IRIX® Interactive Desktop Integration Guide

007-2006-130



CONTRIBUTORS
Written by Beth Fryer, Jed Hartman, Ken Jones, and Pete Sullivan

Updated by Max Anderson

Updated by Julie Boney

Illustrated by Beth Fryer and Seth Katz
Production by Karen Jacobson

Engineering contributions by Bob Blean, Susan Dahlberg, Susan Ellis, John Krystynak, Chandra Pisupati, Jack Repenning, CJ Smith, Dave Story,
Steve Strasnick, Rebecca Underwood, Steve Yohanan, and Betsy Zeller.

COPYRIGHT

© 1999, 2001 Silicon Graphics, Inc. All rights reserved; provided portions may be copyright in third parties, as indicated elsewhere herein. No
permission is granted to copy, distribute, or create derivative works from the contents of this electronic documentation in any manner, in whole
or in part, without the prior written permission of Sili

LIMITED RIGHTS LEGEND

The electronic (software) version of this document was developed at private expense; if acquired under an agreement with the USA government
or any contractor thereto, it is acquired as "commercial computer software" subject to the provisions of its applicable license agreement, as
specified in (a) 48 CFR 12.212 of the FAR; or, if acquired for Department of Defense units, (b) 48 CFR 227-7202 of the DoD FAR Supplement; or
sections succeeding thereto. Contractor/manufacturer is Silicon Graphics, Inc., 1600 Amphitheatre Pkwy 2E, Mountain View, CA 94043-1351

TRADEMARKS AND ATTRIBUTIONS

Silicon Graphics, IRIS, IRIX, and OpenGL are registered trademarks and SGI, IRIS GL, the SGI logo, IRIS InSight, IRIS ViewKit, the Graphics
Library, Open Inventor, and Rapid App are trademarks of Silicon Graphics, Inc. Apple is a registered trademark and Apple Quicktime is a
trademark of Apple Computer, Inc. Kodak is a trademark of Eastman Kodak Company. Microsoft is a registered trademark of Microsoft
Corporation. Motif and OSF/Motif are trademarks of the Open Software Foundation. PostScript is a registered trademark of Adobe Systems,
Inc. Solaris is a registered trademark and Sun and SunOS are trademarks of Sun Microsystems, Inc. UNIX is a registered trademarkof the Open
Group in the United States and other countries. Wavefront is a trademark of Alias/Wavefront, a division of Silicon Graphics Limited. X Window
System is a trademark of the Open Group.

Cover Design By Sarah Bolles, Sarah Bolles Design, and Dany Galgani, SGI Technical Publications.



PART I

007-2006-130

Contents

Examples

Figures .

Tables

New Features in This Guide.
Record of Revision

About This Guide.
What This Guide Contains
How to Use This Guide e
What You Should Know Before Reading This Guide .
Suggested Reading
Font Conventions in This Guide .
Integrating an Application Into the IRIX Interactive Desktop Environment:
An Introduction e
About the IRIX Interactive Desktop Environment .
Implementation Strategies and Toolkits
Implementation Checklist
Using ViewKit and RapidApp .
Integrating an Application

Getting the Right Look and Feel

Getting the Right Look and Feel: An Overview .
About the IRIX Interactive Desktop Look and Feel
Getting the Right Look and Feel: The Basic Steps .

. XV
XVvii
. XiX
. XX1
xxiii
XXV
XXV
XXV
XXV

XXVi

XXVii

XXiX
XXiX
XXxii

xxxii

. XXX1V

. XXxvil



Contents

Getting the IRIX Interactive Desktop Look

Using Schemes .
Schemes Overview . . .
Why You Should Use Schemes .
Basic Scheme Concepts
Using Schemes in Your Application .
Turning on Schemes for Your Application .

Special Considerations for Programming with Schemes .

Assigning Non-Default Colors and Fonts to Widgets .

Directly Accessing Colors and Fonts

Pre-Defined Scheme Resources and Symbolic Values.

Extending a Scheme to Support New Colors

Scheme File Organization.

How to Extend a Scheme . .
Testing Your Application with Schemes.
Creating New Schemes .
Hard-Coding a Scheme for an Apphcatlon .

Using the SGI Enhanced Widgets
Using the SGI Enhanced Widgets
Using the Widget Demos .
Location of Widget Demos .
Instructions for Building the Widget Demos
The Enhanced Widgets
The File Selection Box Widget
The Scale (Percent Done Indicator) Wldget
The Text and TextField Widgets .
The Mixed-Model Programming Widgets

O O 0 0 NI N G

.10
.11
.13
.15
.18
.19
.19
.21
.21
.22

.23
.23
.24
.24
.24
.25
.25
.27
.28
.29

007-2006-130



Contents

007-2006-130

The SGI Enhanced Widgets .
The Color Chooser Widget .
The Dial Widget .
The Thumbwheel Widget
The Drop Pocket Widget.
The Finder Widget
The Graph Widget
The Springbox Widget
The Grid Widget .
HTML Viewer Component e
Overview of the HTML Viewer Components .
Viewer Components .

Supported Tags and Attributes .

Window, Session, and Desk Management
Window, Session, and Desk Management Overview .
Window Management
Session Management .
Desk Management
Further Reading on Window and Session Management .
Implementing an Application Model S
Implementing the “Single Document, One Primary” Model

Implementing the “Single Document, Multiple Primaries” Model .

Implementing the “Multiple Document, Visible Main” Model .

Implementing the “Multiple Document, No Visible Main” Model .

Interacting With the Window and Session Manager .
Creating Windows and Setting Decorations
Handling Window Manager Protocols.

Setting the Window Title.
Controlling Window Placement and Size .

Customizing Your Application’s Minimized Windows.
Some Different Sources for Minimized Window Images .

. 30
. 30
. 36
. 38
.41
. 42
. 46
. 47
. 48
. 52
. 54
. 54
. 55

. 59
. 59
. 59
. 60
. 64
. 65
. 65
. 66
. 66
. 66
. 67
. 68
. 68
.75
.79
.79

. 83
. 84



Contents

Creating a Minimized Window Image: The BasicSteps . . . . . . . . . . . .85
Using mediarecorder to Get an RGB FormatImage . . . . . . . . . . . .86
Resizing the RGB Image Usingi mgpworks . . . . . . . . . . . . . . .88

Setting the Minimized Window Label . . . . . . . . . . . . . . . . .89

Changing the Minimized Window Image . . . . . . . . . . . . . . . .89

7.  Interapplication Data Exchange . . . . . . . . . . . . . . . . . . .9

Data Exchange Overview . . . . . . . . . . . . . . . . . . . . .9
Primary Transfer Model Overview . . . . . . . . . . . . . . . . .92
Clipboard Transfer Model Overview . . . . . . . . . . . . . . . .93
Interaction Between the Primary and Clipboard Transfer Models . . . . . . . .94

Implementing the Primary Transfer Model . . . . . . . . . . . . . . . .9
Data Selection . . . . . . . . . . . . . . . . . . . . . . .9%
Requests for the Primary Selection . . . . . . . . . . . . . . . . .9
Loss of the Primary Selection. . . . . . . . . . . . . . . . . . .97
Inserting the Primary Selection . . 4

Implementing the Clipboard Transfer Model . . . . . . . . . . . . . . .98
Cut Actions. . . . . . . . . . . . . .. L ... .. . . .98
Copy Actions . . . 0]
Requests for the Chpboard Selection . . . . . . . . . . . . . . . 100
Paste Actions . . e (0]
Loss of the Chpboard Selection . . . . . . . . . . . . . . . . . 10

Supported Target Formats. . . . . . . . . . . . . . . . . . . . 101

Data Conversion Service . . . . . . . . . . . . . . . . . . . . 105
The Converter Registry . . . . . . . . . . . . . . . . . . . 106
The GoldenGate API . . . . . . . . . . . . . . . . . . . . 106

8.  Monitoring Changes to Files and Directories . . . . . . . . . . . . . . 107

FAM Overview. . . . . . . . . . . . . . . . . . . . . . . 1lo7
Theory of Operation . . . 0
FAM Libraries and Include Files. . . . . . . . . . . . . . . . . 108

Y 007-2006-130



Contents

007-2006-130

The FAM Interface. . . . 0]
Opening and Closing a FAM Connection . . . . . . . . . . . . . . .109
Monitoring a File or Directory . . . . . . . . . . . . . . . . . .110
Suspending, Resuming, and Canceling Monitoring . . . . . . . . . . . /111
Detecting Changes to Files and Directories . . . . . . . . . . . . . /112
FAMExamples . . . . . . . . . . . . . . . . . . . . . .16

Using FAM. . . . e Y
Waiting for File Changes P N £
Polling for File Changes . . . . . . . . . . . . . . . . . . . 122

Providing Online Help With SGIHelp . . . . . . . . . . . . . . . 125

Overview of SGIHelp. . . . . . . . . . . . . . . . . . . . . .12
The Help Viewer . . . . o133
The SGIHelp Library and Include File . . . . . . . . . . . . . . . .128
Help Document Files. . . . . . . . . . . . . . . . . . . . 129
Application Helpmap Files . . . . . . . . . . . . . . . . . . 129

The SGIHelp Interface. . . . . . . . . . . . . . . . . . . . . 129
Initializing the Help Session. . . . . . . . . . . . . . . . . . .130
Displaying a Help Topic. . . . . . . . . . . . . . . . . . . .31
Displaying the HelpIndex . . . . . . . . . . . . . . . . . . .32

Implementing Help in an Application . . . . . . . . . . . . . . . . .33
Constructinga HelpMenu . . . . . . . . . . . . . . . . . . 134
Implementing a Help Button . . . . . . . . . . . . . . . . . 135
Providing Context-SensitiveHelp . . . . . . . . . . . . . . . . .136

Application Helpmap Files . . . . . . . . . . . . . . . . . . . .138
Helpmap File Conventions . . . . . . . . . . . . . . . . . . 139
Helpmap File Format. . . . N I 1
Widget Hierarchies in the Helpmap File . . . . . . . . . . . . . . .4

Vii



Contents

Writing the OnlineHelp . . . . . . . . . . . . . . . . . . . . 145
Overview of Help Document Files . . . . . . . . . . . . . . . . 145

Viewing the Sample Help Document Files . . . . . . . . . . . . . . 146

Creating a Help Document File . . . . . . . . . . . . . . . . . 146

Preparing to Build the OnlineHelp . . . . . . . . . . . . . . . . 147

Building the OnlineHelp. . . . . . . . . . . . . . . . . . . 149

Finding and Correcting Build Errors . . . . . . . . . . . . . . . 149
Producing the Final Product . . . . . . . . . . . . . . . . . . . 150
Creating the Installable Subsystem . . . e Fo |
Incorporating the Help Subsystem into an Installable Product . . . . . . . . 151
Incorporating the Help Subsystem into a Product With a Custom Installation Script. . 152
Bibliography of SGML References . . . . . . . . . . . . . . . . . 15

10.  Handling Users’ System Preferences . . e 1)
Handling the Mouse Double-Click Speed Settmg e 1

Using the Default Viewer and Editor Utilities Panel . . . . . . . . . . . . 156
Selecting Utilities and Their Values. . . . . . . . . . . . . . . . 157

Setting the Preferred Text Editor. . . . . . . . . . . . . . . . . 157

PART II Creating Desktop Icons

11.  Creating Desktop Icons: An Overview. . . . . . . . . . . . . . . . 161
About IRIX Interactive Desktop Icons . . . . . . . . . . . . . . . . 162
Checklist for Creating an Icon . . T (%
Creating an Icon: The Basic Steps Explamed inDetail. . . . . . . . . . . . 164

Step One: Tagging Your Application . . . . . . . . . . . . . . . 165

Step Two: Drawing a Picture of Your Icon . . . . . . . . . . . . . . 165

Step Three: Programming Your Icon . . . . . . . . . . . . . . . 166

Step Four: Compiling the Source Files . . . e V)

Step Five: Installing Your Application in the Icon Catalog I VA€

Step Six: Restarting the Desktop. . . . . . . . . . . . . . . . . 174

Step Seven: Updating Your Installation Process . . . . . . . . . . . . 174

12.  UsingIconSmith . . . . . . . . . . . . . . . . . . . . . . 177
About IconSmith . . . . . . . . . . . . . . . . . . . . . . 178

viii 007-2006-130



Contents

007-2006-130

Where to Install Your Completed Icon . . . . . . . . . . . . . . . . .178
Some Definitions . . . . . . . . . . . . . . . . . . . . . . A7
Caret . . . . . . . ..
TransformationPin . . . . . . . . . . . . . . . . . . . . .17
Vertex . . . . . . . . . . . . . . . . . . . . . . . . .as
Path. . . . . . . . . . . . L L. ... ... ... sas
Starting IconSmith. . . . . . . . . . . . . . . . . . . . . . .80
IconSmithMenus . . . . . . . . . . . . . . . . . . . . . .o oas
IconSmith Windows . . . . . . . . . . . . . . . . . . . . . A8
Drawing With IconSmith. . . . . . . . . . . . . . . . . . . . .183
Drawing Paths . . . . . . . . . . . . . . . . . . . . . .85
Drawing Filled Shapes . . . . . . . . . . . . . . . . . . . .18
Deleting . . . . . . . . . . . . . . . . . . . . . . . .86
Keeping the3-DLook . . . . . . . . . . . . . . . . . . . .87
Drawing for All Scales . . . . . . . . . . . . . . . . . . . 187
Sharing Design Elements . . . . . . . . . . . . . . . . . . .188
Templates . . . . . . . . . . . . . . .. . . . . ... 189
Selecting . . . . . . . . . . . . L L. 189
Partial . . . . . . . . . . . . . .. ... ... ..oa90
Deselect Fragments . . . . . . . . . . . . . . . . . . . . .19
SelectNext. . . . . . . . . . . . . . . . . . . . . . . a9
Select Al . . . . . . . . . . . . . . . . . . . . . .09
Transformations . . . . . . . . . . . . . . . . . . . . . .09
Scale . . . . . . . L 192
ScaleXandY . . . . . . . . . . ... L. 92
Rotate . . . . . . . . . . . . . . . . . . . . . . . . 193
ShearY. . . . . . . . . . . . ... ... .93
Concave Polygons. . . . . . . . . . . . . . . . . . . . . . .19
Constraints: Gravity (Object) Snap and GridSnap . . . . . . . . . . . . .194
Controlling the Grid . . . . . . . . . . . . . . . . . . . . .19
Controlling Gravity . . . . . . . . . . . . . . . . . . . . .19



Contents

13.

14.

Icon Design and Composition Conventions. .
Importing Generic Icon Components (Magic Carpet) .
Icon Size
Selecting Colors .

Advanced IconSmith Techniques.

Drawing a Circle
Drawing an Oval .
Isometric Circles

File Typing Rules . .
A Table of the FTRs With Descrlptlons .
Naming File Types: The TYPE Rule . .
Categorizing File Types: The SUPERTYPE Rule .
Matching File Types With Applications: The MATCH Rule .
Matching Tagged Files .
Matching Files Without the t ag Command
Matching Non-Plain Files: The SPECIALFILE Rule
Adding a Descriptive Phrase: The LEGEND Rule .
Setting FTR Variables: The SETVAR Rule .
Programming Open Behavior: The CMD OPEN Rule .
Programming Alt-Open Behavior: The CMD ALTOPEN Rule

Programming Drag and Drop Behavior: The CMD DROP and DROPIF Rules .

Mapping Names: The MAP Rule . . .
Programming Print Behavior: The CMD PRINT Rule .
Adding Menu Items: The MENUCMD Rule
Getting the Icon Picture: The ICON Rule
Creating a File Type: An Example
Open an FTR File for scribble
Add the Rules to the scribble FIR File . .
Name the scribble FTR File and Put It in the Approprlate D1rectory
The scribble FTRs .

Printing From the Desktop
About r out epri nt

196
196
197
197
198
198
200
201

207
209
210
210
212
212
214
217
218
219
219
220
222
225
226
226
227
230
230
230
234
234

235
235

007-2006-130



Contents

007-2006-130

Converting a File for Printing
Print Costs .

The Print Conversion Rules .
The CONVERT Rule .
The COST Rule
The FILTER Rule .

The Current Printer

Example Programs for SGI Enhanced Widgets
Example Program for Color Chooser
Makefile for colortest.c
Example Program for Dial
Example Program for Drop Pocket .
Makefile for Drop Pocket Example .
Example Program for Finder . .
Example Program for History Button (Dynamenu)
Example Program for ThumbWheel.
Example Program for File Selection Box

Makefile for File Selection Box Example Program

Example Programs for Scale (Percent Done Indicator) Widget .

Example Program for LED Widget .

Desktop Variables
Variables Set By the Desktop .
Variables Set By the User .

Online Help Examples

A Simple Help Document .

Allowable Elements in a Help Document .

An Example of Implementing Help in an Apphcatlon

The Icon Description Language.
Operators
Constants
Variables

Functions

.236
237
.238
.238
.239
.239
.240

241
.242
.244
.244
.247
.248
250
251
252
.255
257
.258
.259

.261
.261
.262

.265
.265
274
.289

.305
.305
.306
.306
.307

Xi



Contents

E.  Predefined File Types. e
Naming Conventions for Predefined File Types
The Predefined File Types and What They Do .

SpecialFile .

Directory

Ascii.

Source Files.

Binary

ImageFile

Executable .

Scripts
GenericWindowedExecutable
LaunchExecutable .
ttyExecutable
ttyLaunchExecutable .
ttyOutExecutable .
ttyLaunchOutExecutable .

F. FTR File Directories

G. Using GoldenGate Data Conversion Services.
Converting Data Using the GoldenGate Data Conversion Service
Overview of the Conversion Process
Selecting a Converter . .o
Using GoldenGate to Convert Data . .
Compiling and Linking Your Program with GoldenGate .
Writing Converters for the GoldenGate Data Conversion Service
Overview of the Converter Writing Process
Writing Converter Code .
Building a DSO
Testing Your Converter
Registering Your Converter .
Installing Your Converter.

Some Sample Converters .

Xii

309
309
310
310
310
310
311
311
312
312
313
313
313
314
314
314
315

317

319
319
320
322
328
338
339
339
340
347
351
352
353
353

007-2006-130



Contents

007-2006-130

Standard Menu Resources
Common Menu Bar Resources

Standard File Menu Resources

Standard Edit Menu Resources .

Index

.359
.359
.360
.361

.363

Xiii






007-2006-130

Examples

Example 3-1
Example 4-1
Example 4-2
Example 5-1
Example 5-2
Example 5-3
Example 5-4
Example 5-5
Example 5-6
Example 5-7

Example 5-8

Example 5-9
Example 7-1
Example 7-2
Example 8-1
Example 8-2
Example 8-3
Example 9-1
Example 9-2
Example 9-3
Example 9-4
Example 9-5
Example 9-6
Example C-1
Example C-2

Retrieving a Scheme Color Value.

An Example of Using the Grid Widget .

Another Example of Using the Grid Widget
Session Management Example Code: saveyourself.c
Creating a Main Primary Window

Creating a Co-Primary Window .

Creating a Support Window .

Creating a Dialog .

Handling the Window Manager Qult Protocol .

Handling the Window Manager Delete Window Protocol in

Co-Primary Windows .

Handling the Window Manager Delete Window Protocol in

Support Windows and Dialogs

Handling the Window Manager “Save Yourself” Protocol
Asserting Ownership of PRIMARY Selection

Handling Cut Actions in the Clipboard Transfer Model
Using Select With FAM

Polling With FAM . .

Polling FAM Within an Xt Work Procedure.

Initializing a Help Session Using SG Hel pl ni t ()
Requesting a Specific Help Topic Using SG Hel pMsg() .
Requesting a Help Topic for a Widget Using SG Hel pMsg()
Displaying a Help Index Using SA Hel pl ndexMsg()
Providing a Help Button .

Implementing Context-Sensitive Help

An Example of a Help Source File

A Description of the Elements Defined by the Help DID.

. 13
. 50
. 51
. 63
. 69
.71
. 73
. 74
. 75

. 76

.77
. 78
. 95
. 98
119
122
123
130
132
132
133
135
136
.266
274

XV



Examples

Example C-3 An Example of Integrating SGIHelp With an Application. . . 289
Example C-4  Help Source File for Example Program . . . . . . . . 300
Example C-5 Helpmap for Example Program . . . . . . . . . . 304

XVi 007-2006-130



007-2006-130

Figures

Figure i
Figure 4-1
Figure 4-2
Figure 4-3
Figure 4-4
Figure 4-5
Figure 4-6
Figure 4-7
Figure 4-8
Figure 4-9
Figure 5-1
Figure 6-1
Figure 6-2
Figure 9-1
Figure 9-2
Figure 10-1
Figure 12-1
Figure 12-2
Figure 12-3
Figure 12-4
Figure 12-5
Figure 12-6
Figure 12-7
Figure 12-8
Figure 12-9
Figure 12-10
Figure 12-11

The IRIX Interactive Desktop .

The File Selection Box Widget.

The Color Chooser Widget

The Color Chooser Widget with HSV and RGB Sliders
The Dial Widget in Knob and Pointer Form.

The Thumbwheel Widget .

The Drop Pocket Widget (on left) As Part of the Finder Wldget .

The Finder Widget .

The Graph Widget .

The HTML Widget . .

Window Settings Control Panel .

Minimized Window Image Examples

The mediarecorder Tool

The Help Viewer .

The Help Index Window .

The dtUtilities Panel

Caret .

Transformation Pin.

Vertex

Path . .

The IconSmith Icon. .
The Main IconSmith Window With Popup Menus
The Import Icon or Set Template Window .

The Palette (Selection Properties) Window .

3-D Icon Axes

Concave Polygon

The Constraints Window .

XXXI1
. 25
.31
. 32
. 36
. 38
.41
. 43
. 46
. 53
. 61
. 84
. 86
127
128
156
.179
.180
.180
.180
.180
.182
.184
.186
.187
.193
.194

XVii



Figures

XViii

Figure 12-12
Figure 12-13
Figure 12-14
Figure 12-15
Figure 12-16
Figure 12-17
Figure 12-18
Figure 12-19
Figure 12-20
Figure 12-21
Figure 12-22
Figure 14-1

A Path

Wheel Spokes

Connected Spokes

Finished 2-D Circle .

An Oval . L
A Simple, Circular 2-D Icon
Imported Circles.

Finished Isometric Circle
Simple, Isometric 2-D Icon .
Icon Centered on Generic Component
Open Icon

File Conversions for Printing Standard Desktop Files .

198
199
199
199
200
201
202
203
203
204
205
236

007-2006-130



007-2006-130

Tables

Table i
Table ii
Table iii
Table iv
Table 3-1
Table 4-1
Table 4-2
Table 7-1
Table 7-2
Table 7-3
Table 7-4
Table 7-5
Table 7-6
Table 10-1
Table 13-1
Table 13-2
Table 13-3
Table 14-1
Table D-1
Table E-1
Table G-1
Table G-2
Table G-3
Table G-4

Checklist of Implementation Tasks and References

Tasks Requiring Application Changes and/or Motif .

Integration and ViewKit
Integration and Rapid App

Pre-Defined Scheme Resources and Symbolic Values .

HTML Viewer Tags and Attributes .

HTML Viewer Character Tags

Audio Formats .

Image Formats .

Movie Formats .

3D Graphics Formats .

Additional Data Types Supported by Silicon Graphlcs
World Wide Web Targets .

dtUtilities and Their Values . .

Rules That Appear in a Filetype Definition .
Numerical Representations in Match-Expressions .
Match-Expression Functions .

Conversion Costs for Print Conversion Rules

Icon Description Functions .
Predefined File Type Naming Conventions .
Converter Attributes

Query Operators

Converter Return Status Values .

Converter Description File Statements

XXXi1

. XXX1il
. XXX1V

. XXXV

. 15
. 55
. 57
.102
.102
.103
.103
104
.105
157
.209
215
216
.238
.307
.309
.324
325
.334
.348

Xix






New Features in This Guide

This update of the IRIX Interactive Desktop Integration Guide supports the 6.5.14 release
of IRIX.

Major Documentation Changes

A new example of the IRIX Interactive Desktop and descriptions of the windows appear
in the Introduction.

007-2006-130 XXi






Record of Revision

Version Description

130 November 2001
Revision to support IRIX version 6.5.14

007-2006-130 XXiii






About This Guide

This book explains how to integrate applications into the IRIX Interactive Desktop
environment. This book assumes that your applications run on Silicon Graphics
workstations.

What This Guide Contains

This book is divided into two sections:

* Part One explains how to achieve the Silicon Graphics look and feel for your
application. (Guidelines for look and feel are provided in the IRIX Interactive User
Interface Guidelines.)

* Part Two explains how to create Desktop icons for your application and install them
in the Icon Catalog.

How to Use This Guide

This book is a companion to the IRIX Interactive User Interface Guidelines. Silicon Graphics
recommends that you read through the IRIX Interactive User Interface Guidelines first, then
use the IRIX Interactive Desktop Integration Guide to help you implement the style
guidelines.

What You Should Know Before Reading This Guide

This guide assumes that you are familiar with the material contained in the OSF/Motif
Style Guide and the IRIX Interactive User Interface Guidelines manual. It assumes also that
you have some knowledge of programming in IRIS IM and Xt (or Xlib).

007-2006-130 XXV



About This Guide

Silicon Graphics provides both these manuals online. You can view them from the IRIS
InSight viewer. To use the IRIS InSight viewer, select “Online Books” from the Help
toolchest.

Suggested Reading

Here are some books that provide information on some of the topics covered in this

guide:

e IRIS IM Programming Guide. (This book is included online with the Silicon Graphics
IRIS Development Option.)

» RIS ViewKit Programmer’s Guide. (This book is included online with the Silicon
Graphics C++ option.)

*  OpenGL on Silicon Graphics Systems. (This book is included online with the Silicon
Graphics IRIS Development Option.)

*  Open Software Foundation. OSF/Motif Programmer’s Guide, Revision 1.2. Englewood
Cliffs: Prentice-Hall, Inc., 1992. (This book is included online with the Silicon
Graphics IRIS Development Option.)

* Open Software Foundation. OSF/Motif Style Guide, Revision 1.2. Englewood Cliffs:
Prentice-Hall, Inc., 1992. (This book is included online with the Silicon Graphics
IRIS Development Option.)

* Nye, Adrian and O'Reilly, Tim. The X Window System, Volume 4: X Toolkit Intrinsics
Programming Manual, OSF/Motif 1.2 Edition for X11, Release 5. Sebastopol: O'Reilly &
Associates, Inc., 1992. (This book is included online with the Silicon Graphics IRIS
Development Option.)

* Nye, Adrian. The X Window System, Volume 1: XIib Programming Manual for Version 11
of the X Window System. Sebastopol: O'Reilly & Associates, Inc., 1992. (This book is
included online with the Silicon Graphics IRIS Development Option.)

*  Young, Doug. The X Window System, Programming and Applications with Xt,
OSF/Motif Edition, Second Edition. Englewood Cliffs: Prentice Hall, Inc., 1994.

e Assente & Swick. The X Toolkit.

* Scheifler, Robert and Gettys, Jim. X Window System, Third Edition. Digital Press,
ISBN 1-55558-088-2.

e  X/Open Company, Ltd. X/Open Portability Guide (set of 7 volumes). Englewood
Cliffs: Prentice Hall Publishing Company, ISBN 0-13-685819-8.

XXVi 007-2006-130



About This Guide

To obtain SGI documentation, go to the SGI Technical Publications Library at:

http://techpubs. sgi.com

Font Conventions in This Guide

These style conventions are used in this guide:

* Boldfaced text indicates that a term is an option flag, a data type, a keyword, a
function, a command-line option, or an X resource.

e “Quoted text” indicates menu items.
* Screen type shows code examples and screen displays.
* Bold screen type indicates user input and nonprinting keyboard keys.

* Regular text shows menu and window names, and X properties.

007-2006-130 XXVii






Integrating an Application Into the IRIX Interactive
Desktop Environment: An Introduction

This book describes how to integrate your application into the IRIX Interactive Desktop
environment. It assumes that your application already runs on Silicon Graphics
workstations. This is strictly a how-to guide—refer to the IRIX Interactive Desktop User
Interface Guidelines for style guidelines.

This introduction contains these sections:

e “About the IRIX Interactive Desktop Environment” presents a brief overview of the
IRIX Interactive Desktop and explains why it’s important to integrate your
application into the Desktop environment.

¢ “Implementation Strategies and Toolkits” provides a checklist to help developers
focus on the items that most benefit their users.

e “Integrating an Application” offers a brief, general list of the basic steps for
integration.

About the IRIX Interactive Desktop Environment

007-2006-130

The IRIX Interactive Desktop environment provides a graphical user interface (GUI) to
the IRIX filesystem and operating system. This interface allows users to interact with the
workstation using a point-and-click interface, based on icons and windows. The Desktop
provides tools and services for the users’ convenience, many of which are accessible
directly from the Desktop’s toolchests.

Integrating your application into the Desktop environment is an important step in
creating your product. Since users are already familiar with the Desktop, they have
certain expectations about how applications should look and behave in the Desktop
environment. By integrating your application into the Desktop, you insure that these
expectations are met—thus helping your users get the most out of your application.

XXiX



Integrating an Application Into the IRIX Interactive Desktop Environment: An Introduction

Figure i shows an example of the IRIX Interactive Desktop, introduced with IRIX version
6.5.14, with the following tools running:

*  Welcome page design and navigation (the center, blue Netscape window). This
window can be launched from the Welcome_to_SGI icon.

* Toolchest. The Toolchest serves as the primary access point for desktop user
interfaces. For example, users can access interfaces for everyday tasks such as
customizing their desktop, accessing applications and Web tools, backing up and
restoring their files, and finding information (help) on a variety of desktop topics.
By default, the Toolchest is located in the upper left corner.

* New background patterns. The background in the new screensnap is one of the
new patterns available from the Background Setting panel. The Background Setting
panel itself is visible in the screensnap (lower right), previewing the new
background pattern called "Citrus Citrus.” The background panel can be launched
from the Toolchest by selecting “Desktop > Customize > Background.”

* System Manager (center window). This window has a new design but the same
functionality as before. System Manager can be launched from the Toolchest by
selecting “System > System Manager.”

¢ Desks Overview window. With the Desks Overview window, users can switch from
one “desk,” or group of applications, to another. When your application appears in
a desk other than the one currently in use, it is in a state similar to the minimized
state. You need to be careful about what processes your application runs while in a
minimized state. The Desks Overview window is shown in the lower left corner.

¢ Icon Catalog. Users can access icons from the different pages in the Icon Catalog.
Some of the pages are: Applications, Demos, Desktop Tools, Media Tools, and Web
Tools. Since the Icon Catalog is one of the first places users look when they need to
find an application, you should add your product’s icons to this catalog. By default,
the Icon Catalog is below the Toolchest.

¢ File Manager window. From this window, you can view file contents (example
shown is a model of an X29 fighter jet, partly obscured by the System Manager
window). The File Manager window is shown at the left, above the Desks Overview
window.

In addition, the “noiconlogin-mode” image has been updated to show the new SGI logo.
The EZsetup account login and web page design have also been updated. Other elements
that remain from the previous desktop design include the File QuickFind (shown in the
upper right), minimized windows (five across on the left side under the Toolchest), and
device icons along the right side. These are just a few examples of the kinds of things you

XXX 007-2006-130



Integrating an Application Into the IRIX Interactive Desktop Environment: An Introduction

will need to consider to integrate your application into the Desktop Environment. This
book provides complete and detailed instructions for integration, while the IRIX
Interactive Desktop User Interface Guidelines gives you style guidelines. For the best results,
use both books together.

_— > 2
Toolchest

Icon catalog ——>

Overview

we e lw Lsey iy, e g
Fo o e | o T

SyStem Manager " fpplisalivng F Sulldburalivn % S

window G [few R e
iAW A Gra s Se D B

' ‘.-_E —00c rave o Lugaliun

g FEIh @Fhlx & Ders £ 0

File Manager
window

=

Hottware

Hardwarr: and oy

Hoeurky and Acee
Sl

E
- |
|T|

Flir:s and [1ata

il (ITR

Mieskrr Brdsnae

Welcome page

oy

Background setting

Desk Overview
window

Figurei The IRIX Interactive Desktop

007-2006-130 XXXI



Integrating an Application Into the IRIX Interactive Desktop Environment: An Introduction

Implementation Strategies and Toolkits

This section presents strategies for implementing your application and suggests some
toolkits that will make the implementation easier. Topics include:

¢ “Implementation Checklist” on page xxxii

¢ “Using ViewKit and RapidApp” on page xxxiv

Implementation Checklist

Table i provides a checklist to help you focus your resources on the items that most
benefit your users. The checklist lists tasks in order of importance. Try to adhere to the
user interface guidelines in the order presented in the checklist.

For a summary of user interface guidelines that includes a complete checklist, see
Appendix A, “Summary of Guidelines,” in IRIX Interactive Desktop User Interface

Guidelines.

Table i

Checklist of Implementation Tasks and References

Task

IRIX Interactive Desktop
User Interface Guidelines Implementation Reference

Icons and File Typing Rules
(FTRs)

IRIX Interactive Desktop
Look*

Menus and Accelerators*
Copy and Paste*

Window Management

Software Installation

Session Management

Chapter 2 Desktop Integration Guide,
Chapters 11-15

Chapter 3 Desktop Integration Guide,
Chapters 2-3

Chapter 3 OSF/Motif Programmer’s Guide,
Chapter 6

Chapter 5 Desktop Integration Guide,
Chapter 7

Chapter 3 Desktop Integration Guide,
Chapters 5-6

Chapter 4 S/W Packager User’s Guide

Chapter 3 Desktop Integration Guide,
Chapter 5

XXXii

007-2006-130



Integrating an Application Into the IRIX Interactive Desktop Environment: An Introduction

007-2006-130

Table i (continued) Checklist of Implementation Tasks and References

IRIX Interactive Desktop

Task User Interface Guidelines Implementation Reference

Online Help Chapter 4 Desktop Integration Guide,
Chapter 9

Selection, Focus* Chapter 7 OSF/Motif Programmer’s Guide,
Chapter 13

Feedback Chapter 11 OSF Motif Programmer’s Guide

Internationalization Chapter 4 Topics in IRIX Programming,
Chapter 4

* Items requiring use of the Motif toolkit.

It’s also useful to know which changes you can make without modifying the
application’s source code and which items require the use of the IRIS IM (OSF/Motif)
toolkit. The Silicon Graphics style is based on Motif, so using the Motif toolkit makes
compliance much easier. Table ii lists which tasks require application code changes and
which require Motif.

Table ii Tasks Requiring Application Changes and/or Motif

Task Application Code Changes Requires Motif
Icons and FTRs

IRIX Interactive yes

Desktop Look

Menus/ Accelerators yes

Copy & Paste yes yes (Xt)

Window Management
Software Installation
Session Management  yes

Online Help yes yes
Online help and context sensitive =~ Context sensitive help uses the
help require no code changes with Motif widget hierarchy.
ViewKit.

XXXiii



Integrating an Application Into the IRIX Interactive Desktop Environment: An Introduction

Table ii (continued) Tasks Requiring Application Changes and/or Motif

Task Application Code Changes Requires Motif
Selection, Focus yes

Feedback yes

Internationalization yes

Using ViewKit and RapidApp

ViewKit

XXXiV

Besides using Motif, other toolkits and tools can make integrating your application
easier. These include:

e  “ViewKit”

e “RapidApp”

IRIS ViewKit is a C++ based, user-interface toolkit based on OSF/Motif. ViewKit also
runs on Dec, HP, IBM, SCO, SunOS, and Sun Solaris.

Table iii lists integration tasks that you can achieve by using ViewKit.

Table iii Integration and ViewKit

Task ViewKit

Icons and FTRs

IRIX Interactive Desktop Look Color schemes set by default

Menus and Accelerators

Copy and Paste VkCutPaste Class

Window Management

Software Installation

Session Management Initial session management set

Online Help Help menu entry and context sensitive help

007-2006-130



Integrating an Application Into the IRIX Interactive Desktop Environment: An Introduction

007-2006-130

Table iii (continued) Integration and ViewKit

Task ViewKit

Selection, Focus
Feedback Busy state and cursor are easily set

Internationalization

Your application can provide World Wide Web access by using VkWebViewerBase,
which provides basic Web functionality. For more information, see the IRIS ViewKit
Programmer’s Guide.

XXXV



Integrating an Application Into the IRIX Interactive Desktop Environment: An Introduction

RapidApp

Developer Magic Rapid App is an interactive tool for creating applications. It integrates
with other Developer Magic tools, including cvd, cvst at i ¢, cvbui | d, and others, to
provide an environment for developing object-oriented applications as quickly as
possible. Rapid App generates C++ code, with interface classes based on the IRIS ViewKit
toolkit. In addition to the conveniences provided by IRIS ViewKit, you can use

Rapid App to help create your application (see Table iv).

Table iv Integration and RapidApp

Task RapidApp

Icons and FTRs Generates an FTR rule and sample icon
IRIX Interactive Desktop Look sgiMode & schemes set by default
Menus and Accelerators Standard & Common menu entries
Copy and Paste

Window Management

Software Installation Automatically builds an inst image
Session Management Initial session management set
Online Help

Selection, Focus
Feedback

Internationalization

For more information, see the Developer Magic: RapidApp User’s Guide.

XXXVi 007-2006-130



Integrating an Application Into the IRIX Interactive Desktop Environment: An Introduction

Integrating an Application

007-2006-130

This section lists the basic steps for integrating an existing application into the IRIX
Interactive Desktop environment. The steps are listed in a very general way, to give you
a brief overview of the process.

If you're writing a new application, here are a few tips:

¢ If possible, use IRIS ViewKit. Refer to the IRIS ViewKit Programmer’s Guide for
instructions.

¢ Don’t use IRIS GL. Use OpenGL or Open Inventor instead.

Note: Open Inventor isn’t part of the IRIS Developer’s Option, it is a separate option.
In the United States and Canada, call SGI Direct at 800-800-SGI1 (7441) for more
information about how to order the Open Inventor Option; outside the United States
and Canada, please contact your local sales office or distributor.

To integrate your application into the IRIX Interactive Desktop, follow these steps:

1. If your application uses IRIS GL, port to OpenGL if possible. If it’s impractical for
you to port to OpenGL at this time, at least switch to mixed-model IRIS GL
programming, if you haven’t already done so. (Mixed-model programs use Xt for
event and window management).

For information on porting from IRIS GL to OpenGL and for switching your
program to mixed-model, refer to the OpenGL Porting Guide. This manual is
included online in the IRIS Developer’s Option (IDO). View it using the IRIS InSight
Viewer.

2. Set up your application to comply with the IRIX Interactive Desktop look and feel:

¢ use the Enhanced IRIS IM look

¢ use Schemes

¢ use the new and enhanced IRIS IM widgets where appropriate

* set up your application for correct window;, session, and desks management
¢ customize the minimize window image for your application (optional)

¢ use the extensions provided in the Selection Library and the File Alteration
Monitor (optional)

XXXVii



Integrating an Application Into the IRIX Interactive Desktop Environment: An Introduction

These topics, as well as information on fonts, are covered in Part 1 of this guide.

3. Create Desktop icons for your application and add them to the Icon Catalog. You'll
need an icon for the application itself as well as icons for any unusual data formats.
See Part 2 of this manual for instructions.

4. Use swpkg to package your application so that your users can install it easily. See
the Software Packager User’s Guide for information for instructions on using swpkg.

XXXViii 007-2006-130



PART ONE

Getting the Right Look and Feel

Chapter 1:
Getting the Right Look and Feel: An Overview

Chapter 2:
Getting the IRIX Interactive Desktop Look

Chapter 3:
Using Schemes

Chapter 4:
Using the Silicon Graphics Enhanced Widgets

Chapter 5:
Window, Session, and Desk Management

Chapter 6:
Customizing Your Application’s Minimized Windows

Chapter 7:
Interapplication Data Exchange

Chapter 8:
Monitoring Changes to Files and Directories

Chapter 9:
Providing Online Help With SGIHelp

Chapter 10:
Handling Users’ System Preferences






Chapter 1

Getting the Right Look and Feel: An Overview

This chapter contains these sections:

e “About the IRIX Interactive Desktop Look and Feel” briefly explains the basics of
the IRIX Interactive Desktop look and feel and tells you where to find more detailed
information.

*  “Getting the Right Look and Feel: The Basic Steps” briefly lists the basic steps for
getting the right look and feel and tells you which chapter covers each step.

About the IRIX Interactive Desktop Look and Feel

007-2006-130

One of the most important things you can do to integrate your application into the IRIX
Interactive Desktop environment is to get the right look and feel. This look and feel is
largely based on IRIS IM, the SGI port of the industry-standard OSF/Motif toolkit. In
particular, the look and feel is based on an enhanced version of IRIS IM and on the 4Dwm
window manager (the SGI mvmmbased window manager). The IRIX Interactive User
Interface Guidelines explains the differences between the IRIX Interactive Desktop look
and feel and the OSF/Motif look and feel.

Users have certain expectations of how applications appear and behave in the IRIX
Interactive Desktop environment, and by meeting these expectations, you make your
application much easier and more pleasant to use. The chapters in this part of the manual
explain how to set up your application to provide the IRIX Interactive Desktop look and
feel.



1: Getting the Right Look and Feel: An Overview

Getting the Right Look and Feel: The Basic Steps

To provide the correct look and feel for your application, be sure to:

1.

Recompile with libXm (the IRIS IM version that ships with IRIX 5.3 or later). If
your application uses an earlier version of IRIS IM, recompile to make sure that it
runs correctly. See the IRIS IM Release Notes for information on the differences
between the current and previous versions of IRIS IM.

Use the IRIX Interactive Desktop enhanced appearance. Turn on the IRIX
Interactive Desktop “look,” which enhances the appearance of standard IRIS IM
widgets and gadgets. See Chapter 2, “Getting the IRIX Interactive Desktop Look,”
for instructions.

Use schemes. The schemes mechanism is a simple method for providing
user-selectable default colors and fonts for your application. For more information
on Schemes, see Chapter 3, “Using Schemes.”

Use the new and extended widgets (optional). SGI provides some new IRIS IM
widgets, extensions of some existing widgets, and some mixed-model
programming widgets (for use with IRIS GL and OpenGL). For more information,
see Chapter 4, “Using the SGI Enhanced Widgets.”

Set resources for correct window, session, and desks management. By setting a
few important resources, you insure that your application includes the windowing,
session management, and desks features that users expect. For instructions, refer to
Chapter 5, “Window, Session, and Desk Management.”

Customize minimized icons. SGI provides tools that allow you to easily provide
your own look for minimize icons (icons for minimized windows). The tools for
creating minimized windows are discussed in Chapter 6, “Customizing Your
Application’s Minimized Windows.”

Implement interapplication data exchange. Interapplication data exchange lets
users cut and paste information between your application and other applications.
For more information, see Chapter 7, “Interapplication Data Exchange.”.

Provide online help. SGI provides an online help system for integrating help with
your application. Chapter 9, “Providing Online Help With SGIHelp,” describes how
to use the online help system.

Monitor changes to the filesystem (optional). SGI provides a File Alteration
Monitor (FAM) that your application can use to monitor the filesystem. Chapter 8,
“Monitoring Changes to Files and Directories,” explains how to use FAM.

007-2006-130



Chapter 2

007-2006-130

Getting the IRIX Interactive Desktop Look

The simplest step in integrating your application with the Desktop environment is to
turn on the IRIX Interactive Desktop “look,” which enhances the appearance of
standard IRIS IM widgets and gadgets. “The IRIX Interactive Desktop Look: Graphic
Features and Schemes” in Chapter 3 of the IRIX Interactive User Interface Guidelines
describes the enhancements.

To turn on the IRIX Interactive Desktop look for an application, simply set the
application’s sgiMode resource to “TRUE.” Typically, you should add this line to the
fusr/1ib/ X11/ app- def aul t s file for your application:

appName* sgi Mode: TRUE
where appName is the name of your application.

The standard IRIS IM library supports the IRIX Interactive Desktop look. You do not
need to link with a separate library or call a special function to enable the IRIX Interactive
Desktop look. If you do not turn on the IRIX Interactive Desktop look, your application’s
widgets and gadgets have the standard IRIS IM appearance.

If your application uses the IRIX Interactive Desktop look, it should also use schemes,
which are described in Chapter 3, “Using Schemes.” SGI designed its color and font
schemes to work well with the IRIX Interactive Desktop look.






Chapter 3

Using Schemes

Schemes provide an easy way to apply a collection of resources to your application. The
scheme mechanism allows your users to select from pre-packaged collections of colors
and fonts that are designed to integrate visually with the IRIX Interactive Desktop and
other applications. “Schemes for Colors and Fonts” in Chapter 3 in IRIX Interactive User
Interface Guidelines describes the guidelines for using schemes in the IRIX Interactive
Desktop environment.

This chapter contains the following sections:

* “Schemes Overview” on page 7 provides an overview to schemes.

* “Using Schemes in Your Application” on page 9 describes what you need to do to
use schemes in your application.

¢ “Extending a Scheme to Support New Colors” on page 18 provides tips for testing
how your application responds to different schemes.

¢ “Creating New Schemes” on page 21 describes how to create new schemes.

¢ “Hard-Coding a Scheme for an Application” on page 22 describes how to force your
application to use one specific scheme.

Schemes Overview

007-2006-130

Schemes allow you to provide default colors and fonts for your application, while also
ensuring that users can easily select other color and font collections according to their
individual needs and preferences. SGI includes some standard system schemes with the
X execution environment, but end users can modify existing schemes or create new ones,
and you can create new schemes or extend existing ones for use with your application.



3: Using Schemes

This section provides an overview of schemes and explains why you should use schemes
in your application.

Why You Should Use Schemes

As a developer, it is impossible for you to choose colors and fonts for your application
that satisfy all users. Aside from the consideration of individual taste, display
characteristics vary and some users have various degrees of colorblindness. Schemes
allow users to select colors and fonts according to their preferences and needs.

Although users can already use the X resource mechanism to customize colors and fonts,
it is very difficult and time-consuming for most end users to do so, because the task
requires knowledge of the internal structure of the program. On the other hand, if your
application supports schemes, users can use the graphical Schemes Browser, schenebr
(available from the “Color Schemes” option of the Customize menu in Desktop
toolchest), to change colors and fonts.

Using schemes also reduces the time and effort required to develop your application.
Instead of choosing your own colors and fonts and coding them into your application,
you can simply set a resource value to activate schemes and get the distinctive IRIX
Interactive Desktop appearance.

Basic Scheme Concepts

A scheme simply maps specific colors and fonts to abstract resource names according to
the functions they serve in an application. So instead of using specific colors like “blue”
or “#123456” and specific fonts like “-*-screen-medium-r-normal--13-*-*-*-*-*-is08859-1,"”
your application can use symbolic values like TextForeground, TextSelectedColor, and
FixedWidthFont. The exact definition of these symbolic values depends on the scheme
the user chooses to apply to your application. As long as your application uses the
symbolic color and font names for the purposes for which they were intended, users or
graphic designers can design a new palette (a binding of the symbolic values to specific
colors) and the result should look good with your application.

Often, you do not even need to deal with the symbolic colors and fonts yourself. The
schemes mechanism includes a map file that automatically binds the symbolic values to
the various IRIS IM widgets and widget resources. One case where you may need to set
a color or font explicitly is if you need to highlight a component (for example, in a chart).
The schemes mechanism defines special symbolic values such as HighlightColor1

8 007-2006-130



Using Schemes in Your Application

through HighlightColor8 for these purposes. (See “Directly Accessing Colors and Fonts”
on page 13 for more information on the symbolic values.) Another case where you need
to be aware of the symbolic values is if you need to extend a scheme for your application.
(See “Extending a Scheme to Support New Colors” on page 18 for more information on
extending a scheme.)

Using Schemes in Your Application

This section describes how to write your application for use with schemes and includes:
e “Turning on Schemes for Your Application” on page 9

* “Special Considerations for Programming with Schemes” on page 10

* “Assigning Non-Default Colors and Fonts to Widgets” on page 11

¢ “Directly Accessing Colors and Fonts” on page 13

Turning on Schemes for Your Application

007-2006-130

SGI incorporates schemes in its implementation of Xt, so you do not need to link to a
separate schemes library or call a special function to use schemes. All you need to do to
enable schemes is to include in your application’s app- def aul t s file (in the
lusr/1ib/X11/ app- def aul t s directory) the line:

AppClass* useSchenes: al |

AppClass is your application’s class name. This activates all aspects of schemes.

Note: To ensure that users do not accidently override your settings, be sure to prefix the
useSchemes resource with your application’s class name.

To deactivate schemes, you can set:

AppClass* useSchemes: none

If you wish to activate schemes without using an app- def aul t s file, or if you want to
guarantee that the schemes setting cannot be changed by users, call the function
Sgi UseSchene():



3: Using Schemes

voi d Sgi UseSchene(char *wvalue)

value can be either “all” or “none.” This function requires that you include the header file
<X11/ SG Scheme. h>.

For example:

/* schenes. c */
/* cc -0 schenmes schenes.c -1 Xm - Xt */

#i ncl ude <Xm Label . h>
#i ncl ude <X11/ SA Schene. h>

void main(int argc, char** argv)
{

W dget toplevel, |abel;

Xt AppCont ext app_cont ext ;

Sgi UseSchemes(“al | ") ;

topl evel = XtApplnitialize(&pp_context, “Hello”,
NULL, O, &argc, argv, NULL, NULL, 0);

| abel = XnTCreatelLabel (toplevel, “hello”, NULL, 0);
Xt ManageChi | d( | abel ) ;

Xt Real i zeW dget (t opl evel ) ;
Xt AppMai nLoop(app_cont ext);

Special Considerations for Programming with Schemes

10

The schemes map file automatically handles applying colors and fonts to most IRIS IM
widgets based on the widgets’ class names. Unfortunately, IRIS IM does not have unique
class names for menu bars, menu panes, and option menus. To allow schemes to be
applied to these elements, your application should use some simple naming conventions
for these widgets. Name all menu bars “menuBar,” all option menus “optionMenu,” and
the pane of all option menus “optionPane.” Schemes also recognize some other
variations of these names, including “menu_bar,” “menubar,” “menu_Bar,” and so on.
If you need to set a color or a font in your application, use the procedures described in
“ Assigning Non-Default Colors and Fonts to Widgets” on page 11 and “Directly

007-2006-130



Using Schemes in Your Application

Accessing Colors and Fonts” on page 13. Do not hard code colors or fonts in your
application because they may not work with the scheme that a user selects. For example,
if you programmatically set a text color to black and a user chooses a scheme that has a
very dark background, your text is unreadable. Also avoid setting colors that IRIS IM
normally computes. For example, if you hard code the top or bottom shadow colors used
by IRIS IM controls, these colors may not be correct if a user changes the scheme.

There are obviously some cases for which this recommendation does not apply. The most
common are windows in which you are rendering images. For example, if your
application uses OpenGL or some other library to render an image in a window, the
colors used in this window are not derived from schemes.

Fonts are usually less critical than colors, although the best visual effects are produced if
you use only the fonts defined in the schemes. You should be aware that on
high-resolution screens, the sizes of the fonts defined by schemes can change. Therefore,
you should design the layout of your application to handle variable-sized fonts. This
means you should not hard-code x, i locations or fixed widths or heights for widgets in
your application. Instead use IRIS IM manager widgets such as the Form to achieve a
flexible layout that can respond to changes in font sizes.

Assigning Non-Default Colors and Fonts to Widgets

007-2006-130

Sometimes, you may want to override the default color or font assigned to a widget by a
scheme. For example, all labels are set by default to use a bold font (BoldLabelFont);
however you may decide that a regular font (PlainLabelFont) is more appropriate for
some of your application’s labels.

To assign a non-default font or color to a widget, include a line in your application’s
app- def aul t s file mapping a different symbolic scheme resource to that widget. For
example, the following line assigns a regular label font (rather than the default bold font)
to a label in your application named “simpleLabel”:

YourApp*si npl eLabel *fontLi st: SG _DYNAM C Pl ai nLabel Font
The symbol SGI_DYNAMIC identifies this resource as a dynamically changeable scheme

resource. The actual font assigned to PlainLabelFont can potentially be different in each
scheme. As the user changes schemes, the correct resource is applied to your program.

11



3: Using Schemes

12

Note: Remember to prefix the widget hierarchy with your application’s class name to
prevent users from accidentally overriding your setting.

You can use the same technique with colors. For example, suppose you have two types
of label widgets positioned on an IRIS IM XmDrawingArea widget and you want to use
color to give some significance to different labels. Perhaps the application is some type
of a flowchart and some of the labels represent tasks in progress, while other represent
tasks that have been completed. The schemes map file already maps the symbolic scheme
resource DrawingAreaColor to the XmDrawingArea widget. The scheme palette also
provides colors that both provide a nice contrast against the DrawingAreaColor and
allow the current TextForeground color to be readable. These colors are
DrawingAreaContrastl, DrawingAreaContrast2, DrawingAreaContrast3, and
DrawingAreaContrast4. To specify the colors of each label widget in your application,
you can set the following resources:

YourApp*| abel 1*backgr ound: SG _DYNAM C Dr awi ngAr eaContrast 1
YourApp*| abel 2*background: SG _DYNAM C Dr awi ngAr eaContrast 1
YourApp*| abel 3*background: SG _DYNAM C Dr awi ngAr eaContr ast 2

Each scheme also contains a set of basic colors that you can use for simple graphics, icons,
and so on. These colors maintain their basic characteristics, but change slightly from
scheme to scheme to blend with the general flavor of the scheme. For example, you can
set a label widget to be “red” as follows:

YourApp*| abel *backgr ound: SG _DYNAM C RedCol or

The exact shade of red changes from scheme to scheme, but always is “reddish” and
always fits with the other colors in the scheme.

If necessary, you can also use non-scheme colors and fonts, although SGI strongly
recommends that you do not do this. If you hard-code a color, the user may select a
scheme in which that color does not provide the contrast you desire. The color can even
be “lost” among the other scheme colors. Non-scheme fonts are less likely to cause
problems, but your application will have an inconsistent appearance if it uses them.

You use the same methods to assign a non-scheme color or font that you normally would
in an X program. For example, you can set a font for a label named “simpleLabel” in your
app- def aul t s file as follows:

YourApp*si npl eLabel *font Li st: 6x12

007-2006-130



Using Schemes in Your Application

Directly Accessing Colors and Fonts

007-2006-130

When your application uses widgets only, the schemes map file automatically retrieves

all colors and fonts from the current scheme and assigns them to your application’s

widgets. However, you may need to access some of the scheme’s colors or fonts directly
from within a program. For example, you may want to draw a bar chart or other display
using colors that look good no matter what scheme the user has selected.

Example 3-1 shows an example of a function that retrieves a color value given a widget,
the color resource name, and the color resource class.

Example 3-1

Pi xel

{

Retrieving a Scheme Color Value

get Col or Resource(W dget w, char *name, char *cl assnane)

Xt Resour ce request_resources;
Display *dpy = XtDisplay ( w);

i nt scr
Col ormap cnap

Def aul t Screen ( dpy );
Def aul t Col ormap ( dpy, scr );

XCol or col or, ignore;
char *col or nane;

request _resources.
request _resources.
request _resources.
request _resources.
request _resources.
request _resources.
request _resources.

resour ce_narme (char *) name;
resource_cl ass (char *) cl assNang;
resource_type = XnRString;
resource_size sizeof (char *);
default _type XnRl medi at e;
resour ce_of f set 0;
def aul t _addr (Xt Poi nter) NULL;

Xt Get Subr esour ces(w,

if ( colornane &&

( Xt Poi nter) &col ornane,
NULL, NULL,

&r equest ed_r esour ces,

1, NULL, 0);

XAl | ocNarmedCol or ( dpy, cnmap, colorname, &col or,

& gnore ) )

return ( color. pixel );

el se

return ( Bl ackPi xel ( dpy, scr ) );

13



3: Using Schemes

14

You can then retrieve the color defined by the scheme resource
drawingAreaContrastColorl using get Col or Resour ce() as follows:

colorl = get Col or Resour ce( bar Chart W dget,
"drawi ngAr eaCont r ast Col or 1",
XmCFor egr ound) ;

where barChartWidget is the widget that you will use the color in.

Tip: There is a simple method for retrieving a resource value if you are using the IRIS
ViewKit toolkit. Instead of writing the get Col or Resour ce() function listed in
Example 3-1, you can call:

Pi xel colorl = (Pixel) VkGetResource( bar ChartW dget,
"drawi ngAr eaCont r ast Col or 1",
XnCFor egr ound, XnRPi xel ,
"Bl ack" );

You must handle some resources programmatically. For example, the IRIX Interactive
User Interface Guidelines suggests that your application use a different color for text fields
that are not editable than it uses for editable text fields. The IRIS IM text widget currently
does not change colors automatically when set to read only mode; so your application
must handle this itself. The correct color is provided by schemes as the symbolic name
ReadOnlyBackground, and can be retrieved by the resource readOnlyBackground.
Assuming that you've created the get Col or Resour ce() function listed in

Example 3-1, the following code illustrates this process:

ro = get Col or Resource( textw, "readOnlyBackground",
XnCFor egr ound) ;
Xt VaSet Val ues( textw, XnNeditable, FALSE,
Xm\backgr oundCol or, ro,
NULL) ;

Tip: The equivalent IRIS ViewKit code would be:

Pixel ro = (Pixel) VkGetResource( textw, "readOnlyBackground",
XmCFor egr ound, XnRPi xel ,
"Wiite" );
Xt VaSet Val ues( textw, XnNeditable, FALSE,
Xm\backgr oundCol or, ro,
NULL) ;

007-2006-130



Using Schemes in Your Application

Pre-Defined Scheme Resources and Symbolic Values

007-2006-130

Table 3-1 lists the pre-defined scheme resources and symbolic values. You can use the
resources to retrieve color and font values from within your application as described in
“Directly Accessing Colors and Fonts” on page 13. You can use the symbolic values to
assign colors and fonts to widgets in resource files as explained in “Assigning

Non-Default Colors and Fonts to Widgets” on page 11.

Table 3-1 Pre-Defined Scheme Resources and Symbolic Values
Resource Symbolic Value Intended Use
basicBackground BasicBackground Background of application
textForeground TextForeground Color of text characters
textBackground TextBackground Background of multi-line text
widgets
textFieldBackground TextFieldBackground Background of single-line text
field widgets
readOnlyBackground ReadOnlyBackground Background of read-only text

textSelectedBackground

textSelectedForeground

disabledTextForeground

scrolledListBackground

scrollBarTroughColor

scrollBarControlBackground

buttonBackground

TextSelectedBackground

TextSelectedForeground

DisabledTextForeground

ScrolledListBackground

ScrollBarTroughColor

ScrollBarControlBackground

ButtonBackground

and text field widgets

Background when text is
selected with the mouse

Color of text characters when
text is selected with the mouse

For future use, this color will
indicate disabled text instead of

stippling.

Background of scrolled list
widgets

Trough of scrollbar

Scrollbar controls (thumb,
searchbutton)

Background of push buttons

15



3: Using Schemes

16

Table 3-1 (continued)

Pre-Defined Scheme Resources and Symbolic Values

Resource Symbolic Value Intended Use

selectFillColor SelectFillColor Fill color for standard IRIS IM
radio and toggle buttons

selectColor SelectFillColor IRIS IM toggle and check fill
color

checkColor CheckColor IRIX Interactive Desktop toggle
check mark color

radioColor RadioColor IRIX Interactive Desktop radio
pip color

indicatorBackground IndicatorBackground IRIX Interactive Desktop
background color for toggles
and radios

warningColor WarningColor Background color for icons in
warning dialogs

errorColor ErrorColor Background color for icons in
error dialogs

informationColor InformationColor Background color for icons in
information dialogs

wMBackground WMBackground Window manager colors. Note
that 4Dwmcurrently does not

wMActiveBackground WMACctiveBackground pick up foreground. “Active”

wMForeground WMForeground colors are used for vymdow
manager borders with mouse

wMActiveForeground WMActiveForeground focus.

alternateBackground1 AlternateBackground1 Can be used as background
color for widgets or text areas.

alternateBackground2 AlternateBackground?2 Guaranteed to be different from

alternateBackground3 AlternateBackground3 one another, contrast with basic
background and text

alternateBackground4 AlternateBackground4 background, and can have text
drawn on them.

alternateBackground5 AlternateBackground5

alternateBackground6 AlternateBackground6

007-2006-130



Using Schemes in Your Application

007-2006-130

Table 3-1 (continued)

Pre-Defined Scheme Resources and Symbolic Values

Resource

Symbolic Value

Intended Use

drawingAreaBackground

drawingAreaContrastColorl
drawingAreaContrastColor2
drawingAreaContrastColor3

drawingAreaContrastColor4

highlightColor1l
highlightColor2
highlightColor3
highlightColor4
highlightColor5
highlightColor6
highlightColor7
highlightColor8
redColor
orangeColor
yellowColor
greenColor
blueColor
brownColor
purpleColor
boldLabelFont

DrawingAreaBackground

DrawingAreaContrastColorl
DrawingAreaContrastColor2
DrawingAreaContrastColor3

DrawingAreaContrastColor4

HighlightColor1
HighlightColor2
HighlightColor3
HighlightColor4
HighlightColor5
HighlightColor6
HighlightColor?7
HighlightColor8
RedColor
OrangeColor
YellowColor
GreenColor
BlueColor
BrownColor
PurpleColor

BoldLabelFont

Background of drawing area
widgets (typically used for
graphs)

Contrast colors for drawing
areas (typically used for graphs
and trees). These colors are
guaranteed to be different from
one another, different from the
drawing area background, and
can have text drawn on them

Bright highlights suitable for
small color spots. The first four
are supposed to be in the same
hue family as the corresponding
DrawingAreaContrast colors so
that the pair may be used for
doing highlights in an annotated
scrollbar.

These colors are typically used
for outlining and drawing
graphs, wherever a small
amount of color needs to be
highly visible.

Colors that can be used for
various graphics purposes.
These colors always
approximate their names, but
may be slightly adjusted to
blend with each scheme.
Typically used in graphs and
charts.

Bold labels, such as column
headings

17



3: Using Schemes

Table 3-1 (continued)

Pre-Defined Scheme Resources and Symbolic Values

Resource Symbolic Value Intended Use

smallBoldLabelFont SmallBoldLabelFont Labels for tight packing
situations

tinyBoldLabelFont TinyBoldLabelFont Labels where space is at a
premium

plainLabelFont PlainLabelFont Button labels, also can be used
for values in “Name: Value”
pairs

smallPlainLabelFont SmallPlainLabelFont Small buttons

obliqueLabelFont ObliqueLabelFont Menus

smallObliqueLabelFont

SmallObliqueLabelFont

Small menus

fixedWidthFont FixedWidthFont Text areas where fixed width is
mandatory, for example where
it’s important that columns line
up

smallFixed WidthFont SmallFixedWidthFont Text where a fixed-width font is

appropriate but space is at a
premium

Extending a Scheme to Support New Colors

SGI strongly recommends that you use existing scheme colors for your application.
Using the existing scheme colors ensures that your application will work with all

schemes. However, you may need to add colors in some basic cases.This section explains
how to extend Schemes to support new colors when necessary.

To extend a scheme, you create new symbolic values for the resources you need and then
define bindings between these values and resources that your application can retrieve.

This section describes the internal organization of scheme files and then describes how

to define these symbolic values and mappings.

18 007-2006-130



Extending a Scheme to Support New Colors

Scheme File Organization

All system scheme files are kept in the directory / usr /| i b/ X11/ schemnes by default.
This directory contains several subdirectories, one for each scheme. The directory Base
serves as the basis of all schemes, although it is not a user-identifiable scheme itself. Base
contains at least three files: Base, BaseCol or Pal et t e, and Font Pal et t e. You may

see other files as well.

Each of the palette files (BaseCol or Pal et t e and Font Pal et t e) contain cpp-style
definitions of symbolic names that represent colors and fonts. The Base file (referred to
as a map file) contains the default mappings between these symbolic names and specific
resources, using the same format as all X resource files.

For example, the Base file contains a line like:

* Xmlrext *f or egr ound: Text For egr ound

This says that all Text widgets should use the color represented by TextForeground as
their foreground color. By default, all schemes share the mappings specified in this Base
file. However, the value assigned to each symbolic name can vary from scheme to
scheme. For example the Mendocino scheme defines TextForeground to be #fffffe (white)
whereas the Milan scheme defines TextForeground to be #000000 (black). The scheme
mechanism evaluates these specifications at run time, based on the scheme specified by
the user.

By default, all applications pick up the definitions in the Base file and the palette files
from the selected scheme. However, applications can load additional scheme files as
well.

How to Extend a Scheme

007-2006-130

There are two methods for extending a scheme. The first is to add additional mappings
between existing colors and widgets in your application. This may be necessary if you
want to bind colors of fonts to your widgets in a different way, or if you are using custom
widgets that are not handled by the basic scheme mappings. You should do this by
adding resources to your application’s app- def aul t s file, using the SGI_DYNAMIC
mechanism described earlier.

The second situation occurs when you would like to use colors or fonts that are not
provided as a part of the existing schemes. Your should try to avoid this situation when

19



3: Using Schemes

20

at all possible, because users can use the scheme editor to create new schemes, and there
is no current mechanism for using the scheme editor to adjust any additional colors your
application may define. The standard scheme palettes contain over 40 colors, which
should be enough for most situations.

To add new colors to the existing schemes, you need to create a new palette file that
contains cpp-style definitions of those colors. To get your application to load this new
palette, you then need to set a resource, paletteFileList, in your application’s

app- def aul t s files that specifies as a comma-separated list all custom palette files to
be loaded.

For example, assume you have an application whose class name is Calendar and that you
need two colors that you refer to in your program symbolically as brightColor and
darkColor. If no color in the exiting schemes satisfies your requirements for this color,
you will need to extend a scheme. Here are the steps you’d follow:

1. Define the colors in a palette file. By convention, you should name this file
<Appd ass>Pal et t e, where <Appd ass> is the application class of your
application. In this case, you would name the palette Cal endar Pal et t e. It would
contain the lines:

#define BrightColor red
#defi ne DarkCol or M dni ght Bl ue

You can use any color names available on your target systems, as well as RGB
specifications. If the resources you are using are dependent on the gamma setting,
you should account for this in the palette file. You can handle the commonly used
gamma settings like this:

#i fdef GAMMA 1 0O

#define BrightCol or <color that |ooks right on 1.0 ganma>
#defi ne DarkCol or <col or that |ooks right on 1.0 ganma>
#endi f

#i fdef GAMMA 1 7

#define BrightCol or <color that |ooks right on 1.7 gamma>
#defi ne DarkCol or <col or that |ooks right on 1.7 ganma>
#endi f

#ifdef GAMVA 2 _4

#define Bright Col or <color that |ooks right on 2.4 gamma>
#defi ne DarkCol or <col or that |ooks right on 2.4 ganma>
#endi f

The scheme mechanism handles gamma other than those listed here by finding the
closest match.

007-2006-130



Testing Your Application with Schemes

2. Create additional palette files as needed. If your new resources need to change
values when a scheme changes, create a file named Cal endar Pal et t e for each
scheme you want to support. For each scheme, choose the colors that look right for
that scheme. Note that if you do not support all existing schemes, the values of your
new scheme resources defaults to the values in Base; so your application may not
look right when a user selects that scheme.

3. Set your application’s paletteFileList resource to load the new palettes. In this
example, you would add the following line to your app- def aul t s file:

Cal endar *scheneFi | ePal etteLi st: Cal endarPal ette

4. When you install your software on a user’s machine, you need to install the
executable, the app- def aul t s file, and any other files specific to your application.
You must also install your palette files into the directory of each scheme you
support. You should, at a minimum, support the schemes found in
[usr/1ib/ X11/ schemes. You may also want to support schemes you find
installed in/ usr/ | ocal / schenes.

Testing Your Application with Schemes

For best results, be sure to test your application against all available schemes, and watch
for any anomalies. As an added precaution, you can try using the Scheme Browser,
schenebr (available from the “Color Schemes” option of the Customize menu in
Desktop toolchest), to create some variations on existing schemes and see how your
program reacts. If you have not added any resources and are not setting any colors or
fonts in your program or app- def aul t s files, any scheme should be reasonable. If you
have extended the schemes or set colors directly in your application, you should watch
carefully to see how your application reacts as colors change. It is always possible to use
the scheme editor to create a very bad scheme, but if your program seems more sensitive
than others to changes, you should think more carefully about your use of color.

Creating New Schemes

007-2006-130

You can also include your own new schemes in your software distribution; however, be
aware of the following concerns:

¢ The largest benefit of schemes is the users’ ability to change to schemes of their
choice; so even if you create a scheme that you prefer for your application, make
sure your program looks good with the existing schemes.

21



3: Using Schemes

¢ If you install your scheme on a user’s system, the user may apply that scheme to
other applications. If you attempt to design a new scheme, make sure the scheme
works reasonably with other applications on the desktop.

The easiest way to design a new scheme is to use the Scheme Browser, schemnebr,
available from the “Color Schemes” option of the Customize menu in Desktop toolchest.
For best results, you should base your scheme on an existing scheme, preferably one of
the standard ones supported by SGI. If you make only minor changes, your new scheme
should work with other programs. Once you have created and saved your new scheme,
you can retrieve the files from your $HOMVE/ . deskt op- <host name>/ schenes
directory, where <hostname> is the name of your system. You can install your scheme in
fusr/l ocal / schemes/ <SchenmeNane>, where <SchemeName> is the name you have
chosen for your scheme. Once installed, this scheme appears in the Scheme Browser as a
local scheme. You can also include this scheme with your software distribution.

