
H E W L E T T - P A C K A R D

M A R C H 1 9 8 7

© Copr. 1949-1998 Hewlett-Packard Co.

H E W . E T T P A C K A R D
C D

J - Ã š March 1987 Volume 38 â€¢ Number 3

Articles

4 H a r d w a r e D e s i g n o f t h e F i r s t H P P r e c i s i o n A r c h i t e c t u r e C o m p u t e r s , b y D a v i d A .
Fot land, John F. Shel ton, Wi l l iam R. Bryg, Ross V. La Fetra, Simin I . Boschma, Al lan S.

Yeh, and Edward M. Jacobs The CPU is TTL, the memory is 256K DRAMs, and the processor
p ipel ine executes an instruct ion every 125 ns.

1 O A n A u t o m a t e d T e s t S y s t e m f o r t h e F i r s t H P P r e c i s i o n A r c h i t e c t u r e C o m p u t e r s , b y
O Thomas B. Wy lega la , Long C. Chow, and Randy J . Teegarden The tes t sys tem requ i res

minimal cooperat ion f rom the uni t under test .

O - 1 A D i s t r i b u t e d T e r m i n a l C o n t r o l l e r f o r H P P r e c i s i o n A r c h i t e c t u r e C o m p u t e r s R u n n i n g
^ I t h e M P E X L O p e r a t i n g S y s t e m , b y G r e g o r y F . B u c h a n a n , F r a n c o i s G a u l l i e r , O l i v i e r
Krumeich , Er i c Lecesne , Jean-P ie r re P icq , and Heng V . Te The DTC no t on ly saves space in
the SPU computer. but also off loads the character-or iented tasks from the host computer.

Hewle t t -Packard Prec is ion Arch i tec tu re Compi le r Per fo rmance , by Kar l W. Pe t t i s and
Wi l l i am B. Buzbee Here 's how the combina t ion o f a RISC arch i tec tu re and op t im iz ing

compi lers can outper form CISC machines.

3 8 Viewpo in ts â€” A V iewpo in t on Ca lcu lus , by Zvonko Fazar inc Shou ld the in f in i tes ima l
calculus be taught at a l l?

Departments

3 I n t h i s I s s u e
3 W h a t ' s A h e a d

3 5 A u t h o r s

Edi tor , Richard P Dolan â€¢ Associate Edi tor , Business Manager, Kenneth A Shaw â€¢ Assistant Edi tor , Nancy R. Teater â€¢ Art Director , Photographer, Arv id A Danie lson
Support European Susan E Wright â€¢ Administ rat ive Serv ices, Typography, Anne S. LoPrest i â€¢ European Product ion Superv isor , Michael Zandwi jken

2 HEWLETT-PACKARD JOURNAL MARCH 1987 Â© Hewlett-Packard Company 1987 Printed in U.S.A.

© Copr. 1949-1998 Hewlett-Packard Co.

In this Issue
This topics. cont inues our ser ies on HP Precision Archi tecture topics. On

page members you'll find the hardware design story of the first two members of HP's
new generat ion of computers based on HP Precis ion Archi tecture. The HP
9000 Model 840 Computer runs the HP-UX operating system and is designed
fo r techn ica l and rea l - t ime app l i ca t ions . HP-UX, HP 's ve rs ion o f AT&T 's
UN IX Sys tem V ope ra t i ng sys tem, was f ea tu red i n ou r Decembe r 1986
issue. The HP 3000 Ser ies 930 runs the MPE XL operat ing system and is
designed for business data processing. We've received a paper on MPE XL
and wi l l be publ ishing i t la ter th is year. Both the Model 840 and the Ser ies

930 have the same processor , wh ich is notewor thy because i t uses a re la t ive ly o ld- fash ioned
integrated circui t technology, TTL, and yet achieves about four t imes the speed of the fastest of
HP's previous-generat ion computers. I t was, of course, this potent ial speed of RISC-l ike architec
tu res (R ISC means reduced ins t ruc t i on se t compu te r) t ha t t r i gge red the deve lopmen t o f HP
Precis ion Archi tecture. Future computers implement ing the archi tecture in state-of- the-art VLSI
technology are expected to be even faster. The Model 840/Series 930 processor is the six smallest
boards the th is month 's cover . The two la rger boards are an 8M-byte memory module and the
board wi th the handle is the system monitor .

HP Precision Architecture is more than just a RISC architecture. For any architecture, compilers
must to Whether to prov ide a h igh- level language inter face to the machine. Whether the speed
potential of a RISC architecture is real ized, part icularly for commercial languages requir ing many
complex operat ions, is largely a funct ion of compi ler design. How the HP Precis ion Archi tecture
comp i le r paper approached some o f t he more cha l l eng ing p rob lems i s de ta i l ed i n the paper
on page solv ing which also gives performance data showing how wel l they succeeded in solv ing
these problems.

The HP 3000 Series 930 can have a large number of terminals connected to it through intell igent
hardware modules ca l led HP 2345A Dis t r ibu ted Termina l Cont ro l le rs , each o f wh ich accommo
dates descr ibed on The theory, design, and operat ion of the DTC are descr ibed in the art ic le on
page 21. Queueing theory was used to predic t i ts per formance. On page 18 is a descr ip t ion of
the product ion test system for the Model 840 and Ser ies 930 computers.

I can' t Viewpoints ever having anything controversial in these pages, so the Viewpoints art ic le
on page of may be the f irst t ime. I t 's a paper presented to the Mathematics Panel of the American
Assoc ia t ion for the Advancement o f Sc ience by Zvonko Fazar inc o f HP Laborator ies . We hope
you' l l f ind his ideas on the teaching of inf ini tesimal calculus thought-provoking.

-R. P. Do/an

What's Ahead
Next Generator issue wi l l feature the design of the HP 8175A Data Generator and i ts arbi t rary

waveform generator opt ion. There wi l l be two research repor ts , one on sof tware re l iab i l i ty and
o n e o n t h e m o u n t s o l d e r j o i n t f a i l u r e m o d e s . A n o t h e r p a p e r w i l l d i s c u s s t h e d e s i g n a n d
appl icat ion of HP's PL-10 sof tware package, a master p lanning tool for the semiconductor man
ufacturing industry.

T h e H P J o u r n a l L e t t e r s t e c h n i c a l d i s c u s s i o n o f t h e t o p i c s p r e s e n t e d i n r e c e n t a r t i c l e s a n d w i l l p u b l i s h l e t t e r s e x p e c t e d t o b e o f i n t e r e s t t o o u r r e a d e r s L e t t e r s m u s t b e b r i e f a n d a r e s u b j e c t
t o e d i t i n g 9 4 3 0 4 , s h o u l d b e a d d r e s s e d t o : E d i t o r . H e w l e t t - P a c k a r d J o u r n a l , 3 2 0 0 H i l l v i e w A v e n u e . P a l o A l t o , C A 9 4 3 0 4 , U . S . A .

M A R C H 1 9 8 7 H E W L E T T - P A C K A R D J O U R N A L 3

© Copr. 1949-1998 Hewlett-Packard Co.

Hardware Design of the First HP Precision
Architecture Computers
The HP 3000 Ser ies 930 and the HP 9000 Model 840 are
implemented wi th commerc ia l TTL log ic .

by David A. Fot land, John F. Shel ton, Wi l l iam R. Bryg, Ross V. La Petra, Simin I . Boschma, Al lan S.
Yeh, and Edward M. Jacobs

THE HP 9000 MODEL 840 and the HP 3000 Series
930 are the first technical and commercial computer
products, respectively, to use the new Hewlett-Pack

ard Precision Architecture.1 HP Precision Architecture com
bines a simplified, RISC-like instruction set with a power
ful coprocessor architecture, a 64-bit virtual memory ad
dressing system, a new high-performance I/O architecture,2
and provision for multiprocessors.

The HP 9000 Model 840 and the HP 3000 Series 930 are
both based on the same processor, memory system, and
I/O system. The processor consists of five printed circuit
boards, each 8.4 by 11.3 inches, containing off-the-shelf
TTL logic. It uses FASTâ„¢ TTL, 25-ns and 35-ns static
RAMs, and 25-ns and 35-ns PALsâ„¢. These five boards in
clude the processor pipeline, which fetches and executes
an instruction every 125 ns, a 4096-entry translation
lookaside buffer (TLB) for high-speed address translation,

FAST is a t rademark of Fai rchi ld Camera and Inst ruments Corporat ion.
PAL is a regis tered t rademark of Monol i th ic Memor ies.

and 128K bytes of cache memory. An additional (sixth)
board contains the hardware floating-point coprocessor.
Each board contains about 150 ICs.

A 20-Mbyte/s bus called the MidBus connects the CPU,
main memory, high-speed I/O cards, and I/O channels.
There are six memory slots, and memory comes in two-
board 8M-byte sets. This gives a maximum of 24M bytes
of memory. Memory uses 256K-bit nibble-mode dynamic
RAMs with single-bit error correction and double-bit error
detection. There are seven general-purpose I/O slots, which
can be used for high-speed I/O cards or I/O channels. The
I/O channel is a two-board set. Most I/O is handled by cards
on an HP CIO bus connected to the MidBus through an I/O
channel. The HP CIO bus is a 5-Mbyte/s I/O bus.

A system monitor card monitors power supply levels
and temperature and provides front-panel functions and
system overtemperature shutdown. An access port card
allows remote field support access for diagnosis.

The differences between the HP 9000 Model 840 and the

F i g . 1 . T h e H P 9 0 0 0 M o d e l 8 4 0
Computer is the f irst HP Precision
Arch i tec tu re computer fo r techn i
cal and real- t ime appl icat ions. I ts
operat ing system is HP-UX, HP's
vers ion of AT&T's UNIX System V
operat ing system.

4 HEWLETT-PACKARD JOURNAL MARCH 1987

© Copr. 1949-1998 Hewlett-Packard Co.

HP 3000 Series 930 are in configurability and software.
The HP 9000 Model 840 (Fig. 1) is a technical machine.
It runs HP-UX, HP's version of AT&T's UNIX* System V
operating system with real-time extensions.3 The Model
840 is a single-bay, one-meter-high system. Its input/output
system has one HP CIO channel, and up to 12 CIO cards.
Terminal I/O is done using a six-port multiplexer card,
limiting the number of terminals to sixty. 8M bytes of mem
ory is standard.

The HP 3000 Series 930 (Fig. 2) is a business machine.
It runs MPE XL,4 a new version of HP's proprietary MPE
operating system, and provides compatibility for existing
HP 3000 customers. The Series 930 has two one-meter-high
bays to provide more I/O capacity. It has three CIO chan
nels, and 16M bytes of memory is standard. The second
bay contains two CIO buses and up to two HP 2345A Dis
tributed Terminal Controllers.5 Terminal I/O for MPE XL
is done using an IEEE 802.2 local area network and the HP
2345As, each of which can handle up to 48 terminals and
can be located near a work group using a LAN cable.

History of the Project
Development of HP Precision Architecture began at HP

Laboratories in early 1982. The processor instruction set
and virtual memory system were well-defined by the end
of 1982. The TTL implementation project began in April
1983.

The project's goals were low factory cost, good perfor
mance, and very fast design time, since this was to be the
software development machine for the HP Precision pro
gram. We used internal HP design tools for schematic cap-
UNIX is a regis tered t rademark of AT&T.

ture and timing analysis, and FTL, a simulator developed
at Amdahl Corporation, for gate level simulation of the
entire system. We did not build wirewrap breadboards, but
went straight to printed circuit boards.

Simulation of the processor started in the fall of 1983,
and we had working processors by early 1984. A complete
processor with cache, TLB, and main memory was deliv
ered to the software developers in July 1984. This version
of the machine did not have an I/O channel or a hardware
floating-point coprocessor since the architectures for these
units were not complete. I/O was done with a parallel in
terface to an HP 9000 Series 200 Computer.

This machine was sufficient for software development,
and we built 36 of them over the next five months. This
version used bench power supplies and had a very small
cabinet. It ran at 30 MHz, rather than the 32 MHz of the
final machine. Over the next six months the final cabinet,
power system, and system monitor were designed and the
I/O channel was completed.

In January 1985 we put together our first lab prototype
system. This system looked very much like the final prod
uct. It had working I/O channels, up to 24M bytes of mem
ory, and a full-speed processor. Between January and Sep
tember we built almost 200 for use as software development
machines. This machine had only 32K bytes of cache mem
ory and a 1024-entry TLB. It could execute about 3.5 million
instructions per second (MIPS).

Enhancements were added for higher performance and
better manufacturability during 1985. Newer, denser static
RAMs were available, so we quadrupled the size of the
caches and TLBs. Some other minor changes were made
to eliminate bottlenecks in the processor and the final per
formance rating is 4.5 MIPS. We also completed the design

F ig . 2 . The HP 3000 Se r i es 930
Computer is the f irst HP Precision
A r c h i t e c t u r e c o m p u t e r f o r c o m
mercial appl icat ions. I ts operat ing
sys tem i s HP ' s p rop r i e t a r y MPE
X L

MARCH 1987 HEWLETT-PACKARD JOURNAL 5
© Copr. 1949-1998 Hewlett-Packard Co.

of the floating-point coprocessor, and started building full-
functionality production prototypes in May 1986. The first
production Series 840 was shipped in November 1986.

CPU Design

The simplicity of HP Precision Architecture allowed the
entire CPU and floating-point coprocessor to be im
plemented on six medium-size boards, even though it was
designed using mostly MSI TTL, a technology with a fairly
low level of integration. These six boards and the six major
buses internal to the CPU are organized as shown in Fig. 3.

Instruction Unit
The I-unit (instruction unit) controls the flow of instruc

tions. It executes branch instructions and handles traps
and interrupts. The I-unit also creates and distributes the
system clocks that keep all of the elements of the processor
synchronized. Instruction execution begins when the I-unit
creates the address of the instruction to be executed and
sends this address to the I-cache, which contains the in
structions to be executed. The I-cache sends the instruction
back on the NI (next instruction) bus, which is distributed
to all of the processor boards.

Instruction decoding is decentralized, with each board
decoding only as much of the instruction as is necessary
for that board to do its job.

Register Fi le Board
The register file board supplies the operands (the values

to be operated on) for the instruction. It maintains thirty-
two general registers. Each register is thirty-two bits wide.
In addition, the register file maintains copies of the twenty-
five control registers specified by HP Precision Architec
ture.

In many computer architectures, operands can be stored

in memory. In HP Precision Architecture, all operands are
stored in the general registers or encoded in the instruc
tions. The only instructions that access data memory are
load instructions and store instructions. The addresses for
the load and store instructions are created from values in
the general registers and from values encoded in the in
structions.

The register file board drives the register values out to
the rest of the CPU on the X (index) and B (base) buses.
Sometimes in a pipelined implementation like the Model
840/Series 930 processor, a result being created by one
instruction or data being loaded from memory is needed
immediately by the following instruction before there is
time to store the result or the data into a general register.
The register file board recognizes these cases and routes
the data around the general registers to the instruction that
needs it.

Execution Unit
The E-unit (execution unit) performs arithmetic calcula

tions on the operands. It executes the arithmetic instruc
tions and creates the addresses for load and store instruc
tions. It contains a 32-bit ALU (arithmetic logic unit) for
arithmetic and logical calculations, a barrel shifter for shift
instructions, and complex mask/merge circuitry for extract
ing and depositing bit strings. It also contains a preshifter
on one input to the ALU. This is used in address calcula
tions and for special instructions used in software multiply
routines (the Model 840/Series 930 does not execute mul
tiply instructions directly in hardware.)

The E-unit sends its result back to the register file over
the R (result) bus. If the instruction is a load or store instruc
tion, then the address is sent to the cache controller and
TLB boards on the CADR (cache address) bus. The E-unit
also creates a condition code based on its result. That con
dition code is sent to the I-unit to be used for conditional

Fig. 3 . B lock d iagram of the CPU
f o r t h e H P 9 0 0 0 M o d e l 8 4 0 a n d
HP 3000 Ser ies 930 Computers.

6 HEWLETT-PACKARD JOURNAL MARCH 1987

© Copr. 1949-1998 Hewlett-Packard Co.

branches and conditional skips.

TLB, Cache, and Coprocessor
The TLB (translation lookaside buffer) controls the access

to virtual memory. HP Precision Architecture provides a
very large global address space. Addresses in the Model
840/Series 930 processor are 48 bits long. The architecture
will support up to 64-bit addresses. This huge address
space increases performance by making memory manage
ment easier in both software and hardware. However, it
would be impossible to support that much physical mem
ory, so it's necessary to translate the large virtual addresses
into smaller physical addresses.

The TLB performs this translation from the virtual mem
ory address (the address that the processor sees) to the
physical memory address (the address that the memory
system sees). It also keeps track of protection information
(i.e., which user is allowed to access which portions of
virtual memory).

The large global virtual address space specified by the
architecture allows effective use of a TLB with many en
tries. The Model 840/Series 930 TLB has entries for 4096
pages of virtual memory. Each page contains 2K bytes of
code or data. This is an enormous number of entries com
pared to other computers, and makes the performance pen
alty for the virtual-to-physical translation very small (the
penalty comes from the processing necessary when the
TLB does not contain an entry for the virtual memory page
that the processor is trying to access.)

The cache controller manages two high-speed cache
memories, one for code and one for data. In other architec
tures, caches, if they are used, are forced to be transparent,
that is, invisible to the software. HP Precision Architecture
allows explicit software management of the caches, thereby
making it possible to separate the code and data caches,
doubling the available bandwidth between the caches and
the rest of the processor.

The floating-point coprocessor works in parallel with
the main processor to do floating-point calculations. This
allows the processor to continue processing during the sev
eral cycles that it may take for the floating-point coproces
sor to complete the execution of a floating-point instruc
tion.

Architectural Impact
Because the architecture is simple and regular, it allows

for a nonmicrocoded implementation such as this one. This
means that the implementation is a fairly straightforward
interpretation of the architecture, and architectural features
have a large impact on the processor organization.

For example, all instructions are exactly 32 bits in length.
Most instructions use one or two general registers as
operands, and the register addresses of these operands are
always encoded in the same place in the 32-bit instruction.
This means that prefetching of the instruction and its
operands can be done without regard to the decoding of the
instruction or to the execution of the previous instruction.

As the instruction comes out of the cache and is distrib
uted to the processor boards, the register file board receives
the instruction from the NI (next instruction) bus. The reg
ister file board immediately prefetches from the register

file the two operands necessary for the instruction, so that
at the beginning of the next cycle, when the rest of the
processor is prepared to execute the instruction, the
operands have already been obtained and are ready to be
driven out to the rest of the processor on the X and B buses.

Because of the simplicity of the instruction encoding, it
was very efficient to distribute the instruction decoding
among all of the processor boards, with each board decod
ing only the piece of the instruction that applies to that
board. Each board, then, receives the instruction from the
NI bus as it comes out of the cache and prepares to execute
it during the following cycle.

Because the architecture relies so heavily on register val
ues for operands , the register file is central to the instruction
flow. Each instruction begins with the prefetching of the
instruction from the cache and the prefetching of the
operands from the register file. From here, the operands
fan out to the rest of the processor, which consists of several
short, parallel data paths.

This, again, is a result of the architecture, which heavily
emphasizes these short, parallel data paths as a means of
increasing performance. The E-unit, for example, has a bar
rel shifter combined with sophisticated mask/merge cir
cuitry for bit manipulation. It also contains a 32-bit ALU.
The results from these two pieces of circuitry are never
needed in the same instruction, allowing them to be placed
in parallel so that neither one will impact the speed of the
instructions that use the other.

The I-unit can calculate branch target addresses in paral
lel with E-unit calculations, which allows for instructions
that calculate an arithmetic result and conditionally branch
based on that result, all in one cycle. This makes possible
very efficient loops and range checking in the code.

Another example of the parallelism encouraged by the
architecture can be found in the cache and TLB. Because
the architecture does not permit one physical address to
be referenced by more than one virtual address, the cache
and TLB accesses can be done in parallel. At the same time
that the TLB is performing the translation from virtual to
physical address, the cache is obtaining the data (or code),
and reading a tag that indicates which physical address
that data belongs to. When the TLB has completed the
translation, the physical address is sent to the cache over
the PPN (physical page number) bus, and compared to the
physical address that the cache has read from its tags to
determine whether this data is really the data that is
needed. In most architectures, these two processes must
be done serially, resulting in a much longer cache access
time.

