
IRIS ViewKit™

Programmer’s Guide

Document Number 007-2124-004

IRIS ViewKit™ Programmer’s Guide
Document Number 007-2124-004

CONTRIBUTORS

Written by Ken Jones, Douglas B. O’Morain, and Sandra Motroni
Illstrated by Martha Levine
Edited by Christina Cary
Production by Gloria Ackley and Linda Rae Sande
Engineering contributions by Doug Young, Kim Rachmeler, Mike Yang, and

Robert Blean
St Peter’s Basilica image courtesy of ENEL SpA and InfoByte SpA. Disk Thrower

image courtesy of Xavier Berenguer, Animatica.

© Copyright 1994-1996, Silicon Graphics, Inc.— All Rights Reserved
The contents of this document may not be copied or duplicated in any form, in whole
or in part, without the prior written permission of Silicon Graphics, Inc.

RESTRICTED RIGHTS LEGEND
Use, duplication, or disclosure of the technical data contained in this document by
the Government is subject to restrictions as set forth in subdivision (c) (1) (ii) of the
Rights in Technical Data and Computer Software clause at DFARS 52.227-7013
and/or in similar or successor clauses in the FAR, or in the DOD or NASA FAR
Supplement. Unpublished rights reserved under the Copyright Laws of the United
States. Contractor/manufacturer is Silicon Graphics, Inc., 2011 N. Shoreline Blvd.,
Mountain View, CA 94043-1389.

Silicon Graphics, the Silicon Graphics logo, and IRIS are registered trademarks and
IRIS Indigo Magic, IRIS InSight, IRIS ViewKit and IRIX are trademarks of Silicon
Graphics, Inc. X Window System is a trademark of Massachusetts Institute of
Technology. Motif and OSF/Motif are trademarks of Open Software Foundation.
ToolTalk is a trademark of Sun Microsystems, Inc. PostScript is a registered
trademark of Adobe Systems, Inc.

iii

Contents

Introduction xxi
What This Guide Contains xxi
What You Should Know Before Reading This Guide xxiii
Conventions Used in This Guide xxiv

Typographical Conventions xxiv
Class Inheritance Graph Conventions xxv

1. Overview of ViewKit 1
Major ViewKit Elements 2

Framework Classes 2
Interface Components 2
Convenience Utilities 3

Mixing ViewKit and Standard X and IRIS IM Functions 3
Compiling and Linking ViewKit Programs 5

Required Packages 5
Required Header Files 6
Required Libraries 6

Getting Started 7
The Simplest ViewKit Program 7
Demonstration Programs 10

iv

Contents

2. Components 11
Definition of a Component 11
VkComponent Class 12

Component Constructors 13
Component Destructors 16
VkComponent Access Functions 17
Displaying and Hiding Components 19
VkComponent Utility Functions 20
Using Xt Callbacks With Components 21
Handling Component Widget Destruction 24

Component Resource Support 26
Setting Resource Values by Class or Individual Component 26
Initializing Data Members Based on Resource Values 28
Setting Default Resource Values for a Component 30
Convenience Function for Retrieving Resource Values 32

ViewKit Callback Support 34
Registering ViewKit Callbacks 35
Removing ViewKit Callbacks 38
Defining and Triggering ViewKit Callbacks 39
Predefined ViewKit Callbacks 40

Deriving Subclasses to Create New Components 41
Subclassing Summary 41
Creating a New Component 43
Using and Subclassing a Component Class 46

3. The ViewKit Application Class 53
Overview of the VkApp Class 53
VkApp Constructor 54
Running ViewKit Applications 56
ViewKit Event Handling 56
Customizing Event Handling 58
Quitting ViewKit Applications 59
Managing Top-Level Windows 60

Contents

v

Setting Application Cursors 61
Setting and Retrieving the Normal Cursor 61
Setting and Retrieving the Busy Cursor 62
Setting and Retrieving a Temporary Cursor 68

Supporting Busy States 69
Entering and Exiting Busy States Using ViewKit 69
Animating the Busy Cursor 72
Installing Different Busy Dialogs 73

Maintaining Product and Version Information 74
Application Data Access Functions 76
Deriving Classes From VkApp 77

VkApp Protected Functions and Data Members 77
Subclassing VkApp 78

Putting Applications in the Overlay Planes 80

4. ViewKit Windows 81
Overview of ViewKit Window Support 81

ViewKit’s Multi-Window Model 81
ViewKit Window Classes 82

Window Class Constructors 84
Window Class Destructors 85
Creating the Window Interface 85

Creating the Window Interface in the Constructor 85
Creating the Window Interface in the setUpInterface() Function 92
Adding a Window Interface to a Direct Instantiation of a ViewKit Window Class 94
Replacing a Window’s View 95

Manipulating Windows 95
Window Data Access Functions 96
Window Manager Interface 97

Window and Icon Titles 97
Window Properties and Shell Resources 98

Menu Bar Support 100

vi

Contents

Deriving Window Subclasses 101
Additional Virtual Functions and Data Members 101
Window Creation Summary 105
Window Subclassing 106

5. Creating Menus With ViewKit 115
Overview of ViewKit Menu Support 116
ViewKit Menu Item Classes 118

Common Features of Menu Items 118
Menu Actions 122
Confirmable Menu Actions 123
Menu Toggles 123
Menu Labels 124
Menu Separators 124

ViewKit Menu Base Class 125
Constructing Menus 125
Manipulating Items in Menu 141
Menu Access Functions 146

Using ViewKit Menu Subclasses 147
Menu Bar 147
Submenus 149
Radio Submenus 150
Option Menus 154
Popup Menus 158

Putting Menus in the Overlay Planes 163

6. ViewKit Undo Management and Command Classes 165
Undo Management 165

Overview of ViewKit Undo Management 165
Using ViewKit’s Undo Manager 166
Using ViewKit’s Undo Manager 172

Command Classes 176
Overview of Command Classes 176
Using Command Classes in ViewKit 177

Contents

vii

7. Using Dialogs in ViewKit 181
Overview of ViewKit Dialog Management 182
ViewKit Dialog Class Overview 182
ViewKit Dialog Base Class 184

Posting Dialogs 185
Manipulating Dialogs Prior to Posting 192
Using a prepostCallback 192
Using prepost() 192
Unposting Dialogs 193
Setting the Title of the Dialog 193
Setting the Button Labels 195
Dialog Access and Utility Functions 196

Using the ViewKit Dialog Subclasses 198
Information Dialogs 198
Warning Dialogs 200
Error Dialogs 200
Fatal Error Dialogs 201
Busy Dialog 201
Interruptible Busy Dialog 202
Progress Dialog 204
Question Dialog 205
Prompt Dialog 206
File Selection Dialog 208
Deriving New Dialog Classes Using the Generic Dialog 211

Putting Dialogs in the Overlay Planes 213

8. Preference Dialogs 215
Overview of ViewKit Preference Dialogs 216

ViewKit Preference Dialog Class 216
ViewKit Preference Item Classes 217
Building a ViewKit Preference Dialog 219

viii

Contents

ViewKit Preference Item Base Class 223
Preference Item Labels 223
Getting and Setting Preference Item Values 225
Preference Item Access Functions 226

ViewKit Preference Item Classes 227
Text Fields 227
Toggle Buttons 228
Option Menus 232
Labels 235
Separators 237
“Empty” Space Preference Items 237
Groups of Preference Items 237

ViewKit Preference Dialog Class 244
Creating a Preference Dialog 244
Setting the Preference Items for a Preference Dialog 245
Posting and Dismissing Preference Dialogs 245
Responding When the User Clicks a Preference Dialog Button 246
Using Values Set in a Preference Dialog 248
Creating Preference Dialog Subclasses 249

9. Handling Visuals With ViewKit 251
Overview of the VkVisual Class 251
Overview of X Visuals 252

X11 Visual Attributes 253
Xt Visual Handling 254
Visual Inheritance in ViewKit 255
Maintaining Consistency 255
Colormap Coordination 256

Useful Enums 257
VkVisual Constructors and Destructor 259

Contents

ix

Member Functions 259
Setting the Class’s Visual Information 259
Data Access Functions 262
Debugging Functions 265
Static Functions 266

VkVisual Examples 266

10. ViewKit Cut and Paste 269
Overview of ViewKit Cut and Paste 269
Primary and Clipboard Transfer Models 270
VkCutPaste Constructor and Destructor 270
Copying Data 271
Pasting Data 273
Dragging Data 275
Accepting Drops 277
Accepting Drops From the Indigo Magic Desktop 281
Registering New Data Types 283
Using Data Type Converters 285
File and Data Ownership 288
Miscellaneous Functions 294

11. Using a Help System With ViewKit 297
ViewKit Programmatic Interface to a Help Library 297
Using ViewKit Help 298
Using the SGIHelp Library 299
Using an External Help Library 300
ViewKit Support for Building Help 300
ViewKit Help Menu 300

Implementation of the Help Menu 300
Other Types of Help 303

Context-Sensitive Help Procedures 303
Dialog Help Procedures 303
Application Help Button Procedures 304

QuickHelp 304

x

Contents

12. The ViewKit Graph Component 307
Overview of ViewKit Graphs 307

Graph Widget 308
Building a Graph 309
Interactive Viewing Features Provided by VkGraph 312

ViewKit Node Class 317
Basic Node Functionality 318
Creating Node Subclasses 321

ViewKit Graph Class 322
VkGraph Constructor and Destructor 322
Adding Nodes and Specifying Node Connectivity 322
Removing Nodes 324
Indicating Which Nodes to Display 325
Laying Out the Graph 328
Butterfly Graphs 329
Displaying a Graph Overview 330
Graph Utility Functions 331
Graph Access Functions 332
Reusing a Graph Object 333
ViewKit Callbacks Associated With VkGraph 333
X Resources Associated With VkGraph 334
Subclassing VkGraph 334

13. Miscellaneous ViewKit Display Classes 337
ViewKit Support for Double-Buffered Graphics 337

Double Buffer Constructor and Destructor 338
Drawing in the Double Buffer Component 338
Switching Buffers in the Double Buffer Component 339
Handling Double Buffer Component Resize Requests 339

Tick Marks for Scales 339
Tick Marks Component Constructor 340
Configuring the Tick Marks 340
X Resources Associated With the Tick Marks Component 342

Contents

xi

Management Classes for Controlling Component and Widget Display
Characteristics 343

ViewKit Support for Aligning Widgets 343
ViewKit Support for Resizing and Moving Widgets 346

14. Miscellaneous ViewKit Data Input Classes 351
Check Box Component 352

Creating a Check Box 352
Adding Toggles to the Check Box 352
Setting Check Box and Toggle Labels 353
Setting and Getting Check Box Toggle Values 355
Recognizing Changes in Check Box Toggle Values 356

Radio Check Box Component 359
Tab Panel Component 361

Tab Panel Constructor 363
Adding Tabs to a Tab Panel 364
Removing a Tab From a Tab Panel 365
Adding a Pixmap to a Tab 366
Responding to Tab Selection 367
Tab Panel Access Functions 368
X Resources Associated With the Tab Panel Component 371

Text Completion Field Component 374
Text Completion Field Constructor and Destructor 374
Setting and Clearing the Text Completion Field Expansion List 374
Retrieving the Text Completion Field Contents 375
Responding to Text Completion Field Activation 375
Deriving Text Completion Field Subclasses 375

Repeating Button Component 376
Repeating Button Constructor 376
Responding to Repeat Button Activation 377
Repeating Button Utility and Access Functions 377
X Resources Associated With the Repeating Button Component 378

xii

Contents

Management Classes for Controlling Component and Widget Operation 378
Supporting “Ganged” Scrollbar Operation 378
Enforcing Radio-Style Behavior on Toggle Buttons 380
Modified Text Attachment 382

A. Contributed ViewKit Classes 391
ViewKit Meter Component 391

Meter Constructor and Destructor 391
Resetting the Meter 391
Adding Items to a Meter 392
Updating the Meter Display 393
Setting the Meter’s Resize Policy 393
Determining the Desired Dimensions of the Meter 394
X Resources Associated With the Meter Component 394

ViewKit Pie Chart Component 395
ViewKit Outline Component 395

Constructing an Outline Component 398
Adding Items to an Outline 398
Setting Display Attributes for Outline Items 401
Closing and Opening Outline Topics 402
Outline Utility and Access Functions 403

VkOutlineASB 404

B. ViewKit Class Graph 405

Glossary 409

Index 411

xiii

Examples

Example 1-1 The Simplest ViewKit Program: hello.c++ 7
Example 2-1 Component Constructor 14
Example 2-2 Freeing Space in a Component Destructor 17
Example 2-3 Component Constructor With Xt Callbacks 23
Example 2-4 Initializing a Data Member From the Resource Database 28
Example 2-5 Setting a Component’s Default Resource Values 31
Example 2-6 Using the Predefined deleteCallback ViewKit Callback 40
Example 2-7 Simple User-Defined Component 43
Example 2-8 Using a Component Directly 47
Example 2-9 Subclassing a Component 50
Example 3-1 Typical Use of the VkApp Class in a ViewKit Program 56
Example 3-2 Creating an Animated Busy Cursor 63
Example 3-3 Using Busy States in a ViewKit Application 70
Example 3-4 Animating the Busy Cursor 72
Example 3-5 Temporarily Installing an Interruptible Busy Dialog 74
Example 3-6 Deriving a Subclass From VkApp 78
Example 4-1 Creating a Window Interface in the Class Constructor 87
Example 4-2 Using a Component as a Window’s View 90
Example 4-3 Creating a Window’s Interface in the setUpInterface() Function 93
Example 4-4 Adding a View to a Direct Instantiation of a ViewKit Window Class 95
Example 4-5 Setting Window and Icon Titles Using Resource Values 98
Example 4-6 Creating a Window Subclass 108
Example 5-1 Providing Default Client Data When Using Static Menu

Descriptions 130
Example 5-2 Creating a Menu Bar Using a Static Description 131
Example 5-3 Creating a Menu Bar Dynamically 138
Example 5-4 Manipulating Menu Items 143

xiv

Examples

Example 5-5 Using a VkRadioSubMenu Object 152
Example 5-6 Using a VkOptionMenu Object 156
Example 5-7 Using a VKPopupMenu Object 160
Example 6-1 Adding a Non-Menu Item Directly to the Undo Stack 169
Example 6-2 Using the Undo Manager 172
Example 7-1 Posting a Dialog 190
Example 7-2 Posting an Information Dialog 198
Example 7-3 Using the Interruptible Busy Dialog 203
Example 7-4 Using the Progress Dialog 204
Example 7-5 Extracting the Text String From a Prompt Dialog 207
Example 7-6 Extracting the Text String From a File Selection Dialog 210
Example 8-1 Creating a ViewKit Preference Dialog 219
Example 8-2 Setting Default Resource Values for Preference Items 224
Example 8-3 Declaring Preference Items Publicly Accessible 248
Example 9-1 Putting a single widget in a non-default visual using VkVisual: 266
Example 9-2 Creating a GC of the right depth: 267
Example 10-1 Registering an XPM to GIF89 converter 287
Example 10-2 Data and File Ownership Changes While Copying Filenames 289
Example 10-3 Data and File Ownership Changes While Pasting Filenames 290
Example 10-4 Data and File Ownership Changes While Copying Normal Data 290
Example 10-5 Data and File Ownership Changes While Pasting Normal Data 291
Example 10-6 Data and File Ownership Changes While Dragging Filename Data 291
Example 10-7 Data and File Ownership Changes While Accepting Filename Data 292
Example 10-8 Data and File Ownership Changes While Dragging Normal Data 292
Example 10-9 Data and File Ownership Changes While Accepting Normal Data 293
Example 10-10 Data and File Ownership Changes While Accepting _SGI_ICON

Data 293
Example 12-1 Creating a Graph Using VkGraph 309
Example 14-1 Code to Create Sample Check Box 354
Example 14-2 Code to Create Sample Radio Box 360

xv

Figures

Figure i Class Inheritance Graph xxv
Figure 1-1 Result of Running hello 8
Figure 2-1 Inheritance Graph for VkCallbackObject and VkComponent 11
Figure 2-2 Default Appearance of a StartStopPanel Component 43
Figure 2-3 Resulting PanelWindow Window 50
Figure 3-1 Inheritance Graph for VkApp 53
Figure 3-2 Busy Dialog 71
Figure 3-3 Nested Busy Dialog 71
Figure 3-4 Product Information Dialog 75
Figure 4-1 Inheritance Graph for VkSimpleWindow and VkWindow 81
Figure 4-2 Widget Hierarchy of Top-Level Windows in ViewKit Applications 82
Figure 4-3 Simple Example of a VkSimpleWindow Subclass 89
Figure 4-4 Using a Component as a Window’s View 91
Figure 4-5 Widget Hierarchy of ColorWindow Subclass 107
Figure 4-6 ColorWindow Window Subclass 113
Figure 5-1 Inheritance Graph for the ViewKit Menu Classes 115
Figure 5-2 Main Window With Menu Bar Created by Static Description 133
Figure 5-3 Menu Pane Created by a Static Description 133
Figure 5-4 Menu Pane Containing a Label and a Submenu 134
Figure 6-1 Inheritance Graph for the ViewKit Classes Supporting Undo

Management and Command Classes 165
Figure 7-1 Inheritance Graph for the ViewKit Dialog Classes 181
Figure 7-2 Information Dialog 189
Figure 7-3 Question Dialog 190
Figure 7-4 Setting the Dialog Title 194
Figure 7-5 Another Example of Setting the Dialog Title 195
Figure 7-6 Information Dialog 199

xvi

Figures

Figure 7-7 File Selection Dialog 209
Figure 8-1 Inheritance Graph for the ViewKit Preference Dialog Classes 215
Figure 8-2 ViewKit Preference Dialog 219
Figure 8-3 Preference Dialog With a Text Field Preference Item 227
Figure 8-4 Preference Dialog With Toggle Button Preference Item 229
Figure 8-5 Toggle Preference Items in a Homogenous Vertical Group 230
Figure 8-6 Toggle Preference Items in a Non-Homogenous Vertical Group 231
Figure 8-7 Preference Dialog With Option Menu Preference Item 232
Figure 8-8 Preference Dialog With Label Preference Item 236
Figure 8-9 Vertical VkPrefGroup Item With Label 238
Figure 8-10 Horizontal VkPrefGroup Item With Label 239
Figure 8-11 VkPrefList Item 240
Figure 8-12 VkPrefRadio Item With Label 241
Figure 10-1 Inheritance Graph for VkCutPaste 269
Figure 11-1 ViewKit Help Menu 301
Figure 12-1 Inheritance Graph for the ViewKit Graph Classes 307
Figure 12-2 Graph Created With VkGraph 308
Figure 12-3 Graph Command Panel 312
Figure 12-4 Interactively Changing the Graph Zoom Value 314
Figure 13-1 Inheritance Graph for the Miscellaneous ViewKit Display Classes 337
Figure 13-2 VkTickMarks Component 340
Figure 13-3 Setting Tick Mark Scale and Spacing 341
Figure 13-4 Widget With a VkResizer Attachment 346
Figure 13-5 Effect of Resizing a Widget With a VkResizer Attachment 347
Figure 13-6 Effect of Moving a Widget With a VkResizer Attachment 347
Figure 14-1 Inheritance Graph for the Miscellaneous ViewKit Input Classes 351
Figure 14-2 Sample Check Box 353
Figure 14-3 Sample Radio Box 359
Figure 14-4 Horizontal VkTabPanel Component 361
Figure 14-5 Vertical VkTabPanel Component 362
Figure 14-6 Collapsed Tabs in a VkTabPanel Component 362
Figure 14-7 Using the Popup Menu to Select a Collapsed Tab in a VkTabPanel

Component 363

Figures

xvii

Figure 14-8 VkModifiedAttachment Dogear 382
Figure 14-9 “Flipping” to a Previous Text Widget Value Using a

VkModifiedAttachment Dogear 382
Figure A-1 VkOutline Component 396
Figure A-2 VkOutline Component With the Scrollbar Visible 397
Figure A-3 Closing a Heading in a VkOutline Component 398
Figure B-1 ViewKit Class Graph, Part 1 406
Figure B-2 ViewKit Class Graph, Part 2 407

xix

Tables

Table 5-1 Required and Optional Parameters in a Static Menu Description 127

xxi

Introduction

This guide describes how to create programs using IRIS ViewKit™, a C++ toolkit that
provides commonly needed facilities for applications based on the IRIS Indigo Magic™
(IRIS IM) user interface toolkit (the Silicon Graphics port of the industry-standard
OSF/Motif™ user interface toolkit for use on Silicon Graphics workstations).

What This Guide Contains

The first two chapters of this guide provide an overview of ViewKit concepts:

Chapter 1, “Overview of ViewKit”
Describes the ViewKit toolkit and the advantages of using it compared
to programming directly in IRIS IM and X, discusses the major elements
of ViewKit, and provides instructions for compiling ViewKit programs.

Chapter 2, “Components”
Describes the ViewKit component class, gives instructions for using
ViewKit components, and lists guidelines for creating new components.

The next six chapters describe the common ViewKit components that you use in
practically every ViewKit program:

Chapter 3, “The ViewKit Application Class”
Explains the services provided by the ViewKit application class and
gives instructions for controlling application-level services in your
program.

Chapter 4, “ViewKit Windows”
Explains the ViewKit model for supporting multiple windows in an
application, and describes how to create and manipulate application
windows.

Chapter 5, “Creating Menus With ViewKit”
Describes how to create and manipulate different types of menus in a
ViewKit application.

xxii

Introduction

Chapter 6, “ViewKit Undo Management and Command Classes”
Explains how to implement support for “undoing” operations and
describes how to implement actions as command classes.

Chapter 7, “Using Dialogs in ViewKit”
Discusses the ViewKit dialog management support, describes how to
post and manipulate dialogs, and provides an overview of the different
types of dialogs supported by ViewKit.

Chapter 8, “Preference Dialogs”
Describes how to use preference dialogs to maintain user preferences.

Chapter 9, “Handling Visuals With ViewKit”
Describes how to work with X and Xt visuals.

Chapter 10, “ViewKit Cut and Paste”
Explains how to implement cut, paste, drag, and drop capabilities.

Chapter 11, “Using a Help System With ViewKit”
Explains how to use a help system with ViewKit applications. It also
describes the basic help system provided with ViewKit.

The rest of the book describes pre-built ViewKit components:

Chapter 12, “The ViewKit Graph Component”
Discusses the ViewKit component for creating and displaying
arc-and-node graphs.

Chapter 13, “Miscellaneous ViewKit Display Classes”
Describes a variety of components that you use primarily to display
information or to manage display items.

Chapter 14, “Miscellaneous ViewKit Data Input Classes”
Describes a variety of data input classes.

Appendix A, “Contributed ViewKit Classes”
Gives you an idea of how you can expand ViewKit by describing some
unsupported ViewKit classes that users have contributed.

Appendix B, “ViewKit Class Graph”
Allows you to see the ViewKit classes and how they relate to one
another.

Introduction

xxiii

What You Should Know Before Reading This Guide

This guide assumes that you are already an experienced C++ programmer. It also
assumes that you are generally familiar with IRIS IM.

For a thorough discussion of the concepts on which the ViewKit toolkit is based, see this
book:

• Young, Douglas A. Object-Oriented Programming with C++ and OSF/Motif.
Englewood Cliffs, New Jersey: Prentice Hall, Inc., 1992.

For information on OSF/Motif, see these guides:

• Open Software Foundation. OSF/Motif Programmer’s Guide, Revision 1.2. Englewood
Cliffs, New Jersey: Prentice Hall, Inc., 1992.

• Open Software Foundation. OSF/Motif Programmer’s Reference, Revision 1.2.
Englewood Cliffs, New Jersey: Prentice Hall, Inc., 1992.

• Open Software Foundation. OSF/Motif Style Guide, Revision 1.2. Englewood Cliffs,
New Jersey: Prentice Hall, Inc., 1992.

• Heller, Dan. Motif Programming Manual (X Window System Series: Volume Six).
Sebastopol, California: O’Reilly & Associates, Inc., 1992.

For information on IRIS IM enhancements to OSF/Motif and general tips for
programming in IRIS IM on Silicon Graphics workstations, refer to the IRIS IM
Programming Notes.

For comprehensive information on the X Window System™, Xlib, and Xt, see these
manuals:

• Nye, Adrian. Xlib Programming Manual (X Window System Series: Volume One).
Sebastopol, California: O’Reilly & Associates, Inc., 1992.

• O’Reilly & Associates, Inc. Xlib Reference Manual (X Window System Series: Volume
Two). Sebastopol, California: O’Reilly & Associates, Inc., 1992.

• Nye, Adrian, and Tim O’Reilly. X Toolkit Intrinsics Programming Manual (X Window
System Series: Volume Four). Sebastopol, California: O’Reilly & Associates, Inc.,
1992.

• O’Reilly & Associates, Inc. X Toolkit Intrinsics Reference Manual (X Window System
Series: Volume Five). Sebastopol, California: O’Reilly & Associates, Inc., 1992.

xxiv

Introduction

Conventions Used in This Guide

This section describes the conventions used for presenting information in this book.

Typographical Conventions

These type conventions and symbols are used in this guide:

Bold C++ class names, C++ member functions, C++ data members, function
names, literal command-line arguments (options and flags)

Italics Filenames; onscreen button names; IRIX™ commands; executable files;
manual and book titles; glossary entries; new terms; variable
command-line arguments; program variables; and variables to be
supplied by the user in examples, code, and syntax statements

Screen type Onscreen text, prompts, error messages, examples, and code listings

Bold screen type

User input, including keyboard keys (printing and nonprinting); literals
supplied by the user in examples, code listings, and syntax statements

““ (Double quotation marks) Onscreen menu items and references in text
to document section titles

() (Parentheses) Follow function names; also used to surround reference
page (man page) section in which a command, function, or class is
described

<> (Angle brackets) Surround nonprinting keyboard keys, for example,
<Esc>, <Ctrl-D>, and header filenames

IRIX shell prompt for the superuser (root)

% IRIX shell prompt for users other than superuser

Reference pages (also known as man pages) are referred to by name and section number,
in this format: name(section), where “name” is the name of a command, system call,
library routine, or class; and “section” is the section number where the entry resides. For
example, XtSetValues(3Xt) refers to the XtSetValues() reference page in section 3Xt.

Introduction

xxv

Class Inheritance Graph Conventions

Most of the chapters in this book begin with a graph depicting the inheritance hierarchy
of the classes described in that chapter. Figure i shows an example of a class inheritance
graph that might appear at the beginning of a chapter.

Figure i Class Inheritance Graph

In these inheritance graphs, classes are presented with the base classes to the left and the
derived classes to the right. Abstract classes have dashed borders and non-abstract
classes have solid borders. Classes described within the chapter appear in white boxes,
whereas classes described elsewhere appear in shaded boxes.

In the inheritance graph shown in Figure i, VkComponent is an abstract base class. As
indicated by its shaded box, it is not described within the chapter. The chapter describes
three subclasses of VkComponent: VkDoubleBuffer, an abstract class; and
VkTickMarks and VkResizer, non-abstract classes. The chapter also discusses the
non-abstract class VkAlignmentGroup, which is derived from the non-abstract base
class VkWidgetList.

VkAlignmentGroup

VkTickMarks

VkResizer

VkDoubleBuffer

VkWidgetList

VkComponent

1

Chapter 1

1. Overview of ViewKit

ViewKit is a C++ toolkit that makes it easier for you to develop applications. It provides
a collection of high-level user interface components and other support facilities that you
typically must implement in every application. For example, it provides high-level user
interface components, such as windows, menus, and dialogs.

ViewKit does not replace IRIS IM or any other user interface toolkit. In fact, it uses IRIS
IM widgets to implement all of its user interface components; also, you can directly call
IRIS IM functions to create and manipulate widgets in a ViewKit application. The
ViewKit architecture helps mask much of the complexity of programming with IRIS IM.

ViewKit offers you several benefits:

• It provides support for common user interface components such as windows,
menus, and dialogs. It also provides specialty interface components for tasks such
as displaying and managing arc-and-node graphs, displaying and managing toggle
check boxes, and managing the layout of other widgets. Creating these elements
using ViewKit is much simpler and faster than using low-level widgets to build
them from scratch. Furthermore, by using the same basic components, applications
that use ViewKit components have greater visual and behavioral consistency.

• It simplifies interaction with the X resource manager, allowing you to customize
your application using resources more easily. By designing your application to use
resource values rather than hard-coding the values in your program, you can easily
modify the appearance of your application. This approach is particularly useful for
preparing your application for internationalization.

• All user interface components in ViewKit are C++ classes, which provides a
framework for using IRIS IM in a highly structured, object-oriented way. The
ViewKit architecture encourages you to develop self-contained objects that you can
re-use in multiple applications.

• It provides support for other common application services such as interprocess
communication.

2

Chapter 1: Overview of ViewKit

Major ViewKit Elements

You can think of ViewKit as consisting of several sets of classes: framework classes,
interface components, interapplication communication, and convenience utilities. The
following sections discuss these groups.

Framework Classes

ViewKit provides a small set of classes that are either essential for all applications or
provide fundamental support for all other classes. The most basic of these classes is the
VkComponent class, which defines the basic structure of all user interface components.
All user interface classes are derived from VkComponent.

The framework classes also include support for features needed by nearly all
applications, including application management and X server setup, top-level windows,
menus, and dialog management. All classes are designed to implement as many typical
features as possible. For example: all top-level windows and dialogs handle the window
manager quit/close protocol; dialogs are cached to balance memory use and display
speed; the menu system goes beyond simply constructing menus to support dynamically
adding, removing, and replacing items, and more.

The classes that make up the framework of ViewKit are closely integrated and work
together to support essential features required by most applications as automatically as
possible. Among the basic services supported by the core ViewKit framework are single
and multi-level undo; interruptible tasks; and an application-level callback mechanism
that allows C++ classes to dynamically register member functions to be invoked by other
C++ classes.

Interface Components

In addition to the basic user interface support provided by the core framework classes,
ViewKit provides an assortment of ready-to-use interface components. Examples of
these components are a graph viewer/editor, an input field that supports name
expansion, and an outliner component for displaying and manipulating hierarchical
information.

Mixing ViewKit and Standard X and IRIS IM Functions

3

You are encouraged to use the architecture of ViewKit to create new components and
extend existing components. Creating reusable, high-level components promotes
consistency throughout a set of applications by providing elements that users can learn
once and then easily recognize in multiple applications.

Convenience Utilities

ViewKit provides various utility functions and classes for your convenience. These
utilities include simple functions that make it easier to load resources (including
automatic type conversion), classes that support the use of icons, and other
miscellaneous utilities.

Mixing ViewKit and Standard X and IRIS IM Functions

As stated earlier, ViewKit does not replace IRIS IM. It uses IRIS IM widgets to implement
all of its user interface components, and you are free to make X and IRIS IM calls directly
in a ViewKit application. ViewKit doesn’t do anything that you can’t do yourself using
IRIS IM directly, but the advantage of using ViewKit is that many commonly needed
services are already implemented for you.

Naturally, not all ViewKit services are appropriate for all applications at all times. If a
situation arises in which a ViewKit facility doesn’t meet your needs, you can use the
lower-level IRIS IM, Xt, or Xlib facilities to perform the desired operation yourself.

Most ViewKit classes are optional; however, you should be aware that certain ViewKit
classes depend on other classes. In particular, most classes depend on the existence of an
instance of the VkApp class for application management. If you plan to use any ViewKit
facilities, you should not attempt to bypass VkApp and open your own connection to the
X server, or directly call XtAppInitialize() or an equivalent function. For best results, you
should always allow VkApp to handle the Xt initialization and event dispatching.
VkApp is described in detail in Chapter 3, “The ViewKit Application Class.”

Also, you should use VkSimpleWindow or VkWindow for all top-level windows. These
classes are described in detail in Chapter 4, “ViewKit Windows.”

4

Chapter 1: Overview of ViewKit

As an example of some optional classes, consider the ViewKit dialog management
facilities. These are intended to let you use dialogs easily and effectively. ViewKit
automatically recycles dialogs (reusing the same dialog over and over for multiple
purposes), which uses less memory and can lead to faster response times. It is also easy
to add additional buttons to any dialog, to provide context-sensitive help on individual
dialogs, and much more. The ViewKit dialog management facility is designed to be as
flexible as possible, while minimizing the amount of work required of you. You can even
write your own custom dialogs that take advantage of the dialog manager.

However, because the design of the ViewKit dialog management classes makes
assumptions about the way typical applications use dialogs, the ViewKit dialog manager
can’t offer the same control that you could obtain by directly constructing and
manipulating an IRIS IM dialog. Should you encounter a situation where the behavior of
the dialog manager doesn’t match your application’s needs, you can always take the
same approach you would have to take if the dialog manager didn’t exist: create and
manipulate your own IRIS IM dialog directly using IRIS IM and Xt functions. This
doesn’t interfere with ViewKit in any way.

Before implementing your own mechanisms, you should be sure you understand the
support offered by ViewKit. Situations in which it’s necessary to duplicate functionality
supported by ViewKit should be rare. On the other hand, extending the class library by
deriving new classes, or writing completely new classes to meet application-specific
needs, is a natural part of developing any application based on ViewKit or any C++ class
library.

Compiling and Linking ViewKit Programs

5

Compiling and Linking ViewKit Programs

This section describes the software needed to compile and link ViewKit programs.

Required Packages

To compile and link with the ViewKit libraries, you must install the IRIS Development
Option (IDO). This option includes the C compiler and the X Window System™ and IRIS
IM development systems. You must also install the C++ Development Option, including
the ViewKit development option subsystems. Consult the ViewKit Release Notes for a
complete list of subsystems that you must install on your system to compile and link
ViewKit programs.

The ViewKit development option contains the following subsystems:

ViewKit_dev.sw.base
You are required to install this subsystem, which contains the optimized,
unshared C++ ViewKit libraries and include files. (The shared ViewKit
libraries are included in the IRIX system software as the
ViewKit_eoe.sw.base subsystem.)

ViewKit_dev.sw.debug
This subsystem contains the debug version of the optimized ViewKit
libraries. You can optionally install this subsystem in addition to the
ViewKit_dev.sw.base subsystem. Use this library for program debugging
only.

ViewKit_dev.man.pages
The complete set of C++ reference pages (man pages) for ViewKit. This
subsystem is optional, but recommended.

ViewKit_dev.man.relnotes
The online version of the ViewKit Release Notes. This subsystem is
optional, but recommended.

ViewKit_dev.books.ViewKit_PG
The IRIS InSight™ version of this guide. This subsystem is optional, but
recommended.

ViewKit_dev.sw.demo
Sample source code to various ViewKit programs. This subsystem is
optional, but recommended.

6

Chapter 1: Overview of ViewKit

The ViewKit_dev.sw.base subsystem installs the following libraries:

libvk.a The basic ViewKit class library.

libvkmsg.a Classes that support inter-process communication based on the
ToolTalk™ library.

libXpm.a A library that supports X pixmap creation. Some ViewKit classes use
Xpm.

The ViewKit_dev.sw.debug subsystem installs the following libraries:

libvk_d.a The debug version of the basic ViewKit class library.

libvkmsg_d.a The debug version of the classes that support inter-process
communication based on the ToolTalk library.

Required Header Files

All ViewKit header files appear in /usr/include/Vk. In most cases, the header file for a
given class is the class name followed by.h. For example, the header file for the
VkWindow class is <Vk/VkWindow.h>. Some minor classes are grouped together into
single header files. For example, the header file for the VkMenu class automatically
includes the header information for every type of menu supported by ViewKit. These
cases are noted in the text where appropriate.

You need to include IRIS IM header files for only those IRIS IM widgets that you
explicitly use in a ViewKit program. ViewKit automatically includes any X or IRIS IM
header files required by ViewKit components that you use in your program.

Required Libraries

You must link all ViewKit programs with the ViewKit library, libvk, and the IRIS IM and
X libraries. If you use an external help system with your application, you should link
with the appropriate help library. (See Chapter 11, “Using a Help System With ViewKit”
for more information.)

Getting Started

7

For example, to compile a file hello.c++ to produce the executable hello, enter

CC -o hello hello.c++ -lvk -lXm -lXt -lX11

If you are debugging a program, you might find it useful to compile your program with
the debug libraries, which contain additional symbol table information.

Getting Started

This section gives you information on example programs that you might find helpful
when getting started with ViewKit programming. It first describes the simplest ViewKit
program, which displays a window containing a single label, and discusses the structure
of the program. Then, it discusses the demonstration programs provided with ViewKit.

The Simplest ViewKit Program

Applications based on ViewKit must obey certain organizational conventions. To see
how this organization works, consider Example 1-1, a simple ViewKit application that
displays the label “hello” in a window.

Example 1-1 The Simplest ViewKit Program: hello.c++

#include <Vk/VkApp.h>
#include <Vk/VkSimpleWindow.h>
#include <Xm/Label.h>

// Define a top-level window class

class HelloWindow: public VkSimpleWindow {

public:
HelloWindow (const char *name);
~HelloWindow();
virtual const char* className();

};

// Construct a single rooted widget tree, and designate the
// root of the tree as the window’s view. This example is very
// simple, just creating a single XmLabel widget to display the
// string "hello".

8

Chapter 1: Overview of ViewKit

HelloWindow::HelloWindow (const char *name) : VkSimpleWindow (name)
{

Widget label = XmCreateLabel (mainWindowWidget(), "hello",
NULL, 0);

addView(label);
}

const char* HelloWindow::className()
{

return "HelloWindow"; // Identify this class
}

HelloWindow::~HelloWindow()
{

// Empty
}

// Main driver. Just instantiate a VkApp and a top-level window,
// "show" the window and then "run" the application.

void main (int argc, char **argv)
{

VkApp *app = new VkApp("Hello", &argc, argv);
HelloWindow *win = new HelloWindow("hello");

win->show();
app->run();

}

To build this example, simply compile the file hello.c++ and link with the ViewKit library,
and the IRIS IM and X libraries:

CC -o hello hello.c++ -lvk -lXm -lXt -lX11

Running the hello program displays a window that says “hello,” as shown in Figure 1-1.

Figure 1-1 Result of Running hello

Getting Started

9

This example uses two classes: the VkApp class and an application-defined class,
HelloWindow. The HelloWindow class is derived from the ViewKit VkSimpleWindow
class.

First look at main(). All ViewKit applications start by creating an instance of VkApp. The
arguments to this constructor specify the Xt-style class of the application, a pointer to
argc, and the argv array. Instantiating a VkApp object opens a connection to the X server
and initializes many other services needed by typical applications. VkApp is described
in detail in Chapter 3, “The ViewKit Application Class.” Next, the hello.c++ program
instantiates a HelloWindow object that serves as the application’s top-level window. The
constructor for this class requires only a name for the window. Finally, the application
concludes by calling the HelloWindow object’s show() function and the VkApp object’s
run() function. The run() method never returns. The bodies of most ViewKit programs
are similar to this short example.

Now look at the HelloWindow class. ViewKit encourages you to create classes to
represent all major elements of the user interface. In this simple example, the only major
user interface component is a top-level window that contains a label widget. ViewKit
provides a class, VkSimpleWindow, that supports many features common to all
top-level windows and that works closely with the VkApp class to implement various
ViewKit features. To use the VkSimpleWindow class, you derive a new subclass and
create a single-rooted widget tree that the window displays as its view. ViewKit
applications do not have to create shell widgets directly.

The hello.c++ example is so simple that the HelloWindow class creates only a single
XmLabel widget. The XmLabel widget is created in the constructor and then designated
as the window’s view. More complex classes might create a manager widget and create
other widgets as children, or might instantiate other objects, as well. Chapter 4, “ViewKit
Windows,” describes how to create windows using ViewKit.

The className() member function is supported, by convention, by all ViewKit classes.
This function is used by several ViewKit facilities and is discussed in “VkComponent
Access Functions” on page 17.

10

Chapter 1: Overview of ViewKit

Demonstration Programs

The ViewKit_dev.sw.demo subsystem installs in the /usr/share/src/ViewKit directory several
demonstration programs that illustrate different features of ViewKit. A few of the
highlights include:

• /usr/share/src/ViewKit/ProgrammersGuide contains several of the example programs
from this guide.

• /usr/share/src/ViewKit/Components/CBrowser contains the source for a component
browser, which shows examples of many ViewKit components. You might find this
particularly useful to run when you read the later chapters in this guide that
describe the prebuilt components shipped with ViewKit.

• /usr/share/src/ViewKit/Applications/PhoneBook creates PhoneBook, a full-fledged
application that keeps track of names, phone numbers, and addresses. PhoneBook
uses a variety of ViewKit classes.

• /usr/share/src/ViewKit/Applications/GLX builds Rotate, a sample application that uses
GLX to do GL rendering in an X window.

• /usr/share/src/ViewKit/Applications/Inventor builds IvClock, a ViewKit
implementation of the Inventor clock sample program from Inventor 2.0.

11

Chapter 2

2. Components

This chapter introduces the concept of ViewKit components: C++ classes that encapsulate
sets of widgets along with convenient methods for their manipulation.

This chapter describes two ViewKit classes: VkCallbackObject and VkComponent.
Figure 2-1 shows the inheritance graph for these classes.

Figure 2-1 Inheritance Graph for VkCallbackObject and VkComponent

Definition of a Component

Widget sets such as IRIS IM provide simple, low-level building blocks, like buttons,
scrollbars, and text fields. However, to create interesting and useful applications, you
must build collections of widgets that work together to perform given tasks. For
example, many applications support a system of menus, which are constructed from
several individual widgets. Just as the user thinks of the menu bar as a single logical
component of the user interface, ViewKit builds abstractions that let applications deal
with a “menu” rather than the individual pieces of the menu.

C++ allows you to do exactly this: to encapsulate collections of widgets and other objects
as logical entities. By creating C++ classes and providing simple, convenient
manipulation functions, you can avoid the complexity of creating widgets, specifying
widget locations, setting resources, assigning callbacks, and other common tasks.
Furthermore, for commonly used objects like menus, you can design general-purpose
classes that you can easily use in many different applications.

VkComponentVkCallbackObject

12

Chapter 2: Components

In ViewKit, the general user interface classes are referred to as components. A component
not only encapsulates a collection of widgets, but also defines the behavior of the overall
component. ViewKit components are designed to implement as many commonly used
features as possible. Typically, all you need to do to use a ViewKit component is create a
subclass of the appropriate ViewKit class and define any application-specific behavior.
Furthermore, using the ViewKit classes as a base, you can create your own library of
reusable components.

VkComponent Class

All ViewKit components are derived from the abstract base class VkComponent, which
defines a basic structure and protocol for all components. When creating your own
components, you should also derive them from VkComponent or one of its subclasses.

The VkComponent class enforces certain characteristics on components and expects
certain behaviors of its subclasses. These characteristics and the features provided by
VkComponent are discussed in detail in throughout this chapter; the more important
characteristics are summarized below:

• Widgets encapsulated by a component must form a single-rooted subtree.
Components typically use a container widget as the root of the subtree; all other
widgets are descendents of this widget. The root of the widget subtree is referred to
as the base widget of the component.

• You can create instances of components and use them in other components’s widget
subtrees. As a convenience, VkComponent defines an operator that allows you to
pass a VkComponent object directly to functions that expect a widget. This
operator is described further in “VkComponent Access Functions” on page 17.

• Components take a string as an argument (typically, the first argument) in the class
constructor. This string is used as the name component’s base widget. You should
give each instance of a component a unique name so that you can identify each
widget in an application by a unique path through the application’s widget tree. If
each widget can be uniquely identified, X resource values can be used to customize
the behavior of each widget. ViewKit resource support is described in “Component
Resource Support” on page 26.

• Components take a widget as an argument (typically, the second argument) in the
class constructor. This widget is the parent of the component’s base widget.
Component constructors are discussed in “Component Constructors” on page 13.

VkComponent Class

13

• Most components should create the base widget and all other widgets in the class
constructor. The constructor should manage all widgets except the base widget,
which should be left unmanaged. You can then manage or unmanage a
component’s entire widget subtree using the member functions described in
“Displaying and Hiding Components” on page 19.

• VkComponent provides an access function that retrieves the component’s base
widget. You might need to access the base widget, for example, to set constraint
resources so that an XmForm widget can position the component. Normally, other
widgets inside a component aren’t exposed. Access functions are discussed in
“VkComponent Access Functions” on page 17.

• Components must handle the destruction of widgets within the component’s
widget tree. The widgets encapsulated by the component must be destroyed when
the component is destroyed. Component classes must also prevent dangling
references by handling destruction of the widget tree without destruction of the
component. VkComponent provides mechanisms for handling widget destruction,
which are described in “Handling Component Widget Destruction” on page 24.

• Components should define any Xt callbacks required by a class as private static
member functions. Using Xt callbacks in ViewKit is discussed in “Using Xt
Callbacks With Components” on page 21.

• All component classes must override the virtual className() member function so
that it returns a string identifying the component’s class. ViewKit uses this string for
resource handling and other support functions. The className() member function
is described in more detail in “VkComponent Access Functions” on page 17.
“Component Resource Support” on page 26 describes ViewKit resource support.

Component Constructors

The VkComponent constructor has the following form:

VkComponent(const char * name)

The VkComponent constructor is declared protected and so can be called only from
derived classes. Its primary purpose is to initialize component data members, in
particular _name and _baseWidget.

14

Chapter 2: Components

Each component should have a unique name, which is used as the name of the
component’s base widget. The VkComponent constructor accepts a name as an
argument, creates a copy of this string, and assigns the address of the copy to the
_name data member.

The _baseWidget data member is the base widget of the component’s widget subtree. The
VkComponent constructor initializes _baseWidget to NULL.

Each derived class’s constructor should take at least two arguments—the component’s
name and a widget that serves as the parent of the component’s widget tree—and
perform at least these initialization steps:

1. Pass the name to the VkComponent constructor to initialize the basic component
data members.

2. Create the component’s widget subtree and assign the base widget to the
_baseWidget data member. The base widget should be a direct child of the parent
widget passed in the constructor, and should have the same name as the component
(as stored in _name) for the ViewKit resource support to work correctly. All other
widgets in the component must be children or descendents of the base widget.

3. Immediately after creating the base widget, call installDestroyHandler() to set up a
callback to handle widget destruction. This function is described further in
“Handling Component Widget Destruction” on page 24.

4. Manage all widgets except the base widget, which should be left unmanaged.

5. Perform any other needed class initialization.

As an example, consider a user-defined component called StartStopPanel that
implements a simple control panel containing Start and Stop buttons. The code fragment
in Example 2-1 shows a possible constructor for this class.

Example 2-1 Component Constructor

/////////////////////////////
// StartStopPanel.h
/////////////////////////////

// Declare StartStopPanel as a subclass of VkComponent

class StartStopPanel: public VkComponent {

public:
StartStopPanel (const char *, Widget);

VkComponent Class

15

~StartStopPanel();
// ...

protected:
Widget _startButton;
Widget _stopButton;
// ...

}

/////////////////////////////
// StartStopPanel.c++
/////////////////////////////

// Pass the name to the VkComponent constructor to initialize the
// basic component data members.

StartStopPanel::StartStopPanel(const char *name, Widget parent):VkComponent(name)
{

// Create an XmRowColumn widget as the component’s base widget
// to contain the buttons. Assign the widget to the _baseWidget
// data member.
_baseWidget = XmCreateRowColumn (parent, _name, NULL, 0);
// Set up callback to handle widget destruction

installDestroyHandler();

XtVaSetValues(_baseWidget, XmNorientation, XmHORIZONTAL, NULL);

// Create all other widgets as children of the base widget.
// Manage all child widgets.

_startButton = XmCreatePushButton (_baseWidget, "start", NULL, 0);
_stopButton = XtCreatePushButton (_baseWidget, "stop", NULL, 0);

XtManageChild(_startButton);
XtManageChild(_stopButton);

// Perform any other initialization needed (omitted in this example)
}

16

Chapter 2: Components

In this example, the StartStopPanel constructor passes the name argument to the
VkComponent constructor to initialize the _name data member. The VkComponent
constructor also initializes the _baseWidget data member to NULL. It then creates a
RowColumn widget as the base widget to manage the other widgets in the component.
The constructor uses the _name data member as the name of the base widget, uses the
parent argument as the parent widget, and assigns the RowColumn widget to the
_baseWidget data member. Immediately after creating the base widget, the constructor
calls installDestroyHandler(). Then, it creates the two buttons as children of the base
widget and manages the two child widgets.

A real constructor would then perform all other initialization needed by the class, such
as setting up callbacks for the buttons and initializing any other data members that
belong to the class. “Using Xt Callbacks With Components” on page 21 describes how
you should set up Xt callbacks when working with ViewKit components.

Component Destructors

The virtual VkComponent destructor performs the following functions:

1. Triggers the VkComponent::deleteCallback ViewKit callback for that component.
ViewKit callbacks are described in “ViewKit Callback Support” on page 34, and the
VkComponent::deleteCallback is described in “Predefined ViewKit Callbacks” on
page 40.

2. Removes the widget destruction handler described in “Handling Component
Widget Destruction” on page 24.

3. Destroys the component’s base widget, which in turn destroys the component’s
entire widget subtree.

4. Frees all memory allocated by the VkComponent constructor.

5. Sets to NULL all the data members defined by the VkComponent constructor.

The destructor for a derived class need free only the space that was explicitly allocated
by the derived class, but of course it can perform any other cleanup your class requires.

For example, if your class allocates space for a string, you should free that space in your
destructor, as shown in Example 2-2.

VkComponent Class

17

Example 2-2 Freeing Space in a Component Destructor

MyComponent: public VkComponent {

public:
MyComponent(const char *, Widget);
~MyComponent();
// ...

private:
char *_label;
//...

}
MyComponent::MyComponent(const char *name, Widget parent) : VkComponent(name)
{

_label = strdup(label);
// ...

}

MyComponent::~MyComponent()
{

free (_label);
}

Even if you don’t need to perform any actions in a class destructor, you should still
declare an empty one. If you don’t explicitly declare a destructor, the C++ compiler
creates an empty inline destructor for the class; however, because the destructor in the
base class, VkCallbackObject, declares the destructor as virtual, the C++ compiler
generates a warning because a virtual member function can’t be inlined. The compiler
then “un-inlines” the destructor and, to ensure that it’s available wherever needed, puts
a copy of it in every file that uses the class. Explicitly creating an empty destructor for
your classes avoids this unnecessary overhead.

VkComponent Access Functions

VkComponent provides access functions for accessing some of the class’s data members.

The name() function returns the name of a component as pointed to by the _name data
member. This is the same as the name that you provided in the component’s constructor.
The syntax of the name() function is

const char * name() const

18

Chapter 2: Components

The className() function returns a string identifying the name of the ViewKit class to
which the component belongs. The syntax of className() is

virtual const char *className()

All component classes should override this virtual function to return a string that
identifies the name of the component’s class. ViewKit uses this string for resource
handling and other support functions. The class name for the VkComponent class is
“VkComponent.”

For example, if you create a StartStopPanel class, you should override the
StartStopPanel::className() function as follows:

class StartStopPanel: public VkComponent {
public:

// ...
virtual const char *className();
// ...

}

const char* StartStopPanel::className()
{

return "StartStopPanel";
}

The baseWidget() function returns the base widget of a component as stored in the
_baseWidget data member:

Widget baseWidget() const

Normally, components are as encapsulated as possible, so you should avoid operating
directly on a component’s base widget outside the class. However, certain operations
might require access to a component’s base widget. For example, after instantiating a
component as a child of an XmForm widget, you might need to set various constraint
resources, as shown below:

Widget form = XmCreateForm(parent, "form", NULL, 0);
StartStopPanel *panel = new StartStopPanel("panel", form);
XtVaSetValues(panel->baseWidget(), XmNtopAttachment, XmATTACH_FORM, NULL);

VkComponent Class

19

As a convenience, VkComponent defines a Widget operator that allows you to pass a
VkComponent object directly to functions that expect a widget. By default, the operator
converts the component into its base widget. However, the operator is defined as a
virtual function so that derived classes can override it to return a different widget. Note
that you must use an object, not a pointer to an object, because of the way operators work
in C++. For example, the Widget operator makes the following code fragment equivalent
to the fragment presented above:

Widget form = XmCreateForm(parent, "form", NULL, 0);
StartStopPanel *panel = new StartStopPanel("panel", form);
XtVaSetValues(*panel, XmNtopAttachment, XmATTACH_FORM,
NULL);

Displaying and Hiding Components

The virtual member function show() manages the base widget of the component,
displaying the entire component. The virtual member function hide() performs the
inverse operation. You can call show() after calling hide() to redisplay a component. The
syntax of these commands is as follows:

virtual void show()
virtual void hide()

For example, the following lines display the component panel, an instance of the
StartStopPanel:

StartStopPanel *panel = new StartStopPanel("panel", form);
panel->show();

You could hide this component with this line:

panel->hide();

20

Chapter 2: Components

If you’re familiar with Xt, you can think of these functions as performing operations
analogous to managing and unmanaging the widget tree; however, you shouldn’t regard
these functions simply as “wrappers” for the XtManageChild() and
XtUnmanageChild() functions. First, these member functions show and hide an entire
component, which typically consists of more than one widget. Second, other actions
might be involved in showing a component. In general, the show() member function
does whatever is necessary to make a component visible on the screen. You shouldn’t
circumvent these member functions and manage and unmanage components’ base
widgets directly. For example, some components might use XtMap() and XtUnmap() as
well. Other components might not even create their widget subtrees until show() is
called for the first time.

The VkComponent class also provides the protected virtual function
afterRealizeHook(). This function is called after a component’s base widget is realized,
just before it’s mapped for the first time. The default action is empty. You can override
this function in a subclass if you want to perform actions after a component’s base widget
exists.

VkComponent Utility Functions

All ViewKit components provide the virtual member function okToQuit() to support
“safe quit” mechanisms:

virtual Boolean okToQuit()

A component’s okToQuit() function returns TRUE if it is “safe” for the application to
quit. For example, you might want okToQuit() to return FALSE if a component is in the
process of updating a file. By default, okToQuit() always returns TRUE; you must
override okToQuit() for all components that you want to perform a check before
quitting.

Usually only VkSimpleWindow and its subclasses use okToQuit(). When you call
VkApp::quitYourself(), VkApp calls the okToQuit() function for all registered windows
before quitting. If the okToQuit() function for any window returns FALSE, the
application doesn’t exit. “Quitting ViewKit Applications” on page 59 provides more
information on how to quit a ViewKit application, and “Providing a “Safe Quit”
Mechanism” on page 102 describes how to override VkSimpleWindow::okToQuit() to
provide a “safe quit” mechanism for a window.

VkComponent Class

21

In some cases you might want to check one or more components contained within a
window before quitting. To do so, override the okToQuit() function for that window to
call the okToQuit() functions for all the desired components. Override the okToQuit()
functions for the other components to perform whatever checks are necessary.

Another utility function provided by VkComponent is the static member function
isComponent():

static Boolean isComponent(VkComponent * component)

The isComponent() function applies heuristics to determine whether the pointer passed
as an argument represents a valid VkComponent object. If component points to a
VkComponent that has not been deleted, this function always returns TRUE; otherwise
the function returns FALSE. It is possible, though highly unlikely, that this function could
mistakenly identify a dangling pointer to a deleted object as a valid object. This could
happen if another component were to be allocated at exactly the same address as the
deleted object a pointer previously pointed to. The isComponent() function is used
primarily for ViewKit internal checking, often within assert() macros.

Using Xt Callbacks With Components

Callbacks pose a minor problem for C++ classes. C++ member functions have a hidden
argument, which is used to pass the this pointer to the member function. This hidden
argument makes ordinary member functions unusable as callbacks for Xt-based widgets.
If a member function were to be called from C (as a callback), the this pointer would not
be supplied and the order of the remaining arguments might be incorrect.

Fortunately, there is a simple way to handle the problem, although it requires the
overhead of one additional function call. The approach is to use a regular member
function to perform the desired task, and then use a static member function for the Xt
callback. A static member function does not expect a this pointer when it is called.
However, it is a member of a class, and as such has the same access privileges as any
other member function. It can also be encapsulated so it is not visible outside the class.

The only catch is that the static member function used as a callback needs a way to access
the appropriate instance of the class. This can be provided by specifying a pointer to the
component as the client data when registering the callback.

22

Chapter 2: Components

Generally, you should follow these guidelines for using Xt callbacks with ViewKit
components:

• Define any Xt callbacks required by a component as static member functions of that
class. You normally declare these functions in the private section of the class,
because they are seldom useful to derived classes.

• Pass the this pointer as client data to all Xt callback functions installed for widgets.
Callback functions should retrieve this pointer, cast it to the expected component
type, and call a corresponding member function.

• Adopt a convention of giving static member functions used as callbacks the same
name as the member function they call, with the word “Callback” appended. For
example, the static member function activateCallback() should call the member
function activate(). This convention is simply meant to make the code easier to read
and understand. If you prefer, you can use your own convention for components
you create, but this convention is used by all predefined ViewKit components.

• Member functions called by static member functions are often private, but they can
instead be part of the public or protected section of the class. Occasionally it’s useful
to declare one of these functions as virtual, thereby allowing derived classes to
change the function ultimately called as a result of a callback.

For example, the constructor presented in Example 2-1 for the simple control panel
component described in “Component Constructors” on page 13 omitted the setup of
callback routines to handle the activation of the buttons. To implement these callbacks,
you must follow these steps:

1. Create regular member functions to perform the tasks desired in response to the
user clicking the buttons.

2. Create static member functions that retrieve the client data passed by the callback,
cast it to the expected component type, and call the corresponding member
function.

3. Register the static member functions as callback functions in the class constructor.

VkComponent Class

23

Suppose that for the control panel, you want to call the member function
StartStopPanel::start() when the user clicks the Start button, and to call
StartStopPanel::stop() when the user clicks the Stop button:

void StartStopPanel::start(Widget w, XtPointer callData)
{

// Perform "start" function
}
void StartStopPanel::stop(Widget w, XtPointer callData)
{

// Perform "stop" function
}

You should then define the StartStopPanel::startCallback() and
StartStopPanel::stopCallback() static member functions as follows:

void StartStopPanel::startCallback(Widget w, XtPointer clientData,
XtPointer callData)

{
StartStopPanel *obj = (StartStopPanel *) clientData;
obj->start(w, callData);

}

void StartStopPanel::stopCallback(Widget w, XtPointer clientData,
XtPointer callData)

{
StartStopPanel *obj = (StartStopPanel *) clientData;
obj->stop(w, callData);

}

Finally, you need to register the static member functions as callbacks in the constructor.
Remember that you must pass the this pointer as client data when registering the
callbacks. Example 2-3 shows the updated StartStopPanel constructor, which installs the
Xt callbacks for the buttons.

Example 2-3 Component Constructor With Xt Callbacks

StartStopPanel::StartStopPanel(const char *name, Widget parent):VkComponent(name)
{

// Create an XmRowColumn widget as the component’s base widget
// to contain the buttons. Assign the widget to the _baseWidget
// data member.

_baseWidget = XmCreateRowColumn (parent, _name, NULL, 0);

24

Chapter 2: Components

// Set up callback to handle widget destruction

installDestroyHandler();

XtVaSetValues(_baseWidget, XmNorientation, XmHORIZONTAL, NULL);

// Create all other widgets as children of the base widget.
// Manage all child widgets.

_startButton = XmCreatePushButton (_baseWidget, "start", NULL, 0);
_stopButton = XtCreatePushButton (_baseWidget, "stop", NULL, 0);

XtManageChild(_startButton);
XtManageChild(_stopButton);

// Install static member functions as callbacks for the pushbuttons

XtAddCallback(_startButton, XmNactivateCallback,
&StartStopPanel::startCallback, (XtPointer) this);

XtAddCallback(_stopButton, XmNactivateCallback,
&StartStopPanel::stopCallback, (XtPointer) this);

}

Handling Component Widget Destruction

When widgets are destroyed, it’s easy to leave dangling references—pointers to memory
that once represented widgets, but are no longer valid. For example, when a widget is
destroyed, its children are also destroyed. It’s often difficult to keep track of the
references to these children, so it’s fairly easy to write a program that accidentally
references the widgets in a class after the widgets have already been destroyed. In some
cases, applications might try to delete a widget twice, which usually causes the program
to crash. Calling XtSetValues() or other Xt functions with a widget that’s been deleted is
also an error that can occur easily in this situation.

To help protect the encapsulation of ViewKit classes, VkComponent provides a private
static member function, widgetDestroyedCallback(), to register as an
XmNdestroyCallback for the base widget so that the component can properly handle the
deletion of its base widget. This callback can’t be registered automatically within the
VkComponent constructor because derived classes have not yet created the base widget
when the VkComponent constructor is called.

VkComponent Class

25

As a convenience, rather than force every derived class to install the
widgetDestroyedCallback() function directly, VkComponent provides a protected
installDestroyHandler() function that performs this task:

void installDestroyHandler()

Immediately after creating a component’s base widget in a derived class, you should call
installDestroyHandler(). For example:

StartStopPanel::StartStopPanel(const char *name, Widget parent) :
VkComponent(name)

{
_baseWidget = XmCreateRowColumn (parent, _name, NULL, 0);
installDestroyHandler();
// ...

}

When you link your program with the debugging version of the ViewKit library, a
warning is issued for any class that does not install the widgetDestroyedCallback()
function.

The widgetDestroyedCallback() function calls the virtual member function
widgetDestroyed():

virtual void widgetDestroyed()

By default, widgetDestroyed() sets the component’s _baseWidget data member to NULL.
You can override this function in derived classes if you want to perform additional tasks
in the event of widget destruction; however, you should always call the base class’s
widgetDestroyed() function as well.

Occasionally, you might need to remove the destroy callback installed by
installDestroyHandler(). For example, the VkComponent class destructor removes the
callback before destroying the widget. To do so, you can call the
removeDestroyHandler() function:

void removeDestroyHandler()

26

Chapter 2: Components

Component Resource Support

The X resource manager is a very powerful facility for customizing both applications and
individual widgets. The resource manager allows the user or programmer to modify
both the appearance and behavior of applications and widgets.

ViewKit provides a variety of utilities to simplify resource management. Using ViewKit,
you can easily

• set resource values for a single component or an entire class of components

• initialize data members using values retrieved from the resource database

• programmatically set default resource values for a component

• obtain resource values

For ViewKit resource support to work properly, you must follow these two guidelines:

• You must override each components’s virtual className() member functions,
returning a string that identifies the name of each component’s C++ class. For
example, if you create a StartStopPanel component class, you must override
StartStopPanel::className() as follows:

const char* StartStopPanel::className()
{

return "StartStopPanel";
}

• You must provide a unique component name when instantiating each component.
This string must be used as the name of the component’s base widget. Giving each
instance of a component a unique name ensures a unique path through the
application’s widget tree for each widget. Widgets within a component can have
hard-coded names because they can be qualified by the name of the root of the
component subtree.

Setting Resource Values by Class or Individual Component

The structure of ViewKit allows you to specify resource values for either an individual
component or for all components of a given class.

Component Resource Support

27

To set a resource for an individual instance of a component, refer to the resource using
this syntax:

* name* resource

In this case, name refers to the ViewKit component’s name that you pass as an argument
to the component’s constructor, and resource is the name of the resource. A specification
of this form works for setting both widget resources and “synthetic” resources that you
use to initialize data member values. (“Initializing Data Members Based on Resource
Values” on page 28 describes a convenience function for initializing data members from
resource values.)

For example, you could set a “verbose” resource to TRUE for the instance named
“status” of a hypothetical ProcessMonitor class with a resource entry such as this:

*status*verbose: TRUE

To set a resource for an entire component class, refer to the resource using this syntax:

* className* resource

In this case, className is the name of the ViewKit class returned by that class’s
className() function, and resource is the name of the resource. A specification of this
form works for setting “synthetic” resources only, not widget resources.1

For example, you can set a “verbose” resource for all instances of the hypothetical
ProcessMonitor class to TRUE with a resource entry such as:

*ProcessMonitor*verbose: TRUE

1 You can set resources for widgets within a component when you specify a component’s name because
the name of component’s base widget is the same as the name of the component; the X resource manager
can successfully determine a widget hierarchy based on widget names. On the other hand, a
component’s class name has no relation to its base widget’s class name. If you use a component class
name in a resource specification, the X resource manager cannot determine the widget hierarchy for
widgets in the component.

28

Chapter 2: Components

Initializing Data Members Based on Resource Values

If you want to initialize data members in a class using values in the resource database,
you can call the VkComponent member function getResources():

void getResources (const XtResourceList resources,
const int numResources)

The resources argument is a standard resource specification in the form of an XtResource
list, and the numResources argument is the number of resources. You should define the
XtResource list as a static data member of the class to encapsulate the resource
specification with the class. You should call getResources() in the component constructor
after creating your component’s base widget.

getResources() retrieves the specified resources relative to the root of the component’s
widget subtree. For example, to set the value of a resource for a particular instance of a
component, you would need to set the resource with an entry in the resource database of
this form:

* name. resource: value

In this example, name is the component’s name, resource is the name of the resource, and
value is the resource value. To set the value of a resource for an entire component class,
you would need to set the resource with an entry in the resource database of this form:

* className. resource: value

In this example, className is the component class name, resource is the name of the
resource, and value is the resource value.

Example 2-4 demonstrates the initialization of a data member, _verbose, from the resource
database. A default value is specified in the XtResource structure, but the ultimate value
is determined by the value of the resource named “verbose” in the resource database.

Example 2-4 Initializing a Data Member From the Resource Database

// Header file: ProcessMonitor.h

#include <Vk/VkComponent.h>
#include <Xm/Frame.h>

class ProcessMonitor : public VkComponent
{

Component Resource Support

29

private:
static XtResource _resources[];

protected:
Boolean _verbose;

public:
ProcessMonitor(const char *, Widget);
~ProcessMonitor();
virtual const char *className();

};

// Source file: ProcessMonitor.c++

#include "ProcessMonitor.h"

XtResource ProcessMonitor::_resources [] = {
{
"verbose",
"Verbose",
XmRBoolean,
sizeof (Boolean),
XtOffset (ProcessMonitor *, _verbose),
XmRString,
(XtPointer) "FALSE",
},

};

ProcessMonitor::ProcessMonitor(Widget parent, const char *name):VkComponent(name)
{

_baseWidget = XtVaCreateWidget (_name, xmFrameWidgetClass,
parent, NULL) ;

installDestroyHandler();

// Initialize members from resource database

getResources (_resources, XtNumber(_resources));

// ...
}

So, to initialize the _verbose data member to TRUE in all instances of the ProcessMonitor
class, you need only set the following resource in the resource database:

*ProcessMonitor.verbose: TRUE

30

Chapter 2: Components

To initialize _verbose to TRUE for an instance of ProcessMonitor named
conversionMonitor, you could set the following resource in the resource database:

*conversionMonitor.verbose: TRUE

Setting Default Resource Values for a Component

Often, you might want to specify default resource values for a component. A common
way to accomplish this is to put the resource values in an application resource file.
However, this makes the component dependent on that resource file; to use that
component in another application, you must remember to copy those resources into the
new application’s resource file. This is especially inconvenient for classes that you reuse
in multiple applications.

A better method of encapsulating default resources into a component is to use a ViewKit
facility that allows you to specify them programmatically and then merge them into the
resource database during execution. Although the resources are specified
programmatically, they can be overridden by applications that use the class, or by end
users in resource files. However, the default values are specified by the component class
and cannot be separated from the class accidentally. If you later want to change the
implementation of a component class, you can also change the resource defaults when
necessary, knowing that applications that use the class will receive both changes
simultaneously.

The VkComponent class provides the setDefaultResources() function for storing a
collection of default resources in the application’s resource database. The resources are
loaded with the lowest precedence, so that these resources are true defaults. They can be
overridden easily in any resource file. You should call this function in the component
constructor before creating the base widget in case any resources apply to the
component’s base widget.

The setDefaultResources() function has the following syntax:

void setDefaultResources (const Widget w,
const String * resourceSpec)

The first argument is a widget; you should always use the parent widget passed in the
component’s constructor.

Component Resource Support

31

The second argument is a NULL-terminated array of strings, written in the style of an X
resource database specification. Specify all resources in the list relative to the root of the
component’s base widget, but do not include the name of the base widget. If you want
to apply a resource to the base widget, simply use the name of the resource preceded by
an asterisk (*). When resources are loaded, the value of _name is prefixed to all entries,
unless that entry begins with a hyphen (-). As long as you use unique names for each
component that you create of a given class, this results in resource specifications unique
to each component. If you precede a resource value in this list with a hyphen (-),
setDefaultResources() does not qualify the resource with the value of _name. This is
useful in rare situations where you want to add global resources to the database.

You should declare the resource list as a static data member of the class. This
encapsulates the set of resources with the class.

Note: Generally, setting resources using setDefaultResources() is most appropriate for
components that you plan to reuse in multiple applications. In particular, it is a good
method for setting resources for widget labels and other strings that your component
displays. You should not use setDefaultResources() to set widget resources, such as
orientation, that you would normally set programmatically. Typically you don’t need to
change these resources when you use the component in different applications, and so
you save memory and execution time by not using setDefaultResources() to set these
resources.

Example 2-5 builds on the StartStopPanel constructor from Example 2-3 to specify the
default label strings “Start” and “Stop” for the button widgets.

Example 2-5 Setting a Component’s Default Resource Values

// StartStopPanel.h

class StartStopPanel: public VkComponent {

public:
StartStopPanel (const char *, Widget);
~StartStopPanel();
// ...

private:
static String _defaultResources[];
// ...

}

32

Chapter 2: Components

// StatStopPanel.c++

String StartStopPanel::_defaultResources[] = {
"*start.labelString: Start",
"*stop.labelString: Stop",
NULL

};

StartStopPanel::StartStopPanel(const char *name, Widget parent):VkComponent(name)
{

// Load class-default resources for this object before creating base widget

setDefaultResources(parent, _defaultResources);

_baseWidget = XmCreateRowColumn (parent, _name, NULL, 0);

installDestroyHandler();

XtVaSetValues(_baseWidget, XmNorientation, XmHORIZONTAL, NULL);

_startButton = XmCreatePushButton (_baseWidget, "start", NULL, 0);
_stopButton = XtCreatePushButton (_baseWidget, "stop", NULL, 0);

// ...
}

Convenience Function for Retrieving Resource Values

ViewKit also provides VkGetResource(), a convenience function for retrieving resource
values from the resource database. VkGetResource() is not a member function of any
class. You must include the header file <Vk/VkResource.h> to use VkGetResource().

VkGetResource() has two forms. The first is as follows:

char * VkGetResource(const char * name,
const char * className)

This form returns a character string containing the value of the application resource you
specify by name and class name. This function is similar to XGetDefault(3X) except that
this form of VkGetResource() allows you to retrieve the resource by class name whereas
XGetDefault() does not.

Component Resource Support

33

Note: Do not attempt to change or delete the value returned by VkGetResource().

The second form of VkGetResource() is as follows:

XtPointer VkGetResource(Widget w,
const char * name,
const char * className,
const char * desiredType,
const char * defaultValue)

This second form is similar to XtGetSubresource(3Xt) in that it allows you to retrieve a
resource relative to a specific widget. You can specify the resource as a dot-separated list
of names and classes, allowing you to retrieve “virtual” sub-resources. You can also
specify a target type. VkGetResource() converts the retrieved value, or the default value
if no value is retrieved, to the specified type.

Note: Do not attempt to change or delete the value returned by VkGetResource().

For example, suppose that you want to design an application for drawing an image and
you want to allow the user to select various aspects of the style in which the image is
drawn, such as color and fill pattern (a pixmap). You could specify each aspect of each
style as a resource and retrieve the values as follows:

Widget canvas = XmCreateDrawingArea(parent, "canvas", NULL, 0);
Pixel fgOne = (Pixel) VkGetResource(canvas,

"styleOne.foreground", "Style.Foreground",
XmRString, "Black");

Pixel fgTwo = (Pixel) VkGetResource(canvas,
"styleTwo.foreground", "Style.Foreground",
XmRString, "Black");

Pixel bgOne = (Pixel) VkGetResource(canvas,
"styleOne.background", "Style.Background",
XmRString, "White");

Pixel bgTwo = (Pixel) VkGetResource(canvas,
"styleTwo.background", "Style.Background",
XmRString, "White");

Pixmap pixOne = (Pixmap) VkGetResource(canvas,
"styleOne.pixmap", "Style.Pixmap",
XmRString, "background");

Pixmap pixTwo = (Pixmap) VkGetResource(canvas,
"styleTwo.pixmap", "Style.Pixmap",
XmRString, "background");

34

Chapter 2: Components

Another common technique used in ViewKit programming is to use a string to search for
resource value and, if no resource exists, use the string as the value. You can do this easily
if you pass the string to VkGetResource() as the default value. For example, consider the
following code:

char *timeMsg = "Time";
// ...
char *timeTitle = (char *) VkGetResource(_baseWidget, timeMsg, "Time",

XmRString, timeMsg);

In this case, VkGetResource() searches for a resource (relative to the _baseWidget widget)
whose name is specified by the character string timeMsg. If no such resource exists,
VkGetResource() returns the value of timeMsg as the default value.

If you use this technique, you should not pass a string that contains embedded spaces or
newlines.

ViewKit Callback Support

All ViewKit components support ViewKit member function callbacks (also referred to
simply as ViewKit callbacks). ViewKit callbacks are analogous to Xt-style callbacks
supported by widget sets, but ViewKit callbacks are in no way related to Xt.

The ViewKit callback mechanism allows a component to define conditions or events, the
names of which are exported as public static string constants encapsulated by that
component. Any other component can register any of its member functions to be called
when the condition or event associated with that callback occurs.

Unlike the case when registering ViewKit functions for Xt-style callbacks, the functions
you register for ViewKit callbacks must be regular member functions, not static member
functions.

ViewKit callbacks are implemented by the VkCallbackObject class. VkComponent is
derived from VkCallbackObject, so all ViewKit components can use ViewKit callbacks.
If you create a class for use with a ViewKit application, that class must be derived from
VkCallbackObject or one of its subclasses (such as VkComponent) for you to be able to
use ViewKit callbacks with that class.

ViewKit Callback Support

35

Registering ViewKit Callbacks

The addCallback() function defined in VkCallbackObject registers a member function
to be called when the condition or event associated with a callback occurs.

Note: When registering a ViewKit callback, remember to call the addCallback() member
function of the object that triggers the callback, not the object that is registering the
callback.

The format of addCallback() for registering a member function is as follows:

void addCallback(const char * name,
VkCallbackObject * component,
VkCallbackMethod callbackFunction,
void * clientData = NULL)

The following are the arguments for this function:

name The name of the ViewKit callback. You should always use the name of
the public static string constant for the appropriate callback, not a literal
string constant. (For example, use VkComponent::deleteCallback, not
“deleteCallback”.) This allows the compiler to catch any misspellings of
callback names.

component A pointer to the object registering the callback function.

callbackFunction
The member function to invoke when the condition or event associated
with that callback occurs.

clientData A pointer to data to pass to the callback function when it is invoked.

36

Chapter 2: Components

For example, consider a member of a hypothetical Display class that instantiates another
hypothetical component class, Control. The code fragment below registers a function to
be invoked when the value set by the Control object changes and the Control object
triggers its valueChanged callback:

Display::createControl()
{

_control = new Control(_baseWidget, "control");
_control->addCallback(Control::valueChanged, this,

(VkCallbackMethod) &Display::newValue);
}

In this example, the Display object requests that when the Control object triggers its
valueChanged callback, it should call the Display::newValue() function of the Display object
that created the Control object. The “(VkCallbackMethod)” cast for the callback function
is required.

All ViewKit callback functions must have this form:

void memberFunctionCallback(VkCallbackObject * obj,
void * clientData,
void * callData)

The obj argument is the component that triggered the callback, which you must cast to
the correct type to allow access to members provided by that class. The clientData
argument is the optional client data specified when you registered the callback, and the
callData argument is optional data supplied by the component that triggered the
callback.

For example, you would define the Display::newValue() callback method used above as
follows:

class Display : VkComponent {
private:

void newValue(VkCallbackObject *, void *, void *);
// ...

};

void Display::newValue(VkCallbackObject* obj,
void *clientData,
void *callData);

{
Control *controlObj = (Control *) obj;

ViewKit Callback Support

37

// Perform whatever operation is needed to update
// the Display object. You can also access member
// functions from the Control object (controlObj).
// The clientData argument contains any information
// you provided as clientData when you registered
// this callback; cast it to the proper type to use it.
// If the Control object passed the new value as the
// callData argument, you can cast that to the proper
// type and use it.

}

There is also a version of addCallback() for registering non-member functions. Its syntax
is as follows:

void addCallback(const char * name,
VkCallbackFunction callbackFunction,
void * clientData = NULL)

The arguments for this version are as follows:

name The name of the ViewKit callback. You should always use the name of
the public static string constant for the appropriate callback, not a literal
string constant.

callbackFunction
The non-member function to invoke when the condition or event
associated with that callback occurs.

clientData A pointer to data to pass to the callback function when it is invoked.

The form of your non-member ViewKit callback functions must be as follows:

void functionCallback(VkCallbackObject * obj,
void * clientData,
void * callData)

For example, suppose you have a non-member function errorCondition():

void errorCondition(VkCallbackObject * obj,
void * clientData,
void * callData)

{
// Handle error condition

}

38

Chapter 2: Components

You could register it for a ViewKit callback with the line such as this:

sample->addCallback(SampleComponent::errorCallback,
(VkCallbackFunction) &errorCondition);

The (VkCallbackFunction) cast for the callback function is required.

Removing ViewKit Callbacks

The removeCallback() function provided by the VkCallbackObject class removes
previously registered callbacks. The following version of removeCallback() removes a
member function registered as a callback:

void removeCallback(char * name,
VkCallbackObject * otherObject,
VkCallbackMethod memberFunction,
void * clientData = NULL)

The following version of removeCallback() removes a non-member function registered
as a callback:

void removeCallback(const char * name,
VkCallbackFunction callbackFunction,
void * clientData = NULL)

To remove a callback, you must provide the same arguments specified when you
registered the callback. For example, the following line removes the Control callback
registered in the previous section:

_control->removeCallback(Control::valueChanged, this,
(VkCallbackMethod) &Display::newValue);

The removeAllCallbacks() function removes multiple ViewKit callbacks:

void removeAllCallbacks()
void removeAllCallbacks(VkCallbackObject *obj)

If you don’t provide an argument, this function removes all callbacks from an object,
regardless of which components registered the callbacks. If you provide a pointer to a
component, removeAllCallbacks() removes from an object all ViewKit callbacks that
were set by the specified component. For example, the following would remove from the
Control object _control all callbacks that the Display object had set:

_control->removeAllCallbacks(this);

ViewKit Callback Support

39

Defining and Triggering ViewKit Callbacks

To create a ViewKit callback for a component class, define a public static string constant
as the name of the callback. For clarity, you should use the string’s name as its value. For
example, the following defines a callback, StartStopPanel::actionCallback, for the
hypothetical StartStopPanel class discussed earlier in this chapter:

class StartStopPanel : public VkComponent {

public:
static const char *const actionCallback;
// ...

}

const char *const StartStopPanel::actionCallback = "actionCallback";

The callCallbacks() member function triggers a specified callback, invoking all member
functions registered for that callback:

callCallbacks(const char * callback, void * callData)

The first argument specifies the name of the callback. You should always use the name of
the public static string constant for the appropriate callback, not a literal string constant.
(For example, use StartStopPanel::startCallback , not “startCallback” .) This
allows the compiler to catch any misspellings of callback names.

The second argument is used to supply any additional data that might be required.

For example, you could define the StartStopPanel::start() and StartStopPanel::stop()
functions to trigger the actionCallback and pass an enumerated value as call data to
indicate which button the user clicked:

enum PanelAction { START, STOP };

class StartStopPanel : public VkComponent {

public:
static const char *const actionCallback;
// ...

