

SERVICE INFORMATION FROM HEWLETT-PACKARD

2nd/3rd/4th Quarters 1995

Elements of a Standards Lab That Support a Manufacturing Facility

Bob Pitcock/Hewlett-Packard

Introduction

The purpose of a standards lab is to provide traceability from a national standard to the products being manufactured. Standards lab calibrations are generally high level calibrations that are performed under controlled conditions. This should not be confused with the basic instrument maintenance or calibration services that most manufacturing facilities provide.

This article will describe the basic, nontechnical requirements and need for a Measurement Standards Laboratory operated in a manufacturing environment.

The first thing to do is ask yourself some questions:

- 1. What is needed to support production? This could include equipment, personnel, expertise, training, floor space, and cost of operation.
- 2. Is a standards lab necessary, or would it be a burden to production? Operation of a standards lab can be very expensive. Consider return on investment and value added to manufacturing. You may also consider offering calibration services to other production entities within your company to help offset the cost of operating the lab.
- 3. Could the required calibrations be performed by another lab, taking into consideration quality, cost, turn around times, traceability, and standards (such as ISO9000)?

4. Is the required expertise available to operate a standards lab? As a minimum, you will need to consult with an expert in the field to determine the feasibility of a lab.

This article will describe the various functions of a standards lab that you should consider, if you are thinking about starting a lab of your own. They are:

- 1. Provide the traceability path for calibrations to a national standard.
- 2. Help determine calibration requirements for production test equipment.
- 3. Provide consultation services to production and engineering as required.

- 4. Determine what functions actually require standards lab support.
- 5. Perform the required calibrations.
- 6. Documentation and record retention.

Provide Traceability Path

Figure 1 represents a typical traceability path to a national calibration laboratory. The areas represented by the blocks must be able to show proof, by means of a calibration certificate or other acceptable methods, of traceability to the national standard. If an external calibration source is used, you must be able to verify its competence to assure its traceability to the national standard.

Figure 1. Typical Traceability Path

Determine Calibration Requirements

In order to meet the requirements of calibration system standards, such as ISO Guide 25 or ANSI/NCSL Z540-1, documenting measurement uncertainties and test accuracy ratios is a must. A test accuracy ratio is the ratio of the measurement uncertainty of the measurement system to the accuracy requirement of the unit under test. In general, the accepted test accuracy ratio is 4:1. Exceptions may be made if the process is well documented and it is shown that the reduced test accuracy ratio does not affect product quality. In simple terms, if the accuracy specification of a unit under test at 1 vdc is 0.1v, then the standard used must have a total measurement uncertainty of 0.025v or less in order to achieve a test accuracy ratio of at least 4:1.

There are several acceptable methods of calculating measurement uncertainty that I will not discuss here. They generally consist of simply adding all uncertainties in the calibration system, or selecting a statistical method. There have been many very good papers written on the subject. One good document to refer to is the *ISO/TAG 4*, *Guide to the Expression of Uncertainty in Measurement*.

There are several items to consider about setting up a standards lab. You need to determine what functions, or parameters of production that test equipment actually requires from standards lab support:

- It should be cost effective. Don't spend \$100,000 in test equipment to support the calibration requirements of one DVM. You need to consider the "return on investment" of the equipment you purchase. In a reasonable period of time, the savings realized from calibrating equipment in house, instead of sending it out, must come close to paying for the new calibration equipment purchased. There are other factors, such as turn-around-times, that should be considered.
- Is it state of the art? You may have to spend more money in order to be able to support this type of measurement. It can be very difficult to sup-

port a state of the art process if you rely on external calibration sources.

- 3. Is a standards lab operation the only way to maintain the required test accuracy ratios? You must be very careful to maintain the required measurement uncertainty for each measurement parameter. Sometimes, the only way to do that is to have more control over the traceability and uncertainty process, which means a standards lab may be necessary.
- 4. Turn-around-time considerations. If equipment down-time is critical, turn-around-times by a standards lab may not be acceptable. You will need to compare the cost of downtime to the cost of operating a standards lab during non-production hours. Cost of down-time is difficult to measure. It could even mean the loss of future business because of unhappy customers. You may need to consider duplication of equipment for critical operations.