Processor Pipel ine
The processor is pipelined. This means that several in

structions are in various stages of execution at any one
time. Whereas this implementation technique must be
made transparent in most architectures, it is supported,
and in fact encouraged, by HP Precision Architecture.

The pipeline has three stages, as shown in Fig. 4. Each
stage takes 125 ns, and is subdivided into two minor stages.
The first stage is referred to as the fetch stage. During the
first half of this cycle the address of the instruction is sent
to the instruction cache from the I-unit. During the second

MARCH 1987 HEWLETT-PACKARD JOURNAL?
© Copr. 1949-1998 Hewlett-Packard Co.

half, the instruction is returned and distributed, instruction
decoding is begun, and the register operands are read out
of the register file.

The second stage is referred to as the execute stage. It is
during the first half of this stage that the arithmetic result
is calculated if this is an arithmetic instruction, or the data
address is calculated if this instruction is a load or store
instruction. If this is a branch instruction, the branch target
address is also calculated during the first half of this stage.
For arithmetic instructions and for conditional branch in
struction, the condition is calculated during the second
half of this cycle. For loads and stores, the second half of
the cycle is used to drive the data address to the cache
controller and the TLB.

Notice that if the instruction is a branch instruction,
because of the pipeline the following instruction is being
fetched while the branch target is being calculated. In most
architectures, this would result in an instruction being
fetched that was not going to be executed, and would result
in a wasted cycle with every branch. In HP Precision Ar
chitecture, branches are delayed by one instruction. In
other words, one additional instruction is executed after
the branch instruction before the branch target is reached.
This is an example of how the architecture supports
pipelined implementations, resulting in a performance im
provement over traditional architectures.

The third pipeline stage is referred to as the load/store
stage. During this stage, load data is returned from the
cache, or stored data is written to the cache. It is during
the first half of this stage that the E-unit result is actually
written into the register file, and during the first half of
the following cycle that the load data is written into the
register file. Notice that the register file is only written
during the first half of any cycle. This is because during
the second half cycle it is necessary to read from the register
file the operands being used by the instruction that is cur
rently in its fetch stage.

Cache and TLB Design

The cache and TLB (translation lookaside buffer) speed
up memory accesses by keeping recently accessed data and
virtual address translations in local high-speed memory.
They are designed to give the best performance without

increasing the CPU's basic cycle time. They take advantage
of the architecture, which allows a simple design, and they
are pipelined to get increased bandwidth without increased
hardware.

The cache is a high-speed memory that shortens typical
main memory access times by keeping copies of the most
recently accessed data. The cache is divided into a 64K-byte
instruction cache and a 64K-byte data cache, each of which
is divided into 4096 16-byte blocks. Each block has an
address tag that specifies the block of memory from which
it came. When the processor accesses data or instructions,
the block is copied from main memory into the instruction
or data cache, as appropriate. All further references use
the copy in the cache, until the cache block is needed for
a different block from memory. At that point, the block
that is removed is written back to memory only if it has
been modified by the processor.

Similarly, the TLB speeds up virtual address translations
by acting as a cache for recent translations. Both virtual
memory and physical memory are divided into pages of
2K bytes, and each TLB entry maps a virtual page number
to a physical page number. Each virtual address is made
up of a virtual part (i.e., the virtual page number) and a
physical part (i.e., the offset within the page). The TLB
translates the virtual page number to get a physical page
number. This is concatenated with the page offset to gen
erate the physical address.

To allow the implementation of large, high-speed caches,
HP Precision Architecture disallows address aliasing, that
is, the capability of having two different virtual addresses
pointing to the same physical location. This allows the
Model 840/Series 930 processor to access the cache and
TLB in parallel, without the problems and constraints this
has had in other architectures. Thus, the access time is the
worst of the TLB and cache access times, rather than the
sum of them (see Fig. 5).

TLB Operat ion
The virtual memory space is divided into virtual pages

of 2048 bytes each. A data structure in main memory called
the page table keeps information about each virtual page
that is currently in use (i.e., a copy of that page exists in
the physical memory). This table has one entry for each
virtual page, and contains information on the protection

Instruction
A

Instruction
A + 1

Instruction
A + 2

Instruction
Address

Out

Instruction
In Register
File Read

ALU Data
Address

Calculation

Conditions
Data Address

Out

Fig. 4 . CPU p ipe l ine.

8 HEWLETT-PACKARD JOURNAL MARCH 1987

© Copr. 1949-1998 Hewlett-Packard Co.

of that page (which users are allowed what kind of access
to the page) and the physical page number of that page
(where the page exists in physical memory).

The TLB acts as a cache for this information. Just as the
instruction and data caches keep copies of recently ac
cessed memory locations, the TLB keeps copies of the in
formation for recently accessed pages. The Model 840/
Series 930 TLB has entries for 4096 pages, 2048 for code
and 2048 for data.

With each memory access (both instruction fetches and
data loads and stores), the TLB checks the protection infor
mation for that page and the physical address of that page.
It sends the physical address to the cache, so that the cache
can check to see if the word being accessed is contained
in the cache. If the protection information indicates that
the user is not allowed the kind of access being attempted,
the TLB signals the register file board to back out of the
instruction and signals the I-unit to raise a trap.

TLB miss handling is done in software on the Model
840/Series 930. This means that if none of the entries in
the TLB corresponds to the virtual address being accessed,
a trap is raised. Software must then get the information
about that page from the page table, place it in a TLB entry,
and reexecute the instruction.

The TLB is pipelined so that it can perform both an
instruction address translation and a data address transla
tion each cycle. The first half of every cycle, it reads the
tag and translation out of the TLB for the instruction being
fetched (see Fig. 6). During the second half of the cycle, it
checks the tag for a match (also known as a hit) and per
forms a protection check.

Also during the second half of each cycle, the tag and
translation are read out of the TLB for any memory access
instruction currently in the execute phase. This is checked
for a match and protection during the following half cycle,
that is, the first half cycle of that instruction's load/store
phase. Thus, each half cycle the TLB starts a new transla
tion, which will be completed one cycle later.

The TLB is a direct mapped TLB. It has 2048 entries for
instructions and 2048 entries for data. Direct mapped

means that each virtual page translation can exist in only
one entry of the TLB, and if a program accesses another
page that maps to the same entry, the first one is replaced.
Although direct mapped TLBs (and caches) have greater
miss rates than set-associative TLBs of the same size, the
direct mapped TLB minimizes cycle time, which has a
greater impact on performance.

The TLB is addressed by the 9 LSBs of the virtual page
number hashed with the 11 LSBs of the space ID to create
an 11-bit index. The hash takes the two LSBs of the space
ID, then flips the next 9 bits of the space ID around and
exclusive-ORs them with the 9 LSBs of the virtual page
number. In addition, one address bit selects instruction or
data, since the TLB is split for instruction and data accesses,
although these use the same hardware. The address hash
reduces the likelihood of a program's heavily using a single
TLB entry for two different pages. In addition, the large
size of the TLB greatly reduces overall miss rates.

In addition to the physical page number of the page trans
lated and a virtual tag to identify the corresponding virtual
page, each TLB entry has extra information to implement
the HP Precision protection scheme. This includes an ac
cess rights field, an access ID, and several status bits. The
access rights field specifies how the page can be used (e.g.,
read only, read/execute, etc.) and the necessary privilege
level to use it. The access ID is a key that must match one
of the four protection IDs (in control registers) that pro
cesses can have, in addition to the access rights check. The
status bits include an entry valid bit, a dirty bit, two differ
ent break-on-access bits, and an I/O bit which marks
whether the page corresponds to an I/O module.

Since TLBs do not contain the translations for all pages
in memory simultaneously, they occasionally do not have
the desired translation and a miss occurs. The instruction
cannot complete without the translation, so the TLB causes
a trap. This causes the current processor state to be saved
in control registers, and execution continues in the software
TLB miss handler. If the page is actually in memory, the
handler will insert the needed TLB entry and retry the
offending instruction. If the desired page is not in memory

Space ID V i r t u a l P a g e N u m b e r P a g e O f f s e t

26 11

TLB Index

T L B P r o t e c t i o n P h _ y s i c a l
T a g i n f o r m a t i o n

14

Cache
Index

C a c h e C a c h e
T a g D a t a

32

To CPU F i g . 5 . C a c h e / T L B b l o c k d i a
gram.

MARCH 1987 HEWLETT-PACKARD JOURNALS
© Copr. 1949-1998 Hewlett-Packard Co.

(i.e., on disc), the handler will invoke the page fault han
dler. Because the instruction is restarted after a TLB miss,
a TLB must be able to contain two arbitrary translations to
be able to complete any instruction, one to fetch the instruc
tion and one to access data requested by the instruction (if
load or store). If it cannot, there are cases where the program
will get stuck first replacing the entry for fetch, then for
data, and back again. Hence the TLB is split, half for instruc
tions and half for data, to guarantee forward progress.

One side effect of the very large HP Precision address
space, 256 terabytes (248 bytes) in this case, is that all pro
cesses execute in the same unified address space. This
allows different processes (or programs) to share code or
data more simply, since the addresses are the same. Also,
since there is only one address space (as opposed to sepa
rate address spaces for each user), the operating system
does not have to flush all entries out of the TLB whenever
it switches processes. This cuts down on the number of
TLB misses.

Cache Operat ion
The cache tags and control, like the TLB, are pipelined.

At the same time the TLB entry is read, the cache tags are
read, and the cache tag comparison is performed when the
TLB tag comparison and protection check are performed,
both for instructions and for data. However, the data RAMs
(for both the instruction and the data caches) are not
pipelined. Instead, the data RAMs for the instruction cache
and the data cache are implemented using separate RAMs
so that the access can span an entire cycle. This allows the
use of larger, slower RAMs for the data, without affecting
the cycle time. Otherwise, the cycle time would have to
be long enough to allow reading the slower data RAM in
a half cycle.

Like the TLB, the instruction cache and data cache are
both direct mapped to minimize cycle time. They are as
large as possible with current high-speed RAMs, thus keep
ing down miss rates. In addition, there are several features
that allow the processor to keep running even though the
cache is servicing a miss.

In the case of a data cache miss, the cache allows the
processor to continue running until either the processor
needs the data (from a load) or the processor executes
another cache access. The first case is called a load/use

interlock, and occurs when the cache receives a load in
struction for a particular register, and before the cache can
supply the data, it receives another instruction that uses
that target register. This is detected by comparing the load
target for any load instruction in progress with the register
fields of instructions being fetched, and causing the proces
sor to freeze if there is a match. As soon as the data is
returned to the processor, the interlock goes away and the
processor can continue.

When there is a cache miss, the cache receives the data
from main memory in a 4-word block, one word per cycle.
To speed things up, as soon as the cache receives the re
quested data, it passes it through to the processor while it
is also putting it into the cache. This allows execution to
continue, even though the cache might still be servicing
the miss.

When there is an instruction cache miss, the cache
freezes the processor immediately, since it needs the in
struction to continue. However, as soon as it receives the
requested instruction from memory, it passes the instruc
tion and the following instructions through to the processor
to allow it to continue. The processor continues receiving
the instructions straight from memory until either the end
of the block is reached or the processor executes a taken
branch. At the end of the block, the processor goes back
to getting its instructions normally, from the cache. If the
processor branches, the cache will freeze the processor
until it finishes servicing the miss, then allow execution
to continue. These optimizations improve performance by
reducing the average cache miss penalty. Cache perfor
mance is measured by measuring the total miss penalty,
which is the product of the miss rate and the penalty for
each miss. The miss rate is minimized by making the cache
as large as possible. The miss penalty is minimized by
allowing the processor to execute whenever possible, even
during cache miss servicing.

HP Precision Architecture allows a somewhat simpler
cache than would otherwise have been possible, by putting
the burden on software to keep the instruction and data
caches consistent with each other and with any I/O being
performed. The architecture provides cache flush and
purge instructions, which software can use to guarantee
that the copy in memory is up to date. Thus, the hardware
does not have to check for a program modifying instruc-

Cycle N Cycle N + 1 Cycle N + 2 Cycle N + 3

Instruction
A + 1

I-TLB
Tag Access

Check

D-TLB
Tag Access

Check

Instruction
A + 2 I-TLB

R e a d T a g A c c e s s
Check

Fig. 6 . TLB p ipe l ine.

10 HEWLETT-PACKARD JOURNAL MARCH 1987

© Copr. 1949-1998 Hewlett-Packard Co.

tions, or whether DMA is accessing data that is currently
in the cache.

Performance

Since this machine was the first HP Precision Architec
ture machine, we thought that it should be instrumented
for hardware performance measurements. Thus the analy
sis interface card was born. This card is a coprocessor, and
it has two functions. First, it depipes the instructions and
presents the data to a frontplane interface to a logic analyzer.
It can show three 32-bit buses and some control signals to
the analyzer. The three buses can be chosen to show the
instruction address, instruction, either source register, the
ALU result, the load/store address, or the load/store data.
Control signals indicate whether the instruction was exe
cuted or nullified, or if a taken branch or a trap occurred.

The analysis interface card and a disassembler for the
HP 64000 Logic Development System were used extensively
for both hardware and software debugging. The interface
card was also used to take instruction traces for running
performance simulations for other machine organizations.

The other function of the analyzer card is to collect per
formance statistics. It contains five 32-bit counters. Three
of the counters can each count one of 32 predefined events.
The other two counters form a pair, only one of which is
readable by the processor. This pair of counters can count
one of the 32 events in four ways: simple counting (like
the other three), maximum duration of the event, number
of times the event duration exceeds a threshold, or event
occurrences masked by a one-zero-don't care comparator
on one of the CPU buses. For example, the data cache miss
rate can be measured by having one counter count data
cache accesses and another count data cache misses. These
statistics helped confirm the results of the cache and TLB
simulations that were used to make trade-offs when the
machine was being designed.

Events that can be counted are:
â€¢ Cycles
â€¢ Fetched instructions
â€¢ Executed instructions
â€¢ Loads
â€¢ Stores
â€¢ Branches taken
â€¢ Branches not taken
â€¢ Branches nullifying next instruction
â€¢ Arithmetic operations nullifying next instruction
â€¢ All architectural nullified instructions
â€¢ All nullified instructions
â€¢ External interrupts
â€¢ Traps
â€¢ Instruction cache misses
â€¢ Data cache misses
â€¢ Dirty data cache misses
â€¢ Instruction cache accesses
â€¢ Data cache accesses
â€¢ Instruction TLB misses
â€¢ Data TLB misses
â€¢ Instruction TLB accesses
â€¢ Data TLB accesses
â€¢ I/O accesses

Load/use interlocks
Cache wait cycles
Coprocessor wait cycles
Interlock and wait cycles
Time spent at privilege level 0, 1, 2, or 3
Time spent with interrupts off
Time spent in virtual code space
One write port interlocks.

MIPS Calculations
A frequently used measure of raw CPU power is millions

of instructions per second, or MIPS. The MIPS rating of a
computer is calculated as one over the cycle time times
the cycles per instruction:

MIPS =-
cycle time (/us) x CPI

MIPS ratings are a good measure of performance when
comparing machines with the same computer architecture,
but can be misleading when comparing different architec
tures, since one architecture may take fewer instructions
to complete the job than another. The best way to compare
machines is to run the same application on both machines.
Even on machines with the same architecture, the MIPS
rating is calculated using a standard instruction mix or
measured when running a standard jobstream. If the appli
cation differs from the standard then the MIPS rating might
not be a good predictor of performance when running the
application. The instantaneous MIPS rate of a computer is
quite variable, as can be seen from Fig. 7, so any MIPS
number quoted is only a long-term average. MIPS rates
vary with the job executed and with time. MIPS ratings
also have the drawback of not taking into account operating
system efficiency, compiler efficiency, or I/O system effi
ciency. Therefore, MIPS is not a good metric for predicting
applications performance on systems running different
operating systems.

Cycles per instruction, or CPI, is the key measurement
of how well a CPU uses its available power. Ideally, one
instruction per cycle will be executed, so the CPI will be
one. Calculating the CPI is straightforward: sum up the
product of the penalties and their frequency, and add one:

CPI = 1 + 2 PÂ¡FÂ¡

There are two ways of minimizing the CPI: reduce the
penalty (PÂ¡) or reduce the frequency (FÂ¡).

Model 840 MIPS
For the HP 9000 Model 840 and HP 3000 Series 930

Computers, the cycle time is 125 ns. If there were no penal
ties, all instructions would take one cycle (CPI = 1), so
the maximum possible performance is 8 MIPS.

The measured MIPS rate for the Model 840 varies from
about 3.5 to 8 MIPS with an average of 4.5 to 5. (Fig. 7
shows measured performance during typical operation.)

The MIPS rating for the Model 840 can be calculated
using the statistics gathered with the analysis interface card
described above. First, there are nullified instructions. This
happens when the compiler can't schedule a branch, and

MARCH 1987 HEWLETT-PACKARD JOURNAL 11
© Copr. 1949-1998 Hewlett-Packard Co.

when an arithmetic instruction skips on a condition. About
7% of all instructions are branches specifying nullify.
About 2% of instructions are conditional skips that are
taken. The load/use interlock happens when a load instruc
tion is followed by an instruction that uses the data re
turned. About 14% of the instructions have this interlock.
As the optimizing compiler improves, these numbers
should go down. The Model 840 has an interlock that most
HP Precision Architecture machines won't have: the one
write port interlock. Since the load instruction result comes
back one cycle after the load is executed, the architecture
expects the register files to be able to write two results at
the same time, one from the load instruction, and one from
the ALU. The Model 840/Series 930 register file is built
from static RAMs and can only store one result at a time.
If a load instruction is followed by an instruction that stores
a result, there will be a one-cycle interlock. This happens
on about 8% of instructions.

Every instruction has the possibility of missing the I-
cache. Nullified instructions are fetched, so they can miss
the I-cache also. The I-cache miss rate is about 3% and the
miss penalty is 5 to 8 cycles with an average of about 7.
The contribution to the CPI can be calculated by multiply
ing the miss rate (0.03) times the penalty (7) times the
frequency of access (1.09). The frequency of access is 1.09
because for every one access per executed instruction, there
is 0.09 access (9%) because of nullified and skipped instruc
tions. This makes the CPI contribution 0.23 (see "Cache
Performance," below). Every instruction can also miss the
I-TLB. TLB misses cause a trap and are handled in software.
This software is not doing any useful work so it is not
counted as instructions executed for calculating MIPS. The
miss handler is about 40 instructions and takes an average
of about 70 cycles. The I-TLB miss rate is about 0.05%, so
the CPI contribution is about 0.04 (0.0005 times 70.) Load
and store instructions can miss the D-cache and the D-TLB.
Loads are about 25% of the instruction mix and stores are

about 15%. A D-cache miss can cost anywhere from 1 to
15 cycles with an average of about 8. The D-cache miss
rate is about 3%. The D-TLB miss rate is about 0.1%. The
D-cache contribution to the CPI is about 0.1, and the D-TLB
contribution is about 0.03. There is also a CPI contribution
from flushing the cache for I/O. This is another function
that most machines do in hardware, so it should not be
counted in the instructions executed. The contribution to
the CPI is about 0.04. The CPI is therefore:
B a s i c i n s t r u c t i o n 1 . 0 0
N u l l i f y 0 . 0 9
L o a d / u s e 0 . 1 4
O n e w r i t e p o r t 0 . 0 8
I - c a c h e m i s s 0 . 2 3
I - T L B m i s s 0 . 0 4
D - c a c h e m i s s 0 . 1 0
D - T L B m i s s 0 . 0 3
I / O c a c h e f l u s h 0 . 0 4

Total CPI 1.75

This gives 4.57 MIPS as the calculated performance.

Cache Performance
Looking at the numbers in the preceding section, we can

easily see that the cache is the major contributor to the CPI
on this machine.

The function of a cache is to make the memory look
faster by remembering recent memory accesses in the hope
that they will be used again. Most programs have some sort
of locality, that is, memory references in the recent past
are likely to be used again in the near future. If this were
not true, the cache would not work.

Caches normally take some amount of time, usually one
cycle, to fetch data. This is how high performance is
achieved; memory normally takes more than one cycle. Of
concern are the less frequent cases when the cache takes

7 - r

6 - -

H) 0.

5 -

5 0 1 0 0

T i m e (S e c o n d s)

H P 9 0 0 0 / 8 4 0 M I P S
H P - U X M u l t i p r o g r a m m i n g W o r k l o a d

150
â€” I

2 0 0 F ig . 7 . HP 9000 Mode l 840 mea
sured per fo rmance in m i l l i ons o f
i n s t r u c t i o n s p e r s e c o n d (M I P S)
dur ing a typ ica l opera t ing per iod
of 200 seconds.