Hard-Coding a Scheme for an Application

22

In some rare situations, you may want your application to use one particular scheme, not
the one that the user selects. SGI strongly recommends that you not use this approach,
but if your application has special needs, the process is simple to do. Specify the value of
the scheme resource in your application’s app- def aul t s file using a complete path
name. For example:

YourApp*schene: /usr/lib/X11/schemes/M | an

When using this approach, the location of the scheme directory is unimportant. For
example, if you've designed a custom scheme for your application, you can place the
scheme directory in special configuration directory for your application. For example:

YourApp*schene: /usr/lib/ YourApp. confi g/ Your AppSchene

This setting implies that / usr/ | i b/ Your App. confi g/ Your AppSchene is a scheme
directory. This means that the directory Your AppSchemne would need to contain the files
BaseCol or Pal et t e (containing the color palette you have defined), a file whose name
is the same as the scheme that contains mappings, and a file named Font Pal et t e.
Normally, the Font Pal et t e file would be a copy of the file in

lusr/1ib/X11/ schenes/ Base, and the map file would be the same as
lusr/1ib/X11/ schenes/ Base/ Base, but renamed to have the same name as your
scheme.

007-2006-130



Chapter 4

Using the SGI Enhanced Widgets

This chapter discusses the SGI enhanced IRIS IM widgets, the mixed-model
programming widgets for using OpenGL in an IRIS IM application, and the HTML
viewer widget. This chapter contains these sections:

¢ “Using the SGI Enhanced Widgets” explains how your application can access the
SGI enhanced widgets.

* “Using the Widget Demos” explains how to use the provided demos to experiment
with some of the SGI enhanced widgets.

¢ “The SGI Enhanced Widgets” lists and discusses each of the new widgets.
¢ “The Enhanced Widgets” lists and discusses each of the enhanced widgets.

¢ “The Mixed-Model Programming Widgets” discusses the mixed-model
programming widgets that SGI provides for use with your OpenGL or IRIS GL
application.

¢ “HTML Viewer Component” explains the HTML viewer component that provides
the widgets and libraries necessary for applications to directly access the World
Wide Web to display online help and licensing information.

Using the SGI Enhanced Widgets

To use a new or enhanced widget, first switch on the IRIX Interactive Desktop enhanced
look and schemes, as described in Chapter 2, “Getting the IRIX Interactive Desktop
Look,” and Chapter 3, “Using Schemes,” respectively.

007-2006-130 23



4: Using the SGI Enhanced Widgets

Using the Widget Demos

SGI provides demos for some of the SGI enhanced widgets. These demos let you
experiment with the different resources for each widget.

Location of Widget Demos

The widget demos are in/ usr/ src/ X11/ not i f/ Sgm The demos are part of the
motif_dev.sw.demoSgi subsystem—if you cannot find them on your system, check to
make sure this subsystem is installed.

Instructions for Building the Widget Demos

The demo tree is shipped with X11 Imakefiles, not Makefiles. To build the demos:

1.

24

Change to the IRIS IM demos build tree location.
% cd /usr/src/ X11/ notif/ Sgm

Build the initial Makefile.

% . . [ moknf

Verity that the Makefile is OK.

% make Makefile

Update the rest of your Makefiles.

% make Makefiles

Clean the directory. If you do notand this is not your first installation, obsolete
binaries might remain, giving unexpected results.

% make cl ean

Update Makefile dependencies to make sure that everything is installed properly.
% nmake depend

Build the demos.

% nmake al |

007-2006-130



The Enhanced Widgets

The Enhanced Widgets

SGI provides enhanced versions of these existing IRIS IM widgets:
¢ “The File Selection Box Widget”

*  “The Scale (Percent Done Indicator) Widget”

¢ “The Text and TextField Widgets”

This section describes how to use the enhancements to these widgets. For guidelines on
when to use these widgets, refer to the IRIX Interactive User Interface Guidelines.

The File Selection Box Widget

007-2006-130

The FileSelectionBox widget (SgFileSelectionBox), shown in Figure 4-1, is an enhanced
version of the existing IRIS IM FileSelectionBox widget (XmFileSelectionBox). The API
is consistent with the IRIS IM version of the widget, but the presentation is different.

Note: To get the enhanced FileSelectionBox, you need to set the SgNuseEnhancedFSB
resource to true (in addition to linking with - | Sgm). Typically, do this in your
application’s app- def aul t s file.

Files

File List

Selection

Finder

Figure 4-1 The File Selection Box Widget

25



4: Using the SGI Enhanced Widgets

The FileSelectionBox traverses directories, shows files and subdirectories, and selects
files. It has these main areas:

Show menu and Hidden Files toggle

They control what appears in the scrolling list of directories and files
beneath them. The Show menu allows the user to restrict the list to
display only files of a particular type or format. Minimally the list has
two items: All and Custom... . “All” always appears at the top of the
menu, and “Custom...” always appears at the bottom of the menu
following a separator. All shows an unrestricted view of all files and
directories in the current subdirectory. Custom... launches the custom
filter dialog.

Files and directories list

Finder widget

The scrollable list in the enhanced FileSelectionBox contains both files
and directories. Directories appear in bold at the top of the list. Files
appear after the directories and are sorted alphabetically.

The DropPocket displays the icon and the text field displays the name of
the current directory or file. The user can select a file or directory by
dropping its icon on the DropPocket or typing its name in the text field.
Automatic file completion is supported. Clicking the right mouse over a
path bar button of the path navigation bar shows the directory/file
choices at that level. The user can also recall a previously-selected
directory from the DynaMenu. “The Finder Widget” on page 42
discusses the Finder widget in more detail.

Command panel

26

The buttons at the bottom of the FileSelectionBox reflect the action name;
the OK, Cancel and Help buttons operate the same in the enhanced
FileSelectionBox as they do in the regular version. The Filter button
pops up a Filter Dialog, which allows a user to enter a shell-style
filename expression as filter pattern. The enhanced FileSelectionBox
displays only those files in the current directory that match the given
pattern. (The FileSelectionBox continues to display any subdirectories in
the current directory.)

007-2006-130



The Enhanced Widgets

The programmatic interface to the enhanced FileSelectionBox differs from the regular
version in the following points:

*  You can retrieve the Finder child of the FileSelectionBox using the standard
XmFileSelectionBoxGetChild(3X) by providing the defined constant
SgDIALOG_FINDER as the child. You should check the returned widget for
validity; it is NULL if the FileSelectionBox is not enhanced.

¢ XmNdirMask is not guaranteed to be exactly the same as the regular version of the
FileSelectionBox in all situations. It does conform to the definition in the
XnFi | eSel ect i onBox(3X) man page. Specifically, the directory portion
XmNdirMask may not be present in the enhanced FileSelectionBox’s
representation.

* XmNfileTypeMask behavior is different because there is no separate directory list.
In the enhanced FileSelectionBox:

—  XmFILE_REGULAR and XmFILE_ANY_TYPE show both files and directories
in the file list

—  XmFILE_DIRECTORY shows only directories

For detailed information on the FileSelectionBox widget, refer to the

SgFi | eSel ecti onBox(3X) man page. For an example program using the
FileSelectionBox widget, see “Example Program for File Selection Box” on page 255. See
Chapter 10, “Dialogs,” in the IRIX Interactive User Interface Guidelines for guidelines on
using dialogs in your application. For information about standard XmFileSelectionBox
resources, behavior, and callbacks, see the XnFi | eSel ect i onBox( 3X) man page.

The Scale (Percent Done Indicator) Widget

007-2006-130

The Scale widget (SgScale), is an enhanced version of the IRIS IM Scale widget
(XmScale). The enhanced Scale widget is also referred to as the Percent Done Indicator
or Progress Indicator.

To implement this indicator, set the following resources:

*scal e. sl i der Vi sual : flat_foreground
*scal e. sl i di nghbde: t her nonet er
*scal e. sl ant ed: true

27



4: Using the SGI Enhanced Widgets

For an example of code, see “Example Programs for Scale (Percent Done Indicator)
Widget” on page 258. Also see “IRIX Interactive Desktop Scales” in Chapter 9 of the IRIX
Interactive User Interface Guidelines for guidelines on using scales in your application. For
more information on the enhanced Scale widget, refer to the SgScal e( 3X) man page.
For more information on the unenhanced version of the widget, refer to the

XnScal e( 3X) man page.

The Text and TextField Widgets

28

The Text and TextField widgets (SgText and SgTextField) are enhanced versions of the
IRIS IM Text and TextField widgets (XmText and XmTextField). In addition to the
standard XmText and XmTextField resources, these widgets provide the following new
resources:

selectionBackground
The background color for selected text.

selectionForeground
The foreground color for selected text.

errorBackground
The background color for text that you select with an “error status” by
using the SgText Set Err or Sel ecti on() or
SgText Fi el dSet Error Sel ecti on() function (depending on
whether the widget is a SgText or SgTextField widget).

cursorVisibleOnFocus
If TRUE (the default), the widget displays the text cursor only when the
widget has focus. If FALSE, the cursor is always visible even when the
widget does not have keyboard focus.

The SgText Set Err or Sel ecti on() and SgText Fi el dSet Err or Sel ecti on()
functions operate almost identically to the XniText Set Sel ecti on() and

Xnirext Fi el dSet Sel ecti on() functions. You use them to select a range of text as the
primary selection. The only difference is that the selected text is drawn with the
background color specified by the errorBackground resource instead of that specified by
the selectionBackground resource.

For a detailed description of the new resources for the enhanced versions of these

widgets, refer to the SgText ( 3X) and SgText Fi el d( 3X) man pages. For information
on the unenhanced versions of these widgets, refer to the Xnilext ( 3X) and

007-2006-130



The Mixed-Model Programming Widgets

XmText Fi el d( 3X) man pages. See “Text Fields” in Chapter 9 of the IRIX Interactive
User Interface Guidelines for guidelines on using text fields in your application.

The Mixed-Model Programming Widgets

007-2006-130

SGI provides two sets of mixed-model programming widgets: one set for use with
OpenGL and one set for use with IRIS GL.

A mixed-model program, briefly, is an X program that creates one or more subwindows
that use OpenGL or IRIS GL for rendering. Such a program uses Xlib or Xt calls for
windowing, event handling, color maps, fonts, and so on. A “pure” IRIS GL application,
on the other hand, uses IRIS GL calls for windowing, event handling, color maps, and
fonts. (For a more detailed discussion of mixed-model programming, refer to the OpenGL
Porting Guide.)

If you plan to port your IRIS GL application to OpenGL, a good first step is to port it to
mixed-model. The switch to OpenGL is then much easier. The IRIS GL mixed-model
widgets make it much easier to port pure IRIS GL applications to mixed-model.

If you are writing a new application, just start with OpenGL and the OpenGL versions
of the mixed-model widgets (or use Open Inventor instead of OpenGL—Open Inventor

handles all this for you).

The mixed-model widgets are:

IRIS GL OpenGL
GlxDraw GLwDrawingArea
GIxMDraw GLwMDrawingArea

The GlxDraw and GLwDrawingArea widgets are suitable for use with any widget set.
The GIxMDraw and GLwMDrawingArea widgets are designed especially for use with
IRIS IM.

This manual does not tell you how to create a mixed-model program. For instructions on
mixed-model programming, refer to the OpenGL Porting Guide. (The OpenGL Porting
Guide contains mixed-model programming information that’s relevant for both IRIS GL
and OpenGL programmers.)

29



4: Using the SGI Enhanced Widgets

You can find examples of many mixed-model programs for both OpenGL and IRIS GL in
the 4Dgi f t s directories. If you have trouble finding the relevant directories, refer to the
README file in / usr / peopl e/ 4Dgi f t s. This README file explains the contents and
organization of the 4Dgifts directories.

The SGI Enhanced Widgets

SGI provides these new widgets:
¢ “The Color Chooser Widget”
¢ “The Dial Widget”

¢ “The Drop Pocket Widget”

¢ “The Finder Widget”

¢ “The Graph Widget”

¢ “The Grid Widget”

* “The Springbox Widget”

¢ “The Thumbwheel Widget”

For guidelines on when to use the different widgets (for example, when to use a
Thumbwheel or a Dial) refer to the IRIX Interactive User Interface Guidelines.

This section describes each important new IRIS IM widget. It does not discuss new
widgets that are part of composite widgets, unless they are generally useful.

The Color Chooser Widget

The ColorChooser widget (SgColorChooser) allows users to select colors in RGB or HSV
color spaces. Figure 4-2 shows the ColorChooser’s default configuration.

30 007-2006-130



The SGI Enhanced Widgets

Color swatch

Color hexagon

Figure 4-2 The Color Chooser Widget

The ColorChooser includes these components:

007-2006-130

Menus for setting options and sliders for the color chooser.

A color hexagon that provides visual selection of the hue and saturation
components of a color in an HSV color space.

Color sliders for each of the hue, saturation, value, red, green, and blue color
components. To make the color sliders visible, the user can select items from the
Sliders menu. (Figure 4-3 shows the ColorChooser with all the sliders visible.) You
can also display the color sliders programmatically. Text fields show the exact value
of each current color component and allow users to set these values numerically.

Two color swatches: one for showing the current selected color and one for enabling
the user to store a second color for reference.

Three or four buttons. The default button labels are OK, Cancel, Help, and Apply. If
the parent of the ColorChooser widget is a DialogShell, then the Apply button is
managed; otherwise it is unmanaged.

31



4: Using the SGI Enhanced Widgets

32

Options  Siiders

Current
Color:

Stored
Color:

& v
]

‘ 014 | ‘ Applyl ‘Cancell ‘ Help |

Figure 4-3 The Color Chooser Widget with HSV and RGB Sliders

Users can select a color by manipulating the color hexagon and any of the six sliders, or
by changing the values in any of the text fields.

You must include the header file <Sgn Col or C. h> in any source file that uses a
ColorChooser widget.

For more detailed information about the ColorChooser widget, refer to the

SgCol or Chooser ( 3X) man page. For an example program using the ColorChooser
widget, see “Example Program for Color Chooser” on page 242. You can also examine,
compile, and experiment with the col or ¢ demonstration program in the directory
fusr/src/ X11/ noti f/ Sgn col or c. See “A Specific Standard Support Window: The
IRIX Interactive Desktop Color Chooser” in Chapter 6 of the IRIX Interactive Desktop for
guidelines on using the ColorChooser widget in your application.

007-2006-130



The SGI Enhanced Widgets

Controlling the Color Chooser Interface

007-2006-130

By default, the ColorChooser widget uses GL's Gouraud shading to display the colors in
the hexagon and sliders. You can force the ColorChooser widget not to use GL by setting
the value of the SgNuseGl resource to FALSE. When SgNuseGl is FALSE, the
ColorChooser widget uses only X function calls. In this case, it does not draw a color
hexagon and it uses XmScale widgets instead of the special color sliders.

When using GL, the ColorChooser normally shades the color hexagon and color sliders
so that each point is a true representation of the color that would be selected if the user
were to move the hexagon pointer or color slider to that point. However, if the value of
the SgNwysiwyg resource is FALSE, then the ColorChooser always displays the
hexagon colors with a Value (intensity) of 1 (maximum intensity), and the RGB sliders
with a color range of black to the maximum RGB color component value.

For example, if the current selected color RGB value is (100, 200, 50), then the Red color
slider displays the colors (0, 200, 50) through (255, 200, 50) if SgNwysiwyg is TRUE, and
(0, 0, 0) through (233, 0, 0) if SgNwysiwyg is FALSE. (Note that the user can also toggle
the value of SgNwysiwyg by selecting the “WYSIWYG” option from the ColorChooser’s
Options menu.)

The SgNshowSliders resource determines which of the color sliders are visible. Possible
values are:
SgValue Show only the slider for the color Value (the default)

SgRGB_and_Value
Show the Value and RGB sliders

SgRGB_and_HSV
Show all six sliders, the HSV and RGB sliders

The default labels (in the C locale) for the ColorChooser buttons are “OK,” “Apply,”
“Cancel,” and “Help.” You can change these by setting the values of SgNokLabelString,
SgNapplyLabelString, SgNcancelLabelString, and SgNhelpLabelString respectively.

You can add additional children to the ColorChooser after creation—they are laid out in
the following manner:

* The first child is used as a work area. The work area is placed just below the menu
bar.

33



4: Using the SGI Enhanced Widgets

¢ Buttons—All XmPushButton widgets or gadgets, and their subclasses are placed
after the OK button, in the order of their creation.

¢ The layout of additional children that are not in the above categories is undefined.

Getting and Setting the Color Chooser’s Colors

In ColorChooser callback functions, the RGB color values are provided as the r, g, and b
parameters of the SgColorChooserCallbackStruct structure passed to the functions.
“Handling User Interaction with the Color Chooser” describes the ColorChooser
callbacks.

ColorChooser also provides several convenience routines for getting and setting both the
current color values and setting the stored color value.

SgCol or Chooser Set Col or () sets both the current and the stored color values to the
same color:

voi d SgCol or Chooser Set Col or (W dget w, short r, short g,
short b);

SgCol or Chooser Get Col or () retrieves the current color values:

voi d SgCol or Chooser Get Col or (Wdget w, short *r, short *g,
short *Db);

SgCol or Chooser Set Cur r ent Col or () sets the current color but not the stored color:

voi d SgCol or Chooser Set Current Col or (W dget w, short 7,
short g, short b);

SgCol or Chooser Set St or edCol or () sets the stored color but not the current color:

voi d SgCol or Chooser Set St or edCol or (W dget w, short 7,
short g, short b);

For each function, w is the ColorChooser widget and , g, and b are the red, green, and
blue values, respectively.

Handling User Interaction with the Color Chooser

34

The ColorChooser widget defines the following callback resources:

007-2006-130



The SGI Enhanced Widgets

007-2006-130

SgNapplyCallback
Invoked when the user activates the Apply button. The callback reason
is SgCR_APPLY.

SgNcancelCallback
Invoked when the user activates the Cancel button. The callback reason
is SgCR_CANCEL.

SgNokCallback
Invoked when the user activates the OK button. The callback reason is
SgCR_OK.

SgNvalueChangedCallback
Invoked when the user selects a color. The callback reason is
XmCR_VALUE_CHANGED. A color is selected when the user changes
the value of a color component with the color hexagon, one of the color
sliders, or one of the color components text widgets.

SgNdragCallback
Specifies the list of callbacks called when the user drags the mouse over
the color hexagon or one of the color sliders to select a color. The callback
reason is XmCR_DRAG.

A pointer to a SgColorChooserCallbackStruct structure is passed to each ColorChooser
callback function:

typedef struct {
i nt reason,;
XEvent *event;
short r, g, b;
} SgCol or Chooser Cal | backSt ruct;

reason Indicates why the callback was invoked.
event Points to the XEvent that triggered the callback.
r Indicates the red color component of the currently selected color.

Indicates the green color component of the currently selected color.

b Indicates the blue color component of the currently selected color.

35



4: Using the SGI Enhanced Widgets

The Dial Widget

The Dial widget (SgDial), shown in Figure 4-4, is a new widget that allows users to input
or modify a value from within a range of values. Figure 4-4 shows two forms of the Dial
widget, one with the input control in the shape of a knob and the other in the shape of a
pointer. The user can modify the Dial’s value by spinning the knob or pointer. The Dial
is usually surrounded by tick marks (marked divisions around the perimeter of the Dial).

Figure 4-4 The Dial Widget in Knob and Pointer Form

You must include the header file <Sgni Di al . h> in any source file that uses a Dial
widget.

For more detailed information about the Dial widget, refer to the SgDi al ( 3X) man
page. For an example program using the Dial widget, see “Example Program for Dial”
on page 244. You can also examine, compile, and experiment with the di al
demonstration program in the directory / usr/ src/ X11/ noti f/ Sgni di al . See
“Dials” in Chapter 9 of the IRIX Interactive User Interface Guidelines for guidelines on
using the Dial widget in an application.

Controlling the Dial Interface

36

You control the display characteristics of a Dial through widget resources.

The SgNdial Visual resource determines whether the Dial uses a knob or a pointer. The
default value, SgKNOB, specifies a knob and SgPOINTER specifies a pointer. If you use
a pointer, you can also specify the color of the small “indicator” at the center of the
pointer using the SgNindicatorColor resource; the default color is red.

Specify the position of the lowest value on the Dial with the SgNstartAngle resource. The
value, which must be between 0 and 360 inclusive, specifies the number of degrees

clockwise from the top of the Dial. A default value of 0 corresponds to the top of the Dial.

The SgNangleRange resource determines the range of the Dial in degrees. The value,
which must be between 0 and 360 inclusive, specifies the number of degrees clockwise

007-2006-130



The SGI Enhanced Widgets

from the start angle of the Dial. The default value of 360 allows the Dial to rotate
completely.

The Dial widget displays evenly spaced “tick marks” along the perimeter of the Dial’s
angle range. You control the number of tick marks with the SgNdialMarkers resource;
the default number is 16. The length of the tick marks in pixels is determined by the
SgNmarkerLength resource; the default length is 8 pixels. The SgNdialForeground
resource determines the color of the tick marks; the default is red.

The resources XmNminimum and XmNmaximum determine the minimum and
maximum values of the Dial. The Dial takes on the minimum value at the position
specified by SgNstartAngle and takes on the maximum value at the position
SgNangleRange degrees clockwise from SgNstartAngle. The value of XmNmaximum
must be greater than or equal to the value of XmNminimum. The default value of
XmNminimum is 0 and the default value of XmNmaximum is 360.

Getting and Setting the Dial’s Value

007-2006-130

The XmNvalue resource, which must be a value between XmNminimum and
XmNmaximum inclusive, contains the current position of the Dial. You can set or get the
value of a Dial widget at any time by respectively setting or getting its XmNvalue
resource.

In Dial callback functions, the Dial value is provided as the position parameter of the
SgDialCallbackStruct structure passed to the functions. “Detecting Changes in the Dial’s
Value” describes the Dial callbacks.

Dial also provides a convenience routine, SgDi al Set Val ue( ), for setting the value of
XmNvalue:

voi d SgDi al Set Val ue(W dget w, int wvalue);
w is the Dial widget whose value you want to set and value is the new value.
You can get the current value of a Dial widget at any time by retrieving the value of its

XmNvalue resource. Dial also provides a convenience routine, Sgbi al Get Val ue() , for
getting the value of XmNvalue:

voi d SgDi al Get Val ue(W dget w, int *value);

w is the Dial widget whose value you want to get. Upon returning, value contains the
Dial’s value.

37



4: Using the SGI Enhanced Widgets

Detecting Changes in the Dial’s Value

The Dial widget defines two callback list resources, XmNvalueChangedCallback and
XmNdragCallback. A Dial widget invokes XmNvalueChangedCallback whenever its
value changes either programmatically (for example, by calling SgDi al Set Val ue())
or through user interaction. A Dial widget invokes XmNdragCallback whenever the
user clicks and drags, or “spins,” the Dial’s knob or pointer.

A pointer to a SgDialCallbackStruct structure is passed to each Dial callback function:

typedef struct {
i nt reason,
XEvent *event;
i nt position;
} SgDi al Cal | backStruct;

The SgDialCallbackStruct parameters are:

reason The reason the callback was invoked. This value is
XmCR_VALUE_CHANGED in the event of a
XmNvalueChangedCallback and XmCR_DRAG in the event of a

XmNdragCallback.
event A pointer to the XEvent that triggered the callback
position The new Dial value

The Thumbwheel Widget

38

The ThumbWheel widget (SgThumbWheel), shown in Figure 4-5, is a new widget that
allows users to input or modify a value, either from within a range of values or from an
unbounded (infinite) range.

Wheel

Home Button

Figure 4-5 The Thumbwheel Widget

007-2006-130



The SGI Enhanced Widgets

A ThumbWheel has an elongated rectangular region within which a wheel graphic is
displayed. Users can modify the ThumbWheel’s value by spinning the wheel. A
ThumbWheel can also include a home button, located outside the wheel region. This
button allows users to set the ThumbWheel’s value to a known position.

You must include the header file <Sgm ThunbWheel . h> in any source file that uses a
Thumbwheel widget.

For detailed information on the ThumbWheel widget, refer to the SgThurmrbWheel ( 3X)
man page. For an example program using the ThumbWheel widget, see “Example
Program for ThumbWheel” on page 252. You can also examine, compile, and experiment
with the t humbwheel demonstration program in the directory

fusr/src/ X11/ noti f/ Sgm t humbwheel . See “Thumbwheels” in Chapter 9 of the
IRIX Interactive User Interface Guidelines for guidelines on using the ThumbWheel widget
in your application.

Controlling the ThumbWheel Interface

007-2006-130

You control the display characteristics of a ThumbWheel through widget resources.

The resources XmNminimum and XmNmaximum determine the minimum and
maximum values of the ThumbWheel. Setting XmNmaximum equal to XmNminimum
indicates an infinite range.

The default value of XmNminimum is 0 and the default value of XmNmaximum is 100.

The SgNangleRange resource specifies the angular range, in degrees, through which the
ThumbWheel is allowed to rotate. The default of 150 represents roughly the visible
amount of the wheel. Thus clicking at one end of the wheel and dragging the mouse to
the other end would give roughly the entire range from XmNminimum to
XmNmaximum.

In conjunction with XmNmaximum and XmNminimum, the SgNangleRange resource
controls the fineness or coarseness of the wheel control when it is not infinite. If this value
is 0, the ThumbWheel has an infinite range. If the range of the ThumbWheel is infinite,
you can use the SgNunitsPerRotation resource to specify the change in the
ThumbWheel’s value for each full rotation of the wheel.

If the value of SgNshowHomeButton is TRUE, the default, the ThumbWheel displays a
home button by the slider. The user can click on the home button to set the value of the

39



4: Using the SGI Enhanced Widgets

ThumbWheel to a known value, which is specified by the SgNhomePosition resource.
The default value of SgNhomePosition is 50.

The XmNorientation resource determines whether the orientation of the ThumbWheel
is vertical, indicated by a value of XmVERTICAL, or horizontal, indicated by a value of
XmHORIZONTAL. The default value is XmVERTICAL.

Getting and Setting the ThumbWheel’'s Value

The XmNvalue resource contains the current position of the ThumbWheel. XmNvalue
must be a value between XmNminimum and XmNmaximum if the ThumbWheel is not
“infinite.” You can set or get the value of a ThumbWheel widget at any time by
respectively setting or getting its XmNvalue resource.

In ThumbWheel callback functions, the ThumbWheel value is provided as the value
parameter of the SgThumbWheelCallbackStruct structure passed to the functions.
“Detecting Changes in the ThumbWheel’s Value” describes the ThumbWheel callbacks.

Detecting Changes in the ThumbWheel’'s Value

40

The ThumbWheel widget defines two callback list resources,
XmNvalueChangedCallback and XmNdragCallback. A ThumbWheel widget invokes
XmNvalueChangedCallback whenever its value changes either programmatically (that
is, by setting the value of XmNvalue) or through user interaction. A ThumbWheel
widget invokes XmNdragCallback whenever the user clicks and drags, or “spins,” the
ThumbWheel’s wheel.

A pointer to a SgThumbWheelCallbackStruct structure is passed to each ThumbWheel
callback function:

typedef struct { int reason;
XEvent * event;
int val ue;
} SgThunmbWheel Cal | backStruct;

The SgThumbWheelCallbackStruct parameters are:

reason The reason the callback was invoked. This value is
XmCR_VALUE_CHANGED in the event of a
XmNvalueChangedCallback and XmCR_DRAG in the event of a
XmNdragCallback.

007-2006-130



The SGI Enhanced Widgets

event A pointer to the XEvent that triggered the callback.

position The new ThumbWheel value.

The Drop Pocket Widget

man Page Text

007-2006-130

The Drop Pocket widget (SgDropPocket), shown in Figure 4-6, receives and displays
Desktop icons.

{ { { {
Jusridemossbindbz L%

Figure 4-6 The Drop Pocket Widget (on left) As Part of the Finder Widget

When users drop Desktop file icons onto the Drop Pocket, the Drop Pocket determines
the name of the icon and returns information describing the icon to the application in the
callback.

When users drag an acceptable icon over the Drop Pocket, the Drop Pocket background
changes color and the Drop Pocket displays the dropped icon. If the type of a file is not
known, or if the file does not exist (for example, if the user is specifying a new file), the
Drop Pocket displays the icon for unknown file types (this icon looks like a round
balloon).

For more information on the Drop Pocket widget, refer to the SgDr opPocket ( 3X) man
page. You can find example code in/ usr/ src/ X11/ not i f/ Sgm dr opPocket
directory. For an example program using the Drop Pocket widget, see “Example Program
for Drop Pocket” on page 247.

SYNOPSIS #include <Sgm /DropPocket.h>

New Resources

SgNDropPocketActivePixel
Specifies the color for the background of the DropPocket when an icon
that can be dropped is above the DropPocket.

41



4: Using the SGI Enhanced Widgets

The Finder Widget

42

SgNiconDataBasePath

SgNname

Specifies the location of the icon database. The default value is
lusr/lib/filetypel/workspace. ot r. Setting this resource to a
filename that is not a legal icon database will cause serious problems for
the DropPocket.

Specifies the compound string that is the name of the current icon. By
setting this resource, the application can control the initial icon that
appears in the DropPocket. If this resource is NULL, the DropPocket will
appear empty. Refer to XmString(3X) for more information on the
creation and structure of compound strings.

Callback Information

The Callback structure is SgDropPocketCallbackStruct. A pointer to the following
structure is passed to each callback:

typedef struct { int reason;

reason

event
window

iconName

iconData

XEvent * event;
W ndow wi ndow;
XnString i conNane;
char * iconbDat a;
} SgDropPocket Cal | backStruct;

Indicates why the callback was invoked. The constant
SgCR_ICON_CHANGE is the reason associated with callbacks
generated by a successful icon drop on the DropPocket.

Points to the XEvent that triggered the callback
Specifies the window of the DropPocket.

Specifies the name of the icon. For icons representing files, this is the file
name. For other types of icons, the name may not completely specify the
icon. For example a person icon may have the name jake, but the icon
represents a person in /usr/lib/faces/jake.

The full string description of the icon.

The Finder widget (SgFinder), shown in Figure 4-7, is a new widget that accelerates text
selection of long objects such as filenames. (A good way to experiment with a Finder
widget is to select “An Icon” from the Find toolchest.)

007-2006-130



The SGI Enhanced Widgets

007-2006-130

Fath navigation bar
(Zoom Bar)

Drop Pocket

| | | |
Susr/demos/bindhz ‘

Text field |

Recycle button
(Dynakdenu)

Figure 4-7 The Finder Widget

The Finder widget is customizable for various applications (it is not just for looking at
directories; see the SgFi nder ( 3X) man page for customization details). The Finder
widget includes four components:

Text field Displays the name of a file or directory.

Path navigation bar
Contains buttons representing each directory in the pathname. When
the user clicks on a path bar button, the Finder sets the current directory
to the directory listed underneath that button. The path bar is created
with an SgZoomBar(3X) widget.

Recycle button When users click on the Recycle button, the recycle list appears listing
the directories that the user has selected during the current Finder
session. Selecting an item from the recycle list changes the current
directory to the selected directory. The recycle button is created with an
SgDynaMenu(3X) widget.

Drop pocket  Displays the Desktop file icon for the file listed in the text field. The user
can drop Desktop file icons into the drop pocket to find the pathname
for the file and drag icons out of the drop pocket and put them on the
Desktop. The recycle button is created with an SgDropPocket(3X)
widget.

You must include the header file <Sgni Fi nder . h> in any source file that uses a Finder
widget.

For more detailed information on the Finder widget, refer to the SgFi nder ( 3X),

SgDr opPocket ( 3X) , and SgDynaMenu( 3X) man pages. For an example using the
Finder widget, see “Example Program for Finder” on page 250. You can also examine,
compile, and experiment with thef i nder Test demonstration program in the directory
fusr/src/ X11/ notif/ Sgm fi nder. See “File Finder” in Chapter 9 of the IRIX

43



4: Using the SGI Enhanced Widgets

Interactive User Interface Guidelines for guidelines on using the Finder widget in your
application.

Controlling the Finder Interface

If you do not need the drop pocket feature of the Finder widget, you can set the value of
the resource SgNuseDropPocket to FALSE when you create the widget. This bypasses
the costs of setting up drag and drop and loading the file icon libraries. Note that you
cannot set this resource using Xt Set Val ues() ; if you do not originally create a Finder
widget with a drop pocket, you cannot add one afterwards.

Similarly, if you do not need the Recycle button, you can set the value of the resource
SgNuseHistoryMenu to FALSE. Note that you cannot set this resource using

Xt Set Val ues() ; if you do not originally create a Finder widget with a Recycle button,
you cannot add one afterwards.

You can customize the appearance of the Recycle button by setting the value of the
SgNhistoryPixmap resource to the pixmap you want to display.

By default, the Finder widget determines where to place the buttons on the path
navigation bar by the location of the forward slash (/) character in the text field. You can
specify a different separator character by providing it as the value of the SgNseparator
resource. This feature is useful if you want to use the Finder widget to display something
other than filenames.

Getting and Setting Finder Values

44

You can retrieve the current value of the Finder’s text field with
SgFi nder Get Text String():

char *SgFi nder Get Text Stri ng(W dget w);

You can set the value of the text field with SgFi nder Set Text Stri ng():
voi d SgFi nder Set Text Stri ng(W dget w, char *wvalue);

You can add an item to the “history list” of the Recycle button with
SgFi nder AddHi storyltem():

voi d SgFi nder AddHi storyltem( Wdget w, char *str);

You can clear the Recycle button’s history list with SgFi nder Cl ear Hi story():

007-2006-130



The SGI Enhanced Widgets

voi d SgFi nder Cl ear Hi st ory( W dget w);

You can access a widget component within a finder using SgFi nder Get Chi | d():
W dget SgFi nder Get Chi | d(W dget w, int child);

child specifies the component and can take any of the following values:

SgFINDER_DROP_POCKET
The drop pocket

SgFINDER_TEXT
The text field

SgFINDER_ZOOM_BAR
The path navigation bar

SgFINDER_HISTORY_MENUBAR
The Recycle button

Handling User Interaction with the Finder

007-2006-130

When the user clicks a button in the path navigation bar, the default action of the Finder
is to set the current directory to the directory listed underneath that button. You can
change this behavior by setting the SgNsetTextSectionFunc resource to the handler you
want to use. The handler function must be of type SgSetTextFunc, which is defined in
<Sg/ Fi nder. h>:

typedef void (*SgSet Text Func) (W dget finder, int section);

The first argument is the Finder widget and the second is an integer corresponding to the
button pressed. Buttons are numbered sequentially from the left, starting with 0. You can
perform whatever operations you want in this function, but typically you include a call
to SgFi nder Set Text Stri ng() to set the value of the text field after the user clicks a
button.

Additionally, the Finder widget defines two callback list resources:

XmNactivateCallback
Invoked when the user clicks a path navigation bar button, when the
text field generates an activateCallback (for example, the user presses
the <Ret ur n> key in the text field), or when you set the text string by
calling SgFi nder Set Text St ri ng() . A pointer to an
XmAnyCallbackStruct structure is passed to each callback function. The
reason sent by the callback is XmCR_ACTIVATE.

45



4: Using the SGI Enhanced Widgets

The Graph Widget

46

XmNvalueChangedCallback
Invoked when text is deleted from or inserted into the text field. A
pointer to an XmAnyCallbackStruct structure is passed to each callback

function. The reason sent by the callback is
XmCR_VALUE_CHANGED.

The Graph widget (SgGraph) allows you to display any group of widgets as a graph,
with each widget representing a node. Figure 4-8 shows an example of a Graph widget.

I_I_

MNode I

ArC

=

e
s
s

Figure 4-8 The Graph Widget

The arcs used to connect the nodes are instances of an Arc widget (SgArc), developed
specifically for use with the Graph widget.

The Graph widget allows you to display any group of widgets as a graph, with each
widget representing a node. The graph can be disconnected and can contain cycles. The
arcs used to connect the nodes are instances of an Arc widget (SgArc), developed
specifically for use with the Graph widget. Arcs may be undirected, directed, or
bidirected. Note that the Graph widget does not understand the semantics of arc
direction; in other words, for layout and editing purposes, an Arc will always have a
parent and a child regardless of its direction.

The Graph widget has the ability to arrange all nodes either horizontally or vertically

according to an internal layout algorithm, and supports an edit mode in which arcs and
nodes may be interactively repositioned as well as created. There is also a read-only

007-2006-130



The SGI Enhanced Widgets

mode in which all events are passed directly to the children of the Graph widget. In edit
mode, the Graph takes over all device events for editing commands.

The Graph is a complex widget, and a full discuss of its resources, utility functions, and
capabilities is beyond the scope of this document. For detailed information about the
Graph and Arc widgets, refer to the SgG aph( 3X) and SgAr ¢( 3X) man pages.

You must include the header file <Sgml Gr aph. h> in any source file that uses a Graph
widget. You must include the header files <Sgnf Gr aph. h>and <Sgni Ar c. h>in any
source file that uses an Arc widget.

The Springbox Widget

007-2006-130

The SpringBox widget (SgSpringBox) is a new container widget that arranges its
children in a single row or column based on a set of spring constraints assigned to each
child. You can use the SpringBox widget to create layouts similar to those supported by
the XmForm widget, but the SpringBox widget is usually easier to set up.

The value of the SpringBox widget’s XnmNor i ent at i on resource determines its
orientation. The default value, XmHORIZONTAL, specifies a horizontal SpringBox and
the value XmVERTICAL specifies a vertical SpringBox.

To use the SpringBox, you set constraint resources on each child of the widget to specify
the “springiness” for both the widget’s size and position relative to its siblings.

You control the springiness of a widget’s size by setting the values of its

Xm\verti cal Spri ng and XmNhor i zont al Spri ng resources. A value of zero means
the child cannot be resized in that direction. For non-zero values, the values are
compared to the values of other springs in the overall system to determine the
proportional effects of any resizing. For example, a widget with a springiness of 200
would stretch twice as much as a widget with a springiness of 100. The default value of
both resources is zero.

The values of the resources XnNl ef t Spri ng, XmM\r i ght Spri ng, Xnl\t opSpr i ng, and
Xm\bot t onSpr i ng control the springiness of a widget’s position in relation to its
neighboring boundaries. By default, the value of each of these springs is 50. A value of
zero means that the SpringBox widget cannot add additional space adjacent to that part
of a widget. Larger values are considered in relation to all other spring values in the
system.

47



4: Using the SGI Enhanced Widgets

The Grid Widget

You must include the header file <Sgn Spr i ngBox. h> in any source file that uses a
SpringBox widget. For more detailed information on the SpringBox widget, refer to the
SgSpr i ngBox( 3X) man page.

The Grid widget (SgGrid) is a new container widget that arranges its children in a
two-dimensional grid of arbitrary size. You can separately designate each row and
column of the grid as having a fixed size or as having some degree of stretchability. You
can also resize each child in either or both directions, or force a child to a fixed size.

You must include the header file <Sgnml G i d. h> in any source file that uses a Grid
widget. For detailed information on the Grid widget, refer to the SgGr i d( 3X) man

page.

Setting Grid Characteristics

48

You specify the number of rows and columns in a Grid by setting the values of its
XmNnumRows and XmNnumColumns resources, respectively. The default value for
each is 1. Note that you can set the size of a Grid only when you create it; you cannot use
Xt Set Val ues() to change the number of rows or columns in a Grid.

The XmNautoLayout resource determines the layout policy for a Grid. If its value is
TRUE (the default), all rows and columns that have a non-zero resizability factor
(described below) are sized according to the desired natural size of the widgets in that
row or column.

If XmNautoLayout is FALSE, all widgets in resizable rows or columns are sized
according to the resizability factor for that row or column. By default, the resizability
factor is “1” for all rows and columns, which results in each cell in the grid having an
equal size. You can change the resizability factor for a row or column by calling

SgGr i dSet Rowiver gi n() or SgGri dSet Col urmMar gi n() respectively:

SgGri dSet RowResi zabi | i ty(W dget widget, int row, int factor);

SgGri dSet Col unmResi zabi | it y(W dget widget, int column,
int factor);

widget is the Grid widget. The second argument specifies the row or column. Rows are
numbered sequentially from the top starting at 0; columns are numbered sequentially

007-2006-130



The SGI Enhanced Widgets

from the left starting with 0. factor is the resizability factor for the row or column. Setting
this value to 0 establishes the specified row or column as not resizable, regardless of the
setting of XmNautoLayout. Other values are taken relative to all other rows. For
example, if a Grid has three rows whose resizability factors are set to 100, 100, and 200,
the first and second rows will occupy one quarter of the space (100/(100+100+200)),
while the third row will occupy one half of the available space.

The XmNdefaultSpacing resource default spacing between rows and columns. The
default value is 4 pixels. You can override the value on a per row/column basis using
SgGr i dSet Col ummMar gi n() or SgGr i dSet Rowivar gi n() respectively:

SgGri dSet Rowiver gi n( W dget widget, int row, Di mension margin);

SgGri dSet Col unmmMar gi n( W dget widget, int column,
Di mensi on margin) ;

widget is the Grid widget. The second argument specifies the row or column. margin
specifies the margin in pixels between the row or column’s edges and the widgets it
contains. The margin is added to both sides of each row or column, so adding a 1 pixel
margin increases the relevant dimension of the affected row or column by 2 pixels.

You can display the boundaries of a Grid by setting the value of its XmNshowGrid
resource to TRUE. You might find this useful for debugging resize specifications. The
default value is FALSE.

Setting Constraints on the Child Widget of a Grid

007-2006-130

The XmNrow and XmNcolumn resources of a Grid’s child widget specify the row and
column in which the Grid places the child. If you do not specify these values, the Grid
widget places the child in a randomly selected unoccupied cell.

The XmNresizeVertical and XmNresizeHorizontal resources determine whether the
Grid can resize the child to fill the cell in the vertical and horizontal directions. The
default value of TRUE allows the Grid to resize the child.

If a child is a fixed size, and smaller than the cell that contains it, the child’s position
within the cell is determined by an XmNgravity resource. Gravity may be any of the
gravity values defined by Xlib except StaticGravity and ForgetGravity. The default is
NorthWestGravity. Note that gravity has no effect if both XmNresize Vertical and
XmNresizeHorizontal are TRUE.

49



4: Using the SGI Enhanced Widgets

Examples of Using the Grid Widget

50

Example 4-1 creates a grid of four buttons that all size (and resize) equally to fill one

quarter of their parent.

Example 4-1 An Example of Using the Grid Widget

createG i d(Wdget parent)
{
int n;
Arg args[10];
Wdget grid, childl, child2, child3, child4;
n = 0;
Xt Set Arg(args[n], XmNnunRows, 2); n++;
Xt Set Arg(args[n], XmNnunCol umms, 2); n++;
grid = SgCreateGid(parent, "grid", args, n);
childl = XtVaCreat eManagedW dget ("chi | d1",
xmPushBut t onW dget d ass,
grid,
XmNrow, O,
XmN\col um, O,
NULL) ;
Xt VaCr eat eManagedW dget (" chi | d2",
xmPushBut t onW dget d ass,
grid,
XmNrow, O,
XmN\col um, 1,
NULL) ;
chil d3 = Xt VaCreat eManagedW dget ("chi | d3",
xmPushBut t onW dget d ass
grid,
XmNrow, 1,
XmN\col um, O,
NULL) ;
Xt VaCr eat eManagedW dget (" chi | d4",
xmPushBut t onW dget O ass
grid,
XmNrow, 1,
XmN\col um, 1,
NULL) ;

chil d2

chil d4

Xt ManageChi | d(gri d);
}

Example 4-2 creates four buttons. The top row has a fixed vertical size, while the bottom
row is resizable. The left column has a fixed size, but the right column can be resized. The

007-2006-130



The SGI Enhanced Widgets

button in the lower right can be resized, but the others cannot. The button in the lower
left cell, which can be resized vertically, floats in the middle of its cell. The button in the

upper right stays to the left of its cell.

Example 4-2 Another Example of Using the Grid Widget

createGid(Wdget parent) {
int n;
Arg args[10];
Wdget grid, chidl1, child2, child3, child4;

n = 0;

Xt Set Arg(args[n], XmNnunRows, 2); n++;

Xt Set Arg(args[n], XmNnunCol umms, 2); n++;

grid = SgCreateGid( parent, "grid", args, n);

SgGri dSet Col umResi zabi lity(grid, 0, 0);
SgGri dSet RowResi zability(grid, 0, 0);

childl = Xt VaCreat eManagedW dget ("chi | d1",
xmPushBut t onW dget d ass,
grid,
XmNr ow, O,
XmNcol um, 0,
NULL) ;
child2 = Xt VaCreat eManagedW dget (" chi | d2",
xmPushBut t onW dget O ass,
grid,
XmNr ow, O,
XmNcol um, 1,
XmN\r esi zeHor i zont al , FALSE,
XmNgravity, WestGravity,
NULL) ;
Xt VaCr eat eManagedW dget (" chi | d3",
xmPushBut t onW dget d ass,
grid,
XmNrow, 1,
XmN\col um, O,
Xm\r esi zeVertical, FALSE,
XmNgravity, CenterGavity,
NULL) ;
Xt VaCr eat eManagedW dget (" chi | d4",
xmPushBut t onW dget d ass,
grid,
XmNrow, 1,

chi I d3

chil d4

007-2006-130

51



4: Using the SGI Enhanced Widgets

XmNcol umm, 1,
NULL) ;
Xt ManageChi | d(gri d);

HTML Viewer Component

52

The HTML viewer component provides the widgets and libraries necessary for
applications to include direct Web access for information from within an application (no
external applications have to be run). Thus, applications can provide direct Web access
to licensing, online help, and information retrieval.

For example, applications can use this component with a form and the post method to
obtain a license for a user on a local or remote server. Also, applications can use the
component to format text and images as read-only text, or provide help to the user.
Figure 4-9 shows an example of the HTML widget.

007-2006-130



HTML Viewer Component

007-2006-130

=.§ Svstem Manager on magicmoose

File

System Administration

About This Svstem
Table of Contents

« Overview
# Zofturare

« Hardwrare and Devices

« Security and Access
Control

» Network and
Clonnectivity

« Files and Data

» System Performance

Software

These tasks allow you to install and remove software
products on vour wor kstation.

@ Sofware IManager

% List Installed Products
% Install a Product

%  Remove aProduct

These tasks allow you to add, remove and update licenses
for software on your workstation,

@ License IManager
% Install alicense
% Removealicense
e

Update a [l icense

Figure 4-9 The HTML Widget

This section covers the following aspects of the HTML viewer component:

* “Overview of the HTML Viewer Components” on page 54

* “Viewer Components” on page 54

* “Supported Tags and Attributes” on page 55

53



4: Using the SGI Enhanced Widgets

Overview of the HTML Viewer Components

Viewer Components

54

The HTML viewer makes the World Wide Web accessible from any application. Prior to
the Web, applications had to develop a protocol for remote help and construct a server to
answer the protocol. Today, however, the Web supplies a predesigned protocol. And the
HTML viewer provides the additional components to implement a Web viewer.

The HTML viewer understands how to render HTML markup language. The viewer is
derived from the widget and class library licensed for the SGI WebMagic authoring
environment. The library allows each application to decide exactly what it needs to
support. This component is not meant to supplant general Web browsers which have
support for things like bookmarks and search engines. However, the HTML viewer
component answers the need for online access to licensing and help.

The viewer ViewKit component uses the Motif widget to access Web sites, a prebuilt GUI,
and provides browsing, navigation, and history control. The ViewKit component
requires the use of C++. It is composed of the following components:

* VkWebVi ewer Base class, which is for programmers who want to provide their
own interface. VkW\bVi ewer Base is, from a widget point of view, just a scrolled
window with a viewer in it. The scrolled window is held in a form. The subclass
uses this form to add the other controls.

* VkWebVi ewer class, which is a more complete browser for an application
programmer that does not want to do a lot of programming with the component.
The include file is / usr /i ncl ude/ VKk/ VkWebVi ewer . h. For example, to create the
widget:
_viewer = new VkWebVi ewer (“Vi ewer”, mai nW ndowW dget());
addVi ew( _vi ewer);

For more information about ViewKit, see the IRIS ViewKit Programmer’s Guide.

007-2006-130



HTML Viewer Component

Supported Tags and Attributes

007-2006-130

Table 4-1 lists the HTML viewer supported tags. The tags are basically all of HTML 2,
selective tags of HTML 3, and extended tags from Netscape and SGI.

Table 4-1 HTML Viewer Tags and Attributes

Tag Attributes

A HREF, TARGET, NAME

AREA HREF, TARGET, COORDS, SHAPE
BASE HREF, TARGET

BASEFONT SIZE (1..7, or exact size such as 24pt)

BLOCKQUOTE, BQ
BR

BODY

CAPTION

DIv

DIR, OL, MENU, UL
DL

DT

FRAME
FRAMESET

FORM

HEAD

HTML

HR

MG

INPUT

BACKGROUND, VLINK, LINK. ALINK, BGCOLOR, TEXT, LANG
ALIGN

ALIGN

START (for OL). See also P, Hn

SRC, NAME, WIDTH, HEIGHT
COLS, ROWS
METHOD, ACTION, TARGET

SIZE, WIDTH, NOSHADE, ALIGN

SRC, NOFLOW, ALT, ALIGN, WIDTH, HEIGHT, BORDER, VSPACE,
CLEAR

NAME, VALUE, TYPE, SIZE, MAXLENGTH, CHECKED

55



4: Using the SGI Enhanced Widgets

56

Table 4-1 (continued)

HTML Viewer Tags and Attributes

Tag Attributes

ISINDEX PROMPT

LI

LISTING Deprecated

MAP NAME

NOBR

NOFRAMES

OPTION VALUE, SELECTED

P Hn CLEAR

PLAINTEXT Deprecated

PRE

SELECT NAME, SIZE, MULTIPLE

TABLE CELLSPACING, CELLPADDING, BORDER, ALIGN, WIDTH,
NOFLOW, CLEAR, BGCOLOR

TD, TH ROWSPAN, COLSPAN, ALIGN, VALIGN, BGCOLOR, NOWRAP

TEXTAREA NAME, ROWS, COLS

TITLE

TR ALIGN, VALIGN, BGCOLOR

WBR

XMP Deprecated

007-2006-130



HTML Viewer Component

007-2006-130

Table 4-2 lists HTML viewer character tags.

Table 4-2 HTML Viewer Character Tags

ADDRESS B BIG
CITE CODE DEN
EM I KBD
FONT SIZE=(0..7)

COLOR="#rrbbgg” 2

S SAMP SMALL
STRIKE STRONG SUB
SUP IT U

UL VAR

a. COLOR="#rrbbgg” or COLOR="colorname”

57






Chapter 5

Window, Session, and Desk Management

This chapter contains these sections:

* “Window, Session, and Desk Management Overview” on page 59 briefly discusses
window;, session, and desk management on Silicon Graphics systems.

¢ “Implementing an Application Model” on page 65 describes how to structure your
application to follow one of the four application models.

¢ “Interacting With the Window and Session Manager” on page 68 describes how to
create windows and interact with the window and session manager.

Window, Session, and Desk Management Overview

This section briefly discusses features of window, session, and desk management on
Silicon Graphics system:

* “Window Management”
* “Session Management”
* “Desk Management”

This section also provides a list of references for further reading on window and session
management.

Window Management

007-2006-130

4Dwm which is based on mvm(the Motif Window Manager), is the window manager
typically used on Silicon Graphics workstations. It provides functions that allow both
users and programmers to control elements of window states such as: placement, size,
icon/normal display, and input-focus ownership. In addition to window management,
4Dwmprovides session and desks management.

59



5: Window, Session, and Desk Management

Chapter 3, “Windows in the IRIX Interactive Desktop Environment,” of the IRIX
Interactive User Interface Guidelines discusses the interactions and behaviors that your
application’s windows should support. “Interacting With the Window and Session
Manager” on page 68 describes how to comply with the style guidelines.

See IRIS Essentials for more information about the features 4Dwmprovides for your
users. See the muT( 1X) and 4Dwr( 1X) reference pages for more information about the
features 4Dwmprovides.

Session Management

This section describes session management and explains how to add it to your
application. Topics include:

e “Overview of Session Management” on page 60
e “Adding Session Management to Your Application” on page 62
e “Setting the WM_COMMAND String” on page 62

* “Saving Session Information to a File” on page 62

Overview of Session Management

60

Session management allows users to log out, and any applications that are running at
logout automatically restart when they log back in. The 4Dwm window manager keeps
a list of the applications and desks that were previously running when the user last
logged out and restarts them when the user logs in again.

For your application to be restarted via the 4Dwmsession manager, the application must
register its initial state with the session manager and make sure the current state is
registered at all times.

Additionally, your application should restart in the same state it was in when the user
logged out (for example, the same windows open, the same files open, and so on). To
support this, you need to design your application so that when the 4Dwmsession
manager restarts it, it can redisplay any of its co-primary or support windows that were
open when the user logged out, reopen any data files that were open, and so on. You can
support this either by providing command-line options to your application or other
mechanisms such as a state file that your application reads when it is launched.

007-2006-130



Window, Session, and Desk Management Overview

Types of Session Management: Continuous and Explicit

007-2006-130

The two types of session management include continuous session management and
explicit session management. Continuous session management restarts the applications
that were running when the user last logged out of the window manager. This is the
default setting.

Explicit session management ignores the windows that were open when the user last
logged out and always opens a particular set of windows that the user has chosen. Users
can configure the windows on the desktop by using the Window Settings Control Panel.
They can launch this panel via the Toolchest. From the Toolchest, open the Desktop
menu, select “Customize,” and then select “Windows.” The Windows Settings dialog
box appears (see Figure 5-1). The “Save Windows & Desks” item on the Window Settings
Control Panel configures either continuous or explicit session management. A user can
select explicit, and then press the “Set Home Session” button to save the (current) explicit
window configuration. Also, users can launch this control panel from the Icon Catalog’s
Control Panel page.

= Window Settings a

Window Settings

Toolchest Orientation: > Hgrizontal
Wertical

Keyboard Focus: > Ciick to type
Paoint to type

Display Windows Overview: [_|
Opaque Window Move: [_]
Auto Window Placement: [¥]

Save Windows & Desks: Continuously

< Explicitly

| Close || Reset...” Help I

The toolchest will appear as a long, thin menubar.

Figure 5-1 Window Settings Control Panel

61



5: Window, Session, and Desk Management

Adding Session Management to Your Application

Applications can communicate with the window manager by setting properties on the
top level window. The WM_COMMAND property gives the window manager the
command line that can be used to re-invoke the application in its current state. The
4Dwm window manager sends a WM_SAVE_YOURSELF message to each window that
subscribes to tell it to update its WM_COMMAND property and then reads in the value.
If the user selects continuous session management, 4Dwm sends the message every 10
minutes and at logout. If the user selects explicit session management, the window
manager only queries the applications when the user presses the “Set Home Session”
button.

Setting the WM_COMMAND String

If you use ViewKit or Xt Appl ni ti al i ze(3Xt), the initial WM_COMMAND string is
set for you when the top level window is realized. Use the xpr op(1) command to make
sure the WM_COMMAND string is set correctly for the top level window. For example:

WV _COMWAND( STRING = { “webmagic”, “/usr/tnp/sgilLook.htm” }

Even if WM_COMMAND is initially set by your toolkit, you need to keep
WM_COMMAND updated if your program changes its state. For instance, if the user
renames a data file or successfully opens a new data file, you need to change the
WM_COMMAND string with the XSet Comrand(3X11):

XSet Command( Di spl ay *di spl ay, Wndow w, char **argv,int argc);

This can be done in the function that changes the state, and is simpler than responding
to the window manager’s WM_SAVE_YOURSELF message.

Saving Session Information to a File

62

If your application already saves state information to a file instead of using the command
line, this “state file” can also be used for session management. To work correctly with the
user’s Windows Control Panel setting, the application should update the file only in
response to the window manager’s WM_SAVE_YOURSELF message (see Example 5-1,
saveyourself.c). This strategy does not work correctly if several instances of your
application are able to run at the same time. Only applications that enforced a “Run
Once” policy can rely on this strategy.

For more information, see the ViewKit reference page, VKkRunOnce( 3x) , and
XSet Command( 3X11) .

007-2006-130



Window, Session, and Desk Management Overview

Debugging Tips

007-2006-130

When debugging:
¢ Usexprop(1l) toseethe WM_COMMAND string property.

¢ Make sure that you use the full pathname for data file arguments, which typically
are not referenced in the user’s path.

¢ If your application has multiple windows, only set WM_COMMAND for the
top-level window.

Example 5-1 Session Management Example Code: saveyourself.c

/* saveyourself.c */
/* */
/* Exanpl e code for handling the wi ndow nanager’s */
/* WM _SAVE_YQURSELF Pr ot ocol */
/* */
/* cc -0 saveyourself saveyourself.c -1 Xm-1| Xt */

#i ncl ude <Xm Protocol s. h>
#i ncl ude <X Label . h>

voi d saveYour Sel f Cal | back(W dget w, XtPointer client_data,
Xt Poi nter call_data)

{
}

printf(“Update state file if needed, then update W/ COMVAND\ n");

void main(int argc, char** argv)
{

W dget toplevel, |abel;

Xt AppCont ext app_cont ext;

At om VWM _SAVE_YOURSELF;

topl evel = XtApplnitialize(&pp_context, “SaveYourSelf”,
NULL, O, &argc, argv, NULL, NULL, 0);

| abel = XnCreateLabel (topl evel, “savene”, NULL, 0);
Xt ManageChi | d( | abel );

WM_SAVE_YOURSELF = Xm nt er nAt on{ Xt Di spl ay(topl evel),

“WWM_SAVE_YOURSELF”
FALSE) ;

63



5: Window, Session, and Desk Management

Reference

Desk Management

64

XmAddWWPr ot ocol Cal | back( toplevel, WV SAVE YOURSELF,
saveYour Sel f Cal | back, NULL );

Xt Real i zeW dget (t opl evel ) ;
Xt AppMai nLoop(app_cont ext);
}

“Handling the Window Manager Save Yourself Protocol” on page 77 describes what
your application needs to do to support session management. “Session Management” in
Chapter 3 of the IRIX Interactive User Interface Guidelines provides further guidelines for
handling session management.

For more information, see Inter-Client Communication Conventions Manual ICCCM). The
ICCCM is reprinted as an appendix in O'Reilly and Associates, X Protocol Reference
Manual, Volume Zero.

Users can use “desks” to create multiple virtual screens. They can assign any primary or
support window to any desk, causing that window to appear in the thumbnail sketch in
the Desks Overview window.

“Desks” in Chapter 3 of the IRIX Interactive User Interface Guidelines discusses the
important development concerns issues relating to desks. Review the information in
“Session Management,” and adhere to the “Session Management Guidelines,” and the
window manager will take care of desks for you.

The key points to keep in mind are:

¢ Transient windows appear on every desk and are not shown in the Desks overview
window—so choose your transient windows carefully.

¢ Application windows that are on a desk other than the current one are in a state
similar to the minimized state—processing continues although the window is no
longer mapped to the screen display. Keep this in mind when selecting which
operations should continue to be processed when your application is in a
minimized state.

¢ Users can select different backgrounds for different desks, so your application
should not create its own screen background.

007-2006-130



Implementing an Application Model

Further Reading on Window and Session Management

For more information on window and session management with 4Dwm refer to the
mw( 1X) and 4Dwn( 1X) reference pages. You may also want to look at IRIS Essentials,
since this book explains important window and session management features to your
users.

For more information on window and session management with Xt, refer to the chapters
on Interclient Communication in these manuals:

*  The X Window Systems Programming and Applications with Xt, OSF/Motif Edition,
Second Edition, by Doug Young

e O'Reilly Volume Four, X Toolkit Intrinsics Programming Manual, OSF /Motif Edition,
by Adrian Nye and Tim O’Reilly

For more information on window and session management with Xlib, refer to the
chapters on Inter-Client Communication in O’Reilly Volume One, XIib Programming
Manual, by Adrian Nye. For more detailed information, refer to the Inter-Client
Communications Conventions Manual (ICCCM). (The ICCCM is reprinted as an appendix
of O’Reilly Volume Zero, X Protocol Reference Manual.)

More detailed information on window properties is available in the OSF/Motif
Programmer’s Guide, in the chapter on “Inter-Client Communication Conventions.”

Implementing an Application Model

007-2006-130

“Application Models” in Chapter 6 of the IRIX Interactive User Interface Guidelines
describes four application models based on four different window categories: main
primary windows, co-primary windows, support windows, and dialogs. It also
describes how to select a model appropriate for your application. This section provides
suggestions for implementing each application model, including recommended shell
types for your primary windows. “Interacting With the Window and Session Manager”
on page 68 describes how to create the windows and get them to look and behave in the
manner described in “Application Window Categories and Characteristics” in Chapter 3
of the IRIX Interactive User Interface Guidelines.

65



5: Window, Session, and Desk Management

Implementing the “Single Document, One Primary” Model

This model is the simplest to implement. You can use the ApplicationShell returned by
Xt Appl nitialize() asyourapplication’s main window. This model requires no
special treatment to handle schemes or for window or session management.

Implementing the “Single Document, Multiple Primaries” Model

The simplest way to implement this model is to use the ApplicationShell returned by
Xt Applnitialize() asyourapplication’s main window. You can create co-primary
windows as popup children of the main window using TopLevelShells. This approach
requires no special treatment to handle schemes or for window or session management.

You can also choose the implement this model using the techniques described in
“Implementing the “Multiple Document, No Visible Main” Model,” although this
requires more work.

Caution: Don’t use Xt AppCr eat eShel | () to create co-primary windows. If you do,
the windows don’t pick up the resources specified in schemes.

Implementing the “Multiple Document, Visible Main” Model

66

Once again, the simplest way to implement this model is to use the ApplicationShell
returned by Xt Appl nitialize() as your application’s main window. You can create
co-primary windows as popup children of the main window using TopLevelShells. This
approach requires no special treatment to handle schemes or for window or session
management.

You can also choose the implement this model using the techniques described in
“Implementing the “Multiple Document, No Visible Main” Model,” although this
requires more work.

Caution: Don’t use Xt AppCr eat eShel | () to create co-primary windows. If you do,
the windows don’t pick up the resources specified in schemes.

007-2006-130



Implementing an Application Model

Implementing the “Multiple Document, No Visible Main” Model

This model requires more careful consideration than the other models. Presumably, the
visible windows can be created and destroyed in any order; therefore it is very difficult
to use one as a main window and have the others be children of it.

Instead, the best solution in this case is to leave the ApplicationShell returned by
Xt Appl nitialize() unrealized. You can then create the visible co-primary windows
as popup children of this invisible shell.

Session management requires a realized ApplicationShell widget so that your
application can store restart information in its XmNargv and XmNargc resources.
Because your application’s visible windows can be created and destroyed dynamically,
you should use ApplicationShells rather than TopLevelShells for your visible windows.
Then you can set the XmNargv and XmNargc resources on any of them. (Another option
would be to use TopLevelShells for the visible windows and then explicitly create and set
WM_COMMAND and WM_MACHINE properties on the windows.)

One complication when using ApplicationShells is that by default, IRIS IM automatically
quits an application when it destroys an ApplicationShell. To avoid this, you must set
each window’s XmNdeleteResponse resource to XmDO_NOTHING, and then explicitly
handle the window manager’s WM_DELETE_WINDOW protocol for each window.
“Handling the Window Manager Delete Window Protocol” on page 76 describes how to
implement these handlers.

Another complication is that the initial values of the XmNargv and XmNargc resources
are stored in the application’s invisible main window rather than a visible window. This
is also true for the XmNgeometry resource if specified by the user. To avoid this, you
should copy these values from the invisible main window to your application’s first
visible window.

Caution: Don’t use Xt AppCr eat eShel | () to create co-primary windows. If you do,
the windows don’t pick up the resources specified in schemes.

007-2006-130 67



5: Window, Session, and Desk Management

Interacting With the Window and Session Manager

Most communication between an application and a window manager takes place
through properties on an application’s top-level windows. The window manager can
also generate events that are available to the application. You can use Xlib functions to
set properties and handle window manager events.

In IRIS IM, shell widgets simplify communications with the window manager. The
application can set most window properties by setting shell resources. Shells also select
for and handle most events from the window manager.

Because this guide assumes that you are programming in IRIS IM rather than Xlib, this
chapter describes the IRIS IM mechanisms for creating windows and interacting with the
window and session manager. Topics include:

¢ “Creating Windows and Setting Decorations”
¢ “Handling Window Manager Protocols”
*  “Setting the Window Title”

¢ “Controlling Window Placement and Size”

For detailed information about setting window properties using shell resources, consult
Chapter 11, “Interclient Communication,” in O'Reilly’s X Toolkit Intrinsics Programming
Manual and Chapter 16, “Interclient Communication,” in the OSF/Motif Programmer’s
Guide. For detailed information about window properties and setting them using Xlib
routines, consult Chapter 12, “Interclient Communication,” in O’Reilly’s XIib
Programming Manual.

Creating Windows and Setting Decorations

68

Chapter 6, “Application Windows,” in the IRIX Interactive User Interface Guidelines
describes several application models based on four different window categories: main
primary windows, co-primary windows, support windows, and dialogs. This section
describes how to implement these window categories with proper window decorations
and window menu entries:

¢ “Creating a Main Primary Window”
* “Creating a Co-Primary Window”

e “Creating a Support Window”

007-2006-130



Interacting With the Window and Session Manager

* “Creating a Dialog”

To properly integrate with the IRIX Interactive Desktop, you need to use the appropriate
shell widget for each widow category. This section describes which shell widget to use
for each window category. Then you need to properly set the shell’s
XmNmwmFunctions resource to control which entries appear in the window menu and
the XmNmwmDecorations resource to remove the window’s resize handles, if
appropriate.

Creating a Main Primary Window

Your application’s main primary window must be an ApplicationShell. Typically, you
use the ApplicationShell widget returned by Xt Appl niti al i ze() as your
application’s main primary window.

You should set the main primary window’s XmNmwmFunctions resource to remove the
“Close” option from the window menu. Also, if you don’t want the user to be able to
resize the window, you should set XmNmwmFunctions to remove the “Size” and
“Maximize” options and set XmNmwmDecorations to remove the resize handles.
Example 5-2 shows how you can create a main primary window and set the resource
values appropriately.

“Main and Co-Primary Windows” in Chapter 6 of the IRIX Interactive User Interface
Guidelines provides guidelines for using main primary windows.

Example 5-2 Creating a Main Primary Window

#i ncl ude <Xml Xm h> /* Required by all Mtif applications */
#i ncl ude <Xml Mwitil. h> /* Required to set wi ndow nenu and decorations */
#i ncl ude <X11/ Shell . h> /* Shell definitions */

void main ( int argc, char **argv )

{
W dget mai NnW ndow;, /* Main w ndow shell w dget */
Xt AppCont ext app; /* An application context, needed by Xt */
Arg args[ 10]; /* Argument |ist */
int n; /* Argunent count */
/*

* |Initialize resource value flags to include all w ndow nmenu options and
* all decorations.
*/

007-2006-130 69



5: Window, Session, and Desk Management

70

long functions = MAM_FUNC_ALL;
I ong handl eMask = MAM_DECOR _ALL;

n = 0;

/*

* The following lines REMOVE itens fromthe w
*/

functions |= MAM FUNC CLCSE;

/* Include the following two lines only if the

functions |= MAM_FUNC_RESI ZE;
functions |= MAM_FUNC MAXI M ZE;

Xt Set Arg(args[n], XnNmmrFuncti ons,

/* Include the following two lines only if the

handl eMask | = MAM_DECOR_RES| ZEH;

Xt Set Arg(args[n], XmNmumrDecor ati ons,

/*
* |Initialize Xt and create shell
*/

mai nW ndow = Xt Applnitialize ( &pp,
&ar gc,

[* o0

ndow manager

menu option */
wi ndow i s *not* resizable */

nmenu option */
"Maxi m ze" menu option */
functions);
wi ndow i s *not* resizable */
Renove resize handl es */

handl eMask) ;

"W ndowTest ",

007-2006-130



Interacting With the Window and Session Manager

Creating a Co-Primary Window

Your application’s co-primary windows should be ApplicationShells or TopLevelShells.
“Implementing an Application Model” on page 65 describes which to choose depending
on your application model. The easiest way to implement these windows are as pop-up
children of the shell widget returned by Xt Appl ni ti al i ze() (which is typically your
application’s main primary window).

If the user can’t quit the application from a co-primary window, you should set the
window’s XmNmwmFunctions resource to remove the “Exit” option from the window
menu. Also, if you don’t want the user to be able to resize the window, you should set
XmNmwmFunctions to remove the “Size” and “Maximize” options and set
XmNmwmDecorations to remove the resize handles. Example 5-3 shows how you can
create a co-primary window and set the resource values appropriately.

Note: The default action when IRIS IM destroys an ApplicationShell is to quit your
application. To avoid this if you are using ApplicationShells for your co-primary
windows, you must set each window’s XmNdeleteResponse resource to
XmDO_NOTHING, and then explicitly handle the window manager’s
WM_DELETE_WINDOW protocol for each window. You might want to follow this
approach even if you use TopLevelShells for co-primary windows so that you can simply
popdown the window instead of deleting it. This can save time if you might redisplay
the window later. “Handling the Window Manager Delete Window Protocol” on page 76
describes how to implement these handlers.

“Main and Co-Primary Windows” in Chapter 6 of the IRIX Interactive User Interface
Guidelines provides guidelines for using co-primary windows.