Provide Consultation Services

When properly trained, standards lab personnel will be recognized as experts in their fields of measurement. You will work with R&D to determine traceability requirements for new products. This includes determining required specifications for test equipment and new calibration equipment if necessary. With the rapid advancement in technology, you will need to stay informed of new instrumentation available in your fields of expertise. As manufacturing moves into new fields, you will need to broaden your own measurement knowledge in order to maintain your status as an expert.

R&D may ask for your assistance in designing new test systems. If they do, this will ensure that you will have the capability to calibrate all of the equipment in the system. Nothing can be more frustrating than being bombarded with a test system full of equipment that you can't calibrate. You will either have to send the equipment to another lab or wait until you can get the necessary equipment and calibration procedures in place.

Perform Required Calibrations

The actual calibration process may be the easiest, most straightforward pro-

cess in the operation of a standards lab. Some of the things you should consider in the calibration process are:

- 1. Technician training. You should have a documented training record for each employee, and a document containing the scope of each job. The training record should contain the date and name of each class taken that pertains to the employee's job.
- 2. Follow all procedures, including individual calibration procedures. The technician must be able to demonstrate that each procedure is being followed. Some companies actually require that calibration procedures be opened and at the workstation during calibrations.
- 3. Make sure that all calibration equipment is traceable and its calibration is current. An easy rule to follow is to actually look at the calibration stickers on the calibration equipment each day. If it's overdue, don't use it. If you do, the traceability chain is BROKEN.
- Make sure all required parameters are checked and that all required documentation is completed and properly filed.
- 5. Update calibration recall system and records as necessary.

Documentation

Documentation and record keeping is a large part of the operation of a standards lab. Some of the records that should be kept and maintained are:

- 1. Department procedures or a calibration system description. This should include a simple, but complete description of the total calibration operation.
- 2. Calibration procedures. These procedures should include, as a minimum, procedure name, date, revision number, required equipment, required standards, unit under test specifications, uncertainties of standards, TAR, and description of process.
- 3. Calibration worksheets for production test equipment. Worksheets must contain calibration data, such as before and after adjustment data and out of tolerance data. They must

also contain instrument identification, cal date, cal due date, standards used, and other information of importance to your operation.

- Calibration worksheets or calibration reports for standards lab test equipment and reference standards.
- 5. Individual training records.
- 6. Audit reports. These are audits performed on an outside lab used for

traceability purposes and audits performed on your lab by your customers.

- 7. Calibration recall system and history records. Most recall systems are computer based. History records may be either on disc or hard copy.
- 8. Record retention process. There must be a documented procedure for the retention time for calibration records. As a minimum, records

must be kept for at least one calibration cycle. Generally, records are kept for several years.

9. Capabilities chart. Figure 2 is a representation of a capabilities chart that includes function, range, frequency, and best measurement uncertainty.

Summary

Whether you decide to operate your own standards lab or utilize an out-

FUNCTION	RANGE	FREQUENCY	UNCERTAINTY
DC VOLTAGE	0 TO 1 VOLT		2 PPM + 0.5 MICROVOLTS
	1 TO 100 VOLTS		3 PPM
	100 TO 1000 VOLTS		6 PPM
AC VOLTAGE	1 TO 3 VOLTS	10 HZ	0.02%
		20 HZ TO 50 KHZ	0.01%
		100 KHZ	0.02%
		1 MHZ	0.06%
		3 TO 10 MHZ	0.12%
		20 TO 30 MHZ	0.25%
		40 TO 60 MHZ	0.5%
		70 TO 100 MHZ	1.2%
	1 TO 1000 VOLTS	10 HZ TO 10 MHZ	SAME AS ABOVE
FREQUENCY		1 TO 10 MHZ	3 X 10 TO THE -13
TIME			0.2 MICROSECONDS
TEMPERATURE	-20 TO +220 DEG C		0.01 DEG C
LASER WAVELENGTH	632 NANOMETERS		1 X 10 TO THE -9
LASER POWER	10 TO 1000 MICROWATTS	632 NANOMETERS	5%
RESISTANCE	.001 OHMS		50 PPM
	.01 TO .1 OHMS		20 PPM
	1 OHM TO 10 OHMS		10 PPM
	100 OHMS TO 1 MEGOHM		5 PPM
	10 MEGOHMS		10 PPM
	100 MEGOHMS		20 PPM
	1 GIGAOHM		.01%
	10 GIGAOHMS		1%
	100 GIGAOHMS		5%
HUMIDITY	LIMITED-BY REQUEST		