12 HEWLETT-PACKARD JOURNAL MARCH 1987
© Copr. 1949-1998 Hewlett-Packard Co.

more than one cycle to return the needed data. An example
of this is when a piece of data is used for the first time. It
cannot be in the cache, and must be fetched from memory.
It is these less frequent cases that determine cache (and
processor) performance.

The largest, and frequently only, penalty associated with
caches is the miss penalty. It is the time the cache requires
to get information (data or instructions] from memory. The
cache needs to start a memory transaction, get the data
back, and save it. All this time is counted as the miss
penalty.

Effects of Separate Caches
The processor is capable of fetching an instruction every

machine cycle, and some of these cycles, about 40%, also
require a data cache reference. To prevent a large CPI in
crease (about 0.4), it is necessary to use the instruction and
data caches during the same cycle. If the caches are com
bined (instruction and data cache are the same), the cache
must be accessed twice per cycle. This becomes difficult
to do with large caches, because the RAMs are just not fast
enough. Splitting the cache into an instruction cache and
a data cache allows both caches to be used in the same
cycle without making them faster.

To prevent thrashing (excessive cache missing), a com
bined cache should also be at least two-way (two-set) as
sociative. However, multiway associativity also slows
down the cache, making it more difficult to build. Splitting
the cache also eliminates this problem.

The decision to have separate instruction and data caches
allowed us to use a large cache; a 128K-byte combined
cache would have been difficult and expensive to build.
The split cache does have a slightly lower hit rate than the
combined cache, but this presented less of a problem than
alternative cache organizations.

The cache is direct mapped, which means that each vir
tual address has exactly one place it can go in the cache.
This is also known as a one-way associative cache. In two-
way or f our- way associative caches, a single virtual address
can go in two or four places in the cache. Any number of
ways can be built, but the expense is great, so normally,
two-way or four-way associativity is used. Since each vir
tual address can go in more than one spot, there is less
likely to be a conflict between two addresses. Thus the
miss rate of the cache is lower. Simulations of the Model
840/Series 930 cache show that the miss rate would be
about 40% lower if a four-way associative cache had been
used. But this would have cost nearly four times as much
in hardware, and would have required an increase in the
cycle time of the machine, since the cache access takes
longer when the cache must determine which way (set)
contains the data. The benefits did not seem commensurate
with the cost.

Write-Through versus Wri te-To
When the processor writes to the cache, the cache can

do the write to memory at once (a write-through cache), or
it can save the data and do the write to memory later (a
write-to cache). The write-through cache has the benefit of
always having a correct copy of the data in memory, some
thing nice for I/O. A write-to cache reduces the bus traffic

considerably, since only a small number of writes generate
a bus transaction.

Keeping the memory up to date is a problem that HP
Precision Architecture leaves to software. That removes
most of the addtional complexity normally associated with
the hardware on a write-to cache, and made the choice of
a write-to cache clear.

Caches are something that software has traditionally not
been able to control. But HP Precision Architecture pro
vides explicit instructions for the software to maintain the
caches. These are the purge and flush instructions, and all
their variations. A purge removes the information from the
cache without saving anything. A flush does the same,
except that it writes the contents back into memory (for a
write-to cache) before destroying it. The instructions come
in two flavors, one for the instruction cache and one for
the data cache. There is no purge instruction cache instruc
tion, since a program can never write to (change) the in
struction cache.

Why does this make a difference for performance? The
explicit purge and flush instructions take time to execute.
Traditionally this time has not been required. But the
hardware complexity is significantly less, and therefore we
can build faster caches. Although it is difficult to measure,
we believe that the cost of the explicit instructions is less
than the performance gain from the simplicity of the design.

Memory transactions in the Model 840/Series 930 proces
sor occur on the MidBus, and are 16-byte (4-word) reads
and writes, named READ1 6 and WRITE1 6. After a cache miss,
the bus states are:

R E A D 1 6 W R I T E 1 6
(c a c h e m i s s) (c a c h e m i s s)
A d d r e s s A d d r e s s
D e a d C y c l e D e a d C y c l e
T r i s t a t e D a t a O
D a t a 0 D a t a 1
D a t a 1 D a t a 2
D a t a 2 D a t a 3
D a t a 3 T r i s t a t e
Tristate

The basic bus cycle is the same as the processor's, 125
ns. Two things are key: the latency and the data rate. The
latency is how long it takes to get the first word of data
back (time from address to first data). The data rate is how
fast the data comes back once it starts going. If the latency
is high, the miss penalty will be high. It may be best to
load more data in that case. If the data rate is the same as
the instruction rate, bypassing the instruction cache can
make a lot of sense. In general, the latency is largely deter
mined by the bus and the memory (dynamic RAMs) used.
It is hard to reduce. The data rate is also determined by
the bus, but it is easily controlled by adjusting the bus
width and cycle time.

Effects of Bypassing
Cache line bypassing is the concept of using the instruc

tions or data as they are loaded into the cache, rather than
waiting for the cache miss to finish. This reduces the pen
alty of the cache miss, but it has a few problems, too. In
the Model 840/Series 930 processor, about three-quarters

MARCH 1987 HEWLETT-PACKARD JOURNAL 13

© Copr. 1949-1998 Hewlett-Packard Co.

of the instruction cache misses occur on the first word of
a line, and the rest are evenly distributed among the other
three words. The instruction cache penalty on the Model
840/Series 930 processor is 9 cycles with no bypassing, but
is from 5 to 8 cycles if bypassing is used. The effective
miss penalty is calculated by summing 75% of 5, 8% of 6,
8% of 7, and 8% of 8. This comes out to 5.12, much better
than 9.

When actually measured, the effective miss penalty is
5.35, close to the calculated value. Comparing these num
bers (still incomplete) at this point gives a CPI contribution
of 0.16 with bypassing, and 0.27 without bypassing. These
numbers were calculated by multiplying the I-cache miss
rate (assumed 3%) by the respective miss penalties.

Some other things must be considered. If the processor
is not executing the instructions in the same order and at
the same speed as they are coming into the cache, the
analysis breaks down. The Model 840/Series 930 processor
is capable of doing this, but there are two important excep
tions: a processor freeze and a taken branch. If the processor
freezes for any reason other than the instruction cache miss,
the instructions coming from memory are now too early
for the processor. In the case of a branch that is taken, the
instructions coming from memory simply are not the
proper instructions. In both cases, the processor is refrozen
and the instructions from memory are ignored. However,
this is what happens anyway; there is no additional penalty
for bypassing. On the Model 840/Series 930 processor, this
refreeze adds 1.90 cycles to the effective I-cache miss pen
alty. This brings the total miss penalty to 7.25. Recalculat
ing the CPI, a bypassed I-cache adds 0.22, while no bypass
ing adds 0.27. The processor performance gain by using
bypassing is 0.05 CPI multiplied by 8 raw MIPS, or 0.40
MIPS, about a 10% gain.

Bypassing is also done on the data cache. Here it is not
nearly so important. Since the cache can only handle one
cache operation at a time and the cache operation is not
finished until the miss has been handled, bypassing only
works for one access per line. The CPI contributions, calcu
lated in a similar way as above (but more complicated) are
0.10 for bypassing versus 0.13 for no bypassing. Bypassing
is done on the data cache simply because it was easy to
implement. The logic existed for the instruction cache
(where it makes a larger difference), and was easy to mul
tiplex between the two caches.

The following table summarizes the bypass and no-
bypass performance calculations.

I-cache
D-cache

no
bypass
(CPI)
0.27
0.13

bypass
(CPI)
0.22
0.10

difference
(CPI) (MIPS)
0 . 0 5 0 . 4 0
0 . 0 3 0 . 2 4

Bypassing has one other problem. If the bus supports
retries (a third party requests that the current bus transac
tion be ignored and tried again), the retry must be known
before the first data word is used. Normally this means
that the retry signal must be present with or before the first
data word. Because of control complexity, the retry signal
must be present on the MidBus one cycle before the first

data word in the Model 840/Series 930 processor.

Crit ical Word First , Line Size, and Cache Size
Critical word first is an idea that only makes sense with

cache line bypassing. It is the idea of rearranging the data
on the transaction so that the needed word comes first, and
the rest come later. For example, if the second word (word 1)
is needed first, the memory would return the data in this
order: word 1, word 2, word 3, then word 0. Taking a look
back at the miss penalty for the instruction cache (5.35),
we can see that this doesn't make a lot of sense. A miss
penalty of 5 is the best we could do. Critical word first also
potentially introduces a penalty on the 32-byte memory
transactions, a discussion of which is beyond the scope of
this paper. The Model 840/Series 930 cache and memory
do not support critical word first.

Caches load one line at a time from memory. How big
should this line be? Typically, the larger the line size, the
more efficiently it can be loaded from memory. But with
large lines, it is more likely that words will be loaded that
will never be used. Since the instruction cache is normally
used in a regular way, it benefits more from a large line
size than the data cache. The Model 840/Series 930 proces
sor uses a line size of 16 bytes (4 words) for both the instruc
tion and the data caches. A line size of eight words would
have been better for the instruction cache, but would have
been difficult to implement since the Model 840/Series 930
has combined, pipelined cache tags.

Determining how big to build a cache is sometimes dif
ficult. The larger the cache, the lower the miss rate will
be, as long as you stay in the same global address space.
Some processors do not have a single address space large
enough to handle multiprocessing. Operating systems can
get around this problem by flushing the TLB on process
switches. Sometimes it is necessary to flush the cache, too.
If the processor must flush the cache on a process switch,
there comes a point where building larger caches may not
help, and may even hurt system performance. This would
put a practical limit on the size of TLBs and caches in such
systems. The larger they are, the longer they take to flush.
Also, the larger they are, the less likely they are to be fully
used before a process is switched out again. HP Precision
Architecture solves this problem by having a single large
address space. All processes share this common address
space, and no flushing needs to be done on either the TLB
or the cache during process switches. With HP Precision
Architecture, larger caches are always higher-performance,
as long as the cycle time is not affected.

Floating-Point Coprocessor

In HP Precision Architecture, floating-point operations
are handled by a coprocessor. This coprocessor runs con
currently with the main CPU and has the sole job of sup
porting floating-point arithmetic. Floating-point arithmetic
is well-suited for a coprocessor because it involves calcu
lations that require multiple cycles to perform. This means
that although the floating-point instruction occupies one
position in the instruction stream, the main CPU can re
ceive and execute subsequent non-floating-point instruc
tions concurrently with subsequent cycles of the floating-

14 HEWLETT-PACKARD JOURNAL MARCH 1987

© Copr. 1949-1998 Hewlett-Packard Co.

point instruction.
As a true coprocessor, the floating-point board decodes

its own instructions. It also has its own set of sixteen 64-bit
registers. Data is sent to the floating-point board by loads
from the cache and results are retrieved via stores to the
cache. The floating-point operations are performed accord
ing to the IEEE standard for binary floating-point arithme
tic.

The floating-point board is not equipped to handle all
floating-point operations required, nor all floating-point
number values. When an unsupported operation or data
value is detected, the floating-point board indicates this
fact to the main CPU, which then handles the operation in
software. The occurrence of these operations requiring soft
ware is rare and does not significantly affect performance,
but does ensure that the IEEE standard is completely satis
fied.

Overlapped Processing
During the initial investigation for the floating-point

board, a simple design was considered, which did not allow
overlap of any type of floating-point instuctions. However,
several types of floating-point applications (e.g., matrix
multiply, vector sum, 3x3 graphics transformation, etc.)
were examined and estimates of performance were made.
It quickly became apparent that the initial design did not
meet the performance goals. Furthermore, in most of the
applications examined, allowing nonconflicting floating
point loads and stores to be processed while floating-point
operations (flops) were being executed increased the per
formance enough to meet the goals. Therefore, the floating
point coprocessor implements this capability.

Once the capability of the board was decided, the design
was implemented in a simple and straightforward manner.
It was determined that microcode would be used to execute
flops, while floating-point loads and stores would be im
plemented completely in hardware. A proprietary HP float
ing-point add, multiply, and divide chip set used in the
HP 9000 Model 550 was selected to do the floating-point
calculations. Also, a special assembler was written to con
vert the source microcode into a listing file and a burn file,
with the latter being used to program the microcode
PROMs.

The design choices led to the partitioning of the floating
point board into two distinct parts, the micromachine and
the state machine (see Fig. 8). These two control pieces
share a common data bus and both have access to the regis
ter file. They share these data paths on a time basis, with
each in control for half of the 125-ns cycle time. The state
machine does all of the interfacing with the main CPU and
provides control for floating-point loads and stores. It also
dispatches the micromachine to execute flops and signals
the main CPU when traps or freezes are necessary.

The organization of the floating-point board into these
two distinct control blocks is well-suited for allowing float
ing-point loads and stores to be processed while flops are
in progress. When the state machine receives a floating
point load or store it simultaneously determines whether
the micromachine is busy, and if so, determines whether
the new load or store conflicts with the flop in progress
by accessing a floating-point register used in the flop. If

there is no conflict, the state machine processes the float
ing-point load or store immediately; otherwise, it waits
until the flop is completed.

Self-Test
A full self-test strategy is built into the floating-point

board design. A special, machine dependent instruction
was created, which when executed causes the micro-
machine to perform a detailed diagnostic test of the float
ing-point board. This test signals pass or error conditions
by setting bits in one of the floating-point registers. It also
puts the one's complement of these bits into another regis
ter so that the validity of the information in the first register
can be verified. Also included in the self-test strategy is
the ability of the main CPU to distinguish between a mal
functioning floating-point board and the lack of a floating
point board in the system.

At power-up, a self-test is run on the floating-point board.
The test includes the microcoded self-test as well as one
instruction of each type of floating-point operation to en
sure that the board is performing correctly. If this is deter
mined to be the case, then the system is configured with
the floating-point board enabled. If this is not the case, an
error is signaled during initialization. The floating-point
card can then be removed and the system rebooted without
the floating-point board enabled. Then all floating-point
operations are performed in software.

Development Methods
Once the floating-point hardware was solid enough to

run in a system environment, a software test package was
written to aid in catching numerical errors. This package
allows us to test any flop with any operands. It also offers
a pattern mode, during which operands are generated in a
user-controlled pattern and continually used in flops. It
functions by checking results received from the floating
point hardware with results derived from software floating
point routines. During development, if discrepancies were
found between the two results, the operands, operation,
and results were logged to an error file. In the pattern mode
of operation, this software package caught a few numerical
flaws both in the floating-point hardware and in the soft
ware floating-point routines. The mistakes in the software
floating-point routines were equally important to correct

Busy, Trap, Condition

Instruction

Control

L o a d S t o r e
D a t a D a t a

Fig. 8 . F loat ing-po in t coprocessor b lock d iagram.

MARCH 1987 HEWLETT-PACKARD JOURNAL 15

© Copr. 1949-1998 Hewlett-Packard Co.

because in the absence of hardware, they would be used
to do the calculations.

To get the maximum performance from the floating-point
board, the compiler groups and especially those connected
with the optimizer were brought into the design process
in the early stages. They were given information on how
long each flop took to execute and what constitutes a con
flicting load or store versus a nonconflicting load or store.
Using this information along with their knowledge of the
operating characteristics of the main CPU, they altered their
compilers and optimizers so that the instruction ordering
and floating-point register allocation they generated would
take the best advantage of the floating-point hardware that
existed.

The inclusion of the floating-point coprocessor with the
main CPU allows the hardware to be used in a technical
environment. Its position in the system as a coprocessor
enhances the overall system performance by allowing the
CPU to do non-floating-point activities such as address
generation and integer arithmetic while multicycle flops
are in progress. The floating-point board's ability to do
floating-point loads and stores concurrently with flops
means that while one result is being calculated, previous
results can be stored and operands for future flops can be
loaded. In summary, the design of the floating-point board,
its placement in the system, and its influence on the com
pilers and optimizers all serve to get the maximum techni
cal performance from the technology used to implement
the design.

Memory System

The Model 840/Series 930 memory system is designed
to maximize performance by keeping the latency from ad
dress to first word as small as possible. All signals were
potential critical path signals and had to be analyzed care
fully to ensure that the timing goals were met. The memory
strobe lines RAS and CAS were closely analyzed so that the
skew was minimized.

The DRAMs are accessed using nibble mode so that a
read operation can return a word of data every 125 ns after
a latency period of 300 ns. The memory controller is im
plemented using TTL technology.

The memory system communicates with the processor
and the I/O system through the MidBus, which is a synchro
nous high-speed bus. There is parity checking on the Mid-
Bus for the address, data, and control lines. The memory
generates and checks parity on data reads and data writes
to improve the reliability of the memory system.

The memory can be accessed in either 16-byte or 32-byte
transactions. The 16-byte transaction takes seven cycles
and the 32-byte transaction requires 13 cycles. The
maximum memory bandwidth for 16-byte transactions is
18.285 Mbytes/s and for 32-byte transactions is 19.7
Mbytes/ 's .

At power-up it is necessary to initialize the memory con
troller. The architected control and status registers are vis
ible to the software in the I/O address space. The boot code
initializes the memory controller, setting up the physical
memory's address range via MidBus I/O transactions to the
I/O registers resident on the controller.

Each 8M-byte main memory module is physically located
on two boards. The memory controller board contains three
banks of DRAMs and the memory array contains five banks
of DRAMs. One memory controller communicates with one
memory array card. While this increases the manufacturing
price compared to a product that extends the reach of the
controller to many memory cards, it has the advantage of
reducing latency, since fewer DRAMs are addressed and
the address and data buses are shorter.

27 bits of the 32-bit physical address are used. This limits
addressability to a 128M-byte physical space.

Error Correction
Error-correcting memory is standard. A 32-bit error-de

tection and correction (EDC) chip forms the basis of this
circuitry. During a memory write operation, 32 bits of data
are sent through the EDC logic, which generates seven
checkbits. These are merged with 32 bits of data in the
proper RAM bank. When a memory read operation occurs,
these 39 bits are sent through the EDC logic, which inter
nally regenerates what the seven checkbits should be and
compares them to the checkbits that it actually got from
the RAM bank. The result of this comparison is called a
syndrome. The checkbits for each 32-bit pattern are chosen
so that the syndrome reveals useful information about any
errors that are detected. If the error is a single-bit error, the
syndrome can be decoded to see which bit is wrong. The
EDC does this and corrects the error. Multiple-bit errors
are not correctable. The best that can be done is to detect
their presence and interrupt the processor by pulling on
the error signal on the MidBus.

System Monitor Module

The power system consists of several major components:
â€¢ Ac front-end power distribution unit
â€¢ 5-kVA isolation transformer
â€¢ Fan tray with four ac fans and backup battery
â€¢ Three 300W power supplies
â€¢ System monitor module
â€¢ Internal and external control panels.

The relationship among these components is represented
in the system block diagram, Fig. 9. The system monitor
module serves as an interface between the power supply
and the SPU boards. It generates secondary power (+ 5V Si
and + 5V S2) to the CPU and memory boards, processes
power-on and powerfail warning signals to the MidBus,
terminates and arbitrates MidBus signals, monitors system
temperature, and interfaces with the control panel and ac
cess port. It also includes some miscellaneous processor
dependent hardware consisting of the time-of-day clock,
stable storage, diagnostic switches, and an EPROM for pro
cessor dependent code.

The secondary power is generated by two dc-to-dc con
verters. In the normal mode of operation, the system
monitor module converts +28V from two of the power
supplies to +5. IV to supply up to six memory boards, or
24M bytes of memory. During the backup mode, the dc-to-
dc converters take power from the 10V 10 A backup battery.
The battery can supply up to six memory boards for at least
15 minutes during a powerfail. An external battery connec-

16 HEWLETT-PACKARD JOURNAL MARCH 1987

© Copr. 1949-1998 Hewlett-Packard Co.

Externa l Bat te ry
Processor

In te rconnec t

Fig. 930 Computers. diagram of the HP 9000 Model 840 and HP 3000 Series 930 Computers.

tor is provided if additional backup time is required. The
battery enable switch is built into the ac circuit breaker on
the power distribution unit. Another battery test switch on
the power distribution unit can bypass the battery enable
switch for powerfail testing.

The system temperature is monitored by four thermistors
on the backplane. When an overtemperature situation oc
curs, the system monitor module turns on the yellow warn
ing light and sets a flag to the CPU at 45Â°C inside the
cabinet. At 60Â°C, the system monitor module trips the ac
circuit breaker and shuts off all the power including battery
backup.