}

40

Chapter 2: Components

const char *const StartStopPanel::actionCallback = "actionCallback";

void StartStopPanel::start(Widget w, XtPointer callData)
{

callCallbacks(actionCallback, (void *) START);
}

void StartStopPanel::stop(Widget w, XtPointer callData)
{

callCallbacks(actionCallback, (void *) STOP);
};

Predefined ViewKit Callbacks

The VkComponent class, and therefore all derived classes, includes the ViewKit callback
deleteCallback, which is invoked when the component’s destructor is called. You can use
this callback to prevent dangling pointers when maintaining pointers to other
components. The code fragment in Example 2-6 shows an example of this.

Example 2-6 Using the Predefined deleteCallback ViewKit Callback

class MainComponent : VkComponent {
// ...
AuxComponent *_aux;
void createAux();
void auxDeleted(VkCallbackObject *, void *, void *);
// ...

};

// ...

void MainComponent::createAux()
{
_aux = new AuxComponent(_baseWidget, "auxilliary");
_aux->addCallback(VkComponent::deleteCallback, this,

(VkCallbackMethod) &MainComponent::auxDeleted);
}

void MainComponent::auxDeleted(VkCallbackObject*,
void *, void *)

{
_aux = NULL;

}

Deriving Subclasses to Create New Components

41

In the function MainComponent::createAux(), the MainComponent class creates an
instance of the AuxComponent and then immediately registers
MainComponent::auxDeleted() as a callback to be invoked when the AuxComponent
object is deleted.

The auxDeleted() callback definition simply assigns NULL to the AuxComponent object
pointer. All other MainComponent functions should test the value of _aux to ensure that
it is not NULL before attempting to use the AuxComponent object. This eliminates the
possibility that the MainComponent class would try to access the AuxComponent object
after deleting it, or attempting to delete it a second time.

In most cases you should not need to use this technique of registering deleteCallback
callbacks. It is necessary only if you need to create multiple pointers to a single object. In
general, you should avoid multiple pointers to the same object, but
VkComponent::deleteCallback provides a way to control situations in which you must
violate this guideline.

Deriving Subclasses to Create New Components

This section demonstrates how to use the VkComponent class to create new
components. It includes guidelines to follow when creating new components, an
example of creating a new component, and an example of subclassing that component to
create yet another component class.

Subclassing Summary

The following is a summary of guidelines for writing components based on the
VkComponent class:

• Encapsulate all of your component’s widgets in a single-rooted subtree. While some
extremely simple components might contain only a single widget, the majority of
components must create some type of container widget as the root of the
component’s widget subtree; all other widgets are descendents of this one.

• When you create your class’s base widget, assign it to the _baseWidget data member
inherited from the VkComponent class.

42

Chapter 2: Components

• In most cases, create a component’s base widget and all other widgets in the class
constructor. The constructor should manage all widgets except the base widget,
which should be left unmanaged. You can then manage or unmanage a
component’s entire widget subtree using the show() and hide() member functions.

• Accept at least two arguments in your component’s constructor: a string to be used
as the name of the base widget, and a widget to be used as the parent of the
component’s base widget. Pass the name argument to the VkComponent
constructor, which makes a copy of the string. Refer to a component’s name using
the _name member inherited from VkComponent or the name() access function.
Refer to a component’s base widget using the _baseWidget member inherited from
VkComponent or the baseWidget() access function.

• Override the virtual className() member function for your component classes to
return a string consisting of the name of the component’s C++ class.

• Define all Xt callbacks required by a component class as private static member
functions. In exceptional cases, you might want to declare them as protected so that
derived classes can access them.

• Pass the this pointer as client data to all Xt callback functions. Callback functions
should retrieve this pointer, cast it to the expected component type and call a
corresponding member function. For clarity, use the convention of giving static
member functions used as callbacks the same name as the member function they
call, with the word “Callback” appended. For example, name a static member
function startCallback() if it calls the member function start().

• Call installDestroyHandler() immediately after creating a component’s base
widget.

• If you need to specify default resources for a component class, call the function
setDefaultResources() with an appropriate resource list before creating the
component’s base widget.

• If you need to initialize data members from values in the resource database, define
an appropriate resource specification and call the function getResources()
immediately after creating the component’s base widget.

Deriving Subclasses to Create New Components

43

Creating a New Component

To illustrate many of the features of the VkComponent base class, this chapter has shown
how to build a simple class called StartStopPanel, which implements a control panel
containing two buttons. Figure 2-2 shows the default appearance of a StartStopPanel
object.

Figure 2-2 Default Appearance of a StartStopPanel Component

Example 2-7 lists the full implementation of this class.

Example 2-7 Simple User-Defined Component

//
// StartStopPanel.h
//

#ifndef _STARTSTOPPANEL_H
#define _STARTSTOPPANEL_H
#include <Vk/VkComponent.h>

enum PanelAction { START, STOP };

class StartStopPanel : public VkComponent {
public:

StartStopPanel (const char *, Widget);
~StartStopPanel();
virtual const char *className();

static const char *const actionCallback;

protected:
virtual void start(Widget, XtPointer);
virtual void stop(Widget, XtPointer);

Widget _startButton;
Widget _stopButton;

44

Chapter 2: Components

private:
static void startCallback(Widget, XtPointer, XtPointer);
static void stopCallback(Widget, XtPointer, XtPointer);
static String _defaultResources[];

};

#endif
///
// StartStopPanel.c++
///

#include "StartStopPanel.h"
#include <Xm/RowColumn.h>
#include <Xm/PushB.h>

// These are default resources for widgets in objects of this class.
// All resources will be prefixed by *<name> at instantiation,
// where <name> is the name of the specific instance, as well as the
// name of the baseWidget. These are only defaults, and may be
// overriden in a resource file by providing a more specific resource
// name.

String StartStopPanel::_defaultResources[] = {
"*start.labelString: Start",
"*stop.labelString: Stop",
NULL

};

const char *const StartStopPanel::actionCallback = "actionCallback";

StartStopPanel::StartStopPanel(const char *name, Widget parent):VkComponent(name)
{

// Load class-default resources for this object before creating base widget

setDefaultResources(parent, _defaultResources);

// Create an XmRowColumn widget as the component’s base widget
// to contain the buttons. Assign the widget to the _baseWidget
// data member.

_baseWidget = XmCreateRowColumn (parent, _name, NULL, 0);

Deriving Subclasses to Create New Components

45

// Set up callback to handle widget destruction

installDestroyHandler();

XtVaSetValues(_baseWidget, XmNorientation, XmHORIZONTAL, NULL);

// Create all other widgets as children of the base widget.
// Manage all child widgets.

_startButton = XmCreatePushButton (_baseWidget, "start", NULL, 0);
_stopButton = XmCreatePushButton (_baseWidget, "stop", NULL, 0);

XtManageChild(_startButton);
XtManageChild(_stopButton);

// Install static member functions as callbacks for the buttons

XtAddCallback(_startButton, XmNactivateCallback,
&StartStopPanel::startCallback, (XtPointer) this);

XtAddCallback(_stopButton, XmNactivateCallback,
&StartStopPanel::stopCallback, (XtPointer) this);

}

StartStopPanel::~StartStopPanel()
{

// Empty
}

const char* StartStopPanel::className()
{

return "StartStopPanel";
}

void StartStopPanel::startCallback(Widget w, XtPointer clientData,
XtPointer callData)

{
StartStopPanel *obj = (StartStopPanel *) clientData;
obj->start(w, callData);

}

46

Chapter 2: Components

void StartStopPanel::stopCallback(Widget w, XtPointer clientData,
XtPointer callData)

{
StartStopPanel *obj = (StartStopPanel *) clientData;
obj->stop(w, callData);

}
void StartStopPanel::start(Widget, XtPointer)
{

callCallbacks(actionCallback, (void *) START);
}
void StartStopPanel::stop(Widget, XtPointer)
{

callCallbacks(actionCallback, (void *) STOP);
}

Using and Subclassing a Component Class

Example 2-7 slightly changes the StartStopPanel class from previous examples by
declaring the member functions StartStopPanel::start() and StartStopPanel::stop() as
virtual functions. This allows you to use the StartStopPanel in two different ways: using
the component directly and subclassing the component.

Using a Component Class Directly

The simplest way to use the StartStopPanel class is to register callbacks with
StartStopPanel::actionCallback. To do so, instantiate a StartStopPanel object in your
application and register as a callback a member function that tests the value of the call
data and performs some operation based on the value. This option avoids the additional
work required to create a subclass of StartStopPanel. This technique of using a
component class is most appropriate if the class already has all the functionality you
require.

Deriving Subclasses to Create New Components

47

Example 2-8 shows a simple example of using the StartStopPanel directly. The
PanelWindow class is a simple subclass of the VkSimpleWindow class, which is
discussed in Chapter 4, “ViewKit Windows.” It performs the following activities in its
constructor:

1. It instantiates a StartStopPanel object named “controlPanel” and assigns it to the
_controlPanel variable.

1. It specifies a vertical orientation for the StartStopPanel object.

2. It installs PanelWindow::statusChanged() as a ViewKit callback function to be
called whenever StartStopPanel::actionCallback triggers. In this example,
PanelWindow::statusChanged() simply prints a status message to standard output
whenever it is called.

3. It installs the _controlPanel object as the window’s “view.” Showing the
PanelWindow object will now display the _controlPanel object. (“Creating the
Window Interface” on page 85 describes how to create window interfaces.)

Example 2-8 Using a Component Directly

//
// PanelWindow.h
//

#ifndef _PANELWINDOW_H
#define _PANELWINDOW_H

#include "StartStopPanel.h"
#include <Vk/VkSimpleWindow.h>

// Define a top-level window class

class PanelWindow: public VkSimpleWindow {

public:
PanelWindow(const char *name);
~PanelWindow();
virtual const char* className();

48

Chapter 2: Components

protected:
void statusChanged(VkCallbackObject *, void *, void *);

StartStopPanel * _controlPanel;
};

#endif

//
// PanelWindow.c++
//

#include "PanelWindow.h"
#include <iostream.h>

PanelWindow::PanelWindow(const char *name) : VkSimpleWindow (name)
{

_controlPanel = new StartStopPanel("controlPanel",
mainWindowWidget());

XtVaSetValues(_controlPanel->baseWidget(),
XmNorientation, XmVERTICAL, NULL);

_controlPanel->addCallback(StartStopPanel::actionCallback, this,
(VkCallbackMethod) &PanelWindow::statusChanged);

addView(_controlPanel);
}

const char * PanelWindow::className()
{

return "PanelWindow";
}

PanelWindow::~PanelWindow()
{

// Empty
}

Deriving Subclasses to Create New Components

49

void PanelWindow::statusChanged(VkCallbackObject *obj,
void *, void *callData)

{

StartStopPanel * panel = (StartStopPanel *) obj;
PanelAction action = (PanelAction) callData;
switch (action) {

case START:
cout << "Process started\n" << flush;
break;

case STOP:
cout << "Process stopped\n" << flush;
break;

default:
cout << "Undefined state\n" << flush;

}
}

The following simple program displays the resulting PanelWindow object (Chapter 3,
“The ViewKit Application Class,” discusses the VkApp class):

//
// PanelTest.c++
//

#include <Vk/VkApp.h>
#include "PanelWindow.h"

// Main driver. Just instantiate a VkApp and the PanelWindow,
// "show" the window and then "run" the application.

void main (int argc, char **argv)
{

VkApp *panelApp = new VkApp("panelApp", &argc, argv);
PanelWindow *panelWin = new PanelWindow("panelWin");

panelWin->show();
panelApp->run();

}

50

Chapter 2: Components

Figure 2-3 shows the resulting PanelWindow window displayed by this program.

Figure 2-3 Resulting PanelWindow Window

Using a Component Class by Subclassing

Another way to use the StartStopPanel class is to derive a subclass and override the
StartStopPanel::start() and StartStopPanel::stop() functions. This technique of using a
component class is most appropriate if you need to expand or modify a component’s
action in some way.

Example 2-9 creates ControlPanel, a subclass of StartStopPanel that incorporates the
features implemented in the PanelWindow class shown in Example 2-8.

Example 2-9 Subclassing a Component

//
// ControlPanel.h
//

#ifndef _CONTROLPANEL_H
#define _CONTROLPANEL_H
#include "StartStopPanel.h"

class ControlPanel : public StartStopPanel {

public:
ControlPanel (const char *, Widget);
~ControlPanel();
virtual const char *className();

protected:
virtual void start(Widget, XtPointer);
virtual void stop(Widget, XtPointer);

};
#endif

Deriving Subclasses to Create New Components

51

//
// ControlPanel.c++
//

#include "ControlPanel.h"
#include <iostream.h>
ControlPanel::ControlPanel (const char *name , Widget parent) :

StartStopPanel (name, parent)
{

XtVaSetValues(_baseWidget, XmNorientation, XmVERTICAL, NULL);
}

ControlPanel::~ControlPanel()
{

// Empty
}

const char* ControlPanel::className()
{

return "ControlPanel";
}

void ControlPanel::start(Widget w, XtPointer callData)
{

cout << "Process started\n" << flush;
StartStopPanel::start(w, callData);

}

void ControlPanel::stop(Widget w, XtPointer callData)
{

cout << "Process stopped\n" << flush;
StartStopPanel::stop(w, callData);

}

The ControlPanel constructor uses the StartStopPanel constructor to initialize the
component, creating the widgets and initializing the component’s data members. Then,
the ControlPanel constructor sets the orientation resource of the RowColumn widget,
which is the component’s base widget, to VERTICAL.

52

Chapter 2: Components

The ControlPanel class also overrides the virtual functions start() and stop() to perform
the actions handled previously by the PanelWindow class. After performing these
actions, the ControlPanel::start() and ControlPanel::stop() functions call
StartStopPanel::start() and StartStopPanel::stop(), respectively. While this may seem
unnecessary for an example this simple, it helps preserve the encapsulation of the
classes. You could now change the implementation of the StartStopPanel class, perhaps
adding a status indicator to the component that the StartStopPanel::start() and
StartStopPanel::stop() functions would update, and you would not have to change the
start() and stop() function definitions in derived classes such as ControlPanel.

The following simple example creates a VkSimpleWindow object, adds a ControlPanel
as the window’s view, and then displays the window:

//
// PanelTest2.c++
//

#include <Vk/VkApp.h>
#include <Vk/VkSimpleWindow.h>
#include "ControlPanel.h"

// Main driver. Instantiate a VkApp, a VkSimpleWindow, and a
// ControlPanel, add the ControlPanel as the SimpleWindow's view,
// "show" the window and then "run" the application.

void main (int argc, char **argv)
{

VkApp *panelApp = new VkApp("panel2App", &argc, argv);
VkSimpleWindow *panelWin = new VkSimpleWindow("panelWin");
ControlPanel *control = new ControlPanel("control",

panelWin->mainWindowWidget());
panelWin->addView(control);
panelWin->show();
panelApp->run();

}

53

Chapter 3

3. The ViewKit Application Class

This chapter describes the VkApp class, which handles application-level tasks such as Xt
initialization, event handling, window management, cursor control, and application
busy states. Figure 3-1 shows the inheritance graph for VkApp and an auxiliary class,
VkCursorList.

Figure 3-1 Inheritance Graph for VkApp

Overview of the VkApp Class

The VkApp class, derived from the VkComponent class, provides facilities required by
all ViewKit applications. In all of your ViewKit applications you must create a single
instance of VkApp or a class derived from VkApp.

The primary responsibility of VkApp is to handle the initialization and event-handling
operations common to all Xt-based applications. When you write a ViewKit application,
instead of calling Xt functions such as XtAppInitialize(3Xt) and XtAppMainLoop(3Xt),
you simply instantiate and use a VkApp object.

The VkApp class also provides support for other application-level tasks. For example,
VkApp provides functions for quitting your application; showing, hiding, iconifying,
and opening all of the application’s windows; handling application busy states;
maintaining product version information; and setting the application’s cursor shape.

The VkApp class also stores some essential information that can be accessed throughout
an application. This information includes a pointer to the X Display structure associated
with the application’s connection to the server; the XtAppContext structure required by
many Xt functions; the application’s name; and the application’s class name. This
information is maintained in the private portion of the class and is available through
public access functions.

VkAppVkComponent

54

Chapter 3: The ViewKit Application Class

VkApp Constructor

In all ViewKit applications you must create a single instance of the VkApp class (or a
derived class) before instantiating any other ViewKit objects.The VkApp constructor
initializes the Xt Intrinsics and creates a shell, which is never visible, to serve as the
parent for all of the application’s main windows. ViewKit supports a commonly used
multi-shell architecture as described in the book X Window System Toolkit (Asente and
Swick, 1990). ViewKit creates all windows (using the VkSimpleWindow and
VkWindow classes described in Chapter 4, “ViewKit Windows”) as popup children of
the shell created by VkApp.

When you create an instance of the VkApp class, the constructor assigns a pointer to the
VkApp object to the global variable theApplication. The <Vk/VkApp.h> header file
declares this global variable as follows:

extern VkApp *theApplication;

As a result, the theApplication pointer is available in any file that includes the
<Vk/VkApp.h> header file. This provides easy use of VkApp’s facilities and data
throughout your program.

The following is the syntax of the most frequently used VkApp constructor:

VkApp(char * appClassName, int * argc, char ** argv,
XrmOptionDescRec * options = NULL,
int numOptions = 0)

The appClassName argument designates the application class name, which is used when
loading application resources. Note that VkApp differs from other ViewKit components
in that you provide the application class name as an argument to the constructor rather
than overriding the className() function. This allows you to set the application class
name without creating a subclass of VkApp.VkApp also differs from other ViewKit
components in that you do not provide a component name in the constructor; instead,
ViewKit uses the command that you used to invoke your application (argv[0]) as the
component name.

The second and third arguments to the VkApp constructor must be pointers to argc and
the application’s argv array. The VkApp constructor passes these arguments to
XtOpenDisplay(3Xt), which parses the command line according to the standard Xt
command-line options, loads recognized options into the application’s resource
database, and modifies argc and argv to remove all recognized options.

VkApp Constructor

55

You can specify additional command-line options to parse by passing an
XrmOptionDescRec(3Xt) table as the options argument and specifying the number of
entries in the table with the numOptions argument. This is sufficient for setting simple
resource values from the command line; however, if you want to set application-level
variables using either the command line or resource values, you should follow these
steps:

1. Derive a subclass of VkApp.

2. Use the protected member function VkApp::parseCommandLine() to parse
command-line options.

3. Use getResources() to set the variables based on resource values.

This process is illustrated in Example 3-6 in “Deriving Classes From VkApp” on page 77.

If your application has more elaborate needs than the normal constructor addresses, you
may wish to use the following constructor:

VkApp (char * appClassName,
int * arg_c,
char ** arg_v,
ArgList arglist,
Cardinal argCount,
void (*preRealizeFunction)(Widget w),
XrmOptionDescRec * optionList,
int sizeOfOptionList)

You should use this constructor when your application must set creation-time resources
on the invisible top-level shell widget that VkApp creates. Setting the visual attributes
this way allows your application to have all of its shells in a single, non-default visual.
See the VkApp(3x) reference page for more details.

56

Chapter 3: The ViewKit Application Class

Running ViewKit Applications

Once you have instantiated a VkApp object and set up your program’s interface, call
VkApp::run():

virtual void run()

The run() function enters a custom main loop that supports dispatching raw events in
addition to the normal Xt event handling. See “ViewKit Event Handling” on page 56 for
more information on event handling.

Note: Do not call XtMainLoop(3Xt) or XtAppMainLoop(3Xt) in a ViewKit application.

Example 3-1 illustrates the typical use of VkApp in the main body of a ViewKit program.

Example 3-1 Typical Use of the VkApp Class in a ViewKit Program

#include <Vk/VkApp.h>

// Application-specific setup

void main (int argc, char **argv)
{

VkApp *myApp = new VkApp("MyApp", &argc, argv);
// Application-specific code

myApp->run(); // Run the application
}

ViewKit Event Handling

The VkApp::run() function is ViewKit’s main event loop. run() implements the event
handling normally supported by XtAppMainLoop() or XtMainLoop(). run() calls
run_first() to do some internal initialization, and then enters a main loop that dispatches
application events, raw X events, and normal Xt events. run() also allows for customized
event handling. See “Customizing Event Handling” for more information.

Additionally, run() supports events not normally handled by the Xt dispatch mechanism.
For example, run() can handle events registered for non-widgets (such as a
PropertyNotify event on the root window).

ViewKit Event Handling

57

When run() receives an event not handled by the Xt dispatch mechanism, it calls the
virtual function VkApp::handleRawEvent():

virtual void handleRawEvent(XEvent * event)

The default action of VkApp::handleRawEvent() is to pass the event to the
handleRawEvent() function of each instance of VkSimpleWindow (or subclass) in the
application. By default, these member function are empty.

If you want to handle events through this mechanism, call XSelectInput(3X) to select the
events that you want to receive, and override handleRawEvent() in a VkApp or
VkSimpleWindow subclass to implement your event processing. Generally, in keeping
with object-oriented practice, you should override handleRawEvent() in a
VkSimpleWindow subclass rather than a VkApp subclass, unless your event processing
has an application-wide effect. If you override VkApp::handleRawEvent() in a derived
class, call the base class’s handleRawEvent() function after performing your event
processing.

Note: If you explicitly call XtNextEvent(3Xt) and XtDispatchEvent(3Xt) in your
application, you should pass any undispatched events to handleRawEvent().

In addition to the automatic event dispatching provided by run(), you can force ViewKit
to handle all pending events immediately by calling VkApp::handlePendingEvents():

virtual void handlePendingEvents()

This function retrieves and dispatches all X events as long as there are events pending.
Unlike XmUpdateDisplay(3Xm), which handles only Expose events,
handlePendingEvents() handles all events. In other words, handlePendingEvents()
does not just refresh windows, it also handles all pending events including user input.
You might want to call this function periodically to process events during a
time-consuming task.

handlePendingEvents(), like run() can also be customized. See “Customizing Event
Handling” for more information.

58

Chapter 3: The ViewKit Application Class

Customizing Event Handling

If you want to customize your application’s event handling, you do not need to override
run(). In fact, overriding run() is strongly discouraged. You can customize event
handling in any of the following ways:

• Use standard X mechanisms to add event handlers.

• Use one or more workprocs.

• Maintain your own queue of all that you need to do, and then dispatch that work in
a single workproc.

• Use run(Boolean(*appEventHandler) (XEvent &)) to provide custom event handling.

run(Boolean(*appEventHandler) (XEvent &)) is the only safe way to customize ViewKit’s
event loop. It allows you to customize the event loop without taking responsibility for
the entire process.

Each time through the event loop, before doing any event processing of its own, run()
calls appEventHandler() with the event. appEventHandler() can then handle the event
completely, handle it partially, or not handle it at all. If appEventHandler() has
completely handled the event, it returns TRUE and no further handling of that event
occurs. If the application decides not to handle the event, or if more handling is needed,
then appEventHandler() returns FALSE and run() finishes the job.

If you really must override run(), then your application must call run_first() before
entering its own event loop.

Much like run(), handlePendingEvents() can be customized by calling
handlePendingEvents(Boolean(*appEventHandler)(XEvent &)).

For a better understanding of how to customize event handling, see the demo program,
/usr/share/src/ViewKit/Basic/run.c++.

Quitting ViewKit Applications

59

Quitting ViewKit Applications

If you want to exit a ViewKit application, but also want to give other parts of the
application the option to abort the shutdown if necessary, call VkApp::quitYourself():

virtual void quitYourself()

VkApp::quitYourself() calls the okToQuit() function for each top-level
VkSimpleWindow (or subclass). All windows that return TRUE are deleted; however, if
the okToQuit() function of any window returns FALSE, the shutdown is terminated and
the windows returning FALSE are not deleted. quitYourself() queries the windows in the
reverse order in which they were created, except that it checks the window designated as
the main window last. (See “Managing Top-Level Windows” on page 60 for information
on designating the main window.)

The default, as provided by VkComponent, is for the okToQuit() function to return
TRUE in all cases. You must override okToQuit() for all components that you want to
perform a check before quitting. For example, you could override the okToQuit()
function for a window to post a dialog asking the user whether he or she really wants to
exit the application and then abort the shutdown if the user says to do so. Another
possibility would be to return FALSE if a component is in the process of updating a file.

Usually, only VkSimpleWindow and its subclasses use okToQuit(). In some cases, you
might want to check one or more components contained within a window before
quitting. To do so, override the okToQuit() function for that window to call the
okToQuit() functions for all the desired components. Override the okToQuit() functions
for the other components to perform whatever checks are necessary.

A ViewKit application automatically exits once all of its windows are deleted. This can
occur as a result of any of the following circumstances:

• The application calls quitYourself().

• The application deletes all of its windows individually.

• The user deletes all application windows through window manager interaction (for
example, choosing the Close option in the window menu provided by the window
manager).

Once all windows are deleted, the application exits by calling VkApp::terminate():

virtual void terminate(int status = 0)

60

Chapter 3: The ViewKit Application Class

terminate() is a virtual function that calls exit(2). terminate() is also called from within
ViewKit when any fatal error is detected.

You can call terminate() explicitly to exit a ViewKit application immediately. Usually you
would use this if you encounter a fatal error. If you provide a status argument, your
application uses it as the exit value that the application returns.

You can override terminate() in a VkApp subclass to perform any cleanup operations
that your application requires before aborting (for example, closing a database). If you
override terminate() in a derived class, call the base class’s terminate() function after
performing your cleanup operations.

Note: Even though you can override quitYourself() in a VkApp subclass, in most cases
you should override terminate() instead. This ensures that any cleanup operations you
add are performed no matter how the application exits (for example, by error condition
or by user interaction with the window manager). If you decide to override
quitYourself(), you must perform your cleanup operations before calling the base class’s
quitYourself(): if quitYourself() succeeds in deleting all windows, your application calls
terminate() and exits before ever returning from quitYourself().

Managing Top-Level Windows

The VkApp object maintains a list of all windows created in an application. The VkApp
object uses this list to manage the application’s top-level windows. So that VkApp can
properly manage windows, you should always use the VkSimpleWindow and
VkWindow classes to create top-level windows in your application. The classes are
discussed in Chapter 4, “ViewKit Windows.”

Every application has a main window. By default, the first window you create is treated as
the main window. You can use the VkApp::setMainWindow() function to specify a
different window to treat as the main window:

void setMainWindow(VkSimpleWindow * window)

The access function VkApp::mainWindow() returns a pointer to the VkSimpleWindow
(or subclass) object installed as the application’s main window:

VkSimpleWindow *mainWindow() const

Setting Application Cursors

61

Additionally, the VkApp class supports several operations that can be performed on all
top-level windows in a multi-window application. All of the following functions take no
arguments, have a void return value, and are declared virtual:

show() Displays all of the application’s hidden, non-iconified windows.

hide() Removes all of the application’s windows from the screen.

iconify() Iconifies all visible windows in the application.

open() Opens all iconified windows in the application.

raise() Raises all visible windows in the application to the top of the window
manager’s window stack.

lower() Lowers all visible windows in the application to the bottom of the
window manager’s window stack.

You can also specify whether or not your application’s windows start in an iconified state
using VkApp::startupIconified():

void startupIconified(const Boolean flag)

If flag is TRUE, then the application starts all windows in the iconified state.

Note: You must call startupIconified() before calling run(), otherwise it will not have any
effect.

Setting Application Cursors

By default, VkApp installs two cursors for ViewKit applications: an arrow for normal
use, and a watch for display during busy states. (See “Supporting Busy States” on
page 69 for information on busy states in ViewKit applications.) The VkApp class also
provides several functions for installing your own cursors and retrieving the currently
installed cursors.

Setting and Retrieving the Normal Cursor

VkApp::setNormalCursor() sets the normal cursor for use in all of your application’s
windows while the application is not busy:

void setNormalCursor(Cursor c)

62

Chapter 3: The ViewKit Application Class

You must provide setNormalCursor() with a Cursor argument. See the
XCreateFontCursor(3X) reference page for more information on creating an X cursor.

You can retrieve the current normal cursor with VkApp::normalCursor():

virtual Cursor
normalCursor()

Setting and Retrieving the Busy Cursor

The VkApp class supports both fixed and animated busy cursors. A fixed busy cursor
retains the same appearance throughout a busy state. An animated busy cursor is actually
a sequence of Pixmaps that you can cycle through while in a busy state, giving the
appearance of animation. “Animating the Busy Cursor” on page 72 describes the
procedure to follow to cycle through an animated busy cursor’s Pixmaps. If you install
an animated busy cursor but do not cycle it, VkApp simply uses the animated cursor’s
current Pixmap as a fixed busy cursor.

The default busy cursor that VkApp installs, a watch, is actually an animated cursor.

Setting and Retrieving a Fixed Busy Cursor

VkApp::setBusyCursor() sets a fixed busy cursor for use in all of your application’s
windows while the application is busy:

void setBusyCursor(Cursor c)

You must provide setBusyCursor() with a Cursor argument.

You can retrieve the current busy cursor with VkApp::busyCursor():

virtual Cursor busyCursor()

Creating, Setting, and Retrieving an Animated Busy Cursor

To create an animated busy cursor, you must create a subclass of the abstract base class
VkCursorList. The following is the syntax of the VkCursorList constructor:

VkCursorList (int numCursors)

Setting Application Cursors

63

numCursors is the number of cursor Pixmaps in your animated cursor.The VkCursorList
constructor uses this value to allocate space for an array of Cursor pointers. In your
subclass constructor, you should perform any other initialization required by your
cursor.

In your subclass, you must also override the pure virtual function
VkCursorList::createCursor():

virtual void createCursor(int index)

createCursor() creates the cursor for the given index in the animated cursor array.
Cursors are numbered sequentially beginning with zero. When your application
animates the cursor, it step through the cursor array sequentially. createCursor() must
assign the cursor it creates to the index entry in the protected _cursorList array:

Pixmap * _cursorList

For example, Example 3-2 shows the code needed to create an animated hourglass busy
cursor.

Example 3-2 Creating an Animated Busy Cursor

#include <Vk/VkApp.h>
#include <Vk/VkResource.h>
#include <Vk/VkCursorList.h>

// Define an array of bit patterns that represent each frame of the cursor
// animation.

#define NUMCURSORS 8

static char time_bits[NUMCURSORS][32*32] = {
{

0x00, 0x00, 0x00, 0x00, 0xfe, 0xff, 0xff, 0x7f, 0xfe, 0xff, 0xff, 0x7f,
0x8c, 0x00, 0x00, 0x31, 0x4c, 0x00, 0x00, 0x32, 0x4c, 0xff, 0xff, 0x32,
0x4c, 0xff, 0xff, 0x32, 0x4c, 0xff, 0xff, 0x32, 0x4c, 0xff, 0xff, 0x32,
0x8c, 0xfe, 0x7f, 0x31, 0x0c, 0xfd, 0xbf, 0x30, 0x0c, 0xfa, 0x5f, 0x30,
0x0c, 0xe4, 0x27, 0x30, 0x0c, 0x98, 0x19, 0x30, 0x0c, 0x60, 0x06, 0x30,
0x0c, 0x80, 0x01, 0x30, 0x0c, 0x80, 0x01, 0x30, 0x0c, 0x60, 0x06, 0x30,
0x0c, 0x18, 0x18, 0x30, 0x0c, 0x04, 0x20, 0x30, 0x0c, 0x02, 0x40, 0x30,
0x0c, 0x01, 0x80, 0x30, 0x8c, 0x00, 0x00, 0x31, 0x4c, 0x00, 0x00, 0x32,
0x4c, 0x00, 0x00, 0x32, 0x4c, 0x00, 0x00, 0x32, 0x4c, 0x00, 0x00, 0x32,
0x4c, 0x00, 0x00, 0x32, 0x8c, 0x00, 0x00, 0x31, 0xfe, 0xff, 0xff, 0x7f,
0xfe, 0xff, 0xff, 0x7f, 0x00, 0x00, 0x00, 0x00},

{

64

Chapter 3: The ViewKit Application Class

0x00, 0x00, 0x00, 0x00, 0xfe, 0xff, 0xff, 0x7f, 0xfe, 0xff, 0xff, 0x7f,
0x8c, 0x00, 0x00, 0x31, 0x4c, 0x00, 0x00, 0x32, 0x4c, 0x03, 0xc0, 0x32,
0x4c, 0x3f, 0xfc, 0x32, 0x4c, 0xff, 0xff, 0x32, 0x4c, 0xff, 0xff, 0x32,
0x8c, 0xfe, 0x7f, 0x31, 0x0c, 0xfd, 0xbf, 0x30, 0x0c, 0xfa, 0x5f, 0x30,
0x0c, 0xe4, 0x27, 0x30, 0x0c, 0x98, 0x19, 0x30, 0x0c, 0x60, 0x06, 0x30,
0x0c, 0x80, 0x01, 0x30, 0x0c, 0x80, 0x01, 0x30, 0x0c, 0x60, 0x06, 0x30,
0x0c, 0x18, 0x19, 0x30, 0x0c, 0x84, 0x20, 0x30, 0x0c, 0x02, 0x41, 0x30,
0x0c, 0x81, 0x80, 0x30, 0x8c, 0x00, 0x01, 0x31, 0x4c, 0x80, 0x00, 0x32,
0x4c, 0x00, 0x01, 0x32, 0x4c, 0xfc, 0x3f, 0x32, 0x4c, 0xff, 0xff, 0x32,
0x4c, 0x00, 0x00, 0x32, 0x8c, 0x00, 0x00, 0x31, 0xfe, 0xff, 0xff, 0x7f,
0xfe, 0xff, 0xff, 0x7f, 0x00, 0x00, 0x00, 0x00},

{
0x00, 0x00, 0x00, 0x00, 0xfe, 0xff, 0xff, 0x7f, 0xfe, 0xff, 0xff, 0x7f,
0x8c, 0x00, 0x00, 0x31, 0x4c, 0x00, 0x00, 0x32, 0x4c, 0x00, 0x00, 0x32,
0x4c, 0x03, 0xc0, 0x32, 0x4c, 0x1f, 0xf8, 0x32, 0x4c, 0x7f, 0xfe, 0x32,
0x8c, 0xfe, 0x7f, 0x31, 0x0c, 0xfd, 0xbf, 0x30, 0x0c, 0xfa, 0x5f, 0x30,
0x0c, 0xe4, 0x27, 0x30, 0x0c, 0x98, 0x19, 0x30, 0x0c, 0x60, 0x06, 0x30,
0x0c, 0x80, 0x01, 0x30, 0x0c, 0x80, 0x01, 0x30, 0x0c, 0x60, 0x06, 0x30,
0x0c, 0x18, 0x19, 0x30, 0x0c, 0x84, 0x20, 0x30, 0x0c, 0x02, 0x41, 0x30,
0x0c, 0x81, 0x80, 0x30, 0x8c, 0x00, 0x01, 0x31, 0x4c, 0xc0, 0x07, 0x32,
0x4c, 0xfc, 0x3f, 0x32, 0x4c, 0xfe, 0x7f, 0x32, 0x4c, 0xff, 0xff, 0x32,
0x4c, 0x00, 0x00, 0x32, 0x8c, 0x00, 0x00, 0x31, 0xfe, 0xff, 0xff, 0x7f,
0xfe, 0xff, 0xff, 0x7f, 0x00, 0x00, 0x00, 0x00},

{
0x00, 0x00, 0x00, 0x00, 0xfe, 0xff, 0xff, 0x7f, 0xfe, 0xff, 0xff, 0x7f,
0x8c, 0x00, 0x00, 0x31, 0x4c, 0x00, 0x00, 0x32, 0x4c, 0x00, 0x00, 0x32,
0x4c, 0x00, 0x00, 0x32, 0x4c, 0x03, 0xc0, 0x32, 0x4c, 0x0f, 0xf0, 0x32,
0x8c, 0x3e, 0x7c, 0x31, 0x0c, 0xfd, 0xbf, 0x30, 0x0c, 0xfa, 0x5f, 0x30,
0x0c, 0xe4, 0x27, 0x30, 0x0c, 0x98, 0x19, 0x30, 0x0c, 0x60, 0x06, 0x30,
0x0c, 0x80, 0x01, 0x30, 0x0c, 0x80, 0x01, 0x30, 0x0c, 0x60, 0x06, 0x30,
0x0c, 0x18, 0x19, 0x30, 0x0c, 0x84, 0x20, 0x30, 0x0c, 0x02, 0x41, 0x30,
0x0c, 0x81, 0x80, 0x30, 0x8c, 0xe0, 0x07, 0x31, 0x4c, 0xfc, 0x3f, 0x32,
0x4c, 0xfe, 0x7f, 0x32, 0x4c, 0xff, 0xff, 0x32, 0x4c, 0xff, 0xff, 0x32,
0x4c, 0x00, 0x00, 0x32, 0x8c, 0x00, 0x00, 0x31, 0xfe, 0xff, 0xff, 0x7f,
0xfe, 0xff, 0xff, 0x7f, 0x00, 0x00, 0x00, 0x00},

{
0x00, 0x00, 0x00, 0x00, 0xfe, 0xff, 0xff, 0x7f, 0xfe, 0xff, 0xff, 0x7f,
0x8c, 0x00, 0x00, 0x31, 0x4c, 0x00, 0x00, 0x32, 0x4c, 0x00, 0x00, 0x32,
0x4c, 0x00, 0x00, 0x32, 0x4c, 0x00, 0x00, 0x32, 0x4c, 0x03, 0xc0, 0x32,
0x8c, 0x06, 0x60, 0x31, 0x0c, 0x1d, 0xb8, 0x30, 0x0c, 0x7a, 0x5e, 0x30,
0x0c, 0xe4, 0x27, 0x30, 0x0c, 0x98, 0x19, 0x30, 0x0c, 0x60, 0x06, 0x30,
0x0c, 0x80, 0x01, 0x30, 0x0c, 0x80, 0x01, 0x30, 0x0c, 0x60, 0x06, 0x30,
0x0c, 0x18, 0x19, 0x30, 0x0c, 0x84, 0x20, 0x30, 0x0c, 0x82, 0x41, 0x30,
0x0c, 0xf1, 0x8f, 0x30, 0x8c, 0xfc, 0x3f, 0x31, 0x4c, 0xfe, 0x7f, 0x32,
0x4c, 0xff, 0xff, 0x32, 0x4c, 0xff, 0xff, 0x32, 0x4c, 0xff, 0xff, 0x32,

Setting Application Cursors

65

0x4c, 0x00, 0x00, 0x32, 0x8c, 0x00, 0x00, 0x31, 0xfe, 0xff, 0xff, 0x7f,
0xfe, 0xff, 0xff, 0x7f, 0x00, 0x00, 0x00, 0x00},

{
0x00, 0x00, 0x00, 0x00, 0xfe, 0xff, 0xff, 0x7f, 0xfe, 0xff, 0xff, 0x7f,
0x8c, 0x00, 0x00, 0x31, 0x4c, 0x00, 0x00, 0x32, 0x4c, 0x00, 0x00, 0x32,
0x4c, 0x00, 0x00, 0x32, 0x4c, 0x00, 0x00, 0x32, 0x4c, 0x00, 0x00, 0x32,
0x8c, 0x02, 0x40, 0x31, 0x0c, 0x05, 0xa0, 0x30, 0x0c, 0x1a, 0x58, 0x30,
0x0c, 0x64, 0x26, 0x30, 0x0c, 0x98, 0x19, 0x30, 0x0c, 0x60, 0x06, 0x30,
0x0c, 0x80, 0x01, 0x30, 0x0c, 0x80, 0x01, 0x30, 0x0c, 0x60, 0x06, 0x30,
0x0c, 0x18, 0x19, 0x30, 0x0c, 0x84, 0x20, 0x30, 0x0c, 0xe2, 0x47, 0x30,
0x0c, 0xf9, 0x9f, 0x30, 0x8c, 0xfe, 0x7f, 0x31, 0x4c, 0xff, 0xff, 0x32,
0x4c, 0xff, 0xff, 0x32, 0x4c, 0xff, 0xff, 0x32, 0x4c, 0xff, 0xff, 0x32,
0x4c, 0x00, 0x00, 0x32, 0x8c, 0x00, 0x00, 0x31, 0xfe, 0xff, 0xff, 0x7f,
0xfe, 0xff, 0xff, 0x7f, 0x00, 0x00, 0x00, 0x00},

{
0x00, 0x00, 0x00, 0x00, 0xfe, 0xff, 0xff, 0x7f, 0xfe, 0xff, 0xff, 0x7f,
0x8c, 0xff, 0xff, 0x31, 0xcc, 0xff, 0xff, 0x33, 0x4c, 0x00, 0x00, 0x32,
0x4c, 0x00, 0x00, 0x32, 0x4c, 0x00, 0x00, 0x32, 0x4c, 0x00, 0x00, 0x32,
0x8c, 0x00, 0x00, 0x31, 0x0c, 0x01, 0x80, 0x30, 0x0c, 0x02, 0x40, 0x30,
0x0c, 0x04, 0x20, 0x30, 0x0c, 0x18, 0x18, 0x30, 0x0c, 0x60, 0x06, 0x30,
0x0c, 0x80, 0x01, 0x30, 0x0c, 0x80, 0x01, 0x30, 0x0c, 0x60, 0x06, 0x30,
0x0c, 0x98, 0x19, 0x30, 0x0c, 0xe4, 0x27, 0x30, 0x0c, 0xfa, 0x5f, 0x30,
0x0c, 0xfd, 0xbf, 0x30, 0x8c, 0xfe, 0x7f, 0x31, 0x4c, 0xff, 0xff, 0x32,
0x4c, 0xff, 0xff, 0x32, 0x4c, 0xff, 0xff, 0x32, 0x4c, 0xff, 0xff, 0x32,
0x4c, 0x00, 0x00, 0x32, 0x8c, 0x00, 0x00, 0x31, 0xfe, 0xff, 0xff, 0x7f,
0xfe, 0xff, 0xff, 0x7f, 0x00, 0x00, 0x00, 0x00},

{
0x00, 0x00, 0x00, 0x00, 0x06, 0x00, 0x00, 0x60, 0xfe, 0xff, 0xff, 0x7f,
0xfe, 0xff, 0xff, 0x7f, 0x06, 0x00, 0x00, 0x60, 0x06, 0x00, 0x00, 0x60,
0xf6, 0x01, 0x80, 0x6f, 0x0e, 0x02, 0x40, 0x78, 0xe6, 0x05, 0x20, 0x78,
0xe6, 0x0b, 0x10, 0x78, 0xe6, 0x17, 0x08, 0x78, 0xe6, 0x2f, 0x04, 0x78,
0xe6, 0x2f, 0x04, 0x78, 0xe6, 0x5f, 0x02, 0x78, 0xe6, 0x5f, 0x02, 0x78,
0xe6, 0xbf, 0x01, 0x78, 0xe6, 0xbf, 0x01, 0x78, 0xe6, 0x5f, 0x02, 0x78,
0xe6, 0x5f, 0x02, 0x78, 0xe6, 0x2f, 0x04, 0x78, 0xe6, 0x2f, 0x04, 0x78,
0xe6, 0x17, 0x08, 0x78, 0xe6, 0x0b, 0x10, 0x78, 0xe6, 0x05, 0x20, 0x78,
0x0e, 0x02, 0x40, 0x78, 0xf6, 0x01, 0x80, 0x6f, 0x06, 0x00, 0x00, 0x60,
0x06, 0x00, 0x00, 0x60, 0xfe, 0xff, 0xff, 0x7f, 0xfe, 0xff, 0xff, 0x7f,
0x06, 0x00, 0x00, 0x60, 0x00, 0x00, 0x00, 0x00}

};

// Masks used for this cursor. The last frame requires a different
// mask, but all other frames can use the same mask.

66

Chapter 3: The ViewKit Application Class

static char time_mask_bits[] = {
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0x8e, 0xff, 0xff, 0x71, 0xce, 0xff, 0xff, 0x73, 0xce, 0xff, 0xff, 0x73,
0xce, 0xff, 0xff, 0x73, 0xce, 0xff, 0xff, 0x73, 0xce, 0xff, 0xff, 0x73,
0x8e, 0xff, 0xff, 0x71, 0x0e, 0xff, 0xff, 0x70, 0x0e, 0xfe, 0x7f, 0x70,
0x0e, 0xfc, 0x3f, 0x70, 0x0e, 0xf8, 0x1f, 0x70, 0x0e, 0xe0, 0x07, 0x70,
0x0e, 0x80, 0x01, 0x70, 0x0e, 0x80, 0x01, 0x70, 0x0e, 0xe0, 0x07, 0x70,
0x0e, 0xf8, 0x1f, 0x70, 0x0e, 0xfc, 0x3f, 0x70, 0x0e, 0xfe, 0x7f, 0x70,
0x0e, 0xff, 0xff, 0x70, 0x8e, 0xff, 0xff, 0x71, 0xce, 0xff, 0xff, 0x73,
0xce, 0xff, 0xff, 0x73, 0xce, 0xff, 0xff, 0x73, 0xce, 0xff, 0xff, 0x73,
0xce, 0xff, 0xff, 0x73, 0x8e, 0xff, 0xff, 0xf1, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff};

#define time7_mask_width 32
#define time7_mask_height 32
#define time7_mask_x_hot 15
#define time7_mask_y_hot 15
static char time7_mask_bits[] = {

0x0f, 0x00, 0x00, 0xf0, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0x07, 0x00, 0x00, 0xe0, 0x07, 0x00, 0x00, 0xe0,
0xf7, 0x01, 0x80, 0xef, 0xff, 0x03, 0xc0, 0xff, 0xff, 0x07, 0xe0, 0xff,
0xff, 0x0f, 0xf0, 0xff, 0xff, 0x1f, 0xf8, 0xff, 0xff, 0x3f, 0xfc, 0xff,
0xff, 0x3f, 0xfc, 0xff, 0xff, 0x7f, 0xfe, 0xff, 0xff, 0x7f, 0xfe, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x7f, 0xfe, 0xff,
0xff, 0x7f, 0xfe, 0xff, 0xff, 0x3f, 0xfc, 0xff, 0xff, 0x3f, 0xfc, 0xff,
0xff, 0x1f, 0xf8, 0xff, 0xff, 0x0f, 0xf0, 0xff, 0xff, 0x07, 0xe0, 0xff,
0xff, 0x03, 0xc0, 0xff, 0xf7, 0x01, 0x80, 0xef, 0x07, 0x00, 0x00, 0xe0,
0x07, 0x00, 0x00, 0xe0, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0x0f, 0x00, 0x00, 0xf0};

///
// Class declaration. Subclass VkCursorList
///

class HourGlassCursors : public VkCursorList {

public:
HourGlassCursors();

protected:
void createCursor(int index); // Overrides base class' pure virtual

private:
XColor xcolors[2];

};

Setting Application Cursors

67

// The constructor gets two colors to use for the cursor.

HourGlassCursors::HourGlassCursors () : VkCursorList (NUMCURSORS)
{

xcolors[0].pixel= (Pixel) VkGetResource(theApplication->baseWidget(),
"busyCursorForeground",
XmCForeground,
XmRPixel,
(char *) "Black");

xcolors[1].pixel= (Pixel) VkGetResource(theApplication->baseWidget(),
"busyCursorBackground",
XmCBackground,
XmRPixel,
char *) "White");

XQueryColors (theApplication->display(),
DefaultColormapOfScreen(DefaultScreenOfDisplay(dpy)),
xcolors, 2);

}

// This function is called as needed, to create a new cursor frame.
// Just create the cursor corresponding to the requested index and
// install it in _cursorList.

void HourGlassCursors::createCursor(int index)
{

Pixmap pixmap = 0, maskPixmap = 0;
Display *dpy = theApplication->display();
pixmap = XCreateBitmapFromData (dpy,

DefaultRootWindow(dpy),
time_bits[index],
32, 32);

if(index == 7)
maskPixmap = XCreateBitmapFromData (dpy,

DefaultRootWindow(dpy),
time7_mask_bits,
32, 32);

else
maskPixmap = XCreateBitmapFromData (dpy,

DefaultRootWindow(dpy),
time_mask_bits,
32, 32);

68

Chapter 3: The ViewKit Application Class

_cursorList[index] = XCreatePixmapCursor (dpy, pixmap, maskPixmap,
&(xcolors[0]), &(xcolors[1]),
0, 0);

if(pixmap)
XFreePixmap (dpy, pixmap);

if(maskPixmap)
XFreePixmap (dpy, maskPixmap);

}

Once you have created an animated busy cursor, you can install it as your application’s
busy cursor using an overloaded version of the VkApp::setBusyCursor() function:

void setBusyCursor(VkCursorList * animatedCursor)

You should provide as the argument to setBusyCursor() a pointer to your animated busy
cursor object.

When you use an animated busy cursor, the busyCursor() function returns the currently
displayed Pixmap of your busy cursor.

Setting and Retrieving a Temporary Cursor

You can set a temporary cursor for use in all of your application’s windows using
VkApp::showCursor():

void showCursor(Cursor c)

Calling showCursor() immediately displays the temporary cursor. The cursor stays in
effect until the application enters or exits a busy state, or you reset the cursor back to the
normal cursor by calling showCursor() with a NULL cursor argument.

Use this function to display a cursor only briefly. If you want to change the cursor for an
extended period, use setNormalCursor() or setBusyCursor().

Supporting Busy States

69

Supporting Busy States

This section describes ViewKit’s support for busy states, when you lock out user input
during an operation.

Entering and Exiting Busy States Using ViewKit

Whenever you expect a procedure to take considerable time to complete, you can call the
VkApp::busy() function before entering the relevant region of code to lock out user input
in all application windows:

virtual void busy(char * msg = NULL,
VkSimpleWindow window = NULL)

If you call busy() with no arguments, the application simply displays a busy cursor. If
you provide a string as the first argument, the application posts a dialog to display the
string. The string is treated first as a resource name that busy() looks up relative to the
dialog widget. If the resource exists, its value is used as the message. If the resource does
not exist, or if the string contains spaces or newline characters, busy() uses the string
itself as the message.

If you provide a VkSimpleWindow (or subclass) as the second argument, the
application posts the dialog over this specified window. If you do not specify a window,
the application posts the dialog over the main window. (See “Managing Top-Level
Windows” on page 60 for instructions on setting the main window. See Chapter 7,
“Using Dialogs in ViewKit,” for more details on dialog behavior.)

The VkApp::notBusy() function undoes the previous call to busy():

virtual void notBusy()

You can nest calls to busy(), but you must always have matching busy() and notBusy()
pairs. An application exits the busy state only when the number of notBusy() calls
matches the number of busy() calls.

Note: ViewKit does not “stack” nested busy dialogs, it simply displays the most recently
posted busy dialog. Once you post a busy dialog, it remains displayed until the busy
state is over or you replace it with another busy dialog.

70

Chapter 3: The ViewKit Application Class

Example 3-3 shows an example of setting busy dialog messages using resource values
and using nested busy() and notBusy() calls. Note that this is not a complete example: it
lists only the code relating to the busy states.

Example 3-3 Using Busy States in a ViewKit Application

class ReportWindow: public VkSimpleWindow {

public:
ReportWindow (const char *name);
~ReportWindow();
virtual const char* className();
void report();
void sort();

private:
static String _defaultResources[];

};
String _defaultResources[] = {

"*sortDialogMsg: Sorting records...",
"*reportDialogMsg: Generating report...",
NULL

};

ReportWindow::ReportWindow(const char *name) : VkSimpleWindow (name)
{

setDefaultResources(theApplication->baseWidget(), _defaultResources);
// Create window...

}

void ReportWindow::sort()
{

theApplication->busy("sortDialogMsg");
// Sort records...
theApplication->notBusy();

}

void ReportWindow::report()
{

theApplication->busy("reportDialogMsg");
// Report generation...
sort();
// Report generation continued...
theApplication->notBusy();

}

Supporting Busy States

71

The ReportWindow class defines the busy dialog messages as resource values and loads
these values using setDefaultResources() in the ReportWindow constructor.1 The calls
to busy() pass these resource names instead of passing the actual dialog text. This allows
you to override these resource values in an app-defaults file should you need to.

When the application calls ReportWindow::report(), it posts the busy dialog shown in
Figure 3-2.

Figure 3-2 Busy Dialog

When the application calls ReportWindow::sort(), it posts the busy dialog shown in
Figure 3-3.

Figure 3-3 Nested Busy Dialog

Note that the application continues to display the second busy dialog until reaching the
theApplication->notBusy() statement in ReportWindow::report().

1 Unlike most ViewKit components, the VkSimpleWindow class constructor is not passed a parent
widget. All ViewKit windows are children of the application’s VkApp base widget. So, to access a
window’s parent widget, you must use the VkApp::baseWidget() access function as shown in this
example.

72

Chapter 3: The ViewKit Application Class

Animating the Busy Cursor

To animate the busy cursor during a busy state, periodically call VkApp::progressing():

virtual void progressing(const char * msg = NULL)

If you have an animated busy cursor installed, progressing() cycles to the next Pixmap
in the cursor list. If you have a fixed cursor installed, progressing() has no effect on the
busy cursor.

If you provide a character string argument, your application posts a dialog to display the
message. The string is treated first as a resource name that progressing() looks up relative
to the dialog widget. If the resource exists, its value is used as the message. If the resource
does not exist, or if the string contains spaces or newline characters, progressing() uses
the string itself as the message.

The code fragment in Example 3-4 performs a simulated lengthy task and periodically
cycles the busy cursor.

Example 3-4 Animating the Busy Cursor

int i;

// Start being "busy"

theApplication->busy("Busy", (BusyWindow *) clientData);

for(i=0; i<100; i++)
{

// Every so often, update the busy cursor
theApplication->progressing();
sleep(1);

}

// Task done, so we’re not busy anymore
theApplication->notBusy();

Supporting Busy States

73

Installing Different Busy Dialogs

By default, busy() displays the dialog using theBusyDialog, a global pointer to an
instantiation of the VkBusyDialog class1 (described in “Busy Dialog” on page 200). If
you prefer to use a different dialog object, you can pass a pointer to the object to the
setBusyDialog() function:

void setBusyDialog(VkBusyDialog * dialog)

This alternate busy dialog must be implemented as a subclass of VkBusyDialog. Calling
setBusyDialog() with a NULL argument restores the default VkBusyDialog object.

Most frequently, you will use setBusyDialog() to install theInterruptDialog, a global
pointer to an instantiation of the VkInterruptDialog class, which implements an
interruptible busy dialog2. (“Interruptible Busy Dialog” on page 202 describes the
VkInterruptDialog class.) Example 3-5 shows a typical example of temporarily
installing an interruptible busy dialog for a task.

Alternatively, you might wish use theProgressDialog, a global pointer to an instantiation
of the VkProgressDialog class. VkProgressDialog implements an interruptible busy
dialog displaying a bar graph that indicates the percentage of the task that has been
completed (see “Progress Dialog” on page 204 for more details).

1 theBusyDialog is actually implemented as a compiler macro that invokes a VkBusyDialog access
function to return a pointer to the unique instantiation of the VkBusyDialog class. Although you should
never need to use this access function directly, you might encounter it while debugging a ViewKit
application that uses the busy dialog.

2 theInterruptDialog is actually implemented as a compiler macro that invokes a VkInterruptDialog
access function to return a pointer to the unique instantiation of the VkInterruptDialog class. Although
you should never need to use this access function directly, you might encounter it while debugging a
ViewKit application that uses the interruptible busy dialog.

74

Chapter 3: The ViewKit Application Class

Example 3-5 Temporarily Installing an Interruptible Busy Dialog

#inlcude <Vk/VkApp.h>
#include <Vk/VkInterruptDialog.h>

// ...

// Install theInterruptDialog as the busy dialog

theApplication->setBusyDialog(theInterruptDialog);
theApplication->busy("Generating report"); // Enter busy state

// Perform task...

theApplication->notBusy(); // Exit busy state
theApplication->setBusyDialog(NULL); // Install default busy dialog

Maintaining Product and Version Information

The VkApp class provides several access functions and constant data members that you
can use to identify your application and the current ViewKit release.

VkApp::ViewKitMajorRelease is a static integer constant that identifies the major release of
ViewKit; VkApp::ViewKitMinorRelease is a static integer constant that identifies the minor
release of ViewKit, and VkApp::ViewKitReleaseString is a static character array constant
that contains the complete major and minor release information. For example, in a 1.2
release, the value of VkApp::ViewKitMajorRelease would be 1, the value of
VkApp::ViewKitMinorRelease would be 2, and the value of VkApp::ViewKitReleaseString
would be “ViewKit Release: 1.2”. These values can be useful if you need to provide
conditional statements in your code to handle different versions of the ViewKit library.

You can use VkApp::setVersionString() to set version information for an application
based on ViewKit:

void setVersionString(const char * versionInfo)

You can retrieve the version string using VkApp::versionString():

const char *versionString()

Maintaining Product and Version Information

75

ViewKit displays this version string in the Product Information dialog that is posted
when a user chooses Product Information from the default Help menu. (See “ViewKit
Help Menu” on page 300 for more information on the default Help menu.) For example,
consider an application that you invoke with the command MapMaker that includes the
following line of code:

theApplication->setVersionString("MapMaker 2.1");

If you choose Product Information from the default Help menu, your application posts
the dialog shown in Figure 3-4.

Figure 3-4 Product Information Dialog

You can use VkApp::setAboutDialog() to replace the standard Product Information
dialog with your own custom dialog:

void setAboutDialog(VkDialogManager * dialog)

You must provide setAboutDialog() with a pointer to an object that is a subclass of
VkDialogManager. Most frequently, you will actually create a subclass of
VkGenericDialog, an abstract subclass of VkDialogManager that simplifies the process
of creating custom dialogs. “Deriving New Dialog Classes Using the Generic Dialog” on
page 211 describes creating a custom dialog.

The VkApp::aboutDialog() function returns a pointer to the custom Product
Information dialog you have installed:

VkDialogManager* aboutDialog()

76

Chapter 3: The ViewKit Application Class

Application Data Access Functions

VkApp provides several access functions for retrieving data useful for your application:

char *name() const
Returns the command name you used to invoke the application
(argv[0]).

char *applicationClassName() const
Returns the application class name set in the VkApp constructor. This
application class name is used when loading application resources.

virtual const char *className() const
Returns the class name of the VkApp (or subclass) instance being used.
By default, this is “VkApp”. Note that unlike all other ViewKit
components, the VkApp class does not use the value returned by
className() when loading resources; instead, it uses the application
class name that you provide as an argument to the VkApp constructor.
This allows you to set the application class name without creating a
subclass of VkApp.

XtAppContext appContext() const
Returns the application’s XtAppContext structure, which is required by
many IRIS IM and Xt functions.

Display *display() const
Returns a pointer to the X Display structure associated with the
application’s connection to the X server.

char *shellGeometry() const
Returns a string containing the geometry of the application’s base shell.
You may want to use this information to size other windows in your
application.

int argc() const
Returns the number of items remaining in the argv array after all
arguments recognized by Xt have been removed.

char **argv() const
Called without arguments, this function returns a pointer to the argv
array after all arguments recognized by Xt have been removed.

Deriving Classes From VkApp

77

char *argv(int index) const
Called with an integer argument, this function returns a single argv
array item (after all arguments recognized by Xt have been removed)
specified by the index argument.

Boolean startupIconified() const
Called with no arguments, this function returns the value TRUE if the
application starts with all windows iconified and FALSE if it starts with
all windows displayed normally.

Widget baseWidget()
For the VkApp class, baseWidget() returns the hidden shell widget.

Deriving Classes From VkApp

This section describes VkApp protected functions and data members that you can use in
a VkApp subclass. Following that is an example of subclassing VkApp to parse
command-line options.

VkApp Protected Functions and Data Members

You can use VkApp::parseCommandLine() to parse command line options:

int parseCommandLine(XrmOptionDescRec * options,
Cardinal numOptions)

You should call parseCommandLine() from within the constructor of your VkApp
subclass. Provide an XrmOptionDescRec(3Xt) table as the options argument and specify
the number of entries in the table with the numOptions argument. parseCommandLine()
passes these arguments to XtOpenDisplay(3Xt), which parses the command line and
loads recognized options into the application’s resource database. parseCommandLine()
modifies argv to remove all recognized options and returns an updated value of argc.
Example 3-6 shows an example of using parseCommandLine().

You can override VkApp::afterRealizeHook() to perform certain actions after all
application windows have been realized:

virtual void afterRealizeHook()

For example, you could override afterRealizeHook() to install a colormap or set
properties on the application’s windows. By default, this function is empty.

78

Chapter 3: The ViewKit Application Class

When subclassing VkApp, you also have access to the protected data member
VkApp::_winList:

VkComponentList _winList

This data member maintains the list of the application’s top-level windows. Consult the
VkComponentList(3x) reference page for more information on the VkComponentList
class.

Subclassing VkApp

The most common reason for creating a subclass of VkApp is to parse the command line
and set global resources based on command-line options. Also, rather than use global
variables, you can store data that is needed throughout your application in data
members of your VkApp subclass.

The program in Example 3-6 creates MyApp, a VkApp subclass that recognizes a
-verbose command-line argument and initializes a protected data member depending
on whether or not the flag is present.

Note that this example uses the protected VkApp function parseCommandLine() to
extract the flag if it exists. This function returns an updated value that the calling
application must use to update its value of argc.

Example 3-6 Deriving a Subclass From VkApp

#include <Vk/VkApp.h>
#include <Vk/VkResource.h>

class MyApp : public VkApp {

public:
MyApp(char *appClassName,

int *arg_c,
char **arg_v,
XrmOptionDescRec *optionList = NULL,
int sizeOfOptionList = 0);

Boolean verbose() { return _verbose; } // Access function

protected:
Boolean _verbose; // Data member to initialize

Deriving Classes From VkApp

79

private:
static XrmOptionDescRec _cmdLineOptions[]; // Command-line options
static XtResource _resources[]; // Resource descriptions

};

// Describe the command line options

XrmOptionDescRec MyApp::_cmdLineOptions[] =
{

{
"-verbose", "*verbose", XrmoptionNoArg, "TRUE",
},

};

// Describe the resources to retrieve and use to initialize the class

XtResource MyApp::_resources [] = {
{

"verbose",
"Verbose",
XmRBoolean,
sizeof (Boolean),
XtOffset (MyApp *, _verbose),
XmRString,
(XtPointer) "FALSE",

},
};

MyApp::MyApp(char *appClassName,
int *arg_c,
char **arg_v,
XrmOptionDescRec *optionList,
int sizeOfOptionList) : VkApp(appClassName, arg_c,

arg_v, optionList,
sizeOfOptionList)

{
// Parse the command line, loading options into the resource database

*arg_c = parseCommandLine(_cmdLineOptions,
XtNumber(_cmdLineOptions));

// Initialize this class from the resource data base

getResources (_resources, XtNumber(_resources));
}

80

Chapter 3: The ViewKit Application Class

Putting Applications in the Overlay Planes

By default, the unrealized VkApp shell appears in the normal planes. That sets the
normal planes as the default for all of its descendents as well. ViewKit, however, allows
you to explicitly place your application shell, and therefore all of its descendents, in the
overlay planes. Doing so prevents your application from causing expose events that
disturb such things as complex GL rendering in other applications that are using the
normal planes.

There are three ways to enable applications in the overlay planes:

• Call VkApp::useOverlayApps(TRUE). This forces applications into the overlay
planes, with no way to put them back in the normal planes without recompiling.

• Put the resource string “*useOverlayApps: True” in your application’s default file.
This will put applications in the overlay planes by default, but allow users to use
the normal planes by changing their .Xdefaults file.

• Have users add the -useOverlayApps command-line switch when they run your
application if they wish to use the overlay planes for applications.

If you do decide to place applications in the overlay planes, here are some factors to
consider:

• Applications are placed in the deepest available overlay planes: generally 4- or 8-bit
planes, occasionally 2-bit planes.

• If the deepest available overlay is 2 bits, any applications placed in that visual may
not look right. Because the colormap in the 2-bit overlay planes only has three color
entries (the fourth being a transparent pixel), any items in the application other than
labels (for example cascade or toggle buttons) may look odd.

• Other applications using the overlay planes may display in the wrong colors when
your application gets colormap focus. The colors in the other applications may flash
because your application’s colormap is installed and replaces any previous overlay
colormap.

81

Chapter 4

4. ViewKit Windows

This chapter introduces the basic ViewKit classes needed to create and manipulate the
top-level windows in a ViewKit application: VkSimpleWindow and VkWindow.
Figure 4-1 shows the inheritance graph for these classes.

Figure 4-1 Inheritance Graph for VkSimpleWindow and VkWindow

Overview of ViewKit Window Support

This section describes how ViewKit supports multiple top-level windows in an
application, and then describes the ViewKit classes that implement these windows.

ViewKit’s Multi-Window Model

There are several possible models for multi-window applications in Xt. One approach is
to create a single top-level window used as the main window of the application. All other
windows are then popup shells whose parent is the main window. Another approach is
to create a single shell that never appears on the screen. All other windows are then
popup children of the main shell. In this model, all top-level windows are treated equally,
as siblings. One window may logically be the top-level window of the application, but as
far as Xt is concerned, all windows are equal.

ViewKit follows the second model. The VkApp class, described in Chapter 3, “The
ViewKit Application Class,” creates a single widget that serves as the parent of all
top-level windows created by the program. The VkApp base widget does not appear on
the screen.

VkComponent VkSimpleWindow VkWindow

82

Chapter 4: ViewKit Windows

ViewKit Window Classes

All top-level windows in a ViewKit application must be instances of VkSimpleWindow,
VkWindow, or a subclass of one of these classes. The VkSimpleWindow class supports
a top-level window that does not include a menu bar. The VkWindow class, derived
from VkSimpleWindow, adds support for a menu bar along the top of the window. You
must create a separate instance of VkSimpleWindow, VkWindow, or a subclass of one
of these classes for each top-level window in your application.

Instantiating a VkSimpleWindow or VkWindow object creates a popup shell as a child
of the invisible shell created by your application’s instance of VkApp.
VkSimpleWindow and VkWindow also create a XmMainWindow widget as a child of
the popup shell. You define the contents of a window by creating a widget or ViewKit
component to use as the work area (or view) for the XmMainWindow widget. In most
cases, you will create several widgets and/or ViewKit components as children of a
container widget and then assign that container widget as the view of the
XmMainWindow widget. “Creating the Window Interface” on page 85 describes how to
assign a view to a window. Figure 4-2 shows an example of a widget hierarchy for the
top-level windows of a simple ViewKit application with two top-level windows.

Figure 4-2 Widget Hierarchy of Top-Level Windows in ViewKit Applications

Popup shell Popup shell

Work area (view) widget Work area (view) widget

XmMainWindow widget XmMainWindow widget

Application shell

Optional widget subtree Optional widget subtree
Window 1 Window 2

Created by application code

Created by VkSimpleWindow

Created by VkApp (never visible)

Overview of ViewKit Window Support

83

In most cases, directly instantiating a VkSimpleWindow or VkWindow object is not
appropriate.1 In addition to the widgets and components composing the window’s
interface, most windows require other data and support functions. In accordance with
good object-oriented programming style, the functions and data associated with a
window should be contained within that window’s class. Therefore, the best practice to
follow when creating a ViewKit application is to create a separate subclass for each
window in your application. You can derive these subclasses from VkWindow for those
windows that require menu bars, and from VkSimpleWindow for those windows that
do not. “Deriving Window Subclasses” on page 101 describes in detail the process of
deriving window subclasses.

In addition to creating shell and XmMainWindow widgets, the VkSimpleWindow and
VkWindow classes set up various properties on the shell window and provide simple
hooks for window manager interactions. “Window Manager Interface” on page 97
discusses the built-in window manager support.

The VkSimpleWindow and VkWindow classes provide simple functions to raise, lower,
iconify, and open windows, as described in “Manipulating Windows” on page 95. The
classes also provide several convenience functions for determining a window’s state (for
example, whether it is visible, iconified, and so on) and for retrieving other window
information. These access functions are described in “Window Data Access Functions”
on page 96.

The VkSimpleWindow and VkWindow classes also register their windows with the
application’s VkApp instance to support application-wide services such as setting the
cursor for all of an application’s windows, entering busy states, and manipulating all
windows in an application. Chapter 3, “The ViewKit Application Class,” describes how
to use these application-wide services.

1 There are exceptional cases for which you might choose to directly instantiate a VkSimpleWindow or
VkWindow object and then associate a view with the window. For example, if you have a complex,
self-contained component and need a window simply to display the component, you might find this
method acceptable. “Adding a Window Interface to a Direct Instantiation of a ViewKit Window Class”
on page 94 describes how to do this.

84

Chapter 4: ViewKit Windows

Window Class Constructors

The VkSimpleWindow and VkWindow constructors both have the same form:

VkSimpleWindow(const char * name,
ArgList args = NULL,
Cardinal argCount = 0)

VkWindow(const char * name,
ArgList args = NULL,
Cardinal argCount = 0)

Unlike most other ViewKit components, the VkSimpleWindow and VkWindow
constructors do not require a parent widget as an argument: all ViewKit windows are
automatically created as children of the invisible shell created by your application’s
instance of VkApp. You must specify a name for your window. Optionally, you can also
provide a standard Xt argument list that the constructor will use when creating the
window’s popup shell.

Every application has a main window. By default, the first window you create is treated as
the main window. To specify a different window to use as the main window, use the
VkApp::setMainWindow() function described in “Managing Top-Level Windows” on
page 60.

Because the first window you create is by default the main window, the window class
constructors also set some shell resources on the popup shell widget of that window. The
constructors obtain the geometry of the invisible application shell created by VkApp and
assign that geometry to the window’s popup shell widget. The constructors also set the
XmNargc and XmNargv resources on the popup shell to the values of VkApp::argc() and
VkApp::argv() respectively. (“Application Data Access Functions” on page 76 describes
VkApp::argc() and VkApp::argv().)

Finally, for all windows, the window class constructors register a callback function to
handle messages from the window manager. The default action upon receiving a
WM_DELETE_WINDOW message is to delete the window object. To change this
behavior, override the handleWmDeleteMessage() member function as described in
“Window Properties and Shell Resources” on page 98. The default action upon receiving
a WM_QUIT_APP message is to quit the application. To change this behavior, override
the handleWmQuitMessage() member function as described in “Window Properties
and Shell Resources” on page 98.

Window Class Destructors

85

Window Class Destructors

The VkSimpleWindow and VkWindow destructors delete all privately allocated data
and destroy the views associated with the windows. The VkWindow destructor also
destroys any menu bar associated with the window, no matter how you added it (see
“Menu Bar Support” on page 100). If you created a subclass, you should provide a
destructor to free any space that you explicitly allocated in the derived class.

The VkSimpleWindow and VkWindow destructors also remove the window from the
application’s list of windows. If this window is the only window still associated with the
application (for example, if it is the only window created or all other windows have also
been deleted), then your application automatically calls VkApp::terminate() to quit
itself. “Quitting ViewKit Applications” on page 59 describes VkApp::terminate().

Creating the Window Interface

There are three methods that you can use to create the contents of a window:

• Create a subclass of VkSimpleWindow or VkWindow and define the interface in
the class constructor.

• Create a subclass of VkSimpleWindow or VkWindow and define the interface by
overriding the virtual function setUpInterface().

• Create an instance of VkSimpleWindow or VkWindow, define the interface
separately, and then add the interface as the window’s view.

These methods, and the advantages and disadvantages of each approach, are discussed
in the following sections.

Creating the Window Interface in the Constructor

The preferred method of defining the contents of a window is to create the interface in
the constructor of a VkSimpleWindow or VkWindow subclass. In this case, you simply
create the widgets and components that you want to appear in your window in your
subclass constructor. Remember that each window can have only one direct child widget
as a view, so in most cases you must create a container widget and then create all other
widgets and components as descendents of this direct child. Manage all widgets except
the container widget, which you should leave unmanaged.

86

Chapter 4: ViewKit Windows

The parent widget of your view’s top-level widget or component must be the window’s
XmMainWindow widget. You can retrieve this widget by calling the
mainWindowWidget() function inherited from VkSimpleWindow. “Window Data
Access Functions” on page 96 discusses the mainWindowWidget() function.

Note: The _baseWidget data member for VkSimpleWindow and derived classes is the
window’s popup shell widget. Do not assign any other widget to this data member in a
derived class.

After creating your interface, call addView():

void addView(Widget w)
void addView(VkComponent * component)

addView() accepts as an argument either a widget or a pointer to a component, which
addView() installs as the view for the window.

Note: Some IRIS IM functions such as XmCreateScrolledText(3Xm) create a
ScrolledWindow widget and a child widget, and then return the ID of the child widget.
As a convenience for using these functions, addView() can automatically determine the
correct parent widget if you provide the child widget ID instead of the ScrolledWindow
ID.

Example 4-1 shows a simple example that defines ScaleWindow, which creates a
window with a RowColumn widget containing three Scale widgets. Because
ScaleWindow is derived from VkSimpleWindow, it does not support a menu bar. If you
required a menu bar, you would instead derive this class from VkWindow.

Note that ScaleWindow includes default resources for the Scale widget labels. This
encapsulation technique is a good object-oriented practice to follow when creating
reusable components in ViewKit. For example, if you were to extend this class by adding
callback functions to the Scale widgets, you should make the callback functions members
of the ScaleWindow class.

Creating the Window Interface

87

Example 4-1 Creating a Window Interface in the Class Constructor

///////////////////////////
// ScaleWindow.h
///////////////////////////

#include <Vk/VkSimpleWindow.h>

class ScaleWindow: public VkSimpleWindow {

public:
ScaleWindow (const char *);
~ScaleWindow();
virtual const char* className();

private:
static String _defaultResources[];

};

///////////////////////////
// ScaleWindow.c++
///////////////////////////

#include "ScaleWindow.h"
#include <Xm/RowColumn.h>
#include <Xm/Scale.h>

String ScaleWindow::_defaultResources[] = {
"*dayScale.titleString: Days",
"*weekScale.titleString: Weeks",
"*monthScale.titleString: Months",
NULL };

ScaleWindow::ScaleWindow (const char *name) : VkSimpleWindow (name)
{

setDefaultResources(mainWindowWidget(), _defaultResources);

Widget scales = XtCreateWidget("scales", xmRowColumnWidgetClass,
mainWindowWidget(), NULL, 0);

Widget dayScale = XtCreateManagedWidget("dayScale", xmScaleWidgetClass,
scales, NULL, 0);

XtVaSetValues(dayScale,
XmNorientation, XmHORIZONTAL,
XmNminimum, 1,

88

Chapter 4: ViewKit Windows

XmNmaximum, 7,
XmNvalue, 1,
XmNshowValue, TRUE,
NULL);

Widget weekScale = XtCreateManagedWidget("weekScale", xmScaleWidgetClass,
scales, NULL, 0);

XtVaSetValues(weekScale,
XmNorientation, XmHORIZONTAL,
XmNminimum, 1,
XmNmaximum, 52,
XmNvalue, 1,
XmNshowValue, TRUE,
NULL);

Widget monthScale = XtCreateManagedWidget("monthScale", xmScaleWidgetClass,
scales, NULL, 0);

XtVaSetValues(monthScale,
XmNorientation, XmHORIZONTAL,
XmNminimum, 1,
XmNmaximum, 12,
XmNvalue, 1,
XmNshowValue, TRUE,
NULL);

addView(scales);
}

ScaleWindow::~ScaleWindow()
{

// Empty
}

const char* ScaleWindow::className()
{

return "ScaleWindow";
}

Creating the Window Interface

89

///////////////////////////
// scaleApp.c++
///////////////////////////

#include "ScaleWindow.h"
#include <Vk/VkApp.h>

void main (int argc, char **argv)
{

VkApp *scaleApp = new VkApp("ScaleApp", &argc, argv);
ScaleWindow *scaleWin = new ScaleWindow("scaleWin");

scaleWin->show();
scaleApp->run();

}

Running the scaleApp program shown above displays a ScaleWindow, as shown in
Figure 4-3.

Figure 4-3 Simple Example of a VkSimpleWindow Subclass

You can also create components and add them just as you would widgets. The
constructor shown in Example 4-2 creates a VkRadioBox(3x) component and installs
several items.

90

Chapter 4: ViewKit Windows

Example 4-2 Using a Component as a Window’s View

///////////////////////////
// RadioWindow.h
///////////////////////////

#include <Vk/VkSimpleWindow.h>

class RadioWindow: public VkSimpleWindow {

public:
RadioWindow (const char *);
~RadioWindow();
virtual const char* className();

private:
static String _defaultResources[];

};
///////////////////////////
// RadioWindow.c++
///////////////////////////

#include "RadioWindow.h"
#include <Vk/VkRadioBox.h>

String RadioWindow::_defaultResources[] = {
"*color*label*labelString: Color",
"*red.labelString: Red",
"*green.labelString: Green",
"*blue.labelString: Blue",
NULL };

RadioWindow::RadioWindow (const char *name) : VkSimpleWindow (name)
{

setDefaultResources(mainWindowWidget(), _defaultResources);

VkRadioBox *rb = new VkRadioBox("color", mainWindowWidget());

rb->addItem("red");
rb->addItem("green");
rb->addItem("blue");

addView(rb);
}

Creating the Window Interface

91

RadioWindow::~RadioWindow()
{

// Empty
}

const char* RadioWindow::className()
{

return "RadioWindow";
}

///////////////////////////
// radioApp.c++
///////////////////////////

#include <Vk/VkApp.h>
#include "RadioWindow.h"

void main (int argc, char **argv)
{

VkApp *radioApp = new VkApp("RadioApp", &argc, argv);
RadioWindow *radioWin = new RadioWindow("radioWin");

radioWin->show();
radioApp->run();

}

Running the radioApp program shown above displays a RadioWindow, as shown in
Figure 4-4.

Figure 4-4 Using a Component as a Window’s View

92

Chapter 4: ViewKit Windows

Creating the Window Interface in the setUpInterface() Function

When you create your window interface in your window constructor using addView(),
all setup overhead occurs when the window is instantiated. Additionally, your program
allocates memory for all of the widgets created. Occasionally, you might need to
instantiate a window so that your application can access some of its public functions, but
not display it. If the window interface is large or complex, the time and memory
consumed to create the interface is unnecessary if the user might not display it.

The ViewKit window classes provide a mechanism for delaying the creation of a
window’s interface until the window needs to be displayed. Rather than including the
interface code in the window constructor, you can include the code in the definition of
the protected virtual member function setUpInterface().

When you call show() to display a window, show() checks to see whether you have
already added a view to the window (for example, in the window’s constructor). If not,
show() calls setUpInterface() to create the window’s interface.

Using this approach, you do not allocate memory for the window interface until your
application actually displays the window for the first time—and you never allocate the
memory if your application never displays the window. Additionally, this approach
reduces your application’s startup time. The trade-off is that the first time you display
this window, the response time might be slow because your application must create the
interface before displaying the window.

The syntax of setUpInterface() is as follows:

virtual Widget setUpInterface(Widget parent)

show() passes the main window widget to setUpInterface() for you to use as the parent
of the window’s widget hierarchy. You must return a widget to be added as a view. Do
not call addView() from within setUpInterface().

Note: Some IRIS IM functions such as XmCreateScrolledText(3Xm) create a
ScrolledWindow widget and a child widget, and then return the ID of the child widget.
As a convenience for using these functions, setUpInterface() can automatically
determine the correct parent widget if you provide the child widget ID instead of the
ScrolledWindow ID.

Example 4-3 shows the RadioWindow example from Example 4-2 rewritten to use
setUpInterface() instead of addView() in the constructor.

