
H E W L E T T - P A C K A R D
CD

F E B R U A R Y 1 S B 4

© Copr. 1949-1998 Hewlett-Packard Co.

H E W L E T T - P A C K A R D J O U R N A L
T e c h n i c a l I n f o r m a t i o n f r o m t h e L a b o r a t o r i e s o f H e w l e t t - P a c k a r d C o m p a n y

FEBRUARY 1984 Vo lume 35 â€¢ Number 2
Contents:

A N e w E . o f H i g h - P e r f o r m a n c e R e a l - T i m e C o m p u t e r s , b y M a r l u E . A l l a n , N a n c y
Schoendor t , Cra ig B . Chat te r ton , and Don M. Cross The HP 1000 A-Ser ies p rov ides 1 to

3 MIPS performance in a var iety of conf igurat ions.
An Adap tab le 1 -M IPS Rea l -T ime Compu te r , by Dav id A . Fo t l and , Lee S . MonÃ² ton , and
Leslie floating-point, Neft The A700 offers user microprogramming, optional hardware floating-point,

and opt ional er ror correct ing memory.
Des ign ing a Low-Cost 3 -MIPS Computer , by Dona ld A . Wi l l i amson, S teven C. S teps , and
Bruce A. Thompson I t ' s done wi th p ipe l in ing, cache memory, and hardware f loat ing-po in t ,

but not ECL.
F loa t ing-Po in t Ch ip Set Speeds Rea l -T ime Computer Opera t ion , by Wi l l i am H. McAl l i s te r
and John R . Ca r l son The add and mu l t i p l y ch ips a re f u l l y comb ina t i ona l and p roduce a

64-bi t resul t in 400 to 900 nanoseconds.
Comprehens i ve , F r i end l y D iagnos t i c s A id A -Se r i es T roub leshoo t i ng , by M ichae l T . W in
te rs language to F . She l ton An in te rp re t i ve d iagnos t i c des ign language makes i t easy to

generate diagnost ics to f i t the appl icat ion.
N e w R e a l - T i m e E x e c u t i v e S u p p o r t s L a r g e P r o g r a m s a n d M u l t i p l e U s e r s , b y D o u g l a s
O. Hartman, Steven R. Kusmer, El izabeth A. Clark, Douglas V. Larson, and Bi l ly Chu Vir tual

code, code and data separat ion, and spool ing are other features.
N e w S o f t w a r e I n c r e a s e s C a p a b i l i t i e s o f L o g i c T i m i n g A n a l y z e r , b y D a v i d L . N e u d e r
Marked added. and postprocess ing of t race data are a few of the capabi l i t ies added.
Authors

In this Issue:
Real - t ime computers a re des igned to con t ro l o r mon i to r rea l -wor ld p rocesses . These

processes almost always involve other equipment, such as mil l ing machines or semiconduc
tor furnaces, and large numbers of sensors and act ivators. A real- t ime computer must keep
up with large equipment around it. It must respond to interrupts quickly, it must transfer large
amounts of data rapidly, and it must perform any necessary computations and data transfers

~ , i , e f f i c i e n t l y , s o t h a t i t i s n e v e r o v e r w h e l m e d b y r e q u e s t s f o r i t s s e r v i c e s . I t m u s t a l s o b e
â€¢:"" equipment on since a large amount of expensive material and equipment may depend on it.

Hewlett-Packard's premier real- t ime computer fami ly is the HP 1000 product l ine. In this
issue you ' l l read about the new HP 1000 A-Ser ies Computers , the h ighest -per formance and most re l iab le
HP 1000s Execu t i ve so fa r , and abou t RTE-A , t he l a tes t ve rs ion o f t he HP 1000 ' s Rea l -T ime Execu t i ve
opera t ing sys tem. A-Ser ies computers range in per fo rmance f rom the A600 's one mi l l i on ins t ruc t ions per
second performance the A900's three MIPS. To keep costs lower while achieving these high performance levels, the
des igners o f the A-Ser ies d idn ' t go to a fas t bu t expens ive log ic fami l y l i ke ECL (emi t te r coup led log ic) ,
choosing instead to rely on advanced archi tectures, special hardware, and clever ways to save microcycles.
I n the th ree they ' ve p rov ided a p ipe l i ned da ta pa th , a cache memory , and th ree spec ia l ch ips tha t add ,
mult ip ly, and div ide f loat ing-point numbers. On this month's cover are the f ive boards of the A900 processor.
The data are board (wi th the large square f loat ing-point 1C packages) and the cache memory board are in
the foreground. In the background are the memory contro l ler board, the sequencer board, and the memory
board the i ts gold-covered RAMs. Under the boards is a color pr int of the mask set of the f loat ing-point divide
chip.

In des ign ing m ic rop rogrammed p rocessors l i ke those in the A-Ser ies and o the r m ic rocompute r -based
systems, logic analyzers and logic development systems are invaluable. Last March, we publ ished a ser ies
o f a r t i c les about the HP 64000 Log ic Deve lopment Sys tem. One o f i t s subsys tems, the HP 64600S Log ic
Timing/Hardware Analyzer , has just been upgraded wi th some new sof tware that g ives the designer several
sophist icated new ways to process and analyze t iming data col lected from a system under development. The
story begins on page 32.

-R. P. Do/an

Ed i t o r , R i cha rd P . Do lan Â«Assoc ia te Ed i t o r , Kenne th A . Shaw Â«Ar t D i r ec to r , Pho tog raphe r , A r v i d A , Dan ie l son â€¢ I l l u s t r a to r s , Nancy S . Vande rb i oom.
Susan E, European â€¢ Administrative Services, Typography, Anne S. LoPresti, Susan E. Wright â€¢ European Production Supervisor, Henk Van Lammeren

2 H E W L E T T - P A C K A R D J O U R N A L F E B R U A R Y 1 9 8 4 O H e w l e t t - P a c k a r d C o m p a n y 1 9 8 4 P r i n t e d i n U . S - A .

© Copr. 1949-1998 Hewlett-Packard Co.

A New Ser ies of High-Performance
Real-Time Computers
The HP 1000 A-Ser ies consists of three compat ib le
processors rated at up to 3 MIPS. They use a new Real-Time
Executive operating system andarÃ© available in board, box,
and system conf igurat ions.

by Marlu E. Al lan, Nancy Schoendorf , Craig B. Chatterton, and Don M. Cross

THE NEW HP 1000 A-SERIES family of computers is
designed to provide solutions to specific real-time
needs in manufacturing, automation, and other per

formance-critical environments. Implemented with state-
of-the-art technology, the new computers offer major new
capabilities to meet the challenging demands of OEMs, end
users, and system designers.

The family consists of three compatible processors, the
A600, A700, and A900. Each processor uses the new RTE-A
operating system (RTE stands for Real-Time Executive),
and identical compilers and subsystem products. Each
computer employs the distributed-intelligence HP 1000
L-Series I/O system, which uses an I/O processor on each
I/O card.

Available in board, box, and system configurations (see
Fig. 1 and Table I), these processors offer configuration
flexibility for OEMs and end users across a wide spectrum
of applications. Ranging in performance from 1 to 3 million
instructions per second, the A-Series family of computers
offers very high performance at economical prices.

The A600 Processor
The A600 processor is the lowest-price member of the

A-Series product line. Based on the 2901 microprocessor,
the two-board CPU supports 128K bytes of memory, ex
pandable to 4 megabytes. This processor combines micro
programmed instruction execution with hardware assist to
achieve 1-million-operations-per-second performance. The
A600 comes as a rack-mount computer and in numerous
system configurations. It is best suited for dedicated appli
cations, such as numerical control, energy management,
and automated testing.

The A700 Processor
The A700 processor complements the A600 processor

with additional capabilities. For computation-intensive
applications, the A700 can be configured with an optional
hardware floating-point processor or customized by user
microprogramming. Optional error correcting (ECC) mem
ory allows memory expansion to 2 megabytes in 512K-byte
increments. Alternatively, the A700 can be configured with
parity memory up to 4 megabytes in 1-megabyte incre
ments. The A700 processor is available in a four-board
processor configuration in addition to rack-mount and sys
tem offerings.

The A900 Processor
The A900 processor is the highest-performance member

of the A-Series product line. Using a 4K-byte cache mem
ory, a pipelined data path, standard hardware floating
point chips, and microcoded scientific and vector instruc
tion sets, the A900 can perform more than 3 million oper
ations per second. Error correcting memory is standard in
768K-byte increments for a total memory capacity of 6
megabytes. A user-microprogramming package is available.
The A900 is offered in rack-mount or system configura
tions.

RTE-A Operat ing System
RTE-A is the real-time operating system for all three pro

cessors in the HP 1000 A-Series family. RTE-A evolved
from previous members of the RTE family and is a product
of some proven real-time features from past versions and
some entirely new features. The main goals of the new
features in RTE-A are to provide multiuser tools and to
support large programs with large amounts of data. RTE-A

Table I
HP 1000 A-Ser ies Computers

System

Box
Board
Operating system
Standard memory
Optional memory
Memory: Standard

Maximum
Memory cycle time
Hardware floating-point
Operations/second

Base instruction set
Floating-point

Direct memory access
rate

User microprogramming
FORTRAN77
Pascal/1000
B ASIC/1 OOOC
Graphics/1 000-11

DGL&AGP
DSN/Distributed System

'With hardware f loat ing-point .

3,000,000
500,000

3.7Mbytes/s
Yes
Yes
Yes
Yes

Yes
Yes

1,000,000
204,000

4Mbytes /s
Yes
Yes
Yes
Yes

Yes
Yes

1,000,000
53,000

4.27Mbytes/s
No
Yes
Yes
Yes

Yes
Yes

FEBRUARY 1984 HEWLETT-PACKARD JOURNAL 3

© Copr. 1949-1998 Hewlett-Packard Co.

is implemented in a modular fashion so that one operating
system can span the size and performance ranges of the
entire A-Series. It is a configurable operating system and
can be tailored by the user to fit any particular application.

A major enhancement in RTE-A is the multiuser environ
ment. A modern hierarchical file system allows logical
grouping of files and protection of files. It also includes
time stamping of files on creation, last access, and last
update. This time stamping information is used to provide
an incremental backup capability for the system. Another
important feature of the enhanced file system is transparent
access to files on other RTE nodes in a distributed system.
This enhanced file system is used as a base for a multiuser
environment. Logon and logoff utilities provide identifica
tion of users and their capabilities. This identification is
used in conjunction with the protection mechanisms in
the file system to identify and protect files belonging to
individual users. The multiuser environment is completed
with a command interpreter that has on-line help facilities
and an outspooling utility for programmatic and interactive
outspooling of files to devices or files.

RTE-A has a number of features to support large programs
and large amounts of data. Virtual memory for data is a
scheme that allows users to access data in main memory
and on disc as if it were all in main memory. EMA (extended
memory area) is a special case of virtual memory for data.
It provides faster access to data by allowing up to 2 mega
bytes of data in main memory. An EMA can be shared by

~ " ~ F i g . 1 . H P 1 0 0 0 A - S e r i e s C o m
puters come in var ious conf igura
t i o n s a n d h a v e p e r f o r m a n c e r a t
i n g s r a n g i n g f r o m 1 t o 3 m i l l i o n
instruct ions per second.

multiple programs.
RTE-A takes advantage of new hardware features in the

A-Series to provide separation of code and data for user
programs. This allows transparent support of large pro
grams (up to 7.75 megabytes of code) using a demand seg
ment virtual memory scheme. It also allows multiple copies
of the same program to share code.

A-Series Performance
The A-Series Computers were designed with excellent

price/performance as an important goal. Their performance
has been verified in benchmarks run against their predeces
sors and other currently competitive products.

Before discussing specific results, let's review how per
formance is typically measured. Computers are expected
to perform a variety of tasks, from program development,
to controlling and monitoring a milling machine, to assist
ing engineers in complex designs. In terms of performance,
what's important to the people using these computers?

Some of the things often required are:
â€¢ Good throughput, or how much work can be done in a

given amount of time. This may vary depending on what
type of task is performed, e.g., floating-point computa
tions, compiling programs, etc.

â€¢ Good response, or how fast the computer can respond
to a certain input, such as an interrupt or a DMA transfer.
An interrupt might be a terminal keyboard input, a sensor
indicating a malfunction in a process, a satellite sending

4 HEWLETT-PACKARD JOURNAL FEBRUARY 1984

© Copr. 1949-1998 Hewlett-Packard Co.

data, etc.
â€¢ Good utilization, or how effectively the resources are

being used. If only part of the machine is used a signifi
cant amount of time, then the user may be paying for
something unnecessary.
A-Series Computers are often used in real-time applica

tions, where the computer must keep up with the equip
ment around it. Such environments require good perfor
mance in integer and floating-point operations, good inter
rupt response time and I/O transfer rates, and the ability
to handle large amounts of data efficiently.

Benchmarks are standard programs used to compare the
performance of one computer with that of another. One
should be careful when selecting benchmarks to measure
performance. Sometimes a particular benchmark may be
biased in terms of what it's measuring, or may exploit a
particular aspect of the computer that's not used much.
The best benchmark is the application intended, but this
is not always practical. The benchmarks discussed here
are a small sample of the ones that have been run on the
A-Series. The F-Series included in the results was previ
ously the high-end HP 1000. a

The Whetstone benchmarks are industry standards that
were written by the National Physical Laboratory of Eng
land. The programs are written in FORTRAN, and attempt
to represent average program mixes. The two most common
are the single- and double-precision Whetstones. These
measure performance, including floating-point, in single
and double precision, respectively (32-bit and 64-bit float
ing-point numbers). The performance results are shown in
Table II, which indicates the execution times both in min
utes and normalized relative to the A900. These times were
measured on a quiescent system and are elapsed times.
Note that the A700, A900, and F-series times include float
ing-point hardware while the A600 does floating-point op
erations in microcode. These benchmarks are often expres
sed in terms of "Whetstones per second." The execution
times are for 10 million Whetstone instructions, so dividing
this number by the execution times yields the column
labeled KWIPS (thousands of Whetstones per second). The
A900 KWIPS figures are better than those of many 32-bit
"super minicomputers," even though the A900 is primarily
a 16-bit computer.