The processor dependent hardware on the system
monitor module communicates with the CPU via diagnos
tic instructions. The diagnostic instructions have access to
the control-panel hexadecimal status displays, the time-of-
day clock chip, the stable-storage CMOS RAM, and the
diagnostic switches. The software can read from and write
to these components via entry points in the processor de
pendent code. The clock chip and the stable-storage RAM
are backed up by two lithium batteries on the system
monitor module during powerfail. A parallel-to-serial in
terface converts 16 bits of hexadecimal display data serially
to the access port to facilitate remote diagnosis.

Acknowledgments
Many people contributed to the hardware development

of the Model 840/Series 930. The authors would particu
larly like to thank Lee Moncton for his guidance as our
original project manager, Joe Mixsell for helping us keep
the faith during the dark times, Paul Bliley and Chris
Livingston for their technical assistance during all phases
of the project, Darlene Harrell for prototyping work, Rose

mary Kingsley for production documentation and making
sure we always had parts when we needed them, Ken
Robertson, Luann Piccard, and Bea Netter for the mechan
ical and industrial design, Al Hum, Randy Teegarden, and
Tom Wylegala for production engineering, Jess Pawlak for
supporting those first 36 systems, Jerry Everett and his
people for supporting over 400 lab prototype and produc
tion prototype systems, Jim Finnell for the original cache
design, Don Cross for the I/O channel design, Don William
son for the original E-Unit design, Chuck Gebber, Tom
Harms, and Albert Chun for their contributions to the float
ing-point board, Julie Wu, Tom Alexander, and Carl
Woodard for taking over and maintaining the majority of
the original CPU design, Bill Shellooe for his invaluable
help in creating and maintaining our tools, and Cheryl
Gressman and all of the people in the printed circuit design
shop.

References
1. M.J. Mahon, et al, "Hewlett-Packard Precision Architecture:
The Processor," Hewlett-Packard Journal, Vol. 37, no. 8, August
1986, pp. 4-21.
2. D.V. James, et al, "Hewlett-Packard Precision Architecture: The
Input/Output System," ibid, pp. 23-30.
3. F.W. Clegg, et al, "The HP-UX Operating System on HP Pre
c i s ion 37 , Compu te r s , " Hewle t t -Packa rd Jou rna l , Vo l . 37 ,
no. 12, December 1986, pp. 4-22.
4. J.R. Busch, et al, "MPE XL: The Operating System for HP's Next
Generation of Commercial Computer Systems," Hewlett-Packard
JournaJ, to be published.
5 . G . HP e t a l , "A Dis t r ibu ted Te rmina l Con t ro l l e r fo r HP
Precision Architecture Computers Running the MPE XL Operating
System," this issue.

MARCH 1987 HEWLETT-PACKARD JOURNAL 17

© Copr. 1949-1998 Hewlett-Packard Co.

An Automated Test System for the First
HP Precision Architecture Computers
Besides test ing for proper operat ion, the system gathers
speci f ic fa i lure in format ion and generates summary
s tat is t ics to be used in improv ing the manufactur ing
process.

by Thomas B. Wylegala , Long C. Chow, and Randy J . Teegarden

THE AUTOMATED TEST SYSTEM for the first com
puters of the HP Precision Architecture family can
test up to ten HP 9000 Model 840 or HP 3000 Series

930 Computers simultaneously. Fig. 1 is a block diagram
of the test system.

A Model 840/Series 930 Computer configured with two
special boards can be connected to the test system via a
cable. The test system then has the ability to load diagnostic
programs into the Model 840/Series 930 and monitor the
results of those tests. The host for the test system is an HP
9000 Model 220, but any HP 9000 machine that runs the
HP-UX 5.1 operating system could serve as well.

Key Features
The Model 840/Series 930 computer contains 32K bytes

of test code resident in ROM. This self-test code is executed
whenever the computer is powered on or reset. There is a

need to supplement this test code with additional special
ized test programs. Also, it is expensive to modify firmware
based code, but easy to add a new test to the test system.
Therefore, the test system provides the capability to down
load test programs into the memory of the computer under
test and to initiate their execution.

The test system monitors the results of test execution
and writes the status to a log file. This eliminates the need
to have a human operator constantly observing the unit
under test to judge whether the unit has passed. The test
system collects the data elements that are critical to the
success of the quality control program.

Little peripheral equipment is required to support the
testing process. Without the test system, the minimum con
figuration to run diagnostics on Model 840/Series 930 pro
cessors includes a console and a disc for each unit under
test. The peripherals for the testing of ten units would be

System
Configuration

Temperature Chamber
Units under Test

Fig. 1 . B lock d iagram of the test
system for HP 9000 Model 840 and
HP 3000 Ser ies 930 processors.

18 HEWLETT-PACKARD JOURNAL MARCH 1987

© Copr. 1949-1998 Hewlett-Packard Co.

expensive and would consume valuable factory space.
Finally, the test system requires minimal cooperation

from the unit under test. Even catastrophic self-test failures
can be detected properly by the test system. It can even
download test programs into a unit whose normal input'
output channels are inoperable.

Hardware Developed
The communications interface between the test system

and the unit under test is based on the link used to support
the remote debugger (RDB),1 so the test system is fully
compatible with RDB. That link involves a 16-bit path be
tween a GPIO card in the HP 9000 host and a parallel card
in the Model 840/Series 930 under test. For the test system,
two custom boards (called the test system interface and
the GPIOA adapter) were designed to enhance the RDB
link. The connections are shown in Fig. 2.

Many advantages accrue from inserting these two custom
cards into the path. Signals can be transmitted reliably over
distances up to 300 feet (versus 3 feet for the original link)
using an EIA RS-422 differential interface. The system will
work with both the new differential drive and the original
single-ended drive versions of the parallel card. The test
system interface also has access to signals on the access
port card slot. These signals allow the test system to give
the unit a hard reset and to receive the 16 bits of serial
data sent to the access port card. These 16 bits of data,

Parallel Card

Access Port
Adapter Card

Test System
Interface

MidBus

To HP 9000
Model 220
Computer

Fig. 2. Paral le l l ink conf igurat ion.

which on Model 840/Series 930 processors also appear on
the LED status display, enable the unit under test to send
messages to the test system even if a failure in the CIO
channel adapter prevents communication via the console.
Finally, the test system can determine when the unit under
test has been powered on or off.

Firmware Developed
The I/O dependent code (IODC)2 for the parallel card

was written to make communications with the test system
possible. The IODC contains a communications server
which enables the Model 840/Series 930 to interpret the
data being transmitted to it by the test system through the
parallel card. When the boot information in the Model
840/Series 930's stable storage area indicates that a parallel
card is to serve as the boot device, the communications
server is launched after the self-test has completed.

Software Developed
The test system control software has a multiprocess struc

ture. The main process, which is scheduled when the test
system is initiated, contains the user interface. It maintains
the status windows, updates the softkeys, and executes
user commands. There is one p_monitor process for each
computer under test. These processes manage the com
munications with the units under test. Finally, there is a
background process that performs periodic and intermit
tent tasks. The test system control software allows easy
reconfiguration of each test station. Parameters that can be
configured include the list of tests to be executed and the
number of temperature cycles needed for test completion.

The test system allows diagnostic programs to be loaded
into the computers under test. Developing these diagnostics
was another challenge. Several sets of test programs were
written. For example, there is an exerciser for the transla
tion lookaside buffer (TLB) that verifies the proper opera
tion of each field in every entry of the TLB. A total of 49
of the original architecture verification programs were
adapted for use with the test system. These programs per
form extensive testing of the arithmetic, logical, and branch
instructions. The test programs obey some conventions to
make the test system's job easier. For instance, the programs
use the access port interface path to transmit error codes
to the test system to indicate failures or a pass code to
indicate when the test has completed successfully. All of
the tests written for the Model 840/Series 930 use the data
FFFF in hexadecimal to signal success and preface a failure
message with the data DEAD. The Model 840/Series 930
tests also compute a checksum on their instruction text to
ensure that the program was downloaded correctly.

Relat ion to the Manufacturing Process
Model 840/Series 930 boards are subjected to three levels

of testing during their manufacture. First is a board-level
in-circuit test on the HP 3065 Board Test System.3 This
test screens out most process related problems, such as
bent pins and solder bridges. Next, boards are grouped into
sets, installed into backplanes, and subjected to functional
tests in a temperature chamber. The temperature chamber
continuously cycles from 0 to 55Â°C with a period of two
hours. This test detects temperature-sensitive component

MARCH 1987 HEWLETT-PACKARD JOURNAL 19

© Copr. 1949-1998 Hewlett-Packard Co.

failures and precipitates failures in marginal parts. The
final step is to perform an operating system level verifica
tion test on the completely assembled unit. Verification
test suites have been written for both the HP-UX and MPE
XL operating systems.

The test system plays its biggest role in the temperature
chamber phase of testing. Model 840/Series 930 boards
spend between ten and twenty-four hours in the chamber.
During this time, the test system supervises the execution
of the prescribed set of test programs.

The temperature chamber test sequence has six phases.
1. The operator installs a board set into a backplane in the
chamber and applies power to the unit. The test system
automatically detects that the unit has powered on and
spawns a p_monitor process for it.
2. The test system sends the unit a hard reset signal. The
unit will perform its self-test and initiate the boot sequence.
3. The test system waits until the unit signals successful
completion of the boot from the parallel card. Anything
other than a boot completed message is considered an error.
4. The test system gets the next test to run from the test
list. (The list is circular; the first test is rerun after the last
test completes.) The test system downloads the test and
directs the unit to execute it.
5. The test system allows time for the test to execute and
checks on the result. If the unit passed, the test system
continues with step 2.
6. In the event of an error, the test system records the error
code, signals the operator that a failure has occurred, and
attempts to rerun the test that failed. The system also gen
erates a failure record to be added to the data base.

The test system is also a valuable aid in repairing defec
tive boards. Repair technicians have access to the same set
of diagnostic programs that first indicated the presence of
the failure. The technicians can query the test system data
base to determine the exact circumstances of the failure
and any prior attempts at repair. This obviates the need
to have paper tracking forms accompany the boards to the
repair area.

To integrate the entire manufacturing operation, the test
system is also used in the final configuration area. The full
set of diagnostics is available, and the data base can be
accessed. The test system also provides special utilities to
initialize the units before shipment.

Results Observed
Before installation of the test system, the only test pro

grams that the Model 840/Series 930 could execute in the
temperature chamber were those contained in ROM, that
is, the power-on self-test. The test system supplements the
self-test with a variety of other tests. Moreover, the test
system forces the Model 840/Series 930 to complete the
entire boot sequence, in itself a good test. The effectiveness
of the tests can be measured by the failure rate experienced
in the next level of testing, that is, the operating system
tests. In the fourteen-week period before installation of the
test system, the failure rate experienced during the operat
ing system tests was 19%. That is, of 228 sets of Model
840/Series 930 boards that successfully executed self-test
in the chamber, 44 were subsequently shown to have
hardware failures by the next level of testing. By contrast,

during the first seven weeks in which the test system was
operational, the failure rate dropped to 2.5% (only one
failure out of 41 sets tested].

Summary
The test system is designed to fill two critical needs in

computer manufacturing. The first is to subject the comput
ers to stringent functional tests so that defects can be re
vealed at the earliest possible time. The second is to keep
accurate records of the results of those tests so that the
manufacturing process can be constantly improved. With
respect to the first point, the test system has already been
a great success. A number of failures were detected by
testing in the temperature chamber that would otherwise
have gone unnoticed until the operating system tests.
Moreover, whenever better diagnostics are written, the test
system will be ready to download them. The test system
automatically generates a template for each failure occur
rence; the operator need only input the serial number of
the board that was defective. This data base can be scanned
to reveal the weak points of the process.

Acknowledgments
The authors owe special thanks to Dave Campbell, who

provided inspiration and support to the project. Other con
tributions were made by Craig Chatterton (interface to
PDC), Tom Taylor (GPIO driver), and George Winski (tem
perature measurement).

References
1. D. Magenheimer, "Remote Debugger," Hewlett-Packard Jour

nal, Vol. 37, no. 8, August 1986, p. 43.
2. D.V. James, et al, "Hewlett-Packard Precision Architecture: The
Input/Output System," ibid, pp. 23-30.
3. T.R. Fay and J.E. McDermid, "The HP 3065 Board Test Family:
A System Overview," HewJett-Packard Journal, Vol. 35, no. 10,
October 1984, pp. 4-9.

20 HEWLETT-PACKARD JOURNAL MARCH 1987

© Copr. 1949-1998 Hewlett-Packard Co.

A Distr ibuted Terminal Control ler for
HP Precision Architecture Computers
Running the MPE XL Operat ing System
Up to 48 terminals or printers connected to each controller
communicate wi th HP 3000 Ser ies 930 or 950 Computers
over an IEEE 802.3 local area network.

by Gregory F. Buchanan, Francois Gaul l ier , Ol ivier Krumeich, Er ic Lecesne, Jean-Pierre Picq,
and Heng V . Te

WITH THE EVER INCREASING capacity of com
puter systems comes the demand for more termi
nal connections. On the other hand, SPU (system

processing unit) cabinets are becoming smaller with each
generation. Finding space in these smaller SPU cabinets
for the increasing number of terminal connections is a
challenge.

For HP Precision Architecture computer systems using
the commercial operating system, MPE XL, the solution is
the HP 2345A Distributed Terminal Controller (DTC). The
approach taken was to move the terminal connections out
of the SPU cabinet and into the DTC.

The HP 2345A is designed for the HP 3000 Series 930
and Series 950 Computers. It enables up to 48 asynchronous
devices (terminals or serial printers) to be connected to
these systems over an IEEE 802.3 local area network (LAN),
thereby greatly simplifying the cabling and lowering the
associated costs. Future releases will allow a terminal user
connected to the DTC to establish a session with an MPE
XL system, and then by a simple command, to switch to
another MPE XL system on the same LAN. This switching
capability, combined with the possibility of distributing
the DTC in a building, is a major contribution of this new
commercial computer system family.

Software Architecture
Fig. 1 shows the overall DTC software architecture. To

achieve the objectives of performance and simplicity, the
DTC has a special operating system, AOS, which is a
straightforward dispatcher with associated services like
memory and timer management. An added benefit of this
dedicated operating system was easy integration of the DTC
software into a Pascal workstation along with debugging
tools. This approach proved very efficient in the design,
testing, and integration phases.

The stack of protocols in the DTC has been reduced to
a minimum, and some layers of the ISO OSI model have
been combined. Layers one and two are the standard IEEE
802.3 and IEEE 802.2 Class I. These standard protocols
were chosen so that the DTC could share the LAN (the
same physical cable, medium attachment unit, and LAN
controller) with HP 3000 Network Services (NS/3000) or

any IEEE 802.3 compatible devices.
For the upper OSI layers, no protocols existed that met

the objectives of performance and simplicity, so proprietary
protocols are used instead of standard protocols such as
TCP/IP and TELNET. It was also felt that additional func
tionality was needed in the standard protocols to ensure
satisfactory support of terminals in the MPE environment.
A goal was to offload the character-oriented tasks, like
character backspace or line delete processing, from the host
and do it in the DTC to save processing power in the host
and at the same time provide real-time feedback to the
user's keystrokes at the terminal. This results in greater
overall system efficiency and more friendliness for the cus-

LAN Cable MAU

Self-Test
and

Diagnostics
Download

Fig . 1 . D is t r ibu ted te rmina l cont ro l le r (DTC) so f tware s t ruc
ture. AOS is the DTC operating system. FCP is the flow control
pro toco l . DCP is the dev ice cont ro l pro toco l . NMP and RMP
are network management and remote maintenance protocols.

MARCH 1987 HEWLETT-PACKARD JOURNAL 21
© Copr. 1949-1998 Hewlett-Packard Co.

torner, but it also means that the DTC needs a lot of intel
ligence and an elaborate software structure (Fig. 1) to or
ganize this processing.

It was also apparent that some sort of transport mecha
nism is necessary to prevent flooding the DTC with data.
Since the processing power of the host is at least an order
of magnitude greater than the processing power of the DTC,
the DTC needs some way to tell the host to stop sending
data so the DTC can process what it has received. This
functionality is also needed because a user at a terminal
can always stop the flow of data and resume later, a printer
can run out of paper, and so on. This requirement resulted
in the definition of a special DTC flow control protocol.

Flow Control Protocol
As implied by the name, the most important feature of

this protocol is to make sure that the DTC is not overflowed
by the host. There are other protocols that provide this
feature, but no single protocol that offers all of the features
that are needed. The DTC flow control protocol (FCP) is
based on a study done by Hewlett-Packard Laboratories in
1984 of a protocol known as Fast Path, a higher-perfor
mance, stripped-down version of the ARPA TCP/IP pro
tocols. The DTC FCP is derived from Fast Path and from
CCITT Recommendation X.25 Level III.

The features of the DTC FCP are:
â€¢ Simplicity
â€¢ Flow control
â€¢ Reliability
â€¢ Connection-oriented
â€¢ Connection assurance
â€¢ Fragmentation and reassembly.

To maintain DTC efficiency, the FCP has been kept very
simple. Since it is layered on top of IEEE 802.3, which
provides error detection, error detection is not part of the
FCP; only error recovery is needed. The FCP was also de
signed knowing that errors on a LAN are infrequent, so the
mainstream functions are optimized while the error recov
ery processing is more cumbersome.

The FCP is a reliable transport because it guarantees that
all packets of data are delivered in the same order they
were received, and that no packets are lost or duplicated.
Reliable transport is needed because control information
is exchanged between the DTC and the host, and algorithms
that manage that exchange are simpler if they are based on
a reliable transport protocol.

The FCP is a connection-oriented protocol. There is a
simple procedure for establishing and breaking connec
tions between the DTC and the host. With this scheme,
each of the 48 ports of the DTC has its own connection for
exchanging data and control information without interfer
ing with the traffic on the other ports. This feature will be
very helpful in the future to provide access to more than
one host from the same port of a DTC.

To ensure reliable exchange of information on a port
basis, a connection assurance mechanism was defined so
that each end, the DTC or the host, can make sure that the
other entity is still alive and functioning.

While MPE does not limit the size of a single write, the
request has to be passed over the LAN, which restricts the

size of the frames to 1518 bytes. Therefore, the FCP provides
a way to fragment and reassemble the user data. The more-
data bit provides this functionality.

The protocol is fully symmetrical. There is no master/
slave relationship.

FCP Operat ion
To ease the implementation, the header of an FCP packet

is of fixed length, as shown in Fig. 2. Seven types of packets
are used to establish and break connections, to ensure re
liable transport of information, and to provide connection
assurance. To offer sustained throughput without a request/
reply scheme, which is less efficient under heavy load, a
window mechanism is used.

Packet Type
Sequence Number

Acknowledgment #

1 pkdata; normal data
2 pkack; ack or status reply
3 pkrstat; request status
4 pkcreq; connection request
5 pkcreply; connection reply
6 pkabort; abort/disconnect
7 pknak; negative acknowledgment

Destination ID

Origin ID

1 Byte
1 Byte

1 Byte

1 Byte

2 Bytes
2 Bytes

2 Bytes
2 Bytes

Fig. 2 . DTC f low contro l protocol packet format .

Fig. 3 shows how flow control is performed using the
window mechanism. Three fields are used in this al
gorithm: 1) the sequence number field, which identifies
the packet sent, 2) the acknowledge number, which indi
cates the next sequence number that the receiver is waiting
for, signaling to the sender that all packets sent previously
have been received, and 3) the window field, which indi
cates the last sequence number the receiving end is willing
to accept. In the example of Fig. 3, the left side opens a

A F C P A F C P

;

pkack#8 ,w in#10

pkdata seq#8

pkdata seq#9

pkdata seq#10

p k a c k # 1 1 , w i n # 1 0

pkack#11 ,w in#13

pkdata seq#11

Window is open (3)
Send data

Window is closed
Stop sending data

Window is open (3)
Send data

Fig. 3 . F low cont ro l mechanism window f ie ld .

22 HEWLETT-PACKARD JOURNAL MARCH 1987

© Copr. 1949-1998 Hewlett-Packard Co.

window for three packets at the beginning, and the window
closes automatically when the right side sends seq#10. The
left side does not reopen the window with ack#ll,win#lO,
but only confirms the window number and the last se
quence number received. When memory becomes avail
able, the left side reopens the window for three more pack
ets. In the meantime, the right side waits for the window
to reopen before sending any more data.