Creating the Window Interface

93

Example 4-3 Creating a Window’s Interface in the setUpInterface() Function

///////////////////////////
// RadioWindow2.h
///////////////////////////

#include <Vk/VkSimpleWindow.h>

class RadioWindow: public VkSimpleWindow {

public:
RadioWindow (const char *);
~RadioWindow();
virtual const char* className();

protected:
Widget setUpInterface(Widget);

private:
static String _defaultResources[];

};

///////////////////////////
// RadioWindow2.c++
///////////////////////////

#include "RadioWindow2.h"
#include <Vk/VkRadioBox.h>

String RadioWindow::_defaultResources[] = {
"*color*label*labelString: Color",
"*red.labelString: Red",
"*green.labelString: Green",
"*blue.labelString: Blue",
NULL };

RadioWindow::RadioWindow (const char *name) : VkSimpleWindow (name)
{

// Empty
}

94

Chapter 4: ViewKit Windows

RadioWindow::~RadioWindow()
{

// Empty
}

const char* RadioWindow::className()
{

return "RadioWindow";
}

Widget RadioWindow::setUpInterface (Widget parent)
{

setDefaultResources(mainWindowWidget(), _defaultResources);

VkRadioBox *rb = new VkRadioBox("color", parent);

rb->addItem("red");
rb->addItem("green");
rb->addItem("blue");

return(*rb);
}

Note that this example uses the Widget operator defined by VkComponent to return the
VkRadioBox’s base widget in setUpInterface(). (See “VkComponent Access Functions”
on page 17 for information on the Widget operator.) If you prefer, you could explicitly
call baseWidget():

return(rb->baseWidget());

Adding a Window Interface to a Direct Instantiation of a ViewKit
Window Class

There are exceptional cases for which you may choose to directly instantiate a
VkSimpleWindow or VkWindow object and use addView() to associate a view with the
window. For example, if you have a complex, self-contained component and need a
window simply to display the component, you might find this method acceptable.
Example 4-4 shows a simple example of adding a component to a direct instantation of
the VkSimpleWindow class.

Manipulating Windows

95

Example 4-4 Adding a View to a Direct Instantiation of a ViewKit Window Class

VkSimpleWindow *roloWindow = VkSimpleWindow("roloWindow");
Rolodex *rolodex = Rolodex("rolodex", roloWindow->mainWindowWidget());
roloWindow->addView(rolodex);

In most cases, you should not use this technique because most windows require data and
support functions that should be encapsulated by the window class to follow proper
object-oriented programming style.

Replacing a Window’s View

Occasionally, you might want to replace the view of an existing window. To do so, you
must first remove the current view using the removeView() function:

void removeView()

You should not call this function unless you have previously added a view to this
window. removeView() does not destroy the view; if you no longer need the view, you
should destroy it.

After removing a view, you can add another view using addView().

Manipulating Windows

The VkSimpleWindow and VkWindow classes provide simple functions to show, hide,
raise, lower, iconify, and open windows. All of the following functions take no arguments
and have a void return value:

show() Displays the window. show() has no effect if the window is currently
iconified.

hide() Removes the window from the screen.

iconify() Iconifies the window.

open() Opens the window if it is iconified.

raise() Raises the window to the top of the application’s window stack.

lower() Lowers the window to the bottom of the application’s window stack.

96

Chapter 4: ViewKit Windows

All of these functions are declared virtual. If you override them in a subclass, you should
call the corresponding base class function after performing whatever operations your
subclass requires.

Window Data Access Functions

The VkSimpleWindow and VkWindow classes support several data access functions:

• mainWindowWidget() returns the XmMainWindow widget created by the window
constructor. Most frequently, you use mainWindowWidget() to obtain a parent
widget for creating a view widget or component. You can also use this function to
access and configure the window’s XmMainWindow widget. For example, by
default, the ViewKit window classes configure the window’s XmMainWindow
widget to not display scrollbars. You can use mainWindowWidget() to obtain the
XmMainWindow widget and then use XtSetValues(3Xt) to enable the scrollbars:

virtual Widget mainWindowWidget() const

• viewWidget() returns the widget currently installed as the window’s view:

virtual Widget viewWidget() const

• visible() returns TRUE if the window is currently displayed and FALSE if it is
hidden:

Boolean visible() const

• iconic() returns TRUE if the window is currently iconified and FALSE if it is not:

Boolean iconic() const

• getVisualState() returns the X11 window state (as specified by the Inter-Client
Communication Conventions Manual, sections 4.1.2.4 and 4.1.4, with one extension):

int getVisualState()

The ICCCM specifies WithdrawnState, NormalState, and IconicState. In actuality,
when an unmapped window is mapped, it may come back as either Normal or
Iconic. Therefore, Viewkit adds the following states:

– WithdrawnNormalState—means that the window will be in NormalState when
it is mapped (same as WithdrawnState).

– WithdrawnIconicState—means that the window will be in IconicState when it
gets mapped.

Window Manager Interface

97

Window Manager Interface

The VkSimpleWindow and VkWindow classes set up various properties on the shell
window and provide simple hooks for window manager interactions.

Window and Icon Titles

The VkSimpleWindow and VkWindow classes provide easy-to-use functions to set
your application’s window and icon titles.

The setTitle() function sets the title of a window:

void setTitle(const char * newTitle)

The string is treated first as a resource name that setTitle() looks up relative to the
window. If the resource exists, its value is used as the window title. If the resource does
not exist, or if the string contains spaces or newline characters, setTitle() uses the string
itself as the window title. This allows applications to dynamically change a window title
without hard-coding the exact title names in the application code. Example 4-5 shows an
example of setting a window title using a resource value.

You can retrieve the current window title using getTitle():

const char *getTitle()

The setIconName() function sets the title of a window’s icon:

void setIconName(const char * newTitle)

The string is treated first as a resource name that setIconName() looks up relative to the
window. If the resource exists, its value is used as the window’s icon title. If the resource
does not exist, or if the string contains spaces or newline characters, setIconName() uses
the string itself as the icon title. This allows applications to dynamically change a
window’s icon title without hard-coding the exact title names in the application code.
Example 4-5 shows an example of setting a window’s icon title using a resource value.

98

Chapter 4: ViewKit Windows

Example 4-5 Setting Window and Icon Titles Using Resource Values

class MainWindow : public VkSimpleWindow {

public:
MainWindow (const char *);
// ...

private:
static String _defaultResources[];
// ...

};

String _defaultResources[] = {
"*winTitle: Foobar Main Window",
"*iconTitle: Foobar",
NULL

};

MainWindow::MainWindow(const char *name) : VkSimpleWindow(name)
{

setDefaultResources(mainWindowWidget(), _defaultResources);

setTitle("winTitle");
setIconName("iconTitle");

// ...
}

Window Properties and Shell Resources

The window class constructors automatically set up various window properties and
shell resources when you create a window. The window classes also provide some hooks
to allow you to set your own properties or change the window manager message
handling in a derived class.

Because the first window you create is by default the main window, the window class
constructors also set some shell resources on the popup shell widget of that window. The
constructors obtain the geometry of the invisible application shell created by VkApp and
assign that geometry to the window’s popup shell widget. The constructors also set the
XmNargc and XmNargv resources on the popup shell to the values of VkApp::argc() and
VkApp::argv(), respectively. (“Application Data Access Functions” on page 76 describes
VkApp::argc() and VkApp::argv().)

Window Manager Interface

99

For all windows, the window class constructors register a callback function to handle
WM_DELETE_WINDOW messages from the window manager. This callback function
calls handleWmDeleteMessage():

virtual void handleWmDeleteMessage()

By default, handleWmDeleteMessage() calls the window’s okToQuit() function. If
okToQuit() returns TRUE, then handleWmDeleteMessage() deletes the window. You
can override handleWmDeleteMessage() to change how your window handles a
WM_DELETE_WINDOW message. In most cases, you should simply perform any
additional actions that you desire and then call the base class’s
handleWmDeleteMessage() function.

The window class constructors also register a callback function to handle
WM_QUIT_APP messages from the window manager. This callback function calls
handleWmQuitMessage():

virtual void handleWmQuitMessage()

By default, handleWmQuitMessage() calls the application’s quitYourself() function to
quit the application. You can override handleWmQuitMessage() to change how your
windows handles a WM_QUIT_APP message. In most cases, you should simply
perform any additional actions that you desire and then call the base class’s
handleWmQuitMessage() function to exit your application.

If you want to set any additional properties on a window, you can override
setUpWindowProperties():

virtual void setUpWindowProperties()

setUpWindowProperties() is called after realizing a window’s popup shell widget but
before mapping it. Subclasses that wish to store other properties on windows can
override this function and perform additional actions. If you override this function, you
should set all desired properties and then call the base class’s setUpWindowProperties()
function.

Note that you should use setUpWindowProperties() to set window properties instead of
VkComponent::afterRealizeHook() as described in “Displaying and Hiding
Components” on page 19. The difference between the two is that
setUpWindowProperties() is guaranteed to be called before the window manager is
notified of the window’s existence. Because of race conditions, this might not be true of
afterRealizeHook().

100

Chapter 4: ViewKit Windows

You can also change the value of the window manager class hint stored on a window
using setClassHint():

void setClassHint(const char * className)

setClassHint() sets the class resource element of the XA_WM_CLASS property stored on
this window to the string you pass as an argument.

Menu Bar Support

The VkSimpleWindow class is useful for windows that require only a work area;
however, windows frequently require menus. The VkWindow class extends the
VkSimpleWindow class by providing support for a menu bar along the top of the
window.

In ViewKit, the VkMenuBar(3x) class provides support for menu bars. Chapter 5,
“Creating Menus With ViewKit,” describes in depth the process of creating and
manipulating menus; “Menu Bar” on page 147 describes additional functions specific to
the VkMenuBar class and provides an example of constructing a menu bar for an
application. This section describes only those functions provided by VkWindow for
installing and manipulating a menu bar.

You install a menu bar using setMenuBar():

void setMenuBar(VkMenuBar * menuObj)
void setMenuBar(VkMenuDesc * menudesc)

If you provide a pointer to an existing VkMenuBar object, setMenuBar() installs that
menu bar. If you prove a VkMenuDesc static menu description, setMenuBar() creates a
menu bar from that description and then installs the menu bar.

Once you have installed a menu bar, menu() will return a pointer to the menu bar object:

virtual VkMenuBar *menu() const

You can add a menu pane to the menu bar using addMenuPane():

VkSubMenu *addMenuPane(const char * name)
VkSubMenu *addMenuPane(const char * name, VkMenuDesc * menudesc)

Deriving Window Subclasses

101

addMenuPane() creates a VkSubMenu(3x) object and adds it to the window’s menu bar.
If you provide a VkMenuDesc static menu description, addMenuPane() uses it to create
the menu pane. Additionally, addMenuPane() automatically creates and installs a menu
bar if the window does not currently have one.

You can add a menu pane that enforces radio behavior on the toggle items it contains
using addRadioMenuPane():

VkRadioSubMenu *addRadioMenuPane(const char * name)
VkRadioSubMenu *addRadioMenuPane(const char * name,

VkMenuDesc * menudesc)

addRadioMenuPane() creates a VkRadioSubMenu(3x) object and adds it to the
window’s menu bar. If you provide a VkMenuDesc static menu description,
addRadioMenuPane() uses it to create the menu pane. Additionally,
addRadioMenuPane() automatically creates and installs a menu bar if the window does
not currently have one.

Deriving Window Subclasses

This section summarizes how to create subclasses from the ViewKit window classes. It
describes additional virtual functions and data members not covered in previous
sections, provides a window creation checklist, and shows an example of deriving a
window subclass.

Additional Virtual Functions and Data Members

In addition to those functions described in previous sections, the ViewKit window
classes provide a number of virtual functions and data members that you can access from
window subclasses. These functions and data allow you to

• provide a “safe quit” mechanism for your window

• determine your window’s state and perform actions on state changes

• perform actions after realizing a window

• handle raw events not normally handled by the Xt dispatch mechanism

102

Chapter 4: ViewKit Windows

Providing a “Safe Quit” Mechanism

The VkComponent class provides the virtual function okToQuit() to support “safe quit”
mechanisms:

virtual Boolean okToQuit()

A component’s okToQuit() function returns TRUE if it is “safe” for the application to
quit. For example, you might want okToQuit() to return FALSE if a component is in the
process of updating a file. By default, okToQuit() always returns TRUE; you must
override okToQuit() for all components that you want to perform a check before
quitting. Usually, only VkSimpleWindow and its subclasses use okToQuit().

When you call VkApp::quitYourself(), VkApp calls the okToQuit() function for all
registered windows before quitting. If the okToQuit() function for any window returns
FALSE, the application does not exit. (“Quitting ViewKit Applications” on page 59
describes VkApp::quitYourself().)

Also, the window’s handleWmDeleteMessage() function calls okToQuit() when the
window receives a WM_DELETE_WINDOW message from the window manager. This
determines whether it is safe to delete the window. (“Window Properties and Shell
Resources” on page 98 describes handleWmDeleteMessage().)

If you want to perform a test to see whether it is safe to delete a window, override the
window’s okToQuit() function. If you want to check one or more components contained
within a window, you can override the window’s okToQuit() function so that it calls the
okToQuit() functions for all the desired components. You can then override the
okToQuit() functions for the other components so you can perform whatever checks or
shutdown actions are necessary. For example, you could post a blocking dialog asking
whether the user wants to save data before quitting. (Chapter 7, “Using Dialogs in
ViewKit,” describes how to use ViewKit dialogs.)

Deriving Window Subclasses

103

Determining Window States

The ViewKit window classes provide the following protected data members for
determining the current states of a window:

IconState _iconState
Contains an enumerated constant of type IconState that describes the
current iconification state of the window. This variable contains OPEN
if the window is not iconified, CLOSED if it is iconified, and
ICON_UNKNOWN if it is in an unknown state. (Typically, the
unknown state is used only internally to the VkSimpleWindow class.)

VisibleState _visibleState
Contains an enumerated constant of type VisibleState that describes the
current visibility state of the window. This variable contains VISIBLE if
the window is visible, HIDDEN if it is not visible, and
VISIBLE_UNKNOWN if it is in an unknown state. (Typically, the
unknown state occurs only before you add a view to your window.)

StackingState _stackingState
Contains an enumerated constant of type StackingState that describes
the current stacking state of the window relative to the application. This
variable contains RAISED if the window is at the top of the application’s
window stack, LOWERED if it is at the bottom of the window stack, and
STACKING_UNKNOWN if it is in an unknown state (the state before
you make any calls to raise() or lower() on this window).

If you need to perform any operations when your window changes its iconification state,
you can override stateChanged():

virtual void stateChanged(IconState newState)

stateChanged() is called whenever the window’s iconification state changes, whether
programmatically (by calls to iconify() and open()) or through window manager
interaction. Because this function is responsible for maintaining the window’s state
information, if you override this function in a subclass you should call the base class’s
stateChanged() function before performing any additional operations.

104

Chapter 4: ViewKit Windows

Performing Actions After Realizing a Window

If you want to perform certain actions only after a window exists, you can override the
afterRealizeHook() function inherited from VkComponent:

virtual void afterRealizeHook()

Note that you should use setUpWindowProperties() to set window properties instead of
afterRealizeHook(). The difference between afterRealizeHook() and
setUpWindowProperties() is that setUpWindowProperties() is guaranteed to be called
before the window manager is notified of the window’s existence. Because of race
conditions, this might not be true of afterRealizeHook(). afterRealizeHook() is
appropriate for performing actions that do not affect the window’s interaction with the
window manager.

Handling Raw Events

You can handle events not normally handled by the Xt dispatch mechanism by
overriding the window’s handleRawEvent() function:

virtual void handleRawEvent(XEvent * event)

As described in “ViewKit Event Handling” on page 56, VkApp::run() supports events
not normally handled by the Xt dispatch mechanism. For example, VkApp::run() can
handle client messages and events registered for non-widgets (such as a PropertyNotify
event on the root window).

When run() receives an event not handled by the Xt dispatch mechanism, it calls the
virtual function VkApp::handleRawEvent(), which passes the event to the
handleRawEvent() function of each instance of VkSimpleWindow (or subclass) in the
application. By default, these member functions are empty.

If you want a window to handle events through this mechanism, call
XSelectInput(3X) to select the events that you want to receive, and override
handleRawEvent() in the VkSimpleWindow subclass to implement your event
processing.

Deriving Window Subclasses

105

Additional Data Members

The ViewKit window classes also provide the protected data member
_mainWindowWidget:

Widget _mainWindowWidget

_mainWindowWidget contains the XmMainWindow widget created by the window
constructor. In a subclass, you can use this data member instead of calling
mainWindowWidget(), although this is not recommended.

Window Creation Summary

The following is a summary of guidelines for creating subclasses of the ViewKit window
classes:

• Decide whether this window requires a menu bar. If it does, derive your subclass
from VkWindow; otherwise, derive it from VkSimpleWindow.

• In most cases where you provide a menu bar for your window, you should create it
in the window class when you create the rest of your window’s interface.

• Determine whether users will often use your application without displaying this
window even after the object is instantiated. If so, and the window interface is large
or complex, you might consider creating the window interface using
setUpInterface() to reduce the time it takes to start your application; otherwise,
create the interface in the window’s constructor.

• Implement the window interface as a single-rooted widget subtree whose parent is
the window’s XmMainWindow widget (obtained by the mainWindowWidget()
function). While some windows might contain only a single complex component,
the majority of windows must create some type of container widget as the root of
the window’s interface; all other widgets and components are descendents of this
widget.

• Do not assign any widget to the _baseWidget data member. The ViewKit window
classes assign the window’s popup shell widget to _baseWidget.

• Wherever appropriate, use resource values to set labels, other interface
characteristics, and user-configurable component behavior. Define a default
resource list as a static member variable of your window class, and call
setDefaultResources() to set your window’s default resources before creating the
window interface.

106

Chapter 4: ViewKit Windows

• Override the className() function to return the name of your window’s class.

• In addition to the widgets and components composing the window’s interface,
encapsulate any other required data and support functions as members of your
window class.

• If you explicitly allocate any memory in your derived window class, remember to
free it in the window’s destructor.

• To explicitly set your window’s title or its icon’s title, call setTitle() or
setIconName() respectively. You can also set these characteristics using the normal
resource mechanisms.

• To provide a “safe quit” mechanism for your window, override okToQuit() to
perform any checking you want to perform before deleting the window.

• To change how your window handles a WM_DELETE_MESSAGE from the
window manager, override handleWmDeleteMessage().

• To change how your window handles a WM_QUIT_APP from the window
manager, override handleWmQuitMessage().

• To set any additional properties on your window, override
setUpWindowProperties().

• To change the value of the window manager class hint stored on a window, call
setClassHint().

• To perform certain actions only after the window exists, override
afterRealizeHook().

• To handle events not normally handled by the Xt dispatch mechanism, call
XSelectInput(3X) to select the events that you want to receive, and override
handleRawEvent() in your window subclass to implement your event processing.

Window Subclassing

The program in Example 4-6 creates ColorWindow, a VkSimpleWindow subclass that
implements a simple utility for determining the results of mixing primary ink colors
when printing. The user can use toggles to select any of the three primary colors—cyan,
magenta, and yellow—and the window reports the resulting color.

Deriving Window Subclasses

107

Figure 4-5 shows the widget hierarchy of the ColorWindow subclass. The
VkSimpleWindow constructor creates the window’s popup shell and XmMainWindow
widget. The ColorWindow constructor creates a Form widget to serve as the window’s
view. The constructor adds a VkCheckBox component as a child of the Form to provide
the toggle buttons. The constructor then adds a Frame widget as a child of the Form
widget, and creates two Label gadgets as children of the Frame: one to serve as a title,
and one to report the resulting color. The constructor manages all of these widgets except
for the top-level Form widget. (The constructor manages the VkCheckBox component
by calling its show() member function.)

Figure 4-5 Widget Hierarchy of ColorWindow Subclass

This example illustrates a number of object-oriented techniques that you should follow
when programming in ViewKit. Note that all data and utility functions used by the
window are declared as members of the ColorWindow class. Also note that
ColorWindow uses resources to set all the text that it displays. It includes a set of default
values, but you can override these values in a resource file (for example, to provide
German-language equivalents for all the strings).

Created by ColorWindo w

Created by VkSimpleWindow

Form widget (window's view)

VkCheckBox component Frame widget

Popup shell

XmMainWindow widget

Label gadget Label gadget (Form title)

108

Chapter 4: ViewKit Windows

Example 4-6 Creating a Window Subclass

///////////////////////////
// ColorWindow.h
///////////////////////////

#include <Vk/VkSimpleWindow.h>
#include <Vk/VkCheckBox.h>

class ColorWindow: public VkSimpleWindow {

public:
ColorWindow (const char *);
~ColorWindow();
virtual const char* className();

private:
void displayColor(char *);
void colorChanged(VkCallbackObject *, void *, void *);
static String _defaultResources[]; // Default resource values
static String _colors[]; // Array of possible resulting colors
Widget _resultColor; // Label to display resulting color
VkCheckBox *_primaries; // Checkbox for setting colors
int _colorStatus; // Bit-wise color status variable

// Bit 0: Cyan
// Bit 1: Magenta
// Bit 2: Yellow
// Also used as index into _colors[]

};

///////////////////////////
// ColorWindow.c++
///////////////////////////

#include "ColorWindow.h"
#include <Xm/RowColumn.h>
#include <Xm/Form.h>
#include <Xm/Frame.h>
#include <Xm/LabelG.h>
#include <Vk/VkCheckBox.h>
#include <Vk/VkResource.h>

// Default ColorWindow class resource values.

String ColorWindow::_defaultResources[] = {

Deriving Window Subclasses

109

"*windowTitle: Color Mixer",
"*iconTitle: Color Mixer",
"*primaries*label*labelString: Primary Colors",
"*cyan.labelString: Cyan",
"*magenta.labelString: Magenta",
"*yellow.labelString: Yellow",
"*resultLabel.labelString: Resulting Color",
"*cyan: Cyan",
"*magenta: Magenta",
"*yellow: Yellow",
"*blue: Blue",
"*red: Red",
"*green: Green",
"*white: White",
"*black: Black",
NULL };

// Set _colors array to correspond to color values indicated by the
// bits in the _colorStatus variable.

String ColorWindow::_colors[] = {
"white",
"cyan",
"magenta",
"blue",
"yellow",
"green",
"red",
"black" };

ColorWindow::ColorWindow (const char *name) : VkSimpleWindow (name)
{

Arg args[5];
int n;

// Set default resources for the window.

setDefaultResources(mainWindowWidget(), _defaultResources);

// Create a Form widget to use as the window's view.

Widget _form = XmCreateForm(mainWindowWidget(), "form", NULL, 0);

110

Chapter 4: ViewKit Windows

// Create a VkCheckBox object to allow users to select primary colors.
// Add toggle buttons and set their intial values to FALSE (unselected).
// The labels for the checkbox frame and the toggle buttons are set
// by the resouce database.

_primaries = new VkCheckBox("primaries", _form);
_primaries->addItem("cyan", FALSE);
_primaries->addItem("magenta", FALSE);
_primaries->addItem("yellow", FALSE);
_primaries->addCallback(VkCheckBox::itemChangedCallback, this,

(VkCallbackMethod) &ColorWindow::colorChanged);
_primaries->show();

// Set constraint resources on checkbox's base widget.

n = 0;
XtSetArg(args[n], XmNtopAttachment, XmATTACH_FORM); n++;
XtSetArg(args[n], XmNbottomAttachment, XmATTACH_FORM); n++;
XtSetArg(args[n], XmNleftAttachment, XmATTACH_FORM); n++;
XtSetValues(_primaries->baseWidget(), args, n);

// Create a frame to display the name of the resulting blended color.

n = 0;
XtSetArg(args[n], XmNtopAttachment, XmATTACH_FORM); n++;
XtSetArg(args[n], XmNbottomAttachment, XmATTACH_FORM); n++;
XtSetArg(args[n], XmNrightAttachment, XmATTACH_FORM); n++;
XtSetArg(args[n], XmNleftAttachment, XmATTACH_WIDGET); n++;
XtSetArg(args[n], XmNleftWidget, _primaries->baseWidget()); n++;
Widget _result = XmCreateFrame(_form, "result", args, n);
XtManageChild(_result);

// Create a frame title label. The label text is set by the resource
// database.

n = 0;
XtSetArg(args[n], XmNchildType, XmFRAME_TITLE_CHILD); n++;
Widget _resultLabel = XmCreateLabelGadget(_result, "resultLabel", args, n);

// Create the label to display the blended color name.

_resultColor = XmCreateLabelGadget(_result, "resultColor", NULL, 0);

Deriving Window Subclasses

111

// Set intial value of _colorStatus and label string to white (all off).

_colorStatus = 0;
displayColor(_colors[_colorStatus]);

XtManageChild(_resultLabel);
XtManageChild(_resultColor);

// Add the top-level Form widget as the window's view.

addView(_form);

// Set the window title and the icon title.

setTitle("windowTitle");
setIconName("iconTitle");

}
ColorWindow::~ColorWindow()
{

// Empty
}

const char* ColorWindow::className()
{

return "ColorWindow";
}

// Given a color name, update the label to display the color

void ColorWindow::displayColor(char *newColor)
{

Arg args[2];
int n;

// Common resource trick in ViewKit applications.
// Given a string, check the resource database for a corresponding
// value. If none exists, use the string as the value.

char *_colorName = (char *) VkGetResource(_baseWidget, newColor, "Color",
XmRString, newColor);

112

Chapter 4: ViewKit Windows

// Update the label

XmString _label = XmStringCreateSimple(_colorName);
n = 0;
XtSetArg(args[n], XmNlabelString, _label); n++;
XtSetValues(_resultColor, args, n);
XmStringFree(_label);

}

// When the user changes the value of one of the toggles, update the
// display to show the new blended color.

void ColorWindow::colorChanged(VkCallbackObject *obj, void *, void *callData)
{

ColorWindow *win = (ColorWindow *) obj;
int index = (int) callData;

// Update color status based on toggle value. Set or rest the
// status bit corresponding to the respective toggle.
if (_primaries->getValue(index))

_colorStatus |= 1<<index;
else

_colorStatus &= ~(1<<index);

// Update the display to show the new blended color, using
// _colorStatus as an index.

displayColor(_colors[_colorStatus]);
}

///////////////////////////
// colors.c++
///////////////////////////

#include <Vk/VkApp.h>
#include "ColorWindow.h"

void main (int argc, char **argv)
{

VkApp *colorApp = new VkApp("ColorApp", &argc, argv);
ColorWindow *colorWin = new ColorWindow("colorWin");

colorWin->show();
colorApp->run();

}

Deriving Window Subclasses

113

Figure 4-6 shows the ColorWindow window displayed by the colors program.

Figure 4-6 ColorWindow Window Subclass

115

Chapter 5

5. Creating Menus With ViewKit

This chapter introduces the basic ViewKit classes needed to create and manipulate the
menus in a ViewKit application. Figure 5-1 shows the inheritance graph for these classes.

Figure 5-1 Inheritance Graph for the ViewKit Menu Classes

VkMenuToggle

VkMenuConfirmFirstAction

VkMenuBar

VkPopupMenu

VkSubMenu

VkOptionMenu

VkMenuSeparator

VkComponent

VkMenu

VkMenuLabel

VkMenuAction

VkMenuItem
VkHelpPane

VkRadioSubMenu

116

Chapter 5: Creating Menus With ViewKit

Overview of ViewKit Menu Support

IRIS IM provides the components for building menus (buttons, menu shells, and so on)
but does little to make menu construction easy. ViewKit provides a set of classes that
facilitate common operations on menus, including creating menu bars, menu panes,
popup menus, option menus, and cascading menu panes. The ViewKit menu package
also provides an object-oriented interface for activating and deactivating menu items;
dynamically adding, removing, or replacing menus items or menu panes; and
performing other operations.

The basis for all ViewKit menu classes is the abstract class VkMenuItem, which is
derived from VkComponent. There are two types of classes derived from VkMenuItem.
The first serve as containers and correspond to the menu types supported by IRIS IM:
popup menus, pulldown menu panes, menu bars, and option menus. The second type of
derived classes are individual menu items: actions, toggles, labels, and separators.

The classes derived from VkMenuItem correspond closely with IRIS IM widgets and
gadgets. For example, an action implemented as a VkMenuAction object represents a
XmPushButton gadget along with an associated callback. However, the ViewKit menus
offer several advantages over directly using IRIS IM widgets and gadgets. You can
manipulate the menu objects more easily than widgets. You can display, activate, and
deactivate items with a single function call. You can also easily move or replace items.

Caution: ViewKit implements menu items as gadgets rather than widgets. This causes
a problem in callbacks and other situations if you try to use certain Xt functions (such as
XtDisplay(3Xt), XtScreen(3Xt), and XtWindow(3Xt)), which expect widgets as
arguments. Therefore, use the more general functions (such as XtDisplayofObject(3Xt),
XtScreenofObject(3Xt), and XtWindowofObject(3Xt)) when you need this information
for ViewKit menu items.

VkMenu, derived from VkMenuItem, is the abstract base class that implements the
functionality needed to create and manipulate menus. It provides support for creating
menus and adding, removing, replacing, finding, activating, and deactivating menu
items.

Overview of ViewKit Menu Support

117

Separate subclasses of VkMenu implement the various types of menus supported by
ViewKit:

VkMenuBar Menu bars designed to work with the VkWindow class.

VkPopupMenu
Popup menus that automatically pop up when the user clicks the right
mouse button over a widget.

VkOptionMenu
Option menus.

VkSubMenu Pulldown menu panes that can be used either as pulldown panes in a
menu bar or pull-right panes in a popup or other pulldown menu.

VkRadioSubMenu
A subclass of VkSubMenu used to enforce radio behavior on toggle
items that it contains.

VkHelpPane A ready-made menu pane that provides an interface to the standard
help protocol supported by all ViewKit applications.

Individual menu items are implemented as subclasses derived from VkMenuItem:

VkMenuAction
A selectable menu item that performs an action, implemented as a
PushButtonGadget.

VkMenuConfirmFirstAction
A selectable menu item that performs an action that the user must
confirm before it is executed. When the user chooses this type of menu
item, the application posts a question dialog asking the user for
confirmation. The application performs the action only if the user
confirms it.

VkMenuToggle
A two-state toggle button gadget. To enforce radio behavior on a group
of toggles, you must add them to a VkRadioSubMenu object.

VkMenuLabel A non-selectable label.

VkMenuSeparator
A non-selectable separator.

118

Chapter 5: Creating Menus With ViewKit

ViewKit Menu Item Classes

This section describes the features of the ViewKit menu item classes. First it describes the
features implemented by VkMenuItem, which are common to all the menu item classes.
Then it describes the unique features of each individual menu item class.

Submenus are described in “Submenus” on page 149 and “Radio Submenus” on
page 150.

Note: The header file <Vk/VkMenuItem.h> contains the declarations for all menu item
classes.

Common Features of Menu Items

Individual menu items are implemented as subclasses derived from VkMenuItem,
which provides a standard set of functions for accessing and manipulating menu items.

Unlike with many other ViewKit classes, you should never need to directly instantiate a
menu item class. ViewKit automatically instantiates menu item objects as needed when
you create menus, as described in “Constructing Menus” on page 125. Therefore, this
guide does not describe the menu item constructors and destructors.

Keep in mind that ViewKit implements menu items as gadgets rather than widgets. If
you need to directly access menu item gadgets, remember to use Xt functions that accept
gadgets as well as widgets as arguments.

Displaying and Hiding Menu Items

The VkMenuItem::show() function makes a menu item visible when you display the
menu to which it belongs:

void show()

By default, all menu items are visible when they are created (that is, they appear when
you display the menu to which they belong). You do not have to explicitly call a menu
item’s show() function to display it. You can call show() to display a menu item after you
have hidden it with hide().

ViewKit Menu Item Classes

119

The VkMenuItem::hide() function makes a menu item invisible when you display the
menu to which it belongs:

void hide()

hide() does not remove the menu item from the menu, it simply unmanages the widget
or gadget associated with a menu item. You can display a hidden menu item by calling
its show() function.

If you want to remove a menu item from a menu, you can call VkMenuItem::remove():

void remove()

remove() does not destroy a menu item, it simply removes the item from the menu
hierarchy.

Note that instead of retaining pointers to all of your menu items and using
VkMenuItem::remove() to remove menu items, you can instead use
VkMenu::removeItem(). The effect is the same no matter which function you use,
though typically you will find it easier to use the VkMenu function. “Removing Items
From a Menu” on page 142 describes VkMenu::removeItem().

Activating and Deactivating Menu Items

The VkMenuItem::activate() function makes a menu item sensitive so that it accepts user
input (that is, a user can choose the item):

void activate()

By default, all menu items are activated (sensitive) when they are created.

The VkMenuItem::deactivate() function makes a menu item insensitive so that it does
not accept user input (that is, a user cannot choose the item):

void deactivate()

When it is insensitive, the menu item appears “grayed out” when you display the menu
to which it belongs. You can reactivate a menu item by calling its activate() function.

120

Chapter 5: Creating Menus With ViewKit

Note that instead of retaining pointers to all of your menu items and using
VkMenuItem::activate() and VkMenuItem::deactivate() to activate and deactivate
menu items, you can instead use VkMenu::activateItem() and
VkMenu::deactivateItem(), respectively. The effect is the same no matter which
functions you use, though typically it is easier to use the VkMenu functions. “Activating
and Deactivating Items in a Menu” on page 141 describes VkMenuItem::activate() and
VkMenuItem::deactivate().

Setting Menu Item Labels

Generally, you set the label for a menu item by setting a value in the resource database
for that item’s XmNlabelString resource. For example, if you have a menu item named
“addPage,” you can set the label for that item by including a resource specification such
as:

*addPage.labelString: Add Page

If you do not set the menu item’s XmNlabelString resource, ViewKit uses the item’s
name.

In some cases, you might need to set the label of an item programmatically. For example,
in a page layout system, you might want to change the labels for the items in an Edit
menu to reflect the type of object the user has currently chosen. You can change a menu
item’s label programmatically with the setLabel() function:

virtual void setLabel(const char * str)

The string is treated first as a resource name that setLabel() looks up relative to the menu
item’s widget. If the resource exists, its value is used as the item’s label. If the resource
does not exist, or if the string contains spaces or newline characters, setLabel() uses the
string itself as the item’s label. This allows applications to dynamically set and change
menu item labels without hard-coding the exact label strings in the application code.

Setting the Position of Menu Items

By default, ViewKit inserts items into a menu in the order you specify them. Therefore,
the easiest way to set the positions of menu items is to add them to the menu in the order
that you want them to appear.

ViewKit Menu Item Classes

121

Occasionally you might need to explicitly set the position of a menu item. To do so, use
VkMenuItem::setPosition():

void setPosition(int position)

setPosition() sets the item’s position in the menu. You can specify any integer value from
zero to the number of items in the menu; a value of zero specifies the first position in the
menu. setPosition() ignores invalid values.

Note: setPosition() is effective only before ViewKit realizes the menu to which the menu
item belongs. If you call setPosition() after realizing a menu, it has no effect. For example,
if you create a menu bar in a window’s constructor, you can safely use setPosition() to
position menu items; however, after calling the window’s show() function, setPosition()
has no effect.

Menu Items Utility Functions

You can use MenuItem::menuType() to determine the specific menu item type when
given a pointer to a VkMenuItem object:

virtual VkMenuItemType menuType()

menuType() returns one of the following enumerated values of type
VkMenuItem::VkMenuItemType:

ACTION A VkMenuAction object.

CONFIRMFIRSTACTION
A VkMenuConfirmFirstAction object.

TOGGLE A VkMenuToggle object.

LABEL A VkMenuLabel object.

SEPARATOR A VkMenuSeparator object.

SUBMENU A VkSubMenu object.

RADIOSUBMENU
A VkRadioSubMenu object.

BAR A VkMenuBar object.

122

Chapter 5: Creating Menus With ViewKit

OPTION A VkOptionMenu object.

POPUP A VkPopupMenu object.

OBJECT A user-defined subclass of VkMenuActionObject (described in
“Command Classes” on page 176).

You can also determine when an object pointed to by a VkMenuItem pointer is a menu
by calling MenuItem::isContainer():

virtual Boolean isContainer()

isContainer() returns TRUE if the VkMenuItem object is an item that can “contain”
other menu items (in other words, a menu).

Menu Actions

The VkMenuAction class provides a selectable menu item that performs an action. A
VkMenuAction object is implemented as a PushButtonGadget.

A VkMenuAction object has associated with it a callback function that performs an
operation and, optionally, a callback function that “undoes” the operation. You specify
these callback functions when you add the item to a menu using one of the methods
described in “Constructing Menus” on page 125. Consult that section for information on
using VkMenuAction objects in a menu.

VkMenuAction provides a couple of public functions in addition to those implemented
by VkMenuItem:

• You can determine whether an action has an undo callback associated with it by
calling VkMenuAction::hasUndo():

Boolean hasUndo()

hasUndo() returns TRUE if the object has an associated undo callback function.

• If an object has an undo callback function, you can call it programmatically using
VkMenuAction::undo():

virtual void undo()

ViewKit Menu Item Classes

123

Typically, you won’t have any need to call undo() explicitly. ViewKit provides automatic
undo handling for your application using the VkUndoManager class, as described in
Chapter 6, “ViewKit Undo Management and Command Classes.” All you have to do is
provide undo callback functions for your VkMenuAction objects and create an instance
of VkUndoManager as described in Chapter 6.

Confirmable Menu Actions

The VkMenuConfirmFirstAction class, which is derived from VkMenuAction,
provides a selectable menu item that performs an action. When the user chooses this type
of menu item, the application posts a question dialog asking the user for confirmation.
The application performs the action only if the user confirms it.

Because the VkMenuConfirmFirstAction class is intended for irrecoverable actions (for
example, deleting a file), VkMenuConfirmFirstAction objects do not support undo
callback functions.

The VkMenuConfirmFirstAction class uses a XmPushButtonGadget to implement the
menu choice and the VkQuestionDialog class to implement the question dialog. (See
“Question Dialog” on page 205 for more information on the VkQuestionDialog class.)

The question displayed in the confirmation dialog is determined by the value of the
resource noUndoQuestion, which ViewKit looks up relative to the menu item’s widget.
For example, if you have a menu item named “quit,” set the question text for that item
by including a resource specification such as this:

*quit.noUndoQuestion: Do you really want to quit?

If you do not provide a value for this resource, ViewKit uses the default question: “This
action cannot be undone. Do you want to proceed anyway?”

Menu Toggles

The VkMenuToggle class, which is derived from VkMenuAction, provides a two-state
toggle as a menu item. To enforce radio behavior on a group of toggles, you must add
them to a VkRadioSubMenu object; otherwise, VkMenuToggle objects exhibit simple
checkbox-style behavior. A VkMenuToggle object is implemented as a
ToggleButtonGadget.

124

Chapter 5: Creating Menus With ViewKit

In addition to the public functions provided by VkMenuItem, VkMenuToggle provides
functions for setting and retrieving the toggle state:

• You can set the visual state of a VkMenuToggle object, without activating its
associated callback, using VkMenuToggle::setVisualState():

void setVisualState(Boolean state)

setVisualState() selects the toggle if state is TRUE, and deselects the toggle if state is
FALSE.

• You can set the visual state of a VkMenuToggle object and activate its associated
callback with VkMenuToggle::setStateAndNotify():

void setStateAndNotify(Boolean state)

• You can retrieve the current value of a VkMenuToggle object using
VkMenuToggle::getState():

Boolean getState()

getState() returns TRUE if the toggle is currently selected, and FALSE if it is
currently deselected.

Menu Labels

The VkMenuLabel class provides a non-selectable label as a menu item. A
VkMenuLabel object is implemented as a LabelGadget.

The VkMenuLabel class does not provide any public functions other than those
implemented by VkMenuItem.

Menu Separators

The VkMenuSeparator class provides a non-selectable separator as a menu item. A
VkMenuSeparator object is implemented as a SeparatorGadget.

The VkMenuSeparator class does not provide any public functions other than those
implemented by VkMenuItem.

ViewKit Menu Base Class

125

ViewKit Menu Base Class

This section describes the abstract VkMenu class, which provides the basic features of
the ViewKit menu classes. It describes how to construct menus, manipulate items
contained in the menus, and use the menu access functions. Because all ViewKit menu
classes are derived from VkMenu, the functions and techniques described in this section
apply to all menu classes.

Constructing Menus

The methods of constructing menus are the same for all types of menus (menu bars,
options menus, and so on). The examples in this section use the VkMenuBar class, but
the principles are similar for any of the ViewKit menu classes.

You can build menus either by passing a static menu description to the class constructor
for a menu, or by adding items dynamically through function calls. You can mix the two
approaches, initially defining a static menu structure and then dynamically adding items
as needed.

Constructing Menus From a Static Description

To construct a menu from a static description, you must create a VkMenuDesc array that
describes the contents of the menu and then pass that array as an argument to an
appropriate menu constructor. This section describes the format of the VkMenuDesc
structure and provides examples of its use.

The VkMenuDesc Structure

The definition for the VkMenuDesc structure is:

struct VkMenuDesc {
VkMenuItemType menuType;
char *name;
XtCallbackProc callback;
VkMenuDesc *submenu;
XtPointer clientData;
XtCallbackProc undoCallback;

};

126

Chapter 5: Creating Menus With ViewKit

The purposes of the VkMenuDesc fields are as follows:

menuType The type of menu item. The value of this field must be one of the
enumerated constants listed below.

name The menu item’s name, which is also used as the menu item’s default
label.

callback An Xt-style callback procedure that is executed when this menu item is
activated.

submenu A pointer to an array of a VkMenuDesc structures that describes the
contents of a submenu.

clientData Data that is passed to the callback procedure when it is executed.

undoCallback A callback procedure that can be executed to undo the effects of the
actions of the activation callback. Implementation of support for
undoing actions is described in Chapter 6, “ViewKit Undo Management
and Command Classes.”

The menuType parameter is an enumerated value of type VkMenuItemType. Possible
values are as follows:

ACTION A selectable menu item, implemented as a VkMenuAction object.

CONFIRMFIRSTACTION
A selectable menu item, implemented as a VkMenuConfirmFirstAction
object, which performs an action that the user must confirm before it is
executed.

TOGGLE A two-state toggle button gadget, implemented as a VkMenuToggle
object.

LABEL A label, implemented as a VkMenuLabel object.

SEPARATOR A separator, implemented as a VkMenuSeparator object.

SUBMENU A cascading submenu, implemented as a VkSubMenu object.

RADIOSUBMENU
A cascading submenu that acts as a radio-style pane, implemented as a
VkRadioSubMenu object.

END A constant that must terminate all menu descriptions.

ViewKit Menu Base Class

127

Not all fields are used for each menu item type. Table 5-1 summarizes the optional and
required fields for each menu item type.

For example, consider the following array definition:

class EditWindow: public VkWindow {
private:

static VkMenuDesc editMenu[];
// ...

};

a. R = required parameter; O = optional parameter; I = ignored parameter.

b. If you provide a default client data argument to the menu constructor, that value is used for all menu items
for which you do not explicitly provide a client data parameter.

c. While this parameter is optional, the menu item is useless unless you provide a callback function.

d. If you provide a client data parameter, that value is used as default client data for all menu items in the
submenu.

Table 5-1 Required and Optional Parameters in a Static Menu Descriptiona

menuType name callback submenu clientData b undoCallback

ACTION R Oc I O O

CONFIRMFIRSTACTION R Ob I O I

TOGGLE R Ob I O I

LABEL R I I I I

SEPARATOR I I I I I

SUBMENU R I R Od I

RADIOSUBMENU R I R Oc I

END R I I I I

128

Chapter 5: Creating Menus With ViewKit

VkMenuDesc EditWindow::editMenu[] = {
{ ACTION, "Cut", &EditWindow::cutCallback,

NULL, NULL, &EditWindow::undoCutCallback },
{ ACTION, "Copy", &EditWindow::copyCallback,

NULL, NULL, &EditWindow::undoCopyCallback },
{ ACTION, "Paste", &EditWindow::pasteCallback,

NULL, NULL, &EditWindow::undoPasteCallback },
{ ACTION, "Search" &EditWindow::searchCallback }
{ SEPARATOR },
{ CONFIRMFIRSTACTION, "Revert", &EditWindow::revertCallback },
{ END }

};

The editMenu array describes a simple menu for editing in an application. The menu
consists of five actions and a separator. The menu’s Cut item calls the cutCallback()
function when it is activated with no client data passed to it. Cut also supports an undo
action through the undoCutCallback() function. The Copy and Paste items work
similarly.

The Search action does not support an undo action. Presumably, the action performed by
this item is either too complex to undo or is meaningless to undo.

The Revert item is implemented as a CONFIRMFIRSTACTION. When the user activates
this item, the application posts a confirmation dialog to warn the user that the action
cannot be undone.

As a more complex example, consider a menu that contains two submenus, each of
which contains two selectable items. You could describe this menu with definitions such
as:

class TextWindow: public VkWindow {
private:

static VkMenuDesc menu[];
static VkMenuDesc applicationPane[];
static VkMenuDesc editPane[];
// ...

};

VkMenuDesc TextWindow::applicationPane[] = {
{ ACTION, "Open", &TextWindow::openCallback },
{ ACTION, "Save", &TextWindow::saveCallback },
{ END }

};

ViewKit Menu Base Class

129

VkMenuDesc TextWindow::editPane[] = {
{ ACTION, "Cut", &TextWindow::cutCallback },
{ ACTION, "Paste", &TextWindow::pasteCallback },
{ END }

};

VkMenuDesc TextWindow::menu[] = {
{ SUBMENU, "Application", NULL, applicationPane },
{ SUBMENU, "Edit", NULL, editPane },
{ END }

};

After constructing a static menu description, you create it by passing it as an argument
to a menu constructor. For example, to implement the menus defined above as a menu
bar, you can execute:

VkMenuBar *menubar = new VkMenuBar(menu);

You can implement the same menu as a popup menu simply by passing the definition to
a popup menu constructor:

VkPopupMenu *popup = new VkPopupMenu(menu);

Special Considerations for Xt Callback Client Data When Using Static Menu
Descriptions

As described in “Using Xt Callbacks With Components” on page 21, when using Xt-style
callbacks in ViewKit, pass the this pointer as client data to all Xt callback functions.
Callback functions then retrieve this pointer, cast it to the expected component type, and
call a corresponding member function.

However, you cannot use the this pointer when you define a static data member. To get
around this limitation, menu constructors accept a defaultClientData argument. If you
provide a value for this argument, any menu item that does not provide a client data
argument uses this argument instead. This allows you to specify menus statically while
still allowing you to use an instance pointer with Xt callbacks. The code fragment
Example 5-1 illustrates this technique.

130

Chapter 5: Creating Menus With ViewKit

Example 5-1 Providing Default Client Data When Using Static Menu Descriptions

class SampleWindow: public VkWindow {

private:
static void oneCallback(Widget, XtPointer, XtPointer);
static void twoCallback(Widget, XtPointer, XtPointer);
static void cutCallback(Widget, XtPointer, XtPointer);
static void pasteCallback(Widget, XtPointer, XtPointer);

static VkMenuDesc applicationPane[];
static VkMenuDesc editPane[];
static VkMenuDesc menu[];

public:
SampleWindow(const char *name);

// Other members
};
SampleWindow::SampleWindow(char *name) : VkWindow(name)
{

setMenuBar(new VkMenuBar(menu, (XtPointer) this));

// Other actions
}

Note: VkWindow::addMenuPane(), VkWindow::addRadioMenuPane(), and the form
of the VkWindow::setMenuBar() function that accepts a VkMenuDesc array as an
argument all automatically use the this pointer as default client data for the menu bars
and menu panes that they create.

Creating a Menu Bar Using a Static Description

Example 5-2 illustrates using a static description of a menu tree to create a menu bar. The
program creates its main window using MyWindow, a subclass of VkWindow. The
menu description and all menu callbacks are contained within the MyWindow subclass
definition.

ViewKit Menu Base Class

131

Example 5-2 Creating a Menu Bar Using a Static Description

#include <Vk/VkApp.h>
#include <Vk/VkWindow.h>
#include <Vk/VkMenu.h>
#include <iostream.h>
#include <Xm/Label.h>

class MyWindow: public VkWindow {
private:

static void sampleCallback(Widget, XtPointer , XtPointer);
static void quitCallback(Widget, XtPointer , XtPointer);

void quit();
void sample();

static VkMenuDesc subMenu[];
static VkMenuDesc sampleMenuPane[];
static VkMenuDesc appMenuPane[];
static VkMenuDesc mainMenuPane[];

public:
MyWindow(const char *name);
~MyWindow();

virtual const char* className();
};
MyWindow::MyWindow(const char *name) : VkWindow(name)
{

Widget label = XmCreateLabel(mainWindowWidget(), "a menu",
NULL, 0);

setMenuBar(mainMenuPane);
addView(label);

}

MyWindow::~MyWindow()
{

// Empty
}

const char* MyWindow::className()
{

return "MyWindow";
}

132

Chapter 5: Creating Menus With ViewKit

// The menu bar is essentially a set of cascading menu panes, so the
// top level of the menu tree is always defined as a list of submenus

VkMenuDesc MyWindow::mainMenuPane[] = {
{ SUBMENU, "Application", NULL, MyWindow::appMenuPane },
{ SUBMENU, "Sample", NULL, MyWindow::sampleMenuPane },
{ END }

};

VkMenuDesc MyWindow::appMenuPane[] = {
{ ACTION, "One", &MyWindow::sampleCallback },
{ ACTION, "Two", &MyWindow::sampleCallback },
{ ACTION, "Three", &MyWindow::sampleCallback },
{ SEPARATOR },
{ ACTION, "Quit", &MyWindow::quitCallback },
{ END },

};

VkMenuDesc MyWindow::sampleMenuPane[] = {
{ LABEL, "Test Label" },
{ SEPARATOR },
{ ACTION, "An Action", &MyWindow::sampleCallback },
{ ACTION, "Another Action", &MyWindow::sampleCallback },
{ SUBMENU, "A Submenu", NULL, MyWindow::subMenu },
{ END },

};

VkMenuDesc MyWindow::subMenu[] = {
{ ACTION, "foo", &MyWindow::sampleCallback },
{ ACTION, "bar", &MyWindow::sampleCallback },
{ ACTION, "baz", &MyWindow::sampleCallback },
{ END },

};

void MyWindow::sample()
{

cout << "sample callback" << "\n" << flush;
}

void MyWindow::sampleCallback(Widget, XtPointer clientData, XtPointer)
{

MyWindow *obj = (MyWindow *) clientData;
obj->sample();

}

ViewKit Menu Base Class

133

void MyWindow::quitCallback (Widget, XtPointer, XtPointer)
{

theApplication->quitYourself();
}

void main(int argc, char **argv)
{

VkApp *myApp = new VkApp("Menudemo", &argc, argv);
MyWindow *menuWin = new MyWindow("MenuWindow");

menuWin->show();
myApp->run();

}

When you run this program, you see the window shown in Figure 5-2.

Figure 5-2 Main Window With Menu Bar Created by Static Description

The first pane, shown in Figure 5-3, contains three selectable entries (actions), followed
by a separator, followed by a fourth action. The first three menu items simply invoke a
stub function when chosen. The fourth item calls quitCallback(), which exits the
application.

Figure 5-3 Menu Pane Created by a Static Description

134

Chapter 5: Creating Menus With ViewKit

The second menu pane, shown in Figure 5-4, demonstrates a non-selectable label, a
separator, and a cascading submenu.

Figure 5-4 Menu Pane Containing a Label and a Submenu

In addition to implementing these application-defined menu panes, ViewKit can
automatically add a Help menu to a menu bar, which provides a user interface to a help
system. “ViewKit Help Menu” on page 300 describes the Help menu. “Using an External
Help Library” on page 300 describes how to add an interface to an external help system
to a ViewKit application.

Constructing Menus Dynamically

In addition to the static description approach demonstrated in the previous section,
ViewKit allows applications to construct menus and menu items dynamically using
functions defined in VkMenu. This section describes the menu-creation functions and
provides examples of their use.

Functions for Dynamically Creating Menus

The VkMenu class provides a number of member functions for creating menus. Each
function adds a single menu item to a given menu. You can use these functions at any
time in your program. Even if you created a menu using a static definition, you can use
these functions to add items to the menu.

ViewKit Menu Base Class

135

VkMenu::addAction() adds to a menu a selectable menu action, implemented as a
VkMenuAction object:

VkMenuAction *addAction(const char * name,
XtCallbackProc actionCallback = NULL,
XtPointer clientData = NULL,
int position = -1)

VkMenuAction *addAction(const char * name,
XtCallbackProc actionCallback,
XtCallbackProc undoCallback,
XtPointer clientData,
int position = -1)

addAction() creates a VkMenuAction object named name and adds it to the menu. By
default, addAction() adds the item to the end of the menu; if you specify a value for
position, addAction() adds the item at that position. actionCallback is the callback function
that performs the item’s action, and undoCallback is the callback function that undoes the
action. If you do not provide an undo callback, the action cannot be undone and does not
participate in the ViewKit undo mechanism as described in Chapter 6. clientData is client
data passed to the callback functions. Following ViewKit conventions as described in
“Using Xt Callbacks With Components” on page 21, pass the this pointer as client data so
that the callback functions can retrieve the pointer, cast it to the expected component
type, and call a corresponding member function.

VkMenu::addConfirmFirstAction() adds to a menu a selectable menu action,
implemented as a VkMenuConfirmFirstAction object:

VkMenuConfirmFirstAction *
addConfirmFirstAction(const char * name,

XtCallbackProc actionCallback = NULL,
XtPointer clientData = NULL,
int position = -1)

addConfirmFirstAction() creates a VkMenuConfirmFirstAction object named name and
adds it to the menu. By default, addConfirmFirstAction() adds the item to the end of the
menu; if you specify a value for position, addConfirmFirstAction() adds the item at that
position. actionCallback is the callback function that performs the item’s action, and
clientData is client data passed to the callback function. As described above, pass the this
pointer as client data.

136

Chapter 5: Creating Menus With ViewKit

VkMenu::addToggle() adds to a menu a selectable menu toggle, implemented as a
VkMenuToggle object:

VkMenuToggle *addToggle(const char * name,
XtCallbackProc actionCallback = NULL,
XtPointer clientData = NULL,
int state = -1)
int position = -1)

addToggle() creates a VkMenuToggle object named name and adds it to the menu. By
default, addToggle() adds the item to the end of the menu; if you specify a value for
position, addToggle() adds the item at that position. If you provide a state argument,
addToggle() sets the initial state of the toggle to that value. actionCallback is the callback
function that performs the item’s action, and clientData is client data passed to the
callback function. As described above, pass the this pointer as client data.

VkMenu::addLabel() adds to a menu a non-selectable menu label, implemented as a
VkMenuLabel object:

VkMenuLabel *addLabel(const char * name,
int position = -1)

addLabel() creates a VkMenuLabel object named name and adds it to the menu. By
default, addLabel() adds the item to the end of the menu; if you specify a value for
position, addLabel() adds the item at that position.

VkMenu::addSeparator() adds to a menu a non-selectable menu separator,
implemented as a VkMenuSeparator object:

VkMenuSeparator *addSeparator(const char * name,
int position = -1)

addSeparator() creates a VkMenuSeparator object named name and adds it to the menu.
By default, addSeparator() adds the item to the end of the menu; if you specify a value
for position, addSeparator() adds the item at that position.

ViewKit Menu Base Class

137

VkMenu::addSubmenu() adds to a menu a submenu, implemented as a VkSubMenu
object:

VkSubMenu *addSubmenu(VkSubMenu * submenu,
int position = -1)

VkSubMenu *addSubmenu(const char * name,
int position = -1)

VkSubMenu *addSubmenu(const char * name,
VkMenuDesc * menuDesc)
XtPointer * defaultClientData = NULL)
int position = -1)

addSubmenu() is overloaded so that you can: 1) add an existing VkSubMenu object; 2)
create and add a VkSubMenu object containing no items; or 3) create and add a
VkSubMenu object from the static menu description, menuDesc. If you create and add
the submenu using the static menu description, you can also provide a defaultClientData
value that is used as the default client data for all items contained by the submenu. By
default, addSubmenu() adds the item to the end of the menu; if you specify a value for
position, addSubmenu() adds the item at that position.

Note: The m in addSubmenu() is lowercase, whereas the M in VkSubMenu is
uppercase.

VkMenu::addRadioSubmenu() adds to a menu a submenu that enforces radio-style
behavior on the toggle items it contains:

VkRadioSubMenu *addRadioSubmenu(VkRadioSubMenu * submenu,
int position = -1)

VkRadioSubMenu *addRadioSubmenu(const char * name,
int position = -1)

VkRadioSubMenu *addRadioSubmenu(const char * name,
VkMenuDesc * menuDesc)
XtPointer * defaultClientData = NULL)
int position = -1)

138

Chapter 5: Creating Menus With ViewKit

addRadioSubmenu() is overloaded so that you can do one of the following:

• Add an existing VkRadioSubMenu object.

• Create and add a VkRadioSubMenu object containing no items.

• Create and add a VkRadioSubMenu object from the static menu description,
menuDesc.

If you create and add the submenu using the static menu description, you can also
provide a defaultClientData value that is used as the default client data for all items
contained by the submenu. By default, addSubmenu() adds the item to the end of the
menu; if you specify a value for position, addSubmenu() adds the item at that position.

Note: The m in addRadioSubmenu() is lowercase, whereas the M in VkRadioSubMenu
is uppercase.

VkMenu::add() adds an existing menu item to a menu:

void add(VkMenuItem * item, int position = -1)

By default, add() adds the item to the end of the menu; if you specify a value for position,
add() adds the item at that position. Though you can use add() to add any type of menu
item to a menu, you typically need it to add only the ViewKit undo manager and
VkMenuActionObject objects. “Undo Management” on page 165 describes the ViewKit
undo manager, and “Command Classes” on page 176 describes the
VkMenuActionObject class.

Creating a Menu Bar Dynamically

Example 5-3 is functionally equivalent to Example 5-2. It constructs a menu by adding
items one at a time to the window’s menu bar and to individual menu panes.

Example 5-3 Creating a Menu Bar Dynamically

#include <Vk/VkApp.h>
#include <Vk/VkWindow.h>
#include <Vk/VkSubMenu.h>
#include <Vk/VkMenu.h>
#include <Xm/Label.h>
#include <iostream.h>

ViewKit Menu Base Class

139

class MyWindow: public VkWindow {
private:

static void sampleCallback(Widget, XtPointer, XtPointer);
static void quitCallback(Widget, XtPointer, XtPointer);

protected:
void sample();

public:
MyWindow(const char *name);
~MyWindow();

virtual const char* className();
};

MyWindow::MyWindow(const char *name) : VkWindow(name)
{

Widget label = XmCreateLabel(mainWindowWidget(), "a menu", NULL, 0);

// Add a menu pane

VkSubMenu *appMenuPane = addMenuPane("Application");

appMenuPane->addAction("One", &MyWindow::sampleCallback,
(XtPointer) this);

appMenuPane->addAction("Two", &MyWindow::sampleCallback,
(XtPointer) this);

appMenuPane->addAction("Three", &MyWindow::sampleCallback,
(XtPointer) this);

appMenuPane->addSeparator();
appMenuPane->addAction("Quit", &MyWindow::quitCallback,

(XtPointer) this);

// Add a menu second pane

VkSubMenu *sampleMenuPane = addMenuPane("Sample");

sampleMenuPane->addLabel("Test Label");
sampleMenuPane->addSeparator();
sampleMenuPane->addAction("An Action",

&MyWindow::sampleCallback,
(XtPointer) this);

sampleMenuPane->addAction("Another Action",
&MyWindow::sampleCallback,
(XtPointer) this);

140

Chapter 5: Creating Menus With ViewKit

// Create a cascading submenu

VkSubMenu *subMenu = sampleMenuPane->addSubmenu("A Submenu");

subMenu->addAction("foo", &MyWindow::sampleCallback, (XtPointer) this);
subMenu->addAction("bar", &MyWindow::sampleCallback, (XtPointer) this);
subMenu->addAction("baz", &MyWindow::sampleCallback, (XtPointer) this);

addView(label);
}

MyWindow::~MyWindow()
{

// Empty
}

const char* MyWindow::className() { return "MyWindow";}

void MyWindow::sampleCallback(Widget, XtPointer clientData, XtPointer)
{

MyWindow *obj = (MyWindow *) clientData;
obj->sample();

}

void MyWindow::sample()
{

cout << "sample callback" << "\n" << flush;
}

void MyWindow::quitCallback (Widget, XtPointer, XtPointer)
{

theApplication->quitYourself();
}

void main(int argc, char **argv)
{

VkApp *myApp = new VkApp("Menu", &argc, argv);
MyWindow *w1 = new MyWindow("menuWindow");

w1->show();
myApp->run();

}

ViewKit Menu Base Class

141

Manipulating Items in Menu

One of the advantages of the ViewKit menu system is the ability to manipulate the items
in a menu after the menu has been created. The ViewKit menu system allows menu items
to be manipulated by sending messages to any menu item. Menu items can also be found
and manipulated by name.

Finding Items in a Menu

The VkMenu::findNamedItem() function allows you to find an item in a menu given its
component name:

VkMenuItem *findNamedItem(const char * name,
Boolean caseless = FALSE)

findNamedItem() finds and returns a pointer to a menu item of the specified name
belonging to the menu object or any submenus of the menu object. You can also pass an
optional Boolean argument specifying whether or not the search is case-sensitive. If
findNamedItem() finds no menu item with the given name, it returns NULL. If multiple
instances of the same name exist, findNamedItem() returns the first name found in a
depth-first search.

Note: Remember that you need to cast the return value if you need to access a member
function provided by a VkMenuItem subclass. For example, if you search for a toggle
item, remember to cast the return value to VkMenuToggle before calling a member
function such as VkMenuToggle::setVisualState().

Activating and Deactivating Items in a Menu

The VkMenu::activateItem() function makes a menu item sensitive so that it accepts user
input (that is, a user can choose the item):

VkMenuItem *activateItem(const char * name)

You provide as an argument to activateItem() the name of the menu item to activate. This
is the same name that you gave the menu item when you created it. activateItem()
returns a VkMenuItem pointer to the item activated (or NULL if you did not provide a
valid menu item name). By default, all menu items are activated (sensitive) when they
are created.

142

Chapter 5: Creating Menus With ViewKit

The VkMenu::deactivateItem() function makes a menu item insensitive so that it does
not accept user input (that is, a user cannot choose the item):

VkMenuItem *deactivateItem(const char * name)

You provide as an argument to deactivateItem() the name of the menu item to deactivate.
This is the same name that you gave the menu item when you created it. deactivateItem()
returns a VkMenuItem pointer to the item deactivated (or NULL if you did not provide
a valid menu item name). When it is insensitive, the menu item appears “grayed out”
when you display the menu. You can reactivate a menu item by calling deactivateItem()
on that item.

Note that instead of using VkMenu::activateItem() and VkMenu::deactivateItem() to
activate and deactivate menu items, you could retain pointers to all of your menu items
and use VkMenuItem::activate() and VkMenuItem::deactivate(), respectively. The
effect is the same no matter which functions you use, though typically it is easier to use
the VkMenu functions. “Activating and Deactivating Menu Items” on page 119
describes VkMenuItem::activate() and VkMenuItem::deactivate().

Removing Items From a Menu

If you want to remove a menu item from a menu, you can call VkMenu::removeItem():

VkMenuItem *removeItem(const char * name)

You provide as an argument to removeItem() the name of the menu item to remove from
the menu. This is the same name that you gave the menu item when you created it.
removeItem() returns a VkMenuItem pointer to the item removed. removeItem() does
not destroy a menu item; it simply removes the item from the menu hierarchy.

Note that instead of using VkMenu::removeItem(), you can retain pointers to all of your
menu items and use VkMenuItem::remove(). The effect is the same no matter which
functions you use, though typically you it is easier to use the VkMenu functions.
“Displaying and Hiding Menu Items” on page 118 describes VkMenuItem::remove().

Replacing Items in a Menu

You can replace an item in a menu with another menu item using VkMenu::replace():

VkMenuItem *replace(const char * name, VkMenuItem * newItem)

ViewKit Menu Base Class

143

replace() first uses VkMenu::findNamedItem to find the item specified by name. Then it
removes that item from the menu and adds the menu item specified by newItem in its
place. replace() returns a pointer to the menu item that you replaced.

Manipulating Menu Items

The program in Example 5-4 allows users to dynamically add and remove items from a
menu, and also to activate and deactivate items.

Example 5-4 Manipulating Menu Items

#include <Vk/VkApp.h>
#include <Vk/VkWindow.h>
#include <Vk/VkMenu.h>
#include <Vk/VkSubMenu.h>
#include <Xm/Label.h>
#include <stream.h>
#include <stdlib.h>

class MyWindow: public VkWindow {

private:
static void addOneCallback (Widget, XtPointer, XtPointer);
static void removeOneCallback (Widget, XtPointer, XtPointer);
static void activateOneCallback (Widget, XtPointer, XtPointer);
static void deactivateOneCallback(Widget, XtPointer, XtPointer);
static void sampleCallback (Widget, XtPointer, XtPointer);
static void quitCallback (Widget, XtPointer, XtPointer);

protected:
VkSubMenu *_appMenuPane;
VkSubMenu *_menuPaneTwo;

void addOne();
void removeOne();
void activateOne();
void deactivateOne();
void sample();

public:
MyWindow(const char *name);
~MyWindow();
virtual const char* className();

};

144

Chapter 5: Creating Menus With ViewKit

MyWindow::~MyWindow()
{

// Empty
}

const char* MyWindow::className() { return "MyWindow";}

void MyWindow::sampleCallback(Widget, XtPointer clientData, XtPointer)
{

MyWindow *obj = (MyWindow *) clientData;
obj->sample();

}

void MyWindow::sample()
{

cout << "sample callback" << "\n" << flush;
}

void MyWindow::addOneCallback(Widget, XtPointer clientData, XtPointer)
{

MyWindow *obj = (MyWindow *) clientData;
obj->addOne();

}

void MyWindow::addOne()
{

_menuPaneTwo->addAction("A New Action", &MyWindow::sampleCallback,
(XtPointer) this);

}

void MyWindow::removeOneCallback(Widget, XtPointer clientData,
XtPointer)

{
MyWindow *obj = (MyWindow *) clientData;
obj->removeOne();

}

void MyWindow::removeOne()
{

_menuPaneTwo->removeItem("A New Action");
}

ViewKit Menu Base Class

145

void MyWindow::activateOneCallback(Widget, XtPointer clientData,
XtPointer)

{
MyWindow *obj = (MyWindow *) clientData;
obj->activateOne();

}

void MyWindow::activateOne()
{

_menuPaneTwo->activateItem("A New Action");
}

void MyWindow::deactivateOneCallback(Widget, XtPointer clientData,
XtPointer)

{
MyWindow *obj = (MyWindow *) clientData;
obj->deactivateOne();

}

void MyWindow::deactivateOne()
{

_menuPaneTwo->deactivateItem("A New Action");
}

void MyWindow::quitCallback (Widget, XtPointer, XtPointer)
{

theApplication->quitYourself();
}

MyWindow::MyWindow(const char *name) : VkWindow(name)
{

Widget label = XmCreateLabel(mainWindowWidget(), "a menu",
NULL, 0);

// Add a menu pane

_appMenuPane = addMenuPane("Application");

_appMenuPane->addAction("Add One",
&MyWindow::addOneCallback,
(XtPointer) this);

_appMenuPane->addAction("Remove One",
&MyWindow::removeOneCallback,
(XtPointer) this);

146

Chapter 5: Creating Menus With ViewKit

_appMenuPane->addAction("Activate One",
&MyWindow::activateOneCallback,
(XtPointer) this);

_appMenuPane->addAction("Deactivate One",
&MyWindow::deactivateOneCallback,
(XtPointer) this);

_appMenuPane->addSeparator();
_appMenuPane->addAction("Quit",

&MyWindow::quitCallback,
(XtPointer) this);

// Add a menu second pane

_menuPaneTwo = addMenuPane("PaneTwo");

addView(label);
}

void main(int argc, char **argv)
{

VkApp *myApp = new VkApp("MenuDemo3", &argc, argv);
MyWindow *menuWin = new MyWindow("menuWindow");

menuWin->show();
myApp->run();

}

Menu Access Functions

The VkMenu class also provides access functions to help manipulate menu items.

You can determine the number of items currently associated with a menu by using
VkMenu::numItems():

int numItems() const

You can determine the position of an item in a menu with VkMenu::getItemPosition():

int getItemPosition(VkMenuItem * item)
int getItemPosition(char * name)
int getItemPosition(Widget w)

Using ViewKit Menu Subclasses

147

You can specify the menu item by pointer, name, or widget. getItemPosition() returns
the position of the item within the menu, with zero representing the first position in the
menu.

As a convenience, you can also access items in a menu using standard array subscript
notation:

VkMenuItem * operator[] (int index) const

For example, you can use VkMenu::numItems() with the array subscript notation to
loop through an entire menu and perform an operation on all of the items it contains. For
example, if menubar is a menu, the following code prints the name and class of each item
in the menubar menu:

for (i=0; i < menubar->numItems(); i++)
cout << "Name: " << (*menubar)[i]->name() << "\t"

<< "Class: " << (*menubar)[i]->className() << "\n";

Using ViewKit Menu Subclasses

This section describes the features of each ViewKit menu subclass. In addition to specific
member functions listed, each class also supports all functions provided by the VkMenu
class.

Menu Bar

The VkMenuBar class provides a menu bar designed to work with the VkWindow class.
In addition to the functions described in this section, the VkWindow class provides some
member functions for installing a VkMenuBar object as a menu bar. “Menu Bar
Support” on page 100 describes the functions provided by VkWindow.

Examples of menu bar construction were given in “Creating a Menu Bar Using a Static
Description” on page 130 (Example 5-2) and “Creating a Menu Bar Dynamically” on
page 138 (Example 5-3).

148

Chapter 5: Creating Menus With ViewKit

Menu Bar Constructors

There are four different versions of the VkMenuBar constructor:

VkMenuBar(Boolean showHelpPane = TRUE)

VkMenuBar(const char * name,
Boolean showHelpPane = TRUE);

VkMenuBar(VkMenuDesc * menuDesc,
XtPointer defaultCientData= NULL,
Boolean showHelpPane = TRUE)

VkMenuBar(const char * name,
VkMenuDesc * menuDesc,
XtPointer defaultCientData = NULL,
Boolean showHelpPane = TRUE)

To work with Silicon Graphics’ color schemes, give the menu bar the name “menuBar.”
(For information on schemes, consult Chapter 3, “Using Schemes,” in the Indigo Magic
Desktop Integration Guide.) The forms of the constructor that do not take a name argument
automatically use the name “menuBar.” You can specify another name, but schemes does
not work correctly if you do.

If you use a form of the VkMenuBar constructor that accepts a menuDesc argument, the
constructor creates a menu from the VkMenuDesc structure you provide.

Some forms of the constructor also accept an optional defaultClientData argument. If this
argument is provided, any menu item that does not provide a client data argument uses
this argument instead. This allows menus to be specified statically, while still allowing
an instance pointer to be used with callbacks, as described in “Special Considerations for
Xt Callback Client Data When Using Static Menu Descriptions” on page 129.

The last argument to each version of the constructor is a Boolean value that specifies
whether the constructor should create a help pane that interfaces to the Silicon Graphics
help system. The default is to automatically provide the help pane. The help pane is
implemented by the VkHelpPane class (see “ViewKit Help Menu” on page 300 for more
information).

Using ViewKit Menu Subclasses

149

Menu Bar Access Functions

The VkMenuBar class also provides the helpPane() member function:

VkHelpPane *helpPane() const

helpPane() returns a pointer to the menu bar’s help pane. If the menu bar does not have
a help pane, helpPane() returns NULL.

Submenus

The VkSubMenu class supports pulldown menu panes. You can use these menu panes
within a menu bar (a VkMenuBar object), or as a cascading, pull-right menu in a popup
or pulldown menu.

Submenu Constructor

You should seldom need to instantiate a VkSubMenu object directly. You can add a
submenu to any type of menu by calling that menu’s addSubmenu() member function.
You can also add menu panes to the menu bar of a VkWindow object by calling
VkWindow::addMenuPane().

For those cases where you need to instantiate a VkSubMenu object directly, the form of
the constructor to use is as follows:

VkSubMenu(const char * name,
VkMenuDesc * menuDesc = NULL,
XtPointer defaultClientData = NULL)

name specifies the name of the submenu. If you provide the optional menuDesc argument,
the constructor creates a menu from the VkMenuDesc structure you provide. If you
provide the optional defaultClientData argument, any menu item that does not provide a
client data argument uses this argument instead. This allows menus to be specified
statically, while still allowing an instance pointer to be used with callbacks, as described
in “Special Considerations for Xt Callback Client Data When Using Static Menu
Descriptions” on page 129.

150

Chapter 5: Creating Menus With ViewKit

Submenu Utility and Access Functions

The VkSubMenu class provides a couple of additional public member functions:

• IRIS IM supports tear-off menus, which enable the user to retain a menu pane on
the screen. If tear-off behavior is enabled for a menu pane, a tear-off button, which
has the appearance of a dashed line, appears at the top of the menu pane. The user
can tear off the pane by clicking the tear-off button.

By default, tear-off behavior is disabled for all menu panes. You can change the
tear-off behavior of a submenu using VkSubMenu::showTearOff():

void showTearOff(Boolean showIt)

If you pass the Boolean value TRUE to showTearOff(), the submenu displays the
tear-off button; if you pass the value FALSE, it hides the tear-off button.

You can also enable tear-off behavior for a menu by setting its XmNtearOffModel
resource to XmTEAR_OFF_ENABLED (for example, in a resource file).

• You can access the RowColumn widget used to implement the submenu’s
pulldown pane by calling VkSubMenu::pulldown():

Widget pulldown()

Note: The baseWidget() function of a VkSubMenu object returns the
CascadeButton widget required by IRIS IM pulldown menus.

Radio Submenus

The VkRadioSubMenu class, derived from VkSubMenu, supports pulldown menu
panes. Its function is similar to that of VkSubMenu, but the RowColumn widget used as
a menu pane is set to exhibit radio behavior. This class is intended to support
one-of-many collections of VkToggleItem objects. You can use VkRadioSubMenu
objects as menu panes within a menu bar (a VkMenuBar object), or as a cascading,
pull-right menu in a popup or pulldown menu.

It is seldom necessary to directly create a VkRadioSubMenu object. You can add radio
submenus to any VkMenuBar, VkPopupMenu, or VkSubMenu by calling those
classes’ addRadioSubmenu() member function. You can also add menu panes to a
VkWindow by calling VkWindow::addRadioMenuPane().

Using ViewKit Menu Subclasses

151

Radio Submenu Constructor

You seldom need to instantiate a VkRadioSubMenu object directly. You can add a radio
submenu to any type of menu by calling that menu’s addRadioSubmenu() member
function. You can also add radio menu panes to the menu bar of a VkWindow object by
calling VkWindow::addRadioMenuPane().

For those cases where you need to instantiate a VkRadioSubMenu object directly, the
form of the constructor to use is as follows:

VkRadioSubMenu(const char * name,
VkMenuDesc * menuDesc = NULL,
XtPointer defaultClientData = NULL)

name specifies the name of the radio submenu. If you provide the optional menuDesc
argument, the constructor creates a menu from the VkMenuDesc structure you provide.
If you provide the optional defaultClientData argument, any menu item that does not
provide a client data argument uses this argument instead. This allows menus to be
specified statically, while still allowing an instance pointer to be used with callbacks, as
described in “Special Considerations for Xt Callback Client Data When Using Static
Menu Descriptions” on page 129.

Radio Submenu Utility and Access Functions

The VkRadioSubMenu class does not provide any public member functions in addition
to those provided by the VkSubMenu class. For information on the utility and access
functions provided by VkSubMenu, see “Submenu Utility and Access Functions” on
page 150.

152

Chapter 5: Creating Menus With ViewKit

Using a Radio Submenu Object

Example 5-5 demonstrates the use of the VkRadioSubMenu class.

Example 5-5 Using a VkRadioSubMenu Object

#include <Vk/VkApp.h>
#include <Vk/VkWindow.h>
#include <Vk/VkSubMenu.h>
#include <Vk/VkRadioSubMenu.h>
#include <Vk/VkMenu.h>
#include <Xm/Label.h>
#include <stream.h>
#include <stdlib.h>

class MyWindow: public VkWindow {

private:

static void sampleCallback(Widget, XtPointer , XtPointer);
static void quitCallback(Widget, XtPointer , XtPointer);

protected:

void sample();

public:

MyWindow(const char *name);
~MyWindow();

virtual const char* className();
};

MyWindow::~MyWindow()
{

// Empty
}

void MyWindow::sampleCallback(Widget, XtPointer clientData , XtPointer)
{

MyWindow *obj = (MyWindow *) clientData;
obj->sample();

}

Using ViewKit Menu Subclasses

153

const char* MyWindow::className() { return "MyWindow";}

void MyWindow::sample()
{

cout << "In Sample Callback" << "\n" << flush;
}

void MyWindow::quitCallback (Widget, XtPointer, XtPointer)
{

exit(0);
}

MyWindow::MyWindow(const char *name) : VkWindow(name)
{

Widget label = XmCreateLabel(mainWindowWidget(), "a menu", NULL, 0);

// Add a menu pane

VkSubMenu *appMenuPane = addMenuPane("Application");

appMenuPane->addAction("One", &MyWindow::sampleCallback, (XtPointer) this);
appMenuPane->addAction("Two", &MyWindow::sampleCallback, (XtPointer) this);
appMenuPane->addSeparator();
appMenuPane->addAction("Quit", &MyWindow::quitCallback, (XtPointer) this);

// Add a menu second pane

VkSubMenu *sampleMenuPane = addMenuPane("Sample");

sampleMenuPane->addLabel("Test Label");
sampleMenuPane->addSeparator();
sampleMenuPane->addAction("An Action", &MyWindow::sampleCallback,

(XtPointer) this);

// Create a cascading submenu

VkRadioSubMenu *subMenu = sampleMenuPane->addRadioSubmenu("A Submenu");

subMenu->addToggle("foo", &MyWindow::sampleCallback, (XtPointer) this);
subMenu->addToggle("bar", &MyWindow::sampleCallback, (XtPointer) this);
subMenu->addToggle("baz", &MyWindow::sampleCallback, (XtPointer) this);

addView(label);
}

154

Chapter 5: Creating Menus With ViewKit

void main(int argc, char **argv)
{

VkApp *myApp = new VkApp("Menu", &argc, argv);
MyWindow *w1 = new MyWindow("menuwindow");

w1->show();

myApp->run();
}

Option Menus

The VkOptionMenu class supports option menus. You can use this component
anywhere in your interface.

Note: Unlike many other ViewKit components, VkOptionMenu objects are
automatically visible when you create them; you do not need to call show() initially to
display a VkOptionMenu object.

Option Menu Constructors

There are two different versions of the VkOptionMenu constructor that you can use:

VkOptionMenu(Widget parent,
VkMenuDesc * menuDesc,
XtPointer defaultClientData = NULL)

VkOptionMenu(Widget parent,
const char * name = "optionMenu",
VkMenuDesc * menuDesc = NULL,
XtPointer defaultClientData = NULL)

You must provide a parent argument specifying the parent widget of the option menu.

To work with Silicon Graphics’ color schemes, give the option menu the name
“optionMenu.” (For information on schemes, consult Chapter 3, “Using Schemes,” in the
Indigo Magic Desktop Integration Guide.) The forms of the constructor that do not take a
name argument automatically use the name “optionMenu.” You can specify another
name, but schemes does work correctly if you do.

If you provide the optional menuDesc argument, the constructor creates a menu from the
VkMenuDesc structure you provide.

Using ViewKit Menu Subclasses

155

If you provide the optional defaultClientData argument, any menu item that does not
provide a client data argument uses this argument instead. This allows menus to be
specified statically, while still allowing an instance pointer to be used with callbacks. This
is described in “Special Considerations for Xt Callback Client Data When Using Static
Menu Descriptions” on page 129.

Setting the Option Menu Label

To specify the string that is displayed as the option menu’s label, you must set the
XmNlabelString resource for the menu’s label widget. To do so you can do one of the
following:

• Use the VkComponent::setDefaultResources() function to provide default resource
values.

• Set resource values in an external app-defaults resource file. Any values you
provide in an external file override values that you set using the
VkComponent::setDefaultResources() function. This is useful when your
application must support multiple languages; you can provide a separate resource
file for each language supported.

• Set the resource value directly using the XtSetValues() function. Values you set
using this method override any values set using either of the above two methods.
You should generally avoid using this method as it “hard codes” the resource
values into the code, making them more difficult to change.