In applications making little use of floating-point opera
tions, integer performance is more important. A FORTRAN
benchmark was developed to measure integer performance,
and the results are shown in Table III. Here, single (16-bit)
and double (32-bit) integer operations were measured. Nor
malized times are shown, referenced to the A900. Also, a
MIPS figure is included, which is the number of millions
of instructions executed per second. These figures are less
than the base set instruction rates, since more complex
instructions are required. In this example, the A900 does
very well because of its optimized data paths and good
32-bit capabilities.

Many applications require the use of discs for storage
and retrieval of data. Since discs are typically slower than
the CPU, their effect must be taken into account. One such
application is compiling programs. The A-Series supports
a variety of compilers including a macroassembler, FOR
TRAN, and Pascal. While the speeds of these vary, the

3400 T-

mo-

2600--

2200 - -

1800-

5 1 4 0 0 - -
S
Q.

o 1000- -

600 --

200- â€¢

- H - \ 1
6 0 1 0 0 1 4 0 1 8 0 2 2 0 2 6 0

Working Set Size (words x 1024)

Fig. 2. Pascal compi lat ion speeds for the HP WOO A, E, and
F-Ser/es Computers.

relative performance is consistent. Compilation speeds for
the Pascal compiler are shown in Fig. 2. These are in lines
per minute and are measured in a quiescent system with
a working set varying up to 270 pages (1024 words/page)
using an HP 7925 Disc Drive. On the A900, only about 60%
of the processor is used during a Pascal compilation. The
remaining 40% is available for other activities.

The Pascal compiler is a VMA program, using the VMA
(virtual memory area) capabilities of HP 1000 Computers.
VMA allows a program to access up to 7.75M bytes of data,
even though much of it may be on disc. The working set
size is the amount of the data that can be in memory. The
performance range is less here, since all of the A-series
Computers use the same I/O system, and the disc time is
now part of the execution time.

Interrupt response time is generally a good measure of
how quickly a processor can respond to an external event.
The data in Table IV is the elapsed time in microseconds
from an interrupt until the system enters the appropriate
driver. A driver is the piece of system software that com
municates with a particular device or set of devices. Before
entering the driver, the system must save certain state in
formation and determine the appropriate action. Interrupt
response time thus measures the operating system's perfor
mance as much as it measures the CPU's.

Even though the I/O systems are the same, much of the
time is spent executing other instructions, and this results
in the 3-to-l range. An interrupt response time of 150 /j-s
is very good for a system with the functionality of RTE-A.

In selecting the right processor for a particular applica
tion, the type of performance necessary must be evaluated.
The A-Series offers a range of CPU speeds from the A600
at 1 MIPS to the A900 at 3 MIPS. While the actual instruc-

FEBRUARY 1984 HEWLETT-PACKARD JOURNALS

© Copr. 1949-1998 Hewlett-Packard Co.

Table I I
Whetstone Performance

(Times are in minutes rounded to two decimal places)

Single Precision
Double Precision

A900
time(rel)KWIPS

.12(1)1344

.20(1)821

A700

.31(2.6)541

.47(2.4)355

A600

.87(7.3)192
1.6(8.0)105

F-series

. 3 7 (3 . 1) 4 5 0

. 6 8 (3 . 4) 2 4 5

Table I I I
Integer Performance

(Times are relat ive to A900)

Single Integer
Double Integer

time (MIPS)
1.0(2.3)
1.0(1.9)

3.6 (.65)
3.9 (.48)

3. 8 (.61)
4. 2 (.44)

4. 6 (.50)
5.3 (.35)

Table IV
Interrupt Response Time

(Times are in microseconds)

interrupt to Driver 5 7 142 1 4 6

tion execution rate will vary depending on the instruction
mix, the range remains fairly consistent in many applica
tions. Floating-point allows the A700 and A900 to excel,
while heavier disc access compresses the range somewhat.

Reliability
HP customers have come to expect something extra in

terms of reliability from HP products and the A-Series was
designed with that in mind. Reliability, like quality, must
be designed in. It cannot be added on later. One key to a
reliable product is design margin, the attribute that enables
a product to function properly over a wide range of environ
mental conditions and component variations.

To ensure sufficient design margin, a worst-case analysis
was performed on each critical timing path in the A-Series
CPUs. The A600 analysis was performed by hand while
the A700 and A900 analyses were done using an HP-de
veloped software package, which takes into account such
parameters as power supply variation, output loading, tem
perature variation, and stripline characteristics of printed
circuit boards to predict the operating margin of a digital
circuit.

Before being made into a printed circuit board, each mod
ule of each of the A-Series Computers was analyzed by a
group of engineers in a peer group design review. Each
engineer in the review group was assigned the task of learn
ing a portion of the module well enough to explain its
detailed operation to the rest of the group. These review
meetings have proved to be a very effective method of
catching design errors early in a project.

After the printed circuit layout for each module was
completed and digitized, the digitizer output was read by
another HP -generated software package, which produced
a list of all of the wires and connections on the board. The
list was then checked against the schematic for the module
as one final verification before boards were fabricated.

If components are operated at too high a temperature,
even the most carefully designed circuit cannot deliver
good long-term reliability. To ensure that each component
would be operating well within its limits, thermocouples
were used to look for potential hot spots that required
additional cooling. The thermocouple data was used to
calculate the junction temperature of each of the integrated
circuits to ensure that no device was being overstressed.

As part of the development cycle, a number of typical
A-Series system configurations were subjected to rigorous
environmental tests designed to verify the integrity of the
packaging, power supply, and processor electronics. Proper
system operation was verified over a wide range of temper
ature, power line voltage and frequency, humidity, altitude,
and vibration.

Care is also exercised during the manufacturing process
to keep components from being damaged by electrostatic
discharge (ESD). Often, a component will not be destroyed
by ESD, but merely weakened, enabling it to pass produc
tion tests at the factory only to fail after a very few hours
at the customer's site. To prevent this problem, we have
implemented an extensive program to eliminate ESD dam
age to components during the manufacturing and testing
process. The program includes antistatic mats, grounding
straps for the workers, and antistatic conductive packaging
for the transporting assemblies.

Mean time between failures (MTBF) calculations using
RADC II methods predict the following MTBFs for the A-
Series CPUs:
A600 (2156A) with 128K bytes of memory
A700 (2137A) with 128K bytes of memory
A900 (2139A) with 768K bytes of

ECC memory

10400 hours
7400 hours

6100 hours

To date, field data on the 2156A and 2137A indicates
that their MTBFs are actually 2 to 2.5 times better than the
RADC prediction. At the time of this writing, the 2139A
is too new and not enough field data is available on that
product, but since it was designed using the same
methodology and attention to detail that went into the
2156A and 2137A, there is every reason to believe that it
too will give the high level of reliability that is expected
from HP products.

Acknowledgments
The authors wish to thank all of the A-Series project

members for their contributions in making the program
successful. Their specific contributions are mentioned else
where in this issue. In addition, many people from other
areas played important roles in the process of developing
and releasing these products. Special thanks to Sara Dickin
son and the A600 project team for their efforts, to Carl
Synder for his assistance in managing the A-Series pro
gram, and to Nick Coping for his assistance during the
development and system integration phases of RTE-A.

References
1. J. Cates, "F-Series Extends Computing Power of HP 1000 Com
puter Family," Hewlett-Packard Journal, Vol. 29, no. 14, October
1978.
2. RTE-A.l Performance Brief, Hewlett-Packard Company,
December 1982.

6 HEWLETT-PACKARD JOURNAL FEBRUARY 1984

© Copr. 1949-1998 Hewlett-Packard Co.

An Adaptable 1 -MIPS Real-Time Computer
by David A. Fot land, Lee S. Moncton, and Lesl ie E. Neft

THE A700 COMPUTER is the midrange processor of
the A-Series Computer family. Priced between the
A600 and the A900, the A700 provides flexibility

that allows it to adapt to a customer's needs. The A700 can
be purchased with or without hardware floating-point and
with or without error correcting memory, and it can be
customized through user microprogramming. It is designed
to operate on the earlier HP 1000 L-Series backplane and
thus it can use the dozens of I/O cards that have been
developed since the advent of the L-Series.

The A700 was the first member of the A-Series product
line, and its inherent flexibility made it the development
processor of that product line. The first objective of the
A700 was to overcome the address space limitation of the
L-Series, while surpassing L-Series performance by a factor
of 3. Another objective was to leverage the hundreds of
engineer-years of effort found in the RTE family of operat
ing systems, languages, and subsystems. The A700 was
intended to provide all of the functionality of the HP 1000
E-Series and F-Series Computers, including similar perfor
mance and microprogrammability, at lower cost, using the
improved L-Series I/O system and an improved method for
supporting large programs.

The A700 was the first HP 1000 to make use of bit-slice
technology, the first to incorporate the high-performance
SOS floating-point chip set (see page 17], the first to imple
ment the dynamic mapping system for large address space
access, the pioneer and the development processor for
large-program support provided by code and data separa
tion hardware and the VC+ enhancement to the RTE- A
operating system (see page 26), and the first HP 1000 to be
easily user-microprogrammable through the use of the mi-
croparaphraser microprogramming language. The A700
with hardware floating-point has better performance than
the HP 1000 F-Series, formerly the top of the line, at only
sixty percent of the cost.

New DMS Instruct ions
Since the L-Series did not have memory mapping, the

A700 was free to define a new improved set of dynamic
mapping system instructions. The HP 1000 uses 15-bit log
ical addresses, so a program can directly address 32K
words. A map is a set of 32 map registers which map the
32 lK-word pages of logical address space to 32 physical
pages. For backward compatibility with the HP 1000 M, E,
and F-Series Computers, the A-Series has a similar format
for a set of map registers. The number of map sets is in
creased from 4 to 32 for more flexibility and the physical
page number field is extended to allow 24-bit physical
addresses. This allows the operating system to allocate one
DMS map to each I/O interface for increased I/O throughput.
In addition, the operating system can use a separate DMS
map for system available memory. The user program can
be allocated two maps, one for code and one for data.

The DMS instruction set includes instructions for load
ing and storing maps and a new set of cross-map instruc
tions that allow access to memory through three maps, the
current execute map and two others called datal and data2.
The cross-map instructions include load, store, and move
words.

CDS Instructions
The biggest architectural change was the introduction of

code and data separation. Separation of code and data al
lows programs with large code to be handled easily and
transparently without using overlays. It also provides better
protection, recursion, and reentrancy. It allows code to be
shared between several processes to conserve main mem
ory. CDS was recognized early as being a desirable goal.
The problem was to provide it without a major change in
the existing instruction set, which would require a lot of
extra hardware. The old instruction set is faithfully exe
cuted for backward compatibility. Minimal changes from
the old instruction set also mean minimal changes to the
existing compilers.

ECC Memory
No matter how good the design or how reliable the parts

used, machines will fail from time to time. The single part
in the A700 that contributes most to the failure rate is the
dynamic RAM chip used in the memory. This is because
these parts have a high soft failure rate compared to other
logic parts and because there are many more RAM chips
in the machine than any other kind of chip. An A700 with
4M bytes of memory contains 544 64K-bit dynamic RAM
chips.

Error correcting memory provides higher reliability for
those customers who need it by correcting single-bit errors
and detecting double-bit errors. Soft errors are the most
common failure of memory systems. In systems with over
512K bytes of memory the soft error rate is about one per
year. Customers who need higher reliability than this can
use error correcting memory.

Error correcting memory is easy to use on the A700 be
cause it uses the same memory controller and has the same
performance as parity memory. A customer can upgrade
to error correction without throwing out the current con
troller. Error correcting and parity memory can be mixed
in the same system. For example, one might want to protect
the operating system and some critical applications from
single-bit errors, and use less-expensive parity memory for
the rest of the system.

If there are no errors, the error correcting memory runs
at the same speed as parity memory. When a single-bit
error is detected, the system is frozen for 200 ns while the
data is corrected, and is then allowed to continue with
good data.

A Hamming code is used to detect and correct memory

FEBRUARY 1984 HEWLETT-PACKARD JOURNAL 7

© Copr. 1949-1998 Hewlett-Packard Co.

Micro inst ruct ion
Macro ins t ruc t ion

f r o m
ns t ruc t ion Reg is te r

B a c k p l a n e

M n e m o n i c s i n () a r e
r e g i s t e r n a m e s u s e d i n
p a r a p h r a s e r p r o g r a m m i n g
microorders .

EXB-Bus â€¢
f r o m E x t e r n a l

Reg is te rs
(SHIN)

Off -Board
Reg is ter
Index INI

Y - B u s t o
External

Reg is te rs
(SBIN)

E x t e r n a l B u s t o P r o c e s s o r / M e m o r y
C o n t r o l l e r F r o n t p l a n e

Fig. data . microprogram diagram of the A700 processor. The regularity of data flow makes microprogram
ming easier.

errors in the A700. With the addition of 6 bits per 16-bit
word all single-bit errors are correctable and all double-bit
errors are detectable. Whenever the memory is read the
parity bits are combined with the data to provide a 6-bit
syndrome, which identifies the type of error and the bit
number if it is a single-bit error. This syndrome is stored
in an error logging RAM in the memory controller. There
is one syndrome location in the RAM for each row of 64K
RAM chips. By reading the error logging RAM, it is possible
to determine the last chip that had an error in each row of
RAMs. This information can be used to identify failed chips
before they cause a problem in the system.