Device Control Protocol
As mentioned above, the DTC performs all the byte-

oriented tasks. The host controls the behavior of the DTC
using the DTC device control protocol (DCP). Fig. 4 gives
an overview of DCP functionality. Similar protocols, for
example CCITT Recommendation X.29 and the virtual ter
minal protocol used by HP network services products,1
already existed but either could not be used for perfor
mance reasons or would have had to be modified so exten
sively that it seemed easier to define a new protocol. The
DCP is designed to be simple, efficient, and compatible
with the HP CIO (channel input/output) bus.

User Program

FWRITE.FREAD
FCONTROL

Terminal
Driver

MUX Driver
Commands

File System

Low-Level I /O

Ã I/O Requests
[Write, Read, ...)

Fig. 4 . DTC dev ice cont ro l pro toco l overv iew.

Simplicity is achieved through a small number of mes
sage types and a fixed-length header. Fig. 5 shows the mes
sage types defined by the DCP. It is fairly easy to decode
a request since the format is fixed and relevant information
(request code, data length, etc.) is always in the same place.
Also, when changing the value of a parameter to alter the
behavior of the DTC, the parameter can always be found
at the same place in the packet.

Because the protocol is compatible with the CIO bus, the
same pieces of code can be shared to control devices, either
over the internal bus of the host or remotely over a network.
Sharing the same code and using the same protocol not
only save resources, but also ensure that a terminal will
always work the same way, regardless of the physical con
nection to the system. This important feature will guarantee

Fig. 5 . Dev ice cont ro l pro toco l message types.

that in the future, even if new ways of connecting terminals
are invented, the functionality and the behavior of those
terminals will be the same, thus greatly simplifying migra
tion to the new means of connection.

The device control protocol is implemented on a multi
plexer board to use the hardware resources, such as micro
processor power and RAM space, efficiently. One example
of this efficiency is in the design of the reply sent by the
multiplexer card. The reply has a trailer instead of a header.
This allows the multiplexer to start sending data before
the request is fully completed, thus saving RAM space.

The DTC device control protocol is not symmetrical, the
host being the master and the DTC being the slave.

The host configures a port of the DTC using the write
port configuration message. Fig. 6 shows the format of this
message. It contains all the configuration information for
read, write, and modem control operations. It also specifies
the speed and parity for the port's operation (data bytes 6
and 7). All MPE intrinsics are mapped into a set of values
in this message, allowing the user program full control of
the terminal.

The DTC returns user data from a read request with the
message shown in Fig. 7. The format of this message allows
the DTC to forward data to the host as soon as it is received
from the terminal. This greatly reduces the amount of mem
ory required to handle a read request, since there is no
need to buffer the complete message before sending it. In
addition, the protocol uses the fact that the LAN and the
host can take data from the DTC faster than the terminal
can deliver it. When the read is completed, the DTC sends
the completion code, along with the time of the read, to
the host in a fixed-length trailer in the last eight bytes of
the complete message.

The asynchronous event message allows the DTC to get
attention from the host, or to signal that conditions enabled
through the write port configuration message have oc
curred. Examples of asynchronous events are the establish
ment of a modem connection, a user calling for attention
(break or subsystem break), or a modem disconnection.

(cont inued on next page)

MARCH 1987 HEWLETT-PACKARD JOURNAL 23
© Copr. 1949-1998 Hewlett-Packard Co.

Fixed-
Length
Header

10 Bytes
D a t a L e n g t h (2 0)

Data
20 Bytes

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

2 0

Read Option

Backspace Character

Flow Control Timer Value

Interrupt Mask

More Interrupt Mask

EOR Character

Subsystem Break Character

AEOR Character

Read Trigger Character

Read Time-Out MSB

Read Time-Out LSB

Block Mode Signal Character

Console Attention Character

F i g . 6 . D e v i c e c o n t r o l p r o t o c o l w r i t e p o r t c o n f i g u r a t i o n
message.

Network Management and Remote Maintenance
Protocols

The DTC can be looked at from two points of view. In
the first, the DTC is treated as a local terminal multiplexer,
except that it is connected to the SPU by an extended bus.
Like a local multiplexer, the DTC belongs to a single SPU.
The difference in managing the DTC is that commands are
sent on the bus instead of the SPU having direct access to
the multiplexer hardware. That the bus is an IEEE 802.3
LAN is irrevelant. It could just as easily be a fiber optic
link, or some type of point-to-point connection.

From the second point of view, the DTC is treated as a
service provider on a LAN. The service it provides is termi
nal and printer access to MPE XL systems. From this point
of view, the DTC is not restricted to a single MPE XL system.
Instead, it can provide its terminal access service to several
MPE XL systems at once. This point of view multiplies the

8 Bytes
Fixed-
Length
Trailer

1: EOR
2: Count
3,4,5,6,7,15,18: Error
8: Break
9: RS Not Found

in Block Mode
10,11: Aborted by Host
12: Time-Out
13: AEOR
14: Subsystem Break
17: Console Attention

Character

Fig. 7. Device control protocol read/wri te data reply message
format.

management problems because the DTC is a shared resource
that may need to be managed by multiple MPE XL systems.
To allow the DTC to grow, the second viewpoint was taken
in developing the design criteria. To reduce the cost of the
DTC, it does not have local mass storage. Instead, it depends
on the MPE XL system to load its code and configuration
files, and it sends memory dumps and logs errors to files
on the MPE XL system. The on-line diagnostics for the DTC
are controlled by the MPE XL system. All of these functions
require exchanges of information between the DTC and
MPE XL â€” in other words, a protocol.

Two protocols designed by other HP networking groups
closely met the needs of the DTC. These are the remote
maintenance protocol (RMP) and the network management
protocol (NMP). The DTC design team helped define these
protocols, and the DTC is one of the first products to use
them. Using these HP standard protocols will allow the
DTC to fit easily into the HP network management strategy.

The DTC uses the remote maintenance protocol to down
load its code and configuration files, and to upload diagnos
tic dumps. To begin a download sequence, the DTC sends
a boot request packet asking for the location of its code
file. The boot request is sent to a LAN multicast address,
so all MPE XL systems on the LAN receive it. Each of the
MPE XL systems looks in its configuration file to see if it
has the code and configuration files for this particular DTC.
If so, the MPE XL system responds with a boot reply, iden
tifying itself to the DTC. The DTC picks one of the respond
ing systems as its active loader and starts asking for code
segments. The segment loading is carried out by a simple
request/reply exchange of packets with a time-out retry.
The DTC requests code segments one at a time from the
MPE XL system. If it doesn't get a response within two
seconds, it asks again. When it gets the reply the DTC loads
the code and asks for the next segment. Once the load is
done, the DTC sends a boot complete packet telling the

24 HEWLETT-PACKARD JOURNAL MARCH 1987

© Copr. 1949-1998 Hewlett-Packard Co.

MPE XL system the load is complete. A similar sequence
is used to load the DTC-specific configuration file, except
that the opening request is sent to the MPE XL system that
loaded the code file, and not to a multicast address. The
configuration file contains information such as the speed
and parity for each of the terminal connections. Once the
DTC has loaded its code and configuration, it comes on
line.

The DTC uses the network management protocol to pro
vide on-line diagnostics from the MPE XL system. These
functions include resetting ports, loopback testing, status
inquiry, and error logging. The starting point for these diag
nostics was the current MPE Termdsm diagnostic. How
ever, changes were required to reflect the separation of the
DTC from the SPU. Improvements have also been made in
presenting the data to the user. New Termdsm commands
were added to display the status of the DTC as a whole,
and to display the status of a serial port. Both status com
mands format the data into customer understandable form.
For example, state information is displayed in the user's
native language (e.g., "read pending") rather than as a
number. The goal of these two displays is to allow the
customer to do the first level of problem diagnosis, rather
than having to call in HP service personnel. An example
section of a port status display is shown in Fig. 8.

(IEEE 802.3 type 10 base 2). Only one of these network
connections can be used at a time.

The processor card uses an 8-MHz 68000 microprocessor
with 512K bytes of RAM and 64K bytes of EPROM. Also
on the card are a network interface, timers, and DIO drivers.

The serial interface card handles the processing, storage,
and multiplexing of the data to and from eight terminals.
It must be connected to a connector card located on the
opposite side of the backplane. The serial interface card
circuitry mainly consists of a Z80B processor, 16K bytes
of EPROM, 32K bytes of shared RAM (accessible by the
Z80B and the processor card), 8K bytes of fast RAM (acces
sible only by the Z80B), and USARTs.

The connector card is used for physical attachment of
the terminals. Three types of connector cards are offered
for six RS-232-C modem connections, eight RS-232-C direct
connections, or eight RS-422 connections with electrical
isolation. It is possible to mix the three types of connections
in the same DTC.

A display located on the front panel and connected to
the processor card shows the DTC status (download of code
in progress, errors, self-test results, etc.). The DTC firmware
contains a self-test, which is executed automatically at each
power-on, and an off-line diagnostic program, which is run
from a local terminal connected to DTC port zero. No host

SIC State

Read Pending

Number Of User Characters Received By SIC = 0

Last Special Character Received By SIC = $OD

Modem State :

Clear To Send = ON

Data Set Ready = ON

Ring Indicator = ON

Data Carrier Detect = ON

Disconnect Timer = 255

DCD Timer = 65535

Backspace = $08

EOR Character = $OD

Alternate EOR Character = $00

Block Mode Signal Char. = $12

Press <RETURN> to continue Â»

Request To Send = ON

Data Terminal Ready = ON

Data Rate Select = ON

Open Timer = 65535

DCD Counter = 255

Line Delete = $18

Subsystem Break Character = $19

Read Trigger Character = $1 1

LINE

MODIFY

MODIFY

ALL

BLOCK

MODE

REMOTE

MODE

TERMINAL MEMORY DISPLAY

T E S T L O C K F U N C T N S

A U T O
L F Fig . 8 . A por t ion o f a por t s ta tus

display.

DTC Hardware
The DTC is designed around a central backplane (based

on the DIO bus) using a press-fit technology. Up to six
connector cards and serial interface cards can be connected
to the processor card through the backplane (see Fig. 9).
The processor card has been leveraged from a board de
signed at the HP Colorado Networks Division. It includes
the LAN access interface and the DTC's overall manage
ment functions.

Two types of LAN accesses are offered: either Backbone
LAN cable (IEEE 802.3 type 10 base 5) or ThinLAN cable

connection is needed to use the off-line diagnostic. The
DTC hardware is fully tested by the self-test and the off-line
diagnostic.

After code is downloaded from the host to the DTC,
on-line diagnostics can be started from the system console
to cause various diagnostic and control functions to be
executed by the DTC (see preceding section).

The design of the DTC hardware is generic in the sense
that it can support almost any software architecture. This
ensures compatibility with future applications such as sup
port of new peripherals or concurrent stacks of protocols.

MARCH 1987 HEWLETT-PACKARD JOURNAL 25
© Copr. 1949-1998 Hewlett-Packard Co.

(b)

Fig. 9 . (a) DTC hardware archi tecture, (b) Physica l layout .

Performance Predict ion and Measurement
The theory of operation of the DTC is based on queuing

theory,2 specifically the M/M/1 systems, in which custom
ers of a service arrive in a system made up of a queue and
a server. The arrivals have a Poisson pattern. The queue
discipline is FIFO. The processing time of the server is also
a Poisson process. There is only one server for the queue.
The average arrival rate in the queue is L. The mean service
time of the server is 1/M. Then the mean time spent by the
customers in the system (queue + server) is T = 1/(M â€” L).

In the DTC, each protocol communicates with the others
using messages (carrying user data or not). But only one
protocol executes at a time. When a protocol sends a mes
sage, this message has to be queued by the DTC operating
system, AOS. When the currently executing protocol exits,
AOS calls the next protocol, which is the destination of
the first message of the queue. Thus the DTC can be seen
as a queuing system made up of a queue of customers (the
messages) and a server (the destination protocol of the first
message of the queue).

With this design, a packet that has to be processed by
several protocols (IEEE 802.3, DTC FCP, DTC DCP) is
queued several times to go across the DTC once. Some of
the messages processed are put in the queue again, so that
the flow out of the server partially reenters the queue, as
shown in Fig. 10.

Let E = 1/M be the mean execution time of the protocols.
This is the mean service time of the queuing system. Let

L be the incoming flow, that is, the sum of the packets
received from the LAN or the terminals. Let N be the
number of protocols that must be activated to receive or
transmit one packet (N = 5). The rate of arrivals in the
queuing system is NL, and 1/L is the mean time between
message arrivals in the queue.

For the sake of simplicity, assume that the arrival rate
of packets and the processing times are Poisson processes
(although this is not always the case). To go through the
DTC, a packet goes through an M/M/1 system several times
(Fig. 10); the DTC is a network of M/M/1 systems. Queuing
theory shows that in the case of a network of queues, if
the arrival rate in one node is a Poisson process, and if this
node partitions this stream into several streams with a given
probability of choice, the partitioned streams are also Pois
son processes. In the same way, if a node merges several
streams into one stream, the resulting stream is also a Pois
son process. For this reason, the formulas of M/M/1 systems
are still valid (Jackson's theorem).2

Fig . 10 . DTC queu ing mode l .

By applying the M/M/1 system model, the time to go
through the system once is found to be:

1/E - NL

If an item (packet, etc.) in the DTC undergoes a cycle made
up of P tasks, the time to perform this cycle is:

PE
1 - NLE

Obviously, NLE must be smaller than 1, since:

L < TTT; = maximum throughput.

We want to calculate the latency of the DTC and its
maximum throughput. Most of the results depend on the
traffic and/or on the number of active connections. Results
will be given here as functions of the total traffic L, the
sum in both directions of all of the flow rates of all of the
active connections.

Acknowledgments versus Useful Packets
At the DTC FCP level, two kinds of packets travel on the

LAN: data packets, which carry user data and correspond
to one I/O operation, and service packets (ACK, NAK). The
total throughput is the sum of the data throughput and the
number of ACK/NAKs per second. As the processing time of
each node limits the total throughput, the data throughput
depends on the rate of ACK/NAKs. The LAN is reliable

26 HEWLETT-PACKARD JOURNAL MARCH 1987

© Copr. 1949-1998 Hewlett-Packard Co.

enough and memory pools are dimensioned so that over
runs occur rarely enough to neglect the NAKs and the du
plicated packets. To estimate the data throughput we there
fore need to know the rate of ACKs.

The number of ACKs per transaction depends on the struc
ture of a transaction, and on the window. According to a
real-time analysis of MPE systems conducted at Hewlett-
Packard Laboratories, we can consider that each transaction
is made up, on the average, of 1.4 reads, 7.2 writes, and
2.2 controls, for a total of 10.8 terminal I/Os. 90% of the
user transactions will require 15 terminal I/Os per user
transaction or less. This means that the DTC receives, on
the average, 10.8 packets when it transmits 1.4 packets
(that ratio is a result of the assumption of Poisson process
es). The packet transmitted by the DTC in a transaction
implies the receipt of one ACK. The packets received by
the DTC imply a number of ACKs, depending on the window
size and on the value of the stand-alone acknowledgment
timer. If this timer is correctly tuned, the number of ACKs
transmitted per transaction will be 10.8 divided by the
value of the window. Therefore, the traffic will have the
following structure:

User packets transmitted per transaction
User packets received per transaction
ACKs received per transaction

1.4
10.8

1

The number of ACKs and therefore the total number of
packets exchanged in each transaction depends on the win
dow size:

W i n d o w 1 2 3 4 5

ACKs transmitted per
t r a n s a c t i o n 1 0 . 8 5 . 4 3 . 6 2 . 7 2 . 1

Packets per transaction 24 18.6 16.8 15.9 15.3

We can deduce the mean number of ACKs exchanged
(received or transmitted) per user packet exchanged:

Window 1 2 3 4 5

ACKs exchanged per
p a c k e t 0 . 9 6 0 . 5 2 0 . 3 7 0 . 3 0 . 2 5

Let U be the ratio of total traffic to data traffic. Since the
total traffic is equal to the data traffic plus the ACKs, U has
the following values, depending on the window:

Window

U

1 2 3 4 5

1 . 9 6 1 . 5 2 1 . 3 7 1 . 3 1 . 2 5

Protocol Execut ion Time
The execution times are different for each protocol. These

times were calculated and later confirmed by actual mea
surements on the DTC. The mean value of E for data packets
is E = 1.25 ms, and for ACK packets is E = 0.65 ms.

These values do not depend on the packet length. This
is not exactly true, because the DTC DCP copies data to
and from the serial interface card. However, since packets
are assumed to be shorter than 80 bytes most of the time,

this copy takes less than about 16% of the packet processing
time and is not accounted for in this analysis.

Maximum Throughput
The maximum throughput is 1/NE, where N is the

number of protocol activations for reception or transmis
sion of one packet. NE is in fact the total processing time
of a packet. N = 5 for receipt or transmission of user data,
and N = 3 for ACKs. The mean rate of ACKs per user data
packet is given above as a function of the window size.
Using this rate as a weighting factor on the processing
times, the table below gives the mean value of NE. T is the
data throughput. From the mean value of NE, the maximum
total throughput (user packets + ACKs) and the maximum
data throughput (data packets only) are deduced.

W i n d o w 1 2 3 4 5

ACKs per data
p a c k e t 0 , 9 6 0 . 5 2 0 . 3 7 0 . 3 0 . 2 5

M e a n N E (m s) 4 . 1 4 . 7 5 . 1 5 . 3 5 . 4
Maximum total

t h r o u g h p u t (L) 2 4 3 2 1 2 1 9 6 1 9 0 1 8 5
Maximum data

t h r o u g h p u t (T) 1 2 4 1 4 0 1 4 3 1 4 6 1 4 8

Throughputs are expressed in packets per second, so if
the window is 3, the maximum total throughput is 196
packets per second, and the maximum data throughput is
143 packets per second.

Among 48 terminals, approximately 24 will be active (1
I/O per hour), and among these 24 terminals only 12 are
doing real work (8 transactions per minute). Therefore the
mean data throughput (or nominal traffic) needed is about
19.5 packets/s and the mean total throughput is 26.7 pack-
ets/s. Larger flows may occur for printers. Packet concate
nation decreases the number of packets per second ex
changed, but increases the length of each packet, so that
the processing time of one packet may become dependent
on the length of this packet.

An estimation of the peak can be obtained by assuming
the following conditions: each of 36 terminals does 15
transactions per minute (think time plus response time =
4 seconds) and 15 terminal I/Os are done per transaction.
The data traffic is then 135 packets/s. In other words, the
DTC supports up to 6 times the expected nominal traffic.
The maximum throughput of a serial interface card is about
6x17.2 kilobaud outbound and 8x10 kilobaud inbound.

Latency of the DTC
The latency of the DTC is the sum of the latencies of the

serial interface card and the CPU card. The latency of the
serial interface card is about 1 ms. The latency D of the
CPU card is the time for processing P protocols. As
explained earlier, the time to perform P tasks is D = PE/(1
- NLE). We have seen above that U = L/T depends on

the window. The latency of the DTC is:

Latency = D + 1 ms = PE
1 - NEUT

+ 1 ms.

MARCH 1987 HEWLETT-PACKARD JOURNAL 27
© Copr. 1949-1998 Hewlett-Packard Co.

The theoretical curve in Fig. 11 shows the latency when
the window is 3, E = 1.25 ms, NE = 5.1 ms, P = 4, U =
1.37, and T varies from 0 to 1/NEU. If T is equal to the
mean throughput expected (20 packets/s), the latency is
about 8 ms.

There is a saturation effect. The latency cannot become
infinite. When the memory pools are empty the incoming
flows stop until resources are released. In such a situation,
each packet takes about four seconds to process. This can
be considered the limit, and it implies a DTC contribution
of about 40 seconds in each transaction.