All option menus must be named “optionMenu” to work with Silicon Graphics’ color
schemes, so if you set the label through a resource value, qualify the resource
specifications with the name of a parent widget or component so that the X resource
database can distinguish between instances of VkOptionMenu. For example, you can
use resource specifications such as *mainWindow*optionMenu*labelString and
*graphWindow*optionMenu*labelString to distinguish between an option menu that is
a descendant of an XmMainWindow component and one that is a descendant of an
SgGraph widget, respectively.

Selecting Items in an Option Menu

You can programmatically set the selected item in an option menu using
VkOptionMenu::set():

void set(char* name)
void set(int index)
void set(VkMenuItem * item)

156

Chapter 5: Creating Menus With ViewKit

You can specify the selected item either by a pointer to the item, the item’s component
name, or the item’s index (position) in the option menu, where the top item in the menu
has an index of zero.

Determining Selected Items in an Option Menu

There are two functions that you can use to determine which item is selected in an option
menu:

• You can retrieve the index (position) of the currently selected menu item using
VkOptionMenu::getIndex():

int getIndex()

getIndex() returns the index (position) of the selected item, where the top item in
the menu has an index of zero.

• You can retrieve a pointer to the currently selected menu item using
VkOptionMenu::getItem():

VkMenuItem *getItem()

Option Menu Utility Functions

Normally, the width of the option menu is set to be that of the largest item it contains.
You can force the option menu to a different width using VkOptionMenu::forceWidth()

void forceWidth(int width)

forceWidth() sets all of the items in the option menu to be width pixels wide.

Example 5-6 illustrates the use of a VkOptionMenu class.

Example 5-6 Using a VkOptionMenu Object

//
// Demonstrate viewkit interface to option menus
///
#include <Vk/VkApp.h>
#include <Vk/VkSimpleWindow.h>
#include <Vk/VkOptionMenu.h>
#include <stream.h>
#include <Xm/RowColumn.h>

Using ViewKit Menu Subclasses

157

class MyWindow: public VkSimpleWindow {

private:

static void sampleCallback(Widget, XtPointer , XtPointer);

static VkMenuDesc MyWindow::optionPaneDesc[];

protected:

void sample(Widget, XtPointer);
VkOptionMenu *_optionMenu;

public:

MyWindow(const char *name);
~MyWindow();

virtual const char* className();
};
VkMenuDesc MyWindow::optionPaneDesc[] = {

{ ACTION, "Red", &MyWindow::sampleCallback},
{ ACTION, "Green", &MyWindow::sampleCallback},
{ ACTION, "Blue", &MyWindow::sampleCallback},
{ END},

};

MyWindow::MyWindow(const char *name) : VkSimpleWindow(name)
{

Widget rc = XmCreateRowColumn(mainWindowWidget(), "rc", NULL, 0);

_optionMenu = new VkOptionMenu(rc, optionPaneDesc, (XtPointer) this);
_optionMenu->set("Green");

addView(rc);
}

MyWindow::~MyWindow()
{

}

const char* MyWindow::className() { return "MyWindow";}

158

Chapter 5: Creating Menus With ViewKit

void MyWindow::sampleCallback(Widget w, XtPointer clientData, XtPointer callData)
{

MyWindow *obj = (MyWindow *) clientData;
obj->sample(w, callData);

}

void MyWindow::sample(Widget, XtPointer)
{

cout << "Selected item's index = "
<< _optionMenu->getIndex()
<< ", name = "
<< _optionMenu->getItem()->name()
<< "\n"
<< flush;

}
void main(int argc, char **argv)
{

VkApp *app = new VkApp("Option", &argc, argv);
MyWindow *win = new MyWindow("OptionMenu");

win->show();

app->run();
}

Popup Menus

The VkPopupMenu class supports popup menus. You can attach a ViewKit popup
menu to one or more widgets in your application so that it pops up automatically
whenever the user clicks any of those widgets with the right mouse button. You can also
pop up the menu programmatically.

Popup Menu Constructors

There are four versions of the VkPopupMenu constructor:

VkPopupMenu(VkMenuDesc * menuDesc,
XtPointer defaultClientData = NULL)

VkPopupMenu(const char * name = "popupMenu",
VkMenuDesc * menuDesc = NULL,
XtPointer defaultClientData = NULL)

Using ViewKit Menu Subclasses

159

VkPopupMenu(Widget parent,
VkMenuDesc * menuDesc = NULL,
XtPointer defaultClientData = NULL)

VkPopupMenu(Widget parent,
const char * name = "popupMenu",
VkMenuDesc * menuDesc = NULL,
XtPointer defaultClientData = NULL)

The forms of the constructor that do not take a name argument automatically use the
name “popupMenu.” You can specify another name, but schemes does not work
correctly if you do.

If you provide the optional menuDesc argument, the constructor creates a menu from the
VkMenuDesc structure you provide.

If you provide the optional defaultClientData argument, any menu item that does not
provide a client data argument uses this argument instead. This allows menus to be
specified statically, while still allowing an instance pointer to be used with callbacks. This
is described in “Special Considerations for Xt Callback Client Data When Using Static
Menu Descriptions” on page 129.

If you use a form of the VkPopupMenu constructor that accepts a parent argument, the
constructor automatically attaches the menu to the widget. This builds the menu as a
child of the widget and installs an event handler to pop up the menu whenever the user
clicks the widget with the right mouse button. For more information on attaching a
popup menu to a widget, see the description of VkPopupMenu::attach() in “Attaching
Popup Menus to Widgets” on page 159.

Attaching Popup Menus to Widgets

The VkPopupMenu::attach() function attaches a popup menu to a widget:

virtual void attach(Widget w)

160

Chapter 5: Creating Menus With ViewKit

The first call to attach() creates all widgets in the popup menu, using the given widget as
the parent of the menu. attach() then adds an event handler to post the menu
automatically whenever the user clicks the widget with the right mouse button.
Subsequent calls to attach() add the ability to post the menu over additional widgets.

Popping Up Popup Menus

Once you have attached a popup menu to one or more widgets in your application,
ViewKit automatically posts the menu whenever the user clicks any of those widgets
with the right mouse button.

You can also post the menu programmatically even if you have not attached the popup
menu to a widget, by first building the menu using VkPopupMenu::build():

virtual void build(Widget parent)

build() builds the menu as a child of the parent widget, but does not install an event
handler to post the menu.

Once you have built the menu, you can post it with VkPopupMenu::show():

virtual void show(XEvent * buttonPressEvent)

show() requires an X ButtonPress event as an argument to position the menu on the
screen. This requires you to register your own event handler to handle the ButtonPress
events.

build() and show() support applications that wish to control the posting of menus
directly. Normally, attach() provides an easier way to use popup menus.

Using a Popup Menu

Example 5-7 illustrates the use of the VkPopupMenu class.

Example 5-7 Using a VKPopupMenu Object

//
// Sample program that demonstrates how to create a popup menu
///
#include <Vk/VkApp.h>
#include <Vk/VkWindow.h>
#include <Vk/VkPopupMenu.h>

Using ViewKit Menu Subclasses

161

#include <stream.h>
#include <Xm/Label.h>

class MyWindow: public VkWindow {

private:

VkPopupMenu *_popup;

static void sampleCallback(Widget, XtPointer , XtPointer);
void sample();

static VkMenuDesc subMenu[];
static VkMenuDesc sampleMenuPane[];

protected:

public:

MyWindow(const char *name);
~MyWindow();

virtual const char* className();
};

MyWindow::MyWindow(const char *name) : VkWindow(name)
{

Widget label = XmCreateLabel(mainWindowWidget(), "a menu", NULL, 0);

_popup = new VkPopupMenu(label, sampleMenuPane, (XtPointer) this);

addView(label);
}

MyWindow::~MyWindow()
{

}

const char* MyWindow::className() { return "MyWindow";}

// The menu bar is essentially a set of cascading menu panes, so the
// top level of the menu tree is always defined as a list of submenus

162

Chapter 5: Creating Menus With ViewKit

VkMenuDesc MyWindow::sampleMenuPane[] = {
{ LABEL, "Test Label"},
{ SEPARATOR },
{ ACTION, "An Action", &MyWindow::sampleCallback},
{ ACTION, "Another Action", &MyWindow::sampleCallback},
{ SUBMENU, "A Submenu", NULL, MyWindow::subMenu},
{ END},

};

VkMenuDesc MyWindow::subMenu[] = {
{ ACTION, "foo", &MyWindow::sampleCallback},
{ ACTION, "bar", &MyWindow::sampleCallback},
{ ACTION, "baz", &MyWindow::sampleCallback},
{ END},

};

void MyWindow::sample()
{

cout << "sample callback" << "\n" << flush;
}
void MyWindow::sampleCallback(Widget, XtPointer clientData , XtPointer)
{

MyWindow *obj = (MyWindow *) clientData;
obj->sample();

}

void main(int argc, char **argv)
{

VkApp *myApp = new VkApp("Menudemo", &argc, argv);
MyWindow *menuWin = new MyWindow("MenuWindow");

menuWin->show();

myApp->run();
}

Putting Menus in the Overlay Planes

163

Putting Menus in the Overlay Planes

By default, menus appear in the normal planes. ViewKit menus, however, may be
explicitly placed in the overlay planes. Doing so prevents the menus from causing expose
events that disturb such things as complex GL rendering in the normal planes.

There are three ways to enable menus in the overlay planes:

• Call VkMenu::useOverlayMenus(TRUE). This forces menus into the overlay
planes, with no way to put them back in the normal planes without recompiling.

• Put the resource string “*useOverlayMenus: True” in your application’s default file.
This will put menus in the overlay planes by default, but allow users to use the
normal planes by changing their .Xdefaults file.

• Have users add the -useOverlayMenus command-line switch when they run your
application if they wish to use the overlay planes for menus.

If you do decide to place menus in the overlay planes, here are some factors to consider:

• Menus are placed in the deepest available overlay planes: generally 4- or 8-bit
planes, occasionally 2-bit planes.

• If the deepest available overlay is 2 bits, any menus placed in that visual may not
look right. Because the colormap in the 2-bit overlay planes only has three color
entries (the fourth being a transparent pixel), any items in the menus other than
labels (for example cascade or toggle buttons) may look odd.

• Other applications using the overlay planes may display in the wrong colors when
the application posting the menu gets colormap focus. The colors in the other
applications may flash because the menu’s colormap is installed and replaces any
previous overlay colormap.

• Tear-off menus may display in the wrong colors. Since tear-off menus are no longer
transient, they may be susceptible to color distortions as in previous examples.

165

Chapter 6

6. ViewKit Undo Management and Command Classes

Many applications offer users the ability to reverse or “undo” various actions. This
chapter describes how ViewKit provides undo support. It also describes how ViewKit
supports command classes, commands implemented as classes.

Figure 6-1 shows the inheritance graph for ViewKit classes that support undo
management and command classes.

Figure 6-1 Inheritance Graph for the ViewKit Classes Supporting Undo Management and
Command Classes

Undo Management

This section describes the ViewKit undo manager, which supports reversing or
“undoing” actions.

Overview of ViewKit Undo Management

The VkMenuUndoManager class is the basis of ViewKit’s undo manager. The ViewKit
undo manager provides an easy-to-use method for users to undo commands that they
issue to your application.

VkMenuItem VkMenuActionVkComponent

VkAction

VkMenuActionObject

VkMenuUndoManager

166

Chapter 6: ViewKit Undo Management and Command Classes

The user interface to the ViewKit undo manager is a single menu item that you add to
one of your application’s menus. By default, the label of that menu item is “Undo:
last_command”, where last_command is the name of the last command the user issued.
Whenever the user issues a command, the undo manager automatically updates the
menu item to reflect the latest command. To undo the command, the user simply chooses
the undo manager’s menu item.

By default, ViewKit’s undo manager provides multi-level undo support. The undo
manager keeps commands on a stack. When the user undoes a command, the undo
manager pops it from the stack, revealing the previously executed command. Once a
user has undone at least one command, executing any new command clears the undo
stack. Also, executing any non-undoable command clears the undo stack. If you choose,
you can also force the undo manager to provide only single-level undo support, where it
remembers only the last command the user issued.

You can use the undo manager to support undoing any command, regardless of whether
the user issues the command through a menu or through other interface methods (for
example, pushbuttons). The undo manager also supports undoing command classes as
implemented by the VkAction(3x) and VkMenuActionObject(3x) classes described in
“Command Classes” on page 176. In most cases, all you need to provide for each
command is a callback function that reverses the effects of that command.

Using ViewKit’s Undo Manager

 The programmatic interface to the undo manager is simple to use. Because the
VkMenuUndoManager class is a subclass of VkMenuItem, you can add it to a menu
and manipulate it as you would any other menu item.

To add undo support for an undoable menu item (VkMenuAction(3x) and
VkMenuToggle(3x) items), simply provide an undo callback function (a function that
reverses the effects of the item’s action) when you either statically or dynamically define
the menu item. Similarly, to add undo support for a command class (VkAction and
VkMenuActionObject objects), you provide a member function to undo the effects of
the command. For those action that are not implemented in your application as menu
items or action classes, you can add undo callbacks directly to the undo stack.

Undo Management

167

Instantiating the ViewKit Undo Manager

Do not directly instantiate a VkMenuUndoManager object in your program. If you
provide an undo callback to any menu item or if you use a subclass of VkAction or
VkMenuActionObject in your program, ViewKit automatically creates an instance of
VkMenuUndoManager named “Undo”. (“Command Classes” on page 176 describes
the VkAction and VkMenuActionObject classes.) The <Vk/VkMenuItem.h> header file
provides theUndoManager, a global pointer to this instance. To access the ViewKit undo
manager, simply use this global pointer.1

Adding the Undo Manager to a Menu

You add the undo manager to a menu just as you would any other menu item: using the
VkMenu::add() function of the menu object to which you want to add the undo manager.
For example, the following line adds the undo manager to a menu pane specified by the
variable edit:

edit->add(theUndoManager);

You cannot include the undo manager in a static menu description; however, you can
add the undo manager to a statically-defined menu after creating the menu. To specify
the position of the undo manager within the menu, include a position parameter when
you add the undo manager. For example, the following line adds the undo manager to
the top of a menu pane specified by the variable edit:

edit->add(theUndoManager, 0);

Providing Undo Support for Actions That Are Menu Items

To add undo support for an undoable menu item (VkMenuAction and VkMenuToggle
items), simply provide an undo callback function when you define the menu item. The
undo callback function should reverse the effects of the item’s action.

1 theUndoManager is actually implemented as a compiler macro that invokes a VkUndoManager access
function to return a pointer to the unique instantiation of the VkUndoManager class. Although you
should never need to use this access function directly, you might encounter it while debugging a
ViewKit application that uses the undo manager.

168

Chapter 6: ViewKit Undo Management and Command Classes

For example, the following static description describes a Cut menu item that executes the
callback function cutCallback() when the user chooses the item and undoCutCallback()
when the user undoes the command:

class EditWindow: public VkWindow {
private:

static VkMenuDesc editPane[];
static void cutCallback(Widget, XtPointer, XtPointer);
static void undoCutCallback(Widget, XtPointer, XtPointer);
// ...

};

VkMenuDesc EditWindow::editPane[] = {
{ ACTION, "Cut", &EditWindow::cutCallback,

NULL, NULL, &EditWindow::undoCutCallback },
{ END }

};

You could do the same thing by adding the menu item dynamically:

class EditWindow: public VkWindow {
private:

static VkSubMenu *editMenu;
static void cutCallback(Widget, XtPointer, XtPointer);
static void undoCutCallback(Widget, XtPointer, XtPointer);
// ...

};

EditWindow::EditWindow(char *name) : VkWindow(name)
{

// ...
editMenu->addAction("Cut", &EditWindow::cutCallback,

&EditWindow::undoCutCallback, this);
}

Providing Undo Support for Actions That Are Not Menu Items

Sometimes you might want to provide undo support for an action not implemented as a
menu item (for example, an action invoked by a pushbutton). ViewKit allows you to do
this by adding the action directly to the undo stack using VkMenuUndoManager::add():

void add(const char * name,
XtCallbackProc undoCallback,
XtPointer clientData)

Undo Management

169

The name argument provides a name for the action to appear in the undo manager’s
menu item. The undoCallback argument must be an Xt-style callback function that the
undo manager can call to undo the action. The undo manager passes the clientData
argument to the undo callback function as client data when it invokes the callback.
Following ViewKit conventions as described in “Using Xt Callbacks With Components”
on page 21, you should pass the this pointer as client data so that the callback function
can retrieve the pointer, cast it to the expected component type, and call a corresponding
member function.

Note: add() simply adds an action to the undo stack; it does not “register” a permanent
undo callback for an action. Once the undo stack is cleared, the undo information for that
action is deleted. If you later perform the action again and you want to provide undo
support for that action, you must use add() again to add the action to the undo stack.

Example 6-1 shows a simple example of adding an action to the undo stack. The
MyComponent constructor creates a pushbutton as part of its widget hierarchy and
registers actionCallback() as the button’s activation callback function. actionCallback(),
in addition to performing an action, adds undoActionCallback() to the undo stack.

Example 6-1 Adding a Non-Menu Item Directly to the Undo Stack

MyComponent: public VkComponent {

public:
MyComponent(const char *, Widget);
void actionCallback(Widget, XtPointer, XtPointer);
void undoActionCallback(Widget, XtPointer, XtPointer);
// ...

};

MyComponent::MyComponent(const char *, Widget parent)
{

// ...
Widget button = XmCreatePushButton(viewWidget, "button", NULL, 0);
XtAddCallback(button, XmNactivateCallback,

&MyWindow::actionCallback, (XtPointer) this);
// ...

}

170

Chapter 6: ViewKit Undo Management and Command Classes

void MyComponent::actionCallback(Widget w, XtPointer clientData,
XtPointer callData)

{
// Perform action...

theUndoManager->add("Action", &MyComponent::undoActionCallback, this);
}

Providing Undo Support for Command Class Objects

The ViewKit classes that support command classes, VkAction and
VkMenuActionObject, both require you to override the pure virtual function undoit(),
which the undo manager calls to undo an action implemented as a command class.
“Command Classes” on page 176 describes how to use VkAction and
VkMenuActionObject to implement command classes.

Enabling and Disabling Multi-Level Undo Support

By default, VkMenuUndoManager provides multi-level undo support. The undo
manager keeps commands on a stack. When the user undoes a command, the undo
manager pops it from the stack, revealing the previously executed command. Once a
user has undone at least one command, executing any new command clears the undo
stack. Also, executing any undoable command clears the undo stack.

Supporting multi-level undo in your application can be difficult. If you prefer to support
undoing only the last command executed, you can change the behavior of the undo
manager with the VkMenuUndoManager::multiLevel() function:

void multiLevel(Boolean flag)

If flag is FALSE, the undo manager remembers only the last command executed.

Clearing the Undo Stack

You can force the undo manager to clear its command stack with the
VkMenuUndoManager::reset() function:

void reset()

Undo Management

171

Examining the Undo Stack

You can examine the contents of the undo manager’s command stack using
VkMenuUndoManager::historyList():

VkComponentList *historyList()

historyList() returns a list of objects representing commands that have been executed
and are available to be undone. Commands are listed in order of execution; the last
command executed is the last item in the list. All of the objects in the list are subclasses
of VkMenuItem. Commands added directly to the undo stack (as described in
“Providing Undo Support for Actions That Are Not Menu Items” on page 168) or
commands implemented as VkAction objects (as described in “Command Classes” on
page 176) appear as VkMenuActionStub objects. VkMenuActionStub is an empty
subclass of VkMenuAction.

Setting the Label of the Undo Manager Menu Item

The label that the undo manager menu item displays is of the form
Undo_label:Command_label. Undo_label is the value of the labelXmNlabelString resource of
the undo manager. By default, this value is “Undo”. You can change this string (for
example, for a German-language app-defaults file) by providing a different value for the
XmNlabelString resource. For example, you could set the resource as follows:

*Undo.labelString: Annul

Command_label is the label for the last executed command registered with the undo
manager, determined as follows:

• For commands executed by menu items—VkMenuAction, VkMenuToggle, or
VkMenuActionObject (described in “Command Classes” on page 176) objects—
the label is the item’s XmNlabelString resource.

• For VkAction objects (described in “Command Classes” on page 176), the undo
manager uses the object’s “labelString” resource if one is defined, otherwise it uses
the VkAction object’s name as the label.

• For actions that you add directly to the undo stack (described in “Providing Undo
Support for Actions That Are Not Menu Items” on page 168), the undo manager
uses the action name that you provided when you added the action.

172

Chapter 6: ViewKit Undo Management and Command Classes

Using ViewKit’s Undo Manager

Example 6-2 demonstrates the use of the undo manager.

Example 6-2 Using the Undo Manager

//
// Simple example to exercise Vk undo facilities
///
#include <Vk/VkApp.h>
#include <Vk/VkWindow.h>
#include <Vk/VkMenu.h>
#include <Vk/VkMenuItem.h>
#include <Vk/VkSubMenu.h>
#include <stream.h>
#include <Xm/Label.h>
#include <Xm/RowColumn.h>
#include <Xm/PushB.h>

class MyWindow: public VkWindow {

private:

static void pushCallback(Widget, XtPointer, XtPointer);
static void undoPushCallback(Widget, XtPointer, XtPointer);

static void oneCallback(Widget, XtPointer , XtPointer);
static void twoCallback(Widget, XtPointer , XtPointer);
static void threeCallback(Widget, XtPointer , XtPointer);

static void undoOneCallback(Widget, XtPointer , XtPointer);
static void undoTwoCallback(Widget, XtPointer , XtPointer);
static void undoThreeCallback(Widget, XtPointer , XtPointer);

static void quitCallback(Widget, XtPointer , XtPointer);

void quit();
void one();
void two();
void three();
void undoOne();

void undoTwo();
void undoThree();

Undo Management

173

static VkMenuDesc appMenuPane[];
static VkMenuDesc mainMenuPane[];

public:

MyWindow(const char *name);
~MyWindow();
virtual const char* className();

};
MyWindow::MyWindow(const char *name) : VkWindow(name)
{

Widget rc = XmCreateRowColumn(mainWindowWidget(), "rc", NULL, 0);
Widget label = XmCreateLabel(rc, "an undo test", NULL, 0);
Widget pb = XmCreatePushButton(rc, "push", NULL, 0);

XtAddCallback(pb, XmNactivateCallback, &MyWindow::pushCallback,
(XtPointer) this);

XtManageChild(label);
XtManageChild(pb);

setMenuBar(mainMenuPane);

VkSubMenu *editMenuPane = addMenuPane("Edit");

editMenuPane->add(theUndoManager);

addView(rc);
}

MyWindow::~MyWindow()
{

}

const char* MyWindow::className()
{
return "MyWindow";

}

174

Chapter 6: ViewKit Undo Management and Command Classes

// The menu bar is essentially a set of cascading menu panes, so the
// top level of the menu tree is always defined as a list of submenus

VkMenuDesc MyWindow::mainMenuPane[] = {
{ SUBMENU, "Application", NULL, MyWindow::appMenuPane},
{ END}

};

VkMenuDesc MyWindow::appMenuPane[] = {
{ ACTION, "Command One", &MyWindow::oneCallback, NULL, NULL,

&MyWindow::undoOneCallback },
{ ACTION, "Command Two", &MyWindow::twoCallback, NULL, NULL,

&MyWindow::undoTwoCallback },
{ ACTION, "Command Three", &MyWindow::threeCallback, NULL, NULL,

&MyWindow::undoThreeCallback },
{ SEPARATOR },
{ CONFIRMFIRSTACTION, "Quit", &MyWindow::quitCallback},
{ END},

};

void MyWindow::one()
{

cout << "Command One executed" << "\n" << flush;
}

void MyWindow::two()
{

cout << "Command Two executed" << "\n" << flush;
}

void MyWindow::three()
{

cout << "Command Three executed" << "\n" << flush;
}

void MyWindow::undoOne()
{

cout << "Undoing Command One" << "\n" << flush;
}

void MyWindow::undoTwo()
{

cout << "UNdoing Command Two" << "\n" << flush;
}

Undo Management

175

void MyWindow::undoThree()
{

cout << "Undoing Command Three" << "\n" << flush;
}

void MyWindow::oneCallback(Widget, XtPointer clientData, XtPointer)
{

MyWindow *obj = (MyWindow *) clientData;
obj->one();

}
void MyWindow::twoCallback(Widget, XtPointer clientData, XtPointer)
{

MyWindow *obj = (MyWindow *) clientData;
obj->two();

}
void MyWindow::threeCallback(Widget, XtPointer clientData, XtPointer)
{

MyWindow *obj = (MyWindow *) clientData;
obj->three();

}

void MyWindow::undoOneCallback(Widget, XtPointer clientData, XtPointer)
{

MyWindow *obj = (MyWindow *) clientData;
obj->undoOne();

}
void MyWindow::undoTwoCallback(Widget, XtPointer clientData, XtPointer)
{

MyWindow *obj = (MyWindow *) clientData;
obj->undoTwo();

}
void MyWindow::undoThreeCallback(Widget, XtPointer clientData, XtPointer)
{

MyWindow *obj = (MyWindow *) clientData;
obj->undoThree();

}

void MyWindow::quitCallback (Widget, XtPointer clientData, XtPointer)
{

MyWindow *obj = (MyWindow*) clientData;
delete obj;

}

176

Chapter 6: ViewKit Undo Management and Command Classes

void MyWindow::pushCallback(Widget, XtPointer clientData, XtPointer)
{

cout << "doing a push command\n" << flush;

theUndoManager->add("Push", &MyWindow::undoPushCallback, (XtPointer) clientDa
ta);
}

void MyWindow::undoPushCallback(Widget, XtPointer clientData, XtPointer)
{

cout << "undoing the push command\n" << flush;
}

main(int argc, char **argv)
{

VkApp *app = new VkApp("Menudemo", &argc, argv);
MyWindow *win = new MyWindow("MenuWindow");

win->show();
app->run();

}

Command Classes

This section describes the VkAction class, which supports ViewKit command classes.
Command classes allow you to implement actions as objects.

Overview of Command Classes

Nearly every user action in an interactive application can be thought of as a “command.”
Programmers typically implement commands as functions (callback functions, for
example) that are invoked as a result of some user action. This section explores an
approach in which each command in a system is modelled as an object.

Command Classes

177

Representing commands as objects has many advantages. Many commands have some
state or data associated with the command, while others may involve a set of related
functions. In both cases, a class allows the data and functions associated with a single
logical operation to be encapsulated in one place. Because command objects are complete
and self-contained, you can queue them for later execution, store them in “history” lists,
re-execute them, and so on. Representing commands as objects can also facilitate
undoing the command. For example, to prepare to undo a command, you might need to
save some state data before executing the command. When you model commands as
objects, you can store this information in data members.

The VkMenuAction class (described in “Menu Actions” on page 122) implements the
command class model to a certain extent in that it allows you to specify callback
functions both for performing an action and undoing that action. But the
VkMenuAction class does not provide a true command class in that it does not allow
you to encapsulate any data or support functions the action might need within a discrete
object. Furthermore, you must use the VkMenuAction class within a menu; it does not
allow you to implement command classes activated by pushbuttons, text fields, or other
input mechanisms.

ViewKit provides two abstract classes to implement command classes in an application:
VkAction and VkMenuActionObject. VkAction supports commands that do not
appear in menus and VkMenuActionObject supports commands that appear in menus.
VkAction does not inherit from any other classes, whereas VkMenuActionObject is a
subclass of VkMenuAction, which allows you to add instances of it to a menu and
manipulate them as you would any other menu item.

You can encapsulate with a subclass of VkAction or VkMenuActionObject any data or
support functions required to perform an action. Additionally, commands implemented
as subclasses of VkAction and VkMenuActionObject automatically register themselves
with the ViewKit undo manager whenever you execute them.

Using Command Classes in ViewKit

To use command classes in ViewKit, you must create a separate subclass for each
command in your application.

178

Chapter 6: ViewKit Undo Management and Command Classes

Command Class Constructors

The syntax of the VkAction constructor is as follows:

VkAction(const char * name)

Each class derived from VkAction should provide a constructor that takes at least one
argument: the object’s name. All derived class constructors should pass the name to the
VkAction constructor to initialize the basic class data members, and then initialize any
subclass-specific data members.

The syntax of the VkMenuActionObject constructor is as follows:

VkMenuActionObject(const char * name, XtPointer clientData = NULL)

Each class derived from VkMenuActionObject should provide a constructor that takes
two arguments: the object’s name and optional client data. All derived class constructors
should pass the name and the client data to the VkMenuActionObject constructor to
initialize the basic class data members, and then initialize any subclass-specific data
members.

The VkMenuActionObject constructor stores the client data in the protected data
member _clientData:

void *_clientData

VkMenuActionObject objects do not use the _clientData data member for callback
functions. Instead it is simply an untyped pointer that you can use to pass any
information your command object might need. For example, you could pass a pointer to
another object, a value, a string, or any other value. You can access and manipulate
_clientData from member functions of your command subclass.

Overriding Virtual Functions

Both VkAction and VkMenuActionObject have two protected pure virtual functions
that you must override—doit() and undoit():

virtual void doit()
virtual void undoit()

doit() performs the command class’s action; undoit() undoes the action.

Command Classes

179

Using Command Classes as Menu Items

You can use command classes derived only from VkMenuActionObject in a ViewKit
menu. Because VkAction is not derived from VkMenuItem, it does not provide the
services required of a menu item.

You cannot specify VkMenuActionObject objects in a static menu description; you must
add them dynamically using VkMenu::add(), which is described in “Functions for
Dynamically Creating Menus” on page 134.

Activating Command Classes

When a user chooses a VkMenuActionObject command object from a menu, ViewKit
executes the command by calling the object’s doit() function. ViewKit also automatically
registers the command with the undo manager.

To activate a command object that is a subclass of VkAction, call that action’s execute()
member function:

void execute()

execute() calls the object’s doit() function. execute() also registers the command with the
undo manager.

Note: Do not call a command object’s doit() function directly. If you do, ViewKit cannot
register the command with the undo manager.

Setting the Label Used by Command Classes

You can set the label of a VkMenuActionObject command object as you would any
other VkMenuItem item: by setting the object’s XmNlabelString resource or by calling
the object’s setLabel() function. “Setting Menu Item Labels” on page 120 describes how
to set the label for a menu item.

Because VkAction objects are command classes and not interface classes, they
technically do not have labels; however, the undo manager requires a label that it can
display after you have executed a VkAction command. Therefore, ViewKit allows you
to set the value of a labelString resource for VkAction objects, qualified by the object’s
name. For example, if you have an instance of a VkAction named “formatPara,” you can
set the label for this object by providing a value for the formatPara.labelString resource:

*formatPara: Format Paragraph

180

Chapter 6: ViewKit Undo Management and Command Classes

If you do not provide a value for a VkAction object’s labelString resource, the undo
manager uses the object’s name as the label.

Note: The VkAction labelString resource is a “synthetic” resource, not a widget
resource. The only way that you can set the value of this resource is through a resource
file. You can’t use XtSetValues() because the object contains no widgets, and you can’t
use setDefaultResources() because VkAction is not a subclass of VkComponent.

181

Chapter 7

7. Using Dialogs in ViewKit

This chapter introduces the basic ViewKit classes needed to create and manipulate the
dialogs in a ViewKit application. Figure 7-1 shows the inheritance graph for these
classes.

Figure 7-1 Inheritance Graph for the ViewKit Dialog
Classes

VkComponent VkDialogManager
VKInterruptDialog

VkFatalErrorDialog

VkProgressDialog

VkInfoDialog

VkWarningDialog

VkErrorDialog

VkQuestionDialog

VkPromptDialog

VkGenericDialog

VkFileSelectionDialog

VkBusyDialog

182

Chapter 7: Using Dialogs in ViewKit

Overview of ViewKit Dialog Management

Creating all of the dialogs your application uses when you start the application is
inefficient: the dialogs, which might or might not be displayed, take time to create,
consume memory, and tie up server resources. If an application does not create a dialog
until it is needed, the application is smaller and has faster initial startup time; however,
depending on the performance of the system, there may be an unacceptable delay in
posting each dialog because the application must create a new dialog for each message.

The compromise used by ViewKit is to cache dialogs when they are created. When a
particular dialog is no longer needed, the application unmanages that dialog but retains
it in the cache. Then, if the cache contains an unused dialog widget when the application
needs to post a dialog, the application reuses the cached dialog widget; otherwise it
creates a new dialog widget. ViewKit caches up to one dialog of each class for each
window in the application (for example, information dialogs and question dialogs are
cached separately).

The ViewKit dialog classes also offer the following features:

• Single function mechanisms for posting dialogs.

• Ability to post any dialog in non-blocking, non-modal mode; modal mode; and two
blocking modes.

• Positioning in multiwindow applications.

• Posting of dialogs even when windows are iconified, if desired.

• Correct handling of dialog references when widgets are destroyed.

ViewKit Dialog Class Overview

ViewKit encapsulates dialog management, including caching, in the abstract
VkDialogManager class that serves as a base class for other, specific dialog classes. Each
type of dialog in ViewKit has a separate class derived from VkDialogManager. Each
class is responsible for managing its own type of dialog (for example, each class
maintains its own dialog cache).

The dialog classes provided by ViewKit fall into three categories: information and error
dialogs; busy dialogs; and data input dialogs.

ViewKit Dialog Class Overview

183

The information and error dialogs provide feedback to the user about actions or
conditions in the application. The dialog classes in this category are as follows:

VkInfoDialog Displays information.

VkWarningDialog
Warns the user about the consequences of an action (for example, that an
action will irretrievably delete items).

VkErrorDialog
Informs the user of an invalid action (such as entering out-of-range data)
or a potentially dangerous condition (for example, the inability to create
a backup file).

VkFatalErrorDialog
Informs the user of a fatal error; the application terminates when the
user acknowledges the dialog.

The busy dialogs inform the user that an action is underway which might take
considerable time. While a busy dialog is displayed, the user cannot interact with the
application. The dialog classes in this category are as follows:

VkBusyDialog
Dialog displayed while the application is busy.

VkInterruptDialog
Dialog that allows the user to interrupt the action.

VkProgressDialog
Dialog that displays a bar graph indicating the percentage of the task
that has been completed.

The data input dialogs allow the application to request input from the user. The dialog
classes in this category are as follows:

VkQuestionDialog
Allows the user to choose among simple choices by clicking
pushbuttons.

VkPromptDialog
Prompts the user to enter a text string.

VkColorChooserDialog
Displays an SGI color chooser dialog, using the caching facilities of the
VkDialogManager class. See the VkColorChooserDialog(3x) reference
page for more details.

184

Chapter 7: Using Dialogs in ViewKit

VkFileSelectionDialog
Allows the user to interactively browse and select a file or directory.

VkPrefDialog Supports preference dialogs capable of displaying a wide variety of
program-configurable controls that allow the user to observe and set
values used by the program. Chapter 8, “Preference Dialogs,” discusses
preference dialogs.

Additionally, ViewKit provides the VkGenericDialog class, an abstract class providing
a convenient interface for creating custom dialogs that use the ViewKit interface.

Do not directly instantiate dialog manager objects in your program for the predefined
dialog types. ViewKit automatically creates an instance of an appropriate dialog
manager if you attempt to use a predefined dialog type in your program.

The header file for each dialog class provides a global pointer to the instance of that
class’s dialog manager. The name of the pointer consists of “the” followed by the dialog
type. For example, the global pointer to the information dialog manager declared in
<Vk/VkInfoDialog.h> is theInfoDialog, the global pointer to the error dialog manager
declared in <Vk/VkErrorDialog.h> is theErrorDialog, and so forth. To access the dialog
managers in your application, simply use these global pointers.1

Note: VkGenericDialog, being an abstract class designed for creating customized
dialogs, does not automatically create a dialog manager or provide a global
pointer.

ViewKit Dialog Base Class

This section describes the dialog management features provided by the abstract
VkDialogManager base class. It describes how to post dialogs, unpost dialogs, set dialog
titles, and set dialog button labels. Because all ViewKit dialog management classes are
derived from VkDialogManager, the functions and techniques described in this section
apply to all dialog management classes.

1 These global pointers are actually implemented as compiler macros that invoke access functions to
return pointers to the unique instantiation of the dialog managers. Although you should never need to
use these access functions directly, you might encounter them while debugging a ViewKit application
that uses dialogs.

ViewKit Dialog Base Class

185

Posting Dialogs

This section describes the various methods of posting dialogs and provides some simple
examples.

Methods of Posting Dialogs

ViewKit offers four different functions for posting dialogs:

post() Posts a non-blocking, non-modal dialog. The function immediately
returns, and the application continues to process user input in all
windows.

postModal() Posts a non-blocking, full-application-modal dialog. The function
immediately returns, but the user cannot interact with any application
windows until after dismissing the dialog.

postBlocked() Posts a blocking, full-application-modal dialog. The user cannot interact
with any application windows until after dismissing the dialog.
Furthermore, the function does not return until the user dismisses the
dialog.

postAndWait() Posts a blocking, full-application-modal dialog. The user cannot interact
with any application windows until after dismissing the dialog.
Furthermore, the function does not return until the user dismisses the
dialog. postAndWait() is simpler to use than postBlocked(), but it does
not allow as much programming flexibility.

post(), postModal(), and postBlocked() accept the same arguments. They are also
overloaded identically to allow for almost any combination of arguments without
resorting to using NULLs as placeholders. Consult the VkDialogManager(3x) reference
page for a complete listing of the overloaded versions of the post(), postModal(), and
postBlocked() functions. The following is the most general form of the post() function:

virtual Widget post (const char * msg = NULL,
XtCallbackProc okCB = NULL,
XtCallbackProc cancelCB = NULL,
XtCallbackProc applyCB = NULL,
XtPointer clientData = NULL,
const char * helpString = NULL,
Widget * parent = NULL)

186

Chapter 7: Using Dialogs in ViewKit

The following are the arguments for these methods:

msg The message to display in the dialog. This string is first treated as a
resource name, which is looked up relative to the dialog widget. If it
exists, the resource value is used as the message. If the resource does not
exist, or if the string contains spaces or newline characters, the string
itself is used as the message.

Most dialogs are not useful if you do not provide a message argument:
they display no text. VkFileDialog and VkPreferenceDialog are
exceptions in that they provide their own complex interfaces.

okCB An Xt-style callback function executed when the user clicks the OK
button. (All dialogs except for the VkBusyDialog and
VkInterruptDialog dialogs display an OK button by default.)

cancelCB An Xt-style callback function executed when the user clicks the Cancel
button. For many of the dialog classes, ViewKit does not display a Cancel
button unless you provide this callback.

applyCB An Xt-style callback function executed when the user clicks the Apply
button. For many of the dialog classes, ViewKit does not display an
Apply button unless you provide this callback.

clientData Client data to pass to the button callback functions. Following ViewKit
conventions as described in “Using Xt Callbacks With Components” on
page 21, you should normally pass the this pointer as client data so that
the callback functions can retrieve the pointer, cast it to the expected
component type, and call a corresponding member function.

helpString A help string to pass to the help system. See , “Using a Help System With
ViewKit,” for information on the help system. If you provide a string,
the dialog displays a Help button.

parent The widget over which ViewKit should display the dialog. If you do not
provide a widget, or if the given widget is hidden or iconified, ViewKit
posts the dialog over the main window if it is managed and not
iconified. (“Managing Top-Level Windows” on page 60 describes how
the main window is determined.) If both the widget you specify and the
main window are hidden or iconified, ViewKit posts the dialog as a
child of the hidden application shell created by the VkApp class. Also
see the description of VkDialogManager::centerOnScreen() in “Dialog
Access and Utility Functions” on page 196.

ViewKit Dialog Base Class

187

All versions of the post(), postModal(), and postBlocked() functions return the widget
ID of the posted dialog. You should rarely need to use this value.

Note: The arguments that you provide apply only to the dialog posted by the current call
to post(), postModal(), and postBlocked(); they have no effect on subsequent dialogs.
For example, if you provide an apply callback function to a call to post(), it is used only
for the dialog posted by that call. If you want to use that callback for subsequent dialogs,
you must provide it as an argument every time you post a dialog.

postAndWait() provides a simpler method for posting blocking, application-modal
dialogs than postBlocked(). The most general form of the postAndWait() function is as
follows:

virtual VkDialogReason postAndWait (const char * msg = NULL,
Boolean ok = TRUE,
Boolean cancel = TRUE,
Boolean apply = FALSE,
const char * helpString = NULL,
Widget * parent = NULL)

msg is the message to display in the dialog. As with the other posting functions,
postAndWait() first treats the string as a resource name, which it looks up relative to the
dialog widget. If the resource exists, postAndWait() uses the resource value as the
message. If postAndWait() finds no resource, or if the string contains spaces or newline
characters, it uses the string itself as the message. The next three arguments determine
which buttons the dialog should display. A TRUE value displays the button and a FALSE
value hides the button. helpString and parent specify a help string and a parent window,
just as with the other posting functions.

Note: The arguments that you provide apply only to the dialog posted by the current call
to postAndWait(); they have no effect on subsequent dialogs.

When you call postAndWait(), ViewKit posts the dialog, enters a secondary event loop,
and does not return until the user dismisses the dialog. Unlike postBlocked(),
postAndWait() handles all callbacks internally and simply returns an enumerated value
of type VkDialogReason, indicating which button the user chose. The possible return
values are VkDialogManager::OK, VkDialogManager::CANCEL, or
VkDialogManager::APPLY. postAndWait() is useful for cases in which it is necessary or
convenient not to go on to the next line of code until the user dismisses the dialog. For
example:

if (theFileSectionDialog->postAndWait() == VkDialogManager::OK)
int fd = open(theFileSelectionDialog->fileName(), O_RDONLY);

188

Chapter 7: Using Dialogs in ViewKit

Note: postAndWait() posts dialogs as full-application modal dialogs to minimize
potential problems that can be caused by the secondary event loop, but you should be
aware that the second event loop is used and be sure that no non-re-entrant code can be
called.

As with the other functions for posting a dialog, postAndWait() is overloaded to allow
for almost any combination of arguments without resorting to using NULLs as
placeholders. Consult the VkDialogManager reference page for a complete listing of the
overloaded versions of postAndWait().

Note: Under certain circumstances, using postAndWait() can cause some unexpected
consequences. If you have your own custom dialog, and you delete a widget within it
from an event handler such as prePost(), the widget will not be destroyed until the event
handler returns. Therefore, widgets that you destroyed will still appear in the dialog.
This is because the phase 2 destroy does not happen until the return from the XtDispatch.
There are several workarounds you can try if this proves to be a problem:

• Do not use postAndWait(). Simply post the dialog, return from your event handler,
then do whatever you need to do. This may result in flashing, since widgets may be
momentarily posted before they are destroyed.

• Unmanage any widget that should not appear. The object will still be there, but will
not be visible.

• Keep the dialog cleaned up as you go along. Set up the dialog initially with only
permanent items. Then, whenever the dialog is posted, add whatever objects you
need. Finally, whenever that dialog is taken down, return it to the original state. You
can handle this by catching both OK and Cancel callbacks.

Posting Dialogs

The following line posts a simple non-modal, non-blocking information dialog over the
application’s main window:

theInfoDialog->post("You have new mail in your system mailbox");

Figure 7-2 shows the appearance of this dialog when posted. Because the call did not
provide any callback for the OK button, when the user clicks the button, ViewKit simply
dismisses the dialog.

ViewKit Dialog Base Class

189

Figure 7-2 Information Dialog

You could also specify the message as an X resource. In the above example, you could
name the resource something such as newMailMessage and set it in a resource file with
the following line:

*newMailMessage: You have new mail in your system mailbox

Then you could use this line to post the information dialog:

theInfoDialog->post("newMailMessage");

The following code displays a non-modal, non-blocking question dialog over the
application’s main window:

void MailWindow::newMail()
{

// ...
theQuestionDialog->post("Read new mail?",

&MailWindow::readMailCallback,
(XtPointer) this);

// ...
}

Figure 7-3 shows the appearance of this dialog when posted. If the user clicks the OK
button, the program dismisses the dialog and executes the
MailWindow::readMailCallback() function. Following ViewKit conventions as
described in “Using Xt Callbacks With Components” on page 21, the client data
argument is set to the value of the this pointer so that MailWindow::readMailCallback()
can retrieve the pointer, cast it to the expected component type, and call a corresponding
member function.

190

Chapter 7: Using Dialogs in ViewKit

Figure 7-3 Question Dialog

Because the call to post() did not provide any callback for the Cancel button, when the
user clicks the button, ViewKit simply dismisses the dialog. If instead you needed to
perform some type of cleanup operation when the user clicks the Cancel button, you
would need to provide a callback for the Cancel button:

void MailWindow::newMail()
{

// ...
theQuestionDialog->post("Read new mail?",

&MailWindow::readMailCallback,
&MailWindow::cleanupMailCallback,
(XtPointer) this);

// ...
}

In general, you should try to encapsulate all dialog callbacks and related information in
the subclass of the object with which they are associated. For example, for dialogs that
are associated with a specific window, you include all the code related to those dialogs
in the subclass definition for that window.

This technique is illustrated in Example 7-1, a simple program which uses the
VkWarningDialog class to post a warning dialog.

Example 7-1 Posting a Dialog

#include <Vk/VkApp.h>
#include <Vk/VkSimpleWindow.h>
#include <Vk/VkWarningDialog.h>
#include <Xm/PushB.h>

ViewKit Dialog Base Class

191

class MyWindow: public VkSimpleWindow {

 protected:
 static void postCallback(Widget, XtPointer, XtPointer);

 public:
 MyWindow (const char *name);
 ~MyWindow ();
 virtual const char* className();
};

MyWindow::MyWindow (const char *name) : VkSimpleWindow (name)
{
 Widget button = XmCreatePushButton (mainWindowWidget(), "Push Me",
 NULL, 0);
 XtAddCallback(button, XmNactivateCallback,

&MyWindow::postCallback,
(XtPointer) this);

 addView(button);
}

const char* MyWindow::className() { return "MyWindow"; }

MyWindow::~MyWindow()
{
 // Empty
}

void MyWindow::postCallback(Widget, XtPointer clientData, XtPointer)
{
 theWarningDialog->post("Watch Out!!!", NULL,
 (MyWindow *) clientData);
}

void main (int argc, char **argv)
{
 VkApp *app = new VkApp("Dialog", &argc, argv);
 MyWindow *win = new MyWindow("Dialog");

 win->show();
 app->run();
}

192

Chapter 7: Using Dialogs in ViewKit

Manipulating Dialogs Prior to Posting

Using a prepostCallback

If you wish to make changes to a dialog before it is posted, but you do not wish to use
subclasses, you can use VkDialogManager::prepostCallback. This callback is invoked just
before a dialog is displayed. The callData parameter indicates the dialog widget about to
be displayed.

Using prepost()

VkDialogManager provides an overloaded, protected function, prepost(), which allows
a subclass to manipulate dialogs before they are posted. Called from
VkDialogManager::post(), prepost() is responsible for finding or creating a dialog to be
displayed by the post() functions. The two versions of prepost() are as follows:

Widget prepost (const char *message,
const char *helpString,
VkSimpleWindow *parent)

virtual Widget prepost (const char *message,
XtCallbackProc okCB = NULL,
XtCallbackProc cancelCB = NULL,
XtCallbackProc applyCB = NULL,
XtPointer clientData = NULL,
const char *helpString = NULL,
VkSimpleWindow *parent = NULL)

If you use derived classes that need to perform some operations on a dialog widget
before displaying it, you should do the following:

1. Override prepost().

2. Call VkDialogManager::prepost() directly to obtain a widget.

3. Do any additional operations you need to do.

4. Return the Widget returned by VkDialogManager::prepost().

ViewKit Dialog Base Class

193

Unposting Dialogs

After posting a dialog, you might encounter situations in which you want to unpost it
even though the user has not acknowledged and dismissed it. For example, your
application might post an information dialog that the user doesn’t bother to
acknowledge. At some later point, the information presented in the dialog might no
longer be valid, in which case the application should unpost the dialog. In situations such
as these, you can use the VkDialogManager::unpost() function to remove the dialog:

void unpost()
void unpost(Widget w)

If you provide the widget ID of a specific dialog, unpost() dismisses that dialog.
Otherwise, unpost() dismisses the most recent dialog of that class posted.

If you want to dismiss all dialogs of a given class, you can call the
VkDialogManager::unpostAll() function:

void unpostAll()

For example, the following dismisses all information dialogs currently posted:

theInformationDialog->unpostAll();

Setting the Title of the Dialog

By default, ViewKit sets the title of a dialog (displayed in the window manager title bar
for the dialog) to the name of the application; however, you have the ability to set dialog
titles on both a per-class and per-dialog basis.

If you want all dialogs of a certain class to have a title other than the default, you can
specify the title with an X resource. For example, you could set the title of all warning
dialogs in an application to “Warning” by including the following line in a resource file:

*warningDialog.dialogTitle: Warning

You can use the VkDialogManager::setTitle() function to set the title for the next dialog
of that class that you post:

void setTitle(const char * nextTitle = NULL)

194

Chapter 7: Using Dialogs in ViewKit

setTitle() accepts as an argument a character string. setTitle() first treats the string as a
resource name which it looks up relative to the dialog widget. If the resource exists,
setTitle() uses the resource value as the dialog title. If setTitle() finds no resource, or if
the string contains spaces or newline characters, it uses the string itself as the dialog title.

setTitle() affects only the next dialog posted; subsequent dialogs revert to the default title
for that class.

For example, imagine an editor that uses the question dialog to post two dialogs, one that
asks “Do you really want to replace the current buffer?” and one that asks “Do you really
want to exit?” If you want different titles for each dialog, you could define resources for
each:

*replaceTitle: Dangerous Replacement Dialog
*exitTitle: Last Chance Before Exit Dialog

Then to post the question dialog for replacing the buffer, call the following:

theQuestionDialog->setTitle("replaceTitle");
theQuestionDialog->post("Do you really want to replace the current buffer?",

&EditWindow::replaceBufferCallback,
XtPointer) this);

Figure 7-4 shows the resulting dialog.

Figure 7-4 Setting the Dialog Title

ViewKit Dialog Base Class

195

To post the exit question dialog as a modal dialog, call the following:

theQuestionDialog->setTitle("exitTitle");
theQuestionDialog->postModal("Do you really want to exit?",

&EditWindow::replaceBufferCallback,
(XtPointer) this);

Figure 7-5 shows the resulting dialog.

Figure 7-5 Another Example of Setting the Dialog Title

Setting the Button Labels

The button labels (the text that appears on the buttons) used for a dialog are controlled
by the XmNokLabelString, XmNcancelLabelString, and XmNapplyLabelString
resources. The default values of these resources are respectively “OK”, “Cancel”, and
“Apply”.

You can use the VkDialogManager::setButtonLabels() function to set the button labels
for the next dialog that you post:

void setButtonLabels(const char * ok = NULL,
const char * cancel = NULL,
const char * apply = NULL)

196

Chapter 7: Using Dialogs in ViewKit

setButtonLabels() accepts as arguments up to three character strings: the first string
controls the label for the OK button, the second the label for the Cancel button, and the
third the label for the Apply button. If you pass NULL as an argument for any of these
strings, the corresponding button uses the default label. setTitle() first treats each string
as a resource name, which it looks up relative to the dialog widget. If the resource exists,
setTitle() uses the resource value as the button label. If setTitle() finds no resource, or if
the string contains spaces or newline characters, it uses the string itself as the button
label.

setButtonLabels() affects only the next dialog posted; subsequent dialogs revert to the
default button labels.

Dialog Access and Utility Functions

The VkDialogManager class also provides some access and utility functions to help
manipulate dialogs.

VkDialogManager::centerOnScreen() controls the algorithm that ViewKit uses to
determine where on the screen to post a dialog:

void centerOnScreen(Boolean flag)

If flag is TRUE, ViewKit uses the following algorithm:

1. If you provide a parent window argument when you call one of the posting
functions, and that window is visible and not iconified, ViewKit posts the dialog
over that window.

2. If a) you provide a parent window argument but the window is hidden or iconified,
or b) you do not provide a parent window argument, ViewKit creates the dialog as a
child of the hidden application shell created by the VkApp class and posts the
dialog over that shell. Unless you or the user explicitly sets the geometry for the
application, ViewKit centers the application shell on the screen, so the dialog
appears centered on the screen.

ViewKit Dialog Base Class

197

If flag is FALSE, ViewKit uses the following algorithm, which is the default algorithm:

1. If you provide a parent window argument when you call one of the posting
functions, and that window is visible and not iconified, ViewKit posts the dialog
over that window.

2. If a) you provide a parent window argument but the window is hidden or iconified,
or b) you do not provide a parent window argument, ViewKit attempts to create the
dialog as a child of the application’s main window and post the dialog over that
window. (“Managing Top-Level Windows” on page 60 describes how the main
window is determined.)

3. If the main window is hidden or iconified, ViewKit creates the dialog as a child of
the hidden application shell created by the VkApp class and posts the dialog over
that shell. Unless you or the user explicitly sets the geometry for the application,
ViewKit centers the application shell on the screen, so the dialog appears centered
on the screen.

VkDialogManager::enableCancelButton() sets whether or not the default will be to
provide a Cancel button in future dialogs, and allows the application to determine when
a dialog was closed without using the cancel button, such as by a window manager
action:

VkDialogManager::enableCancelButton (Boolean flag)

VkDialogManager::lastPosted() returns the widget ID of the last dialog posted of that
class:

Widget lastPosted()

VkDialogManager::setVisual() sets visual resources:

void setVisual (VkVisual * v)

setVisual() overrides any visual arguments that may have been passed in using
setArgs().

VkDialogManager::setArgs() allows you to pass in resources to be used when creating
the first dialog:

void setArgs (ArgList list, Cardinal argCnt)

Whichever way you set them, dialog arguments should be set just once, before any
dialog is created. Due to the way ViewKit caches dialogs, resetting the dialog creation
arguments after the first dialog is created results in an undefined action.

198

Chapter 7: Using Dialogs in ViewKit

Using the ViewKit Dialog Subclasses

This section describes the features of each ViewKit dialog subclass. In addition to specific
member functions listed, each class also supports all functions provided by the
VkDialogManager class.

Information Dialogs

The VkInfoDialog class supports standard IRIS IM information dialogs. The global
pointer to the information dialog manager, declared in <Vk/VkInfoDialog.h>, is
theInfoDialog.

Use information dialogs to display useful information. Do not use information dialogs to
display error messages, which should be handled by the VkErrorDialog,
VkWarningDialog, or VkFatalErrorDialog class.

Because the message contained in an information dialog should not require any decision
to be made by the user, information dialogs display only the OK button by default. If you
need the user to make a selection, you should use another dialog class such as
VkQuestionDialog.

VkInfoDialog does not provide any additional functions beyond those offered by the
VkDialogManager.

Example 7-2 shows a simple example of posting an information dialog. Note that the
window subclass that posts the dialog defines the dialog title and message as resource
values.

Example 7-2 Posting an Information Dialog

#include <Vk/VkWindow.h>
#include <Vk/VkInfoDialog.h>

class MailWindow: public VkWindow {
public:

MailWindow(const char*);
void newMail();
// ...

Using the ViewKit Dialog Subclasses

199

private:
static String _defaultResources[];
// ...

};

String MailWindow::_defaultResources[] = {
"-*newMailMsg: You have new mail in your system mailbox.",
"-*newMailTitle: New Mail",
NULL

};

MailWindow::MailWindow(const char *name) : VkSimpleWindow (name)
{

setDefaultResources(mainWindowWidget(), _defaultResources);
// ...

}
void MailWindow::newMail()
{

// ...
theInfoDialog->setTitle("newMailTitle");
theInfoDialog->post("newMailMsg");
// ...

}

Figure 7-6 shows the appearance of the resulting dialog.

Figure 7-6 Information Dialog

200

Chapter 7: Using Dialogs in ViewKit

Warning Dialogs

The VkWarningDialog class supports standard IRIS IM warning dialogs. The global
pointer to the warning dialog manager, declared in <Vk/VkWarningDialog.h>, is
theWarningDialog.

Use VkWarningDialog to warn the user of the consequences of an action. For example,
VkWarningDialog is appropriate for warning the user that an action will irretrievably
delete information.

By default, the dialogs posted by VkWarningDialog contain only an OK button;
however, according to Open Software Foundation style guidelines, if you have posted a
warning dialog to warn the user about an unrecoverable action, you must allow the user
to cancel the destructive action. To add a Cancel button to your warning dialog, simply
provide a cancel callback function when you post the dialog.

Tip: If you perform the action in the warning dialog’s OK callback, you can simply define
an empty function as a cancel callback. If the user clicks the warning dialog’s OK, button,
the ok callback performs the action; if the user clicks the Cancel button, ViewKit dismisses
the dialog without performing any action.

VkWarningDialog does not provide any additional functions beyond those offered by
the VkDialogManager.

Error Dialogs

The VkErrorDialog class supports standard IRIS IM error dialogs. The global pointer to
the error dialog manager, declared in <Vk/VkErrorDialog.h>, is theErrorDialog.

Use VkErrorDialog to inform the user of an invalid action (such as entering out-of-range
data) or potentially dangerous condition (for example, the inability to create a backup
file).

The messages contained in the error dialogs should not require any decision to be made
by the user. Therefore, the error dialogs display only the OK button by default. If you
need the user to make a selection, you should use another dialog class such as
VkQuestionDialog.

VkErrorDialog does not provide any additional functions beyond those offered by the
VkDialogManager.

Using the ViewKit Dialog Subclasses

201

Fatal Error Dialogs

The VkFatalErrorDialog class supports an error dialog that terminates the application
when the user dismisses it. The global pointer to the fatal error dialog manager, declared
in <Vk/VkFatalErrorDialog.h>, is theFatalErrorDialog.

Use VkFatalErrorDialog only for those errors from which your program cannot recover.
For example, VkFatalErrorDialog is appropriate if an application terminates because it
cannot open a necessary data file. When the user acknowledges the dialog posted by
VkFatalErrorDialog, the application terminates by calling VkApp::terminate() with an
error value of 1. “Quitting ViewKit Applications” on page 59 describes the terminate()
function.

The messages contained in a fatal error dialog should not require any decision to be made
by the user. Therefore, the fatal error dialog displays only the OK button by default.

VkFatalErrorDialog does not provide any additional functions beyond those offered by
the VkDialogManager.

Busy Dialog

The VkBusyDialog class supports a busy dialog (also called a working dialog in IRIS IM)
that is displayed when the application is busy. The global pointer to the busy dialog
manager, declared in <Vk/VkBusyDialog.h>, is theBusyDialog.

Unlike most other dialog classes, you should not directly post and unpost the busy
dialog. VkBusyDialog is used by the VkApp object to display a busy dialog when you
place the application in a busy state. The busy dialog is displayed automatically when
you call VkApp::busy(), and dismissed automatically when you make a corresponding
call to VkApp::notBusy(). VkApp also allows you to use the VkApp::setBusyDialog()
function to use a busy dialog other than that provided by VkBusyDialog. Consult
“Supporting Busy States” on page 69 for more information about how VkApp handles
busy states.

Because the busy dialog is intended to lock out user input during a busy state, by default
the busy dialog does not display any buttons. If you want to allow the user to interrupt
the busy state, you should use the VkApp::setBusyDialog() function to substitute the
VkInterruptDialog class object for the normal busy dialog.

202

Chapter 7: Using Dialogs in ViewKit

VkBusyDialog does not provide any additional functions beyond those offered by the
VkDialogManager.

Interruptible Busy Dialog

The VkInterruptDialog class supports an interruptible busy dialog that you can
substitute for the normal busy dialog. The dialog posted by the VkInterruptDialog class
includes a Cancel button that the user can click to cancel the current action. The global
pointer to the interruptible busy dialog manager, declared in <Vk/VkInterruptDialog.h>,
is theInterruptDialog.

In addition to those functions offered by the VkDialogManager class,
VkInterruptDialog provides the wasInterrupted() member function:

Boolean wasInterrupted()

Applications that use VkInterruptDialog must periodically call wasInterrupted() to
determine whether the user has clicked the dialog’s Cancel button since the last time the
function was called. The period of time between checks is up to the application, which
must weigh responsiveness against time spent checking.

Note that wasInterrupted() also calls VkApp::handlePendingEvents() to process any
events that have occurred while the application was busy. Because checking for
interrupts involves entering a secondary event loop for a short time, you should beware
of any problems with re-entrant code in any callbacks that could be invoked.

Also note that you are responsible for performing any cleanup operations required by
your application if the user interrupts a process before it is finished (that is, before you
would normally call VkApp::notBusy() to end the busy state).

VkInterruptDialog also provides the ViewKit callback
VkInterruptDialog::interruptedCallback. This callback allows objects to register a member
function to be called when the user clicks the Cancel button of a VkInterruptDialog
dialog. This callback can be called only if the application calls
VkInterruptDialog::wasInterrupted().

Using the ViewKit Dialog Subclasses

203

Unlike most other dialog classes, you should not directly post and unpost the
interruptible busy dialog. You can use the VkApp::setBusyDialog() function to instruct
the VkApp object to use the interruptible busy dialog rather than the normal busy dialog
provided by the VkBusyDialog class. The following line shows how you could do this
in a program:

theApplication->setBusyDialog(theInterruptDialog);

The following line instructs the VkApp object to revert to the normal busy dialog:

theApplication->setBusyDialog(NULL);

If you instruct the VkApp object to use the interruptible busy dialog, it is displayed
automatically when you call VkApp::busy(), and dismissed automatically when you
make a corresponding call to VkApp::notBusy(). Consult “Supporting Busy States” on
page 69 for more information about how VkApp handles busy states.

The code fragment in Example 7-3 installs the interruptible busy dialog and performs a
simulated lengthy task, checking for interrupts periodically. After completing the task,
the code reinstalls the normal busy dialog.

Example 7-3 Using the Interruptible Busy Dialog

int i;

// Install the interruptible dialog as the dialog
// to post when busy

theApplication->setBusyDialog(theInterruptDialog);

// Start being "busy"

theApplication->busy("Very Busy", (BusyWindow *) clientData);

for(i=0; i<10000; i++)
{

// Every so often, see if the task was interrupted

if(theInterruptDialog->wasInterupted())
{

break; // kick out of current task if user interrupts
}
sleep(1);

}

204

Chapter 7: Using Dialogs in ViewKit

// Task done, so we’re not busy anymore

theApplication->notBusy();

// Restore the application’s busy dialog as the default

theApplication->setBusyDialog(NULL);

Progress Dialog

The VkProgressDialog class supports applications that perform lengthy, interruptible
tasks, and wish to display a progress report to the user. This class displays a bar graph
showing what percentage of the job has been completed, and how much remains to be
done.

VkProgressDialog is used in nearly the same way as VkInterruptDialog. The only
addition is the setPercentDone() method, which changes the dialog’s graphical progress
indicator.

The prototype for VkProgressDialog is as follows:

void setPercentDone(int percentDone)

percentDone should be an integer between 0 and 100, where 100 represents completion.

By default, VkProgressDialog() shows a Cancel button that permits the user to interrupt
the current task. If you do not wish to allow users to interrupt your task, you can prevent
the Cancel button from appearing by passing FALSE as the second parameter in the
VKProgressDialog() constructor.

Example 7-4 shows a code segment that installs the progress dialog and performs a
simulated lengthy task, checking for interrupts periodically and updating the progress
indicator.

Example 7-4 Using the Progress Dialog

int i;

// Install the progress dialog as the dialog to post when busy

theApplication->setBusyDialog(theProgressDialog);

Using the ViewKit Dialog Subclasses

205

// Start being “busy”

the application->busy(“Very Busy”, (BusyWindow *) clientData);

int percentDone = 0;

for (i = 0; i < 10000; i++)
{

// Every so often see if the task was interrupted

if (theProgressDialog->wasInterrupted())
{

break; // kick out of current task if user interrupts
}

// Update the percent done indicator. Do this only if we’ve made
// more than one percent increment in progress. This avoids
// updating the dialog more frequently than is really necessary.

if ((i/100) > percentDone)
{

percentDone = i/100;
theProgressDialog->setPercentDone(percentDone);

}

sleep(1);
}
//Task done, so we’re not busy anymore

theApplication->notBusy();

// Restore the application’s busy dialog as the default

theApplication->setBusyDialog(NULL);

Question Dialog

The VkQuestionDialog class supports standard IRIS IM question dialogs. These allow
the user to select among simple choices by clicking pushbuttons. The global pointer to
the question dialog manager, declared in <Vk/VkQuestionDialog.h>, is theQuestionDialog.

206

Chapter 7: Using Dialogs in ViewKit

As described in “Posting Dialogs” on page 185, the post(), postModal(), and
postBlocked() functions allow you to specify callback functions to be executed when the
user clicks the OK, Cancel, or Apply button. These callbacks apply only to the dialog
posted by the current function call; they do not affect any subsequent dialog postings.
You can also provide client data that is passed to all of the callbacks. Following ViewKit
conventions as described in “Using Xt Callbacks With Components” on page 21, you
should normally pass the this pointer as client data so that the callback functions can
retrieve the pointer, cast it to the expected component type, and call a corresponding
member function.

For the postAndWait() function, instead of providing callbacks, you simply pass a
Boolean value for each button specifying whether or not it is displayed. Unlike the other
posting functions, the value returned by postAndWait() is an enumerated constant of
type VkDialogReason (defined in VkDialogManager). This value is CANCEL, OK, or
APPLY, corresponding to the button the user clicked.

By default, VkQuestionDialog displays only the OK and Cancel buttons.
VkQuestionDialog displays the Apply button only if you provide a callback for that
button.

VkQuestionDialog does not provide any additional functions beyond those offered by
the VkDialogManager.

Prompt Dialog

The VkPromptDialog supports standard IRIS IM prompt dialogs that allow the user to
enter a text string. The global pointer to the prompt dialog manager, declared in
<Vk/VkPromptDialog.h>, is thePromptDialog.

You can use VkPromptDialog any time you need to prompt the user to enter a single
piece of information. If you need the user to enter more than one value, you should
consider whether it is more appropriate to create a preference dialog as described in
Chapter 8, “Preference Dialogs.” Another option is to create your own custom dialog
using VkGenericDialog as described in “Deriving New Dialog Classes Using the
Generic Dialog” on page 211.

Using the ViewKit Dialog Subclasses

207

By default, VkPromptDialog displays only the OK and Cancel buttons.
VkPromptDialog displays the Apply button only if you provide a callback for that
button.

VkPromptDialog::setText() allows you to enter an initial text string in the prompt
dialog’s text field.

One method of obtaining the text string the user entered in the prompt dialog is to extract
it and use it in the OK callback function (and the apply callback function if you provide
one). Example 7-5 demonstrates this technique.

Example 7-5 Extracting the Text String From a Prompt Dialog

void MailWindow::okCallback(Widget w, XtPointer, clientData, XtPointer callData)
{

MailWindow *obj = (MailWindow *) clientData;
obj->ok(w, callData);

}

void MailWindow::ok(Widget dialog, XtPointer callData);
{

char *_text;
XmSelectionBoxCallbackStruct *cbs = (XmSelectionBoxCallbackStruct *)callData;

XmStringGetLtoR(cbs->value,
XmFONTLIST_DEFAULT_TAG,
&_text);

// ...
}

Another method of obtaining the text string is to call VkPromptDialog::text() after the
user has dismissed the dialog:

const char *text()

208

Chapter 7: Using Dialogs in ViewKit

If the user clicks the OK button, the dialog accepts the currently displayed text as input
and uses that string as the return value of text(). If the user clicks the Cancel button, the
dialog discards the currently displayed value and any previously-displayed string the
dialog might have contain is returned as the value of text(). Do not attempt to free the
string returned by text(). Typically, you should call text() only if you post the dialog using
postAndWait() and postAndWait() returns a value of VkDialogManager::OK.

Note: The following are two points that you should keep in mind when using
VkPromptDialog:

• Do not use text() from within one of the VkPromptDialog callback functions.
VkPromptDialog sets the value returned by text() using its own OK callback
function. Because IRIS IM does not guarantee the calling order of callback functions,
you cannot be certain that text() will return the correct value from within another
callback function.

• Be aware that subsequent posting of thePromptDialog can alter the text value. In rare
conditions, if you post non-modal, non-blocking dialogs, this could occur even
before you retrieved the value using text(). To prevent this, either retrieve the text
string in the OK callback function as shown in Example 7-5, or call text() only after
posting the dialog using postAndWait() and verifying that postAndWait() returned
the value VkDialogManager::OK).

File Selection Dialog

The VkFileSelectionDialog class supports standard IRIS IM file selection dialogs (an
example of which is shown in Figure 7-7). These allow the user to interactively browse
and select a file or directory. The global pointer to the file selection dialog manager,
declared in <Vk/VkFileSelectionDialog.h>, is theFileSelectionDialog.

Using the ViewKit Dialog Subclasses

209

Figure 7-7 File Selection Dialog

You can set the initial directory displayed by the dialog using
VkFileSelectionDialog::setDirectory():

void setDirectory(const char * directory)

If you do not explicitly set a directory, the dialog defaults to the current
directory.

You can set the initial filter pattern used by the dialog, which determines the files
displayed in the list box by using VkFileSelectionDialog::setFilterPattern():

void setFilterPattern(const char * pattern)

210

Chapter 7: Using Dialogs in ViewKit

If you do not explicitly set a selection, the dialog displays all files in a directory.

You can set the initial selection used of the dialog using
VkFileSelectionDialog::setSelection():

void setSelection(const char
* selection)

One method of obtaining the selection string of the file selection dialog is to extract it and
use it in the OK callback function. Example 7-6 demonstrates this technique.

Example 7-6 Extracting the Text String From a File Selection Dialog

void MailWindow::okCallback(Widget w, XtPointer, clientData, XtPointer callData)
{

MailWindow *obj = (MailWindow *) clientData;
obj->ok(w, callData);

}

void MailWindow::ok(Widget dialog, XtPointer callData);
{

char *_text;
XmFileSelectionBoxCallbackStruct *cbs =

(XmFileSelectionBoxCallbackStruct *) callData;

XmStringGetLtoR(cbs->value,
XmFONTLIST_DEFAULT_TAG,
&_text);

// ...
}

Another method of obtaining the selection string is to call
VkFileSelectionDialog::fileName() after the user has dismissed the dialog:

const char* fileName()

If the user clicks the OK button, the dialog accepts the currently displayed text as input
and uses that string as the return value of fileName(). If the user clicks the Cancel button,
the dialog discards the currently displayed value, and any previously-displayed string
the dialog might have contained is returned as the value of fileName(). Do not attempt
to free the string returned by fileName(). Typically, you should call fileName() only if
you post the dialog using postAndWait(), and postAndWait() returns a value of
VkDialogManager::OK.

Using the ViewKit Dialog Subclasses

211

Note: The following are two points that you should keep in mind when using
VkFileSelectionDialog:

• Do not use fileName() from within one of the VkFileSelectionDialog callback
functions. VkFileSelectionDialog sets the value returned by fileName() using its
own OK callback function. Because IRIS IM does not guarantee the calling order of
callback functions, you cannot be certain that fileName() will return the correct
value from within another callback function.

• Be aware that subsequent posting of theFileSelectionDialog can alter the selection
value. In rare conditions, if you post non-modal, non-blocking dialogs, this could
occur even before you retrieve the value using fileName(). To prevent this, either
retrieve the selection string in the OK callback function, or call fileName() only after
posting the dialog using postAndWait(), and verifying that postAndWait()
returned the value VkDialogManager::OK).

The following code fragment shows a simple example of using the
VkFileSelectionDialog class:

#include <iostream.h>
#include <Vk/VkFileSelectionDialog.h>

// ...

theFileSelectionDialog->setDirectory(“/usr/tmp”);

if(theFileSelectionDialog->postAndWait() == VkDialogManager::OK)
cout << "File name: " << theFileSelectionDialog->fileName()

<< ’\n’ << flush;

Deriving New Dialog Classes Using the Generic Dialog

The VkGenericDialog class is an abstract subclass of VkDialogManager. It provides a
convenient interface for creating custom dialogs that use the ViewKit interface. Custom
dialogs that you derive from this class automatically support caching and all the other
features supported by VkDialogManager. You can post and manipulate your custom
dialogs using the functions provided by VkDialogManager.

Minimally, when you derive a new dialog class, you must override the
VkGenericDialog::createDialog() function to create the dialog used by your class:

virtual Widget createDialog(Widget parent)

212

Chapter 7: Using Dialogs in ViewKit

ViewKit passes to createDialog() the parent widget for the dialog, and createDialog()
must return the dialog you create. Your overriding function must first call
VkGenericDialog::createDialog(), which creates a MessageBox dialog template. By
default, the dialog displays OK and Cancel buttons. Then, you simply add the interface
to the MessageBox widget.

You can change the buttons displayed by default and other characteristics for your
custom dialog by setting certain protected data members:

Boolean _showOK
Set this value to TRUE (the default) to force the OK button to always
appear in your custom dialog. If you set _showOK to FALSE, the OK
button appears only if you provide an OK callback function when
posting the dialog.

Boolean _showCancel
Set this value to TRUE (the default) to force the Cancel button to always
appear in your custom dialog. If you set _showCancel to FALSE, the
Cancel button appears only if you provide a cancel callback function
when posting the dialog.

Boolean _showApply
Set this value to TRUE to force the Apply button to always appear in your
custom dialog. If you set _showApply to FALSE (the default), the Apply
button appears only if you provide an apply callback function when
posting the dialog.

Boolean _allowMultipleDialogs
The default behavior of the VkDialogManager class is to allow multiple
dialogs of any given type to be posted at once. The VkDialogManager
class calls derived classes’s createDialog() member function as needed
to create additional widgets. For some types of dialogs, it makes more
sense to allow only one instance of a particular dialog type to exist at any
one time. For example, multiple nested calls to VkApp::busy() should
not normally produce multiple dialogs. If you set _allowMultipleDialogs
to FALSE, the VkDialogManager class does not create additional
dialogs, but reuses an existing dialog in all cases.

Putting Dialogs in the Overlay Planes

213

Boolean _minimizeMultipleDialogs
Normally, VkDialogManager caches dialogs on a per-top-level window
basis. If there are many top-level windows, this could result in having
many dialogs of the same type, which may be undesirable for some
types of dialogs, particularly if they are expensive to create. If you set
_minimizeMultipleDialogs TRUE, VkDialogManager reuses any existing
dialog that is not currently displayed. VkDialogManager creates a new
dialog only if all existing instances of the dialog type are currently
displayed.

Also, by default ViewKit dismisses your dialog whenever the user clicks either the OK or
Cancel button, and keeps the dialog posted whenever the user clicks the Apply button.
You can change this behavior by overriding the functions VkDialogManager::ok(),
VkDialogManager::cancel(), and VkDialogManager::apply(), respectively:

virtual void ok(Widget dialog, XtPointer callData)
virtual void cancel(Widget dialog, XtPointer callData)
virtual void apply(Widget dialog, XtPointer callData)

ViewKit calls these functions whenever the user clicks one of the buttons in the dialog.
By default, ok() and cancel() unpost the dialog and apply() is empty. You can override
these functions to change the unposting behavior or to perform any other actions you
want.

Putting Dialogs in the Overlay Planes

By default, dialogs appear in the normal planes. ViewKit dialogs, however, may be
explicitly placed in the overlay planes. Doing so prevents the dialogs from causing
expose events that disturb such things as complex GL rendering in the normal planes.

There are three ways to enable dialogs in the overlay planes:

• Call VkDialogManager::useOverlayDialogs(TRUE). This forces dialogs into the
overlay planes, with no way to put them back in the normal planes without
recompiling.

• Put the resource string “*useOverlayDialogs: True” in your application’s default
file. This will put dialogs in the overlay planes by default, but allow users to use the
normal planes by changing their .Xdefaults file.

• Have users add the -useOverlayDialogs command-line switch when they run your
application if they wish to use the overlay planes for dialogs.

214

Chapter 7: Using Dialogs in ViewKit

If you do decide to place dialogs in the overlay planes, here are some factors to consider:

• Dialogs are placed in the deepest available overlay planes: generally 4- or 8-bit
planes, occasionally 2-bit planes.

• If the deepest available overlay is 2 bits, any dialogs placed in that visual may not
look right. Because the colormap in the 2-bit overlay planes only has three color
entries (the fourth being a transparent pixel), any items in the dialog other than
labels (for example cascade or toggle buttons) may look odd.

• Other applications using the overlay planes may display in the wrong colors when
the application posting the dialog gets colormap focus. The colors in the other
applications may flash because the dialog’s colormap is installed and replaces any
previous overlay colormap.

215

Chapter 8

8. Preference Dialogs

This chapter introduces the basic ViewKit classes needed to create and manipulate
preference dialogs in a ViewKit application. Figure 8-1 shows the inheritance graph for
these classes.

Figure 8-1 Inheritance Graph for the ViewKit Preference Dialog Classes

VkPrefItem

VkComponent

VkPrefText

VkPrefToggle

VkPrefLabel

VkPrefOption

VkPrefSeparator

VkPrefCustom

VkDialogManager

VkPrefList

VkPrefRadio

VkPrefDialog

VkPrefGroup

VkPrefEmpty

VkGenericDialog

216

Chapter 8: Preference Dialogs

Overview of ViewKit Preference Dialogs

Preference dialogs allow users to customize the behavior of an application. Without
high-level support, preference dialogs can take considerable time and effort to write
because they can involve large numbers of text input fields, labels, toggle buttons, and
other controls. A user expects preference dialogs to work in a specific way, as well.
Usually, a user sets a number of preferences and then clicks an Apply button or an OK
button to apply all changes at once. A user also expects to be able to click Cancel and
return all preferences to their previous state, regardless of how many changes the user
might have made.

ViewKit supports an easy-to-use collection of classes for building preference dialogs.
Rather than dealing directly with widgets, their placement, callbacks, and so on,
programmers who use ViewKit can simply create groups of preference items. These items
maintain their own states, which allows an application to simply query each item to see
if it has been changed. Layout is handled automatically, and ViewKit provides the ability
to apply or revert all preferences to their previous state.

ViewKit Preference Dialog Class

In ViewKit, preference dialogs are implemented as a specialized class of dialog.
Specifically, the base preference dialog class, VkPrefDialog, is a subclass of
VkGenericDialog, which is in turn a subclass of VkDialogManager. Thus, the
VkPrefDialog class inherits all of the functions and data members provided by these
base classes.

However, there are some significant differences in the way you use preference dialogs in
your programs compared to the other dialog classes. For the other dialog classes, a single,
reusable instance of each type of dialog is sufficient. Details such the message, the button
labels, or the dialog title change from posting to posting, but the general dialog behavior
remains the same.

Overview of ViewKit Preference Dialogs

217

On the other hand, individual postings of preference dialogs often vary significantly;
they usually have greatly different preference items and data structures associated with
each preference item. Therefore, unlike the other dialog classes, VkPrefDialog does not
create a global instance of a preference dialog. Instead, you must create a separate
instance of VkPrefDialog for each preference dialog that you want to display in your
program. For very simple preference dialogs (for example, just a few toggle buttons), you
might be able to directly instantiate a VkPrefDialog object; however, in most cases you
should create a separate subclass of VkPrefDialog for each preference dialog in your
application.

For each preference dialog, you create a collection of preference items and associate them
with the dialog. Each preference item maintains its own state or value, and your program
can query the value of preference items as needed. Users can change the values
associated with any number of preference items, then click the Apply button to apply all
changes and keep the dialog up, or the OK button to apply all changes and dismiss the
dialog. Users can also click the Cancel button to return all preferences to their last applied
values and dismiss the dialog.

The VkPrefDialog class also supplies a ViewKit callback named prefCallback. The
preference dialog activates this callback whenever the user clicks the dialog’s Apply, OK,
or Cancel button.

ViewKit Preference Item Classes

The basis for all ViewKit preference item classes is the abstract class VkPrefItem, which
is derived from VkComponent. All preference items are derived from the base class
VkPrefItem, which provides a common set of manipulation functions.