Example 5-3 Creating a Co-Primary Window

#i ncl ude <Xni Xm h> /* Required by all Mdtif applications */
#include <Xmf Mwritil.h> /* Required to set wi ndow nmenu and decorations */
#i ncl ude <X11/Shell.h> /* Shell definitions */

W dget mai NW ndow, /* Main wi ndow shell w dget */

W dget coPrimary; [* Co-primary wi ndow shell w dget */
Arg args[ 10] ; /* Argument |ist */

int n; /* Argunent count */

/*

* Initialize resource value flags to include all w ndow nmenu options and

007-2006-130 71



5: Window, Session, and Desk Management

* all decorations.
*/

I ong functions = MAM FUNC_ALL;
| ong handl eMask = MAM DECOR_ALL;

[* .00

n = 0,

/*

* The following lines REMOVE itens fromthe w ndow manager nenu.
*/

/* Renove the "Exit" w ndow menu option if users can *not* quit fromthis w ndow */
functions |= MAM_FUNC QU T;
/* Include the following two lines only if the windowis *not* resizable */

functions |= MAM FUNC _RESI ZE; /* Renpve "Size" menu option */
functions |= MAM_FUNC MAXI M ZE; /* Renmpbve "Maxim ze" menu option */

Xt Set Arg(args, XnmNmwnFunctions, functions); n++;

/* Include the following two lines only if the window is *not* resizable */

handl eMask | = MAM_DECOR_RESI ZEH; /* Renpve resize handl es */

Xt Set Arg(args, XmNmwDecor ati ons, handl eMask); n++;

/* You need the following line only if you use an ApplicationShell for the w ndow */

Xt Set Arg(args, XnNdel et eResponse, XnmDO _NOTHI NG); n++;

| *

* Assune that the application has already created a main wi ndow and assigned its w dget
* to the variabl e mai nWndow

*/

coPrimary = Xt Creat ePopupShel |l ( "coPrimary", applicationShell Wdgetd ass,
mai nW ndow, args, n );

[* o0

72 007-2006-130



Interacting With the Window and Session Manager

Creating a Support Window

Support windows are essentially custom dialogs. The easiest way to create a support
window is to use XnCr eat eBul | et i nBoar dDi al og() to create a DialogShell
containing a BulletinBoard widget, or use XnCr eat eFor nDi al og() to create a
DialogShell containing a Form widget. You can then add appropriate controls and

displays as children of the BulletinBoard or Form.

Another advantage to using a DialogShell for support windows is that they

automatically have the proper window menu options and decorations. If you don’t want
the user to be able to resize the window—and you implemented the support window as

a customized dialog—you should set XmNnoResize to “TRUE” to remove the “Size”

and “Maximize” options and to remove the resize handles. Example 5-4 shows how you

can create a support window and set the resource values appropriately.

“Support Windows” in Chapter 6 of the IRIX Interactive User Interface Guidelines provides

guidelines for using support windows.

Example 5-4 Creating a Support Window

#i ncl ude <Xni Xm h> /* Required by all Modtif applications */

#i ncl ude <Xni Mwitil . h> /* Required to set wi ndow nenu and decorations */
#i ncl ude <X11/Form h> /* Formdefinitions */

W dget parent Wndow, /* Parent w ndow of support w ndow */

W dget support Wndow; /* Support w ndow */

Arg args[ 10] ; /* Argunment list */

int n; /* Argunent count */

[* .0

n=0;

/* Include the following line only if the windowis *not* resizable */
Xt Set Arg(args, Xm\noResize, TRUE); n++
support Wndow = XnCr eat eFor nDi al og( par ent Wndow, "supportW ndow', args,

/* Create the window interface... */

007-2006-130

nj;

73



5: Window, Session, and Desk Management

Creating a Dialog

The easiest way to create dialogs is to use the IRIS IM convenience functions such as
XnCr eat eMessageDi al og() and XnTCr eat ePr onpt Di al og() . These functions
automatically set most of the window characteristics required for the IRIX Interactive
Desktop environment.

Dialogs automatically have the proper window menu options and decorations. If you
don’t want the user to be able to resize the dialog, you should set XmNnoResize to
“TRUE” to remove the “Size” and “Maximize” options and to remove the resize handles.
Example 5-5 shows an example of creating a WarningDialog and setting the resource
values appropriately.

Chapter 10, “Dialogs,” in the IRIX Interactive User Interface Guidelines provides guidelines
for using dialogs.

Example 5-5 Creating a Dialog

#i ncl ude <Xni Xm h> /* Required by all Modtif applications */
#i ncl ude <Xni Mwitil . h> /* Required to set wi ndow nenu and decorations */
#i ncl ude <Xnf MessageB. h> /* \Warning dialog definitions */

W dget parent Wndow, /* Parent w ndow of dialog */
W dget di al og; /* Dialog */

Arg args[ 10]; /* Argunment |ist */

int n; /* Argunent count */

[* .0 %]

n = 0;

/* Include the following line only if the windowis *not* resizable */
Xt Set Arg(args, Xm\noResize, TRUE); n++

di al og = XnCreat eWar ni ngDi al og ( parent Wndow, "warningDi al og", args, n);

74 007-2006-130



Interacting With the Window and Session Manager

Handling Window Manager Protocols

This section describes how to handle window manager protocols:

¢ “Handling the Window Manager Quit Protocol”

e “Handling the Window Manager Delete Window Protocol”

¢ “Handling the Window Manager Save Yourself Protocol”

Protocols allow the window manager to send messages to your application. The window

manager sends these messages only if your application registers callback function to
handle the corresponding protocols.

Handling the Window Manager Quit Protocol

007-2006-130

When a user selects the “Exit” option from a window menu, the window manager sends
a Quit message to your application. You should install a callback routine to handle this
event. Example 5-6 demonstrates installing such a callback for the window specified by
mainWindouw.

Example 5-6 Handling the Window Manager Quit Protocol

At om VWM _QUI T_APP = Xml nt ernAt on( Xt Di spl ay( mai nW ndow) ,
"_VWM QU T_APP",
FALSE );
XmAddWWPr ot ocol Cal | back( rai nW ndow, WV QUI T_APP,
qui t Cal | back, NULL );

[* .. %

qui t Cal | back( W dget w, XtPointer clientData,
XmAnyCal | backStruct chs )

{
}

/* Quit application */

Note: You must install the quit callback for each window that contains an “Exit” option
in its window menu. Often the only such window is your application’s main primary
window.

75



5: Window, Session, and Desk Management

The operations performed by the callback function should be the same as those that
occur when the user quits from within your application (for example, by selecting an
“Exit” option from a File menu). Your application can prompt the user to save any files
that are open, to perform any other cleanup, or even to abort the quit.

Handling the Window Manager Delete Window Protocol

76

When a user selects the “Close” option from a window menu, the window manager
sends a Delete Window message to your application. How to handle this message
depends on whether the window is a co-primary window, a dialog, or support window.
(A main primary window should not have a “Close” option on its window menu.)

To handle the Delete Window message with a co-primary window, you should make
sure to set the window’s XmNdeleteResponse resource to XmDO_NOTHING.
Otherwise, IRIS automatically deletes the window and, if the window uses an
ApplicationShell, quits the application.

The callback you install can ask for user confirmation and can decide to comply or not
comply with the request. If it decides to comply, your application can either pop down
or destroy the window. If you think that the user might want to redisplay the window

later, popping down the window is usually the better choice because your application

doesn’t have to re-create it later. Example 5-7 shows an example of installing a callback
to handle the Delete Window message.

Example 5-7 Handling the Window Manager Delete Window Protocol in Co-Primary
Windows

At om WM DELETE_W NDOW = Xm nt er nAt om( Xt Di spl ay(w ndow) ,
"W _DELETE_W NDOW ,
FALSE) ;
XmAddWWPr ot ocol Cal | back( w ndow, \WW DELETE_W NDOW
cl oseCal | back, NULL );

[* .. 0%

cl oseCal | back( Wdget w, XtPointer clientData,
XmAnyCal | backSt ruct cbs )

{
}

/* Delete or pop down wi ndow */

007-2006-130



Interacting With the Window and Session Manager

For support windows and dialogs, you typically want to dismiss the window when the
user selects “Close.” Therefore, the default value of XmNdeleteResponse, XmDESTROY,
is appropriate. Additionally, you should perform whatever other actions are appropriate
for when that support window or dialog is dismissed. Typically, you can accomplish this
by invoking the callback associated with the Cancel button, if it exists. Example 5-8
shows an example of this.

Example 5-8 Handling the Window Manager Delete Window Protocol in Support Windows
and Dialogs

At om WM DELETE_W NDOW = Xm nt er nAt om( Xt Di spl ay(di al og),
"WM _DELETE_W NDOW ,
FALSE) ;
XmAddWWPr ot ocol Cal | back( di al og, WV DELETE_W NDOW
cancel Cal | back, NULL );

[* .00

cancel Cal | back( Wdget w, XtPointer clientData,
XmAnyCal | backStruct chs )

{
}

/* Perform cancel operations */

Handling the Window Manager Save Yourself Protocol

007-2006-130

The “Save Yourself” protocol is part of the session management mechanism. The session
manager sends a Save Yourself message to allow your application to update the
command needed to restart itself in its current state. Currently, the session manager
sends Save Yourself messages before ending a session (that is, logging out) and
periodically while a session is active.

Your application doesn’t need to subscribe to the Save Yourself protocol. Instead, your
application can simply update the XmNargv and XmNargc resources on one of its
ApplicationShells whenever it changes state, for example, when it opens or closes a file.
The session manager re-saves its state information whenever your application changes
these resources. (Actually, the session manager monitors the WM_COMMAND and
WM_MACHINE properties, which are set by the ApplicationShell whenever you change
its XmNargv and XmNargc resources.)

If you decide to use Save Yourself for session management, you can handle the protocol
on any realized ApplicationShell. Don’t use Save Yourself with the unrealized main

77



5: Window, Session, and Desk Management

window of the “Multiple Document, No Visible Main” application model. When the
window manager sends a Save Yourself message to your application, your application
must update the value of the XmNargv and XmNargc resources to specify the command
needed to restart the application in its current state. Once you've updated the XmNargv
and XmNargc resources, the session manager assumes that it can safely kill your
application. Example 5-9 shows how to handle Save Yourself messages.

Note: Your application shouldn’t prompt the user for input when it receives a Save
Yourself message.

Example 5-9 Handling the Window Manager “Save Yourself” Protocol

/* saveyourself.c */
[ * */
/* Exanpl e code for handling the wi ndow nanager’s */
/* WM _SAVE_YOURSELF Pr ot ocol */
/* */
/* cc -0 saveyourself saveyourself.c -1 Xm-1| Xt */

#i ncl ude <Xm Protocol s. h>
#i ncl ude <X Label . h>

voi d saveYour Sel f Cal | back(W dget w, XtPointer client_data,
Xt Poi nter call_data)

{
}

printf(“Update WM COVMMAND or state file\n”);

void main(int argc, char** argv)
{

W dget toplevel, |abel;

Xt AppCont ext app_cont ext;

At om WM _SAVE_YOURSELF;

topl evel = XtApplnitialize(&pp_context, “SaveYourSelf”,
NULL, 0, &argc, argv, NULL, NULL, 0);

| abel = XnTCreatelLabel (topl evel, “savene”, NULL, 0);
Xt ManageChi | d( | abel ) ;

WM_SAVE_YOURSELF = Xml nternAtom( Xt Di spl ay(topl evel),
“VWM_SAVE_YOURSELF”,

78 007-2006-130



Interacting With the Window and Session Manager

FALSE) ;

XmAddWWPr ot ocol Cal | back( toplevel, WM SAVE_YOURSELF,
saveYour Sel f Cal | back, NULL );

Xt Real i zeW dget (t opl evel );
Xt AppMai nLoop(app_cont ext);
}

Your application might not be able to fully specify its state using command line options.
In that case, you can design your application to create a state file to save its state and to
read the state file when it restarts.

Setting the Window Title

To set the title of a main primary window or co-primary window in your application, set
the window’s title resource. If the title you specify uses a non-default encoding,
remember to also set the value of the titleEncoding resource appropriately. For support
windows and dialogs, set the value of the XmNdialogTitle resource.

Choose the title according to the guidelines in the section “Window Title Bar” in
Chapter 3 of the IRIX Interactive User Interface Guidelines. Update the label so that it
always reflects the current information. For example, if the label reflects the name of the

file the user is working on, you should update the label when the user opens a different
file.

Controlling Window Placement and Size

007-2006-130

Users have the option of specifying window placement and size, either through the

- geonet ry option interactively using the mouse, or having applications automatically
place their windows on the screen. To support automatic window placement, your
application should provide default placement information for its main primary and
co-primary windows. (Support windows and dialogs appear centered over their parent
widget if the value of their XmNdefaultPosition resources are TRUE, which is the
default.) You can also specify a default window size, minimum and maximum window
sizes, minimum and maximum aspect ratios, and resizing increments for your windows.
Typically, you should set these resources in your application’s app- def aul t file.

79



5: Window, Session, and Desk Management

Controlling Window Placement

Controlling Window Size

80

You should provide initial values for the window shell’s x and y resources before
mapping the window to specify its default location. The window manager ignores these
values if the user requests interactive window placement or specifies a location using the
- geornet r y option when invoking your application. You should not use the window’s
XmNgeometry resource to control initial window placement, either in your application’s
source code or its app- def aul t file.

“Window Placement” in Chapter 3 of the IRIX Interactive User Interface Guidelines
provides guidelines for controlling window placement.

If the user doesn’t specify a window size and you don’t explicitly set the window size in
your application, the initial size of the window is determined by geometry management
negotiations of the shell widget’s descendents. Typically, the resulting size is just large
enough for all of the descendent widget to fit “comfortably.” Optionally, you can specify
a defaultinitial size for a window by providing initial values for the window’s width and
height resources before mapping the window. You should not use the window’s
XmNgeometry resource to control initial window size, either in your application’s
source code or its app- def aul t file.

You can also set several shell resources to specify minimum and maximum window
sizes, minimum and maximum aspect ratios, and resizing increments for a window:

minHeight and minWidth
The desired minimum height and width for the window.

maxHeight and maxWidth
The desired maximum height and width for the window.

minAspectX and minAspectY
The desired minimum aspect ratio (X/Y) for the window.

maxAspectX and maxAspectY
The desired maximum aspect ratio (X/Y) for the window.

baseHeight and baseWidth
The base for a progression of preferred heights and widths for the
window. The preferred heights are baseHeight plus integral multiples

007-2006-130



Interacting With the Window and Session Manager

of heightInc, and the preferred widths are baseWidth plus integral
multiples of widthInc. The window can’t be resized smaller or larger
than the values of the min* and max* resources.

heightInc and widthInc
The desired increments for resizing the window.

“Window Size” in Chapter 3 of the IRIX Interactive User Interface Guidelines provides
guidelines for controlling window size.

007-2006-130 81






Chapter 6

Customizing Your Application’s Minimized
Windows

Users can minimize (stow) your application’s window on the Desktop, by clicking the
minimize button in the top right corner of the window frame or by selecting “Minimize”
from the Window Menu. When a window is minimized, it is replaced by a 100 x 100 pixel
representation with an identifying label of 13 characters or less. This is referred to as the
minimized or stowed window. (It is also commonly called an icon, but this document
uses the term minimized window to prevent confusing it with the Desktop icon.)

This chapter explains how to put the image of your choice on a minimized window. It
contains these sections:

* “Some Different Sources for Minimized Window Images” discusses different
sources from which you can generate a minimize icon picture.

¢ “Creating a Minimized Window Image: The Basic Steps” gives a step-by-step
explanation of how to customize your minimize icon.

* “Setting the Minimized Window Label” on page 89 describes how to set the label of
your minimized window.

¢ “Changing the Minimized Window Image” on page 89 mentions some special
considerations if you want to change the image in your minimized window while
your application is running.

007-2006-130 83



6: Customizing Your Application’s Minimized Windows

Some Different Sources for Minimized Window Images

84

You can make a minimized window image out of any image that you can display on your
workstation monitor. This means that you can create a picture using showcase or the
drawing/painting tool of your choice, or you can scan in a picture, or you can use the
capt ur e tool to capture of some portion of your application. You can even have an artist
design your minimized window for you. “Choosing an Image for Your Minimized
Window” in Chapter 3 of the IRIX Interactive User Interface Guidelines provides some
guidelines for designing minimized window images.

Figure 6-1 shows some different minimized window images that were created in
different ways. From left to right: the top row shows a scanned-in photograph, a

medi ar ecor der snapshot of the application itself, a scanned-in photograph that was
altered with i np, and scanned-in line art; the bottom row shows a drawing representing
the application, scanned-in line art, and two artist-designed images.

ColorView

Figure 6-1 Minimized Window Image Examples

007-2006-130



Creating a Minimized Window Image: The Basic Steps

Creating a Minimized Window Image: The Basic Steps

It's important for users to be able to easily identify your application’s windows when
they are minimized, so you should define a specific image and label for each primary and
support window in your application. For guidelines on selecting minimize images, see
“Choosing an Image for Your Minimized Window” in Chapter 3 of the IRIX Interactive
User Interface Guidelines.

To make a minimized window image for your application:

1. Create an RGB image. If your image is already in RGB format, then all you have to
do is resize the image to an appropriate size (look at the setting of the
iconlmageMaximum resource in 4Dwmto see the maximum size of the stow icon,
currently 85x67). See “Resizing the RGB Image Using imgworks” on page 88 for
instructions on resizing the image.

If your image is not in RGB format, you must convert it to RGB. One way to do this
is to use the Media Recorder tool to obtain your image. See “Using mediarecorder to
Get an RGB Format Image” on page 86 for instructions.

2. Scale the image to the correct size. See “Resizing the RGB Image Using imgworks”
on page 88 for instructions.

3. Name the image file. The filename should consist of two parts:

¢ The application class name (technically, the res_name field of the WM_CLASS
property). You can determine the class name by using xprop on your
application window and looking at the WM_CLASS property.

e The .i con suffix.

This gives you a name of the form r es_nane. i con. For example, if your
application’s name is “chocolate,” the name of your image file should be:

chocol ate.icon

4. Put the file in the/ usr/ | i b/ i mages directory.

007-2006-130 85



6: Customizing Your Application’s Minimized Windows

Using mediarecorder to Get an RGB Format Image

Taking a Screen Snapshot With mediarecorder

86

You can use the medi ar ecor der tool to capture an image on the screen. To invoke
nedi ar ecor der, enter:

% nedi ar ecor der

An example of the medi ar ecor der tool is shown in Figure 6-2.

File Edit  Jasks

Options

.

noaudio.movie

@ kam.gt

@ somersault.movie
B fig2-11rgo
@ image1.rgh

_@ imagez.rgh

Media: Image Source: Screen Task: Custom Settings..

Figure 6-2 The mediarecorder Tool

You can create a new image file of your minimized window by taking a snapshot of it on

the screen.

1. Display the desired image on the screen.

2. Click the Image menu button and choose “Still Image from Screen.”

007-2006-130



Creating a Minimized Window Image: The Basic Steps

007-2006-130

3. Choose one of the following from the “Still Image from Screen” rollover menu:

¢ Select Area...: Allows you to hold down the left mouse button and drag out a
selection outline to mark the area you wish to record.

*  Window Area...: Allows you to select a particular window on the screen to
record. When you choose this menu item, the cursor changes to resemble a
camera. To choose a window to record, simply click inside of it.

A dashed outline appears on the screen: the space inside the outline is what will be
captured.

Note: To cancel any selection, position the cursor over an edge of the selection
outline and click the right mouse button. To bring the selection outline back once it
is cancelled, select Edit menu and choose “Show Selection Frame.”

Open the Tasks menu, choose Image, and select Screen Snapshot from the Image
rollover menu. The snapshot adjusts the capturing file format and frame size so that
they are ideally suited for a screen snapshot.

Tip: Once you choose Screen Snapshot, you can view those specific settings by
selecting “Show Task Settings” from the Tasks menu.

After you select the area, click the Record button.

If you have the Clip Bin open, the image filename appears in the clip bin as soon as
the snapshot has been taken.

Your file is given a default name and saved in the directory from which you
launched Media Recorder.

To see the image, click the Play button.

If the image looks good, then you're ready to resize it. See “Resizing the RGB Image
Using imgworks” on page 88 for instructions.

See the medi ar ecor der (1) reference page for more information about using
medi ar ecor der. The nedi ar ecor der is described fully in the Digital Media Tools
Guide.

87



6: Customizing Your Application’s Minimized Windows

Resizing the RGB Image Using i ngwor ks

You can use i mgwor ks to resize your RGB image to the appropriate size for a minimized
window image. The maximum size is determined by the value of the
iconImageMaximum resource in 4Dwm which is currently 85x67.

To find the i ngwor ks icon, select “File QuickFind” from the Find toolchest. When the
QuickFind window appears, type:

i mgwor ks

into the text field. The i mgwor ks icon appears in the drop pocket. Drag the icon to the
Desktop and drop it. Then run i mgwor ks by double-clicking the icon.
To resize your image using i mgwor ks, follow these steps:

1. Open your image file by selecting “Open” from the File menu and selecting your
file from the Image Works: Open Image... window. Your image appears in the main
window.

2. To scale the image, select “Scale...” from the Transformations menu. The Image
Works: Scale window appears.

3. Scale the image by typing in an appropriate scale factor. The dimensions of the new
image (in pixels) are listed in the Scale window.

4. When you're happy with the dimensions listed in the Scale window, click the Apply
button. The resized image appears in the main window. Save it by selecting “Save”
from the File menu.

Refer to the i ngwor ks( 1) reference page for more information on i mgwor ks.

88 007-2006-130



Setting the Minimized Window Label

Setting the Minimized Window Label

By default, the 4Dwm window manager reuses the title bar label for the minimized
window label. To explicitly set the label of the minimized window, change the value of
the window’s XmNiconName resource. For example, in your application’s
fusr/1ib/ X11/ app- def aul t s file, type:

appnane*i conNanme: myApp

“Labeling a Minimized Window” in Chapter 3 in the IRIX Interactive Desktop User
Interface Guidelines lists guidelines for choosing a label.

Changing the Minimized Window Image

Your application can also change its minimized window’s image while it is running (for
example, to indicate application status) by setting the window’s XmNiconWindow

resource. However, it can be very difficult to handle color images without causing visual
and colormap conflicts. If you decide to change the image, the image you install should:

1. Use the default visual.

2. Use the existing colormap without creating any new colors (preferably, your image
should use only the first 16 colors in the colormap). This potentially implies
dithering or color quantization of your image.

Note: The 4Dwmwindow manager automatically handles your application’s initial
minimized window image (that is, the image automatically loaded from the
lusr/1ib/inmages directory at application start-up). If you don’t want to change this
image while your application is running, your application doesn’t need to do anything
to support displaying the image properly.

007-2006-130 89






Chapter 7

Interapplication Data Exchange

This chapter describes how to implement the recommended data exchange mechanisms
in your applications. It contains these sections:

¢ “Data Exchange Overview” on page 91 provides a brief description of how the
Primary and Clipboard Transfer Models should work in your application. You
should implement both.

¢ “Implementing the Primary Transfer Model” on page 95 describes how to
implement the Primary Transfer Model in your application.

¢ “Implementing the Clipboard Transfer Model” on page 98 describes how to
implement the Primary Transfer Model in your application.

* “Supported Target Formats” on page 101 provides tables listing the atom names of
supported data formats, along with brief descriptions of what each format is used
for.

¢ “Data Conversion Service” on page 105 describes the service available for
converting files from one data format to another. For details on the process, refer to
Appendix G, “Using GoldenGate Data Conversion Services”.

Data Exchange Overview

007-2006-130

As detailed in Chapter 5, “Data Exchange on the IRIX Interactive Desktop,” in the IRIX
Interactive User Interface Guidelines, Silicon Graphics recommends that your application

support both the Primary and Clipboard Transfer Models. The Primary Transfer Model
allows users to copy data using mouse buttons, whereas the Clipboard Transfer model

allows users to use the “Cut,” “Copy,” and “Paste” options from the Edit menu (or the

corresponding keyboard accelerators) to transfer data.

Note: Silicon Graphics recommends that you not use the IRIS IM clipboard routines for
handling data exchange.

91



7: Interapplication Data Exchange

The data exchange model recommended by Silicon Graphics is based on the standard
mechanisms provided by the X and Xt. You can consult the O’Reilly & Associates book
The X Window System, Volume 4: X Toolkit Intrinsics Programming Manual by Adrian Nye
for more information on the standard Xt data exchange methods.

The following sections describe:

¢ “Primary Transfer Model Overview”

¢ “Clipboard Transfer Model Overview”

¢ “Interaction Between the Primary and Clipboard Transfer Models”

Primary Transfer Model Overview

92

When the user selects some data in an application, the application should highlight that
data and assert ownership of the PRIMARY selection. Until the application loses the
PRIMARY selection, it should then be prepared to respond to requests for the selected
data in various target formats. “Supported Target Formats” on page 101 describes the
standard target formats.

When the user selects data in another application, your application loses ownership of
the PRIMARY selection. In general, when your application loses the primary selection, it
should keep its current selection highlighted. When a user has selections highlighted in
more than one window at a time, the most recent selection is always the primary
selection. This is consistent with the persistent always selection discussed in Section 4.2,
“Selection Actions,” in the OSEF/Motif Style Guide, Release 1.2. There is an exception to this
guideline: those applications that use selection only for primary transfer, for example, the
winterm shell window. The only reason for users to select text in a shell window is to
transfer that text using the primary transfer mechanism. In this case, when the winterm
window loses the primary selection, the highlighting is removed. This is referred to as
nonpersistent selection in Section 4.2, “Selection Actions,” in the OSF/Motif Style Guide,
Release 1.2.

The persistent always selection mechanism allows the user to have data selected in
different applications. The user can still manipulate selected data using application
controls. Furthermore, the user can reassert the selected data as the PRIMARY selection
by pressing <Al t - | nsert >.

007-2006-130



Data Exchange Overview

When the user clicks the middle mouse button (BTransfer) in your application, your
application should attempt to copy the primary selection to the current location of the
mouse pointer. First, your application should request a list of target formats supported
by the primary selection owner. Then your application should select the most
appropriate target format and request the primary selection in that format.

“Supporting the Primary Transfer Model” in Chapter 5 of the IRIX Interactive User
Interface Guidelines further discusses use of the Primary Transfer Model.

Clipboard Transfer Model Overview

007-2006-130

When the user selects the “Copy” option from your application’s Edit menu (or uses the
keyboard accelerator), your application should assert ownership of the CLIPBOARD
selection. Until the application loses the CLIPBOARD selection, it should then be
prepared to respond to requests for the data selected at the time your application took
ownership of the CLIPBOARD selection. (In other words, your application must
somehow store the value of the selection when the user performs the copy action; the
application can then provide this value even if the user subsequently changes the
application’s selection.)

When the user selects the “Cut” option for your application’s Edit menu (or uses the
keyboard accelerator), your application should assert ownership of the CLIPBOARD
selection. Your application must cut the selected data, but it should store the data and be
prepared to respond to requests for the data until it loses ownership of the CLIPBOARD
selection.

When the user selects the “Paste” option for your application’s Edit menu (or uses the
keyboard accelerator), your application should attempt to copy the clipboard selection to
the current location of the location cursor. First, your application should request a list of
target formats supported by the clipboard selection owner. Then your application should
select the most appropriate target format and request the clipboard selection in that
format.

“Supporting the Clipboard Transfer Model” in Chapter 5 of the IRIX Interactive User
Interface Guidelines further discusses use of the Clipboard Transfer Model.

93



7: Interapplication Data Exchange

Interaction Between the Primary and Clipboard Transfer Models

Silicon Graphics recommends that you implement the Primary and Clipboard Transfer
Models so that they operate separately. The only complication is maintaining data in the
PRIMARY selection when the user performs a cut action. Consider the following
example:

1. The user selects data in an application. The application asserts ownership of the
PRIMARY selection.

2. The user performs a cut action. The application asserts ownership of the
CLIPBOARD selection and removes the selected data from the display.

3. The user goes to another application that already has data selected.

4. The user cuts the data selected in the second application. The second application
asserts ownership of the CLIPBOARD selection and removes the selected data from
the display.

The clipboard actions described above should not affect the PRIMARY selection. In this
example, the first application should retain ownership of the PRIMARY selection and
continue to be prepared to respond to requests for the value of the PRIMARY selection.
To support this, the application should somehow store the value of the PRIMARY
selection until it no longer owns the PRIMARY selection.

To properly handle the situation described above, your application should implement
the following:

1. In the function that handles the Clipboard Transfer Model’s cut action, test to see
whether the application owns the PRIMARY selection. If it does, you should
preserve the selected data. If selections in your application are typically small (for
example, ASCII text), you might simply copy the data to a buffer. If selections in
your application are typically large (for example, sound or movie clips), you might
remove the data from the display but retain pointers to it.

2. In the function that handles losing the PRIMARY selection, test to see whether you
have data preserved from a cut action. If so, and the application currently doesn’t
own the CLIPBOARD selection, you should free that data or reset the pointers to it.

94 007-2006-130



Implementing the Primary Transfer Model

Implementing the Primary Transfer Model

Data Selection

007-2006-130

This section describes how to implement support for the Primary Transfer Model in your
application. Topics covered include:

¢ “Data Selection”
¢ “Requests for the Primary Selection”
* “Loss of the Primary Selection”

¢ “Inserting the Primary Selection”

Note: Silicon Graphics recommends that you don’t use the IRIS IM clipboard routines,
because they are not as flexible as the Xt selection routines.

When the user selects data in a window of your application, it should call
Xt OmnSel ection(3Xt) to assert ownership of the PRIMARY selection and highlight
the selected data.

The code fragment in Example 7-1 shows a simple example of asserting ownership of the
PRIMARY selection. For clarity, this example omits code for manipulating the selection
itself (for example, setting up pointers to the selection).

“Selection” in Chapter 7 of the IRIX Interactive User Interface Guidelines discusses
guidelines for allowing users to select data and for hightlighting selected data.

Example 7-1 Asserting Ownership of PRIMARY Selection
Bool ean ownPri nary;
/*

w is window in which selection occurred

event is pointer to event that caused sel ection
>/

voi d dat aSel ect ed( W dget w, XButtonEvent *event)
{

95



7: Interapplication Data Exchange

/*
Assert ownership of PRI MARY sel ecti on.

XA PRI MARY is the slection.

event->tine is tinestanp of the event.

pri mar yRequest Cal | back is the function called
whenever another application requests the
val ue of the PRI MARY sel ecti on.

lostPrimaryCal |l back is the function called whenever
the application | oses the selection.

*/

ownPrimary = Xt OwmnSel ection(w, XA PRI MARY, event->tine,
pri mar yRequest Cal | back,
| ost Pri maryCal | back,
NULL) ;

/*
If we successfully obtai ned ownership, highlight
the data; otherw se, clean up

*/

if (ownPrinmary)
hi ghl i ght Sel ection();
el se
| ost PrimaryCal | back(w, XA_PRI MARY);

Requests for the Primary Selection

96

When you assert ownership of the PRIMARY selection, one of the parameters you pass
to Xt OwnSel ecti on() is a callback function to handle requests for the value of the
PRIMARY selection. When another application requests the value of the PRIMARY
selection, the Xt selection mechanism invokes your application’s callback function.

The requesting application indicates a desired target format. Typically, a requestor first
asks for the special target format TARGETS. Your application should respond with a list
of target formats it supports. The requestor then chooses an appropriate target format
and requests the selection value in that format. “Supported Target Formats” on page 101
describes some of the common target formats your application should support.

007-2006-130



Implementing the Primary Transfer Model

Loss of the Primary Selection

When your application loses the PRIMARY selection and your application follows the
persistent always selection model discussed in “Primary Transfer Model Overview” on
page 92, don’t remove the highlight from any selected data. The user should still be able
to cut or copy any selected data using the Clipboard Transfer Model. If your application
follows the nonpersistent selection model as discussed in “Primary Transfer Model
Overview,” you should remove the highlight.

Your application should also test to see whether you have data preserved from a cut
action (see “Cut Actions” on page 98). If so, and your application currently doesn’t own
the CLIPBOARD selection, you should free that data or reset the pointers to it.
“Interaction Between the Primary and Clipboard Transfer Models” on page 94 describes
the rationale for this procedure.

Note: To comply with the IRIX Interactive User Interface Guidelines, if the user presses
<Al t - I nsert >in your application, you should reassert ownership of PRIMARY for your
application.

Inserting the Primary Selection

007-2006-130

When the user clicks the middle mouse button in your application, it should perform the
steps described below.

1. Your application should ask the owner of the PRIMARY selection for a list of its
TARGETS, using Xt Get Sel ecti onVal ue() with selection PRIMARY and target
TARGETS.

2. Your application should look through the list of supported targets, select the one
that is appropriate for your application, and call Xt Get Sel ect i onVal ue() again
with that new target.

3. If the selection owner does not support TARGETS, then your application should ask
for the target STRING, if it can support that target.

Silicon Graphics recommends that you support STRING, even if your application
doesn’t support text. For instance, a movie player could get the selection as a string
and try to parse it as a filename. That way users could select a filename in a terminal
emulator window and paste it into another application.

97



7: Interapplication Data Exchange

Implementing the Clipboard Transfer Model

Cut Actions

98

This section describes how to implement support for the Clipboard Transfer Model in
your application. Topics include:

¢ “Cut Actions”

¢ “Copy Actions”

¢ “Requests for the Clipboard Selection”
e “Paste Actions”

* “Loss of the Clipboard Selection”

When the user performs a cut action, your application should:
1. Call Xt OmSel ecti on(3Xt) to assert ownership of the CLIPBOARD selection.

2. Remove the selected data from the display. Retain the selected data until your
application loses ownership of the CLIPBOARD selection.

3. Test to see whether the application owns the PRIMARY selection. If it does, you
should preserve the selected data, even after losing ownership of the CLIPBOARD

selection. You should retain the data until your application also loses ownership of
the PRIMARY selection.

If selections in your application are typically small (for example, ASCII text), you
might simply copy the data to a buffer. If selections in your application are typically
large (for example, sound or movie clips), you might remove the data from the
display but retain pointers to it.

The code fragment in Example 7-2 shows a simple example of handling a cut action and
asserting ownership of the CLIPBOARD selection. For clarity, this example omits code
for manipulating the selection itself (for example, setting up pointers to the selection).

Example 7-2 Handling Cut Actions in the Clipboard Transfer Model

Bool ean ownPri nary;
Bool ean pri maryPreserved;
/*
w is window in which selection occurred
event is pointer to event that caused sel ection

007-2006-130



Implementing the Clipboard Transfer Model

*/
voi d sel ectionCut (Wdget w, XButtonEvent *event)
{
. }*
Assert ownership of CLIPBOARD sel ecti on.
XA CLI PBOARD i s the selection.
event->tinme is timestanp of the event.
cl i pboar dRequest Cal | back is the function called
whenever anot her application requests the
val ue of the CLIPBOARD sel ection.
| ostd i pboardCal | back is the function called whenever
the application | oses the selection.
*/
ownCl i pboard = Xt OmSel ection(w, XA CLI PBOARD, event->tine,
cl i pboar dRequest Cal | back,
| ost O i pboar dCal | back,
NULL) ;
i f (ownd i pboard)
{
/*
Retain the selected data until the application |oses
ownershi p of the CLI PBOARD sel ecti on.
*/
preserveCd i pboardSel ection();
/*
If we al so own the PRI MARY sel ection, we need to
preserve the selected data separately so that we can
continue to satisfy requests for the PRI MARY sel ection
even if we | ose the CLI PBOARD sel ecti on.
*/
if (ownPrimary)
primaryPreserved = preservePrimarySel ection();
}
}

007-2006-130 99



7: Interapplication Data Exchange

Copy Actions

When the user performs a copy action, your application should call
Xt OmnSel ection(3Xt) to assert ownership of the CLIPBOARD selection. No other
actions are required.

Requests for the Clipboard Selection

Paste Actions

100

When you assert ownership of the CLIPBOARD selection, one of the parameters you
pass to Xt OmnSel ect i on() isa callback function to handle requests for the value of the
CLIPBOARD selection. When another application requests the value of the CLIPBOARD
selection, the Xt selection mechanism invokes your application’s callback function.

The requesting application indicates a desired target format. Typically, a requestor first
asks for the special target format TARGETS. Your application should respond with a list
of target formats it supports. The requestor then chooses an appropriate target format
and requests the selection value in that format. “Supported Target Formats” on page 101
describes some of the common target formats your application should support.

When the user selects “Paste” from the File menu, your application should:

1. Ask the owner of the CLIPBOARD selection for a list of its TARGETS, using
Xt Get Sel ect i onVal ue() with selection CLIPBOARD and target TARGETS.

2. Look through the list of supported targets, select the one that is appropriate for your
application, and call Xt Get Sel ect i onVal ue() again with that new target.

3. If the selection owner doesn’t support TARGETS, then your application should ask
for the target STRING, if it can support that target.

Silicon Graphics recommends that you support STRING, even if your application
doesn’t support text. For instance, a movie player can get the selection as a string
and try to parse it as a filename. That way users can select a filename in a terminal
emulator window and paste it into another application.

007-2006-130



Supported Target Formats

Loss of the Clipboard Selection

When your application loses the Clipboard selection, don’t remove the highlight from
any selected data. The user should still be able to cut or copy any selected data. Your
application can discard any data it had retained as a result of a cut operation (see “Cut
Actions” on page 98).

Supported Target Formats

Every application should support the TARGETS, TIMESTAMP, MULTIPLE, and STRING
targets. The Xt selection functions support the MULTIPLE targets for you.
XmuConvert St andar dSel ecti on() supports the TIMESTAMP target. (Silicon
Graphics recommends that applications use XmuConver t St andar dSel ecti on()
because it also supports HOSTNAME, NAME, CLIENT_WINDOW, and a variety of
other useful targets.) Your application must support the TARGETS and STRING targets
itself. In addition, Silicon Graphics has defined other targets for data types used by
Silicon Graphics applications and libraries.

The tables that follow list supported target formats:

e Table 7-1 lists target names for audio formats

¢ Table 7-2 shows target names for image formats

* Table 7-3 presents target names for movie formats

e Table 7-4 lists target names for 3D graphics formats

* Table 7-5 shows target names for Silicon Graphics data types

¢ Table 7-6 shows target names for World Wide Web formats

007-2006-130 101



7: Interapplication Data Exchange

Table 7-1 Audio Formats

Name of Atom/Target Description

AIFF_FILE Audio Interchange Format, used on Apple systems.
AIFF_C_FILE Modified version of Apple’s AIFF, compatible with SGI systems.
NEXT_FILE Used on Next and Sun systems.

SD2_FILE Sound Designer 2 format

WAVE_FILE Microsoft Wave format

MPEG_1_AUDIO_FILE MPEG Audio. The name of a file that contains MPEG-1 audio data.
MPEG_1_AUDIO Stream of audio data, in MPEG-1 Stream format.

SGI_AUDIO_FILE The name of a file that contains Silicon Graphics format sound data,
that can be read using libaudiofile. The file is the responsibility of the
receiver, once the selection owner has generated it.

SGI_AUDIO Stream of audio data, readable with the SGI audio library.
Table 7-2 Image Formats

Name of Atom/Target Description

FITS_FILE Flexible Image Transport System

GIF_89 Graphics Interchange Format (streaming bit format)
GIF_89_FILE Graphics Interchange Format (file format)
JFIF_FILE JPEG File Interchange Format

DIB_FILE Microsoft image format

PHOTO_CD_FILE Kodak photo CD

PPM_FILE Portable pixmap format

PNM_FILE Portable anymap format

PGM_FILE Portable graymap format

102 007-2006-130



Supported Target Formats

007-2006-130

Table 7-2 (continued) Image Formats

Name of Atom/Target Description

SGI_RGBIMAGE_FILE The name of a file that contains a Silicon Graphics format image
file. This is an rgb file. The file is the responsibility of the receiver,

once the selection owner has generated it.

SGI_RGBIMAGE The rgb image data stream.
TIFF_FILE Tagged Image File Format
Table 7-3 Movie Formats

Name of Atom/Target Description

APPLE_QUICKTIME_FILE Apple Quicktime[ format

AVID_OMFI_FILE AVID OMFIJ

AVI_FILE Microsoft AVI format
MPEG_1_VIDEO_FILE Motion Picture Experts Group MPEG-1 file
MPEG_1_VIDEO Stream format

MPEG_1_SYSTEMS_FILE Motion Picture Experts Group MPEG-1 systems file

MPEG_1_SYSTEMS Stream format
SGI_MOVIE_FILE SGI movie format
SGI_MOVIE Stream format

Table 7-4 3D Graphics Formats

Name of Atom/Target Description
INVENTOR_2_1 SGI Open Inventor V2.1 data
INVENTOR_2_1_FILE SGI Open Inventor V2.1 file
AUTODESK_DXF_FILE AUTODESK DXFO
AUTODESK_3DS_FILE AUTODESK 3DSO
ALIAS_FILE Alias wire file

IGES_FILE IGES file

103



7: Interapplication Data Exchange

Table 7-4 (continued) 3D Graphics Formats

Name of Atom/Target Description

PIXAR_RIB_FILE Pixar Renderman .RIB file
SOFTIMAGE_HRC_FILE Softimage .hrc file
SOFTIMAGE_DSC_FILE Softimage .dsc file
WAVEFRONT_OBJ_FILE Wavefront .OB]J file

VRML_1_0_FILE VRML 1.0 file

Table 7-5 Additional Data Types Supported by Silicon Graphics

Name of Atom/Target Description

INVENTOR Synonym for INVENTOR_2_0.
_SGI_RGB_IMAGE_FILENAME Replaced by SGI_RGBIMAGE_FILE.
_SGI_RGB_IMAGE Replaced by SGI_RGBIMAGE.
_SGI_AUDIO_FILENAME Replaced by SGI_AUDIO_FILE.
_SGI_AUDIO Replaced by SGI_AUDIO.
_SGI_MOVIE_FILENAME Replaced by SGI_MOVIE_FILE.
_SGI_MOVIE Replaced by SGI_MOVIE.
SGI_SHOWCASE_FILE Name of file containing SGI Showcase data.

Caution: Xtimplements a timeout when transferring data using the selection
mechanism. The default is five seconds. Often, this is inadequate for applications
transferring audio, image, or movie data. Therefore, if your application supports
receiving such selections, you should call Xt AppSet Sel ect i onTi meout () to change
the timeout to a larger value.

104 007-2006-130



Data Conversion Service

Table 7-6 World Wide Web Targets

Type of Atom/Target Description
HTML Hypertext Markup Language as an ASCII Stream.
HTML_FILE Name of the file containing HTML.

Note: Silicon Graphics applications should also support the generic X11/ICCCM targets
such as STRING and COMPOUND_TEXT.

Data Conversion Service

007-2006-130

Silicon Graphics provides GoldenGate data conversion service to help you convert data
from one format to another, offloading the responsibility for data conversion from your
application. See Appendix G, “Using GoldenGate Data Conversion Services”, for more
information.

The GoldenGate conversion service consists of four elements:

e the header file,/ usr/i ncl ude/ convert/ SgCvt . h

e the conversion library, | i bcvt . so

e the converter registry file, / et ¢/ Converter Regi stry

e aset of pluggable converters

The header file and library provide the Application Programmatic Interface (API) for the
service. The converter registry file describes the converters available to the service. The
actual code for the converters is stored in separate Dynamic Shared Objects (DSOs).

When an application program tries to access a converter, the service dynamically loads
the associated DSO.

The GoldenGate API uses Digital Media parameter-value lists to describe data formats.

See the IRIS Media Libraries Programming Guide for information on how to use the Digital
Media library to create and manipulate digital media parameter-value lists.

105



7: Interapplication Data Exchange

The Converter Registry

The converter registry contains entries describing each converter available to the service.
Each converter entry lists the data format that the converter takes as input, the format
that the converter produces as output, and information that allows the service to locate
the converter code.

The converter registry can also contain entries defining pipelines. A pipeline is a set of
converters connected in series, with the output of one converter feeding the next. As far
as application programs are concerned, a pipeline is just another converter.

The GoldenGate API

All programs using the GoldenGate API should include the | i bSgCvt header file:
#i ncl ude <convert/ SgCvt. h>

The GoldenGate API uses a fairly simple programming model. For application
programs, the most complicated part of the conversion process is picking an appropriate
converter.

Once the application program has picked a converter, it initializes the conversion
pipeline, and proceeds to send data through the pipeline. The pipeline is a “black box.”
It may consist of one converter, or several converters running in series. The API for
application programs using the service is described in Appendix G, “Using GoldenGate
Data Conversion Services”.

Converters, on the other hand, must read data from the pipeline, convert it, and write
data back to the pipeline. Again, the pipeline is a black box. A converter can't tell if its
input is coming from another converter, or from an application program. Likewise, it
can’t tell if its output is going to another converter or back to the application program.
Designing converters is discussed in Appendix G, “Using GoldenGate Data Conversion
Services”.

106 007-2006-130



Chapter 8

FAM Overview

007-2006-130

Monitoring Changes to Files and Directories

The File Alteration Monitor (FAM) monitors changes to files and directories in the
filesystem and notifies interested applications of these changes. Your application can use
FAM to get an up-to-date view of the filesystem rather than having to poll the filesystem.
This chapter describes the required libraries and provides a basic list of steps for using
FAM. For more detailed information, refer to the f an{ 1M and FAM 3X) reference

pages.
This chapter contains these sections:

* “FAM Overview” on page 107 provides an overview to FAM including the libraries
and header files needed to use FAM in your application.

¢ “The FAM Interface” on page 109 describes the FAM APL
* “Using FAM” on page 118 provides a simple example demonstrating FAM.

Typically, if applications need to monitor the status of a file or directory, they must
periodically poll the filesystem. FAM provides a more efficient and convenient method.

FAM consists of the FAM daemon, f am and a library for interacting with this daemon.
An application can request f amto monitor any files or directories in the filesystem. When
f amdetects changes to these files, it notifies the application.

This section provides an overview of FAM and describes:

e “Theory of Operation” on page 108
e “FAM Libraries and Include Files” on page 108

107



8: Monitoring Changes to Files and Directories

Theory of Operation

FAM uses i non, a pseudo device, to monitor filesystem activity on your system on a
file-by-file basis. You can refer to the i non( 7) reference page for more information on
its operation, but you should not attempt to access i non directly.

When you provide FAM with the name of a file or directory to monitor, FAM passes the
request to i mon, which begins monitoring the inode corresponding to the pathname.
When i non detects a change to an inode that it is monitoring, it notifies FAM, which
matches the inode to a corresponding filename. FAM then generates a FAM event on a
socket. Your application can either monitor the socket or periodically poll FAM to detect
FAM events.

This difference between FAM and i non can produce some unexpected results. For
example, if a user moves a file, FAM reports that the file is deleted. The reason is that
FAM monitors files by name and not inode, so it doesn’t know that the file still exists.

Note: Unlike local files and directories, FAM monitors NFS-mounted files and
directories by name rather than by inode.

As another example, consider the case where FAM is monitoring a file. If the user deletes
the file, FAM correctly reports that fact. Then FAM polls the directory every few seconds
to see if the file has been created. If you need to detect the creation of a given file by name,
you may want to monitor the directory in which it will be created and watch for FAM
events notifying the creation of a file by that name in the directory.

Whenever FAM is asked to monitor a file/directory that resides on a remote (NFS)
filesystem, FAM tries to make a connection to the FAM on the NFS server. If it succeeds,
it asks the server fam to monitor the file. The server FAM sends FAM events, and the
original FAM translates those events to a form its client can use. If FAM can’t connect to
FAM on the server, it monitors the file itself by polling every few seconds. Polling over
NFS has a high overhead.

FAM Libraries and Include Files

108

The FAM interface routines are in the | i bf amlibrary. | i bf amdepends on thel i bC
library. Be sure to specify - | f ambefore - | Cin the compilation or linking command. If

007-2006-130



The FAM Interface

you are using fam from a C++ program, | i bCis included automatically. You must
include | i bCif you are using fam from a C program.

You must include <f am h> in any source file that uses FAM. You must also include
<sys/ sel ect . h>if you use the sel ect (2) system call.

The FAM Interface

Opening and Closing

007-2006-130

This section describes the functions you use to access FAM from your application:
* “Opening and Closing a FAM Connection” on page 109

* “Monitoring a File or Directory” on page 110

* “Suspending, Resuming, and Canceling Monitoring” on page 111

* “Detecting Changes to Files and Directories” on page 112

e “FAM Examples” on page 116

a FAM Connection

The function FAMOpen() opens a connection to f am
i nt FAMOpen(FAMConnection* fc)

FAMOpen() returns 0 if successful and -1 if unsuccessful. FAMOpen() initializes the
FAMConnection structure passed to it, which you must use in all subsequent FAM
procedure calls in your application.

An element of the FAMConnection structure is the file descriptor associated with the
socket that FAM uses to communicate with your application. You need this file descriptor
to perform sel ect () operations on the socket. You can obtain the file descriptor using
the FAMCONNECT! ON_GETFD() macro:

FAMCONNECTI ON_GETFID( fc)

The function FAMOpen?2 tells FAM the application’s name:
i nt FAMOpen2( FAMConnecti on* fc, const char* appNane)

FAM uses appName when it prints debugging messages.

109



8: Monitoring Changes to Files and Directories

The function FAMC ose() closes a connection to f am
i nt FAMO ose( FAMConnect i on* fc)

FAMCl ose() returns 0 if successful and -1 if unsuccessful.

Monitoring a File or Directory

110

FAMVbni t or Di rect or y() and FAMVbni tor Fi | e() tell FAM to start monitoring a
directory or file respectively:

i nt FAMVbni t or Di rect or y( FAMConnecti on *fc,
char *filename,
FAMRequest * fr,
voi d* userData)

i nt FAMVbni t or Fi | e( FAMConnection *fc,
char *filename,
FAMRequest * fr,
voi d* userData)

FAMVDni t or Di r ect or y() monitors not only changes that happens to the contents of
the specified directory file, but also to the files in the directory. If the directory contains
subdirectories, FAMVbni t or Di r ect or y() monitors changes to the subdirectory files,
but not the contents of those subdirectories. FAMVbni t or Fi | e() monitors only what

happens to the specified file. Both functions return 0 if successful and -1 otherwise.

The first argument to these functions is the FAMConnection structure initialized by
FAMOpen( ) . The second argument is the full pathname of the directory or file to monitor.
Note that you can’t use relative pathnames.

The third argument is a FAMRequest structure that these functions initialize. You can
pass this structure to FAMSuspendMbni t or () , FAMResumeMbni t or (), or
FAMCancel Moni t or () torespectively suspend, resume, or cancel the monitoring of the
file or directory. “Suspending, Resuming, and Canceling Monitoring” on page 111
further describes these functions.

The fourth argument is a pointer to any arbitrary user data that you want included in the
FAMEvent structure returned by FAMNext Event () when this file or directory changes.

007-2006-130



The FAM Interface

FAM then generates FAM events whenever it detects changes in monitored files or
directories. “Detecting Changes to Files and Directories” on page 112 describes how to
detect and interpret these events.

Two similar routines are FAMVbni t or Di r ect or y2() and FAMVbni t or Fi | e2():

i nt FAMMbnitorDirectory2(FAMConnection *fc,
char *filenane,
FAMRequest* fr);

i nt FAMMVbni torFil e2( FAMConnection *fc,
char *fil enane,
FAMRequest* fr);

In these routines, the caller picks the request number, not| i bf am The caller specifies the
request number by putting it in the FAMRequest before calling the routine. For example:

FAMConnection fc;
FAMRequest frq;

frg.regnum = sone_nunber _associ ated_with_tnp;
if (FAMnitorDirectory2(&c, “/tnmp”, & rq) < 0)
perror(“can’t nonitor /tnp”);

If you use the -2 routines, you must choose unique request numbers. See
FAMAcknowledge below.

It’s up to you to determine which routines to use: the -2 routines or the original routines.

Suspending, Resuming, and Canceling Monitoring

007-2006-130

Once you've begun monitoring a file or directory, you can cancel monitoring or
temporarily suspend and later resume monitoring.

FAMBuspendMoni t or () temporarily suspends monitoring a file or directory.
FAMResumeMoni t or () resumes monitoring the file or directory. Suspending file
monitoring can be useful when your application does not need to display information
about a file (for example, when your application is iconified).

111



8: Monitoring Changes to Files and Directories

Note: FAM queues any changes that occur to the file or directory while monitoring is
suspended. When your application resumes monitoring, FAM notifies it of any changes.

The syntax for these functions is:
i nt FAMBuspendMbni t or (FAMConnection *fc, FAMRequest *fr);

i nt FAMResumeMoni t or (FAMConnection *fc, FAMRequest *fr);

fc is the FAMConnection returned by FAMOpen( ) , and fr is the FAMRequest returned by
either FAMVoni t or Fi | e() or FAMVbni t or Di r ect or y() . Both functions return 0 if
successful and -1 otherwise.

When your application is finished monitoring a file or directory, it should call
FAMCancel Moni tor():

i nt FAMCancel Moni t or (FAMConnection *fc, FAVRequest *fr)

FAMCancel Moni t or () instructs FAM to no longer monitor the file or directory
specified by fr. It returns 0 if successful and -1 otherwise.

After you call FAMCancel Moni t or () , FAM sends a FAMAcknowledge event. When
you've seen the FAMAcknowledge event, you know it’s safe to re-use the request
number (if you're using the -2 form monitoring routines).

Detecting Changes to Files and Directories

112

Whenever FAM detects changes in files or directories that it is monitoring, it generates a
FAM event. Your application can receive FAM events in one of two ways:

The Select approach
Your application performs a sel ect (2) on the file descriptor in the
FAMConnection structure returned by FAMOpen() . When this file
descriptor becomes active, the application calls FAMNext Event () to
retrieve the pending FAM event.

The Polling approach
Your application periodically calls FAMPendi ng() (typically when the
system is waiting for input). When FAMPendi ng() returns with a
positive return value, your application calls FAMNext Event () to
retrieve the pending FAM events.

007-2006-130



The FAM Interface

007-2006-130

FAMPendi ng() has the following syntax:
i nt FAMPendi ng( FAMConnect i on *fc)

It returns 1 if there is a FAM event queued, 0 if there is no queued event, and -1 if there
is an error. FAMPendi ng() returns immediately (that is, it does not wait for an event).

Once you have determined that there is a FAM event queued, whether by using the select
or polling approach, call FAMNext Event () to retrieve it:

i nt FAMNext Event (FAMConnection *fc, FAMEvent *fe)

FAMNext Event () returns 0 if successful and -1 if there is an error. The first argument to
FAMNext Event () is the FAMConnection structure initialized by FAMOpen( ) . The
second argument is a pointer to a FAMEvent structure, which FAMNext Event () fillsin
with information about the FAM event. The format of the FAMEvent structure is:

typedef struct {
FAMConnect i on* fc;
FAMRequest fr;
char *hostname;
char filename[ PATH_MAX] ;
voi d *userdata;
FAMCodes code;
} FAMEvent;

fc is the FAMConnection structure initialized by FAMOpen() .

fr is the FAMRequest structure returned by either FAMMbni t or Fi | e() or

FAMVDni t or Di r ect or y() when you requested that FAM monitor the file or directory
that changed.

hostname is an obsolete field. Don’t use it in your applications.

filename is either the full pathname of the file or directory that you monitored or the name
of a file in a directory that you monitored.

userdata is the arbitrary data pointer that you provided when you called either
FAMVbni t or Fi | e() or FAMVbni t or Di rect or y() to monitor this file or directory. If
you used the -2 routine, FAMVbni t or Di rect or y2() or FAMMVbni tor Fi | e2(),
userdata is undefined.

code is an enumerated value of type FAMCodes that describes the change that occurred.
It can take any of the following values:

113



8: Monitoring Changes to Files and Directories

Symbolic Links

114

FAMChanged Some value of the file or directory that can be obtained with | st at (2)
changed.

FAMDeleted A file or directory being monitored was deleted.

FAMStartExecuting
A monitored, executable file started executing. The event occurs only the
first time the file is executed.

FAMStopExecuting
A monitored, executable file that was running finished. If multiple
processes from an executable are running, this event is generated only
when the last one finishes.

FAMCreated A file was created in a directory being monitored.

FAMAcknowledge
FAM generates a FAMAcknowledge event in response to a call to
FAMCancel Moni t or () . If you specify an invalid request, that is, a

relative path, FAM automatically cancels the request and immediately
sends a FAMAcknowledge event.

FAMEXxists When the application requests that a file be monitored, FAM generates
a FAMEXxists event for that file (if it exists). When the application
requests that a directory be monitored, FAM generates a FAMExists
event for that directory (if it exists) and every file contained in that
directory.

FAMEndExist When the application requests a file or directory be monitored, FAM
generates a FAMEndExist event after the last FAMExists event.
(Therefore if you monitor a file, FAM generates a single FAMEXxists event
followed by a FAMEndExist event.)

Note: Prior to IRIX 6.2, FAMNext Event () did notinitialize the filename
field in a FAMEndExist event. You should use the request number to
find the file or directory these events reference.

If you specify the pathname of a symbolic link to FAMvbni t or Di rect ory() or
FAM\Vbni t or Fi | e() , FAM monitors only the symbolic link itself, not the target of the
link. Although it might seem logical to automatically monitor the target of a symbolic
link, consider that if the target is on an automounted filesystem, monitoring the target

007-2006-130



The FAM Interface

007-2006-130

triggers and holds an automount. Another reason to monitor the link instead of the target
is that the target may not exist.

There is no general solution for monitoring targets of symbolic links. You might decide
that it’s appropriate for your application to monitor a target even if it's automounted.

Tip: Thel i bc routiner eal pat h( 3C) is useful when you need to resolve a link into its
ultimate target.

Tip: Use st at vf s(2) to recognize a remote file.

On the other hand, to avoid triggering and holding an automount, you can manually
follow symbolic links until you reach either a local target, which you can then monitor,
or a non-existent filesystem, in which case you might decide not to monitor the target.
Another option is to test the target once to see if it is local, which triggers an automount
only once if the target is automounted.

For example, the following routine determines if a given path is nonexistent, a dangling
link, local, or remote.

#i ncl ude <errno. h>
#include <linmts. h>

#i ncl ude <stdlib. h>

#i ncl ude <sys/stat.h>

#i ncl ude <sys/statvfs. h>

/*
* determine a file's location
*/

enum | ocation { ERROR, NONEXI STENT, DANGLI NG, LOCAL, REMOTE };

enum | ocati on
file_location(const char *path)
{

char target_pat h[ PATH MAX] ;

struct stat statbuf;

struct statvfs svfsbuf;

if (!real path(path, target_path))

115



8: Monitoring Changes to Files and Directories

FAM Examples

116

{
/*
* realpath failed -- probably a permni ssion
* problem dangling link or nonexistent file.
*/
if (errno == EACCES)
return ERROR
if (Istat(path, &statbuf) == 0)
return DANGLI NG
else if (errno == ENOCENT)
return NONEXI STENT;
el se
return ERROR
}
/*
* Real path succeeded. Find out if file is local.
*/

if (statvfs(target _path, &svfsbuf) < 0)
return ERROR,

if (svfsbuf.f_flag & ST_LOCAL)
return LOCAL;

el se
return REMOTE;

The following examples show event streams that FAM sends in certain situations.

Example: A client monitors an existing file. Later, another program appends data to the
file. Even later, the client cancels the monitoring request.

User calls FAMMbnitorFile(... “/alb/c” ...)
FAM event s: FAMEXi st s /alblc
FAMENdEXi st /alblc
O her program appends to file.
FAM event : FAMChanged /alblc
User calls FAMCancel Monitor(...)
FAM event : FAMAcknow edge /al/b/c

007-2006-130



The FAM Interface

007-2006-130

Example: A client monitors a directory containing two files. Later, another program
creates a third file.

User calls FAMVbnitorDirectory(... “/a/b” ...)
FAM event s: FAMEXi st s lalb

FAMEXi st s file_one

FAMEX| st s file two

FAMVENdEXi st lalb
Third file created.

FAMCr eat ed file_three

Example: A client monitors an executable file which is already running. Later, the
program exits.

User calls FAMVbnitorFile(... “/alb/prograni ...)
FAM event s: FAMEXi st s / al b/ program
FAMVENdEXi st / al b/ program

FAMSt art Executi ng / a/ b/ program
Program exits.
FAM event : FAMSt opExecut i ng /al/ b/ program

Example: A client makes an invalid request.

User calls FAMVbnitorDirectory(... “relative/path” ...)
FAM event : FAMAcknowl edge relative/path

Example: A client monitors a nonexistent file. Later, another program creates the file.

User calls FAMVbnitorFile(... “/albl/c” ...)
FAM event s: FAMDel et ed /alblc
FAMENndEXi st
File is created.
FAM event : FAMCr eat ed [alblc

Example: A client monitors a directory containing some files. Another program deletes
the directory, then creates a new file with the same name as the directory.

User calls FAMVbnitorDirectory(... “/a/b” ...)
FAM event s: FAMEXi st s /alb
FAMEXi st s file_one
FAMEXi st s file two
FAMVENndEXi st lalb
Directory and files are del eted.
FAM event s: FAMDel et ed lalb
FAMChanged /alb
FAMDel et ed file_one

117



8: Monitoring Changes to Files and Directories

Using FAM

FAMDel et ed file_two
File with same nane created.
FAM event s: FAMCr eat ed /alb
FAMChanged /alb

As noted in “Detecting Changes to Files and Directories” on page 112, your application
can check for changes in files in directories that it monitors in two ways:

e usesel ect () towait until the FAM socket is active, indicating a change, which is
described in “Waiting for File Changes.”

* use FAMPendi ng() to periodically poll FAM, which is explained in “Polling for
File Changes.”

This section describes how to use both approaches.

Waiting for File Changes

118

Follow these steps to use FAM in your application, using the select approach to detect
changes:

1. Call FAMODpen() to create a connection to f am This routine returns a
FAMConnection structure used in all FAM procedures.

2. Call FAMVbni tor Fil e() and FAMVobni t or Di rect ory() to tell f amwhich files
and directories to monitor.

3. Select on the f amsocket file descriptor and call FAMNext Event () when the f am
socket is readable.

4. When the application is finished monitoring a file or directory, call
FAMCancel Moni t or () . If you want to temporarily suspend monitoring of a file or
directory, call FAMSuspendMni t or () . When you're ready to start monitoring
again, call FAMResumeMni t or () .

5. When the application no longer needs to monitor files and directories, call
FAMCl ose() to release resources associated with files still being monitored and to
close the connection to f am This step is optional if you simply exit your
application.

007-2006-130



Using FAM

Example 8-1 demonstrates this process in a simple program.

Example 8-1 Using Select With FAM

/*
* nmonitor.c -- nonitor arbitrary file or directory
* usi ng fam
*/

#i ncl ude <fam h>

#i ncl ude <stdio. h>

#i ncl ude <stdlib. h>

#i ncl ude <sys/stat.h>
#i ncl ude <sys/sel ect. h>

/* event _nane() - return printable nane of fam event code */

const char *event _nanme(int code)

{

static const char *famevent[] = {
" FAMChanged",
"FAMDel et ed",
" FAMSt ar t Execut i ng",
" FAMSt opExecut i ng"”,
" FAMCr eat ed",
"FAMVbved",
"FAMAcknowl edge",
" FAMEXi sts",
" FAMEndExi st "

}

static char unknown_event[ 10];

if (code < FAMChanged || code > FAMEndEXxi st)
{

sprintf(unknown_event, "unknown (% )", code);
return unknown_event;

}

return fanmevent[code];

}

void main(int argc, char *argv[])

007-2006-130 119



8: Monitoring Changes to Files and Directories

int i, nmon, rc, famfd;
FAMConnection fc;
FAMRequest *frp;

struct stat status;
FAMEvent fe;

fd_set readfds;

/* Allocate storage for requests */

frp = malloc(argc * sizeof *frp);

if (!frp)

{
perror("malloc");
exit(1l);

}

/* Qpen fam connection */

if ((FAMOpen(&fc)) < 0)
{
perror("fant);
exit(1);
}

/* Request nonitoring for each program argunent */

for (nmon =0, i =1; i < argc; i++)
{
if (stat(argv[i], &status) < 0)
{
perror(argv[i]);
status.st_node = 0;
}

if ((status.st_node & S IFMI) == S | FDI R
rc = FAMMonitorDirectory(&c, argv[i], frp + i,
NULL) ;
el se
rc = FAMbnitorFile(& c, argv[i], frp + i, NULL);
if (rc <0)

120 007-2006-130



Using FAM

perror("FAWbnitor failed");
conti nue;

}

nnon++;

if (!nnon)

{
fprintf(stderr, "Nothing nonitored.\n");
exit(1);

}

/* Initialize select data structure */

fam fd = FAMCONNECTI ON_GETfd( &f c);
FD_ZERQ( &r eadf ds) ;
FD SET(fam fd, &readfds);

/* Loop forever. */

whi | e(1)
{
if (select(famfd + 1, &readfds,
NULL, NULL, NULL) < 0)

{
perror("select failed");
exit(1);
}
if (FD_I SSET(fam fd, &readfds))
{
i f (FAWNext Event (& c, & e) < 0)
{
perror (" FAVNext Event");
exit(1);
}
printf("%24s %\n", fe.filenaneg,
event _nane(fe.code));
}

007-2006-130 121



8: Monitoring Changes to Files and Directories

Polling for File Changes

122

Follow these steps to use FAM in your application, using the polling approach to detect

changes:

1. Call FAMOpen() to create a connection to f am This routine returns a
FAMConnection structure used in all FAM procedures.

2. Call FAMVbni torFil e() and FAMVoni t or Di rect ory() to tell f amwhich files
and directories to monitor.

3. Call FAMPendi ng() to determine when there is a pending FAM event and then call
FAMNext Event () when an event is detected.

4. When the application is finished monitoring a file or directory, call
FAMCancel Moni t or () . If you want to temporarily suspend monitoring of a file or
directory, call FAMSuspendMni t or () . When you're ready to start monitoring
again, call FAMResunmeMni t or () .

5. When the application no longer needs to monitor files and directories, call

FAMCl ose() to free resources associated with files still being monitored and to
close the connection to f am This step is optional if you simply exit your
application.

For example, you could use the polling approach in the noni t or . ¢ program listed in
Example 8-1 by deleting the code pertaining to the select data structure and replacing the
whi | e loop with the code shown in Example 8-2, which demonstrates this process in a
simple program.

Example 8-2 Polling With FAM

whi | e(1)
{
rc = FAMPendi ng( &f c);
if (rc == 0)
br eak;
else if (rc == -1)

perror (" FAVPendi ng");

i f (FAWNext Event (& c, & e) < 0)

{
perror (" FAVNext Event");
exit(1);

}

printf("% 24s %\n", fe.fil enane,

event _nane(fe.code));

007-2006-130



Using FAM

007-2006-130

}

This is a particularly useful approach if you want to poll for changes from within an Xt
work procedure. Example 8-3 shows the skeleton code for such a work procedure.

Example 8-3 Polling FAM Within an Xt Work Procedure

Bool ean nonitorFil es(XtPointer clientData)

{
int rc = FAMPendi ng(&fc);

if (rc == 0)
return(FALSE);
else if (rc == -1)
Xt AppEr r or (app_cont ext, "FAMPendi ng error");

i f (FAWNext Event (& c, & e) < 0)
{

}

handl eFi | eChange(fe);
ret ur n( FALSE) ;

Xt AppEr ror (app_context, "FAWMNextEvent error");

123






Chapter 9

Providing Online Help With SGIHelp

This chapter describes how to use the Silicon Graphics online help system, SGIHelp, to
deliver the online help for your product. It describes how to prepare the help and
integrate it into your application. It contains the following sections:

¢ “Overview of SGIHelp” on page 126 provides an overview of the help system.
¢ “The SGIHelp Interface” on page 129 describes the SGIHelp APL

¢ “Implementing Help in an Application” on page 133 provides some examples of
implementing online help in an application.

e “Application Helpmap Files” on page 138 describes the format and use of
application helpmap files.

¢ “Writing the Online Help” on page 145 describes how to write the source files
containing your application’s online help.

* “Producing the Final Product” on page 150 describes how to compile your help files
into viewable form and package them for installation on your users’ systems.

¢ “Bibliography of SGML References” on page 152 list additional references.

The section “Online Help” in Chapter 4 of the IRIX Interactive User Interface Guidelines
provides interface and content guidelines for adding online help to your application.

007-2006-130 125



9: Providing Online Help With SGIHelp

Overview of SGIHelp

The Help Viewer

126

The SGIHelp system consists of a help viewer, a help library and include file, help
document files, and optional application helpmap files. This section describes:

e “The Help Viewer”
e “The SGIHelp Library and Include File”
¢ “Help Document Files”

e “Application Helpmap Files”

Note: To develop online help for your application, you must install the insight_dev
product, which contains the SGIHelp library and include file, help generation tools,
examples, and templates.

The SGIHelp viewer, sgi hel p(1), also referred to as the help server, displays help text
in easy-to-use browsing windows. Figure 9-1 shows an example of a help window.

007-2006-130



Overview of SGIHelp

File  Options

Resizing Windows

You can rezize windows to help you manage sereen
#pace on your desktop. Figure 1-6 shows a
window and the areas of the border that you use to
make the window narrower, ghorter, taller, or
wider.

Horizontal Border *

=| /usripeople/debbie (ver.70)

Selecled Arrange Mew
1 1 1
Ausr/people/debbie

[+ Active Viewer

Figure 9-1 The Help Viewer

sgi hel p can also display an index of all help topics available in a help document and
allow the user to select a particular topic from the list. Figure 9-2 shows an example of a
help index.