Performance and Ease of Microprogramming
The two major objectives in the design of the A700 mi-

cromachine were to provide fast execution of the HP 1000
instruction set, and to allow user microprogramming,
which can give a substantial boost in performance to many
customer applications. To accomplish these objectives, we
designed an architecture that is simple and straightforward,
a microinstruction set that is flexible and provides a lot of
capability, and tools that aid microcode development.

We chose to base the micromachine on the 2900 bit-slice
processor family, specifically the 2903 bit-slice processor
and the 2911 bit-slice sequencer. These parts provide many
intrinsic features, yet allow us to use our own microar-
chitecture. We use the 2903 's numerous arithmetic and

8 HEWLETT-PACKARD JOURNAL FEBRUARY 1984

© Copr. 1949-1998 Hewlett-Packard Co.

logical operations, but use our own instruction set for ac
cessing them.

The Microarchitecture
The key features of the microarchitecture are capability

and regularity. The capability allows fast performance; the
regularity makes it easy to microprogram.

To optimize performance for the A700 instruction set,
we used profile data which told us how often each instruc
tion or class of instructions was executed for different types
of programs. For those instructions executed most often,
we provide special hardware to shorten their execution
times. We avoided the common pitfall of making other
instructions inordinately slow to optimize the most heavily
used instructions. Even an instruction that occurs only 1%
of the time can impact performance if it's extremely slow.
However, it is not practical to provide special hardware
for all instructions. Since much of our instruction execu
tion time is spent in decoding the instruction (that is, de
termining what the instruction is), we designed the micro-
machine to decode all instructions quickly. By increasing
the performance for instructions that had slow execution
times in previous HP 1000s, we allow more flexibility in
the design of applications that use assembly language (such
as compilers].

Optimizing the design for user microprogramming was
more difficult. To accomplish this, we looked at the types
of functions that were likely to be microcoded (for example,
computation and bit manipulation) and provided sufficient
hardware to support these types of operations. Many of the
operations were all ready provided in the 2903; we needed
only to design the hooks to access them.

A block diagram of the processor is shown in Fig. 1. The
regularity of the flow of data through the machine is one
of the features that contributes to the ease of microprogram
ming. At the start of a cycle, data is enabled from the appro
priate registers onto the operand buses: the A-bus and the
B-bus. In one cycle, data is input to the ALU and passed
to a shifter. The resulting data is available on the Y-bus at
the end of the cycle. The Y-bus result can then be loaded
into a register or written to main memory. In the following
cycle, conditions generated by the operation just described,
such as carry out of the ALU, can be tested. The user does
not need to learn complex rules for the relationship be
tween buses, registers, and conditions, since they are the
same throughout the machine. Registers are updated at the
end of the cycle and are available as operands for the next
cycle. The conditions that are tested are the conditions that
were generated during the previous cycle.

The flow of control in the micromachine is similar to
high-level languages such as BASIC or FORTRAN. Jump
(goto) or jump to subroutine (call) instructions are used
to transfer control to nonsequential locations in micro-
memory.

The key to the flexibility and performance of the A700
micromachine is the microinstruction set (called micro-
operations) and the microinstruction format. The width of
the microinstruction word was an important design deci
sion. A longer microword means more operations can be
done in one microinstruction. This does not directly trans
late into an increase in performance, since certain opera

tions need to be done sequentially, such as adding two
numbers and then checking for overflow. We were also
developing writable control store (WCS) and PROM control
store (PCS), and a shorter microword makes these boards
less expensive and allows more words of micromemory on
each control store board. By careful encoding and over
lapping of fields, we were able to use a 32-bit microinF ruc
tion word that allows several operations to be done n one
cycle (see Fig. 2). Fewer microoperations are available in
a jump instruction than in an instruction that does not use
a jump. However, in every microinstruction, one can per
form an arithmetic or logical operation with the contents
of two registers and store the result in any register in the
machine. For example, one can add the contents of two
registers, perform a shift on the result, and then jump to
another location in micromemory, all in one cycle. To
test this design decision, most of the base instruction set
was microcoded before the processor hardware design was
solidified.

The decoding scheme for microinstructions ensures that
no combination of codable operations can damage the pro
cessor hardware (such as enabling two registers onto the
same bus). Any other illegal combination of operations is
detected by the microparaphraser. Thus the micropro-
grammer need only remember the basic relationships for
data in the machine, the microinstruction formats, and a
few special rules concerning interaction with main mem
ory, I/O, and the mapping system.

A hardware timeout feature provides some protection

'Special microorder in ALUS field when ALU field Â¡s coded SPEC.

F i g . 2 . A 7 0 0 m i c r o i n s t r u c t i o n f o r m a t s .

FEBRUARY 1984 HEWLETT-PACKARD JOURNAL 9

© Copr. 1949-1998 Hewlett-Packard Co.

bandwidth rather than ease of entry and exit, it is necessary
to precede this code by a section of front-end code that
synchronizes with the inner-loop code. The results of this
work enable the VIS instructions to execute very close to
memory speed for single-precision operations, and at mem
ory speed for double-precision operations. This yields an
improvement of \Vi to 3 times compared to the execution
speeds on the HP 1000 F-Series Computer.

Acknowledgments
The authors wish to acknowledge the other members of

the design team: Carolyn Guidry, Steve Kusmer, Earl
Kieser, Tom Harms, and Bill Chesk, and especially our
project manager Don Cross for his guidance and support.
We'd l ike to thank our production engineer Chris
Malachowsky and our product manager Scott Spielman for
believing in us. Wayne Chin, Colleen Obergfell, and Dan
Shewey also contributed to the success of the project.

Designing a Low-Cost 3-MIPS Computer
by Donald A. Wi l l iamson, Steven C. Steps, and Bruce A. Thompson

THE A900 COMPUTER provides approximately three
times the performance of any previous HP 1000 Com
puter, while maintaining full software compatiblity

with the other HP 1000 A-Series Computers. The cost of
the A900 is noticeably lower than that of many computers
of similar performance, giving it an excellent price/perfor
mance ratio. To achieve this price/performance ratio, the
performance was optimized, but not by adding a lot of
additional parts and complexity.

To increase the performance of a computer, the amount
of work done in each machine cycle can be increased and
the cycle time can be decreased. This can be accomplished
by widening all of the paths to 32 or 64 bits and using a
very fast technology such as emitter-coupled logic (ECL).
This approach was not used in the A900 because it leads
to a very high-cost computer. Instead, care was taken to
add cost only where it was justified by a significant perfor
mance gain, and to minimize cost elsewhere.

Although the A900 is completely software compatible
with the other members of the A-Series, it has a somewhat
different hardware structure. Fig. 1 shows a basic block
diagram for both the A600 and A700 Computers, while Fig.
2 shows the basic block diagram for the A900. All three
machines are microprogrammed and therefore have data
paths that are controlled by a microcode sequencer. The
A600 and A700 have a common memory-I/O bus used by
both the CPU and the I/O system to access memory. The
I/O bus in the A900 is electrically and mechanically the
same bus as the memory-I/O bus in the A600 and A700.
However, the A900 does not fetch instructions or data
across this bus. The CPU uses the bus only to communicate
with the I/O system. This structure helps achieve the main
goal for the A900: high performance without the normally
associated high price.

Sequencer
The A900 is a microprogrammed computer. This means

that each machine language instruction (macroinstruction)
is emulated by a sequence of microinstructions. The format

of the macroinstructions is fixed by compatibility with
other HP 1000 Computers, but the format of the microin
structions is tailored to the hardware used to implement
the A900.

Each microinstruction is 48 bits wide, allowing several
operations to be specified in parallel. For instance, a con
ditional jump, an ALU operation, and a memory operation
can all be coded in a single microinstruction. Thus the
microprogrammer can test a condition, perform a calcula
tion, and start reading the next operand, all simultaneously.

The microcode sequencer controls the sequence of micro
instructions that are used to emulate each macroinstruc
tion. A block diagram of the sequencer is shown in Fig. 3.

The sequencer selects a microaddress from the micro
program counter, the microsubroutine stack, or a field of
the current microinstruction. The control store takes this
address and generates a microinstruction which is loaded
into the microinstruction register at the end of the micro-
cycle. Usually, one of the critical timing paths in a micro
programmed machine is the decision point between a con
ditional branch and sequential execution. In the A900, the
"condition met" signal controls a multiplexer at the output
of the address selection logic. Thus the signal can arrive
later in the cycle without becoming a critical timing path.
This helps in reducing the cycle time of the A900 micro-
machine to 133 ns.

Each time a new macroinstruction is fetched, the se-

Control

Microcode
Sequencer

Memory-I /O Bus

F ig . 1 . A bas i c b lock d iag ram fo r t he A600 and A700 Com
puters , showing the common memory- I /O bus.

12 HEWLETT-PACKARD JOURNAL FEBRUARY 1984

© Copr. 1949-1998 Hewlett-Packard Co.

Control

Microcode
Sequencer

Memory System

Address

Fig . 2 . A bas ic b lock d iagram fo r
the A900 Computer , showing the
separate memory and I /O buses.

quencer must determine the sequence of microinstructions
needed to emulate it. Traditionally this is done by sending
the macroinstruction to a jump table (AJT) which produces
the address of the first microinstruction of the emulation
sequence. Since this address must then be sent to control
store to produce the actual microinstruction, the decoding
process takes two entire cycles. The A900 adds another
type of jump table (IJT) which receives the macroinstruc
tion and produces a microinstruction instead of a microad-
dress. The IJT is built with programmable logic arrays
(PLAs), and can produce microinstructions for the most
common macroinstructions. While the IJT is guessing the
first microinstruction of the emulation sequence, the AJT
is looking up the address of the second microinstruction.
While the first microinstruction is executing, the control
store is looking up the second microinstruction. The result
is that it takes only one cycle instead of two to determine

Condi t ions f rom
other Parts of Machine

Next
Macroinstruction

Fig. 3. The sequencer controls the sequence of microinstruc
t ions to emulate each macroinstruct ion.

the first microinstruction of the sequence. This is a signifi
cant savings, since many important macroinstructions take
only two cycles to execute.

Pipelined Data Path
The data path is where much of the data manipulation

required by the HP 1000 instruction set is done. A block
diagram of the A900 data path is shown in Fig. 4. Operands
from the register file, cache memory, or other parts of the
machine are operated on by the ALU, the shifter, or the
floating-point unit, and the result is stored in the register
file, the cache, or some other machine register. Accessing
the operands, performing the operation, and storing the
result take longer than the 133 ns available in an A900
microcycle. Therefore, the data path is split into two pieces
by a pair of pipeline registers.

In the first cycle of a microinstruction, the operands are
read and loaded into the pipeline registers. During the sec
ond cycle, the operation is performed using the values in
the pipeline registers, and the result is stored. During this
second cycle, the operands for the next microinstruction
are being read. Even though it takes two cycles to complete
a microinstruction, the parallelism allowed by the pipeline
registers lets a new microinstruction start every cycle (see
Fig. 5).

A side effect is that the result of a microinstruction started
in cycle 1 is not stored until the end of cycle 2 and therefore
cannot be used until cycle 3. The register file is paralleled
by a pair of latches which can be used as accumulators.
The latches become transparent if they are written at the
same time that they are read. The result from a cycle 1
microinstruction can be written into one of the pipeline
registers at the end of cycle 2 by storing it to an accumulator.
In other words, if a result is stored to one of the ac
cumulators it can be used immediately instead of one cycle
later.

The data path is designed to maximize the amount of
work that can be done by a single microinstruction. For
instance, the register file is double-ported, allowing access
to two operands at a time. The shifter can logically shift
the 32 bits of data in the pipeline registers by 0 to 15 bits
and produce a 16-bit result. Using this barrel shifter, any
type of shift â€” arithmetic, logical, or circular â€” can be ac
complished in a small number of cycles.

There are actually two independent paths within the

FEBRUARY 1984 HEWLETT-PACKARD JOURNAL 13

© Copr. 1949-1998 Hewlett-Packard Co.

ing, which occurs whenever an interrupt occurs. Thus,
optimizing the A900's fault handling time improves its
real-time capabilities.

To achieve its excellent fault handling time, the A900
uses a 32-bit path to and from main memory. Since the
cache block size is 32 bits, a fault can be handled in just
one read or write to main memory. This is an important
feature in reducing the fault handling cycle time, thus giv
ing more time to the processor.

Technology
To build a high-performance computer with a very low

price, one needs not only to be clever in the design of the
computer, but also to incorporate new technologies. In the
design of the A900, several new technologies are used.
Most of the logic in the computer uses a new fast, low-
power Schottky logic family that not only provides a fast
cycle time, but does so without the added heat, power
supply, and cost penalities of conventional high-speed
Schottky logic.

Programmable logic arrays (PLAs) are also heavily used
in the A900. Small, 20-pin versions became available just
jn time for use on the A900. These PLAs allow most of the
state machines and decoding logic to be integrated into a
very small number of devices that are very easy to alter.
Most of the other random logic also uses PLAs. This made
the debugging of the A900 much faster than conventional
designs, so the computer could be shipped much sooner.

As mentioned earlier, the floating-point operations in
the A900 are done by a set of SOS (silicon on sapphire)
LSI chips. By integrating the performance-sensitive part of
the computer on very low-power LSI chips, the A900's
power, size, and cost were minimized while achieving a
very high level of performance.

Pipel ining and User Microprogramming
The A900 is the first HP 1000 Computer to use pipelining

in its data path to improve performance. Pipelining affects
the way in which algorithms and microcode sequences are
designed. A user writing an isolated line of microcode does
not need to know when the different sections of the micro
code line will be executed. However, in a complete micro
program, various effects of the pipelining will show up in
the register transactions, conditional status checks, mem
ory operations, etc.