Preference items can be divided into three groups: those that implement various controls
such as text fields, toggles, and option menus; those that are “ornamental”; and those
that arrange other preference items and manage them as a group.

218

Chapter 8: Preference Dialogs

The following preference items implement controls:

VkPrefText A text field.

VkPrefToggle A single toggle button (you can group multiple toggle buttons into a
VkPrefRadio item, described below, to enforce radio-style behavior of
the buttons).

VkPrefOption An option menu.

The following preference items are ornamental:

VkPrefLabel A text label.

VkPrefSeparator
A separator.

VkPrefEmpty A “null” item that you can use to add extra space between other items.

The following preference items create groups of items:

VkPrefGroup Defines a group of related items. You can specify either vertical or
horizontal layout; the default is vertical. With a vertical layout,
VkPrefGroup pads items so that they take equal space. You have the
option of displaying a label for the group.

VkPrefRadio A subclass of VkPrefGroup for managing a group of toggle items in a
radio box style. You can specify either vertical or horizontal layout; the
default is vertical. Items are always padded so that they take equal
space. You have the option of displaying a label for the group.

VkPrefList Defines a group of related items. The VkPrefList class arranges its items
vertically. Unlike VkPrefGroup, items are not padded so that they take
equal space; instead, each item takes only as much space as it needs.
Also in contrast to VkPrefGroup, VkPrefList does not display any label
for the group.

Each preference item maintains its own state or value, and your program can query the
value of preference items as needed. Preference items automatically handle updating
their stored values when the user clicks the preference dialog’s Apply or OK button, and
reverting to their previous values when the user clicks the dialog’s Cancel button.

Overview of ViewKit Preference Dialogs

219

Building a ViewKit Preference Dialog

Figure 8-2 shows an example of a preference dialog created using the ViewKit classes.

Figure 8-2 ViewKit Preference Dialog

Example 8-1 lists the code used to create this preference dialog.

Example 8-1 Creating a ViewKit Preference Dialog

/////////////////////
// DocPrefDiag.c++
/////////////////////

#include <Vk/VkApp.h>
#include <Vk/VkPrefDialog.h>
#include <Vk/VkPrefItem.h>

220

Chapter 8: Preference Dialogs

class DocPrefDialog: public VkPrefDialog {

 protected:

 VkPrefLabel *dialogName;
 VkPrefSeparator *sep1;
 VkPrefText *firstPageNumber;
 VkPrefOption *firstPageSide;
 VkPrefGroup *numberGroup;
 VkPrefSeparator *sep2;
 VkPrefToggle *paginSingleSide;
 VkPrefToggle *paginDoubleSide;
 VkPrefRadio *paginationGroup;
 VkPrefSeparator *sep3;
 VkPrefToggle *textQuotes;
 VkPrefToggle *textSpaces;
 VkPrefGroup *textGroup;
 VkPrefList *docList;

 static String _defaultResources[];
 virtual Widget createDialog(Widget parent);

 public:

 DocPrefDialog (const char *name);
 ~DocPrefDialog();
 virtual const char* className();
};

String DocPrefDialog::_defaultResources[] = {
 “*dialogNameBase.labelString:Document Properties”,
 “*numberGroupLabel.labelString:Numbering:”,
 “*firstPageNumberLabel.labelString:1st Page #:”,
 “*firstPageSideLabel.labelString:1st Page:”,
 “*firstPageRight:Right”,
 “*firstPageLeft:Left”,
 “*paginationGroupLabel.labelString:Pagination:”,
 “*paginSingleSideBase.labelString:Single-sided”,
 “*paginDoubleSideBase.labelString:Double-sided”,
 “*textGroupLabel.labelString:Text:”,
 “*textQuotesBase.labelString:Smart Quotes”,
 “*textSpacesBase.labelString:Smart Spaces”,
 NULL
};

Overview of ViewKit Preference Dialogs

221

DocPrefDialog::DocPrefDialog (const char *name) : VkPrefDialog (name)
{
 // Empty
}

Widget DocPrefDialog::createDialog(Widget parent) {

 setDefaultResources(parent, _defaultResources);

 VkPrefLabel *dialogName = new VkPrefLabel(“dialogName”);

 VkPrefSeparator *sep1 = new VkPrefSeparator(“sep1”);

 VkPrefText *firstPageNumber = new VkPrefText(“firstPageNumber”);

 VkPrefOption *firstPageSide = new VkPrefOption(“firstPageSide”, 2);
 firstPageSide->setLabel(0, “firstPageRight”);
 firstPageSide->setLabel(1, “firstPageLeft”);

 VkPrefGroup *numberGroup = new VkPrefGroup(“numberGroup”);
 numberGroup->addItem(firstPageNumber);
 numberGroup->addItem(firstPageSide);

 VkPrefSeparator *sep2 = new VkPrefSeparator(“sep2”);

 VkPrefToggle *paginSingleSide = new VkPrefToggle(“paginSingleSide”);
 VkPrefToggle *paginDoubleSide = new VkPrefToggle(“paginDoubleSide”);

 VkPrefRadio *paginationGroup = new VkPrefRadio(“paginationGroup”, TRUE);
 paginationGroup->addItem(paginSingleSide);
 paginationGroup->addItem(paginDoubleSide);

 VkPrefSeparator *sep3 = new VkPrefSeparator(“sep3”);

 VkPrefToggle *textQuotes = new VkPrefToggle(“textQuotes”);
 VkPrefToggle *textSpaces = new VkPrefToggle(“textSpaces”);

 VkPrefGroup *textGroup = new VkPrefGroup(“textGroup”, TRUE);
 textGroup->addItem(textQuotes);
 textGroup->addItem(textSpaces);

 VkPrefList *docList = new VkPrefList(“docList”);
 docList->addItem(dialogName);
 docList->addItem(sep1);
 docList->addItem(numberGroup);

222

Chapter 8: Preference Dialogs

 docList->addItem(sep2);
 docList->addItem(paginationGroup);
 docList->addItem(sep3);
 docList->addItem(textGroup);

 setItem(docList);

 Widget base = VkPrefDialog::createDialog(parent);

 return(base);
}

DocPrefDialog::~DocPrefDialog()
{
 // Empty
}

const char* DocPrefDialog::className()
{
 return “DocPrefDialog”;
}

void main (int argc, char **argv)
{
 VkApp *app = new VkApp(“PrefDialogDemoApp”, &argc, argv);
 DocPrefDialog *docPrefs = new DocPrefDialog(“docPrefs”);

 docPrefs->show();
 app->run();
}

To post this dialog, you simply create an instance of the DocPrefDialog class and use one
of the post() functions described in “Posting Dialogs” on page 185. For example:

DocPrefDialog *docPref = new DocPrefDialog("docPref");
// ...
docPref->post();

You can retrieve the value of a preference item with the getValue() function as described
in “Getting and Setting Preference Item Values” on page 225. For example:

Boolean smartSpaces;
// ...
smartSpaces = docPref->textSpaces->getValue();

ViewKit Preference Item Base Class

223

ViewKit Preference Item Base Class

All preference items are derived from an abstract base class, VkPrefItem, which defines
the structure of ViewKit preference items and provides a common set of manipulation
functions.

Preference Item Labels

Most preference items contain two top-level widgets: a base widget and a label widget.
The base widget implements the preference items “control” mechanism (for example, a
text field, an option menu, or a toggle button). The label widget (actually implemented
as a gadget) displays a text label for the item.

The name of the base widget is the string “Base” appended to the name of the preference
item as given in its constructor. The name of the label widget is the string “Label”
appended to the name of the preference item as given in its constructor. So, if you create
a VkPrefText object named “firstName,” the name of the base widget is “firstNameBase”
and the name of the label widget is “firstNameLabel.”

To specify the string that is displayed as the label, you must set the XmNlabelString
resource for the label widget. There are various ways to do this:

• Use the VkComponent::setDefaultResources() function to provide default resource
values. See “Creating Preference Dialog Subclasses” on page 249 for information on
using the setDefaultResources() function when you create a subclass of
VkPrefDialog.

• Set resource values in an external app-defaults resource file. Any values you
provide in an external file will override values that you set using the
VkComponent::setDefaultResources() function. This is useful when your
application must support multiple languages; you can provide a separate resource
file for each language supported.

• Set the resource value directly using the XtSetValues() function. Values you set
using this method override any values set using either of the above two methods.
You should avoid using this method, because it “hard codes” the resource values
into the code, making them more difficult to change.

224

Chapter 8: Preference Dialogs

The code fragment in Example 8-2 sets the labels for two VkPrefText items using the first
method.

Example 8-2 Setting Default Resource Values for Preference Items

#include <Vk/VkPrefDialog.h>
#include <Vk/VkPrefItem.h>

class NameDialog: public VkPrefDialog {
public:

VkPrefText *firstName;
VkPrefText *lastName;
// ...

protected:
Widget createDialog(Widget)

private:
static String _defaultResources[];
// ...

};

String NameDialog::_defaultResources[] = {
 "*firstNameLabel.labelString: First Name:",
 "*lastNameLabel.labelString: Last Name:",
};

Widget NameDialog::createDialog(Widget parent)
{

setDefaultResources(mainWindowWidget(), _defaultResources);

firstName = new VkPrefText("firstName");
lastName = new VkPrefText("lastName");
VkPrefList *nameList = new VkPrefList("nameList");
// ...

}

Not all items display a label. VkPrefSeparator is an example of this type of preference
item. Some preference items, such as VkPrefGroup, allow you to specify in the
constructor whether or not you want to display a label for the item. The sections
appearing later in this chapter that describe individual preference items discuss how
each item uses its label widget.

ViewKit Preference Item Base Class

225

Getting and Setting Preference Item Values

Preference items that allow the user to input information—VkPrefText, VkPrefToggle,
and VkPrefOption—have values associated with them. Each such item stores its own
value internally. This value might or might not match the value currently displayed in
the preference dialog. Because users can click the Cancel button to return all preferences
to their last applied values, a preference item must not immediately store a new value
that a user enters. Only when the user clicks the dialog’s Apply or OK button do
preference items update their internally stored values to match the values displayed on
the screen.

Preference items provide a getValue() function that updates the internally-stored value
with the currently displayed value and returns the updated value. The getValue()
function is not actually declared in the VkPrefItem base class because different types of
preference items use different types of values (for example, VkPrefToggle uses a Boolean
value whereas VkPrefText uses a character string). Each preference item with an
associated value provides its own definition of getValue().

The setValue() function allows you to programmatically set the internally stored value
of a preference item. The setValue() function automatically updates the displayed value
to reflect the new internal value. As with the getValue() function, setValue() is not
actually declared in the VkPrefItem base class; each preference item with an associated
value provides its own definition of setValue().

The VkPrefItem::changed() function checks to see whether or not the user has changed
the value displayed on the screen so that it no longer matches the item’s internally stored
value:

virtual Boolean changed()

If the value has changed, changed() returns the Boolean value TRUE; otherwise, it
returns FALSE. You should use changed() as a test to determine whether or not you need
to call getValue() for a preference item.

226

Chapter 8: Preference Dialogs

Preference Item Access Functions

The activate() and deactivate() functions control whether or not a preference item is
activated:

void activate()
void deactivate()

If the item is deactivated, the item is “grayed out” on the screen and the user cannot
change the item’s value. Call activate() to activate an item and deactivate() to deactivate
an item.

Occasionally you might want to achieve certain effects by manually setting the height of
a preference item’s label or base widget. The setLabelHeight() and setBaseHeight()
functions each accept as an argument an Xt Dimension value and respectively set the
item’s label and base widget to the given height:

void setLabelHeight(Dimension h)
void setBaseHeight(Dimension h)

The labelHeight() function returns the current height of the item’s label widget, and the
baseHeight() function returns the current height of the item’s base widget, each
expressed as an Xt Dimension value:

Dimension labelHeight()
Dimension baseHeight()

The labelWidget() function returns the item’s label widget:

Widget labelWidget()

labelWidget() returns NULL if an item does not have a label widget.

The type() function returns an enumerated value of type VkPrefItemType that identifies
an item’s type:

virtual VkPrefItemType type()

Valid return values are: PI_group, PI_list, PI_radio, PI_text, PI_toggle, PI_option,
PI_empty, PI_label, PI_separator, PI_custom, and PI_none.

ViewKit Preference Item Classes

227

The isContainer() function returns TRUE if the preference item is one used to group (or
contain) other items:

virtual Boolean isContainer()

Currently, isContainer() returns true for VkPrefGroup, VkPrefRadio, and VkPrefList
items.

ViewKit Preference Item Classes

The following sections describe the preference item classes provided by ViewKit. In
addition to specific member functions listed, each class also supports all functions
provided by the VkPrefItem class.

Text Fields

The VkPrefText class supports text field preference items, allowing users to enter text
strings. Figure 8-3 shows a simple preference dialog containing a text field preference
item.

Figure 8-3 Preference Dialog With a Text Field Preference Item

The VkPrefText constructor has the following form:

VkPrefText(const char * name, int columns = 5)

228

Chapter 8: Preference Dialogs

The VkPrefText constructor expects as its first argument the name of the preference item.
You can optionally provide as a second argument an integer value specifying the default
number of columns for the text field.

For example, creating the text field shown in Figure 8-3 requires only this line:

VkPrefText *name = new VkPrefText("name");

To set the label for the text field you must set the XmNlabelString resource of the
preference item’s label widget. Therefore, to set the label as shown in Figure 8-3, you
must set the resource:

*nameLabel.labelString: Enter your name:

Refer to “Preference Item Labels” on page 223 for more information on setting the label
of a preference item.

Use the getValue() function to retrieve the internally-stored value of the text field:

char *getValue()

getValue() duplicates the internal value and then returns a pointer to the duplicate
string. (You should free this string when you no longer need it.) For example, the
following line retrieves the value of the name text field shown above:

userName = name->getValue();

Use the setValue() function to programmatically set the value of the text field:

void setValue(const char * str)

setValue() copies the string that you pass as an argument, sets the internally-stored value
to that string, and updates the value displayed by the text field. For example, the
following line sets the value of the name text field shown above to “John Doe”:

name->setValue("John Doe");

Toggle Buttons

The VkPrefToggle class supports a single toggle button preference item. You can group
multiple toggle buttons using a VkPrefGroup or VkPrefList item, and you can enforce
radio-style behavior on a group of toggles by grouping them in a VkPrefRadio item.
These classes are discussed later in this chapter.

ViewKit Preference Item Classes

229

Figure 8-4 shows a simple preference dialog containing a single toggle button preference
item.

Figure 8-4 Preference Dialog With Toggle Button Preference Item

The VkPrefToggle constructor has the following form:

VkPrefToggle(const char * name, Boolean forceLabelFormat = FALSE)

The first argument the VkPrefToggle constructor expects is the name of the preference
item. For example, creating the toggle button shown in Figure 8-4 requires only the line:

VkPrefToggle *erase = new VkPrefToggle("erase");

You can provide an optional Boolean value as a second argument to the VkPrefToggle
constructor. A TRUE value forces the VkPrefToggle object to create and use a label
widget as described in “Preference Item Labels” on page 223. Otherwise, if the value is
FALSE, the behavior of the label is determined as described below in “Setting Toggle
Preference Item Labels.” The default value is FALSE.

Setting Toggle Preference Item Labels

Setting the label for a toggle preference item is more complex than with other preference
items. Unlike many of the other preference items, the ToggleButton widget that is the
base widget of the VkPrefToggle item includes a text label. Therefore, to set that label,
you must set the XmNlabelString resource of the preference item’s base widget instead
of its label widget. For example, to set the label as shown in Figure 8-4, you must set the
resource:

*eraseBase.labelString: History Erase

230

Chapter 8: Preference Dialogs

This works for all cases except for when a toggle is an item in a vertical VkPrefGroup or
VkPrefRadio item that contains items other than toggles. (A group that contains more
than one type of preference item is a non-homogenous group; a group that contains only
one type of preference item is a homogenous group.) To understand why this is done,
consider first a simple vertical VkPrefGroup containing only two toggle buttons, as
shown in Figure 8-5. In this case, the labels appear to the right side of the buttons as they
normally do.

Figure 8-5 Toggle Preference Items in a Homogenous Vertical Group

When toggle items appear in a homogenous group like the one shown in Figure 8-5, you
should set the XmNlabelString resources for the base widgets of the toggle items. For
example:

*firstToggleBase.labelString: Toggle One
*secondToggleBase.labelString: Toggle Two

However, the labels for most other preference items appear to the left of the items. Left
uncorrected, if a vertical, non-homogenous VkPrefGroup or VkPrefRadio contained a
toggle item, the label for the toggle would not align with the other labels.

Therefore, in the case of a non-homogenous vertical VkPrefGroup or VkPrefRadio,
ViewKit sets the XmNlabelString resource of all toggle items’ base widgets to NULL and
instead displays their label widgets. The result is that all of the preference items’ labels
correctly align, as shown in Figure 8-6.

ViewKit Preference Item Classes

231

Figure 8-6 Toggle Preference Items in a Non-Homogenous Vertical Group

When toggle items appear in a non-homogenous, vertical group like the one shown in
Figure 8-6, you should set the XmNlabelString resources for the label widgets of the
toggle items rather than the base widgets. For example:

*firstToggleLabel.labelString: Toggle One
*secondToggleLabel.labelString: Toggle Two

Note that if you provide the Boolean value TRUE as a second argument to the
VkPrefToggle constructor, the VkPrefToggle object always creates and uses a label
widget instead of using the base widget’s text label.

Refer to “Preference Item Labels” on page 223 for more information on setting the label
of a preference item.

Getting and Setting Toggle Preference Item Values

Use the getValue() function to retrieve the Boolean value of the toggle:

Boolean getValue()

232

Chapter 8: Preference Dialogs

For example, the following line retrieves the value of the firstToggle toggle shown above:

toggleSet = firstToggle->getValue();

Use the setValue() function to programmatically set the value of the toggle:

void setValue(Boolean value)

setValue() sets the internally-stored value to the Boolean value you pass as an argument,
and updates the value displayed by the toggle. For example, the following line sets the
value of the secondToggle toggle shown above to TRUE:

secondToggle->setValue(TRUE);

Option Menus

The VkPrefOption class supports option menu preference items, allowing users to
choose an option from a menu. Figure 8-7 shows a simple preference dialog containing
an option menu preference item.

Figure 8-7 Preference Dialog With Option Menu Preference Item

The VkPrefOption constructor has the following form:

VkPrefOption(const char * name, int numEntries)

The VkPrefOption constructor expects as its first argument the name of the preference
item. The second argument is an integer value specifying the number of entries in the
option menu.

ViewKit Preference Item Classes

233

For example, you can create the option menu shown in Figure 8-7 with this line:

VkPrefOption *align = new VkPrefOption("align", 3);

Setting Option Menu Preference Item Labels

To set the label for the option menu, you must set the XmNlabelString resource of the
preference item’s label widget. Therefore, to set the label as shown in Figure 8-7, you
must set the resource as follows:

*alignLabel.labelString: Alignment

Refer to “Preference Item Labels” on page 223 for more information on setting the label
of a preference item.

To set the labels for the individual items in the option menu, use the setLabel() function:

void setLabel(int index, const char * label)

setLabel() expects two arguments. The first is an integer value specifying the index of the
of the menu item. Menu items are numbered starting with 0.

The second setLabel() argument is a character string. This string is first treated as a
resource name which is looked up relative to the menu item’s widget. If the resource
value exists, it is used as the label. If no resource is found, or if the string contains spaces
or newline characters, the string itself is used as the label.

For example, the following lines directly set the labels for the option menu items shown
in Figure 8-7:

align->setLabel(0, "Align Left");
align->setLabel(1, "Align Center");
align->setLabel(2, "Align Right");

On the other hand, the following lines set the labels using resource values:

align->setLabel(0, "alignLeft");
align->setLabel(1, "alignCenter");
align->setLabel(2, "alignRight");

234

Chapter 8: Preference Dialogs

In the second case, you would also have to set the appropriate resource values. You could
do so using the setDefaultResources() function, or you could include the following lines
in a resource file:

*align*alignLeft: Align Left
*align*alignCenter: Align Center
*align*alignRight: Align Right

You can retrieve the label for a given item using the getLabel() function:

char *getLabel(int index)

index is the index of the menu item.

Note: getLabel() returns the same string that you passed to setLabel() when setting the
item’s label. Therefore, if you set the item’s label by specifying a resource name,
getLabel() returns the resource name, not the value of the resource.

Dynamically Changing the Number of Option Menu Items

In the VkPrefOption constructor, you must provide an argument specifying the number
of elements in the option menu. However, after creating an option menu preference item,
you can resize it as needed using the setSize() function:

void setSize(int numEntries)

setSize() accepts an integer argument specifying the new size of the option menu. If the
new size is smaller than the old size, setSize() automatically deletes all unneeded
widgets. If the new size is larger, setSize() automatically creates and manages any
additional widgets needed.

You can determine the current size of an option menu preference item using the size()
function:

int size()

You can access any of the button widgets contained in the option menu with the
getButton() function:

Widget getButton(int index)

Simply specify the index of the button you want and getButton() returns the appropriate
widget.

ViewKit Preference Item Classes

235

Getting and Setting Option Menu Preference Item Values

Use the getValue() function to retrieve the internally stored value of the option menu:

int getValue()

getValue() returns an integer value specifying the index of the chosen menu entry. For
example, the following line retrieves the value of the align text field shown above:

alignment = align->getValue();

Use the setValue() function to programmatically set the value of the option menu:

void setValue(int index)

setValue() sets the internally stored value to the index value you pass as an argument,
and updates the value displayed by the option menu. For example, the following line sets
the value of the alignment text field shown above to 1, corresponding to the “Align
Center” option:

align->setValue(1);

Labels

The VkPrefLabel class supports text labels for preference dialogs.

Note: VkPrefLabel is useful only in conjunction with VkPrefList. You should not use
VkPrefLabel with either VkPrefGroup or VkPrefRadio; VkPrefLabel does not create a
label widget and therefore it does not align properly with other items contained in a
VkPrefGroup or VkPrefRadio item.

236

Chapter 8: Preference Dialogs

Figure 8-8 shows a simple preference dialog containing a label preference item.

Figure 8-8 Preference Dialog With Label Preference Item

The only argument the VkPrefLabel constructor expects is the name of the preference
item:

VkPrefLabel(const char * name)

For example, creating the label shown in Figure 8-8 requires only this line:

VkPrefLabel *dialogName = new
VkPrefLabel("dialogName");

Many other ViewKit preference items include label widgets in addition to their base
widget; however, in the case of the VkPrefLabel item, the label is the base widget.
Therefore, in preference item groups, a VkPrefLabel item aligns with other base widgets,
not with other label widgets.

Because the label that is displayed for a VkPrefLabel item is the base widget, you set the
label’s text by setting the XmNlabelString resource of the item’s base widget. Therefore,
to set the label as shown in Figure 8-8, you must set the resource as follows:

*dialogNameBase.labelString: Document Properties

Refer to “Preference Item Labels” on page 223 for more information on setting the label
of a preference item.

ViewKit Preference Item Classes

237

Separators

The VkPrefSeparator class supports a simple separator for use in preference dialogs.

Note: VkPrefSeparator is useful only in conjunction with VkPrefList. You should not
use VkPrefSeparator with either VkPrefGroup or VkPrefRadio; VkPrefSeparator does
not create a label widget and therefore it does not align properly with other items
contained in a VkPrefGroup or VkPrefRadio item.

The only argument the VkPrefSeparator constructor expects is the name of the
preference item:

VkPrefSeparator(const char * name)

For example:

VkPrefSeparator *sep = new
VkPrefSeparator("sep");

“Empty” Space Preference Items

The VkPrefEmpty class provides a “null” item that you can use to add extra space
between other items. This preference item is useful only in conjunction with one of the
grouping preference items: VkPrefGroup, VkPrefRadio, or VkPrefList.

The VkPrefEmpty constructor accepts no arguments:

VkPrefEmpty()

For example:

VkPrefEmpty *space = new VkPrefEmpty();

Groups of Preference Items

ViewKit provides three classes for creating groups of items: VkPrefGroup,
VkPrefRadio, and VkPrefList. Both VkPrefRadio and VkPrefList are implemented as
subclasses of VkPrefGroup.

238

Chapter 8: Preference Dialogs

Comparison of Group Preference Items

VkPrefGroup defines a group of related items. You can specify either vertical or
horizontal layout; the default is vertical. With a vertical layout, VkPrefGroup pads items
so that they take equal space. You have the option of displaying a label for the group.

Figure 8-9 shows an example of a vertical VkPrefGroup item with a label. The label is
the group item’s label widget, not a VkPrefLabel item. The VkPrefGroup item
right-aligns the labels for all of the items it contains. (Because the VkPrefToggle items are
part of a non-homogenous VkPrefGroup item, you must set the XmNlabelString
resources of their label widgets instead of their base widgets, as described in “Setting
Toggle Preference Item Labels” on page 229.) Also, all items are allocated the same
amount of vertical space. If you were to add a larger item to this group, the group item
would allocate for each item the same amount of vertical space.

Figure 8-9 Vertical VkPrefGroup Item With Label

Figure 8-10 shows the same preference items grouped by a horizontal VkPrefGroup
item with a label.

ViewKit Preference Item Classes

239

Figure 8-10 Horizontal VkPrefGroup Item With Label

VkPrefList is similar to VkPrefGroup; however, it supports only a vertical orientation
and it does not support displaying a group label. Unlike VkPrefGroup, VkPrefList does
not pad its items so that they take equal space; instead, each item takes only as much
space as it needs. Typically, you use a VkPrefList item to group other group items. For
example, in Example 8-1, the top-level VkPrefList item contained a VkPrefLabel item
and two VkPrefGroup items—one vertical and one horizontal—separated by two
VkPrefSeparator items.

VkPrefList is also the only grouping item to which you should add VkPrefLabel or
VkPrefSeparator items. You should not use VkPrefLabel or VkPrefSeparator with
either VkPrefGroup or VkPrefRadio; they do not create label widgets and therefore do
not align properly with other items contained in a VkPrefGroup or VkPrefRadio item.

Figure 8-11 shows an example of a VkPrefList. Note that the VkPrefList item does not
contain a group label; if you want to provide a label for a VkPrefList item, you can
include a VkPrefLabel item in it. Also note that the VkPrefList item does not align the
labels of the items it contains. (Because the VkPrefToggle items are part of a VkPrefList
item, you must set the XmNlabelString resources of their base widgets instead of their
label widgets, as described in “Setting Toggle Preference Item Labels” on page 229.) Each
item is allocated only as much vertical space as it needs. If you were to add a larger item
to this group, it would not affect the vertical spacing of the other items.

240

Chapter 8: Preference Dialogs

Figure 8-11 VkPrefList Item

VkPrefRadio is almost identical to VkPrefGroup except that you use it only for
enforcing radio-style behavior on the VkPrefToggle items that it contains. You should
add only VkPrefToggle items to a VkPrefRadio item. Otherwise, VkPrefRadio supports
the same functionality as VkPrefGroup.

Figure 8-12 shows an example of a vertical VkPrefRadio item with a label. The label is
the group item’s label widget, not a VkPrefLabel item. Because the VkPrefToggle items
are part of a homogenous VkPrefRadio item, you must set the XmNlabelString resources
of their base widgets instead of their label widgets, as described in “Setting Toggle
Preference Item Labels” on page 229.

ViewKit Preference Item Classes

241

Figure 8-12 VkPrefRadio Item With Label

Creating Group Preference Items

The VkPrefGroup constructor has the following form:

VkPrefGroup(const char * name,
Boolean horizOrientation = FALSE,
Boolean noLabel = FALSE)

The VkPrefGroup constructor expects as its first argument the name of the preference
item. The second argument is an optional Boolean value that determines the orientation
of the group; FALSE, the default value, specifies a vertical orientation and TRUE specifies
a horizontal orientation. The third argument is an optional Boolean value that
determines whether or not to display a label for the group; FALSE, the default value,
specifies that the group should display the label and TRUE specifies that the group should
not display the label.

For instance, Example 8-1 contained the following constructor:

VkPrefGroup *numberGroup = new VkPrefGroup("numberGroup");

242

Chapter 8: Preference Dialogs

This created a new VkPrefGroup item named “numberGroup” with a vertical
orientation and a visible label. Example 8-1 also contained the following constructor:

VkPrefGroup *horizGroup = new VkPrefGroup("horizGroup",
TRUE, TRUE);

This created a new VkPrefGroup item named “horizGroup” with a horizontal
orientation and no visible label.

The VkPrefRadio constructor accepts the same arguments as the VkPrefGroup
constructor:

VkPrefRadio(const char * name,
Boolean horizOrientation = FALSE,
Boolean noLabel = FALSE)

For instance, Example 8-1 contained the following constructor:

VkPrefRadio *paginationGroup = new VkPrefRadio("paginationGroup");

This created a new VkPrefRadio item named “paginationGroup” with a vertical
orientation and a visible label.

VkPrefList accepts only one argument, a character string specifying the name of the
item:

VkPrefList(const char * name)

As noted earlier, all VkPrefList items have a vertical orientation and do not display a
label. Example 8-1 created a VkPrefList item as the top-level preference item to contain
all other preference items:

VkPrefList *docList = new VkPrefList("docList");

Adding and Deleting Preference Items from a Group Item

After creating a group item, you can add other items to it with the addItem() function:

void addItem(VkPrefItem * item)

ViewKit Preference Item Classes

243

Preference items appear in the order in which you add them. Example 8-1 added five
preference items to the docList preference item:

docList->addItem(dialogName);
docList->addItem(sep1);
docList->addItem(numberGroup);
docList->addItem(sep2);
docList->addItem(horizGroup);

Once you have added items to a group item, you can access an individual child item with
the item() function:

VkPrefItem *item(int item)

Simply provide an integer index value as an argument and item() returns a pointer to the
desired preference item. The numbering of preference items within a group begins with
0, so to retrieve a pointer to the numberGroup item added above to docList, you could use
the line:

item = docList->index(2);

The size() function returns the number of preference items currently associated with a
group item:

int size()

The deleteChildren() function deletes all the items contained by a group item:

virtual void deleteChildren()

Note that this function does not just disassociate the items from the parent group item, it
actually deletes the items. This is useful for freeing memory in a destructor. ViewKit does
not provide any means of disassociating preference items without deleting them or of
deleting individual items in a group. This should not pose a problem as most
applications create preference dialogs at startup and almost never need to modify them
afterwards.

Monitoring the Values of Preference Items Associated with a Group Item

The group preference items provide a changed() function just like all other preference
items; however, changed() operates differently with group items than it does with
individual preference items. In group items, changed() calls the changed() functions of
all child items in the group and returns TRUE if any of the child items have changed.

244

Chapter 8: Preference Dialogs

Setting Group Item Labels

To set the label for a VkPrefGroup or VkPrefRadio item, you must set the
XmNlabelString resource of the preference item’s label widget. (Remember that
VkPrefList items do not display labels.) Example 8-1 illustrated this by setting the labels
for numerous group items:

*numberGroupLabel.labelString: Numbering:
*paginationGroupLabel.labelString: Pagination:
*textGroupLabel.labelString: Text:

Refer to “Preference Item Labels” on page 223 for more information on setting the label
of a preference item.

ViewKit Preference Dialog Class

The base preference dialog class, VkPrefDialog, is a subclass of VkGenericDialog,
which is in turn a subclass of VkDialogManager. Thus, the VkPrefDialog class inherits
all of the functions and data members provided by these base classes. For example, you
post preference dialogs using the various post() variants, you set a preference dialog’s
title using the setTitle() function, and you set its button labels using the
setButtonLabels() function.

Creating a Preference Dialog

Unlike the other dialog classes, VkPrefDialog does not create a global instance of a
preference dialog. Instead, you must create a separate instance of VkPrefDialog for each
preference dialog that you want to display in your program. For very simple preference
dialogs (for example, just a few toggle buttons), you might be able to directly instantiate
a VkPrefDialog object; however, in most cases you should create a separate subclass of
VkPrefDialog for each preference dialog in your application. This is described in
“Creating Preference Dialog Subclasses” on page 249.

The form of the VkPrefDialog constructor is as follows:

VkPrefDialog(const char * name, VkPrefItem * item = NULL)

ViewKit Preference Dialog Class

245

The VkPrefDialog constructor expects as its first argument the name of the preference
dialog. The second argument is an optional pointer to a preference item that the dialog
should use as the top-level preference item. See “Setting the Preference Items for a
Preference Dialog” on page 245 for more information on setting the top-level preference
item.

For example, the following line creates a preference dialog named “simplePref”:

VkPrefDialog *simplePref = new
VkPrefDialog("simplePref");

Setting the Preference Items for a Preference Dialog

A preference dialog can have only one top-level preference item. In most cases, you use
a group item such as VkPrefList as the top-level item.

As described in “Creating a Preference Dialog” on page 244, you can set the top-level
preference item in the VkPrefDialog constructor. You can also set the top-level item with
the setItem() function:

void setItem(VkPrefItem * item)

Note: If the preference dialog already has a top-level preference item associated with it,
setItem() replaces that item with the new item, but does not delete the old item. This
allows you to reuse the old preference item later.

For example, the following line sets the item docList as the top-level item of the preference
dialog simplePref:

simplePref->setItem(docList);

The item() function returns a pointer to the top-level item associated with a preference
dialog:

VkPrefItem *item()

Posting and Dismissing Preference Dialogs

You post preference dialogs using any of the various post() variants provided by the base
ViewKit dialog classes. You should not pass a message string argument to the post()
function when posting a preference dialog.

246

Chapter 8: Preference Dialogs

For example, the following line posts the simplePref dialog as a non-modal, non-blocking
dialog:

simplePref->post();

You should rarely have to unpost a preference dialog programmatically. ViewKit
automatically dismisses a preference dialog when the user clicks either the OK or Cancel
button. If for some reason you do need to unpost a preference dialog from your program,
use the unpost() function.

Responding When the User Clicks a Preference Dialog Button

When the user clicks the OK or Apply button on a preference dialog, the dialog
automatically applies any change of values to the preference dialog’s items by setting the
items’s internally-stored values so that they match whatever is currently displayed on
the screen. If the user clicks the OK button, the preference dialog calls its hide() function
to remove itself from the screen. If the user clicks on the Apply button, the preference
dialog remains visible on the screen.

When the user clicks the Cancel button on a preference dialog, the dialog automatically
resets all of the dialog’s preference items’s on-screen values so that they match the items’s
internally-stored values. Additionally, the preference dialog calls its hide() function to
remove itself from the screen.

The VkPrefDialog class also supplies a ViewKit member function callback named
prefCallback. The preference dialog activates this callback whenever the user clicks the
dialog’s Apply, OK, or Cancel button. The callback passes as call data an enumerated value
of type VkDialogReason, which is defined in VkDialogManager. The value can be any
of VkDialogManager::OK, VkDialogManager::APPLY, or VkDialogManager::CANCEL,
corresponding to the button that the user clicked. To notify components in your
application when the user changes preferences associated with a preference dialog,
register member functions with this ViewKit callback.

ViewKit Preference Dialog Class

247

Note: When the user clicks the OK button, ViewKit first updates the preference items’s
internally stored values and activates the prefCallback callback with
VkDialogManager::APPLY as the call data. Then, ViewKit activates the prefCallback
callback with VkDialogManager::OK as the call data. In some ways, this is analogous to
an IRIS IM pushbutton performing an activate() action followed by a disarm() action
when a user clicks it. You can use this feature to perform certain actions whenever the
user updates preference values by clicking either the Apply or OK button, and a separate
set of actions when the user dismisses the preference dialog by clicking the OK button.

For example, consider a window, myWindow, that is a member of the subclass
MyWindow, derived from VkWindow. In this example, assume that there is a preference
dialog, displayPrefs, that is a member of the subclass DisplayPrefDialog, derived from
VkPrefDialog, that allows the user to specify certain display parameters such as the font.
myWindow could register its member function MyWindow::fontChanged() to be called
whenever the user clicks a button in the preference dialog displayPrefs, by using the
following line of code:

displayPrefs->addCallback(VkPrefDialog::prefCallback,
this,
(VkCallbackMethod) &MyWindow::fontChanged);

When MyWindow::fontChanged() is called, it checks to see if any of the parameters in
which it is interested have changed and, if so, performs whatever processing is needed.
For example:

void MyWindow::fontChanged(VkComponent *obj,
void *clientData,
void *callData)

{
DisplayPrefDialog *dialog = (DisplayPrefDialog*) obj;
MyWindow *win = (MyWindow*) clientdata;
VkDialogManager::VkDialogReason reason =

(VkDialogManager::VkDialogReason) callData;
// If the user clicked Cancel, nothing changed
if (reason == VkDialogManager::CANCEL)

return;
// Now process new preference values as needed ...

}

248

Chapter 8: Preference Dialogs

Using Values Set in a Preference Dialog

To retrieve the value of a preference item, simply call that item’s getValue() function.

This implies that preference items must be accessible to all components that need to use
the preference values. For example, if you create a subclass for a preference dialog,
declare as “public” those preference items that you want to access outside of the dialog.

Example 8-3 shows the header for a NamePref subclass in which two preference items,
firstName and lastName, are declared “public.” These two preference items can be
accessed by other components in the applications.

Example 8-3 Declaring Preference Items Publicly Accessible

class NamePref: public VkPrefDialog {

protected:
VkPrefGroup *nameGroup;

static String _defaultResources[];
virtual Widget createDialog(Widget parent);

public:
VkPrefText *firstName;
VkPrefText *lastName;

NamePref (const char *name);
~NamePref();
virtual const char* className();

};

The NamePref subclass also contains a group, nameGroup, which is declared “protected.”
In most cases, outside components would not need to access a group item. One case in
which it could be useful to make a group item publicly accessible is if you want other
components to be able to activate and deactivate a group of preference items by calling
the activate() and deactivate() functions on that group item.

ViewKit Preference Dialog Class

249

Creating Preference Dialog Subclasses

The preferred method of handling preference dialogs in ViewKit applications is to create
a separate subclass for each preference dialog in the application. Properly designed, a
preference dialog can serve as a self-contained component that you can use in multiple
applications.

The first step in creating a preference dialog subclass is to decide what preference items
to include. List all of the information you want to be able to set with the preference dialog
and determine which preference item class is appropriate for each item. For example, an
item requiring text input is an obvious candidate for a VkPrefText item. However, an
item allowing the user to choose one of several options can be handled by either a single
VkPrefOption item or a number of VkPrefToggle items grouped with a VkPrefRadio
item. Presumably, you want all of these preference items to be accessible outside of the
preference dialog, so you want to declare these items in the “public” section of your class
declaration.

Then determine the layout you want for the preference dialog. You should group similar
items together so that a user can easily find and set related items. The layout determines
what group items you need. Usually, you can define these items in the “private” or
“protected” section of your class declaration; however, in some cases, you might want to
declare some groups as “public.” For example, you might want to be able to activate and
deactivate a group of preference items by calling the activate() and deactivate() functions
on that group item.

Then determine how you want to “publicize” changes in preference items to other
components in your application. In many cases, those components can simply call the
getValue() functions for appropriate items as needed. However, some components need
to be notified immediately whenever certain preference items change. In most cases,
these components can register ViewKit member function callbacks with the preference
dialog that are called whenever the user clicks one of the dialog’s buttons. The
components can then test for changes in preference item values in their callback
functions and react accordingly.

In some cases, you might need to perform special processing when the user clicks one of
the preference dialog’s buttons. In that case, you can override the default ok(), apply(),
or cancel() function for the dialog. These functions are called whenever the user clicks
the corresponding button. In your override definition, you should perform whatever
processing is needed and then call the base VkPrefDialog::ok(), VkPrefDialog::apply(),
of VkPrefDialog::cancel() function as appropriate.

250

Chapter 8: Preference Dialogs

Usually you should also provide a set of default resource values to serve as labels for all
the dialog’s preference items. To do so, you must override the createDialog() function,
which creates and manages all of the widgets in a preference dialog. Your preference
dialog’s createDialog() function must perform the following tasks, in order:

1. Call setDefaultResources() to set the dialog’s default resources.

2. Create all preference items for the dialog.

3. Set the dialog’s top-level item using the setItem() function.

4. Call the base VkPrefDialog::createDialog() function to create the dialog.

5. Pass the dialog’s base widget, returned by VkPrefDialog::createDialog(), as the
return value of createDialog().

Example 8-1 shows a complete example of a preference dialog subclass. You could
include DocPrefDialog dialogs in any application that needed to set various document
parameters.

251

Chapter 9

9. Handling Visuals With ViewKit

This chapter describes the VkVisual class, a convenience class for dealing with X11
visuals. For ideas on how to use this class, see the examples in the
usr/share/src/ViewKit/Basic/Visual directory.

Overview of the VkVisual Class

Dealing with the interaction between widgets and X11 visuals can be complicated (see
“Overview of X Visuals” on page 252 for more information). Programmers often decide
to stick with the default visual when another visual would be more appropriate. Code,
even library code, that assumes default visual attributes is commonplace.

The VkVisual class is designed to handle many of the confusing details so you can use
the most appropriate visual for your needs. Of course, since VkVisual simplifies the
model, applications that have more complex needs must still use direct Xlib or OpenGL
calls. For most situations, however, VkVisual will be sufficient.

With VkVisual, it is easy to do such things as

• obtain an existing widget’s full visual information

• obtain information about the default visual

• pick the best visual for a Shell or for an entire application by describing its semantic
characteristics (for instance, getting the “deepest overlay visual”)

• deal with actual visuals, default or non-default, in a consistent and robust way that
works across different kinds of hardware

• obtain a suitable window for use when creating a graphics context (GC) or a
pixmap

252

Chapter 9: Handling Visuals With ViewKit

The VkVisual class itself deals with global issues, such as

• associating a single colormap with a single visual

• coordinating X11 visual information with that provided by the root window’s
SERVER_OVERLAY_VISUALS property

Each VkVisual instance deals with all of the information pertinent to a single visual. You
can set up a visual as any of the following:

• a caller-defined visual

• the same visual a specific widget is using

• the same visual a specific ViewKit component is using

• the default visual

The visual information can also be reset to a new visual (using setVisual()), but all old
visual information is then lost. If an application still needs both sets of visual
information, it should create a second VkVisual object instead of resetting the first one.

Information such as the colormap or the read-only ArgList are created as needed. Any
such information is cached, and reused as appropriate.

Overview of X Visuals

This section explains some basic points about X, Xt, and X11 visuals. It is important to
understand this information if you are going to put all or part of your application’s
graphical user interface in a non-default visual.

Overview of X Visuals

253

X11 Visual Attributes

X11 does not attach any semantic meaning to a visual. For example, there is no concept
of an overlay visual. There is, however, a semi-standard convention that has been
adopted by workstation vendors:

• A visual’s level is the framebuffer level with which the visual is associated. This is a
hardware-related term having nothing to do with X Window stacking order.

• Levels less than zero refer to underlays.

• Level zero refers to the normal planes. The default visual is generally, but not
necessarily, in the normal planes.

• Levels greater than zero refer to overlay planes.

• Each X11 visual is associated with exactly one level.

• Each level can be associated with more than one visual.

• SERVER_OVERLAY_VISUALS is a property on the root window, relating each X11
visual to its level.

An X11 window has several attributes that need to be consistent when the window is
created. If an application sets these values inconsistently, or if it allows an inconsistent
value to be inherited, the X server will return a fatal BadMatch error.

• XCreateWindow(3X) must be passed a consistent visual and depth.

• The following fields in the XSetWindowAttributes structure passed to
XCreateWindow(3X) must be consistent with the visual and depth:

– Background pixmap— must be NULL or of the stated depth.

– Background pixel—used if the background pixmap is NULL. The pixel value
must not exceed the colormap size.

– Border pixmap—must be NULL or of the stated depth.

– Border pixel— used if the border pixmap is NULL. The pixel value must not
exceed the colormap size.

– Colormap—must match the visual.

You cannot change the depth and visual after the window is created, but you can change
the XSetWindowAttributes values.

254

Chapter 9: Handling Visuals With ViewKit

Xt Visual Handling

In order to achieve the required consistency in visual attributes when dealing with
widgets in non-default visuals, there are several factors you have to keep in mind:

• Widget access to the popup or overlay bitplanes is by means of non-default X11
visuals on a Silicon Graphics workstation.

• A gadget does not have any visual resources of its own, because it draws into its
parent’s window.

• Each widget class, because it is derived from the Core class, has borderPixmap,
borderColor, colormap, and depth attributes. Each widget instance inherits the
values of these attributes from its parent widget.

• Shell and its subclasses are the only standard widgets that have an XmNvisual
resource (and hence an X11 visual) directly associated with them. (However, there
can be special widgets, such as the SgVisualDrawingArea widget
[<Sgm/VisualDrawingA.h>], that have an associated X11 visual. Such special
widgets are not common.)

• Most widgets do not have a visual resource, so they must inherit their visual. If a
widget does not have an XmNvisual resource, you cannot explicitly set its visual at
creation time. To put these widgets into a non-default visual, their widget parent
must be in a non-default visual.

• Any widget that does not have a visual resource explicitly set at creation time
inherits its visual from its parent window.

• For all widgets other than Shell widgets, the parent window is the parent widget’s
window. This results in inheriting a consistent set of values.

• For Shell widgets, the parent window is the root window. Thus, if the parent widget
uses a visual different from the root window’s visual, you must explicitly set at least
some of the Shell’s visual resources. If you do not, an X server BadMatch fatal error
will occur.

Overview of X Visuals

255

Visual Inheritance in ViewKit

To avoid mismatches, ViewKit explicitly sets the visual information for all new Shell
widgets it creates. This includes all menus and dialogs. Shell visual attributes are set in
the following ways:

• If visual information is passed in by the application, that information is used.

• If the widget is a menu, and useOverlayMenus is set, an appropriate visual is
chosen.

• If the widget is a dialog, and useOverlayDialogs is set, an appropriate visual is
chosen.

• If none of the above apply, ViewKit sets the Shell (that is, menu or dialog) to the
widget parent’s visual.

The net effect is that you will not need to worry about visual inheritance in most of your
ViewKit applications.

It is possible to place the top shell (VkApp’s unrealized shell) in a non-default visual.
Because of the inheritance described above, this effectively resets the visual for the rest
of the application (see VkApp(3x), useOverlayApps() and preRealizeFunction()).

Maintaining Consistency

In order to maintain consistency when using visuals, there are several points you should
keep in mind:

• Visual consistency issues are especially important when creating Shell widgets, but
they are also important at other times. For example, you cannot use a pixmap or a
GC at a depth other than the one for which it was created.

• Colormaps and pixel values need to be kept consistent. In general, the same pixel
will not be the same color in the various colormaps. Be sure you use the correct
pixel value for the current colormap.

• Avoid the BlackPixel and WhitePixel macros, because they return pixel values
suitable for use only with the normal planes colormap. For example, BlackPixel
returns a pixel that is black in the colormap for the normal planes, but is generally
transparent in the overlay colormaps.

256

Chapter 9: Handling Visuals With ViewKit

• Pixel values determined using the default colormap should not be used with
another colormap. If the pixel exists at all, you are likely to get the wrong color. If
the pixel does not exist (such as when you try to apply a pixel greater than 3 to a
2-bit overlay colormap), an X protocol error will occur.

• Colormaps belonging to widgets in one of the overlay visuals may well be smaller
than the default colormap, and pixel 0 may well be transparent.

• Some hardware has a 2-bit level 1 visual, a 2-bit level 2 visual, and a 4-bit level 1
visual that are not entirely independent. The two-bit colormaps are independent,
but they may overlap with the 4-bit colormap. The framebuffer pixels of the 4-bit
visual may overlap with those of the 2- bit visuals. On such hardware, using the
4-bit visual is discouraged.

Colormap Coordination

There is no such thing as a system default colormap for any visual other than the default
visual. If a VkVisual instance refers to the default visual, it automatically uses the default
colormap. The first VkVisual instance that refers to each non-default visual creates a
suitable colormap for that visual. Subsequent VkVisual instances that refer to the same
visual re-use the colormap that the first instance created. This effectively establishes
default colormaps for a single application. There is currently no supported way for
multiple independent applications to cooperate on using a common colormap.

An application is guaranteed to have its colormaps installed only when it has colormap
focus. Consequently, there may be colormap flashing. When an application gets
colormap focus, all of the colormaps the application has declared are installed (whether
or not it actually needs them). Each of these colormaps remains until another application
needs to have it replaced. Any of your application’s windows that use a conflicting
colormap will not return to correct colors until your application next gets colormap
focus.

Override widgets (menus and dialogs) are responsible for installing their own
colormaps. Such widgets do not have their colormaps installed unless the application
gets colormap focus and specifically installs the colormaps. ViewKit arranges automatic
installation of any needed colormaps for the menu and dialog widgets it creates. If you
create any directly, you must call XSetWMColormapWindows() yourself.

Useful Enums

257

Failure to destroy colormaps that VkVisual creates causes colormap leakage in the X
server. Fortunately, from a practical point of view, most applications do not need to be
concerned with this, for the following reasons:

• All created colormaps are deleted when the application terminates. Unless a lot of
colormaps are being created, this should be adequate.

• VkVisual reuses colormaps. Unless the application sets forceNewColormap or uses
setColormap(), there will be at most one colormap for each visual used. This is
normally few enough that they can be ignored until they are destroyed when the
application terminates.

• Any VkVisual that is constructed by passing it a widget uses the colormap from
that widget. Such a colormap should not be explicitly destroyed.

Useful Enums

The VkVisual class provides some useful enums:

enum colors enum colors {MAX_AVAILABLE_COLORS}

Using this for the number of colors in the constructor, or in a
setVisual() call, means that the deepest visual that otherwise satisfies
the request criteria is considered a match.

enum index enum index {RESET, FIRST, NEXT, LAST}

You can pass this to VkVisualInfo(int) when using it to iterate over the
visuals list.

enum planes enum planes {NORMAL_LEVEL, OVERLAY_LEVEL, UNDERLAY_LEVEL,
MAX_OVERLAY_LEVEL, MIN_OVERLAY_LEVEL,
MAX_UNDERLAY_LEVEL, MIN_UNDERLAY_LEVEL,
ANY_LEVEL}

This specifies which level bit planes are being requested. These
constants do not conflict with any legitimate specific level. Calls to the
constructor, or to setVisual(), can specify either the explicit level
required or one of these enum values:

• NORMAL_LEVEL—The normal planes.

• OVERLAY_LEVEL—Any overlay planes.

• UNDERLAY_LEVEL—Any underlay planes

258

Chapter 9: Handling Visuals With ViewKit

• MAX_OVERLAY_LEVEL—Highest available overlay level.

• MIN_OVERLAY_LEVEL—Lowest available overlay level.

• MAX_UNDERLAY_LEVEL—Underlay level closest to zero.

• MIN_UNDERLAY_LEVEL—Underlay level furthest from zero.

• ANY_LEVEL - Does not matter which level.

enum status enum status {FAILURE, SUCCESS, ALMOST}

These are the values that setVisual() can return. It is up to an
application to notice that it did not receive SUCCESS, and make
appropriate adjustments, if necessary.

• SUCCESS —The visual found is exactly what was requested.

• ALMOST—The visual found is likely to be close enough. It is up to
the application to query the attributes to see whether they are
acceptable.

• FAILURE—There was a serious problem, such as setVisual() could
not get the right visual class. This generally means that the default
visual had to be assigned.

setVisual() returns the lowest status found in processing any of the
parameters. If anything failed, setVisual() returns FAILURE. If nothing
failed, but something was ALMOST, then setVisual() returns ALMOST.
setVisual() returns SUCCESS only if everything succeeded.

enum transparency
enum transparency {TRANSPARENT_NONE,

TRANSPARENT_PIXEL,
TRANSPARENT_MASK,
TRANSPARENT_DONT_CARE}

These are the kind of transparencies that a visual supports.

VkVisual Constructors and Destructor

259

VkVisual Constructors and Destructor

The following are the constructors and destructors for the VkCutPaste class:

• VkVisual (Widget w = NULL,
Boolean forceNewCmap = FALSE)

• VkVisual (const VkComponent * component,
Boolean forceNewCmap = FALSE)

• VkVisual (int visualClass,
int level = NORMAL_LEVEL,
int colors = MAX_AVAILABLE_COLORS,
CARD32 xparentRequested = TRANSPARENT_DONT_CARE,
Boolean forceNewCmap = FALSE)

• VkVisual (const VkVisual&)

• VkVisual &operator = (const VkVisual&)

• virtual ~VkVisual()

Member Functions

This section describes the VkVisual’s public functions.

Setting the Class’s Visual Information

setColormap()
virtual Colormap setColormap (Colormap cmap = NULL,

Boolean setDefault = FALSE)

Makes any colormap you pass in the object’s current colormap. If you
do not pass in a colormap, setColormap() creates a new, empty one that
matches the current visual.

If setDefault is TRUE, setColormap() sets the new colormap as the
default one for the visual associated with this VkVisual instance.

260

Chapter 9: Handling Visuals With ViewKit

setColormap() returns the now-current colormap.

Note: setColormap() never frees a colormap because it has no way of
knowing whether that colormap is still needed. Each time you call
setColormap(), it overwrites the address of the previous map. It is up to
your application to free any previous colormap before you call
setColormap(). If you still need the previous colormap, you should
make sure you have the address recorded. You can obtain the address by
calling colormap().

setVisual() This function is overloaded to allow you to set visuals several different
ways:

• virtual void setVisual (Widget w = NULL,
Boolean forceNewCmap = FALSE)

Resets the VkVisual to the visual of the widget or gadget w. If no
widget or gadget is passed in, then setVisual() sets the VkVisual to
the default visual.

If forceNewCmap is TRUE, setVisual() creates a new, empty
colormap. Otherwise, setVisual() reuses an existing colormap for
this visual, if one is available. Unless you know you need a new
colormap, you should leave forceNewCmap FALSE.

• virtual void setVisual (const VkComponent * component,
Boolean forceNewCmap = FALSE)

Resets the current instance of VkVisual to the visual used by
component->baseWidget().

If forceNewCmap is TRUE, setVisual() creates a new, empty
colormap. Otherwise, setVisual() reuses an existing colormap for
this visual, if one is available. Unless you know you need a new
colormap, you should leave forceNewCmap FALSE.

Member Functions

261

• virtual VkVisual::status setVisual (int visualClass,
int level,
int colors,
CARD32 transparent,
Boolean forceNewCmap = FALSE)

Resets the instance’s visual to be as close to the specified calling
parameters as possible. This version always sets some visual; if
there is no better match, it sets the default visual.

visualClass must be one of the constants from <X11/X.h>,
StaticGray , GrayScale , StaticColor , PseudoColor , TrueColor ,
or DirectColor . If the application asks for a class not supported by
the current screen, setVisual() returns FAILURE and provides the
default visual.

level specifies the type of plane you want. setVisual() always tries
to give you the type of visual you request (for instance, a specific
level, overlay planes, underlay planes, or normal planes).
setVisual() goes by the following rules:

If level is one of the enum constants, that level is used.

If level is a legal explicit level, it is used directly.

If level is greater than the maximum level, then the maximum level
is used.

If level is less than the minimum level, then the minimum level is
used.

If the requested plane or planes exist for the specified visual class,
setVisual() returns SUCCESS.

If the requested plane has no visual of the requested class, but there
is a normal planes visual of the requested class, then the normal
planes visual is used and setVisual() returns ALMOST.

If none of the above apply, setVisual() sets the instance’s default
visual, and returns FAILURE.

262

Chapter 9: Handling Visuals With ViewKit

Data Access Functions

argCnt() virtual int argCnt() const

Returns the number of visual arguments in the ArgList returned by
argList().

argList() The overloaded versions of this function are as follows:

• virtual ArgList argList() const

Returns the pointer to a read-only ArgList suitable for using in Xt
calls such as these:

VkVisual vis(parent);
XtSetValues(w, vis.argList(), vis.argCnt());

• virtual void argList(Arg * args, Cardinal * offset) const

Appends the visual arguments to the ArgList, args, and increments
the count, offset, by the number of arguments it appended.

• inline void argList(Arg * args, int * offset) const

Works the same as the previous version, except that it takes an int*
for offset instead of a Cardinal*.

className() const char *className(void) const

Returns the class name of VkVisual, which is “VkVisual”.

colormap() virtual Colormap colormap() const

Returns the colormap associated with this instance of the VkVisual
class. If there is no colormap, an empty, sharable one is created.

colormapCreated()
virtual Boolean colormapCreated() const

Returns TRUE if the current colormap was created by VkVisual. This
can be used by the application to tell whether or not the colormap
should be destroyed when no longer needed.

depth() virtual int depth() const

Returns the depth associated with this instance’s visual.

maxLevel() virtual int maxLevel() const

Returns the maximum framebuffer level for the current screen.

Member Functions

263

minLevel() virtual int minLevel() const

Returns the minimum framebuffer level for the current screen.

numColors() virtual int numColors() const

Returns the number of colors in the colormap associated with this
instance’s visual.

visual() virtual Visual *visual() const

Returns this instance’s visual.

visualID() virtual VisualID visualID() const

Returns the visual ID of this instance’s visual.

vkVisualInfo()
The overloaded versions of this function are as follows:

• virtual const

VkVisualInfo *vkVisualInfo(VisualID vid) cons t

Returns a pointer to the VkVisualInfo structure associated with the
specified visual.

• virtual const

VkVisualInfo *vkVisualInfo(Visual * vis = NULL) const

Returns a pointer to the VkVisualInfo structure associated with the
specified visual. If vis is NULL, the current visual is used.

• virtual const

VkVisualInfo *vkVisualInfo(const Widget w) const

Returns a pointer to the VkVisualInfo structure associated with the
widget’s visual.

264

Chapter 9: Handling Visuals With ViewKit

• virtual const

VkVisualInfo *vkVisualInfo(int index) const

Returns a pointer to one of the VkVisualInfo structures from the
global list maintained by VkVisual. Possible arguments are:

An integer from 0 to the number of available visuals.

RESET—Resets the global record so that a call to
VkVisualInfo(NEXT) will return a pointer to the first structure.
Returns NULL.

FIRST—Returns a pointer to the first structure.

NEXT—Returns a pointer to the first structure beyond the
previously retrieved one, regardless of how it was retrieved. If the
previously retrieved structure was the last structure, a RESET is
done and a NULL pointer is returned. The next
VkVisualInfo(NEXT) call will then return a pointer to the first
structure.

window() virtual Window window() const

Returns some window associated with this instance’s visual. There is
no guarantee as to which window you will get back, even if you used
the VkVisual(widget) constructor. Typical use of this window is as a
parameter to create a GC or to call the Xpm pixmaps routines (which
derive visual information from the window they are passed).

If VkApp’s window is associated with this instance’s visual, VkApp’s
window are returned, regardless of what other windows are also
associated with the visual. If the root window is associated with this
instance’s visual, the root window is returned. For any other X11 visual,
a matching new InputOutput unmapped window is created the first
time a window is needed for that particular visual. Windows are reused
later as necessary. Separate VkVisual instances return the same
window if the instances are for the same X11 visual.

Because a window may be re-used, it is important that the application
not delete it.

Member Functions

265

Debugging Functions

indexString() virtual const char *indexString(index index) const

Prints, to stderr, the string equivalent to the passed enum value.

planesString() virtual const char *planesString(planes plane) const

Prints, to stderr, the string equivalent to the passed enum value.

printAll() virtual void printAll() const

Prints, to stderr, a variety of details about the visuals of the current
display.

print() These are the overloaded versions of this function:

• virtual void print() const

Prints, to stderr, the visual information from the VkVisual instance.

• virtual void print(const Widget w) const

Prints, to stderr, the visual information matching the widget w.

• virtual void print(const VkVisualInfo * vis) const

Prints, to stderr, the visual information from vis.

• virtual void print (VisualID vid) const

Prints, to stderr, the visual information from the specified visual.

• virtual void print (const Visual * vis) const

Prints, to stderr, the visual information from the specified visual.

• virtual void print (int index) const

Prints, to stderr, the visual information from VkVisualInfo(index).

statusString() virtual const char *statusString(status status) const

Prints, to stderr, the string equivalent to the passed enum value.

transparencyString()
virtual const

char *transparencyString(transparency trans) const

Prints, to stderr, the string equivalent to the passed enum value.

266

Chapter 9: Handling Visuals With ViewKit

visualClassString()
virtual const char *visualClassString(int visClass) const

Prints, to stderr, the string equivalent to the passed value
(“Pseudocolor”, and so on).

Static Functions

visualParent()
static Widget visualParent(Widget w, Visual ** v)

Returns the first widget in the widget tree (w or an ancestor of w), that
has a visual attribute. Normally, this widget is a subclass of Shell, but it
could be an SgVisualDrawingArea or any other widget that has a
XmNvisual resource.

visualParentArgs()
static void visualParentArgs(Widget parent, Arg * args, int * cnt)

Retrieves a set of visual resources consistent with the parent widget.
The resources are copied into args and cnt is updated. All visual
resources except XmNvisual are copied from the parent. XmNvisual is
copied from the visual parent of parent.

VkVisual Examples

Example 9-1 and Example 9-2 illustrate how easy it is to deal with visuals using the
VkVisual class:

Example 9-1 Putting a single widget in a non-default visual using VkVisual:

Widget p; // Parent widget
char *c = “Questions”; // Widget’s name
...
VkVisual vis(p); // Get the visual info
XmCreateQuestionDialog(p, c, vis.argList(), vis.argCnt());
...

VkVisual Examples

267

Example 9-2 Creating a GC of the right depth:

Display *dpy;
VkVisual vis(widget);
...
XCreateGC(dpy, vis.window(),...);

Putting your entire application into a non-default visual is only a little more complicated.
See “Putting Applications in the Overlay Planes” on page 80 for more details.

269

Chapter 10

10. ViewKit Cut and Paste

This chapter describes the VkCutPaste class, which provides copy, paste, drag, and drop
capabilities. Figure 10-1 shows the inheritance graph for VkCutPaste.

Figure 10-1 Inheritance Graph for VkCutPaste

Overview of ViewKit Cut and Paste

The VkCutPaste class provides a simple C++ API that helps developers add
inter-application Copy, Paste, Drag, and Drop capabilities to their applications easily,
and with little or no worrying about the complex protocols of Motif and the X Window
System. However, developers should be familiar with the style guidelines covered in the
Inter-Client Communication Conventions Manual, Indigo Magic User Interface Guidelines, and
Indigo Magic Desktop Integration Guide in order to provide a consistent look and feel in
their applications.

Although it is called VkCutPaste, this class does not provide a specific cut function.
However, a cut can be implemented in virtually all programs by calling the copy
functions, followed by calling a delete function specific to your program.

The VkCutPaste class uses the Xt Intrinsics and Motif to implement a standard X
Selection ICCCM compliant communication, so your application must link with those
libraries to use this API. VkCutPaste does not require other parts of ViewKit, and can be
used in a standard Motif application.

If you wish to examine a sample program using VkCutPaste, you can find one at
/usr/share/src/ViewKit/CutPasteDragDrop/cutpaste1.c++.

VkCallbackObject VkCutPaste

270

Chapter 10: ViewKit Cut and Paste

Primary and Clipboard Transfer Models

VkCutPaste supports both the Primary Transfer Model and the Clipboard Transfer
Model (see Chapter 7, “Interapplication Data Exchange,” in the Indigo Magic Desktop
Integration Guide for more information on these transfer models). PRIMARY refers to
copying data by highlighting it using the mouse. When the middle mouse button is
clicked, the data is pasted to the current location of the mouse pointer. CLIPBOARD
refers to copying data by using a menu selection (for instance, Copy in an Edit menu) or
a keyboard accelerator (<Ctrl-c>). The user must use another menu selection (for
example, Paste in an Edit menu) or keyboard accelerator (<Ctrl-v>) to paste the data at
the desired location.

The behavior of the PRIMARY and CLIPBOARD selections depend entirely on how you
choose to implement them. VkCutPaste does not dictate any particular behavior.
However, by custom, data on the CLIPBOARD selection tends to be more permanent. It
normally remains even if the original data is cut or no longer selected, and even if new
data has since been selected. It generally is cleared only if the user makes another
selection, and then uses a menu selection or keyboard accelerator to place the new
selection on the clipboard.

Also by custom, data on the PRIMARY selection tends to be more transient. It normally
is replaced when different data is highlighted. Depending on how you implement the
PRIMARY selection, it may also be cleared when the selected data is cut or no longer
highlighted.

Consult the Inter-Client Communication Conventions Manual, Indigo Magic User Interface
Guidelines, and Indigo Magic Desktop Integration Guide for style guidelines.

VkCutPaste Constructor and Destructor

The following are the VkCutPaste constructor and destructor.

VkCutPaste() VkCutPaste(Widget w)

Instantiates a VkCutPaste object. The widget, w, must not be destroyed
for the life of the VkCutPaste class, since it is used during the execution
of most of the VkCutPaste functions. Do not pass the same widget into
more than one concurrent instance of the VkCutPaste class.

Copying Data

271

~VkCutPaste()
void ~VkCutPaste(void)

This deletes any remaining memory allocated by the VkCutPaste class.
Because the class sometimes creates temporary files, it is important
always to delete a VkCutPaste object when you are finished with it.

In order to use the copy and paste or drag and drop capabilities, you must instantiate the
VkCutPaste class in your program (probably at program start-up). You can do this with
the following two lines of code, where someWidget is any widget in your Motif or ViewKit
program that will be valid during the lifetime of the VkCutPaste class:

#include <Vk/VkCutPaste.h>
VkCutPaste *cnp = new VkCutPaste(someWidget);

Copying Data

For most purposes, VkCutPaste::clear(), VkCutPaste::putCopy(), and VkCutPaste
export() are the only functions necessary to implement a copy capability.
VkCutPaste::registerLoseSelection() handles the occasions when your application loses
ownership of one of the selections.

clear() void clear (Atom selection, Time time = CurrentTime)

Clears the indicated selection (either “CLIPBOARD” or “PRIMARY”),
and frees any memory that was allocated as part of an earlier
putCopy(). After the clear() function is called, no data is being offered
to any other ICCCM clients on the indicated selection.

putCopy() Boolean putCopy(Atom selection,
Atom target,
XtPointer data,
unsigned long numBytes);

Creates a copy of the data, which is made available to other clients by
export(). The data passed into putCopy() can be freed immediately after
this call. target identifies the kind of data you are trying to exchange.

If your application does not call clear() before calling putCopy(),
putCopy() appends the current data to any data already on the
selection.

272

Chapter 10: ViewKit Cut and Paste

export() Boolean export(Atom selection, Time time = CurrentTime) ;

Makes the data on the indicated selection available to other ICCCM
clients.

registerLoseSelection()
void registerLoseSelection(Atom selection,

LoseSelectionProc loseSelProc,
void * clientData)

Registers a callback procedure to be invoked when the application loses
ownership of the selection. This is especially useful in the case of the
PRIMARY selection, since in the loseSelProc callback the application
should unhighlight what was previously highlighted as the PRIMARY
selection. You typically call registerLoseSelection() once, right after
you instantiate the VkCutPaste class.

The prototype for the LoseSelectionProc is as follows:

typedef void (*LoseSelectionProc)(Widget w,
Atom selection,
void * clientData);

The following code fragment, which would appear in a menu callback, demonstrates the
use of these copying functions. In this case, the user has highlighted an XPM image and
selected Copy from the Edit menu:

extern VkCutPaste *cnp;
extern XtPointer image; // pointer to XPM image buffer
extern unsigned long numBytes; // number of bytes of image data

Atom xaClipboard = XmInternAtom(dpy, “CLIPBOARD”, False); // get clipboard atom
Atom xaXPM = XmInternAtom(dpy, “XPM”, False); // get XPM atom

cnp->clear(xaCLIPBOARD); // clear clipboard
cnp->putCopy(xaCLIPBOARD, xaXPM, image, numBytes); // make copy of XPM image
cnp->export(xaCLIPBOARD); // make data available

Once this code has run, any application on your desktop that has implemented the
standard X Window Copy and Paste protocol can paste the XPM image.

To make this image available on the PRIMARY selection, you simply substitute
XA_PRIMARY for xaCLIPBOARD.

Pasting Data

273

Pasting Data

In most cases, the recommended function for pasting data into an application is
VkCutPaste::importImmediate(). In some rare instances, however, you may need to use
VkCutPaste::import().

importImmediate()
XtPointer importImmediate(Atom selection,

Atom * interestList,
int interestListLen,
Atom * targetRet,
unsigned long * numBytesRet,
Time theTime = CurrentTime);

Imports Copy and Paste data from any ICCCM client. This function
blocks until the data is retrieved.

The selection is either “CLIPBOARD” or “PRIMARY”. The interestList is
an array of targets this application accepts, in order of preference. For
example, interestList[0] might be XPM, interestList[1] might be GIF_89,
and interestList[2] might be STRING. interestListLen would then be 3.
For a list of registered targets, see the VkCutPaste(3x) reference page.

importImmediate() accepts any target on the interestList or any target
that can be converted to one of the targets on the list (see “Using Data
Type Converters” on page 285 for more information on data type
conversion). The function returns an XtPointer to the data or a NULL
pointer (meaning that none of the requested targets were available). In
the above example, if an acceptable target were found, targetRet would
be XPM, GIF_89, or STRING.

importImmediate() makes a copy of the interestList, so you can free the
memory immediately after this call completes.

Since this function uses its own secondary event loop, some clients
might want to avoid this call.

274

Chapter 10: ViewKit Cut and Paste

import() void import(Atom selection,
Atom * interestList,
int interestListLen,
ImportCallbackProc importProc,
void * clientData = NULL,
Time theTime = CurrentTime);

Acts like importImmediate() except that it is non-blocking and requires
a callback. For instance, your application could call importimmediate()
with an interestList containing XPM, GIF_89, and STRING. If at least
one of those targets is available, then importProc is called with data set to
a valid XtPointer. If none of the acceptable targets are available,
importProc is called with data set to NULL.

Since import() makes a copy of the interestList, you can free the memory
immediately after this call completes, even if the importProc has not yet
been called.

The prototype for the ImportCallbackProc is as follows:

typedef void (*ImportCallbackProc)(Widget w,
Atom target,
XtPointer data,
unsigned long numBytes,
void * clientData);

The following code sample, which would appear in a menu callback, illustrates the paste
capability. In this example, the application accepts a GIF image or an XPM image (your
list of acceptable formats can be as long as you like; this example just happens to use
two). The user has selected Paste from the Edit menu.

XtPointer image;
unsigned long numBytes;

Atom xaClipboard = XmInternAtom(dpy, “CLIPBOARD”, False);
Atom xaGIF_89 = XmInternAtom(dpy, “GIF_89”, False);
Atom xaXPM = XmInternAtom(dpy,”XPM”, False);

Atom interestList[2];
interestList[0] = xaGIF_89;
interestList[1] = xaXPM;
int numItemsInList = 2;

Dragging Data

275

image = cnp->importImmediate(xaCLIPBOARD, interestList, numItemsInList,
&targetRet, &numBytes);

if (image == NULL)
printf(“No images available”);

else if (targetRet ==xaGIF_89)
printf(“GIF image received”);

else if (targetRet == xaXPM)
printf(“XPM image received”);

The image that is returned should eventually be freed as follows:

XtFree(image);

Dragging Data

The VkCutPaste class provides two dragging functions. VkCutPaste::dragAwayCopy()
are sufficient for most needs. The advanced programmer may want more control,
however, and so may wish to use VkCutPaste::dragAwayCopyExtended().

dragAwayCopy()
Widget dragAwayCopy(Widget w,

XEvent * xev,
Atom target,
XtPointer data,
unsigned long numBytes,
DragAwayCallbackProc dragAwayProc = NULL,
void * clientData = NULL);

Drags away data from the current application. You can free data
immediately after calling this function, because dragAwayCopy()
makes a copy of the data for its own use. The XEvent should be the
ButtonPress event that initiated the drag. The optional dragAwayProc
is called after the drag completes. One of the parameters to
dragAwayProc indicates if the drag was successful or not.

dragAwayCopy() returns the DragContext created for this drag and
drop transaction (see the XmDragStart(3X) reference page).

276

Chapter 10: ViewKit Cut and Paste

The prototype for the DragAwayCallbackProc is as follows:

typedef void (*DragAwayCallbackProc)(Widget w,
Boolean result,
void * clientData);

dragAwayCopyExtended()
Widget dragAwayCopyExtended(Widget w,

XEvent * xev,
Atom * targetList,
XtPointer * dataList,
unsigned long * lenList,
int numDragItems,
DragAwayCallbackProc dragAwayProc = NULL,
void * clientData = NULL,
ArgList args = NULL,
int numArgs = 0);

Does exactly what dragAwayCopy() does, but provides more options
for the advanced programmer. For example, you could specify the drag
away data as more than one target (it should be the same conceptual
object, just in different formats, like GIF and XPM format data of the
same image). You could also use this function to create various drag
icons by specifying those parameters in the args argument. args and
numArgs are passed off to XmDragStart(). Several args are not allowed:
XmNconvertProc, XmNdragOperations, XmNexportTargets,
XmNnumExportTargets, and XmNclientData. See the
XmDragContext(3X) reference page for more information on other,
valid arguments. The Motif Drop Copy protocol (XmDROP_COPY) is
the only drag-and-drop operation that the VkCutPaste class supports.

dragAwayCopyExtended() returns the DragContext created for this
drag-and-drop transaction (see the XmDragStart(3X) reference page).

The following is the prototype for the DragAwayCallbackProc:

typedef void (*DragAwayCallbackProc)(Widget w,
Boolean result,
void * clientData);

Accepting Drops

277

The following code sample illustrates dragging. The user has just clicked a mouse button
on an XPM image and has begun dragging it out of your application:

extern VkCutPaste *cnp;
extern XtPointer image; // pointer to the XPM image data
extern unsigned long numBytes // number of bytes of image data
extern Widget theWidget; // widget where drag began
extern XEvent *xev; // ButtonPress Event that

// triggered the drag

Atom xaXPM = XmInternAtom(dpy, “XPM”, False);

cnp->dragAwayCopy(theWidget, xev, xaXPM, image, numBytes);

// at this point, you can free the data

The two optional parameters, dragAwayProc and clientData, are not usually specified, but
if you want to be notified when the drag is finished, or if it was successful, you can pass
in a callback procedure and any data you want. For example:

// dragAwayCB is invoked after completion of the drag

void dragAwayCB(Widget w, Boolean dragSuccess, XtPointer clientData)
{

printf(“Drag success = %d”, dragSuccess);
printf(“ClientData = 0x%x”, clientData);

}

Your call to dragAwayCopy() would then be like this:

cnp->dragAwayCopy(theWidget, xev, xaXPM, image, numBytes,
dragAwayCB, (XtPointer) 123);

Accepting Drops

ViewKit provides two functions for creating a drop site. VkCutPaste::registerDropSite()
is sufficient for most needs. The advanced programmer may want more control,
however, and so may wish to use VkCutPaste::registerDropSiteExtended(). If you are
interacting with the Silicon Graphics Indigo Magic Desktop, see “Accepting Drops From
the Indigo Magic Desktop” on page 281.

278

Chapter 10: ViewKit Cut and Paste

registerDropSite()
Boolean registerDropSite(Widget w,

Atom * interestList,
int interestListLen,
DropSiteCallbackProc dropProc,
void * clientData = NULL);

Registers a widget as a drop site. The interestList argument is a list of
what data targets the drop site accepts, in order of preference. When
another client drops data on this widget, the dropProc is called. The
target passed to dropProc is the first target in the interestList that the
other client can supply, or for which a converter exists (see “Using Data
Type Converters” on page 285 for more information about converting
data types).

The following is the prototype for the DropSiteCallbackProc:

typedef void (*DropSiteCallbackProc)(Widget w,
Atom target,
XtPointer data,
unsigned long numBytes,
int x,
int y,
void * clientData);

registerDropSiteExtended()
Boolean registerDropSiteExtended(Widget w,

Atom * interestList,
int interestListLen,
DropSiteCallbackProc dropSiteCallbackProc,
DragCallbackProc dragCallbackProc = NULL,
void * clientData = NULL,
Arg * args = NULL,
int numArgs = 0);

Does exactly what registerDropSite() does, but provides more options
for the advanced programmer. For example, you could create various
drop icons by specifying those parameters in the args argument. args
and numArgs are passed off to XmDropSiteRegister(). Some args are
not allowed: XmNdragProc, XmNdropProc, XmNdropSiteOperations,
XmNimportTargets, and XmNnumImportTargets. See the

Accepting Drops

279

XmDropSite(3X) reference page for information on other, valid
arguments. The Motif Drop Copy protocol (XmDROP_COPY) is the
only drag-and-drop operation the VkCutPaste class supports.

The DropSiteCallbackProc is called when the user drops some data on
the specified widget. The target passed to the DropSiteCallbackProc is
the first target found in interestList that the other client is offering, or for
which a converter exists (see “Using Data Type Converters” on
page 285).

The prototype for the DropSiteCallbackProc is as follows:

typedef void (*DropSiteCallbackProc)(Widget w,
Atom target,
XtPointer data,
unsigned long numBytes,
int x,
int y,
void * clientData);

The DragCallbackProc is called when the user drags some data over the
specified widget. The target passed to the DragCallbackProc is the first
target found in interestList that the other client is offering, or for which a
converter exists (see “Using Data Type Converters” on page 285).

The following is the prototype of the DragCallbackProc:

typedef void (*DragCallbackProc)(Widget w,
Atom target,
int reason,
int x,
int y,
void * clientData);

These are the reasons that can be passed to the dragCallbackProc:

• XmCR_DROP_SITE_LEAVE_MESSAGE

• XmCR_DROP_SITE_ENTER_MESSAGE

• XmCR_DROP_SITE_MOTION_MESSAGE.

unregisterDropSite()
Boolean unregisterDropSite(Widget w) ;

Unregisters a drop site, making it stop accepting drops of any kind.

280

Chapter 10: ViewKit Cut and Paste

The following code sample illustrates a drop. In this example, the application’s widget
accepts an XPM image or a GIF image (your list of acceptable formats can be as long as
you like; this example just happens to use two). After creating the widget, you might
include something like this:

Atom xaXPM = XmInternAtom(dpy, “XPM”, False);
Atom xaGIF_89 = XmInternAtom(dpy, “GIF_89”, False);

// dropProcCB wil be invoked whenever an image is dropped on the widget

void dropProcCB(Widget w, Atom target, XtPointer data,
unsigned long numBytes, int x, int y,
XtPointer clientData)

{
if (target == xaXPM)

printf(“XPM Image dropped at x=%d, y=%d.”, x, y);
else if (target == xaGIF_89)

printf(“GIF Image dropped at x=%d, y=%d.”, x, y);

// at some point, you should “XtFree(data)” to free the memory
}
// this code is done once, and makes the indicated widget a drop site
//
extern Widget theWidget; // widget that is to become a drop site

Atom interestList[2];

interestList[0] = xaXPM; // we first prefer XPM
interestList[1] = xaGIF_89; // we also accept GIF
int numItemsInList = 2;

cnp->registerDropSite(theWidget, interestList,
numItemsInList, dropProcCB, (XtPointer) 123);

Accepting Drops From the Indigo Magic Desktop

281

Accepting Drops From the Indigo Magic Desktop

When a user drags a file icon from the Indigo Magic Desktop, the Desktop transfers the
file information via an _SGI_ICON target. The VkCutPaste class provides some
convenience routines for parsing this data:

getFilenamesFromSGI_ICON()
Boolean getFilenamesFromSGI_ICON(char * sgiIconData,

unsigned long numBytes,
char *** fileNameArrayRet,
int * numFilesRet)

Parses the data of target _SGI_ICON that the Indigo Magic Desktop
uses to drag one or more files around. This is a convenience function
that facilitates your application’s acceptance of files from the desktop.
You can call this function from a DropSiteCallbackProc when your
application receives a target of _SGI_ICON. After your application is
finished with the filename list, you should free the memory allocated
inside getFilenamesFromSGI_ICON() by calling
freeFilenamesFromSGI_ICON().

freeFilenamesFromSGI_ICON()
void freeFilenamesFromSGI_ICON(char ** fileNameArray,

int numFiles)

This frees the data returned from getFilenamesFromSGI_ICON().