007-2006-130 127



9: Providing Online Help With SGIHelp

| =| tndexforDesktophelp ]e]0)
rnes [ e [rciar |

Double—click on an entry to view Help.

8 Actve nde:

Figure 9-2 The Help Index Window

sgi hel p is a separate application that gets started automatically whenever an
application makes a help request. Neither users nor your application should ever need
to explicitly start sgi hel p. After the user closes all help windows, sgi hel p remains
running in the background for a few minutes. If it receives no other help requests within
that time, it automatically exits.

The SGIHelp Library and Include File
The Silicon Graphics help library, | i bhel pmsg, handles communication with the help

server. | i bhel pnmsg depends on the | i bX11 library. Be sure to specify - | hel pnsg
before - | X11 in the compilation or linking command.

128 007-2006-130



The SGIHelp Interface

For example, to compile a file hel | ohel p. c++ to produce the executable hellohelp,
you would enter:

CC -0 hell ohel p hel | ohel p.c++ -1 hel pmsg -1 X11

You must include <hel papi / Hel pBr oker . h> in any source file that accesses online
help. Both the library and include file were developed in C, and can be used with either
the C or C++ programming languages.

Help Document Files

Help document files contain the actual help text in Standard Generalized Markup
Language (SGML) format. In addition to text, help documents can contain graphics and
hypertext links to other help topics.

Application Helpmap Files

Application helpmap files are optional; an application can request specific help topics
directly. Applications helpmap files provide a level of indirection that allows you to
structure your help presentation independently of your application code. The SGIHelp
library also uses helpmaps to make it easier for you to implement context-sensitive help
in your application.

Note: You must provide a helpmap for your application if you want a help index.

The SGIHelp Interface

This section describes the functions you use to access the help server from your
application:

¢ “Initializing the Help Session”
¢ “Displaying a Help Topic”
¢ “Displaying the Help Index”

007-2006-130 129



9: Providing Online Help With SGIHelp

Initializing the Help Session

130

Before calling any other help functions, your application must first call
SA Hel plnit():

int SAHelplnit (Display *display, char *appClass, char *separator);

display The application’s Display structure.
appClass The application’s class name. Use the same name as you provide to
Xt Applnitialize().
separator The separator character used by the application to separate the widget

hierarchy when a context-sensitive help request is made. At this time,
you must use the period (. ).

SA Hel pl ni t () does not start or communicate with the help server process; it simply
initializes data structures for the other SGIHelp functions. SG Hel pl ni t () returns 1 on
success, and 0 on failure.

Example 9-1 shows an example of how to use SG Hel pl ni t ().

Example 9-1 Initializing a Help Session Using SG Hel pl ni t ()

#i ncl ude <Xm Xm h>
#i ncl ude <hel papi / Hel pBr oker. h>

void main ( int argc, char **argv )

{
W dget mai nW ndow; /* Main w ndow shell w dget */
Xt AppCont ext app; /* An application context,
* needed by Xt
*/
i nt st at us; /* Return status */
[* .. 0%

mai NW ndow = Xt Applnitialize ( &pp, "MApp", NULL, O,
&argc, argv, NULL,
NULL, O );

/* Initialize the help session */

status = SGE Hel plnit( XtD splay(minW ndow),
"MAPD", L)

007-2006-130



The SGIHelp Interface

I* ...

Displaying a Help Topic

007-2006-130

To request display of a help topic from within your application, call SG Hel pMsg() :
int SG Hel pMsg (char *key, char *book, char *userData);

key

book

userData

Specifies either 1) the ID of a particular help topic in a help document,
or 2) a widget hierarchy.

If you provide a help ID, the help server displays the help topic
identified in the help document specified by the book argument. You
must provide a help book name in this case. See “Writing the Online
Help” on page 145 for an explanation of help IDs.

If you provide a widget hierarchy, the help server looks in the
application’s helpmap file to find a mapping. If it doesn’t find an exact
match, it uses a fallback algorithm to determine which is the “closest”
hierarchy found. Typically you use this technique to provide
context-sensitive help. See “Application Helpmap Files” on page 138
for more information about the helpmap file.

Gives the short name of the help document containing the application’s
help information. See “Writing the Online Help” for a description of
help document short names.

If you set this to NULL or asterisk (*), the help server looks in the
application’s helpmap file for the book name. In this case, a helpmap
file must exist. See “Application Helpmap Files” for more information
about the helpmap file.

Reserved for future use. You should always set this field to NULL.

If a copy of the help server is not already running, SG Hel pMsg() automatically starts
the server. SA Hel pMsg() returns 1 on success, and 0 on failure.

Example 9-2 shows an example of using SG Hel pMsg() to display the help topic
identified by the help ID “help_save_button” in the help document with the short name

“MyAppHelp.”

131



9: Providing Online Help With SGIHelp

Example 9-2 Requesting a Specific Help Topic Using SA Hel pMsg()
#i ncl ude <hel papi/ Hel pBr oker. h>

/* Assume initialization of help session is conplete */

/*

* This call displays the help topic with a key of

* "hel p_save_button" (found in the "Hel pld=" field).
* 1t will look for this section in the hel p docunent
*/" MyAppHel p”.

*

status = SG Hel pMsg( "hel p_save_button", "MAppHel p", NULL );

Example 9-3 shows an example of using SG Hel pMsg() to request help given a widget
hierarchy. In this case, the application must have a helpmap file, and the help file must
contain an entry mapping the given hierarchy to a help topic for this call to succeed.

Example 9-3 Requesting a Help Topic for a Widget Using SG Hel pMsg()
#i ncl ude <hel papi / Hel pBr oker. h>

/* Assunme initialization of help session is conplete */

~

* ok k% ok ok

This call displays the help topic specified by the
mappi ng for the wi dget hierarchy
"MyApp. mai nW ndow. cont r ol Pane. sear chBut t on"
as given in the application's hel pmap file.
/

status = SG Hel pMsg( " MyApp. mai nW ndow. cont r ol Pane",
NULL, NULL );

Displaying the Help Index

132

The SA Hel pl ndexMsg() call causes the help server to look for the application’s
helpmap file and to display the Help Index window:

int SG Hel pl ndexMsg (char *key, char *book);
key You should always set this field to NULL or “index.”
book Reserved for future use. You should always set this field to NULL.

007-2006-130



Implementing Help in an Application

The index displays all the help topics in the helpmap file in the order they appear in the
file. You must have a helpmap file for this call to work properly. See “Application
Helpmap Files” on page 138 for more information about the helpmap file.

SA Hel pl ndexMsg() returns 1 on success, and 0 on failure.

Example 9-4 shows an example of how to use SG Hel pl ndexMsg() .

Example 9-4 Displaying a Help Index Using SG Hel pl ndexMsg()

/* Assume initialization of help session is conplete */

/*
* This call will look in the application’s hel pnap
* file for alist of topics to display to the user in
* sgi hel p’ s i ndex wi ndow.
*
/

status = SG Hel pl ndexMsg( "index", NULL );

Implementing Help in an Application

007-2006-130

The section “Types of Online Help” in Chapter 4 of the IRIX Interactive User Interface
Guidelines describes the user interfaces to online help that your application should
provide. In summary, these services are:

¢ Help menus in all application windows with menu bars

¢ Help buttons in all applications without menu bars

¢ Context-sensitive help available through both the help menus and the <Shi f t +F1>
keyboard accelerator.

This section contains specific suggestions for implementing these help interfaces to your

application:

¢ “Constructing a Help Menu”

¢ “Implementing a Help Button”

¢ “Providing Context-Sensitive Help”

133



9: Providing Online Help With SGIHelp

Constructing a Help Menu

134

For those windows in your application with a menu bar, you should provide a Help
menu. “Providing Help through a Help Menu” in Chapter 4 of the IRIX Interactive User
Interface Guidelines recommends that the following entries appear in the Help menu:

“Click for Help”

“Overview”

Provides context-sensitive help. This option should also use the

<Shi f t +F1> keyboard accelerator. When a user selects “Click for Help,”
the cursor should turn into a question mark (?). The user can then move
the cursor over an item or area of interest and click. Your application
should then display a help topic describing the purpose of the item or
area.

“Providing Context-Sensitive Help” on page 136 provides detailed
instructions for implementing context-sensitive help.

Displays overview information. The main primary window should
provide an overview of the application. For other windows, this option
should appear as “Overview for <window name>" and provide an
overview of the current window only.

A list of topics and tasks

This section should contain a list of topics and tasks that the user can
perform in your application. When the user selects one of the options,
your application should display a help topic for that item. To reduce the
size of this section, you can move some of the tasks to submenus.

You can hard code the entries in this section or, if you have a helpmap
file for your application, you can parse the helpmap and dynamically
create the task and subtask entries.

“Index” Displays Help Index window for the application. You must have an
application helpmap file to support this option.
“Keys & Shortcuts”

Displays the application’s accelerator keys, keyboard shortcuts, and
other actions in the application.

“Product Information”

Displays a dialog box showing the name, version, and any copyright
information or other related data for your application. Typically, you
should present this information using an IRIS IM dialog rather than
using online help.

007-2006-130



Implementing Help in an Application

Separators are added automatically. See the program listing in Example C-4 for an
example of creating a Help menu.

Implementing a Help Button

For those windows in your application that don’t contain a menu bar, you should
provide a Help button. Example 9-5 shows how you can use the SGIHelp API to
communicate with the help server from a pushbutton within your application.
“Providing Help Through a Help Button” in Chapter 4 of the IRIX Interactive User
Interface Guidelines provides guidelines for when to implement a Help button.

Example 9-5 Providing a Help Button

/* required include file for direct comunication with help server */
#i ncl ude <hel papi / Hel pBr oker. h>
#i ncl ude <Xml Xm h>

[* .00

/* initialize help server information */
SA Hel plnit (display, "MW ndowApp", ".");

/* create hel p pushbutton for your w ndow */
W dget hel pB = XnCreat ePushButton(parent, "hel pB", NULL, 0);
Xt ManageChi | d( hel pB);

Xt AddCal | back( hel pB, XmNacti vat eCal | back,
( Xt Cal | backProc) hel pCB, (Xt Poi nter)NULL);
[* o0

/* hel p call back */
voi d hel pCB(W dget w, XtPointer clientData, XtPointer call Data)

{
/*
* comrunicate with the hel p server; devel oper
* may Wi sh to pass the "key" in as part of the
* cal |l back’s cal | Data paraneter. ..
*/
SA Hel pMsg( " key", "book", NULL);
}

007-2006-130 135



9: Providing Online Help With SGIHelp

Providing Context-Sensitive Help

To provide context-sensitive help from within your application, you need to write code
that tracks the cursor and interrogates the widget hierarchy. Additionally, you need to
make a mapping between what the user has clicked, and the help card that’s displayed.

The best way to provide the mapping is with the application helpmap file. The SGIHelp
library provides a fallback algorithm for finding help topics that simplifies the process
mapping widgets to topics. If the help system can’t find an exact match to the widget
string in the helpmap file, it drops the last widget from the string and tries again. The
help system reiterates this process until it finds a match in the helpmap file. This
eliminates the need to explicitly map a help topic for every widget in your application.
Instead you can map a help topic to a higher-level manager widget and have that topic
mapped to all of its descendent widgets as well.

For more information on the structure of application helpmap files, see “Application
Helpmap Files” on page 138.

Example 9-6 shows the code used to implement context-sensitive help in the example
program listed in Example C-4, which simply installs cl i ckFor Hel pCB() as the
callback function for the “Click for Help” option of the Help menu. As long as you create
a helpmap file for your application, you can use this routine as listed in your application
as well.

Example 9-6 Implementing Context-Sensitive Help

voi d clickForHel pCB(Wdget w d, XtPointer clientData, XtPointer call Data)

{
static Cursor cursor = NULL;
static char path[512], tnp[512];
Wdget shell, result, w
strcpy(path, "");
strepy(tnp, "");

/*

* create a question-mark cursor
*/
i f(!cursor)

cursor = XCreateFont Cursor(XtDi splay(w d),

XmUpdat eDi spl ay(_mai nW ndow) ;

136

XC_question_arrow);

007-2006-130



Implementing Help in an Application

/*
* get the top-level shell for the w ndow
*/
shell = _nmai nW ndow;
while (shell && !XtlsShell (shell)) {
shell = XtParent(shell);
}
/*

* modal interface for selection of a component;
* returns the wi dget or gadget that contains the pointer
*/

result = Xniracki ngLocate(shell, cursor, FALSE);

if( result ) {
w = result;

/*
* get the widget hierarchy;, separate with a '
* this also puts themin top-down vs. bottom up order.
*/
do {
if( XtName(w) ) {
strcpy(path, XtName(w));

if( strlen(tmp) > 0 ) {
strcat (path, ".");
strcat (path, tnp);

}

strcpy(tnp, path);
}

w = Xt Parent (w);
} while (w!= NULL & w != shell);

/*

* send nmsg to the hel p server-w dget hierarchy;

* R

provi de a mapping to produce the key to be used

In this case, we'll let the sgihelp process do
the mapping for us, with the use of a helpmap file

*
*
*
*
*
* Note that paraneter 2, the book nanme, can be found

007-2006-130

137



9: Providing Online Help With SGIHelp

* fromthe helpmap file as well. The devel oper need
hard-code it, if a helpmap file is present for
* the application.

* not

*

*/

if( strlen(path) >0 ) {
SA Hel pMsg(path, NULL, NULL);

}

Application Helpmap Files

138

Application helpmap files provide a level of indirection that allows you to structure your
help presentation independently of your application code.

“Helpmap File Conventions”
“Helpmap File Format”
“Widget Hierarchies in the Helpmap File”

You don’t have to create a helpmap for your application, but doing so gives you the
following benefits:

Your application can display a Help Index window, allowing users to select a
particular topic directly from the list.

You can write the code that generates your application’s Help menu to create the
“list of topics and tasks” options dynamically from the helpmap. You can then add
and restructure your task help without recompiling your application. See
“Constructing a Help Menu” on page 134 for details on the Help menu’s list of
topics.

Your application’s Help menu can launch a browser and access a URL on the World
Wide Web. See “Example of Helpmap Entry to Access a Web Browser” for more
information.

You can provide context-sensitive without hard-coding in your source code a help
topic to each widget. The SGIHelp library provides a fallback algorithm for finding
help topics that simplifies the process mapping widgets to topics. If the help system
can’t find an exact match to the widget string in the helpmap file, it drops the last
widget from the string and tries again. The help system reiterates this process until
it finds a match in the helpmap file. This eliminates the need to explicitly map a help

007-2006-130



Application Helpmap Files

topic for every widget in your application. Instead you can map a help topic to a
higher-level manager widget and have that topic mapped to all of its descendent
widgets as well. See “Providing Context-Sensitive Help” on page 136 for
information on implementing context-sensitive help in your application.

Helpmap File Conventions

Helpmap File Format

Helpmap Fields

007-2006-130

Helpmap files are ASCII text files. The name of your application helpmap file must be
“appClass.helpmap”, where appClass is your application’s class name as provided in your
application’s call to SG Hel pl ni t () . See “Initializing the Help Session” on page 130 for
more information on SA Hel pl nit ().

If you create a helpmap file for your application, you must create a subdirectory named
hel p in the directory containing your help document and put all of your document’s
figures in that subdirectory. See “Preparing to Build the Online Help” on page 147 for
more information.

Each entry, or help topic, in a helpmap consists of a single line containing at least six
fields, each field separated by semicolons:

type; book; title; level; helplD; widget-hierarchyl ; widget-hierarchy .]

All fields are required for each entry. Their purpose is as follows:

type The type of help topic. Its value can be:
0 A context-sensitive topic.
1 The overview topic.
2 A task-oriented entry that could show up in the

“list of topics and tasks” area of the Help menu.
See “Constructing a Help Menu” on page 134 for
details on the Help menu’s list of topics.

3 The Keys and Shortcuts topic.

139



9: Providing Online Help With SGIHelp

book The name of the help document that contains this help topic. Help topics
can reside in different books. Each individual help topic can point to
only one help book.

title The title of the help topic. This appears in the Help Index window. If

your application parses the helpmap file to generate the “list of topics
and tasks” area of the Help menu, you can use this as the label for the
menu option.

level A number determining the topic level. A value of 0 indicates a main
topic, a value of 1 a sub-topic, a value of 2 a sub-sub-topic, and so forth.
This produces an expandable/collapsible outline of topics for the Help
Index window.

If your application parses the helpmap file to generate the “list of topics
and tasks” area of the Help menu, you can also use these values to
construct “roll-over” submenus as part of a Help menu.

helplD The unique ID, as specified by the “HelplD” attribute, of the specific
help topic in the help document.

widget-hierarchy
One or more fully-qualified widget specifications for use with
context-sensitive help. You can provide multiple specifications,
delimited by semicolons, to associate different areas with the same
topics.

Examples of Helpmap Entries

For example, the following entry in Swpkg. hel pmap specifies the overview topic:
1; I ndi goMagi c_I G Overvi ew; 0; Over vi ew;, Swpkg. swpkg. over vi ew
The following entries from Swpkg. hel pmap specify several context-sensitive help

topics. In this case, the first entry appears as a main topic in the Help Index window and
the next three appear as sub-topics:

0; Swpkg_UG, Usi ng the swpkg Menus; 0; nenu. bar ; Swpkg. swpkg. nenuBar
0; Swpkg_UG The File Menu; 1; menu. bar. fil e; Swpkg. swpkg. menuBar . Fi |l e
0; Swpkg_UG The Vi ew menu; 1; menu. bar . vi ew; Swpkg. swpkg. menuBar . Vi ew
0; Swpkg_UG, The Hel p menu; 1; menu. bar . hel p; Smpkg. swpkg. menuBar . hel pMenu
The following shows a more complex hierarchy from Swpkg. hel pnap:

2; Swpkg_UG Taggi ng Fil es; 0;tag.files.worksheet; Swpkg. swpkg

140 007-2006-130



Application Helpmap Files

2; Swpkg_UG Sel ecting Product Files;1;file.browser; Swkg. swpkg. vi ew. vi ewPanedW ndow. vi ewor m \
| eft Form fil esBody. addBody. Fi | eLi st Add. sel ecti onGid

0; Swpkg_UG Setting the Browsing Directory; 2;file.browser.dirfield; Smpkg. swpkg. vi ew. \
vi ewPanedW ndow. vi ewForm | ef t Form fi | esBody. addBody. Fi | eLi st Add. di r ect or yLabel ; Swpkg. swpkg. \
vi ew. vi ewPanedW ndow. vi emorm | ef t Form f i | esBody. addBody. Fi | eLi st Add. di rect oryText Fi el d

0; Swpkg_UG Sel ecting Files Fromthe File List;2;file.browser.filelist;Swkg. swpkg. vi ew. \
vi ewPanedW ndow. vi ewrorm | ef t Form fi | esBody. addBody. Fi | eLi st Add. scrol | edW ndow. fil esLi st ;\
Swpkg. swpkg. vi ew. vi ewPanedW ndow. vi ew~or m | ef t Form fi | esBody. addBody. Fi | eLi st Add. \
scrol | edW ndow. Vert Scrol | Bar

007-2006-130 141



9: Providing Online Help With SGIHelp

Note: The backslashes (\) indicate linewraps; they do not actually appear in the
helpmap file. Each helpmap entry must be a single line.

In the example above, the first entry is a task-oriented topic (2 in the type field). swpkg
parses the helpmap file to create its Help menu, so “Tagging Files” appears as a selection.
The second entry is also a task-oriented topic. It’s a sub-topic of the first entry and
appears in a submenu off the “Tagging Files” selection. The last two entries are marked
as context-sensitive only (0 in the type field). These entries don’t appear anywhere in the
application’s Help menu, but they do appear as sub-sub-topics in the Help Index
window. Also note that the last two entries have two widget specifications, providing
context-sensitive help for two different widgets.

Note: The order of the entries in the application helpmap file determines the order in
which help topics appear in the Help Index window.

Example of Helpmap Entry to Access a Web Browser

You can put an entry into a helpmap file to launch a Web browser and access a URL. An
example entry in the showcase hel pmap file looks like this:

2; HREF=ht t p: / / www. sgi . conT Product s/ SA Hel p_Hub/ Showcase_3.3. 2. htm ;\
Showcase Web Page; 0; showcase_web; Showcase3D. showcase2; ShowcaseUG, \
About G znos; 0; about _gi zno; Showcase3D. showcase

Note: The backslashes (\) indicate linewraps; do not actually enter them in the helpmap
file. Each helpmap entry must be a single line.

When SGlhelp encounters this type of entry, it uses a Web browser such as Netscape (or
$WEBBROWSER) to show the URL specified by the entry.

Widget Hierarchies in the Helpmap File

142

At least one widget hierarchy must accompany every point in the application helpmap
file. That one (default) point should be set to “application_classname.top-level_shell”.

007-2006-130



Application Helpmap Files

Note that the application class name must always be the first component of a widget
hierarchy string. All widget ID’s within the string must be delimited by a period ( . ).

007-2006-130 143



9: Providing Online Help With SGIHelp

144

Widget hierarchies can be as fine-grained as you wish to make them. A fall-back
algorithm is in place (to go to the closest available entry) when the user clicks a widget
in context-sensitive help mode. For example, suppose your application includes a row or
set of buttons. When the user asks for help on a button, you pass that widget string to
SGIHelp. If the widget string is not found in the mappings, the last widget is dropped off
the string (in this case, the widget ID for the button itself). The new string is compared to
all available mappings. This loop continues until something is found. At the very least,
you should fall back to an “Overview” card.

To get a sample widget hierarchy (help message) from an application, you can run the
SGIHelp help server process in debug mode. Before doing this, you need to add the
SGIHelp APIcall, SG Hel pMsg() , to your application and implement context-sensitive
help. Make sure that you send a widget hierarchy string for the “key” parameter in the
SA Hel pMsg() call. (See “Providing Context-Sensitive Help within an Application”
and “Understanding Available Calls” for details on this call.)

To get a sample widget hierarchy from an application that implements context-sensitive
help, follow these steps:

1. Bring up a shell.
2. Make sure the help server process isn’t running. Type:
% /etc/killall sgihelp

3. Type the following to make the help server process run in the foreground in debug
mode:

% /[ usr/sbin/sgihelp -f -debug

4. Run your application, and then choose “Click for Help” from the help menu. The
cursor should change into a question mark (?), or whatever cursor you've
implemented for context sensitive help.

5. Click a widget or an area of the application.

6. Check the shell from which SGIHelp is being run. You should see a line such as:

REQUEST= cl i ent="CQvervi ew' conmand="vi ew' book=""
keyval ue="DesksQOver vi ew. Mai nVi ew. Fr ane. vi ewport . Bboar d"
separator="." user_data=""

The “keyvalue” field contains the widget hierarchy that you can add to the helpmap
file. Remember to add the application class name to the front of the string. For the
example above, the full widget hierarchy string would be:

Overvi ew. DesksOver vi ew. Mai nVi ew. Fr ane. vi ewport . Bboard

007-2006-130



Writing the Online Help

Writing the Online Help

This section describes how you prepare the online help document. It provides an
explanation of the standard format you must use, as well as the steps you take to actually
prepare the file. Topics include:

e “Overview of Help Document Files”

¢ “Viewing the Sample Help Document Files”
* “Creating a Help Document File”

* “Preparing to Build the Online Help”

¢ “Building the Online Help”

* “Finding and Correcting Build Errors”

For guidelines on structuring and writing your online help text, see “Writing Online
Help Content for SGIHelp” in Chapter 4 of the IRIX Interactive User Interface Guidelines.

Overview of Help Document Files

007-2006-130

Help document files contain the actual help text in Standard Generalized Markup
Language (SGML) format. When you write the online help for your product, you need
to embed SGML tags to describe the structure of your document.

The file / usr/ shar e/ | nsi ght / XHELP/ sanpl es/ sanpl eDoc/ sanpl e. sgmis an
example of a file with embedded SGML tags. (Example C-1 also lists this file.) Notice the
tags surrounded by angle brackets (<>). These tags describe how each item fits into the
structure of the overall document. For example, a paragraph might be tagged as a list
item, and a word within that paragraph may be tagged as a command.

The Document Type Definition (DTD) outlines the tagging rules for your online
documentation. In other words, it specifies which SGML tags are allowed, and in what
combination or sequence. The file / usr/ shar e/ | nsi ght / XHELP/ dt d/ XHELP. dt d
lists the legal structure for your online help.

A DTD can be difficult to read, so you might instead want to look at the file
/usr/share/l nsi ght/ XHELP/ sanpl es/ XHELP_el ement s/ XHELP_el enent s. s
gm which lists the legal elements in a help document and describes when to use them in
your documents. (Example C-2 also lists this file.)

145



9: Providing Online Help With SGIHelp

For a more complete understanding of SGML, refer to the bibliography in “Bibliography
of SGML References” on page 152. It lists several of the many books on SGML.

Viewing the Sample Help Document Files

Before beginning to write your own help documents, you might find it helpful to
examine the source of the sample help documents and then view resulting online
versions. You can compile and view the help documents in Insight. To do so, follow these
steps:

1.
2.

Go to a directory in which you want to build the sample help book.
Copy the necessary directories and files by entering:
%cp -r /usr/share/lnsight/XHELP/ sanpl es .
Enter:

% cd sanpl es/ sanmpl eDoc

Build the file sanpl e. sgmby entering:

% make hel p

To view this file, enter:

%iiv -b . -v sanple

Change to the exanpl eApp directory by entering:

% cd ../ exanpl eApp

Build the file exanpl eAppXntHel p. sgmby entering:
% make hel p

To view this file, enter:

%iiv -b . -v exanpl eAppXnHel p

Creating a Help Document File

To create the help document file for your application:

1.
2.

146

Create a new directory for the online help, then go to this directory.

Create a text file and name the file “t i t | e.sgm”, where title is one word that
identifies the online help.

007-2006-130



Writing the Online Help

3. Write the online help.

You can include figures as described in the example help documents. If your document
contains figures, create a subdirectory named either f i gur es or onl i ne in your help
document directory and put all of your document’s figures in that subdirectory.

Preparing to Build the Online Help

After writing your online help you must build it, similarly to the way you compile a
program. When you build the online help, you transform the raw SGML file into a
viewable, online document. To get started, you need to create two files: a Makefile and a
spec file.

The Makefile specifies:

e the name of file that contains the online help

¢ the name you want to assign to the help book

e the version number of the product

The spec file specifies:
e the title of your product
¢ the official release and version numbers

e other information that is used when you create the final, installable images

To create these files, follow these steps:
1. Go to the directory that contains the online help file.

2. Copy/usr/share/lnsight/XHELP/ t enpl at es/ Makefi | e_xhel p by typing:
cp /usr/sharel/lnsight/ XHELP/t enpl at es/ Makefil e_xhel p Makefile

3. Copy/usr/share/lnsight/XHELP/t enpl at es/ spec_xhel p by typing:
cp /usr/share/l nsight/ XHELP/t enpl at es/ spec_xhel p spec

007-2006-130 147



9: Providing Online Help With SGIHelp

148

Edit the Makefile:

Next to the label TITLE, type the name of the file that contains the online help.

Next to the label FULL_TITLE, type the name you want to assign to the help
book. This name can contain several words, and is used only if you decide to
display the help as a “book” on the Insight bookshelf.

Next to the label VERSION, type the version number for the product.

Next to the label HIDDEN, remove the comment character (#) if you want the
online help to appear as a book on an Insight bookshelf. Change this if you
want users to be able to browse the help information using Insight, and not just
from within your application.

Edit the spec file:

Replace the string ${RELEASE} with the release number for the product. This
should match what you've entered in the Makefile for the VERSION.

Replace the string <ProductName> with a one-word name for the product.
Replace the string <Shortname> with the TITLE you specified in the Makefile.

Replace the string <SHORTNAME> with the TITLE you specified in the
Makefile. Capitalize all letters.

Replace the string <SHORTNAME_HELP> with the TITLE followed by
“_HELP”.

Replace the string <Book title> with the FULL_TITLE you  specified in the
Makefile.

Once you have edited these files, the directory containing your help document should

contain:

your help document

the Makefil e

the spec file

if you included figures in your help document, a subdirectory named either
figures oronl i ne containing all of the figures

if you created a helpmap file for you application, a subdirectory named hel p
containing the helpmap file

007-2006-130



Writing the Online Help

Building the Online Help

Once you have written the online help and done the preparation described in “Preparing
to Build the Online Help” on page 147, you can build and view the online help. To do so,
follow these steps:

1. Go to the directory that contains the online help files.
2. Enter:
% nake hel p

If the help is formatted properly, the online help will build. You should see a file
called bookl i st . t xt and a directory called books.

If the SGML file contains errors, you will see them displayed in the shell window.
See “Finding and Correcting Build Errors” for details.

3. View the book by typing
%iiv -b . -v title
Where title is the value of TITLE from the Makefile.

Finding and Correcting Build Errors

The SGML tags come in pairs. Each pair contains an opening tag and a closing tag, and
the tag applies to everything between the opening tag and the closing tag. If you use
these tags incorrectly, you'll get error messages when you build the help file. The most
common errors are the result of misspelled tag names, mismatched end tags, or tags used
out of sequence.

Some examples of common error messages are:

nkhel perror: not authorized to add tag ' PAR, ignoring content.

This error appears if you specify an invalid tag. In this case, the invalid tag is “PAR.” The
valid tag name is “PARA.”

mkhel perror: Start-tag for 'HELPLABEL' is not valid in this context.
nmkhel p Location: Line 37 of entity ' #DOCUVENT
Cont ext : "hor point for the link
synt ax. </ >&#RS; </ Hel pTopi c>&#RS; &#RS; <Hel pl abel >' . ..
" <Anchor |d="Al003">Using Notes, Warnings or Tips Wthin a P
FQA : DOCHELP

007-2006-130 149



9: Providing Online Help With SGIHelp

This error message occurs when the parser sees a tag it isn’t expecting. In this case it
found a HELPLABEL that was not preceded by a HELPTOPIC start tag. The error
message specifies the line number of the error (37), the context in the file, and the Fully
Qualified Generic Identifier (FQGI) of the context. You can probably ignore the FQGI; it
describes where the error occurs within the SGML structure.

nkhel perror: No "WARNING is open, so an end-tag for it is not valid.
The | ast one was closed at |ine 46.
nkhel p Location: Line 46 of entity ' #DOCUMENT
Cont ext : " <war ni ng>M ssi ng open para. This is a
war ni ng. </ ></war ni ng>' . ..
" &#RS; <not e><par a>For your information, this is a note.</></note’
FQ4 : DOCHELP, DESCRI PTI ON, PARA, PARA

This message can occur if you close items with the generic end tag, </>. In this case, the
</> closes the <warning> because the start tag for <para> is missing. This may occur if
you leave out a start tag or accidentally spell it incorrectly.

If you want additional information about the errors, use the command make veri fy. It
produces a more detailed error log.

Producing the Final Product

This section describes how to package your online help as a subsystem that users can
install using Software Manager (swngr ), the Silicon Graphics software installation
utility. Topics include:

e “Creating the Installable Subsystem”

* “Incorporating the Help Subsystem into a Product With a Custom Installation
Script”

¢ “Incorporating the Help Subsystem into an Installable Product”

150 007-2006-130



Producing the Final Product

Creating the Installable Subsystem

After you've finished writing and building your online help, you need to package it so
that users can install it with the rest of your product. To do so:

1. Go to the directory that contains the online help.
2. Enter:

% nake i mages

This produces a directory called i mages. This directory contains all of the files you
need to let users install the online help using Software Manager.

Incorporating the Help Subsystem into an Installable Product

007-2006-130

If you use the Software Packager utility (swpkg) to package your product so that users
can install it using Software Manager, you need to merge the online help subsystem with
the rest of your product. Consult the Software Packager User’s Guide for detailed
instructions for using swpkg.

You don’t need to use swpkg to create spec or IDB files for your online help subsystem.
By following the instructions in “Preparing to Build the Online Help” on page 147, you
created the spec file. The process of building your online help, described in “Building the
Online Help” on page 149 automatically created an IDB file and tagged the files; set the
permissions and destinations; and assigned the necessary attributes. The online help
build tools use “/” as the Source and Destination Tree Root directories when generating
the IDB file. (The Software Packager User’s Guide defines all of these terms.)

If you've not already created the spec and IDB files for the rest of your product using
swpkg, you can use SWpkg to open the existing help subsystem spec and IDB files, and
expand them as needed to handle the rest of your product. Consult the Software Packager
User’s Guide for instructions.

If you've already created the spec and IDB files for your product, you can merge the help

subsystem with the existing files as described in “Combining Existing Products Into a
Single Product” in Chapter 7 of the Software Packager User’s Guide.

151



9: Providing Online Help With SGIHelp

Incorporating the Help Subsystem into a Product With a Custom Installation Script

If you don’t use swpkg to package your product for installation with Software Manager,
do one of the following.

If users install your product using the t ar command, have them use t ar to copy
the online help images as well. After copying the images, the user needs to type:

# inst -af <inst_product>
where inst_product is the location of the images.

If you've created a script, enhance the script so that it extracts all of the help images
onto disk, and then invokes the command:

# inst -af <inst_product>

where inst_product is the location of the images.

Bibliography of SGML References

152

1.

*SoftQuad, Inc. The SGML Primer. SoftQuad’s Quick Reference  Guide to the Essentials
of the Standard: The SGML Needed for Reading a DTD and Marked-Up Documents and
Discussing Them Reasonably. Version 2.0. Toronto: SoftQuad Inc., May 1991. 36 pages.
Available from SoftQuad Inc.; 56 Aberfoyle Crescent, Suite 810; Toronto, Ontario;
Canada M8X 2W4; TEL: +1 (416) 239-4801; FAX: +1 (416) 239-7105.

Bryan, Martin. SGML: An Author’s Guide to the Standard Generalized Markup
Language. Wokingham /Reading/New York: Addison-Wesley, 1988. ISBN:
0-201-17535-5 (pbk); LC CALL NO: QA76.73.544 B79 1988. 380 pages. A highly
detailed and useful manual explaining and illustrating features of ISO 8879. The
book: (1) shows how to analyze the inherent structure of a document; (2) illustrates
a wide variety of markup tags; (3) shows how to design your own tag set; (4) is
copiously illustrated with practical examples; (5) covers the full range of SGML
features. Technical and non-technical authors, publishers, typesetters and users of
desktop publishing systems will find this book a valuable tutorial on the use of
SGML and a comprehensive reference to the standard. It assumes no prior
knowledge of computing or typography on the part of its readers.

007-2006-130



Bibliography of SGML References

007-2006-130

Goldfarb, Charles F. The SGML Handbook. Edited and with a foreword by Yuri
Rubinsky. Oxford: Oxford University Press, 1990. ISBN: 0-19-853737-1. 688 pages.
This volume contains the full annotated text of ISO 8879 (with amendments),
authored by IBM Senior Systems Analyst and acknowledged “father of SGML,”
Charles Goldfarb. The book was itself produced from SGML input using a DTD
which is a variation of the “ISO.general” sample DTD included in the annexes to
ISO 8879. The SGML Handbook includes: (1) the up-to-date amended full text of
ISO 8879, extensively annotated, cross-referenced, and indexed; (2) a detailed
structured overview of SGML, covering every concept; (3) additional tutorial and
reference material; and (4) a unique “push- button access system” that provides
paper hypertext links between the standard, annotations, overview, and tutorials.

Herwijnen, Eric van. Practical SGML. Dordrecht/Hingham, MA: Wolters Kluwer
Academic Publishers. 200 pages. ISBN: 0-7923- 0635-X. The book is designed as a
“practical SGML survival-kit for SGML users (especially authors) rather than
developers,” and itself constitutes an experiment in SGML publishing. The book
provides a practical and painless introduction to the essentials of SGML, and an
overview of some SGML applications. See the reviews by (1) Carol Van Ess-Dykema
in Computational Linguistics 17/1 (March 1991) 110-116, and (2) Deborah A.
Lapeyre in <TAG> 16 (October 1990) 12-14.

Smith, Joan M.; Stutely, Robert S. SGML: The Users” Guide to ISO 8879.
Chichester/New York: Ellis Horwood /Halsted, 1988. 173 pages. ISBN:
0-7458-0221-4 (Ellis Horwood) and ISBN: 0-470-21126-1 (Halsted). LC CALL NO:
QA76.73.544 544 1988. The book (1) supplies a list of some 200 syntax productions,
in numerical and alphabetical sequence; (2) gives a combined abbreviation list; (3)
includes highly useful subject indices to ISO 8879 and its annexes; (4) supplies
graphic representations for the ISO 8879 character entities; and (5) lists SGML
keywords and reserved names. An overview of the book may be found in the SGML
Users” Group Newsletter 9 (August 1988).

ISO 8879:1986. Information Processing—Text and Office System—Standard Generalized
Markup Language (SGML). International Organization for Standardization. Ref. No.
ISO 8879:1986 (E). Geneva/New York, 1986. A subset of SGML became a US FIPS
(Federal Information Processing Standard) in 1988. The British Standards Institution
adopted SGML as a national standard (BS 6868) in 1987, and in 1989 SGML was
adopted by the CEN/CENELEC Standards Committees as a European standard,
#28879. Australia has dual numbered versions of ISO 8879 SGML and ISO 9069
SDIF (AS 3514—SGML 1987; AS 3649—1990 SDIF).

ISO 8879:1986 / A1:1988 (E). Information Processing—Text and Office Systems—
Standard Generalized Markup Language (SGML), Amendment 1. Published 1988-07-01.
Geneva: International Organization for Standardization, 1988.

153






Chapter 10

Handling Users’ System Preferences

This chapter describes how your application can recognize and use various system
preferences that users can set through Desktop control panels. Whenever possible, your
application should follow these preferences to provide a consistent interface for your
users. In particular, this chapter contains:

¢ “Handling the Mouse Double-Click Speed Setting” describes how to recognize the
preferred mouse double-click speed.

* “Using the Default Viewer and Editor Utilities Panel” describes the dtUtilities
panel, lists utility variables and their values, and provides an example of how to set
the preferred visual text editor when your application needs to let users edit text.

Handling the Mouse Double-Click Speed Setting

007-2006-130

The Mouse Settings control panel (available from the “Customize” submenu of the
Desktop toolchest) allows users to set various parameters that affect the operation of the
mouse. The setting of importance to applications is “Click Speed,” which determines the
maximum interval between double-clicks. “Click Speed” sets the *multiClickTime X
resource.

In most cases, you don’t need to do anything to handle this setting. IRIS IM widgets
automatically use the multiClickTime value as appropriate. Only if your application
needs to handle double-clicks explicitly (for example, to select a word in a word
processing application) does itneed tocall Xt Get Mul ti Cl i ckTi me() to determine the
double-click time. See the Xt Get Mul ti O i ckTi me(3Xt) reference page for more
information on Xt Get Mul ti Cl i ckTi me().

Note: Don't call Xt Set Mul ti C i ckTi ne(), which sets the double-click time for the
entire display.

155



10: Handling Users’ System Preferences

Using the Default Viewer and Editor Utilities Panel

Users who select Toolchest->Customize->Utilities invoke / usr/ sbin/dt Utiliti es.
This application displays the “Default Viewer and Editor Utilities” panel (shown in
Figure 10-1).

= Default Viewer & Editor Utilities ia

Ir/‘ Default Viewer & Editor Ultilities

Select your favorites from the menus:

Text Editor: Jot
Web Browser: | Mefscape =
Image Viewer: | lmgview =
Mailer: | Medialdaif =

Book Viewer: | Insight =

PostSeript Viewer: ShowPS =

(Dimmed utilities are not installed.)

| Close || Reset .. || Help I

Choose a default text editor.

Figure 10-1  The dtUtilities Panel

Using the dtUtilities panel, users can select installed utilities, including the following:
o Text Editor (for example, xwsh, Jot, or Vi)

*  Web Browser (for example, Netscape)

* Image Viewer (for example, Imgview)

* Mailer (for example, MediaMail or Netscape)

* Book Viewer (for example, Insight)

* PostScript Viewer (for example, ShowPS)

156 007-2006-130



Using the Default Viewer and Editor Utilities Panel

Selecting Utilities and Their Values
The dtUtilities variables and their values are listed in Table 10-1. An example of
providing programmatic access to one of these utilities is in “Setting the Preferred Text

Editor,” which is below the table.

Table 10-1 dtUtilities and Their Values

dtUtility Variable Value
WINEDITOR Path to a window editor (for example, /usr/sbin/jot).
WEBBROWSER Path to an X Window System application that is a World Wide

Web visual browser (for example, fust/bin/X11/netscape).

IMGVIEWER Path to an application that displays image files (for example,
lusr/bin/X11/imgview).

MAILBOXPROG Path to a mail reader application (for example,
lusr/bin/X11/MediaMail -gui).

BOOKVIEWER Path to an application for displaying InSight books (for
example, /usr/sbin/insight).

PSVIEWER Path to an application for viewing PostScript files (for
example, /ust/bin/X11/showps).

Setting the Preferred Text Editor

The “Text Editor” setting on the dtUtilities control panel allows users to select a
preferred visual editor for editing ASCII text. This setting sets the value of the
WINEDITOR environment variable.

The following instructions explain how to set the value of WINEDITOR. You can use the

same instructions for the other utilities on the control panel. Just refer to Table 10-1 for
the utility and value you wish to set.

007-2006-130 157



10: Handling Users’ System Preferences

158

Whenever your application needs to let users edit text, you should:

1.

Call get env() to check whether the WINEDITOR environment variable is set. See
the get env( 3c) reference page for more information on get env() .

If WINEDITOR is set, save the text to edit in a temporary file. Typically, you should
check the value of the environment variable TMPDIR and, if it is set, put the
temporary file in that directory.

Execute the editor, providing it the name of the temporary file as an argument.

When the user quits the editor, read the temporary file and delete it.

007-2006-130



PART TWO

Creating Desktop Icons

Chapter 11:

Creating Desktop Icons: An Overview
Chapter 12:

Using IconSmith

Chapter 13:

File Typing Rules

Chapter 14:

Printing From the Desktop

II






Chapter 11

Creating Desktop Icons: An Overview

This chapter offers an overview of the basic steps for creating IRIX Interactive Desktop
icons and adding them to the Icon Catalog. If you don’t feel you need much background
information, you can skip to the brief list of instructions provided in “Checklist for
Creating an Icon” on page 163.

This chapter contains these sections:

¢ “About IRIX Interactive Desktop Icons” on page 162 briefly discusses the IRIX
Interactive Desktop and lists what kinds of icons you’ll need to provide for your
application.

* “Checklist for Creating an Icon” on page 163 lists the basic steps for drawing,
programming, compiling, and installing an icon.

* “Creating an Icon: The Basic Steps Explained in Detail” on page 164 explains each of
the basic icon creation steps in more detail.

Note: Minimized windows, which represent running applications, aren’t Desktop icons.
To learn how to customize the image on a minimized window, refer to Chapter 6,
“Customizing Your Application’s Minimized Windows.”

007-2006-130 161



11: Creating Desktop Icons: An Overview

About IRIX Interactive Desktop Icons

162

Files on the Desktop are represented by icons. Users can manipulate these icons to run
applications, print documents, and perform other actions. “How Users Interact With
Desktop Icons” in Chapter 1 of the IRIX Interactive User Interface Guidelines describes
some of the common user interactions.

The Desktop displays different icons to represent the different types of files. For example,
the default icon for binary executables is the “magic carpet,” and the default icon for
plain text files is a stack of pages.

When you create your own application, by default the Desktop uses an appropriate
“generic” icon to represent the application and its associated data files (for example, the
magic carpet icon for the executable and the stack of pages icon for text files). You can
also design your own custom icons to promote product identity and to indicate
associated files. For example, the custom ShowCase icons over a

generic. exec. closed.fti andageneric. exec.open. fti look like this:

showcase showcase

Another advantage of creating custom icons is that you can program them to perform
certain actions when users interact with them on the Desktop. For example, you can
program a custom data file icon so that when a user opens it, the Desktop launches your
application and opens the data file.

The Desktop determines which icon to display for a particular file by finding a matching
file type. A file type consists of a set of File Typing Rules (FTRs) that describe which files
belong to the file type and how that type’s icon looks and acts on the Desktop.

The Desktop reads FTRs from compiled versions of special text files called FTR files. An
FTR file is a file in which one or more file types are defined (typically, you define more
than one file type in a single file). FTR files can also contain print conversion rules, which
define any special filters needed to print given file types. Chapter 13, “File Typing
Rules,” discusses the syntax of FTRs, and Chapter 14, “Printing From the Desktop,”
discusses print conversion rules.

007-2006-130



Checklist for Creating an Icon

Checklist for Creating an Icon

007-2006-130

To provide a comprehensive Desktop icon interface for your application:

1.

Tag your application. You need to tag the application with its own unique
identification number so that the Desktop has a way of matching the application
with the corresponding FTRs. See “Step One: Tagging Your Application” on
page 165 for instructions.

Draw a picture of your icon. Create a distinctive Desktop icon to help users
distinguish your application from other applications on the Desktop. Optionally,
create an icon for the data files associated with your application. Use the IconSmith
application to draw your icons. IconSmith allows you to draw an icon and then
convert it into the icon description language used by the Desktop. IconSmith is the
only tool you can use to create an icon picture. For guidelines on designing icons,
see the IRIX Interactive User Interface Guidelines. For information on how to use
IconSmith, see Chapter 12, “Using IconSmith.”

Program your icon. Create the FTRs to define your icons” Desktop interaction.
Chapter 13, “File Typing Rules,” describes FTRs in detail. Before programming your
icon, think about what users expect from the application and, with that in mind,
decide how you want the icon to behave within the Desktop. Before you make these
decisions, read the icon programming guidelines in “Defining the Behavior of Icons
With FTRs” in Chapter 2 of the IRIX Interactive User Interface Guidelines. In
particular:

= Program your Desktop icon to run your application with the most useful
options. Include instructions for launching your application when the user
opens the icon; opens the icon while holding down the <Al t > key; and drags
and drops other icons on the application icon.

»  If there are several useful combinations of options that users may want to use
when invoking your application, you can incorporate them into a Desktop
menu. (These Desktop menu items appear only when the icon is selected.)
Users can then select the menu item that corresponds to the behavior they
want—without having to memorize a lot of option flags.

»  Where appropriate, provide print conversion rules that describe how to
convert a data file for printing into a type recognized by the Desktop. To print
output, users can then just select the appropriate data file icon and choose
“Print” from the Desktop menu rather than having to remember specialized
filter information. Chapter 14, “Printing From the Desktop,” describes print
conversion rules.

163



11: Creating Desktop Icons: An Overview

Creating an Icon:

164

Compile the source files. Compile the . ftr filesinto an. ot r file. In particular,
the deskt op. ot r file contains the compiled source for existing FTRs. For more
information on . ot r files, see “Step Four: Compiling the Source Files” on page 172.

Add your application to the Icon Catalog. This makes it easier for your users to
locate your icon in the Icon Catalog and helps maintain a consistent look for your
application in the Desktop. “Step Five: Installing Your Application in the Icon
Catalog” on page 173 explains how to do this.

Restart the Desktop. You can view your changes after you restart the Desktop.
“Step Six: Restarting the Desktop” on page 174 explains how to restart the Desktop.

Update your installation process. If you want to install your application on other
Silicon Graphics workstations, include in your installation all of the files that you
created in the preceding steps. Silicon Graphics recommends you use swpkg to
package your files for installation. See the Software Packager User’s Guide for
information for instructions on using swpkg. See “Step Seven: Updating Your
Installation Process” on page 174 for guidelines.

Note: You cannot create your own device, host, or people icons. These are special icons
used by the Desktop and can currently be created only by Silicon Graphics.

The Basic Steps Explained in Detail

This section describes in detail each of the basic steps listed in “Checklist for Creating an
Icon” on page 163. The steps are:

“Step One: Tagging Your Application”

“Step Two: Drawing a Picture of Your Icon”

“Step Three: Programming Your Icon”

“Step Four: Compiling the Source Files”

“Step Five: Installing Your Application in the Icon Catalog”
“Step Six: Restarting the Desktop”

“Step Seven: Updating Your Installation Process”

007-2006-130



Creating an Icon: The Basic Steps Explained in Detail

Step One: Tagging Your Application

The first step is to tag the application or shell script with its own unique identification
number so that the Desktop has a way of matching the application with the
corresponding FTRs. The easiest way to tag your application is to use the t ag command.
In order to use t ag, your application must be an executable or a shell script, and you
must have write and execute permissions for the file.

Note: You do not tag data or configuration files used by your application. Instead, you
provide rules as described in “Matching Files Without the tag Command” on page 214 to
identify these files.

If your application does meet the criteria for using the t ag command, then select a tag
number from your block of registered tag numbers. If you do not have a block of
registered tag numbers, you can get one by calling 415/933-TAGS or sending an e-mail
request to Silicon Graphics at this mail address:

deskt opt ags@gi . com

After Silicon Graphics sends you a block of registered tag numbers, use the t ag(1)
command to assign one to your application. To do this, change to the directory
containing your application and enter:

%tag tagnumber filename

where tagnumber is the number you assign to the application and filename is the name of
the application.

For example:

% /[ usr/ sbhin/tag 0X0101011 nyapp

For more detailed information on the t ag command, see the t ag( 1) reference page.

Step Two: Drawing a Picture of Your Icon

007-2006-130

The next step is to create the picture for your icon. An icon picture generally consists of
a unique badge plus a generic component (for example, the “magic carpet” designating
executables). The badge is the part of the icon picture that appears in front of the generic
component and that uniquely identifies your application. The generic components are

165



11: Creating Desktop Icons: An Overview

pre-drawn and installed by default when you install the IRIX Interactive Desktop
environment.

“Designing the Appearance of Icons” in Chapter 2 of the IRIX Interactive User Interface
Guidelines provides guidelines for drawing your icon images. If possible, consult with a
designer or graphics artist to produce an attractive, descriptive icon. Chapter 12, “Using
IconSmith,” describes exactly how to draw such an icon. Save the badge in a file called
<l conName>. f t i ,where IconName is any name you choose. Choose a meaningful name
(such as the name of the application or data format). If you have separate pictures
representing the open and closed states of the icon, it's a good idea to name them

<l conNane>. open. fti and <l conNanme>. cl osed. fti, respectively.

After drawing your badge with IconSmith (described in Chapter 12) save the picture—
the filename should end in . f t i —and put the saved file in the correct directory. The
appropriate directory depends on where you put your FTR files:

e Ifyouputyour FIR (ftr)filesinthe/usr/lib/filetype/install directory
(where you typically should install your FIR files), then put your badge (.f t i ) files
inthe/usr/lib/filetype/install/iconlib directory.

e If you put your FIR files in one of the other directories listed in Appendix F, then
put your badge file in a subdirectory of that directory. Name the subdirectory
i conl i b if the subdirectory doesn’t already exist.

Step Three: Programming Your Icon

166

Programming an icon means creating a file type. Each file type consists of a set of file
typing rules, each of which defines some aspect of the look or behavior of the icon. Your
file type includes rules that name the file type, and tells the Desktop where to find the
associated icon files, what to do when users double-click the icon, and so on. Chapter 13,
“File Typing Rules,” describes how to create the FTR file that defines your file type.
“Defining the Behavior of Icons With FTRs” in Chapter 2 of the IRIX Interactive User
Interface Guidelines describes the types of behaviors your icons should support.

(This section assumes that you are writing your FTRs completely from scratch. You may

prefer instead to modify an existing file type. To learn how to find the FTRs for an
existing icon, see “Add the FTRs: An Alternate Method” on page 168.)

007-2006-130



Creating an Icon: The Basic Steps Explained in Detail

Where to Put FTR Files

Most FTR files that are not created at Silicon Graphics belong in the
lusr/lib/filetype/install directory. There are also specific FTR directories set
aside for site administration. For a list of all FTR directories, see Appendix F, “.”

If you want to have a look at some existing FIR files, check out the
fusr/lib/filetypel/install directory.

Naming FTR Files

If you have an existing FIR file, you can add the new file type to this file. Otherwise, you
need to create a new FIR file, which you should name according to the standard naming
convention for application vendors’ FTR files. The convention is:

vendor - name[ . appl i cati on-name] . ftr

where vendor-name is the name of your company and application-name is the name of
your application.

Name the File Type

Each file type must have a unique name. To help insure that your file type name is
unique, base it as closely as possible on your application name.

As an extra check, you can search for your file type name in the / usr/1i b/ fil et ype
directory, to make sure that the name is not already in use:

1. Changetothe/usr/1ib/filetype directory:
%cd /usr/lib/filetype

2. Search for the file type nane:
%grep " your_name_here" *[* ftr

where your_name_here is the name you've selected for your file type.

If you find another file type of the name you have chosen, pick a new name.

007-2006-130 167



11: Creating Desktop Icons: An Overview

Add the FTRs

To create a file type, either add the file type definition to an existing FIR file or create a

new FTR file. You can define all the necessary file types for your application in a single
FIR file.

Each file type definition must include the following rules:

¢ the TYPE rule, to tell the Desktop that you are declaring and naming a new type
(the TYPE rule must go on the first line of each filetype definition)—a type is a
unique type of icon, such as an email icon. For example, the file myftrs. ftr
contains two filetypes:

TYPE FOO
MATCH . ..

TYPE FOO2
MATCH . ..

e the LEGEND rule, to provide a text description when users view icons as a list

e the MATCH rule, to allow the Desktop to match files with the corresponding file
type
¢ the ICON rule, to tell the Desktop how to draw the icon to use for this file type

Note: The TYPE, LEGEND, and other rules are typically referred to as “rules,” and the
entire set of rules defining a single file type is called a “filetype,” or an “FIR.”

In addition to these basic components, you can add other rules as necessary for each
different filetype you define.

Add the FTRs: An Alternate Method

168

If you don’t want to write the file type from scratch, you can modify an existing file type.
The first step is to choose a file type that produces icon behavior similar to what you want
from your new file type (that is, does the same thing when you double-click the icon, acts

the same way when you drop the icon on another icon, and so on.)

To find the set of FTRs that define the file type for the an icon, first locate the icon on the
Desktop. If the icon isn’t already on the Desktop select “File QuickFind” from the Find

007-2006-130



Creating an Icon: The Basic Steps Explained in Detail

007-2006-130

toolchest and use the Find an Icon window to find the icon. (When the icon appears in
the drop pocket, drag it onto the Desktop.

Select the icon by clicking the left mouse button on it, then hold down the right mouse
button to get the Desktop menu. When the menu appears, select the “Get Info” menu
item. A window appears. In the window, look at the line labeled, “Type.”

For example, if you'd selected the j ot icon, the line would read:

Type: jot text editor

The string “jot text editor” is produced by the LEGEND rule. You can use this string to
find the FTR that defines the | ot file type. To do this, open a shell and follow these steps:

1. Changetothe/usr/lib/fil etype directory
%cd /usr/lib/filetype

2. Search for “jot text editor”

%grep "jot text editor" */*. ftr

The system responds with this line:

system sgiutil.ftr: LEGEND :308:jot text editor

This line tells you that the j ot FTRisinthe /usr/lib/fil etype/ systemdirectory
in a file named sgi uti | . ftr.The: 308: is to allow the jot LEGEND to be localized
(translated into languages other than English). The 308 refers to line number 308 in the
uxsgi deskt op message catalog. See the get t xt ( 1) reference page for a description of
how to use such message files. If you only intend to ship your application in English
speaking countries, you can omit the line number designation (for example, : 308: ) from
your filetype.

Now you canopenthesgi uti | . ftr file using the text editor of your choice, and search
for the “jot text editor” string again. This shows exactly where the j ot FTRis in the
sgiutil.ftr file.

Note: If thej ot file type did not have its own icon, this search would not give you the
filename.

169



11: Creating Desktop Icons: An Overview

Now you can go to the file with the j ot FTR and copy it into the FIR file for your new
file type. Then rename and modify the copied FTR to fit your new file type, as described
in “Step Three: Programming Your Icon” on page 166.

170 007-2006-130



Creating an Icon: The Basic Steps Explained in Detail

An Example File Type

007-2006-130

Here is an example of a simple file type:
TYPE Scri nShaw

MATCH tag == 0x00001005;

LEGEND t he scrinshaw draw ng program
SUPERTYPE Execut abl e

CVD OPEN $LEADER

CVMD ALTOPEN | aunch -c¢ $LEADER

I CON {

if (opened) {
include("../iconlib/generic.exec.open.fti");

} else {
include("../iconlib/generic.exec.closed.fti");

}

include("/iconlib/scrimhaw fti");

}

Here’s a brief description of what each of these lines does:

The first line contains the TYPE rule, which you use to name the file type. In this
case, the file type is named, ScrimShaw. Always place the TYPE rule on the first line
of your FTR. The TYPE rule is described in “Naming File Types: The TYPE Rule” on
page 210.

The second line contains the MATCH rule. Use the MATCH rule to tell the Desktop
which files belong to this file type. In this example, we are just writing in the
identification (tag) number that we have already assigned to the executable. The
MATCH rule is described in “Matching File Types With Applications: The MATCH
Rule” on page 212.

The third line contains the LEGEND rule. Use this rule to provide a brief descriptive
phrase for the file type. This phrase appears when users view a directory in list
form. It also appears when users select the “Get File Info” item from the Desktop
pop-up menu. In this case, the descriptive phrase is “the scrimshaw drawing
program.” The LEGEND rule is described in “Adding a Descriptive Phrase: The
LEGEND Rule” on page 218.

The fourth line contains the SUPERTYPE rule. Use this rule to name a file type
superset for your FTR. In this example, the SUPERSET is “Executable.” The
SUPERTYPE rule is described in “Categorizing File Types: The SUPERTYPE Rule”
on page 210.

171



11: Creating Desktop Icons: An Overview

The fifth line contains the CMD OPEN rule. This rule tells the Desktop what to do
when users double-click the icon. In this example, double-clicking the icon opens
the scrimshaw application. The SLEADER variable is a Desktop variable, usually
set to the full name of the first selected icon. The Desktop variables are listed and
defined in Appendix B, “.” The CMD OPEN rule is described in “Programming
Open Behavior: The CMD OPEN Rule” on page 219.

The sixth line contains the CMD ALTOPEN rule. This rule tells the Desktop what to
do when users double-click the icon while holding down the <Al t > key. In this
example, the Desktop runs | aunch(1), which brings up a small dialog window
containing a single text field, so that users can type in command-line arguments to
the scrimshaw executable. Again, SLEADER is a Desktop variable (variables are
listed in Appendix B). For more information on the | aunch command, see the

I aunch( 1) reference page. The CMD ALTOPEN rule is described in
“Programming Alt-Open Behavior: The CMD ALTOPEN Rule” on page 220.

The final lines contain the ICON rule. These lines tell the Desktop where to find the
generic components (open and closed) as well as the unique application-specific
badge. The generic components together with the badge comprise the scrimshaw
icon appearance. Note that this rule combines the generic component for open and
closed executables with the unique “scrimshaw” badge that identifies it as a
distinctive application. The ICON rule is described in “Getting the Icon Picture: The
ICON Rule” on page 227.

Step Four: Compiling the Source Files

172

The Desktop compiles FTR source files into files called . ot r files. These files are in the
lusr/lib/filetype directory.

Note: Users can create personal deskt op. ot r files. See
lusr/lib/filetypel/ Makefil e. personal and Desktop User’s Guide for information
about how to create and use personal desktop icons.

Note: The. ctr files are obsolete as of IRIX release 6.3.

007-2006-130



Creating an Icon: The Basic Steps Explained in Detail

Any time you add or change FTRs (or print conversion rules) you must recompile the
. otr files by following these steps:

1. Changetothe/usr/1ib/fil etype directory:
%cd /usr/lib/filetype

2. Become superuser:
% su

3. Recompile the files:

# make -u

(If you don’t use the -u option when you make the files, some of your changes may not
take effect.)

To activate the new FIRs, quit and restart the Desktop. For instructions on restarting the
Desktop, see “Step Six: Restarting the Desktop” on page 174.

Step Five: Installing Your Application in the Icon Catalog

007-2006-130

It’s easy to add your icon to the icon catalog. Just install a symbolic link to your
application in the / usr/ | i b/ deskt op/ i concat al og/ C/ Appl i cati ons directory.

Note: The i conbookedi t command is obsolete as of IRIX release 6.3.

Then, add the install rule in your Makefile. For example, enter:
letc/install -idb nyldbTag -F \
[usr/1i b/ desktop/i concat al og/ pages/ T Appl i cations -1ns /usr/sbin/nyapp MApp

where Cis the SLANG environment variable, Appl i cat i ons is the page on which the
icon will appear in the icon catalog, and MyApp is the name to appear under your icon in
the icon catalog (the name can be different from the name of the executable).

Another example:

letc/install -idb nyldbTag -F /usr/|ib/ desktop/iconcat al og/ pages/ G V¢bTool s \
-I'ns /usr/sbin/ nywebapp M/\VébApp

173



11: Creating Desktop Icons: An Overview

In this example, the application, nywebapp, will appear on the WebTool s icon catalog
page, with the name MyWebApp under the icon.

For additional information, see “Making Application Icons Accessible” in Chapter 2 of
the IRIX Interactive User Interface Guidelines, which describes the Icon Catalog and how to
select the appropriate page of the Icon Catalog for your application.

Step Six: Restarting the Desktop

To view your changes and additions, you must restart the Desktop. To restart the
Desktop, first kill it by typing:

% /usr/libl/desktop/telldesktop quit

Then, restart the Desktop by selecting “In my Home Directory” from the Access Files
menu on the Desktop toolchest.

Step Seven: Updating Your Installation Process

174

Silicon Graphics recommends you use swpkg to package your files for installation.The
Software Packager User’s Guide describes how to package your application for installation.

Your installation process must:

¢ Tag the executables it produces (“Step One: Tagging Your Application” on page 165
explains how to tag executables). Put the tag in the Makef i | e before the command
that installs your application in the appropriate directory. For example:

TAG = 0x000010741

$( TARGET) : $( OBJECTS)
$(C++) $(C++FLAGS) $( OBJECTS) $(LDFLAGS) -0 $@
$( TOOLROOT) / usr/ shin/ tag $(TAG $( TARGET)

e Copy .fti and .ftr files to the appropriate directories (“Where to Put FTR Files” on
page 167 and “Where to Install Your Completed Icon” on page 178 explain which
directories these files belong in). With swpkg, you can do this by setting the
appropriate destination directory and destination filename for each file, using the
Edit Permissions and Destinations worksheet. See Chapter 5, “Editing Permissions
and Destinations,” in the Software Packager User’s Guide for instructions.

007-2006-130



Creating an Icon: The Basic Steps Explained in Detail

e Invokermkein/usr/1ib/fil etype toupdate the Desktop's database (“Step
Four: Compiling the Source Files” on page 172 explains how to update the
database). With swpkg, you can do this using the exi t op attribute from the Add
Attributes worksheet. Set up the exi t op attribute to run the make command. See
Chapter 6, “Adding Attributes,” in the Software Packager User’s Guide for
instructions.

* Add your icon to the Icon Catalog, creating a symbolic link in the
lusr/1ib/desktop/iconcatal og/ C/ Appli cati ons directory. See “Step
Five: Installing Your Application in the Icon Catalog” on page 173 for instructions.

See the make(1),sh(1),andtag(1) reference pages for more information on these
commands.

007-2006-130 175






Chapter 12

007-2006-130

Using IconSmith

This chapter explains how to use the IconSmith tool to draw an icon for your application.
This chapter contains these sections:

“About IconSmith” on page 178 briefly describes the IconSmith tool.

“Where to Install Your Completed Icon” on page 178 explains where to put your
icon file, after you've finished drawing your icon.

“Some Definitions” on page 179 defines some terms you'll need to use IconSmith.
“Starting IconSmith” on page 180 explains how to start the IconSmith tool.

“IconSmith Menus” on page 181 discusses IconSmith’s main menus: the IconSmith
menu and the Preview menu.

“IconSmith Windows” on page 182 lists IconSmith’s windows: the main window,
the Palette window, the Constraints window, and the Import Icon (Set Template)
window.

“Drawing With IconSmith” on page 183 describes IconSmith’s drawing tools.
“Selecting” on page 189 describes IconSmith’s selection features.
“Transformations” on page 191 describes IconSmith’s transformation features.

“Concave Polygons” on page 193 explains how to construct concave polygons in
IconSmith.

“Constraints: Gravity (Object) Snap and Grid Snap” on page 194 explains how to
use IconSmith’s gravity snap and grid snap features to guide your drawing.

“Icon Design and Composition Conventions” on page 196 explains how to make
sure that your icon complies with the basic icon design and composition
conventions described in “Designing the Appearance of Icons” in Chapter 2 of the
IRIX Interactive User Interface Guidelines.

“Advanced IconSmith Techniques” on page 198 describes some advanced
techniques, such as drawing circles and ovals in IconSmith.

177



12: Using IconSmith

About IconSmith

IconSmith is a program for drawing Desktop icons. Icons drawn with IconSmith are
saved in an icon description language. The icon description language is described in
Appendix D, “.”

Designed for the specific requirements of the Desktop, IconSmith produces icons that
draw quickly and display properly on the Desktop on all Silicon Graphics workstations.

An icon picture generally consists of a unique badge plus a generic component (for
example, the “magic carpet” designating executables). The badge is the part of the icon
picture that appears in front of the generic component and that uniquely identifies your
application. The generic components are pre-drawn and installed by default when you
install the IRIX Interactive Desktop environment.

You don’t need to draw the generic components of your icons. When using IconSmith to
draw your icon badge, you can import the generic component as a template as described
in “Importing Generic Icon Components (Magic Carpet)” on page 196. Then your ICON
rule in your FTR can include the generic components so they appear behind your
badge(s) when the icon is rendered on the Desktop.

Note: Iconsmith is not a general-use drawing application. Use it only to draw Desktop
icons.

Where to Install Your Completed Icon

178

After drawing your badge with IconSmith, save the badge—the filename should end in
. f ti —and install the saved file in the correct directory:

e Ifyouinstall your FTR (ftr) filesinthe/usr/lib/fil etype/install
directory (where you typically should install your FIR files), then install your icon
(fti)filesinthe/usr/lib/filetype/install/iconlib directory.

e If youinstall your FIR files in one of the other directories listed in Appendix F, then
install your badge in a subdirectory of that directory. Name the subdirectory
i conl i b if the subdirectory doesn’t already exist.

007-2006-130



Some Definitions

Some Definitions

Caret

Transformation Pin

007-2006-130

After you install the badge in the appropriate directory, see the following for more
information:

e “Step Three: Programming Your Icon” on page 166

¢ “Step Four: Compiling the Source Files” on page 172

e “Step Five: Installing Your Application in the Icon Catalog” on page 173
* “Step Six: Restarting the Desktop” on page 174

* “Step Seven: Updating Your Installation Process” on page 174

IconSmith uses some terms that may not be familiar to you. This section defines some
terms used in the rest of this chapter.

The caret (shown in Figure 12-1) is a small red and blue cross. The caret always shows
the location of the last mouse click—when you click the left mouse button, the caret
appears where the cursor is pointed. Unlike the cursor, the caret shows the effects of grids
and gravity (described in “Constraints: Gravity (Object) Snap and Grid Snap” on

page 194).

-

Figure 12-1  Caret

The transformation pin (shown in Figure 12-2) indicates the point from which an object
is scaled or sheared and around which an object is rotated. It is a blue and white cross,
larger than the caret. It can be dropped anywhere to affect a transform.

179



12: Using IconSmith

Vertex

Path

Figure 12-2  Transformation Pin

A vertex (shown in Figure 12-3) is a selectable point, created when the mouse is clicked
in the IconSmith window while the <Ct r | > key is held down.

L

Figure 12-3  Vertex

A path (shown in Figure 12-4) is one or more line segments between vertices. Paths can
be open or closed. A closed path can be filled or unfilled.

+
+
+

Figure 12-4  Path

Starting lconSmith

180

To start IconSmith from the Desktop, double-click the IconSmith icon, shown in
Figure 12-5.

<=

icansmith

Figure 12-5  The IconSmith Icon

007-2006-130



IconSmith Menus

To start IconSmith from the command line, type:

% /usr/sbhin/iconsmth

IconSmith Menus

The IconSmith main window, shown in Figure 12-6, provides two popup menus, the
IconSmith menu and the Preview menu:

*  Access the IconSmith menu by holding down the third (typically the right) mouse
button anywhere in the main window drawing area.

®  Access the Preview menu by holding the third (right) mouse button down within
the blue preview square located in the lower left corner of the IconSmith main
window.

007-2006-130 181



12: Using IconSmith

+ + + + + + + *
. . . . . . . .
+ . + . + . + .
. . . . . . . .
B 0 u n d ary ’ + : + ’ + : + ’ + : + ’ + *
(do not draw . . . . . .
outside it + . + .
) + | loon Smith + +
. . . .
. * + *
IconSmith Unda . . . .
O . . . .
menu Duplicate . . . .
+ | Delete M + M
. . . .
. . . .
Pap to Fromt + + + + M
* * * *
Push io Back . . + +
. . . .
. | Sefeet Mext P e
. | Deselect Fragmenits L.t *
Select Alf + * + .
. . . .
. i . . . .
+ | FransformationPin 1§ + + .
. . . .
Main window + | Concave a K . .
drawing area . Lt *
+ . + . + . + .
. . . . . . .
. . . . . . . .
* * * * * * *
+ + + + + + + *
. . . . . . .
* +* * +* * +* * -
. . . . . . .
B Sheary . . . . . . . .
+ + + + + + + * —
7 . . . . . . . . 7
5 7 * +* * +* * * * * v
Preview menu Preview
Blue preview i s
square Background » Paletie

Figure 12-6 ~ The Main IconSmith Window With Popup Menus

IconSmith Windows

182

Besides the main window, IconSmith provides three other primary windows:

e Palette (Selection Properties) window, which is described in “Drawing Filled
Shapes.”