Figure 2. Standards Lab Capabilities Chart

WWW.HPARCHIVE.COM

side lab for your standards calibrations, you must remember to comply with your country's calibration system requirements. If your company is ISO9000 registered, you will probably need to comply with ISO Guide 25 (General Requirements for the Competence of Calibration and Testing Laboratories).

All calibration requirements state that you must maintain an unbroken chain of traceability from your equipment to a national standard. The most common factor that breaks the chain is using equipment that is actually overdue for calibration. If it is overdue, don't use it. It is better to take it out of service and have it calibrated than break the traceability chain. You need to have a system or a person to monitor calibration dates for all equipment, from the primary standards right down to the production test equipment.

In conclusion, always remember that the heart of quality in instrument manufacturing has a direct relationship to the integrity of your calibration system.

About The Author

Bob Pitcock received his initial electronics training at Keesler Air Force Base, Biloxi, Mississippi in aircraft navigation equipment repair. He served in the U.S. Air Force from 1961 through 1965. He received his AA degree in electronics technology from Modesto Junior College, Modesto, California in 1968. He began his career with HP in 1968 as an electronic technician in Palo Alto, California. He moved to the Santa Clara (California) Division Standards Lab in 1972 as a calibration technician. He became supervisor of the standards lab in 1986. In 1992 his role expanded to include supervision of the standards lab and electronic maintenance. For the past year Bob has served as an Engineering Specialist, Senior in the Santa Clara Division Standards Lab. He has been in the standards lab business for a total of 23 years.

Safety-Related Service Notes

Service Notes from Hewlett-Packard relating to personal safety and possible equipment damage are of vital importance to our customers. To make you more aware of these important notes, they are printed on paper with a red border, and the service note number has an "-S" suffix. In order to make you immediately aware of any potential safety problems, we are re-highlighting safety-related service notes here with a brief description of each problem. Also, in order to draw your attention to safety-related service notes in the service note index, each safety-related service note is highlighted with a contrasting color.

HP J2301B & J2302B Internet Advisor HP J2522B & J2523B Internet

Advisor

Serial Numbers Affected:

J2301B - US35340101 / US35340548

J2302B - US35340102 / US35350393

J2522B -US35300102, US35300103, and US35300788

J2523B - US35300104 and US35300105

The 0950-2937 Display Board Inverter assembly installed into the display does not meet Hewlett-Packard fire retardant standards and should be replaced. Inverter boards marked with LOT 56 on the transformer in instruments within the serial number prefixes should have this modification to prevent instrument damage.

Return your instrument to the nearest HP Service Center and it will be repaired at no charge. For more information, order Priority Safety Service Notes

J2301B-01-S - doc. ID no. 6377 J2302B-01-S - doc. ID no. 6378 J2522B-01-S - doc. ID no. 6379 J2523B-01-S - doc. ID no. 6380

from the HP FIRST system or from your nearest HP Sales and Service office.

HP 70001A & 70004A Modular Measurement Systems

Serial Numbers Affected:

The serial number range is extensive and listed within the service note text.

Faulty electrolytic capacitors on the power supply board may leak electrolytes across high voltage pc board traces leading to a potential fire hazard. Failures result in a blown main fuse, are self-extinguishing and are completely contained within the instrument housing.

Return your instrument to the nearest HP Service Center and it will be re-

paired at no charge. For more information, order Safety Service Notes 70001A-20-S or 70004A-15-S as document ID numbers 6320 or 6322 from the HP FIRST system or your nearest HP Sales and Service office.