The following code fragment illustrates the use of getFilenamesFromSGI_ICON() and
freeFilenamesFromSGI_ICON() within a DropSiteCallbackProc:

Atom xaSGI_ICON = XmInternAtom(dpy, “_SGI_ICON”, False);

void dropProcCB(Widget w, Atom target, XtPointer data,
unsigned long numBytes,
int x, int y, XtPointer clientData);

{
if (target == xaSGI_ICON)
{

int numFilenames = 0;
char **filenames = NULL;

printf(“drop of _SGI_ICON at %d, %d\n”, x, y);

282

Chapter 10: ViewKit Cut and Paste

if (cnp->getFilenamesFromSGI_ICON((char *)data, numBytes,
&filenames, &numFilenames))

{
int i;

for (i = 0; i < numFilenames; i++)
{

printf(“\tdropped file %d: %s\n”, i, filenames[i]);
}

cnp->freeFilenamesFromSGI_ICON(filenames, numFilenames);
}

}
if (data != NULL)
{

XtFree(data);
}

}

// this code is done once, and makes the indicated widget a drop site

extern Widget theWidget; // widget that is to become a drop site

Atom interestList[1];
interestList[0] = xaSGI_ICON; // only interested in _SGI_ICON

int numItemsInList = 1;

cnp->registerDropSite(theWidget, interestList, numItemsInList,
dropProcCB, (XtPointer)123);

Registering New Data Types

283

Registering New Data Types

Before you can pass a particular target to a VKCutPaste method, the VkCutPaste class
must be aware of the target and its properties. The VkCutPaste class has a long list of
known targets (see the VkCutPaste(3x) reference page). However, if your application
creates a new, custom target, you must describe it by calling
VkCutPaste::registerDataType().

registerDataType()
void registerDataType(Atom target,

Atom type,
int format,
unsigned long flags =

CUTPASTE_NORMAL_TYPE,
DestroyProc destroyProc = NULL,
void * clientData = NULL)

Registers a data target with the VkCutPaste class, and at the same time
tells the class what the type, format, and flags are (for more information
on targets, types, and formats, see the Inter-Client Communication
Conventions Manual). This is commonly done only once per data type,
immediately after the creation of the instance of the VkCutPaste class.
You must register a data type only for types not already in
VkCutPaste’s list of registered targets. See the VkCutPaste(3x)
reference page for a list of registered targets.

For the purposes of this chapter, the term “filename type” refers to a
string type that is the name of a file being copied and pasted or dragged
and dropped. The term “normal type” refers to a large block of
malloc’ed memory that is being copied and pasted or dragged and
dropped.

The flags argument is a bit mask of the following flags:

• CUTPASTE_NORMAL_TYPE

• CUTPASTE_HIDDEN_TYPE

• CUTPASTE_FILENAME_TYPE

A CUTPASTE_HIDDEN_TYPE means that this target will never be
published to other clients. This is unusual, but can be useful if you are
using an internal representation you do not wish to expose.

284

Chapter 10: ViewKit Cut and Paste

You must flag any new “filename” target as a
CUTPASTE_FILENAME_TYPE so that the VkCutPaste class can deal
with it properly. When registering a new filename target, you must also
pass in a destroyProc that can be called to remove the file when
necessary.

The prototype for the DestroyProc is as follows:

typedef void (*destroyProc)(Widget w,
Atom selection,
Atom target,
XtPointer data,
unsigned long numBytes,
void * clientData);

The DestroyProc cleans up any auxiliary data that is no longer needed.
The VkCutPaste class calls the DestroyProc at various times,
immediately after deleting a target from an internal buffer.

The most common use of a DestroyProc is when the target is a filename
target. The filename is the actual target, and the cloned file on disk is
the auxiliary data. The DestroyProc removes the cloned file when the
VkCutPaste class no longer needs it. The DestroyProc should NOT free
the filename memory.

The following DestroyProc can be used verbatim for any filename type:

static void destroyProc(Widget w, Atom selection,
Atom target, XtPointer data,
unsigned long numBytes,
void *clientData)

{
if (data != NULL) // protect against errors

unlink((char *) data); // remove the file
}

Using Data Type Converters

285

The following code fragment illustrates the use of registerDataType().
You do not need to use this code, since the XPM_FILE target is already a
registered data type. However, this code does serve as a valid example:

Atom xaXPM_FILE = XmInternAtom(dpy, “XPM_FILE”, False);
cnp->registerDataType(xaXPM_FILE, // “target” is XPM_FILE

xaXPM_FILE, // “type” is XPM_FILE
8, // “format” is 8
CUTPASTE_FILENAME_TYPE,
destroyProc,
NULL);

getDataTypeInfo()
Boolean getDataTypeInfo(Atom target,

Atom * type,
int * format,
unsigned long * flags)

Receives a target, and passes back the target’s type and format (as
specified in the Inter-Client Communication Conventions Manual), and
any associated flags. getDataTypeInfo() returns True if it finds the
target, and False otherwise. The VkCutPaste class already has an
extensive list of registered targets. You can add types to this list by
calling registerDataType().

Using Data Type Converters

The VkCutPaste class provides integral support for converters from one data type to
another. Converters are used to increase the number of targets your application can offer
(copying and dragging), or accept (pasting and dropping). For example, if you call
dragAwayCopy() with XPM data, and a drop site in another ICCCM application only
accepts images of type GIF_89, then the drop would normally fail. However, if you have
registered a converter from XPM to GIF_89, the VkCutPaste class automatically calls
your converter and successfully drops the GIF_89 on the destination client.

286

Chapter 10: ViewKit Cut and Paste

registerConverter()
void registerConverter(Atom from,

Atom to,
ConvertProc converter,
CanConvertProc canConvertProc = NULL,
void * clientData = NULL)

Registers a converter between two data targets. For example, if you
have registered a converter from XPM to GIF_89, and you
dragAwayCopy() an XPM, the VkCutPaste class automatically calls
your converter when the drop site accepts only GIF_89.

The prototype for the converter is as follows:

typedef Boolean (*ConvertProc)(Widget w,
Atom selection,
void * clientData,
Atom srcTarget,
XtPointer src,
unsigned long numSrcBytes,
Atom dstTarget,
XtPointer * dst,
unsigned long * numDstBytes)

The VkCutPaste class provides the ability to use an optional
canConvertProc so that your application can conditionally offer
conversion support for a given target. The canConvertProc returns True
if the converter can perform the requested conversion, and False
otherwise. The VkCutPaste class calls the canConvertProc to ensure that
VkCutPaste does not offer targets that it cannot actually produce. If
your conversions always work under all circumstances, do not register
a CanConvertProc.

This is the prototype for the CanConvertProc:

typedef Boolean (*CanConvertProc)(Widget w,
Atom selection,
void * clientData,
Atom srcTarget,
XtPointer src,
unsigned long numSrcBytes,
Atom dstTarget);

Using Data Type Converters

287

Example 10-1demonstrates registering a XPM to GIF_89 converter:

Example 10-1 Registering an XPM to GIF89 converter

extern Display *dpy;
Atom xaXPM = XmInternAtom(dpy, “XPM”, False);
Atom xaGIF_89 = XmInternAtom(dpy, “GIF_89”, False);

Boolean xpmToGifConverter(Widget w, Atom selection,
void *clientData,
Atom srcTarget, XtPointer src,
unsigned long numSrcBytes,
Atom dstTarget, XtPointer *dst,
unsigned long *numDstBytes)

{
if (srcTarget != xaXPM || dstTarget != xaGIF_89)

return(False); // this should never happen

numDstBytes = / calculate enough memory for Gif */
*dst = (XtPointer) malloc(*numDstBytes);

// insert code here to convert from the source XPM image
// into a GIF, and place it in the newly malloced memory.

return(True); // return True if the conversion is successful
}
Boolean xpmToGifConversionIsPossible(Widget w, Atom selection,

void *clientData,
Atom srcTarget,
XtPointer src,
unsigned long numSrcBytes,
Atom dstTarget)

{
if (srcTarget != xaXPM || dstTarget != xaGIF_89)

return(False); // this should never happen

numberOfColorsInXPM = discoverNumberOfColorsInXPM(src);
if (numberOfColorsInXPM < 256) // GIF only has 256 colors

return(True);
else

return(False); // we cannot convert this GIF
}

cnp->registerConverter(xaXPM, xaGIF_89, xpmToGifConverter,
xpmToGifConversionIsPossible, NULL);

288

Chapter 10: ViewKit Cut and Paste

After this single registerConverter() call, your converter is automatically called in each
of four possible scenarios:

1. If you export an XPM, but the importing client accepts only GIF_89.

2. If you dragAway XPM, but the client you drop on accepts only GIF_89.

3. If you want to import a GIF_89, but the sending client doesn’t offer GIF_89, but does
offer XPM.

4. If a drop on you only offers XPM, but you accept only GIF_89

File and Data Ownership

Changes in the ownership of files and data during copy, paste, drag, and drop operations
can be difficult to trace. The pseudocode examples in this section detail the ownership
changes during different stages of data transfer. The examples show code implementing
copy, paste, drag, and drop of both normal data and filename data.

Filename data simply means the data being transferred is a filename. For example, when
transferring an XPM_FILE target, the data transferred is actually the filename, not the
data contained in the file. The receiving application needs to retrieve the filename, then
access the file. Normal data means that the data being transferred is a block of malloc’ed
memory.

The VkCutPaste class recognizes targets as being filename targets only if they have been
registered with the CUTPASTE_FILENAME_TYPE flag. See the VkCutPaste(3x)
reference page for a list of registered targets.

Note: Applications should seldom need to use filename targets for cut, paste, drag, and
drop operations. In fact, exchanging filenames with other applications does not work
when the sender and receiver applications are running on different computers. When
given a choice between filename targets and the corresponding normal targets,
applications should always exchange the normal targets.

In these pseudocode samples (Example 10-2 to Example 10-9), cnp is an instance of the
VkCutPaste class, and the filename target is any target that has been registered with the
CUTPASTE_FILENAME_TYPE flag.

File and Data Ownership

289

Example 10-2 Data and File Ownership Changes While Copying Filenames

// Create a file on disk. Ownership of the file will be transferred
// to the VkCutPaste class at putCopy() time.

char *filename = create a file, return the malloced filename;

// Clear any prior putCopy() or export().

cnp->clear();

// Copy the filename ‘filename’, and transfer the ownership of the
// file on disk to the VkCutPaste class. Note that the file itself
// is NOT copied, only the filename. The client can now free the
// memory used by filename, but must NOT reference the disk file again.
// NOTE: If the client has registered a destroyProc for this
// filename type, the VkCutPaste class might call that destroyProc to
// remove the original disk file. In that case, the client should honor
// the request and remove the file.

cnp->putCopy(filename);

// The VkCutPaste class has made a copy of the filename, so the
// original data should be freed by the client.

free(filename);

// Make the data available to other clients.

cnp->export();
...

// Some time later, if the VkCutPaste class gets a request for this
// filename, the VkCutPaste class will clone the file, and hand off to
// the requesting client the cloned filename. Ownership of this
// cloned file is transferred to the requesting client.

...
// The next time clear() is called, any data that has been copied
// during prior putCopy() calls is freed, and any files that the
// VkCutPaste class has obtained ownership of during prior putCopy()
// calls are removed. After this clear(), this VkCutPaste instance
// no longer has any data available for export.

cnp->clear();

290

Chapter 10: ViewKit Cut and Paste

Example 10-3 Data and File Ownership Changes While Pasting Filenames

// Client requests a filename target. The filename returned and the
// corresponding file on disk are now owned by this client. It is
// therefore the responsibility of the requesting client to remove
// (unlink()) the file when the client is finished with it, and
// free the filename.

filename = cnp->importImmediate();

// After this client is done with the file, the file must be
// removed, and the filename freed.

unlink(filename);
XtFree(filename);

Example 10-4 Data and File Ownership Changes While Copying Normal Data

// Create some data in memory.

char *data = create some data;

// Clear any prior putCopy() or export().

cnp->clear();

// The VkCutPaste class makes a copy of the data. This copy of
// the data will be freed during the next “clear()” operation.

cnp->putCopy(data);

// The VkCutPaste class has made a copy of the data, so the original
// data should be freed by the client.

free(data);

// Make the data available to other clients.

cnp->export();
...
// The next time clear() is called, any data that has been copied
// during prior putCopy() calls is freed, and any files that the
// VkCutPaste class has obtained ownership of during prior putCopy()
// calls are removed. After this clear(), this VkCutPaste instance no
// longer has any data available for export.
cnp->clear();

File and Data Ownership

291

Example 10-5 Data and File Ownership Changes While Pasting Normal Data

// Client requests the data. This data is now owned by this
// client. The client will use the data, and should free it when
// it is done processing the data.

data = cnp->importImmediate();

// Free the imported data when you are done processing it.

XtFree(data);

Example 10-6 Data and File Ownership Changes While Dragging Filename Data

// Create a file on disk. Ownership of the file will be
// transferred to the VkCutPaste class at dragAwayCopy() time.

char *filename = create a file, return the malloced filename;

// Copy the filename ‘filename’, and transfer the ownership of the
// file on disk to the VkCutPaste class. Note that the file itself
// is NOT copied, only the filename. The client can now free the
// memory used by filename, but must NOT reference the disk file
// again. The VkCutPaste class will free this copy of the data, and
// remove the file when the drag and drop operation is complete.
//
// NOTE: If the client has registered a destroyProc for this filename
// type, the VkCutPaste class might call that destroyProc to remove
// the original disk file. In that case, the client should honor the
// request and remove the file.

cnp->dragAwayCopy(filename);

// The VkCutPaste class has made a copy of the filename, so the
// original data should be freed by the client.

free(filename);
...
// Some time later, if the VkCutPaste class gets a request for this
// filename, the VkCutPaste class will clone the file, and hand off
// the cloned filename to the requesting client. Ownership of this
// cloned file is transferred to the requesting client. The
// original file is removed when the drag and drop operation is
// complete.

292

Chapter 10: ViewKit Cut and Paste

Example 10-7 Data and File Ownership Changes While Accepting Filename Data

// The “drop” client registers a drop site.

cnp->registerDropSite(dropFilenameCallback);
...

// Some time later, the dropFilenameCallback() routine is called.
// Inside of the dropFilenameCallback, the filename passed in and
// the corresponding file on disk are now owned by this client. It
// is therefore the responsibility of the requesting client to remove
// (unlink()) the file when the client is finished with it, and free
// the filename.

dropFilenameCallback(filename)
{

// Do some processing on the file.

unlink(filename);

// After this client is done with
// the file, the file must be removed,
// and the filename freed.

XtFree(filename);
}

Example 10-8 Data and File Ownership Changes While Dragging Normal Data

// Create some data in memory.

char *data = create some data;

// The VkCutPaste class makes a copy of the data. The VkCutPaste
// class will free this copy of the data when the drag and drop
// operation is complete.

cnp->dragAwayCopy(data);

// The client can now free the original data.

free(data);

File and Data Ownership

293

Example 10-9 Data and File Ownership Changes While Accepting Normal Data

// The “drop” client registers a drop site.

cnp->registerDropSite(dropDataCallback);
...
//
// Some time later, the dropDataCallback() routine is called.

dropDataCallback(data)
{

// Do some processing with this data.

...

// Free the data when you are done processing it.

XtFree(data);
}

Example 10-10 Data and File Ownership Changes While Accepting _SGI_ICON Data

// The drop client registers a drop site that accepts _SGI_ICON data

cnp->registerDropSite(dropSGI_ICONcallback);
...
// Some time later, the dropSGI_ICONcallback() routine is called.
// Inside the dropSGI_ICONcallback, this client reads the filenames
// out of the _SGI_ICON data, but DOES NOT own the files and must not
// modify them or remove them. This client does need to free the
// _SGI_ICONdata.

dropSGI_ICONcallback(_SGI_ICONdata)
{

// Get the filenames, read some data from the files, etc.

XtFree(_SGI_ICONdata);
}

294

Chapter 10: ViewKit Cut and Paste

Miscellaneous Functions

The VkCutPaste class also provides several utility functions that you may find useful.

primaryAtom()
Atom primaryAtom(void)

Returns the PRIMARY atom. This is a convenience function, and
returns exactly the same thing as XmInternAtom(dpy, “PRIMARY”,

False) .

clipboardAtom()
Atom clipboardAtom(void)

Returns the CLIPBOARD atom. This is a convenience function, and
returns exactly the same thing as XmInternAtom(dpy, “CLIPBOARD”,

False) .

getVersion() unsigned long getVersion(void)

Returns the version number of this implementation of the VkCutPaste
class. For example, version 1.0 would be 0x010000, version 2.01 would
be 0x020100, and so on.

getWidget() Widget getWidget(void)

Returns the widget that was originally passed to the VkCutPaste
constructor.

getXServerTime()
Time getXServerTime(void)

Invokes a round trip to the X-Server, and returns a server time stamp.
You should try to avoid this call. Instead, you should pass the
CurrentTime flag to VkCutPaste functions, or (even better) use the time
stamp of a recent X-Event. However, there may be some rare situations
where there are no X-Events available and CurrentTime does not work,
so this convenience function provides a fail-safe way to get a valid
server time stamp.

Miscellaneous Functions

295

setTransactionsTimeout()
void setTransactionsTimeout(unsigned long numSeconds)

Sets the transaction time-out. The default Motif time-out is 5 seconds,
which means that if the remote client does not respond to a request for
data within 5 seconds, the transaction is cancelled and no data is
transferred. For some large data targets, or those that require long
conversions, 5 seconds may not be adequate.

isOwnedByMe()
Boolean isOwnedByMe(Atom selection)

Returns True if the selection is currently owned by the calling client.
This can be used to optimize the speed of Paste() when the client would
have exchanged data with itself anyway.

isOwnedbyLocalHost()
Boolean isOwnedByLocalHost(Atom selection)

Returns True if the indicated selection is currently owned by a client
running on the same machine as this client. This call is useful if you are
planning to copy and paste filenames with other clients, since a file that
is on a different machine is not accessible to your client. Some examples
of filename targets are XPM_FILE and GIF_89_FILE. Normal types like
XPM and GIF_89 are always safe and always work, and should be used
instead, unless there is some overwhelming reason to exchange
filenames.

getLocalReference()
Boolean getLocalReference(Atom selection,

Atom target,
XtPointer * dataRet,
unsigned long * numBytesRet)

Allows you to retrieve the contents of the local export selection. This is
not based on X Selections. This only gives you a pointer, so the data
must not be freed or modified. Returns a pointer to the data at index (if
multiple putCopy() were called, the first one is at index 0, the second is
at index 1, and so on).

296

Chapter 10: ViewKit Cut and Paste

getLocalTypeReference()
Boolean getLocalTypeReference(Atom selection,

Atom target,
XtPointer * dataRet,
unsigned long * numBytesRet)

Does exactly the same thing as getLocalReference(), but instead of
specifying an index, you specify the target you wish to retrieve from the
exported selection.

putReference()
Boolean putReference(Atom selection,

Atom target,
XtPointer data,
unsigned long numBytes)

Can be used instead of putCopy() when the data is so large that an
extra copy would be impossible or impractical. This function does not
make a copy of the data, so you should never free data until after you
call remove() to remove the currently exported data from the selection.
If, for some reason, the data becomes invalid, you must call remove().

remove() Boolean remove(Atom selection, Atom target);

Removes the indicated target from the currently exported selection. For
example, if you had called putReference(XPM) earlier, and now for
some reason, the XPM data is no longer valid, you must call
remove(XPM).

297

Chapter 11

11. Using a Help System With ViewKit

ViewKit supports several ways for a user to obtain help: context-sensitive help (both
through the F1 key and a help menu), help menus, help buttons, and popup and
message-line help (QuickHelp).

For the developer, the ViewKit API provides entry points to an external help library, to
the SGIHelp system, or to a simple default help capability that may be sufficient for many
applications. You can also combine any of these help capabilities with QuickHelp, which
provides popup and message-line help, and operates independently of any other type of
help.

ViewKit Programmatic Interface to a Help Library

ViewKit allows you to implement help in several different ways. You can use the built-in
help capability, link to SGIHelp, or link to an external library. You must include
<Vk/VkHelpAPI.h> if you wish to implement online help.

ViewKit applications interact with a help library through three C functions:
SGIHelpInit(), SGIHelpMsg(), and SGIHelpIndexMsg(). To use an external help
library with a ViewKit application, you need to implement only these three functions.

Note: ViewKit makes all calls to the help system. Your application should never need to
call SGIHelpInit(), SGIHelpMsg(), or SGIHelpIndexMsg() directly. The only exception
would be if you create a help button in your application without using the
VkDialogManager class (see “Application Help Button Procedures” on page 304).

SGIHelpInit() initializes the help system:

int SGIHelpInit(Display * display, char * appClass, char *)

VkApp calls SGIHelpInit() from its constructor. display is the application’s Display
structure, and appClass is the application’s class name. The third argument to
SGIHelpInit() is reserved for future Silicon Graphics use. A return value of 0 indicates
failure.

298

Chapter 11: Using a Help System With ViewKit

A ViewKit application calls SGIHelpMsg() when it needs to request help:

int SGIHelpMsg(char * in_key, char *, char *)

in_key is a character token that SGIHelpMsg() uses to look up help material. The value
of in_key depends on how the user requested help. The subsections that follow describe
how the value is determined. The other arguments to SGIHelpMsg() are reserved for
future Silicon Graphics use. A return value of 0 indicates failure.

A ViewKit application calls SGIHelpIndexMsg() to display an index of help available:

int SGIHelpIndexMsg(char * in_key, char *)

in_key is a character token that SGIHelpIndexMsg() uses to look up a help index. The
value of in_key depends on how the user requested help. The subsections that follow
describe how the value is determined. The other argument to SGIHelpIndexMsg() is
reserved for future Silicon Graphics use. A return value of 0 indicates failure.

Using ViewKit Help

The ViewKit library, libvk, includes a simple help capability that allows you to provide
help messages for your application by defining them in the X resource database. This
may be sufficient for your needs.

Both SGIHelpMsg() and SGIHelpIndexMsg() are defined to accept the in_key character
token argument and look up the resource in_key.helpText in the X resource database.
They then display the retrieved help text in an IRIS IM information dialog. If these
functions cannot find an appropriate resource value, they display the message Sorry,

no help available on this topic in the dialog.

The following lines show how you create the help message specifications for an
application:

*helpText: Application default help message
*row1*helpText: Help message for the row1 widgets and its descendants
*row2*helpText: Help message for the row2 widgets and its descendants
*row2*start*helpText: Special help message for start, a child widget of row2
*overview*helpText: Overview help message

In this example, the *helpText resource specification provides a default help message for
the entire application. If a widget does not have a more specific help message resource
specification, the application displays this default help message.

Using the SGIHelp Library

299

The *row1*helpText and *row2*helpText resource specifications provide help messages
for these widgets and their descendants. For example, you could use a specification like
this to provide a help message for a group of toggles or push buttons in a RowColumn
widget.

The *row2*start*helpText specification provides a help message for a start widget, a
descendant of the row2 widget. It overrides the *row2*helpText message.

*overview*helpText provides a message that the application displays when the user
chooses Overview from the Help menu.

Using the SGIHelp Library

As documented in the Indigo Magic Desktop Integration Guide, the Silicon Graphics help
library, libhelpmsg, handles communication with the help server. libhelpmsg depends on
the libX11 library, so you must specify -lhelpmsg before -lX11 in the compilation or
linking command.

For example, to compile a file hellohelp.c++ to produce the executable hellohelp, you would
enter the following:

CC -o hellohelp hellohelp.c++ -lhelpmsg -lX11

For specific information and examples about how to implement SGIHelp, see Chapter 9,
“Providing Online Help with SGIHelp,” in the Indigo Magic Desktop Integration Guide.
Keep in mind, however, that in most instances, ViewKit makes the calls to
SGIHelpInit(), SGIHelpMsg(), and SGIHelpIndexMsg() for you. Your application will
seldom have to call these functions directly (see “ViewKit Programmatic Interface to a
Help Library” on page 297).

For general and stylistic information about using SGIHelp, see Chapter 4, “Indigo Magic
Desktop Services,” in the Indigo Magic User Interface Guidelines. For information on
writing SGIHelp, see the Iris InSight Professional Publisher User’s Guide.

300

Chapter 11: Using a Help System With ViewKit

Using an External Help Library

ViewKit allows you to link to an external help library if you so choose. In order for this
to work correctly, your library must be a Dynamic Shared Object (DSO) that contains the
three C functions that serve as entry points to the help system, SGIHelpInit(),
SGIHelpMsg(), and SGIHelpIndexMsg(). These functions are then called instead of the
ViewKit Help functions that are provided with libvk. Since ViewKit predefines
SGIHelpInit(), SGIHelpIndexMsg(), and SGIHelpMsg as weak symbols, they are
overridden by your library, and no conflict will ensue. For more information, see the
VkHelp(3x) reference page.

If you do decide to write your own help library, you can examine ViewKit’s help
functions to get some ideas. The source is included in
/usr/share/src/ViewKit/Utilities/VkHelpAPI.c++.

ViewKit Support for Building Help

The default ViewKit help capability also provides support for determining the token
strings passed to the help system. To use this feature, you must not link with any other
help library. After you determine all of the token strings you need, you can then link with
your chosen help library to provide the final help system for your application.

To determine the token strings, set the *helpAuthorMode resource for your application
to TRUE. Then the help system displays the token string passed to the help system
instead of the help message it would normally display

ViewKit Help Menu

The Help menu, implemented by the VkHelpPane class, provides a simple user interface
to a help system.

Implementation of the Help Menu

VkHelpPane is a subclass of VkSubMenu. VkHelpPane automatically provides five
standard menu items, as shown in Figure 11-1.

ViewKit Help Menu

301

Figure 11-1 ViewKit Help Menu

The first four items interface to a help system. This help system must provide help
request handling and appropriate help messages for the menu item selected:

Click for Help
Provides context-sensitive help. When the user chooses this item, the
cursor changes into a question mark. The user can then click any widget
in the application, which calls SGIHelpMsg(). The in-key character
token provided to SGIHelpMsg() is the fully qualified instance name
hierarchy for the widget

Overview Requests overview help. The in_key character token provided to
SGIHelpMsg() is “ApplicationName.overview”.

Index Requests an index of available help topics. The in_key character token
provided to SGIHelpMsg() is “ApplicationName.index”.

Keys & Shortcuts
Requests help on keys and shortcuts. The in_key character token
provided to SGIHelpMsg() is “ApplicationName.keys”.

Product Information
Displays the Product Information dialog described in “Maintaining
Product and Version Information” on page 74. The Product Information
dialog has no connection to the help system.

302

Chapter 11: Using a Help System With ViewKit

Because VkHelpPane is a subclass of VkSubMenu, you can also use the functions
provided by VkSubMenu (see “Using ViewKit Menu Subclasses” on page 147) to add
custom Help menu items and delete predefined Help menu items.

Adding the Help Pane to a Menu

The VkMenuBar constructor, described in “Menu Bar Constructors” on page 148,
accepts a showHelpPane argument. If this argument is TRUE (the default) the
VkMenuBar constructor automatically creates a VkHelpPane object and installs it in the
menu bar.

You can create a VkHelpPane object and add it to another menu, for example a popup
menu, but you should rarely need to do this.

X Resources Associated With the Help Pane

The following X resources affect the appearance and behavior of the VkHelpPane class:

*helpMenu.labelString
The label for the Help menu (default value “Help”).

*helpMenu.mnemonic
The Help menu mnemonic (default value “H”).

*helpMenu.helpOnContextMenuItem.labelString
The label for the context-sensitive help item (default value “Click for
Help”).

*helpMenu.helpOnContextMenuItem.mnemonic
The context-sensitive help item mnemonic (default value “C”).

*helpMenu.helpOnContextMenuItem.accelerator
The context-sensitive help item accelerator (default value “<Shift-F1>”).

*helpMenu.helpOnContextMenuItem.acceleratorText
The context-sensitive help item accelerator label (default value
“Shift+F1”).

*helpMenu.helpOverviewMenuItem.labelString
The label for the help overview item (default value “Overview”).

*helpMenu.helpOverviewMenuItem.mnemonic
The help overview item mnemonic (default value “O”).

Other Types of Help

303

*helpMenu.helpIndexMenuItem.labelString
The label for the help index item (default value “Index”).

*helpMenu.helpIndexMenuItem.mnemonic
The help index item mnemonic (default value “I”).

*helpMenu.helpKeysMenuItem.labelString
The label for the keys and shortcuts item (default value “Keys &
Shortcuts”).

*helpMenu.helpKeysMenuItem.mnemonic
The keys and shortcuts item mnemonic (default value “K”).

*helpMenu.helpVersionMenuItem.labelString
The label for the product information item (default value “Product
Information”).

*helpMenu.helpVersionMenuItem.mnemonic
The product information item mnemonic (default value “P”).

Other Types of Help

Context-Sensitive Help Procedures

ViewKit calls SGIHelpMsg() when the user presses the F1 key while the mouse pointer
is over a widget (unless you have provided XmNhelpCallback functions for widgets in
your application). The in_key character token that your application provides to
SGIHelpMsg() is the fully qualified instance name hierarchy for the widget.

Dialog Help Procedures

When you post a dialog as described in “Posting Dialogs” on page 185, you have the
option of providing a helpString argument. If you provide a helpString argument, the
dialog posted displays a Help button.

When the user clicks the Help button, ViewKit calls SGIHelpMsg(), passing the
helpString as the in_key character token.

304

Chapter 11: Using a Help System With ViewKit

Application Help Button Procedures

If you provide a Help button not created by the VkDialogManager class, your
application must call SGIHelpMsg() directly.

QuickHelp

QuickHelp is a facility that displays a string when the pointer enters a widget. Help can
be displayed in a message line at the bottom of the window, in a small balloon that pops
up next to the pointer (“balloon help” or “popup help”), or both. Each can have its own
separate help text, typically a brief phrase for popup help, and a more detailed message
for the message line.

QuickHelp availability is controlled by the resources showHelp, showPopupHelp, and
showMsgLineHelp:

• If showHelp is FALSE, no QuickHelp is shown. This provides an easy way to enable
or disable the entire QuickHelp system.

• If showPopupHelp is FALSE, popup help is not shown. If showPopupHelp and
showHelp are both TRUE, then popup help is shown.

• If showMsgLineHelp is FALSE, no message-line help is shown. If
showMsgLineHelp and showHelp are both TRUE, then message-line help is shown.

Space is allocated for the message line only if message-line help is already enabled when
the window is first created.

QuickHelp usability includes getting balloons promptly when you want them, but not
getting them when you do not want them. This requires guessing what the user wants at
any given time, and so has no perfect solution. In an attempt to come as close as possible,
QuickHelp has several timers.

The timers control how soon and how long a balloon is displayed once the pointer enters
a widget. The delay time before a balloon is displayed depends on whether the user is
deemed to be in browse mode or non-browse mode. The user is considered to be in
browse mode when the pointer enters two or more widgets in succession at a relatively
slow speed. In this mode, all balloons after the first are displayed more quickly. If the user
stops browsing for a set length of time, the application returns to non-browse mode.

QuickHelp

305

Since these timings greatly affect the usability of QuickHelp, they have been carefully set
to minimize both the number of unwanted balloons and the length of time users must
wait to receive wanted help. If the default timings do not work for your application, you
may reset them.

helpTextWaitTimehelpTextWaitTime
The delay after entering a widget, when not in browse mode, before the
QuickHelp balloon is posted.

helpTextBrowseWaitTime
The delay after entering a widget, when in browse mode, before the
QuickHelp balloon is posted.

helpTextTimeUp
The length of time a QuickHelp balloon remains posted.

helpTextBrowseCancelTime
The length of time after leaving a widget before browse mode is
cancelled.

helpTextBrowseVelocity
The pointer velocity below which users are considered to be browsing
and above which they are considered to be in transit. A QuickHelp
balloon is posted when users are browsing, but not when they are in
transit.

QuickHelp also provides some miscellaneous resources:

helpTextInsensitive
Controls whether or not QuickHelp is given when entering insensitive
widgets.

smallWidget Determines where the help balloon is displayed, in relation to the
widget. If either dimension of a widget is below the number of pixels
specified in the resource smallWidget, then the widget is considered to
be a small widget.

For a small widget, if the narrow dimension is its height, the balloon is
displayed below the widget (for example, a horizontal scroll bar). If the
narrow dimension is its width, the balloon is displayed beside the
widget (for example, a vertical scroll bar).

For large widgets, the balloon is displayed near the part of the widget
where the pointer first entered it.

306

Chapter 11: Using a Help System With ViewKit

Two other resources are intended for developers to use in debugging but may also be
useful to some end users.

dumpTree Prints the name and class for each of the widgets in the widget tree at the
time the dump is done. This can be useful as a starting point for creating
the QuickHelp text for each widget.

Note: A common error is to forget that this cannot dump any widget
that has not yet been created at the time of the dump. For example, since
ViewKit usually creates menus later in a workProc, dumpTree is likely
to run before the workProc is completed. Therefore, those menus will
not be included in the widget tree, because the tree will be dumped
before the menus exist. For more information on creating menus, see the
reference page for VkMenu(3x), useWorkProcs(Boolean).

showWidgetInfo
Causes QuickHelp to display the widget name, rather than any
QuickHelp text. This can be useful when trying to figure out just what a
widget is called so you can set a resource for it. For this to work,
showHelp must be set to TRUE. If you want the widget name to be
displayed in a popup balloon, showPopupHelp must be set to TRUE. If
you want the widget name to be displayed on the message line,
showMsgLineHelp must be set to TRUE.

And, finally, there are two per-widget resources that provide the actual help strings,
msgLineHelpText and popupHelpText. Both of these are of resource class
QuickHelpText. If one of these resources is not set for any given widget, the user is not
shown that type of help message, even if showHelp, showPopupHelp, and
showMsgLineHelp are all set to TRUE.

307

Chapter 12

12. The ViewKit Graph Component

ViewKit provides a high-level component, VkGraph, for displaying and manipulating
complex arc-and-node graphs. Figure 12-1 shows the inheritance graph for VkGraph
and an auxiliary class, VkNode.

Figure 12-1 Inheritance Graph for the ViewKit Graph Classes

Overview of ViewKit Graphs

VkGraph is a self-contained ViewKit component for displaying and manipulating
complex arc-and-node graphs. The graph can be disconnected and can contain cycles.
VkGraph can arrange the nodes horizontally or vertically and change the orientation
interactively. VkGraph also provides controls for interactive zooming, node
repositioning, and node alignment. Figure 12-2 shows an example of a graph created
using the VkGraph component.

VkComponent

VkNode

VkGraph

308

Chapter 12: The ViewKit Graph Component

Figure 12-2 Graph Created With VkGraph

All nodes displayed by a VkGraph component must be instances of the VkNode class
or subclasses that you derive from it. By default, VkNode creates an SgIconGadget, but
if you create a subclass VkNode, you can use any widget for a node.

Graph Widget

The basis of the VkGraph class is the SgGraph widget, which manages and displays the
graph. This section provides an overview of the SgGraph widget. For in-depth
information on interacting with the graph widget, consult the SgGraph(3x) reference
page.

A primary responsibility of the SgGraph widget is to clearly and systematically lay out
the nodes. The graph layout algorithm is a simple and efficient tree layout algorithm
designed to handle forests of nodes. It lays out nodes as a multi-rooted tree.

Overview of ViewKit Graphs

309

By default, the graph widget created by the VkGraph class operates in a read-only mode
in which the graph widget is used primarily as a layout manager for arranging the node
widgets. By modifying certain SgGraph resources, you can also interactively edit the
displayed graph, creating and moving arcs and nodes. However, to support most of the
functionality of the edit mode, you must provide callback functions and other
information to the graph widget so that you can interpret the edit operations and use
them in your program.

Refer to the SgGraph(3x) reference page for details on the resources and callbacks used
for edit mode. Also refer to the example in /usr/share/src/ViewKit/ComponentDemos/graph.

Building a Graph

The process of building and displaying a graph using the VkGraph component consists
of the following steps:

1. Creating the nodes.

2. Specifying node connectivity.

3. Indicating which nodes to display.

4. Laying out the graph.

Example 12-1 illustrates this process by showing the code used to create the graph shown
in Figure 12-2.

Example 12-1 Creating a Graph Using VkGraph

#include <Vk/VkApp.h>
#include <Vk/VkWindow.h>
#include <Vk/VkNode.h>
#include <Vk/VkGraph.h>
#include <Vk/VkMenu.h>

310

Chapter 12: The ViewKit Graph Component

class GraphWindow: public VkWindow {

public:
GraphWindow(const char *);
~GraphWindow();
virtual const char* className();

protected:
VkGraph *graph;
VkNode *p_node, *c1_node, *c2_node, *gc1_node, *gc2_node;

private:
static void quitCallback (Widget, XtPointer, XtPointer);
static VkMenuDesc appMenuPane[];

};

VkMenuDesc GraphWindow::appMenuPane[] = {
{ ACTION, "Quit", &GraphWindow::quitCallback },
{ END }

};

GraphWindow::GraphWindow(const char *name) : VkWindow(name)
{

// Create nodes

p_node = new VkNode("parentNode", "Parent");
c1_node = new VkNode("childNode1", "Child 1");
c2_node = new VkNode("childNode2", "Child 2");
gc1_node = new VkNode("grandChildNode1", "Grandchild 1");
gc2_node = new VkNode("grandChildNode2", "Grandchild 2");

// Create graph

graph = new VkGraph("graph", mainWindowWidget());

// Add nodes to graph

graph->add(p_node, c1_node); // p_node is parent to c1_node
graph->add(p_node, c2_node); // p_node is parent to c2_node
graph->add(c1_node, gc1_node); // c1_node is parent to gc1_node
graph->add(c1_node, gc2_node); // c1_node is parent to gc2_node

Overview of ViewKit Graphs

311

graph->displayAll(); // Display all nodes in graph
graph->doLayout(); // Layout the graph

addView(graph); // Set graph to be window's view
addMenuPane("Application", appMenuPane); // Create menu bar

}
GraphWindow::~GraphWindow()
{

delete graph;
delete p_node;
delete c1_node;
delete c2_node;
delete gc1_node;
delete gc2_node;

}

const char* GraphWindow::className()
{

return "GraphWindow";
}

void GraphWindow::quitCallback (Widget, XtPointer, XtPointer)
{

theApplication->quitYourself();
}

void main(int argc, char **argv)
{

VkApp *myApp = new VkApp("GraphViewer", &argc, argv);
GraphWindow *graphWin = new GraphWindow("GraphViewer");

graphWin->show();
myApp->run();

}

312

Chapter 12: The ViewKit Graph Component

This example creates a VkWindow subclass to contain the graph. The graph itself is
created in the GraphWindow constructor:

1. The program creates five nodes. These nodes are instances of the VkNode class,
which is described in “ViewKit Node Class” on page 317. The version of the
VkNode constructor used in this example accepts a name that is used for internal
reference and a label that is displayed.

2. The program creates a VkGraph object. The VkGraph constructor accepts as
arguments a name and a parent widget, in this case, the main window widget
obtained by mainWindowWidget().

3. The program adds the nodes to the graph using VkGraph::add(). When called with
pointers to two nodes, this function associates the nodes with the graph, and marks
the first node as being the parent of the second node. In this way, the program
specifies the structure of the graph.

4. The program calls VkGraph::displayAll(), which indicates that the graph should
display all nodes.

5. The program calls VkGraph::doLayout(), which lays out the graph according to the
layout algorithm and manages all widgets associated with the graph.

Interactive Viewing Features Provided by VkGraph

In addition to displaying a graph, VkGraph automatically provides controls for
interactively manipulating the graph. One set of controls is contained in the control
panel, shown in Figure 12-3, which appears along the bottom of the graph.

Figure 12-3 Graph Command Panel

Zoom Menu
Zoom Out
Zoom In
Graph Overview
Multiple Arcs
Realign
Rotate

Overview of ViewKit Graphs

313

The control panel contains buttons and a menu that allow the user to interactively control
various characteristics of the graph’s display. Using the control panel, the user can

• zoom in or out

• display a graph overview

• toggle between displaying and hiding duplicate arcs connecting nodes

• align nodes

• toggle between horizontal and vertical orientation

Additionally, VkGraph automatically creates popup menus that contain commands that
allow the user to hide and display nodes in the graph.

Zooming

VkGraph provides eight preset zoom settings that allow the user to shrink or enlarge the
size of the graph. The user can directly set the zoom value using the Zoom menu shown
in Figure 12-4.

314

Chapter 12: The ViewKit Graph Component

Figure 12-4 Interactively Changing the Graph Zoom Value

Clicking the Zoom Out button (the down-arrow button immediately to the right of the
Zoom menu) changes the zoom setting to the next lower value, and clicking the Zoom In
button (the up-arrow button to the right of the Zoom Out button) changes the zoom
setting to the next higher value.

Graph Overview

The user can display an overview of all a graph’s visible nodes by clicking the Graph
Overview button.

Overview of ViewKit Graphs

315

Within the overview window is a viewport that represents the boundaries of the graph
visible in the main graph window. The user can click the viewport and drag it to a new
location to change the area visible in the main graph window. As the user drags the
viewport, the main graph window scrolls to match the viewport’s location in the
overview.

The overview window also contains an Admin menu with these commands:

“Scale to Fit” Scales the graph in the window to match the aspect ratio of the window.

“Show Arcs” Shows the arcs between nodes. This option is turned on by default; if the
arcs clutter the window, the user can turn off the option, which removes
the arcs from the window.

“Close” Closes the overview window.

Displaying Duplicate Arcs

By default, the graph displays only a single arc between nodes, even if you define
multiple connections between the nodes. The user can click the Multiple Arcs button to
display multiple arcs between nodes; the graph displays an arc for each connection you
defined. The user can turn off the multiple-arc display by clicking the Multiple Arcs
button again.

Realigning Nodes

Occasionally, as a result of moving or displaying nodes, your graph display might
become cluttered. The Realign button “cleans up” the graph display by laying out all
visible nodes again.

Toggling Between Horizontal and Vertical Orientation

The default graph orientation is horizontal. The user can change to a vertical orientation
by clicking the Rotate Graph button. The user can return to the horizontal orientation by
clicking the Rotate Graph button again.

316

Chapter 12: The ViewKit Graph Component

Hiding and Displaying Nodes

VkGraph provides controls that allow the user to hide a single node, reveal a node’s
parents or children, or collapse the part of the graph that branches from a node. To
perform any of these actions, the user moves the pointer onto the node and presses the
right mouse button to open the popup Node menu. The Node menu contains four
commands; only commands applicable to that node are made available. Nonapplicable
commands are grayed. The commands are as follows:

“Hide Node” Hides the node and connecting arcs from the graph.

“Collapse Subgraph”
Hides all descendent nodes and connecting arcs.

“Show Immediate Children”
Displays the node’s immediate child nodes and connecting arcs. This
command does not display more than the first subordinate level of
nodes.

“Show Parents”
Displays the node’s immediate parent nodes and connecting arcs.

Edit Mode Operations

There are additional operations that a user can perform if you set the graph to edit mode,
as described in “Graph Widget” on page 308. By default, the graph widget created by the
VkGraph class operates in read-only mode. You can set the graph widget to edit mode
in a VkGraph subclass.

Note: To support much of the functionality of the edit mode, you must provide callback
functions and other information to the graph widget so that you can interpret the edit
operations and use them in your program. Refer to the SgGraph(3x) reference page for
details on the resources and callbacks used for edit mode.

You must select one or more nodes before you can perform an operation on it. You can
select nodes only if the graph is in edit mode. By default, the graph is created in
display-only mode.

ViewKit Node Class

317

To perform most operations in edit mode, the user must first select one or more nodes.
The user can select a single node by clicking it with the left mouse button. The graph
highlights the selected node. The user can select additional nodes by holding down the
<Ctrl> key and clicking additional nodes with the left mouse button. The user can also
select multiple nodes with a bounding box by moving the pointer to a spot on the graph
where there is no node or arc, then holding down the left mouse button and dragging out
a bounding box. When the button is released, all nodes fully enclosed by the box are
selected. (Partially enclosed nodes aren’t selected.)

The user can deselect nodes by clicking the left mouse button on a blank section of the
graph.

The user can move a node by clicking that node with the middle mouse button and then
dragging the node anywhere in the graph window. The user can move several nodes at
once by first selecting the nodes and then clicking any one of the nodes with the middle
mouse button and dragging the nodes to their new position.

The popup Selected Nodes menu allows the user to perform an operation on all selected
nodes. To open the Selected Nodes menu, the user moves the pointer to any blank area
of the graph, and then presses the right mouse button. The menu has three commands:

“Hide Selected Nodes”
Hides all selected nodes and their connecting arcs.

“Collapse Selected Nodes”
Hides all descendent nodes and connecting arcs of the selected nodes.

“Expand Selected Nodes”
Displays the immediate children of all the selected nodes.

ViewKit Node Class

VkGraph requires that all nodes that it contains be instances of either the VkNode class
or a subclass of VkNode. The VkNode class is responsible for tracking the connectivity,
display characteristics, and other features of the nodes. VkNode is a subclass of
VkComponent.

The VkNode class provides only basic support for interacting with the node widget. In
particular, you can set the string displayed as a label through the VkNode constructor;
however, you can create subclasses of VkNode that support any widget type, as
discussed in “Creating Node Subclasses” on page 321.

318

Chapter 12: The ViewKit Graph Component

Basic Node Functionality

This section describes the basic functionality provided by the VkNode class. Most
VkNode functions other than the constructor are for use by VkGraph; however, you
might occasionally find some of the utility and access functions useful.

Node Constructor and Destructor

The VkNode constructor has two forms:

VkNode(const char * name, const char * label = NULL)

VkNode(const char * name, VkNode * parent,
const char * label = NULL)

name is the node’s component name. You should provide unique names for all nodes.
label is the label that the node displays when visible in a graph. If you do not provide a
label, the node uses the component name as the label. You can optionally provide a
pointer to an existing node, which the constructor uses as a parent node for the new
node.

As an example, the following line of code creates the node state19 with the internal name
“state19” and the label “Indiana”:

VkNode state19 = new VkNode("state19", "Indiana");

The following line of code creates a new node, city41, as a child of state19. The name of
the new node is “city41” and the label is “Terre Haute”:

VkNode city41 = new VkNode("city41", state19, "Terre Haute");

Note: The VkNode constructor merely initializes internal variables; it does not create
any widgets. The VkGraph object of which a VkNode object is a member can create and
destroy node widgets as needed. The VkGraph object calls a protected member function,
VkNode::build(), whenever it needs to create a node’s widget. “Creating Node
Subclasses” on page 321 discusses build() in more detail.

The VkNode destructor destroys the node’s widget if it exists and deallocates all other
internal storage.

ViewKit Node Class

319

Node Utility Functions

VkNode maintains a list of child nodes that you can access using the access functions
described in “Node Access Functions” on page 319. By default, the order of the child
nodes in this list depends on the order in which you specified the child relationships. The
first child node you specify has an index of 0, the second 1, and so on.You can use the
VkNode::sortChildren() to sort the immediate child nodes of a node:

void sortChildren()

The default algorithm used by sortChildren() sorts nodes alphabetically by their internal
node names (not their labels).

You can direct VkNode to use a different sort comparison function with
VkNode::setSortFunction():

static void setSortFunction(VkNodeSortFunction func)

The type definition of VkNodeSortFunction is as follows:

typedef int (*VkNodeSortFunction)(VkNode *, VkNode *)

The function you provide must be a static function that accepts as arguments two nodes,
and returns an integer value less than zero if the first node comes before the second node,
zero if the two nodes are equal, and greater than zero if the second node comes before the
first node. For example, the following function sorts nodes by their label strings:

static int sortNodesByLabel(VkNode *one, VkNode *two)
{

int value = strcmp(one->label(), two->label());
return value;

}

(“Node Access Functions” on page 319 describes VkNode::label().)

Node Access Functions

VkNode provides a number of access functions for obtaining values associated with a
node.

You can retrieve the node’s component name using VkNode::name():

char *name() const

320

Chapter 12: The ViewKit Graph Component

You can retrieve the node’s label string with VkNode::label():

virtual char *label()

If you did not provide a label string in the node constructor, the value of the label string
is the same as the component’s name.

You can determine the number of parent and child nodes with VkNode::nParents() and
VkNode::nChildren(), respectively:

int nParents() const
int nChildren() const

You can retrieve a specific parent or child node using VkNode::parent() and
VkNode::child() respectively:

VkNode *parent(int index) const
VkNode *child(int index) const

By default, the order of the parent and child nodes depends on the order in which you
specified the parent or child relationships. The first parent node you specify has an index
of 0, the second 1, and so on. Initially, the child nodes are numbered similarly; however,
if you sort the child nodes using the sortChildren() function, the nodes are reordered
according to the sort function you used. For example, if you sorted the child nodes
alphabetically by component name, the first child node alphabetically has an index of 0,
the second 1, and so on.

You can find a particular parent or child node by component name using
VkNode::findParent() and VkNode::findChild(), respectively:

VkNode *findParent(char * name)
VkNode *findChild(char * name)

These functions return a pointer to the node if found, and NULL if they do not find the
node. These functions search only immediate parent or child nodes, not all ancestor or
descendent nodes.

ViewKit Node Class

321

Creating Node Subclasses

You can create subclasses of VkNode to extend its features in a variety of ways to
maintain additional data or to change the way the node displays itself in a graph. Some
possibilities include the following:

• providing access functions for setting and retrieving resources of the default
SgIconGadget(3x) widget provided by the VkNode base class

• using widgets other than the default SgIconGadget(3x) widget

• creating additional data members and member functions to store
application-specific node information

You have a great deal of flexibility in deciding how to extend the VkNode class. The
important restriction that you must keep in mind is that the VkGraph object of which a
VkNode object is a member can create and destroy node widgets as needed. Therefore,
in your subclass function definitions you cannot assume that your node’s widget exists.

The VkGraph object calls a protected member function, VkNode::build(), whenever it
needs to create a node’s widget. If you want to use the additional features of the default
SgIconGadget widget or if you want to use a different widget in you subclass, you must
override build():

virtual void build(Widget parent)

If you simply want to use the additional features of the default SgIconGadget widget,
you can call VkNode::build() from within your subclass’s build() function to create the
SgIconGadget widget and set the widget’s label. Then, you can perform any additional
operations you want. (Consult the SgIconGadget(3x) reference page for more
information on using this widget.) For example:

void MyNode::build(Widget parent)
{

VkNode::build(parent);
// Additional setup...

}

If you want to use your own widget or widget hierarchy, create the widget(s) using parent
as the parent widget, and assign the widget or root of a widget hierarchy to the
_baseWidget data member. After creating the _baseWidget, call installDestroyHandler(),
as described in “Handling Component Widget Destruction” on page 24.

322

Chapter 12: The ViewKit Graph Component

From within a VkNode subclass you can also access the _label data member:

char * _label

_label contains the node’s label string as set by the VkNode constructor.

ViewKit Graph Class

This section describes how to build and manipulate graphs using the VkGraph class.
Minimally, you must perform the following actions to build and display a ViewKit
graph:

1. Create the VkGraph object.

2. Create the nodes as instances of VkNode or a subclass.

3. Add the nodes to the graph and specify the node connectivity.

4. Indicate which nodes to display.

5. Lay out the graph.

VkGraph Constructor and Destructor

The VkGraph constructor is simple with few arguments. You must provide a name and
the parent widget for the graph:

VkGraph(char * name, Widget parent)

The VkGraph destructor destroys the graph. It does not destroy any VkNode objects
that are part of the graph.

Adding Nodes and Specifying Node Connectivity

After you create nodes, you must add them to the graph object you created. Also, if you
didn’t specify the parent-child relationship for the nodes when you created them, you
should supply the remaining connectivity information when adding the nodes to the
graph. (See “ViewKit Node Class” on page 317 for information on creating nodes.)

ViewKit Graph Class

323

The VkGraph::add() function adds nodes to a graph object:

virtual int add(VkNode * node)

virtual void add(VkNode * parent, VkNode * child,
char * attribute = NULL)

If you supply only one node pointer as an argument, add() simply adds the node to the
graph. If you have already added the node to the graph, add() does nothing.

If you supply two node pointers as arguments, add() adds both nodes to the graph and
establishes the first node as the parent of the second node. If you have already added
either node to the graph, add() does not add the node again, but it does establish the
parent-child relationship between the nodes.

Note: The second form of add() establishes the parent-child relationship between nodes
even if one already exists. Thus, it is possible to have more than one connection between
nodes. By default, the graph displays only a single arc between connected nodes, even if
you define multiple connections between the nodes. However, as described in
“Displaying Duplicate Arcs” on page 315, by clicking the graph’s Multiple Arcs button
the user can force the graph to display an arc for each connection you defined. To turn off
the multiple-arc display, the user can click the Multiple Arcs button again.

When specifying a parent-child connection using add(), you can specify an attribute for
that connection. An attribute is an arbitrary name that you can use to control the
appearance of the arc widget that connects the two nodes. For example, assume that you
add two nodes to a graph as follows:

graph->add(parent, child, "primary");
graph->add(parent, child, "secondary");

The resulting graph displays two connecting arcs between the two nodes. You can now
specify X resources to control various aspects of the arc. For example:

*primary*foreground: red
*primary*arcDirection: bidirected
*secondary*foreground: blue
*secondary*arcDirection: undirected
*secondary*style: LineOnOffDash

324

Chapter 12: The ViewKit Graph Component

You can use this method to set many of the resources supported by the SgArc widget. The
resources you can specify are: XmNforeground, XmNtoSide, XmNfromSide,
XmNfromPosition, XmNtoPosition, XmNarcDirection, XmNfontList, XmNarcWidth,
XmNstyle, and XmNdashes. See the SgArc(3x) reference page for details on these
resources.

The following code fragment creates a graph, creates two nodes, establishes a
parent-child relationship between the nodes, and adds the nodes to the graph:

graph = new VkGraph("graph", parent);
p_node = new VkNode("parentNode", "Parent");
c1_node = new VkNode("childNode1", p_node, "Child 1");
graph->add(p_node);
graph->add(c1_node);

Note that in this example, the connection between the two nodes is established when you
create c1_node. Therefore, you must add the nodes to the graph using separate calls to
add(). Suppose that, instead of the two separate calls, you execute this:

graph->add(p_node, c1_node);

Then you not only add the two nodes to the graph, but you establish a second connection
between the nodes.

You can accomplish the same result as above by creating the nodes without providing the
parent-child relationship, and then specifying the connection when you add the nodes to
the graph. The following code fragment is functionally equivalent to that shown above:

graph = new VkGraph("graph", parent);
p_node = new VkNode("parentNode", "Parent");
c1_node = new VkNode("childNode1", "Child 1");
graph->add(p_node, c1_node);

Removing Nodes

You can remove nodes from a graph using VkGraph::remove():

virtual void remove(VkNode * node, Boolean deleteNode = FALSE)

By default, remove() removes the node from the graph but does not delete it. If you set
the deleteNode argument to TRUE, remove() deletes the node when it removes it.

ViewKit Graph Class

325

Indicating Which Nodes to Display

Once you have added all nodes to a graph and specified their connectivity, you must
indicate which nodes the graph should display. VkGraph provides many functions that
allow you to display or hide all of the graph, individual nodes, and portions of node
subtrees.

After displaying nodes, you should call one of the graph layout member functions as
described in “Laying Out the Graph” on page 328. Otherwise, the nodes might not
display in desired locations.

The basic display functions are VkGraph::displayAll() and VkGraph::clearAll():

virtual void displayAll()
void clearAll()

displayAll() displays all nodes and clearAll() hides all nodes. Typically, after creating
your graph, you execute displayAll() to display all of the nodes. For example:

graph->displayAll();

Sometimes you might want to display only portions of your graph. VkGraph provides
functions to operate on either single nodes or subtrees of nodes.

The VkGraph::display() function displays a single node:

virtual void display(VkNode * child)
virtual VkNode *display(char * name)

You can provide display() with either a pointer to the node or the component name of
the node. If you provide the node’s name, this function returns a pointer to the node.

VkGraph::undisplay() hides a single node:

virtual void undisplay(VkNode * node)
virtual void hideNode(VkNode * node)

VkGraph::hideNode() is equivalent to undisplay().

326

Chapter 12: The ViewKit Graph Component

VkGraph also provides a large number of functions that display or hide portions of the
graph:

• displayWithChildren() displays a node and all of its immediate child nodes (not all
descendent nodes). If you provide the node’s name, this function returns a pointer
to the node.

virtual void displayWithChildren(VkNode * node)
virtual VkNode *displayWithChildren(char * name)

• expandNode() is functionally equivalent to displayWithChildren() except that it
also calls VkGraph::doSubtreeLayout() to lay out the child nodes according to the
graph’s layout algorithm. See “Laying Out the Graph” on page 328 for more
information on doSubtreeLayout().

virtual void expandNode(VkNode * node)

• displayWithAllChildren() displays a node and all of its descendent nodes. If you
provide the node’s name, this function returns a pointer to the node.

virtual void displayWithAllChildren(VkNode * node)
virtual VkNode *displayWithAllChildren(char * name)

• expandSubgraph() is functionally equivalent to displayWithAllChildren() except
that it also calls VkGraph::doSubtreeLayout() to lay out the child nodes according
to the graph’s layout algorithm. See “Laying Out the Graph” on page 328 for more
information on doSubtreeLayout().

virtual void expandSubgraph(VkNode * node)

• hideAllChildren() hides all of a node’s descendent nodes. Note that this function
does not hide node itself.

virtual void hideAllChildren(VkNode * node)

• hideWithAllChildren() hides a node and all of its descendent nodes.

virtual void hideWithAllChildren(VkNode * node)

• displayWithParents() displays a node and all of its immediate parent nodes (not all
ancestor nodes). If you provide the node’s name, this function returns a pointer to
the node.

virtual void displayWithParents(VkNode * node)
virtual VkNode *displayWithParents(char * name)

• displayWithAllParents() displays a node and all of its ancestor nodes. If you
provide the node’s name, this function returns a pointer to the node.

virtual void displayWithAllParents(VkNode * node)
virtual VkNode *displayWithAllParents(char * name)

ViewKit Graph Class

327

• hideParents() hides all of a node’s immediate parent nodes (not all ancestor nodes).
Note that this function does not hide node itself.

virtual void hideParents(VkNode * node)

• displayParentsAndChildren() displays a node and all of its immediate parent and
child nodes (not all ancestor and descendent nodes). If you provide the node’s
name, this function returns a pointer to the node. Note that this function does
display node itself.

virtual void displayParentsAndChildren(VkNode * node)
virtual VkNode *displayParentsAndChildren(char * name)

• hideParentsAndChildren() hides all of a node’s immediate parent and child nodes
(not all ancestor and descendent nodes). Note that this function does not hide node
itself.

virtual void hideParentsAndChildren(VkNode * node)

You can also create your own functions for determining whether or not nodes are
displayed and then use the VkGraph::displayIf() function to apply those functions:

virtual void displayIf(VkGraphFilterProc)

The type definition of VkGraphFilterProc is as follows:

typedef Boolean (*VkGraphFilterProc) (VkNode *)

The function you provide must be a static function that accepts a node as an arguments
and returns TRUE if the node should be displayed.

Note: displayIf() does not hide (that is, call undisplay()) if the filter function returns
FALSE for a node. Therefore, if you want to display only those nodes for which the filter
function returns TRUE, you must first call clearAll().

For example, the following function displays only those nodes whose names begin with
the string “state”:

static Boolean displayState(VkNode *node)
{

if (strcmp("state", node->name(), 5)
return TRUE;

else
return FALSE;

}

328

Chapter 12: The ViewKit Graph Component

Laying Out the Graph

The final step in displaying a graph is to lay it out. Laying out the graph arranges the
widgets in a logical manner and then manages the widgets.

To lay out the entire graph, call the VkGraph::doLayout() function, which applies the
layout algorithm to the entire graph and then manages all widgets associated with the
graph:

void doLayout()

If you modify the graph after displaying it, or if you allow the user to edit the graph
interactively, the graph might become cluttered and you might want to lay out the graph
again. To do so you can call doLayout() again to force the graph to reapply the layout
algorithm to the graph to clean up the display. As an example, the Realign button
provided on the graph command panel simply calls doLayout() whenever the user clicks
the button.

If, after displaying the graph, you display any additional nodes (for example, using the
VkGraph::display() function), you must force a layout of the graph to manage all the
widgets you created. You can call doLayout() again to do so, but this applies the layout
algorithm to the entire graph. Doing so could produce major changes in the layout of the
entire graph, which could be disruptive and undesired if the user has previously moved
nodes. Also, it could take considerable time if the graph is large. In this case, you can
instead call the VkGraph::doSubtreeLayout() function which, given a root node, applies
the layout algorithm to just a subtree of the graph:

void doSubtreeLayout(VkNode * node)

For example, the following code fragment illustrates displaying a graph, graph, and then
displaying another node, newNode:

// At this point, all nodes are created, the connectivity is
// specified, and certain nodes selected to be displayed

// Lay out and display the graph

graph->doLayout();

ViewKit Graph Class

329

// Mark newNode to be displayed

graph->display(newNode);

// Display newNode, re-laying out only the subtree
// under newNode

graph->doSubtreeLayout(newNode);

VkGraph::doSparseLayout() is a special-purpose build and layout function that
displays the relationship between a node and its grandparent nodes even if the node’s
parents are not displayed:

void doSparseLayout()

doSparseLayout() performs a special build of the graph and whenever it finds a node
with an undisplayed parent node, it checks to see whether there are any displayed
grandparent nodes. If doSparseLayout() finds such grandparent nodes, it creates a
dashed-line arc (instead of a solid-line arc) to connect the node and its grandparent
nodes. After finishing the build process, doSparseLayout() performs a layout of the
entire graph and manages all widgets associated with the graph.

Butterfly Graphs

So far, this chapter has discussed creating tree graphs using the VkGraph class.
However, VkGraph also supports butterfly graphs, which display only a central node and
its immediate parent and child nodes. The central node of a butterfly graph is called the
butterfly node.

VkGraph can construct a butterfly graph from any graph specification. All you need to
do is call VkGraph::displayButterfly() to specify one node as the butterfly node;
VkGraph automatically determines which nodes to display:

virtual void displayButterfly(VkNode * node)
virtual VkNode *displayButterfly(char * name)

Then call VkGraph::doLayout() to lay out the graph as you normally would. For
example, assuming that you have already defined a graph specification for a graph called
graph, the following code fragment would instruct the graph object to display a butterfly
graph centered on the node centerNode:

graph->displayButterfly(centerNode);
graph->doLayout();

330

Chapter 12: The ViewKit Graph Component

After displaying a butterfly graph, you can use displayButterfly() to specify a new
butterfly node and display a different butterfly graph given the same graph
specification. For example, the following code fragment illustrates setting a new
butterfly node, newCenter, after displaying the butterfly graph in the example above:

graph->displayButterfly(newCenter);
graph->doLayout();

After displaying a butterfly graph, you can return to displaying a normal tree graph by
setting the layout style to XmGRAPH using the VkGraph::setLayoutStyle() function:

virtual void setLayoutStyle(char type)

For example, the following code fragment illustrates displaying the entire graph
specified by graph after displaying the butterfly graphs above:

graph->setLayoutStyle(XmGRAPH);
graph->displayAll();
graph->doLayout();

Displaying a Graph Overview

As discussed in “Graph Overview” on page 314, by clicking the Graph Overview button
in the graph command panel, a user can display an overview of all a graph’s visible
nodes.

You can also display the overview window programmatically using
VkGraph::showOverview():

void showOverview()

Call VkGraph::hideOverview() to programmatically hide the overview window:

void hideOverview()

You can obtain a pointer to the overview window’s VkWindow object using
VkGraph::overviewWindow():

VkWindow *overviewWindow()

ViewKit Graph Class

331

Graph Utility Functions

VkGraph provides the following utility functions:

• VkGraph::setZoomOption() sets the zoom value for the graph. Pass to this function
the integer index corresponding to the index in the Zoom Menu of the
magnification that you want. (“Zooming” on page 313 describes the Zoom Menu
and its default values.)

virtual void setZoomOption(int index)

• VkGraph::sortAll() sorts all nodes associated with the graph by calling
VkNode::sortChildren() on all nodes. (“Node Utility Functions” on page 319
describes VkNode::sortChildren().)

void sortAll()

• VkGraph::forAllNodesDo() allows you to perform some action on all nodes
registered with a graph. The type definition of VkGraphNodeProc is as followsd:

typedef void (*VkGraphNodeProc) (VkNode *)

The function you provide must be a static function that accepts a node as an
arguments and has a void return value.

virtual void forAllNodesDo(VkGraphNodeProc function)

• VkGraph::makeNodeVisible() ensures that a particular node is in the visible
portion of the graph’s window. If the node you specify is not currently visible,
makeNodeVisible() scrolls the graph until the specified node appears in the visible
portion of the window.

void makeNodeVisible(VkNode * node)

• VkGraph::saveToFile() prompts the users for a filename and saves a PostScript®

version of the graph to that file.

void saveToFile()

• VkGraph::setSize() allows you to pre-allocate space in your graph’s internal tables
for the number of nodes you specify. If you know how many nodes you plan to add
to your graph, calling setSize() before adding nodes to your graph can save time
because the graph can allocate all memory needed in one operation instead of
expanding the tables dynamically as you add nodes. Your graph can still allocate
additional space if you actually add more nodes than you reserved space for using
setSize().

void setSize(int entries)

332

Chapter 12: The ViewKit Graph Component

Graph Access Functions

VkGraph provides the following access functions for obtaining values associated with
the graph:

• VkGraph::numNodes() returns the number of nodes in the graph.

int numNodes()

• VkGraph::find() returns the first VkNode object registered with the VkGraph
object that has the given name.

VkNode *find(char * name)

• VkGraph::graphWidget() returns the SgGraph widget instantiated by the
VkGraph component. Not all the functionality of the SgGraph widget is
encapsulated in the VkGraph class, and it is sometimes useful to set various
resources directly on the graph widget.

Widget graphWidget()

• VkGraph::workArea() returns the XmForm widget at the bottom of the VkGraph
component, which contains the graph controls. You can use this area to add
additional controls.

Widget workArea()

• VkGraph::twinsButton() returns the Multiple Arcs button widget used to control
whether sibling arcs are shown.

Widget twinsButton()

• VkGraph::relayButton() returns the Realign button widget used to relay the graph.

Widget relayButton()

• VkGraph::reorientButton() returns the Rotate button widget used to reorient the
graph.

Widget reorientButton()

ViewKit Graph Class

333

Reusing a Graph Object

Occasionally, after displaying one graph, you might want to display an entirely different
graph. The simplest method of accomplishing this is to create another VkGraph object
for the new graph.

However, creating a new graph object entails the overhead of creating many new widgets
and data structures. Sometimes it is simpler, faster, and more appropriate to re-use the
existing graph object. For example, consider a window in which you are displaying a
graph of C++ class hierarchies associated with a program. The window might contain
controls that allow the user to select other programs to examine. If the user selects a new
program to examine, the most convenient thing to do would be to keep the existing
graph object but “clear it” of all existing information.

The VkGraph::tearDownGraph() function provides this ability:

virtual void tearDownGraph()

It tears down the graph by destroying all arc and node widgets and deleting all VkNode
objects associated with the graph. This function is equivalent to deleting all VkNode
objects associated with the graph, deleting the graph object, and creating a new graph
object with the same name, but entails less overhead processing than if you were to
explicitly perform these actions separately.

ViewKit Callbacks Associated With VkGraph

The VkGraph class declares two ViewKit member function callbacks.

VkGraph activates the VkGraph::arcCreatedCallback whenever the graph creates a SgArc
widget to connect two nodes. The arcCreatedCallback callback includes as call data the
newly created SgArc widget. See the SgArc(3x) reference pages for information on the
SgArc widget.

VkGraph activates the VkGraph::arcDestroyedCallback whenever the graph destroys all
arc widgets as a result of a call to VkGraph::clearAll() (see “Indicating Which Nodes to
Display” on page 325). VkGraph activates the arcDestroyedCallback callback once for
every arc destroyed, including as call data the SgArc widget destroyed. See the SgArc(3x)
reference pages for information on the SgArc widget.

334

Chapter 12: The ViewKit Graph Component

X Resources Associated With VkGraph

VkGraph sets several X resources that specify the labels of its popup menus. You can
override these values in an app-defaults file if you want to provide your own labels. The
resources and their default values are as follows:

*graph*popupMenu*hideNode*labelString: Hide Node
*graph*popupMenu*collapseSubgraph*labelString: Collapse Subgraph
*graph*popupMenu*expandOneLevel*labelString: Show Immediate Children
*graph*popupMenu*expandSubgraph*labelString: Expand Subgraph
*graph*popupMenu*hideParents.labelString: Hide Parents
*graph*popupMenu*expandParents.labelString: Show Parents
*graph*popupMenu*selectedNodes.labelString: Selected Nodes
*graph*popupMenu*hideSelectedNodes.labelString: Hide
*graph*popupMenu*collapseSelectedNodes.labelString: Collapse
*graph*popupMenu*expandSelectedNodes.labelString: Expand

Subclassing VkGraph

VkGraph provides much of the functionality that you should require for displaying and
manipulating graphs. In most other cases, you can obtain a pointer to the SgGraph
widget using the graphWidget() access function and operate directly on the widget.

However, sometimes you might want to perform additional processing when certain
actions occur. In a case like this, you can create a subclass of VkGraph. VkGraph
provides a number of virtual “hook” functions that you can override and implement
additional functionality:

• VkGraph::buildCmdPanel() builds the command panel at the bottom of the graph.
You can override this function to create your own custom command panel for your
graph.

virtual void buildCmdPanel(Widget parent)

• VkGraph::buildZoomMenu() builds the Zoom menu, the Zoom Out button, and the
Zoom In button as part of the command panel. You can override this function to
provide your own custom zoom controls for your graph.

virtual void buildZoomMenu(Widget parent)

• VkGraph::addMenuItems() allows you to modify the Node popup menu described
in “Hiding and Displaying Nodes” on page 316. You can override this function and
use the various functions provided by the VkMenu class to add new menu item or

ViewKit Graph Class

335

delete default menu items. “ViewKit Menu Base Class” on page 125 describes the
functions provided by VkMenu.

virtual void addMenuItems(VkPopupMenu * menu)

• VkGraph::popupMenu() posts the Node popup menu described in “Hiding and
Displaying Nodes.” The function receives two arguments: a pointer to the node on
which the user clicked the right mouse button, and the X ButtonPress event. By
default, the function does the following:

1. Activates and deactivates menu items to reflect the valid options for the node.

2. Sets the label of the popup menu to be the same as the label of the node.

3. Calls the popup menu’s show() function, passing event as an argument.

You can override this function if you want to change its behavior or support any
additional menu items that you added by overriding addMenuItems().

virtual void popupMenu(VkNode * node, XEvent * event)

• VkGraph::addDesktopMenuItems() allows you to modify the Selected Nodes
popup menu described in “Edit Mode Operations” on page 316. You can override
this function and use the various functions provided by the VkMenu class to add
new menu items or delete default menu items. “ViewKit Menu Base Class”
describes the functions provided by VkMenu.

virtual void addDesktopMenuItems(VkPopupMenu * menu)

• VkGraph::twinsVisibleHook() is called when the user toggles the Multiple Arcs or
“twins” button. The new state of the twins buttons is passed as an argument to this
function. By default, the function is empty. You can override this function to
perform additional operations when the graph changes its display mode.

virtual void twinsVisibleHook(Boolean state)

337

Chapter 13

13. Miscellaneous ViewKit Display Classes

This chapter contains descriptions of miscellaneous ViewKit classes that you use
primarily to display information or to manage display items. Figure 13-1 shows the
inheritance graph for these classes.

Figure 13-1 Inheritance Graph for the Miscellaneous ViewKit Display Classes

ViewKit Support for Double-Buffered Graphics

VkDoubleBuffer is an abstract class that provides support for components that need to
display double-buffered graphics.

Note: VkDoubleBuffer provides software double-buffering only; it does not use the
hardware double-buffering available on many Silicon Graphics workstations. As a result,
you might notice some flickering in your VkDoubleBuffer animations.

You must create a separate subclass of VkDoubleBuffer for each double-buffered
display component in your application. In each subclass, you include the Xlib calls to
create the text or graphics that the component displays. You do not have to worry about
handling Expose events or resize requests, because VkDoubleBuffer handles these
automatically.

VkComponent VkDoubleBuffer

VkTickMarks

VkResizer

VkWidgetList VkAlignmentGroup

338

Chapter 13: Miscellaneous ViewKit Display Classes

The public interface to VkDoubleBuffer consists simply of a function that your
application calls whenever it needs to update the component’s display. For example, to
drive an animation, you could set a timer to update a component at a desired interval.

Double Buffer Constructor and Destructor

The VkDoubleBuffer constructor accepts the standard ViewKit component constructor
arguments, a component name and a parent widget:

VkDoubleBuffer(const char * name, Widget parent)

The constructor creates the various widgets and Pixmaps used by the component and
installs callbacks to handle Expose events and resize requests. In your subclass
constructor, you can initialize any graphics contexts and other data that your component
requires.

The VkDoubleBuffer destructor frees the widgets and Pixmaps allocated by the
VkDoubleBuffer constructor:

~VkDoubleBuffer()

In your subclass destructor you should free any graphics contexts and other data
allocated by your component.

Drawing in the Double Buffer Component

The VkDoubleBuffer class calls your component’s draw() function when your
component needs to draw a new frame:

virtual void draw()

draw() is declared by VkDoubleBuffer as a pure virtual function, and it is the only
function you must override when creating a derived class of VkDoubleBuffer. The
draw() function should use Xlib calls to display text or graphics by drawing to the
_canvas data member:

Pixmap _canvas

The derived class always draws to the back buffer, although the derived class does not
need to be aware of this. The VkDoubleBuffer class copies the contents of this Pixmap
to the front buffer as needed.

Tick Marks for Scales

339

Switching Buffers in the Double Buffer Component

VkDoubleBuffer::update() is the public member function that the application calls to
update the component’s display:

virtual void update()

update() calls your component’s draw() function to obtain a new frame. Then it swaps
buffers, and if the component is currently displayed, updates the screen with the
contents of the front buffer. Finally, update() clears the back buffer by filling it with the
component’s background color.

Handling Double Buffer Component Resize Requests

VkDoubleBuffer automatically handles window resize requests, resizing the front and
back buffers and filling them with the component’s background color. If you need to
perform additional operations in your derived class, you can override the virtual
function VkDoubleBuffer::resize():

virtual void resize()

VkDoubleBuffer calls resize() after resizing and reinitializing the buffers. The new
height and width of the drawing area are contained in the _width and _height data
members:

Dimension _width
Dimension _height

Tick Marks for Scales

The VkTickMarks class, derived from VkComponent, displays a vertical set of tick
marks. Most frequently, you would use this component next to a vertical IRIS IM
XmScale(3Xm) widget. By default, a VkTickMarks component right-justifies its tick
marks and displays its labels to the left, which is appropriate if you display the
component to the left of a scale. You can also configure a VkTickMarks component to
left-justify its tick marks and display its labels to the right, which is appropriate if you
display the component to the right of a scale. Figure 13-2 shows an example of each
version of the tick marks.

340

Chapter 13: Miscellaneous ViewKit Display Classes

Figure 13-2 VkTickMarks Component

Tick Marks Component Constructor

The VkTickMarks constructor accepts five arguments:

VkTickMarks(char* name, Widget parent, Boolean labelsToLeft = TRUE,
Boolean noLabels = FALSE, Boolean centerLabels = FALSE)

The first two arguments are the standard ViewKit component constructor arguments, a
component name and a parent widget. If labelsToLeft is TRUE, the tick marks are
right-justified and the labels appear to the left; if labelsToLeft is FALSE, the tick marks are
left-justified and the labels appear to the right. If you set noLabels to TRUE, the
VkTickMarks component does not display any labels. If you set centerLabels to TRUE,
the VkTickMarks component centers the labels. This is useful if you want to center a
VkTickMarks object between two XmScale widgets.

Configuring the Tick Marks

You can set the scale of the tick marks with the VkTickMarks::setScale() function:

void setScale(int min, int max,
int majorInterval, int minorInterval)

Tick Marks for Scales

341

min and max specify the minimum and maximum values for the tick mark component. If
you set the VkTickMarks component to display labels, it displays these minimum and
maximum values next to the bottom and top tick marks respectively.

majorInterval and minorInterval specify the tick mark spacing. You can specify the number
of units (not pixels) between each major and minor tick mark.

For example, the following sets the minimum value of the ticks VkTickMarks object to
0, the maximum to 1000, the major interval to 100, and the minor interval to 50:

ticks->setScale(0, 1000, 100, 50);

Figure 13-3 shows the resulting display of the VkTickMarks object.

Figure 13-3 Setting Tick Mark Scale and Spacing

If you do not use setScale() to set the scale of the tick marks, VkTickMarks uses the
values of the resources minimum,maximum, majorInterval, and minorInterval to set the
respective scale values.

You can add additional labels to the scale with VkTickMarks::addLabel():

void addLabel(int value)

The VkTickMarks object displays a label at the value you indicate. You can call
addLabel() multiple times to add multiple labels.

342

Chapter 13: Miscellaneous ViewKit Display Classes

The VkTickMarks::setMargin() function controls the VkTickMarks margins:

void setMargin(int marginTop, int marginBottom);

setMargin() allows you to specify the spacing between the top of the VkTickMarks
component and the first tick mark, and the bottom of the component and the last tick
mark. The default settings are designed for use next to an XmScale widget: the first and
last tick marks align horizontally with the mark in the middle of the scale’s slider.

X Resources Associated With the Tick Marks Component

The VkTickMarks class provides several X resources that determine display
characteristics of the component:

minimum The initial minimum value (default value 0).

maximum The initial maximum value (default value 10).

majorInterval The major tick interval (default value 5).

minorInterval The minor tick interval (default value 1).

majorSize The width in pixels of the major tick marks (default value 10).

minorSize The width in pixels of the minor tick mark width (default value 6).

labelSpacing The spacing in pixels between tick marks and labels (default value 3).

marginTop The margin in pixels between the top of the component and the top tick
mark (default value 19).

marginBottom The margin in pixels between the bottom of the component and the
bottom tick mark (default value 19).

lineThickness The thickness in pixels of the tick marks thickness (default value 1).

label.foreground
The foreground color used for labels and tick marks.

label.background
The background color used for labels and tick marks.

label.fontList The font used for labels.

Management Classes for Controlling Component and Widget Display Characteristics

343

Management Classes for Controlling Component and Widget Display Characteristics

ViewKit provides some management classes that control the display of components and
widgets. These classes function as attachments: you attach them to one or more existing
widgets or components. Then you can use the management class to control some aspect
of displaying the widgets and components to which the class is attached.

ViewKit Support for Aligning Widgets

The VkAlignmentGroup class provides support for aligning collections of widgets with
each other in various ways. VkAlignmentGroup is derived from the convenience class
VkWidgetList. Consult the VkWidgetList(3x) reference page for more information on
that class.

To use the VkAlignmentGroup class, you create a VkAlignmentGroup object, add
widgets or components to the group, and then call one of the alignment functions
provided by VkAlignmentGroup.

The Alignment Group Constructor and Destructor

The VkAlignmentGroup constructor does not take any arguments:

VkAlignmentGroup()

VkAlignmentGroup objects do not require names because they are not components;
ViewKit uses names to uniquely identify the widget trees of components, and the
VkAlignmentGroup class does not create any widgets.

The VkAlignmentGroup destructor destroys only the VkAlignmentGroup object. If
you have widgets managed by the object, they are unaffected by the
VkAlignmentGroup destructor.