¢ Constraints window, which is described in”Constraints: Gravity (Object) Snap and
Grid Snap.”

007-2006-130



Drawing With IconSmith

Import Icon or Set Template window, which is described in “Templates.”

Drawing With IconSmith

IconSmith provides tools for drawing paths, selecting colors, importing design elements
from other icons, drawing shapes, and using template images. This section covers the
following topics:

“Drawing Paths”
“Deleting”

“Keeping the 3-D Look”
“Drawing Filled Shapes”
“Sharing Design Elements”

“Templates”

Before you begin drawing, it’s often useful to set up the preview box to represent the
Desktop as closely as possible. This helps you choose colors and draw your icon to look
its best when it appears on the Desktop and in the Icon Catalog. To do this:

1.

2.

3.

007-2006-130

Set the Background color to WorkSpace from the Preview popup menu. This gives
the preview area the background color of the Icon Catalog.

Click the Import button at the bottom of the IconSmith window to display the
Import Icon or Set Template window (shown in Figure 12-7).

Import an appropriate template from the Import menu. For example, if you are
drawing an icon for a new application, import the Closed Application template by
clicking that button. This helps you center and size your design appropriately.

183



12: Using IconSmith

184

i Cpen Application

Figure 12-7  The Import Icon or Set Template Window

Tip: Draw your icon design on a clear transparency, and tape the transparency to the top
of the monitor housing. Using the drawing as a guide, trace it using IconSmith.

Tip: When drawing in IconSmith, it is easy to select the wrong object. One technique that
you can use is to draw adjacent icon components separately to prevent confusion when
selecting and editing an object. When you have finished working with the parts, you can
move them together.

There is an “Undo” option in the IconSmith popup menu. To bring up the IconSmith
popup menu, hold down the right mouse button. You can undo up to nine operations
using the <F1> key. To redo something you have undone, hold the <Shi f t > key and press
the <F1> key.

No single polygon can contain more than 255 vertices.

Also, be careful not to draw outside the royal blue boundary that appears in the preview
box and in the drawing area. The Desktop doesn’t display correctly outside those areas.

007-2006-130



Drawing With IconSmith

Drawing Paths

To draw a path with IconSmith:

1. Select a starting point by clicking the primary (usually the left) mouse button.

2. Move the mouse to a new position.

3. Hold down the <Cont r ol > key and click the primary (left) mouse button.

This process creates a line segment. To add more line segments connected to the first,

repeat steps 2 and 3 as many times as necessary. To create a disconnected line segment,
repeat from step 1.

Drawing Filled Shapes

In IconSmith, you can fill a closed path (one in which the beginning and end points meet)
with a color. To begin, click the Palette button at the bottom of the IconSmith window to
display the Palette window, shown in Figure 12-8.

To draw a filled shape, select a fill color from the Palette menu, and proceed to draw.
When you finish creating the closed path, the shape is filled with the current fill color. To
change the fill color of an existing polygon, select it by clicking on one of its vertices. Then
choose a new fill color from the Palette. Also, you can change the fill color of a path by
selecting the path and then selecting a new fill color.

Fill does not work properly with concave closed paths, nor with paths in which the
beginning point does not meet the end point. See “Concave Polygons” on page 193.

The default fill color is “Icon,” a special white color, and the default line color is
“Outline,” a special black color (see “Selecting Colors” on page 197).

007-2006-130 185



12: Using IconSmith

Figure 12-8  The Palette (Selection Properties) Window
Deleting

To delete any path or vertex, select it and press the <Back Space> key, or use “Delete” in
the IconSmith popup menu.

186 007-2006-130



Drawing With IconSmith

Keeping the 3-D Look

Icons created by Silicon Graphics are drawn in the same isometric view, which provides
an illusion of 3-D, even though the polygons composing the icons are 2-D. If you draw
icons facing the screen at right angles, they look 2-D. To generate a 3-D effect, draw
“horizontal” lines so that they move up 1 unit in the y-axis for every 2 units they extend
along the true x-axis. See Figure 12-9.

Y i .t b " s

S| VRielrisg 410 porizontal
o T L 2 vl run

true
vertical

Figure 12-9  3-D Icon Axes

Use the same projection that the original icon set uses. Icons tilted in the wrong direction
look off-balance, and destroy the 3-D appearance. For your convenience, IconSmith
provides an isometric grid. By following the diagonals of this grid, as shown, you can
create an icon that fits in exactly with other isometric icons in the Desktop. You can count
along these diagonal grid dots, to help measure, align, or center pieces of your icon.

Drawing for All Scales
Desktop icons can be displayed in many sizes. IconSmith includes two features useful in

designing your icon for display at all sizes, the Preview box and the slider on the right
side of the drawing area.

007-2006-130 187



12: Using IconSmith

The Preview Box

You can use the Preview box to see your icon design in common sizes and background
colors. The Preview box is the blue box in the lower left corner of the main IconSmith
window. By default, the Preview box shows your drawing at the default Desktop icon
display size and no background color. You can change the icon size and background
color in this window using the Preview box popup menu.

As you design your icon, periodically check its appearance in the Preview box. Because
users can enlarge icons only to a maximum size of about 1x1 inch, many details will not
appear or will become distorted at normal icon size. Also, keep in mind that the more
detail your icon has, the longer it takes for the Desktop to render the icon.

Changing Drawing Size

You can change the size of your design in the IconSmith drawing area using the slider on
the right side of the drawing area. Use the slider to look at your design at all sizes. At
particularly small sizes, some features may not be visible. At large sizes, design
imperfections may appear.

Sharing Design Elements

You can import design elements such as circles into your badge. Importing elements
where possible saves you work and makes it easy to include common design elements in
all the icons for one application.

To import an existing icon or icon element, click the Import button. This brings up the
Import Icon or Set Template window. Use the “Import to Icon Editing Layer” area to
specify the icon file you want.

Generic and sample material can be found inthe /usr/1ib/filetype/iconlib
directory. For example, to import a sample circle, type the filename:

lfusr/lib/filetypel/iconlib/sanple.circle.fti

188 007-2006-130



Selecting

Templates

Selecting

007-2006-130

Other icons can be found in:
e Jusr/lib/filetype/default/iconlib
e Jusr/lib/filetypel/systenficonlib

e Jusr/lib/filetype/vadnmin/iconlib

All icons are potential sources for design elements. However, if you are designing a
unique set of executable or document badges, you should make use of templates as
described in “Templates” on page 189 and “Icon Design and Composition Conventions”
on page 196.

You can use templates to help you design your icons or for tracing. You can import a
template so that you can see it in the IconSmith drawing window, without saving or
displaying as part of the design. This is most useful for getting position information
while you are designing a unique badge to use in conjunction with the generic executable
and document icons.

Note: You cannot move or change an icon template in IconSmith.

To display a template, click the Import button. In the Import Icon or Set Template
window (shown in Figure 12-7), type the name of the template icon file you want in the
textfield “Template File” in the area labeled “Set Template Layer.” Alternately, click any
of the three template buttons to retrieve common generic components. These template
images are the most often used, and they are discussed in “Icon Design and Composition
Conventions” on page 196.

Before you edit, move, delete, or change the color of an object or vertex, you have to tell
IconSmith which object you want. This section describes aspects of selecting:

e  “Partial”

*  “Deselect Fragments”

189



12: Using IconSmith

Partial

Deselect Fragments

190

“Select Next”
“Select All”

Selecting can be difficult in a complex composition. The following tips can make the task
easier:

To select an object or vertex, move the cursor on top of the object’s outline and click
the left mouse button. The vertices highlight blue and white when the object is
selected. To move an object, double-click, hold down the left mouse button and
move with the mouse. The vertices highlight green and yellow when you can move
the object.

To move a vertex, click once on the vertex, then drag it to a new location.

You can select more than one object or vertex by holding down the <Shi f t > key
during the selection process. To move the objects or vertices, move only one and the
rest will follow.

You can select all vertices in an area with your mouse. Hold down the left mouse
button and sweep the cursor across the vertices you want. The area you select is
indicated by a box. When you let go of the left mouse button, all vertices are
selected.

You can deselect a vertex by holding down the <Shi f t > key and clicking the vertex.

When you use the mouse to select an area with objects in it, you can include only some
vertices of some objects. When you toggle on the Partial button, objects partially selected
are highlighted. When you toggle off the Partial button, only objects that fall entirely
within the swept-out area are selected.

In compositions with many objects, you can use “Deselect Fragments” to make selection
easier. When selecting the objects in the drawing area, you can also select adjacent
objects, then deselect what you don’t want. Hold the <Shi f t > key down and click one
vertex of each object you don’t want. This deselects the vertex, which makes the object
partially selected. Then you can use “Deselect Fragments” from the IconSmith popup
menu to deselect the entire object.

007-2006-130



Transformations

Select Next

Select All

Transformations

007-2006-130

“Select Next” allows you to select a vertex that is covered by another vertex. When two
or more trajectories (lines) each have a vertex at a common location, such as two triangles
with a coincident edge, the “Select Next” operator is useful for selecting a trajectory other
than the top one. “Select Next” is also useful in images with tiled parts, where most
vertices share a location.

Select a shared vertex by clicking its location. That vertex is highlighted in yellow and
green (and the red and blue caret appears at that spot). The other vertices of the trajectory
selected are highlighted in white to indicate the trajectory to which the selected vertex
belongs. Now each time you choose “Select Next” from the IconSmith menu, you step
through all the other vertices of all the other trajectories which have a vertex at that point.

You can select all vertices in the main IconSmith window drawing area using the “Select
All” option in the IconSmith popup menu. You can select all vertices in an area by
holding down the left mouse button and sweeping out a box to surround the desired
area.

The Transform buttons let you shrink, enlarge, stretch, and rotate portions of your icon
design. These features can make drawing easier and more precise.
To use any Transform button, follow this procedure.

1. Choose the Transform option you want using any of the six transform buttons
located on the left side of the IconSmith window: Scale, Scale XY, Scale X, Scale Y,
Rotate, or Shear Y.

2. Choose a point in the main IconSmith window drawing area as a reference point for
the transformation by positioning the cursor and clicking the left mouse button.

3. Bring up the IconSmith popup menu and select “Move to Caret” from the
Transform Pin rollover menu.

191



12: Using IconSmith

4. To select an entire object for transformation, hold down the <Al t > key and
double-click the object you want to transform. Otherwise, you may select
individual vertices by holding down the <Al t > and <Shi f t > keys while clicking
each desired vertex. Do not release the <Al t > key when you have finished selecting
vertices.

5. While still holding down the <Al t > key, position the cursor inside the object you
want to transform. Press and hold down the left mouse button and move the mouse
to transform the object.

For example, here is how you enlarge a circle:

1. Choose “Scale” from the Transform menu.

2. Choose a point on the perimeter of the circle.

3. Bring up the IconSmith popup menu and select “Move to Caret” from the
“Transform Pin” rollover menu.

4. Hold down the <Al t > key and double-click the circle. All vertices on the circle are
now highlighted in green and yellow.

5. Continue to hold down the <Al t > key. Position the cursor on a vertex of the circle.
Press and continue to hold down the left mouse button while you sweep the mouse
out of the circle. The circle perimeter follows the cursor, enlarging the circle.

6. Release the left mouse button and <Al t > key when the circle is the size you want.

Scale

The Scale button changes the size of an object without changing its shape.

Scale Xand Y

The buttons marked Scale X and Scale Y limit scaling transformations to either
horizontal or vertical, respectively. Unlike the Scale button, the Scale XY button allows
you to stretch your object both horizontally and vertically.

192 007-2006-130



Concave Polygons

Rotate

Shear Y

Using the Rotate button, you can rotate a selected object around the Transform Pin.

The Shear Y transformation transforms rectangles into parallelograms with one pair of
sides parallel to the y axis. The Shear Y button is useful for transforming art that is drawn
in a face-on view to an isometric view.

Note that strictly speaking, the Shear Y transformation performs two transformations:
shear in y and scale in x.

Concave Polygons

007-2006-130

Figure 12-10 shows a concave polygon.

Figure 12-10 Concave Polygon

By default, IconSmith does not fill concave polygons properly. If you prefer to have
concave polygons filled properly while drawing your icon design, you can tell IconSmith
to draw concave polygons. Bring up the IconSmith popup menu with the right mouse
button. Select “Concave” and pull out the rollover menu. Select “No GL Check” from the
rollover menu. IconSmith will not check for concave polygons until you select “GL
Check” from the Concave menu.

193



12: Using IconSmith

Constraints: Gravity (Object) Snap and Grid Snap

You can use gravity snap and grid snap to guide your drawing in IconSmith, allowing
you to align and compose objects perfectly. This makes drawing easier and more precise.
Grid snap causes the caret to “snap” to vertices or to the edges of the grid pattern
displayed behind the objects you are editing. Gravity snap causes the caret to snap to
vertices and the edges of objects you have already drawn. It is a good idea to make use
of these features to ensure that your icon looks clean and precise at all sizes.

Typically, it’s sufficient to toggle on gravity snap and grid snap. However, you can
control gravity snap and grid snap properties by using the Constraints window.

Click the Constraints button at the bottom of the IconSmith window to display the
Constraints window, shown in Figure 12-11.

Figure 12-11 The Constraints Window

When using the Constraints window, remember to click either the Apply or Accept
button to implement your changes. The Accept button implements your changes and
closes the Constraints window, and the Apply button leaves the window on your screen.

194 007-2006-130



Constraints: Gravity (Object) Snap and Grid Snap

Controlling the Grid

Controlling Gravity

007-2006-130

In the main IconSmith window, the Snap button under the heading “Grid” lets you turn
on or off the grid setting you've made in the Constraints window. The Show button lets
you display or hide the grid. To change the grid behavior, use the settings in the “Grid
Constraints” portion of the Constraints window.

You can change grid properties by selecting various buttons in the Grid Constraints
section of the Constraints window. Selections include:

Grid Basis buttons control the shape of the grids. IconSmith includes two types of
grids. The isometric grid provides guidance in the perspective described in
“Keeping the 3-D Look” on page 187. IconSmith also provides a traditional square
grid. To change the type of grid you are using, select a Grid Basis button, and then
click the Apply button.

Snap to Grid buttons affect what the caret gets snapped to: either vertices or edges.
These changes are reflected in the appearance of the grid after you click the Apply
button the appearance of the grid changes.

Grid Spacing controls the distance between points in the grid. You can type in the
number of pixels you want, or base the distance on a selected line in your icon
design. Measure from Line measures the grid spacing from the line you select in
the drawing area. When you copy an object using “Duplicate,” the copy is placed
one grid space down and to the right from the original (or the previous copy). You
can use Grid Spacing to control where IconSmith places duplicate objects.

Snap Influence allows you to adjust the area influenced by the “magnetic field” of
the grid.

The controls in the “Gravity Constraints” portion of the Constraints window control how
gravity snap behaves. In the main IconSmith window, the Snap button under the
“Gravity” heading lets you turn on or off the influence of gravity on objects.

Snap to Object allows you assemble objects in your design smoothly. The object’s
edge, vertex, or both attract other objects when they are moved within range of
gravity.

Snap Influence allows you to determine the range, in pixels, of the gravity
influence of objects in your design.

195



12: Using IconSmith

Icon Design and Composition Conventions

The standard set of Desktop icons has been designed to establish a clear, predictable
visual language for end users. As you extend the Desktop by adding your own
application-specific icons, it is important to make sure that your extensions fit the overall
look of the Desktop and operate in a manner consistent with the rest of the Desktop. This
section discusses:

¢ “Importing Generic Icon Components (Magic Carpet)”
¢ “Icon Size”
* “Selecting Colors”

“Designing the Appearance of Icons” in Chapter 2 of the IRIX Interactive User Interface
Guidelines contains extensive guidelines for designing the look of your icon.

Importing Generic lcon Components (Magic Carpet)

196

Many icons share common components. One example is the “magic carpet” component
used as a background component by most executable files; individual applications can
add unique badges.

Rather than redrawing the common “generic” component in each individual icon, you
can instead draw only the unique badges, and then use the ICON directive in the FTR file
to combine the badge with the generic component. “Getting the Icon Picture: The ICON
Rule” in Chapter 13 describes how to do this. An advantage to this approach is that you
don’thave to create separate icons to identify open or closed states. You can simply create
the unique badge and then set up the FIR file to include either the generic open
component or the generic closed component as appropriate.

While designing your icon, you can import the appropriate generic component as a
template using the “Set Template Layer” of the “Import or Set Template” window; this
helps you achieve the correct icon placement and perspective. When you import a
component into the template layer, the template component is displayed in the drawing
area, but not saved as part of the icon. When you are finished, you can save your icon in
a .fti file, and combine it with the generic component in the FTR file.

If you import a generic component using the “Icon Editing Layer” section of the “Import

or Set Template” window, the component becomes part of your icon. In general, you
shouldn’t do this; if you do, you use more disk space and icon design is more difficult.

007-2006-130



Icon Design and Composition Conventions

Icon Size

Selecting Colors

007-2006-130

Instead, you should draw only the badge. Then in your FIR file, you use the ICON rule
to display the appropriate generic component before displaying your badge. (See
“Getting the Icon Picture: The ICON Rule” on page 227 for information on the ICON
rule.)

The blue boundary in the IconSmith drawing area indicates the area of your design that
draws in the Desktop and is sensitive to mouse input. You must confine your final icon
design to the area within this boundary. You can display or hide the boundary by using
the Show button under Bounds in the main IconSmith window.

You can select or change the color of any outlined or filled object by using the features in
the Selection Properties window. To bring up this window, click the Palette button. The
currently selected outline and fill colors are displayed under the “Current Colors”
heading.

There are two palettes in the Selection Properties window: one for the outline color, and
another for the fill color. The outline color palette consists of the first 16 entries in the IRIS
color map. The fill color palette gives you 128 colors created by dithering between the
color values of the first 16 colormap entries.

In addition to the colors on these palette, there are three special colors available that you
should use extensively when drawing your icon. The Desktop changes these colors to
provide visual feedback when users select, locate, drag, and otherwise interact with your
icon. These colors and their uses are:

Icon Color Use extensively for drawing the main icon body

Outline Color  Use for outlining and line work in your icon

Shadow Color Use for contrasting drop shadows below your icon

Select outline and fill colors displayed in the palettes by clicking the appropriate buttons.
If you want subsequent objects to use your color selections, click “Apply to Pen.” If you
want to update current objects with colors already in your pen, click an existing object

with the left mouse button, and then select “Get from Pen” from the Selection Properties
window. The object gets the outline and fill colors currently assigned to the pen.

197



12: Using IconSmith

On the Desktop and in the Preview box, the icon color turns yellow when the icon is
selected and royal blue when an object is dropped on it. For more information on the use
of color in designing icons, refer to “Icon Colors” in Chapter 2 of the IRIX Interactive User
Interface Guidelines.

Advanced IconSmith Techniques

This section contains hints that make common IconSmith operations easier. This section
also provides a step-by-step example of creating an icon. Topics include:

¢ “Drawing a Circle”
¢ “Drawing an Oval”

e “Isometric Circles”

Drawing a Circle

Here is a trick for drawing a circle using lines:

1. Draw a path the length of the radius of the circle you want. Figure 12-12 shows an

example.

* + +*
* *

* + +*
—

+ + +*
* *

* + +*

Figure 12-12 A Path

2. Select “Grid Spacing” of 0 pixels in the Constraints window.
3. Duplicate the line 12 times. Because grid spacing is set to 0, the duplicate lines stack.

4. Select one vertex, bring up the IconSmith popup menu, and select “Push Pin” from
the Transform Pin rollover menu.

5. Click the Rotate button from the Transform menu.
6. Hold down the <Al t > key and select the other vertex of the stack of paths.

7. Sweep out each path until the figure resembles a wheel, as shown in Figure 12-13.

198 007-2006-130



Advanced IconSmith Techniques

Figure 12-13 Wheel Spokes

8. Connect the outside vertices, as shown in Figure 12-14.

VAR

Figure 12-14 Connected Spokes

9. Delete the inside “spoke” paths, to get a circle like the one in Figure 12-15.

* *

Figure 12-15 Finished 2-D Circle
Circles and other shapes can be time-consuming to create. Another way of adding circles

to your icon is to import a circle from another icon or from the icon parts library. See
“Sharing Design Elements” on page 188 for more information.

007-2006-130 199



12: Using IconSmith

Drawing an Oval

200

To create an oval, stretch the circle you have already drawn.

1.
2.

Double-click a circle.

Bring up the IconSmith menu, and select “Move to Caret” from the Transform Pin
menu.

Place the pin directly above the circle.
Select Scale Y from the Transform menu.

Hold down the <Al t > key and use the mouse to stretch the circle to the oval shape
you want. Figure 12-16 shows an example.

Figure 12-16 An Oval

You can now assemble the parts to make a simple icon, as shown in Figure 12-17.

007-2006-130



Advanced IconSmith Techniques

Isometric Circles

Isometric Transformation

Import Existing Object

007-2006-130

Figure 12-17 A Simple, Circular 2-D Icon

The circular icon created above is not a good central icon design because it is not
isometric. The circle looks awkward in the context of isometric icons and may be
misconstrued to be a sphere. Here are two ways to make the same design in isometric
space.

You can use the Shear Y button with an isometric grid to make any object seem 3-D.
1. Duplicate your circle.

2. Click Shear Y in the Transform menu.

3. Bring up the IconSmith menu, and select “Push Pin” from the Transform Pin menu.
4. Place the pin on one of the vertices at the bottom of the circle.

5

Hold down the <Al t > key and align the bottom line of the circle using the grid.

If another icon contains the shape you need, recycle it.

201



12: Using IconSmith

1. Click the Import button.

2. Import the icon file
fusr/lib/filetypeliconlib/sanple.big.3circles.fti.Youshould
now have the design shown in Figure 12-18 in your IconSmith drawing area.

Figure 12-18 Imported Circles

3. Delete all parts of this icon except the lower right circle.
Using either method, you can create an isometric circle, shown in Figure 12-19. Starting

with the isometric circle, you can easily create isometric ovals, using the procedure in
“Drawing an Oval” on page 200.

202 007-2006-130



Advanced IconSmith Techniques

Figure 12-19 Finished Isometric Circle

The final, isometric version of the icon is shown in Figure 12-20. Note that the design still
looks flat. However, if you want to show a sphere, create a straight-on circle, as was done
for the WebMagic icon.

Figure 12-20 Simple, Isometric 2-D Icon

007-2006-130 203



12: Using IconSmith

Finishing Your Icon

A finished application icon is actually three or four . f ti files: one or two badges, plus
generic components for the open (running) and closed (not running) icon states. You
need two badges rather than one if you want to animate your icon by changing its
appearance which the user double-clicks it. Figure 12-22 shows a possible open version
for the example icon created in the previous section. When the icon appears on the
Desktop, the generic executable icon component appears if you correctly define the
ICON rule in the FTR file, as discussed in “Getting the Icon Picture: The ICON Rule” on
page 227.

To see how your finished application icon appears on the Desktop:

1. Import the generic closed executable component using the Import button. In the
“Import” dialogue box, under “Set Template Layer”, press the Closed Application
button. The generic icon component appears under your closed badge design.

2. Center your design on the generic component template you have imported, as
shown in the example illustrated in Figure 12-21.

Figure 12-21 Icon Centered on Generic Component

204 007-2006-130



Advanced IconSmith Techniques

3. (Optional, but recommended.) Follow the same two steps to create an open badge.
You can give the appearance of animation by changing your design slightly and
saving the changed version as an open badge.

Figure 12-22 Open Icon

4. Save your icon designs to files with the suffix .fti.
For a discussion of icon file installation, see “Where to Install Your Completed Icon” on

page 178. To learn how to integrate your icon into an FTR file, see “Getting the Icon
Picture: The ICON Rule” on page 227.

007-2006-130 205






Chapter 13

File Typing Rules

The Desktop uses file typing rules (FTRs) to evaluate all files that are presented within
the Desktop. This chapter describes each of the file typing rules in detail, and offers
suggestions for good file typing style and strategies. “Defining the Behavior of Icons
With FTRs” in Chapter 2 in IRIX Interactive User Interface Guidelines describes the
behaviors your icon should support.

This chapter contains these sections:

007-2006-130

“A Table of the FTRs With Descriptions” on page 209 provides a reference table
listing the FIRs along with brief descriptions.

“Naming File Types: The TYPE Rule” on page 210 describes the TYPE rule, used to
name a file typ.

“Categorizing File Types: The SUPERTYPE Rule” on page 210 describes the
SUPERTYPE rule, used to categorize file types.

“Matching File Types With Applications: The MATCH Rule” on page 212 describes
the MATCH rule, used to match the application with the corresponding file type.

“Matching Non-Plain Files: The SPECIALFILE Rule” on page 217 describes the
SPECIALFILE rule, used to match non-plain files.

“Adding a Descriptive Phrase: The LEGEND Rule” on page 218 describes the
LEGEND rule, used to provide a brief phrase describing the application or data file.

207



13: File Typing Rules

208

“Setting FTR Variables: The SETVAR Rule” on page 219 describes how to set
variables that affect the way your icon behaves.

“Programming Open Behavior: The CMD OPEN Rule” on page 219 describes the
CMD OPEN rule, used to define what happens when users open the icon.

“Programming Alt-Open Behavior: The CMD ALTOPEN Rule” on page 220
describes the CMD ALTOPEN rule, used to define what happens when users
double-click your icon while pressing the <Al t > key.

“Programming Drag and Drop Behavior: The CMD DROP and DROPIF Rules” on
page 222 describes the CMD DROP rule, used to define what happens when a user
drags another icon and drops it on top of your application’s icon.

“Mapping Names: The MAP Rule” on page 225 describes the MAP rule, used to
specify a list of all mappings from the desktop name space.

“Programming Print Behavior: The CMD PRINT Rule” on page 226 describes the
CMD PRINT rule, used to tell the Desktop what to do when a user selects your icon,
then selects “Print” from the Desktop popup menu.

“Adding Menu Items: The MENUCMD Rule” on page 226 describes the
MENUCMD rule, used to add menu items to the Desktop menu

“Getting the Icon Picture: The ICON Rule” on page 227 describes how to tell the
Desktop where to find the file(s) containing the picture(s) of the icon for a file type

“Creating a File Type: An Example” on page 230 provides a detailed example of
how to program an icon.

007-2006-130



A Table of the FTRs With Descriptions

A Table of the FTRs With Descriptions

007-2006-130

Table 13-1 lists the rules that appear in a filetype definition along with brief descriptions.

Table 13-1 Rules That Appear in a Filetype Definition

Rules Function

TYPE Declares a new type.

SUPERTYPE Tells the Desktop to treat the file as a subset of another type under
certain circumstances.

MATCH Lets the Desktop determine if a file is of the declared type.

SPECIALFILE Tells the Desktop to use the file typing rule only on non-plain files.

LEGEND Provides a text description of the file type.

SETVAR Sets variables that affect the operation of your icon.

CMD OPEN Defines a series of actions that occur when a user double-clicks the
mouse on an icon or selects “open” from the main menu.

CMD ALTOPEN Defines a series of actions that occur when a user alt-double-clicks
the mouse on an icon.

CMD DROP Defines a series of actions that occur when a user “drops” one icon
on top of another.

DROPIF Defines a set of file types that the icon will allow to be dropped on it.

CMD PRINT Defines a series of actions that occur when a user chooses “Print”
from the Desktop or Directory View menus.

MENUCMD Defines menu entries that appear in the Desktop menu and the
Selected toolchest when an icon is selected.

ICON Defines the appearance (geometry) of the file type’s icon.

MAP Maps the Desktop file-type name with the ICCCM or MIME

target-type names.

All file types must begin with a TYPE rule. Aside from that, the rules can appear in any
order; however, the most efficient order for parsing is to include the MATCH rule second
and the ICON rule last.

209



13: File Typing Rules

Naming File Types: The TYPE Rule

It is important that your file type have a unique name so that it doesn’t collide with
Silicon Graphics types or types added by other developers. A good way to generate a
unique file type name is to base your file type name on your application name (which is
presumably unique). Another method is to include your company’s initials or stock
symbol in the file type name. You can also use the gr ep(1) command to search through
existing .ftr files:

% grep name [usr/lib/filetypel/*/*. ftr

Substitute your proposed new type name for the words name. If gr ep doesn’t find your
name, then go ahead and use it.

You name a file type by using the TYPE rule. You can define more than one file type in a
single file, as long as each new file type begins with the TYPE rule. The TYPE rule always
goes on the first line of the file type definition.

Here is the syntax and description for the TYPE rule:
Syntax: TYPE type-name

Description:  type-name is a one-word ASCII string. You can use a legal C language
variable as a type name. Choose a name that is in some way descriptive
of the file type it represents. All rules that follow a TYPE declaration
apply to that type, until the next TYPE declaration is encountered in the
FIR file. Each TYPE declaration must have a unique type name.

Example: TYPE Generi cExecut abl e

Categorizing File Types: The SUPERTYPE Rule

210

Use the SUPERTYPE rule to tell other file types that your file type should be treated as a
“subset” of a larger type such as executables or directories. For example, you can create
an executable with a custom icon, then use the SUPERTYPE rule to tell other Desktop file
types that the icon represents an executable.

007-2006-130



Categorizing File Types: The SUPERTYPE Rule

007-2006-130

Note: In general, file types don’t “inherit” icons, rules, or any other behavior from
SUPERTYPEs. Directories are a special case. The Desktop automatically handles the
DROP, OPEN, and ALTOPEN behavior for all directories marked as “SUPERTYPE
Directory.” You can’t override the DROP, OPEN, or ALTOPEN behavior if you include
“SUPERTYPE Directory.”

You can use any existing file type as a SUPERTYPE. Appendix E, “Predefined File
Types”, lists some of the file types defined by Silicon Graphics. You can generate a
complete list of file types installed on your system using the gr ep(1) command:

% grep TYPE /usr/lib/filetype/*/*. ftr

Note: The list of file types generated by the above command is very long and unsorted.

Here is the syntax and description for the SUPERTYPE rule:
Syntax: SUPERTYPE type-name [type-name ... ]

Description:  type-name is the TYPE name of any valid file type. Use SUPERTYPE to
identify the file type as a “subset” of one or more other file types. This
information can be accessed by other file types by calling i sSuper (1)
from within their CMD rules (OPEN, ALTOPEN, and so on). A file type
can have multiple SUPERTYPEs. (For example, the Script file type has
both Ascii and SourceFile SUPERTYPES.) See the i sSuper ( 1)
reference page for more information.

Example: SUPERTYPE Execut abl e

A common use for SUPERTYPEs is to allow users to drag data files onto other application
icons to open and manipulate them. For example, if your application uses ASCII data
files but you create a custom data type for those files, you can include in the file type
declaration:

SUPERTYPE Asci i
This allows users to drag your application’s data files onto any text editor to open and

view them. If your application creates images files, you could make a similar declaration
to allow users to drag data file icons to appropriate image viewers such as i past e(1).

211



13: File Typing Rules

Matching File Types With Applications: The MATCH Rule

The Desktop needs some way to figure out which FTRs pair up with which files. Your
FTRs will not work if they don’t include some way for the Desktop to match them with
the appropriate files. To do this, include the MATCH rule in your file type definition. This
section explains how to use the MATCH rule to identify your files. The method you use
depends on the kind of file you are matching and on the file permissions. First, here’s the
MATCH rule syntax and description:

Syntax: MATCH match-expression;

Description:  match-expression is a logical expression that should evaluate to true if,
and only if, a file is of the type declared by TYPE. The match-expression
must consist only of valid MATCH functions, as described later in this
section. The match-expression can use multiple lines, but must
terminate with a semicolon (;). Multiple match-expressions are not
permitted for a given type. The MATCH rule is employed each time a
file is encountered by the Desktop, to assign a type to that file.

Examples: MATCH tag == 0x00001005;
MATCH gl ob(“ myExecut abel ") ;

Matching Tagged Files

The easiest way to match your application with its FTRs is to use the t ag(1) command
to assign a unique number to the application itself. You can then label the associated
FTRs with this same unique number, using the MATCH rule, as shown in the example
above.

There are a few situations in which you cannot uset ag to label your files. You cannot use
t ag if:
* vyour file is neither an executable nor a shell script

¢ you don’t have the necessary permissions to change the file

For more information on matching your files without using the tag command, see
“Matching Files Without the tag Command” on page 214.

212 007-2006-130



Matching File Types With Applications: The MATCH Rule

To tag your application and its associated FIRs using the tag command, follow these
steps:

1. Thet ag command attaches an identification number to your application. Before
you tag your application, select a number that is not already in use. Silicon Graphics
assigns each company (or individual developer) a block of ID numbers for tagging
files at no cost. If your company doesn’t already have an assigned block of numbers,
just send a request to Silicon Graphics. The best way is to e-mail your request to this
address:

deskt opt ags@gi . com

2. Once you have your block of numbers, you can select a number from the block of
numbers assigned to your company. Make sure that you select a number that no one
else in your company is using.

3. After you select a unique tag number for your application, go to the directory that
contains your application and tag it using the t ag command. This is the syntax:

% tag number filename

Replace the word number with the number that you are assigning to the
application and filename with the name of your application. For more information
on the tag command, see the t ag(1) reference page.

4. After tagging the application itself, include the tag in your application’s FTRs, using
the MATCH rule. Just include a line like this in your FTR file:

MATCH t ag == number;

where number is the unique tag number assigned to your application.

You can also use the t ag command to automatically assign a tag number for a predefined
file type. Silicon Graphics provides a set of generic types, called predefined types, that
you can use for utilities that do not require a personalized look. These predefined file
types come complete with icons, FTRs, and tag numbers. Use the appropriate t ag
command arguments to get the desired file type features. For more information on t ag
arguments, see the t ag( 1) reference page. The predefined file types are listed in
Appendix E, “Predefined File Types”.

007-2006-130 213



13: File Typing Rules

Matching Files Without the t ag Command

If you cannot use the t ag command to match your application with the corresponding
FTRs, you need to write a sequence of expressions that check files for distinguishing
characteristics. Once you have written a sequence of expressions that adequately defines
your application file, include that sequence in your FIR file, using the MATCH rule. For
example, you can use this MATCH rule to match a C source file:

MATCH gl ob("*.c") && ascii;

The gl ob function returns TRUE if the filename matches the string within the quotes.
The asci i function returns TRUE if the first 512 bytes of the file are all printable ASCII
characters. (Table 13-3 lists all of the available match-expression functions.) The &&
conditional operator tells the Desktop that the functions on either side of it must both
return TRUE for a valid match. See “Valid Match-Expressions” on page 215 for a list of
all of the operators, constants, and numerical representations that you can use in your
match-expressions.

Writing Effective Match Expressions

214

The most effective way to order match-expressions in a single MATCH rule is to choose
a set of expressions, each of which tests for a single characteristic, and conjoin them all
using “and” conditionals (&&).

The order in which you list the expressions in a MATCH rule is important. Order the
expressions so that the maximum number of files are “weeded out” by the first
expressions. This is advised because the conditional operator, &&, stops evaluation as
soon as one side of the conditional is found to be false. Therefore, the more likely an
expression is to be false, the further to the left of the MATCH rule you should place it.

For instance, in the previous MATCH expression example, it is more efficient to place the
gl ob(".c") expression first because there are many more ASCII text files than there are
files that end in .c.

Since the Desktop scans FTR files sequentially, you must make sure that your match rule

is specific enough not to “catch” any unwanted files. For example, suppose you define a
type named “myDataFile” using this MATCH rule:

MATCH asci i ;

Now every text file in your system will be defined as a file of type “myDataFile.”

007-2006-130



Matching File Types With Applications: The MATCH Rule

Valid Match-Expressions

007-2006-130

This section describes the syntax and function of valid match-expressions. You can use
these C language operators in a match-expression:

+ -
* /
& |
A !
% 0

You can use these C language conditional operators in a match-expression:

&& I

== =

< >
<= >=
The ‘==" operator works for string comparisons in addition to numerical comparisons.

You can use these constants in a match-expression:

true fal se

You can represent numbers in match-expressions in decimal, octal, or hexadecimal
notation. See Table 13-2.

Table 13-2 Numerical Representations in Match-Expressions
Representation Syntax

decimal num

octal Onum

hexadecimal Oxnum

215



13: File Typing Rules

Functions

216

Table 13-3 lists the valid match-expression functions.

Table 13-3

Match-Expression Functions

Function Syntax

Definition

ascii

char(n)

dircontains("string")

glob("string")

linkcount
long(n)
mode

print(expr or
"string")

short(n)

size

string(n,m)

uchar (n)

tag

ushort(n)

Returns TRUE if the first 512 bytes of the file are all printable ASCII
characters.

Returns the nth byte in the file as a signed character; range is -128 to 127.

Returns TRUE if the file is a directory and contains the file named by string.
Allows use of the following expansions in string for pattern matching: { } [
1*? and backslash (see sh( 1) filename expansion). See “Using
dircontains()” for more information.

Returns TRUE if the file’s name matches string;. Allows use of the following
expansions in string for pattern matching: { } [ ] * ? and backslash (see
sh(1) filename expansion).

Returns the number of hard links to the file.
Returns the nth byte in the file as a signed long integer; range is -2 to 23! - 1.
Returns the mode bits of the file (see chmod(1)).

Prints the value of the expression expr or string to stdout each time the rule
is evaluated; used for debugging. Always returns true.

Returns the nth byte of the file as a signed short integer; range is -32768 to
32767.

Returns the size of the file in bytes.

Returns a string from the file that is m bytes (characters) long, beginning at
the nth byte of the file.

Returns the nth byte of the file as an unsigned character; range is 0 to 255.

Returns the specific Desktop application tag injected into an executable file
by the tag injection tool (see the t ag( 1) reference page.) Returns -1 if the
file is not a tagged file.

Returns the nth byte of the file as an unsigned short integer; range is 0 to
65535.

007-2006-130



Matching Non-Plain Files: The SPECIALFILE Rule

Using dircontains()

Predefined File Types

In order to use the di r cont ai ns() function, you need to include these two rules in
your filetype definition:

SUPERTYPE Speci al Fil e
SPEC!I ALFI LE

You can declare more than one SUPERTYPE in a file type, so the following would be a
legal FIR file:

TYPE scri mshawTool sDi r
MATCH dircontains(".tool sPref");
LEGEND Scri nmshaw drawi ng tools directory
SUPERTYPE Directory
SUPERTYPE Special File
SPEC!I ALFI LE
I CON {
if (opened) {
include("../iconlib/generic.fol der.open.fti");
} else {
include("../iconlib/generic.folder.closed. fti");

include("iconlib/scrimshaw. tools.dir.fti");

For some applications, you may not want to create a unique file type and icon. Several
predefined file types exist and you can use them as necessary. If you use a predefined file
type for your application, t ag can automatically assign it a tag number. Just use the
appropriate command line arguments as described in the t ag( 1) reference page. The
predefined file types and their tag numbers are listed in Appendix E.

Matching Non-Plain Files: The SPECIALFILE Rule

007-2006-130

SPECIALFILE is used to distinguish a file typing rule used for matching non-plain files.
Device files and other non-plain files can cause damage to physical devices if they are
matched using standard file typing rules (which might alter the device state by opening
and reading the first block of the file).

Syntax: SPECIALFILE

217



13: File Typing Rules

Description:  Special files are matched using only rules containing SPECIALFILE,
which are written so as not to interfere with actual physical devices.
Similarly, plain files are not matched using rules containing a
SPECIALFILE rule.

Example: SPECI ALFI LE

Note: When you include the SPECIALFILE rule in your file type, you should also
include the line:

SUPERTYPE Speci al Fil e

The SUPERTYPE declaration allows applications to use i sSuper (1) to test whether your
file type is a SPECIALFILE.

Adding a Descriptive Phrase: The LEGEND Rule

Use the LEGEND rule to provide the Desktop with a short phrase that describes the file
type. This phrase appears when users view your icon’s directory as a list. It also appears
when a user selects your icon, then selects the “Get File Info” item from the Desktop
menu. Make your legend simple and informative and keep it to 25 characters or less.
Here is the syntax and description for the LEGEND rule:

Syntax: LEGEND text-string

Description:  text-string is a string that describes the file type in plain language that a
user can understand. Legends that are longer than 25 characters might
be truncated in some circumstances.

Example: LEGEND C program source file

218 007-2006-130



Setting FTR Variables: The SETVAR Rule

You might also see a LEGEND rule that is prepended with a number between two
colons—something like this:

LEGEND : 290:image in RGB fornat

The colons and the number between them are used for internationalization. For more
information, refer to “Internationalizing File Typing Rule Strings” in Chapter 4 of the
Topics in IRIX Programming.

Setting FTR Variables: The SETVAR Rule

The SETVAR rule allows you to set variables that affect operation of your icon.
Syntax: SETVAR variable value

Description:  variableis a FTR variable and value is the value to assign to the variable.
Currently, two FIR variables are supported: noLaunchEffect and
noLaunchSound. Set noLaunchEffect to True to turn off the visual launch
effect when the user opens your icon. Set noLaunchSound to True to turn
off the launch sound effect when the user opens your icon.

Example: SETVAR noLaunchEf fect True

Programming Open Behavior: The CMD OPEN Rule

007-2006-130

Use the CMD OPEN rule to tell the Desktop what to do when a user opens your icon.
Users can open an icon in any of these ways:

¢ double-clicking it

¢ selecting it and then choosing the “Open” item from the Desktop popup menu (the
Desktop menu is the menu that appears when you hold down the right mouse
button while the cursor is over the Desktop background)

* selecting it and then choosing the “Open Icon” selection in the Selected tool chest.

Note: Directories are a special case. The Desktop automatically handles the OPEN
behavior for all files marked as “SUPERTYPE Directory.” You can’t override the OPEN
behavior if you include “SUPERTYPE Directory.”

219



13: File Typing Rules

Here is the syntax and description for the CMD OPEN rule:

Syntax:

Description:

Examples:

TYPE Makefile

CMD OPEN echo "nake -f
> $LEADER. r un;

CMD OPEN sh-expression[; sh-expression; ... ; sh-expression]

The OPEN rule should reflect the most frequently used function that
would be applied to a file of the given type. sh-expression can be any
valid Bourne shell expression. Any expression can use multiple lines.
Any number of expressions can be used, and must be separated by
semicolons (;). The final expression should not end with a semicolon.
Variables can be defined and used as in a Bourne shell script, including
environment variables. See Appendix B for a list of special environment
variables set by the Desktop. These environment variables can be used
to refer to the currently selected icons within the Desktop or Directory
View.

CVD OPEN $W NEDI TOR $SELECTED
The CMD OPEN rule for the “Makefile” file type is more complex:

$LEADER | & tee $LEADER. | og; rm $LEADER run" \
winterm-H -t make -c¢ csh -f $LEADER. run

Programming Alt-Open Behavior: The CMD ALTOPEN Rule

By using the CMD ALTOPEN rule, you can tell the Desktop what to do when users
double-click your icon while pressing the <Al t > key.

Note: Directories are a special case. The Desktop automatically handles the ALTOPEN
behavior for all files marked as “SUPERTYPE Directory.” You can’t override the
ALTOPEN behavior if you include “SUPERTYPE Directory.”

220

007-2006-130



Programming Alt-Open Behavior: The CMD ALTOPEN Rule

Here is the syntax and description for the CMD ALTOPEN rule:
Syntax: CMD ALTOPEN sh-expression[; sh-expression; ... ; sh-expression]

Description:  The ALTOPEN rule provides added functionality for power users.
Typically, you set ALTOPEN to pop up a launch window to let the user
edit arguments. sh-expression can be any valid Bourne shell expression.
Any expression can use multiple lines. Any number of expressions can
be used, and must be separated by semicolons (;). The final expression
should not end with a semicolon. Variables can be defined and used as
in a Bourne shell script, including environment variables. See
Appendix B for a list of special environment variables set by the
Desktop. These environment variables can be used to refer to the
currently selected icons within the Desktop or Directory View.

Examples: CMD ALTOPEN | aunch -c $LEADER $REST

The CMD ALTOPEN rule for the “SGIImage” file type, defined in
lusr/lib/filetypel/systenisgiinmage.ftr,ismorecomplex:

TYPE SA | mage
CMD ALTOPEN i f test -n “$I MGVI EVER’
t hen
| MGVI EWNER $LEADER $REST
el se
if test -x /usr/sbin/ingview
t hen
i mgvi ew $LEADER $REST
el se
if test -x /usr/sbin/ipaste
t hen
i paste $LEADER $REST
el se
xconfirm -t
“/usr/sbin/imviewis mssing.
Pl ease install ingtools.sw.tools.” " \
-B ““gettxt uxsgidesktop:736 ‘Continue’ ™" >

[T

gettxt uxsgi deskt op: 650

/ dev/ nul |
fi
fi
fi

007-2006-130 221



13: File Typing Rules

In the previous example:

¢ This filetype uses the IMGVIEWER environment variable. This is one of six
environment variables the user can set on the Desktop Utilities panel
(fusr/sbin/dtUtilities). Your filetype should make use of such utilities as
well, if appropriate. For example, if your application needs to open some data into
an editor for one of its rules, then the rule should check for the WINEDITOR
variable and use it to open the data. For more information on dtUtilities, see
Chapter 10, “Using the Default Viewer and Editor Utilities Panel.”

¢ This filetype posts a dialog if it can’t find any appropriate applications in which to
open the SGlImage file. This dialog has text that you can translate into other
languages; the embedded get t xt commands retrieve the text in the appropriate
language from the specified uxsgidesktop message catalog. You can make a
message catalog to hold your own messages, then use get t xt to make your
filetypes use these messages. For more information, see Chapter 11, “Step Three:
Programming Your Icon.”

Programming Drag and Drop Behavior: The CMD DROP and DROPIF Rules

222

Users can perform certain functions by dragging an icon and dropping it on top of
another icon. For example, users can move a file from one directory to another by
dragging the icon representing the file and dropping it onto the icon representing the
new directory. You use the CMD DROP rule to tell the Desktop what to do when a user
drags another icon and drops it on top of your application’s icon.

Note: Directories are a special case. The Desktop automatically handles the DROP
behavior for all files marked as “SUPERTYPE Directory.” You can’t override the DROP
behavior if you include “SUPERTYPE Directory.”

Here is the syntax and description for the CMP DROP rule:
Syntax: CMD DROP sh-expression[; sh-expression; ... ; sh-expression]

Description: = The DROP rule is invoked whenever a selected (file) icon is “dropped”
onto another icon in the Desktop or Directory View windows. When this
happens, the Desktop checks to see if the file type being dropped upon
has a DROP rule to handle the files being dropped. In this way, you can

007-2006-130



Programming Drag and Drop Behavior: The CMD DROP and DROPIF Rules

007-2006-130

write rules that allow one icon to process the contents of other icons.
Simply drag the selected icons that you want processed and put them on
top of the target icon (that is, the one with the DROP rule).

Example: CVD DROP $TARGET $SELECTED

By default, the CMD DROP rule handles all icons dropped on the target icon. However,
if you include a DROPIF rule in your file type, only those icons whose file types are listed
in the DROPIF rule are accepted as drop candidates; the Desktop doesn’t allow the user
to drop other types of icons on the target icon. Here is the syntax and description for the
DROPIF rule:

Syntax: DROPIF file-type [ file-type ... file-type]
Description: ~ Specifies the allowable file types that a user can drop on the icon.

Example: DROPI F MailFile

Using the DROPIF rule in conjunction with the CMD DROP rule is a good practice to
follow to ensure that the file types of selected icons are compatible with the selected icon.
You can also use the environment variables set by the Desktop, listed in Appendix B, to
determine other attributes of the selected icons.

For example, the following CMD DROP and DROPIF rules accept only a single icon with
the type “MyAppDataFile”:

DROPI F MyAppDat aFi | e
CVD DROP if [ $ARGC -gt 1 ]
t hen
inform"Only one data file all owed."
el se
$TARGET $SELECTED

In the example above, the DROPIF rule prevents users from dropping any file on the
target icon except those with the type “MyAppDataFile.” The CMD DROP rule is
invoked only after a successful drop. It checks the value of the environment variable
ARGC to see how many icons were dropped on the target icon. If more than one icon is
dropped, it displays an error message; if only one is dropped, it invokes the application
with the dropped file as an argument.

223



13: File Typing Rules

Note: The DROPIF rule doesn’t “follow” SUPERTYPES. If you specify a file type in a
DROPIF rule, only files of that type are accepted, not files that have that type as a
SUPERTYPE.

224 007-2006-130



Mapping Names: The MAP Rule

If you want to handle all files with a given SUPERTYPE, you must use i sSuper (1) to test
for that SUPERTYPE in the CMD DROP rule. The following CMD DROP definition
demonstrates this by accepting one or more files with an “Ascii” SUPERTYPE:

CVD DROP

okfile="true’
for i in $SELECTEDTYPELI ST

do
if isSuper Ascii $i > /dev/nul
t hen
okfile="true’
el se
okfile="fal se’
fi
done
if [ $okfile = "true’ ]
t hen
$TARGET $SELECTED
el se

xconfirm "$TARCGET accepts only ASCII files."
fi

Mapping Names: The MAP Rule

007-2006-130

If you want your datafile to work with the GoldenGate conversion, which is based on
ICCCM target type names, you need to use the MAP rule to associate the desktop
file-type name with the ICCCM target-type name. Then GoldenGate can access the

ICCCM type.
Syntax:

Description:

MAP namespace value

The MAP rules specify a list of all mappings from desktop name space
to a non-desktop name. Desktop namespace is defined by the TYPE
names. The value is mapped onto the desktop type, which you can
obtain based on the value or TYPE name. You can use the MAP rule to
translate from a desktop TYPE to another name space, such as ICCCM
or MIME types. In the example below, the keyword Sel ecti onTar get
indicates a ICCCM name space.

ICCCM Example:

TYPE Al FFSoundFi | e
MAP Sel ectionTarget Al FF_FILE

225



13: File Typing Rules

For more information about GoldenGate conversion, see Appendix G, “Using
GoldenGate Data Conversion Services”, and “Data Conversion Service” on page 105.

Programming Print Behavior: The CMD PRINT Rule

Use the CMD PRINT rule to tell the Desktop what to do when a user selects your icon,
then selects “Print” from the Desktop popup menu. Here is the syntax and description
for the CMD PRINT rule; see also Chapter 14, “Printing From the Desktop,” for
information on writing rules to convert your new file type into one of the printable types.

Syntax:

Description:

Example:

CMD PRINT sh-expression[; sh-expression; ... ; sh-expression]

sh-expression can be any valid Bourne shell expression. Any expression
can use multiple lines. Any number of expressions can be used, and
must be separated by semicolons (;). The final expression should not end
with a semicolon. Variables can be defined and used as in a Bourne shell
script, including environment variables. See Appendix B for a list of
special environment variables set by the Desktop. These environment
variables can be used to refer to the currently selected icons within the
Desktop or Directory View. The recommended method of implementing
the PRINT rule is to use r out epri nt, the Desktop’s print-job routing
utility, as in the example below. r out epri nt uses print conversion
rules to automatically convert the selected files into formats accepted by
the system’s printers. See the r out epri nt (1) reference page for
details on its syntax. See Chapter 14 for information on setting up print
conversion rules.

CMD PRI NT routeprint $LEADER $REST

Adding Menu Items: The MENUCMD Rule

226

Use the MENUCMD rule to add items to the bottom of both the Desktop menu and the
Selected toolchest menu. The Desktop menu is the menu that appears when you hold

down the right mouse button while the cursor is positioned on the Desktop. The Selected
toolchest menu is the menu that appears when you hold down the left mouse button

while the cursor is positioned over the Selected toolchest menu.

Menu items added to the Desktop menu and the Selected toolchest menu appear only
when the icon is selected (highlighted in yellow) on the Desktop.

007-2006-130



Getting the Icon Picture: The ICON Rule

You can add as many menu items as you like by adding multiple MENUCMD rules to
your file type. Any menu items added using the MENUCMD rule are added both to the
Desktop menu and the Selected toolchest menu—you can’t add menu items to just one
of these menus.

Here is the syntax and description for the MENUCMD rule:
Syntax: MENUCMD "string" sh-expression[; sh-expression; ... ; sh-expression]

Description: MENUCMD inserts the menu entry string into the Desktop or Directory
View menu if a single file of the appropriate type is selected, or if a group
of all of the same, appropriate type is selected. If the menu entry is
chosen, the actions described by the sh-expressions are performed on
each of the selected files.

Example: MENUCMD "Enpty Dunpster" conpress $LEADER $REST

You might also see a MENUCMD rule that is prepended with a number between two
colons—something like this:

MENUCMD : 472:"make install" winterm-H -t 'nmake install’ \
-c make -f $LEADER install

The colons and the number between them are used for internationalization. For more
information, refer to “Internationalizing File Typing Rule Strings” in Chapter 4 of the
Topics in IRIX Programming.

To add more than one menu item to the Desktop popup menu, just add a MENUCMD
rule for each item. For example, the “Makefile” file type includes all of the following
MENUCMD rules:

MENUCMD "nmeke install” winterm-H -t "nmake install’ \
-c make -f $LEADER install
MENUCMD "nmake clean” winterm-H -t ’'make clean’ \
-c make -f $LEADER cl ean
MENUCMD "neke cl obber” winterm-H -t ' nmake cl obber’ \
-c make -f $LEADER cl obber
MENUCMD "Edit" $W NEDI TOR $LEADER $REST

Getting the Icon Picture: The ICON Rule

007-2006-130

Use the ICON rule, described in this section, to tell the Desktop where to find the file(s)
containing the picture(s) of the icon for a file type. The simplest way to do this is to

227



13: File Typing Rules

228

provide the full IRIX pathname. For example, if the .fti file is in the directory called
fusr/lib/filetypel/install/iconlib,youwouldsimply write that pathname
directly into your FIR file.

If you prefer not to use the absolute pathname in your FIR, you can use a relative
pathname, as long as the icon file resides anywhere within the /usr/lib/fil etype
directory structure. To make use of relative pathnames, list the pathname relative to the
directory containing the FTR file that contains the ICON rule. If you choose to do this,
take care to keep path names used in FIR files synchronized with icon locations.

The Desktop sets Boolean status variables to indicate the state of an icon. You can use
conditional statements that test these variables to alter the appearance of an icon based
on its state. The state variables are: opened, which is True when the icon is opened; and
selected, which is True when the icon is selected.

As described in “Importing Generic Icon Components (Magic Carpet)” in Chapter 12, a
common technique is to draw a unique badge to identify an application and then
combine that badge with a generic icon component. This works well if you also use
conditional statements to change the appearance of an icon depending on its state. You
can then combine the unique badge with a generic icon component appropriate to the
icon’s state. The example shown below demonstrates this technique.

Use the basic format from the example below to tell the Desktop where to find your icon
files (the files that you created using IconSmith). Here is the syntax and description for
the ICON rule:

Syntax: ICON icon-description-routine

Description:  icon-description-routine is a routine written using the icon description
language, detailed below. The routine can continue for any number of
lines. The ICON rule is invoked any time a file of the specified type
needs to be displayed in the Desktop or Directory View. The rule is
evaluated each time the icon is painted by the application that needs it.

Examples: | CON {

if (opened) {
include("../iconlib/generic.exec.open.fti");
} else {
include("../iconlib/generic.exec.closed.fti");

i nclude("iconlib/ack.fti");

007-2006-130



Getting the Icon Picture: The ICON Rule

The example above shows you exactly how to write the standard ICON
rule. The first line invokes the ICON rule. The next two lines tell the
Desktop where to find the parts of the icon representing the open and
closed “magic carpet” that makes up the generic executable icons. The
unique badge is in a file named ack. fti.

Note: You must include your badge after including the generic component so that it
appears over the generic components when displayed on the Desktop.

If you have two separate badges, one for the open and one for the closed state, your
ICON rule is:

I CON {
if (opened) {
include("../iconlib/generic.exec.open.fti");
i nclude("iconlib/ack.open.fti");
} else {
include("../iconlib/generic.exec.closed.fti");
i nclude("iconlib/ack.closed.fti");

}

Notice that this example gives the pathname of the icon files (.fti files) relative to the
directory in which the FTR file is located. You can use the full pathname if you prefer.
Your icon description routine would then look like this, assuming that ack. fti was
placedin/usr/lib/filetype/install/iconlib:

I CON {
if (opened) {
include("/usr/lib/filetypeliconlib/genericexec.open..fti");
el se {
include("/usr/lib/filetypeliconlib/generic.exec.close.fti");

include("/usr/lib/filetypel/install/iconlib/ack.fti");

007-2006-130 229



13: File Typing Rules

Creating a File Type: An Example

This section provides an example that demonstrates how to write a file type. In this
example, assume we’re writing a file type for a simple text editor called scri bbl e and
that we’ve decided on these behaviors for the scri bbl e icon:

¢ When a user double-clicks the scribble icon, the Desktop runs the application.

¢ When a user drops another icon onto the scribble icon, the Desktop brings up the
scribble application with the file represented by the dropped icon. Users can then
use the scri bbl e application to edit this file.

Note: We’re making no provision for rejecting icons that represent files unsuitable
for editing. You could enhance the scribble file type by including a line that tells the
Desktop to notify users when they drop an icon of the wrong type onto the scribble
icon.

(This section assumes that we’re writing the file type completely from scratch. You might
prefer instead to modify an existing file type. To learn how to find the FTRs for an
existing icon, see “Add the FTRs: An Alternate Method” on page 168.)

Open an FTR File for scribble
For the purposes of this example, assume we're creating a new FTR file, rather than

adding to an existing one. We just open a new file using any editor we choose, then type
in whatever file typing rules we decide to use.

Add the Rules to the scribble FTR File
Now that we’ve opened a file for the FTRs, we just type in the rules we need to program

the icon. The file type has to begin with the TYPE rule on the first line. The TYPE rule
names the file type. This section discusses each line we use to create the file type.

Line 1: Name the File Type
Each file type has to have a unique name. Since our application is called scr i bbl e,

assume that we decide to name the new file type “scribbleExecutable.” By basing the file
type name on the application name, we help insure a unique file type name.

230 007-2006-130



Creating a File Type: An Example

Before using the name, scribbleExecutable, we search for it in the
lusr/1ib/filetype directory, to make sure that the name is not already in use:

1. Changetothe/usr/1ib/fil etype directory:
%cd /usr/lib/filetype
2. Search for the name scribbleExecutable:

% grep "scribbl eExecutabl e" */*.ftr

Assume that we do not find an existing file type with the name “scribbleExecutable,” so
that’s what we name the new file type.

Now we use the TYPE rule to name the file type by typing this line into our FTR file:
TYPE scri bbl eExecut abl e

For more information on the TYPE rule, see “Naming File Types: The TYPE Rule” on
page 210.

Line 2: Classify the Filetype

Next we use the SUPERTYPE rule to tell the Desktop what type of file the icon represents.
Since scribble is an executable, we add this line to the FTRs:

SUPERTYPE Execut abl e

For more information on the SUPERTYPE rule, see “Categorizing File Types: The
SUPERTYPE Rule” on page 210.

Line 3: Match the File Type

007-2006-130

Now we add the scribble executable’s tag number to the file type definition by adding
this line to the FTRs:

MATCH tag == 0x00001001,;

This step assumes that we’ve already tagged the executable itself with the tag 0X001001,
as described in “Step One: Tagging Your Application” on page 165.

(Since scri bbl e is an executable, we're able to use the t ag command to tag it. If we
were unable to use the t ag command to assign an identification number to the
application itself, we would need a slightly more complicated MATCH rule to match the
application with its FTRs. For more information, see “Matching File Types With

231



13: File Typing Rules

Applications: The MATCH Rule” on page 212 and “Matching Non-Plain Files: The
SPECIALFILE Rule” on page 217.)

Line 4: Provide a Descriptive Phrase

Next we use the LEGEND rule to provide a legend for the file type. The legend is a brief
descriptive phrase that appears when users view a directory as a list or select “Get File

Info” from the Desktop menu. It should be simple, informative, and 25 characters or less.
To add the legend for scribble, add this line to the FIRs:

LEGEND scri bble text editor

For more information on using the LEGEND rule, see “Adding a Descriptive Phrase: The
LEGEND Rule” on page 218.

Line 5: Define Icon-Opening Behavior

We use the CMD OPEN rule to tell the Desktop what to do when users open the scribble
icon. In this example we want the Desktop to run the scri bbl e appl i cati on when
the icon is opened, so we include this line in the FIRs:

CMD OPEN $LEADER $REST

$LEADER refers to the opened application, in this case scribble. The Desktop uses
$LEADER to open $REST. In this case, SREST means any other selected icons in the same
window. $LEADER and $REST are Desktop environmental variables. These variables are
listed and described in Appendix B, “Desktop Variables”.

For more information on using the CMD OPEN rule, see “Programming Open Behavior:
The CMD OPEN Rule” on page 219.

Line 6: Define Drag and Drop Behavior

We use the CMD DROP rule to tell the Desktop what to do when users drop another icon
onto the scribble icon. In this example we want the Desktop to open the scri bbl e
appl i cati on with the contents of the dropped file, so we include this line in the FTRs:

CVD DROP $TARGET $SELECTED

$TARGET refers to the icon that the user dropped another icon on, in this case scribble;
$SELECTED refers to the icon that the user dropped onto the scribble icon. $TARGET

232 007-2006-130



Creating a File Type: An Example

and $SELECTED are Desktop environmental variables. These variables are listed and
described in Appendix B.

For more information on the CMD DROP rule, see “Programming Drag and Drop
Behavior: The CMD DROP and DROPIF Rules” on page 222.

Line 7: Define Alt-Open Behavior

We use the ALTOPEN rule to tell the Desktop what to do when users open the scribble
icon while holding down the <Al t > key. In this example, we want the Desktop to run the
| aunch(1) program, so we include this line in the FITRs:

CMD ALTOPEN | aunch -c¢ $LEADER $REST

Again, SLEADER refers to the opened application, scribble and $REST refers to any
other selected icons in the same window. | aunch runs the | aunch program, and -c is a
command line argument to | aunch.

For more information on the CMD ALTOPEN rule, see “Programming Alt-Open
Behavior: The CMD ALTOPEN Rule” on page 220. See the | aunch( 1) reference page
for more information about using the | aunch command.

Line 8: Add the Icon Picture

007-2006-130

We use the ICON rule to tell the Desktop where to find the picture for the scribble icon.
Assume we have an icon picture in the file
fusr/local/lib/install/iconlib/scribble.fti.Inthisexample, we add
these lines to the FTRs:
I CON
if (opened) {

include("../iconlib/generic.open.fti");
} else {

include("../iconlib/generic.closed.fti");

i nclude("iconlib/scribble. fti");

}

These lines tell the Desktop how to find pictures for the scribble icon in the opened and
closed states.The pathname of the icon (.fti) files is listed relative to the location of the
FTR file containing the ICON rule. Relative pathnames work as long as the icon files are

233



13: File Typing Rules

located within the/ usr /1 i b/ fi| et ype directory structure. Alternatively, you can use
the absolute pathnames to the files:

e Jusr/local/lib/iconlib/generic.open.fti
e Jusr/local/lib/iconlib/generic.closed.fti
e Jusr/local/lib/iconlib/scribble.fti

For more information on the ICON rule, see “Getting the Icon Picture: The ICON Rule”
on page 227.

Name the scribble FTR File and Put It in the Appropriate Directory

The scribble FTRS

234

Assume the name of our company is Shakespeare. Then according to the naming
conventions in “Naming FTR Files” on page 167, we should name our FTR file
Shakespear e. scri bbl e. ft r. We put the file in the
lusr/lib/filetype/install directory.

Here is the set of FTRs that we created to define the file type called “scribbleExecutable.”

TYPE scri bbl eExecut abl e

SUPERTYPE Execut abl e

MATCH tag == 0x00001001;

LEGEND scribble text editor

CMD OPEN $LEADER $REST

CMD ALTOPEN | aunch -c $LEADER $REST

CVD DROP $TARGET $SELECTED

I CON {

if (opened) {
include("../iconlib/generic.open.fti");

} else {
include("../iconlib/generic.closed.fti");

include("iconlib/scribble.fti"):

007-2006-130



Chapter 14

Printing From the Desktop

The desktop provides printing services so that users can print from an application. This
chapter covers these topics:

“About routeprint” on page 235 discusses the r out epri nt command, which
converts files into printable form.

¢ “Converting a File for Printing” on page 236 explains how the Desktop converts a
file for printing.
¢ “The Print Conversion Rules” on page 238 explains the print conversion rules.

¢ “The Current Printer” on page 240 discusses the Desktop’s concept of the current,
or default, printer and the Desktop environment variable SCURRENTPRINTER.

About r out epri nt

To print a file, the Desktop invokes the r out epr i nt (1) command. r out epri nt knows
how to convert most files into printable form, even if the conversion requires several
steps.

You can show r out epri nt how to convert your application’s data files into printable
format by adding one or more CONVERT rules to your application’s FTR file.

This chapter explains the process r out epri nt uses to convert data files into a printable
format, what file types r out epri nt already recognizes, and how to write your own
print CONVERT rule to allow your application to tap into r out epr i nt ’s powerful
printing capabilities.

007-2006-130 235



14: Printing From the Desktop

Converting a File for Printing

236

The Desktop already has rules for printing many types of files, such as ASCII, PostScript,
and RGB image files. The easiest method for printing a file of arbitrary format is to break

down the printing process into small, modular steps.

For example, instead of writing dozens of specialized rules to print reference pages
directly for each kind of printer, you can instead convert reference pages to nr of f format
and then convert the nr of f format to the format required for the current printer.

The diagram shown in Figure 14-1 illustrates the steps by which some of the supported
Desktop file types are converted for printing. Each box represents one or more file types;
the arrows between them indicate the steps by which the file types are converted. The
values associated with the arrows represent the cost of the conversion. This concept is

talked about more in “Print Costs” on page 237 later in this chapter.

manHroffFile

meHMroffFile 50
msHroffFile HroffFile
mmHroffFile 500
mvHNroffFile
MailFile
transferDev Shell
N\
transferDev . 0 125
o AsciiTextFile — g™ accii —— g PostScriptFile
ttyScript 0
FileTypeRuleFile 0 SGlimage
FileTypelconFile
Script 200
Makefile 200
HeaderFile 200
CProgram —— = SourceFile
CPlusPlusProgram
Program
a0
ftrFil
Dumpster \ ile
Directo
PackFile ™Y .50 0
CompressFile
cpioArchive al
Catal
tarArchive t -
bruArchive
arfrchive

Figure 14-1  File Conversions for Printing Standard Desktop Files

007-2006-130



Converting a File for Printing

Print Costs

007-2006-130

This modular approach to printing has two major advantages:

* The modular steps are reusable. Because you can reuse each modular printing step,
you write fewer rules.

* routeprint can pick the most efficient route for printing. There is often more than
one sequence of conversion steps to print a file. r out epri nt chooses the sequence
of steps that provides the best possible image quality.

This modular, multi-step conversion to printable form is called the print conversion
pipeline, a series of IRIX commands that process a copy of the file’s data in modular
increments. The print conversion rules are designed to take advantage of this method of
processing printable files.

In addition, applications or software packages can add new arcs to the CONVERT rule
database whenever they define new types or have a better way of converting existing
types. For example, Impressario includes a filter to go directly from NroffFile to
PostScriptFile—this new filter has a lower cost than the default conversion, which goes
from NroffFile to Ascii to PostScriptFile.

The Desktop already has rules for printing a large number of file types. You can use gr ep
to list all of these print conversions definitions by typing:

%grep -i convert /usr/lib/filetype/*/*. ftr

Note: The list of print conversion definitions generated by the above command is long
and unsorted.

Frequently, there is more than one set of steps that r out epri nt can use to print your
file. To compare different ways of printing a file of a particular type, r out epri nt
associates cost numbers with each conversion, then chooses the series of conversions
with the lowest total cost. The cost of a conversion represents image degradation and
processing cost, and is specified by a number between 0 and 1000 inclusive. The higher
the cost of a conversion, the more r out epri nt attempts to avoid that conversion
method if it has alternative methods.

The conventions for determining the cost assigned to a given conversion are described in
Table 14-1.

237



14: Printing From the Desktop

Table 14-1 Conversion Costs for Print Conversion Rules

Cost Reason

0 Equivalent filetypes, or a SETVAR rule (described in “The Print Conversion Rules”)
50 Default conversion cost

125 Trivial data loss, or conversion is expensive

200 Minor data loss, but conversion is not expensive

300 Noticeable data loss and conversion is expensive

500 Obvious data loss (for example, color to monochrome)

The Print Conversion Rules

There are three parts to a complete print conversion rule:
e the CONVERT rule

¢ the COST rule

¢ the FILTER rule

The CONVERT Rule
Syntax: CONVERT source-type-name destination-type-name

Description:  source-type-name is the file type you are converting from.
destination-type-name is the file type you are converting to.

Example: CONVERT NroffFile PostScriptFile

Do not use the convert rule to convert directly to a new printer type; convert to a
standard Desktop file type instead. Silicon Graphics reserves the right to alter printer
types, so converting to a standard file type (for example, PostScriptFile) is a more
portable solution. Appendix E, “,” lists some of the file types defined by Silicon Graphics.
You can generate a complete list of file types installed on your system using the gr ep(1)

command:

238 007-2006-130



The Print Conversion Rules

% grep TYPE /usr/lib/filetypel/*/*.ftr

Note: The list of file types generated by the above command is very long and unsorted.