All of the microprogramming examples shown here are
written in the A900 microprogramming language and can
be compiled to executable microcode using the A900 mi-
croparaphraser. The A900 microprogramming language
looks very much like a higher-level language using free-
field notation and formats. It allows the user to generate
microcode without concern for the actual format of a micro-
word. With the microparaphraser and its associated tools
in the A900 microprogramming package, a programmer can
quickly generate a microprogram to enhance the perfor
mance of an application with a minimum of effort. Perfor
mance enhancements of 3 to 20 times are typical.

The pipelining of the micromachine data path has the
largest impact on user microprogramming, essentially caus
ing all micromachine data transactions to take two cycles
to complete. As shown in Fig. 4, two pipeline registers,

LREG and RREG, are placed in the data path at the inputs
of the ALU to split data path operations into two phases.

In the first phase, data flows from the dual-ported register
file (or other inputs) and is clocked into LREG and RREG.
In the second phase, data is taken from the pipeline regis
ters, flows through the ALU, and is finally stored back into
the register file or other write-only registers.

The effect on user microcode is that registers stored on
one cycle are not updated until two microcycles later. As
a result, the microinstruction sequence

r5: = r3;
r3: = r5;

* Microcycle 1 . Copy r3 to r5 .
* Microcycle 2. Copy old r5 to r3.

will swap the contents of registers r3 and r5 instead of
simply copying r3 to r5 as one might expect. To have the
above code sequence copy r3 to r5 you would have to add
a dead cycle to allow the pipe to empty and have r5 really
reflect the value of r3 before copying it back. The microin
struction sequence below will end with r5 containing the
same value as r3.

r5: = r3;
nop;

â€¢Microcycle 1 . copy r3 to r5.
*Microcycle 2 . This is a dead
'cycle to allow r5 to get the updated
*valueofr3.
"Microcycle 3. This does nothing
"important since r5 already
"contains the same value as r3.

Two special registers do exist in the A900 micromachine
(the accumulators) that will reflect updated values on the
very next microcycle after they are stored to. These registers
are used when data must be chained through several ALU
operations.

Because of data path pipelining, condition codes based
on the output of the ALU will not become valid for two
cycles. The microcode sequence below shows an example
of testing a condition generated by the ALU.

nop: = 0;

nop;

If TZ then go to Zero;

"Microcycle 1 . Send 0 through the
* ALU to test it.
"Microcycle 2. We must wait a cycle
*f or conditions from the ALU to
"become valid. Normally, an algo-
"rithm would be designed in such a
"way that the micromachine will be
"performing some other task here.
"Microcycle 3 . This is a test for
"a zero output from the ALU.
"TZ tests for zero so this
"line will jump.

Other sections of the A900 micromachine are pipelined
besides the data path. One of these areas is the memory
address creation logic, which is essentially another data
path. Because the memory address creation logic is
pipelined, microorders that work with this logic affect
either the current or the following instruction. Actions can
be initiated on one microcycle and then modified on the
next microcycle. An example of using these microorders
is shown by the following sequence.

16 HEWLETT-PACKARD JOURNAL FEBRUARY 1984

© Copr. 1949-1998 Hewlett-Packard Co.

on thf
propÃ
until
unloa
the ac
data j
eratio
comb
theoi

Circu-
Thi

of soi
chips
CMO1
gate i
chips
CMO
less
allov
trans
i.e.,
devii

Fi
plerr
level
com
SOS
they
phir
sistc
tagei
tatic
com
for e

A
3 sr
chi{

ml< = ml + 1; "Microcycle 1. Increment memory
'address pointerml.

n i n e ; * M i c r o c y c l e 2 . S t o p t h e i n c r e m e n t -
*ing of address register ml .
'Register ml will remain
"unchanged.

Another feature of the A900 micromachine that is valu
able for making algorithms execute efficiently is the ability
to store data path outputs to multiple destinations at once.
Dual microstore fields let the programmer create an expres
sion such as:

mlÂ«r5: = r4 + l ; ' Increment regis ter
*r4 and store it to
*bothr5 and memory
"address pointer ml .

Algorithms designed for a pipelined machine must be
designed carefully to make use of every micromachine
cycle. Algorithms are most efficient if they can be broken
down into different sets of interdependent steps. When
writing the code, these sets can be combined and inter
twined so that the dependent steps of each process are
separated by the number of steps in the pipe, in this case
two cycles. In the A900 micromachine, dependent steps
in a process can also be performed one after another by
using special registers (accumulators) that bypass the data
path pipe.

An algorithm that contains many decision points or con
ditional branches is more difficult to design efficiently on
a pipelined machine. For these algorithms, operations that
take more than one cycle to complete because of the pipe
(such as condition code generation) should be ordered in
such a way that they are meaningful if either path of an
intervening conditional branch is taken. A feature of the
A900 micromachine that lends itself well to designing this
type of code efficiently is the ability to start a piped oper
ation in one microcycle, and then modify its action in the
next cycle before it completes. The short code sequence

below shows an example of the use of this feature.

If TZ then go to dont.inc, ml< = ml + l;
"Microcycle 1. This is just a
"conditional branch that
"in the same microcycle starts
"the piped operation of incrementing
* memory address pointer m 1 .

inc : nop ; "Microcyc le 2 . Here i s one t a rge t o f the
"conditional branch. The nop here
* is to show that memory address
"pointerml was incremented
* since no modifying microorder
"was used here.

dontjnc: nine; "Microcycle 2. Here is the other
"target of the conditional
"branch. Here a
"modifying microorder is used
"to stop the incrementing
*of ml< = ml + 1 before
"ithas completed.
*Thusml< = ml + l
"can be effectively
"used in both paths of the
"conditional branch.

A final key to generating efficient algorithms for a
pipelined micromachine is creating efficient code for al
gorithms with loops. In these algorithms, the loop time is
most often the determining factor in how fast the algorithm
will run. Therefore, the loop itself should be designed first
for efficiency, and then the entrance and exit to the loop
can be added.

Acknowledgments
The authors wish to thank Simin Boschma and Jim Fin-

nell who contributed to the hardware design, and Tom
Harms, Chuck Morgan, and John Shelton who contributed
to the firmware design. Thanks also to Donna Saar, Wayne
Chin, and the many other people who contributed to the
magical process of taking a processor from idea to produc
tion.

Floating-Point Chip Set Speeds Real-Time
Computer Operat ion
by Wil l iam H. McAll ister and John R. Carlson

FLOATING-POINT ARITHMETIC performance is a
prime concern in technically oriented computers.
Using Hewlett-Packard's silicon-on-sapphire CMOS

process we have designed a set of three monolithic floating
point processor chips for use in two HP 1000 A-Series
Computers, the A900 and the A700. The chip set provides
a cost-effective, high-performance solution for high-speed

computation.
The set consists of three chips, one each for addition,

multiplication, and division. Each chip can perform arith
metic operations on 32-bit and 64-bit floating-point num
bers and on 32-bit integers.

The primary design objective was to maximize the speed
of floating-point scalar (single-element) operations. This

FEBRUARY 1984 HEWLETT-PACKARD JOURNAL 17

© Copr. 1949-1998 Hewlett-Packard Co.

goal T
integr
vide 1
point
advar
use]
This
quick

added or subtracted by the 64-bit main adder. If the fraction
overflows, a signal is sent to the exponent path to cause
an increment. The fraction is also right shifted one place
to keep it in the proper scale.

If a subtraction is done there may be cancellation of
leading significant bits. This result is called an unnor-
malized number. The required result is a normalized
number. The priority encoder searches from left to right
looking for the first significant bit and encodes its location.
The left shifter uses this value as a shift count to renor-
malize the result. The shift amount is also subtracted from
the exponent.

The next step is to round the result to the proper precision
using an incremente!. An overflow from the fraction once
again causes the exponent to increment. Finally, the expo
nent is checked for overflow or underflow and the proper
status bits are set.

After the operands are initially loaded into the chip, all
computation is done by strictly combinational logic. The
worst-case delay path passes through a few hundred gates.
It takes about 700 ns from the time the inputs are loaded
until the result appears at the output pads.

Mult ipl icat ion Technique
The floating-point multiplier chip uses a technique

called the modified Booth algorithm1 to do a combinational
multiplication of the operand fractions. This algorithm is
used in a number of commercial monolithic multipliers
and is the key to integrating this common function. The
algorithm reduces the number of gate delays by nearly a
factor of two with little increase in chip complexity com
pared to more traditional methods of multiplication. This

S i g n e d D i g i t E n c o d i n g

E x a m p l e :

SDC
f~^

1 0 0 0 1 1 0 0 = 1 4 0 1 0

TTTT
2 1 - 1 0

Fig. 7. Float ing-point mul t ip ly chip measures 6. 1 by 7.0 mm
and contains about 60,000 transistors.

reduction in propagation delay is accomplished by encod
ing one of the operands into a new form before applying
it to the multiplier array.

To understand how the algorithm works, it is best to
interpret the encoding in a mathematical sense. The encod
ing scheme can be thought of as mapping one binary
operand into an equivalent set of signed digits. The particu
lar encoding we choose turns out to reduce the number of
full adder rows by a factor of two. The encoding is shown

C , n S : r

A n Â « â € ” I Â »

B S D 0

B S D 2

B S D , ,

B S D 6

S D C 7

2(26)+1(24)+(-1)(22)+0(2Â°)

1 2 8 + 1 6 - 4 + 0 = 1 4 0 1 0
(a) (b)

Fig. operands equivalent floating-point multiplier chip encodes one of the operands (B) into an equivalent
se t o f s igned d ig i t s , the reby reduc ing the number o f fu l l adder rows requ i red by a fac to r o f
two . (a) b ina ry scheme. SDC is the s igned d ig i t ca r ry , (b) A d iag ram showing how a b ina ry
number with converted to a signed digi t representat ion. Each encoder acts l ike a ful l adder with
three inputs â€” two consecut ive B operand b i ts and a s igned d ig i t carry in . I ts outputs are a
s igned d ig i t and a s igned d ig i t car ry out . (c) A c i rcu i t that mul t ip l ies a s igned d ig i t BSD by a

binary bi t A.

20 HEWLETT-PACKARD JOURNAL FEBRUARY 1984

© Copr. 1949-1998 Hewlett-Packard Co.

in Fig. 6. The B operand bits are mapped into a set of signed
digits (+ 2, +1,0, -1). This representation is used in place
of B to drive an array of full adders and multiplexers.

The signed-digit representation of B has the property of
simplifying multiplication substantially. Each of the signed
digits is simple to use as a multiplier. The 0 and + 1 signed
digits act just like binary digits in the traditional multiply.
A + 2 multiple can be obtained by a one-bit left shift. A
-1 multiple takes the two's complement of the input
operand (invert and add 1). A circuit that multiplies a
signed digit by a binary bit is shown in Fig. 6c. It consists
of a 4:1 multiplexer and a full adder. Since there is a 2-to-l
compression when encoding binary bits into signed digits,
we only need half as many of these multiplier circuits.

Multiply Chip
A photograph and block diagram of the multiply chip

are shown in Figs. 7 and 8. Floating-point multiplication
is relatively simple compared to addition, so the chip has
a much more regular appearance than the adder. The major
ity of the chip area is used to perform a combinational
56-by-56-bit integer multiplication of the operand frac
tions. The circuitry in the lower left of Fig. 7 is the exponent
data path where the operand exponents are added. The
chip is 6.1 by 7.0 mm and contains about 60,000 transistors.

The A operand fraction is loaded into a register across
the top of the chip. The B operand fraction is loaded into
a register along the left side of the chip. The exponent
fields of each operand are latched into the exponent data
path at the lower left. Initially, the exponents are added

F ig . 9 . F loa t ing -po in t d i v ide ch ip measures 5 .2 by 7 .2 mm
and contains 35,000 transistors.

together and the fractions are masked to the proper preci
sion.

The B operand is encoded as described above. The A
operand drives into the central array from top to bottom
and the encoded B operand is driven across the array from
left to right. The array performs an integer multiply with
the most-significant bit of the product emerging at the lower

A E x p o n e n t H B E x p o n e n t
R e g i s t e r R e g i s t e r

A Fraction
Register

B Fraction
Register

Format Mask

Exponent
Data Path

Sign Correct

C a r r y P r o p a g a t e A d d 5 C a r r y P r o p a g a t e A d d

N o r m a l i z e (L e f t S h i f t) ! N o r m a l i z e (L e f t S h i f t)

Round (64-Bit Increment)

Generate Constant

I
Result Result

Fig. 8. The mult ip ly chip performs
a c o m b i n a t i o n a l 5 6 - b y - 5 6 - b i t i n
teger mult ipl ication of the operand
f rac t ions. The 1 12-b i t product is
n o r m a l i z e d i f n e c e s s a r y a n d
rounded to the required precision.

FEBRUARY 1984 HEWLETT-PACKARD JOURNAL 21

© Copr. 1949-1998 Hewlett-Packard Co.

or booting of a program. The self-test is a microcoded test
performed by the CPU to check the internal registers and
data paths before fetching the first pretest instruction. The
pretest is a software program written in assembly language.
When the pretest is executed, it checks the basic instruction
set, the memory, and each I/O chip. If a failure occurs, the
program will stop execution so that booting or restarting
of the system will not occur. The status LEDs are then used
to determine the nature of a failure. If the error is not fatal
and a virtual control panel (console) is present, an error
message is displayed for the operator.

Diagnostic Control System
The diagnostic control system (DCS) provides a layered

structure for loading and executing diagnostics. The struc
ture starts with the basic control module (BCM) and is
added to until a complete executable diagnostic is built
(see Fig. 1).