Adding Widgets and Components to an Alignment Group

Use the add() function to add widgets or components to a VkAlignmentGroup object:

virtual void add(Widget w)
virtual void add(VkComponent * obj)
virtual void add(VkOptionMenu * menu)

344

Chapter 13: Miscellaneous ViewKit Display Classes

If you provide a widget, add() adds that widget to the alignment group. If you provide
a pointer to a component, add() adds the component’s base widget to the alignment
group. If you provide a pointer to a VkOptionMenu object, add() adds all menu items
individually to the VkAlignmentGroup object rather than adding the VkOptionMenu
object as an entity.

Removing Widgets and Components From an Alignment Group

You can remove widgets or components from a VkAlignmentGroup object with the
remove() function inherited from VkWidgetList:

virtual void remove(Widget w)
virtual void remove(VkComponent * obj)

Provide the widget ID or component pointer that you used to add the widget or
component to the alignment group.

Aligning Widgets and Components in an Alignment Group

To align or distribute the elements in a VkAlignmentGroup object, call one of the
following functions (all of which take no arguments and have a void return type):

alignLeft() Aligns the left edges of all widgets by repositioning all widgets so that
the left side of each widget is moved to the rightmost left edge of any
widget in the group.

alignRight() Aligns the right edges of all widgets by repositioning all widgets so that
the right side of each widget is moved to the rightmost position
occupied by any widget in the group.

alignTop() Aligns the top edges of all widgets by repositioning all widgets so that
the top of each widget is moved to the bottommost top edge of any
widget in the group.

alignBottom() Aligns the bottom edges of all widgets by repositioning all widgets so
that the bottom of each widget is moved to the bottommost position
occupied by any widget in the group.

alignWidth() Resizes all widgets to the width of the largest widget in the group.

alignHeight() Resizes all widgets to the height of the largest widget in the group.

makeNormal() Returns all widgets to their desired widths and heights.

Management Classes for Controlling Component and Widget Display Characteristics

345

distributeVertical()
Repositions all widgets so that they are positioned evenly in the vertical
direction, according to the spacing between widgets, between the
position of the first and last widgets in the group.

distributeHorizontal()
Repositions all widgets so that they are positioned evenly in the
horizontal direction, according to the spacing between widgets, between
the position of the first and last widgets in the group.

Alignment Group Access Functions

VkAlignmentGroup provides the following access functions:

• VkAlignmentGroup::width() returns the maximum width of all widgets in the
group. This value is not set until after you have called alignWidth().

Dimension width()

• VkAlignmentGroup::height() returns the maximum height of all widgets in the
group. This value is not set until after you have called alignHeight().

Dimension height()

• VkAlignmentGroup::x() returns the minimum x position of all widgets in the
group. This value is not set until after you have called either alignLeft() or
alignRight().

Position x()

• VkAlignmentGroup::y() returns the minimum y position of all widgets in the
group. This value is not set until after you have called either alignTop() or
alignBottom().

Position y()

VkAlignmentGroup also inherits all of the access and utility functions provided by
VkWidgetList. Consult the VkWidgetList(3x) reference page for more information on
that class.

346

Chapter 13: Miscellaneous ViewKit Display Classes

ViewKit Support for Resizing and Moving Widgets

The VkResizer class provides controls for moving and resizing an existing widget.
Figure 13-4 shows a simple example of a push button with a VkResizer attachment.

Figure 13-4 Widget With a VkResizer Attachment

If you use the left mouse button to click either of the square handles provided by the
VkResizer object, you can drag the handle to a new location. When you release the
handle, the VkResizer object resizes the widget to which it is attached so that the widget
matches the new size of the VkResizer object. Figure 13-5 shows an example of resizing
the pushbutton shown in Figure 13-4.

Management Classes for Controlling Component and Widget Display Characteristics

347

Figure 13-5 Effect of Resizing a Widget With a VkResizer Attachment

If you use the middle mouse button to click either of the square handles provided by the
VkResizer object, you can drag the entire widget to a new location. When you release the
handle, the VkResizer object moves the widget to which it is attached to the new location
of the VkResizer object. Figure 13-6 shows an example of moving the pushbutton shown
in Figure 13-5.

Figure 13-6 Effect of Moving a Widget With a VkResizer Attachment

348

Chapter 13: Miscellaneous ViewKit Display Classes

To use the VkResizer class, you create a VkResizer object, associate an existing widget
with the object, and then display the resizer’s geometry controls.

Resizer Constructor and Destructor

The VkResizer constructor accepts two Boolean arguments:

VkResizer(Boolean autoAdjust = FALSE, Boolean liveResize = FALSE)

autoAdjust controls whether the VkResizer object automatically tracks outside geometry
changes of its attached widget. If you set this value to TRUE, the VkResizer object
automatically adjusts its geometry controls whenever its attached widget changes
geometry. If you set this value to FALSE, you must call the VkResizer::adjustGeometry()
function whenever you want the VkResizer object to adjust its geometry controls to the
geometry of its attached widget. The default value of this argument is FALSE.

liveResize controls whether the widget itself or a rectangle representing the widget area is
displayed during geometry changes. Setting the second parameter to TRUE causes
intermediate geometry changes in the attached widget, which may affect performance.
The default value is FALSE.

VkResizer objects do not require names because they are not components; ViewKit uses
names to uniquely identify the widget trees of components, and the VkResizer class
does not create any widgets.

The VkResizer destructor destroys only the VkResizer object. If you have a widget
attached to the object, it is unaffected by the VkResizer destructor.

Attaching and Detaching a Resizer Object to and From a Widget

Once you have created a VkResizer object, use the VkResizer::attach() function to attach
it to an existing widget:

void attach(Widget w)

You can also attach a VkResizer object to a component by attaching it to the component’s
base widget. For example, if resizer is a VkResizer object and obj is a component, you can
attach the resizer to the component as follows:

resizer->attach(obj->baseWidget());

Management Classes for Controlling Component and Widget Display Characteristics

349

If the VkResizer object is already attached to a widget, it detaches from the old widget
before attaching to the new one. You can use the VkResizer::detach() function to detach
a VkResizer object from a widget without immediately attaching it to another:

void detach()

Displaying the Resizer Object’s Geometry Controls

After attaching a VkResizer object to a widget, you must call the VkResizer object’s
VkResizer::show() function to display its geometry controls:

void show()

You can hide the geometry controls by calling the VkResizer object’s VkResizer::hide()
function:

void hide()

The VkResizer::shown() function returns a Boolean value indicating whether the
VkResizer object is visible and displaying its geometry controls:

Boolean shown()

Resizer Utility Functions

You can configure the VkResizer object’s geometry manipulations with the
VkResizer::setIncrements() function:

void setIncrements(int resizeWidth, int resizeHeight,
int moveX, int moveY)

setIncrements() accepts four integer arguments. The first two arguments specify the
resize increments in the horizontal and vertical dimension, respectively. The last two
arguments specify the move increments in the horizontal and vertical dimension,
respectively. Setting an increment to zero prohibits resizing or moving in that dimension.

ViewKit Callbacks Associated With the Resizer

The VkResizer class also provides a ViewKit member function callback named
VkResizer::stateChangedCallback:

static const char *const stateChangedCallback

350

Chapter 13: Miscellaneous ViewKit Display Classes

This callback informs the application when VkResizer has modified the geometry of its
attached widget. The callback supplies as call data a value of the enumerated type
VkResizerReason (defined in <Vk/VkResizer.h>). The value can be any of VR_resizing,
VR_moving, VR_resized, or VR_moved. VR_resizing and VR_moving indicate that
resizing or moving are in progress, and are sent repeatedly as the user adjusts the
geometry. VR_resized and VR_moved indicate that the resizing or moving is complete,
and are sent when the user releases the VkResizer geometry controls.

351

Chapter 14

14. Miscellaneous ViewKit Data Input Classes

This chapter contains descriptions of miscellaneous ViewKit classes that you would use
primarily for data input. Figure 14-1 shows the inheritance graph for these classes.

Figure 14-1 Inheritance Graph for the Miscellaneous ViewKit Input Classes

VkCheckBox

VkTabPanel

VkRepeatButton

VkCompletionField

VkModified VkModifiedAttachment

VkWidgetList
VkGangedGroup

VkRadioGroup

VkComponent

VkRadioBox

VkCallbackObject

352

Chapter 14: Miscellaneous ViewKit Data Input Classes

Check Box Component

The VkCheckBox class, derived from VkComponent, provides a simple method for
creating check boxes. Instantiating the component creates an empty, labeled component
to which you can add individual toggle buttons. VkCheckBox provides a variety of
methods for determining when the user changes the state of a toggle button; you can use
the method most convenient for your applications. You can also programmatically
change the values of the toggle buttons.

Creating a Check Box

The VkCheckBox constructor accepts the standard ViewKit component name and
parent widget arguments:

VkCheckBox(const char * name, Widget parent)

The constructor creates an empty, labeled component.

Adding Toggles to the Check Box

You add toggle buttons to the check box using the VkCheckBox::addItem() function:

Widget addItem(char * name, Boolean state = FALSE,
XtCallbackProc proc = NULL,
XtPointer clientData = NULL)

name is the name of the toggle item. You can specify its initial state by providing a state
argument; TRUE sets the toggle and FALSE clears it.

You can also provide an Xt-style callback function, proc, that VkCheckBox activates
whenever the user changes the value of the toggle; and clientData, which VkCheckBox
passes as client data to the callback function. Following ViewKit conventions as
described in “Using Xt Callbacks With Components” on page 21, if you provide a
callback function, you should pass the this pointer as client data so that the callback
functions can retrieve the pointer, cast it to the expected component type, and call a
corresponding member function. “Using Xt-Style Callbacks to Handle Changes in Check
Box Toggle Values” on page 356 further discusses how to use the callback function.

Check Box Component

353

Setting Check Box and Toggle Labels

The VkCheckBox component creates a LabelGadget named “label” to display a label.
Each toggle button in the check box is implemented as a ToggleButtonGadget. The name
of the gadget is the name string that you provide to addItem() when you add the toggle.

Set the XmNlabelString resource of the check box label and its toggles to set their labels:

• Use the VkComponent::setDefaultResources() function to provide default resource
values as described in “Setting Default Resource Values for a Component” on
page 30.

• Set resource values in an external app-defaults resource file. Any values you
provide in an external file will override values that you set using the
VkComponent::setDefaultResources() function. This is useful when your
application must support multiple languages; you can provide a separate resource
file for each language supported.

• Set the resource values directly using the XtSetValues() function. Values you set
using this method override any values set using either of the above two methods.
You should avoid using this method because it “hard codes” the resource values
into the code, making them more difficult to change.

For example, consider a simple window that contains only a check box with four toggles,
as shown in Figure 14-2.

Figure 14-2 Sample Check Box

354

Chapter 14: Miscellaneous ViewKit Data Input Classes

Example 14-1 shows the code used to create this check box.

Example 14-1 Code to Create Sample Check Box

#include <Vk/VkApp.h>
#include <Vk/VkSimpleWindow.h>
#include <Vk/VkCheckBox.h>

class CheckBoxWindow: public VkSimpleWindow {
protected:

virtual Widget setUpInterface (Widget parent);
static String _defaultResources[];

public:
CheckBoxWindow (const char *name) : VkSimpleWindow (name) { }
~CheckBoxWindow();
virtual const char* className();

};

CheckBoxWindow:: ~CheckBoxWindow()
{ }

const char* CheckBoxWindow::className() { return "CheckBoxWindow"; }

String CheckBoxWindow::_defaultResources[] = {
"*check*label.labelString: Selections:",
"*check*one*labelString: First choice",
"*check*two*labelString: Second choice",
"*check*three*labelString: Third choice",
"*check*four*labelString: Fourth choice",
NULL

};

Widget CheckBoxWindow::setUpInterface (Widget parent)
{

setDefaultResources(parent, _defaultResources);

VkCheckBox *cb = new VkCheckBox("check", parent);
cb->addItem("one");
cb->addItem("two");
cb->addItem("three");

Check Box Component

355

cb->addItem("four");
cb->show();
return cb->baseWidget();

}

void main (int argc, char **argv)
{
VkApp *cbApp = new VkApp("checkBoxApp", &argc, argv);
CheckBoxWindow *cbWin = new CheckBoxWindow("checkbox");

cbWin->show();
cbApp->run();}

Setting and Getting Check Box Toggle Values

After creation, you can programmatically set the state of any toggle with the
VkCheckBox::setValue() function:

void setValue(int index, Boolean newValue)

index is the position of the toggle in the check box; the first toggle in the check box has an
index of 0. newValue is the new state for the toggle; TRUE sets the toggle and FALSE clears
it.

Note: Setting a toggle using setValue() activates the toggle’s valueChanged callback.
This in turn activates all of the VkCheckBox object’s methods for detecting changes in
toggle values as described in “Recognizing Changes in Check Box Toggle Values” on
page 356.

You can set the values of multiple toggles using the VkCheckBox::setValues() function:

void setValues(Boolean * values, int numValues)

The Boolean array values specifies the new values for a group of toggles in the check box
beginning with the first toggle. numValues specifies the number of values the values array
contains.

Note: Setting toggles using setValues() activates each toggle’s valueChanged callback.
This, in turn, activates all of the VkCheckBox object’s methods for detecting changes in
toggle values, as described in “Recognizing Changes in Check Box Toggle Values,” once
for each toggle changed.

356

Chapter 14: Miscellaneous ViewKit Data Input Classes

You can retrieve the value of a specific toggle with the VkCheckBox::getValue() function:

int getValue(int index)

index is the position of the toggle in the check box; the first toggle in the check box has an
index of 0. The function returns TRUE if the toggle is set and FALSE if the toggle is not
set.

Recognizing Changes in Check Box Toggle Values

VkCheckBox provides three different methods that you can use to determine when the
user changes the value of a toggle: Xt-style callbacks, ViewKit callbacks, and subclassing.
You can use whichever method is most convenient.

Using Xt-Style Callbacks to Handle Changes in Check Box Toggle Values

The first method of determining when the user changes a toggle value is to register an
Xt-style callback for each toggle button. When you create a toggle with the addItem()
function, you can optionally specify a callback function and client data. When the value
of the toggle changes, the callback function is called with the client data you provided,
and a pointer to a XmToggleButtonCallbackStruct structure as call data.

For example, the following adds a toggle named “lineNumbers” to the parametersBox
check box and registers a callback function:

MyComponent::MyComponent(const char *name, Widget parent) : VkComponent (name)
{

// ...
parametersBox->addItem("lineNumbers", FALSE,

&MyComponent::toggleLineNumbersCallback(),
(XtPointer) this);

// ...
}

Check Box Component

357

MyComponent::toggleLineNumbersCallback(), which must be declared as a static
member function of the class MyComponent, is registered as a callback function for this
toggle, and the this pointer is used as the client data. The definition of
toggleLineNumbersCallback() could look like this:

void MyComponent::toggleLineNumbersCallback(Widget,
XtPointer clientData,
XtPointer callData)

{
MyComponent *obj = (MyComponent) clientData;
XmToggleButtonCallbackStruct *cb =

(XmToggleButtonCallbackStruct) callData;

// Call MyComponent::toggleLineNumbers(), a regular member function to either
// display or hide line numbers based on the value of the toggle.

obj->toggleLineNumbers(cb->set);
}

Using ViewKit Callbacks to Handle Changes in Check Box Toggle Values

The second method of determining when the user changes a toggle value is to use a
ViewKit callback. The VkCheckBox component provides the VkCheckBox::itemChanged
callback. Any ViewKit component can register a member function to be called when the
user changes a check box toggle. The VkCheckBox object provides the integer index of
the toggle as client data to the callback functions.

Note: The itemChanged callback is activated whenever the user changes any of the
toggles; you cannot register a ViewKit callback for an individual toggle.

For example, the following line registers the member function
MyComponent::parameterChanged() as a ViewKit callback function to be called
whenever the user changes a toggle in the parametersBox check box:

MyComponent::MyComponent(const char *name, Widget parent) : VkComponent (name)
{

// ...
parametersBox->addCallback(VkCheckBox::itemChanged, this,

(VkCallbackMethod) &MyComponent::parameterChanged);
// ...

}

Note that in this example, no client data is provided.

358

Chapter 14: Miscellaneous ViewKit Data Input Classes

The definition of parameterChanged() could look like this:

void MyComponent::parameterChanged(VkComponent *obj, void *,
void *callData)

{
VkCheckBox *checkBox = (VkCheckBox) obj;
int index = (int) callData;
switch (index) {

// ...

// Assume that the constant LINE_NUMBER_INDEX is set to the index of
// the "lineNumber" toggle. If the "lineNumber" toggle value changed,
// Call MyComponent::toggleLineNumbers(), a regular member function to
// either display or hide line numbers based on the value of the toggle
case LINE_NUMBER_INDEX:

toggleLineNumbers(checkBox->getValue(index));

// ...
}

}

Using Subclassing to Handle Changes in Check Box Toggle Values

The third method of determining when the user changes a toggle value is to create a
subclass of VkCheckBox. Whenever the user changes a toggle, VkCheckBox calls the
virtual function VkCheckBox::valueChanged():

virtual void valueChanged(int index, Boolean newValue)

index is the index of the item that changed and newValue is the current (new) value of that
item. By default, valueChanged() is empty. You can override its definition in a subclass
and perform whatever processing you need.

Radio Check Box Component

359

Derived classes have access to the following protected data members of the VkCheckBox
class:

• An instance of the ViewKit WidgetList(3x) class that contains all toggle buttons
added to the check box

VkWidgetList * _widgetList

• The RowColumn widget that contains the toggle buttons

Widget _rc

• The label widget for the check box

Widget _label

Radio Check Box Component

The VkRadioBox class provides a simple method for creating radio check boxes (that is,
check boxes in which only one toggle at a time can be selected). VkRadioBox is a subclass
of VkCheckBox. The only difference between the two classes is that VkRadioBox
enforces radio behavior on the toggles it contains.

VkRadioBox provides all of the same functions and data members as VkCheckBox
does. You use the VkRadioBox class in the same way that you do the VkCheckBox class.

For example, consider a simple window that contains only a check box with four toggles
as shown in Figure 14-3.

Figure 14-3 Sample Radio Box

360

Chapter 14: Miscellaneous ViewKit Data Input Classes

Example 14-2 contains the code used to create this check box.

Example 14-2 Code to Create Sample Radio Box

#include <Vk/VkApp.h>
#include <Vk/VkSimpleWindow.h>
#include <Vk/VkRadioBox.h>

class RadioBoxWindow: public VkSimpleWindow {

protected:
virtual Widget setUpInterface (Widget parent);
static String _defaultResources[];

public:
RadioBoxWindow (const char *name) : VkSimpleWindow (name) { }
~RadioBoxWindow();
virtual const char* className();

};
RadioBoxWindow:: ~RadioBoxWindow()
{ }

const char* RadioBoxWindow::className() { return "RadioBoxWindow"; }

String RadioBoxWindow::_defaultResources[] = {
"*radio*label.labelString: Select one:",
"*radio*one*labelString: First choice",
"*radio*two*labelString: Second choice",
"*radio*three*labelString: Third choice",
"*radio*four*labelString: Fourth choice",

 NULL
};

Widget RadioBoxWindow::setUpInterface (Widget parent)
{

setDefaultResources(parent, _defaultResources);

VkRadioBox *rb = new VkRadioBox("radio", parent);
rb->addItem("one");
rb->addItem("two");
rb->addItem("three");

Tab Panel Component

361

rb->addItem("four");
rb->show();

return rb->baseWidget();
}

void main (int argc, char **argv)
{

VkApp *rbApp = new VkApp("radioBoxApp", &argc, argv);
RadioBoxWindow *rbWin = new RadioBoxWindow("radiobox");

rbWin->show();
rbApp->run();

}

Tab Panel Component

The VkTabPanel class, derived from VkComponent, displays a row or column of
overlaid tabs. A tab can contain text, a pixmap, or both. The user can click a tab with the
left mouse button to select it. One tab is always selected, and appears on top of all the
others. When the user selects a tab, VkTabPanel activates a ViewKit member function
callback indicating which tab the user selected. You can register callback functions to
perform actions based on the tabs selected.

Figure 14-4 shows an example of a horizontal VkTabPanel component.

Figure 14-4 Horizontal VkTabPanel Component

362

Chapter 14: Miscellaneous ViewKit Data Input Classes

Figure 14-5 shows an example of a vertical VkTabPanel component.

Figure 14-5 Vertical VkTabPanel Component

When the tabs do not fit within the provided space, the VkTabPanel object “collapses”
tabs on the left and right ends of the component (or top and bottom if the VkTabPanel
object is vertical). Figure 14-6 shows these collapsed tabs.

Figure 14-6 Collapsed Tabs in a VkTabPanel Component

Tab Panel Component

363

The user can click the collapsed tabs with either the left or right mouse button to display
a popup menu listing all the tabs, as shown in Figure 14-7. The user can then select a tab
by choosing the corresponding menu item.

Figure 14-7 Using the Popup Menu to Select a Collapsed Tab in a VkTabPanel Component

The VkTabPanel class also provides work areas implemented as IRIS IM Form widgets
to the left and right of the tab display (or top and bottom if the VkTabPanel object is
vertical). By default, these work areas are empty. You can access these work area widgets
and implement additional displays or controls if you desire. “Tab Panel Access
Functions” on page 368 describes the work area access functions.

Tab Panel Constructor

The VkTabPanel constructor initializes the tab panel and allocates all resources required
by the component:

VkTabPanel(char* name, Widget parent,
Boolean horizOrientation = TRUE, int tabHeight = 0)

name and parent are the standard component name and parent widget arguments.

The optional horizOrientation argument determines the orientation of the tab panel. If
horizOrientation is TRUE, the tab panel is horizontal; if it is FALSE, the tab panel is
vertical.

364

Chapter 14: Miscellaneous ViewKit Data Input Classes

The optional tabHeight argument determines the height of the tab display area. The
default value, 0, indicates that tab height is determined by the default label height. If you
plan to include pixmaps in your tabs, you should specify a height sufficient to contain
your largest pixmap. You can also set the tab height by setting the value of the
VkTabPanel object’s tabHeight resource. For example, to set the tab height of the
VkTabPanel object tabs to 30, you could include the following line in an app-default file:

*tabs*tabHeight: 30

Note: In most cases when you display a vertical tab panel, you must explicitly set the
height of the tab display area. As described above, the default tab display area height is
determined by the tab label’s font height rather than the width of the label. As a result,
the tabs might not be large enough to display all of the label text.

Adding Tabs to a Tab Panel

Once you have created a tab panel, you can add a tab to it using VkTabPanel::addTab():

int addTab(char * label, void * clientData, Boolean sorted = FALSE)

label specifies the label displayed by the tab. You should use a distinct label for each tab.
addTab() first treats this argument as a resource name which is looked up relative to the
tab panel’s name. If the resource exists, its value is used as the tab label. If no resource is
found, or if the string contains spaces or newline characters, the string itself is used as the
tab label.

When the user selects this tab, the VkTabPanel object activates either
VkTabPanel::tabSelectCallback or VkTabPanel::tabPopupCallback (depending on how the
user selected the tab). If you provide a pointer to some data as the clientData argument to
addTab(), the tab panel includes that data as part of the VkTabCallbackStruct returned as
call data by the callbacks. “Responding to Tab Selection” on page 367 describes in depth
these callbacks and how to use them.

The sorted flag determines where the new tab is added in relation to existing tabs. If sorted
is FALSE, addTab() adds the tab after all existing tabs; if sorted is TRUE, addTab() inserts
the tab before the first tab whose label alphabetically succeeds the new tab’s label.

Note: addTab() compares the labels actually displayed in the tabs, so if you use resources
to specify tab labels, addTab() correctly uses the labels specified by the resource values.

Tab Panel Component

365

The return value of addTab() is the position of the newly added tab in the tab panel. Tabs
are numbered sequentially, with 0 representing the leftmost tab in a horizontal tab panel
or the topmost tab in a vertical tab panel.

New tabs initially have a NULL pixmap. If you want to add a pixmap to a label, see
“Adding a Pixmap to a Tab” on page 366.

If the new tab is the first tab in the group, addTab() automatically selects the tab by
calling VkTabPanel::selectTab(). Note that selectTab() activates
VkTabPanel::tabSelectCallback, so if you register a callback function before adding a tab,
you activate that callback function when you add your first tab. See “Responding to Tab
Selection” on page 367 for more information on selectTab() and
VkTabPanel::tabSelectCallback.

You can add more than one tab at a time using VkTabPanel::addTabs():

void addTabs(char ** labels, void ** clientDatas, int numTabs,
Boolean sorted = FALSE)

labels is an array of tab label strings. As with addTab(), these label strings are first treated
as resource names that are looked up relative to the tab panel’s name. If the resources
exist, their values are used as the tab labels. If a particular resource name is not found, or
if the string contains spaces or newline characters, the label string itself is used as the tab
label. clientDatas is an array of client data; the data for a particular tab is included as part
of the VkTabCallbackStruct returned as call data by the selection callbacks. numLabels
specifies the number of tabs to be added by addTabs(). sorted determines whether or not
the tabs are sorted as addTabs() adds them.

Removing a Tab From a Tab Panel

You can remove a tab from a tab panel using VkTabPanel::removeTab():

Boolean removeTab(int index)
Boolean removeTab(char * label)

366

Chapter 14: Miscellaneous ViewKit Data Input Classes

You can specify the tab to remove using either its position index or its label. If
removeTab() successfully removes the tab, it returns TRUE; otherwise, if the position
index was out of range or it couldn’t find a tab with the label string you specified, it
returns FALSE.

Note: If you use the same label for two or more tabs and provide a label string to
removeTab(), it removes the first tab (that is, the one with the lowest index) that matches
the label string. In general, you should avoid using duplicate label strings.

Adding a Pixmap to a Tab

You can set or change the pixmap associated with a tab using
VkTabPanel::setTabPixmap():

Boolean setTabPixmap(int index, Pixmap pixmap)
Boolean setTabPixmap(char * label, Pixmap pixmap)

You can specify the tab using either its position index or its label. If setTabPixmap()
successfully sets the tab, it redraws the tabs and returns TRUE; otherwise, if the position
index was out of range or it couldn’t find a tab with the label string you specified, it
returns FALSE.

The Pixmap can be either a bitmap (Pixmap of depth 1) or a full-color Pixmap.

Note: If you use the same label for two or more tabs and provide a label string to
setTabPixmap(), it sets the pixmap for the first tab (that is, the one with the lowest index)
that matches the label string. In general, you should avoid using duplicate label strings.

To remove an existing pixmap from a tab, call setTabPixmap() with a NULL pixmap.

You can retrieve the pixmap currently installed in a tab using VkTabPanel::tabPixmap():

Boolean tabPixmap(int index, Pixmap * pixmap_return)
Boolean tabPixmap(char * label, Pixmap * pixmap_return)

You can specify the tab using either its position index or its label. If tabPixmap() is
successful, the function returns TRUE and the value of the pixmap_return argument is set
to point to the tab’s pixmap; otherwise, if the position index was out of range or the
function couldn’t find a tab with the label string you specified, tabPixmap() returns
FALSE.

Tab Panel Component

367

Responding to Tab Selection

The user can select a tab either by clicking a tab with the left mouse button, or by clicking
a group of collapsed tabs with the left or right mouse button and choosing a menu item
corresponding to a tab. When the user selects a tab by either method, the VkTabPanel
object activates its VkTabPanel::tabSelectCallback. You can register callback functions to
perform actions based on the tabs selected.

When activated, tabSelectCallback provides a pointer to a VkTabCallbackStruct as call
data. The format of VkTabCallbackStruct is as follows:

typedef struct {
char *label;
void *clientData;
int tabIndex;
XEvent *event;

} VkTabCallbackStruct

label is the label displayed by the tab. Note that if you set the label by specifying a
resource name when you added this tab, the value of label is the value of the resource you
specified.

clientData is the client data you provided when you added this tab to the tab panel.

tabIndex is the position index of the tab. Tabs are numbered sequentially, with 0
representing the leftmost tab in a horizontal tab panel or the topmost tab in a vertical tab
panel.

If the user selected the tab directly (that is, not through the popup menu), event is the
ButtonPress event that triggered the selection. Otherwise, event is NULL.

In your callback function, you should cast the call data to (VkTabCallbackStruct *),
determine which tab the user selected, and perform whatever action is appropriate.

The VkTabPanel object also detects when the user clicks the right mouse button on one
of the tabs. Doing so does not select the tab, but it does cause VkTabPanel to activate its
VkTabPanel::tabPopupCallback. When activated, tabPopupCallback provides a pointer to a
VkTabCallbackStruct as call data. You can register callback functions to handle this event
and perform any actions that you want.

368

Chapter 14: Miscellaneous ViewKit Data Input Classes

You can programmatically select a tab using VkTabPanel::selectTab():

Boolean selectTab(int index, XEvent * event = NULL);
Boolean selectTab(char * label, XEvent * event = NULL);

You can specify the tab to select using either its position index or its label. If selectTab()
successfully selects the tab, it returns TRUE; otherwise, if the position index is out of
range or it can’t find a tab with the label string you specified, it returns FALSE.

Note: If you use the same label for two or more tabs and provide a label string to
selectTab(), it selects the first tab (that is, the one with the lowest index) that matches the
label string. In general, you should avoid using duplicate label strings.

You can optionally provide an event argument that selectTab() places in a
VkTabCallbackStruct structure, which is then passed as call data to tabSelectCallback.

You can also determine the currently selected tab with VkTabPanel::selectedTab():

int selectedTab()

selectedTab() returns the index of the currently selected tab. Tabs are numbered
sequentially, with 0 representing the leftmost tab in a horizontal tab panel or the topmost
tab in a vertical tab panel.

Tab Panel Access Functions

VkTabPanel provides several functions for accessing information about a tab panel and
its tabs:

• VkTabPanel::getTab() retrieves information about a specific tab. Specify the
position index of the tab with the index argument. getTab() sets the value of the
label_return argument to point to the tab’s label. Note that if you set the label by
specifying a resource name when you added this tab, the value of label_return is the
value of the resource you specified. getTab() sets the value of the clientData_return
argument to point to the client data you provided when you added the tab.

getTab() returns TRUE if it is successful, and FALSE if the position index was out of
range.

Boolean getTab(int index, char ** label_return,
void ** clientData_return)

Tab Panel Component

369

• VkTabPanel::horiz() returns TRUE if the tab component is horizontally oriented,
and FALSE if it is vertically oriented.

Boolean horiz()

• VkTabPanel::size() returns the number of tabs in the tab panel:

int size()

• VkTabPanel::tabHeight() returns the height of the tab display area. This is the
maximum display height for pixmaps. Larger pixmaps are truncated, and smaller
pixmaps are centered. The height of the tab display area is determined by any of
these four values :

1. The value you specify in the VkTabPanel constructor.

2. The value of the VkTabPanel component’s tabHeight resource.

3. The value of the height resource of the tabLabel widget created by VkTabPanel.

4. The height of the tab label’s font as specified by the fontList resource of the
tabLabel widget created by VkTabPanel.

If you attempt to set the tab height through multiple methods, the method 1 has the
highest precedence and method 4 has the lowest.

Note: In most cases when you display a vertical tab panel, you must explicitly set
the height of the tab display area. As described above, the default tab display area
height is determined by the tab label’s font height rather than the width of the label.
As a result, the tabs might not be large enough to display all of the label text.

The height of a tab, including decoration, is the total of these three measurements:

• The height of the tab display area as returned by tabHeight().

• The tab’s top and bottom margin, determined by the value of the marginHeight
resource of the tabLabel widget created by VkTabPanel.

• The value of the VkTabPanel component’s additionalMarginHeight resource.

The total height of the VkTabPanel component (or width, if the tab panel is
horizontal) is the total height of the tab as described above, plus the value of the
VkTabPanel component’s margin resource.

int tabHeight()

370

Chapter 14: Miscellaneous ViewKit Data Input Classes

• VkTabPanel::uniformTabs() returns TRUE if the tabs have a uniform width (or
height, if the tab panel is vertical). By default, tabs take on the width necessary to
display their label and pixmap. You can force all tabs to take the width of the largest
tab in the group by setting the VkTabPanel component’s uniformTabs resource to
TRUE.

Boolean uniformTabs()

The total width of a tab, including decoration, is the total of these three
measurements:

– The width of the tab label.

– If the tab has a pixmap installed, the width of the pixmap plus the pixmap
spacing, determined by the value of the VkTabPanel component’s
pixmapSpacing resource.

– The tab’s left and right margin, determined by the value of the marginWidth
resource of the tabLabel widget created by VkTabPanel plus the value of the
VkTabPanel component’s additionalMarginWidth resource.

• VkTabPanel::lineThickness() returns the line thickness used when drawing the tab
edges. The line thickness defaults to 1. You can set this value through the
lineThickness resource of the VkTabPanel component, but a line thickness other
than 1 might not render properly.

int lineThickness()

• VkTabPanel::tabBg() returns the color used for the background area around the
tabs. This color is set by the background resource of the VkTabPanel component.

Pixel tabBg()

• VkTabPanel::labelFg() returns the color used for tab foregrounds (that is, the tab
lettering and the foreground bits if the pixmap you supply is a bitmap). This color is
set by the foreground resource for the tabLabel widget created by VkTabPanel.

Pixel labelFg()

• VkTabPanel::labelBg() returns the color used for tab backgrounds. This color is set
by the background resource for the tabLabel widget created by VkTabPanel. When
a bitmap is supplied as the pixmap, this color is used for the background bits.

Pixel labelBg()

Tab Panel Component

371

• VkTabPanel::gc() returns the X graphics context used for drawing the tabs. This
might be useful if you create pixmaps and want to use the same foreground and
background colors as the tabs.

GC gc()

• VkTabPanel::area1() returns the work area widget to the left of the tab display (or
top if the tab panel is vertical), and VkTabPanel::area2() returns the work area
widget to the right of the tab display (or bottom if the tab panel is vertical). Both
work areas are implemented as IRIS IM Form widgets. By default, these work areas
are empty. You can access these work area widgets and implement additional
displays or controls if you desire.

Widget area1()
Widget area2()

X Resources Associated With the Tab Panel Component

The VkTabPanel class provides several X resources that determine display
characteristics of the component:

additionalMarginHeight
Additional height, expressed in pixels, added to the margin between
the top and bottom of the tab border and the tab display area (default
value 2).

additionalMarginWidth
Additional width, expressed in pixels, added to the margin between the
sides of the tab border and the tab display area (default value 4).

background The background color of the VkTabPanel component, shown in the
space around the tabs.

endMultiplier The number of overlapped tab symbols displayed as an “end indicator”
when there are more tabs in the panel than can be displayed at one time
(default value 3).

endSpacing The space, expressed in pixels, between overlapped tab symbols in the
“end indicator” (default value 9).

lineThickness The line thickness used when drawing the tab edges. The default value
is 1. You can provide another value, but line thickness other than 1 might
not render properly.

372

Chapter 14: Miscellaneous ViewKit Data Input Classes

margin The margin, expressed in pixels, between the tab edges and the
component edge (default value 5).

margin1 The margin, expressed in pixels, between the left or top work area
widget and the tabs (default value 5).

margin2 The margin, expressed in pixels, between the right or bottom work area
widget and the tabs (default value 5).

pixmapSpacing
If the tab contains a pixmap, the space, expressed in pixels, between the
tab label and the pixmap (default value 3).

selectedTabBackground
The background color of the selected tab.

sideOffset The amount of tab overlap, expressed in pixels (default value 17).

tabHeight The height of the tab display area is determined by one of the following
four values:

1. The value you specify in the VkTabPanel constructor.

2. The value of the VkTabPanel component’s tabHeight resource.

3. The value of the height resource of the tabLabel widget created by
VkTabPanel.

4. The height of the tab label’s font as specified by the fontList
resource of the tabLabel widget created by VkTabPanel.

If you attempt to set the tab height through multiple methods, the
method 1 has the highest precedence and method 4 has the lowest
precedence. The default value of tabHeight is 0.

uniformTabs Determines whether all tabs have the same width. The default value,
FALSE, allows tabs to be wide enough to display their label and pixmap.
You can force all tabs to take the width of the largest tab in the group by
setting this resource to TRUE.

Tab Panel Component

373

The VkTabPanel class creates a widget called tabLabel to manage the tabs in a tab panel.
VkTabPanel provides several X resources that determine display characteristics of the
tabLabel widget:

tabLabel.background
The color used for tab backgrounds. When a bitmap is supplied as the
pixmap, this color is used for the background bits.

tabLabel.fontList
The font used for tab labels. If the values of the tabLabel.height and
tabHeight resources are 0, and you do not specify a tab height in the
VkTabPanel constructor, the height of the font is also used as the height
of the tab display area.

tabLabel.foreground
The color used for tab foregrounds (that is, the tab lettering and the
foreground bits if the pixmap you supply is a bitmap).

tabLabel.height
The height of the tab display area is determined by one of these four
values:

1. The value you specify in the VkTabPanel constructor.

2. The value of the VkTabPanel component’s tabHeight resource.

3. The value of the height resource of the tabLabel widget created by
VkTabPanel.

4. The height of the tab label’s font as specified by the fontList
resource of the tabLabel widget created by VkTabPanel.

If you attempt to set the tab height through multiple methods, method
1 has the highest precedence and method 4 has the lowest precedence.
The default value of tabLabel.height is 0.

tabLabel.marginHeight
The margin, expressed in pixels, between the top and bottom of the tab
border and the tab display area.

tabLabel.marginWidth
The margin, expressed in pixels, between the sides of the tab border and
the tab display area.

374

Chapter 14: Miscellaneous ViewKit Data Input Classes

Text Completion Field Component

The VkCompletionField class, derived from VkComponent, provides a text input field
component that supports name expansion. While typing in the field, if the user types a
space, then the component attempts to complete the current contents of the field based
on a list of possible expansions provided by the application. For example, in a field where
the user is expected to enter a filename, the application could provide a list of all files in
the current working directory.

Text Completion Field Constructor and Destructor

The VkCompletionField constructor accepts the standard ViewKit component name
and parent widget arguments:

VkCompletionField(const char * name, Widget parent)

The constructor creates an IRIS IM TextField widget as the component’s base widget. You
can access this widget using the baseWidget() function provided by
VkComponent.

The VkCompletionField destructor destroys the component’s widget and associated
data, including the VkNameList object that stores the list of possible expansions. You
should be aware of this in case you provide an existing VkNameList object as an
argument to the VkCompletionField::clear() function, described in “Setting and
Clearing the Text Completion Field Expansion List.” Consult the VkNameList(3x)
reference page for more information on that class.

Setting and Clearing the Text Completion Field Expansion List

You can add individual strings to the completion list by passing them as arguments to
the VkCompletionField::add() function:

void add(char * name)

You can clear the completion list by calling the VkCompletionField::clear() function:

void clear(VkNameList *nameList = NULL)

Text Completion Field Component

375

If you provide a VkNameList object, clear() deletes the current completion list and uses
the VkNameList object that you provide as the new completion list for the completion
field. Consult the VkNameList(3x) reference page for more information on that class.

Retrieving the Text Completion Field Contents

The VkCompletionField::getText() function duplicates the contents of the text field and
then returns a pointer to the duplicate string:

char *getText()

Note: Because getText() creates a copy of the text field’s contents, you can safely change
or delete the returned string.

For example, the following line retrieves the contents of a VkCompletionField object
called fileName and assigns the string to the variable openFile:

openFile = fileName->getText();

Responding to Text Completion Field Activation

The VkCompletionField class supplies a ViewKit member function callback named
VkCompletionField::enterCallback. This callback is activated whenever the user presses
<Enter> while typing in the text field. The callback does not pass any call data. If you
want to notify a ViewKit component whenever the user presses <Enter> while typing in
a VkCompletionField object, register a member function of that component as an
enterCallback function.

Deriving Text Completion Field Subclasses

The VkCompletionField class should be sufficient for most applications; however, if you
want to have more control over the expansion process you can create a subclass of
VkCompletionField.

The protected member function VkCompletionField::expand() is called whenever the
user types in the text field:

virtual void expand(struct XmTextVerifyCallbackStruct * cb)

376

Chapter 14: Miscellaneous ViewKit Data Input Classes

By default, expand() checks whether the user has typed a space, and if so, tries to expand
the current contents of the text field; if the user types any other character, expand()
simply adds that character to the text field. At any point after an expansion, the
VkNameList object pointed to by the protected data member _currentMatchList contains
a list of all possible expansions:

VkNameList * _currentMatchList

You can override the expand() function to install your own expansion algorithm.
You have access to the VkNameList object pointed to by the protected data member
_nameList, which contains all possible expansions registered with the component:

VkNameList * _nameList

You can also override the protected member function VkCompletionField::activate(),
which is called whenever the user presses <Enter> while typing in the text field:

virtual void activate(struct XmTextVerifyCallbackStruct * cb)

activate() is called after expanding the current contents of the text field and after
invoking all member functions registered with the enterCallback callback. By default, this
function is empty.

Repeating Button Component

The VkRepeatButton class, derived from VkComponent, provides an auto-repeating
pushbutton. A regular pushbutton activates only once when the user clicks it and
releases it. A VkRepeatButton behaves more like a scrollbar button: it activates when the
user clicks it; after a given delay it begins repeating at a given interval; and it stops
activating when the user releases it.

Repeating Button Constructor

The VkRepeatButton constructor takes three arguments:

VkRepeatButton(char * name, Widget parent,
VkRepeatButtonType type)

Repeating Button Component

377

name is a character string specifying the component name. parent is the parent widget of
the component. type is a VkRepeatButtonType enumerated value specifying the type of
button to create. This value can be any of RB_pushButton, RB_pushButtonGadget,
RB_arrowButton, or RB_arrowButtonGadget. These create PushButton,
PushButtonGadget, ArrowButton, and ArrowButtonGadget widgets, respectively.

Responding to Repeat Button Activation

A VkRepeatButton object triggers a VkRepeatButton::buttonCallback ViewKit callback
whenever the button activates. Any ViewKit object can register a member function with
the callback to be invoked when the button activates.

The callback provides an XmAnyCallbackStruct pointer as call data; the
XmAnyCallbackStruct.reason contains the reason for the callback, and the
XmAnyCallbackStruct.event field contains the event that triggered the callback.

Repeating Button Utility and Access Functions

The VkRepeatButton::setParameters() function changes the delay parameters for the
button:

void setParameters(long initial, long repeat)

initial controls how long, in milliseconds, the user has to hold the button down before it
begins to repeat. repeat controls the interval between auto-repeat activations, in
milliseconds.

If you need to determine the type of a VkRepeatButton after creation, you can call the
VkRepeatButton::type() function:

VkRepeatButtonType type()

The return value is a VkRepeatButtonType enumerated value specifying the type of
button. This value can be any of RB_pushButton, RB_pushButtonGadget,
RB_arrowButton, or RB_arrowButtonGadget, which indicates PushButton,
PushButtonGadget, ArrowButton, and ArrowButtonGadget widgets, respectively.

378

Chapter 14: Miscellaneous ViewKit Data Input Classes

X Resources Associated With the Repeating Button Component

The VkRepeatButton class provides the following X resources that determine operating
characteristics of the component:

initialDelay The initial delay in milliseconds before auto-repeat begins (default value
1000).

repeatDelay The auto-repeat interval in milliseconds (default value 200).

Management Classes for Controlling Component and Widget Operation

ViewKit provides some management classes that control the operation of components
and widgets. These classes function as attachments: you attach them to one or more
existing widgets or components. Then, you can use the management class to control
some aspect of operation of the widgets and components to which the class is attached.

Supporting “Ganged” Scrollbar Operation

The VkGangedGroup class provides support for “ganging” together IRIS IM ScrollBar
or Scale widgets so that all of them move together; when the value of one of the ScrollBar
or Scale widgets changes, all other widgets in the group are updated with that value.
VkGangedGroup is derived from the convenience class VkWidgetList. Consult the
VkWidgetList(3x) reference page for more information on that class.

To use the VkGangedGroup class, you create a VkGangedGroup object and add
widgets or components to the group. Thereafter, the VkGangedGroup object
automatically updates all of the scales and scrollbars in the group whenever the value of
one of them changes.

Ganged Scrollbar Group Constructor and Destructor

The VkGangedGroup constructor does not take any arguments:

VkGangedGroup()

VkGangedGroup objects do not require names because they are not components;
ViewKit uses names to uniquely identify the widget trees of components, and the
VkGangedGroup class does not create any widgets.

Management Classes for Controlling Component and Widget Operation

379

The VkGangedGroup destructor destroys only the VkGangedGroup object. If you have
widgets or components managed by the object, they are unaffected by the
VkGangedGroup destructor.

Adding Scales and Scrollbars to a Ganged Group

Use the VkGangedGroup::add() function to add widgets or components to a
VkGangedGroup object:

virtual void add(Widget w)
virtual void add(VkComponent * obj)

If you provide a widget, add() adds that widget to the alignment group. If you provide
a pointer to a component, add() adds the component’s base widget to the alignment
group.

Note: If you add a component to a VkGangedGroup object, the base widget of that
component must be an IRIS IM ScrollBar or Scale widget.

Removing Scales and Scrollbars From a Ganged Group

You can remove widgets or components from a VkGangedGroup object with the
remove() function inherited from VkWidgetList:

virtual void remove(Widget w)
virtual void remove(VkComponent * obj)

Provide the widget ID or component pointer that you used to add the widget or
component to the ganged group.

You can also use the removeFirst() and removeLast() functions inherited from
VkWidgetList to remove the first or last item respectively in the ganged group:

virtual void removeFirst()
virtual void removeLast()

380

Chapter 14: Miscellaneous ViewKit Data Input Classes

Enforcing Radio-Style Behavior on Toggle Buttons

IRIS IM supports collections of toggle buttons that exhibit one-of-many or “radio-style”
behavior by placing all related buttons in a RadioBox widget. This is adequate in many
cases, but in some cases it is useful to enforce radio-style behavior on a collection of
buttons dispersed throughout an application.

The VkRadioGroup class provides support for enforcing radio-style behavior on an
arbitrary group of toggle buttons, no matter where they appear in your application’s
widget hierarchy. The VkRadioGroup class supports both IRIS IM ToggleButton and
ToggleButtonGadget widgets. Furthermore, you can add IRIS IM PushButton and
PushButtonGadget widgets to a VkRadioGroup object; the VkRadioGroup object
simulates radio-style behavior on these buttons by displaying them as armed when the
user selects them (using the XmNarmColor color resource as the button’s background
color and displaying the XmNarmPixmap if the button contains a pixmap).

VkRadioGroup is derived from the convenience class VkWidgetList. Consult the
VkWidgetList(3x) reference page for more information on that class.

To use the VkRadioGroup class, create a VkRadioGroup object and add widgets or
components to the group. Thereafter, the VkRadioGroup object automatically updates
all buttons contained in the group whenever the user selects one of the buttons.

Note: Membership in a VkRadioGroup object is not exclusive; a widget can potentially
belong to multiple groups at once.

Radio Group Constructor and Destructor

The VkRadioGroup constructor does not take any arguments:

VkGangedGroup()

VkRadioGroup objects do not require names because they are not components; ViewKit
uses names to uniquely identify the widget trees of components, and the VkRadioGroup
class does not create any widgets.

The VkRadioGroup destructor destroys only the VkRadioGroup object. If you have
widgets or components managed by the object, they are unaffected by the
VkRadioGroup destructor.

Management Classes for Controlling Component and Widget Operation

381

Adding Toggles and Buttons to a Radio Group

Use the VkRadioGroup::add() function to add widgets or components to a
VkRadioGroup object:

virtual void add(Widget w)
virtual void add(VkComponent * obj)

If you provide a widget, add() adds that widget to the radio group. If you provide a
pointer to a component, add() adds the component’s base widget to the alignment group.

Note: If you add a component to a VkRadioGroup object, the base widget of that
component must be an IRIS IM ToggleButton, ToggleButtonGadget, PushButton, or
PushButtonGadget widget.

Removing Toggles and Buttons From a Radio Group

You can remove widgets or components from a VkRadioGroup object with the remove()
function inherited from VkWidgetList:

virtual void remove(Widget w)
virtual void remove(VkComponent * obj)

Provide the widget ID or component pointer that you used to add the widget or
component to the radio group.

You can also use the removeFirst() and removeLast() functions inherited from
VkWidgetList to remove the first or last item, respectively, in the radio group:

virtual void removeFirst()
virtual void removeLast()

Deriving Radio Group Subclasses

If you use a direct instantiation of VkRadioGroup, you must rely on Xt callback
functions registered directly with the toggle buttons to detect and handle state changes
in the group. Another approach is to derive a subclass of VkRadioGroup and override
the protected VkRadioGroup::valueChanged() function:

virtual void valueChanged (Widget w, XtPointer callData)

382

Chapter 14: Miscellaneous ViewKit Data Input Classes

valueChanged() is called whenever any member of the radio group changes state. The
first argument is the selected widget. The second argument is the call data from the
XmNvalueChangedCallback (in the case of a ToggleButton or ToggleButtonGadget
widget) or the XmNactivateCallback (in the case of a PushButton or PushButtonGadget
widget).

You can override valueChanged() to receive notification of state changes and perform
any actions you want. If you override valueChanged(), you should call
VkRadioGroup::valueChanged() to update the states of all members of the radio group
before performing any other actions.

Modified Text Attachment

The VkModifiedAttachment class provides support for tracking the previous and
current values in an IRIS IM Text or TextField widget. The VkModifiedAttachment class
automatically displays a dogear (a “folded corner”) in the upper-right corner of the text
widget when the user changes the text value. Figure 14-8 shows a text widget with a
VkModifiedAttachment dogear.

Figure 14-8 VkModifiedAttachment Dogear

The user can “flip” between the previous and current text values by clicking the dogear.
Figure 14-9 demonstrates the results of flipping to a previous text value by clicking the
dogear.

Figure 14-9 “Flipping” to a Previous Text Widget Value Using a VkModifiedAttachment
Dogear

Management Classes for Controlling Component and Widget Operation

383

When the user presses <Enter> in the text field, the text displayed becomes the current
value of the text field and the previously displayed text becomes the previous value. If
the current and previous values are the same, the VkModifiedAttachment object does
not display the dogear; the VkModifiedAttachment object redisplays the dogear when
the current and previous values are different.

Note: If the user clicks the dogear before pressing the <Enter> key, any changes the user
made are discarded.

To use the VkModifiedAttachment class, you must follow these steps:

1. Create an IRIS IM Text or TextField widget.

2. Create a VkModifiedAttachment object.

3. Attach the VkModifiedAttachment object to the widget.

4. Display the VkModifiedAttachment object (to display its dogear).

The VkModifiedAttachment class also provides several functions for retrieving the
previous and current values of the text field, setting the value of the text field, and
managing the display of the object.

Note: Because the VkModifiedAttachment class adds callback functions to handle the
changes in value of the text widget, you should not register your own
XmNactivateCallback or XmNvalueChangedCallback functions with the text widget.
Instead, you should use the VkModifiedAttachment::modifiedCallback ViewKit callback to
determine when the text widget changes its value, and use the VkModifiedAttachment
access functions to obtain the current or previous value of the text widget.

VkModifiedAttachment is derived from the VkModified base class, which tracks
previous and current text values not necessarily associated with a text widget. In most
cases, you will use the VkModifiedAttachment class; therefore, this section describes the
functions inherited from VkModified along with the functions implemented by
VkModifiedAttachment. For more information on the VkModified class, consult the
VkModified(3x) reference page.

Note: The VkModified and VkModifiedAttachment classes are both declared in the
<Vk/VkModified.h> header file.

384

Chapter 14: Miscellaneous ViewKit Data Input Classes

The Modified Text Attachment Constructor and Destructor

The VkModifiedAttachment constructor accepts three Boolean values:

VkModifiedAttachment(Boolean blankIsValue = FALSE,
Boolean autoAdjust = TRUE,
Boolean incrementalChange = FALSE)

blankIsValue determines whether the VkModifiedAttachment object accepts a null string
(a blank) as a valid previous value when displaying the dogear. If blankIsValue is FALSE,
the VkModifiedAttachment object does not display the dogear if the previous value is
blank.

autoAdjust determines whether the VkModifiedAttachment object automatically
watches its attached text widget for geometry changes and adjusts its own area
accordingly. If you set this value to FALSE, you must explicitly call
VkModifiedAttachment::adjustGeometry() after changing the geometry of the text
widget.

If incrementalChange is TRUE, each incremental change to the text value updates the
current and previous values. In this mode, activation of the text widget’s
XmNvalueChangedCallback callback is considered an incremental change. Examples of
incremental changes are: each character added or deleted, each deletion of selected
characters, and each text insertion by pasting selected text. If incrementalChange is FALSE,
the VkModifiedAttachment object updates the current and previous values only when
the user presses <Enter> in the text field.

The VkModifiedAttachment destructor destroys only the VkModifiedAttachment
object. If you have a widget attached to the object, it is unaffected by the
VkModifiedAttachment destructor.

Attaching and Detaching the Modified Text Attachment to and From a Widget

Once you have created a VkModifiedAttachment object, use the
VkModifiedAttachment::attach() function to attach it to an existing widget:

void attach(Widget w)

Management Classes for Controlling Component and Widget Operation

385

If the VkModifiedAttachment object is already attached to a widget, it detaches from the
old widget before attaching to the new widget. You can use the
VkModifiedAttachment::detach() function to detach a VkModifiedAttachment object
from a widget without immediately attaching it to another widget:

void detach()

Displaying and Hiding the Modified Text Attachment

Once you have attached a VkModifiedAttachment object to a text widget, you must call
VkModifiedAttachment::show() to display the attachment:

void show()

You can hide a VkModifiedAttachment object by calling
VkModifiedAttachment::hide():

void hide()

When a VkModifiedAttachment object is hidden, it still tracks the current and previous
values of the text widget to which it is attached; the user simply cannot toggle between
the values. You can still use the VkModifiedAttachment class’s access functions to
retrieve the previous and current values of the text field.

VkModifiedAttachment::expose() forces a redraw of the attachment’s dogear:

void expose()

expose() is called whenever the dogear widget receives an Expose event. Normally, you
should not need to call this function.

Retrieving the Current and Previous Values of the Text Widget

You can retrieve the current and previous values of the text widget with value() and
previousValue() respectively:

char *value()
char *previousValue()

Note: Do not change or delete the character strings returned by value() and
previousValue().

386

Chapter 14: Miscellaneous ViewKit Data Input Classes

Detecting Changes in the Text Widget

The VkModifiedAttachment class provides a ViewKit member function callback named
VkModifiedAttachment::modifiedCallback:

static const char *const modifiedCallback

The VkModifiedAttachment object activates this callback whenever the text widget
triggers its XmNactivateCallback or XmNvalueChangedCallback callback.
The modifiedCallback provides a pointer to a VkModifiedCallback structure as call data.
VkModifiedCallback has the following structure:

typedef struct {
VkModifiedReason reason;
class VkModified * obj;
XEvent * event;

} VkModifiedCallback

The VkModifiedCallback fields are listed below:

reason The reason for the callback. It can take one of two values: VM_activate,
if the text widget triggered its XmNactivateCallback callback; or
VM_valueChanged, if the text widget triggered its
XmNvalueChangedCallback callback.

obj A pointer to the VkModifiedAttachment object.

event A pointer to the event that triggered the callback.

Typically, your callback function should test the reason for the callback and perform an
action if appropriate. For example, you can use one of the access functions to obtain the
current or previous value of the text widget.

Note: Because the VkModifiedAttachment class adds callback functions to handle the
changes in value of the text widget, you should not register your own
XmNactivateCallback or XmNvalueChangedCallback callback functions with the text
widget. Instead, always use the modifiedCallback ViewKit callback to determine when the
text widget changes its value.

Management Classes for Controlling Component and Widget Operation

387

Controlling the Contents of the Text Widget

You can programmatically set the new current value of a VkModifiedAttachment object
with VkModifiedAttachment::setValue():

virtual void setValue(const char * value)

setValue() sets the object’s new current value; the old current value becomes the previous
value. VkModifiedAttachment forces the text widget to display the new current value.

VkModifiedAttachment::toggleDisplay() programmatically toggles the text widget
display between the current value and the previous value:

virtual void toggleDisplay()

To determine which value the text widget is displaying, call
VkModifiedAttachment::latestDisplay():

Boolean latestDisplay()

latestDisplay() returns TRUE if the text widget is displaying the current value or FALSE
if the text widget is displaying the previous value.

Finally, you can reset the contents of the text widget with
VkModifiedAttachment::displayValue():

void displayValue()

displayValue() discards any changes the user may have made and updates the text
widget with the current value (if the user has the current view selected) or the previous
value (if the user has the previous view selected).

Adjusting the Modified Text Attachment’s Geometry

By default, the VkModifiedAttachment object automatically watches its attached text
widget for geometry changes and adjusts its own area accordingly. If you set the
autoAdjust argument in the VkModifiedAttachment constructor to FALSE, you must
explicitly call VkModifiedAttachment::adjustGeometry() after changing the geometry
of the text widget to adjust the attachment’s geometry:

void adjustGeometry()

388

Chapter 14: Miscellaneous ViewKit Data Input Classes

You can also control the size of the VkModifiedAttachment dogear. By default, the
dogear is 10 pixels wide by 10 pixels tall. You can set the width and height to different
values with the VkModifiedAttachment::setParameters() function:

virtual void setParameters(Dimension width, Dimension height)

To retrieve the current width and height of the dogear, call
VkModifiedAttachment::getParameters():

void getParameters(Dimension * width, Dimension *height)

Other Modified Text Attachment Utility and Access Functions

The VkModifiedAttachment class provides several additional utility and access
functions:

• VkModifiedAttachment::fixPreviousValue() allows you to specify a fixed value to
use as the attachment’s previous value. After setting a fixed previous value, the
attachment does not update the previous value; this provides a “default” value that
the user can always toggle to and use.

If setValueAlso is TRUE, fixPreviousValue() also updates the attachment’s current
value to fixedValue; however, this does not permanently fix the current value.

virtual void fixPreviousValue(char * fixedValue,
Boolean setValueAlso = TRUE)

• VkModifiedAttachment::widget() returns the text widget to which the
VkModifiedAttachment object is currently attached.

Widget widget()

• VkModifiedAttachment::modified() returns TRUE if the current value and the
previous value are equal and FALSE if they are not equal.

Boolean modified()

• VkModifiedAttachment::setModified() forces the value of the object’s modified
flag. If you set the value to TRUE, the VkModifiedAttachment object displays its
dogear; otherwise, it hides its dogear.

virtual void setModified(Boolean value)

Management Classes for Controlling Component and Widget Operation

389

X Resources Associated With the Modified Text Attachment

You can set the value of an XmNdisplayModified resource for a text widget to determine
whether or not the attached VkModifiedAttachment object should display its dogear. If
you set the text widget’s XmNdisplayModified resource to TRUE or if you do not
provide a value for the text widget’s XmNdisplayModified resource, the attached
VkModifiedAttachment object displays its dogear. This is the default behavior.

If you set the text widget’s XmNdisplayModified resource to FALSE, the attached
VkModifiedAttachment object does not display its dogear, but it does continue to track
the text widget’s current and previous values. You can still use the functions and
callbacks provided by VkModifiedAttachment to manipulate the values and manage
the text widget.

391

Appendix A

A. Contributed ViewKit Classes

This appendix gives you an idea of how you can expand ViewKit by describing some
ViewKit classes that users have contributed. These classes are not supported by Silicon
Graphics, and their interfaces might change in future ViewKit releases.

ViewKit Meter Component

The VkMeter class supports simple compound bar charts, displayed in either vertical or
horizontal mode. If you display multiple values, the data is presented in layers, with the
bar representing the second value starting where the first value ends.

Meter Constructor and Destructor

The VkMeter accepts the standard ViewKit component constructor arguments: a
component name and a parent widget:

VkMeter(const char * name, Widget parent)

You should rarely need to create subclasses of VkMeter.

The VkMeter destructor frees all space associated with the meter:

~VkMeter()

Resetting the Meter

Before adding any items for display to a VkMeter object, you must call VkMeter::reset()
to reset the meter:

void reset(int peak = -1)

392

Appendix A: Contributed ViewKit Classes

The first value, peak, sets the initial peak value displayed by the meter. All items displayed
by the meter are scaled relative to the peak value. For example, if the peak value is 200
and one of your items is 40 units long, that item will be scaled to take 20% of the meter’s
total length. The default peak size is 100 units.

Note: To change meter values or otherwise update a meter object, you must call reset()
and then add the items to the meter again.

Adding Items to a Meter

You add items for a VkMeter object to display with VkMeter:add():

void add(int value, char * color)
void add(int value, Pixel pixel)
void add(int value, int width, char * color)
void add(int value, int width, Pixel pixel)

The value argument is the item’s value. When displayed, the VkMeter class scales this
value relative to the peak value set by reset(). For example, if the peak value is 500 and
one of your items is 80 units long, that item will be scaled to take 16% of the meter’s total
length.

When you use these forms of the add() function, the VkMeter object displays the items
sequentially. For example, if you have set the peak value to 100 and you add three items
with values of 20, 10, and 30 in that order, the meter displays three bars: the first ranging
from 0 to 20, the second from 20 to 30, and the third from 30 to 60.

All data items must have an associated color. You can specify the color as a Pixel value,
pixel, or as a string, color. If you provide a string, add() first treats the string as the name
of a resource that add() looks up relative to the component and converts to the desired
color. If add() finds no such resource, it uses the string itself as the name of a color. For
example, the following adds an item with the color “red”:

add(10, "red");

The following adds an item with the color specified by the resource name “criticalColor”:

add(20, "criticalColor");

You can specify the width of an item by providing a width argument, expressed in pixels.
If you do not provide a width, the width of the item is the same as the width of the meter.

ViewKit Meter Component

393

Two more complex forms of add() allow you to precisely control the position of bars in a
meter, and even display bars side by side:

void add(int start, int size, int sideValue, int width, char * color)
void add(int start, int size, int sideValue, int width,

Pixel color)

In these forms of add(), the first value, start, specifies the starting position of the bar, and
the second value, size, specifies the size (length) of the bar. VkMeter scales these values
relative to the peak value set by reset(). The third argument, sideValue, and the fourth
argument, width, specify values in the opposite dimension. VkMeter does not scale these
values relative to the meter’s peak value.

For example, consider a meter with a peak value of 100. The following lines add four bars
to the meter:

add(0, 20, 0, 10, "red");
add(0, 20, 10, 10, "blue");
add(0, 20, 20, 10, "green");
add(20, 20, 0, 30, "yellow");

If you display this meter vertically, it shows three vertical bars ranging from 0 to 20 side
by side in red, blue, and green. Above them is a yellow bar spanning all of them and
ranging from 20 to 40.

Updating the Meter Display

After adding all items to a meter, call the VkMeter::update() function to update the
meter’s display:

void update()

Note: Remember that if you want to change the meter display, you must first call reset()
and then add each item in the new display.

Setting the Meter’s Resize Policy

The meter you create can have a fixed size or it can attempt to resize itself dynamically
as it requires more or less room to display the items it contains. You can specify the
meter’s resize policy with VkMeter::setResizePolicy():

void setResizePolicy(unsigned char policy)

394

Appendix A: Contributed ViewKit Classes

You can provide any of the following values:

XmRESIZE_NONE
The meter never attempts to resize itself. The application, or managing
widget, is in complete control of the meter’s size.

XmRESIZE_GROW
The meter calls XtSetValues() on the widget used to display the meter to
attempt to grow as needed. The success of the call to XtSetValues()
depends on the parent widget’s geometry management policy.

XmRESIZE_ANY
The meter calls XtSetValues() on the widget used to display the meter to
attempt to grow or shrink as needed. The success of the call to
XtSetValues() depends on the parent widget’s geometry management
policy.

Determining the Desired Dimensions of the Meter

You can determine the dimensions that a meter needs to display itself completely by
calling VkMeter::neededWidth() and VkMeter::neededHeight():

Dimension neededWidth()
Dimension neededHeight()

X Resources Associated With the Meter Component

The following X resources are associated with the VkMeter class:

XmNorientation
Determines the orientation of the meter. The default value is
XmVERTICAL, which specifies a vertical meter. Set the value of the
resource to XmHORIZONTAL for a horizontal meter.

ViewKit Pie Chart Component

395

XmNresizePolicy
Determines the resize policy of the meter, as described in “Setting the
Meter’s Resize Policy” on page 393. The default value is
XmRESIZE_NONE.

XmNdrawBorder
Determines whether bars are drawn with borders. The default value is
FALSE, in which case bars do not have borders. If you set the value to
TRUE, bars have borders drawn in the color specified by the
XmNborderColor resource.

ViewKit Pie Chart Component

The VkPie class is derived from VkMeter and displays data in the same way as that
class. However, rather than displaying the values as a bar chart, the VkPie class displays
the data as a pie chart. See “ViewKit Meter Component” on page 391 for a description of
VkMeter.

ViewKit Outline Component

The VkOutline component, derived from VkComponent, displays a textual outline.
VkOutline automatically indents items according to their depth in the outline.
Figure A-1 shows an example of a VkOutline component containing three top-level
items, each with several subitems.

396

Appendix A: Contributed ViewKit Classes

Figure A-1 VkOutline Component

If there is not sufficient space to display the entire outline, the VkOutline component
automatically displays a scrollbar, as shown in Figure A-2.

ViewKit Outline Component

397

Figure A-2 VkOutline Component With the Scrollbar Visible

The VkOutline component displays a control icon to the left of each outline item that
contains subitems. The control icon denotes whether the sub-tree under the item is
displayed (open) or not (closed). The user can click the left mouse button on the control
icon to toggle between the open and closed states. Figure A-3 shows the results of closing
the item “Subheading 2B,” shown in the previous figure.

398

Appendix A: Contributed ViewKit Classes

Figure A-3 Closing a Heading in a VkOutline Component

Constructing an Outline Component

The VkOutline constructor accepts the standard ViewKit component constructor
arguments: a component name and a parent widget:

VkOutline (const char * name, Widget parent)

Adding Items to an Outline

You can add items to the outline in a simple parent-child relation with VkOutline::add():

void add(char* parentName, char* childName)

ViewKit Outline Component

399

The actions performed by add() depend on whether either or both of the items already
exist in the outline:

• If both items already exist in the outline, add() does nothing.

• If neither exists, add() creates parentName as a top-level item in the outline and then
creates childName as a subitem of parentName.

• If parentName already exists but childName does not, add() creates childName as a
subitem of parentName.

• If childName exists and parentName does not, and childName is a top-level item, add()
“reparents” childName by adding parentName as a top-level item and moving
childName in the outline so that it is a subitem of parentName.

• If childName exists and parentName does not, but childName is not a top-level item,
add() does nothing.

parentName and childName are used both as item names and as the text displayed in the
outline. Note that you must use unique names for each item in the outline.

You can add multiple subitems to an existing item using VkOutline::addChildren():

void addChildren(char** parentPath, char** childNames)

void addChildren(char** parentPath, char** childLabels,
char** childNames, void** childData)

The character string array parentPath specifies the complete path of the parent item
through the outline. The first element of the parentPath array is the name of the topmost
item of the outline containing the specified item, the second element is the name of the
second-highest item, and so on, with the name of the item itself appearing last. You must
NULL-terminate the array.

The character string array childNames contains the names of the subitems to add to the
specified parent item. Note that you must use unique names for each item in the outline.

In the second form of addChildren(), you can provide childLabels, an array of character
strings that provide display labels for the subitem you add. VkOutline displays these
labels for the items instead of the item names.

400

Appendix A: Contributed ViewKit Classes

In the second form of addChildren(), you can also provide childData, an array of pointers
to arbitrary data. You can retrieve a pointer to the data associated with an item using
VkOutline::getHookAt(), described in “Outline Utility and Access Functions” on
page 403. Usually you need to use this data only if you create a subclass of VkOutline.
In a subclass, you can add callbacks so that when the user selects an outline item, you can
retrieve the data associated with that item and perform some action.

VkOutline::createPath() creates or extends a path in the outline:

void createPath(char** itemLabels, char** itemNames)

The character string array itemNames specifies a path through the outline. The first
element of the itemNames array is the name of the topmost item of the outline containing
the specified item, the second element is the name of the second-highest item, and so on,
with the name of the item itself appearing last. You must NULL-terminate the array.

If path does not exist, then createPath() creates a new set of items with the first element
in the path as the top-level item, the second element a subitem of the first, and so on. If
createPath() finds a partial match in the existing outline, where the first element of
itemNames matches the name of an existing top-level item and one or more lower-level
items match succeeding elements of itemNames, createPath() adds those items needed to
fully extend the path.

For those items that createPath() adds, it uses the corresponding elements from the
itemLabels character string array as the display labels for those items. VkOutline displays
these labels for the items instead of the item names.

Note: createPath() does not alter the labels for any existing items. createPath() uses the
labels only when adding new items.

Whenever you add items to the outline, no matter which function you use to add them,
you must call VkOutline::displayAll() to update the outline display:

void displayAll()

ViewKit Outline Component

401

Setting Display Attributes for Outline Items

VkOutline allows you to designate items as “keywords” and display them in a different
foreground or background color, and/or font. You can also define up to four custom item
highlights, each with its own foreground and background colors, and font attributes.

Use VkOutline::setKeywordAttributes() to define the keyword display attributes:

void setKeywordAttributes(Pixel fg, Pixel bg, XmFontList font)

fg is the foreground color for the item’s text. bg is the background color for the item. font
is the font used to display the item’s text.

Use VkOutline::displayAsKeyword() to display an item with the keyword display
attributes:

void displayAsKeyword(char** path)

You specify the complete path of the item through the outline as an array of character
strings. The first element of the path array is the name of the topmost item of the outline
containing the specified item, the second element is the name of the second-highest item,
and so on, with the name of the item itself appearing last. You must NULL-terminate the
array. Note that displayAsKeyword() requires the item names, not their display labels.

Use VkOutline::setHighlightAttributes() to define the display attributes of a custom
highlight:

int setHighlightAttributes(Pixel fg, Pixel bg, XmFontList font)

fg is the foreground color for the item’s text. bg is the background color for the item. font
is the font used to display the item’s text. setHighlightAttributes() returns an integer
identifier for the highlight. You use this identifier to apply the highlight to outline items
with the highlight() function described below. If setHighlightAttributes() could not
allocate a custom highlight, it returns 0.

Use VkOutline::highlight() to display one or more items with display attributes of a
custom highlight:

void highlight(int itemPos, int attribID)
void highlight(char** items, int attribID)

402

Appendix A: Contributed ViewKit Classes

In the first form of highlight(), you specify the position index in the outline of the item
you want to highlight. Items are numbered sequentially from the top of the outline
starting with zero. attribID is the attribute identifier returned by
setHighlightAttributes() of the custom highlight that you want to assign to the items.

In the second form of highlight(), items is an array of strings specifying the names of the
items to highlight. Note that highlight() requires the item names, not their display labels.
Again, attribID is the attribute identifier (returned by setHighlightAttributes()) of the
custom highlight that you want to assign to the items.

You cannot remove a custom highlight from individual items; you can only remove the
highlight from all items to which you have applied it. VkOutline::unhighlight()
removes a custom highlight:

void unhighlight(int attribID)

attribID is the attribute identifier (returned by setHighlightAttributes()) of the custom
highlight that you want to assign to the items.

Closing and Opening Outline Topics

You can programmatically toggle an outline item open or closed with
VkOutline::toggleChildren():

virtual void toggleChildren(int position)

position is the item’s position in the SgList widget. Items are numbered sequentially from
the top of the outline starting with zero.

You can determine the effects of the last toggle operation, whether a result of user
interaction or a call to toggleChildren(), by calling VkOutline::effectOfLastToggle():

int effectOfLastToggle(int& from, int& count)

If the last toggle operation opened an item (and therefore inserted items into the SgList
widget), effectOfLastToggle() returns 1, sets the value of from to the position of the
toggled item in the list, and sets the value of count to the number of items displayed by
opening the item. If the last toggle operation closed an item (deleting items from the
SgList widget), effectOfLastToggle() returns 0, sets the value of from to the position of
the toggled item in the list, and sets the value of count to the number of items deleted
from the list by closing the item.

ViewKit Outline Component

403

You can determine whether a given item is closed with VkOutline::isPathClosed():

int isPathClosed(char** path)

The character string array path specifies the complete path of the item through the
outline. The first element of the path array is the name of the top-most item of the outline
containing the specified item, the second element is the name of the second-highest item,
and so on, with the name of the item itself appearing last. You must NULL-terminate the
array.

isPathClosed() returns 1 if the item is closed, 0 if the item is open, and -1 if the item has
no subitems.

Outline Utility and Access Functions

VkOutline provides the following utility and access functions:

void setIndentationWidth(int width)

VkOutline::setIndentationWidth() sets indentation width for future displays. The
indentation width is the number of pixels to the right that the outline offsets a child item
from its parent item:

void printTree()

VkOutline::printTree() prints the outline on the application’s standard output:

void reset()

VkOutline::reset() re-initializes the outline, deleting all items. reset() retains any display
attributes you created:

Widget listWidget()

VkOutline::listWidget() returns the widget ID of the SgList widget that the VkOutline
uses to display the outline. (Consult the SgList(3x) reference page for more information
on the SgList widget):

void select(int position)

VkOutline::select() selects the string displayed at the given position of the SgList
widget:

void getHookAt(int position)

404

Appendix A: Contributed ViewKit Classes

VkOutline::getHookAt() retrieves the pointer to the data associated with an item given
the item’s position in the SgList widget. This is the data that you provided as the
childData argument to addChildren() (see “Adding Items to an Outline” on page 398).

Usually, you need to use this data only if you create a subclass of VkOutline. In a
subclass, you can add callbacks to the SgList widget so that when the user selects an
outline item, you can retrieve the data associated with that item and perform some
action.

VkOutlineASB

The VkOutlineASB class, a subclass of VkOutline, provides the same functionality as
VkOutline except that it uses an annotated scrollbar. With VkOutlineASB, you can
display colored bars in the scrollbar to indicate the positions of highlighted items in the
outline.

All functions that VkOutlineASB inherits from VkOutline operate identically.
VkOutlineASB provides one additional function, VkOutlineASB::setAnnotation():

void setAnnotation(int attribID, Boolean state)

setAnnotation() determines whether or not the scrollbar displays annotations for a given
display highlight. attribID is the attribute identifier returned by setHighlightAttributes()
of a particular custom highlight. If state is TRUE, the scrollbar displays annotations for
the given display highlight; if state is FALSE, the scrollbar does not display annotations
for the given display highlight.

405

Appendix B

B. ViewKit Class Graph

Figure B-1 and Figure B-2 show the ViewKit class graph.

406

Appendix B: ViewKit Class Graph

Figure B-1 ViewKit Class Graph, Part 1

VkComponent

VkCallbackObject

VkDialogManager VkMenuItem VkPrefltem

VkPrefGroup

VkPrefText

VkPrefToggle

VkPrefOption

VkPrefCustom

VkPrefSeparator

VkMenu

VkMenuAction

VkMenuLabel

VkMenuBar

VkOptionMenu

VkPopupMenu

VkSubMenu

VkHelpPane

VkRadioSubMenu

VkMenuSeparator

VkMenuConfirmFirstAction

VkMenuActionWidget

VkMenuToggle

VkMenuUndoManager

VkProgressDialog

VkPrefList

VkPrefRadio

VkPrefEmpty

VkPrefLabel

VkErrorDialog

VkFileSelectionDialog

VkGenericDialog

VkInfoDialog

VkPromptDialog

VkQuestionDialog

VkWarningDialog

VkColorChooserDialog

VkBusyDialog

VkInterruptDialog

VkFatalErrorDialog

VkPrefDialog

407

Figure B-2 ViewKit Class Graph, Part 2

VkNode

VkQuickHelp

VkSimpleWindow

VkOutline

VkRepeatButton

VkResizer

VkScroll

VkTickMarks

VkVuMeter

VkTabbedDeck

VkText10

VkWindow

VkFork10

VkApp

VkCheckBox

VkCompletionField

VkDeck

VkDoubleBuffer

VkGraph

VkIconButton

VkComponentList

VkSoApp

VkRadioBox

VkMeter

VkPie

VkTabPanel

VkModel

VkModified

VkModifiedAttachment

VkCutPaste

VkPipe

VkProgram

VkBackground

VkInput

VkPeriodic

VkRunOnce

VkRunOnce2

VkNameList

VkWidgetListVkCursorList

VkAlignmentGroup

VkGangedGroup

VkRadioGroup

VkBusyCursors

VkComponent

VkCallbackObject

VkOutlineASB

VkVisual

VkAction

VkListSearch

VkMsgClient

VkMsgFacility

VkMsgService

VkMsgApp

VkSoMsgApp

409

Glossary

animated busy cursor

A cursor that is a sequence of pixmaps you can cycle through while in a busy state, giving
the appearance of animation.

attachments

Management classes that control the operation of components and widgets.

base widget

The root of a widget subtree.

busy states

When you lock out user input during an operation.

butterfly node

The central node of a butterfly graph.

butterfly graphs

Tree graphs that display only a central node and its immediate parent and child nodes.

command classes

Classes that allow you to implement actions as objects.

components

A component encapsulates a collection of widgets, but also defines the behavior of the
overall component.

fixed busy cursor

A cursor that retains the same appearance throughout a busy state.

homogenous group

A group that contains only one type of preference item.

410

Glossary

main window

The first window created in every application is by default treated as the main window.

non-homogenous group

A group that contains more than one type of preference item.

peak value

The initial value in a meter object.

preference dialogs

A dialog box that allows the user to customize the behavior of an application.

view

A widget or ViewKit component that you use as your work area for the XmMainWindow
widget.

ViewKit callbacks

A mechanism that allows a component to define conditions or events, the names of
which are exported as public static string constants encapsulated by that component.