The COST Rule
Syntax:

Description:

Example:

The FILTER Rule

Syntax:

Description:

COST non-negative-integer

The non-negative-integer represents the arc cost, or incremental cost of
the conversion. This cost is used to reflect processing complexity or can
also be used inversely to reflect the output quality. When r out epri nt
selects a conversion sequence, it takes the arc costs into account,
choosing the print conversion sequence with the least total cost. It is
highly recommended that you specify a COST rule. If you omit it,

rout epri nt assumes the cost of the conversion is zero, which may
cause r out epri nt to return an inappropriate print conversion
pipeline. The default cost is 50.

COST 50

FILTER filter-expression

The FILTER rule represents part of an IRIX pipeline that prepares a file
for printing. filter-expression can be any single IRIX command line
expression, and generally takes the form of one or more piped
commands. In the general case, the first command within a single
FILTER rule receives input from st di n; the last command in the rule
sends its output to st dout . r out epri nt concatenates all the FILTER
rules in the print conversion pipeline to form one continuous command
that sends the selected file to its destination printer.

There are three special cases in creating FILTER rules:

e “first” case

e “last” case

e “getvar” case

007-2006-130

239



14: Printing From the Desktop

In a “first” case rule, the FILTER rule is the very first rule in the print conversion pipeline.
In this case, r out epri nt passes the list of selected files to the first command in the
FILTER rule as arguments. If a first case FILTER rule begins with a command that does
not accept the files in this fashion, prepend the cat command to your rule:

FILTER cat | tbl - | psroff -t
The files will then be piped to the next command’s st di n.

In a “last” case rule, the FILTER rule is the very last rule in the print conversion pipeline.
This rule contains a command that sends output directly to a printer (such as | p).
Last-case rules are already provided for many file types. To ensure compatibility between
your application and future printing software releases, you should refrain from writing
your own last-case rules. Instead, write rules that convert from your file type to any of
the existing file types, and let the built-in print conversion rules do the rest.

In a “setvar” case rule, the FILTER rule is used to set an environment variable used later
in the print conversion pipeline. The first CONVERT rule in the example below sets a
variable that defines an nr of f macro used in the second rule. In all setvar cases, st di n
is passed to st dout transparently. Thus, you can include setvar as part of the pipeline in
a single FILTER rule.

CONVERT mmNroffFile NroffFIle
COST 1
FILTER setvar MACRO=mm

CONVERT NroffFile PostScriptFile
COST 50
FILTER eqn | tbl | psroff -$MACRO -t

The Current Printer

240

The current printer is the system default printer that the user sets with the Print Manager
or, alternatively, the printer specified by the -p option tor out epri nt . If no default is set
and -p is not used, an error message is returned by r out epri nt to either st dout ora
notifier window (if the -g option to r out epr i nt was set). The Desktop environment
variable SCURRENTPRINTER is set to the currently selected default printer.

007-2006-130



Appendix A

007-2006-130

Example Programs for SGI Enhanced Widgets

This appendix contains example programs for some of the SGI extended IRIS IM
widgets.

Makefiles are provided for some of these examples, but to use these examples, you need

to:

Link with - | Xmand - | Sgm making sure to put the - | Sgmbefore - | Xm (To replace
an unenhanced widget with the enhanced version of that widget in an existing
program, you need to re-link.)

LLDLIBS = -1 Sgm -1 Xm - Xt -1X11 -1 PW

You must include - | Sgmto get the enhanced look and the new widgets. If you do
not include -Ifileicon, you will get a runtime error, since the runtime loader won’t be
able to find needed symbols. The - | Xmrepresents the enhanced version of | i bXm
(IRIS IM).

Run the program with these resources:

*sgi Mbde: true
*useSchenes: al |

Set them in your . Xdef aul t s file or create a file for your application in
fusr/1ib/X11/ app-defaults.

This appendix provides example programs for:

“Example Program for Color Chooser” on page 242

“Example Program for Dial” on page 244

“Example Program for Drop Pocket” on page 247

“Example Program for Finder” on page 250

“Example Program for History Button (Dynamenu)” on page 251
“Example Program for ThumbWheel” on page 252

“Example Program for File Selection Box” on page 255

241



A: Example Programs for SGI Enhanced Widgets

e “Example Programs for Scale (Percent Done Indicator) Widget” on page 258

e “Example Program for LED Widget” on page 259

Example Program for Color Chooser

/*
* colortest.c --

* denonstration of quick-and-easy use of the color

* chooser widget.
*/

#i ncl ude <stdi o. h>
#i ncl ude <Xm Xm h>

#i ncl ude <Xm Label . h>
#i ncl ude <Xm Form h>
#i ncl ude <Sgni Col or C. h>

static void Col orCal | back();
W dget | abel, colorc;
Xt AppCont ext app;

#if 0

int sgidladd()
{

return 1;

}
#endi f

main (argc, argv)

int argc;

char *argv[];

{
W dget toplevel, form
Arg args[25];
int ac = 0;

topl evel = XtVaApplnitialize(&pp, argv[O0],

if (toplevel == (Wdget)NULL) {
printf("Applnitialize failed!'\n");

242

NULL, O,

&ar gc,

argv,

NULL,

NULL) ;

007-2006-130



Example Program for Color Chooser

exit(1);
}

col orc = SgCreat eCol or Chooser Di al og(topl evel, "colorc", NULL, 0);
Xt AddCal | back(col orc, XmNappl yCal | back, Col orCal | back, (Xt Pointer)NULL);
Xt ManageChi | d(col orc);

form = XnCreateForn{toplevel, "Fornt, NULL, 0);
Xt ManageChi | d(form;

| abel = XnCreatelLabel (form "I ama color!", NULL, 0);
Xt ManageChi | d( | abel );
ac = 0;

Xt Real i zeW dget (t opl evel );
Xt AppMai nLoop( app) ;

}
voi d Col or Cal | back(w, client_data, call_data)
W dget w;
Xt Pointer client_data, call_data;
{
Pi xel white; [/* fallback */
SgCol or Chooser Cal | backStruct *cbs =(SgCol or Chooser Cal | backStruct *)cal |l _data;
Di splay *dpy = XtDisplay(l abel);
Screen *scr = Xt Screen(| abel);
/*

* 1f we were willing to use private structure nenbers,
* we could be sure to get the correct col ormap by using
* | abel ->core.colormap. For this denpo, however,

* the default colornmap will suffice in nost cases.

*/

Col ormap col ormap = XDef aul t Col or mapCOF Scr een(scr) ;

XCol or mycol or;

Arg args[1];

white = Wi tePi xel O Screen(scr);

nycol or.red = (unsigned short) (cbs->r<<8);
nmycol or. green = (unsi gned short) (cbhs->g<<8);
mycol or. bl ue = (unsigned short) (chs->b<<8);

mycol or.flags = (DoRed | DoG een | DoBl ue);

if (XAllocCol or(dpy, colormap, &nycolor)) {
Xt Set Arg(args[ 0], Xm\background, nycol or. pixel);

007-2006-130 243



A: Example Programs for SGI Enhanced Widgets

}

el se {
fprintf(stderr, "No nore colors!\n"); fflush(stderr);
Xt Set Arg(args[0], Xn\background, white);

}

Xt Set Val ues(| abel, args, 1);

}

Makefile for colortest.c

ROOT =/

MYLI BS =

XLIBS = -1Sgw -1 Sgm -1 Xm -1 Xt -1X11 -1gl
SYSLIBS = -IPW-Im-11 -ly

I NCLUDES = -1. -1$(ROOT) usr/include

LDFLAGS = -L -L. -L$(ROOT) usr/lib $(MYLIBS) $(XLIBS) $(SYSLIBS)
all: colortest

colortest: colortest.o
cc -0 colortest colortest.o $(LDFLAGS)

colortest.o: colortest.c
cc -g $(1 NCLUDES) -DDEBUG -D NO PROTO -c colortest.c

Example Program for Dial

/*

* Mytest.c --

* create and manage a dial w dget.

* Test its resource settings through nenu/button actions.
*/

#i ncl ude <stdi o. h>

#i ncl ude <Xm Xm h>

#i ncl ude <Xm Form h>

#i ncl ude <Xni Di al 0gS. h>
#i ncl ude <Xm Label . h>
#i ncl ude <Sgnm Di al . h>

244 007-2006-130



Example Program for Dial

/*
* Test framework procedures and gl obal s.
*/

#i fdef _NO PROTO

static void DragCall back();

#el se

static void DragCal | back(Wdget w, void *client_data, void *call_data);
#endi f /* _NO _PROTO */

Xt AppCont ext app;

main (argc, argv)

int argc;

char *argv([];

{
W dget toplevel, form dial, I|abel;
Arg args[25];
int ac = 0;

/*
* Create and realize our top | evel w ndow,
* with all the nenus and buttons for user input.
*/
topl evel = XtVaApplnitialize(&pp, "Dialtest”, NULL, 0, &argc, argv, NULL, NULL);
if (toplevel == (Wdget)NULL) {
printf("Applnitialize failed!'\n");
exit(1);
}

form = XnCreateForn{topl evel, "Fornt, NULL, 0);

/* Set up argunents for our w dget. */

ac = 0;

Xt Set Arg(args[ac], XmNl eftAttachment, XmATTACH FORM); ac++;
Xt Set Arg(args[ac], Xm\rightAttachment, XmATTACH FORM; ac++;
Xt Set Arg(args[ac], Xm\topAttachment, XmATTACH FORM); ac++;

/*

* W& use all-default settings.

* Do not set any of the dial-specific resources.
*/

dial = SgCreateDial (form "dial", args, ac);
Xt ManageChi | d(di al );

007-2006-130 245



A: Example Programs for SGI Enhanced Widgets

ac = 0;

Xt Set Arg(args[ac],
Xt Set Arg(args|[ac],
Xt Set Arg(args|[ac],
Xt Set Arg(args|[ac],
Xt Set Arg(args[ac],
Xt Set Arg(args[ac],

XNl ef t Att achnent, XmATTACH_FORM); ac++;
XmNri ght Att achment, XmATTACH FORM) ; ac++;
Xm\t opAt t achnent, XmATTACH W DGET) ; ac++;
Xm\t opW dget, dial); ac++;

Xm\bot t omAt t achment, XmATTACH FORM) ; ac++;

XmNl abel String, XnStringCreateSinple("0"));

| abel = XnCreatelLabel (form "valuelLabel", args, ac);
Xt ManageChi | d( | abel ) ;

246

ac++;

007-2006-130



Example Program for Drop Pocket

/*

* Set up callback for the dial.

*/

Xt AddCal | back(di al, XmNdragCal | back, DragCal |l back, | abel);

Xt ManageChi | d(form;
Xt Real i zeW dget (t opl evel ) ;

Xt AppMai nLoop( app) ;

}

voi d DragCal | back(w, client_data, call_data)
W dget w;

Xt Pointer client_data, call _data;

{

SgDi al Cal | backStruct *cbs = (SgDi al Cal | backStruct *) call _data;
W dget | abel = (Wdget)client_data;
static char new_| abel [ 256] ;

Arg args[2];

int ac = 0;

if ((cbs '= NULL) && (label !'= (Wdget)NULL)) {
sprintf(new_| abel, "%l", cbs->position);

Xt Set Arg(args[ac], XmN abel String, XnStringCreateSinple(new | abel)); ac++;
Xt Set Val ues(| abel, args, ac);

}
}

Example Program for Drop Pocket

/*
* Denonstrate the use of the DropPocket
*/

#i ncl ude <Xm Form h>
#i ncl ude <Xm PushB. h>
#i ncl ude <Sgni Dr opPocket . h>

static void droppedCB(Wdget w, XtPointer clientData, XtPointer chs ) {

SgDr opPocket Cal | backStruct * dcbs = (SgDropPocket Cal | backStruct *)cbs;
char * nane;

007-2006-130 247



A: Example Programs for SGI Enhanced Widgets

if (dcbs->i conNane)
if (!XnBtringGetLtoR( dcbs->i conNane, XnFONTLI ST_DEFAULT_TAG &nane))
name = NULL;

printf("Dropped file: %\nFull Data: %\n", name, dcbs->iconData );
Xt Free( nane );

}

mai n( int argc, char * argv[] ) {
W dget toplevel, exitB, dp, topRC
Xt AppCont ext app;

Xt Set LanguagePr oc( NULL, (Xt LanguageProc)NULL, NULL);
topl evel = XtVaApplnitialize( &pp, "DropPocket", NULL, 0, &argc, argv, NULL, NULL);
t opRC = Xt VaCr eat eManagedW dget ( "t opRC', xmFor mN dget Gl ass, toplevel, NULL);
dp = Xt VaCreat eManagedW dget (" dp",

sgDr opPocket W dget Cl ass, topRC,

Xm\t opAt t achnent, XmATTACH_FORM

Xm\bot t omAt t achment, XmATTACH_FORM

XNl ef t Att achment, XmATTACH_FORM

XmN\r i ght At t achment, XmATTACH_FORM

Xm\hei ght, 100,

Xm\wi dt h, 100,

NULL) ;
Xt AddCal | back( dp, SgN conUpdat eCal | back, droppedCB, NULL);
Xt Real i zeW dget ( topl evel );

Xt AppMai nLoop( app );

Makefile for Drop Pocket Example

#! smake
#
include /usr/include/ nake/ commondef s

HFI LES

\\p Dr opPocket P. h \\ p Dr opPocket . h

CFI LES

\\p Dr opPocket . ¢

TARGETS = dpt

248 007-2006-130



Example Program for Drop Pocket

CVERSI ON = - xansi

MALLOC = /d2/stuff/lib/Malloc

CVERS| ON = - xansi

OPTIMZER = -g

#-1$(MALLOC) -wWint,-pf -woff 813, 826, 828

LLDLIBS = -1 Sgm -1 Xm -1 Xt -1 X11 -1 PW

#LLDLIBS = -u nalloc -u XtRealloc -u XtMalloc -u XtCalloc -L /d2/stuff/lib
-ldbmal loc -1Sgm -1 Xm -1 Xt -1X11

LCDEFS = - DFUNCPROTO - DDEBUG

targets: $(TARGETS)

i ncl ude $( COMMONRULES)

#dpt: dpTest.o $( OBIECTS)
# $(CO -0 $@dpTest. o $(OBIECTS) $(LDFLAGS)

dpt: dpTest.o
$(CC -0 $@dpTest.o $(LDFLAGS)

#dpt 2: dpTest2.0 $( OBJECTS)
# $(CO -0 $@dpTest2.0 $(OBIECTS) $(LDFLAGS)

dpt 2: dpTest2.0
$(CC) -0 $@dpTest2.0 $(LDFLAGS)

#dpt 3: dpTest 3.0 $( OBIECTS)
# $(CO -0 $@dpTest3. 0 $(OBIECTS) $(LDFLAGS)

dpt 3: dpTest3.0
$(CC -0 $@dpTest3. 0 $(LDFLAGS)

#tdt: tdt.o $( OBJECTS)
# $(CO) -0 $@tdt.o $(OBIECTS) $( LDFLAGS)

tdt: tdt.o
$(CO -0 $@tdt.o $(LDFLAGS)

depend:
makedepend -- $(CFLAGS) -- $(HFILES) $(CFILES)

007-2006-130 249



A: Example Programs for SGI Enhanced Widgets

Example Program for Finder

/

*

* Finder.c denonstrates the use of the SgFi nder w dget
*/

#i ncl ude <stdlib. h>

#i ncl ude <stdio. h>

#i ncl ude <Xm RowCol um. h>
#i ncl ude <Xm Label . h>

#i ncl ude <Sgnl Fi nder. h>
#i ncl ude <Sgm DynaMenu. h>

static char * itens[] = { "Archer’s favorite songs:",

"Draft dodger rag",

"Le Roi Renaud",

"/usr/sbin",

"/lib/libc.so. 1",

"Cal vi ni st Headgear Expressway",

}s

static void val ueChangeCB( Wdget w, XtPointer clientData, XmAnyCall backStruct * cbs) {

}

static void activateCB( Wdget w, XtPointer clientData, XmAnyCal | backStruct

}

printf("App val ue change cal |l back\n");

printf("App activate call back\n");

mai n( int argc, char * argv[] ) {

W dget toplevel, rc, label, finder, history;
Xt AppCont ext app;
XnString * list;
int listSize, i;

Xt Set LanguagePr oc( NULL, (Xt LanguageProc) NULL, NULL);

toplevel = XtVaApplnitialize( &pp, "Finder", NULL, O, &argc, argv, NULL,

rc = XtVaCreateWdget( "rc",
xmRowCol umW dget O ass, topl evel,
XmN\r esi zeW dt h, Fal se,
XmN\r esi zeHei ght, True,
NULL) ;

/* create the original list for the historyMenu */
listSize = XtNunber( itens );

list = (XnBtring *)XtMlloc( sizeof (XnString) * |istSize);
for (i =0; i < listSize; i++)

250

NULL) ;

* chs) {

007-2006-130



Example Program for History Button (Dynamenu)

list[ i ] = XnBtringCreatelLocalized( itens[ i ] );

| abel = XtVaCreat eManagedW dget ( " Thi ngs: ",
xmlLabel W dget Ol ass, rc,
NULL) ;
finder = XtVaCreat eManagedW dget ("fi nder", sgFi nder Wdgetd ass, rc, NULL);
hi story = SgFi nder Get Chi | d( finder, SgFl NDER _H STORY_MENUBAR ) ;
if (history && SglsDynaMenu( history )) {
Xt VaSet Val ues( hi story,
SgNhi storyListltens, |ist,
SgNhi st orylLi stltenCount, |istSize,

NULL) ;
}
for (i =0; i < listSize; i++)
if (list[ i 1)
XnStringFree(list[ i ]);
if (1ist)

Xt Free( (char *)Ilist );

Xt AddCal | back( finder, XmNval ueChangedCal | back, (XtCall backProc)val ueChangeCB, finder);
Xt AddCal | back( finder, XmNactivateCall back, (XtCallbackProc)activateCB, finder);

Xt ManageChild( rc );
Xt Real i zeW dget ( topl evel );
Xt AppMai nLoop( app );

Example Program for History Button (Dynamenu)

#i ncl ude <Sgnf DynaMenu. h>
#i ncl ude <Xm RowCol umm. h>

static char * items[] = { "illegal smle", "/usr/peoplel/stone",
"Fish and whistle", "help I'"'mtrapped in the
machi ne", "9th & Hennepin" };

static void dynaPushCB( Wdget w, XtPointer clientData, XtPointer cbd ) {
SgDynaMenuCal | backStruct * cbs = (SgDynaMenuCal | backStruct *) cbd;
int num = chs->button_nunber;
printf("Sel ected item nunber %\ n", nun;

}

007-2006-130 251



A:

Example Programs for SGI Enhanced Widgets

main( int argc, char * argv[] ) {

Xt AppCont ext app = NULL;

W dget toplevel, rc, dynaMenu;
XnString * list;

int listSize, i;

topl evel = XtVaApplnitialize( &pp, "DynaMenu", NULL, O, &argc,argv, NULL, NULL);

rc = XtVaCreat eManagedW dget ( "rc", xmRowCol umW dget Cl ass, toplevel, NULL);

/* create the original list for the dynaMenu */
listSize = XtNunber( itens );
list = (XnBtring *) Xt Mall oc( sizeof (XnBtring) * (unsigned int)listSize);
for (i =0; i < listSize; i++)
list[ i ] = XnBtringCreatelLocalized( items[ i ] );

dynaMenu = Xt VaCr eat eManagedW dget (" dynaMenu”,
sgDynaMenuW dget C ass, rc,
SgNhi storyListltens, |ist,
SgNhi storyLi stltenCount, |istSize,
NULL) ;
Xt AddCal | back( dynaMenu, SgNdynaPushCal | back, dynaPushCB, NULL);

for (i =0; i < |listSize; i++)
XnStringFree( list[ i ] );
XtFree( (char *)Ilist );

Xt Real i zeW dget ( topl evel );
Xt AppMai nLoop( app );

Example Program for ThumbWheel

/*

* Thunbwheel .c --
* create and nmmnage a thunmbwheel .
*/

#i
#i
#i
#i
#i
#i

ncl ude <stdio. h>

ncl ude <Xnmf Xm h>

ncl ude <Xm Form h>

ncl ude <Xm Di al 0ogS. h>

ncl ude <Xni Label . h>

ncl ude <Sgm ThunbWheel . h>

252

007-2006-130



Example Program for ThumbWheel

/*
* Test framework procedures and gl obal s.
*/

#i f def _NO_PROTO
static void DragCall back();
#el se

static void DragCal |l back(Wdget w, void *client_data, void *call_data);

#endif /* _NO PROTO */

Xt AppCont ext app;

mai n (argc, argv)
int argc;
char *argv([];
{
W dget toplevel, form thunbwheel, |abel;
Arg args[25];
int ac = 0;
/*
* Create and realize our top | evel w ndow,
* with all the nenus and buttons for user input.
*/
toplevel = XtVaApplnitialize( &pp, "Thunbwheeltest",

if (toplevel (W dget ) NULL) {
printf("Applnitialize failed!'\n");
exit(1);

}

form = XnCreateForn{toplevel, "Fornf, NULL, 0);

/* Set up argunents for our w dget. */

ac = 0;

Xt Set Arg(args[ ac],

Xt Set Arg(args|[ ac],

Xt Set Arg(args[ac],

XmNl ef t At t achnent ,
XmNr i ght Att achnent ,
Xm\t opAt t achnent ,

XMATTACH_FORM) ;

XMATTACH_FORM) ;

007-2006-130

XMATTACH_FORM) ;

NULL, O, &argc, argv, NULL, NULL);

ac++;

ac++;

ac++;

253



A: Example Programs for SGI Enhanced Widgets

/*

* We use all-default settings, with the exception of orientation.
* Do not set any other thunbwheel -specific resources.

*/

ac = 0;

Xt Set Arg(args[ac], XmNorientation, XmHORI ZONTAL); ac++;

t hunbwheel = SgCreat eThunbWheel (form "thunbwheel ", args, ac);

Xt ManageChi | d(t hunbwheel ) ;

ac = 0;

Xt Set Arg(args[ac], XmNl eftAttachment, XmATTACH FORM); ac++;

Xt Set Arg(args[ac], XmNrightAttachnent, XmATTACH FORM; ac++;

Xt Set Arg(args[ac], Xm\topAttachnment, XmATTACH W DGET); ac++;

Xt Set Arg(args[ac], XmNtopW dget, thunbwheel); ac++;

Xt Set Arg(args[ac], Xm\bottomAttachment, XmATTACH FORM); ac++;

Xt Set Arg(args[ac], XnN abel String, XnStringCreateSinple("0")); ac++;
| abel = XnCreatelLabel (form "valueLabel™, args, ac);

Xt ManageChi | d( | abel );

/*

* Set up callback for the thunbwheel.

*/

Xt AddCal | back(t humbwheel , XmiNdr agCal | back, DragCal |l back, |abel);

Xt ManageChi | d(form;
Xt Real i zeW dget (t opl evel ) ;

Xt AppMai nLoop( app) ;

}

voi d DragCal |l back(w, client_data, call_data)
W dget w;

Xt Pointer client_data, call _data;

{

SgThunbWheel Cal | backStruct *cbs = (SgThunbWheel Cal | backStruct *) cal |l _dat a;
W dget | abel = (Wdget)client_data;
static char new | abel [ 256];

Arg args[2];

int ac = 0;

if ((cbs '= NULL) && (label '= (Wdget)NULL)) {
sprintf(new_| abel, "%l", cbs->value);

Xt Set Arg(args[ac], XmN abel String, XnStringCreateSinple(new | abel)); ac++;
Xt Set Val ues(| abel, args, ac);

}
}

254 007-2006-130



Example Program for File Selection Box

Example Program for File Selection Box

To run this program, add these lines to your . Xdef aul t s file:

fsb*sgi Mode: true
f sb*useSchenes: all

then type:
xrdb -1 oad

Here’s the sample program:

[*-emam-- fsb.c ------- */
#i ncl ude <Xm RowCol umm. h>
#i ncl ude <Xm Form h>

#i ncl ude <Xm PushB. h>

#i ncl ude <stdlib. h>

#i ncl ude <stdio. h>

#i ncl ude <Xm Fi | eSB. h>

void printDirF( Wdget w, XtPointer clientData, XnFileSelectionBoxCallbackStruct * cbs) {
char * filenane = NULL, * dirname = NULL;
XnStringGet Lt oR( cbs->val ue, XnFONTLI ST_DEFAULT_TAG &fil enane);
XnStringGet Lt oR( cbs->dir, XmFONTLI ST_DEFAULT_TAG, &dirnane);
printf(“Filename selected: %\n", filenane);
if (filename)
XtFree( filename );
if (dirnane)

Xt Free( dirnanme );

}

static void showbDi al og( Wdget w, XtPointer clientData, XtPointer callData) {

Wdget dialog = (Wdget) clientData;
Xt ManageChi | d( dialog );

007-2006-130 255



A: Example Programs for SGI Enhanced Widgets

main (int argc, char *argv[]) {
W dget toplevel, fsb, bl, b2, rc;
Xt AppCont ext app;
XnString textStr;

Xt Set LanguageProc( NULL, (XtLanguageProc)NULL, NULL);
topl evel = XtVaApplnitialize( &pp, “Fsb”, NULL, 0, &argc, argv, NULL, NULL);
rc = XtVaCreat eManagedW dget ( “rc”, xmFor mA dget C ass, toplevel, NULL);

/* Set up a dialog */
if (argc > 1) {

bl = Xt VaCreat eManagedW dget ( “FSB",
xmPushBut t onW dget d ass,
rc,
Xm\t opAt t achnent ,
XmMATTACH_FORM
XmNbot t omAt t achnent ,
XmATTACH_FORM
XN\l ef t Att achnment ,
XmMATTACH_FORM
XmNr i ght At t achnent,
XmMATTACH_FORM
NULL) ;

fsb = XnCreateFil eSel ecti onDi al og( bl, “FSB Di al og”, NULL, 0);
Xt AddCal | back( bl, XmNactivateCall back, showbDi al og, fsb);

} else {
fsb = XnCreateFil eSel ectionBox( rc, “Select A File”, NULL, 0);
Xt VaSet Val ues( fsb,
Xm\t opAt t achnent, XmATTACH_FORM
Xm\bot t omAt t achment, XmATTACH FORM
XmNl ef t Att achment, XmATTACH_FORM
XmN\r i ght At t achment, XmATTACH_FORM
NULL) ;
Xt ManageChi I d( fsb );

256 007-2006-130



Example Program for File Selection Box

Xt AddCal | back( fsh, XmNokCal | back, (XtCallbackProc)printDrF,
(Xt Cal | backProc)exit,

Xt AddCal | back( fshb, XmNcancel Cal | back,

Xt Real i zeW dget ( topl evel );
Xt AppMai nLoop( app );

Makefile for File Selection Box Example Program

#! smake

#

include /usr/include/ make/ conmondefs
CFILES = fsbh.c

TARGETS = fsb

CVERSI ON = - xansi
OPTIMZER = -g

LLDLIBS = -ISgm -IXm-IXt -1X11 -1 PW

LCDEFS = - DFUNCPROTO - DDEBUG

LI NCS = -1. -1$(MOTI F_HEADERS)
targets: $(TARGETS)
i ncl ude $( COMVONRULES)

fsb: $(OBIECTS)
$(C0) -0 $@ $( OBJECTS) $( LDFLAGS)

007-2006-130

fsb):

NULL) ;

257



A: Example Programs for SGI Enhanced Widgets

Example Programs for Scale (Percent Done Indicator) Widget

The following code produces a simple motif scale widget:

/* progress.c */
/* cc -0 progress progress.c -1 Xm-IXt */
#i ncl ude <Xm Scal e. h>
void main(int argc, char** argv) ({
W dget toplevel, scale;
Xt AppCont ext app_cont ext;
Arg args[5];
i nt nargs=0;

toplevel = XtApplnitialize(&pp_context, “Progress”,
NULL, 0, &argc, argv, NULL, NULL, 0);

Xt Set Arg(args[nargs], Xnl\val ue, 50); nargs++;

Xt Set Arg(args[nargs], XnNorientation, XmHORI ZONTAL); nargs++;
scal e = XnCreat eScal e(topl evel, “scale”, args, nargs);

Xt ManageChi | d(scal e);

Xt Real i zeW dget (t opl evel ) ;
Xt AppMai nLoop(app_cont ext);
}

The following resource file (named “Progress”) produces the slanted, thermometer look
of the SGI percent done indicator. Also see the IRIS Viewkit VkProgressDialog class.

I Progress - App-default resources for the progress sanple program

*sgi Mbde: true
*useSchenes: all

I Change the appearance o the slider

*scal e.sliderVisual: flat_foreground
*scal e. sl i di nghvbde: t her nonet er
*scal e. sl ant ed: true

I Set the correct schenme colors
Progress*scal e*f or egr ound: SA _DYNAM C Basi cBackgr ound
Progress*scal e*t r oughCol or: SA DYNAM C Text Fi el dBackgr ound

258 007-2006-130



Example Program for LED Widget

Example Program for LED Widget

/* |l edbutton.c
/* cc -0 ledbutton | edbutton.c -1 Xm -1 Xt

007-2006-130

/* ledbutton -xrm “*sgi Mbde: true” -xrm “*useSchenes:

#i ncl ude <Xm Toggl eB. h>

void main(int argc, char** argv)

{

W dget toplevel, toggle;
Xt AppCont ext app_cont ext;
Arg args[5];

i nt nargs=0;

topl evel = XtApplnitialize(&pp_context,

Xt Set Arg(args[nargs], XnmN ndicatorSi ze,
Xt Set Arg(args[nargs], XmN ndi cator Type,
t oggl e = XnCreat eToggl eButton(topl evel,
Xt ManageChi | d(t oggl e) ;

Xt Real i zeW dget (t opl evel ) ;
Xt AppMai nLoop(app_cont ext);

all”

“LEDBut t on”,
NULL, O, &argc, argv, NULL, NULL, 0);

10); nargs++;

X8D_N_OF_MANY) ;

“t Oggl e” ,

ar gs,

*/
*/
*/

nar gs++;
nargs) ;

259






Appendix B

Desktop Variables

Variables that are used by the Desktop are listed below. Some of these variables can be
customized by the user. You can use any of these variables as part of the OPEN,
ALTOPEN, or PRINT file typing rules, or as part of the FILTER print conversion rule. In
IRIX 6.3 and above, variable substitution is done by the libraries; typically you do not set
environment variables. However, if a variable would expand to null, the desktop
automatically sets an empty environment variable.

Variables Set By the Desktop

007-2006-130

The variables listed below are preset by the Desktop (that is, the Desktop sets their

values).

$LEADER

$REST

$LEADERTYPE

$RESTTYPE

If one or more icons are currently selected from the Desktop, LEADER is
set to the icon that is selected first. If no icon is selected, it is set to null.

If more than one icon is currently selected from the Desktop, REST
contains the list of names of all selected icons except the highlighted icon
(see LEADER above). Otherwise, it is set to null.

If one or more icons are currently selected from the Desktop,
LEADERTYPE is set to the TYPE of the icon whose text field is
highlighted. If no icons are selected, it is set to null.

When more than one icon is currently selected from the Desktop,
RESTTYPE contains the TYPE for all selected icons except the
highlighted icon, if the remainder of the selected icons are all of the same
TYPE. If they are not the same TYPE, or only one icon is selected,
RESTTYPE is set to null.

$RESTTYPELIST

Contains the list of TYPEs corresponding to the arguments in REST. If
only one icon is selected, RESTTYPELIST is set to null.

261



B: Desktop Variables

$ARGC Contains the number of selected icons.

$TARGET Set only for the CMD DROP rule, TARGET contains the name of the icon
being dropped upon; otherwise it is set to null.

$TARGETTYPE
Set only for the CMD DROP rule, TARGETTYPE contains the TYPE of
the icon being dropped upon; otherwise it is set to null.

$SELECTED  Contains the names of the selected icons (whether or not a drop occurs
on TARGET).

$SELECTEDTYPE
If all of the icons named in SELECTED are of the same TYPE,
SELECTEDTYPE contains that TYPE; otherwise it is set to null.

$SELECTEDTYPELIST
Contains a list of TYPEs corresponding to the TYPEs of the selected
icons named in SELECTED. If only one icon is selected, it is set to null.

$WINTERM
Contains the name of the window terminal invoked from the Desktop
using Wi nt er n( 1) . Currently supported window terminals are wsh
(the default) and xt er m

Variables Set By the User

262

The variables listed below can be set by the user and the Desktop passes these
customizable variables to the FTRs. Users set these variables from the
Toolchest->Desktop->Customize->Utilities panel (or by the command, dtUtilities). See
“Using the Default Viewer and Editor Utilities Panel” for more information.

$WINEDITOR Contains the path to and name for the text editor invoked from the
Desktop. The default editor is / usr/ sbhin/j ot.

$WEBBROWSER
Contains the path to and name of an X Window System application that
is a World Wide Web visual browser (for example,
[ usr/ bi n/ X11/ net scape).

$IMGVIEWER Contains the path to and name of an application that displays image files
(for example, / usr/ bi n/ X11/ i ngvi ew).

007-2006-130



Variables Set By the User

$MAILBOXPROG
Contains the path to and name of a mail reader application (for example,
/usr/ bin/ X11/ Medi aMai | - gui ).

$BOOKVIEWER
Contains the path to and name of an application that displays InSight
books (for example, / usr/ sbi n/ i nsi ght).

$PSVIEWER  Contains the path to and name of an application for viewing PostScript
files (for example, / usr/ bi n/ X11/ showps).

007-2006-130 263






Appendix C

Online Help Examples

This appendix contains listings of several online help document files.

¢ “A Simple Help Document”

¢ “Allowable Elements in a Help Document”

* “An Example of Implementing Help in an Application”

This appendix also lists the source of an example program that implements many online

help features, along with its accompanying help document and helpmap file. All of these
files are available online. Their locations are given before each listing.

To view these examples on your system, you must install the insight_dev product, which
contains the SGIHelp library and include file, help generation tools, examples, and
templates.

A Simple Help Document

007-2006-130

Example C-1 lists a simple help document. It’s intended as a primer for writing online
help documents. You can find this file online at
[ usr/ share/ | nsi ght/ XHELP/ sanpl es/ sanpl eDoc/ sanpl e. sgm

265



C: Online Help Examples

Example C-1 An Example of a Help Source File

<dochel p>

<l--

Thi s bl ock denotes a SGWL-style comment.

For those that are unfamiliar with SGWM., this sanple file

will try to cover the usage of a variety of the tags that

are used in the XHELP DTD. The exanples shown in this sanple
shoul d be sufficient for a witer to produce a very high-quality,
functional help docunent for use with an application.

It is best to viewthis sanple once it has been published,
and then conpare what you see in the viewi ng software to
the actual tags displayed in this file.

Each Hel pTopi ¢ bl ock witten bel ow displays how to use the
DTD to inplement specific el enents/constructs. It should be
fairly self-explanatory.

A couple of things to | ook for when constructing/editing
your SGMWML file:

o Make sure a starting elenment tag has an associ at ed
end tag! If not, then the file will not conpile
properly. This is anal agous to m ssing a bracket
or paranthesis in a C progran

0 SGWL is NOT case sensitive! "HELPTOPIC' is the sanme
as "hel ptopic", which is the same as "Hel pTopic", etc.

-

<Hel pTopi ¢ Hel pI D="intro">

<Hel pl abel >SA@ Sanpl e SGW. Fi | e</ Hel pl abel >

<Descri pti on>

<para>This file contains exanples using many of the constructs used

in the XHELP DTD. </ par a>

<para>Notice that the general outline used for putting together

a help "card" is defined by this particular SGW bl ock. The preceding tag
defines the title that will be displayed for this card. The area you

are currently reading is a description for the feature or function you
are docunmenting. It is not necessary to use each of these tags, although

266 007-2006-130



A Simple Help Document

the "Hel pTopic" tag is required. </ para>

<para>A witer of help information may also wish to include a gl ossary
of ternms. In that way, the docunenter can tag terns within the text,
and have them display a specified definition fromw thin the viewer.

A sanple of this is: <glossternpsgi hel p</gl ossterne. </ para>

<para>The actual definition for the termis found at the end of this
SGWL sanpl e. </ par a>

</ Descri pti on>

</ Hel pTopi c>

<l--

It's inportant to point out that the "Hel pID' is the glue that
bi nds the help text to the application, through the use of the
provided Help APl (library, header file).

-->

<Hel pTopi ¢ Hel pl D="hel pi d_i nfo" >

<Hel pl abel >\What is a Hel pl D?</ Hel pl abel >

<Descri pti on>

<para>The Hel pl D attribute is used to by your application to
instruct the help server which help "card" to display. In this
case, sending the help server an I D of "helpid_info" would bring up
this particular block (or "card").</para>

<para>The other "ID' is often used as an anchor point

(and shoul d be used within an "ANCHOR' tag) for hypertext

links within your text. If you wish to refer to a particular card
one sinply uses the ID as the anchor point for the |ink syntax.</para>
</ Descri pti on>

</ Hel pTopi c>

<l--

This section illustrates the sinple usage of specifying a note,
warning, tip, or caution within your help docunent.

-->

<Hel pTopi ¢ Hel pl D="not e_exanpl e" >

007-2006-130

267



C: Online Help Examples

<Hel pl abel ><Anchor | d="Al 003">Usi ng Notes, Warnings or Tips Wthin a Paragraph</Hel pl abel >
<Descri pti on>

<para>Wthin the paragraph tag, there are a variety of text marking

nmechani sms. Each of these delineations nust appear as part of the

par agraph ("para") elenent.</para>

<para>Thi s area shows the docunmentor how a warning, note or "tip"

can be used within a persons's help text.</para>

<par a>

<war ni ng><para>Be Careful. This is a warning. </ para></warni ng>

<not e><par a>For your information, this is a note.</para></note>

<ti p><para>When you prepare your help file, you nmay wish to include a tip.</para>
</tip>

<cauti on><para>Use a caution tag when you wi sh to have the user use caution!</para>
</ caution>

</ par a>

</ Descri ption>

</ Hel pTopi c>

<l--

This next section illustrates how to display conputer output,
programlistings, etc. within your help docunent.

-->

<Hel pTopi ¢ Hel pl D="literal _exanple">
<Hel pl abel >Using Literals or Exanples Wthin a Paragraph</Hel pl abel >
<Descri pti on>

<par a>

Thi s area shows the docunmentor how to inplement specific exanples wthin
their help text. It also describes howto the "literal" tag.</para>

<par a>

When used within a paragraph, the Literal Layout tag

tells the viewing software to take this next block "as is",

with all acconpanying newlines and spacing left intact.</para>

<Exanpl e>

<Titl e>Vari ous Exanpl es: ConputerCutput, Literal Layout, Prograniisting</Title>

<par a>

What follows is a conputer output listing fromwhen a
user typed <userl nput >l s</userlnput> :

<Comput er Qut put >

268 007-2006-130



A Simple Help Document

%ls -1

total 6777

-rwXr-xr-x 1 guest guest 29452 Mar
-rwr--r-- 1 guest guest 2375 Mar
%

</ Conput er Cut put >

</ par a>

<par a>

Each of the subsequent three entries should be indented and on their

own |ine:

<Li teral Layout >
Here is line one.
This is line two.
This is line three.

</ Li teral Layout >

</ par a>

<par a>

8 19:12 nenu*
8 19: 11 nenu. c++

The following is a listing froma "C' program

<Pr ogr aniLi sti ng>
#i ncl ude "X11/ Xl'i b. h"
#i ncl ude "hel papi/ Hel pBroker. h"

void main(int, char**)

{
[* default to the value of the DI SPLAY env var
Di splay *di splay = XOpenbDi spl ay( NULL) ;
if( display ) {
/* initialize the help server */
SA Hel pl nit(display, "MyApp", ".");
}
}
</ ProgranlLi sting>
</ para>
</ Exanpl e>

</ Descri pti on>
</ Hel pTopi c>

<l--

007-2006-130

*/

269



C: Online Help Examples

This next section illustrates how to incorporate graphics within
your help text.

-->

<Hel pTopi ¢ Hel pl D="gr aphi c_exanpl e" >

<Hel pl abel >Usi ng Graphics or Figures Wthin Your Hel p Text </ Hel pl abel >
<Descri ption>

<par a>

This area di splays how a graphics or figure can be used within the flow of
your information. The following figure is in the "AF' fornmat:

</ par a>

<Figure ID="figure_01" Fl oat="Yes">

<title>A G F Raster |Image</title>

<G aphic fileref="sanplel.gif" format="4d F"></ G aphi c>
</ Fi gur e>

<par a>

Currently, support is provided for <enphasis>raster</enphasis> graphics in
the GF and TIF formats. Support is provided for <enphasis>vector</enphasi s>
graphics utilizing the CGM format.

</ par a>

<par a>

This next figure in the CGM (Conputer G aphics Metafile) fornmat:

</ par a>

<Figure ID="figure_02">

<title>A CGM Vector |Image</title>

<G aphic fileref="sanpl e2. cgnt' fornmat="CGAW ></ G aphi c>
</ Fi gur e>

<par a>
A special note that all equations are treated as inline inages, as shown
here:
<equat i on>
<Graphic fileref="matrix.gif" format="4d F'></ G aphi c>
</ equati on>
</ par a>

</ Descri ption>
</ Hel pTopi c>

270 007-2006-130



A Simple Help Document

<l--

Hyperlinks can be a very powerful navigation mechani sm
Li beral usage is encouraged.

-->

<Hel pTopi ¢ Hel pl D="1i nk_exanpl e" >

<Hel pl abel >Usi ng Hyper Li nks</ Hel pl abel >

<Descri pti on>

<para>One of the nost powerful capabilities of the sgihelp viewer
is the use of hyperlinks to associate |ike pieces of infornmation.
Constructing these links in SGW is trivial.</para>

<para>Notice that the "Link" element requires an attribute called
"Linkend". This defines the area (anchor) to link to. The "Linkend"
attribute points to the ID of some SGW el ement. In comnposing
help text, it is probably best to assign an ID to each "Hel pTopi c"
el ement, and use those sane | D s when specifying a Link.</para>
<para>A link is defined bel ow </ para>

<para>For nore information about using Notes, refer to the area
entitled <Link Linkend="AlI003">"Using Notes, Warnings or Tips

W thin a Paragraph"</Link></para>

<para>Note that the "Anchor" tag can also be used within a
docunent to point to any level of granularity the author

wi shes to link to.</para>

</ Descri pti on>

</ Hel pTopi c>

<l--

Note that there are *many* ways to specify lists. This exanple
shows sone commonl y-used pernmnutations.

-->

<Hel pTopi ¢ Hel pl D="1i st _exanpl e" >

<Hel pl abel >Usi ng Lists Wthin Your Hel p Text</Hel pl abel >
<Descri pti on>

<para>This area displays how a person can aut hor

various types of lists within their help text.</para>

<para>Here is an item zed |list that uses a dash to preface each item </ para>

007-2006-130

271



C: Online Help Examples

<ltem zedLi st Mark="dash">

<Li stltenmp<para>First Entry</para></Listltenr
<Li stltenmp<para>Second Entry</para></Listltenr
<Li stltenmp<para>Third Entry</para></Listltenr
</ltem zedLi st >

<para>Here is an item zed list that uses a bullet to preface each item </ para>
<l tem zedLi st Mark="bullet">

<Li stltenmp<para>First Entry</para></Listltenpr

<Li stltenmp<para>Second Entry</para></Listltenr

</Item zedLi st>

<para>Here is an ordered |list, using standard enuneration: </ para>
<Or deredLi st>

<Li stltenmp<para>First Entry</para></Listltenr

<Li stltenmp<para>Second Entry</para></Listltenr

<Li stltenmp<para>Third Entry</para></Listltenr

</ Or der edLi st >

<para>Here is another ordered |ist, using upper-case Roman enuneration,
showi ng nesting (sub-itens) within the list (outline format):</para>
<OrderedLi st Numerati on="Upperroman">
<Li stltenmp<para>First Entry</para></Listltenr
<Li stltenmr<para>Second Entry
<OrderedLi st Nuneration="Upperal pha" I nheritNum="Inherit">
<Li stltenmp<para>First Subltenx/para></Listlten>
<Li st 1t emp<para>Second Subltenx/ para></Listltenr
<Li stltenmp<para>Third Subltenx/para></Listltenr
<Li st |t emrr<par a>Fourth Subltenx/para></Listltenr
</ OrderedLi st>
</ para></Listltenm>
<Li stltenmp<para>Third Entry</para></Listltenr
</ Order edLi st >

<para>Here is a variable list of termns:</para>

<Vari abl eLi st >

<Var Li stEntry>

<ternpSA </terne

<Li stltenmp<para>Silicon G aphics, Inc.</para></Listltenr
</ Var Li st Entry>

<Var Li st Entry>

<t er nPSGWL</ t er >

<Li stltenmp<para>A Met a-| anguage for defining docunents. </para></Listltenr
</ VarLi st Entry>

</ Vari abl eLi st >

272 007-2006-130



A Simple Help Document

</ Descri pti on>
</ Hel pTopi c>

<l--

Sone final exanples...

-->

<Hel pTopi ¢ Hel pl D="ni sc_exanpl e" >

<Hel pl abel >t her M scel | aneous Textual Attri butes</Hel pl abel >
<Descri ption>

<para>Thi s area displays sone miscell aneous tags that can be used
wi thin the context of your help docunent. </para>

<par a>

<Comment >This is a conment that is not to be confused

with the SGWL-style coment! Instead, this comment will be
parsed and carried into the text of your docunent. Usually it's
used in production, for specifying to someone an area of concern,
an area that needs editing, etc.

</ Comment >

</ par a>

<para>Wthin your text, you may wi sh to denote a footnote.

<Foot note id="foot1"><para>This bl ock is a footnote!</para></Foot not e>
The XHELP DTD will allow you to do that.

</ par a>

<par a>
You may wi sh to add a copyright synmbol to your text, such as:
Silicon Gaphics, Inc.<trademark C ass="Copyright"></trademark>

</ par a>

</ Descri ption>
</ Hel pTopi ¢c>
<l--

If you wish to use/have a glossary of ternms within your help text,
it is advised to put it at the end of your help "book", as shown

007-2006-130 273



C: Online Help Examples

here. NOTE: CR or other characters (#PCDATA) is NOT all owed
bet ween the <d ossary> and <Title> tags! (nixed content nodel)

-->

<d ossary>

<Title>d ossary</Title>

<G ossEntry>

<d ossTer nrhel p</ d ossTer >

<d ossDef >

<para>To gi ve assistance to; to get (oneself) out of a difficulty;
a source of aid.</para>

</ @ ossDef >

</ d ossEntry>

<G ossEntry>

<d ossTer npsgi hel p</ d ossTer n»

<d ossDef >

<para>This is Silicon Graphics, Inc. version of a "Xhel p" conpatible
server. Through the use of an available API, and a help text

conpi l er, books can be constructed that can be used to render

hel p information for the given application.</para>

</ d ossDef >

</ d ossEntry></ d ossary>

<l--

Don't forget the very last ending tag...!!!

-->

</ dochel p>

Allowable Elements in a Help Document

Example C-2 lists a help document that describes the legal structures defined by the help
DTD. You can find this file online at

[ usr/ share/ | nsi ght/ XHELP/ sanpl es/ XHELP_el enent s/ XHELP_el enent s. s
gm

Example C-2 A Description of the Elements Defined by the Help DTD
<DCOCHEL P>

274 007-2006-130



Allowable Elements in a Help Document

<HELPTOPI C Hel pl D="">

<HELPLABEL>The El ements Al phabeti zed</ HELPLABEL>

<DESCRI PTI ON\>

<PARA>Enphasi zed entries indicate bl ock-oriented el enents. </ PARA>
</ DESCRI PTI ON></ HELPTOPI C>

<HELPTOPI C Hel pl D="">

<HELPLABEL>Conmon Attri butes </ HELPLABEL>
<DESCRI PTI ON\>

<PARA>Conmon attri butes include |D.</PARA>

<PARA>ID is an identifier, which nust be a

string that is unique at least within the docunent and
whi ch nmust begin with a letter. </ PARA>

</ DESCRI PTI ON></ HELPTOPI &

<HELPTOPI C Hel pl D="">

<HELPLABEL>Ct her Attri but es</ HELPLABEL>

<DESCRI PTI ON\>

<PARA>Certain other attributes occur regularly. PageNumis
the nunmber of the page on which a given el enent begins
or occurs in a printed book. Label holds sone text
associated with its elenent that is to be output when
the document is rendered.

Type is used with links,

as it is clear that different types of |inks nay be
required; it duplicates the function of Role.</PARA>

<PARA>The Cl ass attribute has been introduced in an attenpt to
control the nunmber of conputer-specific in-line elenments.
The el ements that bear the Class attribute, such as
Interface, have general

meani ngs that can be nade nore specific

by providing a value for Class fromthe delimted |ist
for that element. For exanple, for the Interface el enent
one may specify Menu, or Button; for the Medi aLabel

el ement one may specify CDRom or Tape. Each el enent

has its own |list of permssible values for Cass, and

no default is set, so you can ignore this attribute

if you wi sh. </ PARA>

<PARA>ANn attribute that has the keyword | MPLI ED bears no
processi ng expections if it is absent or its

value is null. Application designers mght wish to

supply plausible defaults, but none is specified here. </ PARA>

007-2006-130 275



C: Online Help Examples

</ DESCRI PTI ON></ HELPTOPI C

<HELPTOPI C Hel pl D="">
<HELPLABEL>cpt r phr ase. gp</ HELPLABEL>
<DESCRI PTI ON\>

<PARA>Thi s paraneter entity has been introduced to provide
sone structure for in-line elenments related to conputers.
Its contents are: plain text,

Anchor, Comment, Link, ConputerCQutput, and Userl nput. </ PARA>

<PARA>NMany of these el enents now have attributes

with delimted value lists; some forner in-line el enents now appear as
val ues for those attributes. </ PARA>

</ DESCRI PTI ON></ HELPTOPI C&

<HELPTOPI C Hel pl D="">
<HELPLABEL>"In-1ine" vs. "In flow"</HELPLABEL>
<DESCRI PTI ON\>

<PARA>I n this docunment, "in-line" neans "occuring within a line
of text, like a character or character string, not causing
aline break." This termis sonmetines used to

refer to objects such as an illustration around which

sonething |like a paragraph is wapped; here that circunstance
will be called "in flow" There is no provision yet

for indicating that an object is in flow, but one could

make creative use of the Role attribute to do so. </ PARA>

<PARA>A rel ated point: formal objects have titles; informnal
objects do not. That an object is informal does not nean
that it is in-line: these are two different
characteristics. </ PARA>

</ DESCRI PTI O\N></ HELPTOPRPI &

<HELPTOPI C Hel pl D="">
<HELPLABEL>Li st of El ement s</ HELPLABEL>
<DESCRI PTI ON\>

<VARI ABLELI ST>
<VARLI| STENTRY>
<TERW>

<EMPHASI S>Act i ons</ EMPHASI S></ TERM>
<LI STI TEM>

276 007-2006-130



Allowable Elements in a Help Document

<PARA>A set of entries, usually in a list form that conprise

the appropriate set of functions or steps to performa corrective
action for a situation that is described as part of a help card. </ PARA>
</ LI STI TEM></ VARL| STENTRY>

<VARLI| STENTRY>
<TERM>Anchor </ TERM>
<LI STI TEM>

<PARA>Mar ks a target for a Link.

Anchor may appear al nost anywhere, and has no content.

Anchor has I D, Pagenum Remap, Role, and XReflLabel attributes;
the 1D is required. </ PARA>

</ LI STI TEM></ VARL| STENTRY>

<VARLI| STENTRY>

<TERM>

<EMPHASI| S>Caut i on</ EMPHASI S></ TERM>
<LI STI TEM>

<PARA>ANn adnonition set off fromthe text;

Tip, Warning, Inportant, and Note all share its nodel.
Its contents may include paragraphs, lists, and so forth,
but not another adnonition.

Caution and its sisters have comon attri butes. </ PARA>
</ LI STI TEM></ VARL| STENTRY>

<VARLI| STENTRY>

<TERM>

<EMPHAS| S>Coment </ EMPHASI S></ TERM>
<LI STI TEM>

<PARA>A remark made within the docunment file that
is intended for use during interimstages of production.
A Comment shoul d not be displayed to the reader of the

finished, published work. |t may appear al nbst anywhere,
and nay contain al nost anyt hi ng
bel ow the Section level. Note that,

unli ke an SGWL conment, unless you take steps

to suppress it, the Comment el ement

will be output by an SGW parser

or application. You may wish to do this to display Conments
along with text during the editorial process. </ PARA>

</ LI STI TEM></ VARL| STENTRY>

007-2006-130 277



C: Online Help Examples

<VARLI| STENTRY>
<TERM>Conput er Qut put </ TERW>
<Ll STI TEM>

<PARA>Dat a presented to the user by

a conputer.

It may contain el enments from cptrphrase. gp,

and has comon and

Morelnfo attributes For the Morelnfo attribute
see <EMPHASI S>Appl i cati on. </ EMPHASI S></ PARA>

</ LI STI TEM></ VARL| STENTRY>

<VARLI| STENTRY>

<TERM>

<EMPHASI S>Copyr i ght </ EMPHASI S></ TERW>
<Ll STI TEM>

<PARA>Copyri ght information about

a docunent. It consists of one or

nore Years followed by any nunber of Hol ders. </ PARA>
</ LI STI TEM></ VARL| STENTRY>

<VARLI| STENTRY>
<TERM~Dat e</ TERM>
<LI STI TEM>

<PARA>Dat e of publication or revision.

It contains plain text. (No provision

has been made for representing eras; you could include this
information along with the date data.) </ PARA>

</ LI STI TEM></ VARLI| STENTRY>

<VARL| STENTRY>

<TERV>

<EMPHASI S>Descr i pt i on</ EMPHASI S></ TERM>
<LI STI TEM>

<PARA>A part of a Hel pTopic el enent.
Description may contain in-line el enents.
The body may be conprised of paragraphs.

It is used to contain the body of text that
is used as a hel p card. </ PARA>

</ LI STI TEM></ VARL| STENTRY>

278 007-2006-130



Allowable Elements in a Help Document

<VARLI| STENTRY>

<TERW>

<EMPHASI S>DocHel p</ EMPHASI S></ TERM>
<LI STI TEM>

<PARA>A col | ection of hel p docunent conponents.

A DocHel p entry may have a series of Hel pTopic(s).

Al back nmatter is optional, and at this tine includes
a d ossary. </ PARA>

</ LI STI TEM></ VARL| STENTRY>

<VARLI| STENTRY>

<TERM>

<EMPHASI S>Docl nf o</ EMPHASI S></ TERW>
<LI STI TEM>

<PARA>Met ai nformation for a book

conponent, in which it may appear. Only Title and Aut hor G oup

are required. Doclnfo may contain, in order:

the required Title, optional TitleAbbrev and
Subtitle, followed by one or nore

Aut hor G oups, any nunber of

Abstracts, an optional RevHi story, and any numnber of
Legal Notices. Doclnfo has common attri butes. </ PARA>
</ LI STI TEM></ VARLI| STENTRY>

<VARLI| STENTRY>
<TERM>Enphasi s</ TERW>
<Ll STI TEM>

<PARA>Pr ovi ded for use where you woul d
traditionally use italics

or bold type to enphasize a word or phrase.
It contains plain text and

has comon attri butes. </ PARA>

</ LI STI TEM></ VARL| STENTRY>

<VARLI| STENTRY>

<TERM>

<EMPHASI S>Equat i on</ EMPHASI S></ TERM>
<Ll STI TEM>

<PARA>A titl ed nmat hemati cal equation displayed

on a line by itself, rather than in-line. 1t has an optional

Title and Titl eAbbrev, followed by either

007-2006-130

279



C: Online Help Examples

an Informal Equati on or a Graphic (see

<EMPHASI S>Gr aphi c</ EMPHAS] S>) .

Equati on has common and Label attri butes. </ PARA>
</ LI STI TEM></ VARLI STENTRY>

<VARLI| STENTRY>

<TERW>

<EMPHASI S>Exanpl e</ EMPHASI S></ TERM>
<LI STI TEM>

<PARA>I nt ended for sections of program source code
that are provided as exanples in the text.
It contains a required Title and an

optional TitleAbbrev, followed by one or nore bl ock-oriented

el ements in any conbination. |t has comon and Labe
attributes. A sinple Exanple might contain a Title
and a ProgranLi sting. </ PARA>

</ LI STI TEM></ VARL| STENTRY>

<VARLI| STENTRY>

<TERM>

<EMPHASI S>Fi gur e</ EMPHASI S></ TERM>
<Ll STI TEM>

<PARA>AN il |l ustration.

It nust have a Title, and may have a

Titl eAbbrev, followed by one or nore of

Bl ockQuot e,

I nf or mal Equati on, G aphic,

I nformal Tabl e, Link, Literal Layout,

QLi nk, Progranlisting, Screen, Synopsis, and UL nk,
in any order. Figure has conmon,

Label, and Float attributes; Float indicates

whet her the Figure is supposed to be rendered

where conveni ent (yes) or at

the place it occurs in the text (no, the default). To
reference an external file containing graphical
content use the Graphic el enent within Figure.</ PARA>
</ LI STI TEM></ VARLI| STENTRY>

<VARLI| STENTRY>

<TERM>

<EMPHASI| S>Foot not e</ EMPHASI S></ TERW>
<LI STI TEM>

280

007-2006-130



Allowable Elements in a Help Document

<PARA>The contents of a footnote, when

the note occurs outside the block-oriented el enment in
whi ch t he Foot not eRef occurs.

(Conpar e <EMPHASI S>I nl i neNot e. </ EMPHASI S>)

The point in the text where the mark for a specific
footnote goes is indicated by FootnoteRef.

Footnote may contain Para, SinPara, BlockQuote, |nfornmal Equation, |nfornal Table,
Graphic, Synopsis, Literal Layout, ProgranListing,
Screen, and any kind of list.

It has I D, Label, Lang, Remap, Role, and XReflLabe
attributes; the ID attribute is required, as

a Foot not eRef must point to it.</ PARA>

</ LI STI TEM></ VARLI| STENTRY>

<VARLI| STENTRY>

<TERW>

<EMPHASI S>d ossar y</ EMPHASI S></ TERM>
<Ll STI TEM>

<PARA>A gl ossary of terns. d ossary

may occur within a Chapter, Appendix, or Preface
or may be a book component in its own right.

It contains in order an optional Doclnfo, optional
Title, and optional TitleAbbrev, followed by

any nunber of block-oriented el enents, followed by
one or nmore G ossEntries or one or nore G ossDivs.
It has comon attri butes. </ PARA>

</ LI STI TEM></ VARLI| STENTRY>

<VARLI| STENTRY>

<TERW>

<EMPHASI S>3 ossDef </ EMPHASI S></ TERM>
<LI STI TEM>

<PARA>The definition attached to a 3 ossTerm

in a dossEntry. It may contain Comments, d ossSeeAl sos

par agr aphs, and ot her bl ock-oriented el enents, in

any order; it has common and Subject attributes. The Subject
attribute may hold a |ist of subject areas (e.g., DCE RPC
General ) as keywords. </ PARA>

</ LI STI TEM></ VARLI| STENTRY>

<VARLI| STENTRY>

<TERW>
<EMPHASI S>Ad ossEnt r y</ EMPHASI S></ TERM>

007-2006-130 281



C: Online Help Examples

<LI| STI TEM>

<PARA>ANn entry in a d ossary.

It contains, in order, a required

G ossTerm an optional Acronym

an optional Abbrev, and either a

A ossSee or any nunber of d ossDefs.
It has conmon attri butes. </ PARA>

</ LI STI TEM></ VARL| STENTRY>

<VARLI| STENTRY>
<TERM>A ossTer nx/ TERW>
<LI STI TEM>

<PARA>A termin the text of a Chapter (for exanple) that is

glossed in a G ossary; also used for those terms in dossEntries, in the
G ossary itself. As you may not want to tag all occurrences

of these words outside of dossaries, you night consider

d ossTerm when used outside of G ossaries, to be sinlar

to FirstTerm except that d ossTerm may contain other

in-line elements. dossTermcontains in-line elenents

and has common attri butes. </ PARA>

</ LI STI TEM></ VARLI STENTRY>

<VARLI| STENTRY>
<TERM>Gr aphi c</ TERM>
<LI STI TEM>

<PARA>Encl oses graphical data or

points via an attribute to an external file containing such data,
and is to be rendered as an object, not in-line.

It has Format,

Fileref, Entityref, and ID attributes.

The format attribute may have the val ue of

any of the formats defined at the head of the DTD,

i ncl udi ng CGW CHAR, CGMt CLEAR, DI TROFF, DVI, EPS,

EQN, FAX, FAXTILE, A F, IGES, PIC, PS, TBL, TEX,

TI FF. </ PARA>

<PARA>The val ue of Fileref should be a filenane, qualified by
a pathnane if desired; the value of Entityref should be that of an

external data entity. |If data is given as the
content of Graphic, both Entityref and Fileref,
if present at all, should

be ignored, but a Format val ue should be supplied.

282 007-2006-130



Allowable Elements in a Help Document

if no data is given as the content of

Graphic and a value for Entityref

is given, Fileref, if present, should be ignored
but no Format val ue shoul d be suppli ed.

Finally, if there is no content for G aphic and
Entityref is absent or null, Fileref nust be
given the appropriate value, and again no

Format val ue shoul d be supplied. </ PARA>

</ LI STI TEM></ VARL| STENTRY>

<VARLI| STENTRY>

<TERW>

<EMPHASI S>Hel pTopi c</ EMPHASI S></ TERM>
<LI STI TEM>

<PARA>A part of a DocHel p docunent.

Hel pTopi ¢ contai ns a Hel pLabel, followed in order by
a Description, and optionally an Actions area.

Hel pTopi ¢ has common and Hel pld attri butes. </ PARA>
</ LI STI TEM></ VARL| STENTRY>

<VARL| STENTRY>

<TERW>

<EMPHASI S>Hel pLabel </ EMPHASI S></ TERW>
<LI STI TEM>

<PARA>The text of a heading or the title of the Hel pTopic
bl ock-oriented el ement. Hel pLabel may contain

in-line elenents, and has commopn attri butes. </ PARA>

</ LI STI TEM></ VARLI| STENTRY>

<VARLI| STENTRY>

<TERM>I nl i neEquat i on</ TERM>

<LI STI TEM>

<PARA>ANn untitled mat hematical equation

occurring in-line or as the content of an Equation.

It contains a Graphic, and has common attri butes. </ PARA>
</ LI STI TEM></ VARLI| STENTRY>

<VARL| STENTRY>
<TERM>I nl i neG aphi c</ TERW>
<Ll STI TEM>

<PARA>Encl oses graphical data or

points via an attribute to an external file containing such data,

007-2006-130

283



C: Online Help Examples

and is to be rendered in-line.

InlineGaphic has Fornat, Fileref, Entityref, and ID attributes.

The format attribute may have the val ue of

any of the formats defined at the head of the DTD, under "Notations."
If it is desired to point to an external file, a fil ename may

be supplied as the value of the Fileref attribute, or an

external entity name may be supplied as the value of the

Entityref attribute. </ PARA>

</ LI STI TEM></ VARLI| STENTRY>

<VARLI| STENTRY>

<TERW>

<EMPHASI S>| t emi zedLi st </ EMPHASI S></ TERM>
<LI STI TEM>

<PARA>A list in which each itemis marked with

a bullet, dash, or other dingbat (or no mark at all).

It consists of one or nore Listltems. A Listltemin an

Item zedLi st contains paragraphs and ot her

bl ock-oriented el ements, which

may in turn contain other lists; an Item zedLi st may be

nested within other lists, too. It has conmmon attributes and

a Mark attribute. Your application mght supply the mark to be used
for an Item zedList, but you can use this attribute to

indicate the mark you desire to be used; there

is no fixed list of these.hfill\break <EMPHASI S>Usage Not e: </ EMPHAS| S>
You mi ght want to use one of the 1SO text entities

t hat designates an appropriate di ngbat. </ PARA>

</ LI STI TEM></ VARLI| STENTRY>

<VARLI| STENTRY>
<TERM>Li nk</ TERM>
<LI STI TEM>

<PARA>A hypertext link. At present, al
the link types represented in the DID are

provisional. Link is |less provisional than the
ot hers, however. |In HyTime parlance, Link is a
clink. It may contain in-line elenents

and has Endterm Linkend, and Type attributes. The required

Li nkend attribute specifies the target of the Ilink,

and the optional Endtermattribute specifies

text that is to be fetched fromel sewhere in the docunent

to appear in the Link. You can also supply this text directly as
the content of the Link, <EMPHASI S>in which case the

284 007-2006-130



Allowable Elements in a Help Document

Endtermattribute is to be ignored (new and tentative
rule for this version, comrents invited)</EMPHASI S>. </ PARA>
</ LI STI TEM></ VARLI STENTRY>

<VARLI| STENTRY>

<TERW>

<EMPHASI S>Li st | t enx/ EMPHASI S></ TERM>
<LI STI TEM>

<PARA>A wr apper for the el enents of
itens in an |tem zedLi st or OrderedList; it al so
occurs within VarListEntry in Variabl eLi st.

It may contain just about anything except Sects and book conponents.

It has conmon attributes and an Override attribute, which
may have any of the values of Item zedList's

Mark attribute; use Override to override the mark

set at the Item zedList |evel, when you desire to create
Item zedLists with varyi ng marks. </ PARA>

</ LI STI TEM></ VARL| STENTRY>

<VARLI| STENTRY>

<TERM>

<EMPHASI S>Li t er al Layout </ EMPHASI S></ TERM>
<Ll STI TEM>

<PARA>The wrapper for lines set off from

the main text that are not tagged as Screens, Exanples,

or Prograniisting, in which |ine breaks and | eadi ng

white space are to be regarded as significant.

It contains in-line elenents, and has common

and Wdth attributes, for specifying a nunber representing
the maxi mum wi dth of the contents. </ PARA>

</ LI STI TEM></ VARLI| STENTRY>

<VARLI| STENTRY>

<TERM>

<EMPHASI S>Not e</ EMPHASI S></ TERM>
<LI STI TEM>

<PARA>A message to the user, set off fromthe text.
See <EMPHASI S>Caut i on. </ EMPHASI S></ PARA>
</ LI STI TEM></ VARL| STENTRY>

<VARLI| STENTRY>
<TERW>

007-2006-130

285



C: Online Help Examples

<EMPHASI S>Or der edLi st </ EMPHAS| S></ TERM>
<LI STI TEM>

<PARA>A nunbered or lettered list, consisting of

Listltens. A Listltemin an

Or deredLi st contai ns paragraphs and ot her

bl ock-oriented el ements, which

may in turn contain other lists; an OrderedList may be

nested within other |ists, too.

OrderedLi st has conmmon attributes, along with

a Nuneration attribute, which

may have the val ue Arabic, Upperal pha, Loweral pha,

Upperronan, or Lowerroman. The default is Arabic (1, 2, 3, . . .).
It has an InheritNum attribute, for which the value Inherit specifies for a
nested list that the nunbering of Listltens should include the
number of the itemw thin which they are nested (2a, 2b, etc.,
rather than a, b, etc.); the default value is Ignore.

It has a Continuation attribute, with val ues

Continues or Restarts (the default), which may be used to

i ndi cate whether the nunbering of a |list begins afresh (default)
or continues that of the imediately preceding list (Continues).
You need supply the Continuation attribute only

if your list continues the nunbering of the preceding |ist.</PARA>
</ LI STI TEM></ VARLI| STENTRY>

<VARL| STENTRY>

<TERW>

<EMPHASI S>Par a</ EMPHASI S></ TERM>
<LI STI TEM>

<PARA>A paragraph. A Para nay not

have a Title: to attach a Title to a Para use Formal Para. Para

may contain any in-line elenment and al nost

any bl ock-oriented elenment. Abstract, AuthorBlurb, Caution,

Important, Note, and Warning are excluded, as are Sects and higher-|evel
el enents. Para has common attri butes. </ PARA>

</ LI STI TEM></ VARL| STENTRY>

<VARLI| STENTRY>

<TERM>

<EMPHASI S>Pr ogr anlLi st i ng</ EMPHASI S></ TERM>
<Ll STI TEM>

<PARA>A listing of a program
Li ne breaks and | eadi ng

286 007-2006-130



Allowable Elements in a Help Document

white space are significant in a Progranlisting, which
may contain in-line elenments, including LineAnnotations.
(Li neAnnot ati ons are a docunent author's

comments on the code, not the comments written

into the code itself by the code's author.)

PrograniLi sting has common and Wdth attributes, the
latter for specifying a nunber representing the nmaxi num
wi dt h of the contents. </ PARA>

</ LI STI TEM></ VARLI| STENTRY>

<VARLI| STENTRY>
<TERM>Ter n</ TERM>
<LI| STI TEM>

<PARA>The hanging termattached to a Listltem

within a VarListEntry in a

Vari abl eLi st; visually, a Variabl eLi st

is a set of Terms with attached itens such as paragraphs. Each
Listltemmay be associated with a set of Terns. Termmay contain
in-line elenents. It has comon attri butes. </ PARA>

</ LI STI TEM></ VARL| STENTRY>

<VARL| STENTRY>

<TERV>

<EMPHASI S>Ti p</ EMPHASI S></ TERM>
<LI STI TEM>

<PARA>A suggestion to the user, set off from
the text. See <EMPHASI S>Cauti on. </ EMPHASI S></ PARA>
</ LI STI TEM></ VARL| STENTRY>

<VARLI| STENTRY>

<TERW>

<EMPHASI S>Ti t | e</ EMPHASI S></ TERW>
<LI STI TEM>

<PARA>The text of a heading or the title of a

bl ock-oriented element. Title may contain

in-line elenments, and has common and PageNum attri butes. </ PARA>
</ LI STI TEM></ VARL| STENTRY>

<VARLI| STENTRY>

<TERM>-Tr ademar k</ TERW>
<LI STI TEM>

007-2006-130 287



C: Online Help Examples

<PARA>A trademark. It may contai n nenbers of cptrphrase. gp
and has common and C ass attributes.

