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In this Issue: 
Real - t ime computers  a re  des igned to  con t ro l  o r  mon i to r  rea l -wor ld  p rocesses .  These 

processes almost always involve other equipment, such as mil l ing machines or semiconduc 
tor furnaces, and large numbers of sensors and act ivators. A real- t ime computer must keep 
up with large equipment around it. It must respond to interrupts quickly, it must transfer large 
amounts of data rapidly, and it must perform any necessary computations and data transfers 

~ , i  ,  e f f i c i e n t l y ,  s o  t h a t  i t  i s  n e v e r  o v e r w h e l m e d  b y  r e q u e s t s  f o r  i t s  s e r v i c e s .  I t  m u s t  a l s o  b e  
â€¢:"" equipment on since a large amount of expensive material and equipment may depend on it. 

Hewlett-Packard's premier real- t ime computer fami ly is the HP 1000 product l ine. In this 
issue you ' l l  read about  the  new HP 1000 A-Ser ies  Computers ,  the  h ighest -per formance and most  re l iab le  
HP 1000s  Execu t i ve  so  fa r ,  and  abou t  RTE-A ,  t he  l a tes t  ve rs ion  o f  t he  HP 1000 ' s  Rea l -T ime  Execu t i ve  
opera t ing  sys tem.  A-Ser ies  computers  range in  per fo rmance f rom the  A600 's  one mi l l i on  ins t ruc t ions  per  
second performance the A900's three MIPS. To keep costs lower while achieving these high performance levels, the 
des igners  o f  the  A-Ser ies  d idn ' t  go  to  a  fas t  bu t  expens ive  log ic  fami l y  l i ke  ECL (emi t te r  coup led  log ic ) ,  
choosing instead to rely on advanced archi tectures,  special  hardware, and clever ways to save microcycles.  
I n  the  th ree  they ' ve  p rov ided  a  p ipe l i ned  da ta  pa th ,  a  cache  memory ,  and  th ree  spec ia l  ch ips  tha t  add ,  
mult ip ly,  and div ide f loat ing-point numbers. On this month's cover are the f ive boards of the A900 processor.  
The data are board (wi th  the large square f loat ing-point  1C packages)  and the cache memory board are in  
the foreground.  In  the background are the memory contro l ler  board,  the sequencer  board,  and the memory 
board the i ts gold-covered RAMs. Under the boards is a color pr int of the mask set of the f loat ing-point divide 
chip. 

In  des ign ing  m ic rop rogrammed p rocessors  l i ke  those  in  the  A-Ser ies  and  o the r  m ic rocompute r -based  
systems,  logic analyzers and logic development systems are invaluable.  Last  March,  we publ ished a ser ies 
o f  a r t i c les  about  the  HP 64000 Log ic  Deve lopment  Sys tem.  One o f  i t s  subsys tems,  the  HP 64600S Log ic  
Timing/Hardware Analyzer ,  has just  been upgraded wi th some new sof tware that  g ives the designer several  
sophist icated new ways to process and analyze t iming data col lected from a system under development.  The 
story begins on page 32.  

-R.  P.  Do/an 
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A New Ser ies of  High-Performance 
Real-Time Computers 
The HP 1000 A-Ser ies consists of  three compat ib le 
processors rated at up to 3 MIPS. They use a new Real-Time 
Executive operating system andarÃ© available in board, box, 
and system conf igurat ions.  

by Marlu E.  Al lan,  Nancy Schoendorf ,  Craig B.  Chatterton,  and Don M.  Cross 

THE NEW HP 1000 A-SERIES family of computers is 
designed to provide solutions to specific real-time 
needs in manufacturing, automation, and other per 

formance-critical environments. Implemented with state- 
of-the-art technology, the new computers offer major new 
capabilities to meet the challenging demands of OEMs, end 
users, and system designers. 

The family consists of three compatible processors, the 
A600, A700, and A900. Each processor uses the new RTE-A 
operating system (RTE stands for Real-Time Executive), 
and identical compilers and subsystem products. Each 
computer employs the distributed-intelligence HP 1000 
L-Series I/O system, which uses an I/O processor on each 
I/O card. 

Available in board, box, and system configurations (see 
Fig. 1 and Table I), these processors offer configuration 
flexibility for OEMs and end users across a wide spectrum 
of applications. Ranging in performance from 1 to 3 million 
instructions per second, the A-Series family of computers 
offers very high performance at economical prices. 

The A600 Processor  
The A600 processor is the lowest-price member of the 

A-Series product line. Based on the 2901 microprocessor, 
the two-board CPU supports 128K bytes of memory, ex 
pandable to 4 megabytes. This processor combines micro 
programmed instruction execution with hardware assist to 
achieve 1-million-operations-per-second performance. The 
A600 comes as a rack-mount computer and in numerous 
system configurations. It is best suited for dedicated appli 
cations, such as numerical control, energy management, 
and automated testing. 

The A700 Processor  
The A700 processor complements the A600 processor 

with additional capabilities. For computation-intensive 
applications, the A700 can be configured with an optional 
hardware floating-point processor or customized by user 
microprogramming. Optional error correcting (ECC) mem 
ory allows memory expansion to 2 megabytes in 512K-byte 
increments. Alternatively, the A700 can be configured with 
parity memory up to 4 megabytes in 1-megabyte incre 
ments. The A700 processor is available in a four-board 
processor configuration in addition to rack-mount and sys 
tem offerings. 

The A900 Processor  
The A900 processor is the highest-performance member 

of the A-Series product line. Using a 4K-byte cache mem 
ory, a pipelined data path, standard hardware floating 
point chips, and microcoded scientific and vector instruc 
tion sets, the A900 can perform more than 3 million oper 
ations per second. Error correcting memory is standard in 
768K-byte increments for a total memory capacity of 6 
megabytes. A user-microprogramming package is available. 
The A900 is offered in rack-mount or system configura 
tions. 

RTE-A Operat ing System 
RTE-A is the real-time operating system for all three pro 

cessors in the HP 1000 A-Series family. RTE-A evolved 
from previous members of the RTE family and is a product 
of some proven real-time features from past versions and 
some entirely new features. The main goals of the new 
features in RTE-A are to provide multiuser tools and to 
support large programs with large amounts of data. RTE-A 

Table I  
HP 1000 A-Ser ies  Computers  

System 

Box 
Board 
Operating system 
Standard memory 
Optional memory 
Memory: Standard 

Maximum 
Memory cycle time 
Hardware floating-point 
Operations/second 

Base instruction set 
Floating-point 

Direct memory access 
rate 

User microprogramming 
FORTRAN77 
Pascal/1000 
B ASIC/1 OOOC 
Graphics/1 000-11 

DGL&AGP 
DSN/Distributed System 

'With hardware f loat ing-point .  

3,000,000 
500,000 

3.7Mbytes/s 
Yes 
Yes 
Yes 
Yes 

Yes 
Yes 

1,000,000 
204,000 

4Mbytes /s  
Yes 
Yes 
Yes 
Yes 

Yes 
Yes 

1,000,000 
53,000 

4.27Mbytes/s 
No 
Yes 
Yes 
Yes 

Yes 
Yes 
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is implemented in a modular fashion so that one operating 
system can span the size and performance ranges of the 
entire A-Series. It is a configurable operating system and 
can be tailored by the user to fit any particular application. 

A major enhancement in RTE-A is the multiuser environ 
ment. A modern hierarchical file system allows logical 
grouping of files and protection of files. It also includes 
time stamping of files on creation, last access, and last 
update. This time stamping information is used to provide 
an incremental backup capability for the system. Another 
important feature of the enhanced file system is transparent 
access to files on other RTE nodes in a distributed system. 
This enhanced file system is used as a base for a multiuser 
environment. Logon and logoff utilities provide identifica 
tion of users and their capabilities. This identification is 
used in conjunction with the protection mechanisms in 
the file system to identify and protect files belonging to 
individual users. The multiuser environment is completed 
with a command interpreter that has on-line help facilities 
and an outspooling utility for programmatic and interactive 
outspooling of files to devices or files. 

RTE-A has a number of features to support large programs 
and large amounts of data. Virtual memory for data is a 
scheme that allows users to access data in main memory 
and on disc as if it were all in main memory. EMA (extended 
memory area) is a special case of virtual memory for data. 
It provides faster access to data by allowing up to 2 mega 
bytes of data in main memory. An EMA can be shared by 

~ " ~  F i g .  1 .  H P  1 0 0 0  A - S e r i e s  C o m  
puters  come in  var ious conf igura  
t i o n s  a n d  h a v e  p e r f o r m a n c e  r a t  
i n g s  r a n g i n g  f r o m  1  t o  3  m i l l i o n  
instruct ions per second. 

multiple programs. 
RTE-A takes advantage of new hardware features in the 

A-Series to provide separation of code and data for user 
programs. This allows transparent support of large pro 
grams (up to 7.75 megabytes of code) using a demand seg 
ment virtual memory scheme. It also allows multiple copies 
of the same program to share code. 

A-Series Performance 
The A-Series Computers were designed with excellent 

price/performance as an important goal. Their performance 
has been verified in benchmarks run against their predeces 
sors and other currently competitive products. 

Before discussing specific results, let's review how per 
formance is typically measured. Computers are expected 
to perform a variety of tasks, from program development, 
to controlling and monitoring a milling machine, to assist 
ing engineers in complex designs. In terms of performance, 
what's important to the people using these computers? 

Some of the things often required are: 
â€¢ Good throughput, or how much work can be done in a 

given amount of time. This may vary depending on what 
type of task is performed, e.g., floating-point computa 
tions, compiling programs, etc. 

â€¢ Good response, or how fast the computer can respond 
to a certain input, such as an interrupt or a DMA transfer. 
An interrupt might be a terminal keyboard input, a sensor 
indicating a malfunction in a process, a satellite sending 
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data, etc. 
â€¢ Good utilization, or how effectively the resources are 

being used. If only part of the machine is used a signifi 
cant amount of time, then the user may be paying for 
something unnecessary. 
A-Series Computers are often used in real-time applica 

tions, where the computer must keep up with the equip 
ment around it. Such environments require good perfor 
mance in integer and floating-point operations, good inter 
rupt response time and I/O transfer rates, and the ability 
to handle large amounts of data efficiently. 

Benchmarks are standard programs used to compare the 
performance of one computer with that of another. One 
should be careful when selecting benchmarks to measure 
performance. Sometimes a particular benchmark may be 
biased in terms of what it's measuring, or may exploit a 
particular aspect of the computer that's not used much. 
The best benchmark is the application intended, but this 
is not always practical. The benchmarks discussed here 
are a small sample of the ones that have been run on the 
A-Series. The F-Series included in the results was previ 
ously the high-end HP 1000. a 

The Whetstone benchmarks are industry standards that 
were written by the National Physical Laboratory of Eng 
land. The programs are written in FORTRAN, and attempt 
to represent average program mixes. The two most common 
are the single- and double-precision Whetstones. These 
measure performance, including floating-point, in single 
and double precision, respectively (32-bit and 64-bit float 
ing-point numbers). The performance results are shown in 
Table II, which indicates the execution times both in min 
utes and normalized relative to the A900. These times were 
measured on a quiescent system and are elapsed times. 
Note that the A700, A900, and F-series times include float 
ing-point hardware while the A600 does floating-point op 
erations in microcode. These benchmarks are often expres 
sed in terms of "Whetstones per second." The execution 
times are for 10 million Whetstone instructions, so dividing 
this number by the execution times yields the column 
labeled KWIPS (thousands of Whetstones per second). The 
A900 KWIPS figures are better than those of many 32-bit 
"super minicomputers," even though the A900 is primarily 
a 16-bit computer. 

In applications making little use of floating-point opera 
tions, integer performance is more important. A FORTRAN 
benchmark was developed to measure integer performance, 
and the results are shown in Table III. Here, single (16-bit) 
and double (32-bit) integer operations were measured. Nor 
malized times are shown, referenced to the A900. Also, a 
MIPS figure is included, which is the number of millions 
of instructions executed per second. These figures are less 
than the base set instruction rates, since more complex 
instructions are required. In this example, the A900 does 
very well because of its optimized data paths and good 
32-bit capabilities. 

Many applications require the use of discs for storage 
and retrieval of data. Since discs are typically slower than 
the CPU, their effect must be taken into account. One such 
application is compiling programs. The A-Series supports 
a variety of compilers including a macroassembler, FOR 
TRAN, and Pascal. While the speeds of these vary, the 
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Fig.  2.  Pascal  compi lat ion speeds for  the HP WOO A, E,  and 
F-Ser/es Computers. 

relative performance is consistent. Compilation speeds for 
the Pascal compiler are shown in Fig. 2. These are in lines 
per minute and are measured in a quiescent system with 
a working set varying up to 270 pages (1024 words/page) 
using an HP 7925 Disc Drive. On the A900, only about 60% 
of the processor is used during a Pascal compilation. The 
remaining 40% is available for other activities. 

