 5
burp intruder repeater window help
[target | prowy | spider | scanner | intruder [repeater | sequencer | decoder | comparer | options | alers |
1
‘ cance | host |www.myapp.com |
[« ([> T oo b5] @ewdss
request
raw | params | headers | hex | amf
[type | value
BA AMF version 0 =
¢ Sl body 0
a target string LoginHandler
a response string !
a response method siring LoginHandler =
¢ [1 data array
a [0] string user
a [] string [passwaord
[21 null 1
T3 boolean false
1[4 number 10
1[4 number 1.4817493139431134E16
1 [6] number 38.0
17 number 20
G null
o= [] (@] array =
| T e e e P T e PO T Y T v TP ErTTE,
== | 0 matches
ready langth:

Figure 5-5: Burp Suite supports AMF format and lets you view and edit the
deserialized data

138

Chapter 5 = Bypassing Client-Side Controls

Silverlight Serialization

Silverlight applications can make use of the Windows Communication Foundation
(WCF) remoting framework that is built in to the NET platform. Silverlight client
components using WCF typically employ Microsoft’s NET Binary Format for
SOAP (NBEFS), which can be identified via the following content-Type header:

Content-Type: application/soap+msbinl

A plug-in is available for Burp Proxy that automatically deserializes NBFS-
encoded data before it is displayed in Burp’s interception window. After you
have viewed or edited the decoded data, the plug-in re-encodes the data before
it is forwarded to the server or client to be processed.

The WCF binary SOAP plug-in for Burp was produced by Brian Holyfield
and is available to download here:

www.gdssecurity.com/1/b/2009/11/19/wcf-binary-soap-plug-in-for-burp/

Obstacles to Intercepting Traffic from Browser Extensions

If you have set up your browser to use an intercepting proxy, you may find that
requests made by browser extension components are not being intercepted by
your proxy, or are failing. This problem usually is due to issues with the com-
ponent’s handling of HTTP proxies or SSL (or both). Typically it can be handled
via some careful configuration of your tools.

The first problem is that the client component may not honor the proxy con-
figuration you have specified in your browser or your computer’s settings. This
is because components may issue their own HTTP requests, outside of the APIs
provided by the browser itself or the extension framework. If this is happen-
ing, you can still intercept the component’s requests. You need to modify your
computer’s hosts file to achieve the interception and configure your proxy to
support invisible proxying and automatic redirection to the correct destination
host. See Chapter 20 for more details on how to do this.

The second problem is that the client component may not accept the SSL
certificate being presented by your intercepting proxy. If your proxy is using a
generic self-signed certificate, and you have configured your browser to accept it,
the browser extension component may reject the certificate nonetheless. This may
be because the browser extension does not pick up the browser’s configuration
for temporarily trusted certificates, or it may be because the component itself
programmatically requires that untrusted certificates should not be accepted.
In either case, you can circumvent this problem by configuring your proxy to
use a master CA certificate, which is used to sign valid per-host certificates for
each site you visit, and installing the CA certificate in your computer’s trusted
certificate store. See Chapter 20 for more details on how to do this.

In some rare cases you may find that client components are communicating
using a protocol other than HTTP, which simply cannot be handled using an

Chapter 5 = Bypassing Client-Side Controls

139

intercepting proxy. In these situations, you still may be able to view and modify
the affected traffic by using either a network sniffer or a function-hooking tool.
One example is Echo Mirage, which can inject into a process and intercept calls
to socket APIs, allowing you to view and modify data before it is sent over the
network. Echo Mirage can be downloaded from the following URL:

www . bindshell .net/tools/echomirage

1. Ensure that your proxy is correctly intercepting all traffic from the browser
extension. If necessary, use a sniffer to identify any traffic that is not
being proxied correctly.

2. If the client component uses a standard serialization scheme, ensure that
you have the tools necessary to unpack and modify it. If the component
is using a proprietary encoding or encryption mechanism, you need to
decompile or debug the component to fully test it.

3. Review responses from the server that trigger key client-side logic. Often,
timely interception and modification of a server response may allow you
to “unlock” the client GUI, making it easy to reveal and then perform
complex or multistaged privileged actions.

4. If the application performs any critical logic or events that the client com-
ponent should not be trusted to perform (such as drawing a card or rolling
dice in a gambling application), look for any correlation between execu-
tion of critical logic and communication with the server. If the client does
not communicate with the server to determine the outcome of the event,
the application is definitely vulnerable.

Decompiling Browser Extensions

By far the most thorough method of attacking a browser extension component
is to decompile the object, perform a full review of the source code, and if nec-
essary modify the code to change the object’s behavior, and recompile it. As
already discussed, browser extensions are compiled into bytecode. Bytecode is a
high-level platform-independent binary representation that can be executed by
the relevant interpreter (such as the Java Virtual Machine or Flash Player), and
each browser extension technology uses its own bytecode format. As a result,
the application can run on any platform that the interpreter itself can run on.

The high-level nature of bytecode representation means that it is always
theoretically possible to decompile the bytecode into something resembling the
original source code. However, various defensive techniques can be deployed to
cause the decompiler to fail, or to output decompiled code that is very difficult
to follow and interpret.

140

Chapter 5 = Bypassing Client-Side Controls

Subject to these obfuscation defenses, decompiling bytecode normally is the
preferable route to understanding and attacking browser extension components.
This allows you to review business logic, assess the full functionality of the
client-side application, and modify its behavior in targeted ways.

Downloading the Bytecode

The first step is to download the executable bytecode for you to start working
on. In general, the bytecode is loaded in a single file from a URL specified within
the HTML source code for application pages that run the browser extension.
Java applets generally are loaded using the <applet> tag, and other components
generally are loaded using the <object> tag. For example:

<applet code="CheckQuantity.class" codebase="/scripts"
id="CheckQuantityApplet">
</applet>

In some cases, the URL that loads the bytecode may be less immediately obvi-
ous, since the component may be loaded using various wrapper scripts provided
by the different browser extension frameworks. Another way to identify the
URL for the bytecode is to look in your proxy history after your browser has
loaded the browser extension. If you take this approach, you need to be aware
of two potential obstacles:

m Some proxy tools apply filters to the proxy history to hide from view items
such as images and style sheet files that you generally are less interested
in. If you cannot find a request for the browser extension bytecode, you
should modify the proxy history display filter so that all items are visible.

m Browsers usually cache the downloaded bytecode for extension components
more aggressively than they do for other static resources such as images.
If your browser has already loaded the bytecode for a component, even
doing a full refresh for a page that uses the component may not cause
the browser to request the component again. In this eventuality, you may
need to fully clear your browser’s cache, shut down e