Cl ass nmay have the val ues Service, Trade, Registered

or Copyright; the default is Trade. </ PARA>

</ LI STI TEM></ VARLI STENTRY>

<VARL| STENTRY>
<TERM>User | nput </ TERM>
<LI| STI TEM>

<PARA>Dat a entered by the user.

It may contain el ements from cptrphrase. gp,

and has common and Mrelnfo attributes. For the Mrelnfo attribute
see <EMPHASI S>Appl i cati on. </ EMPHASI S></ PARA>

</ LI STI TEM></ VARL| STENTRY>

<VARLI| STENTRY>

<TERM>

<EMPHASI| S>Var i abl eLi st </ EMPHASI S></ TERM>
<LI STI TEM>

<PARA>ANn optionally

titled list of VarListEntries, which are

conposed of sets of one or nore Terns wi th associ at ed

Listltens; Listltens contain paragraphs and ot her bl ock-oriented
el ements in any order. Inclusions

are as for OrderedList (see <EMPHASI S>Or der edLi st </ EMPHASI S>) .
Vari abl eLi st has conmon attri but es. </ PARA>

</ LI STI TEM></ VARLI| STENTRY>

<VARLI| STENTRY>

<TERW>

<EMPHASI S>Var Li st Ent r y</ EMPHAS| S></ TERW>
<LI STI TEM>

<PARA>A conponent of Vari abl eLi st (see
<EMPHASI S>Vari abl eLi st </ EMPHASI S>). It has common attri butes. </ PARA>
</ LI STI TEM></ VARL| STENTRY>

<VARLI| STENTRY>

<TERW>

<EMPHASI S>War ni ng</ EMPHASI S></ TERM>
<LI| STI TEM>

<PARA>ANn adnonition set off fromthe text.

288 007-2006-130



An Example of Implementing Help in an Application

See <EMPHASI S>Caut i on. </ EMPHASI S></ PARA>
</ LI STI TEM></ VARL| STENTRY>

<VARLI| STENTRY>
<TERM>XRef </ TERW>
<LI| STI TEM>

<PARA>Cross reference link to another part of the docunent.
It has Linkend and Endterm attributes, just |ike Link,

but |ike Anchor, it nmay have no content.

XRef nust have a Linkend, but the Endtermis optional.

If it is used, the content of the elenent it points

to is displayed as the text of the cross reference;

if it is absent, the XReflLabel of the cross-referenced
object is displayed. To include in the cross reference
generated text associated with the object referred to,

use your application's style sheet. See <EMPHASI S>Li nk. </ EMPHASI S></ PARA>
</ LI STI TEM></ VARLI| STENTRY>

</ VARI ABLELI ST>

</ DESCRI PTI ON></ HELPTOPRI C
</ DOCHEL P>

An Example of Implementing Help in an Application

This section provides a complete example of help integrated with an application.

Example C-3 lists a C program that implements a Help menu, a Help button, and
context-sensitive help. You can find this file online at
[ usr/ share/ | nsi ght/ XHELP/ sanpl es/ exanpl eApp/ exanpl eAppXm c.

Example C-4 lists the help document for exanpl eAppXm You can find it online at
/usr/ shar e/l nsi ght/ XHELP/ sanpl es/ exanpl eApp/ exanpl eAppXm sgm

Example C-5 lists the helpmap file for exanpl eAppXm You can find it online at
/usr/shar e/l nsi ght/ XHELP/ sanpl es/ exanpl eApp/ hel p/ exanpl eAppXm he
| pmap.

Example C-3 An Example of Integrating SGIHelp With an Application

007-2006-130 289



C: Online Help Examples

File:

Dat e:

Conpile with:

Pur pose:

exanpl eAppXm c

3/ 25/ 94

cc -o exanpl eAppXm exanpl eAppXm ¢ -1 hel pmsg -1 Xm -1 Xt

An sinple exanple programthat shows how to use the SG

Hel p systemfroma Motif application.

This program di splays a few buttons on a bulletin board

al ongwith a hel p menu.
is al so denonstrated

The use of context sensitive help

-1 X11

* standard include files

*/

#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude

/*

<stdi 0. h>

<uni std. h>
<fcntl. h>

<X11/ cursorfont. h>
<Xm Xm h>

<X Label . h>

<Xm PushB. h>

<Xm For m h>

<Xn1 MessageB. h>
<Xm Mai nW h>

<Xm RowCol umm. h>
<Xm CascadeB. h>
<Xm Separ at or . h>

* include for for calling/using SA Hel p

*/

#i ncl ude

/*

<hel papi / Hel pBr oker . h>

* forward declarations of functions

*/

W dget initMotif(int

290

*ar gcP,

/*

Initializes notif and

*/

007-2006-130



An Example of Implementing Help in an Application

voi d

voi d
void
void
voi d
voi d
voi d

voi d

W dg

char *argv[],

Xt AppCont ext *app_cont ext P,

Di spl ay **di spl ayP) ;

createlnterface(Wdget parent);

cl i ckFor Hel pCB() ;
overvi enCB() ;
taskCB();

i ndexCB() ;
keysAndShort cut sCB() ;
product | nf oCB() ;

i nf oDi al 0ogCB() ;

et _mai nWndow, _infoDi al og=NULL;

/* and returns the top | evel */

/* shell.

/*creates the main w ndow,
/*menus, and the buttons
/*on the main wi ndow

/*cal | backs for each of
/[*the help nenu's

*/

*/
*/
*/

*/
*/

| *
* main()
*/
mai n(int argc, char *argv[])
{ Di spl ay *di spl ay;
Xt AppCont ext app_cont ext;
W dget topl evel ;
toplevel = initMtif (&argc,argv, &pp_cont ext, &i spl ay) ;
createlnterface(toplevel);
Xt Real i zeW dget (t opl evel ) ;
Xt AppMai nLoop(app_cont ext);
}
| *

007-2006-130

291



C: Online Help Examples

Functi on:

Pur pose:

i ni tMotif()

Initializes Motif and creates a top |evel shell.
Returns the toplevel shell.

Makes the call to initialize variables for the SG Hel p
interface...note that it does not *start* the sgihelp
process. That is done when a request for help is nade,
if and only if the sgihelp process is not already
runni ng.

*
*
*
*
*
*
*
*
*
*
*
*
*

/

Wdget initMtif(int *argcP, char *argv[], Xt AppCont ext *app_cont extP,

{

/*

Wdget to
Xt Tool ki t

*app_cont
*di spl ayP

if (*disp

Di spl ay **di spl ayP)
pl evel ;

Initialize();

ext P = Xt CreateApplicationContext();

Xt OpenDi spl ay(*app_cont ext P, NULL, " exanpl eAppXni',
"exanpl eAppXmCl ass", NULL,
0, argcP, argv);

layP == NULL) {

fprintf (stderr,"Could not open display.\n");

fprintf (stderr,"Check your

fprintf (stderr,"Exiting...\n");

exit(

}

t opl evel

-1);

= Xt AppCr eat eShel | (" exanpl eAppXni', NULL,
appl i cati onShel | Wdget d ass,
*di spl ayP, NULL, 0);

* initialize variables for SA Hel p

*/

/*

SG Hel pln

return (t

it(*displayP, "exanpleAppXn, ".");

opl evel ) ;

Dl SPLAY envi ronment variable.\n");

292

007-2006-130



An Example of Implementing Help in an Application

*

* Function: createlnterface()

*

*/
void createlnterface(Wdget parent)
{

Arg args[ 10];

int i;

W dget baseForm

W dget nenuBar;

W dget denoplLabel, denoButton;

W dget pull downl, pul |l down2, cascadel, cascade2;

W dget nenuButtons|6]; /*we will create at max 6 buttons on a nenu*/
XnString xnStr;

/*
* mai NnW ndow i s an Xmvai nW ndow
* on which the whole interface is built

*/
i =0;
_mai nW ndow = XnCr eat eMai nW ndow( par ent, " mai nW ndow", args,i);
Xt ManageChi | d(_mai nW ndow) ;
/*

* baseFormis the workArea for the
mai nW ndow above.

*/

i =0;
Xt Set Arg (args[i], Xn\wi dt h, 400) ;i ++;
Xt Set Arg (args[i], Xm\hei ght, 300) ;i ++;
Xt Set Arg (args[i], XmN\verti cal Spaci ng, 40) ;i ++;
baseFor m = XnCr eat eFor m( _mai nW ndow, "baseForn', args, i);
Xt ManageChi | d( baseForm ;

/*

* On this bulletin board, put a |abel and a button
* for denobnstrating call backs and context sensitive
* hel p.

*/

007-2006-130 293



C: Online Help Examples

/*

i =0;

xnStr = XnStringCreateSinple("SE Help!'");

Xt Set Arg (args[i], XnNl abel String, xnStr);i++;

Xt Set Arg (args[i], Xn\t opAtt achnment , XmATTACH_FORM) ; i ++;

Xt Set Arg (args[i], Xn\ri ght Att achment , XmATTACH_FORM) ; i ++;
XtSet Arg (args[i], XmNl ef t Attachnent, XmATTACH_FORM) ; i ++;

Xt Set Arg (args[i], XnNal i gnnent, XmALI GNVENT_CENTER) ; i ++;
denolLabel = XnTCreat eLabel (baseForm "sgi Hel pLabel ", args,i);
Xt ManageChi | d( denoLabel ) ;

XnStringFree(xnstr);

i =0;

xnStr = XnStringCreateSinple("Cick Here For Hel p");

Xt Set Arg (args[i], XnNl abel String, xnStr);i++;

XtSet Arg (args[i], Xm\Nri ght Attachnent, XmATTACH _FORM) ; i ++;
Xt Set Arg (args[i], Xn\bott omAt t achnent , XmMATTACH_FORM) ; i ++;

denpButt on = XnCr eat ePushButt on(baseFor m "sgi Hel pPushButton", args,i);

Xt ManageChi | d(denpButt on) ;
XnStringFree(xnstr);
Xt AddCal | back( denmoButt on, XmNact i vat eCal | back, t askCB, NULL) ;

* puild a pulldown nmenu system including the "hel p* menu

*/

/*

nenuBar = XnCr eat eMenuBar (_mai nW ndow, " nenuBar ", NULL, 0) ;
Xt ManageChi | d( menuBar) ;

XnCr eat ePul | downMenu( menuBar , " pul | downl1", NULL, 0);
XnCr eat ePul | downMenu( menuBar , " pul | down2", NULL, 0) ;

pul | downl
pul | down2

i =0;

Xt Set Arg (args[i], XmNsubMenul d, pul | downl) ;i ++;

cascadel = XnCreat eCascadeButton(nenuBar,"File",args,i);
Xt ManageChi | d(cascadel);

i =0;

Xt Set Arg (args[i], XmNsubMenul d, pul | down2) ;i ++;

cascade2 = XnCreat eCascadeButton(nenuBar, "Hel p",args,i);
Xt ManageChi | d(cascade?2);

* Declare this to be the Hel p nenu

*/

294

i =0;
Xt Set Arg (args[i], XnNmenuHel pW dget , cascade?2) ;i ++;

007-2006-130



An Example of Implementing Help in an Application

Xt Set Val ues(nenuBar, args, i);

nmenuBut t ons[ 0] = XnCreat ePushButton(pul | downl, "Exit", NULL, 0);
Xt ManageChi | dr en( menuBut t ons, 1) ;
Xt AddCal | back( menuBut t ons[ 0] , XnNact i vat eCal | back, ( Xt Cal | backProc)exit, 0);

nenuButt ons[ 0] = XnCreat ePushButton(pul  down2,"Cick for Hel p", NULL, 0);
nenuButt ons[ 1] = XnCreat ePushButton(pul | down2, " Overvi ew', NULL, 0);

Xt ManageChi | d( XnCr eat eSepar at or (pul | down2, "separator1", NULL, Q) );
nmenuBut t ons[ 2] = XnCreat ePushButton(pul | down2, " Sanpl e Hel p Task", NULL, 0);

Xt ManageChi | d( XnCr eat eSepar at or (pul | down2, "separator?2", NULL, 0) );

menuBut t ons[ 3] = XnCr eat ePushBut t on(pul | down2, "I ndex", NULL, 0) ;
nenuBut t ons[ 4] = XnCreat ePushButton(pul | down2, "Keys and Shortcuts", NULL, 0);
Xt ManageChi | d( XnCr eat eSepar at or (pul | down2, "separator3", NULL, Q) );

menuButt ons[ 5] = XnCreat ePushButt on(pul | down2, " Product | nformati on", NULL, 0);

Xt ManageChi | dr en( menuBut t ons, 6) ;

/*
* add cal | backs to each of the hel p nmenu buttons
*/
Xt AddCal | back( menuBut t ons[ 0] , XnNact i vat eCal | back, cl i ckFor Hel pCB, NULL) ;
Xt AddCal | back( menuBut t ons[ 1] , XmNact i vat eCal | back, over vi enCB, NULL) ;
Xt AddCal | back( menuBut t ons[ 2], XnNact i vat eCal | back, t askCB, NULL) ;
Xt AddCal | back( menuBut t ons[ 3], XnNact i vat eCal | back, i ndexCB, NULL) ;
Xt AddCal | back( menuBut t ons[ 4], XnNact i vat eCal | back, keysAndShort cut sCB, NULL) ;
Xt AddCal | back( menuBut t ons[ 5], XnNact i vat eCal | back, product | nf oCB, NULL) ;
/*

* set the bulletin board and nenubar into
* the nmain W ndow.

*/
Xmvai nW ndowSet Ar eas(_nmai nW ndow, nenuBar , NULL, NULL, NULL, baseFor n) ;

}
/*

*

* void clickForHel pCB()

*

* Purpose: Provides context-sensitivity within an application;

* makes a request to the sgihel p process.

*

*

*

~

007-2006-130 295



C: Online Help Examples

voi d clickForHel pCB(W dget w d, XtPointer clientData, XtPointer call Data)
{

static Cursor cursor = NULL;
static char path[512], tnp[512];
W dget shell, result, w

strcpy(path, "");

strepy(tnmp, "");
/*
* create a question-mark cursor
*/
i f(!cursor)
cursor = XCreat eFont Cursor(XtDi splay(wi d), XC _question_arrow;
XmUpdat eDi spl ay(_mai nW ndow) ;
/*
* get the top-level shell for the w ndow
*/
shell = _nmai nW ndow;
while (shell && !XtlsShell (shell)) {
shell = XtParent(shell);
}
/*

* modal interface for selection of a component;
* returns the wi dget or gadget that contains the pointer

*/
result = Xniracki ngLocate(shell, cursor, FALSE);
if( result ) {
w = result;
/*

* get the widget hierarchy; separate with a '
* this also puts themin top-down vs. bottom up order.
*/
do {
if( XtName(w) ) {
strcpy(path, XtName(w));

if( strlen(tmp) > 0 ) {
strcat(path, ".");

296 007-2006-130



An Example of Implementing Help in an Application

/*

*

*

*/

strcat(path, tnp);
}

strcpy(tnp, path);
}

w = Xt Parent (w);
} while (w!= NULL && w != shell);

/

send nsg to the hel p server-w dget hierarchy;
(03

provide a mapping to produce the key to be used

In this case, we'll let the sgihelp process do
the mapping for us, with the use of a helpmap file

Note that paraneter 2, the book name, can be found
fromthe helpmap file as well. The devel oper need
not hard-code it, if a helpmap file is present for
the application.

0% X X X X X X X X X X X F

~

if( strlen(path) >0 ) {
SA Hel pMsg(path, NULL, NULL);
}

voi d overvi ewCB()

voi d overvi ewCB()

{
/

* O0F X X X X *

Using the mapping file allows us to specify

a "Overview' help card for each wi ndow in

our application. In this case, we wll point
to a specific one. Note that the book nane is
speci fied, but not necessary if a helpmap file
exists for this application.

007-2006-130

297



C: Online Help Examples

>/
SA Hel pMsg( " overvi ew', "exanpl eAppXnHel p", NULL);

/*
* void i ndexCB()
*/

voi d i ndexCB()

{

/*

* For the index window to work for this application,
* a helpmap file MIUST be present!

*/

SGA Hel pl ndexMsg("i ndex", NULL);

/*

* void taskCB()
*/

voi d taskCB()

{

/*
* For the task found in the help nenu or a pushbutton, we
* use a specific key/book conbination.
*
/

SA Hel pMsg( " hel p_t ask", "exanpl eAppXmHel p", NULL);

/*

*

* voi d keysAndShort cut sCB()
*

*/

voi d keysAndShort cut sCB()

{

298 007-2006-130



An Example of Implementing Help in an Application

This would point to the help card that contains

i nformati on about the use of keys/accelerators, etc.
for your application.

/

L I A

SG Hel pMsg("keys", "exanpl eAppXmHel p", NULL);

/*
*

* voi d product | nfoCB()

*

*/

voi d product | nf oCB()

{

/*

* Pops up a dialog showi ng product version information.

*

* This area has nothing to do with SA Hel p, but is included
* for conpl et eness.

*

/

voi d bui | dI nf oDi al og();
XnString xnStr;

Arg args[ 10] ;

int i;

if( _infoDialog == NULL ) {

bui | dI nf oDi al og();

Xt Real i zeW dget ( _infobDialog );
}

xSt r=XnSt ri ngCr eat eSi npl e("Exanple Mtif App Using SG Hel p version 1.0");
i =0;

Xt Set Arg (args[i], XnNmessageString, xnStr) ;i ++;

Xt Set Val ues(_i nfoDi al og, args, i);

XnStringFree(xnstr);

Xt ManageChi | d(_i nf oDi al og) ;

007-2006-130 299



C: Online Help Examples

voi d bui | dI nf oDi al og()
{

Arg args[ 10];

int i;

/*

* Build the informational dialog to display the version info

*/
i =0;
Xt Set Arg (args[i], XnNaut oUnmanage, True) ;i ++;
Xt Set Arg (args[i], XnNdi al ogType, XnDlI ALOG WORKI NG) ; i ++;
Xt Set Arg (args[i], XmNdi al ogSt yl e, XnDl ALOG_APPLI CATI ON_MODAL) ; i ++;
_infoDi al og = XnCreat el nfornmati onDi al og(_rmai nW ndow, "i nf oDi al og", args, i);

Xt AddCal | back(_i nf oDi al og, XmNokCal | back, infoDi al ogCB, NULL);

Xt UnmanageChi | d( XmvessageBoxGet Chi | d( _i nf oDi al og, XnDI ALOG_CANCEL_BUTTON) ) ;
Xt UnmanageChi | d( XmvessageBoxGet Chi | d( _i nf oDi al og, XnDI ALOG HELP_BUTTCON) ) ;

voi d i nfoDi al ogCB()

{
if ( _infoDalog ) {
Xt UnmanageChi | d( _i nf oDi al og) ;
/* Explicitly set the input focus */
XSet | nput Focus( Xt Di spl ay(_nai nW ndow), Poi nt er Root,
Revert ToParent, CurrentTine);
}
}
Example C-4 Help Source File for Example Program
<dochel p>

<Hel pTopi ¢ Hel pl D="overvi ew'>

<Hel pl abel >Exanpl e Motif Application Using SA Hel p</ Hel pl abel >
<Descri pti on>

<par a>

This application is intended to show t he devel oper how

t he <gl osst er m>SG Hel p</ gl ossternm> system can work for you.

It displays (in the included

sanpl e code, exanpl eAppXm c) usage of various w dgets, a sanple
hel p menu, full-context-sensitivity, and calls to

t he <gl osst erm>SG Hel p</ gl osstern> server process via the API.

300 007-2006-130



An Example of Implementing Help in an Application

</ par a>

<Figure ID="figure_01">

<titl e>exanpl eAppXm Mai n W ndow</titl e>

<G aphic fileref="minwnd. gi f" format="4 F"></ G aphi c>
</ Fi gur e>

<par a>

The application itself is very sinple, conposed of

a <Li nk Li nkend="1D002">Fi | e nenu, </ Li nk>

a <Li nk Linkend="1D003">Hel p menu, </ Li nk>

a <Li nk Li nkend="1D005">Pushbut t on, </ Li nk>

and a <Link Linkend="1D004">Label </ Li nk>.

The user can choose itenms fromthe

<Li nk Li nkend="1D003">Hel p nenu</Link> to

contact the <gl ossternkSA Hel p</ gl osstern> server process to
cause different help cards to be rendered.

</ par a>

<para>To quit the application, use the "Exit" command
found under the <Link Linkend="1D002">File nenu</Link>.
</ par a>

</ Descri ption>

</ Hel pTopi c>

<Hel pTopi ¢ Hel pl D="fi | e_menu" >

<Hel pl abel ><Anchor |d="1D002">The File Menu</Hel pl abel >
<Descri pti on>

<para>The following itens (and their functions) are part of
the File nmenu: </ para>

<Vari abl eLi st >

<Var Li st Entry>

<ternpExit</ternp

<Listltenmp<para>Used to quit the exanpl eAppXm application.</para></listitenp
</ Var Li st Entry>

</ Vari abl eLi st >

</ Descri ption>

</ Hel pTopi ¢c>

<Hel pTopi ¢ Hel pl B="hel p_nenu" >

<Hel pl abel ><Anchor |d="1D003">The Hel p Menu</ Hel pl abel >
<Descri pti on>

<para>The following itens (and their functions) are part of
the Hel p menu: </ para>

007-2006-130 301



C: Online Help Examples

<Vari abl eLi st >

<Var Li st Entry>

<ternpCick for Hel p</ternp

<Listltenmp<para>Used to put the application in context sensitive node
W1l cause the cursor to turn into a "?" at which point the user can
click on any entry in the application's window to obtain hel p.</para></listitenr
</ Var Li stEntry>

<Var Li st Entry>

<ternpOvervi ew</ternmp

<Listltemr<para>Used to display a help overview card for the current
wi ndow. </ para></listiten>

</ VarLi st Entry>

<Var Li stEntry>

<t er npl ndex</terne

<Li stltenmp<para>Used to display from SG Hel p an I ndex of help topics for
the given application.</para></listitens

</ Var Li st Entry>

<Var Li st Entry>

<t er npKeys & Shortcuts</terne

<Listltenmp<para>Used to display a help card that describes any specia
key conbinations this application uses.</para></listitenr

</ Var Li st Entry>

<Var Li st Entry>

<t er npProduct I nfo</ternp

<Li stltenmr<para>Pops up a dialog that displays to the user any version or
copyright information for this application.</para></listiten>

</ Var Li st Entry>

</ Vari abl eLi st >

<para>To access any nenu items, click on the nenu item

that is a part of the nenubar. Wen the nmenu pops-up,

hi ghlight the desired item and rel ease the nouse button

</ par a>

</ Descri pti on>

</ Hel pTopi c>

<Hel pTopi ¢ Hel pl D="hel p_I abel ">

<Hel pl abel ><Anchor |d="1D004">A Label </ Hel pl abel >

<Descri ption>

<para>You have clicked on a Label. It sinply displays infornmation

to the user and serves no ot her useful pourpose.</para>
<tip><para>Basically, a label is useless. For information only.</para></tip>
</ Descri ption>

</ Hel pTopi ¢c>

302 007-2006-130



An Example of Implementing Help in an Application

<Hel pTopi ¢ Hel pl D="hel p_button">

<Hel pl abel ><Anchor |d="1D005">A Pushbutt on</ Hel pl abel >

<Descri pti on>

<para>You have clicked on a Pushbutton. A pushbutton, when

clicked, will activate sone type of command within the application. </ para>
</ Descri ption>

</ Hel pTopi ¢c>

<Hel pTopi ¢ Hel pl D="keys" >

<Hel pl abel ><Anchor |d="1D006">Keys and Short cut s</ Hel pl abel >
<Descri pti on>

<para>This card displays all known keys and shortcuts for this
appl i cati on. </ para>

<war ni ng><par a>Thi s application has no shortcuts. </ para></war ni ng>
</ Descri ption>

</ Hel pTopi ¢c>

<Hel pTopi ¢ Hel pl D="hel p_t ask">

<Hel pl abel ><Anchor |d="1D007">A Sanpl e Hel p Task</ Hel pl abel >
<Descri pti on>

<par a>

When creating your application and help text, you may w sh
to highlight certain common tasks. This help card was

di spl ayed fromeither a nenu itemor a pushbutton.

</ par a>

<par a>

To perform such an operation within your code, the

associ ated cal |l back that contacts the <gl osstern>SGA Hel p</ gl osst ern» server
can be constructed as shown bel ow. </ para>

<Exanpl e>

<Titl e>Sanpl e Hel p Task Cal | back</Titl e>

<par a>
The following is a listing derived froma "C' program
<Pr ogranii sti ng>

/* create menu itens, pushbuttons, etc. */

voi d taskCB()
{

/*
* For the task found in the hel p nenu,

007-2006-130 303



C: Online Help Examples

* we'll use a specific key/book

* conbi nati on.

*/

SA Hel pMsg( " key", "myBook", NULL);
}

</ ProgranlLi sti ng>
</ par a>
</ Exanpl e>

<para>lt's relatively sinple process to integrate help
into your application. In fact, the <gl ossternrSA Hel p</ gl osst er >
process only requires <enphasi s>two</enphasi s> function calls.

</ para>
</ Descri ption>
</ Hel pTopi ¢c>

<d ossary>
<Title>d ossary</Title>

<G ossEntry>

<d ossTer n»SA Hel p</ d ossTer n»

<d ossDef >

<para>This is Silicon Gaphics, Inc. version of a "Xhel p" conpatible
server. Through the use of an available API, and a help text

conpil er, books can be constructed that can be used to render

hel p i nformation for the given application.</para>

</ G ossDef >

</ G ossEntry>

</ d ossary>

</ dochel p>

Example C-5 Helpmap for Example Program

1; exanpl eAppXnHel p; Exanpl e Mtif App

Overvi ew, 0; over vi ew, exanpl eAppXm over vi ew, exanpl eAppXm mai nW ndow. baseFor m exanpl eAppXm mai nW
i ndow. nenuBar ; exanpl eAppXm nai nW ndow

2; exanpl eAppXnHel p; Fil e Menu; 1; fil e_menu; exanpl eAppXm mai nW ndow. menuBar . Fi | e

2; exanpl eAppXnHel p; Hel p Menu; 1; hel p_nenu; exanpl eAppXm mai nW ndow. menuBar . Hel p

2; exanpl eAppXnHel p; A Label Entry; 1; hel p_| abel ; exanpl eAppXm mai nW ndow. baseFor m sgi Hel pLabel

2; exanpl eAppXnHel p; A Pushbutton

Entry; 1; hel p_butt on; exanpl eAppXm mai nW ndow. baseFor m sgi Hel pPushBut t on

2; exanpl eAppXnHel p; Keys and Shortcuts; 0; keys; exanpl eAppXm keys

2; exanpl eAppXnHel p; A Sanpl e Hel p Task; 0; hel p_t ask; exanpl eAppXm exanpl eAppXm

304 007-2006-130



Appendix D

Operators

007-2006-130

The Icon Description Language

Use IconSmith to draw your icons. To learn how to use IconSmith, see Chapter 12, “Using
IconSmith.” After you draw your icon, include it in the FIR file using the ICON rule
described in Chapter 13, “File Typing Rules.” IconSmith writes the ICON rule for you
using the icon description language. This appendix describes the icon description
language that IconSmith uses to write the ICON rule. This information is provided for
completeness. Do not try to write the ICON rule directly in the icon description language.

The icon description language is a restricted subset of the C programming language. It
includes line and polygon drawing routines from the IRIS Graphics Library™ (GL), as
well as some additional routines that are not in the GL. The description routine for a
given icon is similar in structure to a C subroutine without the subroutine and variable
declarations. The valid symbols and functions in the icon description language are
described below.

You can use these C language operators in an icon description routine:

+

.—h/\“g-— >— Qo ~ * !

— —

305



D: The Icon Description Language

Constants

Variables

306

You can use these C language conditional operators in an icon description routine:

You can use these logical constants in an icon description routine:

true fal se

The following icon status variables are set by the Desktop. You can use them in an icon
description routine:

opened | ocated sel ected current disabled

These variables have values of either true or false. You can use them in a conditional
statement to alter the appearance of an icon when it has been manipulated in various
ways from the Desktop.

You can use other legal C variables in an icon description routine, without a declaration;
all variables are represented as type float. Any variable name is acceptable, provided it
does not collide with any of the predefined constants, variables, or function names in the
icon description language.

007-2006-130



Functions

Functions

007-2006-130

The icon description functions comprise, for the most part, a very restricted subset of the
Clanguage version of the IRIS Graphics Library, modified for 2-D drawing. See Table D-1
for a list of all the icon description functions.

Table D-1 Icon Description Functions

Function

Definition

arc(x, y, , startang,
endang)

arcf(x, y, r, startang,
endang)
bclos(color)
bgnclosedline()

bgnline()

bgnoutlinepolygon

bgnpoint()

bgnpolygon()

color(n)
draw(x, y)
endclosedline()
endline()

endoutlinepolygon(color)

Draw an arc starting at icon coordinates X, y; with radius r; starting
at angle startang; ending at angle endang. Angle measures are in
tenths of degrees.

Like arc, but filled with the current pen color.

Like pclos, but uses color for the border (outline) color of the
polygon.

Begin drawing a closed, unfilled figure drawn in the current pen
color. Used in conjunction with vertex and endclosedline.

Like bgnclosedline, except the figure is not closed. Used in
conjunction with vertex and endline.

Begin drawing a polygon filled with the current pen color. The
polygon is outlined with a color specified by endoutlinepolygon.
Also used in conjunction with vertex.

Begin drawing a series of unconnected points defined using calls to
vertex. Used in conjunction with vertex and endpoint.

Like bgnoutlinepolygon except the polygon is not outlined. Used in
conjunction with vertex and endpolygon.

Set current pen color to color index n.

Draw a line in the current color from the current pen location to X, y.
Finish a closed, unfilled figure started with bgnclosedline.

Finish an open, unfilled figure started with bgnline.

Finish a filled polygon started with bgnoutlinepolygon and outline
it with color.

307



D: The Icon Description Language

308

Table D-1 (continued) Icon Description Functions

Function Definition
endpoint() Finish a series of points started with bgnpoint.
endpolygon() Finish a filled, unoutlined polygon started with bgnpolygon.

for (expr; expr; expr) expr

if (expr) expr [ else expr |

include("path")

move(X, y)

pclos()

pdr(x, y)

pmv(X, y)

print(expr or "string")

vertex(X,y)

Note that shorthand operators such as ++ and -- are not part of the
icon description language, so longer hand expressions must be
used.

Standard C language if-statement.

Tell the Desktop to find the icon geometry in the file with pathname
path.

Move current pen location to X, y-

Draw a line in the current pen color that closes the current polygon,
and fill the polygon with the current color.

Draw the side of a filled polygon in the current pen color, from the
current pen location to X, y.

Begin a filled polygon at location X, y.

Print the value of the expression expr or string to stdout; used for
debugging.

Specify a coordinate used for drawing points, lines and polygons by
bgnpoint, bgnline, bgnpolygon, and so forth.

007-2006-130



Appendix E

Predefined File Types

This appendix lists the predefined file types and their associated tag numbers that are
available for your use. Topics include:

* “Naming Conventions for Predefined File Types”
*  “The Predefined File Types and What They Do”
You can use these predefined file types for utilities that do not need a unique,

personalized look. You may also want to use these file types as SUPERTYPEs for your
own custom file types.

Naming Conventions for Predefined File Types

007-2006-130

The file types listed in this appendix are named according to the conventions listed in
Table E-1.

Table E-1 Predefined File Type Naming Conventions

If the file type name includes: Then

1-Narg it requires at least one argument
larg it requires exactly one argument
2arg it requires exactly two arguments
3arg it requires exactly three arguments

In all cases, if the expected number of arguments is not received, | aunch is run so that
users can type in the desired options. For more information on the | aunch command,
see the | aunch( 1) reference page.

309



E: Predefined File Types

The Predefined File Types and What They Do

SpecialFile

Directory

Ascii

310

In this section, file types that are essentially the same, except for the number of
arguments they require, are grouped together by the “base” file type name, meaning the
file type name without the argument codes described in “Naming Conventions for
Predefined File Types” on page 309.

For example, to find the file type named “ttyLaunchOutlargExecutable,” look under
“ttyLaunchOutExecutable.” These two file types are identical, except that
“ttyLaunchOutlargExecutable” requires exactly one argument.

“SpecialFile” is a predefined SUPERTYPE, not an actual file type. When you include the
SPECIALFILE rule in your file type, you should also declare the “SpecialFile”
SUPERTYPE. This allows applications to use i sSuper (1) to test whether your file type
is a SPECIALFILE.

TYPE Directory
MATCH (node & 0170000) == 040000;

The “Directory” type. Any custom file types you define for directories should include
“Directory” as a SUPERTYPE. “Directory” is defined in
fusr/lib/filetype/default/sgidefault.ftr.

TYPE Asci i

“Ascii” is a pseudotype defined to support r out epri nt conversions. Actual ASCII text
files have the type “AsciiTestFile”:

TYPE Ascii TextFile
MATCH asci i ;

007-2006-130



The Predefined File Types and What They Do

Source Files

Binary

007-2006-130

“Ascii” is defined in/ usr/ i b/ fil etype/ syst em sgi system converts.ftr
and “AsciiTextFile” is defined in/ usr/ i b/ fil etype/ defaul t/sgidefault.ftr.
The Ascii icon is
lusr/lib/filetype/default/iconlib/AsciiText.closed.fti
superimposed over/ usr/1ib/fil etype/iconlib/generic.doc.fti.

TYPE SourceFil e

“SourceFile” is a pseudotype defined to support r out epri nt conversions. Actual
source files have more specific types such as:

TYPE Makefile
MATCH (gl ob("[nM akefile") || glob("*.nk")) && ascii;

TYPE HeaderFile
MATCH gl ob("*. h") && ascii;

TYPE CPl usPl usProgram
MATCH gl ob("*.c++") && ascii;

TYPE CProgram
MATCH glob("*.c") && ascii;

TYPE Program
MATCH (glob("*.[pfrasly]") | | glob("*.pl[il]")) && ascii;

“SourceFile” is defined in

fusr/lib/filetypel/systen sgisystem converts.ftr and the specific types
shown above are defined in/ usr/ i b/fil etype/ systeni sgi systemftr.

“Binary” is a predefined SUPERTYPE, not an actual file type. You can create custom file
types using “Binary” as a SUPERTYPE.

311



E: Predefined File Types

ImageFile

TYPE | mageFil e

“ImageFile” is a top-level image pseudotype. You can create custom file types using

ImageFile as a SUPERTYPE, or you can use a more specific file type such as:

TYPE SA | mage

MATCH short (0) == 000732 ||

# normal SA i mage

short (0) == 0155001;

#byt e- swapped SA i nage

TYPE TI FFI mage

MATCH | ong(0) == 0x49492a00 || |ong(0) == 0x4d4d002a;

# TI FF i mage

TYPE FI Tl mage

MATCH string(0,2) == "IT";

# FIT i mage

TYPE PCDi mage

MATCH string(2048,7) == "PCD IPI";

# Kodak Photo CD i mage pack

TYPE PCDG nmege

MATCH string(0,7) == "PCD_OPA";

# Kodak Photo CD overvi ew pack

TYPE G F871 mage

MATCH string(0,6) == "d F87a";

# G F imge (G F87a format)

TYPE G F89I nage

MATCH string(0,6) == "G F89a";

# G F imge (G F89a format)

These and other file types are defined in

fusr/lib/filetypel/system sgiinage.ftr.
Executable

“Executable” is a predefined SUPERTYPE, not an actual file type. You can create custom
file types using “Executable” as a SUPERTYPE.

312 007-2006-130



The Predefined File Types and What They Do

Scripts

TYPE Scri pt
MATCH (node & 0111) && ascii;

This is the file type for shell scripts, defined in
lusr/lib/filetype/default/sgidefault.ftr.

GenericWindowedExecutable

LaunchExecutable

007-2006-130

TYPE Generi cW ndowedExecut abl e
MATCH tag == 0x00000000;

TYPE Generi cl- Nar gExecut abl e
MATCH tag == 0x00000020;

TYPE Generi clargExecut abl e
MATCH tag == 0x00000001;

TYPE Generi c2ar gExecut abl e
MATCH tag == 0x00000002;

TYPE Generi c3ar gExecut abl e
MATCH tag == 0x00000003;

Simply runs the command. No output or terminal emulation windows are used. These
file types are defined in/ usr/ i b/ fil et ype/ systeni sgi cnds. ftr.

TYPE LaunchExecut abl e
MATCH tag == 0x00000100;

TYPE Launchl- Nar gExecut abl e
MATCH tag == 0x00000120;

TYPE Launchlar gExecut abl e
MATCH tag == 0x00000101;

TYPE Launch2ar gExecut abl e
MATCH tag == 0x00000102;

Same as “GenericWindowedExecutable,” except that it runs | aunch to allow user to

enter options prior to running the command. These file types are defined in
lfusr/lib/filetypel/systenm sgicnds.ftr.

313



E: Predefined File Types

ttyExecutable

ttyLaunchExecutable

ttyOutExecutable

314

TYPE ttyExecutabl e
MATCH (tag == 0x00000400) || (tag == 0x00000410);

TYPE ttyl- Nar gExecut abl e
MATCH tag == 0x00000420;

TYPE tty2ar gExecut abl e
MATCH tag == 0x00000402;

Runs the command in a window that allows terminal I/O. The output window (which
is where the terminal emulation is being done) exits immediately upon termination of the
command. These file types are defined in

lfusr/lib/filetypel/systenm sgicnds.ftr.

TYPE ttylLaunchExecut abl e
MATCH tag == 0x00000500;

TYPE ttylLaunchl- Nar gExecut abl e
MATCH tag == 0x00000520;

TYPE ttyLaunchlar gExecut abl e
MATCH tag == 0x00000501;

Same as “ttyExecutable,” except that it runs | aunch to allow user to enter options before
running the command. These file types are defined in
fusr/lib/filetypel/system sgicnds.ftr.

TYPE ttyQut Execut abl e
MATCH (tag == 0x00000600) || (tag == 0x00000610);

TYPE ttyQut 1- Nar gExecut abl e
MATCH tag == 0x00000620;

TYPE ttyQut lar gExecut abl e
MATCH tag == 0x00000601;

TYPE ttyQut 2ar gExecut abl e
MATCH tag == 0x00000602;

007-2006-130



The Predefined File Types and What They Do

Same as “ttyExecutable,” except that the output window persists until the user explicitly
dismisses it. These file types are defined in
fusr/lib/filetypelsystem sgicnds.ftr.

ttyLaunchOutExecutable

007-2006-130

TYPE ttyLaunchQut Execut abl e
MATCH (tag == 0x00000700) || (tag == 0x00000710);

TYPE ttylLaunchCut 1- Nar gExecut abl e
MATCH tag == 0x00000720;

TYPE ttylLaunchCQut lar gExecut abl e
MATCH tag == 0x00000701;

TYPE ttylLaunchCut 2ar gExecut abl e
MATCH tag == 0x00000702;

TYPE ttylLaunchQut 3ar gExecut abl e
MATCH tag == 0x00000703

Same as “ttyOutExecutable,” except that it runs | aunch to allow user to enter options
before running the command. These file types are defined in
lfusr/lib/filetypel/systenm sgicnds.ftr.

315






Appendix F

007-2006-130

FTR File Directories

There are four possible files in which Desktop file types are defined. They are listed here
in the order the Desktop scans them:

1.

2
3.
4

fusr/lib/filetypel/local

fusr/lib/filetypelinstall
fusr/lib/filetypel/system
fusr/lib/filetypeldefault

These files are listed in order of precedence. For example, a file type defined in the
lusr/lib/filetype/install directoryoverrides a file type of the same name in the
fusr/lib/filetypel/systemand/usr/lib/filetype/default directories.

In particular, Silicon Graphics uses the / usr/ i b/ fil et ype/ syst emand
lusr/lib/filetype/default directories to define and maintain system standards.
Be especially careful not to override important defaults set in these directories.

317






Appendix G

Using GoldenGate Data Conversion Services

This appendix describes how to use the GoldenGate data conversion services. It covers
these topics:

¢ “Converting Data Using the GoldenGate Data Conversion Service” on page 319
explains how to use the converters provided.

¢ “Compiling and Linking Your Program with GoldenGate” on page 338 describes
the header file to use when compiling and linking a program.

* “Writing Converters for the GoldenGate Data Conversion Service” on page 339
explains how to customize your own converters.

Converting Data Using the GoldenGate Data Conversion Service

This section describes how you can use the GoldenGate data conversion service in your
application. Specifically, it explains:

e “Overview of the Conversion Process” on page 320 describes the steps involved in
converting data using GoldenGate.

¢ “Selecting a Converter” on page 322 describes how to select a converter by querying
the converter registry and setting up the conversion context.

e “Using GoldenGate to Convert Data” on page 328 describes how to initialize the
conversion pipeline, send data through it, and clean up after the conversion.

007-2006-130 319



G: Using GoldenGate Data Conversion Services

Overview of the Conversion Process

The Converter Registry

320

To convert data using GoldenGate, follow these steps:
1. Choose a converter.

=  Obtain a list of converters that read the source format and write the target
format.

»  Create a conversion context structure and set conversion parameters.

= Evaluate the list of converters to determine which one is best suited for the
current conversion.

2. Convert data.

There are two methods of converting data, depending on whether the data is in a
stream or in a file.

Converting Stream Data

» Initialize the selected converter.

» Send data through the converter and read results back.

»  Clean up resources by destroying the conversion context.
Converting Data Files

»  Call the file conversion function.

»  Clean up resources by destroying the conversion context.

GoldenGate maintains a list of available converters in the converter registry. This

registry contains an entry for each converter, specifying characteristics such as the type
of input data it takes and the type of output data it produces. To find out if there are any
converters that will convert from format “A” to format “B,” you can query the registry.

GoldenGate returns a list of converters that take the specified input and produce the
specified output. You can be as specific as you like when querying the registry, to ensure
that only relevant converters are listed. You should also use the query to eliminate
inappropriate categories of converter, such as those of type St r eamlroSt r eamif you are
converting a file. If the list contains more than one converter, you may need to evaluate
the converters to see which one best meets your needs. Even if the list contains only one
converter, you should evaluate it to make sure it can handle your conversion request.

007-2006-130



Converting Data Using the GoldenGate Data Conversion Service

Creating a Conversion Context

To communicate with a converter, you must create a conversion context. The conversion
context is a data object that stores conversion parameters. The conversion context is
passed to subsequent library calls that set input and output parameters, evaluate
converters, initialize the conversion pipeline, and move data through it.

Once you have created a conversion context and specified the desired conversion
parameters, you can evaluate the list of converters you obtained when you queried the
registry. For example, suppose you want to convert from one audio format to another
and change the sample rate at the same time. Querying the registry returns a list of
converters that will convert between the specified input and output formats. To
determine if any of these converters will perform the desired sample rate conversion,
you have to create a conversion context, set the desired parameters (including input and
output sample rate) and then evaluate the individual converters.

Evaluating a Converter

It’s best to evaluate a converter before you invoke it to perform a conversion. You do this
for the following reasons:

¢ Evaluation gives the converter an opportunity to inspect your data parameters.
Some converters will have more functionality than others, even though their input
and output types are the same. A well-designed converter will know just by looking
at parameters whether it can do the conversion.

* Conversion is typically an expensive operation. If your attempt to convert fails, you
can still choose a different converter and try again, but you could have avoided lost
time by trying a converter that can accept your specific request.

Depending on your needs, you can select the first converter on the list that passes the

evaluation stage, or evaluate the whole list and use your own rules to choose between
those that pass.

007-2006-130 321



G: Using GoldenGate Data Conversion Services

Converting Data In a File or Stream

Once you determine the converter to use, the final stage depends on whether you are
converting data in a file or a stream.

If you are converting a stream, initialize a conversion pipeline that reads your stream and
passes back results as they are available. Then you send all your data through the
pipeline and read the results until you see the end of stream marker for the pipeline. At
this point, terminate the pipeline. This causes GoldenGate to clean up data structures it
keeps for maintaining a stream conversion.

If you are converting a file, the procedure is simpler. You call a single GoldenGate
function to perform the operation, and wait for results. If necessary you can provide a
callback function that will notify you when results become available. This allows you to
service other events going on in your application during what may be a long conversion.

Selecting a Converter
This section describes how to select a converter by querying the converter registry and
setting up the conversion context. Specifically, this section covers:

*  “Querying the Converter Registry” on page 323, which explains how to obtain a list
of possible converters.

e “Setting Up the Conversion Context” on page 326, which describes how to create a
conversion context.

e “Evaluating Converters” on page 327, which explains how to find a converter that
performs the specified conversion.

e “Getting Converter Details” on page 328, which describes how to get a description
of a converter.

e “Converter Return Status Values” on page 334, which lists return status values.

322 007-2006-130



Converting Data Using the GoldenGate Data Conversion Service

Querying the Converter Registry

007-2006-130

To query the converter registry, you specify a set of constraints. Each constraint consists
of an attribute (such as input format), a value for the attribute, and a comparison
operator. For example, you can ask for a converter that has input format equal to
“AIFF_FILE,” and version number greater than 2. Use the

SgCvt Set Quer yConst rai nt () function to fill in an array of

SgCvt Quer yConst r ai nt structures, then pass the array to the

SgCvt Quer yRegi stry() function. The following code fragment demonstrates a
simple query that locates converters capable of converting AIFF_FILE to WAVE_FILE:

SgCvt QueryConstrai nt constraints[2];
SgCvt St at us st at us;
SgCvt Converterld *converters;
int numconstraints, numconverters;
SgCvt Regi stry registry = NULL;
status = SgCvt Set QueryConstrai nt(constraints[0],
SG _CVT_ATTR_I NPUT_TYPE, "Al FF_FILE", SG_CVT_OP_EQ;
status = SgCvt Set QueryConstrai nt(constraints[1],
SG CVT_ATTR_QUTPUT_TYPE, "WAVE FI LE", SG_CVT_OP_EQ;
num constraints = 2;
status = SgCvt QueryRegi stry(constrai nts, numconstraints,
&regi stry, &converters, &umconverters);

The SgCvt Quer yRegi stry() function returns an array of converter IDs that can be
used to identify the individual converters.

The registry argument specifies the GoldenGate converter registry to be queried. During
this call, the registry is located on disk (/ var / Gol denGat e/ Convert er Regi stry by
default), and its contents parsed to find a converter that matches your requirements.

The first time you call SgCvt Quer yRegi st ry, specify registry as NULL as in the
previous example, which causes this lookup. When you have finished converting, you
can either call SQCvt Fr eeRegi st ry to release the resources that GoldenGate may have
cached after reading the file, or you can re-use the value returned in registry for
subsequent queries, avoiding the overhead of looking up the file.

If you choose to free the registry between queries, your program will always have the
latest information, even if the registry changes while your program is running. If you
choose to re-use the registry handle, you have no control over whether or not
GoldenGate will re-parse the registry. It will try to use its cache first. If for any reason the
cache is invalid, GoldenGate may at its discretion rebuild it by reading the disk-based
registry again.

323



G: Using GoldenGate Data Conversion Services

324

The converters argument returns an array of matching converter IDs, of which the first
num_converters are valid and matched the query. You should free this array when you are

finished using it, using f r ee(3).

Table G-1 lists the attributes you can query.

Table G-1 Converter Attributes

Attribute Name

Description

SG_CVT_ATTR_NAME
SG_CVT_ATTR_INPUT_FORMAT
SG_CVT_ATTR_OUTPUT_FORMAT
SG_CVT_ATTR_IO_METHOD
SG_CVT_ATTR_INPUT_LABEL
SG_CVT_ATTR_OUTPUT_LABEL
SG_CVT_ATTR_VENDOR
SG_CVT_ATTR_VERSION
SG_CVT_ATTR_DESCRIPTION

Converter name

Input format

Output format

StreamToStream or FileToFile

Input format, human readable version
Output format, human readable version
Vendor’s name

Vendor’s version information

Description of converter

Most of the time, you'll be interested in the input format and output format attributes.
“Supported Target Formats” on page 101 lists common data formats. Other attributes
may be useful when listing converters for users. For example, if you want the user to
choose between two converters that perform the same conversion, you can display the

vendor names and version numbers.

007-2006-130



Converting Data Using the GoldenGate Data Conversion Service

Table G-2 lists the operators you can use in your query.

Table G-2 Query Operators

Operator Symbol

equal to SG_CVT_OP_EQ
not equal to SG_CVT_OP_NE
less than SG_CVT_OP_LT
less than or equal to SG_CVT_OP_LE
greater than SG_CVT_OP_GT
greater than or equal to SG_CVT_OP_GE

Note that if more than one constraint is specified on a single attribute, a logical AND is
implied. For example, you can select a range of version numbers by setting “version
greater than or equal to one” as one constraint and “version less than or equal to three”
as a second constraint.

SgCvt Quer yConst r ai nt can return the following status value:

SG_CVT_E_SUCCESS
The operation succeeded.

SgCvt Quer yRegi st ry can return the following status values:

SG_CVT_E_SUCCESS
The operation succeeded.

SG_CVT_E_FAILURE
Could not find the registry, or failed to parse it. Most likely when the
default registry has been edited to add new converters, and a syntax
error introduced. You may also be loading the wrong file. Make sure that
if there is a file called ConverterRegistry on your path, it is a valid
registry using the CDF syntax. Also make sure the
CVT_REGISTRY_OVERRIDE variable is not set.

007-2006-130 325



G: Using GoldenGate Data Conversion Services

Setting Up the Conversion Context

Before you can evaluate or use a converter, you must create a conversion context and set
parameters governing the conversion. Use the SgCvt Cr eat eConver si onCont ext ()
function to create a conversion context:

SgCvt St at us
SgCvt Cr eat eConver si onCont ext ( SgCvt Conver si onCont ext *cont ext)

SgCvt Cr eat eConver si onCont ext can return the following status values:

SG_CVT_E_SUCCESS
The operation succeeded.

SG_CVT_E_NOMEM
Insufficient memory to allocate a context.

Next, set any digital media parameters that affect your conversion by calling
SgCvt Set Cont ext | nf o.

SgCvt St at us SgCvt Set Cont ext I nf o
(

SgCvt Conver si onCont ext cont ext,
unsi gned | ong val uemask,
SgCvt Cont ext I nfo *cont ext _data
)

where

context specifies the context you created with

SgCvt Cr eat eConver si onCont ext

valuemask specifies which fields in the SgCvt Cont ext | nf o structure are being set
in the context. This is specified as any of the following OR’ed together:

SG_CVT_I NFO_| NPUT_PARANS
SG_CVT_I NFO_OUTPUT_PARANMS
SG CVT_I NFO_META PARAVG
SG_CVT_I NFO_| NPUT_FI LE
SG_CVT_I NFO_| NPUT_HOST
SG_CVT_I NFO_OUTPUT_FI LE
SG_CVT_I NFO_OUTPUT_HOST

context_data  specifies the values being set

326 007-2006-130



Converting Data Using the GoldenGate Data Conversion Service

Evaluating Converters

007-2006-130

SgCvt Set Cont ext | nf o can return the following status value:

SG_CVT_E_SUCCESS
The operation succeeded.

See the IRIS Media Libraries Programming Guide for information on setting DVpar arns.

To evaluate a converter, call SgCvt Eval uat eConverter():

SgCvt St at us

SgCvt Eval uat eConverter (SgCvt Converterld converter_id,
SgCvt Conver si onCont ext cont ext
DMpar ans **out put _par ans)

where
converter_id is a converter ID returned by the SgCvt Quer yRegi st ry() function

context is a valid conversion context obtained from
SgCvt Cr eat eConver si onCont ext ()

output_params returns the output of the request. Converters may set these parameters,
even though they accept the request.

SgCvt Eval uat eConverter () can return the following status values:

SG_CVT_E_ACCEPT
The converter can perform the conversion specified by the conversion
context.

SG_CVT_E_REJECT
The converter can’t perform the requested conversion.

When evaluating a converter returns a status of SG_CVT_E_ACCEPT, you should take
one final step before calling the converter. You should inspect the output_params
argument, which returns a DVpar ans list describing the result that the converter will
produce. If your program has very strict requirements, this will help protect you if the
converter has accepted the request but cannot honor what it considers a minor
parameter, or if you passed a parameter it could not understand.

327



G: Using GoldenGate Data Conversion Services

Getting Converter Details

Using GoldenGate to

If your program needs to display information about available converters, or do other
processing based on the data stored about a converter in the converter registry, call
SgCvt Get Converter Attri but es() to geta description of it. The function prototype
for SgCvt Get Converter Attri but es() is shown below.

SgCvt St at us

SgCvt Get ConverterAttri but es(SgCvt Converterld converter_id,
unsi gned | ong converter_attr_mask,
SgCvt ConverterAttrs *attri butes)

When you are finished using the fields of the SgCvt Convert er Attr s structure, you
should free the string attributes and the structure itself (if you allocated it dynamically)
using f r ee(3C).

SgCvt Get Converter Attri but es can return the following status value:

SG_CVT_E_SUCCESS
The operation succeeded.

Convert Data

This section describes the different methods you can use to convert data. Topics include:
e “Converting Data Using File Converters”

e “Converting Data Using Stream Data Converters”

Converting Data Using File Converters

328

Your file-based data is always converted using the function

SgCvt Convert Fi | eToFi | e. Before you call it however, you need to decide whether
you want the function to block while the conversion is going on, or return immediately
and let you know later that the conversion is complete.

In many cases blocking mode is sufficient, and it is much simpler to use if your program
is not naturally event driven. However, if your application has a GUI, you may prefer
non-blocking mode because it allows your event loop to keep running while conversion
is going on. When conversion is complete, you are notified through a callback function
that you supply, and you can use the converted data.

007-2006-130



Converting Data Using the GoldenGate Data Conversion Service

Both modes are invoked using SgCvt Convert Fi | eToFi | e:
typedef void (*SgCvt Cal | back) (SgCvt Conver si onCont ext cont ext,

voi d *client_data,
voi d *cal | back_dat a) ;

SgCvt St at us SgCvt Convert Fil eToFil e

(

SgCvt Conver si onCont ext cont ext,

SgCvt Converterld converter_id,
char *input _file,
char *output _file,
unsi gned | ong cal | back_nask,
SgCvt Cal | back cal | back,

voi d *client_data

);
where
context
converter_id
input_file
output_file

callback_mask

callback

client_data

the conversion context, holding the I/O filenames and parameters
the converter ID, returned by SgCvt Quer yConvert er

pathname of input file. You must have read permission.
pathname of output file. You must have write permission.

mask indicating when callback should be called. It should be some
logical combination of the following values:

SG CVT_CB_FLAG CONVERSI ON_DONE
(after conpletion)
SG CVT_CB_FLAG STAGE_DONE
(after each stage if nulti-stage pipeline)

specifies the callback function

a pointer to application-defined data structure that will be passed to the
callback when invoked

If specified, the callback argument is the address of the function to call when conditions

specified by the

callback_mask arise. If the callback function is not specified, or the mask

is zero, the function executes in blocking mode.

007-2006-130

329



G: Using GoldenGate Data Conversion Services

SgCvt Convert Fi | eToFi | e can return the following status values:

SG_CVT_E_SUCCESS
The operation succeeded.

SG_CVT_E_BAD_CONVERTER_TYPE
The converter was not registered as FileToFile IO method.

SG_CVT_E_READ_FAILED
The input file could not be read. It may be missing, or the permissions
are insufficient for reading.

SG_CVT_E_WRITE_FAILED
The output file could not be written. This can happen if the user does not
have write permission for the target directory, or if the supplied
pathname was invalid.

Converting Data Using Stream Data Converters

Initializing the Pipeline

330

To convert data using your specified converter, you must initialize the conversion
pipeline, and then send the data through. After reading the last block of converted data,
clean up by destroying the conversion context to free the resources associated with the
pipeline. This section covers the following topics:

¢ “Initializing the Pipeline”

* “Sending and Receiving Data”

¢ “Cleaning Up”

Prepare the converter to receive data by calling SgCvt | ni ti al i zePi pel i ne():

SgCvt St at us
SgCvtinitializePipeline(SgCvtConversi onCont ext context,
SgCvt Converterld converter_id)

where
context is a valid conversion context obtained from
SgCvt Cr eat eConver si onCont ext ()
converter_id is a converter ID returned by the SgCvtQueryRegistry() function

007-2006-130



Converting Data Using the GoldenGate Data Conversion Service

SgCvt I nitial i zePi pel i ne can return the following status values:

SG_CVT_E_SUCCESS
The operation succeeded.

SG_CVT_E_FAILURE
The context or its contents is bad or one of the subprocesses required to
host a converter function could not be launched.

SG_CVT_E_BAD_CONVERTER_TYPE
The converter was not registered as StreamToStream. Converters that
are designed to work with streaming data advertise themselves as using
the StreamToStream method of I/O in the registry.

Sending and Receiving Data

007-2006-130

You may send and receive arbitrarily sized blocks of data, so use a block size that is
convenient.

Send data to the converter using SgCvt SendDat a( ) . The function prototype for
SgCvt SendDat a() is shown below:

SgCvt St atus  SgCvt SendDat a(
SgCvt Conver si onCont ext cont ext,

voi d *dat a,
size_t | engt h,
DVpar ans *par ans,
bool ean_t canwai t
)
where
context is a valid conversion context
data is a pointer to the data block to be converted
length is the length of the data block
params is a DMpar ams structure describing the data to be converted
canwait is a boolean value that indicates what the function should do if it cannot

send the data immediately. If you specify B_TRUE, SgCvt SendDat a( )
will block until it can send the data to the conversion pipeline. If you
specify B_FALSE, SgCvt Get Dat a() will return immediately with a
status of SG_CVT_E_AGAIN. This status indicates that you should try
again.

331



G: Using GoldenGate Data Conversion Services

332

SgCvt SendDat a can return with the following status values:

SG_CVT_E_SUCCESS
The operation succeeded.

SG_CVT_E_FAILURE
An I/0 error occurred while trying to send data through the pipe
connecting two pipeline components.

SG_CVT_E_AGAIN
Required resources were temporarily unavailable. The caller should
retry later.

Read data from the converter using SgCvt Get Dat a( ) . The function prototype for
SgCvt Get Dat a() is shown below:

SgCvt St atus SgCvt Get Dat a(
SgCvt Conver si onCont ext cont ext,

size_t buf _| en,
voi d *puffer,
size t *| engt h_returned,
DiVpar ans **par ams_r et ur ned,
bool ean_t canwai t
)
where
context is a valid conversion context
buf_len specifies the size of buffer
buffer is a pointer to a pre-allocated buffer of at least buf_len bytes.

length_returned is the actual length of the returned data (this may be less than
bytes_requested if non-blocking mode is specified, or if the converter
encounters end-of-stream) SgCvt Get Dat a

params_returned
is a DMpar ans structure describing the converted data.

canwait is a boolean value that indicates what the function should do if no data
is available. If you specify B_TRUE, SgCvt Get Dat a() will block until
data becomes available from the conversion pipeline. If you specify
B_FALSE, SgCvt Cet Dat a() will return immediately with a status of
SG_CVT_E_QUEUE_EMPTY. This status indicates that you should try
again.

007-2006-130



Converting Data Using the GoldenGate Data Conversion Service

Cleaning Up

007-2006-130

SgCvt Get Dat a can return the following status values:

SG_CVT_E_SUCCESS
The operation succeeded.

SG_CVT_E_FAILURE
An I/0 error occurred while trying to read data from the pipe
connecting two pipeline components.

SG_CVT_E_AGAIN
Required resources were temporarily unavailable. The caller should
retry later.

SG_CVT_E_END_OF_STREAM
The operation succeeded, and the end of the data has been reached.

The non-blocking mode of SgCvt SendDat a() and SgCvt Get Dat a() allows programs
to continue working on other tasks (such as handling events from a graphical interface)
while waiting to send data to or read data from the conversion pipeline.

When you’ve sent the last of the data to the converter, call SgCvt SendEndOf St r eant()
to indicate the end of the data. After you've read the last of the converted data, free the
resources associated with the conversion context by calling

SgCvt Dest r oyConver si onCont ext () :

SgCvt St at us SgCvt SendEndOF St r ean(
SgCvt Conver si onCont ext cont ext

)

SgCvt St atus  SgCvt Dest r oyConver si onCont ext (
SgCvt Conver si onCont ext cont ext

)

If you need to terminate the conversion process before reaching the end of the data, call
SgCvt Dest royConver si onCont ext ().

SgCvt SendEndCr St r eamcan return the following status value:

SG_CVT_E_SUCCESS
The operation succeeded.

333



G: Using GoldenGate Data Conversion Services

SgCvt Dest r oyConver si onCont ext can return the following status value:

SG_CVT_E_SUCCESS
The operation succeeded.

Converter Return Status Values

Table G-3 lists converter functions and their return status values.

Table G-3 Converter Return Status Values

Function Return Value Description
SgCvtSetQueryConstraint SG_CVT_E_SUCCESS The operation succeeded.
SgCvtQueryRegistry SG_CVT_E_SUCCESS The operation succeeded.

SG_CVT_E_FAILURE Could not find the registry, or
failed to parse it. Most likely
when the default registry has
been edited to add new
converters, and a syntax error
introduced. You may also be
loading the wrong file. Make
sure that if there is a file called
ConverterRegistry on your
path, it is a valid registry using
the converter description file
syntax. Also make sure the
CVT_REGISTRY_OVERRIDE
variable is not set.

SgCvtGetConverterAttributes SG_CVT_E_SUCCESS The operation succeeded.
SgCvtCreateConversionContext ~ SG_CVT_E_SUCCESS The operation succeeded.

SG_CVT_E_NOMEM Insufficient memory to allocate
a context.

SgCvtDestroyConversionContext SG_CVT_E_SUCCESS The operation succeeded.

SgCvtSetContextInfo SG_CVT_E_SUCCESS The operation succeeded.
SgCvtGetContextInfo SG_CVT_E_SUCCESS The operation succeeded.
SgCvtEvaluateConverter SG_CVT_E_ACCEPT The converter can perform the

requested conversion.

334 007-2006-130



Converting Data Using the GoldenGate Data Conversion Service

007-2006-130

Table G-3 (continued)

Converter Return Status Values

Function

Return Value

Description

SgCvtlnitializePipeline

SgCvtTerminatePipeline

SgCvtSendData

SgCvtGetData

SG_CVT_E_REJECT

SG_CVT_E_SUCCESS
SG_CVT_E_FAILURE

SG_CVT_E_BAD_
CONVERTER_TYPE

SG_CVT_E_SUCCESS
SG_CVT_E_SUCCESS
SG_CVT_E_FAILURE

SG_CVT_E_AGAIN

SG_CVT_E_SUCCESS
SG_CVT_E_FAILURE

SG_CVT_E_AGAIN

The converter cannot perform
the requested conversion.

The operation succeeded.

The context or its contents is bad
or one of the subprocesses
required to host a converter
function could not be launched.

The converter was not
registered as StreamToStream.
Converters that are designed to
work with streaming data
advertise themselves as using
the StreamToStream method of
I/0 in the registry.

The operation succeeded.
The operation succeeded.

An I/0 error occurred while
trying to send data through the
pipe connecting two pipeline
components.

The required resources were
temporarily unavailable. The
caller should retry later.

The operation succeeded.

An I/0 error occurred while
trying to read data from the pipe
connecting two pipeline
components.

The required resources were
temporarily unavailable. The
caller should retry later.

335



G: Using GoldenGate Data Conversion Services

Table G-3 (continued)

Converter Return Status Values

Function

Return Value

Description

SgCvtSendEndOfStream
SgCvtEncodeParams

SgCvtDecodeParams

SgCvtFreeEncodedParams

SgCvtConvertFileToFile

SgCvtGetFileSelectionTarget

SG_CVT_E_END_OF_
STREAM

SG_CVT_E_SUCCESS
SG_CVT_E_SUCCESS
SG_CVT_E_SUCCESS
SG_CVT_E_NOMEM

SG_CVT_E_SUCCESS
SG_CVT_E_FAILURE
SG_CVT_E_SUCCESS

SG_CVT_E_BAD_
CONVERTER_TYPE

SG_CVT_E_READ_
FAILED

SG_CVT_E_WRITE_
FAILED

SG_CVT_E_SUCCESS
SG_CVT_E_UNKNOWN

TYPE

SG_CVT_E_NO_TARGE
T

The operation succeeded, and
the end of the data has been
reached.

The operation succeeded.
The operation succeeded.
The operation succeeded.

Insufficient memory to allocate
structures.

The operation succeeded.
The data could not be decoded.
The operation succeeded.

The converter was not
registered as FileToFile I/O
method.

The input file could not be read.
It may be missing, or the
permissions are insufficient for
reading.

The output file could not be
written. This can happen if the
user does not have write
permission for the target
directory, or if the supplied
pathname was invalid.

The operation succeeded.

The file type could not be
determined.

The selection target for the type
of file could not be determined,
or there is none.

336

007-2006-130



Converting Data Using the GoldenGate Data Conversion Service

007-2006-130

Table G-3 (continued) Converter Return Status Values

Function Return Value

Description

SG_CVT_E_FAILURE

SgCvtlsPipeline B_TRUE

B_FALSE

The operation could not be
performed for another reason,
such as the underlying file
typing database library could
not be accessed, or the database
itself was corrupt or missing.

The translator is a multi-stage
pipeline.

The translator is a single-stage
converter.

337



G: Using GoldenGate Data Conversion Services

Compiling and Linking Your Program with GoldenGate

To compile and link your program, you need to include the header file SgCvt . h and
include the library | i bcvt in your link line.

An example of a simple GoldenGate program follows. It includes the required header
file, enumerates the registered converters, and prints their input and output labels.

#i ncl ude <SgCvt. h>
mai n(int argc, char **argv)

{
SgCvt Regi stry registry = NULL;
i nt n=0;
SgCvt St at us S;
SgCvt Converterld *cvtrs;
i nt ncvtrs;
s = SgCvt QueryRegi st ry(NULL, 0, & egistry, &vtrs, &ncvtrs);
for (n=0; n<ncvtrs; n++) {
SgCvt ConverterAttrs attrs;
SgCvt Get ConverterAttributes(cvtrs[n],
SG CVT_ATTR_FLAG | NPUT_LABEL |
SG CVT_ATTR_FLAG QUTPUT_LABEL,
&attrs);
printf(“% 9%25s -> %\n",
n+l, attrs.input_|abel, attrs.output_|abel);
free(attrs.input_|abel);
free(attrs. output_| abel);
}
SgCvt FreeRegi stry(registry);
}

338 007-2006-130



Writing Converters for the GoldenGate Data Conversion Service

The following Makef i | e illustrates the compile and link requirements for this program.

#
# Makefile for Gol denGate Listing sanple program

#

CC = cc

TARCET = gg_listing

SOURCES = $( TARGET) .

| NCLUDES= -1 /usr/include/ convert
REQLI BS = -l cvt

all:

$(CCO -0 $(TARGET) $(I NCLUDES) $(SOURCES) $(REQLIBS)

Writing Converters for the GoldenGate Data Conversion Service

This section describes how to write converters that can integrate with GoldenGate and
become available to any component that is aware of GoldenGate. The following
information assumes that you are familiar with the interfaces described in “Converting
Data Using the GoldenGate Data Conversion Service” on page 319. Both converters and
applications use many of the functions and data structures.

Overview of the Converter Writing Process

007-2006-130

Creating a GoldenGate data converter involves writing the converter and building the
DSO, then testing, registering, and installing the converter. The topics below describe:

e “Writing Converter Code” on page 340 explains how to write the code that converts
the data, or choose an existing command that you want to make available through
the conversion service.

e “Building a DSO” on page 347 describes how to create a Dynamic Shared Object
(DSO) and write a registry entry using converter description file syntax.

o “Testing Your Converter” on page 351 explains how to test your converter.

e “Registering Your Converter” on page 352 describes how to register your converter
to make it available to GoldenGate clients.

¢ “Installing Your Converter” on page 353 lists the library location for converter
DSOs.

“Some Sample Converters” on page 353 shows annotated code for two converters.

339



G: Using GoldenGate Data Conversion Services

Writing Converter Code

This section describes how to write converter code and includes the following topics:
e “Implementing Your Converter - Handling Evaluation Requests”

e “Implementing Your Converter - Handling Conversion Requests”

e “Input and Output Formats”

* “Process Blocking”

e “Programming Constraints”

e “Example of a Simple Stream Converter”

Implementing Your Converter - Handling Evaluation Requests

When the operation field of the SgCvt Conver t er Dat a structure passed to your
converter is equal to SG_CVT_REQ_EVALUATE, your converter should inspect the
input, output, and meta parameters held in the conversion context and determine
whether or not it can satisfy the request, without actually performing conversion.

If your converter can satisfy the request, it should set the st at us_r et ur n field of the
SgCvt Convert er Dat a structure to SG_CVT_E_ACCEPT before returning. Otherwise
it should set st at us_r et urn to SG_CVT_E_REJECT.

Implementing Your Converter - Handling Conversion Requests

340

When the operation field of the SgCvt Convert er Dat a structure is equal to
SG_CVT_REQ_CONVERT, your converter must extract the necessary information from
the SgCvt Conver t er Dat a structure it is passed, and perform the conversion if
possible. If conversion is successful, it should return with the st at us_r et ur n field set
to SG_CVT_E_SUCCESS, and if it is unsuccessful, the st at us_r et ur n field should be set
to either SG_CVT_E_FAILURE or a more specific error code if appropriate (see the error
codes available in SgCvt . h).