HP 9470, 9472, (OT2000, OT3000, OT4000) Automatic Test Systems

Serial Numbers Affected:

The serial number range is listed within the contents of the service note.

There is a faulty diode CR8 on the TH-200 Test Head Motherboard that can defeat high voltage safety interlocks to the test head, which can cause a severe shock hazard to the operator. Note that this problem only occurs when CR8 is present on the TH-200 motherboard.

All attempts have been made to contact HP customers that purchased these systems prior to January 1995 of the potential shock hazard associated with the TH-200 Test Head. However, it is possible that there are systems with the problem that are not on our list. If you own one of these systems and have not been contacted by Hewlett-Packard, please get in touch with your nearest HP Sales and Service Office at once.

This service note is available through the HP SupportLine. $\hfill \Box$

WWW.HPARCHIVE.COM

1995 Bench Briefs' Instrument Service Note Index

HP FIRST (208)344-4809 T & M Instrument Section - Press 4 T & M Service Notes - Press 2 Enter the Password - 76683

SN	SN	Abstract	HP FIRST
Type	e No.	Doe	cument ID No.
-31			
MR	10889B-01	Resoldering address switch S2 corrects intermittents	6266
MR	11807C-01	New card corrects connectivity test results	6267
MR	11807C-02	New card corrects wrong system calibration of 1428 MHz loss	6268
MR	11982A-01	Additional DC grounding improves noise performance	6269
IO	15801A-01	Revision 1.2 software corrects spelling mistakes	6270
MA	16500B-02	Increasing RAM from 8 MB to 16 MB improves performance	6271
MR	16555A-02	Mod corrects Master/Expander operation	6272
MA	3488A-16	New power transformer improves voltage regulator reliability	6273
MR	3488A-17	New component-side shield reduces module-to-module clearance	6274
IO	3562A-13	New 03562-61608 cable may cause A1 assembly short	6275
IO	3562A-14	Front panel replacement requires new power switch	6276
IO	3563A-03	New 03562-61608 cable may cause A1 assembly short	6277
MR	3764A-30	Addition of ferrite bead improves return loss at "Mb/s rates	6278
IO	37701A-08	Recommended replacement assemblies	6279
MR	37704A-02	Power supply modification improves performance	6280
MR	37717A-01	Incorrect modification causes reduced NVM battery life	6281
MR	37717A-02	Firmware upgrade improves performance and eliminates minor bugs	6282
MR	37717A-03	Firmware upgrade improves performance of 120 ohm balanced output	6283
MR	37717A-04	Modification improves connection of output cable to PDH Tx assembly	6284
MR	37717A-05	Modification corrects jitter receiver HP2 filter characteristics	6285
IO	37717A-06	Retrofit kit enhances jitter measurement accuracy	6286
IO	37721A-07A	Instructions on replacing the power supply	5314
MR	37722A-03	Mod prevents hang-up in Stored Measurement Graphics mode	6287
IO	37724A-04	New version of the calibration manual (containing performance tests)	6288
MR	37724A-05	New fan filter improves filtration performance	6289
MR	37732A-05	Grounding modification reduces electromagnetic interference	6290
MR	37732A-06	Mod prevents hang-up in Stored Measurement Graphics mode	6291
MR	3784A-06	Bad cable connector causes power up test failure	6292
IO	4263A-04	External voltage/current will damage the LCR meter	6293
MR	4986A-01	Modification to power modules improves 5 VDC stability	6294
IO	5342A-61	New assembly requires part/jumper mod for compatibility	6295
IO	5343A-33	New assembly requires part/jumper mod for compatibility	6296
IO	54520A-01	Elimination of two kits in the service manual parts list	6297
IO	54520C-01	Elimination of two kits in the service manual parts list	6298
IO	54522A-01	Elimination of two kits in the service manual parts list	6299
IO	54522C-01	Elimination of two kits in the service manual parts list	6300
IO	54540A-01	Elimination of two kits in the service manual parts list	6301
IO	54540C-01	Elimination of two kits in the service manual parts list	6302
IO	54542A-01	Elimination of two kits in the service manual parts list	6303

\$

pe.