The Pascal compiler is a VMA program, using the VMA 
(virtual memory area) capabilities of HP 1000 Computers. 
VMA allows a program to access up to 7.75M bytes of data, 
even though much of it may be on disc. The working set 
size is the amount of the data that can be in memory. The 
performance range is less here, since all of the A-series 
Computers use the same I/O system, and the disc time is 
now part of the execution time. 

Interrupt response time is generally a good measure of 
how quickly a processor can respond to an external event. 
The data in Table IV is the elapsed time in microseconds 
from an interrupt until the system enters the appropriate 
driver. A driver is the piece of system software that com 
municates with a particular device or set of devices. Before 
entering the driver, the system must save certain state in 
formation and determine the appropriate action. Interrupt 
response time thus measures the operating system's perfor 
mance as much as it measures the CPU's. 

Even though the I/O systems are the same, much of the 
time is spent executing other instructions, and this results 
in the 3-to-l range. An interrupt response time of 150 /j-s 
is very good for a system with the functionality of RTE-A. 

In selecting the right processor for a particular applica 
tion, the type of performance necessary must be evaluated. 
The A-Series offers a range of CPU speeds from the A600 
at 1 MIPS to the A900 at 3 MIPS. While the actual instruc- 
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Table  I I  
Whetstone Performance 

(Times are in  minutes rounded to two decimal  places)  

Single Precision 
Double Precision 

A900 
time(rel)KWIPS 

.12(1)1344 

.20(1)821 

A700 

.31(2.6)541 

.47(2.4)355 

A600 

.87(7.3)192 
1.6(8.0)105 

F-series 

. 3 7 ( 3 . 1 ) 4 5 0  

. 6 8 ( 3 . 4 ) 2 4 5  

Table I I I  
Integer Performance 

(Times are relat ive to A900) 

Single Integer 
Double Integer 

time (MIPS) 
1.0(2.3) 
1.0(1.9) 

3.6 (.65) 
3.9 (.48) 

3. 8 (.61) 
4. 2 (.44) 

4. 6 (.50) 
5.3 (.35) 

Table IV 
Interrupt  Response Time 

(Times are in microseconds)  

interrupt to Driver 5 7  142 1 4 6  

tion execution rate will vary depending on the instruction 
mix, the range remains fairly consistent in many applica 
tions. Floating-point allows the A700 and A900 to excel, 
while heavier disc access compresses the range somewhat. 

Reliability 
HP customers have come to expect something extra in 

terms of reliability from HP products and the A-Series was 
designed with that in mind. Reliability, like quality, must 
be designed in. It cannot be added on later. One key to a 
reliable product is design margin, the attribute that enables 
a product to function properly over a wide range of environ 
mental conditions and component variations. 

To ensure sufficient design margin, a worst-case analysis 
was performed on each critical timing path in the A-Series 
CPUs. The A600 analysis was performed by hand while 
the A700 and A900 analyses were done using an HP-de 
veloped software package, which takes into account such 
parameters as power supply variation, output loading, tem 
perature variation, and stripline characteristics of printed 
circuit boards to predict the operating margin of a digital 
circuit. 

Before being made into a printed circuit board, each mod 
ule of each of the A-Series Computers was analyzed by a 
group of engineers in a peer group design review. Each 
engineer in the review group was assigned the task of learn 
ing a portion of the module well enough to explain its 
detailed operation to the rest of the group. These review 
meetings have proved to be a very effective method of 
catching design errors early in a project. 

After the printed circuit layout for each module was 
completed and digitized, the digitizer output was read by 
another HP -generated software package, which produced 
a list of all of the wires and connections on the board. The 
list was then checked against the schematic for the module 
as one final verification before boards were fabricated. 

If components are operated at too high a temperature, 
even the most carefully designed circuit cannot deliver 
good long-term reliability. To ensure that each component 
would be operating well within its limits, thermocouples 
were used to look for potential hot spots that required 
additional cooling. The thermocouple data was used to 
calculate the junction temperature of each of the integrated 
circuits to ensure that no device was being overstressed. 

As part of the development cycle, a number of typical 
A-Series system configurations were subjected to rigorous 
environmental tests designed to verify the integrity of the 
packaging, power supply, and processor electronics. Proper 
system operation was verified over a wide range of temper 
ature, power line voltage and frequency, humidity, altitude, 
and vibration. 

Care is also exercised during the manufacturing process 
to keep components from being damaged by electrostatic 
discharge (ESD). Often, a component will not be destroyed 
by ESD, but merely weakened, enabling it to pass produc 
tion tests at the factory only to fail after a very few hours 
at the customer's site. To prevent this problem, we have 
implemented an extensive program to eliminate ESD dam 
age to components during the manufacturing and testing 
process. The program includes antistatic mats, grounding 
straps for the workers, and antistatic conductive packaging 
for the transporting assemblies. 

Mean time between failures (MTBF) calculations using 
RADC II methods predict the following MTBFs for the A- 
Series CPUs: 
A600 (2156A) with 128K bytes of memory 
A700 (2137A) with 128K bytes of memory 
A900 (2139A) with 768K bytes of 

ECC memory 

10400 hours 
7400 hours 

6100 hours 

To date, field data on the 2156A and 2137A indicates 
that their MTBFs are actually 2 to 2.5 times better than the 
RADC prediction. At the time of this writing, the 2139A 
is too new and not enough field data is available on that 
product, but since it  was designed using the same 
methodology and attention to detail that went into the 
2156A and 2137A, there is every reason to believe that it 
too will give the high level of reliability that is expected 
from HP products. 
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An Adaptable 1 -MIPS Real-Time Computer 
by David A.  Fot land,  Lee S.  Moncton,  and Lesl ie  E.  Neft  

THE A700 COMPUTER is the midrange processor of 
the A-Series Computer family. Priced between the 
A600 and the A900, the A700 provides flexibility 

that allows it to adapt to a customer's needs. The A700 can 
be purchased with or without hardware floating-point and 
with or without error correcting memory, and it can be 
customized through user microprogramming. It is designed 
to operate on the earlier HP 1000 L-Series backplane and 
thus it can use the dozens of I/O cards that have been 
developed since the advent of the L-Series. 

The A700 was the first member of the A-Series product 
line, and its inherent flexibility made it the development 
processor of that product line. The first objective of the 
A700 was to overcome the address space limitation of the 
L-Series, while surpassing L-Series performance by a factor 
of 3. Another objective was to leverage the hundreds of 
engineer-years of effort found in the RTE family of operat 
ing systems, languages, and subsystems. The A700 was 
intended to provide all of the functionality of the HP 1000 
E-Series and F-Series Computers, including similar perfor 
mance and microprogrammability, at lower cost, using the 
improved L-Series I/O system and an improved method for 
supporting large programs. 

The A700 was the first HP 1000 to make use of bit-slice 
technology, the first to incorporate the high-performance 
SOS floating-point chip set (see page 17], the first to imple 
ment the dynamic mapping system for large address space 
access, the pioneer and the development processor for 
large-program support provided by code and data separa 
tion hardware and the VC+ enhancement to the RTE- A 
operating system (see page 26), and the first HP 1000 to be 
easily user-microprogrammable through the use of the mi- 
croparaphraser microprogramming language. The A700 
with hardware floating-point has better performance than 
the HP 1000 F-Series, formerly the top of the line, at only 
sixty percent of the cost. 

New DMS Instruct ions 
Since the L-Series did not have memory mapping, the 

A700 was free to define a new improved set of dynamic 
mapping system instructions. The HP 1000 uses 15-bit log 
ical addresses, so a program can directly address 32K 
words. A map is a set of 32 map registers which map the 
32 lK-word pages of logical address space to 32 physical 
pages. For backward compatibility with the HP 1000 M, E, 
and F-Series Computers, the A-Series has a similar format 
for a set of map registers. The number of map sets is in 
creased from 4 to 32 for more flexibility and the physical 
page number field is extended to allow 24-bit physical 
addresses. This allows the operating system to allocate one 
DMS map to each I/O interface for increased I/O throughput. 
In addition, the operating system can use a separate DMS 
map for system available memory. The user program can 
be allocated two maps, one for code and one for data. 

The DMS instruction set includes instructions for load 
ing and storing maps and a new set of cross-map instruc 
tions that allow access to memory through three maps, the 
current execute map and two others called datal and data2. 
The cross-map instructions include load, store, and move 
words. 

CDS Instructions 
The biggest architectural change was the introduction of 

code and data separation. Separation of code and data al 
lows programs with large code to be handled easily and 
transparently without using overlays. It also provides better 
protection, recursion, and reentrancy. It allows code to be 
shared between several processes to conserve main mem 
ory. CDS was recognized early as being a desirable goal. 
The problem was to provide it without a major change in 
the existing instruction set, which would require a lot of 
extra hardware. The old instruction set is faithfully exe 
cuted for backward compatibility. Minimal changes from 
the old instruction set also mean minimal changes to the 
existing compilers. 

ECC Memory  
No matter how good the design or how reliable the parts 

used, machines will fail from time to time. The single part 
in the A700 that contributes most to the failure rate is the 
dynamic RAM chip used in the memory. This is because 
these parts have a high soft failure rate compared to other 
logic parts and because there are many more RAM chips 
in the machine than any other kind of chip. An A700 with 
4M bytes of memory contains 544 64K-bit dynamic RAM 
chips. 

Error correcting memory provides higher reliability for 
those customers who need it by correcting single-bit errors 
and detecting double-bit errors. Soft errors are the most 
common failure of memory systems. In systems with over 
512K bytes of memory the soft error rate is about one per 
year. Customers who need higher reliability than this can 
use error correcting memory. 

Error correcting memory is easy to use on the A700 be 
cause it uses the same memory controller and has the same 
performance as parity memory. A customer can upgrade 
to error correction without throwing out the current con 
troller. Error correcting and parity memory can be mixed 
in the same system. For example, one might want to protect 
the operating system and some critical applications from 
single-bit errors, and use less-expensive parity memory for 
the rest of the system. 

If there are no errors, the error correcting memory runs 
at the same speed as parity memory. When a single-bit 
error is detected, the system is frozen for 200 ns while the 
data is corrected, and is then allowed to continue with 
good data. 

A Hamming code is used to detect and correct memory 
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Fig. data . microprogram diagram of the A700 processor. The regularity of data flow makes microprogram 
ming easier.  

errors in the A700. With the addition of 6 bits per 16-bit 
word all single-bit errors are correctable and all double-bit 
errors are detectable. Whenever the memory is read the 
parity bits are combined with the data to provide a 6-bit 
syndrome, which identifies the type of error and the bit 
number if it is a single-bit error. This syndrome is stored 
in an error logging RAM in the memory controller. There 
is one syndrome location in the RAM for each row of 64K 
RAM chips. By reading the error logging RAM, it is possible 
to determine the last chip that had an error in each row of 
RAMs. This information can be used to identify failed chips 
before they cause a problem in the system. 

Performance and Ease of  Microprogramming 
The two major objectives in the design of the A700 mi- 

cromachine were to provide fast execution of the HP 1000 
instruction set, and to allow user microprogramming, 
which can give a substantial boost in performance to many 
customer applications. To accomplish these objectives, we 
designed an architecture that is simple and straightforward, 
a microinstruction set that is flexible and provides a lot of 
capability, and tools that aid microcode development. 

We chose to base the micromachine on the 2900 bit-slice 
processor family, specifically the 2903 bit-slice processor 
and the 2911 bit-slice sequencer. These parts provide many 
intrinsic features, yet allow us to use our own microar- 
chitecture. We use the 2903 's numerous arithmetic and 
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logical operations, but use our own instruction set for ac 
cessing them. 

The Microarchitecture 
The key features of the microarchitecture are capability 

and regularity. The capability allows fast performance; the 
regularity makes it easy to microprogram. 

To optimize performance for the A700 instruction set, 
we used profile data which told us how often each instruc 
tion or class of instructions was executed for different types 
of programs. For those instructions executed most often, 
we provide special hardware to shorten their execution 
times. We avoided the common pitfall of making other 
instructions inordinately slow to optimize the most heavily 
used instructions. Even an instruction that occurs only 1% 
of the time can impact performance if it's extremely slow. 
However, it is not practical to provide special hardware 
for all instructions. Since much of our instruction execu 
tion time is spent in decoding the instruction (that is, de 
termining what the instruction is), we designed the micro- 
machine to decode all instructions quickly. By increasing 
the performance for instructions that had slow execution 
times in previous HP 1000s, we allow more flexibility in 
the design of applications that use assembly language (such 
as compilers]. 

Optimizing the design for user microprogramming was 
more difficult. To accomplish this, we looked at the types 
of functions that were likely to be microcoded (for example, 
computation and bit manipulation) and provided sufficient 
hardware to support these types of operations. Many of the 
operations were all ready provided in the 2903; we needed 
only to design the hooks to access them. 