The basic control module contains the sections needed
to get started. These include the auto program, format
utilities, console driver, and primary load device driver.
BCM also contains a basic test that is similar to the pretest
and is executed before configuration. This allows simple
troubleshooting in case the initial failure will not allow
BCM to execute properly. BCM is self-configuring and dis
plays the system configuration, which includes CPU type,
memory size, and I/O card identification. Also, all revision
levels of programs are displayed for operator verification.

Once configuration is completed, the auto program is
started (if selected). It loads the remaining system modules
and then starts a sequential execution of diagnostics. The
modules are MSGS for extended error messages and help
files, MAPS for memory management, and the DDL in
terpreter. The auto program is controlled by an auto file
which specifies the programs and diagnostics to be loaded
and executed. This is determined by the current configura
tion. If desired, the operator can create an auto file tailored
to a system's specific needs.

BCM also contains a linking loader which allows efficient
use of memory. Programs and drivers can be added without
concern for absolute address requirements. The auto pro-

Cont ro l
(for DCS)

' S t a t u s /
Queries

Operator
Interface

(Terminal)

Diagnostic Control System (DCS)

Basic Control Module (BCM)

(System Modules)

M S G S M A P S D D L D r i v e

Error Messages

Control (for Diagnostics)

Status/Queries

Kernel Diagnostic Programs
(Relocatable and DDL Sections)

Interface Diagnostic Programs
(DDL Type Only)

User-Designed Diagnostics

Fig . 1 . HP 1000 A-Ser ies d iagnos t ic cont ro l and d iagnos t ic
program structure.

gram calls the linking loader to load the system modules
and then later the relocatable diagnostic modules.

Diagnost ic Design Language
One of the main modules loaded is the diagnostic design

language (DDL) program, which is a BASIC-like interpreter.
This makes creation or modification of diagnostics by the
customer easy. The program allows direct I/O instructions,
buffer/data manipulation, and simple branching. Programs
can easily be saved for later use, or added to the auto file
for standard execution.

A debug program is also available which allows access
to the individual relocatable programs for modification.
Debug was created during the development of the diagnos
tics for use with the relocatable programs. It became a useful
tool for hardware troubleshooting and was added to the
diagnostic package.

One of the advantages of the new system is that indi
vidual tests can be written in assembler relocatable format
and then called by a DDL program. This has two benefits.
First, writing in assembler allows instruction-by-instruc-
tion control and execution, which is very necessary for
diagnostic applications. Second, DDL allows easy manipu
lation and control of the tests. The individual tests are not
burdened with message reporting, looping, or operator in
teraction; these functions are handled by the DDL program.

The question may arise, "Why design a separate system
for diagnostics? Why not use RTE?" There are two main
reasons for not using RTE as the operating system. First,
RTE assumes all hardware is functional when loaded and
executed. Therefore, before any diagnostic execution, the
system may use hardware that is failing and not even allow
execution to start. This applies mainly to the CPU (instruc
tions, interrupts, time base generator, etc.). Second, diag
nostics require full control of the system, which cannot be
allowed in RTE. For example, a system reset would cause
all current I/O operations to be aborted. The diagnostic
control system uses only hardware that has already been
checked by the self-test, pretest, and BCM basic test.

Kernel and Interface Diagnostics
The kernel diagnostics consist of the tests required to

check the basic CPU, including the base instructions, the
memory controller and array, the system functions (power-
fail, memory protect, time base generator, etc.), and the I/O
master portion of each interface (interrupts, control/flags,
and DMA). Each diagnostic contains two parts, the relocat
able program and the DDL program. The relocatable pro
gram does the in-depth instruction-by-instruction verifica
tion. The DDL program controls test execution, error report
ing and operator interaction. Each diagnostic contains sev
eral subsections and each can be individually selected and
looped.

When executed by the auto program or a run command,
the diagnostics report only a pass/fail indication. If the
operator selects an individual test for execution and an
error occurs, the complete error message is displayed. The
message contains setup parameters, results, and a pointer
to the location in the relocatable program where the test
was performed.

Interface diagnostics are written only in DDL, because

24 HEWLETT-PACKARD JOURNAL FEBRUARY 1984

© Copr. 1949-1998 Hewlett-Packard Co.

they are I O related and don't need the instruction-intensive
routines. Each diagnostic contains three sections: system
environment, special setup, and loop to device or special
access. These sections vary depending on the interface. For
the system environment test, the diagnostics are loaded
and executed without any hardware changes. Although
this is not a complete test of the interfaces, it is as complete
a test as possible. For a complete test of an interface, the
diagnostic must be run individually with test hoods and/or
necessary hardware changes. The loop to device test can
in some cases be automatic and in others run separately.
For example, the HP-IB interface diagnostic identifies de
vices and runs loopback tests where possible.

Virtual Control Panel
The virtual control panel (VCP) is a console-oriented

replacement of a hardware front panel. It provides control
and access to the CPU like a hardware front panel, that is,
it enables the operator to examine or change registers and
memory. It also allows loading of programs and control of
their execution. The interaction with the operator is im
plemented by a program in ROM which also contains the
pretest and loaders. The program is designed to use the
system console if available and configured. The console
can be local, remote using modems, or connected by a
distributed system link.

Also in ROM are the loaders for the common devices
available. The loaders can be invoked either by command
from the operator or at completion of the pretest by selec
tion of the start-up switches.

Having the pretest, virtual control panel, and loaders in
ROM and an integral part of the CPU ensures that there is
a means of loading, access, and control of the computer at
a very basic level.

The BCM console and load device drivers use the same
interfaces as the VCP. They also use similar routines. Thus
diagnostics can be loaded and controlled from the same
console, and diagnostics can be controlled from a remote
console the same as from the VCP. This also applies to the
loaders. For example, in a distributed system network, diag
nostics can be loaded and controlled from a central com
puter for testing of a remote node without a terminal or
local loading device.

Currently A-Series manufacturing uses the remote capa
bility. The diagnostics used in the field are the diagnostics
used in manufacturing. The oven testing and test stations
are connected to a central A-Series Computer by a distrib
uted system. The oven station is connected using the fac
tory data link interface, which is a multiple-drop system
with 12 test units connected to one central interface. The
test stations are connected by a distributed systems (DS)
interface which is a point-to-point connection. Using a cen
tral computer means that only one source is used for diag
nostics, all units are tested the same, the test stations can
use the same diagnostics when troubleshooting, and when
updating is required, only the central system need be up
dated.

A900 Self -Test
The A900 processor contains the most extensive micro-

coded self-test ever written for an HP 1000. Of the control

store that is reserved for the base instruction set, scientific
instruction set, vector instruction set and self-test, 25% is
used by the self-test. Self-test's primary use is as a confi
dence check every time the computer is powered up. It is
designed to exercise as much of the logic as possible, and
to detect when the processor is not functioning properly.
Because it exercises the processor so thoroughly, it is also
used in manufacturing as a debugging tool, and was used
to help debug the lab prototypes.

As explained above, all A-Series Computers contain a
macrocode (assembly language) self-test that checks the
processor when it is first powered up. Why write a micro-
coded self-test to do the same job? The microcode and
macrocode self-tests test the machine from very different
points of view. The microcode tests the processor at the
level of individual circuits, while the macrocode tests the
processor at a functional level. Each type of test has certain
advantages.

A microcoded test can be extremely thorough and effi
cient, because microcode has more control over the logic
elements that make up the processor, and because it is
specific to the family member (in this case, the A900). It
can also be very fast. This is partly because microcode can
execute more quickly than macrocode, but mainly because
of the increased efficiency of the test. The A900 microcode
self-test takes less than 0.1 second to test the entire proces
sor. Another advantage that a microcode test has over a
macrocode test is that a failure in the hardware could pre
vent macrocode from running at all, while allowing the
microcode to execute well enough to report the failure.

The main limitations of a microcoded test are its size
and its crude output methods. The A900 self-test has nine
LEDs available with which to pass information to the out
side world. It uses these LEDs to signal that there is a failure
somewhere in the processor, and to indicate which board
the failure is probably on. Because of the limited amount
of microcode storage, the test must be as compact as possi
ble. This limits its complexity. In the A900, fault detection
was considered the primary goal. While fault isolation is
theoretically easier to attain with microcode than with mac
rocode, space limitations prevented the A900 self-test from
being as thorough in isolating faults as it is in detecting
them. While it attempts to identify which board is causing
the failure, it is only right about 90% of the time.

About 1.5% of the A900 processor hardware is devoted
to self-test. The majority of this is made up of status and
control registers. Status registers allow access to internal
signals that would otherwise be difficult to observe, and
control registers allow the self-test to put the processor into
states that would otherwise be difficult or impossible to
reach. Control registers are very useful, for example, in
testing the cache memory, which is normally transparent
to the rest of the processor, or in testing the error detection
and correction chips on the memory controller, which have
their own built-in diagnostic capabilities.

The most useful piece of self-test hardware in the A900
is a timer that generates interrupts at the micromachine
level. This counter generates an interrupt eight cycles after
it is turned on, and freezes certain status registers. This
allows the self-test to examine the state of the machine
when the timeout occurs, and allows it to escape from

FEBRUARY 1984 HEWLETT-PACKARD JOURNAL 25

© Copr. 1949-1998 Hewlett-Packard Co.

M M B I

RTE-A
Mu l t i use r
System

mm^m

â€¢Session ID
â€¢User ID
â€¢Directory
â€¢Capability
â€¢Set of Own

Programs

â€¢Session ID
â€¢User ID
â€¢Directory
â€¢Capability
â€¢Set of Own

Programs

â€¢Session ID
â€¢User ID
â€¢Directory
â€¢Capability
â€¢Set of Own

Programs

â€¢Session ID
â€¢User ID
â€¢Directory

Capability
â€¢Set of Own

Programs

Fig. 2. RTE-A provides a separate environment for each user.

using networking.
In addition to hierarchical directories and networking,

the RTE-A file system provides other features to help appli
cations programmers. Some examples are:
â€¢ Files are time stamped to indicate when they were

changed, and when they need to be backed up.
â€¢ Groups of files can be selected through wild-card selec

tion, such as all names beginning with F.
â€¢ Following an errant purge operation (which removes

files), it is possible to do an unpurge to recover a precious
file.
Long-time RTE users will have spotted a number of new

features, and may be wondering how these fit in with ap
plications developed for older RTE systems. The answer
is that RTE-A retains compatibility with previous file sys
tem applications, although the applications may need
changes to take advantage of new features.

Multiuser Facil ity
The multiuser facility of the RTE-A operating system

provides an environment in which many users can simul
taneously use the system and access the system resources
without interfering with each other. Each user has the ex
perience of being the only user, and need not be concerned
about the other users on the system (Fig. 2). The RTE-A
multiuser system accomplishes these goals by providing
an environment where users are protected from each other
by user identification, by separate file directories, by the
versatile Command Interpreter (CI), by having separate sets
of user programs, and by logical sharing of system processes
(system programs). The multiuser software includes the
Command Interpreter and three other system programs
called Promt, Logon, and Users.

In the RTE-A multiuser environment, each user is re
quired to log onto the system with a logon name and option
ally a password (up to 16 characters). The logon function
is to identify and verify users who have authorized access
to the system. For access to the system, a user must have
a configuration file and an entry in the masteraccount file
(Fig. 3). The masteraccount file is a protected system file
containing the names of all users. This file and the users'
configuration files are created by the Users system program
based on information entered by the system manager.

For legal users, the logon process sets up an entry in the
session table for the duration of the logon period. This
session entry describes the resources and the environment
in which the user is allowed to operate. At the end of the

logon process, the system will run a preselected user inter
face, generally the Command Interpreter or the user's appli
cation program. In addition, the multiuser environment
accepts remote programmatic logon requests and can also
operate in a noninteractive session mode in which pro
grams can run in the background until completion.

If error logging is used, the system is set up with an error
logging file. The logon process will record the name of
every attempted logon. The error log file thus provides
another level of protection for monitoring of system activ
ities.

The system allows the creation of two levels of users.
Super users are allowed complete access for installing and
upgrading the system. General users are allowed a more
controlled access to the system.

The multiuser environment is easy and flexible to set up
and administer. It can be set up with the services of a
system manager in a very controlled atmosphere where
security and tampering are a major concern. On the other
hand, the system can be set up in a software laboratory
where administration can be maintained by the engineers
without the services of a system manager. Adding, main
taining, and modifying users for the multiuser system are
efficiently handled by the Users system program.

User Interface
The application programmer's main contact with RTE-A

is through the system Command Interpreter. This is a pro
gram that manages files, controls when programs run, and
makes the facilities of RTE-A available to the user sitting
at a terminal.

The Command Interpreter (which is called CI) tries to
keep the user's life simple. It has a set of easy-to-use com
mands for operations such as copying files and running
programs. In most cases the user types the right command
correctly, and CI performs the requested operation, con
firming it with a message such as "Copying ABC to

Programs
in

Memory

Session Table
in

System Memory

Masteraccount
File

User
Configuration

File

Fig. 3 . For access to the system, a user must have a conf ig
urat ion f i le and an entry in the masteraccount f i le. The config
urat ion f i le is used to set up the in i t ia l session table entry.

28 HEWLETT-PACKARD JOURNAL FEBRUARY 1984

© Copr. 1949-1998 Hewlett-Packard Co.

XYZ...OK." In some cases an error occurs, and CI tries to
explain the situation with a message such as "No such file
ABC." The user can then make use of the local editing
features of HP terminals to correct and reenter the line
without retyping a whole command line.

When a command seems mysterious, or when it is not
obvious which command to use, RTE-A provides an "on
line manual," or help facility, that explains the functions
of the various commands and gives examples of their use.

CI maintains a command stack that allows users to list,
edit, and reissue previous commands. Also, CI may be di
rected to access a file as the source of commands. When
the command file is exhausted, CI returns to interactive
mode.