SN Type	SN	Abstract HP F	IRST
Type		Document I	D 110.
10	54542C-01	Elimination of two kits in the service manual parts list	6304
MR	54600B-02	Mod improves oscilloscope printing using RS-232 modules	6305
MR	54601B-02	Mod improves oscilloscope printing using RS-232 modules	6306
MR	54602B-02	Mod improves oscilloscope printing using RS-232 modules	6307
MR	54603B-01	Mod improves oscilloscope printing using RS-232 modules	6308
MR	54610B-01	Mod improves oscilloscope printing using RS-232 modules	6309
10	54610B-02	External trigger specification change	6310
MR	54651A-01	Mod improves oscilloscope printing using RS-232 modules	6311
MR	54652B-01	Mod improves oscilloscope printing using RS-232 modules	6312
MR	54656A-02	Mod improves oscilloscope printing using RS-232 modules	6313
MR	54658A-01	Mod improves oscilloscope printing using RS-232 modules	6314
MR	54659B-01	Mod improves oscilloscope printing using RS-232 modules	6315
MR	5517A/18A-01B	Recommended repair of sampler assembly	6316
MR	6812A-05	Mod corrects error in programmed gate array logic that may cause voltage overshoot	6317
MR	6813A-05	Mod corrects error in programmed gate array logic that may cause voltage overshoot	6318
MR	70001A-19	Modification to prevent modular system interface bus lockup	6319
SA	70001A-20-S	Bad capacitors may cause equipment failure and fire	6320
MR	70004A-14	Modification to prevent modular system interface bus lockup	6321
SA	70004A-15-S	Bad capacitors may cause equipment failure and fire	6322
MA	71612A-01	Recommended modification to improve performance	6323
IO	8146A-01	Recommended flexible disk drive replacement	6324
MR	83215A-01	Mod corrects halting ANT IN output due to momentary pwr fail	6325
MR	83215A-02	Mod corrects RX sensitivity measurement value	6326
MA	83215A-03	New FW allows greater ext losses on system calibration	6327
MA	83215B-01	New FW allows greater ext losses on system calibration	6328
MR	85110A-01	Defective test set switch generates overmodulation error	6329
MR	85110L-01	Defective test set switch generates overmodulation error	6330
MR	8514A-04	Defective test set switch generates overmodulation error	6331
MR	8514B-01	Defective test set switch generates overmodulation error	6332
MR	8515A-04	Defective test set switch generates overmodulation error	6333
MR	8517A-01	Defective test set switch generates overmodulation error	6334
MR	8517B-01	Defective test set switch generates overmodulation error	6335
MR	85422E-02	EEROM firmware upgrade corrects bugs	6336
MR	85462A-02	EEROM firmware upgrade corrects bugs	6337
MR	8560E-12	Modification improves power supply reliability	6338
MR	8561E-09	Modification improves power supply reliability	6339
MR	8563E-11	Modification improves power supply reliability	6340
MR	8564E-05	Modification improves power supply reliability	6341
MR	8565E-05	Modification improves power supply reliability	6342
MR	85685A-16	Mod kit corrects Diagnostic #1 failure	6343
MA	8590D-07	New firmware corrects display annotation	6344
MA	8590L-03	New firmware corrects display annotation	6345
MA	8591C-04	New firmware corrects display annotation	6346
MA	8591E-07	New firmware corrects display annotation	6347
MA	8592D-05	New firmware corrects display annotation	6348
MA	8592L-03	New firmware corrects display annotation	6349
MA	8593E-09	New firmware corrects display annotation	6350
MA	8594E-09	New firmware corrects display annotation	6351