How the converter is implemented depends on whether you are writing the conversion
code yourself, or simply using an existing command-line converter.

If you are creating a “wrapper” to make an existing UNIX command available through
the GoldenGate conversion service, the procedure is quite straightforward.

007-2006-130



Writing Converters for the GoldenGate Data Conversion Service

007-2006-130

In this case, your converter is a function that gathers the input and output requirements
from its arguments, and executes the external UNIX command (for instance, by calling
the syst em2) function).

Your function should do as much checking as possible to ensure that the external

command can work. For instance, you should verify that the command is installed before
calling it, and that you have execute permission.

Also check for appropriate permissions to read input files and write output files, in the
case of file converters. If you detect an error before calling the command, return an error
status in the status field of the data argument.

For example, the code below shows a FileToFile converter that wraps an existing UNIX
command rt f 2ht m . You will find other fully annotated examples at the end of this
section.

#i ncl ude <li bgen. h>
#i ncl ude <SgCvt. h>

void Rtf ToHt m (void *arQ)

{

SgCvt ConverterData *data = (SgCvt ConverterData *) arg;
SgCvt Cont ext I nfo ctx_i nfo;

char cnd[ BUFSI Z] ;

int sys_status = 0;

char *xl| at or _pat h;

/* Evaluation - just accept for this exanple */

if (data->operation == SG_CVT_REQ EVALUATE) {
dat a- >status_return = SG CVT_E_ACCEPT;
return;

}

/* Conversion */

/* depends on ‘rtf2html’ command being avail able */
xl ator_path = pathfind(getenv (“PATH), “rtf2htm”, “rx”);
if (xlator_path == NULL) {

data->status_return = SG CVT_E_M SSI NG_COVVAND,

return;

}

(voi d) SgCvt Get Cont ext | nf o( dat a- >cont ext
SG_CVT_I NFO_I NPUT_FI LE

341



G: Using GoldenGate Data Conversion Services

Input and Output Formats

342

SG_CVT_I NFO_OUTPUT_FI LE,
&ct x_i nfo);

/* cmd syntax is ‘rtf2htm inputfile outputfile’
sprintf(cnd, “% % % 2> /dev/null”, xlator_path,
ctx_info.input _file, ctx_info.output_file);

sys_status = systen{cnd);

dat a- >status_return =
sys_status ? SG CVT_E FAI LURE : SG CVT_E_SUCCESS;

return;

}

Notice that GoldenGate passes the necessary information to a converter by reference. The
SgCvt Convert er Dat a structure is the mechanism for this. It is defined as follows:

typedef struct {

SgCvt Request Type operati on;
SgCvt Conver si onCont ext cont ext;

DMVpar ans *out put _par ans;
SgCvt St at us status_return;

} SgCvt Convert er Dat a;

If your converter does not use an external command to translate the data, but does the
conversion itself, the structure of the converter function is essentially the same.

You still use the SgCvt Convert er Dat a structure to communicate with GoldenGate.
Between extracting the necessary arguments from the structure and returning from the
function, you just call your own functions that do the conversion.

Your converter should use standardized names for its input and output types wherever
possible. This is important because applications are written to request data by a
particular name. If your converter uses a different name for the same data format,
GoldenGate will not find your converter and the conversion may fail.

See “Supported Target Formats” on page 101 for the data formats supported by the
default Silicon Graphics converters.

007-2006-130



Writing Converters for the GoldenGate Data Conversion Service

Process Blocking

007-2006-130

You can also use your own data format names. However, the name your application uses
must match the name you registered so GoldenGate ca I find the converter. However, if
you use your own data format names, it is unlikely that other applications will be able to
take advantage of your converter. Do this only if the format name is well understood
among all the applications you intend to cooperate with.

You can use SgCvt Get Dat a() and SgCvt SendDat a() in either blocking or
non-blocking mode, depending on your requirements. Both modes are described in
“Converting Data Using File Converters” on page 328.

If your converter needs to return immediately to do other work, such as tracking activity
on an I/O device, you should set the canwait argument to these functions to B_FALSE. If
the conversion pipeline is not ready for an immediate read or write operation, the call
will return immediately with a status value indicating that nothing happened and that
you should try the same operation again. For additional information on the canwait
argument, see “Sending and Receiving Data” on page 331.

If SgCvt SendDat a() cannot send data immediately and canwait is B_FALSE, it returns
SG_CVT_E_AGAIN. This indicates that your data has not been sent, and you should try
the operation again, using the same data.

SgCvt Get Dat a() returns SG_CVT_E_QUEUE_EMPTY if there is no data immediately
available and canwait is B_LFALSE. You should try the operation again later.

If your converter has no other I/O requirements, you can simplify your code slightly by
setting the canwait argument to B_TRUE. You should use this option by default, because
it can eliminate redundant context switching to your idling converter, and improve
system performance.

There are two categories of converter: FileToFile and StreamToStream.

A FileToFile converter uses the input and output file attributes of the conversion context
to get its input and save its output, as shown in the example above.

A StreamToStream converter follows this general procedure after extracting the required
parameters from the context:

¢ Fetch a block of input data using SgCvt Get Dat a

e (Convert the data to the new format

343



G: Using GoldenGate Data Conversion Services

Programming Constraints

344

¢ Send converted data back to GoldenGate

The converter repeats these steps until it receives a status of
SG_CVT_E_END_OF_STREAM from SgCvt Get Dat a, and it successfully sends all the
converted data. Then it calls SgCvt SendEndCF St r eamto tell GoldenGate it is finished
converting, and finally it returns.

The functions used for stream conversion are the same ones used by applications to work
with conversion streams:

¢ To fetch input and output parameters to be used in the conversion, use
SgCvt Get Cont ext | nf o.

e To fetch a block on data for conversion, use SgCvt Get Dat a.
¢ To send a block of converted data back to GOldenGate, use SgCvt SendDat a.

¢ To break your connection to the stream and tell GoldenGate your converter is
finished, use SgCvt SendEndCf St r eam

Keep in mind the following constraints when writing converters:

* You must not use libraries that are unsafe for threads. For instance, you should not
use Motif or other GUI libraries that are not “multi-thread-safe.”

*  You should be careful if installing global event handlers, such as timers and signal
handlers, if they override those that may already be installed by the host
application. The safest policy is to avoid this altogether.

¢ Where possible, you should avoid intentionally locking system resources such as
physical memory blocks by using low-level UNIX calls or device drivers, because
this can result in deadlock.

*  Your code should be reentrant. This means it should not rely on global state
between calls, because it is possible for more than one instance of your converter to
be running at the same time.

Converters are free to choose the size of the data blocks they read and write. GoldenGate
writes into the buffer that your converter supplies during a SgCvt Get Dat a() call. Your
converter must allocate and free this buffer space as necessary. During a

SgCvt SendDat a( ) call, your converter again supplies a buffer of data. The

SgCvt SendDat a() call does not alter your buffer. If the call returns
SG_CVT_E_SUCCESS to indicate that your data has been sent, or SG_CVT_E_FAILURE

007-2006-130



Writing Converters for the GoldenGate Data Conversion Service

to indicate a general failure, free the buffer or re-use it as appropriate. If the call returns
SG_CVT_E_AGAIN (you passed B_FALSE as the canwait argument) your data has not
been sent, and you should retain it to try again later.

Example of a Simple Stream Converter

The following example shows a simple stream converter. It expects a stream of ASCII text
characters, and outputs the stream with any uppercase characters replaced by their
lowercase equivalents.

#i ncl ude <SgCvt. h>
#i ncl ude <dnedi a/ dm par ans. h>

voi d Cvt ToLower

(

void *arg

)

SgCvt ConverterData *data = (SgCvt ConverterData *) arg;
SgCvt St at us  s;
char buf[BUFSI Z] ;

size_t nreq

= BUFSI Z;

unsi gned int | en=0;

int start

int i;

0;

/* Eval uation */
if (data->operation == SG CVT_REQ EVALUATE) {

/

In less trivial converters, we would check for

007-2006-130

valid params in the context, but in this case all
we're doing is byte translation, so we can al ways
say yes.

/

* 0% X X X X

dat a- >status_return = SG _CVT_E_ACCEPT;
return;

}

/*

* Conversion Loop. A simlar construct will appear in

* all stream ng converters. The nodel is fetch data,

* convert it and forward it, until we have forwarded the

345



G: Using GoldenGate Data Conversion Services

* end of stream then junp out the | oop.
*/
for (5;) {

s = SgCvt Get Dat a(dat a- >context, nreq, buf, & en, NULL, B TRUE);
if (s == SG CVT_E FAILURE) {

fprintf(stderr, “converter: failed to get data\n”);

return;

}
if (s == SG CVT_E_END OF_STREAM {

SgCvt SendEndOr St r ean( dat a- >cont ext) ;
br eak;

}

[*** start converter-specific part ***/

for (i=0; i<len; i++)
buf[i] = tolower(buf[i]);

[*** end converter-specific part ***/

s = SgCvt SendDat a( dat a- >cont ext, (void *)buf,
I en, NULL, B TRUE);

if (s == SG_CVT_E_FAI LURE) {
fprintf(stderr, “converter: failed to get data\n”);

return;

}

start += (len);
}
/*
* \Wen we get here, this converter’s work
* |s conplete. Ohers in the same pipeline may
* still be running, but that’s irrelevant to us.
* We sinply return. If we were invoked in a dedicated
* sproc “thread”, which is always the case for
* stream ng converters, this ternminates it.
*/
return;

346 007-2006-130



Writing Converters for the GoldenGate Data Conversion Service

Building a DSO

Note the above comment about other converters: Gt hers in t he same pi pel i ne may
still be running.Itis important to remember that your converter is almost always
invoked as a subprocess of the application. “Programming Constraints” on page 344 lists
some considerations when writing converter code.

GoldenGate converters reside in Dynamic Shared Object (DSO) libraries.

After you have written and tested your conversion function by calling it directly from a
test program, you are ready package it as a GoldenGate converter.

This section covers the following topics:
* “Creating a DSO For Your Converter”

e “Creating a Converter Description File”

Creating a DSO For Your Converter

Create a DSO for your converter. A simple Makef i | e (below) for the previous example,
“Example of a Simple Stream Converter” on page 345, illustrates the compilation and
linkage requirements for a GoldenGate DSO.

#

# Makefile for Gol denGate Sanpl e Converter DSO
#

CVTR = Cvt ToLower

all:

cc -c -1/usr/include/convert $(CVIR).c
I'd -no_unresolved -0 |libUserCvtrs.so -shared $(CVIR) .o

Creating a Converter Description File

007-2006-130

After you compile your converter, you must create a converter description file that
identifies your converter to GoldenGate. You use this file to test your converter, and
intimately to register it with GoldenGate. A simple example for the Cvt ToLower
converter follows.

347



G: Using GoldenGate Data Conversion Services

#

# Lowercase Text Stream

#
Converter ({
Nane:

| Ovet hod:

I nput :

| nput Label :
Cut put :

Cut put Label :
Vendor :

Ver si on:
Descri pti on:

DSO.

Functi on:

}

“Cvt ToLower”

St reanToSt r eam

“M XEDCASE"

“ASCI | bytes, any case”

“ LONERCASE"

“ASCI | bytes, |ower case”

“SE (Sanple)”

“1.0"

“Lowercases chars in input streant
“lusr/people/fred/libFredsCvtrs. so”
“Cvt ToLower”

Make sure the DSO field is set to the full pathname for the DSO you have built.

The grammar of the converter description file is fairly simple. Three types of statements
exist; they are identified by the keywords Parameter, Converter, and Pipeline. Table G-4

defines the statements.

Table G-4

Converter Description File Statements

Statement

Description

Parameter statement
Converter statement

Pipeline statement

Defines a single parameter

Describes a converter and may include Parameter statements

Defines a series of converters to be used together, and may
contain both Converter and Parameter statements

Some example descriptions follow. The easiest way to write a converter description file
is to copy an existing one. You can use these examples, or copy entries from the default
registry file, / var / Gol denGat e/ Convert er Regi stry.

348

007-2006-130



Writing Converters for the GoldenGate Data Conversion Service

007-2006-130

#

# Lowercase Text Stream

#

Converter ({

}

#

# Wndows BMP to XWWD

#

Nane:

| OVet hod:

I nput :

| nput Label :
Cut put :

Cut put Label :

Vendor :
Ver si on:

Descri pti on:

DSC
Functi on:

Converter {

}

#

Narme:

| Ovet hod:

I nput :

| nput Label :
Cut put :

CQut put Label :

Vendor :
Ver si on:

Descri ption:

DSO
Functi on:

“Cvt ToLower”

St reanToSt r eam

“M XEDCASE"

“ASClI | bytes, any case”

“ LONERCASE"

“ASCI | bytes, |ower case”

“SE (Sanple)”

“1.0"

“Lowercases chars in input streant
“lusr/people/fred/libFredsCvtrs. so”
“Cvt ToLower”

“BVP_FILE TO X\\D _FI LE”
FileToFile

“BWP_FI LE"

“BWP_FI LE"

“XWD_FI LE”

“XWD_FI LE”

“gg "

“1.0”

“BVP_FILE to XWWD_FI LE”
“libcvt_SA . so”
“xwdout ”

# W ndows BMP to Conpuserv G F-89, through JPEG (JFIF)

# This isn't

necessary,

since the default converters

# can go directly to AF 89 fromBMP, but it illustrates the # Pipeline
syntax for chaining converters together.

349



G: Using GoldenGate Data Conversion Services

350

Pi peline {

Nane:

| OVet hod:

I nput :

| nput Label :
Cut put :

Qut put Label :

Vendor :
Ver si on:

Descri pti on:

Converter ({

}

Name:

| Ovet hod:

I nput :

| nput Label :
Cut put :

Cut put Label :

Vendor :
Ver si on:

Descri ption:

DSG
Functi on:

Converter {

Nane:

| Ovet hod:

I nput :

| nput Label :
Cut put :

Qut put Label :

Vendor :
Ver si on:

Descri ption:

DSO
Functi on:

“BVP_FILE_TO G F_89_FI LE"
FileToFile

“BMP_FI LE"

“W ndows BMP”

“dF_89 FILE

“Conpuserve G F’

“sg "

“1.0"

“Wndows BMP to G F, via JPG

“BVMP_FI LE_TO JFIF_FILE"
FileToFile

“BMP_FI LE”

“BMP_FI LE"

“JFI F_FI LE"

“JFIF_FILE

“5g "

“1.0"

“BMP_FILE to JFIF_FILE"
“libcvt_Sd . so”
“jfifout”

“JFIF_FILE_TO G F_89_FI LE"
FileToFile

“JFI F_FI LE"

“JFI F_FI LE"

“G F_89_FILFE

“G F_89_FILE

“gg "

“1.0”

“BWP_FILE to G F_89_FILE
“l'ibcvt_SA . so”

“gifout”

007-2006-130



Writing Converters for the GoldenGate Data Conversion Service

Testing Your Converter

007-2006-130

To test your converter, first verify that your converter description file is valid and does
not cause the GoldenGate built-in registry parser to fail.

Set the environment variable CVT_REGISTRY_OVERRIDE to the full pathname of the
converter description file you just created:

setenv CVT_REGQ STRY_OVERRI DE / usr/ peopl e/ fred/ ny_registry. cdf

Then run a test program that will exercise the parser. The gg_quer y demo program that
comes with GoldenGate is good for this. Find itin/ usr/ shar e/ sr c/ Gol denGat e (if
you haven’t already done so, install the demo programs from your IRIX distribution

media). Copy the demo programs to your own directory, go into the Quer y subdirectory,
and type neke. Then execute the gg_quer y program. The output should look like this:

Converter (CvtToLower):
met hod: Stream To Stream
i nput: M XEDCASE (ASCI| bytes, any case)
out put: LOWNERCASE (ASCI| bytes, |ower case)
vendor: SGE (Sanple)

versi on: 1.0

descr.: Lowercases chars in input stream
DSOnane: lusr/ people/fred/libFredsCvtrs.so
Functi on: Cvt ToLower

If you see an error message, go back and check that your converter description file is
valid, checking especially that all string values are properly quoted. Also check that the
GoldenGate software is properly installed by unsetting the
CVT_REGISTRY_OVERRIDE variable and re-executing the gg_quer y program. It
should list the default converters installed on the system (over 100 of these exist).

Once the test runs successfully, you are ready to try executing your converter. You can
use your own program, or the demo programs in the ConvertFile and ConvertStream
directories to do this. Each program prints a help message describing its arguments if
you run it with no arguments.

After you are satisfied that your converter works when executed via GoldenGate, you are

ready to make it available to other applications on the system. Unset the
CVT_REGISTRY_OVERRIDE variable; you are finished unit-testing your converter.

351



G: Using GoldenGate Data Conversion Services

Registering Your Converter

The System Registry

To register your converter, you must add your converter description file to the system
registry.

The system registry is a text file that uses the same syntax as your converter description
file. Just edit the file / var / Gol denGat e/ Convert er Regi st ry (you must be a
privileged user to do this) and add your entry wherever you like.

Look at the attributes of the converters already registered. If there are potential clashes
with your converter, you may wish to insert your converter closer to the beginning of the
registry. Some applications may decide to convert using the first converter they find that
appears to satisfy their requirements, rather than evaluating the alternatives. If you want
to make sure this kind of application executes your converter rather than another one
that could do that same conversion, insert your entry closer to the beginning of the file.

Some Registry Syntax Details

352

The most important fields are those that the service uses to locate the executable
converter module: the DSOname and the Funct i on name. The other fields are primarily
for display by administration tools, and for applications to query the registry. The Input
and Output fields are strings that must exactly match the format names that applications
will use to search for converters. For instance, where there are naming conventions such
as ICCCM target names, these should be used exactly.

See “Supported Target Formats” on page 101 for a list of standard input and output
formats supported by the default converters supplied with GoldenGate.

Parameters can be one of two types: Constraint or Programmable.
Constraint parameters are used to specify constant values for a data attribute in the
description file. When you see a constraint parameter, it means that this converter always

sets the corresponding data attribute to the stored value, overriding its current value in
the input.

007-2006-130



Writing Converters for the GoldenGate Data Conversion Service

Programmable parameters are used to specify parameters that are set at runtime based
upon the requested input and output parameters. Programmable parameters are used to
pass a runtime parameter to one of the stages of a pipeline. For example, if you have a
two-stage pipeline designed to scale an SGI image to an arbitrary size, then convert it to
JPEG, you want to pass one of the output parameters (the required output size) to the
first stage of the converter. You do this by specifying a programmable parameter for the
first stage.

Installing Your Converter

Make sure your installation copies the DSO containing your converter to the standard
location for converter DSOs: / usr /| i b/ convert.If you install your library there, you
can use a relative DSO name in your converter description file. If you install anywhere
else, you must use a full path name in the registry to ensure that the service will find your
converter.

See the GoldenGate Release Notes (type r el not es gol dengat e) for information about
installation.

Some Sample Converters

This section presents annotated sample code for two different converters:

* The first example, “A Simple StreamToStream Converter - UpperCase” on page 353,
directly modifies data flowing through it.

¢ The second example, “A FileToFile Converter - UNIX Man Page File to HTML File”
on page 356, illustrates two techniques. First it serves as a basic template for
FileToFile converters, and second it shows how you can wrap an external IRIX
command to make it available as a GoldenGate converter.

A Simple StreamToStream Converter - UpperCase

007-2006-130

This type of converter can often offer the best performance in many circumstances,
because all the knowledge of the conversion operation is in the converter itself, and
because it typically does not need to access the filesystem to achieve conversion. It is
appropriate when the data format is naturally streamable, such as ASCII text or other
self-identifying or raw data.

353



G: Using GoldenGate Data Conversion Services

The converter used in this example performs a simple mapping of mixed-case text to
uppercase text. The converter-specific parts are clearly marked. These are the lines that
you will replace with your own task-specific conversion code. The remainder is
boilerplate code that can be re-used in many different converters.

/* converter function */
voi d Upper Case
(

)
{

void *arg

SgCvt ConverterData *data = (SgCvt ConverterData *) arg;
SgCvt St at us  s;

The next 2 lines are somewhat task-specific. Your converter should use a buffer size
appropriate to the data type and the task. Careful selection of a buffer size will yield
better performance in many cases. For instance, if your converters needs to operate on
audio or movie “frames,” then you may choose to read and write buffers that represent
whole numbers of frames.

char buf [ BUFSI Z] ;
size_t nreq = BUFSI Z;

unsi gned int | en=0;
int start = 0;
int i;

The next part is the Evaluation section. Our converter operates on a byte stream: if a byte
represents a lower-case character in the current locale, we are going to uppercase it.
Otherwise it passes through untouched. It is appropriate for this converter to accept any
stream; it does not need to evaluate parameters.

/* Eval uation */

i f (data->operation == SG CVT_REQ EVALUATE) {
dat a- >status_return = SG_CVT_E_ACCEPT;
return;

354 007-2006-130



Writing Converters for the GoldenGate Data Conversion Service

007-2006-130

The following loop does the conversion, one block at a time. The loop terminates when
the end of stream is detected.

/* Conversion */

for (;;) {

s = SgCvt Get Dat a(dat a- >context, nreq, buf, & en,
NULL, B _TRUE);

if (s == SG_CVT_E_END OF_STREAM {
SgCvt SendEndCF St r ean( dat a- >cont ext ) ;
br eak;

}

These two lines show the entire task-specific code requirements for the uppercase text
converter. Your converter will substitute its own conversion-specific code for these lines.
The model is the same in each case; the converter generates a buffer to be sent from the
buffer it has received, by applying a specific conversion algorithm.
for (i=0; i<len; i++)
buf[i] = toupper(buf[i]);

When the new buffer has been generated, your converter sends it into the pipeline. In this
example, the data was converted in place. Sometimes that is not possible, because the
converted data will not fit in the original buffer. In these cases, your converter may
allocate, populate, send, then free a dynamic buffer each time through the loop.

s = SgCvt SendDat a( dat a- >context, (void *)buf, |en,
NULL, B_TRUE);

start += (len);

}

After sending all the converted data, and calling SgCvtSendEndOfStream, your
converter can return. You should always set the st at us_r et ur n field.

dat a->status_return = SG_CVT_E_SUCCESS;
return;

355



G: Using GoldenGate Data Conversion Services

A FileToFile Converter - UNIX Man Page File to HTML File

356

Often, to convert data from one application into a form usable by another, you need to
save the data to a file in one format, convert it using an IRIX command-line translator
program, then open the new file using the application you want to use.

Applications using components that are integrated with GoldenGate can eliminate the
intermediate end-user steps. The same external translator command can be packaged as
a GoldenGate converter and invoked automatically on behalf of the user.

Itis quite straightforward to integrate an existing IRIX command with GoldenGate. Your
main task is to write a function that the service can invoke, which constructs from its
parameters a command line for the translator program.

The converter described here provides GoldenGate access to a command named
man2ht m , which converts t r of f source files for UNIX man pages into HTML files that
can be viewed using a Web browser. It can be used by a CGI script that implements an
online help system for remote users running Web browsers.

The command itself takes one argument: the input file name. It writes its output to
stdout. The job of our converter is to make this interface look like any other GoldenGate
converter.

Converter functions always require the SgCvt . h header file and always have the have
the same calling convention:

#i ncl ude <Ii bgen. h>
#i ncl ude <SgCvt. h>

voi d ManToHt m (voi d *arQ)
{

First, cast the data argument to the right type.
SgCvt ConverterData *data = (SgCvt ConverterData *) arg;

Then, define some other local variables. Most of these are the same in every converter of
this type that you write.

SgCvt St at us  s;

SgCvt Cont ext I nfo ct x_i nf o;
char cnd[ BUFSI Z] ;

int sys_status = O;

char *cndpat h;

007-2006-130



Writing Converters for the GoldenGate Data Conversion Service

007-2006-130

Next, handle converter evaluation requests. This converter is very simplistic: there are
no parameters, and it just ACCEPTs the request. In real converters, always provide
proper evaluation of any parameters, especially if it is expensive for the application to try
the conversion and fail.

/* Eval uation */

i f (data->operation == SG CVT_REQ EVALUATE) ({
dat a- >status_return = SG CVT_E_ACCEPT;
return;

}

The remaining code handles conversion requests. Note that it is never reached unless the
caller requests conversion because the evaluate section has its own return statement.

The first thing to do is check that the program you are wrapping is installed and that you
can execute it.

/* conversion */
cndpat h = pat hfind(getenv (“PATH'), “man2htm”, “rx”);
if (cmdpath == NULL) {
data->status_return = SG CVT_E M SSI NG_COMVAND;
return;

}

Then, extract the input and output filenames from the conversion context.

(voi d) SgCvt Get Cont ext | nf o( dat a- >cont ext,
SG CVT_INFO I NPUT_FILE |
SG CVT_| NFO OUTPUT FI LE,
&ct x_info);

At this point you know everything needed to construct the command you are going to
execute. You use the UNIX syst en(2) call to execute the conversion, so the next step is
to create the command line.

sprintf(cmd, “% % > % 2> /dev/null”, cndpath,
ctx_info.input_file, ctx_info.output_file);

357



G: Using GoldenGate Data Conversion Services

358

Finally, execute the command, and set the return status to indicate whether it worked
before returning.
sys_status = system(cnd);
data->status_return =
sys_status ? SG CVT_E FAILURE : SG CVT_E_SUCCESS;

return;

}

Note that your converter is normally run as a subprocess of the invoking application. You
should not call exi t (2) to terminate your converter; you should simply return, allowing
GoldenGate and the operating system to take care of managing conversion threads.

007-2006-130



Appendix H

Standard Menu Resources

This appendix provides examples of standard menu resources including;:
¢ “Common Menu Bar Resources”
¢ “Standard File Menu Resources”

e “Standard Edit Menu Resources”

Common Menu Bar Resources

The following code defines the common menu bar resources.

I Common Menu Bar Resources !
| T I I I T A T I I A I I A O I |

I Standard Menubar
! File Selected Edit View Tools Options Help

I <your_wi dget _nanme_goes_here>

*<file>. label String: File
*<fil e>. menoni c: F

*<sel ect ed>. | abel String: Sel ect ed
*<sel ect ed>. menoni c: S
*<edit>.label String: Edi t
*<edi t >. menoni c: E

*<vi ew>. | abel String: Vi ew

*<vi ew>. nmenoni c: V

007-2006-130 359



H: Standard Menu Resources

*<t ool s>. | abel String:
*<t ool s>. menoni c:

*<options>. | abel String:
*<opti ons>. menoni c:

*<hel p>. | abel Stri ng:
*<hel p>. menoni c:

Standard File Menu Resources

360

The following code defines the standard file menu resources.

Tool s
T

Opti ons
O

Hel p
H

I Standard File Menu Resources !
| T T I T T A T A I A O I O A A I |

*<new>. | abel String:
*<new>. rmenoni C:
*<new>. accel er at or Text :
*<new>. accel erator:

*<open>. | abel String:
*<open>. nmenoni c:

*<open>. accel er at or Text :

*<open>. accel erat or:

*<reopen>. | abel String:
*<r eopen>. rmenoni c:

*<j mport>. | abel String:
*<j nport >. menoni c:

*<save>. | abel String:
*<save>. rmenoni C:

*<save>. accel er at or Text :

*<save>. accel erator:

*<saveas>. | abel String:
*<saveas>. rmenoni c:

Grl+N
Cirl <Key>N

Qpen. . .
o

Crl+0
Cirl <Key>0

Reopen
R

| nport
|

Save

S

Grl+S
Crl <Key>S

Save As. ..
A

007-2006-130



Standard Edit Menu Resources

*<revert>.| abel String:
*<revert>. menoni c:

*<print>.|abel String:
*<print>. menoni c:

*<print>. accel erat or Text:

*<print>. accel erator:

*<cl ose>. | abel String:
*<cl ose>. rmenoni c:

*<cl ose>. accel erat or Text:

*<cl ose>. accel erator:

*<exit>.|abel String:
*<exi t >. menoni c:

*<exi t>. accel er at or Text :
*<exit>.accel erator:

Standard Edit Menu Resources

007-2006-130

The following code defines the standard edit menu resources.

Revert
%

Print...

P

Crl +P
Crl <Key>P

d ose

C

crl +W
Ctrl <Key>W

Exi t

X

arl+Q
Cirl <Key>Q

I Standard Edit Menu Resources

*<undo>. | abel Stri ng:
*<undo>. menoni c:
*<undo>. accel er at or Text :
*<undo>. accel erat or:

*<redo>. | abel String:
*<redo>. menoni c:
*<redo>. accel er at or Text :
*<redo>. accel erat or:

*<cut >. | abel String:
*<cut >. rmenoni c:

*<cut >. accel erat or Text :
*<cut>. accel erator:

Undo

U

arl+z
Ctrl <Key>Z

Redo

R

Shift+Cirl +Z

Shi ft <Key>Ctr| <Key>Z

Cut

t

arl+X
Cirl <Key>X

361



H: Standard Menu Resources

*<copy>. | abel String:
*<copy>. rmenoni c:
*<copy>. accel er at or Text :
*<copy>. accel erator:

*<past e>. | abel String:
*<past e>. menoni c:

*<past e>. accel erat or Text:
*<past e>. accel erat or:

*<cl ear>. | abel String:
*<cl ear >. mmenoni c:

*<del et e>. | abel String:
*<del et e>. menoni c:

*<sel ect>. | abel String:
*<sel ect >. menoni c:

*<sel ect >. accel er at or Text :
*<sel ect >. accel erator:

*<desel ect >. | abel Stri ng:
*<desel ect >. enoni c:
*<desel ect >. accel er at or Text :
*<desel ect >. accel erator:

*<pronot e>. | abel String:
*<pr onot e>. rmenoni c:

*<pr onot e>. accel er at or Text :
*<pronot e>. accel erator:

*<col orEdit>. | abel String:
*<col or Edi t >. menoni c:

Copy

cC

arl+C
Cirl <Key>C

Past e

P

arl+v
Cirl <Key>V

d ear
e

Del ete
D

Sel ect All
A

arl +A
Cirl <Key>A

Desel ect Al l

|

Shift+Cirl +A

Shi ft <Key>Ct r| <Key>A

Pronot e

m

Al t+l nsert

Al t <Key>I nsert <Key>

Col or
0

Editor...

007-2006-130



Index

Numbers

3D graphics formats, 103

3D look
icons, 187

4Dwm window manager, 3, 59-81

A

access
help, 52
adding
icon to Icon Catalog, 173
AIFF data, 102
ALIAS data, 103

alignment
IconSmith, 194
<Alt> key, 220
API
GoldenGate, 106
Apple data, 102
Apple Quicktime data, 103
application integration
checklist, xxxvii
overview, Xxxix-xxxviii, 3-4
schemes, 7-22
application models, 65-67
“multiple document, no visible main”, 67
“multiple document, visible main”, 66
”single document, multiple primary”, 66

007-2006-130

”single document, one primary”, 66
application programming
schemes, 9
application testing
with schemes, 21
applications
automatically restart, 60
communication, 62
creating icons. See icons
data exchange, 91-106, 319-358
exchanging data, 91-106, 319-358
help, integrating, 289
icon ID number, 165
implementation strategy, xxxii
logging out, 60
re-invoke, 62
restarting, 60
save yourself example, 78
states, 60
toolkits for integration, xxxii
window manager, 62
window placement, 79-81
window size, 79-81
ApplicationShell, 69
Arc widget, 46
ASCII, 236
Ascii predefined file type, 310

atom
3D graphics, 103
audio, 102
image, 102
movie, 103

363



Index

SGI, 101
audio formats, 102
AUTODESK data, 103
AVID data, 103

B

banners

in window title, 79
Binary predefined file type, 311
blocking

processes, data exchange, 343
book viewer

setting on desktop, 156
BOOKVIEWER variable, 157
browser

color schemes, 8

launch in Help, 142
buttons

recycle, 43

recycle. See also recycle button

C

C language operators, 305
callback

Color Chooser, 34
caret cursor, 179
catalog

icon, xxx
changing

icon design size, 188
checklist

creating icons, 163-175
Child widget

Grid widget, 49

364

circles
drawing, IconSmith, 198

clicking the mouse, 155

ClickSpeed
mouse setting, 155

Clipboard Selection
ownership, 100

Clipboard Transfer
CLIPBOARD selection, 93
"Copy” actions, 100
”Cut” actions, 98
data exchange, 93-101
implementation, 98-101
loss of Clipboard Selection, 101
"Paste” actions, 100

close
window, 76
”Close” option, 76

CMD ALTOPEN rule, 171, 220
example, 221

CMD DROP rule, 222
CMD OPEN rule, 171, 219
CMD PRINT rule, 226

Color Chooser, 30-35
callback resources, 34
components, 31
example program, 242
interface, 33
Makefile example, 244
user interaction, 34
widget, 30-35

color image
resize, 88

colors, 30-35
and hues, 30
and saturation, 30
and values, 30
and widgets, 30
desktop, 7-22

007-2006-130



Index

get and set, 34

HSV, 30

icon fill color, 197

icon outline, 197

icon shadow color, 197

icons, 197

programming, 34

RGB, 30, 33

See also widgets
communication

window and session manager, 68
compiling

.ctr files, 172

.otr files, 172

programs with GoldenGate, 338

concave polygons
IconSmith, 193
constants
logical, 306
context-sensitive help. See help
continuous session management, 61
conventions
style, xxvii
conversion rules
printing, 238
CONVERT rule
printing, 235, 238
converter registry, 106
GoldenGate, 320-322

converters
data exchange, 106
description file, 347
DSO, 347
evaluation, 327
evaluation requests, 340
examples, 353
FileToFile example, 356
input and output formats, 342
installing, 353

007-2006-130

process blocking, 343
registering, 352
stream converter example, 345
stream data, 330-338
StreamToStream example, 353
testing, 351
writing, 339-353
converting data
GoldenGate, 105, 319-358
converting files
for printing, 235
co-primary windows, 71
delete protocol, 76
example, 71
“Copy” option, 93, 100
copy text. See data exchange
COST rule
printing, 239
creating
FTR file type, 230-234
creating help
See help
Cross
red and blue caret, 179
.ctr files, 172
cursor
caret symbol, 179
customizing windows, 83-89
“Cut” option, 93, 98

D

data
exchange, 319-358

exchange transferring of data, 91-106

data conversion
GoldenGate, 105, 319-358

365



Index

data exchange, 91-106, 319-358
3D graphics, 103
audio, 102
Clipboard Transfer, 93-101
compiling, 338
conversion context, 321
conversion context, setting up, 326
conversion overview, 320
converter attributes, 324
converter description file, 347
converter evaluation, 321
converter evaluation requests, 340
converter example, 345
converter registry, 320-322
converter registry query, 323-325
converter selection, 322
converter, examples, 353
converter, FiletoFile example, 356
converter, registering, 352
converter, testing, 351
converters, 106
converters, evaluating, 327
converters, installing, 353
converters, writing, 339-353
converting data, 322
display converter details, 328
DSO, 347
example converters, 353
file converters, 328-330
FileToFile example, 356
image, 102
input and output formats, 342
installing converters, 353
linking, 338
movie, 103
operators, 325
Primary Transfer, 92-93
process blocking, 343

querying converter registry, 323-325

registering converters, 352
SGI, 101

366

stream converter example, 345
stream data converters, 330-338

StreamToStream converter, example, 353

StreamToStream example, 353
target formats, 101-105
testing converters, 351
writing converters, 339-353
data selection
Primary Transfer, 95
debugging
session manager, 63
default printer, 240
Default Viewer panel, 156

delete
window, 76

"Delete” option, 76

deleting
path, IconSmith, 186

"Deselect” button
IconSmith, 190
design elements
icons, sharing, 188
desk management, 64
screens, 64
virtual screens, 64

Desks Overview window, xxx

desktop
and fonts, 7-22
book viewer setting, 157
BOOKVIEWER variable, 157
CMD PRINT rule, 226
colors, 7-22
Default Viewer panel, 156
Desks Overview window, xxx
display image files, 157
editor, 157
environment variables, 261-262

example of setting preferred editor, 157

Icon Catalog, xxx

007-2006-130



Index

icons, 161-175, 177-205
image viewer, 157
IMGVIEWER variable, 157
implementation strategies, xxxii
integration checklist, xxxvii
integration of windows, 69
look and feel, 3-4
look and feel, basic steps, 4
mail reader, 157
MAILBOXPROG, 157
menu, MENUCMD rule, 226
PostScript viewer, 157
printing, 226, 235-240
PSVIEWER variable, 157
schemes, 7-22
setting a book viewer, 156
setting a mailer, 156
setting a PostScript viewer, 156
setting a text editor, 156
setting a Web browser, 156
setting an image viewer, 156
toolkits, xxxii
turn on look and feel, 5
utilities and user preferences, 157
Utilities panel, 156
web browser, 157
WEBBROWSER variable, 157
widgets, 23-52
window editor, 157
WINEDITOR variable, 157
desktop environment
introduction, xxix-xxxviii, 3-4
Developer Magic RapidApp, xxxiv-xxxvi
device files
FIRs, 217
Dial widget, 36-38
appearance, 36
callback function, 37
characteristics, 36
detecting changes in value, 38

007-2006-130

example program, 244
getting and setting values, 37
interface, 36
values, 37
dialogs
creating, 73,74
delete example, 77
"Delete” option, 77
example, 74
notification, 74
windows, 74
DIB data, 102
dimensional look
3D and IconSmith, 187
dircontains function, 217
directories
detecting changes, FAM, 112
monitoring changes, 107-123
Directory predefined file type, 310
drag and drop icons, 222
Drop Pocket, 43
widget, 41-42
drop pocket
example program, 247
Makefile example, 248
DROPIF rule, 223
DSO
GoldenGate converters, 347
dtUtilities
variables and values, 157
dtUtilities panel, 156

Dynamenu
example program, 251

E

Edit menu
”"Copy” option, 93

367



Index

"Cut” option, 93

"Paste” option, 93
edit menu

resources, 361-362
Editor Utilities panel, 156
enlarging

icons, 187
environment variable

IMGVIEWER, 221
environment variables

desktop, 261-262
example programs

help, 265-304

widgets, 241-259
exchanging data, 319-358

See also data exchange

target formats, 101-105

Executable predefined file type, 312
"Exit” option, 75
explicit session management, 61

=

FAM, 107-123
See also File Alteration Monitor
File Alteration Monitor, 107-123
cancel monitoring, 111
closing a connection, 109
detecting changes, 112
examples, 116-118
fam daemon, 107
include files, 108
interface, 109-118
libraries, 108
monitoring a file, 110
opening a connection, 109
polling for changes, 122
resume monitoring, 111

368

suspend monitoring, 111
symbolic links, 114
theory of operation, 108
using FAM, 118-123
waiting for changes, 118

file menu
resources, 360-361

File Selection Box
example program, 255
Makefile example, 257

File Selection Box widget, 25

file type
definition, 168
example, 171
icons, 166

file types
predefined, FIRs, 217

File Typing Rules, 207-234
Also see FTRs
description of, 209

files
converting to print, 235
creating file type, FTR, 230-234
detecting changes, FAM, 112
device files, 217
ftr, 210
icons, 162
monitoring changes, 107-123
predefined file types naming conventions, 309
printing, 236
printing from Desktop, 236
selecting, 25
types, predefined, 309-315
types, predefined. See also predefined file types

fill color
icons, 197
FILTER rule
printing, 239
Finder widget, 42-46

007-2006-130



Index

callback, 45
components, 43

Drop Pocket, 43
example program, 250
interface, 44

path navigation, 43
recycle button, 43
user interaction, 45
values, 44

FITS data, 102

fonts
and desktop, 7-22

format
files for printing, 235

formats
3D graphics, 103
audio, 102
converting data, 105, 319-358
image, 102
movie, 103
SGI, 101

ftr files, 210

FTRs, 207-234
adding, 168
CMD ALTOPEN rule, 209, 220
CMD DROP rule, 209, 222
CMD OPEN rule, 209, 219
CMD OPEN rule, Makefile, 220
CMD PRINT rule, 209, 226
compiling source files, 172
CONVERT rule, printing, 235
creating a file type, 230-234
device files, 217
dircontains function, 217
directory location, 167
DROPIF rule, 209, 223
example, creating file type, 230-234
file directories, 317
file type definition, 168
file type example, 171

007-2006-130

file type, creating, 230-234
file types, predefined, 217
ICON rule, 209, 227

icon, file type, 166

icons, 162,219

LEGEND rule, 209, 218
MAP rule, 209, 225

MATCH expressions, 215-216
MATCH rule, 209, 212
matching files, 214

matching non-plain files, 217
matching tagged files, 212
MENUCMD rule, 209, 226
naming file type, 167
naming files, 167

predefined file types, 217

set variables, 219

SETVAR rule, 209, 219
SPECIALFILE rule, 209, 217
SUPERTYPE rule, 209, 210
TYPE rule, 209, 210

writing MATCH expressions, 214

functions
icon descriptive functions, 307

G

generic icons, 196

GenericWindowExecutable predefined file type, 313

-geometry option, 79
GIF data, 102
gizmos. See widgets
GoldenGate, 319-358
API, 106
compiling programs, 338
conversion overview, 320
converter description file, 347

converter header filedata exchange
API, 106

369



Index

converter registry, 106, 320-322
data conversion, 105, 319-358
DSO, 347
example converters, 353
FileToFile example, 356
linking programs, 338
registering converter, 352
See also data exchange
stream converter example, 345
StreamToStream example, 353
testing converter, 351
Graph widget, 46-47
gravity
controlling in IconSmith, 195
gravity snap
IconSmith, 194
grid snap
IconSmith, 194
Grid widget, 48-52
characteristics, 48
child, 49
examples, 50
layout, 48
grids
controlling in IconSmith, 195

H

help, 125-153
application integration, 289
building, 147, 149
compiling, 147, 149
constructing the menu, 134
context-sensitive, 136
creating files, 146
creating installable subsystem, 151
custom installation, 152
debugging, 149
displaying a help topic, 131

370

displaying help index, 132
document files, 129
DTD, 145
DTD elements, 274
errors, 149
examples, 146
files, 138-144
help button, 135
help document example, 265
helpmap file conventions, 139
helpmap file format, 139
helpmap files, 129, 138-144
helpmap URL, 142
implementation, 133-138
include file, 128
initializing help, 130
installation

custom, 152
installing, 150-152
integrating in application, 289
interface, 129-133
launch browser, 142
library, 128
Makefile, 147
messages, 149
online examples, 265-304
overview, 126
packaging, 150-152
references, 152
SGML references, 152
spec file, 147
subsystem, 150-152
URL access, 142
valid elements in Help DTD, 274
viewer, 126-128
Web access, 52, 142
widget hierarchies, 142
widgets and helpmap, 142
windows, 126
writing, 145-150
writing overview, 145

007-2006-130



Index

writing samples, 145
History Button

example program, 251
HSV colors, 30
HTML

attributes, 55

libraries, 52,57

tags, 55

viewer component, 52, 57

viewer components, 54

widget, 52, 57
HTML data, 105
hypertext data, 105

ICCCM targets, 225

Icon Catalog
adding icons, 173

Icon Catalog window, xxx
ICON rule, 171, 227
iconbookedit command, 173

icons, 161-175, 177-205
3D look, 187
adding FTRs, 168
and FTRs, 162
badge, 165,178
binary executables, 162
C language operators, 305
caret symbol, 179
checklist, 163-175
circles, 198
CMD OPEN rule, 219
compiling source files, 172

composition conventions, 196

conditional operators, 306
creating, 161-175, 177-205
creating file type, 166

007-2006-130

custom, 162

design conventions, 196

directory, 178

double-clicking, 220

drag and drop, 222

drawing, 165

files, 162,178

files type, 162

fill color, 197

fti file, 178

FTR file type example, 171

functions, 307

generic, 162,178

generic components, 196

icon description language, 305-308

ICON rule, 227

icon status variables, 306

identification number, 165

installing in Icon Catalog, 173

isometric circles, 201

logical constants, 306

Magic Carpet, 196

naming file type, 167

naming FTR files, 167

of windows, 83-89

outline color, 197

ovals, 200

programming, 166

See also desktop

See also IconSmith

segments or lines, 180

shadow color, 197

size, 197

steps to creating, 163-175
IconSmith, 177-205

3D look, 187

advanced techniques, 198

align objects, 194

caret, 179

changing design size, 188

circles, 198

371



Index

colors, 197

composition conventions, 196
concave polygons, 193
deleting path or vertex, 186
"Deselect” button, 190
design conventions, 196
drawing filled shapes, 185
drawing paths, 185
drawing tools, 183-189
enlarge icon, 191

generic components, 196
gravity, 195

gravity snap, 194

grid snap, 194

grids, 195

icon description language, 305-308
icon size, 197

“Import” button, 188
invoking, 180

isometric circles, 201
menus, 181-182

ovals, 200

"Partial” button, 190
paths, 180

polygons, 184, 193
previewing icons, 188
rotate icon, 191

scaling, 187

“Select All” option, 191
“Select Next” option, 191
selecting an object, 189
shapes, 185

sharing design elements, 188
”Shear Y” transformation, 193
shrink icon, 191

slider, 188

starting, 180

stretch icon, 191
techniques, 198

templates, 189

tools for drawing, 183-189

372

Transformation buttons, 191
Transformation example, 192
transformation pin, 179
”"Undo” option, 184
vertex, 180
windows, 182-184
identification number
application icons, 165
IGES data, 103
image
resize, 88
scale, 88
image formats, 102
image viewer
setting on desktop, 156
ImageFile predefined file type, 312

IMGVIEWER environment variable, 221

IMGVIEWER variable, 157
imgworks tool, 88
implementation

checklist, xxxii

schemes, 9

tasks, xxxii
importing

icon design elements, 188
information

references, xxvi

installing

converters, 353

icon in Icon Catalog, 173
integration

application, xxix-xxxviii, 3-4

checklist, xxxvii

desktop, 69

Motif, xxxiii

schemes, 7-22

strategies and toolkits, xxxii

interapplication data exchange, 91-106, 319-358

007-2006-130



Index

GoldenGate conversion, 105, 319-358
See also data exchange
target formats, 101-105

introduction

desktop, xxix-xxxviii
INVENTOR data, 103
IRIS GL, xxxvii
IRIS ViewKit, xxxiv-xxxvi

isometric circles
drawing, IconSmith, 201

J

JIFF data, 102
JPEG data, 102

K

keys

<Alt>, 220
knob widget. See Dial widget
Kodak data, 102

L

labels
minimized window, 89

LaunchExecutable predefined file type, 313

LED widget
example program, 259

LEGEND rule, 171, 218

libraries
GoldenGate DSO, 347

licensing on the Web, 52
line segments, 180

007-2006-130

linking

programs with GoldenGate, 338
logical constants

icon description language, 306

look and feel
basic steps, 4
introduction, xxix-xxxviii
overview, 3-4
schemes, 7-22
turn on, 5

M

Magic Carpet

icons, 196
mail reader setting, 157
MAILBOXPROG variable, 157
mailer

setting on desktop, 156
main windows, 69

example, 69
Makefile

CMD OPEN rule, 220
MAP rule, 225
MATCH rule, 171, 212
matching tagged files, 212

menu bar
resources, 359-360

MENUCMD rule, 226

menus
”Close” option, 76
"Delete” option, 76
edit menu resources, 361-362
“Exit” option, 75
file menu resources, 360-361
IconSmith, 181-182
menu bar resources, 359-360
standard resources, 359-362

373



Index

Microsoft data, 102

middle mouse button
inserting text, 97

MIME types, 225

minimized windows, 83
creating, 85
examples, 84
using imgworks, 88

mixed-model programming widgets, 29
monitor file changes. See File Alteration Monitor

Motif
desktop integration, xxxiii
Motif window manager, 59

mouse
setting the click speed, 155

movie formats, 103
MPEG data, 102, 103
multiClickTime resource, 155

“"multiple document, no visible main”
application model, 67

"multiple document, visible main”
application model, 66

N

naming conventions
predefined file types, 309

navigation
path, 43
NEXT data, 102

notification dialogs, 74

@)

online help
examples, 265-304

374

See also help
See help
Web access, 52
OpenGL, xxxvii
reference, xxvi
operators
conditional, 306
icon description routines, 305
OSF/Motif, 3
desktop integration, xxxiii
reference, xxvi
.otr files, 172
outline color
icons, 197
ovals
drawing, IconSmith, 200
overview
of desktop, xxix-xxxviii, 3-4
ownership
Clipboard Selection, 100

P

pages

icon catalog, xxx

“Partial” button
IconSmith, 190

“Paste” option, 93, 100
path navigation, 43
paths
drawing, IconSmith, 185
segments, 180
Percent Done Indicator
example program, 258
percent done indicator, 27
persistent selection
See Primary Transfer

007-2006-130



Index

PHOTO data, 102
PIXAR data, 104
pixmap data, 102
placement
of windows, 79
point
vertex, 180
pointer widget. See Dial widget
polling
for file changes, 122

polygons
IconSmith, 184, 193
pop-up windows, 71
PostScript files
printing, 236
PostScript viewer
setting on desktop, 156
PPM data, 102
predefined file types, 309-315
Ascii, 310
Binary, 311
Directory, 310
Executable, 312
GenericWindowExecutable, 313
ImageFile, 312
LaunchExecutable, 313
naming conventions, 309
Script, 313
SourceFile, 311
SpecialFile, 310
ttyExecutable, 314
ttyLaunchExecutable, 314
ttyLaunchOutExecutable, 315
ttyOutExecutable, 314

predefined file types, FTRs, 217

predesigned
icon templates, 189

preview icons, 188

007-2006-130

Primary Selection

inserting, 97
See also Primary Transfer

Primary Transfer

callback function, 96
data exchange, 92-93
data selection, 95
implementation, 95-97
loss of, 97

requests for, 96

primary windows, 69

example, 69

Print Manager

default printer, 240

printing, 235-240

ASCII files, 236
CONVERT rule, 238
converting files, 235, 236-238
COST rule, 239

current printer, 240
default printer, 240
FILTER rule, 239
PostScript files, 236

print conversion rules, 238
RGB files, 236

routeprint command, 235
routing a job, 235

process blocking

data exchange, 343

programming

mixed model widgets, 29

programs

widget examples, 241-259

progress indicator, 27
protocols

close, 76

delete, 76

delete, example, 76
quit, 75

375



Index

quit, example, 75
saving state information, 77
window manager, 75-79

PSVIEWER variable, 157

Q

quit
window, 75

R

RapidApp, xxxiv-xxxvi
recycle button, 43
customize, 44
references
list, xxvi

removing
path, IconSmith, 186

resize
image, 88
windows, 79

resources
menus, 359-362
schemes, 15

restarting applications, 77
session management, 60
states, 60

RGB colors, 30, 33

RGB files
printing, 236

RGB image
resize, 88

rotation
transformation pin, 179

routeprint command, 235

376

S

saving state information, 77
scale
image, 88
Scale widget, 27
example program, 258
scaling
icons, 187
transformation pin, 179

schemes, 7-22
application testing, 21
basic concepts, 8
browser, 21
Color Schemes option, 21
considerations, 10
creating new, 21
customization, 8
defaults, 7
designing new, 21
direct access, 13
ease of use, 8
implementation, 9
new, 21
non-default colors, 11
override the default, 11
overview, 7
pre-defined resources, 15
programming, 9
schemebr browser, 8,21
symbolic values, 15
turnon, 9
user customization, 8
why use, 8
Script predefined file type, 313
SD2 data, 102

segments
IconSmith, 180

“Select All” option
IconSmith, 191

007-2006-130



Index

“Select Next” option
IconSmith, 191
selecting
IconSmith, 189
session management, 60-64
communication with window manager, 68
continuous, 61,77
debugging, 63
example, 63
explicit, 61
overview, 60
saving state information, 62,77
WM_COMMAND, 62
session manager
and window manager, 68

SETVAR rule, 219
SGI audio data, 102
SGI data, 103

SGI help
See help

sgiMode resource, 5

shadow color
icons, 197

shapes
filled, IconSmith, 185

”Shear Y” transformation, 193

”single document, multiple primary”
application model, 66

”single document, one primary”
application model, 66
size, 79-81
image, 88
of windows, 79
sizing
icons, 187

slider
IconSmith, 188

slider widget, 27

007-2006-130

sliders
color, 33

SOFTIMAGE data, 104
SourceFile predefined file type, 311
SpecialFile predefined file type, 310
SPECIALFILE rule, 217
speed of mouse clicking, 155
Springbox widget, 47-48
states

saving, 62
stream converter example, 345
stream data converters, 330-338
style

conventions, xxvii
SUPERTYPE rule, 171, 210

support windows, 73
"Delete” option, 77
example, 73

symbolic links
File Alteration Monitor, 114
symbolic values
schemes, 15
syntax
conventions, xxvii
system
default printer, 240

T

tag command, 212

target formats
3D graphics formats, 103
audio formats, 102
image formats, 102
movie formats, 103
SGI formats, 101

targets

377



Index

data exchange, 101-105
ICCCM, 225

telldesktop command, 174
templates

icons, 189
testing

application with schemes, 21
text

copy. See data exchange
text editor

example setting, 157

setting on desktop, 156
text field widget, 28
text widget, 28

ThumbWheel widget, 38-41
callback structure, 40
detecting changes, 40
example program, 252
interface, 39
interface values, 39
values, 40

TIFF data, 103

title
minimized window, 89

titles
of windows, 79
tools
application integration, xxxii
IRIS GL, xxxvii
OpenGL, xxxvii
Rapid App, xxxiv-xxxvi
ViewKit, xxxiv-xxxvi, xxxvii
topics
additional references, xxvi
tracing
design templates, 189

transferring data, 91-106, 319-358

See Primary Transfer

378

Transformation button
IconSmith, 191

transformation pin, 179
ttyExecutable predefined file type, 314
ttyLaunchExecutable predefined file type, 314
ttyLaunchOutExecutable predefined file type, 315
ttyOutExecutable predefined file type, 314
TYPE rule, 171, 210
types

MIME, 225

predefined file types, 309-315
predefined file types. See also predefined file types

U

”Undo” option
IconSmith, 184

URL
access in helpmap file, 142

user interaction
Finder widget, 45

\%

variables
desktop, 261-262
icon status, 306
set, FIRs, 219
vertex, 180
ViewKit, xxxiv-xxxvi
desktop integration, xxxvii
HTML widget, 54
reference, xxvi
retrieve resource, 14
views
desktop, xxx

virtual reality data, 104

007-2006-130



Index

virtual screens, 64
VRML data, 104

w

WAVE data, 102
WAVEFRONT data, 104

Web access
HTML widget, 52-57
information retrieval, 52
licensing, 52
online help, 52
web browser
setting on desktop, 156
web browser setting, 157
WEBBROWSER variable, 157
wheel widget. See ThumbWheel widget
widgets, 23-52
ApplicationShell, 69
Arc, 46
building demos, 24
Color Chooser example program, 242
Color Chooser Makefile example, 244
ColorChooser, 30-35
ColorChooser. See also colors
demos, 24
Dial, 36-38
Dial example program, 244
Dial. See also Dial widget
Drop Pocket, 41-42
Drop Pocket example program, 247
Drop Pocket Makefile example, 248
enhanced, 25-29
example programs, 241-259
File Selection Box, 25
File Selection Box example program, 255
File Selection Box Makefile example, 257
Finder, 42-46
Finder example program, 250

007-2006-130

Finder. See also Finder widget
Graph, 46-47

Grid, 48-52

Grid. See also Grid widget

History Button example program, 251
HTML viewer component, 52, 57
knob, 36-38

LED example program, 259
OpenGL, 29

Percent Done Indicator example, 258
percentage done, 27

programming mixed-model, 29
progress indicator, 27

Scale, 27

Scale example program, 258
SgColorChooser, 30

slider, 27

Springbox, 47-48

text, 28

text field, 28

ThumbWheel, 38-41

ThumbWheel example program, 252
ThumbWheel. See also ThumbWheel widget

window categories, 65-67
implementation, 68

window management, 59-81
communication with session manager, 68
debugging, 63

window manager, 3
and session manager, 68
protocols, 75-79
sending messages, 75

windows, 79-81
Also see IconSmith, windows
banner, 79
co-primary, 71
customizing, 83-89
Desks Overview, xxx
desktop, xxx
dialogs, 73,74

379



Index

example, creating a co-primary, 71
example, creating a dialog, 74
example, creating a main primary, 69
example, creating a support, 73
example, delete protocol, 77
example, quit protocol, 75
example, save yourself protocol, 78
help, 126
Icon Catalog, xxx
iconified, 83-89
iconified, changing state, 89
iconified, creating, 85
iconified, examples, 84
iconified, labeling, 89
iconified, using imgworks, 88
integration with desktop, 69
main, 69
minimized, 83-89

creating, 85

examples, 84

using imgworks, 88
minimized, changing state, 89
minimized, labeling, 89
placement, 79-81
pop-up, 71
primary, 69
protocol, 75
save yourself example, 78
save yourself protocol, 77
sending messages, 75
session management, 77
support, 73
title, 79, 89

WINEDITOR variable, 157

WM_COMMAND
session management, 62

writing help
See help

380

X

X Window System
reference, xxvi
Xt help
See help

007-2006-130



	Examples
	Figures
	Tables
	New Features in This Guide
	About This Guide
	What This Guide Contains
	How to Use This Guide
	What You Should Know Before Reading This Guide
	Suggested Reading
	Font Conventions in This Guide

	Integrating an Application Into the IRIX Interactive Desktop Environment: An Introduction
	About the IRIX Interactive Desktop Environment
	Implementation Strategies and Toolkits
	Implementation Checklist
	Using ViewKit and RapidApp
	ViewKit
	RapidApp


	Integrating an Application

	Getting the Right Look and Feel: An Overview
	About the IRIX Interactive Desktop Look and Feel
	Getting the Right Look and Feel: The Basic Steps

	Getting the IRIX Interactive Desktop Look
	Using Schemes
	Schemes Overview
	Why You Should Use Schemes
	Basic Scheme Concepts

	Using Schemes in Your Application
	Turning on Schemes for Your Application
	Special Considerations for Programming with Schemes
	Assigning Non-Default Colors and Fonts to Widgets
	Directly Accessing Colors and Fonts
	Pre-Defined Scheme Resources and Symbolic Values

	Extending a Scheme to Support New Colors
	Scheme File Organization
	How to Extend a Scheme

	Testing Your Application with Schemes
	Creating New Schemes
	Hard-Coding a Scheme for an Application

	Using the SGI Enhanced Widgets
	Using the SGI Enhanced Widgets
	Using the Widget Demos
	Location of Widget Demos
	Instructions for Building the Widget Demos

	The Enhanced Widgets
	The File Selection Box Widget
	The Scale (Percent Done Indicator) Widget
	The Text and TextField Widgets

	The Mixed-Model Programming Widgets
	The SGI Enhanced Widgets
	The Color Chooser Widget
	Controlling the Color Chooser Interface
	Getting and Setting the Color Chooser’s Colors
	Handling User Interaction with the Color Chooser

	The Dial Widget
	Controlling the Dial Interface
	Getting and Setting the Dial’s Value
	Detecting Changes in the Dial’s Value

	The Thumbwheel Widget
	Controlling the ThumbWheel Interface
	Getting and Setting the ThumbWheel’s Value
	Detecting Changes in the ThumbWheel’s Value

	The Drop Pocket Widget
	man Page Text

	The Finder Widget
	Controlling the Finder Interface
	Getting and Setting Finder Values
	Handling User Interaction with the Finder

	The Graph Widget
	The Springbox Widget
	The Grid Widget
	Setting Grid Characteristics
	Setting Constraints on the Child Widget of a Grid
	Examples of Using the Grid Widget


	HTML Viewer Component
	Overview of the HTML Viewer Components
	Viewer Components
	Supported Tags and Attributes


	Window, Session, and Desk Management
	Window, Session, and Desk Management Overview
	Window Management
	Session Management
	Overview of Session Management
	Types of Session Management: Continuous and Explicit
	Adding Session Management to Your Application
	Setting the WM_COMMAND String
	Saving Session Information to a File
	Debugging Tips
	Reference

	Desk Management
	Further Reading on Window and Session Management

	Implementing an Application Model
	Implementing the “Single Document, One Primary” Model
	Implementing the “Single Document, Multiple Primaries” Model
	Implementing the “Multiple Document, Visible Main” Model
	Implementing the “Multiple Document, No Visible Main” Model

	Interacting With the Window and Session Manager
	Creating Windows and Setting Decorations
	Creating a Main Primary Window
	Creating a Co-Primary Window
	Creating a Support Window
	Creating a Dialog

	Handling Window Manager Protocols
	Handling the Window Manager Quit Protocol
	Handling the Window Manager Delete Window Protocol
	Handling the Window Manager Save Yourself Protocol

	Setting the Window Title
	Controlling Window Placement and Size
	Controlling Window Placement
	Controlling Window Size



	Customizing Your Application’s Minimized Windows
	Some Different Sources for Minimized Window Images
	Creating a Minimized Window Image: The Basic Steps
	Using mediarecorder to Get an RGB Format Image
	Taking a Screen Snapshot With mediarecorder

	Resizing the RGB Image Using imgworks

	Setting the Minimized Window Label
	Changing the Minimized Window Image

	Interapplication Data Exchange
	Data Exchange Overview
	Primary Transfer Model Overview
	Clipboard Transfer Model Overview
	Interaction Between the Primary and Clipboard Transfer Models

	Implementing the Primary Transfer Model
	Data Selection
	Requests for the Primary Selection
	Loss of the Primary Selection
	Inserting the Primary Selection

	Implementing the Clipboard Transfer Model
	Cut Actions
	Copy Actions
	Requests for the Clipboard Selection
	Paste Actions
	Loss of the Clipboard Selection

	Supported Target Formats
	Data Conversion Service
	The Converter Registry
	The GoldenGate API


	Monitoring Changes to Files and Directories
	FAM Overview
	Theory of Operation
	FAM Libraries and Include Files

	The FAM Interface
	Opening and Closing a FAM Connection
	Monitoring a File or Directory
	Suspending, Resuming, and Canceling Monitoring
	Detecting Changes to Files and Directories
	Symbolic Links

	FAM Examples

	Using FAM
	Waiting for File Changes
	Polling for File Changes


	Providing Online Help With SGIHelp
	Overview of SGIHelp
	The Help Viewer
	The SGIHelp Library and Include File
	Help Document Files
	Application Helpmap Files

	The SGIHelp Interface
	Initializing the Help Session
	Displaying a Help Topic
	Displaying the Help Index

	Implementing Help in an Application
	Constructing a Help Menu
	Implementing a Help Button
	Providing Context-Sensitive Help

	Application Helpmap Files
	Helpmap File Conventions
	Helpmap File Format
	Helpmap Fields
	Examples of Helpmap Entries
	Example of Helpmap Entry to Access a Web Browser

	Widget Hierarchies in the Helpmap File

	Writing the Online Help
	Overview of Help Document Files
	Viewing the Sample Help Document Files
	Creating a Help Document File
	Preparing to Build the Online Help
	Building the Online Help
	Finding and Correcting Build Errors

	Producing the Final Product
	Creating the Installable Subsystem
	Incorporating the Help Subsystem into an Installable Product
	Incorporating the Help Subsystem into a Product With a Custom Installation Script

	Bibliography of SGML References

	Handling Users’ System Preferences
	Handling the Mouse Double-Click Speed Setting
	Using the Default Viewer and Editor Utilities Panel
	Selecting Utilities and Their Values
	Setting the Preferred Text Editor


	Creating Desktop Icons: An Overview
	About IRIX Interactive Desktop Icons
	Checklist for Creating an Icon
	Creating an Icon: The Basic Steps Explained in Detail
	Step One: Tagging Your Application
	Step Two: Drawing a Picture of Your Icon
	Step Three: Programming Your Icon
	Where to Put FTR Files
	Naming FTR Files
	Name the File Type
	Add the FTRs
	Add the FTRs: An Alternate Method
	An Example File Type

	Step Four: Compiling the Source Files
	Step Five: Installing Your Application in the Icon Catalog
	Step Six: Restarting the Desktop
	Step Seven: Updating Your Installation Process


	Using IconSmith
	About IconSmith
	Where to Install Your Completed Icon
	Some Definitions
	Caret
	Transformation Pin
	Vertex
	Path

	Starting IconSmith
	IconSmith Menus
	IconSmith Windows
	Drawing With IconSmith
	Drawing Paths
	Drawing Filled Shapes
	Deleting
	Keeping the 3-D Look
	Drawing for All Scales
	The Preview Box
	Changing Drawing Size

	Sharing Design Elements
	Templates

	Selecting
	Partial
	Deselect Fragments
	Select Next
	Select All

	Transformations
	Scale
	Scale X and Y
	Rotate
	Shear Y

	Concave Polygons
	Constraints: Gravity (Object) Snap and Grid Snap
	Controlling the Grid
	Controlling Gravity

	Icon Design and Composition Conventions
	Importing Generic Icon Components (Magic Carpet)
	Icon Size
	Selecting Colors

	Advanced IconSmith Techniques
	Drawing a Circle
	Drawing an Oval
	Isometric Circles
	Isometric Transformation
	Import Existing Object
	Finishing Your Icon



	File Typing Rules
	A Table of the FTRs With Descriptions
	Naming File Types: The TYPE Rule
	Categorizing File Types: The SUPERTYPE Rule
	Matching File Types With Applications: The MATCH Rule
	Matching Tagged Files
	Matching Files Without the tag Command
	Writing Effective Match Expressions
	Valid Match-Expressions
	Functions
	Using dircontains()
	Predefined File Types


	Matching Non-Plain Files: The SPECIALFILE Rule
	Adding a Descriptive Phrase: The LEGEND Rule
	Setting FTR Variables: The SETVAR Rule
	Programming Open Behavior: The CMD OPEN Rule
	Programming Alt-Open Behavior: The CMD ALTOPEN Rule
	Programming Drag and Drop Behavior: The CMD DROP and DROPIF Rules
	Mapping Names: The MAP Rule
	Programming Print Behavior: The CMD PRINT Rule
	Adding Menu Items: The MENUCMD Rule
	Getting the Icon Picture: The ICON Rule
	Creating a File Type: An Example
	Open an FTR File for scribble
	Add the Rules to the scribble FTR File
	Line 1: Name the File Type
	Line 2: Classify the Filetype
	Line 3: Match the File Type
	Line 4: Provide a Descriptive Phrase
	Line 5: Define Icon-Opening Behavior
	Line 6: Define Drag and Drop Behavior
	Line 7: Define Alt-Open Behavior
	Line 8: Add the Icon Picture

	Name the scribble FTR File and Put It in the Appropriate Directory
	The scribble FTRs


	Printing From the Desktop
	About routeprint
	Converting a File for Printing
	Print Costs

	The Print Conversion Rules
	The CONVERT Rule
	The COST Rule
	The FILTER Rule

	The Current Printer

	Example Programs for SGI Enhanced Widgets
	Example Program for Color Chooser
	Makefile for colortest.c

	Example Program for Dial
	Example Program for Drop Pocket
	Makefile for Drop Pocket Example

	Example Program for Finder
	Example Program for History Button (Dynamenu)
	Example Program for ThumbWheel
	Example Program for File Selection Box
	Makefile for File Selection Box Example Program

	Example Programs for Scale (Percent Done Indicator) Widget
	Example Program for LED Widget

	Desktop Variables
	Variables Set By the Desktop
	Variables Set By the User

	Online Help Examples
	A Simple Help Document
	Allowable Elements in a Help Document
	An Example of Implementing Help in an Application

	The Icon Description Language
	Operators
	Constants
	Variables
	Functions

	Predefined File Types
	Naming Conventions for Predefined File Types
	The Predefined File Types and What They Do
	SpecialFile
	Directory
	Ascii
	Source Files
	Binary
	ImageFile
	Executable
	Scripts
	GenericWindowedExecutable
	LaunchExecutable
	ttyExecutable
	ttyLaunchExecutable
	ttyOutExecutable
	ttyLaunchOutExecutable


	FTR File Directories
	Using GoldenGate Data Conversion Services
	Converting Data Using the GoldenGate Data Conversion Service
	Overview of the Conversion Process
	The Converter Registry
	Creating a Conversion Context
	Evaluating a Converter
	Converting Data In a File or Stream

	Selecting a Converter
	Querying the Converter Registry
	Setting Up the Conversion Context
	Evaluating Converters
	Getting Converter Details

	Using GoldenGate to Convert Data
	Converting Data Using File Converters
	Converting Data Using Stream Data Converters
	Initializing the Pipeline
	Sending and Receiving Data
	Cleaning Up
	Converter Return Status Values


	Compiling and Linking Your Program with GoldenGate
	Writing Converters for the GoldenGate Data Conversion Service
	Overview of the Converter Writing Process
	Writing Converter Code
	Implementing Your Converter - Handling Evaluation Requests
	Implementing Your Converter - Handling Conversion Requests
	Input and Output Formats
	Process Blocking
	Programming Constraints
	Example of a Simple Stream Converter

	Building a DSO
	Creating a DSO For Your Converter
	Creating a Converter Description File

	Testing Your Converter
	Registering Your Converter
	The System Registry
	Some Registry Syntax Details

	Installing Your Converter
	Some Sample Converters
	A Simple StreamToStream Converter - UpperCase
	A FileToFile Converter - UNIX Man Page File to HTML File



	Standard Menu Resources
	Common Menu Bar Resources
	Standard File Menu Resources
	Standard Edit Menu Resources

	Index