Sometimes a user wishes to interrupt CI while it is
executing a command, such as listing a long file. Since CI
is already busy processing the original command, it is not
available to process the interrupting command. Under
these circumstances, the Command Master program (CM)
is invoked. CM is an exact copy of CI which runs at a high
priority and contains the identical command set, but exe
cutes only one command and exits. When a user strikes a
terminal key and a session is already active, Promt displays
a CM> prompt and schedules CM. In the example of inter
rupting a long file listing, the break command could be
used to cause CI to stop listing.

Sometimes even the CM program can be busy when a
key is struck. In this case, Promt displays a System> prompt
and schedules the Logon program to process the user's
response. In this special mode, Logon accepts only com
mands that the operating system itself can process, such
as off, break, and run.

In addition to the Command Interpreter, the user has
approximately thirty utility programs available as a part of
RTE-A, plus other programs available with HP 1000 soft
ware packages. These programs handle a wide variety of
operations, including file backup and system status report
ing.

Multiuser Implementation
There is a single copy of the Promt, Logon, and Command

Master programs in the system. The operations of these

programs are based on program-to-program class I/O func
tions of the RTE-A operating system. Promt is scheduled
when a user interrupts the system from a terminal. Promt
performs a class read on the input and determines whether
to pass it to the Logon program or to the Command Master.
Promt makes its decision by knowing if there is an interac
tive user on the terminal. If no one is on the terminal,
Promt passes the input to the Logon program for logon
processing. If there is a user on the terminal, Promt knows
that CI is busy and passes the input to CM for execution.
The Logon and CM programs are usually suspended until
they receive a message from Promt. The RTE-A system
wakes up the Logon program or the Command Master when
Promt posts a buffer to be processed. The Promt and Logon
programs contain many features that allow them to know
when to perform multiuser system initialization, user
logon, error detection, error correction, and special han
dling of the system on certain states and conditions. For
example, if a needed system process is missing from the
system, the Promt program automatically restores a work
ing copy from the /PROGRAMS directory.

Features of the RTE-A multiuser environment include
automatic logoff of users, noninteractive background pro
cessing, and remote programmatic logon. A user does not
have to log off explicitly; the multiuser module in the sys
tem does this automatically. The system knows that the
user has exited by using a program count in the user's
session table. This count is incremented every time a pro
gram is created for the user. Correspondingly, the count is
decremented when a program is terminated. When the
count reaches zero, indicating that the user has exited from
all programs including CI, the user is logged off.

To leave the terminal while continuing to execute current
programs, a user can exit from the Command Interpreter
into the noninteractive background session mode. This al
lows the remaining programs to run to completion, yet
frees the terminal for another user. This background session
will be logged off when the program count for the session
is decremented to zero.

Another feature of the RTE-A multiuser facility is pro
grammatic logon from remote systems. This feature allows
users from other computer nodes to create a session to be

32767

zâ€” Â»â€¢
(Bounds
Register)

32767 ;

Logical Variables
and

Parameters
Stack Frame Marker

1024
1023

0
Logical

Address
in

Words

Static Data and
Non-CDS Code

Data Space

Current
Stack
Frame

Previous
} S t a c k

J Frame(s)

Code for
Current Segment

P â€” Â»â€¢
(Program
Counter)

1024
1023

0
Logical

Address
in

Words

Current Segment
Number

Used for Mapping
Information
Code Space

Fig. 4 . Code and data separat ion
(CDS) prov ides separate memory
part i t ions for code and data. Local
v a r i a b l e s a r e a c c e s s e d u s i n g a
stack frame.

FEBRUARY 1984 HEWLETT-PACKARD JOURNAL 29

© Copr. 1949-1998 Hewlett-Packard Co.

New Software Increases Capabilities of
Logic Timing Analyzer
An upgraded opera t ing so f tware package increases the
capabil i t ies of an already powerful t iming analyzer system
to inc lude s tat is t ics , marked events, postprocess ing, and
s torage of captured t race data.

by David L. Neuder

BEING ABLE TO UPGRADE the operating software
of an instrument aids in keeping a product in the
forefront of a competitive market. The addition of

new software features should be considered whenever they
can make a significant contribution to the instrument. In
examining the timing analyzer market, it was clear that
there were some functions needed that traditional logic
analyzers could not perform. This was the impetus for pur
suing an increased feature set for the HP 64600S Logic
Timing Analyzer, a subsystem used in HP's 64000 Logic
Development System.1

The new features are primarily associated with process
ing captured trace data for specific conditions, and then
either calculating statistics or altering analyzer operation
based on the conditions found. These features allow results
to be determined more rapidly by providing more process
ing power to the user, and subsequently reducing the
number of command operations and the amount of data
manipulation required to determine a result. These features
are all implemented through software changes only. There
are no changes to the existing hardware and consequently,
these features can be added at a minimal cost to the owner
of an HP 64600S.

To review, the HP 64600S Timing Analyzer is an instru
ment system dedicated to the primary task of tracing signal
flow on eight to sixteen channels simultaneously.2 This is
accomplished by asynchronously sampling the input chan
nels at selected speeds between 2 Hz and 400 MHz and
producing a timing diagram as output. A main feature is
precise sampling of data channels with respect to time (low
skew between channels), which allows a high degree of
resolution of displayed waveforms. This allows signal re
lationships such as edges, levels, and sequences to be
examined in fine detail.

What Users Wanted
Ideas for new timing analysis features came from market

ing research, from analysis of competitive analyzer prod
ucts, and most important, from the users of the 64600S.
One enhancement suggested was the ability to find a
specified event in trace memory. Users reported that scroll
ing the screen to locate a particular event visually was a
time-consuming process; they suggested that the analyzer's
microprocessor be put to work to find the specified events.
Users also requested an automatic time interval function.

They wanted to make a series of measurements of the du
ration of a pulse or the time between two edges of two
signals. Discussion about simplifying the sequence of steps
and commands for time interval measurement led to an
idea of automatically marking the time interval by assigning
events (patterns with transition or duration qualifications)
to each of the 64600S's existing interval cursors or marks.
These events would be found after each execution of the
analyzer and the appropriate interval would be marked
and measured. Then, in addition to accumulating a series
of measurements for the interval, a statistical package could
be added to determine the maximum, minimum, mean,
and standard deviation of the interval values. Other users
requested a halt for the automatic interval measurement
whenever an interval exceeds or is less than a specified
value so that the conditions associated with the out-of-
specification interval could be studied.

Another feature users wanted was a count of the number
of pulses between specified start and stop points on a tim
ing trace. The 64600S's x and o markers could be used for
the start and stop points and a new mark added to be
located on each occurrence of a specified event. Thus, each
occurrence of the rising edge of a pulse could be marked.
Then the number of marks or pulses could be displayed
and accumulated into statistics for a series of runs. The
ability to halt the measurements if the number of counted

Fig. 1 . T iming d iagram d isp lay for f ind ing the r is ing edge of
a signal labeled CLOCK.

32 HEWLETT-PACKARD JOURNAL FEBRUARY 1984

© Copr. 1949-1998 Hewlett-Packard Co.

events exceeds or is less than some value could then be
used to study out-of-specification counts.

It was found that users also need to convert an asynchro
nous timing trace list of captured state flow into a
pseudosynchronous listing of the actual state flow. A de
sired result would be a listing of the state flow and the
relative time between states without the duplicate and
transition samples associated with asynchronous sam
pling. One approach takes advantage of the fact that most
state machines have a clock associated with the data. The
idea is to probe both data and clock lines with a timing
analyzer and produce a trace. The trace is then presented
by storing only one sample for each transition of the desig
nated clock. This stored sample is some specified number
of samples away from the clock transition to ensure that
the proper setup time of the clock is met. The result is a
listing of clocked states. Of course, the sampling rate of
the timing analyzer must be high enough to ensure that
the input channel designated as the clock is sampled in
both its high and low states. A second approach to produc
ing state flow assumes that each state exists for some min
imal amount of time. Then, by storing one sample for each
state that lasts longer than this minimal time, a trace list
can be produced that removes duplicate and transition sam
ples, leaving only the state flow and the relative time be
tween states.

Storing measurement data for later analysis would give
the user the ability to store measurements at one site (test
site) and do the analysis of the stored measurements at

another site (home site). This idea led to the concept of
visually comparing two stored measurements or comparing
a stored measurement to a current measurement on the
same screen at the same time.

After considering these and other user needs, an updated
software package for the 64600S was developed. The new
features provided by this package include:
â€¢ Finding specified events in the data acquisition memory
â€¢ Automatic marking of specified events in data acquisi

tion memory
â€¢ Calculating statistics on marked events
â€¢ Using marked events to qualify execution rerun
â€¢ Processing asynchronous trace list data into pseudosyn

chronous state listings
â€¢ Storing measurement data along with the system config

uration
â€¢ Visually comparing stored and current measurements.

Bui lding on Ear l ier Commands
Adding the new features to the existing 64600S software

while still retaining the simplicity and ease of use of this
timing analyzer was a major design goal. This goal was
achievable because the commands in the original version
of the 64600S software allow for later expansion. For exam
ple, the keyword find was implemented in the original ver
sion and the new find features were implemented by ex
panding the syntax for this command. The original
keyword performed a subset of the most recent version's
functions, including finding the trigger, which was always

Test Mark
Routine

P A T T E R N _ F O U N D _ C O U N T

P A T T E R N . F O U N D . C O U N T
a G R E A T E R J T H A N . C O U N T

Yes

Store sample location
for leaving and

iess-than qualifiers
Enable al l marks that
rely upon this mark

PATTERN_FOUND_COUNT = 0

Reset GREATER.THAN.COUNT

No
Store sample location

for entering, glitch,
and greater-than qualif iers

Enable al l marks that
rely upon this mark

N o

Set
GREATER TMAN.COUNT

= 10000

End test mark
routine

Fig. 2 . F lowchar t o f the sof tware mark ing operat ion.

FEBRUARY 1984 HEWLETT-PACKARD JOURNAL 33

© Copr. 1949-1998 Hewlett-Packard Co.

Captured Data Storage
and Retrieval

In implement ing the new sof tware features of the HP 64600S
Timing Analyzer, we were faced with a number of cri t ical software
concerns. One key concern was the abi l i ty to display a waveform
f rom s to red da ta . Because the inpu t hardware o f the ana lyzer
cou ld no t be re loaded w i th the p rev ious l y cap tu red da ta , and
s ince we did not have suf f ic ient RAM avai lable to store the mea
surement , i t became apparent tha t the s tored data wou ld have
to reside externally on a hard or flexible disc. Various data storage
approaches were s tudied, but an approach that makes the data
l ook s im i l a r t o t he i npu t da ta was f i na l l y se lec ted . Th i s s t ruc
tu re i s bas i ca l l y a se r i a l channe l - t o -channe l f o rma t , wh i ch a l
though not ideal ly sui ted for decoding into a t race l is t , is Â¡deal
for t iming diagram display and disc space ut i l izat ion. The format
s t o r e s 1 6 c h a n n e l s o f d a t a , 2 5 6 w o r d s p e r c h a n n e l , 1 6 d a t a
points per word, where the least-signif icant bit is the earl iest data
and the most-signif icant bi t is the latest data. The desired format
for the t race l is t , however, is an array of 4096 samples, 1 6 b i ts
per sample, one b i t per channel , where the least -s ign i f icant b i t
is channel 0 data and the most-significant bit is channel 1 5 data.

One p rob lem in read ing the da ta f rom the d isc memory was
t ha t each t ime t he use r sc ro l l ed t he d i sp l ay sc reen , t he d i sc
would have to be accessed for more data. This was resolved by
unloading enough data to a l low the user to scro l l through three
p a g e s o f t i m i n g d i a g r a m a n d f i v e p a g e s o f t r a c e l i s t b e f o r e
ano ther d i sc access i s requ i red . When more da ta i s requ i red ,
another th ree to f ive pages o f in format ion is un loaded wi th the
cur rent d isp lay page be ing the center page.

Another key issue was to find/mark a specified event in a timing
d iag ram o r t r ace l i s t as qu i ck l y as poss ib le us ing e i t he r da ta
acqu is i t ion memory or s tored data . In f ind ing such an event , a
search occurs sample by sample in a ser ia l fash ion across a l l
channels. Normally, this would seem to be an easy process. But,
s ince the t iming analyzer data is stored on a channel-by-channel
b a s i s a s o u t l i n e d a b o v e , t h e d a t a o f a g i v e n s a m p l e o n o n e
channel must be combined wi th the data f rom the same sample
across a l l o ther channels . Th is bu i ld ing o f a 16-b i t word to rep
resent the data across a l l 16 channels is a b i t -manipulat ion pro
cess which is s lowed by the required channel-contro l led access
to data acquisi t ion memory. Ini t ial est imates of bui lding this word
4096 t imes (as would be required in a total memory search) were
on the order of 1 .5 s. This amount of t ime included no associated
ove rhead , bu t i t was fe l t t ha t t he max imum t ime cons t ra in t o f
about 3 .0 s to f ind/mark spec i f ied events would be met .

However , ano ther concern a rose . S ince the s to red measure
ments were kept on the disc also in a channel-by-channel format,
i t would be even more d i f f icu l t and s low to bui ld a sample word
a c r o s s a l l 1 6 c h a n n e l s d i r e c t l y f r o m t h e d i s c , b e c a u s e e a c h
c h a n n e l r e c o r d w o u l d h a v e t o b e r e a d o n c e t o e x t r a c t e a c h
sample word â€” a to ta l o f 4096 t imes. Th is process was never
at tempted. Hence, i t was apparent that the disc data would have
t o be un loaded i n to p rocesso r RAM be fo re t he samp le wo rds
we re bu i l t and t he sea rch f o r even t s cou ld occu r . Bu t aga in ,
RAM space was at a premium and 4K of space just did not exist .
The solut ion was to designate another over lay (see box on page
38) to the f ind and mark ing process. This over lay returns to the
m a i n o r o v e r l a y t h e l o c a t i o n s o f t h e s p e c i f i e d e v e n t s o r
found events . In th is des ignated over lay , there ex is ts p lenty o f
room to un load the da ta comple te ly f rom the d isc s to rage and
subsequent ly bu i ld the sample words. In addi t ion, by us ing th is
over lay st ructure and unloading data acquis i t ion memory before
bu i ld ing a sample word , i t was found tha t 4096 samples cou ld
be bui l t in about 200 ms, a s ign i f icant improvement over 1 .5 s !