A block diagram of the processor is shown in Fig. 1. The 
regularity of the flow of data through the machine is one 
of the features that contributes to the ease of microprogram 
ming. At the start of a cycle, data is enabled from the appro 
priate registers onto the operand buses: the A-bus and the 
B-bus. In one cycle, data is input to the ALU and passed 
to a shifter. The resulting data is available on the Y-bus at 
the end of the cycle. The Y-bus result can then be loaded 
into a register or written to main memory. In the following 
cycle, conditions generated by the operation just described, 
such as carry out of the ALU, can be tested. The user does 
not need to learn complex rules for the relationship be 
tween buses, registers, and conditions, since they are the 
same throughout the machine. Registers are updated at the 
end of the cycle and are available as operands for the next 
cycle. The conditions that are tested are the conditions that 
were generated during the previous cycle. 

The flow of control in the micromachine is similar to 
high-level languages such as BASIC or FORTRAN. Jump 
(goto) or jump to subroutine (call) instructions are used 
to transfer control to nonsequential locations in micro- 
memory. 

The key to the flexibility and performance of the A700 
micromachine is the microinstruction set (called micro- 
operations) and the microinstruction format. The width of 
the microinstruction word was an important design deci 
sion. A longer microword means more operations can be 
done in one microinstruction. This does not directly trans 
late into an increase in performance, since certain opera 

tions need to be done sequentially, such as adding two 
numbers and then checking for overflow. We were also 
developing writable control store (WCS) and PROM control 
store (PCS), and a shorter microword makes these boards 
less expensive and allows more words of micromemory on 
each control store board. By careful encoding and over 
lapping of fields, we were able to use a 32-bit microinF ruc 
tion word that allows several operations to be done n one 
cycle (see Fig. 2). Fewer microoperations are available in 
a jump instruction than in an instruction that does not use 
a jump. However, in every microinstruction, one can per 
form an arithmetic or logical operation with the contents 
of two registers and store the result in any register in the 
machine. For example, one can add the contents of two 
registers, perform a shift on the result, and then jump to 
another location in micromemory, all in one cycle. To 
test this design decision, most of the base instruction set 
was microcoded before the processor hardware design was 
solidified. 

The decoding scheme for microinstructions ensures that 
no combination of codable operations can damage the pro 
cessor hardware (such as enabling two registers onto the 
same bus). Any other illegal combination of operations is 
detected by the microparaphraser. Thus the micropro- 
grammer need only remember the basic relationships for 
data in the machine, the microinstruction formats, and a 
few special rules concerning interaction with main mem 
ory, I/O, and the mapping system. 

A hardware timeout feature provides some protection 

'Special microorder in ALUS field when ALU field Â¡s coded SPEC. 

F i g .  2 .  A 7 0 0  m i c r o i n s t r u c t i o n  f o r m a t s .  
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bandwidth rather than ease of entry and exit, it is necessary 
to precede this code by a section of front-end code that 
synchronizes with the inner-loop code. The results of this 
work enable the VIS instructions to execute very close to 
memory speed for single-precision operations, and at mem 
ory speed for double-precision operations. This yields an 
improvement of \Vi to 3 times compared to the execution 
speeds on the HP 1000 F-Series Computer. 
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Designing a Low-Cost 3-MIPS Computer 
by Donald A.  Wi l l iamson,  Steven C.  Steps,  and Bruce A.  Thompson 

THE A900 COMPUTER provides approximately three 
times the performance of any previous HP 1000 Com 
puter, while maintaining full software compatiblity 

with the other HP 1000 A-Series Computers. The cost of 
the A900 is noticeably lower than that of many computers 
of similar performance, giving it an excellent price/perfor 
mance ratio. To achieve this price/performance ratio, the 
performance was optimized, but not by adding a lot of 
additional parts and complexity. 

To increase the performance of a computer, the amount 
of work done in each machine cycle can be increased and 
the cycle time can be decreased. This can be accomplished 
by widening all of the paths to 32 or 64 bits and using a 
very fast technology such as emitter-coupled logic (ECL). 
This approach was not used in the A900 because it leads 
to a very high-cost computer. Instead, care was taken to 
add cost only where it was justified by a significant perfor 
mance gain, and to minimize cost elsewhere. 

Although the A900 is completely software compatible 
with the other members of the A-Series, it has a somewhat 
different hardware structure. Fig. 1 shows a basic block 
diagram for both the A600 and A700 Computers, while Fig. 
2 shows the basic block diagram for the A900. All three 
machines are microprogrammed and therefore have data 
paths that are controlled by a microcode sequencer. The 
A600 and A700 have a common memory-I/O bus used by 
both the CPU and the I/O system to access memory. The 
I/O bus in the A900 is electrically and mechanically the 
same bus as the memory-I/O bus in the A600 and A700. 
However, the A900 does not fetch instructions or data 
across this bus. The CPU uses the bus only to communicate 
with the I/O system. This structure helps achieve the main 
goal for the A900: high performance without the normally 
associated high price. 

Sequencer 
The A900 is a microprogrammed computer. This means 

that each machine language instruction (macroinstruction) 
is emulated by a sequence of microinstructions. The format 

of the macroinstructions is fixed by compatibility with 
other HP 1000 Computers, but the format of the microin 
structions is tailored to the hardware used to implement 
the A900. 

Each microinstruction is 48 bits wide, allowing several 
operations to be specified in parallel. For instance, a con 
ditional jump, an ALU operation, and a memory operation 
can all be coded in a single microinstruction. Thus the 
microprogrammer can test a condition, perform a calcula 
tion, and start reading the next operand, all simultaneously. 

The microcode sequencer controls the sequence of micro 
instructions that are used to emulate each macroinstruc 
tion. A block diagram of the sequencer is shown in Fig. 3. 

The sequencer selects a microaddress from the micro 
program counter, the microsubroutine stack, or a field of 
the current microinstruction. The control store takes this 
address and generates a microinstruction which is loaded 
into the microinstruction register at the end of the micro- 
cycle. Usually, one of the critical timing paths in a micro 
programmed machine is the decision point between a con 
ditional branch and sequential execution. In the A900, the 
"condition met" signal controls a multiplexer at the output 
of the address selection logic. Thus the signal can arrive 
later in the cycle without becoming a critical timing path. 
This helps in reducing the cycle time of the A900 micro- 
machine to 133 ns. 

Each time a new macroinstruction is fetched, the se- 

Control 

Microcode 
Sequencer 

Memory-I /O Bus 

F ig .  1 .  A  bas i c  b lock  d iag ram fo r  t he  A600  and  A700  Com 
puters ,  showing the common memory- I /O bus.  
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Fig .  2 .  A  bas ic  b lock  d iagram fo r  
the  A900 Computer ,  showing  the  
separate memory and I /O buses.  

quencer must determine the sequence of microinstructions 
needed to emulate it. Traditionally this is done by sending 
the macroinstruction to a jump table (AJT) which produces 
the address of the first microinstruction of the emulation 
sequence. Since this address must then be sent to control 
store to produce the actual microinstruction, the decoding 
process takes two entire cycles. The A900 adds another 
type of jump table (IJT) which receives the macroinstruc 
tion and produces a microinstruction instead of a microad- 
dress. The IJT is built with programmable logic arrays 
(PLAs), and can produce microinstructions for the most 
common macroinstructions. While the IJT is guessing the 
first microinstruction of the emulation sequence, the AJT 
is looking up the address of the second microinstruction. 
While the first microinstruction is executing, the control 
store is looking up the second microinstruction. The result 
is that it takes only one cycle instead of two to determine 

Condi t ions f rom 
other Parts of Machine 

Next 
Macroinstruction 

Fig.  3.  The sequencer controls the sequence of  microinstruc 
t ions to emulate each macroinstruct ion.  

the first microinstruction of the sequence. This is a signifi 
cant savings, since many important macroinstructions take 
only two cycles to execute. 

Pipelined Data Path 
The data path is where much of the data manipulation 

required by the HP 1000 instruction set is done. A block 
diagram of the A900 data path is shown in Fig. 4. Operands 
from the register file, cache memory, or other parts of the 
machine are operated on by the ALU, the shifter, or the 
floating-point unit, and the result is stored in the register 
file, the cache, or some other machine register. Accessing 
the operands, performing the operation, and storing the 
result take longer than the 133 ns available in an A900 
microcycle. Therefore, the data path is split into two pieces 
by a pair of pipeline registers. 

In the first cycle of a microinstruction, the operands are 
read and loaded into the pipeline registers. During the sec 
ond cycle, the operation is performed using the values in 
the pipeline registers, and the result is stored. During this 
second cycle, the operands for the next microinstruction 
are being read. Even though it takes two cycles to complete 
a microinstruction, the parallelism allowed by the pipeline 
registers lets a new microinstruction start every cycle (see 
Fig. 5). 

A side effect is that the result of a microinstruction started 
in cycle 1 is not stored until the end of cycle 2 and therefore 
cannot be used until cycle 3. The register file is paralleled 
by a pair of latches which can be used as accumulators. 
The latches become transparent if they are written at the 
same time that they are read. The result from a cycle 1 
microinstruction can be written into one of the pipeline 
registers at the end of cycle 2 by storing it to an accumulator. 
In other words, if a result is stored to one of the ac 
cumulators it can be used immediately instead of one cycle 
later. 

The data path is designed to maximize the amount of 
work that can be done by a single microinstruction. For 
instance, the register file is double-ported, allowing access 
to two operands at a time. The shifter can logically shift 
the 32 bits of data in the pipeline registers by 0 to 15 bits 
and produce a 16-bit result. Using this barrel shifter, any 
type of shift â€” arithmetic, logical, or circular â€” can be ac 
complished in a small number of cycles. 

There are actually two independent paths within the 
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ing, which occurs whenever an interrupt occurs. Thus, 
optimizing the A900's fault handling time improves its 
real-time capabilities. 

To achieve its excellent fault handling time, the A900 
uses a 32-bit path to and from main memory. Since the 
cache block size is 32 bits, a fault can be handled in just 
one read or write to main memory. This is an important 
feature in reducing the fault handling cycle time, thus giv 
ing more time to the processor. 

Technology 
To build a high-performance computer with a very low 

price, one needs not only to be clever in the design of the 
computer, but also to incorporate new technologies. In the 
design of the A900, several new technologies are used. 
Most of the logic in the computer uses a new fast, low- 
power Schottky logic family that not only provides a fast 
cycle time, but does so without the added heat, power 
supply, and cost penalities of conventional high-speed 
Schottky logic. 

Programmable logic arrays (PLAs) are also heavily used 
in the A900. Small, 20-pin versions became available just 
jn time for use on the A900. These PLAs allow most of the 
state machines and decoding logic to be integrated into a 
very small number of devices that are very easy to alter. 
Most of the other random logic also uses PLAs. This made 
the debugging of the A900 much faster than conventional 
designs, so the computer could be shipped much sooner. 

As mentioned earlier, the floating-point operations in 
the A900 are done by a set of SOS (silicon on sapphire) 
LSI chips. By integrating the performance-sensitive part of 
the computer on very low-power LSI chips, the A900's 
power, size, and cost were minimized while achieving a 
very high level of performance. 

Pipel ining and User Microprogramming 
The A900 is the first HP 1000 Computer to use pipelining 

in its data path to improve performance. Pipelining affects 
the way in which algorithms and microcode sequences are 
designed. A user writing an isolated line of microcode does 
not need to know when the different sections of the micro 
code line will be executed. However, in a complete micro 
program, various effects of the pipelining will show up in 
the register transactions, conditional status checks, mem 
ory operations, etc. 

All of the microprogramming examples shown here are 
written in the A900 microprogramming language and can 
be compiled to executable microcode using the A900 mi- 
croparaphraser. The A900 microprogramming language 
looks very much like a higher-level language using free- 
field notation and formats. It allows the user to generate 
microcode without concern for the actual format of a micro- 
word. With the microparaphraser and its associated tools 
in the A900 microprogramming package, a programmer can 
quickly generate a microprogram to enhance the perfor 
mance of an application with a minimum of effort. Perfor 
mance enhancements of 3 to 20 times are typical. 

The pipelining of the micromachine data path has the 
largest impact on user microprogramming, essentially caus 
ing all micromachine data transactions to take two cycles 
to complete. As shown in Fig. 4, two pipeline registers, 

LREG and RREG, are placed in the data path at the inputs 
of the ALU to split data path operations into two phases. 

In the first phase, data flows from the dual-ported register 
file (or other inputs) and is clocked into LREG and RREG. 
In the second phase, data is taken from the pipeline regis 
ters, flows through the ALU, and is finally stored back into 
the register file or other write-only registers. 

The effect on user microcode is that registers stored on 
one cycle are not updated until two microcycles later. As 
a result, the microinstruction sequence 

r5: = r3; 
r3: = r5; 

* Microcycle 1 . Copy r3 to r5 . 
* Microcycle 2. Copy old r5 to r3. 

will swap the contents of registers r3 and r5 instead of 
simply copying r3 to r5 as one might expect. To have the 
above code sequence copy r3 to r5 you would have to add 
a dead cycle to allow the pipe to empty and have r5 really 
reflect the value of r3 before copying it back. The microin 
struction sequence below will end with r5 containing the 
same value as r3. 

r5: = r3; 
nop; 

â€¢Microcycle 1 . copy r3 to r5. 
*Microcycle 2 . This is a dead 
'cycle to allow r5 to get the updated 
*valueofr3. 
"Microcycle 3. This does nothing 
"important since r5 already 
"contains the same value as r3. 