SN	SN	Abstract	HP FIRST
Туре	e No.	Docur	nent ID No.
МА	8505E-09	New firmware corrects display annotation	6352
MA	8596E-09	New firmware corrects display annotation	6353
IO	8648B-01	No RF out failure caused by not turning pulse mod off	6354
IO	8648C-01	No RF out failure caused by not turning pulse mod off	6355
IO	8656B-10	Semi-rigid cable replacement instructions	6356
10	8657A-02	Semi-rigid cable replacement instructions	6357
IO	8657A-03	Manual corrections reflect new ALC Loop det adi	6358
IO	8657B-03	Semi-rigid cable replacement instructions	6359
MR	87510A-13	New F/W prevents incorrect calibration being saved on floppy disk	6360
MR	87510A-14	New FW eliminates "External Reference Locked" msg & HP-IB "Extrlock?"	6361
MR	8751A-25	New F/W prevents incorrect calibration being saved on floppy disk	6362
MR	8920DTS-02	New card corrects connectivity test results	6363
MR	8920DTS-03	New installation card corrects system calibration	6364
MA	89410A-01G	HP 89410 Firmware revision history	5710
MR	89430A-04	New power switch improves reliability	6365
IO	89430A-05	Use IF Filter Kit for A22, A23, A24, A31, and A32 assembly replacement"	6366
MR	89431A-02	New power switch improves reliability	6367
MR	E1431A-02	Firmware upgrade corrects defects causing lockups	6368
MR	E1431A-03	Replacement module corrects defect causing power-up module lockup	6369
IO	E162A-02	Optical failures due to improper cleaning of optical connectors	6370
MR	E1693A-01	Replacement modules correct spurious cell loss errors	6371
MR	E1694A-01	Replacement modules correct spurious cell loss errors	6372
IO	E1696A-02	Optical failures due to improper cleaning of optical connectors	6373
IO	E1697A-02	Optical failures due to improper cleaning of optical connectors	6374
IO	E1698A-01	Optical failures due to improper cleaning of optical connectors	6375
IO	E2555A-02	Identifying failed channel disk and SCSI interface assembly location	6376
PS	J2301B-01-S	New inverter board reduces chance of fire hazard	6377
PS	J2302B=01-S	New inverter board reduces chance of fire hazard	6378
PS	J2522B-01-S	New inverter board reduces chance of fire hazard	6379
MR	J2522B-02	Modification corrects improper Jam Signal to network	6380
PS	J2523B-01-S	New inverter board reduces chance of fire hazard	6381
MR	J2523B-02	Modification corrects improper Jam Signal to network	6382

•

.

Service Note Types IO Information Only

MA Modification Available

MR Modification Recommended

Safety SA

Priority Safety PS

Is ISO an Acronym?

Bill Sorrells/Hewlett-Packard

You are standing around discussing ISO 9000 or some of the other ISO "standards" and the question is invariably asked, "What does ISO stand for?" Since Hewlett-Packard is noted for using acronyms to describe almost everything, that question caused a great deal of discussion around our coffee pot.

Actually, ISO is not an acronym. In fact ISO is a word, derived from the Greek ISOS, meaning "equal," which is the root suffix of the prefix "iso-" that occurs in a host of terms, such as "isometric" (of equal measure or dimensions - Shorter Oxford English Dictionary) and "isonomy" (equality of laws, or of people before the law - ibid.).

From "equal" to "standard," the line of thinking that led to the choice of "ISO" as the name of the organization is easy to follow.

In addition, the name has the advantage of being valid in each of the organization's three official languages - English, French, and Russian. The confusion that would arise through the use of an acronym is thus avoided, e.g., "IOS" would not correspond to the official title of the organization in French-Organization Internationale de Normailisation.

The above information was taken from ISO on-line through the Internet. $\hfill \Box$

HEWLETT-PACKARD COMPANY 100 Mayfield Avenue Mountain View, California 94043

BENCH BRIEFS

2nd/3rd/4th Quarters 1995 Volume 35 No. 1,2,3

> Service information from Hewlett-Packard Company

To obtain a qualification form for a free subscription, send your request to the above address.

Reader comments or technical article contributions are welcomed. Please send them to the Bench Briefs Editor at the above address.

> Editor: Jim Bechtold Hewlett-Packard

Bulk Rate U.S. Postage PAID Santa Clara, CA Permit No. 90

All rights reserved. Permission to reprint Bench Briefs granted upon written request to the Editor.

Printed in U.S.A.

WWW.HPARCHIVE.COM