Qualifying Data
Timing analyzers incorporate a fairly extensive set of

triggering capabilities for examining circuit characteristics,
but they are inherently limited in certain triggering capabil
ities such as occurrence counting, sequential triggering,
and duration triggering with resolution dependent on the
sample period. One approach to expand triggering capabil
ities is through processing the captured data with internal
software to search for trigger-like conditions. These condi
tions qualify the current captured data by inhibiting further
collection of data. The 64600S can qualify the captured
data in four ways to determine if another execution is to
occur. These qualification procedures include duration
qualify, count qualify, sequence qualify, and run number
qualify.

Duration qualify halts repetitive execution when a time
interval marked by x and o is greater than or less than a
specified amount. Count qualify operates in a similar man
ner, except that the number of marks between x and o is
counted and compared with a qualify number. When the
count is greater than or less than the reference number
specified, the execution of the analyzer is halted. Sequence
qualify searches for a sequence of up to four marks between
the x and o marks, and halts execution when the sequence
is found. A typical sequence qualify command might be
halt_repetitive_execution when_sequence_x_o_is mark_a then mark_
b then_not mark_c. This halts the repetitive execution when
the sequence is found anywhere between mark x and mark
o. Remember that the time, count, and sequence qualifica
tion occurs after the trace data is captured and the analyzer
is paused (not acquiring data). Therefore, if a specified
event occurs while the analyzer is paused, the analyzer
cannot respond to that stimulus. But when the analyzer is
started again, it will again be capable of storing the stimulus
and again be able to search for the halt condition.

Postprocessing Data
A timing analyzer typically presents data in the form of

a timing diagram. An alternative display method is a trace
list. Newer analyzers can have trace lists of more than 4K
samples of data. Isolating information from a list of more
than 4K samples can be a difficult task. Therefore, the new
64600S software adds a series of new commands to reduce
the amount of data presented and at the same time, retain
and make clearer the significant information. These new
commands allow the user to observe marked samples, state
flow, and clocked state flow after every execution.

The new command process_for_data greater_than (TIME) (time_
unit) presents only one sample for each sequence of samples
with the same data that exceeds a specified time duration.
As an example, consider the process of trying to look at a
high-speed 7-bit-wide data channel labeled DATA running
at 40 MHz. Assume that the signals on DATA are stable for
at least 20 ns (the signals take 5 ns to change states). In
this example we will set up the timing analyzer to sample
every 5 ns (200 MHz) by entering the command sample
period_is 5 nsec. Fig. 4a is a typical listing after the analyzer
executes and before postprocessing. Now, by entering the
command process_for_data greater_than 10 nsec on DATA, the
trace list is processed into a more readable form showing
each DATA state as shown in Fig. 4b. Note that only one

36 HEWLETT-PACKARD JOURNAL FEBRUARY 1984

© Copr. 1949-1998 Hewlett-Packard Co.

Fig. marking microprocessor the commands given in the text, a timing diagram marking four microprocessor
states l ist be displayed (a). Using the new display Jor_data marked command, a trace l ist of only

the marked samples can be d isp layed (b) .

sample of each state is shown and that the relative time
between these samples is also displayed.

Another new command, process_for_data sampled (SAMPLES)
samples_(bef ore_af ter) (pos_neg_transition)_on (LABEL), reduces the
data in the trace list by only storing one sample for each
transition on a specified channel. With this command, the
user selects one of the asynchronously captured inputs as
a clock. A clock edge and a number of samples before or
after the clock are specified. This allows the user to specify
a setup time that matches the characteristics of the data
under test. The analyzer then processes the clock signal
for the specified transition and enters the specified sample
in the trace list. As an example, again consider the 7-bit-
wide high-speed DATA channel. Assume that the channel
has a signal SYNC that changes polarity with each valid
DATA. Now, if we assume that DATA was valid for at least
6.5 ns before the positive or negative edge of SYNC and at
least 1.5 ns after the same transition, we could set up a
command process_for_data sampled 1 sainples_before pos_or_neg_
transition_on SYNC. Note that we are again assuming the same
sampling period (5 ns) as the previous example. The trace
list of Fig. 4a will then be processed to produce the trace
list shown in Fig. 4c. The timing analyzer has stored each
sample that occurs one sample before the positive or nega
tive transition on the SYNC line.

Determining the mÃ¡ximum usable data rate of this feature
places requirements on the signals that constitute the data
and the clock. The clock must be sampled once high and
once low, and therefore, must be present for at least one
sample period plus the skew on a single channel (5 ns +
1.5 ns = 6.5 ns for both high and low levels). This gives a
minimum clock period of 13 ns (maximum clock rate of
77 MHz) when sampling the data at 200 MHz. To sample
the data accurately one sample before the clock, it must be
present for a minimum of 8.0 ns. This results from a setup
time equal to one sample period plus skew, and a hold
time equal to skew (5 ns + 1.5 ns + 1.5 ns = 8 ns). There
fore, with a minimum clock period of 13 ns and a minimum
required stable data time of 8 ns, the maximum effective
sampling rate is 77 MHz with 5 ns available for the data
to change. For a sixteen-channel timing analyzer with a
worst-case skew of 3 ns (cross-pod channel-to-channel
skew), the above analysis yields 77 MHz with 2 ns available
to change data or 50 MHz with 9 ns available to change data.

Storing Data and System Configurat ion
Earlier analyzers could store the current setup, but rarely

could they store the captured data. The 64600S Timing
Analyzer now allows the user to store both the current
configuration and the captured data in a file for later

Fig . 4 . l i s t Trace l i s t o f h igh-speed data channe l be fore pos tprocess ing , (b) Trace l i s t o f (a)
p rocessed fo r da ta g rea te r than 10 ns on the DATA l ines , (c) T race l i s t o f (a) p rocessed fo r

data SYNC. sample before a positive or negative transition on SYNC.

FEBRUARY 1984 HEWLETT-PACKARD JOURNAL 37

© Copr. 1949-1998 Hewlett-Packard Co.

Overlay Memory Structure

The HP 64600S Timing Analyzer has a processor RAM space
of approximately 22K words, but the code to run the analyzer is
approximately 95K words. Therefore, an overlay structure is used
wi th a resident port ion of code of 6K words and an over lay area
o f 16K words . The res iden t code con ta ins the da ta s t ruc tu res
that def ine the analyzer conf igurat ion, the u t i l i ty rout ines used
by al l over lays, and the rout ines that control the over lay loading
and execut ion. Typ ica l ly , each over lay was par t i t ioned to cor re
spond wi th each d isp lay mode of the t iming analyzer , where a l l
t he commands assoc ia ted w i t h a pa r t i cu la r d i sp lay mode a re
immediate in response (no addi t ional over lays must be cal led to
execu te the command) . W i th the add i t i on o f t he new mark ing
funct ion, th is is no longer t rue. Because not enough processor
RAM space was avai lable to unload the data acquisi t ion memory
or stored data, a separate overlay is needed just for the marking
func t ion . Thus , whenever a mark command i s execu ted o r the
newly acquired data is to be marked, the current display over lay
i s s w a p p e d o u t a n d t h e m a r k o v e r l a y i s p l a c e d i n p r o c e s s o r
RAM. When marking is f inished, the swapped-out display overlay
is re insta l led and i f required, the d isplay is then updated.

One prob lem which had to be so lved dur ing the swapp ing o f
over lays occur red wh i le a user was execu t ing a measurement
in repet i t ive mode where mark ing was requested. In th is mode,
a user would st i l l l ike to be able to enter commands even though
the code tha t responds to the commands i s swapped ou t 50%
of the t ime. Prob lems arose in that the command l ine would be
in i t ia l ized each t ime the d isp lay over lay was swapped back in .
Th i s made i t d i f f i cu l t t o execu te even s imp le commands . The
prob lem was so lved by modi fy ing the s t ruc ture o f the over lays
so that 1) al l variables of the display overlay are in high port ions
o f memory so tha t mark ing ove r lay does no t i n te r fe re , and 2)
modi fy ing the nature of the over lay swapping such that the ca l l
t o t he mark ing ove r lay i s l i ke a ca l l t o a p rocedure and co r re
spondingly, the return to the display over lay is d i rect ly af ter the
ca l l . Th is leaves a l l the current var iab les of the d isp lay over lay
untouched by the marking over lay. Therefore, any command that
a use r en te rs wh i l e the d i sp lay ove r lay i s swapped ou t i s l e f t
i n t ac t . Th i s g i ves t he use r t he imp ress ion t ha t t he command
response i s a l i t t l e s lower because o f the code swapp ing , bu t
other than that , everyth ing appears normal .

_ d n p U u S Y N C t h e n c o m p a r e . * i I t S Y N C t h e n D f l T f l . 0 t h e n
t U T f l . l t h e n c o a p a r e - f l i e D f l T f l . l t h e n D f l T f l . 2 t h e n c o m p *

analysis. Further, this data is stored in such a way that
when the analyzer is reloaded, the data can be processed
as if the user had never left the analyzer or the analyzer
had never been turned off. In short, the full analysis capa
bilities of the find, mark, process, and display commands
are available to be used on the stored data. The command
configuration loadjrom (FILE) reloads the configuration and
the associated data. Advantages of this capability include
being able to process data captured at a remote site and to
document data and analysis, and the convenience of being
able to analyze a measurement later.

An additional and important advantage of being able to
store data is that it can be retrieved and displayed concur
rently with freshly captured data. This allows a stored cor
rect waveform to be placed on the screen and compared
with a currently captured suspect waveform. The required
sequence of commands to set up this feature are listed
below, assuming that the file FILE contains a configuration
that is similar to the current analyzer configuration and
that FILE also contains stored data.

compare_file_is (FILE)
display (display_item) then (display_item) then

(display_item) = LABEL)
= compare_file (LABEL)

Note that to display stored data concurrently with newly
captured data, the trace specifications must agree in some
aspects â€” mode, trigger position, and sample period. The
user can completely specify the ordering of the data in both
the timing diagram and the trace list. A typical command
might be display SYNC then comparejile SYNC then DATA .0 then
comparejile DATA .0 then DATA.l then comparejile DATA.l then
DATA.2 then compare file_DATA.2. This command produces a
timing diagram as shown in Fig. 5. Note that the character
x follows each of the labels that come from the specified
compare file. Also note how the traces can be visually
compared to find differences. All processing commands
work in reference to the currently captured data and will
only process the compare file to the extent that the same
sample number that is processed in the current data will
be processed in the compare file. This can be useful in
comparing state flow of one trace with state flow of another,
if both were captured with the same trigger.

Acknowledgments
Joel Zellmer contributed invaluable assistance in design,

design review, and debugging all of the new 64600S soft
ware. Ted Hanna, John Scharrer, and Marvin Wilson also
contributed to the feature design process. Bryce Goodwin
contributed valuable software support.

References
1. Hewlett-Packard Journal, March 1983.
2. J.A. Zellmer, J.E. Hanna, and D.L. Neuder, "A Modular Timing
Analyzer for the 64000 System," ibid.
3. Time IntervaJ Averaging, Application Note 162-1, Hewlett-
Packard Company.

Fig. 5. T iming diagram display i l lustrat ing new compare func
tion.

38 HEWLETT-PACKARD JOURNAL FEBRUARY 1984

© Copr. 1949-1998 Hewlett-Packard Co.

Authors
February 1984

D o n M . C r o s s
Don Cross jo ined HP 24

1 years ago as an assembly
I technician, then worked his
Ã way up through a variety of
' t i t les, including test techni-
I c ian, test equipment de-
j s igner, design engineer,
I and pro jec t manager . He
I was pro ject manager for
I the A700 Computer . A

member of the I EEE Computer Society, He's a na
tive of Phoenix, Arizona, and now lives in Los Altos,
Cal i forn ia . He 's marr ied, has two ch i ldren in co l
lege, and h is hobb ies are woodwork ing and
stained glass.

C r a i g B . C h a t t e r t o n
With HP s ince 1976, Craig
Cha t te r ton has been a de
velopment engineer for HP
1000 F-Ser ies Computers
and served as project man
ager for the A900 Comput
e r ' s m i c r o c o d e a n d d i a g
nost ics. He received his

â€¢ BSEE and MSEE degrees
' f rom the Univers i ty of I l

l ino is in 1975 and 1978, and is a member of the
IEEE and the ACM. Now a res ident of San Jose,
California, Craig was born in Hinsdale, Ill inois. His
interests include playing the piano, singing with the
HP chorus, and sai l ing his Laser.

Mar lu E . A l lan
Now a project manager for
manufactur ing appl icat ion
software, Marlu Al lan previ
ous ly served as pro ject
manager for deve lopment
o f the A900 CPU. A

, graduate of the Universi ty
o f Mich igan, she received
her BS degree in computer

I engineer ing in 1977 and
joined HP soon afterwards. She's married, l ives in
San Jose, California, and enjoys sports, especially
gol f , tennis, and basketbal l .