Two special registers do exist in the A900 micromachine 
(the accumulators) that will reflect updated values on the 
very next microcycle after they are stored to. These registers 
are used when data must be chained through several ALU 
operations. 

Because of data path pipelining, condition codes based 
on the output of the ALU will not become valid for two 
cycles. The microcode sequence below shows an example 
of testing a condition generated by the ALU. 

nop: = 0; 

nop; 

If TZ then go to Zero; 

"Microcycle 1 . Send 0 through the 
* ALU to test it. 
"Microcycle 2. We must wait a cycle 
*f or conditions from the ALU to 
"become valid. Normally, an algo- 
"rithm would be designed in such a 
"way that the micromachine will be 
"performing some other task here. 
"Microcycle 3 . This is a test for 
"a zero output from the ALU. 
"TZ tests for zero so this 
"line will jump. 

Other sections of the A900 micromachine are pipelined 
besides the data path. One of these areas is the memory 
address creation logic, which is essentially another data 
path. Because the memory address creation logic is 
pipelined, microorders that work with this logic affect 
either the current or the following instruction. Actions can 
be initiated on one microcycle and then modified on the 
next microcycle. An example of using these microorders 
is shown by the following sequence. 
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ml< = ml + 1;  "Microcycle  1.  Increment  memory 
'address pointerml. 

n i n e ;  * M i c r o c y c l e  2 .  S t o p  t h e  i n c r e m e n t -  
*ing of address register ml . 
'Register ml will remain 
"unchanged. 

Another feature of the A900 micromachine that is valu 
able for making algorithms execute efficiently is the ability 
to store data path outputs to multiple destinations at once. 
Dual microstore fields let the programmer create an expres 
sion such as: 

mlÂ«r5:  = r4 + l ;  ' Increment  regis ter  
*r4 and store it to 
*bothr5 and memory 
"address pointer ml . 

Algorithms designed for a pipelined machine must be 
designed carefully to make use of every micromachine 
cycle. Algorithms are most efficient if they can be broken 
down into different sets of interdependent steps. When 
writing the code, these sets can be combined and inter 
twined so that the dependent steps of each process are 
separated by the number of steps in the pipe, in this case 
two cycles. In the A900 micromachine, dependent steps 
in a process can also be performed one after another by 
using special registers (accumulators) that bypass the data 
path pipe. 

An algorithm that contains many decision points or con 
ditional branches is more difficult to design efficiently on 
a pipelined machine. For these algorithms, operations that 
take more than one cycle to complete because of the pipe 
(such as condition code generation) should be ordered in 
such a way that they are meaningful if either path of an 
intervening conditional branch is taken. A feature of the 
A900 micromachine that lends itself well to designing this 
type of code efficiently is the ability to start a piped oper 
ation in one microcycle, and then modify its action in the 
next cycle before it completes. The short code sequence 

below shows an example of the use of this feature. 

If TZ then go to dont.inc, ml< = ml + l; 
"Microcycle 1. This is just a 
"conditional branch that 
"in the same microcycle starts 
"the piped operation of incrementing 
* memory address pointer m 1 . 

inc :  nop ;  "Microcyc le  2 .  Here  i s  one  t a rge t  o f  the  
"conditional branch. The nop here 
* is to show that memory address 
"pointerml was incremented 
* since no modifying microorder 
"was used here. 

dontjnc:  nine;  "Microcycle 2.  Here is  the other 
"target of the conditional 
"branch. Here a 
"modifying microorder is used 
"to stop the incrementing 
*of ml< = ml + 1 before 
"ithas completed. 
*Thusml< = ml + l 
"can be effectively 
"used in both paths of the 
"conditional branch. 

A final key to generating efficient algorithms for a 
pipelined micromachine is creating efficient code for al 
gorithms with loops. In these algorithms, the loop time is 
most often the determining factor in how fast the algorithm 
will run. Therefore, the loop itself should be designed first 
for efficiency, and then the entrance and exit to the loop 
can be added. 
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Floating-Point Chip Set Speeds Real-Time 
Computer  Operat ion 
by Wil l iam H.  McAll ister  and John R.  Carlson 

FLOATING-POINT ARITHMETIC performance is a 
prime concern in technically oriented computers. 
Using Hewlett-Packard's silicon-on-sapphire CMOS 

process we have designed a set of three monolithic floating 
point processor chips for use in two HP 1000 A-Series 
Computers, the A900 and the A700. The chip set provides 
a cost-effective, high-performance solution for high-speed 

computation. 
The set consists of three chips, one each for addition, 

multiplication, and division. Each chip can perform arith 
metic operations on 32-bit and 64-bit floating-point num 
bers and on 32-bit integers. 

The primary design objective was to maximize the speed 
of floating-point scalar (single-element) operations. This 
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added or subtracted by the 64-bit main adder. If the fraction 
overflows, a signal is sent to the exponent path to cause 
an increment. The fraction is also right shifted one place 
to keep it in the proper scale. 

If a subtraction is done there may be cancellation of 
leading significant bits. This result is called an unnor- 
malized number. The required result is a normalized 
number. The priority encoder searches from left to right 
looking for the first significant bit and encodes its location. 
The left shifter uses this value as a shift count to renor- 
malize the result. The shift amount is also subtracted from 
the exponent. 

The next step is to round the result to the proper precision 
using an incremente!. An overflow from the fraction once 
again causes the exponent to increment. Finally, the expo 
nent is checked for overflow or underflow and the proper 
status bits are set. 

After the operands are initially loaded into the chip, all 
computation is done by strictly combinational logic. The 
worst-case delay path passes through a few hundred gates. 
It takes about 700 ns from the time the inputs are loaded 
until the result appears at the output pads. 

Mult ipl icat ion Technique 
The floating-point multiplier chip uses a technique 

called the modified Booth algorithm1 to do a combinational 
multiplication of the operand fractions. This algorithm is 
used in a number of commercial monolithic multipliers 
and is the key to integrating this common function. The 
algorithm reduces the number of gate delays by nearly a 
factor of two with little increase in chip complexity com 
pared to more traditional methods of multiplication. This 

S i g n e d  D i g i t  E n c o d i n g  

E x a m p l e :  

SDC 
f~^  

1 0  0 0  1 1  0 0  = 1 4 0 1 0  

TTTT 
2 1 - 1 0  

Fig.  7.  Float ing-point  mul t ip ly chip measures 6.  1 by 7.0 mm 
and contains about 60,000 transistors.  

reduction in propagation delay is accomplished by encod 
ing one of the operands into a new form before applying 
it to the multiplier array. 

To understand how the algorithm works, it is best to 
interpret the encoding in a mathematical sense. The encod 
ing scheme can be thought of as mapping one binary 
operand into an equivalent set of signed digits. The particu 
lar encoding we choose turns out to reduce the number of 
full adder rows by a factor of two. The encoding is shown 

C , n  S : r  

A n Â « â € ”  I Â »  

B S D 0  

B S D 2  

B S D , ,  

B S D 6  

S D C 7  

2(26)+1(24)+(-1)(22)+0(2Â°)  

1 2 8  +  1 6  -  4  +  0  =  1 4 0 1 0  
(a )  ( b )  

Fig. operands equivalent floating-point multiplier chip encodes one of the operands (B) into an equivalent 
se t  o f  s igned  d ig i t s ,  the reby  reduc ing  the  number  o f  fu l l  adder  rows  requ i red  by  a  fac to r  o f  
two .  (a )  b ina ry  scheme.  SDC is  the  s igned  d ig i t  ca r ry ,  (b )  A  d iag ram showing  how a  b ina ry  
number with converted to a signed digi t  representat ion. Each encoder acts l ike a ful l  adder with 
three inputs  â€”  two consecut ive B operand b i ts  and a s igned d ig i t  carry  in .  I ts  outputs  are a 
s igned d ig i t  and a  s igned d ig i t  car ry  out .  (c )  A c i rcu i t  that  mul t ip l ies  a  s igned d ig i t  BSD by a  

binary bi t  A. 
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in Fig. 6. The B operand bits are mapped into a set of signed 
digits ( + 2, +1,0, -1). This representation is used in place 
of B to drive an array of full adders and multiplexers. 

The signed-digit representation of B has the property of 
simplifying multiplication substantially. Each of the signed 
digits is simple to use as a multiplier. The 0 and + 1 signed 
digits act just like binary digits in the traditional multiply. 
A + 2 multiple can be obtained by a one-bit left shift. A 
-1 multiple takes the two's complement of the input 
operand (invert and add 1). A circuit that multiplies a 
signed digit by a binary bit is shown in Fig. 6c. It consists 
of a 4:1 multiplexer and a full adder. Since there is a 2-to-l 
compression when encoding binary bits into signed digits, 
we only need half as many of these multiplier circuits. 

Multiply Chip 
A photograph and block diagram of the multiply chip 

are shown in Figs. 7 and 8. Floating-point multiplication 
is relatively simple compared to addition, so the chip has 
a much more regular appearance than the adder. The major 
ity of the chip area is used to perform a combinational 
56-by-56-bit integer multiplication of the operand frac 
tions. The circuitry in the lower left of Fig. 7 is the exponent 
data path where the operand exponents are added. The 
chip is 6.1 by 7.0 mm and contains about 60,000 transistors. 

The A operand fraction is loaded into a register across 
the top of the chip. The B operand fraction is loaded into 
a register along the left side of the chip. The exponent 
fields of each operand are latched into the exponent data 
path at the lower left. Initially, the exponents are added 

F ig .  9 .  F loa t ing -po in t  d i v ide  ch ip  measures  5 .2  by  7 .2  mm 
and contains 35,000 transistors.  

together and the fractions are masked to the proper preci 
sion. 

The B operand is encoded as described above. The A 
operand drives into the central array from top to bottom 
and the encoded B operand is driven across the array from 
left to right. The array performs an integer multiply with 
the most-significant bit of the product emerging at the lower 
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Fig. 8.  The mult ip ly chip performs 
a  c o m b i n a t i o n a l  5 6 - b y - 5 6 - b i t  i n  
teger mult ipl ication of the operand 
f rac t ions.  The 1 12-b i t  product  is  
n o r m a l i z e d  i f  n e c e s s a r y  a n d  
rounded to the required precision. 
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or booting of a program. The self-test is a microcoded test 
performed by the CPU to check the internal registers and 
data paths before fetching the first pretest instruction. The 
pretest is a software program written in assembly language. 
When the pretest is executed, it checks the basic instruction 
set, the memory, and each I/O chip. If a failure occurs, the 
program will stop execution so that booting or restarting 
of the system will not occur. The status LEDs are then used 
to determine the nature of a failure. If the error is not fatal 
and a virtual control panel (console) is present, an error 
message is displayed for the operator. 

Diagnostic Control  System 
The diagnostic control system (DCS) provides a layered 

structure for loading and executing diagnostics. The struc 
ture starts with the basic control module (BCM) and is 
added to until a complete executable diagnostic is built 
(see Fig. 1). 

The basic control module contains the sections needed 
to get started. These include the auto program, format 
utilities, console driver, and primary load device driver. 
BCM also contains a basic test that is similar to the pretest 
and is executed before configuration. This allows simple 
troubleshooting in case the initial failure will not allow 
BCM to execute properly. BCM is self-configuring and dis 
plays the system configuration, which includes CPU type, 
memory size, and I/O card identification. Also, all revision 
levels of programs are displayed for operator verification. 

Once configuration is completed, the auto program is 
started (if selected). It loads the remaining system modules 
and then starts a sequential execution of diagnostics. The 
modules are MSGS for extended error messages and help 
files, MAPS for memory management, and the DDL in 
terpreter. The auto program is controlled by an auto file 
which specifies the programs and diagnostics to be loaded 
and executed. This is determined by the current configura 
tion. If desired, the operator can create an auto file tailored 
to a system's specific needs. 

BCM also contains a linking loader which allows efficient 
use of memory. Programs and drivers can be added without 
concern for absolute address requirements. The auto pro- 

Cont ro l  
(for DCS) 

'  S t a t u s /  
Queries 

Operator 
Interface 

(Terminal) 

Diagnostic Control  System (DCS) 

Basic Control  Module (BCM) 

(System Modules)  

M S G S  M A P S  D D L  D r i v e  

Error Messages 

Control (for Diagnostics) 

Status/Queries 

Kernel  Diagnostic Programs 
(Relocatable and DDL Sections) 

Interface Diagnostic Programs 
(DDL Type Only)  

User-Designed Diagnostics 

Fig .  1 .  HP 1000 A-Ser ies  d iagnos t ic  cont ro l  and d iagnos t ic  
program structure.  

gram calls the linking loader to load the system modules 
and then later the relocatable diagnostic modules. 