260 - r

Theore t i ca l Curve

Measu remen ts

2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0
Throughput (User Data Packets/s)

Acknowledgments
The authors would like to acknowledge the following

individuals for their contributions. The design teams in
cluded Emmanuel Gayet, Christian Cresset, Robert Masson,
Jean-Jacques Ozil, Serge Sasyan, and Pierre de la Salle for
the software design, Jean-Claude Brun, Stefan Gornisecz,
Yves Karcher, Patrice Lovato, Remy Poulailleau, and
Pierre- Yves Thoulon for the hardware design, and Francis
Allirot, Michel Cauzid, Gilbert Dupont, and Patrick Fran
cois for the mechanical design. Christian Sinet was the
hardware quality engineer and Philippe Gascon was the
software quality engineer. Gerard Mennetrier and Regis de
Poortere assisted in defining all the self-tests and diagnostic
procedures. Bernt Kristiansen and Lars Wernberg-Moller
served as product managers. Dominique Maurenas did a
very efficient job as project coordinator. Daniel Delgado
provided support for manufacturing a large number of pro
totypes. We would also like to thank Jean-Louis Chapuis
for his help and dedication to the project, and the many
people in the production area, the materials area, and other
divisions for their endless hours in making the DTC a prod
uct. This list would not be complete without our counter
parts in HP's Information Networks Division: Tom Carney,
Tom Engleman, Hamid Vazire, and Catherine Smith.

References
1. KJ. Faulkner, et al, "Network Services and Transport for the
HP 3000 Computer," Hewlett-Packard Journal, Vol. 37, no. 10,
October 1986.
2. L. Kleinrock, Queuing Systems, John Wiley and Sons, 1976.

Fig. 11. DTC la tency as a funct ion o f throughput .

Other Results
This model has been used to calculate other parameters

of the DTC, including the minimum window that does not
decrease the maximum throughput, the influence of over
runs on the traffic (creating NAKs and duplicated packets),
and the size of the memory pools needed to keep a low
level of overruns for received packets without decreasing
the maximum throughput for data transmission and ACK
transmission. Actual measurements with special equip
ment have shown a latency of 9 ms for low use, and a
maximum throughput of 120 to 150 packets/s (see Fig. 11).

28 HEWLETT-PACKARD JOURNAL MARCH 1987

© Copr. 1949-1998 Hewlett-Packard Co.

Hewlett-Packard Precision Architecture
Compiler Performance
Using a combination of simple instructions, optimized in-l ine
code, and h ighly specia l ized Mi l l /code rout ines, HP
Prec is ion Arch i tec ture machines per form many complex
operat ions faster than CISC machines.

by Karl W. Pett is and Wil l iam B. Buzbee

THE NEW HEWLETT-PACKARD Precision Architec
ture1 is designed to provide a low-level interface to
hardware through a small, fast instruction set. With

any new architecture, compilers must be developed to pro
vide high-level language interfaces to the machine. This
importance of compilers to the new architecture was recog
nized from the project's inception, and software engineers,
including compiler experts, were heavily involved in spec
ifying the architecture.

This paper describes the influence performance criteria
had on the implementation of the new compilers and how
various problems were overcome. First, the influence that
the high-level languages had on the design of the instruc
tion set is described. Specific examples of instructions are
given that enable the compilers to implement some high-
level constructs efficiently, and to avoid problems that
some see as inevitable with a reduced instruction set com
puter (RISC). Next, the problem of doing truly complex
operations is described. These operations are sometimes
implemented as instructions on traditional machines. In
stead, it was decided to implement a streamlined procedure
calling convention and a group of routines known as Mil-
licode to solve such problems. Finally, the results for spe
cific examples are presented.

High-Level Language Inf luence
As described in a previous paper,2 a team of engineers

specializing in various areas of computers designed the
new architecture. The design was based on studies that
showed what instructions computers actually spend time
executing. These studies showed that even computers with
very large, complex instruction sets typically spent an over
whelming portion of their time executing very simple in-
tructions, such as memory loads and stores, branching,
address calculation, and addition. So the initial design of
the instruction set provided for the efficient execution of
such frequently used instructions.

A key factor in the design was to make all instructions
except branches and loads from memory execute in a single
machine cycle. In addition, the cycle time itself was to be
very short. Proposed instructions that could not meet these
stringent criteria without adding considerably to the com
plexity of the processor were either eliminated or modified.
Nevertheless, the software engineers on the design team
made sure that the resulting instruction set was sufficiently

rich to allow efficient implementation of most high-level
language constructs. Sometimes this was done by adding
helper instructions that are simple enough to be executed
in a single cycle to make implementation of more complex
operations easy. An example is the DIVIDE STEP instruction,
which, when combined with an ADDC (add with carry) in
struction, computes a single bit of the quotient of a division.

Very early in the project, a prototype C compiler and a
processor simulator were developed that enabled the en
gineers to make sure that high-level constructs could be
executed easily using the new instruction set. As the in
struction set was implemented and evaluated, changes
were suggested and accepted for the definitions of test con
ditions for various instructions, the way that nullification
works for conditional branches, and other aspects of the
instruction set.

It is worthwhile to look at some of the instructions that
help the compilers produce efficient code.
SHIFT AND ADD. The SHnADD family of instructions includes
SH1ADD, SH2ADD, and SH3ADD (along with counterparts that
do not set the carry/borrow bits and others that trap on
overflow). These instructions shift the contents of the first
register argument left by n bits and then add the contents
of the second register argument, putting the result into the
third register argument. The result is that multiplications
by small constants can be performed in a few instructions.

Instruction

S H 1 A D D r 1 , r 2 , r 3
S H 2 A D D r 1 , r 2 , r 3
S H 3 A D D r 1 , r 2 , r 3

Result

r3<-4*rl
r2
r2
r2

For example, to multiply a value in register 8 by the con
stant 41 with the result being put into register 9, the follow
ing code would be produced:

S H 2 A D D 8 , 8 , 9
S H 3 A D D 9 , 8 , 9

r9Â«-5*r8
= 41*r8

These instructions ensure that multiplication by a small
constant, which is done fairly often, is very inexpensive.
These instructions are also used in the nonconstant case.
Even when both operands of a multiplication are not con
stants, often one of the operands is fairly small. When this

MARCH 1987 HEWLETT-PACKARD JOURNAL 29
© Copr. 1949-1998 Hewlett-Packard Co.

is true it usually takes about 20 cycles to multiply two
variable quantities. This fast variable multiply is performed
by extracting four-bit "digits" from the smaller operand
and using them to select the appropriate shift and add
sequence to perform the multiplication.
EXTRACT AND DEPOSIT. A family of instructions is provided
to access fields within records. These instructions either
extract the value from a field or deposit a value into a field
and are used by the compilers when accessing packed or
nonaligned data. In some other computers, one has to shift
and mask to retrieve values in packed records. As an exam
ple , here is a sample of some code from a C pro
gram along with the instructions generated. The C code is:

struct descriptor {
u n s i g n e d i n t a v a i l a b l e : 1 ;
u n s i g n e d i n t l o c k e d : 1 ;
unsigned int lasUaccess :10;
uns igned in t desc_type : 5 ;
u n s i g n e d i n t l e n g t h : 1 5 ;
};

copy_type(p,q) st ruct descr iptor *p, *q;
{
p -Â» desc jype = q -> desc jype;
}

The HP Precision Architecture instructions to do the
copy from one field to another are:

The word containing q â€” > desoJype
is in register 29. The word contain
ing p -Â» desc_type is in register 2 5 .

EXTRU 29,1 6,5,31 Extract the five bits of register 29
corresponding to q-^desc_type.
This is an unsigned field, so use
EXTRU.

DEP 31 , 1 6,5,25 Put those five bits into the word
containing p-*desc_type.

Being able to use just two instructions to do a transfer
of packed data makes it easier for the compilers to generate
efficient code when programmers use packed structures.
However, these instructions are sufficiently generalized
that the compilers can use them to perform left and right
shifts (logical and arithmetic), and they can be used in
contexts that have nothing to do with fields within a record.
Conditional Branches. On many computers conditional
branches are implemented by performing some computa
tion (typically a subtraction) that has the side effect of
setting some hardware condition flags. The next instruction
conditionally branches based on the settings of these flags.
The s tudies done by the HP Precis ion Archi tecture en
gineers indicated that conditional branches are done very
frequently by programs. The decision was therefore made
to combine testing of various conditions with branching
so that a conditional branch only requires one instruction.

Many of the conditional branches can also be used to
modify register contents. Thus, the ADDIBT and ADDIBF in
structions (add immediate and branch if true or false) can
be used by the compilers to update a loop counter while
simultaneously testing to see if the loop is completed. Al
ternatively, by using the TR condition (TRue = always
branch), the compilers can sometimes merge an uncondi

tional branch with a nonbranch instruction to make pro
grams shorter and faster. Branches are implemented in this
architecture so that the target of the branch is not executed
until two cycles later. On conventional systems, the cycle
fol lowing the branch is wasted. With HP Precision Ar
chi tecture , the ins t ruct ion immediate ly fol lowing the
branch instruct ion is executed in the cycle before the
branch takes effect. This enables the compilers to use this
instruction slot for useful work. The branch instruction
can optionally nullify this following instruction so that it
will have no effect. If a compiler cannot always use the
cycle after a branch, it will turn on nullification. If nullifi
cation is specified for an unconditional branch, the follow
ing instruction will always be nullified after the branch
instruction. If nullification is specified for a conditional
branch, then the following instruction will be nullified if
the branch is taken or if the branch is backward, but not
both. This nullification scheme is designed so that if a
conditional branch is being used in controlling a loop, an
instruction from the body of the loop can always be exe
cuted in the otherwise wasted cycle after the conditional
branch. The effect is that almost all loops can be made one
instruction shorter and faster than with a more conven
tional machine. Since most computer programs spend most
of their time in very small loops, even one instruction saved
per loop can be significant.
Decimal Correction. There are two instructions, DCOR (deci
mal correct) and IDCOR (intermediate decimal correct), that
provide invaluable assistance for decimal arithmetic. One
of the criticisms often leveled at typical RISC architectures
is that they provide insufficient support for decimal oper
ations, which are crucial to commercial languages such as
COBOL and RPG. Using a biasing scheme and the DCOR
and IDCOR instructions, compilers for HP Precision Ar
chitecture systems can implement decimal additions and
subtractions with the ordinary binary ADD and SUB instruc
tions and minimal extra instructions. Other decimal oper
ations are more complex and are described later in this
paper.
STORE BYTES. The STBYS instruction stores zero to four
bytes to memory depending on the offset specified in the
instruction and the alignment of the base address. It is a
great aid in moving data from one location to another,
particularly when a filling operation is being performed.
This often happens when using strings in Pascal and For
tran and with the MOVE directive in COBOL. This instruc
tion also lets the compiler writer generate simpler code to
store data that is inconveniently aligned with respect to
word boundaries.
Nullification. Most arithmetic and logical instructions
allow conditional nullification of the following instruction.
In effect, this is a way for the compilers to generate short
if-then sequences in-line without incurring the overhead
of actually doing a test and branching. The compiler most
often uses this feature in short "canned" code sequences
to compute a result. For example, suppose a Boolean flag
in Pascal is to contain a value indicating whether a is less
than b or not. The Pascal code is:

f l ag := a < b ;

30 HEWLETT-PACKARD JOURNAL MARCH 1987
© Copr. 1949-1998 Hewlett-Packard Co.

The HP Precision instructions to perform this statement
are:

C O M C L R , > =
LDI

r1 , r2 , r3
1,r3

a = rl,b = r2,flag = r3

The COMCLR (COMPARE AND CLEAR) instruction sets the
value of r3 (flag) to 0. If the value of rl (a) is greater than
or equal to the value of r2 (b), then the following instruction
is nullified, and the value of flag remains 0 (false). Other
wise, the LDI (LOAD IMMEDIATE) instruction sets the value
of flag to 1 (true).

The ability to nullify the following instruction condition
ally is very powerful and can be used in many contexts.
For example, to perform a signed integer division by a
power of two (such as 8) with truncation towards 0, only
three instructions are needed:

OR,> = r1 ,0 , r2 Put a copy of the source
(rl) into the destination
(r2) . Also test to see if the
source is positive or 0. If
so, then the next instruc
tion is nullified.

A D D I 7 , r 2 , r 2 E x e c u t e d o n l y i f t h e s o u r c e
was negative. If it was,
this ensures truncation
towards 0.

EXTRS r2 ,28 ,29 , r2 Ar i thmet ic r igh t sh i f t the
(possibly modified)
destination by three bits
yielding the final result.

An arithmetic right shift by three bits (implemented by
the EXTRS instruction) divides a quantity by eight, with
truncation towards negative infinity. For positive numbers,
this is the same as truncation towards 0. For negative num
bers, an adjustment needs to be made. Here we have used
null if ication so that the adjustment is done only if the
dividend is negative. If nullification were not available,
we would have had to generate code using branches.

In short , the instruction set provided by the new HP
Precision Architecture is very powerful, allowing short in
struction sequences to be generated for many high-level
operations. Having a simplified instruction set where every
instruction executes in a single cycle frees the compilers
from having to make complicated analyses of varying in
struction sequences to see which is better. With HP Preci
sion Architecture, shorter is better.

Procedure Cal l ing Convention
When the first compiling systems were initially brought

up on the new architecture, a traditional procedure calling
convention was investigated. This had a frame pointer and
a top-of-stack pointer, and parameters were passed to
routines by pushing them onto the stack. Upon return, the
parameters were popped. However, it was discovered that
procedure calls could be performed even more efficiently
with a new procedure calling convention.

Under the new convention, the registers are now divided
into three classes: the caller-saves, the caJlee-saves, and

the linkage registers. The called routine is free to modify
the caller-save registers with no overhead, but must save
and restore any registers it uses in the callee-save set. If a
routine is simple and does not use many registers, the
overhead in making a procedure call is often only a few
instructions. There is no pointer to the previous frame, nor
are parameters pushed and popped as on conventional
machines. The first four parameters are passed in registers.
If there are more parameters, these are placed into an area
on the stack allocated once at the beginning of the calling
procedure.

In addition, a special class of routines has been de
veloped with an even more streamlined calling convention.
These routines are called MiJIicode and they are designed
to implement more complex operations that are done fre
quently by programs. Some of these routines, like the mul
tiplication routine, correspond to machine instructions im
plemented by microcode on other machines. In general,
these routines are only allowed to modify a very small
number of registers (typically 4 to 6). The compilers know
which few registers can be modified by each Millicode call
and can arrange to have those registers free, while using
other registers (including some caller-save registers) to
store temporary intermediate results. Since these routines
use so few registers, the compilers can almost always gen
erate code that calls them without having to do any extra
saving and restoring of registers. Also, the linkage registers
required to call and return from Millicode routines are
different than for normal routines. This enables routines
that only call Millicode and not other normal routines to
have even less overhead, since they are not required to
store their linkage information.

Complex Operat ions
One of the most enduring criticisms of RISC architectures

is that they are unable to handle complex operations effi
ciently. Critics often suggest that applications that rely
upon a high percentage of complex operations will execute
slowly, suffer from excessive code size, or both. In part
because of the RISC extensions provided with HP Precision
Architecture, we have experienced the opposite. HP Preci
sion Architecture machines running the most popular
COBOL processor benchmarks outperform their CISC coun
terparts by a factor of 1.3 to 4.2, above and beyond differ
ences in the machines' respective MIPS rates (see page 35).
Furthermore, this performance is achieved using 15% to
30% fewer in-line instructions.

The reason for this success lies in the elegant partnership
of custom in-line code sequences and Millicode. Together
they form a solid foundation for the somewhat paradoxical
assertion that complex operations can benefit more from
architectures that concentrate on fast simple operations
than from those that concentrate on fast complex opera
tions.

To understand the HP Precision Architecture complex
operation solution, we must first understand the problems
of generating code to perform a complex operation. For the
purpose of this discussion, a complex operation is a task
that requires three or more of a machine's most basic in
structions to complete. Some obvious and very important
examples of complex operations are byte moves, string

MARCH 1987 HEWLETT-PACKARD JOURNAL 31
© Copr. 1949-1998 Hewlett-Packard Co.

comparisons, and decimal arithmetic.
In traditional complex instruction set computers (CISC),

every machine instruction is performed by the execution
of a corresponding microcode program. The microcode pro
grams are made up of microinstructions â€” the instructions
that the actual hardware executes. In a sense, CISC systems
are really computers inside of computers. HP Precision
Architecture has eliminated the outer simulated computer,
providing for the direct execution of its machine instruc
tions. From this point of view, HP Precision Architecture
machine instructions can be thought of as roughly equiva
lent to CISC microinstructions. The reason for elimination
of the outer computer is simple. There is a fixed overhead
associated with the simulation of the CISC outer computer
on the CISC inner computer. For simple instructions this
interpretive overhead can account for more than the amount
of time actually spent performing the operation. HP Preci
sion Architecture has streamlined simple operations by
eliminating this overhead.

For complex operations, however, the story changes. The
CISC overhead is relatively fixed. Complex operations often
require the execution of dozens or hundreds of microin
structions. Thus, the overhead becomes insignificant. Simi
larly, the advance HP Precision Architecture gains by
eliminating overhead also becomes insignificant for com
plex operations. Given only this information, it would seem
that the critics are correct, and that RISC-like architectures
face a serious complex operation performance problem
when competing head-to-head with CISC systems.

A Closer Look
The conclusion that RISC-like systems are inherently

slower than CISC systems for complex operations rests on
the assumption that RISC-to-CISC MIPS ratios are invalid.
As the argument goes, it is assumed that more RISC instruc
tions are required to perform a complex operation than
CISC instructions, and therefore, a RISC MIPS is worth less
than a CISC MIPS. This assumption, however, is not neces
sarily correct.

Early in the development of HP Precision Architecture
complex operation code generation, selected CISC micro
code programs were carefully examined. One important
characteristic quickly stood out: microcode programs for
many types of complex operations spend a large amount
of time calculating and interpreting information at run time
that compilers knew at compile time. Under a CISC system,
this information is lost because a compiler cannot transmit
it through the instruction set to microcode. Because micro
code program space is scarce and expensive, there is typ
ically only a single CISC instruction per class of complex
operations. For example, a CISC system may have one string
comparison instruction, one decimal addition instruction,
etc. The microcode programs associated with these instruc
tions must therefore be capable of handling all situations
and must typically make worst-case assumptions. A com
piler may know, for example, that the source and target of
a byte move do not overlap, but in a CISC system the mi
crocode would have to determine this at run time.

The obvious solution for the speed problem is to exploit
all available compile-time information to eliminate the in
terpretive overhead suffered by CISC microprograms. The

compilers, in effect, become custom microcode program
generators. Code generation for simple operations takes
place as usual, but when a complex operation is called for,
the compiler analyzes all available compile-time informa
tion and generates a custom, highly specific "microcode"
program that it drops in-line. Using this scheme, an HP
Precision Architecture system could perform the operation
in fewer cycles. There is, however, a serious problem with
this approach â€” code expansion. Genuinely optimal code
sequences for complex operations could require dozens or
hundreds of HP Precision Architecture instructions. In
some situations, code size could become enormous,
perhaps to the point where any speed improvements would
be lost in increased cache and page traffic.

If code size were the only concern, then the opposite
approach is to pretend that code is being generated for a
CISC machine. In other words, develop a run-time library
or, ultimately, an interpreter for a compact pseudocode,
which contains one procedure for every CISC complex in
struction microprogram. Whenever a complex operation
needs to be performed, the compiler generates a call to the
appropriate routine within the library. This scheme solves
the code expansion problem by reducing the in-line cost
of a complex operation to that of a procedure call, a cost
roughly comparable to the fetching and decoding cost of a
CISC instruction. Furthermore, assuming that the run-time
library is shared among all processes on a system, this
scheme eliminates stress on the memory hierarchy. This
code size solution, however, sends us back to square one.
Such a run-time library suffers the same interpretive over
head as CISC microcode programs.

HP Precision Architecture Solut ion
The ideal solution would be to combine the advantages

of the two approaches without incurring their disadvan
tages. The HP Precision Architecture solution comes very
close to this ideal. In brief, the HP Precision Architecture
compilers examine every complex operation and break it
down into steps. The steps in which compile-time informa
tion is either unavailable or useless are performed by a call
to a routine within a special shared library, keeping the
code size compact. For the remaining steps the compilers
determine whether the step is interpretive or repetitive. A
repetitive step is one that can be performed in a library
routine with little or no interpretive overhead, while an
interpretive step is one that would suffer from interpretive
overhead if performed in a library routine. Interpretive
steps are performed using custom in-line code sequences.
Repetitive steps are performed by calls to highly specific
library routines. A more precise description of the HP Pre
cision Architecture complex code generation solution is
given in the pseudocode algorithm of Fig. 1.

The HP Precision Architecture solution is further en
hanced by the nature of its special shared library routines,
which are known as Millicode. In its simplest form, Milli-
code is nothing more than a series of instructions packaged
to look somewhat like a procedure. A Millicode routine is
invoked by a simplified calling mechanism in which almost
no state saving is required. Millicode is designed so that a
single copy can exist on a system, allowing all processes
to share it.