N a n c y S c h o e n d o r f
^ ^ â € ¢ " â € ¢ ~ ~ - ~ ~ N a n c y S c h o e n d o r f r e

ce ived her BS degree in
computer sc ience and
mathemat ics f rom Iowa
State University in 1975.
She began her HP career
in 1976 as a so f tware p ro
duct ion engineer, then con
tr ibuted to the development
of the RTE-4B and RTE-XL

operat ing systems and served as project manager
for RTE-A. 1 and RTE-A. In 1 980 she received her
MBA degree f rom the Univers i ty of Santa Clara.

m

Now a sect ion manager wi th HP's Data Systems
Divis ion, she l ives in Los Altos, Cal i fornia, has a
one-year o ld daughter , and is marr ied to another
HP employee. She enjoys cooking, water sk i ing,
t ravel ing, and spending t ime wi th her fami ly .

Dav id A . Fo t l and
. Dave Fotland is a native of

Cleve land, Ohio, and a
graduate o f Case Western
Reserve Un ivers i ty . He re
ceived both a BS degree in
e lect r ica l engineer ing and
an MS in computer en-

Igineering in 1979, and
joined HP the same year as
an R&D engineer in the

Data Systems Division lab. He designed one of the
A700 processor boards and worked on RTE-A.
Dave is married, lives in San Jose, California, and
plays vol leybal l and go.

Les l ie E. Net !
Leslie Neft graduated from
Carnegie-Mel lon Universi ty
in 1978 wi th a BS degree
in electr ical and biomedical
engineer ing. For the next
f ive years or so, she de-

I signed hardware â€” includ
ing one of the A700 proces
sor boards â€” and wrote
drivers as an R&D engineer

wi th HP's Data Systems Div is ion. She's now in
technical marketing. Leslie was born in Pittsburgh,
Pennsylvania, and now l ives in Cupertino, Califor
nia. Her interests include volleyball, bicycling, and
ballet.

Lee S . Monc ton
1 Lee Moncton is a project
I manager in HP's Data Sys

tems Div is ion R&D lab.
' Ã With HP since 1979, he

Ã contr ibuted to the design
f of the HP 1 000 XL memory

_ / , a n d t h e A 7 0 0 f l o a t i n g - p o i n t
^ f ^ M j ^ L b o a r d a n d m i c r o c o d e . B e -

I f o r e j o i n i n g H P , h e d e -
R l ^ ^ H H I s i g n e d m i l i t a r y e l e c t r o n i c s

for more than two years . He 's a member o f the
IEEE. Born in Williamsville, New York, Lee attended
Rensselaer Polytechnic Inst i tute, graduat ing wi th
a BSEE degree in 1976. He rece ived h is MSEE
from Pennsylvania State Universi ty in 1979. He
l ives in Santa Clara, Cal i forn ia, and enjoys vol
leybal l , sai l ing his Hobie Cat, and ski ing.

1 2 n ^ = ^ = ^ ^ =
D o n a l d A . W i l l i a m s o n

Don Wi l l iamson received
his BSEE degree from Case
Weste rn Reserve Un iver
s i ty in 1973 and his MSEE
from the Universi ty of
I l l inois in 1975. He's a
member of the IEEE and
has been wi th HP s ince
1975, contr ibut ing to the
des ign of the 7902 Disc

Drive control ler and various processors, including
two boards o f the A900 Computer . He 's now a
ful l - t ime HP fel low at Stanford Universi ty, working
on an advanced eng ineer ing degree . A res iden t
of Cupert ino, Cal i fornia, he is marr ied, has a
daughter , and works on o ld cars for re laxat ion.

B r u c e A . T h o m p s o n
Bruce Thompson has been

â€” designing f i rmware and
operat ing systems for HP
since 1980. He contr ibuted
to the f i rmware design of
the A900 Computer and is
named as an inventor on a

> ^ i . g ^ H p a t e n t a p p l i c a t i o n f o r t h e
\ | c 5 a 1 A 9 0 0 m i c r o m a c h i n e a r -

T I H i l c h i t e c t u r e . B o r n i n
Waukegan, I l l ino is , he received h is BS degree in
electrical engineering from the University of Il l inois
in 1 979. He's married, lives in San Jose, California,
and enjoys sk i ing, sai l ing, scuba div ing,
h ik ing, running, and b icyc l ing

S teven C . S teps
Steve Steps received BS
degrees in e lec t r i ca l en
g ineer ing and computer
science f rom Kansas State
Univers i ty in 1975 and an
MS degree in e lectr ica l
engineer ing f rom the Uni-
/ersity oÃ Southern CaHfoi
n ia in 1976. He jo ined HP
in 1 976, contr ibuted to the

cache design of the HP 3000 Series 64 Computer
and the cache and I/O design of the A900 Comput
er, and served as project manager for the A600 +
Computer . His A900 work resul ted in f ive patent
appl icat ions. Steve is act ive in h is church and
in the Amer ican Rose Society and the San Jose
Ast ronomical Associat ion. A nat ive of Topeka,
Kansas, he now l ives in San Jose, Cal i fornia,
and is marr ied to another HP engineer . Bes ides
gardening and ast ronomy, he 's a lso in terested
in photography.

1 7

J o h n R . C a r l s o n
f J o h n C a r l s o n r e c e i v e d h i s

BS degree in mathemat ics
f rom Cal i forn ia State Uni
versity at Hayward in 1 973
and h is MS in computer
science from the University
of Cal i fornia at Davis in
1975. Between degrees he
worked as a sys tem pro-
grammer . He jo ined HP in

1975, contr ibuted to the des ign of the HP 300
Compu te r ' s m ic rocode and m ic rosequence r , de
s igned a cache memory cont ro l le r ch ip , wro te a
m ic rop rog ramming l anguage comp i l e r , and de
s igned the f loat ing-po in t d iv ide ch ip used in A-
Ser ies Computers . He 's coauthor o f a paper on
the floating-point chip set and is a member of the
ACM. John is married, lives in Fremont, California,
and en joys pho tography and backpack ing . He 's
or ig inal ly f rom Concordia, Kansas.

FEBRUARY 1984 HEWLETT-PACKARD JOURNAL 39

© Copr. 1949-1998 Hewlett-Packard Co.

Will iam H. McAll ister
Wil ly McAl l ister jo ined HP
in 1 980. He was one of the
designers of the SOS float
ing-point ch ip set and has
coau tho red two p ro fes
sional papers on the chips.

1 He's now a project man-
I ager for integrated circui t
I development. Wi l ly grew
I up in southern Cal i fornia.

He received h is BSEE degree f rom the Univers i ty
of Cal i forn ia at Santa Barbara in 1974 and h is
MSEE from Stanford Universi ty in 1976. Before
coming to HP, he des igned s tandard-ce l l ICs fo r
spec ia l -purchase processors for four years. He 's
marr ied, has a son, l ives in Cupert ino, Cal i fornia,
and enjoys volleyball, water and snow skiing, and
good jazz.

Michael T . Winters
With HP s ince 1972, Mike
Winters has developed
diagnost ics for HP 2100,
HP 21 MX, and HP 1000
L-Ser ies and A-Ser ies

- Compute rs . He a lso de
veloped the v i r tual control
panels forthe L-Series and
the A-Ser ies . Be fore be
coming a designer, he was

a serv ice eng ineer fo r f ie ld suppor t . Mike is mar
r ied , has a son and a daughter , and has worked
with Cub and Girl Scout groups. Born in Burbank,
California, he now lives in San Jose, California, and
en joys square danc ing and camping .

John F. Shel ton
I John Shel ton jo ined HP in
' 1981, developed the micro-
| coded self-test for the A900
! Computer , and is now a

hardware des igner . He 's
named as an inventor on a
patent appl icat ion for the
fas t decod ing scheme
used in the A900. He was
born in Washington, D.C.,

and attended Massachusetts Inst i tute of Technol
ogy , g raduat ing w i th an SB degree in 1976. He
also holds an MSEE from the University of California
at Berkeley, which he received in 1 981 . He is mar
r ied, has a son, and l ives in Aptos, Cal i fornia.

26
Steven R. Kusmer

Steve Kusmer worked on
the def in i t ion of code and
data separat ion on the
A-Ser ies Computers and
on the A700 mic rocode. A
Cornel l University
graduate, he received h is
BS degree in electr ical
engineer ing in 1979 and
came to HP the same year.

He's a member of the IEEE, a runner , ho lder of a
black belt in Korean karate, and a native of Cleve
land, Ohio. He and his wi fe, a p ianist , now l ive in
San Francisco, Cal i fornia.

Douglas O. Hartman
Doug Har tman rece ived
his BS degree in electr ical
and computer eng ineer ing
from the University of Michi-
gan in 1979 and joined HP
soon af terwards. He has
developed HP 1 000 system
sof tware and served as a

â€¢ technical lead for RTE-A,
J . " " a n d i s c u r r e n t l y m a r k e t i n g

UNIX-based sys tems. A member o f the ACM, he
received his MS degree in computer science from
Stanford University in 1 982. Doug was born in Ann
Arbor , Michigan, and now l ives in Santa Clara,
Ca l i fo rn ia , "where i t i s much warmer than Mich i
gan. " He en joys sk i ing, b icyc l ing, photography,
and music .

Douglas V. Larson
After jo ining HP in 1979,
Doug Larson worked in
sof tware QA for two years
and then implemented the
LINK programs for RTE-A.1
and RTE-A. A nat ive of
Minneapol is, Minnesota,
he graduated from the Uni
versi ty of Minnesota with a
BS degree in computer

sc ience in 1978. He's a lso a veteran of s ix years
asa U.S. Navy electronics technician. His interests
i nc lude p lay ing go and b r idge , and read ing sc i
ence f ic t ion "whi le t ry ing to keep up wi th the
mortgage payments." He l ives in Santa Clara,
California.

Billy Chu
I Bi l l Chu received his BA

degree in mathemat ics
and computer science from
the Universi ty of Texas in
1968 and came to HP in

_ . 1 9 7 2 w i t h e x p e r i e n c e a s a
j _ m i n i c o m p u t e r s o f t w a r e e n -

, * 1 j r ^ ^ ^ g i n e e r . H e r e c e i v e d h i s
MSEE degree in computer
engineer ing f rom Stanford

University in 1 974. Since joining HP, he has partici
pated in the design of the RTE-L, RTE-XL, and
RTE-A operat ing systems. Bi l l is marr ied, has a
daughter, and lives in Sunnyvale, California. He is
a deacon in his church and enjoys tennis, garden
ing, fami ly out ings, and working on his house.

Elizabeth A. Clark
Now a technical lead for
RTE-A enhancement, Beth
Clark has been wi th HP
s i nce 1980 and has con
tr ibuted to the RTE-L,
RTE-XL, RTE-A.1, and
RTE-A pro jec ts . She de
ve loped t he memory man
ager and d ispatcher for
RTE-A. A nat ive of York,

Pennsylvania, she received her BS degree in com
puter science from Virgin ia Polytechnic Inst i tute
and State Universi ty in 1980. She's marr ied, l ives
in Santa Clara, California, and enjoys choral sing
ing, t ravel ing, and indoor p lants.

David L. Neuder
Dave Neuder jo ined HP in
1979 as an R&D engineer
and worked on the
hardware and sof tware for
the 64600S Timing
Ana lyzer . H is work has re
sulted in one patent related
to the 64600S software. He
studied electr ical engineer
ing a t M ich igan Sta te Un i

vers i ty , earn ing a BSEE degree in 1977 and an
MSEE degree in 1979. Born in Wyandot te , Mich i
gan, Dave is a member of the IEEE and lives in Col
orado springs, Colorado. Outside of work he serves
as pres ident o f h is church 's Sunday school c lass
and en joys pho tography , sk i i ng , danc ing , moun
ta in c l imb ing, and backback ing.

Hew le t t -Packa rd Company , 3000 Hanove r
Street, Palo Alto, Cal i fornia 94304

FEBRUARY 1984 Volume 35 â€¢ Number 2
T e c h n i c a l I n f o r m a t i o n f r o m t h e L a b o r a t o r i e s o f

H e w l e t t - P a c k a r d C o m p a n y
Hewlet t -Packard Company, 3000 Hanover St reet

Palo Al to, Cal i fornia 94304 U.S.A.
Hewlet t -Packard Centra l Mai l ing Department

Van Heuven Goedhart laan 121
1181 KK Amste lveen. The Nether lands

Yokogawa-Hewlet t -Packard L td . . Suginami-Ku Tokyo 168 Japan
Hewlett-Packard (Canada) Ltd.

6877 Goreway Dr ive, Miss issauga. Ontar io L4V 1MB Canada

Bulk Rate
U.S. Postage

Paid
Hewlett-Packard

Company

^ â € ¢
^ \ | | d e l e t e K f r o m / " N T ~ / " \ I " " A T ~ \ r \ [" ") [" " O O â € ¢ T Â ° c h a n g e y o u r a d d r e s s o r d e l e t e y o u r n a m e f r o m o u r m a i l i n g l i s t p l e a s e s e n d u s y o u r o l d a d d r e s s l a b e l . S e n d
\ ^ / I I f \ A l t o , 9 4 3 0 4 t \ J I f \ L / t ~ S I I C . O O . c h a n g e s t o H e w l e t t - P a c k a r d J o u r n a l . 3 0 0 0 H a n o v e r S t r e e t , P a l o A l t o , C a l i f o r n i a 9 4 3 0 4 U . S . A . A l l o w 6 0 d a y s .

C O M Q R O n 5953-8520

© Copr. 1949-1998 Hewlett-Packard Co.

	A New Series of High-Performance Real-Time Computers
	An Adaptable 1-MIPS Real-Time Computer
	Designing a Low-Cost 3-MIPS Computer
	Floating-Point Chip Set Speeds Real-Time Computer Operation
	New Software Increases Capabilities of Logic Timing Analyzer
	Captured Data Storage and Retrieval
	Overlay Memory Structure