Diagnost ic  Design Language 
One of the main modules loaded is the diagnostic design 

language (DDL) program, which is a BASIC-like interpreter. 
This makes creation or modification of diagnostics by the 
customer easy. The program allows direct I/O instructions, 
buffer/data manipulation, and simple branching. Programs 
can easily be saved for later use, or added to the auto file 
for standard execution. 

A debug program is also available which allows access 
to the individual relocatable programs for modification. 
Debug was created during the development of the diagnos 
tics for use with the relocatable programs. It became a useful 
tool for hardware troubleshooting and was added to the 
diagnostic package. 

One of the advantages of the new system is that indi 
vidual tests can be written in assembler relocatable format 
and then called by a DDL program. This has two benefits. 
First, writing in assembler allows instruction-by-instruc- 
tion control and execution, which is very necessary for 
diagnostic applications. Second, DDL allows easy manipu 
lation and control of the tests. The individual tests are not 
burdened with message reporting, looping, or operator in 
teraction; these functions are handled by the DDL program. 

The question may arise, "Why design a separate system 
for diagnostics? Why not use RTE?" There are two main 
reasons for not using RTE as the operating system. First, 
RTE assumes all hardware is functional when loaded and 
executed. Therefore, before any diagnostic execution, the 
system may use hardware that is failing and not even allow 
execution to start. This applies mainly to the CPU (instruc 
tions, interrupts, time base generator, etc.). Second, diag 
nostics require full control of the system, which cannot be 
allowed in RTE. For example, a system reset would cause 
all current I/O operations to be aborted. The diagnostic 
control system uses only hardware that has already been 
checked by the self-test, pretest, and BCM basic test. 

Kernel  and Interface Diagnostics 
The kernel diagnostics consist of the tests required to 

check the basic CPU, including the base instructions, the 
memory controller and array, the system functions (power- 
fail, memory protect, time base generator, etc.), and the I/O 
master portion of each interface (interrupts, control/flags, 
and DMA). Each diagnostic contains two parts, the relocat 
able program and the DDL program. The relocatable pro 
gram does the in-depth instruction-by-instruction verifica 
tion. The DDL program controls test execution, error report 
ing and operator interaction. Each diagnostic contains sev 
eral subsections and each can be individually selected and 
looped. 

When executed by the auto program or a run command, 
the diagnostics report only a pass/fail indication. If the 
operator selects an individual test for execution and an 
error occurs, the complete error message is displayed. The 
message contains setup parameters, results, and a pointer 
to the location in the relocatable program where the test 
was performed. 

Interface diagnostics are written only in DDL, because 
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they are I O related and don't need the instruction-intensive 
routines. Each diagnostic contains three sections: system 
environment, special setup, and loop to device or special 
access. These sections vary depending on the interface. For 
the system environment test, the diagnostics are loaded 
and executed without any hardware changes. Although 
this is not a complete test of the interfaces, it is as complete 
a test as possible. For a complete test of an interface, the 
diagnostic must be run individually with test hoods and/or 
necessary hardware changes. The loop to device test can 
in some cases be automatic and in others run separately. 
For example, the HP-IB interface diagnostic identifies de 
vices and runs loopback tests where possible. 

Virtual Control Panel 
The virtual control panel (VCP) is a console-oriented 

replacement of a hardware front panel. It provides control 
and access to the CPU like a hardware front panel, that is, 
it enables the operator to examine or change registers and 
memory. It also allows loading of programs and control of 
their execution. The interaction with the operator is im 
plemented by a program in ROM which also contains the 
pretest and loaders. The program is designed to use the 
system console if available and configured. The console 
can be local, remote using modems, or connected by a 
distributed system link. 

Also in ROM are the loaders for the common devices 
available. The loaders can be invoked either by command 
from the operator or at completion of the pretest by selec 
tion of the start-up switches. 

Having the pretest, virtual control panel, and loaders in 
ROM and an integral part of the CPU ensures that there is 
a means of loading, access, and control of the computer at 
a very basic level. 

The BCM console and load device drivers use the same 
interfaces as the VCP. They also use similar routines. Thus 
diagnostics can be loaded and controlled from the same 
console, and diagnostics can be controlled from a remote 
console the same as from the VCP. This also applies to the 
loaders. For example, in a distributed system network, diag 
nostics can be loaded and controlled from a central com 
puter for testing of a remote node without a terminal or 
local loading device. 

Currently A-Series manufacturing uses the remote capa 
bility. The diagnostics used in the field are the diagnostics 
used in manufacturing. The oven testing and test stations 
are connected to a central A-Series Computer by a distrib 
uted system. The oven station is connected using the fac 
tory data link interface, which is a multiple-drop system 
with 12 test units connected to one central interface. The 
test stations are connected by a distributed systems (DS) 
interface which is a point-to-point connection. Using a cen 
tral computer means that only one source is used for diag 
nostics, all units are tested the same, the test stations can 
use the same diagnostics when troubleshooting, and when 
updating is required, only the central system need be up 
dated. 

A900 Self -Test  
The A900 processor contains the most extensive micro- 

coded self-test ever written for an HP 1000. Of the control 

store that is reserved for the base instruction set, scientific 
instruction set, vector instruction set and self-test, 25% is 
used by the self-test. Self-test's primary use is as a confi 
dence check every time the computer is powered up. It is 
designed to exercise as much of the logic as possible, and 
to detect when the processor is not functioning properly. 
Because it exercises the processor so thoroughly, it is also 
used in manufacturing as a debugging tool, and was used 
to help debug the lab prototypes. 

As explained above, all A-Series Computers contain a 
macrocode (assembly language) self-test that checks the 
processor when it is first powered up. Why write a micro- 
coded self-test to do the same job? The microcode and 
macrocode self-tests test the machine from very different 
points of view. The microcode tests the processor at the 
level of individual circuits, while the macrocode tests the 
processor at a functional level. Each type of test has certain 
advantages. 

A microcoded test can be extremely thorough and effi 
cient, because microcode has more control over the logic 
elements that make up the processor, and because it is 
specific to the family member (in this case, the A900). It 
can also be very fast. This is partly because microcode can 
execute more quickly than macrocode, but mainly because 
of the increased efficiency of the test. The A900 microcode 
self-test takes less than 0.1 second to test the entire proces 
sor. Another advantage that a microcode test has over a 
macrocode test is that a failure in the hardware could pre 
vent macrocode from running at all, while allowing the 
microcode to execute well enough to report the failure. 

The main limitations of a microcoded test are its size 
and its crude output methods. The A900 self-test has nine 
LEDs available with which to pass information to the out 
side world. It uses these LEDs to signal that there is a failure 
somewhere in the processor, and to indicate which board 
the failure is probably on. Because of the limited amount 
of microcode storage, the test must be as compact as possi 
ble. This limits its complexity. In the A900, fault detection 
was considered the primary goal. While fault isolation is 
theoretically easier to attain with microcode than with mac 
rocode, space limitations prevented the A900 self-test from 
being as thorough in isolating faults as it is in detecting 
them. While it attempts to identify which board is causing 
the failure, it is only right about 90% of the time. 

About 1.5% of the A900 processor hardware is devoted 
to self-test. The majority of this is made up of status and 
control registers. Status registers allow access to internal 
signals that would otherwise be difficult to observe, and 
control registers allow the self-test to put the processor into 
states that would otherwise be difficult or impossible to 
reach. Control registers are very useful, for example, in 
testing the cache memory, which is normally transparent 
to the rest of the processor, or in testing the error detection 
and correction chips on the memory controller, which have 
their own built-in diagnostic capabilities. 

The most useful piece of self-test hardware in the A900 
is a timer that generates interrupts at the micromachine 
level. This counter generates an interrupt eight cycles after 
it is turned on, and freezes certain status registers. This 
allows the self-test to examine the state of the machine 
when the timeout occurs, and allows it to escape from 
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Fig. 2. RTE-A provides a separate environment for each user. 

using networking. 
In addition to hierarchical directories and networking, 

the RTE-A file system provides other features to help appli 
cations programmers. Some examples are: 
â€¢ Files are time stamped to indicate when they were 

changed, and when they need to be backed up. 
â€¢ Groups of files can be selected through wild-card selec 

tion, such as all names beginning with F. 
â€¢ Following an errant purge operation (which removes 

files), it is possible to do an unpurge to recover a precious 
file. 
Long-time RTE users will have spotted a number of new 

features, and may be wondering how these fit in with ap 
plications developed for older RTE systems. The answer 
is that RTE-A retains compatibility with previous file sys 
tem applications, although the applications may need 
changes to take advantage of new features. 

Multiuser Facil ity 
The multiuser facility of the RTE-A operating system 

provides an environment in which many users can simul 
taneously use the system and access the system resources 
without interfering with each other. Each user has the ex 
perience of being the only user, and need not be concerned 
about the other users on the system (Fig. 2). The RTE-A 
multiuser system accomplishes these goals by providing 
an environment where users are protected from each other 
by user identification, by separate file directories, by the 
versatile Command Interpreter (CI), by having separate sets 
of user programs, and by logical sharing of system processes 
(system programs). The multiuser software includes the 
Command Interpreter and three other system programs 
called Promt, Logon, and Users. 

In the RTE-A multiuser environment, each user is re 
quired to log onto the system with a logon name and option 
ally a password (up to 16 characters). The logon function 
is to identify and verify users who have authorized access 
to the system. For access to the system, a user must have 
a configuration file and an entry in the masteraccount file 
(Fig. 3). The masteraccount file is a protected system file 
containing the names of all users. This file and the users' 
configuration files are created by the Users system program 
based on information entered by the system manager. 

For legal users, the logon process sets up an entry in the 
session table for the duration of the logon period. This 
session entry describes the resources and the environment 
in which the user is allowed to operate. At the end of the 

logon process, the system will run a preselected user inter 
face, generally the Command Interpreter or the user's appli 
cation program. In addition, the multiuser environment 
accepts remote programmatic logon requests and can also 
operate in a noninteractive session mode in which pro 
grams can run in the background until completion. 

If error logging is used, the system is set up with an error 
logging file. The logon process will record the name of 
every attempted logon. The error log file thus provides 
another level of protection for monitoring of system activ 
ities. 

The system allows the creation of two levels of users. 
Super users are allowed complete access for installing and 
upgrading the system. General users are allowed a more 
controlled access to the system. 

The multiuser environment is easy and flexible to set up 
and administer. It can be set up with the services of a 
system manager in a very controlled atmosphere where 
security and tampering are a major concern. On the other 
hand, the system can be set up in a software laboratory 
where administration can be maintained by the engineers 
without the services of a system manager. Adding, main 
taining, and modifying users for the multiuser system are 
efficiently handled by the Users system program. 

User Interface 
The application programmer's main contact with RTE-A 

is through the system Command Interpreter. This is a pro 
gram that manages files, controls when programs run, and 
makes the facilities of RTE-A available to the user sitting 
at a terminal. 

The Command Interpreter (which is called CI) tries to 
keep the user's life simple. It has a set of easy-to-use com 
mands for operations such as copying files and running 
programs. In most cases the user types the right command 
correctly, and CI performs the requested operation, con 
firming it with a message such as "Copying ABC to 

Programs 
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Session Table 
in 

System Memory 
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File 
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Configuration 

File 

Fig.  3 .  For  access to  the system, a user  must  have a conf ig  
urat ion f i le and an entry in the masteraccount f i le.  The config 
urat ion f i le is used to set up the in i t ia l  session table entry.  
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XYZ...OK." In some cases an error occurs, and CI tries to 
explain the situation with a message such as "No such file 
ABC." The user can then make use of the local editing 
features of HP terminals to correct and reenter the line 
without retyping a whole command line. 

When a command seems mysterious, or when it is not 
obvious which command to use, RTE-A provides an "on 
line manual," or help facility, that explains the functions 
of the various commands and gives examples of their use. 

CI maintains a command stack that allows users to list, 
edit, and reissue previous commands. Also, CI may be di 
rected to access a file as the source of commands. When 
the command file is exhausted, CI returns to interactive 
mode. 

Sometimes a user wishes to interrupt CI while it is 
executing a command, such as listing a long file. Since CI 
is already busy processing the original command, it is not 
available to process the interrupting command. Under 
these circumstances, the Command Master program (CM) 
is invoked. CM is an exact copy of CI which runs at a high 
priority and contains the identical command set, but exe 
cutes only one command and exits. When a user strikes a 
terminal key and a session is already active, Promt displays 
a CM> prompt and schedules CM. In the example of inter 
rupting a long file listing, the break command could be 
used to cause CI to stop listing. 

Sometimes even the CM program can be busy when a 
key is struck. In this case, Promt displays a System> prompt 
and schedules the Logon program to process the user's 
response. In this special mode, Logon accepts only com 
mands that the operating system itself can process, such 
as off, break, and run. 