32 HEWLETT-PACKARD JOURNAL MARCH 1987

© Copr. 1949-1998 Hewlett-Packard Co.

IF [no use fu l comp i te - t ime in fo rmat ion abou t the opera t ion i s ava i l ab le]
THEN

IF [the number of instruct ions required to perform the operat ion]
LESSTH AN [speed space factor] THEN [Perform the operation
entirely in-line]

ELSE
[Generate cal l to general-purpose Mil l icode routine]

ELSE
I F [t h e] i s f u l l y d e s c r i b e d b y c o m p i l e - t i m e i n f o r m a t i o n]

THEN
IF [the number o f ins t ruct ions requ i red to per form the opera

t ion] LESSTHAN [speed space factor] THEN [Perform
the operat ion in- l ine using opt imum custom code
sequence]

ELSE
BEGIN
[Separate operation into repetit ive and interpretive steps]
FOR [each step] DO

IF [s tep is in terpret ive] THEN
[Perform the step In- l ine using opt imum custom

code squence]
ELSE

[Generate call to one of a set of highly specific repeti
t ive Mil l icode routines]

END
ELSE

BEGIN
[Separate operat ion into steps in which useful compile-

time information is available and steps in which useful compile-
t ime information is not available]

FOR [each step] DO
[Consider the step a separate complex operat ion and

reapply this algorithm]
END

soff = Constant offset to start of source str ing
toff â€¢ Constant offset to start of target
dp = Reg is te r con ta in ing base po in te r

L O W s o f f + 0 (d p) , r e g 1
L D W s o f f + 4 (d p) , r e g 2
S T W r e g 1 , t o f f + 0 (d p)
S T W r e g 2 , t o f f + 4 (d p)

; Pick up first four bytes
; Pick up next four bytes
; Store first four bytes
; Store next four bytes

Fig. 2. Eight-byte move port ion of a move/ f i l l operat ion.

compile-time information, the compiler decides that it
would require too many in-line instructions. Therefore, the
fill is broken down into two steps: full-word fills and par
tial-word fills. A 22-byte fill is really a five-word fill fol
lowed by a two-byte fill. The five-word fill step is a repeti
tive step, and is performed in Millicode. The two-byte step
would require interpretation at run-time if performed in
Millicode, so it is performed in-line. The generated code
sequence is shown in Fig. 3.

In the above example, only four instructions were de
voted to overhead: loading the address of the beginning of
the fill, loading the fill character, branching to Millicode,
and returning from Millicode.

One extremely important side benefit of the HP Precision
Architecture solution is that as more compile-time informa
tion is retained and processed, it becomes easier to recog
nize special cases and take advantage of them. For example,
the incrementing of the COBOL unpacked decimal (ASCII
display) data type is typically performed in CISC systems

Fig . 1 . HP Prec is ion Arch i tec tu re a lgor i thm fo r complex op
erat ion code generat ion.

Although Millicode serves many of the functions of a
CISC machine's microcode, there is an important differ
ence. Millicode doesn't suffer from the severe space restric
tions placed upon microcode. This is particularly impor
tant for the class of complex operations in which useful
information is available at compile time, but whose custom
in-line code sequences would be too lengthy. Instead of
wasting the compile-time information, a series of Millicode
routines can be created, each tailored to a particular com
bination of compile-time information. Unlike a CISC sys
tem's microcode program, these special-purpose Millicode
routines can make best-case assumptions. The compiler deter
mines the best one to call based on the available information.

A good example of the HP Precision Architecture com
plex operation code generation process is an eight-byte
move followed by a 22-byte blank fill in which all align
ment and length information is known at compile time.
This is a reasonably common type of operation when deal
ing with character strings. Following the algorithm of Fig.
1, the compiler first examines the move operation and de
termines that it is fully described by compile-time informa
tion. Then it finds that the code size to perform the move
is small enough, and performs the move entirely in-line
with no interpretive overhead (see Fig. 2). Next, the fill
portion is examined. Although it also is fully described by

sof f = Constant o f f se t to s tar t o f source s t r ing
t o f f = C o n s t a n t o f f s e t t o s t a r t o f t a r g e t
d p = R e g i s t e r c o n t a i n i n g b a s e p o i n t e r
b lanks - Regis ter conta in ing 0x20202020 (a l l b lanks)
M R P = M i l l i c o d e r e t u r n p o i n t e r
s r = M i l l i c o d e s p a c e r e g i s t e r

In-Line Code for Move

L D W s o f f + 0 (d p) , r e g 1
L D W s o f f + 4 (d p) , r e g . 2
STW regÃ, toff +0(dp)
S T W r e g 2 , t o f f + 4 (d p)

{ I n - L i n e C o d e f o r F i l l }

L D O t o f f 8 (d p) , A R G 1
B L E S $ f i l l _ 5 (s r , 0)
COPY b lanks .ARGO
S T H A R G O , 0 (A R G 1)

{ F i l l M i l l i c o d e }

â€¢ { entry points
â€¢ { continue to
â€¢ { $$fill.31
$$fi lL7

STBYS,b,m
$$fi lL6

STBYS.b .m
SSfi l l .5

STBYS.b .m
$$f i l l .4

STBYS,b,m
SSfill 3

STBYS,b,m
$$fi!L2

STBYS,b,m
SSfill 1

BE
STBYS.b.m

A R G O , 4 (A R G 1)

A R G O , 4 (A R G 1)

A R G O , 4 (A R G 1)

A R G O , 4 (A R G 1)

A R G O , 4 (A R G 1)

A R G O , 4 (A R G 1)

0(0,MRP)
A R G O , 4 (A R G 1)

Fig . 3 . Comple te move/ f i l l code sequence.

MARCH 1987 HEWLETT-PACKARD JOURNAL 33
© Copr. 1949-1998 Hewlett-Packard Co.

by converting to packed decimal, doing the normal decimal
addition, and then converting back to unpacked decimal.
On HP Precision systems, the compilers recognize that in
the typical case no carry will be generated and only the
least-significant digit of the number will have to be altered.
It then becomes possible to generate extremely fast code
sequences to perform the operation (see Fig. 4). In one
COBOL processor benchmark, an HP Precision Architecture
machine outperformed its CISC counterpart at unpacked
decimal incrementing by a factor of 7, above and beyond
MIPS rate differences.

Among the special cases recognized by the first genera
tion of HP Precision Architecture optimizing compilers are:
â€¢ Unpacked decimal equality comparison. Compare the

least-significant digits in-line. If they are not equal, the
operation is complete. Otherwise, complete the compari
son in a highly specific Millicode routine.

â€¢ Unpacked decimal rounding. Compare the digit to be
rounded with the constant 5 in-line. If it is less than 5,
simply truncate. Otherwise, perform the special display
increment on the following digit and then truncate.

â€¢ Unpacked decimal multiplication by power of 10. Sim
ply shift the number.

â€¢ Unpacked decimal division by power of 10. Simply shift
the number.

â€¢ Unpacked decimal remainder by power of 10. Truncate
or shift the number.

â€¢ Unpacked decimal multiplication by a small constant.
Turn into a series of possibly scaled additions.

â€¢ Unpacked decimal decrement. Same as unpacked deci
mal increment.

â€¢ Unpacked decimal addition of constant. Prebias the con
stant at compile time and use a special-purpose display
addition Millicode routine.

â€¢ String comparison. Compare one to four of the leading

sbof f = Constant of fset to s ign d ig i t of 4-d ig i t unpacked decimal i tem
tablet tables Register containing pointer to base of set of translation tables
table2 = Register to hold pointer to increment table
s i g n = R e g i s t e r t o h o l d o r i g i n a l s i g n d i g i t
xs ign = Reg is te r to ho ld inc remented s ign d ig i t
s r = M i l l i c o d e s p a c e r e g i s t e r

LDB
LDO
LDBX
C O M I B , < >
STB
LDO
BLE
LDI

alLdone

sbo f f (dp) , s i gn
inc_offset(table1),table2
slgn(table2),xsign
O.xs ign , a lLdone
x s i g n . s b o f f (d p)
sbof f (dp) ,ARGO
$$g inc_cont (s r ,0)
4.ARG1

Load sign digit
Get pointer to increment table
Translate/increment sign digit
Branch over millicall if no carry
Store incremented sign digit
Get pointer to sign digit
Continue increment in Mil l icode
Pass Millicode length of 4

bytes of the two strings in-line. If they are not equal, the
operation is complete. Otherwise, finish the operation
using a special-purpose Millicode routine.

â€¢ Byte move in which target address = source address +
1. Turn operation into fill.
The exploitation of special cases is really just an exten

sion of the overall HP Precision Architecture complex op
eration solution. The code sequences for these special cases
combine the quest for performing no unnecessary work
with the RISC philosophy of tuning for the most common
cases.

A legitimate question to ask, however, is "Why couldn't
this same strategy be used by CISC systems?" The answer
takes us back to the beginning â€” fast simple operations. The
HP Precision Architecture complex operation solution
picks up its performance improvements by using compile-
time information to generate custom in-line code sequences
and to select highly specific Millicode routines. Both the
in-line sequences and the Millicode are composed of the
fast simple operation building blocks provided by HP Pre
cision Architecture. If a CISC were to attempt to build the
same mechanism out of its regular instruction building
blocks, the combined overhead incurred would quickly
outweigh the advantages of using compile-time informa
tion.

Compi ler Performance Measurements
To compare the relationship of compilers and computer

architectures of different machines accurately, it is first
necessary to factor out differences in the machines' raw
speed. To compute the following performance ratios, the
elapsed time required to perform each benchmark on a
particular machine was multiplied by that machine's MIPS
rate. For example, if machine A is rated at 2 MIPS and
executes a benchmark in 20 seconds, its adjusted time
would be 40 seconds. If machine B, rated at 3 MIPS, per
forms the same benchmark in 10 seconds, its adjusted time
would be 30 seconds. We could then say that the compiler/
architecture combination of machine B outperforms that
of machine A by a factor of 1.33 (40/30), above and beyond
differences in the machines' MIPS ratios.

In the following table, performance ratios greater than 1
suggest that the HP Precision Architecture/compiler re
lationship is more efficient than its CISC counterpart.

Because the HP Precision Architecture code generation
strategy calls for custom code sequences which depend on
many factors, the performance ratios for a single type of
complex operation can vary widely from one specific exam
ple to another. Each item in this table represents a class
of operations. The compiler performance ratios were gen
erated by comparing an HP Precision Architecture machine
with representative CISC machines from HP and other man
ufacturers.

F ig . 4 . Unpacked dec ima l i nc rement code sequence .

34 HEWLETT-PACKARD JOURNAL MARCH 1987

© Copr. 1949-1998 Hewlett-Packard Co.

Compiler
Performance

M o v e s / F i l l s R a t i o
S h o r t m o v e (~ 1 0 b y t e s) 2 . 7
L o n g m o v e (â € ” 8 0 b y t e s) 0 . 6
S h o r t f i l l (~ 1 0 b y t e s) 1 . 2
L o n g f i l l (- 8 0 b y t e s) 0 . 5
A v e r a g e m o v e / f i l l 1 . 4

Comparisons
B y t e s t r i n g c o m p a r i s o n s 1 . 1
U n p a c k e d d e c i m a l c o m p a r i s o n s 2 . 0
U n p a c k e d d e c i m a l c o m p a r i s o n s 1 . 0

with digit validation
P a c k e d d e c i m a l c o m p a r i s o n s 1 . 1
P a c k e d d e c i m a l c o m p a r i s o n s 0 . 7

with digit validation

Decimal Addition
U n p a c k e d d e c i m a l a d d i t i o n 3 . 2
U n p a c k e d d e c i m a l a d d i t i o n 1 . 6

with digit validation
P a c k e d d e c i m a l a d d i t i o n 2 . 1
P a c k e d d e c i m a l a d d i t i o n 1 . 3

with digit validation

Multiplication
6 4 - b i t i n t e g e r m u l t i p l i c a t i o n 0 . 7
P a c k e d d e c i m a l m u l t i p l i c a t i o n 1 . 5
P a c k e d d e c i m a l m u l t i p l i c a t i o n 1 . 3

with digit validation

Subscripting
Smal l subsc r ip t ed move ; i n t ege r 2 .9

subscript
S m a l l s u b s c r i p t e d m o v e ; 3 . 5

unpacked decimal subscript
S m a l l s u b s c r i p t e d m o v e ; p a c k e d 1 . 0

decimal subscript

A c k n o w l e d g m e n t s
Although many HP engineers made significant contribu

tions to the topics covered here, we would like to give
special recognition to Richard Campbell, Debbie Coutant,
Dennis Handly, Daryl Odnert, and the Computer Language
Lab's code quality team.

References
1. M.J. Mahon, et al, "Hewlett-Packard Precision Architecture:
The Processor," Hewlett-Packard Journal, Vol. 37, no. 8, August
1986, pp. 4-21.
2. D.S. Coutant, et al, "Compilers for the New Generation of Hew
lett-Packard Computers," Hewlett-Packard Journal, Vol. 37, no. 1,
January 1986, pp. 4-18.

Authors
M a r c h 1 9 8 7

I First Computers:

Edward M. Jacobs
I Ed Jacobs is a 1984

g raduate o f S tan fo rd Un i
versi ty (BSEE) and has
been wi th HP s ince 1985.
He worked on the f loa t ing
point coprocessor for the
H P 9 0 0 0 M o d e l 8 4 0 C o m
puter and is now do ing
feasibi l i ty studies for a fu-

I ture product . He is a lso
work ing par t t ime on an MSEE degree f rom Stan
ford. A nat ive of St. Louis, Missour i , Ed l ives in
Sunnyvale, Cal i fornia. He's act ive in HP gol f and
Softbal l recreat ional leagues and enjoys horse
racing.

Ross V. La Fetra
I A Cal i fornia nat ive, Ross

La Fetra was born in Los
Angeles and at tended Har
vey Mudd Co l l ege . He re
ce i ved h i s BS and MS de
g rees , bo th in genera l en
g ineer ing, in 1984 and
1985. After jo ining HP in
1 985 he worked on the de-

' ve lopment o f the HP 9000
Model 840 Computer . H is cont r ibut ions inc lude
analyzer card sof tware, par ts o f the cache, and
measurement tools. For recreat ion, Ross l ikes
si lkscreening, bicycl ing, photography, hiking, and
camping. He l ives in Cupert ino.

MARCH 1987 HEWLETT-PACKARD JOURNAL 35

© Copr. 1949-1998 Hewlett-Packard Co.

Allan S. Yeh
â€¢â€¢â€¢â€¢â€¢â€¢â€¢â€¢â€¢â€¢ Allan Yeh joined HP

â€¢ Laboratories in 1 980 and
X worked on the au tomat ion

W . H M o f I C p r o c e s s e q u i p m e n t
I be fo re mov ing to anew po-

H j l Â £ â € ¢ â € ¢ s i t i o n t h a t i n v o l v e d d e s i g n -
^ P P N " ^ H H i n g f i b e r o p t i c s d a t a c o m -

H ^ ^ ^ ^ m u n i c a t i o n h a r d w a r e . H e
des igned the system

, m o n i t o r f o r t h e H P 9 0 0 0
Model 840 and HP 3000 Series 930 Computers and
d id the I /O expansion module for the Ser ies 930.
His professional interests focus on signal process
ing and communicat ion sys tems. A l lan was born
in Ta ichung, Ta iwan and at tended the Nat iona l
Taiwan University (BSEE 1 976) and the University
of Cal i forn ia at Berkeley (MSEE 1980). A resident
o f Pa lo A l to , he l i kes basketba l l , jogg ing, swim
ming, and l is tening to c lassical music.

Simin I . Boschma
Born in Tehran, Iran, Simin
Boschma studied electr ical
engineer ing at Utah State
University (BSEE 1 977) and
came to HP in 1978. She's
a memory design special ist
and has des igned I /O
boards for several series of
the HP 1 000 Computer and
memory boards for the HP

1000 A900 Computer . She a lso worked on the
memory system for the HP 9000 Model 840 Com
puter. A resident of San Jose, Cal i fornia, Simin is
working toward her MSEE degree from Santa Clara
Univers i ty . She's marr ied and enjoys b icycl ing,
Softbal l , and sai l ing catamarans.

Randy J. Teegarden
Born in McMinnv i l le , Ore
gon, Randy Teegarden isa
graduate of the De Vry Insti
tu te of Technology of
Phoenix (BSEET 1 977). He
designed dig i ta l s ignal pro
cessing hardware and sof t
ware at GTE Government
Systems before coming to
HP in 1984. He was a man

ufacturing development engineer for the HP 9000
Model 840 and HP 3000 Series 930 Computers, de
signing the test system interface and GPIO adapter
for the automated test system. He's now an R&D
engineer and is des ign ing a por t ion of the CPU
board for a future product. Randy and his wife and
daughter l ive in Sunnyvale, California. He's active
in his church and enjoys volleyball, bicycling, and
woodworking.

Wil l iam R. Bryg
I Agraduateo f S tan fo rd Un i

versi ty, Bi l l Bryg was
awarded concurrent BSEE

| and MSEE degrees in
1979. He jo ined HP the
same year, working first on
processor des ign for the
HP 3000 Ser ies 64 Com
puter and later on HP Preci
s ion Arch i tec tu re . He de

signed the TLB for the HP 9000 Model 840 and HP
3000 Series 930 Computers and worked on power-
fail recovery for the HP-UX operating system. He's
now designing I/O drivers for HP-UX. He's coauthor
of a 1986 HP Journal ar t ic le on the processor for
HP Precision Architecture. Born in Chicago, Il l inois,
he now lives in Saratoga, California. He's married
and l ikes games, dancing, ski ing, gardening, and
reading science f ic t ion.

David A. Fot land
A project managei . UK; in
format ion Technology
Group, Dave Fot land has
been wi th HP s ince 1979.
He's responsib le for hard-
ware development for the
HP 9000 Model 840 Com-
puter . As an R&D des ign
engineer , he worked on
Mode l 840 hardware , i n

c lud ing processor and I /O arch i tec ture and the
register f i le board, backplane, and paral le l I /O
card. Earlier, he contributed to the development of
the A700 processor and the RTE-A operat ing sys
tem for HP 1 000 A-Series Computers. He's named
an inventor on three patent applications related to
processor archi tecture. Born in Cleveland, Ohio,
Dave attended Case Western Reserve University,
complet ing work in 1979 for both o f h is degrees
(BSEE and MS computer engineering). He and his
wi fe l ive in San Jose, Cal i fornia. For a change of
pace from his job he plays volleyball, racquetball,
and go and is a Dungeons and Dragons fan .

Thomas B. Wylegala
j Wi th HP s ince 1984, Tom

Wylegala was responsib le
for manufacturing test strat
egy and CPU board repair
for the HP 9000 Model 840
and HP 3000 Ser ies 930
Computers. He's now work
ing on I /O archi tecture in
the Information Technology
Group. Born in Buffalo,

New York, he studied computer science at the Mas
sachuset ts Inst i tu te of Technology (BS 1977) and
then served as a captain in the U.S. Army. He con
tinued his studies at Purdue University, completing
work for an MS deg ree in computer science in 1 982
and for an MSEE degree in 1 984. Tom and his wife
now live in San Jose, California. He's a chess de
votee and l i kes a l l k inds o f racquet spor ts , espe
cially tennis.

John F . Shel ton
m j j j j j t m j f ^ m W i t h H P s i n c e 1 9 8 1 , J o h n

I Shelton wrote microcode
I for theHP1000A900Com-

K I p u t e r a n d d e s i g n e d t h e
I l-unit for the HP 3000 Series

â € ¢ k â € ¢ I 9 3 0 a n d H P 9 0 0 0 M o d e l
H P â € ¢ 8 4 0 C o m p u t e r s . H e ' s c u r -

^ ^ ^ ^ ^ ^ r e n t l y t h e p r o j e c t l e a d e r f o r
a processor for a future
p roduc t . He 's named co-

inventor on a patent re la ted to a decoding
techn ique used fo r the HP 1000 A900 and is
coauthor of an HP Journal article on the A900. He
has also written a conference paper on the Series
930 and Model 840. Born in Washington, D.C. ,
John attended the Massachusetts Inst i tute of Tech
nology (BS l i terature 1976) and the Univers i ty of
Cal i fornia at Berkeley (MSEE 1981). He l ives in
Aptos, California, is married, and has two children.