411

A

aboutDialog() (in VkApp), 75
activate() (in VkCompletionField), 376
activate() (in VkMenuItem), 119
activate() (in VkPrefItem), 226
activateItem() (in VkMenu), 141
activating

command classes, 179
menu items, 119, 141
preference items, 226

add() (in VkAlignmentGroup), 343-344
add() (in VkCompletionField), 374
add() (in VkGangedGroup), 379
add() (in VkGraph), 323-324
add() (in VkMenu), 138
add() (in VkMenuUndoManager), 168-169
add() (in VkMeter), 392-393
add() (in VkRadioGroup), 381
addAction() (in VkMenu), 135
addCallback() (in VkCallbackObject), 35-38
addConfirmFirstAction() (in VkMenu), 135
addDesktopMenuItems() (in VkGraph), 335

Symbols

[] (subscript) operator (in VkMenu), 147
_allowMultipleDialogs (in VkGenericDialog), 212
_baseWidget (in VkComponent), 14, 18
_baseWidget (in VkSimpleWindow), 86
_canvas (in VkDoubleBuffer), 338
_clientData() (in VkMenuActionObject), 178
_currentMatchList (in VkCompletionField), 376
_cursorList (in VkCursorList), 63
_height (in VkDoubleBuffer), 339
_iconState (in VkSimpleWindow), 103
_label (in VkCheckBox), 359
_label (in VkNode), 322
_mainWindowWidget (in VkSimpleWindow), 105
_minimizeMultipleDialogs (in VkGenericDialog), 213
_name (in VkComponent), 14, 17
_nameList (in VkCompletionField), 376
_rc (in VkCheckBox), 359
_showApply (in VkGenericDialog), 212
_showCancel (in VkGenericDialog), 212
_showOK (in VkGenericDialog), 212
_stackingState (in VkSimpleWindow), 103
_visibleState (in VkSimpleWindow), 103
_widgetList (in VkCheckBox), 359
_width (in VkDoubleBuffer), 339
_winList (in VkApp), 78

Index

412

Index

adding
buttons to radio group, 381
items to meter component, 392-393
nodes to graphs, 322-324
pixmaps to tabs, 366
scrollbars to a ganged group, 379
tabs to tab panel, 364-365
toggles to check box, 352
widgets to alignment group, 343-344

addItem() (in VkCheckBox), 352
addItem() (in VkPrefGroup), 242-243
addLabel() (in VkMenu), 136
addLabel() (in VkTickMarks), 341
addMenuItems() (in VkGraph), 334
addMenuPane() (in VkWindow), 100-101
addRadioMenuPane() (in VkWindow), 101
addRadioSubmenu() (in VkMenu), 137-138
addSeparator() (in VkMenu), 136
addSubmenu() (in VkMenu), 137
addTab() (in VkTabPanel), 364-365
addTabs() (in VkTabPanel), 365
addToggle() (in VkMenu), 136
addView() (in VkSimpleWindow), 86
adjustGeometry() (in VkModifiedAttachment), 387
Admin menu (in graph overview window), 315
afterRealizeHook() (in VkApp), 77
afterRealizeHook() (in VkComponent), 20
afterRealizeHook() (in VkSimpleWindow), 99, 104
alignBottom() (in VkAlignmentGroup), 344
alignHeight() (in VkAlignmentGroup), 344
aligning

nodes in graphs, 315, 328-329
widgets, 343-345

See also VkAlignmentGroup class
alignLeft() (in VkAlignmentGroup), 344

alignment groups, 343-345
See also VkAlignmentGroup class
adding widgets, 343-344
aligning widgets, 344-345
removing widgets, 344

alignRight() (in VkAlignmentGroup), 344
alignTop() (in VkAlignmentGroup), 344
alignWidth() (in VkAlignmentGroup), 344
appContext() (in VkApp), 76
applicationClassName() (in VkApp), 76
applications

See also VkApp class
busy states, 69-74, 201

See also VkBusyDialog class; VkInterruptDialog
class

busy dialog, 69, 73-74
entering, 69
example, 70-71
exiting, 69
nested, 69

class name, 54, 76
command-line options, parsing, 54-55, 77

example, 78-79
cursors, 61-68

busy, animated, 62, 62-68, 72
busy, fixed, 62
default, 61, 62
normal, 61-62
temporary, 68

Display structure, 76
event handling, 56-58

customizing, 58
during postAndWait(), 187-188
during wasInterrupted(), 202
pending events, 57
raw events, 56-57, 104

in overlay planes, 80
name, 54, 76
pointer, 54
product information, 74-75

413

Index

applications (continued)
quitting, 20-21, 59-60, 85, 99, 102, 201
running, 56
shell, 54, 77, 81-82

geometry, 76
version information, 74
windows, managing, 60-61, 95-96
XtAppContext structure, 76

applications in overlay planes, 80
apply() (in VkDialogManager), 213
Apply button, dialogs, 186
arcCreatedCallback (in VkGraph), 333
arcDestroyedCallback (in VkGraph), 333
arcs (in graphs)

attributes, 323-324
area1() (in VkTabPanel), 371
area2() (in VkTabPanel), 371
argc() (in VkApp), 76
argc (in main()), 54, 76
argCnt() (in VkVisual), 262
argList() (in VkVisual), 262
argv() (in VkApp), 76-77
argv (in main()), 54, 76-77
attach() (in VkModifiedAttachment), 384-385
attach() (in VkPopupMenu), 159-160
attach() (in VkResizer), 348-349
attachments, 343-350, 378-389

alignment groups, 343-345
ganged scrollbars, 378-379
modified text, 382-389
radio-style toggles, 380-382
resizers, 346-350

attributes
arcs in graphs, 323-324

B

balloon help, 304-306
baseHeight() (in VkPrefItem), 226
base widget

See also baseWidget()
applications, 77
components, 12, 14, 16, 18
deletion, handling, 24
preference items, 223, 226
realization, detecting, 20
windows, 86

baseWidget() (in VkApp), 77
baseWidget() (in VkComponent), 18
baseWidget() (in VkSubMenu), 150
BlackPixel macro, 255
blocking, modal dialogs, 185
build() (in VkNode), 321
build() (in VkPopupMenu), 160
buildCmdPanel() (in VkGraph), 334
buildZoomMenu() (in VkGraph), 334
busy() (in VkApp), 69-71

note, 69
busyCursor() (in VkApp), 62, 68
busy dialog, 69, 201-202

See also VkBusyDialog class; VkDialogManager
class

installing, 73-74
busy states, 69-74, 201

busy dialog, 69
installing, 73-74

entering, 69
example, 70-71
exiting, 69
nested, 69

butterfly graphs, 329-330
butterfly node, 329-330
buttonCallback (in VkRepeatButton), 377

414

Index

buttons
radio-style. See radio-style toggles;

VkRadioGroup class
repeating. See repeating buttons; VkRepeatButton

class

C

C++ Development Option, 5
callbacks. See ViewKit callbacks; Xt callbacks
callCallbacks() (in VkCallbackObject), 39-40
cancel() (in VkDialogManager), 213
Cancel button, dialogs, 186
centering algorithm, dialogs, 196-197
centerOnScreen() (in VkDialogManager), 196-197
changed() (in VkPrefGroup), 243
changed() (in VkPrefItem), 225
check box component, 352-359

See also components; VkCheckBox class
example, 353-355
setting labels, 353-355
toggles

adding, 352
detecting value changes, 356-359
getting values, 356
setting values, 355

child() (in VkNode), 320
classes

dependencies, 3
management, 343-350, 378-389

alignment groups, 343-345
ganged scrollbars, 378-379
modified text, 382-389
radio-style toggles, 380-382
resizers, 346-350

class hints, 100

class name
See also className()
application, 54, 76
components, 18, 26

className() (in VkApp), 76
className() (in VkComponent), 18, 26
className() (in VkVisual), 262
clear() (in VkCompletionField), 374-375
clear() (in VkCutPaste), 271
clearAll() (in VkGraph), 325
clearing

completion field expansion list, 374
undo stack, 170

“Click for Help” selection (in Help menu), 301
client data, Xt callbacks

components, 21-22
static menu descriptions, 129-130

CLIPBOARD transfer model, 270
clipboardAtom() (in VkCutPaste), 294
“Close” selection (in Admin menu), 315
“Collapse Selected Nodes” (in Selected Nodes

menu), 317
“Collapse Subgraph” selection (in Node menu), 316
color chooser dialog, 183
colormap() (in VkVisual), 262
colormapCreated() (in VkVisual), 262
colormaps, 255-257
command classes, 176-180

See also VkAction class; VkMenuActionObject
class

activating, 179
constructors, 178
executing, 179
menu items, 179
overview, 176-177
setting labels, 179-180

command-line options, parsing, 54-55, 77
example, 78-79

415

Index

compiling ViewKit programs, 5-7
example, 7

completion fields, 374-376
See also components; VkCompletionField class
activation, responding, 375
clearing expansion list, 374
replacing expansion list, 375
retrieving contents, 375
setting expansion list, 374

components, 11-52
See also VkComponent class
base widget, 12, 14, 16, 18

See also baseWidget()
deletion, handling, 24
realization, detecting, 20

callbacks. See components: ViewKit callbacks;
components: Xt callbacks

characteristics, 12-13
class name, 18, 26

See also className()
constructor, 13-16
definition, 11-12
destructor, 16-17
displaying, 19-20
hiding, 19-20
managing widgets, 13, 14
multiple pointers to, 40-41
name, 12-14, 17
overview, 11-12
parent widget, 12, 14
resource support, 26-34

data members, initializing, 28-30
default values, setting, 30-32
global values, setting, 31
requirements, 26
resource values, setting, 26-27
values, retrieving, 32-34

static member functions and Xt callbacks, 13, 21-24
example, 22-24
naming convention, 22
this pointer, 21-22

subclassing, 41-52
constructor, 14-16
examples, 43-52
summary, 41-42

testing for valid, 21
ViewKit callbacks, 34-41

creating, 39
defining, 39
invoking, 39-40
overview, 34
registering callback functions, 35-38
removing callback functions, 38
triggering, 39-40
unregistering callback functions, 38

widget destruction, 13, 14, 16, 24-25
widgets, 12, 14
Xt callbacks, 13, 21-24

example, 22-24
naming convention, 22
this pointer, 21-22

concepts
suggested reading, xxiii

constructing menus
dynamically, 134-140

example, 138-140
static description, from, 125-134

example, 130-134
VkMenuDesc structure, 125-129
Xt callback client data, 129-130

constructors
See individual class names

context-sensitive help, 303
conventions, xxiv-xxv

inheritance graphs, xxv
reference pages, xxiv
typographical, xxiv

converting data types, 285-288
copy and paste, 271-275
createCursor() (in VkCursorList), 63

416

Index

createDialog() (in VkGenericDialog), 211-212
creating

ViewKit callbacks, 39
window interfaces, 85-95

See also windows: views
cursors, 61-68

busy, animated, 62, 62-68
animating, 72
example, 63-68

busy, fixed, 62
default, 61, 62
normal, 61-62
temporary, 68

custom dialog, 211-213
See also VkDialogManager class;

VkGenericDialog class
customizing event handling, 58

D

data members, initializing with X resources, 28-30
data transfer

See also VkCutPaste class, 269-296
data types

converting, 285-288
registering, 283-285

deactivate() (in VkMenu), 142
deactivate() (in VkMenuItem), 119
deactivate() (in VkPrefItem), 226
deactivating

menu items, 119, 142
preference items, 226

debug libraries, ViewKit, 6
defining ViewKit callbacks, 39
deleteCallback (in VkComponent), 16, 40-41
deleteChildren() (in VkPrefGroup), 243
demonstration programs, 10

dependencies
classes, 3
VkApp, 3, 54

depth() (in VkVisual), 262
deriving subclasses. See components: subclassing

See also specific classes
deselecting

nodes in graphs, 317
detach() (in VkModifiedAttachment), 385
detach() (in VkResizer), 349
dialogs, 181-213

See also VkDialogManager class; specific dialog
classes

Apply button, 186
busy, 69, 201-202

See also VkBusyDialog class
installing, 73-74

button labels, setting, 195-196
Cancel button, 186
centering algorithm, 196-197
color chooser, 183
custom, 211-213

See also VkGenericDialog class
error, 200

See also VkErrorDialog class
event handling

during postAndWait(), 187-188
during wasInterrupted(), 202

fatal error, 201
See also VkFatalErrorDialog class

file selection, 208-211
See also VkFileSelectionDialog class
caution, 211

generic, 211-213
See also VkGenericDialog class

Help button, 186, 303
information, 198-199

See also VkInfoDialog class

417

Index

dialogs (continued)
interruptible busy, 202-204

See also VkInterruptDialog class
checking for interruptions, 202
installing, 73-74, 203-204

message, 186
OK button, 186
overview, 182-184
parent widget, 186
pointers, 184
posting, 185-191

examples, 188-191
methods, 185-188

preference. See preference dialogs; VkPrefDialog
class

preposting, 192
Product Information, 75, 301
progress, 204-205

See also VkProgressDialog class
installing, 73, 204-205

prompt, 206-208
See also VkPromptDialog class
caution, 208

question, 205-206
See also VkQuestionDialog class
VkMenuConfirmFirstAction use, 123

title, setting, 193-195
unposting, 193
warning, 200

See also VkWarningDialog class
disabling multi-level undo support, 170
display() (in VkApp), 76
display() (in VkGraph), 325
displayAll() (in VkGraph), 325
displayButterfly() (in VkGraph), 329-330
displayIf() (in VkGraph), 327

displaying
components, 19-20
graph overview window, 314, 330
menu items, 118
modified text attachment dogear, 385
nodes in graphs, 316, 317, 325-327, 331
resizer geometry controls, 349
windows, 61, 95

displayParentsAndChildren() (in VkGraph), 327
Display structure, 76
displayValue() (in VkModifiedAttachment), 387
displayWithAllChildren() (in VkGraph), 326
displayWithAllParents() (in VkGraph), 326
displayWithChildren() (in VkGraph), 326
displayWithParents() (in VkGraph), 326
distributeHorizontal() (in VkAlignmentGroup),

345
distributeVertical() (in VkAlignmentGroup), 345
doit() (in VkAction), 178
doit() (in VkMenuActionObject), 178
doLayout() (in VkGraph), 328
doSparseLayout() (in VkGraph), 329
doSubtreeLayout() (in VkGraph), 328-329
double-buffer component, 337-339

See also components; VkDoubleBuffer class
drawing, 338
resizing, 339
switching buffers, 339

drag and drop, 275-282
dragAwayCopy() (in VkCutPaste), 275
dragAwayCopyExtended() (in VkCutPaste), 276
draw() (in VkDoubleBuffer), 338
drawing, double-buffered, 338

See also VkDoubleBuffer class

418

Index

E

enableCancelButton() (in VkDialogManager), 197
enterCallback (in VkCompletionField), 375
error dialog, 200

See also VkDialogManager class; VkErrorDialog
class

error dialog, fatal, 201
See also VkDialogManager class;

VkFatalErrorDialog class
establishing connections

nodes in graphs, 318, 323-324
event handling, 56-58

customizing, 58
during postAndWait(), 187-188
during wasInterrupted(), 202
pending events, 57
raw events, 56-57, 104

examining undo stack, 171
executing command classes, 179
exiting applications. See quitting applications
expand() (in VkCompletionField), 375-376
expandNode() (in VkGraph), 326
“Expand Selected Nodes” (in Selected Nodes menu),

317
expandSubgraph() (in VkGraph), 326
export() (in VkCutPaste), 272
expose() (in VkModifiedAttachment), 385
External help library, linking to, 300

F

<F1> key (Help), 303
fatal error dialog, 201

See also VkDialogManager class;
VkFatalErrorDialog class

fileName() (in VkFileSelectionDialog), 210-211

file selection dialog, 208-211
See also VkDialogManager class;

VkFileSelectionDialog class
caution, 211

find() (in VkGraph), 332
findChild() (in VkNode), 320
finding

menu items, 141
nodes (in graphs), 320, 332

findNamedItem() (in VkMenu), 141
findParent() (in VkNode), 320
fixPreviousValue() (in VkModifiedAttachment),

388
forAllNodesDo() (in VkGraph), 331
forceWidth() (in VkOptionMenu), 156
freeFilenamesFromSGI_ICON() (in VkCutPaste),

281

G

ganged scrollbars, 378-379
See also VkGangedGroup class
adding scrollbars, 379
removing scrollbars, 379

gc() (in VkTabPanel), 371
generic dialog, 211-213

See also VkDialogManager class;
VkGenericDialog class

getButton() (in VkPrefOption), 234
getDataTypeInfo() (in VkCutPaste), 285
getFilenamesFromSGI_ICON() (in VkCutPaste),

281
getIndex() (in VkOptionMenu), 156
getItem() (in VkOptionMenu), 156
getItemPosition() (in VkMenu), 146-147
getLabel() (in VkPrefOption), 234
getLocalReference() (in VkCutPaste), 295

419

Index

getLocalTypeReference() (in VkCutPaste), 296
getParameters() (in VkModifiedAttachment), 388
getResources() (in VkComponent), 28
getState() (in VkMenuToggle), 124
getTab() (in VkTabPanel), 368
getText() (in VkCompletionField), 375
getting

check box toggle values, 356
preference item values, 225

getTitle() (in VkSimpleWindow), 97
getValue() (in VkCheckBox), 356
getValue() (in VkPrefItem), 225
getValue() (in VkPrefOption), 235
getValue() (in VkPrefText), 228
getValue() (in VkPrefToggle), 231-232
getVersion() (in VkCutPaste), 294
getVisualState() (in VkSimpleWindow), 96
getWidget() (in VkCutPaste), 294
getXServerTime() (in VkCutPaste), 294
Graph Overview button (in VkGraph control panel),

314
graphs, 307-335

See also components; nodes; VkGraph class;
VkNode class

arc attributes, 323-324
butterfly, 329-330
control panel, 312-313
edit mode, 309, 316-317
example, 309-312
graph widget, 308-309
multiple arcs, 315
Node menu, 316
nodes

See also VkNode class
adding, 322-324
aligning, 315, 328-329
arc attributes, 323-324
deselecting, 317

displaying, 316, 317, 325-327, 331
establishing connections, 318, 323-324
hiding, 316, 317, 325-327
laying out, 315, 328-329
moving, 317
performing action, 331
removing, 324
selecting, 316-317
sorting, 331

orientation, 315
overview, 307-317
overview window, 314-315, 330

Admin menu, 315
read-only mode, 309
reusing, 333
saving, 331
Selected Nodes menu, 317
widgets, 332
X resources, 334
zooming, 313-314, 331

graphWidget() (in VkGraph), 332

H

handlePendingEvents() (in VkApp), 57, 58
handleRawEvent() (in VkApp), 57

note, 57
handleRawEvent() (in VkSimpleWindow), 104
handleWmDeleteMessage() (in

VkSimpleWindow), 99
handleWmQuitMessage() (in VkSimpleWindow),

99
hasUndo() (in VkMenuAction), 122
header files

IRIS IM, 6
required, 6
X, 6

height() (in VkAlignmentGroup), 345

420

Index

help
balloon, 304-306
External help library, linking to, 300
message line, 304-306
popup, 304-306
QuickHelp, 304-306
SGIHelp, 299
ViewKit, 298-299

determining help tokens, 300
“helpAuthorMode” resource, 300
Help button, dialogs, 186, 303
help library interface functions, 297-300
Help menu, 75, 149, 300-303

See also menus; submenus; VkHelpPane class
resources, 302-303

helpPane() (in VkMenuBar), 149
help system, 297-306

context-sensitive help, 303
<F1> key (Help), 303
Help button, dialogs, 186, 303
Help menu, 300-303

resources, 302-303
interface functions, 297-300

help tokens
determining, 300

hide() (in VkApp), 61
hide() (in VkComponent), 19
hide() (in VkMenuItem), 119
hide() (in VkModifiedAttachment), 385
hide() (in VkResizer), 349
hide() (in VkSimpleWindow), 95
hideAllChildren() (in VkGraph), 326
hideNode() (in VkGraph), 325
“Hide Node” selection (in Node menu), 316
hideOverview() (in VkGraph), 330
hideParents() (in VkGraph), 327
hideParentsAndChildren() (in VkGraph), 327

“Hide Selected Nodes” (in Selected Nodes menu),
317

hideWithAllChildren() (in VkGraph), 326
hiding

components, 19-20
graph overview window, 330
menu items, 119
modified text attachment dogear, 385
nodes in graphs, 316, 317, 325-327
resizer geometry controls, 349
windows, 61, 95

historyList() (in VkMenuUndoManager), 171
horiz() (in VkTabPanel), 369

I

iconic() (in VkSimpleWindow), 96
iconify() (in VkApp), 61
iconify() (in VkSimpleWindow), 95
iconifying windows, 61, 95

at startup, 61, 77
icon titles, 97-98
IDO, 5
import() (in VkCutPaste), 274
importImmediate() (in VkCutPaste), 273
include files. See header files
“Index” selection (in Help menu), 301
indexString() (in VkVisual), 265
information dialog, 198-199

See also VkDialogManager class; VkInfoDialog
class

inheritance graphs
See also specific class names
conventions, xxv

initializing
data members with X resources, 28-30
Xt Intrinsics, 54

421

Index

installDestroyHandler() (in VkComponent), 14, 25
interapplication data transfer

See also VkCutPaste class, 269-296
interfaces, window. See windows: views
interruptedCallback (in VkInterruptDialog), 202
interruptible busy dialog, 202-204

See also VkDialogManager class;
VkInterruptDialog class

checking for interruptions, 202
installing, 73-74, 203-204

invoking ViewKit callbacks, 39-40
IRIS Development Option (IDO), 5
IRIS IM

header files, 6
suggested reading, xxiii
ViewKit, and, 3-4

isComponent() (in VkComponent), 21
isContainer() (in VkMenuItem), 122
isContainer() (in VkPrefItem), 227
isOwnedByLocalHost() (in VkCutPaste), 295
isOwnedByMe() (in VkCutPaste), 295
item() (in VkPrefDialog), 245
item() (in VkPrefGroup), 243
itemChanged (in VkCheckBox), 357-358

K

“Keys & Shortcuts” selection (in Help menu), 301

L

label() (in VkNode), 320
labelBg() (in VkTabPanel), 370
labelFg() (in VkTabPanel), 370
labelHeight() (in VkPrefItem), 226

“labelString” resource (in VkAction), 179-180
labelWidget() (in VkPrefItem), 226
label widget, preference items, 223, 226
lastPosted() (in VkDialogManager), 197
latestDisplay() (in VkModifiedAttachment), 387
laying out nodes in graph, 315, 328-329
libraries

required, 6-7
ViewKit, 6-7

lineThickness() (in VkTabPanel), 370
lower() (in VkApp), 61
lower() (in VkSimpleWindow), 95
lowering windows, 61, 95

M

main(), 9
main window, 84

determining, 60
during quitting, 59
specifying, 60

mainWindow() (in VkApp), 60
mainWindowWidget() (in VkSimpleWindow), 86,

96
makeNodeVisible() (in VkGraph), 331
makeNormal() (in VkAlignmentGroup), 344
management classes, 343-350, 378-389

alignment groups, 343-345
ganged scrollbars, 378-379
modified text, 382-389
radio-style toggles, 380-382
resizers, 346-350

man pages. See reference pages
maxLevel() (in VkVisual), 262
member function callbacks. See ViewKit callbacks
menu() (in VkWindow), 100

422

Index

menu bars, 147-149
See also menus; windows; VkMenuBar class
VkWindow destructor, and, 85
VkWindow support, 100-101

menu items, 118-124
See also menus; VkMenuItem class; specific menu

item classes
actions, 122-123

See also VkMenuAction class
activating, 119, 141
adding to menus, 134-138
command classes, 179
confirmable actions, 123

See also VkMenuConfirmFirstAction class
deactivating, 119, 142
determining position in menu, 146-147
displaying, 118
finding, 141
hiding, 119
labels, 120, 124

See also VkMenuLabel class
overview, 116
position, 120-121
removing, 119, 142
replacing, 142-143
separators, 124

See also VkMenuSeparator class
toggles, 123-124

See also VkMenuToggle class
type, 121-122
“Undo” selection, 166

adding, 167
setting label, 171

undo support, 126, 135, 167-168
menus, 115-303

See also menu items; VkMenu class
activating items, 119, 141
adding items, 134-138
constructing dynamically, 134-140

example, 138-140

constructing from static description, 125-134
example, 130-134
VkMenuDesc structure, 125-129
Xt callback client data, 129-130

deactivating items, 119, 142
determining item position, 146-147
displaying items, 118
finding menu items, 141
Help menu, 75, 149, 300-303

See also submenus; VkHelpPane class
resources, 302-303

hiding items, 119
menu bars, 147-149

See also windows; VkMenuBar class
VkWindow destructor, and, 85
VkWindow support, 100-101

option menus, 154-158
See also VkOptionMenu class
example, 156-158
item width, setting, 156
menu label, setting, 155
selected item, setting, 155-156, 156

overview, 116-117
popup menus, 158-162

See also VkPopupMenu class
attaching to widget, 159-160
example, 160-162
popping up, 160

pulldown, in overlay planes, 163
radio submenus, 150-154

See also VkRadioSubMenu class
removing items, 119, 142
replacing items, 142-143
setting item labels, 120
setting item positions, 120-121
submenus, 149-150

See also VkSubMenu class
tear-off behavior, 150
“Undo” selection, 166

adding, 167
setting label, 171

423

Index

menus (continued)
VkMenuDesc structure, 125-129
VkMenuItemType type, 126
XtDisplay() caution, 116
XtScreen() caution, 116
XtWindow() caution, 116

menuType() (in VkMenuItem), 121-122
message, dialogs, 186
message line help, 304-306
meter component, 391-395

See also components; VkMeter class
adding items, 392-393
desired dimensions, 394
resetting, 391-392
resize policy, 393-394
updating display, 393
X resource, 394-395

minLevel() (in VkVisual), 263
modified() (in VkModifiedAttachment), 388
modifiedCallback (in VkModifiedAttachment), 386
modified text attachment, 382-389

See also VkModifiedAttachment class
adjusting geometry, 387-388
attaching widgets, 384-385
controlling contents, 387, 388
detaching widgets, 385
detecting changes, 386
displaying dogear, 385
hiding dogear, 385
overview, 382-383
retrieving values, 385

Motif
See also IRIS IM
suggested reading, xxiii

moving
nodes in graphs, 317
widgets, 346-350

See also VkResizer class
multiLevel() (in VkMenuUndoManager), 170

multi-level undo support, 166
disabling, 170
undo stack

clearing, 170
examining, 171

Multiple Arcs button (in VkGraph control panel), 315
multiple pointers to a component, 40-41

N

name() (in VkApp), 76
name() (in VkComponent), 17
nChildren() (in VkNode), 320
neededHeight() (in VkMeter), 394
neededWidth() (in VkMeter), 394
Node menu (in VkGraph), 316
nodes (in graphs), 317-322

See also components; graphs; VkGraph class;
VkNode class

adding to graph, 322-324
aligning, 315, 328-329
arc attributes, 323-324
butterfly node, 329-330
child nodes, 320
deselecting, 317
displaying, 316, 317, 325-327, 331
establishing connections, 318, 323-324
finding, 320, 332
hiding, 316, 317, 325-327
label, 318, 320, 322
laying out, 315, 328-329
moving, 317
parent nodes, 320
performing action, 331
removing from graph, 324
selecting, 316-317
sorting, 319, 331
subclassing, 321-322

424

Index

non-blocking, modal dialogs, 185
non-blocking, non-modal dialogs, 185
normalCursor() (in VkApp), 62
notBusy() (in VkApp), 69-71
“noUndoQuestion” resource (in

VkMenuConfirmFirstAction), 123
nParents() (in VkNode), 320
numColors() (in VkVisual), 263
numItems() (in VkMenu), 146
numNodes() (in VkGraph), 332

O

ok() (in VkDialogManager), 213
OK button, dialogs, 186
okToQuit() (in VkComponent), 20-21
okToQuit() (in VkSimpleWindow), 59, 99, 102
open() (in VkApp), 61
open() (in VkSimpleWindow), 95
opening windows, 61, 95
option menus, 154-158

See also menus; VkOptionMenu class
example, 156-158
item width, setting, 156
menu label, setting, 155
selected item

determining, 156
setting, 155-156

outline component, 395-404
overlay planes, applications in, 80
overlay planes, pulldown menus in, 163
“Overview” selection (in Help menu), 301
overviewWindow() (in VkGraph), 330
overview window, graphs, 314-315, 330

P

packages, required, 5-6
parent() (in VkNode), 320
parent widget

components, 12, 14
dialogs, 186
windows, 84

parseCommandLine() (in VkApp), 77
parsing command-line options, 54-55, 77

example, 78-79
pending events, 57
pie chart component, 395

See also components; meter component; VkPie
class

planesString() (in VkVisual), 265
popup help, 304-306
popupMenu() (in VkGraph), 335
popup menus, 158-162

See also menus; VkPopupMenu class
attaching to widget, 159-160
example, 160-162
popping up, 160

post() (in VkDialogManager), 185-187
postAndWait() (in VkDialogManager), 185, 187-188
postBlocked() (in VkDialogManager), 185-187
posting dialogs, 185-191

examples, 188-191
methods, 185-188

postModal() (in VkDialogManager), 185-187
prefCallback (in VkPrefDialog), 246-247
preference dialogs, 215-250

See also dialogs; VkPrefDialog class
adding items, 245, 245
creating, 244-245
example, 219-222
overview, 216-222

425

Index

preference dialogs (continued)
posting, 245-246

See also dialogs: posting
retrieving values, 248
subclassing, 249-250
unposting, 246

See also dialogs: unposting
user interaction, responding, 246-247

preference items, 223-244
See also VkPrefItem class; individual preference item

classes
activating, 226
base widget, 223, 226
deactivating, 226
empty space, 237

See also VkPrefEmpty class
groups, 237-244

See also VkPrefGroup class; VkPrefList class;
VkPrefRadio class

adding items, 242-243
changes in item values, 243
comparison of group classes, 238-241
creating, 241-242
deleting items, 243
labels, 244
labels, setting, 244

label items, 235-236
See also VkPrefLabel class
setting labels, 236

labels, 223-224
groups, 244
label items, 236
option menus, 233-234
toggles, 229-231

label widget, 223, 226
option menus, 232-235

See also VkPrefOption class
labels, setting, 233-234
number of options, setting, 234

overview, 216-217, 217-218

separators, 237
See also VkPrefSeparator class

text fields, 227-228
See also VkPrefText class

toggles, 228-232
See also VkPrefToggle class
setting labels, 229-231

values, 225
prepost() (in VkDialogManager), 192
prepostCallback (in VkDialogManager), 192
preposting dialogs, 192
previousValue() (in VkModifiedAttachment), 385
primaryAtom() (in VkCutPaste), 294
PRIMARY transfer model, 270
print() (in VkVisual), 265
printAll() (in VkVisual), 265
product information, 74-75
Product Information dialog, 75, 301
“Product Information” selection (in Help menu), 75,

301
programs

compiling and linking, 5-7
example, 7

demonstration, 10
progress dialog, 204-205

See also VkDialogManager class;
VkProgressDialog class

installing, 73, 204-205
progressing() (in VkApp), 72
prompt dialog, 206-208

See also VkDialogManager class;
VkPromptDialog class

caution, 208
pulldown() (in VkSubMenu), 150
pulldown menus in overlay planes, 163
putCopy() (in VkCutPaste), 271
putReference() (in VkCutPaste), 296

426

Index

Q

question dialog, 205-206
See also VkDialogManager class;

VkQuestionDialog class
VkMenuConfirmFirstAction use, 123

QuickHelp, 304-306
balloon, 304-306
message line, 304-306
popup, 304-306
timers, 304-305

quitting applications, 20-21, 59-60, 85, 99, 102, 201
quitYourself() (in VkApp), 20, 59, 99

note, 60

R

radio check box component, 359-361
See also check box component; VkRadioBox class
example, 359-361

radio-style toggles, 380-382
See also VkRadioGroup class
adding buttons, 381
removing buttons, 381

radio submenus, 150-154
See also menus; VkRadioSubMenu class;

VkSubMenu class
adding to menus, 137-138

raise() (in VkApp), 61
raise() (in VkSimpleWindow), 95
raising windows, 61, 95
raw events, 56-57, 104
Realign button (in VkGraph control panel), 315
reference pages

conventions, xxiv
registerConverter() (in VkCutPaste), 286
registerDataType() (in VkCutPaste), 283

registerDropSite() (in VkCutPaste), 278
registerDropSiteExtended() (in VkCutPaste), 278
registering data types, 283-285
registering functions, ViewKit callbacks, 35-38

caution, 35
example, 36-37
function format, 36, 37

registerLoseSelection() (in VkCutPaste), 272
relayButton() (in VkGraph), 332
remove() (in VkAlignmentGroup), 344
remove() (in VkCutPaste), 296
remove() (in VkGangedGroup), 379
remove() (in VkGraph), 324
remove() (in VkMenuItem), 119
remove() (in VkRadioGroup), 381
removeAllCallbacks() (in VkCallbackObject), 38
removeCallback() (in VkCallbackObject), 38
removeDestroyHandler() (in VkComponent), 25
removeFirst() (in VkGangedGroup), 379
removeFirst() (in VkRadioGroup), 381
removeItem() (in VkMenu), 142
removeLast() (in VkGangedGroup), 379
removeLast() (in VkRadioGroup), 381
removeTab() (in VkTabPanel), 365-366
removing

buttons from radio group, 381
functions, ViewKit callbacks, 38
menu items, 119, 142
nodes from graphs, 324
pixmaps from tabs, 366
scrollbars from a ganged group, 379
tabs to tab panel, 365-366
widgets from alignment group, 344

reorientButton() (in VkGraph), 332
repeat buttons

activation, responding, 377

427

Index

repeating buttons, 376-378
See also components; VkRepeatButton class
X resources, 378

replace() (in VkMenu), 142-143
replacing

completion field expansion list, 375
menu items, 142-143

requirements
header files, 6
libraries, 6-7
packages, 5-6

reset() (in VkMenuUndoManager), 170
reset() (in VkMeter), 391-392
resize() (in VkDoubleBuffer), 339
resizers, 346-350

See also VkResizer class
attaching widgets, 348-349
detaching widgets, 349
displaying geometry controls, 349
geometry changes

detecting, 349-350
restricting, 349

hiding geometry controls, 349
overview, 346-348

resizing
double-buffer component, 339
widgets, 346-350

See also VkResizer class
resource support

components, 26-34
data members, initializing, 28-30
default values, setting, 30-32
global values, setting, 31
requirements, 26
resource values, setting, 26-27

retrieving values, 32-34
example, 33-34
note, 33

Rotate Graph button (in VkGraph control panel), 315

run() (in VkApp), 56-58
run_first() (in VkApp), 56, 58

S

“safe quit” mechanism, 20-21, 59-60, 102
saveToFile() (in VkGraph), 331
saving

graphs, 331
“Scale to Fit” selection (in Admin menu), 315
schemes

menu bars, and, 148
options menus, and, 154

scrollbars, “ganging” See ganged scrollbars;
VkGangedGroup class

ScrolledWindow widget and windows, 86
secondary event loops

during handlePendingEvents(), 57
during postAndWait(), 187-188
during wasInterrupted(), 202

Selected Nodes menu (in VkGraph), 317
selectedTab() (in VkTabPanel), 368
selecting

nodes in graphs, 316-317
selectTab() (in VkTabPanel), 365, 368
set() (in VkOptionMenu), 155-156
setAboutDialog() (in VkApp), 75
setArgs() (in VkDialogManager), 197
setBaseHeight() (in VkPrefItem), 226
setBusyCursor() (in VkApp), 62, 68
setBusyDialog() (in VkApp), 73
setButtonLabels() (in VkDialogManager), 195-196
setClassHint() (in VkSimpleWindow), 100
setColormap() (in VkVisual), 259
setDefaultResources() (in VkComponent), 30-31
setDirectory() (in VkFileSelectionDialog), 209

428

Index

setFilterPattern() (in VkFileSelectionDialog),
209-210

setIconName() (in VkSimpleWindow), 97
setIncrements() (in VkResizer), 349
setItem() (in VkPrefDialog), 245
setLabel() (in VkMenuItem), 120
setLabel() (in VkPrefOption), 233-234
setLabelHeight() (in VkPrefItem), 226
setLayoutStyle() (in VkGraph), 330
setMainWindow() (in VkApp), 60
setMargin() (in VkTickMarks), 342
setMenuBar() (in VkWindow), 100
setModified() (in VkModifiedAttachment), 388
setNormalCursor() (in VkApp), 61-62
setParameters() (in VkModifiedAttachment), 388
setParameters() (in VkRepeatButton), 377
setPosition() (in VkMenuItem), 121
setResizePolicy() (in VkMeter), 393-394
setScale() (in VkTickMarks), 340-341
setSelection() (in VkFileSelectionDialog), 210
setSize() (in VkGraph), 331
setSize() (in VkPrefOption), 234
setSortFunction() (in VkNode), 319
setStateAndNotify() (in VkMenuToggle), 124
setTabPixmap() (in VkTabPanel), 366
setting, 171

check box labels, 353-355
check box toggle values, 355
command class labels, 179-180
completion field expansion list, 374
default resource values, 30-32

example, 31-32
note, 31

dialog button labels, 195-196
dialog titles, 193-195
global resource values, 31

preference items
labels, 223-224
labels, group, 244
labels, label items, 236
labels, option menus, 233-234
labels, toggles, 229-231
values, 225

tick marks scale, 340-341
visual information, 259
VkAction class label for “Undo” selection, 179-180

setTitle() (in VkDialogManager), 193-194
setTitle() (in VkSimpleWindow), 97
setTransactionsTimeout() (in VkCutPaste), 295
setUpInterface() (in VkSimpleWindow), 92
setUpWindowProperties() (in VkSimpleWindow),

99
setValue() (in VkCheckBox), 355
setValue() (in VkModifiedAttachment), 387
setValue() (in VkPrefItem), 225
setValue() (in VkPrefOption), 235
setValue() (in VkPrefText), 228
setValue() (in VkPrefToggle), 232
setValues() (in VkCheckBox), 355
setVersionString() (in VkApp), 74
setVisual() (in VkDialogManager), 197
setVisual() (in VkVisual), 260
setVisualState() (in VkMenuToggle), 124
setZoomOption() (in VkGraph), 331
SgGraph widget, 308-309
SGIHelp, 299
SGIHelpIndexMsg(), 298-300
SGIHelpInit(), 297
SGIHelpMsg(), 298
shell, application, 54, 77, 81-82

geometry, 76
shell geometry

main window, 84, 98

429

Index

shellGeometry() (in VkApp), 76
shell resources, 84, 98
show() (in VkApp), 61
show() (in VkComponent), 19
show() (in VkMenuItem), 118
show() (in VkModifiedAttachment), 385
show() (in VkPopupMenu), 160
show() (in VkResizer), 349
show() (in VkSimpleWindow), 92, 95
“Show Arcs” selection (in Admin menu), 315
showCursor() (in VkApp), 68
“Show Immediate Children” selection (in Node

menu), 316
shown() (in VkResizer), 349
showOverview() (in VkGraph), 330
“Show Parents” selection (in Node menu), 316
showTearOff() (in VkSubMenu), 150
size() (in VkPrefGroup), 243
size() (in VkPrefOption), 234
size() (in VkTabPanel), 369
sortAll() (in VkGraph), 331
sortChildren() (in VkNode), 319
startupIconified() (in VkApp), 61, 77
stateChanged() (in VkSimpleWindow), 103
stateChangedCallback (in VkResizer), 349-350
static member functions

Xt callbacks, 13, 21-24
example, 22-24
naming convention, 22
static menu descriptions, 129-130
this pointer, 21-22

statusString() (in VkVisual), 265
subclassing. See components: subclassing

See also specific classes

submenus, 149-150
See also menus; VkSubMenu class
adding to menus, 137
radio-style, 150-154
tear-off behavior, 150

[] (subscript) operator (in VkMenu), 147
subsystems, ViewKit, 5-6
suggested reading, xxiii

T

tabBg() (in VkTabPanel), 370
tabHeight() (in VkTabPanel), 369
tab panel component, 361-373

See also components; VkTabPanel class
overview, 361-363
tabs

adding, 364-365
adding pixmaps, 366
removing, 365-366
removing pixmaps, 366
selection, responding to, 367-368

X resources, 371-373
tabPixmap() (in VkTabPanel), 366
tabPopupCallback (in VkTabPanel), 367
tabSelectCallback (in VkTabPanel), 367
tearDownGraph() (in VkGraph), 333
tear-off menus, 150
terminate() (in VkApp), 59-60, 85, 201

note, 60
Terre Haute, Indiana, 318
text() (in VkPromptDialog), 207-208
text fields

completion. See completion fields;
VkCompletionField class

modified attachment. See modified text
attachment; VkModifiedAttachment class

430

Index

theApplication (in VkApp), 54
theBusyDialog (in VkBusyDialog), 201-202

installing as busy dialog, 73
theErrorDialog (in VkErrorDialog), 200
theFatalErrorDialog (in VkFatalErrorDialog), 201
theFileSelectionDialog (in VkFileSelectionDialog),

208-211
caution, 211

theInfoDialog (in VkInfoDialog), 198-199
theInterruptDialog (in VkInterruptDialog), 202-204

checking for interruptions, 202
installing as busy dialog, 73-74, 203-204

theProgressDialog (in VkProgressDialog)
installing as busy dialog, 73

thePromptDialog (in VkPromptDialog), 206-208
caution, 208

theQuestionDialog (in VkQuestionDialog), 205-206
theUndoManager (in VkMenuUndoManager), 167
theWarningDialog (in VkWarningDialog), 200
tick marks component, 339-342

See also components; VkTickMarks class
labels, 340, 341
scale, setting, 340-341
X resources, 342

toggleDisplay() (in VkModifiedAttachment), 387
toggles, radio-style. See radio-style toggles;

VkRadioGroup class
transfer models

PRIMARY, 270
CLIPBOARD, 270

transparencyString() (in VkVisual), 265
triggering ViewKit callbacks, 39-40
twinsButton() (in VkGraph), 332
twinsVisibleHook() (in VkGraph), 335
type() (in VkPrefItem), 226
type() (in VkRepeatButton), 377
typographical conventions, xxiv

U

undisplay() (in VkGraph), 325
undo() (in VkMenuAction), 122-123
undoit() (in VkAction), 178
undoit() (in VkMenuActionObject), 178
“Undo” menu selection label, 171
undo stack

clearing, 170
examining, 171

undo support, 165-176
adding “Undo” selection to menu, 167
command class objects, 170
example, 172-176
menu items, 126, 135, 167-168
multi-level, 170
non-menu item actions, 168-170
overview, 165-166
setting label, “Undo” selection, 171
undo() (in VkMenuAction), 122-123
undo stack

clearing, 170
examining, 171

user interface, 166
VkAction class, 170
VkMenuActionObject class, 170

uniformTabs() (in VkTabPanel), 370
unpost() (in VkDialogManager), 193
unpostAll() (in VkDialogManager), 193
unposting dialogs, 193
unrecoverable errors, 201
unregisterDropSite() (in VkCutPaste), 279
unregistering functions, ViewKit callbacks, 38
update() (in VkDoubleBuffer), 339
update() (in VkMeter), 393
useOverlayApps() (in VkApp), 80
useOverlayMenus() (in VkMenu), 163

431

Index

V

value() (in VkModifiedAttachment), 385
valueChanged() (in VkCheckBox), 358
valueChanged() (in VkRadioGroup), 381-382
version information, 74
versionString() (in VkApp), 74
ViewKit

benefits, 1
callbacks. See ViewKit callbacks; Xt callbacks
compiling programs, 5-7

example, 7
debug libraries, 6
header files, 6
help, 298-299
libraries, 6-7
libraries, debug, 6
major elements, 2-3
overview, 1-10
subsystems, 5-6
visual inheritance, 255
X and IRIS IM, and, 3-4

ViewKit callbacks, 34-41
See also VkCallbackObject class
callback functions

format, 36, 37
registering, 35-38
removing, 38
unregistering, 38

creating, 39
defining, 39
invoking, 39-40
overview, 34
predefined

arcCreatedCallback (in VkGraph), 333
arcDestroyedCallback (in VkGraph), 333
buttonCallback (in VkRepeatButton), 377
deleteCallback (in VkComponent), 16, 40-41
enterCallback (in VkCompletionField), 375
interruptedCallback (in VkInterruptDialog), 202

itemChanged (in VkCheckBox), 357-358
modifiedCallback (in VkModifiedAttachment),

386
prefCallback (in VkPrefDialog), 246-247
prepostCallback, 192
stateChangedCallback (in VkResizer), 349-350
tabPopupCallback (in VkTabPanel), 367
tabSelectCallback (in VkTabPanel), 367

triggering, 39-40
ViewKit help, 298-299

determining help tokens, 300
ViewKit libraries, 6-7
ViewKitMajorRelease (in VkApp), 74
ViewKitMinorRelease (in VkApp), 74
ViewKitReleaseString (in VkApp), 74
views, windows, 82, 85-95, 96

direct instantiation, adding to, 94-95
replacing, 95
setUpInterface(), creating in, 92-94
window constructor, creating in, 85-91

viewWidget() (in VkSimpleWindow), 96
visible() (in VkSimpleWindow), 96
visual() (in VkVisual), 263
visualClassString() (in VkVisual), 266
visualID() (in VkVisual), 263
visualParent() (in VkVisual), 266
visualParentArgs() (in VkVisual), 266
visuals

inheritance, 255
maintaining consistency, 255-256
overview, 251-257
X11 visuals, 252-253
X visuals, 252-256

VkAction class
See also command classes; VkMenuActionObject

class
activating, 179
executing, 179

432

Index

VkAction class (continued)
inheritance graph, 165
member functions

constructor, 178
doit(), 178
undoit(), 178
VkAction(), 178

overview, 177
setting label for “Undo” selection, 179-180

VkAlignmentGroup class, 343-345
See also alignment groups
adding widgets, 343-344
aligning widgets, 344-345
inheritance graph, 337
member functions

~VkAlignmentGroup(), 343
add(), 343-344
alignBottom(), 344
alignHeight(), 344
alignLeft(), 344
alignRight(), 344
alignTop(), 344
alignWidth(), 344
constructor, 343
destructor, 343
distributeHorizontal(), 345
distributeVertical(), 345
height(), 345
makeNormal(), 344
remove(), 344
VkAlignmentGroup(), 343
width(), 345
x(), 345
y(), 345

removing widgets, 344
VkApp class, 53-79

See also applications; VkComponent class
application name, 54, 76
application pointer, 54

busy states, 69-74, 201
See also VkBusyDialog class; VkInterruptDialog

class
busy dialog, 69, 73-74
entering, 69
example, 70-71
exiting, 69
nested, 69

class name, 54, 76
command-line options, parsing, 54-55, 77

example, 78-79
component name, 54, 76
cursors, 61-68

busy, animated, 62, 62-68, 72
busy, fixed, 62
default, 61, 62
normal, 61-62
temporary, 68

data members
_winList, 78
theApplication, 54
ViewKitMajorRelease, 74
ViewKitMinorRelease, 74
ViewKitReleaseString, 74

Display structure, 76
event handling, 56-58

customizing, 58
during postAndWait(), 187-188
during wasInterrupted(), 202
pending events, 57
raw events, 56-57, 104

inheritance graph, 53
member functions

aboutDialog(), 75
afterRealizeHook(), 77
appContext(), 76
applicationClassName(), 76
argc(), 76
argv(), 76-77
baseWidget(), 77
busy(), 69-71

433

Index

VkApp class (continued)
member functions (continued)

busyCursor(), 62, 68
className(), 76
constructors, 54-55
display(), 76
handlePendingEvents(), 57, 58
handleRawEvent(), 57
hide(), 61
iconify(), 61
lower(), 61
mainWindow(), 60
name(), 76
normalCursor(), 62
notBusy(), 69-71
open(), 61
parseCommandLine(), 77
progressing(), 72
quitYourself(), 20, 59, 99
raise(), 61
run(), 56-58
run_first(), 56, 58
setAboutDialog(), 75
setBusyCursor(), 62, 68
setBusyDialog(), 73
setMainWindow(), 60
setNormalCursor(), 61-62
setVersionString(), 74
shellGeometry(), 76
show(), 61
showCursor(), 68
startupIconified(), 61, 77
terminate(), 59-60, 85, 201
useOverlayApps(), 80
versionString(), 74
VkApp(), 54-55

overview, 53
product information, 74-75
quitting applications, 20-21, 59-60, 85, 99, 102, 201
running applications, 56

shell, application, 54, 77, 81-82
geometry, 76

subclassing, 77-79
example, 78-79

typical use, 56
version information, 74
ViewKit callbacks

See also VkCallbackObject class
windows, managing, 60-61, 95-96
XtAppContext structure, 76

VkBusyDialog class, 201-202
See also busy dialog; VkDialogManager class
inheritance graph, 181
installing as busy dialog, 73
theBusyDialog, 201

VkCallbackFunction type, 38
VkCallbackMethod type, 36
VkCallbackObject class

See also ViewKit callbacks; VkComponent class
inheritance graph, 11
member functions

addCallback(), 35-38
callCallbacks(), 39-40
removeAllCallbacks(), 38
removeCallback(), 38

VkCheckBox class, 352-359
See also check box component; VkComponent

class; VkRadioBox class
data members

_label, 359
_rc, 359
_widgetList, 359

example, 353-355
inheritance graph, 351
member functions

addItem(), 352
constructor, 352
getValue(), 356
setValue(), 355
setValues(), 355

434

Index

VkCheckBox class
member functions (continued)

valueChanged(), 358
VkCheckBox(), 352

setting labels, 353-355
subclassing, 358-359
toggles

adding, 352
detecting value changes, 356-359
getting values, 356
setting values, 355

ViewKit callbacks
itemChanged, 357-358

VkColorChooserDialog class, 183
VkCompletionField class, 374-376

See also completion field; VkComponent
activation, responding, 375
clearing expansion list, 374
data members

_currentMatchList, 376
_nameList, 376

inheritance graph, 351
member functions

~VkCompletionField(), 374
activate(), 376
add(), 374
clear(), 374-375
constructor, 374
destructor, 374
expand(), 375-376
getText(), 375
VkCompletionField(), 374

replacing expansion list, 375
retrieving contents, 375
setting expansion list, 374
subclassing, 375-376
ViewKit callbacks

enterCallback, 375
VkComponent, 11

VkComponent class
See also components; VkCallbackObject class
base widget, 12, 14, 16, 18

deletion, handling, 24
realization, detecting, 20

callbacks. See VkCallbackObject class;
VkComponent class: Xt callbacks

class name, 18, 26
data members

_baseWidget, 14, 18
_name, 14, 17

displaying, 19-20
hiding, 19-20
inheritance graph, 11
managing widgets, 13, 14
member functions

~VkComponent(), 16-17
afterRealizeHook(), 20
baseWidget(), 18
className(), 18, 26
constructor, 13-16
destructor, 16-17
getResources(), 28
hide(), 19
installDestroyHandler(), 14, 25
isComponent(), 21
name(), 17
okToQuit(), 20-21
removeDestroyHandler(), 25
setDefaultResources(), 30-31
show(), 19
VkComponent(), 13-16
widgetDestroyedCallback(), 24-25

multiple pointers to component, 40-41
name, 12-14, 17
operators

Widget, 19
overview, 12-13
parent widget, 12, 14

435

Index

VkComponent class (continued)
resource support, 26-34

data members, initializing, 28-30
default values, setting, 30-32
global values, setting, 31
requirements, 26
resource values, setting, 26-27
values, retrieving, 32-34

static member functions and Xt callbacks, 13, 21-24
example, 22-24
naming convention, 22
this pointer, 21-22

subclassing, 41-52
constructor, 14-16
examples, 43-52
summary, 41-42
VkComponent(), 14-16

testing for valid component, 21
ViewKit callbacks

deleteCallback, 16, 40-41
widget destruction, 13, 14, 16, 24-25
widgets, 12, 14
Xt callbacks, 13, 21-24

example, 22-24
naming convention, 22
this pointer, 21-22

VkCursorList class
data members

_cursorList, 63
inheritance graph, 53
member functions

constructor, 62-63
createCursor(), 63
VkCursorList(), 62-63

VkCutPaste class, 269-296
accepting drops, 277-280
accepting drops from the IM Desktop, 281-282
converting data types, 285-288
copying data, 271-272
demonstration programs, 269
dragging data, 275-277

file and data ownership, 288-293
examples, 288-293

member functions
~VkCutPaste(), 271
clear(), 271
clipboardAtom(), 294
dragAwayCopy(), 275
dragAwayCopyExtended(), 276
export(), 272
freeFilenamesFromSGI_ICON(), 281
getDataTypeInfo(), 285
getFilenamesFromSGI_ICON(), 281
getLocalReference(), 295
getLocalTypeReference(), 296
getVersion(), 294
getWidget(), 294
getXServerTime(), 294
import(), 274
importImmediate(), 273
isOwnedByLocalHost(), 295
isOwnedByMe(), 295
primaryAtom(), 294
putCopy(), 271
putReference(), 296
registerConverter(), 286
registerDataType(), 283
registerDropSite(), 278
registerDropSiteExtended(), 278
registerLoseSelection(), 272
remove(), 296
setTransactionsTimeout(), 295
unregisterDropSite(), 279
VkCutPaste(), 270

overview, 269
pasting data, 273-275
registering data types, 283-285

VkDialogManager class, 184-197
See also dialogs; VkComponent class; individual

dialog classes
Apply button, 186
button labels, setting, 195-196

436

Index

VkDialogManager class (continued)
Cancel button, 186
centering algorithm, 196-197
Help button, 186, 303
inheritance graph, 181
member functions

apply(), 213
cancel(), 213
centerOnScreen(), 196-197
enableCancelButton(), 197
lastPosted(), 197
ok(), 213
post(), 185-187
postAndWait(), 185, 187-188
postBlocked(), 185-187
postModal(), 185-187
prepost(), 192
setArgs(), 197
setButtonLabels(), 195-196
setTitle(), 193-194
setVisual(), 197
unpost(), 193
unpostAll(), 193

message, 186
OK button, 186
parent widget, 186
posting, 185-191

examples, 188-191
methods, 185-188

preposting, 192
title, setting, 193-195
unposting, 193
ViewKit callbacks

prepostCallback, 192
VkDoubleBuffer class, 337-339

See also double-buffer component; VkComponent
class

data members
_canvas, 338
_height, 339
_width, 339

drawing, 338
inheritance graph, 337
member functions

~VkDoubleBuffer(), 338
constructor, 338
destructor, 338
draw(), 338
resize(), 339
update(), 339
VkDoubleBuffer(), 338

resizing, 339
switching buffers, 339

VkErrorDialog class, 200
See also error dialog; VkDialogManager class
inheritance graph, 181
theErrorDialog, 200

VkFatalErrorDialog class, 201
See also fatal error dialog; VkDialogManager class
inheritance graph, 181
theFatalErrorDialog, 201

VkFileSelectionDialog class, 208-211
See also file selection dialog; VkDialogManager

class
caution, 211
inheritance graph, 181
member functions

fileName(), 210-211
setDirectory(), 209
setFilterPattern(), 209-210
setSelection(), 210

theFileSelectionDialog, 208
VkGangedGroup class

See also ganged scrollbars
, 378-379

adding scrollbars, 379
inheritance graph, 351

437

Index

VkGangedGroup class (continued)
member functions

~VkGangedGroup(), 379
add(), 379
constructor, 378
destructor, 379
remove(), 379
removeFirst(), 379
removeLast(), 379
VkGangedGroup(), 378

removing scrollbars, 379
VkGenericDialog class, 211-213

See also generic dialog; VkDialogManager class
data members

_allowMultipleDialogs, 212
_minimizeMultipleDialogs, 213
_showApply, 212
_showCancel, 212
_showOK, 212

inheritance graph, 181
member functions

createDialog(), 211-212
VkGetResource(), 32-34

See also resource support
example, 33-34
note, 33

VkGraph class, 307-317, 322-335
See also graphs; nodes; VkComponent class;

VkNode class
arc attributes, 323-324
butterfly graphs, 329-330
control panel, 312-313
edit mode, 309, 316-317
example, 309-312
finding, 332
graph widget, 308-309
inheritance graph, 307
member functions

~VkGraph(), 322
add(), 323-324

addDesktopMenuItems(), 335
addMenuItems(), 334
buildCmdPanel(), 334
buildZoomMenu(), 334
clearAll(), 325
constructor, 322
destructor, 322
display(), 325
displayAll(), 325
displayButterfly(), 329-330
displayIf(), 327
displayParentsAndChildren(), 327
displayWithAllChildren(), 326
displayWithAllParents(), 326
displayWithChildren(), 326
displayWithParents(), 326
doLayout(), 328
doSparseLayout(), 329
doSubtreeLayout(), 328-329
expandNode(), 326
expandSubgraph(), 326
find(), 332
forAllNodesDo(), 331
graphWidget(), 332
hideAllChildren(), 326
hideNode(), 325
hideOverview(), 330
hideParents(), 327
hideParentsAndChildren(), 327
hideWithAllChildren(), 326
makeNodeVisible(), 331
numNodes(), 332
overviewWindow(), 330
popupMenu(), 335
relayButton(), 332
remove(), 324
reorientButton(), 332
saveToFile(), 331
setLayoutStyle(), 330
setSize(), 331
setZoomOption(), 331

438

Index

VkGraph class
member functions (continued)

showOverview(), 330
sortAll(), 331
tearDownGraph(), 333
twinsButton(), 332
twinsVisibleHook(), 335
undisplay(), 325
VkGraph(), 322
workArea(), 332

multiple arcs, 315
Node menu, 316
nodes

adding, 322-324
aligning, 315, 328-329
deselecting, 317
displaying, 316, 317, 325-327, 331
establishing connections, 318, 323-324
hiding, 316, 317, 325-327
laying out, 315, 328-329
moving, 317
performing action, 331
removing, 324
selecting, 316-317
sorting, 331

orientation, 315
overview, 307-317
overview window, 314-315, 330

Admin menu, 315
read-only mode, 309
reusing, 333
saving, 331
Selected Nodes menu, 317
subclassing, 334-335
ViewKit callbacks

arcCreatedCallback, 333
arcDestroyedCallback, 333

widget, 332
X resource, 334
zooming, 313-314, 331

VkGraphFilterProc type, 327

VkGraphNodeProc type, 331
VkHelpPane class, 300-303

See also Help menu; VkSubMenu class
inheritance graph, 115
resources, 302-303

VkInfoDialog class, 198-199
See also information dialog; VkDialogManager

class
inheritance graph, 181
theInfoDialog, 198

VkInterruptDialog class, 202-204
See also interruptible busy dialog;

VkDialogManager class
checking for interruptions, 202
inheritance graph, 181
installing as busy dialog, 73-74, 203-204
member functions

wasInterrupted(), 202
theInterruptDialog, 202
ViewKit callbacks

interruptedCallback, 202
VkMenuAction class, 122-123

See also VkMenuItem class
adding to menus, 135
inheritance graph, 115
member functions

hasUndo(), 122-122
undo(), 122-123

VkMenuActionObject class
See also command classes; VkAction class;

VkMenuItem class
activating, 179
data members

_clientData(), 178
executing, 179
inheritance graph, 165
member functions

constructor, 178
doit(), 178
undoit(), 178
VkMenuActionObject(), 178

overview, 177

439

Index

VkMenuBar class, 147-149
See also menu bars; VkMenu class; VkWindow

class
inheritance graph, 115
member functions

constructor, 148
helpPane(), 149
VkMenuBar(), 148

VkWindow destructor, and, 85
VkWindow support, 100-101

VkMenu class, 125-147
See also menus; VkMenuItem class; specific menu

classes
activating menu items, 141
constructing dynamically, 134-140

example, 138-140
constructing from static description, 125-134

example, 130-134
VkMenuDesc structure, 125-129
Xt callback client data, 129-130

deactivating menu items, 142
determining menu item position, 146-147
finding menu items, 141
inheritance graph, 115
member functions

activateItem(), 141
add(), 138
addAction(), 135
addConfirmFirstAction(), 135
addLabel(), 136
addRadioSubmenu(), 137-138
addSeparator(), 136
addSubmenu(), 137
addToggle(), 136
deactivate(), 142
findNamedItem(), 141
getItemPosition(), 146-147
numItems(), 146
removeItem(), 142
replace(), 142-143
useOverlayMenus(), 163

operators
[] (subscript), 147

overview, 116
removing menu items, 142
replacing menu items, 142-143
VkMenuItemType type, 126
XtDisplay() caution, 116
XtScreen() caution, 116
XtWindow() caution, 116

VkMenuConfirmFirstAction class, 123
See also VkMenuAction class
adding to menus, 135
inheritance graph, 115

VkMenuDesc structure, 125-129
VkMenuItem class

See also menu items; VkComponent class; specific
menu items classes

activating menu items, 119, 141
deactivating menu items, 119, 142
determining position in menu, 146-147
displaying menu items, 118
finding menu items, 141
hiding menu items, 119
inheritance graph, 115
labels, 120
member functions

activate(), 119
deactivate(), 119
hide(), 119
isContainer(), 122
menuType(), 121-122
remove(), 119
setLabel(), 120
setPosition(), 121
show(), 118

overview, 116
position, 120-121
removing menu items, 119, 142
replacing menu items, 142-143
type, 121-122

440

Index

VkMenuItem class (continued)
XtDisplay() caution, 116
XtScreen() caution, 116
XtWindow() caution, 116

VkMenuItemType type, 121-122, 126
VkMenuLabel class, 124

See also VkMenuItem class
adding to menus, 136
inheritance graph, 115

VkMenuSeparator class, 124
See also VkMenuItem class
adding to menus, 136
inheritance graph, 115

VkMenuToggle class, 123-124
See also VkMenuAction class
adding to menus, 136
inheritance graph, 115
member functions

getState(), 124
setStateAndNotify(), 124
setVisualState(), 124

VkMenuUndoManager class, 166-176
See also undo support; VkMenuItem class
adding “Undo” selection to menu, 167
example, 172-176
inheritance graph, 165
instantiating, 167
member functions

add(), 168-169
historyList(), 171
multiLevel(), 170
reset(), 170

multi-level undo support, 170
setting “Undo” selection label, 171
theUndoManager, 167
undoing

command class objects, 170
menu item actions, 167-168
non-menu item actions, 168-170

undo stack
clearing, 170
examining, 171

VkAction class, 170
VkMenuActionObject class, 170

VkMeter class, 391-395
See also meter component; VkComponent class
adding items, 392-393
desired dimensions, 394
member functions

~VkMeter(), 391
add(), 392-393
constructor, 391
destructor, 391
neededHeight(), 394
neededWidth(), 394
reset(), 391-392
setResizePolicy(), 393-394
update(), 393
VkMeter(), 391

resetting, 391-392
resize policy, 393-394
updating display, 393
X resources, 394-395

VkModifiedAttachment class, 382-389
See also modified text attachment;

VkCallbackObject class
adjusting geometry, 387-388
attaching widgets, 384-385
controlling contents, 387, 388
detaching widgets, 385
detecting changes, 386
displaying dogear, 385
hiding dogear, 385
inheritance graph, 351

441

Index

VkModifiedAttachment class (continued)
member functions

~VkModifiedAttachment(), 384
adjustGeometry(), 387
attach(), 384-385
constructor, 384
destructor, 384
detach(), 385
displayValue(), 387
expose(), 385
fixPreviousValue(), 388
getParameters(), 388
hide(), 385
latestDisplay(), 387
modified(), 388
previousValue(), 385
setModified(), 388
setParameters(), 388
setValue(), 387
show(), 385
toggleDisplay(), 387
value(), 385
VkModifiedAttachment(), 384
widget(), 388

overview, 382-383
retrieving values, 385
ViewKit callbacks

modifiedCallback, 386
X resource, 389

VkModifiedCallback structure, 386
VkModified class

inheritance graph, 351
VkModifiedReason type, 386
VkNode class, 317-322

See also graphs; nodes (in graphs); VkComponent
class; VkGraph class

arc attributes, 323-324
child nodes, 320
data members

_label, 322

finding, 320, 332
inheritance graph, 307
label, 318, 320, 322
member functions

~VkNode(), 318
build(), 321
child(), 320
constructor, 318
destructor, 318
findChild(), 320
findParent(), 320
label(), 320
nChildren(), 320
nParents(), 320
parent(), 320
setSortFunction(), 319
sortChildren(), 319
VkNode(), 318

parent nodes, 320
performing action, 331
sorting, 319, 331
subclassing, 321-322

VkNodeSortFunction type, 319
VkOptionMenu class, 154-158

See also option menus; VkMenu class
example, 156-158
inheritance graph, 115
item width, setting, 156
member functions

constructor, 154-155
forceWidth(), 156
getIndex(), 156
getItem(), 156
set(), 155-156
VkOptionMenu(), 154-155

menu label, setting, 155
selected item

setting, 156
selected item, setting, 155-156

VkOutlineASB class, 404

442

Index

VkOutline class, 395-404
VkPie class, 395

See also VkComponent class; VkMeter class
VkPopupMenu class, 158-162

See also popup menus; VkMenu class
attaching to widget, 159-160
example, 160-162
inheritance graph, 115
member functions

attach(), 159-160
build(), 160
constructor, 158-159
show(), 160
VkPopupMenu(), 158-159

popping up, 160
VkPrefCustom class

inheritance graph, 215
VkPrefDialog class

See also preference dialogs; VkDialogManager
class; VkGenericDialog class

adding preference items, 245, 245
example, 219-222
inheritance graph, 215
member functions

constructor, 244-245
item(), 245
setItem(), 245
VkPrefDialog(), 244-245

overview, 216-217
posting, 245-246

See also VkDialogManager class: posting
retrieving values, 248
subclassing, 249-250
unposting, 246

See also VkDialogManager class: unposting
user interaction, responding, 246-247
ViewKit callbacks

prefCallback, 246-247

VkPrefEmpty class, 237
See also preference items: empty space; VkPrefItem

class
inheritance graph, 215
member functions

constructor, 237
VkPrefEmpty(), 237

VkPrefGroup class, 238-239
See also preference items: groups; VkPrefItem class
inheritance graph, 215
labels, setting, 244
member functions

addItem(), 242-243
changed(), 243
constructor, 241-242
deleteChildren(), 243
item(), 243
size(), 243
VkPrefGroup(), 241-242

toggle item labels, 229-231
VkPrefItem class, 223-227

See also preference items; VkComponent class
activating, 226
base widget, 223, 226
deactivating, 226
inheritance graph, 215
labels, 223-224

groups, 244
label items, 236
option menus, 233-234
toggles, 229-231

label widget, 223, 226
member functions

activate(), 226
baseHeight(), 226
changed(), 225
deactivate(), 226
getValue(), 225
isContainer(), 227
labelHeight(), 226
labelWidget(), 226

443

Index

VkPrefItem class
member functions (continued)

setBaseHeight(), 226
setLabelHeight(), 226
setValue(), 225
type(), 226

overview, 217-218
values, 225

VkPrefItemType type, 226
VkPrefLabel class, 235-236

See also preference items: label items; VkPrefItem
class

inheritance graph, 215
member functions

constructor, 236
VkPrefLabel(), 236

setting labels, 236
VkPrefList class, 239-240

See also preference items: groups; VkPrefGroup
class; VkPrefItem class

inheritance graph, 215
member functions

addItem(), 242-243
changed(), 243
constructor, 242
deleteChildren(), 243
item(), 243
size(), 243
VkPrefList(), 242

VkPrefOption class, 232-235
See also preference items: option menus;

VkPrefItem class
inheritance graph, 215
labels, setting, 233-234
member functions

constructor, 232-233
getButton(), 234
getLabel(), 234

getValue(), 235
setLabel(), 233-234
setSize(), 234
setValue(), 235
size(), 234
VkPrefOption(), 232-233

number of options, setting, 234
VkPrefRadio class, 240-241

See also preference items: groups; VkPrefGroup
class; VkPrefItem class

inheritance graph, 215
labels, setting, 244
member functions

addItem(), 242-243
changed(), 243
constructor, 242
deleteChildren(), 243
item(), 243
size(), 243
VkPrefRadio(), 242

toggle item labels, 229-231
VkPrefSeparator class, 237

See also preference items: separators; VkPrefItem
class

inheritance graph, 215
member functions

constructor, 237
VkPrefSeparator(), 237

VkPrefText class, 227-228
See also preference items: text fields; VkPrefItem

class
inheritance graph, 215
member functions

constructor, 227-228
getValue(), 228
setValue(), 228
VkPrefText(), 227-228

444

Index

VkPrefToggle class, 228-232
See also preference items: toggles; VkPrefItem class
inheritance graph, 215
member functions

constructor, 229
getValue(), 231-232
setValue(), 232
VkPrefToggle(), 229

setting labels, 229-231
VkProgressDialog class, 204-205

See also progress dialog; VkDialogManager class
installing as busy dialog, 73

VkPromptDialog class, 206-208
See also prompt dialog; VkDialogManager class
caution, 208
inheritance graph, 181
member functions

text(), 207-208
thePromptDialog, 206

VkQuestionDialog class, 205-206
See also question dialog; VkDialogManager class
inheritance graph, 181
theQuestionDialog, 205
VkMenuConfirmFirstAction use, 123

VkRadioBox class, 359-361
See also radio check box component; VkCheckBox

class; VkRadioBox class
example, 359-361
inheritance graph, 351

VkRadioGroup class
See also radio-style toggles
adding buttons, 381
inheritance graph, 351
member functions

~VkRadioGroup(), 380
add(), 381
constructor, 380
destructor, 380
remove(), 381
removeFirst(), 381

removeLast(), 381
valueChanged(), 381-382
VkRadioGroup(), 380

removing buttons, 381
subclassing, 381-382

VkRadioSubMenu class, 150-154
See also radio submenus; VkSubMenu class
adding to menus, 137-138
inheritance graph, 115
member functions

constructor, 151
VkRadioSubMenu(), 151

VkRepeatButton class, 376-378
See also repeating buttons; VkComponent class
activation, responding, 377
inheritance graph, 351
member functions

constructor, 376-377
setParameters(), 377
type(), 377
VkRepeatButton(), 376-377

ViewKit callbacks
buttonCallback, 377

X resources, 378
VkRepeatButtonType type, 377
VkResizer class, 346-350

See also resizers; VkComponent class
attaching widgets, 348-349
detaching widgets, 349
displaying geometry controls, 349
geometry changes

detecting, 349-350
restricting, 349

hiding geometry controls, 349
inheritance graph, 337
member functions

~VkResizer(), 348
attach(), 348-349
constructor, 348
destructor, 348

445

Index

VkResizer class
member functions (continued)

detach(), 349
hide(), 349
setIncrements(), 349
show(), 349
shown(), 349
VkResizer(), 348

overview, 346-348
ViewKit callbacks

stateChangedCallback, 349-350
VkSimpleWindow class, 81-113

See also VkWindow class
base widget, 86
class hints, 100
data members

_baseWidget, 86
_iconState, 103
_mainWindowWidget, 105
_stackingState, 103
_visibleState, 103

displaying windows, 61, 95
hiding windows, 61, 95
iconifying windows, 61, 95
icon titles, 97-98
inheritance graph, 81
lowering windows, 61, 95
main window, 84
managing widgets, 85
member functions

~VkSimpleWindow(), 85
addView(), 86
afterRealizeHook(), 99, 104
constructor, 84
destructor, 85
getTitle(), 97
getVisualState(), 96
handleRawEvent(), 104
handleWmDeleteMessage(), 99
handleWmQuitMessage(), 99
hide(), 95

iconic(), 96
iconify(), 95
lower(), 95
mainWindowWidget(), 86, 96
okToQuit(), 59, 99, 102
open(), 95
raise(), 95
setClassHint(), 100
setIconName(), 97
setTitle(), 97
setUpInterface(), 92
setUpWindowProperties(), 99
show(), 92, 95
stateChanged(), 103
viewWidget(), 96
visible(), 96
VkSimpleWindow(), 84

opening windows, 61, 95
overview, 82-83
parent widget, 84
raising windows, 61, 95
ScrolledWindow widget, 86
subclassing, 101-113

example, 106-113
summary, 105-106

views, 82, 85-95, 96
constructor, creating in, 85-91
direct instantiation, adding to, 94-95
replacing, 95
setUpInterface(), creating in, 92-94

widgets, 85-86, 96
window manager interaction, 84, 97-100
window properties, 98-100
window shell resources, 84, 98
window titles, 97-98
work areas, 82, 85-95, 96

constructor, creating in, 85-91
direct instantiation, adding to, 94-95
replacing, 95
setUpInterface(), creating in, 92-94

446

Index

VkSubMenu class, 149-150
See also submenus; VkMenu class
adding to menus, 137
inheritance graph, 115
member functions

baseWidget(), 150
constructor, 149
pulldown(), 150
showTearOff(), 150
VkSubMenu(), 149

VkTabCallbackStruct structure, 367
VkTabPanel class, 361-373

See also tab panel component; VkComponent class
inheritance graph, 351
member functions

addTab(), 364-365
addTabs(), 365
area1(), 371
area2(), 371
constructor, 363-364
gc(), 371
getTab(), 368
horiz(), 369
labelBg(), 370
labelFg(), 370
lineThickness(), 370
removeTab(), 365-366
selectedTab(), 368
selectTab(), 365, 368
setTabPixmap(), 366
size(), 369
tabBg(), 370
tabHeight(), 369
tabPixmap(), 366
uniformTabs(), 370
VkTabPanel(), 363-364

overview, 361-363
tabs

adding, 364-365
adding pixmaps, 366
removing, 365-366

removing pixmaps, 366
selection, responding to, 367-368

ViewKit callbacks
tabPopupCallback, 367
tabSelectCallback, 367

X resources, 371-373
VkTickMarks class, 339-342

See also tick marks component; VkComponent
class

inheritance graph, 337
labels, 340, 341
member functions

addLabel(), 341
constructor, 340
setMargin(), 342
setScale(), 340-341
VkTickMarks(), 340

scale, setting, 340-341
X resources, 342

VkVisual class, 251-267
colormaps, 255-257
demonstration programs, 251
enumerated data types, 257-258
examples, 266
member functions

~VkVisual(), 259
argCnt(), 262
argList(), 262
className(), 262
colormap(), 262
colormapCreated(), 262
depth(), 262
indexString(), 265
maxLevel(), 262
minLevel(), 263
numColors(), 263
planesString(), 265
print(), 265
printAll(), 265
setColormap(), 259
setVisual(), 260

447

Index

VkVisual class
member functions (continued)

statusString(), 265
transparencyString(), 265
visual(), 263
visualClassString(), 266
visualID(), 263
visualParent(), 266
visualParentArgs(), 266
VkVisual(), 259
vkVisualinfo(), 263
window(), 264

setting visual information, 259-261
X11 visuals, 252-253
Xt visuals, 254
X visuals, 252-256

vkVisualInfo() (in VkVisual), 263
VkWarningDialog class, 200

See also warning dialog; VkDialogManager class
inheritance graph, 181
theWarningDialog, 200

VkWindow class, 81-113
See also VkSimpleWindow class
base widget, 86
class hints, 100
data members

_iconState, 103
_mainWindowWidget, 105
_stackingState, 103
_visibleState, 103

displaying windows, 61, 95
hiding windows, 61, 95
iconifying windows, 61, 95
icon titles, 97-98
inheritance graph, 81
lowering windows, 61, 95
main window, 84
managing widgets, 85

member functions
~VkWindow(), 85
addMenuPane(), 100-101
addRadioMenuPane(), 101
addView(), 86
afterRealizeHook(), 99, 104
constructor, 84
destructor, 85
getTitle(), 97
getVisualState(), 96
handleRawEvent(), 104
handleWmDeleteMessage(), 99
handleWmQuitMessage(), 99
hide(), 95
iconic(), 96
iconify(), 95
lower(), 95
mainWindowWidget(), 86, 96
menu(), 100
okToQuit(), 99, 102
open(), 95
raise(), 95
setClassHint(), 100
setIconName(), 97
setMenuBar(), 100
setTitle(), 97
setUpInterface(), 92
setUpWindowProperties(), 99
show(), 92, 95
stateChanged(), 103
viewWidget(), 96
visible(), 96
VkWindow(), 84

menu bars, 100-101, 147-149
See also VkMenuBar class

opening windows, 61, 95
overview, 82-83
parent widget, 84
raising windows, 61, 95
ScrolledWindow widget, 86

448

Index

VkWindow class (continued)
subclassing, 101-113

example, 106-113
summary, 105-106

views, 82, 85-95, 96
constructor, creating in, 85-91
direct instantiation, adding to, 94-95
replacing, 95
setUpInterface(), creating in, 92-94

widgets, 85-86, 96
window manager interaction, 84, 97-100
window properties, 98-100
window shell resources, 84, 98
window titles, 97-98
work areas, 82, 85-95, 96

constructor, creating in, 85-91
direct instantiation, adding to, 94-95
replacing, 95
setUpInterface(), creating in, 92-94

W

warning dialog, 200
See also VkDialogManager class;

VkWarningDialog class
wasInterrupted() (in VkInterruptDialog), 202
WhitePixel macro, 255
widget() (in VkModifiedAttachment), 388
widgetDestroyedCallback() (in VkComponent),

24-25
Widget operator (in VkComponent), 19
widgets

aligning, 343-345
See also VkAlignmentGroup class

attachments, 343-350, 378-389
alignment groups, 343-345
ganged scrollbars, 378-379
modified text, 382-389
radio-style toggles, 380-382
resizers, 346-350

base widget of component, 12, 14, 16, 18
See also baseWidget()
deletion, handling, 24
realization, detecting, 20

base widget of preference item, 223, 226
base widget of window, 86
components, and, 12, 14
destruction in components, 13, 14, 16, 24-25
label widget of preference item, 223, 226
management classes, 343-350, 378-389

alignment groups, 343-345
ganged scrollbars, 378-379
modified text, 382-389
radio-style toggles, 380-382
resizers, 346-350

managing
components, in, 13, 14
windows, in, 85

moving, 346-350
See also VkResizer class

parent widget of component, 12, 14
windows, 84

parent widget of dialogs, 186
popup menus, attaching, 159-160
resizing, 346-350

See also VkResizer class
scrollbars, “ganging.” See ganged scrollbars;

VkGangedGroup class
SgGraph, 308-309
VkGraph class, 332
windows, and, 85-86, 96

ScrolledWindow widget, 86
width() (in VkAlignmentGroup), 345
window() (in VkVisual), 264
window interfaces. See windows: views
window manager interaction, 84, 97-100

icon titles, 97-98
window properties, 98-100
window titles, 97-98

449

Index

windows, 81-113
See also VkSimpleWindow class; VkWindow class
base widget, 86
class hints, 100
displaying, 61, 95
hiding, 61, 95
iconifying, 61, 95
icon titles, 97-98
lowering, 61, 95
main window, 84

determining, 60
during quitting, 59
specifying, 60

managing, 60-61, 95-96
managing widgets, 85
menu bars, 100-101, 147-149

See also VkMenuBar class
opening, 61, 95
overview, 81-83
parent widget, 84
properties, 98-100
raising, 61, 95
ScrolledWindow widget, 86
shell resources, 84, 98
subclassing, 101-113

example, 106-113
summary, 105-106

titles, 97-98
views, 82, 85-95, 96

direct instantiation, adding to, 94-95
replacing, 95
setUpInterface(), creating in, 92-94
window constructor, creating in, 85-91

widgets, 85-86, 96
window manager interaction, 84, 97-100
work areas, 82, 85-95, 96

direct instantiation, adding to, 94-95
replacing, 95
setUpInterface(), creating in, 92-94
window constructor, creating in, 85-91

WM_DELETE_WINDOW message, 84, 99

WM_QUIT_APP message, 84, 99
workArea() (in VkGraph), 332
work areas, windows, 82, 85-95, 96

direct instantiation, adding to, 94-95
replacing, 95
setUpInterface(), creating in, 92-94
window constructor, creating in, 85-91

X

X
header files, 6
suggested reading, xxiii
ViewKit, and, 3-4

x() (in VkAlignmentGroup), 345
X11 visuals

overview, 252-253
XA_WM_CLASS property, 100
XmGRAPH (graph layout style), 330
XmNargc resource, 84, 98
XmNargv resource, 84, 98
XmNlabelString resource

menu item labels, 120
option menu labels, 155
preference item labels, 223-224
“Undo” menu selection, 171

XmNtearOffModel resource, 150
X resources

See also resource support
arc attributes (in graph), 324
graphs, 334
Help menu, 302-303
menu item labels, 120
meter component, 394-395
modified text attachment, 389
option menu labels, 155
preference item labels, 223-224
repeating buttons, 378

450

Index

X resources (continued)
tab panels, 371, 373
tear-off menus, 150
tick marks, 342
“Undo” selection label, 171

XSelectInput(), 57, 104
XtAppContext structure, 76
XtAppInitialize(), note, 56
XtAppMainLoop(), note, 56
Xt callbacks

components, 13, 21-24
example, 22-24
naming convention, 22
this pointer, 21-22

static menu descriptions, 129-130
XtDispatchEvent(), note, 57
XtDisplay() caution, 116
Xt Intrinsics, initializing, 54
XtNextEvent(), note, 57

XtScreen() caution, 116
Xt visuals

overview, 254
XtWindow() caution, 116
X visuals

overview, 252-256

Y

y() (in VkAlignmentGroup), 345

Z

Zoom In button (in VkGraph control panel), 314
zooming graphs, 313-314, 331
Zoom menu (in VkGraph control panel), 313-314
Zoom Out button (in VkGraph control panel), 314

Tell Us About This Manual

As a user of Silicon Graphics products, you can help us to better understand your needs
and to improve the quality of our documentation.

Any information that you provide will be useful. Here is a list of suggested topics:

• General impression of the document

• Omission of material that you expected to find

• Technical errors

• Relevance of the material to the job you had to do

• Quality of the printing and binding

Please send the title and part number of the document with your comments. The part
number for this document is 007-2124-004.

Thank you!

Three Ways to Reach Us

• To send your comments by electronic mail, use either of these addresses:

– On the Internet: techpubs@sgi.com

– For UUCP mail (through any backbone site): [your_site]!sgi!techpubs

• To fax your comments (or annotated copies of manual pages), use this
fax number: 415-965-0964

• To send your comments by traditional mail, use this address:

Technical Publications
Silicon Graphics, Inc.
2011 North Shoreline Boulevard, M/S 535
Mountain View, California 94043-1389