In addition to the Command Interpreter, the user has 
approximately thirty utility programs available as a part of 
RTE-A, plus other programs available with HP 1000 soft 
ware packages. These programs handle a wide variety of 
operations, including file backup and system status report 
ing. 

Multiuser Implementation 
There is a single copy of the Promt, Logon, and Command 

Master programs in the system. The operations of these 

programs are based on program-to-program class I/O func 
tions of the RTE-A operating system. Promt is scheduled 
when a user interrupts the system from a terminal. Promt 
performs a class read on the input and determines whether 
to pass it to the Logon program or to the Command Master. 
Promt makes its decision by knowing if there is an interac 
tive user on the terminal. If no one is on the terminal, 
Promt passes the input to the Logon program for logon 
processing. If there is a user on the terminal, Promt knows 
that CI is busy and passes the input to CM for execution. 
The Logon and CM programs are usually suspended until 
they receive a message from Promt. The RTE-A system 
wakes up the Logon program or the Command Master when 
Promt posts a buffer to be processed. The Promt and Logon 
programs contain many features that allow them to know 
when to perform multiuser system initialization, user 
logon, error detection, error correction, and special han 
dling of the system on certain states and conditions. For 
example, if a needed system process is missing from the 
system, the Promt program automatically restores a work 
ing copy from the /PROGRAMS directory. 

Features of the RTE-A multiuser environment include 
automatic logoff of users, noninteractive background pro 
cessing, and remote programmatic logon. A user does not 
have to log off explicitly; the multiuser module in the sys 
tem does this automatically. The system knows that the 
user has exited by using a program count in the user's 
session table. This count is incremented every time a pro 
gram is created for the user. Correspondingly, the count is 
decremented when a program is terminated. When the 
count reaches zero, indicating that the user has exited from 
all programs including CI, the user is logged off. 

To leave the terminal while continuing to execute current 
programs, a user can exit from the Command Interpreter 
into the noninteractive background session mode. This al 
lows the remaining programs to run to completion, yet 
frees the terminal for another user. This background session 
will be logged off when the program count for the session 
is decremented to zero. 

Another feature of the RTE-A multiuser facility is pro 
grammatic logon from remote systems. This feature allows 
users from other computer nodes to create a session to be 
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New Software Increases Capabilities of 
Logic Timing Analyzer 
An upgraded opera t ing  so f tware  package increases the  
capabil i t ies of an already powerful t iming analyzer system 
to inc lude s tat is t ics ,  marked events,  postprocess ing,  and 
s torage of  captured t race data.  

by David L.  Neuder  

BEING ABLE TO UPGRADE the operating software 
of an instrument aids in keeping a product in the 
forefront of a competitive market. The addition of 

new software features should be considered whenever they 
can make a significant contribution to the instrument. In 
examining the timing analyzer market, it was clear that 
there were some functions needed that traditional logic 
analyzers could not perform. This was the impetus for pur 
suing an increased feature set for the HP 64600S Logic 
Timing Analyzer, a subsystem used in HP's 64000 Logic 
Development System.1 

The new features are primarily associated with process 
ing captured trace data for specific conditions, and then 
either calculating statistics or altering analyzer operation 
based on the conditions found. These features allow results 
to be determined more rapidly by providing more process 
ing power to the user, and subsequently reducing the 
number of command operations and the amount of data 
manipulation required to determine a result. These features 
are all implemented through software changes only. There 
are no changes to the existing hardware and consequently, 
these features can be added at a minimal cost to the owner 
of an HP 64600S. 

To review, the HP 64600S Timing Analyzer is an instru 
ment system dedicated to the primary task of tracing signal 
flow on eight to sixteen channels simultaneously.2 This is 
accomplished by asynchronously sampling the input chan 
nels at selected speeds between 2 Hz and 400 MHz and 
producing a timing diagram as output. A main feature is 
precise sampling of data channels with respect to time (low 
skew between channels), which allows a high degree of 
resolution of displayed waveforms. This allows signal re 
lationships such as edges, levels, and sequences to be 
examined in fine detail. 

What  Users  Wanted 
Ideas for new timing analysis features came from market 

ing research, from analysis of competitive analyzer prod 
ucts, and most important, from the users of the 64600S. 
One enhancement suggested was the ability to find a 
specified event in trace memory. Users reported that scroll 
ing the screen to locate a particular event visually was a 
time-consuming process; they suggested that the analyzer's 
microprocessor be put to work to find the specified events. 
Users also requested an automatic time interval function. 

They wanted to make a series of measurements of the du 
ration of a pulse or the time between two edges of two 
signals. Discussion about simplifying the sequence of steps 
and commands for time interval measurement led to an 
idea of automatically marking the time interval by assigning 
events (patterns with transition or duration qualifications) 
to each of the 64600S's existing interval cursors or marks. 
These events would be found after each execution of the 
analyzer and the appropriate interval would be marked 
and measured. Then, in addition to accumulating a series 
of measurements for the interval, a statistical package could 
be added to determine the maximum, minimum, mean, 
and standard deviation of the interval values. Other users 
requested a halt for the automatic interval measurement 
whenever an interval exceeds or is less than a specified 
value so that the conditions associated with the out-of- 
specification interval could be studied. 

Another feature users wanted was a count of the number 
of pulses between specified start and stop points on a tim 
ing trace. The 64600S's x and o markers could be used for 
the start and stop points and a new mark added to be 
located on each occurrence of a specified event. Thus, each 
occurrence of the rising edge of a pulse could be marked. 
Then the number of marks or pulses could be displayed 
and accumulated into statistics for a series of runs. The 
ability to halt the measurements if the number of counted 

Fig.  1 .  T iming d iagram d isp lay for  f ind ing the r is ing edge of  
a signal labeled CLOCK. 
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events exceeds or is less than some value could then be 
used to study out-of-specification counts. 

It was found that users also need to convert an asynchro 
nous timing trace list of captured state flow into a 
pseudosynchronous listing of the actual state flow. A de 
sired result would be a listing of the state flow and the 
relative time between states without the duplicate and 
transition samples associated with asynchronous sam 
pling. One approach takes advantage of the fact that most 
state machines have a clock associated with the data. The 
idea is to probe both data and clock lines with a timing 
analyzer and produce a trace. The trace is then presented 
by storing only one sample for each transition of the desig 
nated clock. This stored sample is some specified number 
of samples away from the clock transition to ensure that 
the proper setup time of the clock is met. The result is a 
listing of clocked states. Of course, the sampling rate of 
the timing analyzer must be high enough to ensure that 
the input channel designated as the clock is sampled in 
both its high and low states. A second approach to produc 
ing state flow assumes that each state exists for some min 
imal amount of time. Then, by storing one sample for each 
state that lasts longer than this minimal time, a trace list 
can be produced that removes duplicate and transition sam 
ples, leaving only the state flow and the relative time be 
tween states. 

Storing measurement data for later analysis would give 
the user the ability to store measurements at one site (test 
site) and do the analysis of the stored measurements at 

another site (home site). This idea led to the concept of 
visually comparing two stored measurements or comparing 
a stored measurement to a current measurement on the 
same screen at the same time. 

After considering these and other user needs, an updated 
software package for the 64600S was developed. The new 
features provided by this package include: 
â€¢ Finding specified events in the data acquisition memory 
â€¢ Automatic marking of specified events in data acquisi 

tion memory 
â€¢ Calculating statistics on marked events 
â€¢ Using marked events to qualify execution rerun 
â€¢ Processing asynchronous trace list data into pseudosyn 

chronous state listings 
â€¢ Storing measurement data along with the system config 

uration 
â€¢ Visually comparing stored and current measurements. 

Bui lding on Ear l ier  Commands 
Adding the new features to the existing 64600S software 

while still retaining the simplicity and ease of use of this 
timing analyzer was a major design goal. This goal was 
achievable because the commands in the original version 
of the 64600S software allow for later expansion. For exam 
ple, the keyword find was implemented in the original ver 
sion and the new find features were implemented by ex 
panding the syntax for this command. The original 
keyword performed a subset of the most recent version's 
functions, including finding the trigger, which was always 

Test  Mark 
Routine 

P A T T E R N _ F O U N D _ C O U N T  

P A T T E R N . F O U N D . C O U N T  
a  G R E A T E R J T H A N . C O U N T  

Yes 

Store sample location 
for leaving and 

iess-than qualifiers 
Enable al l  marks that 
rely upon this mark 

PATTERN_FOUND_COUNT = 0 

Reset GREATER.THAN.COUNT 

No 
Store sample location 

for entering, glitch, 
and greater-than qualif iers 

Enable al l  marks that 
rely upon this mark 

N o  

Set 
GREATER TMAN.COUNT 

= 10000 

End test mark 
routine 

Fig.  2 .  F lowchar t  o f  the sof tware mark ing operat ion.  
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Captured Data Storage 
and Retrieval 

In  implement ing the new sof tware features of  the HP 64600S 
Timing Analyzer, we were faced with a number of cri t ical software 
concerns. One key concern was the abi l i ty to display a waveform 
f rom s to red  da ta .  Because  the  inpu t  hardware  o f  the  ana lyzer  
cou ld  no t  be  re loaded  w i th  the  p rev ious l y  cap tu red  da ta ,  and  
s ince we did not  have suf f ic ient  RAM avai lable to store the mea 
surement ,  i t  became apparent  tha t  the  s tored data  wou ld  have 
to reside externally on a hard or flexible disc. Various data storage 
approaches were s tudied,  but  an approach that  makes the data 
l ook  s im i l a r  t o  t he  i npu t  da ta  was  f i na l l y  se lec ted .  Th i s  s t ruc  
tu re  i s  bas i ca l l y  a  se r i a l  channe l - t o -channe l  f o rma t ,  wh i ch  a l  
though not  ideal ly  sui ted for  decoding into a t race l is t ,  is  Â¡deal  
for t iming diagram display and disc space ut i l izat ion. The format 
s t o r e s  1 6  c h a n n e l s  o f  d a t a ,  2 5 6  w o r d s  p e r  c h a n n e l ,  1 6  d a t a  
points per word, where the least-signif icant bit is the earl iest data 
and the most-signif icant bi t  is the latest data. The desired format 
for  the t race l is t ,  however,  is  an array of  4096 samples,  1 6 b i ts  
per  sample,  one b i t  per  channel ,  where the least -s ign i f icant  b i t  
is channel 0 data and the most-significant bit is channel 1 5 data. 

One  p rob lem in  read ing  the  da ta  f rom the  d isc  memory  was  
t ha t  each  t ime  t he  use r  sc ro l l ed  t he  d i sp l ay  sc reen ,  t he  d i sc  
would have to be accessed for  more data.  This was resolved by 
unloading enough data to  a l low the user  to  scro l l  through three 
p a g e s  o f  t i m i n g  d i a g r a m  a n d  f i v e  p a g e s  o f  t r a c e  l i s t  b e f o r e  
ano ther  d i sc  access  i s  requ i red .  When more  da ta  i s  requ i red ,  
another  th ree to  f ive  pages o f  in format ion is  un loaded wi th  the 
cur rent  d isp lay  page be ing the  center  page.  

Another key issue was to find/mark a specified event in a timing 
d iag ram o r  t r ace  l i s t  as  qu i ck l y  as  poss ib le  us ing  e i t he r  da ta  
acqu is i t ion  memory  or  s tored data .  In  f ind ing such an event ,  a  
search  occurs  sample  by  sample  in  a  ser ia l  fash ion  across  a l l  
channels. Normally,  this would seem to be an easy process. But,  
s ince the t iming analyzer data is stored on a channel-by-channel 
b a s i s  a s  o u t l i n e d  a b o v e ,  t h e  d a t a  o f  a  g i v e n  s a m p l e  o n  o n e  
channel  must  be combined wi th  the data f rom the same sample 
across a l l  o ther  channels .  Th is  bu i ld ing o f  a  16-b i t  word to  rep 
resent  the data across a l l  16 channels is  a b i t -manipulat ion pro 
cess which is  s lowed by the required channel-contro l led access 
to data acquisi t ion memory. Ini t ial  est imates of bui lding this word 
4096 t imes (as would be required in a total memory search) were 
on the order of 1 .5 s. This amount of t ime included no associated 
ove rhead ,  bu t  i t  was  fe l t  t ha t  t he  max imum t ime  cons t ra in t  o f  
about  3 .0  s  to  f ind/mark spec i f ied events  would be met .  