1 8 T e s t S y s t e m ' . 21: I Terminal Controller !

Long C. Chow
I Wi th HP s ince 1984, Long

C h o w h a s b e e n a p r o d u c
t ion engineer for the Data
Systems Divis ion. He
worked on test systems for
HP 1 000 A-Series Comput-

I ers and for HP 9000 Model
| 840 and HP 3000 Ser ies

930 Computers . He 's cur -
rently working on an MSEE

degree at Stanford University through the HP Resi
dent Fellowship program. He was born in Bandar
Sen Begawan, Brunei and completed work for his
BSEE degree f rom Iowa State Univers i ty in 1983.
Now a resident of San Jose, California, Long likes
spor ts , espec ia l ly badminton, and reads Chinese
novels for relaxation.

Eric Lecesne
Eric Lecesne jo ined HP in
1 981 and is a project leader
for X.25 software at the
company's In format ion
Networks Div is ion. He was
also a project leader for the
HP 2345A Te rm ina l Con
t ro l ler and contr ibuted to
the development of the HP
2334A Cluster Control ler.

Born in Cherbourg, France, he attended the Ã‰cole
SupÃ©rieure d'Ã‰lectricitÃ© et de RadioÃ©lectricitÃ© of
Grenob le and earned a BS degree in nuc lear
phys ics in 1978 and an eng ineer ing d ip loma in
1981. Er ic and h is w i fe and two ch i ld ren are res i
dents of Sunnyvale, California. He lists astronomy,
tennis, and history as outside interests.

36 HEWLETT-PACkARD JOURNAL MARCH 1987

© Copr. 1949-1998 Hewlett-Packard Co.

H e n g V . T e
Bom in Phnom Penh, Cam-
bod ia . Heng Te s tud ied
computer sc ience at the
doctoral level at the Univer-
s i te de Technolog ic de
Compiegne and at the Uni
versity of Pennsylvania. He
worked on real - t ime com-
puter systems and paral le l
p rocess ing before coming

to HP in 1 983. He was project manager for the mul
t ip lexer for the HP 2345A Terminal Contro l ler and
other products and is now the section manager for
multiplexers for terminal I/O and ISDN. He has pub
l ished two papers on computer networking topics
and is named inventor on two patents re la ted to
pat tern-matching and to an accelerator for s ignal
processing. Heng l ives in Meylan, France, is mar
r ied, and has a daughter . His outs ide interests
inc lude sk i ing , w indsur f ing , read ing, and photog
raphy.

O l i v i e r K r u m e i c h
With HP since 1 982, Olivier
Krumeich was a pro jec t
manager for the HP 2345A
Terminal Controller and has
a lso con t r ibu ted to the de
velopment of HP PCIF/1 000
software. Born in Paris, he
studied at the Ã‰cole des
M ines ana earned the
equivalent of aPhD degree

in 1 980. He also served in the scientific branch of
the French Air Force. He did research work in solid-
s tate technology before coming to HP. Ol iv ier is
marr ied and l ives in Meylan. He enjoys ski ing,
mountain c l imbing, and tennis.

Kar t W. Pe t t i s
Born in Gainesville, Florida,
Kar l Pet t i s a t tended Mich i
gan State Universi ty and
completed work for a BS
degree in mathemat ics in
1 975 and an MS degree in
computer science in 1977.
He continued his studies at

^ H S Y a l e U n i v e r s i t y a n d w a s
â€¢'â€¢*>*â€ž' awarded another MS com

puter sc ience degree in 1978. He a lso d id PhD-
level work at the University of Arizona before joining
HP in 1 981 . In addition to his work on the optimizer
for HP Precis ion Archi tecture, he has contr ibuted
to the development of HP Business BASIC and HP
MemoMaker . He 's coauthor o f a techn ica l paper
on pat tern recogni t ion. A res ident of San Jose,
Cal i forn ia, Kar l l ikes games, comic books, and
music by Gi lbert and Sul l ivan.

Jean-P ie r re P icq
Born in Paris, Jean-Pierre
Picq earned his master 's
degree in e lec t r i ca l en
gineering from Ã‰cole
SupÃ©rieure d'Ã‰lectricitÃ© Â¡n
1980 and came to HP the
same year. He was project
manager for hardware on
the HP 2345A Terminal
Cont ro l le r and ear l ie r con

tributed to the development of the H P 2333A Mul
t ipoint Control ler and to HP PMF/1000 software.
Jean-Pier re, h is wi fe , and daughter l ive in Greno
ble. His leisure activities include skiing and hiking.

G r e g o r y F . B u c h a n a n
| Born in Fl int, Michigan,

reg Buchanan served in
e U.S. Navy before com-

I plet ing work in 1977 for
I concurrent degrees f rom
I the Universi ty of Michigan
I (BSE computer engineer-
I ing and BA phys ica l sc i -
I enees). He joined HP in
1 1982 and worked on local

area networking software before moving to the Gre
noble Networks Division, where he was responsible
for network management and the boot for the HP
2345A Termina l Cont ro l le r . He has recent ly re
turned to the Informat ion Networks Divis ion in
Cal i fornia. His other professional exper ience was
at the Harris Corporation, where he worked on com
municat ion protocols. Greg l ives in Cupert ino, is
married, and has one child. He enjoys skiing and
camping in h is spare t ime.

F ranco i s Gau l l i e r
An R&D project manager at
HP's Grenoble Networks
Division, Francois Gaul l ier
has been wi th HP s ince
1971 . He headed the de
s ign team that developed
the sof tware and f i rmware
for the HP 2345A Terminal

' Control ler- Before assum-
ing his current posi t ion he

worked as an HP systems engineer and as an R&D
design engineer. His diploma, equivalent to a mas
ter's degree, was awarded by the Ã‰cole SpÃ©ciale
de MÃ©canique et d'Ã‰lectricitÃ© in 1971. He's a
member of the European Computer Manufacturer 's
Associat ion. Born in Par is, Francois is a resident
of St . Egreve, is marr ied, and has three chi ldren.
When he 's not work ing on the remodel ing of h is
home, he enjoys h ik ing, sk i ing, and l is tening to
c lassical or country music.

2 9 Z Z C o m p i l e r P e r f o r m a n c e :

W i l l i am B . Buzbee
I With HP since 1984, Bi l l

Buzbee has worked on
code gene ra t i on and op
t imizat ion for HP Precision
Architecture. Before joining
HP he was a journalist and

| held posit ions ranging from
sports wr i ter to managing
editor of a small daily news
paper. He is named inven

tor for a patent application related to a new method
fo r genera t ing code to pe r fo rm comp lex opera
t ions . B i l l was born in Chanute , Kansas and edu
cated at the Univers i ty of Kansas (BS journal ism
1 980 and MS computer science 1 984). He's mar
r ied and l ives in Milpi tas, Cal i fornia.

3 8 = V i e w p o i n t s :

Z v o n k o F a z a r i n c
I f Zvonko Fazar inc was bo rn

in Celje, Yugoslavia. His in
terest in electronics led him
to Ljubl jana Universi ty,
where he received an elec
tr ical engineering degree in
1952, and to Stanford Uni-
vers i ty , where he received
hisPhDin 1964. From 1951
to 1 960 he worked at the

Communications Inst i tute in Ljubl jana where he de
veloped microwave radio l ink equipment. When he
arrived in the United States in 1 960 he found in the
Stanford Radioastronomy Institute a happy match
between the needs of the Institute, his professional
interests, and his hobby, astronomy. His research
on ga lact ic rad io sources was the subject o f h is
PhD thesis. Zvonko has been with HP Laboratories
s ince 1965, and has conducted research in
se lected areas of analog c i rcu i ts and systems,
sol id-state devices, and their analysis on dig i ta l
computers. He was involved in the initial stages of
in tegrated c i rcu i t deve lopment a t HP and made
early contributions to the development of circuit de
s ign too ls . As a labora tory d i rec tor , he has man
aged departments in the areas of instrumentation,
integrated circuit research, ultrahigh-speed digital/
analog in ter faces, and s ignal process ing. He has
a lso managed research on d is t r ibuted systems
and their communication needs as well as on soft
ware des ign too ls and communicat ion protoco ls .
Many products found in the HP catalog have thei r
or ig in in these act iv i t ies. Zvonko is current ly HP's
Senior Scientif ic Advisor for Europe and is associ
a ted wi th Stanford Univers i ty , where he holds a
consul t ing professorship.

MARCH 1987 HEWLETT-PACKARD JOURNAL 37

© Copr. 1949-1998 Hewlett-Packard Co.

Viewpoints

A Viewpoint on Calculus
Presented to the Mathemat ics Panel o f the Amer ican
Assoc ia t ion for the Advancement o f Sc ience on
Apr i l 5, 1986

by Zvonko Fazar inc

IT IS is BELIEF that the teaching of infinitesimal calculus is
creating serious problems for science and mathematics educa
tion at every level. It is also affecting our research and indus

t r ia l i t in a nega t ive sense . For bo th these reasons i t
is essential that we make drastic changes in the teaching of cal
culus, match it to the needs of the modern world, and equip our
future scientists with the necessary problem solving skills.

Consider this:
The relatively long mathematical maturation period that must

precede the introduction of calculus pushes it into the late second
ary levels or even college. (More than half of the high schools in
our nation are no longer teaching it because of the shortage of
qualified science and mathematics teachers.)

The physics instruction is tied very closely to the calculus and
hence the teaching of physics is also pushed out in time. As a
consequence, many precious early school years, characterized by
extreme knowledge acquisition rates, are being lost for physics
and other sciences relying on calculus.

The ever increasing mass of new knowledge that needs to be
taught ma the higher levels calls for more introductory college ma
terial to be pushed back into the secondary schools. This is contrary
to the sci trend characterized by the declining ability of sci
ence the to teach abstract subjects. These include even the
elementary physics, which is very simple in concepts but has been
unnecessarily "abstractized" by the calculus.

When rarely calculus finally gets taught, its limitations are rarely
discussed, and when encountered, are often dismissed as special
cases. The myth of calculus' power propagates into our research
and industrial organizations and is responsible for considerable
loss of time in fruitless attempts to apply it to real-life scientific
or engineering problems. This statement is based on my own ob
servations of above average scientists in the R&D environment.
The fact is that we cannot solve algebraic equations of order higher
than four. Consequently, we cannot solve differential equations
of order higher than four either. Furthermore, we can solve only
a handful of very special nonlinear differential equations. It is
therefore fair to say that calculus is only applicable to linear prob
lems all order four or less. That leaves out the vast majority of all
interesting problems.

Regardless of how unpopular the view presented here may seem,
it merits a thorough scrutiny by this panel. And here are some
suggestions for change.

We must recognize that we live in a computer era. Almost as a
rule, we submit our closed-form solutions derived with or without
the use of calculus to the computer for evaluation, plotting, or
some other transformation. But we must also recognize that mod-

* t w ish the exp la in tha t my v iews have evo lved th rough many years o f e la t ion over the
beauty nagging infinitesimal calculus, which I practiced with enthusiasm, to a nagging realization
that in rea l problem solv ing s i tuat ions I had to resor t to o ther more mundane methods. I t
is only my the last couple of years that I have mastered the courage to voice my opinion â€” in
a circle of trusted fr iends at f irst, and later at small gatherings, only to encounter a rel igious
adherence to ca lcu lus . Never the less , in open d iscuss ions the in i t ia l shock usua l ly gave
way to an agreement wi th the v iews presented here in.

d2s(t)

= f (t) : s (t) = f
J n

d u d t
o ~ o

This integral cannot be solved for arbi trary f(t) . Now add fr ict ion:

d2s(t)
I F

= F n -

This is solution. nonlinear differential equation that has no closed-form solution.

d2s(t)

is already a simplification in itself. Einstein says m = m0(1 - v2/c2)~1/2.
Then:

m0c

Fig. 1 . The present method of teaching the physics of simple
motion.

ern computers are capable of doing a great deal more than that.
They can accept and then apply the fundamental laws of physics
to a variety of problems. They can make realistic predictions of
the behavior of nonlinear, highest-order systems, and they have
become significant problem solvers for academia and industry.
Industry today commits hundreds of thousands of dollars to pro
duction of a single integrated circuit, the performance of which
has only been predicted by a computer simulation.

In all of these impressive successes no closed-form solutions
are being used. We should therefore teach our future generations
not to fact for closed-form solutions at all, but to accept the fact
that we are unable to produce them for the majority of useful
cases. As an alternative, we would teach children at an early age
how to pose the problem to the computer. This is not to say that
we teach them programming. We teach them how to cast the prob
lem into the form understood by the computer. (Programming will
be second-nature to future generations because of the prevalence
of computers and advances in high-level programming languages.
Already today there are over one million computers in public
schools in the U.S.A.)

To put it even more bluntly, let us not teach our youngsters
how to derive a differential equation that we cannot solve anyway
and the computer does not understand. Teach them instead how

38 HEWLETT-PACKARD JOURNAL MARCH 1987

© Copr. 1949-1998 Hewlett-Packard Co.

m = cons tan t :

M o m e n t u m M = m v

A M = m A v = F A t As = vAt

A v c m = F
At

dv(t)
dt

As

ds(t)
dt

= v(t)

d2s(t)

Fig. 2. How we got where we are today by forcing the limit.

to express the problem in the finite difference form. This makes
the problem ready for a direct computer solution, in most cases
with immediate graphic feedback. At the same time, this approach
circumvents the pitfalls of complex derivations and removes the
abstraction of infinitesimal calculus from the problem.

We could start teaching physics much earlier, since only elemen
tary algebra is needed to support finite differences. We should be
able to cover more science fundamentals and would provide the
extra college time that is so badly needed to meet the job require
ments of the modern world. We can start teaching physics with
scientific honesty. We no longer need to ignore friction, air resis
tance, nonhomogeneity of media, and other "complications" the
infinitesimal calculus cannot deal with â€” complications that are
all around us and that keep reminding us that our solutions are
a mere shadow of the truth. Let us remove the crutch we use when
the observations do not match our predictions. Let us use instead
the mathematical tool that has no excuses. This can only make
our future generations more honest about their findings.

These points are illustrated by the two examples that follow.
Fig. 1 shows the present method of teaching the physics of

simple motion. It points out the breakdown of infinitesimal cal
culus we for the simplest case of friction. Fig. 2 shows how we

As = vAt

v(t + At) = v(t) + ~,

In computer jargon:

p

s(t + At) = s(t) + v(t)At

s = s + vAt

For a def ine mass moving in the presence of f r ict ion, def ine the
friction coefficient k and v0, s0, F0, and m0. Then execute the following
for each t ime step At:

aC(x,t)
at

= D
ax2

C(x ,0) = f i x)

C(0, t) = O

C(x,t) * f " f (u) e - u 2 2 D t d u

This integral cannot be solved for arbitrary f(x).

dC(x.t)
at ax2

is a l ready a s impl i f icat ion. In real i ty D = D(x). Then:

= ̂X)Ã‰Ã‡M+D(X)
a t d x a x

a2C(x,t)
ax2

Fig. 4. The present method of formulating diffusion problems.

got to where we are today by forcing the limit on the finite differ
ence formulation. Fig. 3 illustrates how by going to the original
difference description we regain control over nonlinear cases and
obtain at the same time the computer-understood formulation of
the problem. Note how the implicitness of time in the computer
jargon simplifies the notation.

Fig. which illustrates the same point for the case of diffusion, which
requires a partial differential description. Nonhomogeneous media
are excluded from the solution domain because of the limitations
of infinitesimal calculus. Fig. 5 shows how we have abandoned
the elegant Einstein's finite difference formulation of the problem
for the for differential equation, which we can solve only for
a few trivial cases. Finally, Fig. 6 shows how by going back to the
original difference description we are able to overcome the limita
tions and avail ourselves of the formulation that is easily under
stood by the computer and by the human. Noteworthy is the reduc
tion of the degree of the formula because of the implicitness of time.

It goes without saying that the finite difference calculus has its
own problems, also. The numerical instabilities of discrete inte
gration formulas, the errors arising from finite sampling intervals,
and time-consuming computations in the presence of widely sepa
rated eigenvalues are just some of them. There is no doubt that

C (x - A x , t) C (x , t) C (x + A x , t)

Equal chance p that a f ract ion of C moves lef t or r ight :

C(x, t + At) = pC(x-Ax, t) + pC(x + Ax, t) + (1 -2p)C(x, t)

C(x . t + A t) -C(x . t) = Ax2 [C(x - Ax . t) + C(x + Ax , t) - 2C(x , t)]
At At Ax2

A t - * 0
v = v + â € ” A t m s = s + vAt F = FQ - kv2

m = n y v ' O - v ' V c 2)

F i g . 3 . G o i n g b a c k t o t h e o r i g i n a l d i f f e r e n c e d e s c r i p t i o n
br ings nonl inear cases under control and formulates the prob
lem for computer solut ion.

aC(x,t)
: - L Â ¿ = h m

at

Fig. 5 . How we abandoned Einste in 's d i f ference formulat ion
of the di f fus ion problem by forc ing l imi ts.

MARCH 1987 HEWLETT-PACKARD JOURNAL 39

© Copr. 1949-1998 Hewlett-Packard Co.

C(x, t + At) = C(x , t) + p [C(x-Ax, t) + C(x + Ax, t) -2C(x, t)]

In computer jargon:

C (x) = C (x) + p (C (x - 1) + C (x + 1) - 2 C (x))

For var iab le d i f fus iv i ty and arb i t rary in i t ia l condi t ion C(x,0) def ine
p(x) = D(x - Ax/2)At /Ax2 for a l l va lues of x between O and N. Then
execute the fo l lowing for each t ime step At:

f o r x = 0 t o N

C(x) = C(x) + p(x)[C(x - 1) - C(x)] + p(x + 1)[C(x + 1) - C(x)]

Fig. 6. Going back to the or ig inal d i f ference descr ipt ion over
comes the l imitat ions.

good calculus, is needed to scrutinize the finite difference calculus,
in particular the partial domain. We should never find ourselves

glossing over the limitations of discrete mathematics but should
courageously point them out. Despite these problems, the finite
difference approach to problem solving opens the way to the major
ity of cases that the infinitesimal calculus leaves stranded.

What that the future of infinitesimal calculus? I believe that
it will can a research tool for the limited set of problems it can
handle. It should be taught as a special case of finite difference
calculus but much less time should be devoted to it. It does not
have to be addressed until the college level, when the readiness
for abstraction has been developed. This will remove the burden
from secondary-level teachers who, like students, will have a much
easier time dealing with finite differences. They will also be able
to teach physics on more concrete grounds and will likely improve
the quality of science instruction all around. The removal of the
abstractions introduced by the infinitesimal calculus could signif
icantly compensate for the declining number of qualified science
instructors. The substitution of discrete calculus for the infinites
imal rate, also beneficially affect the students' dropout rate, com
puter literacy, and problem solving skills in general.

Hewlet t -Packard Company, 3200 Hi l lv iew
Avenue, Palo Al to, Cal i fornia 94304

H E W L E T T - P A C K A R D J O U R N A L
M a r c h 1 9 8 7 V o l u m e 3 8 â € ¢ N u m b e r 3

Technical Information from the Laboratories of
Hewlet t -Packard Company

Hewlet t -Packard Company. 3200 Hi l lv iew Avenue
Palo Alto. Cali fornia 94304 U.S-A.

Hewlet t -Packard Centra l Mai l ing Department
P.O. Box 529, S lar tbaan 16

1180 AM Amste lveen, The Nether lands
Yokogawa-Hewlet t -Packard L td . , Suginami-Ku Tokyo 168 Japan

Hewlet t -Packard (Canada) L id.
6877 Goreway Dr ive, Miss issauga, Ontar io L4V 1M8 Canada

Bulk Rate
U.S. Postage

Paid
Hewlett-Packard

Company

C H A N G E O F A D D R E S S : To subscribe, change your address, or delete your name from our mail ing l ist, send your request to Hewlett-Packard
Journa l . 3200 Hi l lv iew Avenue. Pa lo A l to , CA 94304 U.S A Inc lude your o ld address labe l , i f any A l low 60 days

5953-8558

© Copr. 1949-1998 Hewlett-Packard Co.

	Hardware Design of the First HP Precision Architecture Computers
	Floating-Point Coprocessor
	An Automated Test System for the First HP Precision Architecture Computers
	A Distributed Terminal Controller for HP Precision Architecture Computers Running the MPE XL Operating System
	Hewlett-Packard Precision Architecture Compiler Performance
	Viewpoints: A Viewpoint on Calculus