However ,  ano ther  concern  a rose .  S ince  the  s to red  measure  
ments were kept on the disc also in a channel-by-channel format, 
i t  would be even more d i f f icu l t  and s low to bui ld  a sample word 
a c r o s s  a l l  1 6  c h a n n e l s  d i r e c t l y  f r o m  t h e  d i s c ,  b e c a u s e  e a c h  
c h a n n e l  r e c o r d  w o u l d  h a v e  t o  b e  r e a d  o n c e  t o  e x t r a c t  e a c h  
sample word â€”  a  to ta l  o f  4096 t imes.  Th is  process was never  
at tempted. Hence, i t  was apparent that the disc data would have 
t o  be  un loaded  i n to  p rocesso r  RAM be fo re  t he  samp le  wo rds  
we re  bu i l t  and  t he  sea rch  f o r  even t s  cou ld  occu r .  Bu t  aga in ,  
RAM space was at a premium and 4K of space just did not exist .  
The solut ion was to designate another over lay (see box on page 
38)  to the f ind and mark ing process.  This over lay returns to the 
m a i n  o r  o v e r l a y  t h e  l o c a t i o n s  o f  t h e  s p e c i f i e d  e v e n t s  o r  
found events .  In  th is  des ignated over lay ,  there  ex is ts  p lenty  o f  
room to  un load  the  da ta  comple te ly  f rom the  d isc  s to rage and 
subsequent ly  bu i ld  the sample words.  In  addi t ion,  by us ing th is  
over lay st ructure and unloading data acquis i t ion memory before 
bu i ld ing  a  sample  word ,  i t  was  found tha t  4096 samples  cou ld  
be bui l t  in  about  200 ms,  a  s ign i f icant  improvement  over  1 .5 s !  

Qualifying Data 
Timing analyzers incorporate a fairly extensive set of 

triggering capabilities for examining circuit characteristics, 
but they are inherently limited in certain triggering capabil 
ities such as occurrence counting, sequential triggering, 
and duration triggering with resolution dependent on the 
sample period. One approach to expand triggering capabil 
ities is through processing the captured data with internal 
software to search for trigger-like conditions. These condi 
tions qualify the current captured data by inhibiting further 
collection of data. The 64600S can qualify the captured 
data in four ways to determine if another execution is to 
occur. These qualification procedures include duration 
qualify, count qualify, sequence qualify, and run number 
qualify. 

Duration qualify halts repetitive execution when a time 
interval marked by x and o is greater than or less than a 
specified amount. Count qualify operates in a similar man 
ner, except that the number of marks between x and o is 
counted and compared with a qualify number. When the 
count is greater than or less than the reference number 
specified, the execution of the analyzer is halted. Sequence 
qualify searches for a sequence of up to four marks between 
the x and o marks, and halts execution when the sequence 
is found. A typical sequence qualify command might be 
halt_repetitive_execution when_sequence_x_o_is mark_a then mark_ 
b then_not mark_c. This halts the repetitive execution when 
the sequence is found anywhere between mark x and mark 
o. Remember that the time, count, and sequence qualifica 
tion occurs after the trace data is captured and the analyzer 
is paused (not acquiring data). Therefore, if a specified 
event occurs while the analyzer is paused, the analyzer 
cannot respond to that stimulus. But when the analyzer is 
started again, it will again be capable of storing the stimulus 
and again be able to search for the halt condition. 

Postprocessing Data 
A timing analyzer typically presents data in the form of 

a timing diagram. An alternative display method is a trace 
list. Newer analyzers can have trace lists of more than 4K 
samples of data. Isolating information from a list of more 
than 4K samples can be a difficult task. Therefore, the new 
64600S software adds a series of new commands to reduce 
the amount of data presented and at the same time, retain 
and make clearer the significant information. These new 
commands allow the user to observe marked samples, state 
flow, and clocked state flow after every execution. 

The new command process_for_data greater_than (TIME) (time_ 
unit) presents only one sample for each sequence of samples 
with the same data that exceeds a specified time duration. 
As an example, consider the process of trying to look at a 
high-speed 7-bit-wide data channel labeled DATA running 
at 40 MHz. Assume that the signals on DATA are stable for 
at least 20 ns (the signals take 5 ns to change states). In 
this example we will set up the timing analyzer to sample 
every 5 ns (200 MHz) by entering the command sample 
period_is 5 nsec. Fig. 4a is a typical listing after the analyzer 
executes and before postprocessing. Now, by entering the 
command process_for_data greater_than 10 nsec on DATA, the 
trace list is processed into a more readable form showing 
each DATA state as shown in Fig. 4b. Note that only one 
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Fig. marking microprocessor the commands given in the text, a timing diagram marking four microprocessor 
states l ist be displayed (a). Using the new display Jor_data marked command, a trace l ist of only 

the  marked samples  can be d isp layed (b) .  

sample of each state is shown and that the relative time 
between these samples is also displayed. 

Another new command, process_for_data sampled (SAMPLES) 
samples_(bef ore_af ter) (pos_neg_transition)_on (LABEL), reduces the 
data in the trace list by only storing one sample for each 
transition on a specified channel. With this command, the 
user selects one of the asynchronously captured inputs as 
a clock. A clock edge and a number of samples before or 
after the clock are specified. This allows the user to specify 
a setup time that matches the characteristics of the data 
under test. The analyzer then processes the clock signal 
for the specified transition and enters the specified sample 
in the trace list. As an example, again consider the 7-bit- 
wide high-speed DATA channel. Assume that the channel 
has a signal SYNC that changes polarity with each valid 
DATA. Now, if we assume that DATA was valid for at least 
6.5 ns before the positive or negative edge of SYNC and at 
least 1.5 ns after the same transition, we could set up a 
command process_for_data sampled 1 sainples_before pos_or_neg_ 
transition_on SYNC. Note that we are again assuming the same 
sampling period (5 ns) as the previous example. The trace 
list of Fig. 4a will then be processed to produce the trace 
list shown in Fig. 4c. The timing analyzer has stored each 
sample that occurs one sample before the positive or nega 
tive transition on the SYNC line. 

Determining the mÃ¡ximum usable data rate of this feature 
places requirements on the signals that constitute the data 
and the clock. The clock must be sampled once high and 
once low, and therefore, must be present for at least one 
sample period plus the skew on a single channel (5 ns + 
1.5 ns = 6.5 ns for both high and low levels). This gives a 
minimum clock period of 13 ns (maximum clock rate of 
77 MHz) when sampling the data at 200 MHz. To sample 
the data accurately one sample before the clock, it must be 
present for a minimum of 8.0 ns. This results from a setup 
time equal to one sample period plus skew, and a hold 
time equal to skew (5 ns + 1.5 ns + 1.5 ns = 8 ns). There 
fore, with a minimum clock period of 13 ns and a minimum 
required stable data time of 8 ns, the maximum effective 
sampling rate is 77 MHz with 5 ns available for the data 
to change. For a sixteen-channel timing analyzer with a 
worst-case skew of 3 ns (cross-pod channel-to-channel 
skew), the above analysis yields 77 MHz with 2 ns available 
to change data or 50 MHz with 9 ns available to change data. 

Storing Data and System Configurat ion 
Earlier analyzers could store the current setup, but rarely 

could they store the captured data. The 64600S Timing 
Analyzer now allows the user to store both the current 
configuration and the captured data in a file for later 

Fig .  4 .  l i s t  Trace l i s t  o f  h igh-speed data  channe l  be fore  pos tprocess ing ,  (b )  Trace l i s t  o f  (a )  
p rocessed fo r  da ta  g rea te r  than  10  ns  on  the  DATA l ines ,  (c )  T race  l i s t  o f  (a )  p rocessed fo r  

data SYNC. sample before a positive or negative transition on SYNC. 
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Overlay Memory Structure 

The HP 64600S Timing Analyzer  has a processor  RAM space 
of  approximately 22K words,  but  the code to run the analyzer is  
approximately 95K words. Therefore, an overlay structure is used 
wi th a resident  port ion of  code of  6K words and an over lay area 
o f  16K words .  The  res iden t  code  con ta ins  the  da ta  s t ruc tu res  
that  def ine the analyzer  conf igurat ion,  the u t i l i ty  rout ines used 
by al l  over lays, and the rout ines that control  the over lay loading 
and execut ion.  Typ ica l ly ,  each over lay  was par t i t ioned to  cor re  
spond wi th  each d isp lay mode of  the t iming analyzer ,  where a l l  
t he  commands  assoc ia ted  w i t h  a  pa r t i cu la r  d i sp lay  mode  a re  
immediate in response (no addi t ional  over lays must be cal led to 
execu te  the  command) .  W i th  the  add i t i on  o f  t he  new mark ing  
funct ion,  th is  is  no longer  t rue.  Because not  enough processor  
RAM space was avai lable to unload the data acquisi t ion memory 
or stored data, a separate overlay is needed just for the marking 
func t ion .  Thus ,  whenever  a  mark  command i s  execu ted  o r  the  
newly acquired data is to be marked, the current display over lay 
i s  s w a p p e d  o u t  a n d  t h e  m a r k  o v e r l a y  i s  p l a c e d  i n  p r o c e s s o r  
RAM. When marking is f inished, the swapped-out display overlay 
is  re insta l led and i f  required,  the d isplay is  then updated.  

One prob lem which  had to  be  so lved dur ing  the  swapp ing  o f  
over lays  occur red  wh i le  a  user  was  execu t ing  a  measurement  
in  repet i t ive mode where mark ing was requested.  In  th is  mode,  
a user would st i l l  l ike to be able to enter commands even though 
the  code  tha t  responds  to  the  commands  i s  swapped  ou t  50% 
of  the t ime.  Prob lems arose in  that  the command l ine would  be 
in i t ia l ized each t ime the d isp lay  over lay  was swapped back in .  
Th i s  made  i t  d i f f i cu l t  t o  execu te  even  s imp le  commands .  The  
prob lem was so lved by  modi fy ing  the  s t ruc ture  o f  the  over lays  
so that 1) al l  variables of the display overlay are in high port ions 
o f  memory  so  tha t  mark ing  ove r lay  does  no t  i n te r fe re ,  and  2 )  
modi fy ing the nature of  the over lay swapping such that  the ca l l  
t o  t he  mark ing  ove r lay  i s  l i ke  a  ca l l  t o  a  p rocedure  and  co r re  
spondingly,  the return to the display over lay is  d i rect ly  af ter  the 
ca l l .  Th is  leaves a l l  the current  var iab les of  the d isp lay over lay 
untouched by the marking over lay. Therefore, any command that 
a  use r  en te rs  wh i l e  the  d i sp lay  ove r lay  i s  swapped  ou t  i s  l e f t  
i n t ac t .  Th i s  g i ves  t he  use r  t he  imp ress ion  t ha t  t he  command  
response  i s  a  l i t t l e  s lower  because  o f  the  code  swapp ing ,  bu t  
other than that ,  everyth ing appears normal .  

_ d n p U u  S Y N C  t h e n  c o m p a r e . *  i  I t  S Y N C  t h e n  D f l T f l . 0  t h e n  
t U T f l . l  t h e n  c o a p a r e - f  l i e  D f l T f l . l  t h e n  D f l T f l . 2  t h e n  c o m p *  

analysis. Further, this data is stored in such a way that 
when the analyzer is reloaded, the data can be processed 
as if the user had never left the analyzer or the analyzer 
had never been turned off. In short, the full analysis capa 
bilities of the find, mark, process, and display commands 
are available to be used on the stored data. The command 
configuration loadjrom (FILE) reloads the configuration and 
the associated data. Advantages of this capability include 
being able to process data captured at a remote site and to 
document data and analysis, and the convenience of being 
able to analyze a measurement later. 

An additional and important advantage of being able to 
store data is that it can be retrieved and displayed concur 
rently with freshly captured data. This allows a stored cor 
rect waveform to be placed on the screen and compared 
with a currently captured suspect waveform. The required 
sequence of commands to set up this feature are listed 
below, assuming that the file FILE contains a configuration 
that is similar to the current analyzer configuration and 
that FILE also contains stored data. 

compare_file_is (FILE) 
display (display_item) then (display_item) then   

(display_item) = LABEL) 
= compare_file (LABEL) 

Note that to display stored data concurrently with newly 
captured data, the trace specifications must agree in some 
aspects â€” mode, trigger position, and sample period. The 
user can completely specify the ordering of the data in both 
the timing diagram and the trace list. A typical command 
might be display SYNC then comparejile SYNC then DATA .0 then 
comparejile DATA .0 then DATA.l then comparejile DATA.l then 
DATA.2 then compare file_DATA.2. This command produces a 
timing diagram as shown in Fig. 5. Note that the character 
x follows each of the labels that come from the specified 
compare file. Also note how the traces can be visually 
compared to find differences. All processing commands 
work in reference to the currently captured data and will 
only process the compare file to the extent that the same 
sample number that is processed in the current data will 
be processed in the compare file. This can be useful in 
comparing state flow of one trace with state flow of another, 
if both were captured with the same trigger. 
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e r ' s  m i c r o c o d e  a n d  d i a g  
nost ics.  He received his 

â€¢ BSEE and MSEE degrees 
'  f rom the Univers i ty  of  I l  

l ino is  in  1975 and 1978,  and is  a  member of  the 
IEEE and the ACM. Now a res ident  of  San Jose,  
California, Craig was born in Hinsdale, Ill inois. His 
interests include playing the piano, singing with the 
HP chorus,  and sai l ing his Laser.  

Mar lu  E .  A l lan  
Now a project manager for 
manufactur ing appl icat ion 
software, Marlu Al lan previ 
ous ly  served as pro ject  
manager  for  deve lopment  
o f  the  A900 CPU.  A 

,  graduate of the Universi ty 
o f  Mich igan,  she received 
her BS degree in computer 

I  engineer ing in 1977 and 
joined HP soon afterwards. She's married, l ives in 
San Jose, California, and enjoys sports, especially 
gol f ,  tennis,  and basketbal l .  

N a n c y  S c h o e n d o r f  
^ ^ â € ¢ " â € ¢ ~ ~ - ~ ~  N a n c y  S c h o e n d o r f  r e  

ce ived her  BS degree in  
computer  sc ience  and 
mathemat ics f rom Iowa 
State University in 1975. 
She began her  HP career  
in  1976 as  a  so f tware  p ro  
duct ion engineer,  then con 
tr ibuted to the development 
of  the RTE-4B and RTE-XL 

operat ing systems and served as project manager 
for RTE-A. 1 and RTE-A. In 1 980 she received her 
MBA degree f rom the Univers i ty  of  Santa Clara.  

m 

Now a sect ion manager  wi th  HP's  Data Systems 
Divis ion, she l ives in Los Altos, Cal i fornia,  has a 
one-year  o ld  daughter ,  and is  marr ied to  another  
HP employee.  She enjoys cooking,  water  sk i ing,  
t ravel ing,  and spending t ime wi th her  fami ly .  

Dav id  A .  Fo t l and  
. Dave Fotland is a native of 

Cleve land,  Ohio,  and a 
graduate o f  Case Western 
Reserve  Un ivers i ty .  He re  
ceived both a BS degree in 
e lect r ica l  engineer ing and 
an MS in  computer  en-  

Igineering in 1979, and 
joined HP the same year as 
an R&D engineer  in  the 

Data Systems Division lab. He designed one of the 
A700 processor  boards and worked on RTE-A.  
Dave is married, lives in San Jose, California, and 
plays vol leybal l  and go. 

Les l ie  E.  Net !  
Leslie Neft graduated from 
Carnegie-Mel lon Universi ty 
in  1978 wi th  a  BS degree 
in electr ical and biomedical 
engineer ing.  For the next  
f ive years or  so,  she de- 

I signed hardware â€” includ 
ing one of the A700 proces 
sor boards â€” and wrote 
drivers as an R&D engineer 

wi th HP's Data Systems Div is ion.  She's now in 
technical marketing. Leslie was born in Pittsburgh, 
Pennsylvania, and now l ives in Cupertino, Califor 
nia. Her interests include volleyball, bicycling, and 
ballet. 

Lee  S .  Monc ton  
1 Lee Moncton is a project  
I  manager in HP's Data Sys 

tems Div is ion R&D lab.  
'  Ã   With HP since 1979, he 

Ã contr ibuted to the design 
f  of the HP 1 000 XL memory 
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for  more than two years .  He 's  a  member  o f  the 
IEEE. Born in Williamsville, New York, Lee attended 
Rensselaer Polytechnic Inst i tute,  graduat ing wi th 
a  BSEE degree in  1976.  He rece ived h is  MSEE 
from Pennsylvania State Universi ty in 1979. He 
l ives in Santa Clara,  Cal i forn ia,  and enjoys vol  
leybal l ,  sai l ing his Hobie Cat,  and ski ing.  
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Don Wi l l iamson received 
his BSEE degree from Case 
Weste rn  Reserve  Un iver  
s i ty  in  1973 and his MSEE 
from the Universi ty of  
I l l inois in 1975. He's a 
member of  the IEEE and 
has been wi th  HP s ince 
1975, contr ibut ing to the 
des ign of  the 7902 Disc  

Drive control ler and various processors, including 
two boards  o f  the  A900 Computer .  He 's  now a  
ful l - t ime HP fel low at Stanford Universi ty,  working 
on  an  advanced eng ineer ing  degree .  A  res iden t  
of  Cupert ino,  Cal i fornia,  he is marr ied,  has a 
daughter ,  and works on o ld cars for  re laxat ion.  

B r u c e  A .  T h o m p s o n  
Bruce Thompson has been 

â€” designing f i rmware and 
operat ing systems for  HP 
since 1980. He contr ibuted 
to  the f i rmware design of  
the  A900 Computer  and is  
named as an inventor on a 
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T  I H i l  c h i t e c t u r e .  B o r n  i n  
Waukegan,  I l l ino is ,  he received h is  BS degree in  
electrical engineering from the University of Il l inois 
in 1 979. He's married, lives in San Jose, California, 
and enjoys sk i ing,  sai l ing,  scuba div ing,  
h ik ing,  running,  and b icyc l ing 

S teven  C .  S teps  
Steve Steps received BS 
degrees  in  e lec t r i ca l  en  
g ineer ing  and computer  
science f rom Kansas State 
Univers i ty  in 1975 and an 
MS degree in e lectr ica l  
engineer ing f rom the Uni-  
/ersity oÃ Southern CaHfoi 
n ia in  1976.  He jo ined HP 
in 1 976, contr ibuted to the 

cache design of the HP 3000 Series 64 Computer 
and the cache and I/O design of the A900 Comput 
er, and served as project manager for the A600 + 
Computer .  His  A900 work resul ted in  f ive patent  
appl icat ions.  Steve is  act ive in  h is  church and 
in  the Amer ican Rose Society  and the San Jose 
Ast ronomical  Associat ion.  A nat ive of  Topeka,  
Kansas, he now l ives in San Jose, Cal i fornia,  
and is  marr ied to  another  HP engineer .  Bes ides 
gardening and ast ronomy,  he 's  a lso in terested 
in photography.  
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J o h n  R .  C a r l s o n  
f  J o h n  C a r l s o n  r e c e i v e d  h i s  

BS degree in  mathemat ics  
f rom Cal i forn ia  State  Uni  
versity at Hayward in 1 973 
and h is  MS in  computer  
science from the University 
of Cal i fornia at Davis in 
1975. Between degrees he 
worked as  a  sys tem pro-  
grammer .  He jo ined HP in  

1975,  contr ibuted to  the des ign of  the HP 300 
Compu te r ' s  m ic rocode  and  m ic rosequence r ,  de  
s igned a  cache memory  cont ro l le r  ch ip ,  wro te  a  
m ic rop rog ramming  l anguage  comp i l e r ,  and  de  
s igned the f loat ing-po in t  d iv ide ch ip  used in  A-  
Ser ies Computers .  He 's  coauthor  o f  a  paper  on 
the floating-point chip set and is a member of the 
ACM. John is married, lives in Fremont, California, 
and  en joys  pho tography  and  backpack ing .  He 's  
or ig inal ly  f rom Concordia,  Kansas.  
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Will iam H. McAll ister 
Wil ly McAl l ister jo ined HP 
in 1 980. He was one of the 
designers of the SOS float 
ing-point  ch ip  set  and has 
coau tho red  two  p ro fes  
sional papers on the chips. 

1 He's now a project man- 
I  ager for  integrated circui t  
I  development.  Wi l ly  grew 
I up in southern Cal i fornia. 

He received h is  BSEE degree f rom the Univers i ty  
of  Cal i forn ia at  Santa Barbara in 1974 and h is  
MSEE from Stanford Universi ty in 1976. Before 
coming to  HP,  he  des igned s tandard-ce l l  ICs  fo r  
spec ia l -purchase processors for  four  years.  He 's  
marr ied, has a son, l ives in Cupert ino, Cal i fornia,  
and enjoys volleyball, water and snow skiing, and 
good jazz.  

Michael  T .  Winters 
With HP s ince 1972,  Mike 
Winters  has developed 
diagnost ics for  HP 2100,  
HP 21 MX, and HP 1000 
L-Ser ies and A-Ser ies 

-  Compute rs .  He  a lso  de  
veloped the v i r tual  control  
panels forthe L-Series and 
the  A-Ser ies .  Be fore  be  
coming a designer, he was 

a  serv ice  eng ineer  fo r  f ie ld  suppor t .  Mike is  mar  
r ied ,  has  a  son and a  daughter ,  and has  worked 
with Cub and Girl Scout groups. Born in Burbank, 
California, he now lives in San Jose, California, and 
en joys  square  danc ing  and  camping .  

John F.  Shel ton 
I  John Shel ton jo ined HP in 
'  1981, developed the micro- 
| coded self-test for the A900 
!  Computer ,  and is  now a 

hardware des igner .  He 's  
named as an inventor on a 
patent  appl icat ion for  the 
fas t  decod ing  scheme 
used in  the A900.  He was 
born in Washington,  D.C.,  

and attended Massachusetts Inst i tute of  Technol 
ogy ,  g raduat ing  w i th  an  SB degree in  1976.  He 
also holds an MSEE from the University of California 
at Berkeley, which he received in 1 981 . He is mar 
r ied,  has a son,  and l ives in Aptos,  Cal i fornia.  
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Steven R.  Kusmer  

Steve Kusmer worked on 
the def in i t ion of  code and 
data separat ion on the 
A-Ser ies Computers and 
on  the  A700 mic rocode.  A  
Cornel l  University 
graduate,  he received h is  
BS degree in electr ical  
engineer ing in  1979 and 
came to HP the same year. 

He's  a member of  the IEEE, a runner ,  ho lder  of  a  
black belt in Korean karate, and a native of Cleve 
land,  Ohio.  He and his wi fe,  a p ianist ,  now l ive in 
San Francisco, Cal i fornia. 

Douglas O.  Hartman 
Doug Har tman rece ived 
his BS degree in electr ical  
and computer  eng ineer ing 
from the University of Michi- 
gan in 1979 and joined HP 
soon af terwards.  He has 
developed HP 1 000 system 
sof tware and served as a 

â€¢ technical lead for RTE-A, 
J .  " "  a n d  i s  c u r r e n t l y  m a r k e t i n g  

UNIX-based sys tems.  A  member  o f  the  ACM,  he  
received his MS degree in computer science from 
Stanford University in 1 982. Doug was born in Ann 
Arbor ,  Michigan,  and now l ives in  Santa Clara,  
Ca l i fo rn ia ,  "where i t  i s  much warmer  than Mich i  
gan. "  He en joys sk i ing,  b icyc l ing,  photography,  
and music .  

Douglas V.  Larson 
After jo ining HP in 1979, 
Doug Larson worked in  
sof tware QA for  two years 
and then implemented the 
LINK programs for RTE-A.1 
and RTE-A.  A nat ive of  
Minneapol is,  Minnesota, 
he graduated from the Uni 
versi ty of  Minnesota with a 
BS degree in  computer  

sc ience in 1978.  He's a lso a veteran of  s ix  years 
asa U.S. Navy electronics technician. His interests 
i nc lude  p lay ing  go  and  b r idge ,  and  read ing  sc i  
ence f ic t ion "whi le  t ry ing to  keep up wi th  the 
mortgage payments."  He l ives in  Santa Clara,  
California. 

Billy Chu 
I  Bi l l  Chu received his BA 

degree in  mathemat ics  
and computer science from 
the Universi ty of  Texas in 
1968 and came to  HP in  
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MSEE degree in  computer  
engineer ing f rom Stanford 

University in 1 974. Since joining HP, he has partici 
pated in the design of  the RTE-L,  RTE-XL, and 
RTE-A operat ing systems. Bi l l  is  marr ied,  has a 
daughter, and lives in Sunnyvale, California. He is 
a deacon in his church and enjoys tennis, garden 
ing,  fami ly  out ings,  and working on his house.  

Elizabeth A.  Clark 
Now a technical  lead for  
RTE-A enhancement,  Beth 
Clark has been wi th  HP 
s i nce  1980  and  has  con  
tr ibuted to the RTE-L, 
RTE-XL, RTE-A.1, and 
RTE-A pro jec ts .  She  de  
ve loped  t he  memory  man  
ager  and d ispatcher  for  
RTE-A. A nat ive of York, 

Pennsylvania, she received her BS degree in com 
puter science from Virgin ia Polytechnic Inst i tute 
and State Universi ty in 1980. She's marr ied,  l ives 
in Santa Clara, California, and enjoys choral sing 
ing,  t ravel ing,  and indoor p lants.  

David L.  Neuder  
Dave Neuder jo ined HP in 
1979 as an R&D engineer  
and worked on the  
hardware and sof tware for  
the 64600S Timing 
Ana lyzer .  H is  work  has  re  
sulted in one patent related 
to the 64600S software. He 
studied electr ical  engineer 
ing  a t  M ich igan Sta te  Un i  

vers i ty ,  earn ing a BSEE degree in  1977 and an 
MSEE degree in  1979.  Born  in  Wyandot te ,  Mich i  
gan, Dave is a member of the IEEE and lives in Col 
orado springs, Colorado. Outside of work he serves 
as pres ident  o f  h is  church 's  Sunday school  c lass 
and  en joys  pho tography ,  sk i i ng ,  danc ing ,  moun  
ta in  c l imb ing,  and backback ing.  
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